WorldWideScience

Sample records for fs laser produced

  1. Fabrication of Super Hydrophobic Surfaces by fs Laser Pulses : How to Produce Self-Cleaning Surfaces

    NARCIS (Netherlands)

    Groenendijk, Max

    2008-01-01

    The chair of Applied Laser Technology of the University of Twente, The Netherlands, is performing research into applications of ultrashort pulsed lasers for micromachining. In a recent project, PhD student Max Groenendijk developed a method for the production of super water repellant surfaces by inj

  2. Hollow-fiber compression of visible, 200 fs laser pulses to 40 fs pulse duration.

    Science.gov (United States)

    Procino, I; Velotta, R; Altucci, C; Amoruso, S; Bruzzese, R; Wang, X; Tosa, V; Sansone, G; Vozzi, C; Nisoli, M

    2007-07-01

    We demonstrate the use of a very simple, compact, and versatile method, based on the hollow-fiber compression technique, to shorten the temporal length of visible laser pulses of 100-300 fs to pulse durations shorter than approximately 50 fs. In particular, 200 fs, frequency-doubled, Nd:glass laser pulses (527 nm) were spectrally broadened to final bandwidths as large as 25 nm by nonlinear propagation through an Ar-filled hollow fiber. A compact, dispersive, prism-pair compressor was then used to produce as short as 40 fs, 150 microJ pulses. A very satisfactory agreement between numerical simulations and measurements is found.

  3. Applications of a 30-fs multiterawatt laser (A): generation and time-gated imaging of laser-produced x-rays for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Barty, C.P. [University of California, San Diego, Urey Hall, MC 0339 La Jolla, California 92093-0339 (United States); Gordon, C.L. III; Lemoff, B.E.; Yin, G.Y. [Stanford University, Edward L. Ginzton Laboratory, Stanford, California 94305 (United States); Bell, P.M. [Lawrence Livermore National Laboratory L-484, P.O. Box 808, Livermore, California 94550 (United States)

    1996-05-01

    30-fs, multiterawatt laser pulses are focused to intensities of {gt}10{sup 18} W/cm{sup 2} onto a solid Ta target to generate x-rays (10{endash}30 keV) for diagnostic imaging. Time gated detection is demonstrated as a technique for removal of scattered radiation and for the improvement of image contrast by a factor of nearly 5. {copyright} {ital 1996 American Institute of Physics.}

  4. Fs-laser processing of polydimethylsiloxane

    Energy Technology Data Exchange (ETDEWEB)

    Atanasov, Petar A., E-mail: paatanas@ie.bas.bg; Nedyalkov, Nikolay N. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Shose, Sofia 1784 (Bulgaria); Valova, Eugenia I.; Georgieva, Zhenya S.; Armyanov, Stefan A.; Kolev, Konstantin N. [Rostislaw Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 11, Sofia 1113 (Bulgaria); Amoruso, Salvatore; Wang, Xuan; Bruzzese, Ricardo [CNR-SPIN, Dipartimento di Scienze Fisiche, Universita degli Studi di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Via Cintia, I-80126 Napoli (Italy); Sawczak, Miroslaw; Śliwiński, Gerard [Photophysics Department, The Szewalski Institute, Polish Academy of Sciences, 14 Fiszera St, 80-231 Gdańsk (Poland)

    2014-07-14

    We present an experimental analysis on surface structuring of polydimethylsiloxane films with UV (263 nm) femtosecond laser pulses, in air. Laser processed areas are analyzed by optical microscopy, SEM, and μ-Raman spectroscopy. The laser-treated sample shows the formation of a randomly nanostructured surface morphology. μ-Raman spectra, carried out at both 514 and 785 nm excitation wavelengths, prior and after laser treatment allow evidencing the changes in the sample structure. The influence of the laser fluence on the surface morphology is studied. Finally, successful electro-less metallization of the laser-processed sample is achieved, even after several months from the laser-treatment contrary to previous observation with nanosecond pulses. Our findings address the effectiveness of fs-laser treatment and chemical metallization of polydimethylsiloxane films with perspective technological interest in micro-fabrication devices for MEMS and nano-electromechanical systems.

  5. Fs-laser processing of medical grade polydimethylsiloxane (PDMS)

    Energy Technology Data Exchange (ETDEWEB)

    Atanasov, P.A., E-mail: paatanas@ie.bas.bg [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsaridradsko shose Blvd., Sofia 1784 (Bulgaria); Stankova, N.E.; Nedyalkov, N.N. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsaridradsko shose Blvd., Sofia 1784 (Bulgaria); Fukata, N. [International Centre for Materials for NanoArchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1Namiki, Tsukuba 305-0044 (Japan); Hirsch, D.; Rauschenbach, B. [Leibniz Institute of Surface Modification (IOM), Permoserstrasse 15, D-04318 Leipzig (Germany); Amoruso, S.; Wang, X. [Dipartimento di Fisica Università degli Studi di Napoli Federico II and CNR-SPIN, Complesso Universitario di Monte S.Angelo, Via Cintia, I-80126 Napoli (Italy); Kolev, K.N.; Valova, E.I.; Georgieva, J.S.; Armyanov, St.A. [Rostislaw Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 11, Sofia 1113 (Bulgaria)

    2016-06-30

    Highlights: • Fs-laser (263, 527 and 1055 nm) processing of PDMS-elastomer is studied. • High quality trenches are produced on the PDMS surface. • The trenches are analyzed by Laser Microscope and by μ-Raman spectrometry. • Selective Ni metallization of the trenches is accomplished via electro-less plating. • The metalized trenches are studied by SEM. - Abstract: Medical grade polydimethylsiloxane (PDMS) elastomer is a biomaterial widely used in medicine and high-tech devices, e.g. MEMS and NEMS. In this work, we report an experimental investigation on femtosecond laser processing of PDMS-elastomer with near infrared (NIR), visible (VIS) and ultraviolet (UV) pulses. High definition trenches are produced by varying processing parameters as laser wavelength, pulse duration, fluence, scanning speed and overlap of the subsequent pulses. The sample surface morphology and chemical composition are investigated by Laser Microscopy, SEM and Raman spectroscopy, addressing the effects of the various processing parameters through comparison with the native materials characteristics. For all the laser pulse wavelengths used, the produced tracks are successfully metalized with Ni via electro-less plating method. We observe a negligible influence of the time interval elapsed between laser treatment and metallization process. Our experimental findings suggest promising perspectives of femtosecond laser pulses in micro- and nano-fabrication of hi-tech PDMS devices.

  6. Study of x-rays produced from debris-free sources with Ar, Kr and Kr/Ar mixture linear gas jets irradiated by UNR Leopard laser beam with fs and ns pulse duration

    Science.gov (United States)

    Kantsyrev, V. L.; Schultz, K. A.; Shlyaptseva, V. V.; Safronova, A. S.; Shrestha, I. K.; Petrov, G. M.; Moschella, J. J.; Petkov, E. E.; Stafford, A.; Cooper, M. C.; Weller, M. E.; Cline, W.; Wiewior, P.; Chalyy, O.

    2016-06-01

    Experiments of x-ray emission from Ar, Kr, and Ar/Kr gas jet mixture were performed at the UNR Leopard Laser Facility operated with 350 fs pulses at laser intensity of 2 × 1019 W/cm2 and 0.8 ns pulses at an intensity of 1016 W/cm2. Debris free x-ray source with supersonic linear nozzle generated clusters/monomer jet with an average density of ≥1019 cm-3 was compared to cylindrical tube subsonic nozzle, which produced only monomer jet with average density 1.5-2 times higher. The linear (elongated) cluster/gas jet provides the capability to study x-ray yield anisotropy and laser beam self-focusing with plasma channel formation that are interconnecting with efficient x-ray generation. Diagnostics include x-ray diodes, pinhole cameras and spectrometers. It was observed that the emission in the 1-9 keV spectral region was strongly anisotropic depending on the directions of laser beam polarization for sub-ps laser pulse and supersonic linear jet. The energy yield in the 1-3 keV region produced by a linear nozzle was an order of magnitude higher than from a tube nozzle. Non-LTE models and 3D molecular dynamic simulations of Ar and Kr clusters irradiated by sub-ps laser pulses have been implemented to analyze obtained data. A potential evidence of electron beam generation in jets' plasma was discussed. Note that the described debris-free gas-puff x-ray source can generate x-ray pulses in a high repetition regime. This is a great advantage compared to solid laser targets.

  7. Nonlinear light propagation in fs laser-written waveguide arrays

    Directory of Open Access Journals (Sweden)

    Szameit A.

    2013-11-01

    Full Text Available We report on recent achievements in the field of nonlinear light propagation in fs laser-written waveguide lattices. Particular emphasis is thereby given on discrete solitons in such systems.

  8. Writing Waveguide in LN With fs Laser

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    We investigated the waveguide formation in Lithium Niobate with Femtosecond laser pulse writing directly. The output optical field through waveguide has been observed and refractive-index change was characterized by using grating method.

  9. Laser Lithography: Heidelberg DWL-66FS

    Data.gov (United States)

    Federal Laboratory Consortium — Description: CORAL Name: Laser Writer High resolution pattern generator for low volume mask making and direct writing. Specifications / Capabilities: 1x1 to 6x6 inch...

  10. Fs-Laser structuring of ridge waveguides

    Science.gov (United States)

    Wortmann, D.; Gottmann, J.

    2008-10-01

    Thin films made by PLD from Er:ZBLAN and Nd:Gd3Ga5O12 are micro machined to form optical wave guiding structures using Ti:sapphire and Yb:glass fiber laser radiation. For the manufacturing of the ridge waveguides grooves are structured by ablation using femtosecond laser radiation. The fluence, the scanning velocity, the repetition rate, and the orientation of the polarization with respect to the scanning direction are varied. The resulting structures are characterized using optical microscopy and scanning electron microscopy. Damping and absorption coefficients of the waveguides are determined by observing the light scattered from the waveguides due to droplets in the thin films and the surface roughness of the structured edges. To discriminate between damping due to droplets and the structured edges, damping measurements in the non-structured films and the structured waveguides are performed. Ridge waveguides with non-resonant damping losses smaller than 3 dB/cm are achieved. Due to the high repetition rate of the Yb:glass fiber laser, the manufacturing time for one waveguide has been decreased by a factor of more than 100 compared to earlier results achieved with the Ti:sapphire laser.

  11. X-Ray and Extreme Ultraviolet Emission from Small-Sized Kr Clusters Irradiated by 150-fs Laser Pulses

    Institute of Scientific and Technical Information of China (English)

    王骐; 程元丽; 赵永蓬; 夏元钦; 陈建新; 肖亦凡

    2003-01-01

    x-ray and extreme ultraviolet (EUV) emission from Kr clusters irradiated by 150-fs laser pulses at the peak laser intensity of 5×1015W/cm2 was experimentally investigated. Strong transitions (10nm-13nm) from Kr X and Kr 1X were observed and some spectral lines from Kr ⅩⅢ and Kr ⅩⅣ, which have been predicted to be not produced by optical-field-ionization at the laser intensity used, also appeared. The laser energy absorption and the intensity of x-ray emission started to grow remarkably above the backing pressure of 0.5 MPa and to decrease at the backing pressure of 3 MPa. It is suggested that an optimum backing pressure may exist for Kr clusters heated by 150 fs laser pulses at a certain laser intensity to produce x-ray emission.

  12. Plasmonic angular tunability of gold nanoparticles generated by fs laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Pace, M.L.; Guarnaccio, A.; Ranù, F. [CNR, ISM UOS Tito Scalo, Zona Industriale, Tito Scalo (PZ) 85050 (Italy); Trucchi, D. [CNR, ISM UOS Montelibretti, Via Salaria km 29.300, Monterotondo Scalo, (RM) 00015 (Italy); Orlando, S., E-mail: stefano.orlando@ism.cnr.it [CNR, ISM UOS Tito Scalo, Zona Industriale, Tito Scalo (PZ) 85050 (Italy); Mollica, D.; Parisi, G.P. [CNR, ISM UOS Tito Scalo, Zona Industriale, Tito Scalo (PZ) 85050 (Italy); Medici, L.; Lettino, A. [CNR, IMAA, Area della Ricerca di Potenza -Zona Industriale, Tito Scalo, (PZ) 85050 (Italy); De Bonis, A.; Teghil, R. [Dipart. di Scienze,Università della Basilicata, Viale dell’Ateneo Lucano 10, Potenza, 85100 (Italy); Santagata, A. [CNR, ISM UOS Tito Scalo, Zona Industriale, Tito Scalo (PZ) 85050 (Italy)

    2016-06-30

    Highlights: • fs pulsed laser ablation as a technique to produce nanoparticles. • Nanoparticle distribution as an evidence for plasmonic tunable resonances. • Correlation between angular distribution of deposited nanoparticles and specific plasmonic resonances. - Abstract: With the aim to study the influence of deposition parameters on the plasmonic properties of gold (Au) nanoparticles (NPs) deposited by ultra-short ablation, we have focused our attention in evaluating how their size distribution can be varied. In this work, the role played by the NPs’ angular distribution, agglomeration and growth is related to the resulting optical properties. UV–vis-NIR absorption spectra together with Scanning Electron Microscopy, Transmission Electron Microscopy and X-ray microdiffraction observations are presented in order to show how the angular distribution of fs laser ablation and deposition of Au NPs provides different plasmonic properties which can be beneficial for several aims, from optoelectronic to biosensor applications.

  13. Applications of a 30-fs multiterawatt laser (B): Field-ionizationy-driven, electron-pumped XUV lasers

    Energy Technology Data Exchange (ETDEWEB)

    Barty, C.P.; Gordon, C.L. III; Lemoff, B.E.; Yin, G.Y.; Harris, S.E. [University of California, San Diego, Urey Hall, MC 0339, La Jolla, California 92093-0339 (United States)

    1996-05-01

    Multiterawatt, 30-fs optical pulses are used to create an eight times ionized plasma in a few torr of Xe gas. Energetic electrons which are also created by the circularly polarized laser pulse are used to produce a population inversion on a 41.8-nm transition in Xe IX. Observation of gain {gt}exp(10) is presented. {copyright} {ital 1996 American Institute of Physics.}

  14. Manufacturing of periodical nanostructures by fs-laser direct writing

    Science.gov (United States)

    Gottmann, J.; Wortmann, D.; Wagner, R.

    2008-06-01

    Sub wavelength ripples (spacing glass fiber laser (τ =400fs, λ =1045nm, f=0.1-5MHz) over the surface of various materials like amorphous Nd:Gd3Ga5O12 films 1 μm in thickness on YAG substrates, diamond, polytetrafluoroethylene, LiF, MgF2, ZBLAN, Al2O3, LiNbO3, SiO2, Si, Cu and Au. The ripple patterns extend coherently over many overlapping laser pulses and scanning tracks. Investigated are the dependence of the ripple spacing Λ on the material, the lateral distance of the laser pulses, the N.A. of the focussing optics, the repetition rate and the applied wavelength. The ripples are characterised using electron microscopy. Some possible models for the origin of the ripple growth are discussed and conditions under which these phenomena occur are contained. New results concerning the scaling of the production process using a high repetition rate laser and a fast translation stage are demonstrated. Potential applications are presented and consequences for precise nano- and microstructuring using ultra short pulsed lasers are discussed.

  15. New class of compact diode pumped sub 10 fs lasers for biomedical applications

    DEFF Research Database (Denmark)

    Le, T.; Mueller, A.; Sumpf, B.;

    2016-01-01

    -laser. In this work we present an alternative method by deploying frequency-doubled IR diodes with good beam qualities to pump fs-lasers. The revolutionary approach allows choosing any pump wavelengths in the green region and avoids complicated relay optics for the diodes. For the first time we show results...... of a diode-pumped 10 fs-laser and how a single diode setup can be integrated into a 30 x 30 cm(2) fs-laser system generating sub 20 fs laser pulses with output power towards half a Watt. This technology paves the way for a new class of very compact and cost-efficient fs-lasers for life science and industrial...... applications....

  16. Concept of a laser-plasma based electron source for sub-10 fs electron diffraction

    CERN Document Server

    Faure, J; Beaurepaire, B; Gallé, G; Vernier, A; Lifschitz, A

    2015-01-01

    We propose a new concept of an electron source for ultrafast electron diffraction with sub-10~fs temporal resolution. Electrons are generated in a laser-plasma accelerator, able to deliver femtosecond electron bunches at 5 MeV energy with kHz repetition rate. The possibility of producing this electron source is demonstrated using Particle-In-Cell simulations. We then use particle tracking simulations to show that this electron beam can be transported and manipulated in a realistic beamline, in order to reach parameters suitable for electron diffraction. The beamline consists of realistic static magnetic optics and introduces no temporal jitter. We demonstrate numerically that electron bunches with 5~fs duration and containing 1.5~fC per bunch can be produced, with a transverse coherence length exceeding 2~nm, as required for electron diffraction.

  17. Versatile fs laser-written glass chip lasers

    Science.gov (United States)

    Lancaster, D. G.; Gross, S.; Fuerbach, A.; Ebendorff Heidepriem, H.; Monro, T. M.; Withford, M. J.

    2013-03-01

    We report laser-written chip lasers with potential to be a platform planar technology versatile enough to cover the visible through to the mid-infrared spectral region. By femtosecond laser direct-writing a thulium doped fluoride based glass host (ZBLAN), we have demonstrated a 151% quantum efficiency λ=1.9 μm laser with a close to diffraction limited beam quality (M2~ 1.12 +/- 0.08) with 225 nm of continuous tunability in a device that can be rapidly fabricated by singlestep optical processing. The 9 mm long planar chip developed for concept demonstration contains fifteen large modearea waveguides that can operate in semi-monolithic or external cavity laser configurations. This chip laser has achieved the highest quantum efficiency from a planar glass waveguide laser. The depressed cladding geometry supports the largest fundamental modes reported for a rare-earth doped waveguide laser thereby favouring high peak-power operation which is demonstrated by achieving 1.9 kW peak-power pulses when Q-switched.

  18. Fs-laser processing of medical grade polydimethylsiloxane (PDMS)

    Science.gov (United States)

    Atanasov, P. A.; Stankova, N. E.; Nedyalkov, N. N.; Fukata, N.; Hirsch, D.; Rauschenbach, B.; Amoruso, S.; Wang, X.; Kolev, K. N.; Valova, E. I.; Georgieva, J. S.; Armyanov, St. A.

    2016-06-01

    Medical grade polydimethylsiloxane (PDMS) elastomer is a biomaterial widely used in medicine and high-tech devices, e.g. MEMS and NEMS. In this work, we report an experimental investigation on femtosecond laser processing of PDMS-elastomer with near infrared (NIR), visible (VIS) and ultraviolet (UV) pulses. High definition trenches are produced by varying processing parameters as laser wavelength, pulse duration, fluence, scanning speed and overlap of the subsequent pulses. The sample surface morphology and chemical composition are investigated by Laser Microscopy, SEM and Raman spectroscopy, addressing the effects of the various processing parameters through comparison with the native materials characteristics. For all the laser pulse wavelengths used, the produced tracks are successfully metalized with Ni via electro-less plating method. We observe a negligible influence of the time interval elapsed between laser treatment and metallization process. Our experimental findings suggest promising perspectives of femtosecond laser pulses in micro- and nano-fabrication of hi-tech PDMS devices.

  19. Transient Newton rings in dielectrics upon fs laser ablation

    CERN Document Server

    Garcia-Lechuga, Mario; Hernandez-Rueda, Javier; Solis, Javier

    2014-01-01

    We report the appearance of transient Newton rings in dielectrics (sapphire and lead-oxide glass) during ablation with single fs laser pulses. Employing femtosecond microscopy with 800 nm excitation and 400 nm illumination, we observe a characteristic ring pattern that dynamically changes for increasing delay times between pump and probe pulse. Such transient Newton rings have been previously observed in metals and semiconductors at fluences above the ablation threshold and were related to optical interference of the probe beam reflected at the front surface of the ablating layer and at the interface of the non-ablating substrate. Yet, it had been generally assumed that this phenomenon cannot be (and has not been) observed in dielectrics due to the different ablation mechanism and optical properties of dielectrics. The fact that we are able to observe them has important consequences for the comprehension of the ablation mechanisms in dielectrics and provides a new method for investigating these mechanisms in ...

  20. Applications of ultra-short pulsed laser ablation: thin films deposition and fs/ns dual-pulse laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Teghil, R; De Bonis, A; Galasso, A [Dipartimento di Chimica, Universita della Basilicata, Via N. Sauro 85, 85100 Potenza (Italy); Santagata, A; Albano, G; Villani, P; Spera, D; Parisi, G P [CNR-IMIP, Unita di Potenza, Via S. Loja, 85050 Tito Scalo (Italy)], E-mail: roberto.teghil@unibas.it

    2008-10-15

    In this paper, we report a survey of two of the large number of possible practical applications of the laser ablation performed by an ultra-short pulse laser, namely pulsed laser deposition (PLD) and fs/ns dual-pulse laser-induced breakdown spectroscopy (DP-LIBS). These applications differ from those using just longer pulsed lasers as a consequence of the distinctive characteristics of the plasma produced by ultra-short laser beams. The most important feature of this plasma is the large presence of particles with nanometric size which plays a fundamental role in both applications.

  1. Sub-100 fs mode-locked erbium-doped fiber laser using a 45°-tilted fiber grating.

    Science.gov (United States)

    Zhang, Zuxing; Mou, Chengbo; Yan, Zhijun; Zhou, Kaiming; Zhang, Lin; Turitsyn, Sergei

    2013-11-18

    We demonstrate generation of sub-100 fs pulses at 1.5 µm in a mode-locked erbium-doped fiber laser using a 45°-tilted fiber grating element. The laser features a genuine all-fiber configuration. Based on the unique polarization properties of the 45°-tilted fiber grating, we managed to produce sub-100 fs laser pulses through proper dispersion management. To the best of our knowledge, this is the shortest pulse generated from mode-locked lasers with fiber gratings. The output pulse has an average power of 8 mW, with a repetition rate of 47.8 MHz and pulse energy of 1.68 nJ. The performance of laser also matches well the theoretical simulations.

  2. Formation of laser induced periodic surface structures (LIPSS) on Ti upon double fs pulse exposure

    Science.gov (United States)

    Gemini, Laura; Hashida, Masaki; Nishii, Takaya; Miyasaka, Yasuhiro; Inoue, Shunsuke; Limpouch, Jiri; Mocek, Tomas; Sakabe, Shuji

    2015-03-01

    Recently a parametric decay model was proposed in order to foresee LIPSS interspaces, and experimental results are in reasonable agreement. To confirm the possibility assumed by the model of pre-formed plasma generation, Ti surface was irradiated by a femtosecond (fs) laser beam composed by double fs pulses, with a fixed delay of 160 fs. The fluence of the first pulse (FPP), responsible for surface plasma formation, was varied in the range 10-50 mJ cm-2 and always kept below the LIPSS formation threshold fluence (FLIPSS) of Ti for 50-single-shots exposure. The fluence of the delayed pulse (FLP), responsible for LIPSS formation, was varied in the range 60-150 mJ cm-2 and always kept above FLIPSS. Regardless the specific fluence FLP of the delayed pulse, the interspace of the grating structures increases with the increase of FPP, that is the increase of the surface plasma density. This tendency suggests that a variation of the surface plasma density, due to a variation of FPP, actually leads to a modification of the grating features, highlighting the driving role of the first pulse in LIPSS formation. Moreover, we observed that the LIPSS periodicities after double pulse exposures are in quite good agreement with data on LIPSS periodicities after single 160 fs pulse irradiations on Ti surface and with the curve predicted by the parametric decay model. This experimental result suggests that the preformed plasma might be produced in the rising edge of the temporal profile of the laser pulse.

  3. Characterization of femtosecond laser-induced breakdown spectroscopy (fsLIBS) and applications for biological samples.

    Science.gov (United States)

    Gill, Ruby K; Knorr, Florian; Smith, Zachary J; Kahraman, Mehmet; Madsen, Dorte; Larsen, Delmar S; Wachsmann-Hogiu, Sebastian

    2014-01-01

    We characterize the femtosecond laser-induced breakdown spectroscopy (fsLIBS) signal for biological tissues as a function of different excitation parameters with femtosecond laser systems. These parameters include laser energy, depth of focus, and number of pulses per focal volume. We used femtosecond laser pulses of 800 nm and energy between 25 and 123 μJ to generate LIBS signals in biological tissues. As expected, we observed a linear increase in the fsLIBS intensity as a function of the laser energy. In addition, we show that moving the beam out of focus and the presence of overlapping pulses on the same focal area leads to a decrease in fsLIBS intensity due to changes in focal spot size. We also demonstrate that fsLIBS can distinguish between different biological tissue samples.

  4. fs- and ns-laser processing of polydimethylsiloxane (PDMS) elastomer: Comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Stankova, N.E., E-mail: nestankova@yahoo.com [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Shose, Sofia 1784 (Bulgaria); Atanasov, P.A.; Nedyalkov, N.N.; Stoyanchov, T.R. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Shose, Sofia 1784 (Bulgaria); Kolev, K.N.; Valova, E.I.; Georgieva, J.S.; Armyanov, St.A. [Rostislaw Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 11, Sofia 1113 (Bulgaria); Amoruso, S.; Wang, X.; Bruzzese, R. [CNR-SPIN, Dipartimento di Scienze Fisiche, Universita degli Studi di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Via Cintia, I-80126 Napoli (Italy); Grochowska, K.; Śliwiński, G. [Photophysics Department, The Szewalski Institute, Polish Academy of Sciences, 14 Fiszera St., 80-231 Gdańsk (Poland); Baert, K.; Hubin, A. [Vrije Universiteit Brussels, Faculty of Engineering, Research group, SURF “Electrochemical and Surface Engineering” (Belgium); Delplancke, M.P.; Dille, J. [Université Libre de Bruxelles, Materials Engineering, Characterization, Synthesis and Recycling (Service 4MAT), Faculté des Sciences Appliquées, 1050 Brussels (Belgium)

    2015-05-01

    Highlights: • fs- and ns-laser (266 and 532 nm) processing of PDMS-elastomer, in air, is studied. • High definition tracks (on the PDMS-elastomer surface) for electrodes are produced. • Selective Pt or Ni metallization of the tracks is produced via electroless plating. • Irradiated and metallized tracks are characterized by μ-Raman spectrometry and SEM. • DC resistance of Pt and Ni tracks is always between 0.5 and 15 Ω/mm. - Abstract: Medical grade polydimethylsiloxane (PDMS) elastomer is a widely used biomaterial as encapsulation and/or as substrate insulator carrier for long term neural implants because of its remarkable properties. Femtosecond (λ = 263 and 527 nm) and nanosecond (266 and 532 nm) laser processing of PDMS-elastomer surface, in air, is investigated. The influence of different processing parameters, including laser wavelength, pulse duration, fluence, scanning speed and overlapping of the subsequent pulses, on the surface activation and the surface morphology are studied. High definition tracks and electrodes are produced. Remarkable alterations of the chemical composition and structural morphology of the ablated traces are observed in comparison with the native material. Raman spectra illustrate well-defined dependence of the chemical composition on the laser fluence, pulse duration, number of pulses and wavelength. An extra peak about ∼512–518 cm{sup −1}, assigned to crystalline silicon, is observed after ns- or visible fs-laser processing of the surface. In all cases, the intensities of Si−O−Si symmetric stretching at 488 cm{sup −1}, Si−CH{sub 3} symmetric rocking at 685 cm{sup −1}, Si−C symmetric stretching at 709 cm{sup −1}, CH{sub 3} asymmetric rocking + Si−C asymmetric stretching at 787 cm{sup −1}, and CH{sub 3} symmetric rocking at 859 cm{sup −1}, modes strongly decrease. The laser processed areas are also analyzed by SEM and optical microscopy. Selective Pt or Ni metallization of the laser processed

  5. Highspeed manufacturing of periodical surface and in-volume nanostructures by fs-laser direct writing

    Science.gov (United States)

    Gottmann, J.; Wortmann, D.; Brandt, N.

    2008-02-01

    Sub wavelength ripples (spacing glass fiber laser (τ=400fs, λ=1045nm, f=0.1-5MHz) over the surface of various materials like amorphous Nd:Gd 3Ga 5O 12 films 1 μm in thickness on YAG substrates, diamond, polytetrafluoroethylene, LiF, MgF II, ZBLAN, Al IIO 3, LiNbO 3, SiO II, Si, Cu and Au. The ripple patterns extend coherently over many overlapping laser pulses and scanning tracks. Investigated are the dependence of the ripple spacing Λ on the material, the lateral distance of the laser pulses, the N.A. of the focussing optics, the repetition rate and the applied wavelength. The ripples are characterised using electron microscopy. Some possible models for the origin of the ripple growth are discussed. New results concerning the scaling of the production process using a high repetition rate laser and a fast translation stage are demonstrated. The cross-sections of the ripples are investigated using electron microscopy. A very large aspect ration of ~10 is observed for the periodical nanostructures in fused silica. Using in-volume selective laser etching (ISLE) of sapphire results in deep hollow nanoplanes ~200 nm in width and up to 1 mm in length. Microchannels have been produced using in-volume selective laser etching with a scanning speed of 1 mm/s.

  6. Generation of 7-fs laser pulse directly from a compact Ti:sapphire laser with chirped mirrors

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A compact femtosecond Ti:sapphire laser resonator consisting of three chirped mirrors and one output coupler was designed. By accurately balancing the intra- cavity dispersions between Ti:sapphire crystal, air and chirped mirrors, we directly generated the laser pulse shorter than 7 fs at the average power of 340 mW with 3.1 W pump. The repetition rate of the laser oscillator is 173 MHz at the centre wavelength of 791 nm, and the ultrabroaden spectrum covers from 600 nm to 1000 nm. To the best of our knowledge, this is the simplest laser resonator capable of generating sub-10 fs laser pulse.

  7. Generation of 7-fs laser pulse directly from a compact Ti:sapphire laser with chirped mirrors

    Institute of Scientific and Technical Information of China (English)

    ZHAO YanYing; WANG Peng; ZHANG Wei; TIAN JinRong; WEI ZhiYi

    2007-01-01

    A compact femtosecond Ti:sapphire laser resonator consisting of three chirped mirrors and one output coupler was designed. By accurately balancing the intracavity dispersions between Ti:sapphire crystal, air and chirped mirrors, we directly generated the laser pulse shorter than 7 fs at the average power of 340 mW with 3.1 W pump. The repetition rate of the laser oscillator is 173 MHz at the centre wavelength of 791 nm, and the ultrabroaden spectrum covers from 600 nm to 1000 nm. To the best of our knowledge, this is the simplest laser resonator capable of generating sub-10 fs laser pulse.

  8. Comparison of corneal flap thickness using a FS200 femtosecond laser and a moria SBK microkeratome

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2014-04-01

    using the following equation:Tflap=67.77+0.076 CCT (F=5.63, P=0.021.CONCLUSION:Both the Alcon Wavelight FS200 femtosecond laser and the MORIA SBK microkeratome produced 110-μm-thick corneal flaps. The central corneal flap thickness was positively correlated with the preoperative CCT in MORIA SBK microkeratome surgery.

  9. Complex Spectra Structure of an Attosecond Pulse Train Driven by Sub-5-fs Laser Pulses

    Institute of Scientific and Technical Information of China (English)

    YUN Chen-Xia; TENG Hao; ZHANG Wei; WANG Li-Feng; ZHAN Min-Jie; HE Xin-Kui; WANG Bing-Bing; WEI Zhi-Yi

    2011-01-01

    We present the observation of the additional spectral components between the odd order harmonics in the harmonic spectrum generated from argon gas driven by sub-5-fs laser pulses.The theoretical analysis shows that the asymmetric laser field in both spatial and temporal domains leads to this complicated spectrum structure of high order harmonics.

  10. Femtosecond (FS) laser vision correction procedure for moderate to high myopia

    DEFF Research Database (Denmark)

    Vestergaard, Anders Højslet; Ivarsen, Anders; Asp, Sven;

    2013-01-01

    with a retrospective study of FS-LASIK. ReLEx is a new keratorefractive procedure, where a stromal lenticule is cut by a femtosecond laser and manually extracted. Forty patients were treated with ReLEx on both eyes. A comparable group of 41 FS-LASIK patients were retrospectively identified. Visual acuity, spherical......Purpose:  To present our initial clinical experience with ReLEx(®) flex (ReLEx) for moderate to high myopia. We compare efficacy, safety and corneal higher-order aberrations after ReLEx with femtosecond laser in situ keratomileusis (FS-LASIK). Methods:  Prospective study of ReLEx compared...... 3 months was 100% (ReLEx) and 85% (FS-LASIK). For a 6.0-mm pupil, corneal spherical aberrations increased significantly less in ReLEx than FS-LASIK eyes. Conclusions:  ReLEx is an all-in-one femtosecond laser refractive procedure, and in this study, results were comparable to FS-LASIK. Refractive...

  11. Femtosecond (FS) laser vision correction procedure for moderate to high myopia

    DEFF Research Database (Denmark)

    Vestergaard, Anders Højslet; Ivarsen, Anders; Asp, Sven

    2013-01-01

    with a retrospective study of FS-LASIK. ReLEx is a new keratorefractive procedure, where a stromal lenticule is cut by a femtosecond laser and manually extracted. Forty patients were treated with ReLEx on both eyes. A comparable group of 41 FS-LASIK patients were retrospectively identified. Visual acuity, spherical......Purpose:  To present our initial clinical experience with ReLEx(®) flex (ReLEx) for moderate to high myopia. We compare efficacy, safety and corneal higher-order aberrations after ReLEx with femtosecond laser in situ keratomileusis (FS-LASIK). Methods:  Prospective study of ReLEx compared...... 3 months was 100% (ReLEx) and 85% (FS-LASIK). For a 6.0-mm pupil, corneal spherical aberrations increased significantly less in ReLEx than FS-LASIK eyes. Conclusions:  ReLEx is an all-in-one femtosecond laser refractive procedure, and in this study, results were comparable to FS-LASIK. Refractive...

  12. Experimental study of fs-laser induced sub-100-nm periodic surface structures on titanium.

    Science.gov (United States)

    Nathala, Chandra S R; Ajami, Ali; Ionin, Andrey A; Kudryashov, Sergey I; Makarov, Sergey V; Ganz, Thomas; Assion, Andreas; Husinsky, Wolfgang

    2015-03-09

    In this work the formation of laser-induced periodic surface structures (LIPSS) on a titanium surface upon irradiation by linearly polarized femtosecond (fs) laser pulses with a repetition rate of 1 kHz in air environment was studied experimentally. In particular, the dependence of high-spatial-frequency-LIPSS (HSFL) characteristics on various laser parameters: fluence, pulse number, wavelength (800 nm and 400 nm), pulse duration (10 fs - 550 fs), and polarization was studied in detail. In comparison with low-spatial-frequency-LIPSS (LSFL), the HSFL emerge at a much lower fluence with orientation perpendicular to the ridges of the LSFL. It was observed that these two types of LIPSS demonstrate different fluence, shot number and wavelength dependencies, which suggest their origin is different. Therefore, the HSFL formation mechanism cannot be described by the widely accepted interference model developed for describing LSFL formation.

  13. Fs Laser Fabrication of Photonic Structures in Glass: the Role of Glass Composition

    Energy Technology Data Exchange (ETDEWEB)

    Krol, D M; Chan, J W; Huser, T R; Risbud, S H; Hayden, J S

    2004-06-16

    The use of fs lasers to directly write photonic structures inside a glass has great potential as a fabrication method for three-dimensional all-optical integrated components. The ability to use this technique with different glass compositions--specifically tailored for a specific photonics application--is critical to its successful exploitation. Consequently, it is important to understand how glass composition effects waveguide fabrication with fs laser pulses and how different glasses are structurally modified after exposure to fs laser pulses. We have used confocal laser spectroscopy to monitor the changes in glass structure that are associated with waveguide fabrication. Using a low power continuous wave (cw) Ar laser as excitation source we have measured both Raman and fluorescence spectra of the modified regions. Raman spectroscopy provides us with information on the network structure, whereas fluorescence measurements reveal the presence of optically active point defects in the glass. In this paper we review our work on fs-laser fabrication and characterization of photonic structures in glass and discuss the effect of glass composition on processing parameters and structural modification.

  14. Sapphire capillaries for laser-driven wakefield acceleration in plasma. Fs-laser micromachining and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Schwinkendorf, Jan-Patrick

    2012-08-15

    Plasma wakefields are a promising approach for the acceleration of electrons with ultrahigh (10 to 100 GV/m) electric fields. Nowadays, high-intensity laser pulses are routinely utilized to excite these large-amplitude plasma waves. However, several detrimental effects such as laser diffraction, electron-wake dephasing and laser depletion may terminate the acceleration process. Two of these phenomena can be mitigated or avoided by the application of capillary waveguides, e.g. fabricated out of sapphire for longevity. Capillaries may compensate for laser diffraction like a fiber and allow for the creation of tapered gas-density profiles working against the dephasing between the accelerating wave and the particles. Additionally, they offer the possibility of controlled particle injection. This thesis is reporting on the set up of a laser for fs-micromachining of capillaries of almost arbitrary shapes and a test stand for density-profile characterization. These devices will permit the creation of tailored gas-density profiles for controlled electron injection and acceleration inside plasma.

  15. Two-color facility based on a broadly tunable infrared free-electron laser and a subpicosecond-synchronized 10-fs-Ti : Sapphire laser

    NARCIS (Netherlands)

    Knippels, G.M.H.; van de Pol, M.J.; Pellemans, H. P. M.; Planken, P. C. M.; van der Meer, A. F. G.

    1998-01-01

    Subpicosecond synchronization between a mirror-dispersion-controlled 10-fs Ti:sapphire laser and the Free-Electron Laser for Infrared Experiments has been achieved. The measured intensity cross correlation between the two lasers is consistent with a jitter of only 400 fs rms. The wide and continuous

  16. Manipulating Fano resonance via fs-laser melting of hybrid oligomers at nanoscale

    Science.gov (United States)

    Lepeshov, S. I.; Zuev, D. A.; Makarov, S. V.; Milichko, V. A.; Mukhin, I. S.; Krasnok, A. E.; Belov, P. A.

    2016-08-01

    Here, the novel concept of asymmetric metal-dielectric (hybrid) nanoparticles is proposed. The experimental data and the results of numerical simulation of the optical properties of hybrid nanostructures are presented. The change of their optical response after fs- laser modification is shown. The possibility of manipulating Fano resonance in hybrid oligomers by the gold nanoparticles reshaping is demonstrated.

  17. New class of compact diode pumped sub 10 fs lasers for biomedical applications

    DEFF Research Database (Denmark)

    Le, T.; Mueller, A.; Sumpf, B.;

    2016-01-01

    Diode-pumping Ti: sapphire lasers promises a new approach to low-cost femtosecond light sources. Thus in recent years much effort has been taken just to overcome the quite low power and low beam qualities of available green diodes to obtain output powers of several hundred milliwatts from a fs-la...

  18. Metal particles produced by laser ablation for ICP-MSmeasurements

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Jhanis J.; Liu, Chunyi; Wen, Sy-Bor; Mao, Xianglei; Russo, Richard E.

    2007-06-01

    Pulsed laser ablation (266nm) was used to generate metal particles of Zn and Al alloys using femtosecond (150 fs) and nanosecond (4 ns) laser pulses with identical fluences of 50 J cm{sup -2}. Characterization of particles and correlation with Inductively Coupled Plasma Mass Spectrometer (ICP-MS) performance was investigated. Particles produced by nanosecond laser ablation were mainly primary particles with irregular shape and hard agglomerates (without internal voids). Particles produced by femtosecond laser ablation consisted of spherical primary particles and soft agglomerates formed from numerous small particles. Examination of the craters by white light interferometric microscopy showed that there is a rim of material surrounding the craters formed after nanosecond laser ablation. The determination of the crater volume by white light interferometric microscopy, considering the rim of material surrounding ablation craters, revealed that the volume ratio (fs/ns) of the craters on the selected samples was approximately 9 (Zn), 7 (NIST627 alloy) and 5 (NIST1711 alloy) times more ablated mass with femtosecond pulsed ablation compared to nanosecond pulsed ablation. In addition, an increase of Al concentration from 0 to 5% in Zn base alloys caused a large increase in the diameter of the particles, up to 65% while using nanosecond laser pulses. When the ablated particles were carried in argon into an ICP-MS, the Zn and Al signals intensities were greater by factors of {approx} 50 and {approx} 12 for fs vs. ns ablation. Femtosecond pulsed ablation also reduced temporal fluctuations in the {sup 66}Zn transient signal by a factor of ten compared to nanosecond laser pulses.

  19. Ultrafast Internal Conversion of Aromatic Molecules Studied by Photoelectron Spectroscopy using Sub-20 fs Laser Pulses

    Directory of Open Access Journals (Sweden)

    Toshinori Suzuki

    2014-02-01

    Full Text Available This article describes our recent experimental studies on internal conversion via a conical intersection using photoelectron spectroscopy. Ultrafast S2(ππ*–S1(nπ* internal conversion in pyrazine is observed in real time using sub-20 fs deep ultraviolet pulses (264 and 198 nm. While the photoelectron kinetic energy distribution does not exhibit a clear signature of internal conversion, the photoelectron angular anisotropy unambiguously reveals the sudden change of electron configuration upon internal conversion. An explanation is presented as to why these two observables have different sensitivities to internal conversion. The 198 nm probe photon energy is insufficient for covering the entire Franck-Condon envelopes upon photoionization from S2/S1 to D1/D0. A vacuum ultraviolet free electron laser (SCSS producing 161 nm radiation is employed to solve this problem, while its pulse-to-pulse timing jitter limits the time resolution to about 1 ps. The S2–S1 internal conversion is revisited using the sub-20 fs 159 nm pulse created by filamentation four-wave mixing. Conical intersections between D1(π−1 and D0(n−1 and also between the Rydberg state with a D1 ion core and that with a D0 ion core of pyrazine are studied by He(I photoelectron spectroscopy, pulsed field ionization photoelectron spectroscopy and one-color resonance-enhanced multiphoton ionization spectroscopy. Finally, ultrafast S2(ππ*–S1(ππ* internal conversion in benzene and toluene are compared with pyrazine.

  20. Emission spectra investigation of fs induced NPs probed by the ns laser pulse of a fs/ns DP-LIBS orthogonal configuration

    Energy Technology Data Exchange (ETDEWEB)

    Santagata, A. [CNR-IMIP, Unita Operativa di Potenza, Zona Industriale di Tito Scalo, Via S. Loja, Zona Ind., 85050 Tito Scalo, PZ (Italy)], E-mail: antonio.santagata@cnr.it; Albano, G.; Spera, D. [CNR-IMIP, Unita Operativa di Potenza, Zona Industriale di Tito Scalo, Via S. Loja, Zona Ind., 85050 Tito Scalo, PZ (Italy); Teghil, R. [Universita degli Studi della Basilicata, Dipartimento di Chimica, Via N. Sauro 85, 85100 Potenza (Italy); Villani, P.; Parisi, G.P. [CNR-IMIP, Unita Operativa di Potenza, Zona Industriale di Tito Scalo, Via S. Loja, Zona Ind., 85050 Tito Scalo, PZ (Italy); De Bonis, A. [Universita degli Studi della Basilicata, Dipartimento di Chimica, Via N. Sauro 85, 85100 Potenza (Italy); Sordelet, D.J. [Materials and Engineering Physics Program, Ames Laboratory, Iowa State University, Ames, IA (United States)

    2009-03-01

    A dual-pulse fs/ns laser induced breakdown spectroscopy configuration, where an initial 250 fs ablating pulsed laser followed by a delayed ns laser beam placed at a fixed distance, orthogonally with the expanding plasma plume, has been used in air on a Al{sub 65}Cu{sub 23}Fe{sub 12} quasicrystal. The obtained emission data were acquired with a set-up arrangement providing space detections, with a resolution up to 15 {mu}m, of the ns laser pulse generated signals. Assuming the fulfillment of local thermodynamic equilibrium conditions, the role played by the time lag between the two laser beams on the induced plasma excitation temperatures and electronic densities, as well as a space resolved process survey, has been followed. The spatial and time resolved spectra show, almost, steady values of the determined elementary plasma features with the development of nanoparticles occurring during the fs laser pulsed ablation process. The ns laser probe of the dual-pulse LIBS configuration here presented confirms that the nanoparticles induced can be largely widespread in both space and time whose compositions, overall, could retain the starting target stoichiometry. It is shown that these nanoparticles formation can actually take place at different times following the initial ultra-short laser beam incidence and that, especially at long inter-pulse delays (>100 {mu}s), modest compositional changes can be observed.

  1. Observation of Atomic Emission Enhancement by fs-ns Dual-Pulse Laser-Induced Breakdown Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    YAN Li-Xin; ZHANG Yong-Sheng; ZHANG Li-Rong; LIU Jing-Ru; CHENG Jian-Ping; L(U) Min

    2006-01-01

    An experiment of a 500-fs KrF laser pulse incident upon a high density supersonic O2 gas jet synchronously with an ns frequency-doubled Nd:YAG laser pulse is performed in orthogonal configuration.Significant atomic emission enhancement of over forty-fold is observed with an optical multi-channel analyser.The enhancement effect is probably attributed to the different ionization mechanisms between fs and ns laser pulses.

  2. High-order harmonic generation in Ar and Ne with a 45fs intense laser field

    Institute of Scientific and Technical Information of China (English)

    徐至展; 王迎松; 翟侃; 李学信; 刘亚青; 杨晓东; 张正泉; 李儒新; 张文琦

    1999-01-01

    Experimental results of high-order harmonic generation (HHG) in Ar and Ne gas driven with a 45fs Ti: sapphire laser are presented. The shortest-wavelength harmonic emission corresponding to the 91st order harmonic (8.63nm) is observed in argon. In neon, the harmonics up to order 131 (5.99nm) is also observed. The effects of gas density, laser intensity, free electron and the focusing geometry parameters of the laser beam on the process of harmonic generation are investigated. The direct experimental evidence that an increased electron density causes a degenerated harmonic radiation is obtained.

  3. Glass particles produced by laser ablation for ICP-MSmeasurements

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, J.; Liu, C.; Wen, S.; Mao, X.; Russo, R.E.

    2007-06-01

    Pulsed laser ablation (266nm) was used to generate glass particles from two sets of standard reference materials using femtosecond (150fs) and nanosecond (4ns) laser pulses with identical fluences of 50 J cm{sup -2}. Scanning electron microscopy (SEM) images of the collected particles revealed that there are more and larger agglomerations of particles produced by nanosecond laser ablation. In contrast to the earlier findings for metal alloy samples, no correlation between the concentration of major elements and the median particle size was found. When the current data on glass were compared with the metal alloy data, there were clear differences in terms of particle size, crater depth, heat affected zone, and ICP-MS response. For example, glass particles were larger than metal alloy particles, the craters in glass were less deep than craters in metal alloys, and damage to the sample was less pronounced in glass compared to metal alloys samples. The femtosecond laser generated more intense ICP-MS signals compared to nanosecond laser ablation for both types of samples, although glass sample behavior was more similar between ns and fs-laser ablation than for metals alloys.

  4. Front-end of the ILE Project: A design study for a 100 mJ sub-10 fs laser

    Science.gov (United States)

    Papadopoulos, Dimitris N.; Ramirez, Patricia; Pellegrina, Alain; Druon, Frédéric; Georges, Patrick; Chen, Xiaowei; Canova, Lorenzo; Malvache, Arnaud; Jullien, Aurélie; Lopez-Martens, Rodrigo

    2010-04-01

    Within the development of the ILE French project aiming on the building of a 10 PW, 150 J/15 fs laser chain (named APOLLON), a design study for a sub-10-fs, 100 mJ pilot laser operating at 800 nm have been conceived. This system is based on a non-collinear optical parametric chirped-pulse amplification (NOPCPA) of the spectrally broadened and compressed pulses of a Ti:Sapphire laser system providing 1.5-mJ, 25-fs, pumped at 515 nm by a high-energy diode-pumped Yb-doped-based laser chain. The envisioned system, based on a novel combined architecture of picosecond and nanosecond NOPCPA stages, will finally deliver carrier envelope phased (CEP) stabilized 1 ns pulses (compressible to less than 10 fs) at 800 nm with 100 mJ energy and at a repetition rate in the range of 10-100 Hz.

  5. Influence of fs-laser desorption on target normal sheath accelerated ions

    Directory of Open Access Journals (Sweden)

    G. Hoffmeister

    2013-04-01

    Full Text Available We report on the effects of fs-laser desorption on the ion acceleration induced by the target normal sheath acceleration (TNSA mechanism. The experiment was performed at the Lawrence Livermore National Laboratory (LLNL using the 100 TW Callisto laser of the Jupiter Laser Facility (JLF. Thin metal foils (Au, Cu, and Al with thicknesses ranging from 10 to 20  μm were irradiated by a variable number of low intensity (∼10^{12}  W/cm^{2} laser pulses, the last one arriving 100 ms before the main pulse. With these short pulses water vapor and hydrocarbon contaminations could stepwise be removed from the target surface. Substantial modifications of the TNSA-ion energy spectra were observed such as diminished proton energy and intensity, the absence of low-charged ion states, increased particle numbers for C^{4+} and O^{6+} ions in the higher energetic part of their particle spectra as well as the acceleration of target ions. The controlled application of fs-laser desorption on the laser-ion acceleration thus strongly influences the ion spectra and offers the possibility of selecting a targeted range of ion species for the acceleration to higher energies due to the systematic removal of contamination layers.

  6. 70-fs mode-locked erbium-doped fiber laser with topological insulator.

    Science.gov (United States)

    Liu, Wenjun; Pang, Lihui; Han, Hainian; Tian, Wenlong; Chen, Hao; Lei, Ming; Yan, Peiguang; Wei, Zhiyi

    2016-01-27

    Femtosecond optical pulses have applications in optical communication, astronomical frequency combs, and laser spectroscopy. Here, a hybrid mode-locked erbium-doped fiber (EDF) laser with topological insulator (TI) is proposed, for the first time to our best knowledge. The pulsed laser deposition (PLD) method is employed to fabricate the fiber-taper TI saturable absorber (TISA). By virtue of the fiber-taper TISA, the hybrid EDF laser is passively mode-locked using the nonlinear polarization evolution (NPE), and emits 70 fs pulses at 1542 nm, whose 3 dB spectral width is 63 nm with a repetition rate and transfer efficiency of 95.4 MHz and 14.12%, respectively. Our experiments indicate that the proposed hybrid mode-locked EDF lasers have better performance to achieve shorter pulses with higher power and lower mode-locking threshold in the future.

  7. Interaction mechanisms of cavitation bubbles induced by spatially and temporally separated fs-laser pulses.

    Directory of Open Access Journals (Sweden)

    Nadine Tinne

    Full Text Available The emerging use of femtosecond lasers with high repetition rates in the MHz regime together with limited scan speed implies possible mutual optical and dynamical interaction effects of the individual cutting spots. In order to get more insight into the dynamics a time-resolved photographic analysis of the interaction of cavitation bubbles is presented. Particularly, we investigated the influence of fs-laser pulses and their resulting bubble dynamics with various spatial as well as temporal separations. Different time courses of characteristic interaction effects between the cavitation bubbles were observed depending on pulse energy and spatio-temporal pulse separation. These ranged from merely no interaction to the phenomena of strong water jet formation. Afterwards, the mechanisms are discussed regarding their impact on the medical application of effective tissue cutting lateral to the laser beam direction with best possible axial precision: the mechanical forces of photodisruption as well as the occurring water jet should have low axial extend and a preferably lateral priority. Furthermore, the overall efficiency of energy conversion into controlled mechanical impact should be maximized compared to the transmitted pulse energy and unwanted long range mechanical side effects, e.g. shock waves, axial jet components. In conclusion, these experimental results are of great importance for the prospective optimization of the ophthalmic surgical process with high-repetition rate fs-lasers.

  8. Interaction mechanisms of cavitation bubbles induced by spatially and temporally separated fs-laser pulses.

    Science.gov (United States)

    Tinne, Nadine; Kaune, Brigitte; Krüger, Alexander; Ripken, Tammo

    2014-01-01

    The emerging use of femtosecond lasers with high repetition rates in the MHz regime together with limited scan speed implies possible mutual optical and dynamical interaction effects of the individual cutting spots. In order to get more insight into the dynamics a time-resolved photographic analysis of the interaction of cavitation bubbles is presented. Particularly, we investigated the influence of fs-laser pulses and their resulting bubble dynamics with various spatial as well as temporal separations. Different time courses of characteristic interaction effects between the cavitation bubbles were observed depending on pulse energy and spatio-temporal pulse separation. These ranged from merely no interaction to the phenomena of strong water jet formation. Afterwards, the mechanisms are discussed regarding their impact on the medical application of effective tissue cutting lateral to the laser beam direction with best possible axial precision: the mechanical forces of photodisruption as well as the occurring water jet should have low axial extend and a preferably lateral priority. Furthermore, the overall efficiency of energy conversion into controlled mechanical impact should be maximized compared to the transmitted pulse energy and unwanted long range mechanical side effects, e.g. shock waves, axial jet components. In conclusion, these experimental results are of great importance for the prospective optimization of the ophthalmic surgical process with high-repetition rate fs-lasers.

  9. Self compression and raman soliton generation in a photonic crystal fibre of 100-fs pulses produced by a diode-pumped Yb-doped oscillator

    DEFF Research Database (Denmark)

    Druon, F.; Sanner, N.; Lucas-Leclin, G.

    2003-01-01

    We present the use of a photonic crystal fiber to straightforwardly compress ultrashort pulses from a diode-pumped ytterbium laser emitting around 1 m. 75-fs pulse generation and a large 11.3-m tunability for sub-100-fs pulses is reported.......We present the use of a photonic crystal fiber to straightforwardly compress ultrashort pulses from a diode-pumped ytterbium laser emitting around 1 m. 75-fs pulse generation and a large 11.3-m tunability for sub-100-fs pulses is reported....

  10. High speed inscription of uniform, large-area laser-induced periodic surface structures in Cr films using a high repetition rate fs laser.

    Science.gov (United States)

    Ruiz de la Cruz, A; Lahoz, R; Siegel, J; de la Fuente, G F; Solis, J

    2014-04-15

    We report on the fabrication of laser-induced periodic surface structures in Cr films upon high repetition rate fs laser irradiation (up to 1 MHz, 500 fs, 1030 nm), employing beam scanning. Highly regular large-area (9  cm2) gratings with a relative diffraction efficiency of 42% can be produced within less than 6 min. The ripple period at moderate and high fluences is 0.9 μm, with a small period of 0.5 μm appearing at lower energies. The role of the irradiation parameters on the characteristics of the laser-induced periodic surface structures (LIPSS) is studied and discussed in the frame of the models presently used. We have identified the polarization vector orientation with respect to the scan direction as a key parameter for the fabrication of high-quality, large-area LIPSS, which, for perpendicular orientation, allows the coherent extension of the sub-wavelength structure over macroscopic distances. The processing strategy is robust in terms of broad parameter windows and applicable to other materials featuring LIPSS.

  11. 152 fs nanotube-mode-locked thulium-doped all-fiber laser

    Science.gov (United States)

    Wang, Jinzhang; Liang, Xiaoyan; Hu, Guohua; Zheng, Zhijian; Lin, Shenghua; Ouyang, Deqin; Wu, Xu; Yan, Peiguang; Ruan, Shuangchen; Sun, Zhipei; Hasan, Tawfique

    2016-07-01

    Ultrafast fiber lasers with broad bandwidth and short pulse duration have a variety of applications, such as ultrafast time-resolved spectroscopy and supercontinuum generation. We report a simple and compact all-fiber thulium-doped femtosecond laser mode-locked by carbon nanotubes. The oscillator operates in slightly normal cavity dispersion at 0.055 ps2, and delivers 152 fs pulses with 52.8 nm bandwidth and 0.19 nJ pulse energy. This is the shortest pulse duration and the widest spectral width demonstrated from Tm-doped all-fiber lasers based on 1 or 2 dimensional nanomaterials, underscoring their growing potential as versatile saturable absorber materials.

  12. Sub-50-fs pulse generation from thulium-doped ZBLAN fiber laser oscillator.

    Science.gov (United States)

    Nomura, Yutaka; Fuji, Takao

    2014-05-19

    An ultrafast, passively mode-locked fiber laser oscillator has been realized using thulium-doped ZBLAN fibers. Very low dispersion of ZBLAN glass fibers enabled generation of pulses with broad spectra extending from 1730 nm to 2050 nm. Pulses are obtained with the average power of 13 mW at the repetition rate of 67.5 MHz when the pump power is 140 mW. The output pulses are compressed with a pair of SF10 prisms and their durations are measured with SHG FROG, from which we obtained the pulse duration as short as 45 fs.

  13. Efficient chirped-pulse amplification of sub-20 fs laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, Shinichi; Yamakawa, Koichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    We have developed a model for ultrabroadband and ultrashort pulse amplification including the effects of a pulse shaper for regenerative pulse shaping, gain narrowing and gain saturation in the amplifiers. Thin solid etalons are used to control both gain narrowing and gain saturation during amplification. This model has been used to design an optimized Ti:sapphire amplifier system for producing efficiently pulses of < 20-fs duration with approaching peak and average powers of 100 TW and 20 W. (author)

  14. MULTI-fs - A computer code for laser-plasma interaction in the femtosecond regime

    Science.gov (United States)

    Ramis, R.; Eidmann, K.; Meyer-ter-Vehn, J.; Hüller, S.

    2012-03-01

    The code MULTI-fs is a numerical tool devoted to the study of the interaction of ultrashort sub-picosecond laser pulses with matter in the intensity range from 10 11 to 10 17 W cm -2. Hydrodynamics is solved in one-dimensional geometry together with laser energy deposition and transport by thermal conduction and radiation. In contrast to long nanosecond pulses, short pulses generate steep gradient plasmas with typical scale lengths in the order of the laser wavelength and smaller. Under these conditions, Maxwell's equations are solved explicitly to obtain the light field. Concerning laser absorption, two different models for the electron-ion collision frequency are implemented to cover the regime of warm dense matter between high-temperature plasma and solid matter and also interaction with short-wave-length (VUV) light. MULTI-fs code is based on the MULTI radiation-hydrodynamic code [R. Ramis, R. Schmalz, J. Meyer-ter-Vehn, Comp. Phys. Comm. 49 (1988) 475] and most of the original features for the treatment of radiation are maintained. Program summaryProgram title: MULTI-fs Catalogue identifier: AEKT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKT_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 49 598 No. of bytes in distributed program, including test data, etc.: 443 771 Distribution format: tar.gz Programming language: FORTRAN Computer: PC (32 bits and 64 bits architecture) Operating system: Linux/Unix RAM: 1.6 MiB Classification: 19.13, 21.2 Subprograms used: Cat Id: AECV_v1_0; Title: MULTI2D; Reference: CPC 180 (2009) 977 Nature of problem: One-dimensional interaction of intense ultrashort (sub-picosecond) and ultraintense (up to 10 17 W cm -2) laser beams with matter. Solution method: The hydrodynamic motion coupled to laser propagation and

  15. Tunable sub-20 fs pulses from a 500 kHz OPCPA with 15 W average power based on an all-ytterbium laser

    CERN Document Server

    Puppin, Michele; Prochnow, Oliver; Ahrens, Jan; Binhammer, Thomas; Morgner, Uwe; Krenz, Marcel; Wolf, Martin; Ernstorfer, Ralph

    2014-01-01

    An optical parametric chirped pulse amplifier fully based on Yb lasers at 500 kHz is described. Passive optical-synchronization is achieved between a fiber laser-pumped white-light and a 515 nm pump produced with a 200 W picosecond Yb:YAG InnoSlab amplifier. An output power up to 19.7 W with long-term stability of 0.3% is demonstrated for wavelength tunable pulses between 680 nm and 900 nm and spectral stability of 0.2%; 16.5 W can be achieved with a bandwidth supporting 5.4 fs pulses. We demonstrate compression of 30 microjoule pulses to sub-20 fs duration with a prism compressor, suitable for high harmonic generation.

  16. Fs-laser micro machining for μ-TLM resistivity test structures in photovoltaic TCO multilayers

    Science.gov (United States)

    Krause, Stephan; Kaufmann, Kai; Lancaster, Kevin; Naumann, Volker; Großer, Stephan; Hagendorf, Christian

    2016-04-01

    In this work we developed a new approach for resistivity measurements based on fs laser micro machining of μ-TLM test structures. This method is applied to highly resistive interfacial and conductive bulk multilayer systems in photovoltaic TCO thin film devices. Resistivity data has been acquired by a new TLM based method at μm-dimensions (μ-TLM, patent pending, DE 102014211352.0). For this approach, isolating trenches are prepared in the µm range with reasonable effort using fs laser processing. The application of ultrashort pulses with a laser wavelength in the IR range (λ = 1.03 μm) allows selective removal of the top SnO2 layer of the TCO multilayer stack by a reduced thermal influence on the layers beneath and in the adjacent region of the laser trenches. Small effective optical penetration and ablation depth was achieved by an ultrafast thermal ablation mechanism via free carrier absorption at the interface of the SnO2/ITO layers. Therefore the risk of laser induced modification of the electric layer properties is negligible. The μ-TLM test structure results in highly accurate and reproducible resistivity data. Applied to SnO2/ITO/glass double layer stacks, the obtained resistivity values for the SnO2 interfacial layer (ρTO = 40.5 kΩμm) and for the indium tin oxide thin film (ρITO = 1.3 Ωμm) agree with reference data from four-point-probing and from literature.

  17. Polarisation-dependent generation of fs-laser induced periodic surface structures

    Energy Technology Data Exchange (ETDEWEB)

    Gräf, Stephan, E-mail: stephan.graef@uni-jena.de; Müller, Frank A.

    2015-03-15

    Highlights: • LIPSS formation was studied under static and dynamic alteration of laser polarisation. • The dynamic polarisation is based on a continuously rotating E-field vector. • LIPSS generated with static linear polarisation reveal a period of 925 nm. • LIPSS orientation follows the direction of the rotating E-field vector. • The approach facilitates the formation of disordered structures for optical applications. - Abstract: The formation of laser induced periodic surface structures (LIPPS) was investigated on polished stainless steel surfaces under irradiation with fs-laser pulses characterised by a pulse duration τ = 300 fs, a laser wavelength λ = 1025 nm, a repetition frequency f{sub rep} = 250 Hz and a laser fluence F = 1 J/cm{sup 2}. For this purpose line scans with a scanning velocity v = 0.5 mm/s were performed in air environment at normal incidence utilising a well-defined temporal control of the electrical field vector. The generated surface structures were characterised by optical microscopy, by scanning electron microscopy and by atomic force microscopy in combination with Fourier transformation. The results reveal the formation of a homogenous and highly periodic surface pattern of ripples with a period Λ{sub exp} ≈ 925 nm aligned perpendicular to the incident electric field vector for static linear polarisation states. Utilising a motor-driven rotation device it was demonstrated that a continuously rotating electric field vector allows to transfer the originally well-ordered periodic ripples into tailored disordered surface structures that could be of particular interest for e.g. absorbing surfaces, plasmonic enhanced optoelectronic devices and biomedical applications.

  18. Refractive index-modified structures in glass written by 266nm fs laser pulses.

    Science.gov (United States)

    Saliminia, Ali; Bérubé, Jean-Philippe; Vallée, Réal

    2012-12-03

    We demonstrate the inscription of embedded waveguides, anti-waveguides and Bragg gratings by use of intense femtosecond (fs) UV laser pulses at 266nm in pure fused silica, and for the first time, in bulk fused quartz and ZBLAN glasses. The magnitude of induced index changes, depends, besides pulse energy and translation speed, largely on writing depth and varies from ~10(-4) for smooth modifications to ~10(-3) for damaged structures. The obtained results are promising as they present the feasibility of fabrication of short (< 0.2μm) period first-order fiber Bragg gratings (FBGs) for applications such as in realization of all-fiber lasers operating at short wavelengths.

  19. Coulomb explosion of H{sub 2} induced by a sub-10 fs intense laser pulse; Explosion coulombienne de H{sub 2} induite par une impulsion laser intense sub-10 fs

    Energy Technology Data Exchange (ETDEWEB)

    Saugout, S

    2006-12-15

    This work presents an experimental and theoretical study of the interaction of H2 with an intense sub-10 fs-laser pulse. The ejection of the two electrons of the molecule by the laser pulse leads to the fragmentation of the physical sys em in two protons. This process is called Coulomb Explosion. The electronic and nuclear dynamics can be analyzed by measuring the kinetic energy spectra as a function of different laser parameters. This dynamics is also analyzed through a non-perturbative, double active electron theoretical model, based on the resolution of the time dependent Schroedinger equation. In this model, the internuclear distance is treated as a quantum variable. The experimental and theoretical results enlight the translation of the kinetic energy spectra towards a higher energy when the pulse duration decreases. Experimentally, laser pulses from 40 to 10 fs were used and down to 1 fs using theoretical simulations. This study shows that, for laser pulses shorter than 4 fs, the carrier envelope phase becomes a crucial parameter. Furthermore, the molecular dynamics of H2 in intense laser field is sensitive to the peak intensity of the pulse. The experimental and theoretical results show that, as the intensity increases, the kinetic energy spectra are centered around a higher energy. In addition, the presence of two double ionization regimes is theoretically demonstrated for a pulse duration of 4 fs. The H{sub 2} molecule is also sensitive to the temporal shape of the laser pulse. This sensitivity allows for the detection of pre- or post-pulses by measuring the experimental kinetic energy spectra. Finally, the different double ionization processes are studied. The results show that the electron rescattering influences the femtosecond nuclear dynamics. (author)

  20. Small Incision Lenticule Extraction (SMILE) vs. Femtosecond Laser in Situ Keratomileusis (FS-LASIK) for treatment of myopia

    DEFF Research Database (Denmark)

    Hansen, Rasmus Søgaard; Lyhne, Niels; Justesen, Birgitte

    having undergone re-treatment. The SMILE treatments and FS-LASIK flaps were performed with a VisuMax® femtosecond laser (Carl Zeiss-Meditec, Jena, Germany). The FS-LASIK photoablation was performed with a MEL-80 flying-spot excimer laser with eye-tracker (Carl Zeiss-Meditec, Jena, Germany). In SMILE...... of myopia. All treatments were performed at the Department of Ophthalmology, Odense University Hospital from April 2011 to December 2013. Inclusion criteria: CDVA ≤ 0.10 (logMAR) before surgery and no other ocular conditions than myopia with or without astigmatism of maximum 3 D. Exclusion criteria: Eyes...

  1. Small Incision Lenticule Extraction (SMILE) vs. Femtosecond Laser in Situ Keratomileusis (FS-LASIK) for treatment of myopia

    DEFF Research Database (Denmark)

    Hansen, Rasmus Søgaard; Justesen, Birgitte; Lyhne, Niels

    re-treatment. The SMILE treatments and FS-LASIK flaps were performed with a VisuMax® femtosecond laser (Carl Zeiss-Meditec, Jena, Germany). The FS-LASIK photoablation was performed with a MEL-80 flying-spot excimer laser with eye-tracker (Carl Zeiss-Meditec, Jena, Germany). In SMILE, lenticule...... treatments were performed at the Department of Ophthalmology, Odense University Hospital from April 2011 to December 2013. Inclusion criteria: CDVA ≤ 0.10 (logMAR) before surgery and no other ocular conditions than myopia with or without astigmatism of maximum 3 D. Exclusion criteria: Eyes having undergone...

  2. Low-loss flake-graphene saturable absorber mirror for laser mode-locking at sub-200-fs pulse duration

    CERN Document Server

    Cunning, B V; Kielpinski, D

    2011-01-01

    Saturable absorbers are a key component for mode-locking femtosecond lasers. Polymer films containing graphene flakes have recently been used in transmission as laser mode-lockers, but suffer from high nonsaturable loss, limiting their application in low-gain lasers. Here we present a saturable absorber mirror based on a film of pure graphene flakes. The device is used to mode lock an erbium-doped fiber laser, generating pulses with state-of-the-art, sub-200-fs duration. The laser characteristic indicate that the film exhibits low nonsaturable loss (13% per pass) and large absorption modulation depth (45% of low-power absorption).

  3. Extreme ultraviolet emission from dense plasmas generated with sub-10-fs laser pulses

    CERN Document Server

    Osterholz, J; Cerchez, M; Fischer, T; Hemmers, D; Hidding, B; Pipahl, A; Pretzler, G; Rose, S J; Willi, O

    2008-01-01

    The extreme ultraviolet (XUV) emission from dense plasmas generated with sub-10-fs laser pulses with varying peak intensities up to 3*10^16 W/cm^2 is investigated for different target materials. K shell spectra are obtained from low Z targets (carbon and boron nitride). In the spectra a series limit for the hydrogen and helium like resonance lines is observed indicating that the plasma is at high density and pressure ionization has removed the higher levels. In addition, L shell spectra from titanium targets were obtained. Basic features of the K and L shell spectra are reproduced with computer simulations. The calculations include hydrodynamic simulation of the plasma expansion and collisional radiative calculations of the XUV emission.

  4. High-contrast 10-fs OPCPA-based Front-End for the Apollon-10PW laser

    OpenAIRE

    Dimitrios PAPADOPOULOS; Ramirez, Patricia; Pellegrina, A; Lebas, N.; Leblanc, Catherine; Cheriaux, Gilles; ZOU, J-P; Mennerat, G.; Monot, P.; Mathieu, F.; Audebert, P.; Georges, Patrick; Druon, Frédéric

    2015-01-01

    International audience; We present a high-contrast 10-fs Front-End for Ti:sapphire PW-lasers within the Apollon-10PW project. This injector uses OPCPA pumped at 100 Hz by Yb-based CPA chain. Combination of OPCPA and XPW permits a >10 12 contrast ratio.

  5. Ultra-high contrast frontend for high peak power fs-lasers at 1030 nm.

    Science.gov (United States)

    Liebetrau, Hartmut; Hornung, Marco; Seidel, Andreas; Hellwing, Marco; Kessler, Alexander; Keppler, Sebastian; Schorcht, Frank; Hein, Joachim; Kaluza, Malte C

    2014-10-01

    We present the results from a new frontend within a double-chirped pulse amplification architecture (DCPA) utilizing crossed-polarized wave generation (XPW) for generating ultra-high contrast, 150 μJ-level, femtosecond seed pulses at 1030 nm. These pulses are used in the high energy class diode-pumped laser system Polaris at the Helmholtz Institute in Jena. Within this frontend, laser pulses from a 75 MHz oscillator-pulse train are extracted at a repetition rate of 1 Hz, temporally stretched, amplified and then recompressed reaching a pulse energy of 2 mJ, a bandwidth of 12 nm and 112 fs pulse duration at a center wavelength of 1030 nm. These pulses are temporally filtered via XPW in a holographic-cut BaF₂ crystal, resulting in 150 μJ pulse energy with an efficiency of 13 %. Due to this non-linear filtering, the relative intensity of the amplified spontaneous emission preceding the main pulse is suppressed to 2×10⁻¹³. This is, to the best of our knowledge, the lowest value achieved in a high peak power laser system operating at 1030 nm center wavelength.

  6. Generation of a Sub-10 fs Laser Pulse by a Ring Oscillator with a High Repetition Rate

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qing; ZHAO Yan-Ying; WEI Zhi-Yi

    2009-01-01

    @@ A compact femtoescond Ti:sapphire ring oscillator composed of chirped mirrors is designed. By accurately optimizing the intra-cavity dispersion and the mode locking range of the ring configuration, we generate laser pulses as short as 7.7 fs with a repetition rate as high as 745 MHz. The spectrum spans from 660nm to 940nm and the average output power is 480row under the cw pump laser of 7.5 W.

  7. Wave-front correction of high-intensity fs laser beams by using closed-loop adaptive optics system

    Institute of Scientific and Technical Information of China (English)

    WANG; Zhaohua; JIN; Zhan; ZHENG; Jiaan; WANG; Peng; WEI; Zh

    2005-01-01

    We developed an adaptive optics system to correct the wave-front distortion of an intense fs laser beam from our multi-TW laser system, Jiguang II. In this paper, the instruments of the adaptive optical system are described and the experimental results of the closed-loop wave-front correction are presented. A distorted laser wave-front of 20 wavelengths of P-V values was corrected to 0.15 wavelength of P-V values. The beam quality of the laser system varies from 3.5 diffraction limit to 1.5 diffraction limit.

  8. Functionally graded materials produced by laser cladding

    NARCIS (Netherlands)

    Pei, Y.T.; Hosson, J.Th.M. De

    2000-01-01

    AlSi40 functionally graded materials (FGMs) were produced by a one-step laser cladding process on cast Al-alloy substrate as a possible solution for interfacial problems often present in laser coatings. The microstructure of the FGMs consists of a large amount of silicon primary particles surrounded

  9. Functionally graded materials produced by laser cladding

    NARCIS (Netherlands)

    Pei, Y.T.; Hosson, J.Th.M. De

    2000-01-01

    AlSi40 functionally graded materials (FGMs) were produced by a one-step laser cladding process on cast Al-alloy substrate as a possible solution for interfacial problems often present in laser coatings. The microstructure of the FGMs consists of a large amount of silicon primary particles surrounded

  10. Functionally Graded Materials Produced by Laser Cladding

    NARCIS (Netherlands)

    Pei, Y.T.; Hosson, J.Th.M. De

    2000-01-01

    AlSi40 functionally graded materials (FGMs) were produced by a one-step laser cladding process on cast Al-alloy substrate as a possible solution for interfacial problems often present in laser coatings. The microstructure of the FGMs consists of a large amount of silicon primary particles surrounded

  11. 80-fs Nd:silicate glass laser pumped by a single-mode 200-mW diode.

    Science.gov (United States)

    Agnesi, Antonio; Greborio, Alessandro; Pirzio, Federico; Reali, Giancarlo

    2010-05-10

    A Nd(3+)-doped Schott LG680 silicate glass laser was pumped with a single-mode 200-mW diode. Efficient cw operation was demonstrated with 37.5 mW output power and 36% slope efficiency. Passive mode-locking with a semiconductor saturable absorber mirror yielded 80-fs pulses with a two-prism setup. Alternatively, pulses of approximately 200-fs, tunable over the range 1058-1076 nm, were obtained with either slit-tuning or a single-prism dispersive resonator. Output powers from 6 to 14 mW have been measured.

  12. FS laser processing of bio-polymer thin films for studying cell-to-substrate specific response

    Energy Technology Data Exchange (ETDEWEB)

    Daskalova, A., E-mail: a_daskalova@code.bg [Institute of Electronics, Bulgarian Academy of Sciences, 72, Tsarigradsko Chaussee Blvd., 1784 Sofia (Bulgaria); Nathala, Chandra S.R. [Institute of General Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10/134, A-1040 Wien (Austria); Spectra-Physics Vienna, Fernkorngasse 10, 1100 Wien (Austria); Kavatzikidou, P.; Ranella, A. [Institute for Electronic Structure and Lasers-FORTH, P.O. Box 1385, Vassilika Vouton, 711 10 Heraklion, Crete (Greece); Szoszkiewicz, R. [Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Str., 02-507 Warsaw, Poland (Poland); Husinsky, W. [Institute of General Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10/134, A-1040 Wien (Austria); Fotakis, C. [Institute for Electronic Structure and Lasers-FORTH, P.O. Box 1385, Vassilika Vouton, 711 10 Heraklion, Crete (Greece)

    2016-09-30

    Highlights: • Systematic research in the field of fs laser interaction with biopolymers for application in tissue engineering. • Utilizing a new biopolymer blend of collagen/elastin material for studying the interaction process in the fs domain. • Obtaining of improved, circularly shaped, interconnected nanopores, with high reproducibility from collagen/elastin layer. • Observation of randomly arranged pattern outside modification zone due to formation of an impact wave over biofilm surface. • NIH/3T3 cell-interface interaction reveal a preferable cell migration on fs laser-modified surface array. - Abstract: The use of ultra-short pulses for nanoengineering of biomaterials opens up possibilities for biological, medical and tissue engineering applications. Structuring the surface of a biomaterial into arrays with micro- and nanoscale features and architectures, defines new roadmaps to innovative engineering of materials. Thin films of novel collagen/elastin composite and gelatin were irradiated by Ti:sapphire fs laser in air at central wavelength 800 nm, with pulse durations in the range of 30 fs. The size and shape as well as morphological forms occurring in the resulted areas of interaction were analyzed as a function of irradiation fluence and number of pulses by atomic force microscopy (AFM). The fs interaction regime allows generation of well defined micro porous surface arrays. In this study we examined a novel composite consisting of collagen and elastin in order to create a biodegradable matrix to serve as a biomimetic surface for cell attachment. Confocal microscopy images of modified zones reveal formation of surface fringe patterns with orientation direction alongside the area of interaction. Outside the crater rim a wave-like topography pattern is observed. Structured, on a nanometer scale, surface array is employed for cell-culture experiments for testing cell’s responses to substrate morphology. Mice fibroblasts migration was monitored

  13. Concept for image-guided vitreo-retinal fs-laser surgery: adaptive optics and optical coherence tomography for laser beam shaping and positioning

    Science.gov (United States)

    Matthias, Ben; Brockmann, Dorothee; Hansen, Anja; Horke, Konstanze; Knoop, Gesche; Gewohn, Timo; Zabic, Miroslav; Krüger, Alexander; Ripken, Tammo

    2015-03-01

    Fs-lasers are well established in ophthalmic surgery as high precision tools for corneal flap cutting during laser in situ keratomileusis (LASIK) and increasingly utilized for cutting the crystalline lens, e.g. in assisting cataract surgery. For addressing eye structures beyond the cornea, an intraoperative depth resolved imaging is crucial to the safety and success of the surgical procedure due to interindividual anatomical disparities. Extending the field of application even deeper to the posterior eye segment, individual eye aberrations cannot be neglected anymore and surgery with fs-laser is impaired by focus degradation. Our demonstrated concept for image-guided vitreo-retinal fs-laser surgery combines adaptive optics (AO) for spatial beam shaping and optical coherence tomography (OCT) for focus positioning guidance. The laboratory setup comprises an adaptive optics assisted 800 nm fs-laser system and is extended by a Fourier domain optical coherence tomography system. Phantom structures are targeted, which mimic tractional epiretinal membranes in front of excised porcine retina within an eye model. AO and OCT are set up to share the same scanning and focusing optics. A Hartmann-Shack sensor is employed for aberration measurement and a deformable mirror for aberration correction. By means of adaptive optics the threshold energy for laser induced optical breakdown is lowered and cutting precision is increased. 3D OCT imaging of typical ocular tissue structures is achieved with sufficient resolution and the images can be used for orientation of the fs-laser beam. We present targeted dissection of the phantom structures and its evaluation regarding retinal damage.

  14. Isolated sub-10 attosecond pulse generation by a 6-fs driving pulse and a 5-fs subharmonic controlling pulse

    Directory of Open Access Journals (Sweden)

    Yunhui Wang

    2012-06-01

    Full Text Available We theoretically study high-order harmonic generation by quantum path control in a special two-color laser field, which is synthesized by a 6 fs/800 nm fundamental pulse and a weaker 5 fs/1600 nm subharmonic controlling pulse. Single quantum path is selected without optimizing any carrier phase, which not only broadens the harmonic bandwidth to 400 eV, but also enhances the harmonic conversion efficiency in comparison with the short-plus-long scheme, which is based on 5 fs/800 nm driving pulse and 6 fs/1600 nm control pulse. An isolated 8-attosecond pulse is produced with currently available ultrafast laser sources.

  15. 177 fs erbium-doped fiber laser mode locked with a cellulose polymer film containing single-wall carbon nanotubes

    Science.gov (United States)

    Tausenev, A. V.; Obraztsova, E. D.; Lobach, A. S.; Chernov, A. I.; Konov, V. I.; Kryukov, P. G.; Konyashchenko, A. V.; Dianov, E. M.

    2008-04-01

    A mode-locked soliton erbium-doped fiber laser generating 177fs pulses is demonstrated. The laser pumped by a 85mW, 980nm laser diode emits 7mW at 1.56μm at a pulse repetition rate of 50MHz. Passive mode locking is achieved with a saturable absorber made of a high-optical quality film based on cellulose derivative with dispersed carbon single-wall nanotubes. The film is prepared with the original technique by using carbon nanotubes synthesized by the arc-discharge method.

  16. Sub-90 fs dissipative-soliton Erbium-doped fiber lasers operating at 1.6 μm band.

    Science.gov (United States)

    Wang, Zhiqiang; Qian, Kai; Fang, Xiao; Gao, Caixia; Luo, Hao; Zhan, Li

    2016-05-16

    We present an L-band dissipative soliton (DS) fiber laser, which can deliver 87.5 fs pulses at 1.6 μm band. Numerical simulations are used to confirm the DS generation, and prove the pivotal component of the invisible filter with proper bandwidth in the formation of DS pulses. Such a robust, compact ultrafast laser source with higher pulse energy is hence an excellent seed source for L-band amplifiers. The mechanism revealed in the simulations is helpful to develop a unified theory for understanding various mode-locking regimes in normal dispersion lasers.

  17. Time-resolved measurement of atomic emission enhancement by fs-ns dual-pulsed laser-induced breakdown spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Yan Li-Xin; Zhang Yong-Sheng; Zheng Guo-Xin; Liu Jing-Ru; Cheng Jian-Ping; Lü Min

    2006-01-01

    Time-resolved measurement of atomic emission enhancement is performed by using a 500-fs KrF laser pulse incident upon a high density supersonic O2 gas jet, synchronized with an orthogonal ns frequency-doubled Nd:YAG laser pulse. The ultra-short pulse serves as an igniter of the gas jet, and the subsequent ns-laser pulse significantly enhances the atomic emission. Analysis shows that the contributions to the enhancement effect are made mainly by the bremsstrahlung radiation and cascade ionization.

  18. Adventures in Laser Produced Plasma Research

    Energy Technology Data Exchange (ETDEWEB)

    Key, M

    2006-01-13

    In the UK the study of laser produced plasmas and their applications began in the universities and evolved to a current system where the research is mainly carried out at the Rutherford Appleton Laboratory Central Laser Facility ( CLF) which is provided to support the universities. My own research work has been closely tied to this evolution and in this review I describe the history with particular reference to my participation in it.

  19. Carbon nanodots featuring efficient FRET for two-photon photodynamic cancer therapy with a low fs laser power density.

    Science.gov (United States)

    Wang, Jing; Zhang, Zehui; Zha, Shuai; Zhu, Yinyan; Wu, Peiyi; Ehrenberg, Benjamin; Chen, Ji-Yao

    2014-11-01

    The 5,10,15,20-tetrakis(1-methyl 4-pyridinio) porphyrins (TMPyP), a photosensitizer used for photodynamic therapy of cancers (PDT), were linked to carbon dots (CDots) to form the conjugates of CDot-TMPyP by the electrostatic force. The 415 nm emission band of CDots was well overlapped with the absorption band of TMPyP, so that the Cdots in conjugates can work as donor to transfer the energy to TMPyP moiety by fluorescence resonance energy transfer (FRET) with an FRET efficiency of 45%, determined by the fluorescence lifetime change between the free CDots and conjugated CDots. The two-photon absorption cross section (TPACS) of TMPyP is as low as 110 GM and the TMPyP thus be not suitable for two-photon PDT. Whereas the CDots have high TPACS, and their TPACS are excitation wavelength dependent with the maximum value of 15000 GM at 700 nm. Therefore, the conjugates of CDot-TMPyP were explored for two-photon excitation (TPE) PDT. The two-photon image of CDot-TMPyP in Hela cells was clearly seen under the excitation of a 700 nm femto-second (fs) laser. The singlet oxygen production of CDot-TMPyP was also much higher than that of TMPyP alone under TPE of a 700 nm fs laser. The in vitro PDT killing was further achieved with CDot-TMPyP by TPE of the 700 nm fs laser. Particularly herein the low power density of fs laser from unfocused laser beam was successfully used to carry out the TPE PDT, because of the high TPACS of CDots. These results demonstrate that the CDot-TMPyP conjugates are promising for TPE PDT and needed to investigate further. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Proton radiography of magnetic field produced by ultra-intense laser irradiating capacity-coil target

    CERN Document Server

    Wang, W W; Chen, J; Cai, H B; He, S K; Zhou, W M; Shan, L Q; Lu, F; Wu, Y C; Hong, W; Liu, D X; Bi, B; Zhang, F; Xue, F B; Li, B Y; Zhang, B; He, Y L; He, W; Jiao, J L; Dong, K G; Zhang, F Q; Deng, Z G; Zhang, Z M; Cui, B; Han, D; Zhou, K N; Wang, X D; Zhao, Z Q; Cao, L F; Zhang, B H; He, X T; Gu, Y Q

    2014-01-01

    Ultra-intense ultra-short laser is firstly used to irradiate the capacity-coil target to generate magnetic field. The spatial structure and temporal evolution of huge magnetic fields were studied with time-gated proton radiography method. A magnetic flux density of 40T was measured by comparing the proton deflection and particle track simulations. Although the laser pulse duration is only 30fs, the generated magnetic field can last for over 100 picoseconds. The energy conversion efficiency from laser to magnetic field can reach as high as ~20%. The results indicate that tens of tesla (T) magnetic field could be produced in many ultra intense laser facilities around the world, and higher magnetic field could be produced by picosecond lasers.

  1. Laser Produced Ions as an Injection Beam for Cancer Therapy Facility

    CERN Document Server

    Noda, A; Iwashita, Y; Nakamura, S; Sakabe, S; Shimizu, S; Shirai, T; Tongu, H

    2004-01-01

    Ion production from a solid target by a high-power short pulse laser has been investigated to replace the injector linac of the synchrotron dedicated for cancer therapy. As the high power laser, the laser with the peak power of 100 TW and minimum pulse duration of 20 fs which has been developed at JAERI Kansai Research Establishment, is assumed. Laser produced ions with 100% energy spread is energy selected within ±5% and then phase rotated with use of the RF electric field synchronized to the pulse laser, which further reduces the energy spread to ±1%. The scheme of the phase rotation is presented together with the experimental results of laser production from the thin foil target.

  2. Frequency-doubled DBR-tapered diode laser for direct pumping of Ti:sapphire lasers generating sub-20 fs pulses.

    Science.gov (United States)

    Müller, André; Jensen, Ole Bjarlin; Unterhuber, Angelika; Le, Tuan; Stingl, Andreas; Hasler, Karl-Heinz; Sumpf, Bernd; Erbert, Götz; Andersen, Peter E; Petersen, Paul Michael

    2011-06-20

    For the first time a single-pass frequency doubled DBR-tapered diode laser suitable for pumping Ti:sapphire lasers generating ultrashort pulses is demonstrated. The maximum output powers achieved when pumping the Ti:sapphire laser are 110 mW (CW) and 82 mW (mode-locked) respectively at 1.2 W of pump power. This corresponds to a reduction in optical conversion efficiencies to 75% of the values achieved with a commercial diode pumped solid-state laser. However, the superior electro-optical efficiency of the diode laser improves the overall efficiency of the Ti:sapphire laser by a factor > 2. The optical spectrum emitted by the Ti:sapphire laser when pumped with our diode laser shows a spectral width of 112 nm (FWHM). Based on autocorrelation measurements, pulse widths of less than 20 fs can therefore be expected.

  3. Electromagnetic pulses produced by expanding laser-produced Au plasma

    Directory of Open Access Journals (Sweden)

    De Marco Massimo

    2015-06-01

    Full Text Available The interaction of an intense laser pulse with a solid target produces large number of fast free electrons. This emission gives rise to two distinct sources of the electromagnetic pulse (EMP: the pulsed return current through the holder of the target and the outflow of electrons into the vacuum. A relation between the characteristics of laser-produced plasma, the target return current and the EMP emission are presented in the case of a massive Au target irradiated with the intensity of up to 3 × 1016 W/cm2. The emission of the EMP was recorded using a 12 cm diameter Moebius loop antennas, and the target return current was measured using a new type of inductive target probe (T-probe. The simultaneous use of the inductive target probe and the Moebius loop antenna represents a new useful way of diagnosing the laser–matter interaction, which was employed to distinguish between laser-generated ion sources driven by low and high contrast laser pulses.

  4. Generation of sub-100 fs pulses from mode-locked Nd,Y:SrF2 laser with enhancing SPM

    Science.gov (United States)

    Zhu, Jiangfeng; Wei, Long; Tian, Wenlong; Liu, Jiaxing; Wang, Zhaohua; Su, Liangbi; Xu, Jun; Wei, Zhiyi

    2016-05-01

    A mode-locked laser using Nd,Y:SrF2 crystal as the gain medium is presented in this letter. By special design of the cavity for enhancing the self-phase modulation effect, femtosecond mode-locking with 97 fs pulse duration and 13.2 nm spectral width centered at 1061 nm is obtained at a repetition rate of 96 MHz. The average output power is 102 mW under 925 mW pump power, corresponding to the optical-to-optical efficiency of 11%. To the best of our knowledge, these are the first sub-100 fs pulses generated from a mode-locked Nd doped crystal laser.

  5. The influence of laser pulse duration and energy on ICP-MS signal intensity, elemental fractionation, and particle size distribution in NIR fs-LA-ICP-MS

    Science.gov (United States)

    Diwakar, Prasoon K.; Harilal, Sivanandan S.; LaHaye, Nicole L.; Hassanein, Ahmed; Kulkarni, Pramod

    2015-01-01

    Laser parameters, typically wavelength, pulse width, irradiance, repetition rate, and pulse energy, are critical parameters which influence the laser ablation process and thereby influence the LA-ICP-MS signal. In recent times, femtosecond laser ablation has gained popularity owing to the reduction in fractionation related issues and improved analytical performance which can provide matrix-independent sampling. The advantage offered by fs-LA is due to shorter pulse duration of the laser as compared to the phonon relaxation time and heat diffusion time. Hence the thermal effects are minimized in fs-LA. Recently, fs-LA-ICP-MS demonstrated improved analytical performance as compared to ns-LA-ICP-MS, but detailed mechanisms and processes are still not clearly understood. Improvement of fs-LA-ICP-MS over ns-LA-ICP-MS elucidates the importance of laser pulse duration and related effects on the ablation process. In this study, we have investigated the influence of laser pulse width (40 fs to 0.3 ns) and energy on LA-ICP-MS signal intensity and repeatability using a brass sample. Experiments were performed in single spot ablation mode as well as rastering ablation mode to monitor the Cu/Zn ratio. The recorded ICP-MS signal was correlated with total particle counts generated during laser ablation as well as particle size distribution. Our results show the importance of pulse width effects in the fs regime that becomes more pronounced when moving from femtosecond to picosecond and nanosecond regimes. PMID:26664120

  6. Observation of fs-laser spallative ablation using soft X-ray laser probe

    Science.gov (United States)

    Nishikino, Masaharu; Hasegawa, Noboru; Tomita, Takuro; Minami, Yasuo; Eyama, Takashi; Kakimoto, Naoya; Izutsu, Rui; Baba, Motoyoshi; Kawachi, Tetsuya; Suemoto, Tohru

    2017-03-01

    The initial stages of femtosecond laser ablation of gold were observed by single-shot soft X-ray laser interferometer and reflectometer. The ablation front surface and the spallation shell dome structure were observed from the results of the soft X-ray interferogram, reflective image, and shadowgraph. The formation and evolution of soft X-ray Newton's rings (NRs) were found by reflective imaging at the early stages of the ablation dynamics. The soft X-ray NRs are caused by the interference between the bulk ablated surface and nanometer-scale thin spallation layer. The spallation layer was kept at the late timing of the ablation dynamics, and the height of that reached over 100 μm. The temporal evolution of the bulk ablated surface was observed in the ablation dynamics. From these results, we have succeeded in obtaining the temporal evolution of the ablation front exfoliated from the gold surface.

  7. Band tail absorption saturation in CdWO4 with 100 fs laser pulses.

    Science.gov (United States)

    Laasner, R; Fedorov, N; Grigonis, R; Guizard, S; Kirm, M; Makhov, V; Markov, S; Nagirnyi, V; Sirutkaitis, V; Vasil'ev, A; Vielhauer, S; Tupitsyna, I A

    2013-06-19

    The decay kinetics of the excitonic emission of CdWO4 scintillators was studied under excitation by powerful 100 fs laser pulses in the band tail (Urbach) absorption region. A special imaging technique possessing both spatial and temporal resolution provided a unique insight into the Förster dipole-dipole interaction of self-trapped excitons, which is the main cause of the nonlinear quenching of luminescence in this material. In addition, the saturation of phonon-assisted excitonic absorption due to extremely short excitation pulses was discovered. A model describing the evolution of electronic excitations in the conditions of absorption saturation was developed and an earlier model of decay kinetics based on the Förster interaction was extended to include the saturation effect. Compared to the previous studies, a more accurate calculation yields 3.7 nm as the Förster interaction radius. It was shown that exciton-exciton interaction is the main source of scintillation nonproportionality in CdWO4. A quantitative description using a new model of nonproportionality was presented, making use of the corrected value of the Förster radius.

  8. ns or fs pulsed laser ablation of a bulk InSb target in liquids for nanoparticles synthesis.

    Science.gov (United States)

    Semaltianos, N G; Hendry, E; Chang, H; Wears, M L; Monteil, G; Assoul, M; Malkhasyan, V; Blondeau-Patissier, V; Gauthier-Manuel, B; Moutarlier, V

    2016-05-01

    Laser ablation of bulk target materials in liquids has been established as an alternative method for the synthesis of nanoparticles colloidal solutions mainly due to the fact that the synthesized nanoparticles have bare, ligand-free surfaces since no chemical precursors are used for their synthesis. InSb is a narrow band gap semiconductor which has the highest carrier mobility of any known semiconductor and nanoparticles of this material are useful in optoelectronic device fabrication. In this paper a bulk InSb target was ablated in deionized (DI) water or ethanol using a nanosecond (20 ns) or a femtosecond (90 fs) pulsed laser source, for nanoparticles synthesis. In all four cases the largest percentage of the nanoparticles are of InSb in the zincblende crystal structure with fcc lattice. Oxides of either In or Sb are also formed in the nanoparticles ensembles in the case of ns or fs ablation, respectively. Formation of an oxide of either element from the two elements of the binary bulk alloy is explained based on the difference in the ablation mechanism of the material in the case of ns or fs pulsed laser irradiation in which the slow or fast deposition of energy into the material results to mainly melting or vaporization, respectively under the present conditions of ablation, in combination with the lower melting point but higher vaporization enthalpy of In as compared to Sb. InSb in the metastable phase with orthorhombic lattice is also formed in the nanoparticles ensembles in the case of fs ablation in DI water (as well as oxide of InSb) which indicates that the synthesized nanoparticles exhibit polymorphism controlled by the type of the laser source used for their synthesis. The nanoparticles exhibit absorption which is observed to be extended in the infrared region of the spectrum.

  9. Comparison of DLK incidence after laser in situ keratomileusis associated with two femtosecond lasers: Femto LDV and IntraLase FS60

    Directory of Open Access Journals (Sweden)

    Tomita M

    2013-07-01

    Full Text Available Minoru Tomita,1–3 Yuko Sotoyama,1 Satoshi Yukawa,1 Tadayuki Nakamura1 1Shinagawa LASIK Center, Chiyoda-ku, Tokyo, Japan; 2Department of Ophthalmology, Wenzhou Medical College, Wenzhou, People’s Republic of China; 3Eye Can Cataract Surgery Center, Manila, Philippines Purpose: To compare the incidence of diffuse lamellar keratitis (DLK after laser in situ keratomileusis (LASIK with flap creation using the Femto LDV and IntraLase™ FS60 femtosecond lasers. Methods: A total of 818 consecutive myopic eyes had LASIK performed using either Femto LDV or IntraLase FS60 for flap creation. The same excimer laser, the Allegretto Wave® Eye-Q Laser, was used for correcting refractive errors for all patients. In the preoperative examination, uncorrected distance visual acuity, corrected distance visual acuity, and manifest refraction spherical equivalent were measured. At the postop examination, the same examinations were performed along with a slit-lamp biomicroscopic examination, and patients with DLK were classified into stages. For the statistical analysis of the DLK occurrence rate and the visual and refractive outcomes, the Mann-Whitney’s U-test was used. Results: In the Femto LDV group with 514 eyes, 42 (8.17% had DLK. In the IntraLase FS60 group with 304 eyes, 114 (37.5% had DLK. There was a statistically significant difference in the DLK incidence rate between these groups (P < 0.0001. Both groups had excellent visual and refractive outcomes. Although low levels of DLK were observed for both groups, they did not affect visual acuity. Conclusion: While there were significantly fewer incidences of low level DLK when using Femto LDV, neither femtosecond laser induced high levels of DLK, and any postoperative DLK cleared up within 1 week. Therefore, both lasers provide excellent results, with no clinical differences, and both excel at flap creation for LASIK. Keywords: LASIK, Ziemer, Femto LDV, DLK, IntraLase FS60, femtosecond laser

  10. FS laser processing of bio-polymer thin films for studying cell-to-substrate specific response

    Science.gov (United States)

    Daskalova, A.; Nathala, Chandra S. R.; Kavatzikidou, P.; Ranella, A.; Szoszkiewicz, R.; Husinsky, W.; Fotakis, C.

    2016-09-01

    The use of ultra-short pulses for nanoengineering of biomaterials opens up possibilities for biological, medical and tissue engineering applications. Structuring the surface of a biomaterial into arrays with micro- and nanoscale features and architectures, defines new roadmaps to innovative engineering of materials. Thin films of novel collagen/elastin composite and gelatin were irradiated by Ti:sapphire fs laser in air at central wavelength 800 nm, with pulse durations in the range of 30 fs. The size and shape as well as morphological forms occurring in the resulted areas of interaction were analyzed as a function of irradiation fluence and number of pulses by atomic force microscopy (AFM). The fs interaction regime allows generation of well defined micro porous surface arrays. In this study we examined a novel composite consisting of collagen and elastin in order to create a biodegradable matrix to serve as a biomimetic surface for cell attachment. Confocal microscopy images of modified zones reveal formation of surface fringe patterns with orientation direction alongside the area of interaction. Outside the crater rim a wave-like topography pattern is observed. Structured, on a nanometer scale, surface array is employed for cell-culture experiments for testing cell's responses to substrate morphology. Mice fibroblasts migration was monitored after 3 days cultivation period using FESEM. We found that fibroblasts cells tend to migrate and adhere along the laser modified zones. The performed study proved that the immobilized collagen based biofilms suite as a template for successful fibroblasts cell guidance and orientation. Fs laser induced morphological modification of biomimetic materials exhibit direct control over fibroblasts behaviour due to induced change in their wettability state.

  11. Controlling plasma distributions as driving forces for ion migration during fs laser writing

    CERN Document Server

    Fernandez, Toney Teddy; Hoyo, Jesus; Sotillo, Belen; Fernandez, Paloma; Solis, Javier

    2014-01-01

    The properties of structures written inside dielectrics with high repetition rate femtosecond lasers are known to depend strongly on the complex interplay of a large number of writing parameters. Recently, ion migration within the laser-excited volume has been identified as a powerful mechanism for changing the local element distribution and producing efficient optical waveguides. In this work it is shown that the transient plasma distribution induced during laser irradiation is a reliable monitor for predicting the final refractive index distribution of the waveguide caused by ion migration. By performing in-situ plasma emission microscopy during the writing process inside a La-phosphate glass it is found that the long axis of the plasma distribution determines the axis of ion migration, being responsible for the local refractive index increase. This observation is also valid when strong positive or negative spherical aberration is induced, greatly deforming the focal volume and inverting the index profile. ...

  12. Laser-produced plasma source system development

    Science.gov (United States)

    Fomenkov, Igor V.; Brandt, David C.; Bykanov, Alexander N.; Ershov, Alexander I.; Partlo, William N.; Myers, David W.; Böwering, Norbert R.; Vaschenko, Georgiy O.; Khodykin, Oleh V.; Hoffman, Jerzy R.; Vargas L., Ernesto; Simmons, Rodney D.; Chavez, Juan A.; Chrobak, Christopher P.

    2007-03-01

    This paper describes the development of laser produced plasma (LPP) technology as an EUV source for advanced scanner lithography applications in high volume manufacturing. EUV lithography is expected to succeed 193 nm immersion technology for critical layer patterning below 32 nm beginning with beta generation scanners in 2009. This paper describes the development status of subsystems most critical to the performance to meet joint scanner manufacturer requirements and semiconductor industry standards for reliability and economic targets for cost of ownership. The intensity and power of the drive laser are critical parameters in the development of extreme ultraviolet LPP lithography sources. The conversion efficiency (CE) of laser light into EUV light is strongly dependent on the intensity of the laser energy on the target material at the point of interaction. The total EUV light generated then scales directly with the total incident laser power. The progress on the development of a short pulse, high power CO2 laser for EUV applications is reported. The lifetime of the collector mirror is a critical parameter in the development of extreme ultra-violet LPP lithography sources. The deposition of target materials and contaminants, as well as sputtering of the collector multilayer coating and implantation of incident particles can reduce the reflectivity of the mirror substantially over the exposure time even though debris mitigation schemes are being employed. The results of measurements of high energy ions generated by a short-pulse CO2 laser on a laser-produced plasma EUV light source with Sn target are presented. Droplet generation is a key element of the LPP source being developed at Cymer for EUV lithography applications. The main purpose of this device is to deliver small quantities of liquid target material as droplets to the laser focus. The EUV light in such configuration is obtained as a result of creating a highly ionized plasma from the material of the

  13. Spectral broadening of 25 fs laser pulses via self-phase modulation in a neon filled hollow core fibre

    Energy Technology Data Exchange (ETDEWEB)

    Weichert, Stefan

    2017-05-15

    The goal of this work was the realisation of a setup for spectral broadening and subsequent compression of 25 fs laser pulses provided by a commercial Ti:Sapphire based CPA laser system by means of the hollow core fibre chirped mirror compressor technique. For the spectral broadening a vessel containing the hollow waveguide filled with a noble gas serving as the nonlinear medium was set up and an alignment procedure was developed. Neon was chosen as the nonlinear medium for the self-phase modulation of the pulses. With this setup spectral broadening, sufficient for supporting sub 5 fs pulses, was observed. The spectra at different input energies and neon gas pressures were measured and the stability of these and their respective Fourier transform-limited pulses determined in order to find an operating point. For the compression of the self-phase modulated pulses a chirped mirror compressor was designed and set up, but not tested yet. The layout of a single-shot intensity autocorrelator capable of estimating the pulse duration of sub 10 fs pulses was given.

  14. Confocal comparison of corneal reinnervation after small incision lenticule extraction (SMILE and femtosecond laser in situ keratomileusis (FS-LASIK.

    Directory of Open Access Journals (Sweden)

    Meiyan Li

    Full Text Available PURPOSE: To evaluate corneal reinnervation, and the corresponding corneal sensitivity and keratocyte density after small incision lenticule extraction (SMILE and femtosecond laser in situ keratomileusis (FS-LASIK. METHODS: In this prospective, non-randomized observational study, 18 patients (32 eyes received SMILE surgery, and 22 patients (42 eyes received FS-LASIK surgery to correct myopia. The corneal subbasal nerve density and microscopic morphological changes in corneal architecture were evaluated by confocal microscopy prior to surgery and at 1 week, 1 month, 3 months, and 6 months after surgery. A correlation analysis was performed between subbasal corneal nerve density and the corresponding keratocyte density and corneal sensitivity. RESULTS: The decrease in subbasal nerve density was less severe in SMILE-treated eyes than in FS-LASIK-treated eyes at 1 week (P = 0.0147, 1 month (P = 0.0243, and 3 months (P = 0.0498, but no difference was detected at the 6-month visit (P = 0.5277. The subbasal nerve density correlated positively with central corneal sensitivity in both groups (r = 0.416, P<0.0001, and r = 0.2567, P = 0.0038 for SMILE group and FS-LASIK group, respectively. The SMILE-treated eyes have a lower risk of developing peripheral empty space with epithelial cells filling in (P = 0.0005. CONCLUSIONS: The decrease in subbasal nerve fiber density was less severe in the SMILE group than the FS-LASIK group in the first 3 months following the surgeries. The subbasal nerve density was correlated with central corneal sensitivity.

  15. FS200 femtosecond laser LASIK flap digital analysis parameter evaluation: comparing two different types of patient interface applanation cones

    Directory of Open Access Journals (Sweden)

    Kanellopoulos AJ

    2013-06-01

    Full Text Available A John Kanellopoulos,1,2 George Asimellis1 1LaserVision.gr Eye Institute, Athens, Greece; 2New York University School of Medicine, NY, USA Purpose: To evaluate the safety and efficacy of a novel LASIK flap patient interface (PI cone with our reported digital analysis and compare for potential differences with the standard metal and glass PI in flap parameters when used with the Alcon/WaveLight FS200 femtosecond laser. Patients and methods: Thirty-six consecutive LASIK patients (72 eyes subjected to a bilateral femtosecond assisted LASIK procedure with the novel clear cone PI FS200 1505 were examined for flap diameter and flap thickness over the entire flap area via digital analysis performed on intraoperation image (flap diameter and anterior-segment optical coherence tomography image (flap thickness. This group was compared with an age- and procedure-matched group B from our practice, in which the standard metal and glass PI was employed. Results: Horizontal flap diameter for group A (clear cone was 7.87 mm ± 0.02 mm (range 7.89–7.84 mm for 8.00 mm programmed, whereas for group B (metal and glass cone was 7.85 mm ± 0.04 mm (range 7.93–7.80 mm. Likewise, along the vertical line, flap diameter for group A was 7.84 mm ± 0.02 mm (range 7.85–7.80 mm and for group B was 7.83 mm ± 0.03 mm (range 7.87–7.80 mm. Central flap thickness for group A was 113.29 µm (±1.19 µm for 110 µm planned, 122.1 µm (±2.10 µm for 120 µm planned, and 133.50 µm (±0.71 µm for 130 µm planned. Group B central flap thickness was, accordingly, 112.8 µm (±1.25 µm, 122.4 µm (±2.15 µm, and 132.50 µm (±0.90 µm. The data evaluated (paired group comparisons between group A and group B did not show statistically significant differences. Conclusion: This study indicates that two PIs in use with the FS200 femtosecond laser are safe and have highly reproducible and accurate flap parameter results, such as achieved diameter and flap thickness. The paired

  16. Patterns of serum PCDD/Fs affected by vegetarian regime, consumption of locally produced food, and resident places of residents living near incinerators

    Energy Technology Data Exchange (ETDEWEB)

    Chen Hsiu-Ling; Lee Chang-Ching; Su Hue-Jen; Liao Pao-Chi [Inst. of Basic Medical Science, Medical Coll., National Cheng Kung Univ., Tainan (Taiwan)

    2004-09-15

    Previous reports have been estimated that more than 90% of serum PCDD/Fs can be accounted for by the consumption of various food groups. Nouwen et al. suggested residents living near incinerators with the elevated dioxin exposure while they ate locally produced food compared to the general population from other areas. PCDD/Fs usually abound in fatty meats and marine foods, and consumption of which is the major pathway of human expose to PCDD/Fs. However, no distinct association was shown between vegetarian regime of human and their corresponding serum PCDD/Fs concentration. In addition, the resident region is associated to their corresponding dietary consumption and ambient exposure of PCDD/Fs, especially for subjects consumed the local foods with special dioxin-like contamination. The current study, therefore, was set to examine how dietary habits, including vegetarian regime and consumption of local food original for residents living near the incinerators are associated to serum PCDD/F concentrations. In addition, the further aim is to assess the influence on the serum PCDD/Fs levels resulting from subjects living in the alternative resident regions, even all of them exposed to PCDD/Fs emission from incinerators.

  17. 131 fs, 33 MHz all-fiber soliton laser at 1.07 microm with a film-type SWNT saturable absorber coated on polyimide.

    Science.gov (United States)

    Shohda, Fumio; Hori, Yuichiro; Nakazawa, Masataka; Mata, Junji; Tsukamoto, Jun

    2010-05-24

    We present a 1.07 microm all-fiber femtosecond soliton laser employing a film-type saturable absorber with a P3HT (poly-3-hexylthiophene) incorporated SWNT coated on polyimide film. We optimized the laser cavity as a dispersion-managed soliton laser with photonic crystal fiber (PCF) as an anomalous dispersion fiber at 1.07 microm. As a result, a 131 fs, 33 MHz pulse was successfully generated with a simple laser configuration.

  18. 10-fs-level synchronization of photocathode laser with RF-oscillator for ultrafast electron and X-ray sources

    Science.gov (United States)

    Yang, Heewon; Han, Byungheon; Shin, Junho; Hou, Dong; Chung, Hayun; Baek, In Hyung; Jeong, Young Uk; Kim, Jungwon

    2017-01-01

    Ultrafast electron-based coherent radiation sources, such as free-electron lasers (FELs), ultrafast electron diffraction (UED) and Thomson-scattering sources, are becoming more important sources in today’s ultrafast science. Photocathode laser is an indispensable common subsystem in these sources that generates ultrafast electron pulses. To fully exploit the potentials of these sources, especially for pump-probe experiments, it is important to achieve high-precision synchronization between the photocathode laser and radio-frequency (RF) sources that manipulate electron pulses. So far, most of precision laser-RF synchronization has been achieved by using specially designed low-noise Er-fibre lasers at telecommunication wavelength. Here we show a modular method that achieves long-term (>1 day) stable 10-fs-level synchronization between a commercial 79.33-MHz Ti:sapphire laser oscillator and an S-band (2.856-GHz) RF oscillator. This is an important first step toward a photocathode laser-based femtosecond RF timing and synchronization system that is suitable for various small- to mid-scale ultrafast X-ray and electron sources.

  19. Third-Harmonic Generated in EH32 Mode of a Gas-Filled Waveguide by fs Laser Pulses

    Institute of Scientific and Technical Information of China (English)

    CHEN Bao-Zhen; HUANG Zu-Qia

    2007-01-01

    In this paper it is reported for the first time that the third harmonic generated in EH32 mode of a gas-filled waveguide by fs pulses has higher generation efficiency. The new finding contrasts with the experiment in [C.G. Durfee Ⅲ, S. Backus, M.M. Murnane, and H.C. Kapteyn, Opt. Lett. 22 (1997) 1565]. Some possible factors, which produce the contradiction, are discussed briefly.

  20. Vector similariton erbium-doped all-fiber laser generating sub-100-fs nJ pulses at 100 MHz.

    Science.gov (United States)

    Olivier, Michel; Piché, Michel

    2016-02-08

    Erbium-doped mode-locked fiber lasers with repetition rates comparable to those of solid-state lasers and generating nJ pulses are required for many applications. Our goal was to design a fiber laser that would meet such requirements, that could be built at relatively low cost and that would be reliable and robust. We thus developed a high-fundamental-repetition-rate erbium-doped all-fiber laser operating in the amplifier similariton regime. Experimental characterization shows that this laser, which is mode-locked by nonlinear polarization evolution, emits 76-fs pulses with an energy of 1.17 nJ at a repetition rate of 100 MHz. Numerical simulations support the interpretation of self-similar evolution of the pulse in the gain fiber. More specifically we introduce the concept of vector similariton in fiber lasers. The coupled x- and y- polarization components of such a pulse have a pulse profile with a linear chirp and their combined power profile evolves self-similarly when the nonlinear asymptotic regime is reached in the gain fiber.

  1. Spectroscopic Studies of Laser Produced Plasma Metasurfaces

    Science.gov (United States)

    Colon Quinones, Roberto; Underwood, Thomas; Cappelli, Mark

    2016-10-01

    In this presentation, we describe the spatial and temporal plasma characteristics of the dense plasma kernels that are used to construct a laser produced plasma metasurface (PM) that is intended to serve as a tunable THz reflector. The PM is an n x n array of plasmas generated by focusing the light from a 2 J/p Q-switched Nd:YAG laser through a multi-lens array (MLA) and into a gas of varying pressure. A gated CCD camera coupled to a high-resolution spectrometer is used to obtain chord-averaged H α broadening data for the cross section of a single plasma element at the lens focal point. The data is then Abel inverted to derive the radial plasma density distribution. Measurements are repeated for a range of pressures, laser energies, and lens f-number, with a time resolution of 100 ns and a gate width of 20 ns. Results are presented for the variation of plasma density and size over these different conditions. Work supported by the Air Force Office of Scientific Research (AFOSR). R. Colon Quinones and T. Underwood acknowledge the support of the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  2. Independent control of beam astigmatism and ellipticity using a SLM for fs-laser waveguide writing.

    Science.gov (United States)

    Ruiz de la Cruz, A; Ferrer, A; Gawelda, W; Puerto, D; Sosa, M Galván; Siegel, J; Solis, J

    2009-11-09

    We have used a low repetition rate (1 kHz), femtosecond laser amplifier in combination with a spatial light modulator (SLM) to write optical waveguides with controllable cross-section inside a phosphate glass sample. The SLM is used to induce a controllable amount of astigmatism in the beam wavefront while the beam ellipticity is controlled through the propagation distance from the SLM to the focusing optics of the writing set-up. The beam astigmatism leads to the formation of two separate disk-shaped foci lying in orthogonal planes. Additionally, the ellipticity has the effect of enabling control over the relative peak irradiances of the two foci, making it possible to bring the peak irradiance of one of them below the material transformation threshold. This allows producing a single waveguide with controllable cross-section. Numerical simulations of the irradiance distribution at the focal region under different beam shaping conditions are compared to in situ obtained experimental plasma emission images and structures produced inside the glass, leading to a very satisfactory agreement. Finally, guiding structures with controllable cross-section are successfully produced in the phosphate glass using this approach.

  3. [Scanning electron microscopic investigations of cutting edge quality in lamellar keratotomy using the Wavelight femtosecond laser (FS-200) : What influence do spot distance and an additional tunnel have?

    Science.gov (United States)

    Hammer, T; Höche, T; Heichel, J

    2017-07-24

    Femtosecond lasers (fs-lasers) are established cutting instruments for the creation of LASIK flaps. Previous studies often showed even rougher surfaces after application of fs-laser systems compared to lamellar keratotomy with mechanical microkeratomes. When cutting the cornea with fs-lasers, an intrastromal gas development occurs, which has a potentially negative influence on the cutting quality if the gas cannot be dissipated; therefore, manufacturers have chosen the way of gas assimilation in so-called pockets. The investigated system creates a tunnel which opens under the conjunctiva. The aim of this study was to investigate the effects of a tunnel as well as the influence of different spot distances on the quality of cut surfaces and edges. In this experimental study on freshly enucleated porcine eyes (n = 15), the following cuts were carried out with the FS-200 (Wavelight, Erlangen, Germany): 1. standard setting (spot and line separation 8 µm), 2. with tunnel for gas drainage, 3. without gas-conducting tunnel, 4. with increased spot spacing (spot and line separation 9 μm instead of 8 μm) and 5. with reduced spot spacing (spot and line separation 7 μm instead of 8 μm). Subsequently, scanning electron microscopy (FEI Quanta 650, Hillsboro, OR) of the cut edges and surfaces as well as the gas drain tunnel were performed. The evaluation was based on an established score. The current fs-laser system (200 Hz) is able to create smooth cutting surfaces and sharp edges. The changed density of laser pulses compared to the standard settings with a reduced or increased distance between the pulses, did not achieve any further improvement in the surface quality. The gas-conducting tunnel could be detected by scanning electron microscope. In the case of cutting without a tunnel, roughened surfaces and irregularities on the cutting edges were found. When the FS-200 fs-laser is used, LASIK cuts with very smooth cut surfaces and sharp cutting

  4. Lifecycle of laser-produced air sparks

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, S. S., E-mail: hari@pnnl.gov; Brumfield, B. E.; Phillips, M. C. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352 (United States)

    2015-06-15

    We investigated the lifecycle of laser-generated air sparks or plasmas using multiple plasma diagnostic tools. The sparks were generated by focusing the fundamental radiation from an Nd:YAG laser in air, and studies included early and late time spark dynamics, decoupling of the shock wave from the plasma core, emission from the spark kernel, cold gas excitation by UV radiation, shock waves produced by the air spark, and the spark's final decay and turbulence formation. The shadowgraphic and self-emission images showed similar spark morphology at earlier and late times of its lifecycle; however, significant differences are seen in the midlife images. Spectroscopic studies in the visible region showed intense blackbody-type radiation at early times followed by clearly resolved ionic, atomic, and molecular emission. The detected spectrum at late times clearly contained emission from both CN and N{sub 2}{sup +}. Additional spectral features have been identified at late times due to emission from O and N atoms, indicating some degree of molecular dissociation and excitation. Detailed spatially and temporally resolved emission analysis provides insight about various physical mechanisms leading to molecular and atomic emission by air sparks, including spark plasma excitation, heating of cold air by UV radiation emitted by the spark, and shock-heating.

  5. Laser-induced periodic surface structures on fused silica upon cross-polarized two-color double-fs-pulse irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Höhm, S., E-mail: hoehm@mbi-berlin.de.de [Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI), Max-Born-Straße 2A, D-12489 Berlin (Germany); Herzlieb, M.; Rosenfeld, A. [Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI), Max-Born-Straße 2A, D-12489 Berlin (Germany); Krüger, J. [BAM Bundesanstalt für Materialforschung und–prüfung, Unter den Eichen 87, D-12205 Berlin (Germany); Bonse, J., E-mail: joern.bonse@bam.de [BAM Bundesanstalt für Materialforschung und–prüfung, Unter den Eichen 87, D-12205 Berlin (Germany)

    2015-05-01

    Graphical abstract: - Highlights: • LIPSS formation on fused silica is studied upon cross-polarized two-color (400 and 800 nm) double-fs-pulse irradiation. • LIPSS orientation follows the polarization of the first pulse. • LIPSS periods are determined by the wavelength of the first pulse. • LIPSS area is increased for temporally overlapping pulses due to nonlinear absorption. - Abstract: The dynamics of the formation of laser-induced periodic surface structures (LIPSS) on fused silica upon irradiation with linearly polarized fs-laser pulses (50 fs pulse duration) is studied by cross-polarized two-color double-fs-pulse experiments. In order to analyze the relevance of temporally distributed energy deposition in the early stage of LIPSS formation, a Mach-Zehnder interferometer was used for generating multiple double-pulse sequences at two different wavelengths (400 and 800 nm). The inter-pulse delay between the individual cross-polarized pulses of each sequence was systematically varied in the sub-ps range and the resulting LIPSS morphologies were characterized by scanning electron microscopy. It is found that the polarization of the first laser pulse arriving to the surface determines the orientation and the periodicity of the LIPSS. These two-color experiments further confirm the importance of the ultrafast energy deposition to the silica surface for LIPSS formation, particularly by the first laser pulse of each sequence. The second laser pulse subsequently reinforces the previously seeded spatial LIPSS characteristics (period, orientation)

  6. Influence of femtosecond laser produced nanostructures on biofilm growth on steel

    Science.gov (United States)

    Epperlein, Nadja; Menzel, Friederike; Schwibbert, Karin; Koter, Robert; Bonse, Jörn; Sameith, Janin; Krüger, Jörg; Toepel, Jörg

    2017-10-01

    Biofilm formation poses high risks in multiple industrial and medical settings. However, the robust nature of biofilms makes them also attractive for industrial applications where cell biocatalysts are increasingly in use. Since tailoring material properties that affect bacterial growth or its inhibition is gaining attention, here we focus on the effects of femtosecond laser produced nanostructures on bacterial adhesion. Large area periodic surface structures were generated on steel surfaces using 30-fs laser pulses at 790 nm wavelength. Two types of steel exhibiting a different corrosion resistance were used, i.e., a plain structural steel (corrodible) and a stainless steel (resistant to corrosion). Homogeneous fields of laser-induced periodic surface structures (LIPSS) were realized utilizing laser fluences close to the ablation threshold while scanning the sample under the focused laser beam in a multi-pulse regime. The nanostructures were characterized with optical and scanning electron microscopy. For each type of steel, more than ten identical samples were laser-processed. Subsequently, the samples were subjected to microbial adhesion tests. Bacteria of different shape and adhesion behavior (Escherichia coli and Staphylococcus aureus) were exposed to laser structures and to polished reference surfaces. Our results indicate that E. coli preferentially avoids adhesion to the LIPSS-covered areas, whereas S. aureus favors these areas for colonization.

  7. Long-term bladeless LASIK outcomes with the FS200 Femtosecond and EX500 Excimer Laser workstation: the Refractive Suite

    Directory of Open Access Journals (Sweden)

    Kanellopoulos AJ

    2013-02-01

    Full Text Available A John Kanellopoulos,1,2 George Asimellis11Laservision.gr Institute, Athens, Greece; 2NYU Medical School, NY, USAPurpose: The evaluation of the safety, efficacy, and long-term stability of LASIK procedures utilizing novel platform comprising a femtosecond and excimer laser and multiple networked diagnostics.Setting: Private clinical ophthalmology practice.Patients and methods: In consecutive cases of myopic LASIK procedure with a novel refractive platform (FS200 Femtosecond and EX500 Excimer Laser, 190 eyes (from 109 different patients were evaluated pre- and postoperatively for the following parameters: refractive error, best corrected distance visual acuity, uncorrected distance visual acuity, topography (Placido-disc based and tomography (Scheimpflug-image based, wavefront analysis, pupillometry, and contrast sensitivity. Follow-up visits were conducted for at least 12-months.Results: The change from pre- to postoperative mean refractive error was from −5.29 ± 2.39 diopters (D (range −8.0 to −0.50 D to −0.27 ± 0.09 D at the 3 month visit, −0.27 ± 0.10 D at the 6 month visit, and −0.39 ± 0.08 D at the 1-year visit. The change from pre- to postoperative refractive astigmatism was −1.07 ± 0.91 D (range −4.25 to 0 D to −0.14 ± 0.04 D at 3 months, −0.15 ± 0.04 at 6 months, and −0.16 ± 0.04 at the one-year visit. The proportion of the eyes with postoperative astigmatism within 0.5 D ranged between 95.6% and 99%. The proportion of eyes achieving uncorrected distance visual acuity of 1.0 (decimal was 93.0%.Conclusion: The myopic LASIK clinical results with the FS200 Femtosecond Laser and EX500 Excimer Laser showed outstanding efficacy, great safety, and long-term stability.Keywords: bladeless LASIK flap, femtosecond laser, myopic correction, long-term stability, regression, astigmatism correction, post-LASIK refraction

  8. Electronic Excited State and Vibrational Dynamics of Water Solution of Cytosine Observed by Time-resolved Transient Absorption Spectroscopy with Sub-10fs Deep Ultraviolet Laser Pules

    Directory of Open Access Journals (Sweden)

    Kobayashi Takayoshi.

    2013-03-01

    Full Text Available Time-resolved transient absorption spectroscopy for water solution of cytosine with sub-10fs deep ultraviolet laser pulse is reported. Ultrafast electronic excited state dynamics and coherent molecular vibrational dynamics are simultaneously observed and their relaxation mechanisms are discussed.

  9. A 158 fs 5.3 nJ fiber-laser system at 1 mu m using photonic bandgap fibers for dispersion control and pulse compression

    DEFF Research Database (Denmark)

    Nielsen, C.K.; Jespersen, Kim Giessmann; Keiding, S.R.

    2006-01-01

    We demonstrate a 158 fs 5.3 nJ mode-locked laser system based on a fiber oscillator, fiber amplifier and fiber compressor. Dispersion compensation in the fiber oscillator was obtained with a solid-core photonic bandgap (SC-PBG) fiber spliced to standard fibers, and external compression is obtaine...

  10. Ultrafast pump-probe microscopy reveals the mechanism of selective fs laser structuring of transparent thin films for maskless micropatterning

    Science.gov (United States)

    Rapp, Stephan; Rosenberger, Janosch; Domke, Matthias; Heise, Gerhard; Huber, Heinz P.; Schmidt, Michael

    2014-01-01

    Maskless patterning of biocompatible Ta2O5/Pt/glass sensor chips can be realized by ultra-short laser pulse ablation. At a fluence of 0.2 J/cm2, the thin Ta2O5 film is selectively lifted-off by indirectly-induced ablation at laser wavelenghts where the Ta2O5 is transparent and the Pt absorbing. This enables precise and very fast structuring. Here, 660 fs laser pulses at a center wavelength of 1053 nm are applied. The driving physical effects of this ablation mechanism are revealed by pump-probe microscopy. This technique allows the observation of the whole ablation process ranging temporally from femtoseconds to microseconds. An ultrafast heat-expansion in the absorbing Pt, initiating a shock-wave to the Ta2O5 within the first 10 ps, bulges the Ta2O5 film after some nanoseconds. Bulging velocities of 750 m/s are determined corresponding to an extreme acceleration of about 1010 g. Exceeding the stress limit in the Ta2O5 causes film disintegration after 50 ns. A model, describing essential reaction steps, is developed. This model is also applicable to other industrial important layer systems, where thin transparent films have to be removed.

  11. Physical processes at work in sub-30 fs, PW laser pulse-driven plasma accelerators: Towards GeV electron acceleration experiments at CILEX facility

    Science.gov (United States)

    Beck, A.; Kalmykov, S. Y.; Davoine, X.; Lifschitz, A.; Shadwick, B. A.; Malka, V.; Specka, A.

    2014-03-01

    Optimal regimes and physical processes at work are identified for the first round of laser wakefield acceleration experiments proposed at a future CILEX facility. The Apollon-10P CILEX laser, delivering fully compressed, near-PW-power pulses of sub-25 fs duration, is well suited for driving electron density wakes in the blowout regime in cm-length gas targets. Early destruction of the pulse (partly due to energy depletion) prevents electrons from reaching dephasing, limiting the energy gain to about 3 GeV. However, the optimal operating regimes, found with reduced and full three-dimensional particle-in-cell simulations, show high energy efficiency, with about 10% of incident pulse energy transferred to 3 GeV electron bunches with sub-5% energy spread, half-nC charge, and absolutely no low-energy background. This optimal acceleration occurs in 2 cm length plasmas of electron density below 1018 cm-3. Due to their high charge and low phase space volume, these multi-GeV bunches are tailor-made for staged acceleration planned in the framework of the CILEX project. The hallmarks of the optimal regime are electron self-injection at the early stage of laser pulse propagation, stable self-guiding of the pulse through the entire acceleration process, and no need for an external plasma channel. With the initial focal spot closely matched for the nonlinear self-guiding, the laser pulse stabilizes transversely within two Rayleigh lengths, preventing subsequent evolution of the accelerating bucket. This dynamics prevents continuous self-injection of background electrons, preserving low phase space volume of the bunch through the plasma. Near the end of propagation, an optical shock builds up in the pulse tail. This neither disrupts pulse propagation nor produces any noticeable low-energy background in the electron spectra, which is in striking contrast with most of existing GeV-scale acceleration experiments.

  12. Physical processes at work in sub-30 fs, PW laser pulse-driven plasma accelerators: Towards GeV electron acceleration experiments at CILEX facility

    Energy Technology Data Exchange (ETDEWEB)

    Beck, A., E-mail: beck@llr.in2p3.fr [Laboratoire Leprince-Ringuet – École Polytechnique, CNRS-IN2P3, Palaiseau 91128 (France); Kalmykov, S.Y., E-mail: skalmykov2@unl.edu [Department of Physics and Astronomy, University of Nebraska – Lincoln, Nebraska 68588-0299 (United States); Davoine, X. [CEA, DAM, DIF, Arpajon F-91297 (France); Lifschitz, A. [Laboratoire d' Optique Appliquée, ENSTA ParisTech-CNRS UMR7639-École Polytechnique, Palaiseau 91762 (France); Shadwick, B.A. [Department of Physics and Astronomy, University of Nebraska – Lincoln, Nebraska 68588-0299 (United States); Malka, V. [Laboratoire d' Optique Appliquée, ENSTA ParisTech-CNRS UMR7639-École Polytechnique, Palaiseau 91762 (France); Specka, A. [Laboratoire Leprince-Ringuet – École Polytechnique, CNRS-IN2P3, Palaiseau 91128 (France)

    2014-03-11

    Optimal regimes and physical processes at work are identified for the first round of laser wakefield acceleration experiments proposed at a future CILEX facility. The Apollon-10P CILEX laser, delivering fully compressed, near-PW-power pulses of sub-25 fs duration, is well suited for driving electron density wakes in the blowout regime in cm-length gas targets. Early destruction of the pulse (partly due to energy depletion) prevents electrons from reaching dephasing, limiting the energy gain to about 3 GeV. However, the optimal operating regimes, found with reduced and full three-dimensional particle-in-cell simulations, show high energy efficiency, with about 10% of incident pulse energy transferred to 3 GeV electron bunches with sub-5% energy spread, half-nC charge, and absolutely no low-energy background. This optimal acceleration occurs in 2 cm length plasmas of electron density below 10{sup 18} cm{sup −3}. Due to their high charge and low phase space volume, these multi-GeV bunches are tailor-made for staged acceleration planned in the framework of the CILEX project. The hallmarks of the optimal regime are electron self-injection at the early stage of laser pulse propagation, stable self-guiding of the pulse through the entire acceleration process, and no need for an external plasma channel. With the initial focal spot closely matched for the nonlinear self-guiding, the laser pulse stabilizes transversely within two Rayleigh lengths, preventing subsequent evolution of the accelerating bucket. This dynamics prevents continuous self-injection of background electrons, preserving low phase space volume of the bunch through the plasma. Near the end of propagation, an optical shock builds up in the pulse tail. This neither disrupts pulse propagation nor produces any noticeable low-energy background in the electron spectra, which is in striking contrast with most of existing GeV-scale acceleration experiments.

  13. Analysis of the structure, configuration, and sizing of Cu and Cu oxide nanoparticles generated by fs laser ablation of solid target in liquids

    Energy Technology Data Exchange (ETDEWEB)

    Santillan, J. M. J. [Centro de Investigaciones Opticas (CIOp), (CONICET La Plata - CIC) (Argentina); Videla, F. A.; Schinca, D. C.; Scaffardi, L. B. [Centro de Investigaciones Opticas (CIOp), (CONICET La Plata - CIC) (Argentina); Departamento de Ciencias Basicas, Facultad de Ingenieria, UNLP (Argentina); Fernandez van Raap, M. B. [Departamento de Fisica-IFLP, Universidad Nacional de La Plata-CONICET, L. B. Scaffardi: CIOp CC3 (1897) Gonnet, La Plata (Argentina)

    2013-04-07

    We report on the analysis of structure, configuration, and sizing of Cu and Cu oxide nanoparticles (Nps) produced by femtosecond (fs) laser ablation of solid copper target in liquids. Laser pulse energy ranged between 500 {mu}J and 50 {mu}J. Water and acetone were used to produce the colloidal suspensions. The study was performed through optical extinction spectroscopy using Mie theory to fit the full experimental spectra, considering free and bound electrons size dependent contributions to the metal dielectric function. Raman spectroscopy and AFM technique were also used to characterize the sample. Considering the possible oxidation of copper during the fabrication process, two species (Cu and Cu{sub 2}O) arranged in two structures (bare core or core-shell) and in two configuration types (Cu-Cu{sub 2}O or Cu{sub 2}O-Cu) were considered for the fitting depending on the laser pulse energy and the surrounding media. For water at high energy, it can be observed that a Cu-Cu{sub 2}O configuration fits the experimental spectra of the colloidal suspension, while for decreasing energy and below a certain threshold, a Cu{sub 2}O-Cu configuration needs to be included for the optimum fit. Both species coexist for energies below 170 {mu}J for water. On the other hand, for acetone at high energy, optimum fit of the full spectrum suggests the presence a bimodal Cu-Cu{sub 2}O core-shell Nps distribution while for decreasing energy and below a 70 {mu}J threshold energy value, Cu{sub 2}O-Cu core-shell Nps must be included, together with the former configuration, for the fit of the full spectrum. We discuss possible reasons for the changes in the structural configuration of the core-shell Nps.

  14. Functionally graded materials produced with high power lasers

    NARCIS (Netherlands)

    de Hosson, J.T.M.; Pei, Y.T.; Kumar, A; Chung, YW; Moore, JJ; Doll, GL; Yatsui, K; Misra, DS

    2002-01-01

    With a well-controlled laser melt injection (LMI) process, for the first time the feasibility is demonstrated to produce SiC particles (SiCp) reinforced Ti6Al4V functionally graded materials (FGMs). SiCp are injected just behind the laser beam into the extended part of the laser melt pool that is fo

  15. Silicon nanostructures produced by laser direct etching

    DEFF Research Database (Denmark)

    Müllenborn, Matthias; Dirac, Paul Andreas Holger; Petersen, Jon Wulff

    1995-01-01

    A laser direct-write process has been applied to structure silicon on a nanometer scale. In this process, a silicon substrate, placed in a chlorine ambience, is locally heated above its melting point by a continuous-wave laser and translated by high-resolution direct-current motor stages. Only...

  16. InAs/GaSb Type-II superlattice photodiode array inter-pixel region blue-shift by femtosecond (fs) laser anneal

    Science.gov (United States)

    Das, Sona; Das, Utpal

    2017-09-01

    A post-growth blue-shift in the band gap of an undoped InAs/GaSb Type-II superlattice (5.5 μm cutoff wavelength), as a result of 775 nm, 150 fs laser annealing, is presented. A band gap blue-shift of ∼72 meV in the {{{p}}}+- and p-layer etched inter-pixel region, laser annealed superlattice is achieved. Using an inter-diffusion model, the dominant group-III and group-V diffusion coefficients are found to be 1.33× {10}-21 {{{m}}}2 {{{s}}}-1 and 4.8× {10}-22 {{{m}}}2 {{{s}}}-1 respectively. Confirmation of the unaltered condition of the superlattice in a Ti/Au masked pixel area establishes this blue-shifted superlattice band gap to be the reason behind the improved inter-pixel isolation resulting from the fs laser annealing technique.

  17. Laser-induced periodic surface structures on fused silica upon cross-polarized two-color double-fs-pulse irradiation

    Science.gov (United States)

    Höhm, S.; Herzlieb, M.; Rosenfeld, A.; Krüger, J.; Bonse, J.

    2015-05-01

    The dynamics of the formation of laser-induced periodic surface structures (LIPSS) on fused silica upon irradiation with linearly polarized fs-laser pulses (50 fs pulse duration) is studied by cross-polarized two-color double-fs-pulse experiments. In order to analyze the relevance of temporally distributed energy deposition in the early stage of LIPSS formation, a Mach-Zehnder interferometer was used for generating multiple double-pulse sequences at two different wavelengths (400 and 800 nm). The inter-pulse delay between the individual cross-polarized pulses of each sequence was systematically varied in the sub-ps range and the resulting LIPSS morphologies were characterized by scanning electron microscopy. It is found that the polarization of the first laser pulse arriving to the surface determines the orientation and the periodicity of the LIPSS. These two-color experiments further confirm the importance of the ultrafast energy deposition to the silica surface for LIPSS formation, particularly by the first laser pulse of each sequence. The second laser pulse subsequently reinforces the previously seeded spatial LIPSS characteristics (period, orientation).

  18. Few-cycle, Broadband, Mid-infrared Optical Parametric Oscillator Pumped by a 20-fs Ti:sapphire Laser

    CERN Document Server

    Kumar, Suddapalli Chaitanya; Ideguchi, Takuro; Yan, Ming; Holzner, Simon; Hänsch, Theodor W; Picqué, Nathalie; Ebrahim-Zadeh, Majid

    2014-01-01

    We report a few-cycle, broadband, singly-resonant optical parametric oscillator (OPO) for the mid-infrared based on MgO-doped periodically-poled LiNbO3 (MgO:PPLN), synchronously pumped by a 20-fs Ti:sapphire laser. By using crystal interaction lengths as short as 250 um, and careful dispersion management of input pump pulses and the OPO resonator, near-transform-limited, few-cycle idler pulses tunable across the mid-infrared have been generated, with as few as 3.7 optical cycles at 2682 nm. The OPO can be continuously tuned over 2179-3732 nm by cavity delay tuning, providing up to 33 mW of output power at 3723 nm. The idler spectra exhibit stable broadband profiles with bandwidths spaning over 422 nm (FWHM) recorded at 3732 nm. We investigate the effect of crystal length on spectral bandwidth and pulse duration at a fixed wavelength, confirming near-transform-limited idler pulses for all grating interaction lengths. By locking the repetition frequency of the pump laser to a radio-frequency reference, and with...

  19. METAL-CERAMIC INTERFACES PRODUCED BY LASER MELT INJECTION PROCESSING

    NARCIS (Netherlands)

    DEHOSSON, JTM; VANDENBURG, M; Burg, M. van den

    1995-01-01

    This paper concentrates on the mechanical performance of various ceramic coatings of Cr2O3 on steel (SAF2205), as produced by CO2 laser processing. It is concluded that a firmly bonded coating of Cr2O3 on steel could be produced by high power laser processing. The actual interface strength of a

  20. METAL-CERAMIC INTERFACES PRODUCED BY LASER MELT INJECTION PROCESSING

    NARCIS (Netherlands)

    DEHOSSON, JTM; VANDENBURG, M; Burg, M. van den

    1995-01-01

    This paper concentrates on the mechanical performance of various ceramic coatings of Cr2O3 on steel (SAF2205), as produced by CO2 laser processing. It is concluded that a firmly bonded coating of Cr2O3 on steel could be produced by high power laser processing. The actual interface strength of a (Fe,

  1. In-volume waveguides by fs-laser direct writing in rare-earth-doped fluoride glass and phosphate glass

    Science.gov (United States)

    Esser, D.; Wortmann, D.; Gottmann, J.

    2009-02-01

    Refractive index modifications are fabricated in the volume of rare-earth-doped glass materials namely Er- and Pr-doped ZBLAN (a fluoride glass consisting of ZrF4, BaF2, LaF3, AlF3, NaF), an Er-doped nano-crystalline glass-ceramic and Yb- and Er-doped phosphate glass IOG. Femtosecond laser radiation (τ=500fs, λ=1045nm, f=0.1-5MHz) from an Ybfiber laser is focused with a microscope objective in the volume of the glass materials and scanned below the surface with different scan velocities and pulse energies. Non-linear absorption processes like multiphoton- and avalanche absorption lead to localized density changes and the formation of color centers. The refractive index change is localized to the focal volume of the laser radiation and therefore, a precise control of the modified volume is possible. The width of the written structures is analyzed by transmission light microscopy and additionally with the quantitative phase microscopy (QPm) software to determine the refractive index distribution perpendicular to a waveguide. Structures larger than 50μm in width are generated at high repetition rates due to heat accumulation effects. In addition, the fabricated waveguides are investigated by far-field measurements of the guided light to determine their numerical apertures. Using interference microscopy the refractive index distribution of waveguide cross-sections in phosphate glass IOG is determined. Several regions with an alternating refractive index change are observed whose size depend on the applied pulse energies and scan velocities.

  2. Development behavior of liquid plasma produced by YAG laser

    CERN Document Server

    Yamada, J; Yamada, Jun; Tsuda, Norio

    2004-01-01

    The laser induced plasma in liquid hasn't been studied enough. In liquid, the laser induced plasma may be able to resolve the hazardous material called the environment material. Then, the plasma produced in liquid by the laser light is studied and the plasma development is observed by a streak camera. The ultra pure water or the ultra pure water with a melted NaCl is used as a test liquid. The liquid plasma is produced by the fundamental wave of YAG laser. When NaCl concentration is varied, the plasma development behavior is obserbed by streak camera. The liquid plasma develops backward. The plasma is produced from many seeds and It consists of a group of plasmas. However, the liquid plasma produced by second harmonic wave of YAG laser develops as a single plasma. The development mechanism is investigated from the growth rate of backward plasma. The backward plasma develops by breakdown wave and radiation supported shock wave.

  3. Laser-Produced Plasmas and Radiation Sources.

    Science.gov (United States)

    1980-01-31

    Vlases, H. Rutkowski, A. Hertzberg, A. Hoffman, L. Steinhauer, J. Dawson, D.R. Cohn, W. Halverson, B. Lax, J.D. Daugherty, J.E. Eninger , E.R. Pugh, T.K...Meeting, Albuquerque (October 1974). J.D. Daugherty, J.E. Eninger , D.R. Cohn, and W. Halverson, "Scaling of Laser Heated Plasmas Confined in Long Solenoids...Cohn, H.E. Eninger , W. Halverson, and D.J. Rose, "Stress, Dissipation, and Neutronics Constraints on ’fagnets for Laser-Solenoid Reactors," APS Plasma

  4. Producing ORMOSIL scaffolds by femtosecond laser polymerization

    Science.gov (United States)

    Matei, A.; Zamfirescu, M.; Radu, C.; Buruiana, E. C.; Buruiana, T.; Mustaciosu, C.; Petcu, I.; Radu, M.; Dinescu, M.

    2012-07-01

    Structures with different geometries and sizes were built via direct femtosecond laser writing, starting from new organic/inorganic hybrid monomers based on hybrid methacrylate containing triethoxysilane, in addition to urethane and urea groups. Multifunctional oligomer of urethane dimethacrylate type was chosen as comonomer in polymerization experiments because dimethacrylates give rise to the formation of a polymer network, having a number of favorable properties including biocompatibility and surface nanostructuring. Free standing polymeric structures were designed and created in order to be tested in fibroblast cells culture. Investigations of the cellular adhesion, proliferation, and viability of L929 mouse fibroblasts on free-standing laser processed scaffolds were performed for different scaffold designs.

  5. Generation of 170-fs Laser Pulses at 1053 nm by a Passively Mode-Locked Yb:YAG Laser

    Institute of Scientific and Technical Information of China (English)

    ZHOU Bin-Bin; WEI Zhi-Yi; LI De-Hua; TENG Hao; Bourdet G. L

    2009-01-01

    A novel method is developed to obtain 1.05μm laser operation with a Yb:YAG laser. By using a Yb:YAG crystal with proper length and doping concentration, a femtosecond Yb: YAG laser is realized at the central wavelength of 1053nm. The measured pulse duration and spectral bandwidth (FWHM) are 17ors and 7nm; the repetition rate is 80 MHz. Under a power pump of 2 W, an average mode-locking power of 180mW is achieved.

  6. 3D Photonic Nanostructures via Diffusion-Assisted Direct fs Laser Writing

    Directory of Open Access Journals (Sweden)

    Gabija Bickauskaite

    2012-01-01

    Full Text Available We present our research into the fabrication of fully three-dimensional metallic nanostructures using diffusion-assisted direct laser writing, a technique which employs quencher diffusion to fabricate structures with resolution beyond the diffraction limit. We have made dielectric 3D nanostructures by multiphoton polymerization using a metal-binding organic-inorganic hybrid material, and we covered them with silver using selective electroless plating. We have used this method to make spirals and woodpiles with 600 nm intralayer periodicity. The resulting photonic nanostructures have a smooth metallic surface and exhibit well-defined diffraction spectra, indicating good fabrication quality and internal periodicity. In addition, we have made dielectric woodpile structures decorated with gold nanoparticles. Our results show that diffusion-assisted direct laser writing and selective electroless plating can be combined to form a viable route for the fabrication of 3D dielectric and metallic photonic nanostructures.

  7. TruMicro Series 2000 sub-400 fs class industrial fiber lasers: adjustment of laser parameters to process requirements

    Science.gov (United States)

    Kanal, Florian; Kahmann, Max; Tan, Chuong; Diekamp, Holger; Jansen, Florian; Scelle, Raphael; Budnicki, Aleksander; Sutter, Dirk

    2017-02-01

    The matchless properties of ultrashort laser pulses, such as the enabling of cold processing and non-linear absorption, pave the way to numerous novel applications. Ultrafast lasers arrived in the last decade at a level of reliability suitable for the industrial environment.1 Within the next years many industrial manufacturing processes in several markets will be replaced by laser-based processes due to their well-known benefits: These are non-contact wear-free processing, higher process accuracy or an increase of processing speed and often improved economic efficiency compared to conventional processes. Furthermore, new processes will arise with novel sources, addressing previously unsolved challenges. One technical requirement for these exciting new applications will be to optimize the large number of available parameters to the requirements of the application. In this work we present an ultrafast laser system distinguished by its capability to combine high flexibility and real time process-inherent adjustments of the parameters with industry-ready reliability. This industry-ready reliability is ensured by a long experience in designing and building ultrashort-pulse lasers in combination with rigorous optimization of the mechanical construction, optical components and the entire laser head for continuous performance. By introducing a new generation of mechanical design in the last few years, TRUMPF enabled its ultrashort-laser platforms to fulfill the very demanding requirements for passively coupling high-energy single-mode radiation into a hollow-core transport fiber. The laser architecture presented here is based on the all fiber MOPA (master oscillator power amplifier) CPA (chirped pulse amplification) technology. The pulses are generated in a high repetition rate mode-locked fiber oscillator also enabling flexible pulse bursts (groups of multiple pulses) with 20 ns intra-burst pulse separation. An external acousto-optic modulator (XAOM) enables linearization

  8. Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps

    Energy Technology Data Exchange (ETDEWEB)

    Le Harzic, R. [Institut fuer Strahlwerkzeuge (IFSW), Universitaet Stuttgart, Pfaffenwaldring 43, 70569 Stuttgart (Germany) and Laboratoire Traitement du Signal et Instrumentation (TSI), UMR CNRS 5516, Bat F, 10 rue Barrouin, 42000 Saint Etienne (France)]. E-mail: leharzic@jenlab.de; Breitling, D. [Institut fuer Strahlwerkzeuge (IFSW), Universitaet Stuttgart, Pfaffenwaldring 43, 70569 Stuttgart (Germany); Weikert, M. [Institut fuer Strahlwerkzeuge (IFSW), Universitaet Stuttgart, Pfaffenwaldring 43, 70569 Stuttgart (Germany); Sommer, S. [Institut fuer Strahlwerkzeuge (IFSW), Universitaet Stuttgart, Pfaffenwaldring 43, 70569 Stuttgart (Germany); Foehl, C. [Forschungsgesellschaft fuer Strahlwerkzeuge mbH (FGSW), Nobelstrasse 15, 70569 Stuttgart (Germany); Valette, S. [Laboratoire Traitement du Signal et Instrumentation (TSI), UMR CNRS 5516, Bat F, 10 rue Barrouin, 42000 Saint Etienne (France); Donnet, C. [Laboratoire Traitement du Signal et Instrumentation (TSI), UMR CNRS 5516, Bat F, 10 rue Barrouin, 42000 Saint Etienne (France); Audouard, E. [Laboratoire Traitement du Signal et Instrumentation (TSI), UMR CNRS 5516, Bat F, 10 rue Barrouin, 42000 Saint Etienne (France); Dausinger, F. [Institut fuer Strahlwerkzeuge (IFSW), Universitaet Stuttgart, Pfaffenwaldring 43, 70569 Stuttgart (Germany)

    2005-08-15

    Micromachining of steel, Cu and Al is studied. Ablation depths per pulse are deduced for laser pulse durations between 100 fs and 5 ps for fluences in the range of 150 mJ cm{sup -2} to 20 J cm{sup -2}. The evolution of ablation rates allows to evidence a low and a high fluence regime. Ablation thresholds and penetration depths are deduced as functions of pulse duration. While in the low fluence regime the penetration depth is close to the theoretical optical penetration depth, at higher fluences the effective heat penetration depth is 10-20 times bigger with also higher ablation thresholds. Even in the femtosecond range thermal ablation processes occur and reduce quality, accuracy and efficiency of micromachining. Additionally, the latter are influenced by strong beam distortions due to nonlinear interaction between the radiation and the atmospheric gas. In the case of steel and Cu, the pulse duration seems not to affect microprocessing, but it is demonstrated to play a role for Al for pulses between 1 and 5 ps.

  9. Label-free SHG imaging and spectral FLIM of corneas using a sub-15 fs laser microscope

    Science.gov (United States)

    Batista, Ana; Breunig, Hans Georg; Uchugonova, Aisada; Seitz, Berthold; Morgado, António Miguel; König, Karsten

    2014-02-01

    Alterations to the corneal cell metabolism or to the structural organization of collagen fibrils occur in several corneal and systemic pathologies. In this work we resort to multiphoton microscopy corneal imaging to achieve a characterization of the corneal state. Using fluorescence lifetime imaging microscopy (FLIM) the assessment of the metabolic state of corneal cells is possible, whereas second harmonic generation (SHG) imaging can be used to assess corneal structural alterations. A sub-15 fs near-infrared laser source with a broad excitation spectrum was used for SHG imaging and FLIM. The broad spectrum allows simultaneous excitation of both metabolic co-factors. The signals were collected by a photomultiplier tubes (PMT) detector with 16 simultaneous recording channels, which allowed the separation of fluorophores autofluorescence based on their emission wavelengths. We were able to successfully image ex-vivo human and porcine cornea at multiple depths. Simultaneous NADH and flavin autofluorescence, SHG of collagen fibrils, and stroma autofluorescence imaging was performed which may in future allow an improved characterization of the metabolic and structural alterations of the corneal tissue due to pathophysiological conditions. This would be an important step towards a better understanding of corneal dystrophies and systemic metabolic disorders.

  10. Ultrafast time-resolved pump-probe spectroscopy of PYP by a sub-8 fs pulse laser at 400 nm.

    Science.gov (United States)

    Liu, Jun; Yabushita, Atsushi; Taniguchi, Seiji; Chosrowjan, Haik; Imamoto, Yasushi; Sueda, Keiichi; Miyanaga, Noriaki; Kobayashi, Takayoshi

    2013-05-01

    Impulsive excitation of molecular vibration is known to induce wave packets in both the ground state and excited state. Here, the ultrafast dynamics of PYP was studied by pump-probe spectroscopy using a sub-8 fs pulse laser at 400 nm. The broadband spectrum of the UV pulse allowed us to detect the pump-probe signal covering 360-440 nm. The dependence of the vibrational phase of the vibrational mode around 1155 cm(-1) on the probe photon energy was observed for the first time to our knowledge. The vibrational mode coupled to the electronic transition observed in the probe spectral ranges of 2.95-3.05 and 3.15-3.35 eV was attributed to the wave packets in the ground state and the excited state, respectively. The frequencies in the ground state and excited state were determined to be 1155 ± 1 and 1149 ± 1 cm(-1), respectively. The frequency difference is due to change after photoexcitation. This means a reduction of the bond strength associated with π-π* excitation, which is related to the molecular structure change associated with the primary isomerization process in the photocycle in PYP. Real-time vibrational modes at low frequency around 138, 179, 203, 260, and 317 cm(-1) were also observed and compared with the Raman spectrum for the assignment of the vibrational wave packet.

  11. 147 fs, 51 MHz soliton fiber laser at 1.56 microm with a fiber-connector-type SWNT/P3HT saturable absorber.

    Science.gov (United States)

    Shohda, Fumio; Shirato, Takafumi; Nakazawa, Masataka; Mata, Junji; Tsukamoto, Jun

    2008-12-08

    We fabricated a fiber-connector-type saturable absorber in which SWNTs and P3HT (poly-3-hexylthiophene) were coated on the fiber connector end. This saturable absorber allowed us to realize a short laser cavity length. We used a soliton cavity configuration to generate the shortest pulse (147 fs) at the highest repetition rate (51 MHz) yet obtained with carbon nanotubes (CNT) related saturable absorbers.

  12. 220 fs Er-Yb:glass laser mode-locked by a broadband low-loss Si/Ge saturable absorber

    CERN Document Server

    Grawert, F J; Ilday, F O; Liu, J; Gopinath, J T; Shen, H M; Wada, K; Ippen, E P; Kimerling, L C; Kaertner, Franz X

    2004-01-01

    We demonstrate femtosecond performance of an ultra-broadband high-index-contrast saturable Bragg reflector consisting of a silicon/silicon-dioxide/germanium structure that is fully compatible with CMOS processing. This device offers a reflectivity bandwidth of over 700 nm and sub-picosecond recovery time of the saturable loss. It is used to achieve mode-locking of an Er-Yb:glass laser centered at 1540 nm, generating 220 fs pulses, with the broadest output spectrum to date.

  13. Producing Functionally Graded Coatings by Laser-Powder Cladding

    NARCIS (Netherlands)

    Pei, Y.T.; Hosson, J.Th.M. De

    2000-01-01

    Al-40Si functionally graded coatings produced by a one-step laser powder cladding process on cast aluminum-alloy substrate is a possible solution for avoiding the interfacial problems often present in laser coatings. The microstructure of the coatings consists of a large amount of silicon-primary

  14. Functionally graded materials produced with high power lasers

    NARCIS (Netherlands)

    De Hosson, JTM; Ocelík, Vašek; Chandra, T; Torralba, JM; Sakai, T

    2003-01-01

    In this keynote paper two examples will be present of functionally graded materials produced with high power Nd:YAG lasers. In particular the conditions for a successful Laser Melt Injection (LMI) of SiC and WC particles into the melt pool of A18Si and Ti6Al4V alloys are presented. The formation of

  15. Ultrafast gigantic photo-response in (EDO-TTF)2PF6 initiated by 10-fs laser pulses

    Science.gov (United States)

    Itatani, Jiro; Rini, Matteo; Cavalleri, Andrea; Onda, Ken; Ishikawa, Tadahiko; Koshihara, Shin-ya; Shao, Xiangfeng; Yamochi, Hideki; Saito, Gunzi; Shoenlein, Robert W.

    We photo-excited a charge-ordered organic salt (EDO-TTF)2PF6 with sub-10-fs optical pulses. The photo-induced metallic phase appeared within 80-fs after pumping, characterized by large changes in reflectivity (ΔR/R˜0.8) followed by strong coherent phonon modulation

  16. Higher-order modulations of fs laser pulses for GHz frequency domain photon migration system.

    Science.gov (United States)

    Lin, Huang-Yi; Cheng, Nanyu; Tseng, Sheng-Hao; Chan, Ming-Che

    2014-02-24

    Except the fundamental modulation frequency, by higher-order-harmonic modulations of mode-locked laser pulses and a simple frequency demodulation circuit, a novel approach to GHz frequency-domain-photon-migration (FDPM) system was reported. With this novel approach, a wide-band modulation frequency comb is available without any external modulation devices and the only electronics to extract the optical attenuation and phase properties at a selected modulation frequency in FDPM systems are good mixers and lock-in devices. This approach greatly expands the frequency range that could be achieved by conventional FDPM systems and suggests that our system could extract much more information from biological tissues than the conventional FDPM systems. Moreover, this demonstration will be beneficial for discerning the minute change of tissue properties.

  17. Matching sub-fs electron bunches for laser-driven plasma acceleration at SINBAD

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J., E-mail: jun.zhu@desy.de [Deutsches Elektronen-Synchrotron, DESY, Hamburg (Germany); Universität Hamburg, Hamburg (Germany); Assmann, R.W.; Dorda, U.; Marchetti, B. [Deutsches Elektronen-Synchrotron, DESY, Hamburg (Germany)

    2016-09-01

    We present theoretical and numerical studies of matching sub-femtosecond space-charge-dominated electron bunch into the Laser-plasma Wake Field Accelerator (LWFA) foreseen at the SINBAD facility. The longitudinal space-charge (SC) effect induced growths of the energy spread and longitudinal phase-space chirp are major issues in the matching section, which will result in bunch elongation, emittance growth and spot size dilution. In addition, the transverse SC effect would lead to a mismatch of the beam optics if it were not compensated for. Start-to-end simulations and preliminary optimizations were carried out in order to understand the achievable beam parameters at the entrance of the plasma accelerator.

  18. Generation of ultrashort pulses with minimum duration of 90\\ {\\text{fs}} in a hybrid mode-locked erbium-doped all-fibre ring laser

    Science.gov (United States)

    Dvoretskiy, D. A.; Sazonkin, S. G.; Voropaev, V. S.; Negin, M. A.; Leonov, S. O.; Pnev, A. B.; Karasik, V. E.; Denisov, L. K.; Krylov, A. A.; Davydov, V. A.; Obraztsova, E. D.

    2016-11-01

    Regimes of ultrashort pulse generation in an erbium-doped all-fibre ring laser with hybrid mode locking based on single-wall carbon - boron nitride nanotubes and the nonlinear Kerr effect in fibre waveguides are studied. Stable dechirped ultrashort pulses are obtained with a duration of ˜ 90 {\\text{fs}}, a repetition rate of ˜ 42.2 {\\text{MHz}}, and an average output power of ˜ 16.7 {\\text{mW}}, which corresponds to a pulse energy of ˜ 0.4 {\\text{nJ}} and a peak laser power of ˜ 4.4 {\\text{kW}}.

  19. A new approach to theoretical investigations of high harmonics generation by means of fs laser interaction with overdense plasma layers. Combining particle-in-cell simulations with machine learning.

    Science.gov (United States)

    Mihailescu, A.

    2016-12-01

    Within the past decade, various experimental and theoretical investigations have been performed in the field of high-order harmonics generation (HHG) by means of femtosecond (fs) laser pulses interacting with laser produced plasmas. Numerous potential future applications thus arise. Beyond achieving higher conversion efficiency for higher harmonic orders and hence harmonic power and brilliance, there are more ambitious scientific goals such as attaining shorter harmonic wavelengths or reducing harmonic pulse durations towards the attosecond and even the zeptosecond range. High order harmonics are also an attractive diagnostic tool for the laser-plasma interaction process itself. Particle-in-Cell (PIC) simulations are known to be one of the most important numerical instruments employed in plasma physics and in laser-plasma interaction investigations. The novelty brought by this paper consists in combining the PIC method with several machine learning approaches. For predictive modelling purposes, a universal functional approximator is used, namely a multi-layer perceptron (MLP), in conjunction with a self-organizing map (SOM). The training sets have been retrieved from the PIC simulations and also from the available literature in the field. The results demonstrate the potential utility of machine learning in predicting optimal interaction scenarios for gaining higher order harmonics or harmonics with particular features such as a particular wavelength range, a particular harmonic pulse duration or a certain intensity. Furthermore, the author will show how machine learning can be used for estimations of electronic temperatures, proving that it can be a reliable tool for obtaining better insights into the fs laser interaction physics.

  20. Beam delivery and pulse compression to sub-50 fs of a modelocked thin-disk laser in a gas-filled Kagome-type HC-PCF fiber.

    Science.gov (United States)

    Emaury, Florian; Dutin, Coralie Fourcade; Saraceno, Clara J; Trant, Mathis; Heckl, Oliver H; Wang, Yang Y; Schriber, Cinia; Gerome, Frederic; Südmeyer, Thomas; Benabid, Fetah; Keller, Ursula

    2013-02-25

    We present two experiments confirming that hypocycloid Kagome-type hollow-core photonic crystal fibers (HC-PCFs) are excellent candidates for beam delivery of MW peak powers and pulse compression down to the sub-50 fs regime. We demonstrate temporal pulse compression of a 1030-nm Yb:YAG thin disk laser providing 860 fs, 1.9 µJ pulses at 3.9 MHz. Using a single-pass grating pulse compressor, we obtained a pulse duration of 48 fs (FWHM), a spectral bandwidth of 58 nm, and an average output power of 4.2 W with an overall power efficiency into the final polarized compressed pulse of 56%. The pulse energy was 1.1 µJ. This corresponds to a peak power of more than 10 MW and a compression factor of 18 taking into account the exact temporal pulse profile measured with a SHG FROG. The compressed pulses were close to the transform limit of 44 fs. Moreover, we present transmission of up to 97 µJ pulses at 10.5 ps through 10-cm long fiber, corresponding to more than twice the critical peak power for self-focusing in silica.

  1. Generation of 30  fs pulses from a diode-pumped graphene mode-locked Yb:CaYAlO4 laser.

    Science.gov (United States)

    Ma, Jie; Huang, Haitao; Ning, Kaijie; Xu, Xiaodong; Xie, Guoqiang; Qian, Liejia; Loh, Kian Ping; Tang, Dingyuan

    2016-03-01

    Stable 30 fs pulses centered at 1068 nm (less than 10 optical cycles) are demonstrated in a diode pumped Yb:CaYAlO4 laser by using high-quality chemical vapor deposited monolayer graphene as the saturable absorber. The mode-locked 8.43 optical-cycle pulses have a spectral bandwidth of ∼50  nm and a pulse repetition frequency of ∼113.5  MHz. To the best of our knowledge, this is the shortest pulse ever reported for graphene mode-locked lasers and mode-locked Yb-doped bulk lasers. Our experimental results demonstrate that graphene mode locking is a very promising practical technique for directly generating few-cycle optical pulses from a laser oscillator.

  2. Generation of 30 fs pulses from a diode-pumped graphene mode-locked Yb:CaYAlO_4 laser

    Science.gov (United States)

    Ma, Jie; Huang, Haitao; Ning, Kaijie; Xu, Xiaodong; Xie, Guoqiang; Qian, Liejia; Loh, Kian Ping; Tang, Dingyuan

    2016-03-01

    Stable 30 fs pulses centered at 1068 nm (less than 10 optical cycles) are demonstrated in a diode pumped Yb:CaYAlO4 laser by using high-quality chemical vapor deposited monolayer graphene as the saturable absorber. The mode locked 8.43 optical-cycle pulses have a spectral bandwidth of ~ 50 nm and a pulse repetition frequency of ~ 113.5 MHz. To our knowledge, this is the shortest pulse ever reported for graphene mode-locked lasers and mode-locked Yb-doped bulk lasers. Our experimental results demonstrate that graphene mode locking is a very promising practical technique to generate few-cycle optical pulses directly from a laser oscillator.

  3. Generation of 30-fs pulses from a diode-pumped graphene mode-locked Yb:CaYAlO4 laser

    CERN Document Server

    Ma, Jie; Ning, Kaijie; Xu, Xiaodong; Xie, Guoqiang; Qian, Liejia; Loh, Kian Ping; Tang, Dingyuan

    2015-01-01

    Stable 30 fs pulses centered at 1068 nm (less than 10 optical cycles) are demonstrated in a diode pumped Yb:CaYAlO4 laser by using high-quality chemical vapor deposited monolayer graphene as the saturable absorber. The mode locked 8.43 optical-cycle pulses have a spectral bandwidth of ~ 50 nm and a pulse repetition frequency of ~ 113.5 MHz. To our knowledge, this is the shortest pulse ever reported for graphene mode-locked lasers and mode-locked Yb-doped bulk lasers. Our experimental results demonstrate that graphene mode locking is a very promising practical technique to generate few-cycle optical pulses directly from a laser oscillator.

  4. Laser assisted removal of synthetic painting-conservation materials using UV radiation of ns and fs pulse duration: Morphological studies on model samples

    Science.gov (United States)

    Pouli, P.; Nevin, A.; Andreotti, A.; Colombini, P.; Georgiou, S.; Fotakis, C.

    2009-02-01

    In an effort to establish the optimal parameters for the cleaning of complex layers of polymers (mainly based on acrylics, vinyls, epoxys known as Elvacite, Laropal, Paraloid B72, among others) applied during past conservation treatments on the surface of wall paintings, laser cleaning tests were performed with particular emphasis on the plausible morphological modifications induced in the remaining polymeric material. Pulse duration effects were studied using laser systems of different pulse durations ( ns and fs) at 248 nm. Prior to tests on real fragments from the Monumental Cemetery in Pisa (Italy) which were coated with different polymers, attention was focused on the study of model samples consisting of analogous polymer films cast on quartz disks. Ultraviolet irradiation is strongly absorbed by the studied materials both in ns and fs irradiation regimes. However, it is demonstrated that ultrashort laser pulses result in reduced morphological alterations in comparison to ns irradiation. In addition, the dependence of the observed alterations on the chemical composition of the consolidation materials in both regimes was examined. Most importantly, it was shown that in this specific conservation problem, an optimum cleaning process may rely not only on the minimization of laser-induced morphological changes but also on the exploitation of the conditions that favour the disruption of the adhesion between the synthetic material and the painting.

  5. Online plasma diagnostics of a laser-produced plasma

    Science.gov (United States)

    Kai, Gao; Nasr, A. M. Hafz; Song, Li; Mohammad, Mirzaie; Guangyu, Li; Quratul, Ain

    2017-01-01

    In this study, we report a laser interferometry experiment for the online-diagnosing of a laser-produced plasma. The laser pulses generating the plasma are ultra-fast (30 femtoseconds), ultra-intense (tens of Terawatt) and are focused on a helium gas jet to generate relativistic electron beams via the laser wakefield acceleration (LWFA) mechanism. A probe laser beam (λ = 800 nm) which is split-off the main beam is used to cross the plasma at the time of arrival of the main pulse, allowing online plasma density diagnostics. The interferometer setup is based on the NoMarski method in which we used a Fresnel bi-prism where the probe beam interferes with itself after crossing the plasma medium. A high-dynamic range CCD camera is used to record the interference patterns. Based upon the Abel inversion technique, we obtained a 3D density distribution of the plasma density.

  6. High-order harmonic generation in a plasma plume of in situ laser-produced silver nanoparticles

    Science.gov (United States)

    Singhal, H.; Ganeev, R. A.; Naik, P. A.; Chakera, J. A.; Chakravarty, U.; Vora, H. S.; Srivastava, A. K.; Mukherjee, C.; Navathe, C. P.; Deb, S. K.; Gupta, P. D.

    2010-10-01

    The results of the experimental study of high-order harmonic generation (HHG) from the interaction of 45-fs Ti:sapphire laser pulses with plasma plumes of Ag nanoparticles produced in situ are presented in this article. The nanoparticles were generated by the interaction of 300-ps, 20-mJ laser pulses with bulk silver targets at an intensity of ~1×1013W/cm2. The spectral characteristics of the HHG from nanoparticles produced in situ are compared with the HHG from monoparticle plasma plumes and with the HHG from preformed nanoparticle-containing plasma plumes. The cutoff harmonic order generated using the in situ silver nanoparticles is at the 21st harmonic order.

  7. FS-IGBT Laser Annealing Scanner and Related Applications%高性能IGBT激光退火设备及其量产应用

    Institute of Scientific and Technical Information of China (English)

    陈勇辉; 刘国淦

    2014-01-01

    IG BTtechnology has been developed from Planar Punch-T hrough,Trench N on-Punch-Through to Trench Field Stop (FS).In orderto form a field stop layeron the backside ofthe w afer,deep-im planted doping elem ents (like Phosphorous and B oron) have to be activated through a high-tem perature annealing process.Com pared to traditionalannealing process as RTP or furnace,laser annealing has m any advantages:energy density precisely controlled,shortprocessing tim e (nanoseconds or m icroseconds), high dopant activation rate, sm all diffusion, optional sub-m elting or m elting processing,notcause therm aldam age to the substrate surface,and perfectuniform ity and repeatability. SLA 500 laser annealing scanner has been developed to overcom e R TP/Furnace shortcom ing and to provide significantly higher process stability and yield for FS-IG BT.The test datum ,w hich including RS uniform ity & repeatability,activation rate& depth,has show n that the SLA 500 laser annealing scanner for field stop IG BTback side dopantactivation is a pow erfultoolsuitable for m ass production.%激光退火工艺可以有效修复离子注入破坏的晶格结构,获得比传统退火方式更好的离子激活效率和激活深度,且不损伤T aiko硅片的正面器件,从而在FS-IG B T 器件的制造过程中得到业界的广泛关注和应用。针对FS-IG B T 激光退火工艺的特点,通过对退火深度、激光波长、光斑尺寸,以及Taiko薄片传输等技术的深入分析和数值仿真,完成了SLA 500激光退火设备的研制,并通过现场测试数据验证。测试结果表明,SLA 500激光退火设备的各项关键技术指标,如退火深度、激活效率、RS 均匀性和重复性等,均能满足FS-IGBT 激光退火工艺的量产应用。

  8. Uncorrected and Corrected Distance Visual Acuity, Predictability, Efficacy, and Safety after Femtosecond Laser in Situ Keratomileusis (FS-LASIK) and Refractive Lenticule extraction (ReLEx) for Moderate and High Myopia

    DEFF Research Database (Denmark)

    Vestergaard, Anders; Justesen, Birgitte Larsen; Melsen, Charlotte

    of Ophthalmology, Odense University Hospital, Denmark. Purpose: ReLEx is a relative new corneal refractive procedure, where a stromal lenticule is cut by a femtosecond laser and manually extracted. The purpose of this study was to compare uncorrected and corrected distance visual acuity (UDVA and CDVA), refractive......Title: Uncorrected and Corrected Distance Visual Acuity, Predictability, Efficacy, and Safety after Femtosecond Laser in Situ Keratomileusis (FS-LASIK) and Refractive Lenticule extraction (ReLEx) for Moderate and High Myopia. Vestergaard A., Justesen B., Melsen C., Lyhne N., Department...... and ReLEx treatments were made with a VisuMax® femto-second laser (Carl Zeiss-Meditec, Jena, Germany). In FS-LASIK, the photoablation was performed with a MEL-80 flying spot excimer laser (Carl Zeiss-Meditec, Jena, Germany). In ReLEx, lenticule diameter was 6.50 mm, whereas the FS-LASIK ablation zone...

  9. Two-dimensional fluorescence spectroscopy of laser-produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, Sivanandan S.; LaHaye, Nicole L.; Phillips, Mark C.

    2016-08-01

    We use a two-dimensional laser-induced fluorescence spectroscopy technique to measure the coupled absorption and emission properties of atomic species in plasmas produced via laser ablation of solid aluminum targets at atmospheric pressure. Emission spectra from the Al I 394.4 nm and Al I 396.15 nm transitions are measured while a frequency-doubled, continuous-wave, Ti:Sapphire laser is tuned across the Al I 396.15 nm transition. The resulting two-dimensional spectra show the energy coupling between the two transitions via increased emission intensity for both transitions during resonant absorption of the continuous-wave laser at one transition. Time-delayed and gated detection of the emission spectrum is used to isolate the resonantly-excited fluorescence emission from the thermally-excited emission from the plasma. In addition, the tunable continuous-wave laser measures the absorption spectrum of the Al transition with ultra-high resolution after the plasma has cooled, resulting in narrower spectral linewidths than observed in emission spectra. Our results highlight that fluorescence spectroscopy employing continuous-wave laser re-excitation after pulsed laser ablation combines benefits of both traditional emission and absorption spectroscopic methods.

  10. Synthesis and characterization of gold/water nanofluids suitable for thermal applications produced by femtosecond laser radiation

    Science.gov (United States)

    Mondragón, Rosa; Torres-Mendieta, Rafael; Meucci, Marco; Mínguez-Vega, Gladys; Enrique Juliá, J.; Sani, Elisa

    2016-07-01

    A laser-based "green" synthesis of nanoparticles (NPs) was used to manufacture gold NPs in water. The light source is a Ti:Sapphire laser with 30 fs FWHM pulses, 800 nm mean wavelength, and 1 kHz repetition rate. The method involves two stages: (1) pulsed laser ablation in liquids and (2) photo-fragmentation (PF). Highly pure and well-dispersed NPs with a diameter of 18.5 nm that can be stored at room temperature without showing any agglomeration over a period of at least 3 months were produced without the need to use any stabilizer. Transmittance spectra, extinction coefficient, NPs agglomeration dynamics, and thermal conductivity of the nanofluids obtained were analyzed before and after being submitted to thermal cycling and compared to those obtained for commercial gold/water suspensions. Optical properties have also been investigated, showing no substantial differences for thermal applications between NPs produced by the laser ablation and PF technique and commercial NPs. Therefore, nanofluids produced by this technique can be used in thermal applications, which are foreseen for conventional nanofluids, e.g., heat transfer enhancement and solar radiation direct absorption, but offering the opportunity to produce them in situ in almost any kind of fluid without the production of any chemical waste.

  11. Laser Plasmas : Multiple charge states of titanium ions in laser produced plasma

    Indian Academy of Sciences (India)

    M Shukla; S Bandhyopadhyay; V N Rai; A V Kilpio; H C Pant

    2000-11-01

    An intense laser radiation (1012 to 1014 W/cm-2) focused on the solid target creates a hot (≥ 1 keV) and dense plasma having high ionization state. The multiple charged ions with high current densities produced during laser matter interaction have potential application in accelerators as an ion source. This paper presents generation and detection of highly stripped titanium ions (Ti) in laser produced plasma. An Nd:glass laser (KAMETRON) delivering 50 J energy ( = 0.53 m) in 2.5 ns was focused onto a titanium target to produce plasma. This plasma was allowed to drift across a space of ∼ 3 m through a diagnostic hole in the focusing mirror before ions are finally detected with the help of electrostatic ion analyzer. Maximum current density was detected for the charge states of +16 and +17 of Ti ions for laser intensity of ∼ 1014 W/cm-2.

  12. A comparative study of the ionic keV X-ray line emission from plasma produced by the femtosecond, picosecond and nanosecond duration laser pulses

    Indian Academy of Sciences (India)

    V Arora; P A Naik; B S Rao; P D Gupta

    2012-02-01

    We report here an experimental study of the ionic keV X-ray line emission from magnesium plasma produced by laser pulses of three widely different pulse durations (FWHM) of 45 fs, 25 ps and 3 ns, at a constant laser fluence of ∼ 1.5 × 104 J cm-2. It is observed that the X-ray yield of the resonance lines from the higher ionization states such as H- and He-like ions decreases on decreasing the laser pulse duration, even though the peak laser intensities of 3.5 × 1017 W cm-2 for the 45 fs pulses and 6.2 × 1014 W cm-2 for the 25 ps pulses are much higher than 5 × 1012 W cm-2 for the 3 ns laser pulse. The results were explained in terms of the ionization equilibrium time for different ionization states in the heated plasma. The study can be useful to make optimum choice of the laser pulse duration to produce short pulse intense X-ray line emission from the plasma and to get the knowledge of the degree of ionization in the plasma.

  13. Properties of multilayer coatings produced by coaxial laser cladding

    Science.gov (United States)

    Petrovskiy, V. N.; Bykovskiy, D. P.; Dzhumaev, P. S.; Polskiy, V. I.; Prokopova, N. M.; Chirikov, S. N.

    2016-09-01

    This article contains results of the study of multilayer coatings produced by laser cladding on the substrate steel 34HMA using iron based powder PR-10R6M5 as the filler material. The coatings were produced with consistent application of the tracks with fixed overlapping. The dependencies between the characteristics of tracks and the technological mode of deposition were revealed. Properties of coatings were determined for various overlapping of tracks and directions of the cladding layers.

  14. Study of a Laser-Produced Plasma by Langmuir Probes

    DEFF Research Database (Denmark)

    Chang, C. T.; Hasimi, M.; Pant, H. C.

    1977-01-01

    The structure, the parameters and the expansion of the plasma produced by focusing a 7 J, 20 ns Nd-glass laser on stainless-steel and glass targets suspended in a high-vacuum chamber were investigated by Langmuir probes. It was observed that the probe signals consisted of a photoelectric...

  15. Collective Thomson Scattering from Laser-Produced Plasmas

    Institute of Scientific and Technical Information of China (English)

    白波; 郑坚; 俞昌旋; 刘万东; 蒋小华; 袁晓东; 郑志坚; 徐冰; 向勇; 赵春茁

    2001-01-01

    Time-resolved Thomson scattering was successfully performed to diagnose the parameters (ZTe, Ue and Ui) of laser-produced gold plasma. The results show that the collisionless dynamic form factor is accurate enough to be used for reducing the plasma parameters from the experimental data.

  16. Properties of plasmonic arrays produced by pulsed-laser nanostructuring of thin Au films

    Directory of Open Access Journals (Sweden)

    Katarzyna Grochowska

    2014-11-01

    Full Text Available A brief description of research advances in the area of short-pulse-laser nanostructuring of thin Au films is followed by examples of experimental data and a discussion of our results on the characterization of structural and optical properties of gold nanostructures. These consist of partially spherical or spheroidal nanoparticles (NPs which have a size distribution (80 ± 42 nm and self-organization characterized by a short-distance order (length scale ≈140 nm. For the NP shapes produced, an observably broader tuning range (of about 150 nm of the surface plasmon resonance (SPR band is obtained by renewal thin film deposition and laser annealing of the NP array. Despite the broadened SPR bands, which indicate damping confirmed by short dephasing times not exceeding 4 fs, the self-organized Au NP structures reveal quite a strong enhancement of the optical signal. This was consistent with the near-field modeling and micro-Raman measurements as well as a test of the electrochemical sensing capability.

  17. 946 nm Diode Pumped Laser Produces 100mJ

    Science.gov (United States)

    Axenson, Theresa J.; Barnes, Norman P.; Reichle, Donald J., Jr.

    2000-01-01

    An innovative approach to obtaining high energy at 946 nm has yielded 101 mJ of laser energy with an optical-to-optical slope efficiency of 24.5%. A single gain module resonator was evaluated, yielding a maximum output energy of 50 mJ. In order to obtain higher energy a second gain module was incorporated into the resonator. This innovative approach produced un-surprised output energy of 101 mJ. This is of utmost importance since it demonstrates that the laser output energy scales directly with the number of gain modules. Therefore, higher energies can be realized by simply increasing the number of gain modules within the laser oscillator. The laser resonator incorporates two gain modules into a folded "M-shaped" resonator, allowing a quadruple pass gain within each rod. Each of these modules consists of a diode (stack of 30 microlensed 100 Watt diode array bars, each with its own fiber lens) end-pumping a Nd:YAG laser rod. The diode output is collected by a lens duct, which focuses the energy into a 2 mm diameter flat to flat octagonal pump area of the laser crystal. Special coatings have been developed to mitigate energy storage problems, including parasitic lasing and amplified spontaneous emission (ASE), and encourage the resonator to operate at the lower gain transition at 946 nm.

  18. The study of laser plasma plume radiation produced by laser ablation of silicon

    Science.gov (United States)

    Huang, Qingju

    2014-12-01

    In order to study the laser plasma plume radiation mechanisms induced by the interaction between Nd: YAG plused laser and silicon, the radiation model of silicon laser plasma plume is established. Laser plasma plume radiation includes atom characteristic lines, ion lines and continuous background. It can reflect the characteristics of laser plasma plume radiation, reveal the mechanism of laser ablation on silicon. Time-resolved measurment of laser plasma plume radiation produced by pulsed Nd: YAG laser ablation of silicon in different ambient gas is thoroughly studied. The experimental ambient gas are N2 and O2.The pulse width of Nd: YAG plused laser adopted in the experiment is 20ns, the pulse energy is 60mJ, the laser pulsing frequency is 10Hz, and the emitted laser wavelength is 1064nm, The silicon target purity is 99.99%, The target is rotating at a speed of 240r/min. The focusing area of the laser on the Si target has a diameter of around 0.8mm.The pressure of ambient gas is tunable between 13Pa and 101.3kPa in the induced chamber, the number of points used in averaging is 15. The experimental results show that the ambient gas has obvious enhancement effect on the radiation intensity of silicon laser plasma plume. With the increase of the ambient gas pressure, the silicon laser plasma plume radiation intensity will first be increased and then be decreased, and the ambient gas has an obvious compression effect on the scope of silicon laser plasma plume radiation. For the two different ambient gases, the maximum silicon laser plasma plume radiation intensity and maximum pressure for they are different, for oxygen at 35kPa, for nitrogen at 50kPa. The silicon laser plasma plume radiation intensity in oxygen is bigger than that in nitrogen.The main excition mechanisms of laser plasma plume radiation induced by Nd:YAG plused laser induced silicon is analyzed, The plused laser can makes part molecules in the ambient gas and silicon atoms ionized at the surface of

  19. Laser borided composite layer produced on austenitic 316L steel

    OpenAIRE

    Mikołajczak Daria; Kulka Michał; Makuch Natalia

    2016-01-01

    Abstract Austenitic 316L steel is well-known for its good resistance to corrosion and oxidation. Therefore, this material is often used wherever corrosive media or high temperatures are to be expected. The main drawback of this material is very low hardness and low resistance to mechanical wear. In this study, the laser boriding was used in order to improve the wear behavior of this material. As a consequence, a composite surface layer was produced. The microstructure of laser-borided steel w...

  20. Characterization of hard coatings produced by laser cladding using laser-induced breakdown spectroscopy technique

    Energy Technology Data Exchange (ETDEWEB)

    Varela, J.A.; Amado, J.M.; Tobar, M.J.; Mateo, M.P.; Yañez, A.; Nicolas, G., E-mail: gines@udc.es

    2015-05-01

    Highlights: • Chemical mapping and profiling by laser-induced breakdown spectroscopy (LIBS) of coatings produced by laser cladding. • Production of laser clads using tungsten carbide (WC) and nickel based matrix (NiCrBSi) powders. • Calibration by LIBS of hardfacing alloys with different WC concentrations. - Abstract: Protective coatings with a high abrasive wear resistance can be obtained from powders by laser cladding technique, in order to extend the service life of some industrial components. In this work, laser clad layers of self-fluxing NiCrBSi alloy powder mixed with WC powder have been produced on stainless steel substrates of austenitic type (AISI 304) in a first step and then chemically characterized by laser-induced breakdown spectroscopy (LIBS) technique. With the suitable laser processing parameters (mainly output power, beam scan speed and flow rate) and powders mixture proportions between WC ceramics and NiCrBSi alloys, dense pore free layers have been obtained on single tracks and on large areas with overlapped tracks. The results achieved by LIBS technique and applied for the first time to the analysis of laser clads provided the chemical composition of the tungsten carbides in metal alloy matrix. Different measurement modes (multiple point analyses, depth profiles and chemical maps) have been employed, demonstrating the usefulness of LIBS technique for the characterization of laser clads based on hardfacing alloys. The behavior of hardness can be explained by LIBS maps which evidenced the partial dilution of some WC spheres in the coating.

  1. Use of ns and fs pulse excitation in laser-induced breakdown spectroscopy to improve its analytical performances: A case study on quaternary bronze alloys

    Energy Technology Data Exchange (ETDEWEB)

    Almaviva, Salvatore [ENEA, UTAPRAD, V. E. Fermi 45, 00044 Frascati (Italy); Fantoni, Roberta, E-mail: roberta.fantoni@enea.it [ENEA, UTAPRAD, V. E. Fermi 45, 00044 Frascati (Italy); Caneve, Luisa; Colao, Francesco [ENEA, UTAPRAD, V. E. Fermi 45, 00044 Frascati (Italy); Fornarini, Lucilla [ENEA,UTTAMB, SP Anguillarese 301, Roma (Italy); Santagata, Antonio [CNR-IMIP, UOS Potenza, Zona Industriale, 85050 Tito Scalo (PZ) (Italy); Teghil, Roberto [Università degli Studi della Basilicata, Dipartimento di Scienze, Via dell' Ateneo Lucano 10, 85100 Potenza (Italy)

    2014-09-01

    Analytical performances of Laser Induced Breakdown Spectroscopy (LIBS) resulted not fully satisfactory in some cases such as historical bronzes, therefore, efforts should be focussed on improving ablation efficiency and on better understanding the plasma parameter evolution. To this aim a set of double pulse experiments have been carried out in almost collinear geometry at about 530 nm laser excitation. The first emitting source was either a ns or a fs laser the second a ns one. Data were collected as a function of the interpulse delay, in order to determine the ablation efficiency increase, to study the kinetics of plasma parameters (temperature, electron density) and the decay of atomic and ionic intensities with respect to the optical background. In parallel a previously developed model for laser ablation, ionization and following plasma decay, was implemented, adding a second laser pulse, to analyse the double pulse excitation in the considered geometry, and the time evolution of the same variables was investigated. Model results are able to reproduce the observed experimental trends and support the possibility of improving analytical performances by using the double pulse technique with inter-pulse delays in the entire investigated range. - Highlights: • The Double Pulse LIBS technique is applied to a quaternary metal alloy sample. • Two different Double Pulse LIBS configurations are investigated. • Signal enhancement was experimentally verified in the Double Pulse technique. • Comparison of the experimental results with the proposed theoretical model • Dependence of the LIBS signal by some experimental parameters.

  2. Saturation of Langmuir waves in laser-produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Baker, K.L.

    1996-04-01

    This dissertation deals with the interaction of an intense laser with a plasma (a quasineutral collection of electrons and ions). During this interaction, the laser drives large-amplitude waves through a class of processes known as parametric instabilities. Several such instabilities drive one type of wave, the Langmuir wave, which involves oscillations of the electrons relative to the nearly-stationary ions. There are a number of mechanisms which limit the amplitude to which Langmuir waves grow. In this dissertation, these mechanisms are examined to identify qualitative features which might be observed in experiments and/or simulations. In addition, a number of experiments are proposed to specifically look for particular saturation mechanisms. In a plasma, a Langmuir wave can decay into an electromagnetic wave and an ion wave. This parametric instability is proposed as a source for electromagnetic emission near half of the incident laser frequency observed from laser-produced plasmas. This interpretation is shown to be consistent with existing experimental data and it is found that one of the previous mechanisms used to explain such emission is not. The scattering version of the electromagnetic decay instability is shown to provide an enhanced noise source of electromagnetic waves near the frequency of the incident laser.

  3. Laser ablation dynamics and production of thin films of lysozyme

    DEFF Research Database (Denmark)

    Canulescu, Stela; Schou, Jørgen; Amoruso, S.;

    produced thin films of average thickness up to 300 nm, which not only contained a significant amount of intact molecules, but also maintained the bioactivity. These films were produced by a nanosecond laser in the UV regime at 355 nm with 2 J/cm2. The surprising fact that these molecules can be transferred....... This is the first time the ablation by fs-lasers of a protein has been recorded quantitatively. Films of lysozyme produced by fs-laser irradiation were analyzed by MALDI and a significant number of intact molecules in the films with fs-laser deposition was found as well....

  4. Femtosecond and nanosecond pulsed laser deposition of silicon and germanium

    Energy Technology Data Exchange (ETDEWEB)

    Reenaas, Turid Worren [Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim (Norway); Lee, Yen Sian [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Chowdhury, Fatema Rezwana; Gupta, Manisha; Tsui, Ying Yin [Department of Electrical and Computer Engineering, University of Alberta (Canada); Tou, Teck Yong [Faculty of Engineering, Multimedia University, 63100 Cyberjaya, Selangor (Malaysia); Yap, Seong Ling [Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Kok, Soon Yie [Faculty of Engineering, Multimedia University, 63100 Cyberjaya, Selangor (Malaysia); Yap, Seong Shan, E-mail: seongshan@gmail.com [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-11-01

    Highlights: • Ge and Si were deposited by fs and ns laser at room temperature and at vacuum. • Ion of 10{sup 4} ms{sup −1} and 30–200 eV was obtained for ns ablation for Ge and Si. • Highly energetic ions of 10{sup 5} ms{sup −1} with 2–7 KeV were produced in fs laser ablation. • Nanocrystalline Si and Ge were deposited by using fs laser. • Nanoparticles < 10 nm haven been obtained by fs laser. - Abstract: 150 fs Ti:Sapphire laser pulsed laser deposition of Si and Ge were compared to a nanosecond KrF laser (25 ns). The ablation thresholds for ns lasers were about 2.5 J cm{sup −2} for Si and 2.1 J cm{sup −2} for Ge. The values were about 5–10 times lower when fs laser were used. The power densities were 10{sup 8}–10{sup 9} W cm{sup −2} for ns but 10{sup 12} W cm{sup −2} for fs. By using an ion probe, the ions emission at different fluence were measured where the emitting ions achieving the velocity in the range of 7–40 km s{sup −1} and kinetic energy in the range of 30–200 eV for ns laser. The ion produced by fs laser was measured to be highly energetic, 90–200 km s{sup −1}, 2–10 KeV. Two ion peaks were detected above specific laser fluence for both ns and fs laser ablation. Under fs laser ablation, the films were dominated by nano-sized crystalline particles, drastically different from nanosecond pulsed laser deposition where amorphous films were obtained. The ions characteristics and effects of pulse length on the properties of the deposited films were discussed.

  5. Measurement of Heat Propagation in a Laser Produced Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Gregori, G; Glenzer, S H; Knight, J; Niemann, C; Price, D; Froula, D H; Edwards, J; Town, R P J; Brantov, A; Bychenkov, V Y; Rozmus, W

    2003-08-22

    We present the observation of a nonlocal heat wave by measuring spatially and temporally resolved electron temperature profiles in a laser produced nitrogen plasma. Absolutely calibrated measurements have been performed by resolving the ion-acoustic wave spectra across the plasma volume with Thomson scattering. We find that the experimental electron temperature profiles disagree with flux-limited models, but are consistent with transport models that account for the nonlocal effects in heat conduction by fast electrons.

  6. Fast magnetic reconnection in laser-produced plasma bubbles

    OpenAIRE

    Fox, W.; Bhattacharjee, A.; Germaschewski, K.

    2011-01-01

    Recent experiments have observed magnetic reconnection in high-energy-density, laser-produced plasma bubbles, with reconnection rates observed to be much higher than can be explained by classical theory. Based on fully kinetic particle simulations we find that fast reconnection in these strongly driven systems can be explained by magnetic flux pile-up at the shoulder of the current sheet and subsequent fast reconnection via two-fluid, collisionless mechanisms. In the strong drive regime with ...

  7. Relative ion expansion velocity in laser-produced plasmas

    Science.gov (United States)

    Goldsmith, S.; Moreno, J. C.; Griem, H. R.; Cohen, Leonard; Richardson, M. C.

    1988-01-01

    The spectra of highly ionized titanium, Ti XIII through Ti XXI, and C VI Lyman lines were excited in laser-produced plasmas. The plasma was produced by uniformly irradiating spherical glass microballoons coated with thin layers of titanium and parylene. The 24-beam Omega laser system produced short, 0.6 ns, and high-intensity, 4 x 10 to the 14th W/sq cm, laser pulses at a wavelength of 351 nm. The measured wavelength for the 2p-3s Ti XIII resonance lines had an average shift of + 0.023 A relative to the C VI and Ti XX spectral lines. No shift was found between the C VI, Ti XIX, and Ti XX lines. The shift is attributed to a Doppler effect, resulting from a difference of (2.6 + or - 0.2) x 10 to the 7th cm/s in the expansion velocities of Ti XIX and Ti XX ions compared to Ti XIII ions.

  8. Magnetic reconnection between colliding magnetized laser-produced plasma plumes.

    Science.gov (United States)

    Fiksel, G; Fox, W; Bhattacharjee, A; Barnak, D H; Chang, P-Y; Germaschewski, K; Hu, S X; Nilson, P M

    2014-09-05

    Observations of magnetic reconnection between colliding plumes of magnetized laser-produced plasma are presented. Two counterpropagating plasma flows are created by irradiating oppositely placed plastic (CH) targets with 1.8-kJ, 2-ns laser beams on the Omega EP Laser System. The interaction region between the plumes is prefilled with a low-density background plasma and magnetized by an externally applied magnetic field, imposed perpendicular to the plasma flow, and initialized with an X-type null point geometry with B=0 at the midplane and B=8  T at the targets. The counterflowing plumes sweep up and compress the background plasma and the magnetic field into a pair of magnetized ribbons, which collide, stagnate, and reconnect at the midplane, allowing the first detailed observations of a stretched current sheet in laser-driven reconnection experiments. The dynamics of current sheet formation are in good agreement with first-principles particle-in-cell simulations that model the experiments.

  9. Unclassical ripple patterns in single-crystal silicon produced by femtosecond laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Wei [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); State Key Laboratory of Transient Optics and Photonics, Xi' an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences, Xi' an, Shaanxi 710119 (China); Cheng Guanghua [State Key Laboratory of Transient Optics and Photonics, Xi' an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences, Xi' an, Shaanxi 710119 (China); Feng Qiang, E-mail: qfeng@skl.ustb.edu.cn [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083 (China)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Transition from classical ripples to unclassical ripples. Black-Right-Pointing-Pointer Laser fluence has a significant effect on the unclassical ripple period. Black-Right-Pointing-Pointer Relationship between structures and their parametric dependence is established. Black-Right-Pointing-Pointer Capillary wave is responsible for the formation of unclassical ripples. - Abstract: Laser-induced periodic surface structures (LIPSS) in single-crystal silicon upon irradiation with multiple linearly polarized femtosecond (fs) laser pulses (120 fs, 800 nm, 1 kHz) were investigated under different laser fluence and pulse number. Unclassical ripples (U-ripples), which were nearly parallel to the polarization of the laser beam, were observed to form gradually on the top of classical ripples with the effective pulse number. Their periods were significantly longer than the laser wavelength, and increased with increasing both the laser fluence and pulse number in the current study. The relationship between the types of ripple patterns and their parametric dependence was established. The mechanism of U-ripple formation was attributed to the capillary wave, arising from the inhomogeneous temperature gradient combined with the electric field of the pulses in the molten surface layer.

  10. Bioceramic 3D Implants Produced by Laser Assisted Additive Manufacturing

    Science.gov (United States)

    Lusquiños, Fernando; del Val, Jesús; Arias-González, Felipe; Comesaña, Rafael; Quintero, Félix; Riveiro, Antonio; Boutinguiza, Mohamed; Jones, Julian R.; Hill, Robert G.; Pou, Juan

    Cranial defect restoration requires a suitable implant capable to fulfill protective and aesthetic functions, such as polymeric and metallic implants. Nevertheless, the former materials cannot provide osteointegration of the implant within the host bone nor implant resorption, which is also required in pediatricorthopedics for normal patient growth. Resorbable and osteoconductivebioceramics are employed, such as silicate bioactive glasses. Nevertheless, manufacturing based on conventional casting in graphite moulds is not effective for warped shape implants suitable for patient tailored treatments. In this work, we analyze the application of rapid prototyping based on laser cladding to manufacture bioactive glass implants for low load bearing bone restoration. This laser-assisted additive technique is capable to produce three-dimensional geometries tailored to patient, with reduced fabrication time and implant composition modification. The obtained samples were characterized; the relationships between the processing conditions and the measured features were studied, in addition to the biological behavior analysis.

  11. Oxidation of uranium nanoparticles produced via pulsed laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Trelenberg, T W; Glade, S C; Tobin, J G; Felter, T E; Hamza, A V

    2005-12-07

    An experimental apparatus designed for the synthesis, via pulsed laser deposition, and analysis of metallic nanoparticles and thin films of plutonium and other actinides was tested on depleted uranium samples. Five nanosecond pulses from a Nd:YAG laser produced films of {approx}1600 {angstrom} thickness that were deposited showing an angular distribution typical thermal ablation. The films remained contiguous for many months in vacuum but blistered due to induced tensile stresses several days after exposure to air. The films were allowed to oxidize from the residual water vapor within the chamber (2 x 10{sup -10} Torr base pressure). The oxidation was monitored by in-situ analysis techniques including x-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), and scanning tunneling microscopy (STM) and followed Langmuir kinetics.

  12. Laser borided composite layer produced on austenitic 316L steel

    Science.gov (United States)

    Mikołajczak, Daria; Kulka, Michał; Makuch, Natalia

    2016-12-01

    Abstract Austenitic 316L steel is well-known for its good resistance to corrosion and oxidation. Therefore, this material is often used wherever corrosive media or high temperatures are to be expected. The main drawback of this material is very low hardness and low resistance to mechanical wear. In this study, the laser boriding was used in order to improve the wear behavior of this material. As a consequence, a composite surface layer was produced. The microstructure of laser-borided steel was characterized by only two zones: re-melted zone and base material. In the re-melted zone, a composite microstructure, consisting of hard ceramic phases (borides) and a soft austenitic matrix, was observed. A significant increase in hardness and wear resistance of such a layer was obtained.

  13. Laser borided composite layer produced on austenitic 316L steel

    Directory of Open Access Journals (Sweden)

    Mikołajczak Daria

    2016-12-01

    Full Text Available Abstract Austenitic 316L steel is well-known for its good resistance to corrosion and oxidation. Therefore, this material is often used wherever corrosive media or high temperatures are to be expected. The main drawback of this material is very low hardness and low resistance to mechanical wear. In this study, the laser boriding was used in order to improve the wear behavior of this material. As a consequence, a composite surface layer was produced. The microstructure of laser-borided steel was characterized by only two zones: re-melted zone and base material. In the re-melted zone, a composite microstructure, consisting of hard ceramic phases (borides and a soft austenitic matrix, was observed. A significant increase in hardness and wear resistance of such a layer was obtained.

  14. Collimation of laser-produced plasmas using axial magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Amitava; Harilal, Sivanandan S.; Hassan, Syed M.; Endo, Akira; Mocek, Tomas; Hassanein, A.

    2015-06-01

    We investigated the expansion dynamics of laser-produced plasmas expanding into an axial magnetic field. Plasmas were generated by focusing 1.064 µm Nd:YAG laser pulses onto a planar tin target in vacuum and allowed to expand into a 0.5 T magnetic-filed where field lines were aligned along the plume expansion direction. Gated images employing intensified CCD showed focusing of the plasma plume, which were also compared with results obtained using particle-in-cell modelling methods. The estimated density and temperature of the plasma plumes employing emission spectroscopy revealed significant changes in the presence and absence of the 0.5T magnetic field. In the presence of the field, the electron temperature is increased with distance from the target, while the density showed opposite effects.

  15. Small Incision Lenticule Extraction (SMILE versus Femtosecond Laser-Assisted In Situ Keratomileusis (FS-LASIK for Myopia: A Systematic Review and Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Zeren Shen

    Full Text Available The goal of this study was to compare small incision lenticule extraction (SMILE with femtosecond laser-assisted in situ keratomileusis (FS-LASIK for treating myopia.The CENTRAL, EMBASE, PubMed databases and a Chinese database (SinoMed were searched in May of 2016. Twelve studies with 1,076 eyes, which included three randomized controlled trials (RCTs and nine cohorts, met our inclusion criteria. The overall quality of evidence was evaluated using the Grading of Recommendations Assessment, Development and Evaluation (GRADE working group framework. Data were extracted and analysed at three to six months postoperatively. Primary outcome measures included a loss of one or more lines of best spectacle corrected visual acuity (BSCVA, uncorrected visual acuity (UCVA of 20/20 or better, mean logMAR UCVA, postoperative mean spherical equivalent (SE and postoperative refraction within ±1.0 D of the target refraction. Secondary outcome measures included ocular surface disease index (OSDI, tear breakup time (TBUT and Schirmer's 1 test (S1T as dry eye parameters, along with corneal sensitivity.The overall quality of evidence was considered to be low to very low. Pooled results revealed no significant differences between the two groups with regard to a loss of one or more lines in the BSCVA (OR 1.71; 95% CI: 0.81, 3.63; P = 0.16, UCVA of 20/20 or better (OR 0.71; 95% CI: 0.44, 1.15; P = 0.16, logMAR UCVA (MD 0.00; 95% CI: -0.03, 0.04; P = 0.87, postoperative refractive SE (MD -0.00; 95% CI: -0.05, 0.05; P = 0.97 or postoperative refraction within ±1.0 D of the target refraction (OR 0.78; 95% CI: 0.22, 2.77; P = 0.70 within six months postoperatively. The pooled analysis also indicated that the FS-LASIK group suffered more severely from dry eye symptoms (OSDI; MD -6.68; 95% CI: -11.76, -2.00; P = 0.006 and lower corneal sensitivity (MD 12.40; 95% CI: 10.23, 14.56; P < 0.00001 at six months postoperatively.In conclusion, both FS-LASIK and SMILE are safe

  16. Architecture and Bloch-Maxwell modelling of multi-mJ 100 fs fully-coherent soft X-ray laser based on X-ray CPA

    Energy Technology Data Exchange (ETDEWEB)

    Zeitoun, Ph.; Oliva, E.; Fajardo, M.; Cheriaux, G.; Le, T. T. T.; Li, L.; Pitman, M.; Ros, D.; Sebban, S.; Velarde, P. [Laboratoire d' Optique Appliquee, ENSTA-PariesTech, CNRS, Ecole Poluytehcnique-PariesTech, chemin d ela huniere, Palaiseau (France); Laboratoire d' Optique Appliquee, ENSTA-PariesTech, CNRS, Ecole Poluytehcnique-PariesTech, chemin d ela huniere, Palaiseau (France); GoLP, Instituto de Plasmas e Fusao Nuclear, Laboratorio Associado, Instituto Superior Tecnico, Lisbon (Portugal); Laboratoire d' Optique Appliquee, ENSTA-PariesTech, CNRS, Ecole Poluytehcnique-PariesTech, chemin d ela huniere, Palaiseau (France); CLUPS, EA4127, Bat 106, Universite Paris-Sud, 91405 Orsay (France); Laboratoire d' Optique Appliquee, ENSTA-PariesTech, CNRS, Ecole Poluytehcnique-PariesTech, chemin d ela huniere, Palaiseau (France); Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, Madrid (Spain)

    2012-07-09

    By seeding amplifying plasmas pumped with the so-called Transient collisionnal excitation scheme, the amplified pulse seems to be limited to an energy of several 10's of {mu}J. Aiming to attain several mJ, we study the seeding of plasma pumped by long laser pulse. Thanks to our time-dependent Maxwell-Bloch code, we demonstrate that direct seeding with femtosecond pulse is inefficient. We also study the amplification of pulse train with the drawback of re-synchronizing the pulses. We proposed and studied the amplification of high harmonic seed stretched by a grating pair, amplified finally compressed. We consider off-axis diffraction on the gratings for maximizing their efficiency. Considering the phase deformation induced by the amplification and the spectral narrowing the final pulse is 230 fs in duration and 5 mJ.

  17. Evaluation of the cone-shaped pickup performance for low charge sub-10 fs arrival-time measurements at free electron laser facilities

    Directory of Open Access Journals (Sweden)

    Aleksandar Angelovski

    2015-01-01

    Full Text Available An evaluation of the cone-shaped pickup performance as a part of the high bandwidth bunch arrival-time monitors (BAMs for a low charge sub-10 fs arrival-time measurements is presented. Three sets of pickups are installed at the free electron laser FLASH at Deutsches Elektronen-Synchrotron, the quasi-cw SRF accelerator ELBE at the Helmholtz-Zentrum Dresden-Rossendorf and the SwissFEL injector test facility at Paul Scherrer Institute. Measurements and simulations are in good agreement and the pickups fulfill the design specifications. Utilizing the high bandwidth BAM with the cone-shaped pickups, an improvement of the signal slope by a factor of 10 is demonstrated at ELBE compared to the BAM with a low bandwidth.

  18. 200-fs mode-locked Erbium-doped fiber laser by using mechanically exfoliated MoS2 saturable absorber onto D-shaped optical fiber.

    Science.gov (United States)

    Aiub, Eduardo J; Steinberg, David; Thoroh de Souza, Eunézio A; Saito, Lúcia A M

    2017-05-01

    For the first time, we demonstrated the fabrication of mechanically exfoliated molybdenum disulfide (MoS2) samples deposited onto a D-shaped optical fiber. The MoS2 exfoliated flakes were deposited onto a stacked of 1.2 µm PVA (polyvinyl alcohol) and 300 nm PMMA (polymethyl methacrylate) layers and then transferred directly onto a side polished surface of D-shaped optical fiber with polishing length of 17 mm and no distance from the fiber core. The sample exhibited a high polarization performance as a polarizer with relative polarization extinction ratio of 97.5%. By incorporating the sample as a saturable absorber in the Erbium-doped fiber laser (EDFL), bandwidth of 20.5 nm and pulse duration of 200 fs were generated, which corresponded to the best mode-locking results obtained for all-fiber MoS2 saturable absorber at 1.5 µm wavelength.

  19. A 31 mW, 280 fs passively mode-locked fiber soliton laser using a high heat-resistant SWNT/P3HT saturable absorber coated with siloxane.

    Science.gov (United States)

    Ono, Takato; Hori, Yuichiro; Yoshida, Masato; Hirooka, Toshihiko; Nakazawa, Masataka; Mata, Junji; Tsukamoto, Jun

    2012-10-08

    We report a substantial increase in the heat resistance in a connector-type single-wall carbon nanotube (SWNT) saturable absorber by sealing SWNT/P3HT composite with siloxane. By applying the saturable absorber to a passively mode-locked Er fiber laser, we successfully demonstrated 280 fs, 31 mW pulse generation with a fivefold improvement in heat resistance.

  20. Efficient Spherical Wavefront Correction near the Focus for the 0.89 PW/29.0 fs Ti:Sapphire Laser Beam

    Institute of Scientific and Technical Information of China (English)

    REN Zhi-Jun; LIANG Xiao-Yan; YU Liang-Hong; LU Xiao-Ming; LENG Yu-Xin; LI Ru-Xin; XU Zhi-Zhan

    2011-01-01

    We demonstrate a new loop system of the spherical wavefront (SW) correction near the beam focus to effectively improve the focusability of 0.89 PW/29.0 fs Ti:sapphire chirped pulse amplification laser. After wavefront correction, the Strehl ratio is improved to reach 0.91, and the focal spot size using the fl4 off-axis parabola is reduced to 6.34 × 6.94μm2 (corresponding to 1.63 × 1.78 times diffraction limitation). With full peak power of 0.89 PW,the peak intensity of 2.59 × 1021 W/cm2 is obtained. The experimental results show that the SW correction scheme near the beam focus is comparatively simple, economic and high-efficient.%@@ We demonstrate a new loop system of the spherical wavefront (SW) correction near the beam focus to effectively improve the focusability of 0.89 PW/29.0 fs Ti:sapphire chirped pulse amplification laser.After wavefront correction, the Strehl ratio is improved to reach 0.91, and the focal spot size using the f/4 off-axis parabola is reduced to 6.34 x 6.94μm2 (corresponding to 1.63 x 1.78 times diffraction limitation).With full peak power of 0.89 PW, the peak intensity of 2.59 x 1021 W/cm2 is obtained.The experimental results show that the SW correction scheme near the beam focus is comparatively simple, economic and high-efficient.

  1. Femtosecond, two-photon-absorption, laser-induced-fluorescence (fs-TALIF) imaging of atomic hydrogen and oxygen in non-equilibrium plasmas

    Science.gov (United States)

    Schmidt, Jacob B.; Roy, Sukesh; Kulatilaka, Waruna D.; Shkurenkov, Ivan; Adamovich, Igor V.; Lempert, Walter R.; Gord, James R.

    2017-01-01

    Femtosecond, two-photon-absorption laser-induced fluorescence (fs-TALIF) is employed to measure space- and time-resolved distributions of atomic hydrogen and oxygen in moderate-pressure, non-equilibrium, nanosecond-duration pulsed-discharge plasmas. Temporally and spatially resolved hydrogen and oxygen TALIF images are obtained over a range of low-temperature plasmas in mixtures of helium and argon at 100 Torr total pressure. The high-peak-intensity, low-average-energy fs pulses combined with the increased spectral bandwidth compared to traditional ns-duration laser pulses provide a large number of photon pairs that are responsible for the two-photon excitation, which results in an enhanced TALIF signal. Krypton and xenon TALIF are used for quantitative calibration of the hydrogen and oxygen concentrations, respectively, with similar excitation schemes being employed. This enables 2D collection of atomic-hydrogen and -oxygen TALIF signals with absolute number densities ranging from 2  ×  1012 cm-3 to 6  ×  1015 cm-3 and 1  ×  1013 cm-3 to 3  ×  1016 cm-3, respectively. These 2D images are the first application of TALIF imaging in moderate-pressure plasma discharges. 1D self-consistent modeling predictions show agreement with experimental results within the estimated experimental error of 25%. The present results can be used to further the development of higher fidelity kinetic models while quantifying plasma-source characteristics.

  2. Mid-IR (3-4 μm) fluorescence and ASE studies in Dy3+ doped tellurite and germanate glasses and a fs laser inscribed waveguide

    Science.gov (United States)

    Richards, B. D. O.; Teddy-Fernandez, T.; Jose, G.; Binks, D.; Jha, A.

    2013-08-01

    We present the fluorescence spectroscopy of a range of Dy3+ doped tellurite (TeO2) and germanate (GeO2) glasses and compare with Dy3+ doped ZBLAN glass. When excited using an 808 nm laser diode, Dy3+ ions emit radiation at around 3 μm from the 6H13/2→ 6H15/2 (3500 cm-1) energy level transition, which has been exploited in Dy3+ doped fluoride fibre lasers. When Dy3+ is doped into TeO2 and GeO2 based glasses, the fluorescence from the 6H13/2→ 6H15/2 transition is shown to be broader and red-shifted compared to that in ZBLAN glass. Mid-IR ASE from a fs laser inscribed Dy3+ doped tellurite glass waveguide is also presented. The results of Dy3+ mid-IR fluorescence spectroscopy and the potential of oxide glasses as mid-IR sources are discussed.

  3. PCDD/Fs and dioxin-like PCBs in home-produced eggs from Belgium: levels, contamination sources and health risks.

    Science.gov (United States)

    Van Overmeire, I; Waegeneers, N; Sioen, I; Bilau, M; De Henauw, S; Goeyens, L; Pussemier, L; Eppe, G

    2009-07-15

    This paper discusses the dioxin TEQ levels as determined by the chemically activated luciferase gene expression assay (CALUX) and by HRGC-HRMS in eggs, soils, faeces and kitchen waste samples obtained in the CONTEGG study. The samples were collected in each Belgian province at private homes and in small gardens where chickens are held. The CALUX levels for eggs sampled in autumn were higher than the levels in eggs obtained at the same locations in spring (median values of 5.86 and 4.08 pg CALUX TEQ/g fat, respectively). The total WHO-TEQ levels in eggs, determined by HRGC-HRMS, ranged from 3.29 to 95.35 pg TEQ/g fat in autumn and from 1.50 to 64.79 pg TEQ/g fat in spring. In the soils on which the chickens forage, levels of 2.51-11.35 pg I-TEQ/g in autumn and 2.00-7.86 pg I-TEQ/g in spring were found. The congener pattern of PCDD/Fs in the eggs, soils and faeces was dominated by OCDD, in addition to 1,2,3,4,6,7,8-HeptaCDD, OCDF and 1,2,3,4,6,7,8-HeptaCDF. The predominant dioxin-like PCBs were PCB118, PCB 105 and PCB 156. The dioxin-like PCBs contributed on average 47%, 14% and 20% to the total WHO-TEQ in eggs, soils and faeces, respectively. Kitchen waste samples were very low-contaminated with dioxin-like compounds. The present results showed a good agreement between egg and soil TEQ levels for PCDD/Fs but not for dioxin-like PCBs. This study showed that current soil levels found in some private gardens do not lead to egg levels below the current EU maximal level of 6 pg total TEQ/g fat for dioxins and dioxin-like PCBs. The consumers of the analysed eggs attained 5-79% of the tolerable weekly intake (TWI) of 14 pg TEQ/kg bw for dioxins and dioxin-like PCBs by exposure to their home-produced eggs only.

  4. New results on the laser produced positrons using the TITAN and OMEGA EP lasers

    Science.gov (United States)

    Chen, Hui; Wilks, S.; Meyerhofer, D. D.; Beiersdorfer, P.; Dollar, F.; Falk, K.; Hazi, A.; Link, A.; Murphy, C. D.; Park, J.; Seely, J.; Szabo, C. I.; Shepherd, R.; Tommasini, R.; Welch, D.; Zulick, K.

    2010-11-01

    We performed new experiments and simulations on generating positrons with intense lasers [1]. A cone shaped positron jet is produced by irradiating a gold target with an intense picosecond duration laser pulse. The jet has ˜20 degree angular divergence and a quasi-monochromatic energy distribution with energy 4 to 20 MeV. The conversion efficiency from laser energy to positrons in the jet is ˜ 2x10-4. The positron angular and energy distributions are controlled by the laser and target conditions. The positron acceleration mechanism is identified experimentally as the sheath electric field on the rear surface of target. This talk will present the details of these new experimental and simulation results.[4pt] [1] Hui Chen, S. C. Wilks, D. D. Meyerhofer et al., PRL 105,015003 (2010)

  5. Fast magnetic reconnection in laser-produced plasma bubbles.

    Science.gov (United States)

    Fox, W; Bhattacharjee, A; Germaschewski, K

    2011-05-27

    Recent experiments have observed magnetic reconnection in high-energy-density, laser-produced plasma bubbles, with reconnection rates observed to be much higher than can be explained by classical theory. Based on fully kinetic particle simulations we find that fast reconnection in these strongly driven systems can be explained by magnetic flux pileup at the shoulder of the current sheet and subsequent fast reconnection via two-fluid, collisionless mechanisms. In the strong drive regime with two-fluid effects, we find that the ultimate reconnection time is insensitive to the nominal system Alfvén time.

  6. Energy Spread Reduction of Electron Beams Produced via Laser Wake

    Energy Technology Data Exchange (ETDEWEB)

    Pollock, Bradley Bolt [Univ. of California, San Diego, CA (United States)

    2012-01-01

    Laser wakefield acceleration of electrons holds great promise for producing ultra-compact stages of GeV scale, high quality electron beams for applications such as x-ray free electron lasers and high energy colliders. Ultra-high intensity laser pulses can be self-guided by relativistic plasma waves over tens of vacuum diffraction lengths, to give >1 GeV energy in cm-scale low density plasma using ionization-induced injection to inject charge into the wake at low densities. This thesis describes a series of experiments which investigates the physics of LWFA in the self-guided blowout regime. Beginning with high density gas jet experiments the scaling of the LWFA-produced electron beam energy with plasma electron density is found to be in excellent agreement with both phenomenological theory and with 3-D PIC simulations. It is also determined that self-trapping of background electrons into the wake exhibits a threshold as a function of the electron density, and at the densities required to produce electron beams with energies exceeding 1 GeV a different mechanism is required to trap charge into low density wakes. By introducing small concentrations of high-Z gas to the nominal He background the ionization-induced injection mechanism is enabled. Electron trapping is observed at densities as low as 1.3 x 1018 cm-3 in a gas cell target, and 1.45 GeV electrons are demonstrated for the first time from LWFA. This is currently the highest electron energy ever produced from LWFA. The ionization-induced trapping mechanism is also shown to generate quasi-continuous electron beam energies, which is undesirable for accelerator applications. By limiting the region over which ionization-induced trapping occurs, the energy spread of the electron beams can be controlled. The development of a novel two-stage gas cell target provides the capability to tailor the gas composition in the longitudinal direction, and confine the trapping process to occur only in a

  7. Modeling of laser produced plasma and z-pinch x-ray lasers

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, J; Frati, M; Gonzales, J J; Kalashnikov, M P; Marconi, M C; Moreno, C H; Nickels, P V; Osterheld, A L; Rocca, J J; Sandner, W; Shlyaptsev, V N

    1999-02-07

    In this work we describe our theoretical activities in two directions of interest. First, we discuss progress in modeling laser produced plasmas mostly related to transient collisional excitation scheme experiments with Ne- and recently with Ni-like ions. Calculations related to the delay between laser pulses, transient gain duration and hybrid laser/capillary approach are described in more detail. Second, the capillary discharge plasma research, extended to wider range of currents and rise-times has been outlined. We have systematically evaluated the major plasma and atomic kinetic properties by comparing near- and far-field X-ray laser output with that for the capillary Argon X-ray laser operating under typical current values. Consistent with the experiment insight was obtained for the 469{angstrom} X-ray laser shadowgraphy experiments with very small kiloamp currents. At higher currents, as much as {approximately}200 kA we evaluated plasma temperature, density and compared x-ray source size and emitted spectra.

  8. Laser Plasmas : Density oscillations in laser produced plasma decelerated by external magnetic field

    Indian Academy of Sciences (India)

    V N Rai; M Shukla; H C Pant

    2000-11-01

    This paper presents the dynamics as well as the stability of laser produced plasma expanding across the magnetic field. Observation of some high frequency fluctuations superimposed on ion saturation current along with structuring in the pin hole images of x-ray emitting plasma plume indicate the presence of instability in the plasma. Two type of slope in the variation of x-ray emission with laser intensity in the absence and presence of magnetic field shows appearance of different threshold intensity of laser corresponding to each magnetic field at which this instability or density fluctuation sets on. This instability has been identified as a large Larmor radius instability instead of classical Rayleigh-Taylor (R-T) instability.

  9. Molten metal analysis by laser produced plasmas. Technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong W.

    1994-02-01

    A new method of molten metal analysis, based on time- and space-resolved spectroscopy of a laser-produced plasma (LPP) plume of a molten metal surface, has been implemented in the form of a prototype LPP sensor-probe, allowing in-situ analysis in less than 1 minute. The research at Lehigh University has been structured in 3 phases: laboratory verification of concept, comparison of LPP method with conventional analysis of solid specimens and field trials of prototype sensor-probe in small-scale metal shops, and design/production/installation of two sensor-probes in metal production shops. Accomplishments in the first 2 phases are reported. 6 tabs, 3 figs.

  10. Production and Characterization of High Repetition Rate Terahertz Radiation in Femtosecond-Laser-Induced Air Plasma

    Science.gov (United States)

    2009-03-01

    20 3.1 Verdi -Pumped Femtosecond Laser System...current which then produces the observed THz pulse [9]. 20 III. EQUIPMENT 3.1 VERDI -PUMPED FEMTOSECOND LASER SYSTEM The laser used in...this research is a Coherent fs pulsed laser system as shown schematically in figure 4. The 18 W Verdi beam pumps the 76 MHz MIRA, which produces 50

  11. Atomic physics of relativistic high contrast laser-produced plasmas in experiments on Leopard laser facility at UNR

    Science.gov (United States)

    Safronova, A. S.; Kantsyrev, V. L.; Faenov, A. Y.; Safronova, U. I.; Wiewior, P.; Renard-Le Galloudec, N.; Esaulov, A. A.; Weller, M. E.; Stafford, A.; Wilcox, P.; Shrestha, I.; Ouart, N. D.; Shlyaptseva, V.; Osborne, G. C.; Chalyy, O.; Paudel, Y.

    2012-06-01

    The results of the recent experiments focused on study of x-ray radiation from multicharged plasmas irradiated by relativistic (I > 1019 W/cm2) sub-ps laser pulses on Leopard laser facility at NTF/UNR are presented. These shots were done under different experimental conditions related to laser pulse and contrast. In particular, the duration of the laser pulse was 350 fs or 0.8 ns and the contrast was varied from high (10-7) to moderate (10-5). The thin laser targets (from 4 to 750 μm) made of a broad range of materials (from Teflon to iron and molybden to tungsten and gold) were utilized. Using the x-ray diagnostics including the high-precision spectrometer with resolution R ˜ 3000 and a survey spectrometer, we have observed unique spectral features that are illustrated in this paper. Specifically, the observed L-shell spectra for Fe targets subject to high intensity lasers (˜1019 W/cm2) indicate electron beams, while at lower intensities (˜1016 W/cm2) or for Cu targets there is much less evidence for an electron beam. In addition, K-shell Mg features with dielectronic satellites from high-Rydberg states, and the new K-shell F features with dielectronic satellites including exotic transitions from hollow ions are highlighted.

  12. Pump-probe imaging of the fs-ps-ns dynamics during femtosecond laser Bessel beam drilling in PMMA.

    Science.gov (United States)

    Yu, Yanwu; Jiang, Lan; Cao, Qiang; Xia, Bo; Wang, Qingsong; Lu, Yongfeng

    2015-12-14

    A pump-probe shadowgraph imaging technique was used to reveal the femtosecond-picosecond-nanosecond multitimescale fundamentals of high-quality, high-aspect-ratio (up to 287:1) microhole drilling in poly-methyl-meth-acrylate (PMMA) by a single-shot femtosecond laser Bessel beam. The propagation of Bessel beam in PMMA (at 1.98 × 10⁸ m/s) and it induced cylindrical pressure wave expansion (at 3000-3950 m/s in radius) were observed during drilling processes. Also, it was unexpectedly found that the expansion of the cylindrical pressure wave in PMMA showed a linear relation with time and was insensitive to the laser energy fluctuation, quite different from the case in air. It was assumed that the energy insensitivity was due to the anisotropy of wave expansion in PMMA and the ambient air.

  13. Fs-laser microstructuring of laser-printed LiMn2O4 electrodes for manufacturing of 3D microbatteries

    Science.gov (United States)

    Pröll, J.; Kim, H.; Mangang, M.; Seifert, H. J.; Piqué, A.; Pfleging, W.

    2014-03-01

    Lithium manganese oxide composite cathodes are realized by laser-printing. The printed cathode is a composite and consists of active powder, binder and conductive agents. Laser-printed cathodes are first calendered and then laser structured using femtosecond-laser radiation in order to form three-dimensional (3D) micro-grids in the cathode material. Three-dimensional micro-grids in calendered/laser structured cathodes exhibit improved discharge capacity retention at a 1 C discharging rate. Calendered but unstructured cathodes indicate the poorest cycling behavior at 1 C discharge. The improved capacity retention and the reduced degradation of calendered/structured cathodes can be attributed to both the increased electrical contact through calendering as well as shortened Li-ion pathways due to laser-induced 3D microgrids.

  14. Generation of spin waves by a train of fs-laser pulses: a novel approach for tuning magnon wavelength.

    Science.gov (United States)

    Savochkin, I V; Jäckl, M; Belotelov, V I; Akimov, I A; Kozhaev, M A; Sylgacheva, D A; Chernov, A I; Shaposhnikov, A N; Prokopov, A R; Berzhansky, V N; Yakovlev, D R; Zvezdin, A K; Bayer, M

    2017-07-18

    Currently spin waves are considered for computation and data processing as an alternative to charge currents. Generation of spin waves by ultrashort laser pulses provides several important advances with respect to conventional approaches using microwaves. In particular, focused laser spot works as a point source for spin waves and allows for directional control of spin waves and switching between their different types. For further progress in this direction it is important to manipulate with the spectrum of the optically generated spin waves. Here we tackle this problem by launching spin waves by a sequence of femtosecond laser pulses with pulse interval much shorter than the relaxation time of the magnetization oscillations. This leads to the cumulative phenomenon and allows us to generate magnons in a specific narrow range of wavenumbers. The wavelength of spin waves can be tuned from 15 μm to hundreds of microns by sweeping the external magnetic field by only 10 Oe or by slight variation of the pulse repetition rate. Our findings expand the capabilities of the optical spin pump-probe technique and provide a new method for the spin wave generation and control.

  15. Deposition and characterization of ITO films produced by laser ablation at 355 nm

    DEFF Research Database (Denmark)

    Holmelund, E.; Thestrup Nielsen, Birgitte; Schou, Jørgen;

    2002-01-01

    Indium tin oxide (ITO) films have been deposited by pulsed laser deposition (PLD) at 355 nm. Even though the absorption of laser light at the wavelength 355 nm is much smaller than that of the standard excimer lasers for PLD at 248 nm and 193 nm, high-quality films can be produced. At high fluenc...... light, about 0.9, is also comparable to values for films deposited by excimer lasers. The crystalline structure of films produced at 355 nm is similar to that of samples produced by these lasers....

  16. Three-dimensional polymer nanostructures for applications in cell biology generated by high-repetition rate sub-15 fs near-infrared laser pulses

    Science.gov (United States)

    Licht, Martin; Straub, Martin; König, Karsten; Afshar, Maziar; Feili, Dara; Seidel, Helmut

    2011-03-01

    In recent years two-photon photopolymerization has emerged as a novel and extremely powerful technique of three-dimensional nanostructure formation. Complex-shaped structures can be generated using appropriate beam steering or nanopositioning systems. Here, we report on the fabrication of three-dimensional arrangements made of biocompatible polymer material, which can be used as templates for cell growth. Using three-dimensional cell cages as cell culture substrates is advantageous, as cells may develop in a more natural environment as compared to conventional planar growth methods. The two-photon fabrication experiments were carried out on a commercial microscope setup. Sub-15 fs pulsed Ti:Sapphire laser light (centre wavelength 800 nm, bandwidth 120 nm, repetition rate 85 MHz) was focused into the polymer material by a high-numerical aperture oil immersion objective. Due to the high peak intensities picojoule pulse energies in the focal spot are sufficient to polymerize the material at sub-100 nm structural element dimensions. Therefore, cell cages of sophisticated architecture can be constructed involving very fine features which take into account the specific needs of various types of cells. Ultimately, our research aims at three-dimensional assemblies of photopolymerized structural elements involving sub-100 nm features, which provide cell culture substrates far superior to those currently existing.

  17. High average daily intake of PCDD/Fs and serum levels in residents living near a deserted factory producing pentachlorophenol (PCP) in Taiwan: influence of contaminated fish consumption

    Energy Technology Data Exchange (ETDEWEB)

    Lee Ching-Chang; Lin Wu-Ting; Liao Po-Chi; Su Huey-Jen [Dept. of Environmental and Occupational Health/Research Center of Environmental Trace Toxic substances, Medical Coll., National Cheng Kung Univ., Tainan (Taiwan); Chen Hsiu-Lin [Inst. of Basic Medical Sciences, Medical Coll., National Cheng Kung Univ., Tainan (Taiwan)

    2004-09-15

    Many reports have suggested that PCDD/Fs (polychlorinated dibenzo-p-dioxins and dibenzofurans) contribute to immune deficiency, liver damage, human carcinogenesis, and neuromotor maturation in children. Therefore, beginning in 1999, the Taiwan Environmental Protection Agency (EPA) conducted a survey to determine serum levels of PCDD/Fs in the general populations living around 19 incinerators in Taiwan. Relatively high average serum PCDD/F levels were unexpectedly found in Tainan city, a less industrialized area in southwestern Taiwan, than in other urban areas. We therefore reviewed the usage history of the land and found that a factory situated between Hsien-Gong Li and Lu-Erh Li, two administrative units of Tainan city, had been manufacturing pentachlorophenol (PCP) between 1967 and 1982. PCDD/Fs are formed as byproducts in the PCP manufacturing process. Exposure to PCP and its derivatives via the food chain is the most significant intake route of PCDD/Fs in consumers in the European Union (EU). In Japan, in addition to combustion processes, PCP and chlornitrofen (CNP) have also been identified as the major sources of PCDD/Fs in Tokyo Bay7. A preliminary investigation showed that the soil in the PCP factory and sediments in the sea reservoir (13 hectares) near the deserted factory were seriously contaminated with PCDD/Fs (260-184,000 and 20-6220 pg I-TEQ/g, respectively), levels higher than those in other countries. Therefore, the aim of this study was to compare the PCDD/F levels of fish meat in the sea reservoir and the serum in inhabitants living in the vicinity of the closed PCP plant and other nearby areas. The data from human and other biota samples might clarify the transmission pathway of the PCDD/F contaminants from the PCP factory to local residents, provide information about the exposure status of those living in the vicinity of the deserted PCP factory, and also lead to useful suggestions for controlling PCDD/F accumulation in those living near such

  18. Producing propellants from water in lunar soil using solar lasers

    Science.gov (United States)

    de Morais Mendonca Teles, Antonio

    , collect soil and retract itself to put the material on the top of the spacecraft inside a hole which will be opened; 3) an infrared laser based on solar electrical energy -a "solar laser" -when the soil be inside the chamber inside the spacecraft, the solar laser will be turned on and it will strike against the soil, heating it up, and release all oxygen and hydrogen from it. The oxygen and hydrogen molecules will be separated from the rest of the material by a mass spectrometer and they will be liquefied by thermal and pressure internal control sub-systems of the spacecraft, and pumped to vessels in a way similar to a micro-industrial line production process; the vessels with the propellants will be then ready to be taken by astronauts, from a small door outside the LPM. The shape of this spacecraft must be conical in order to not unbalance it during the landing and roving maneuvers and soil cargoes, and it will be shielded externally from heat and radiation from the Sun, and micrometeoroids, to prevent the internal thermal conduction and electronic operations from damaging. A solar array externally deployed can produce 44 KW of electric soil energy for the production process. This miniature chemical-processing plant can possibly have an output of 100 Kg of liquid oxygen and 200 Kg of liquid hydrogen per day. Telecommunications with Earth will provide the onboard computer courses for roving to new mapped areas with richer propellants content in the soil. The spacecraft can weight approximately 6,000 Kg (at launch time from Earth). It will be necessary two LPMs for providing all the liquid oxygen and hydrogen needed to supply spacecrafts next to a semi-permanent small manned lunar base. With the Lunar Propellant Manufacturer it will solve the problem of not-expensively producing great quantities of propellants for a manned spacecraft to explore Mars and beyond In the Solar System.

  19. High average daily intake of PCDD/Fs and serum levels in residents living near a deserted factory producing pentachlorophenol (PCP) in Taiwan: influence of contaminated fish consumption.

    Science.gov (United States)

    Lee, C C; Lin, W T; Liao, P C; Su, H J; Chen, H L

    2006-05-01

    An abandoned pentachlorophenol plant and nearby area in southern Taiwan was heavily contaminated by dioxins, impurities formed in the PCP production process. The investigation showed that the average serum PCDD/Fs of residents living nearby area (62.5 pg WHO-TEQ/g lipid) was higher than those living in the non-polluted area (22.5 and 18.2 pg WHO-TEQ/g lipid) (Pfarm (0.15 pg WHO-TEQ/g), and Tilapia and shrimp showed the similar trend. The average daily PCDD/Fs intake of 38% participants was higher than 4 pg WHO-TEQ/kg/day suggested by the world health organization. Serum PCDD/F was positively associated with average daily intake (ADI) after adjustment for age, sex, BMI, and smoking status. In addition, a prospective cohort study is suggested to determine the long-term health effects on the people living near factory.

  20. Smoothed Particle Hydrodynamics for the Simulation of Laser Produced Plasmas

    Science.gov (United States)

    Griffith, Alec; Holladay, Tyler; Murillo, Michael S.

    2016-10-01

    To address the design and interpretation of experiments at next generation light sources such as at the SLAC LCLS and the LANL proposed MaRIE a simulation of the laser produced plasma targets has been developed. Smoothed particle hydrodynamics is used to capture the full experimental time and length scales, large degrees of deformation, and the experimental environment's open boundary conditions. Additionally the model incorporates plasma transport with thermal conduction, the electric potential, and a two species model of the electrons and ions. The electron and ion particle representations in SPH allow for time dependent ionization and recombination while addressing the disparate masses of the two species. To gain computational speedup our simulation takes advantage of parallelism, and to reduce computational cost we have explored using data structures such as the linked cell list and octree as well as algorithmic techniques such as the fast mutipole method. We will discuss the results of simulating several possible experimental configurations using our model. This work was supported by the Los Alamos National Laboratory computational physics workshop.

  1. SeaWiFS

    Data.gov (United States)

    Washington University St Louis — SEAWiFS_US is a high resolution (1km) satellite dataset derived from the eight wavelength SEAWiFS sensor. The dataset also includes the aerosol reflectance over the...

  2. Development of a X-UV Michelson interferometer for probing laser produced plasmas with a X-ray laser

    Energy Technology Data Exchange (ETDEWEB)

    Hubert, S. [Paris-Sud Univ., Orsay (France). LSAI; CEA Centre d' Etudes de Bruyeres-le-Chatel, 91 (France). DAM/CEB.3/ODIR; Zeitoun, Ph.; Vanbostal, L.; Carillon, A.; Fourcade, P.; Idir, M.; Pape, S. le; Ros, D.; Jamelot, G. [Paris-Sud Univ., Orsay (France). LSAI; Bechir, E. [CEA Centre d' Etudes de Bruyeres-le-Chatel, 91 (France). DAM/CEB.3/ODIR; Delmotte, F.; Ravet, M.F. [IOTA, Univ. Paris-Sud, Orsay (France)

    2001-07-01

    We have developed and used a soft X-ray Michelson interferometer to probe large laser-produced plasmas. The aim investigated is to obtain electron density profiles and thus important informations on the plasma dynamic. This paper describes our design and presents some preliminary results using a nickel-like X-ray laser operating at 13.9 nm. We present numericals results which show the interest of using X-ray laser to probe laser-produced plasma by interferometry. (orig.)

  3. SiCp/Ti6Al4V functionally graded materials produced by laser melt injection

    NARCIS (Netherlands)

    Pei, Y.T.; Ocelik, V.; Hosson, J.Th.M. De

    2002-01-01

    With a well-controlled laser melt injection (LMI) process, for the first time the feasibility is demonstrated to produce SiC particles (SiCp) reinforced Ti6Al4V functionally graded materials (FGMs). SiCp are injected just behind the laser beam into the extended part of the laser melt pool that is fo

  4. DISAPPEARANCE OF TWO-PLASMON DECAY INSTABILITY IN PLASMAS PRODUCED BY ULTRASHORT LASER PULSES

    Institute of Scientific and Technical Information of China (English)

    CHEN LI-MING; ZHANG JIE; LIN HAI; LI YU-TONG; ZHAO LI-ZENG; JIANG WEN-MIAN

    2001-01-01

    Harmonic emission was studied from a plasma produced by ultrashort laser pulses. Unlike the harmonics from plasmas created by long (ns) laser pulses, the 3/2 harmonic emission was not observed in the interaction between plasmas and ultrashort laser pulses. A simple model is proposed to explain this phenomenon.

  5. Acceleration of protons in plasma produced from a thin plastic or aluminum target by a femtosecond laser

    Science.gov (United States)

    Rosinski, M.; Badziak, J.; Parys, P.; Zaras-Szydlowska, A.; Ryc, L.; Torrisi, L.; Szydlowski, A.; Malinowska, A.; Kaczmarczyk, B.; Makowski, J.; Torrisi, A.

    2016-05-01

    The acceleration of protons in plasma produced from thin mylar (3.5 μ m) and aluminum (2 μm) targets by a 45-fs laser pulses with the energy of 400 mJ and the intensity of up to 1019 W/cm2 was investigated. Characteristics of forward-accelerated protons were measured by the time-of-flight method. In the measurements, special attention was paid to the dependence of proton beam parameters on the laser focus position (FP) in relation to the target surface which resulted in the intensity change within a factor of ~ 10. It was observed that in the case of using the Mylar target, the dependence of both the maximum (Epmax) and the mean (langleEprangle) proton energy on |Δx| is clearly non-symmetric with regard to the point where FP = 0 (the focal plane on the target surface) and highest proton energies are achieved when the focal plane is situated in front of the target. In particular, for the target with the thickness of 3.5 μ m Epmax reached 2.2 MeV for FP = +50 μm while for FP = 0 and FP = -100 μm the maximum proton energies reached only 1.6 MeV and 1.3 MeV, respectively. For the aluminum target of 2 μm thickness Ep changed only within ~ 40% and the highest proton energies reached 2.4 MeV.

  6. Spectral analysis of K-shell X-ray emission of magnesium plasma produced by ultrashort high-intensity laser pulse irradiation

    Indian Academy of Sciences (India)

    V Arora; U Chakravarty; Manoranjan P Singh; J A Chakera; P A Naik; P D Gupta

    2014-02-01

    Spectral analysis of K-shell X-ray emission of magnesium plasma, produced by laser pulses of 45 fs duration, focussed up to an intensity of ∼1018 W cm-2, is carried out. The plasma conditions prevalent during the emission of X-ray spectrum were identified by comparing the experimental spectra with the synthetic spectra generated using the spectroscopic code Prism-SPECT. It is observed that He-like resonance line emission occurs from the plasma region having sub-critical density, whereas K- emission arises from the bulk solid heated to a temperature of 10 eV by the impact of hot electrons. K- line from Be-like ions was used to estimate the hot electron temperature. A power law fit to the electron temperature showed a scaling of 0.47 with laser intensity.

  7. High average daily intake of PCDD/Fs and serum levels in residents living near a deserted factory producing pentachlorophenol (PCP) in Taiwan: Influence of contaminated fish consumption

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.C. [Department of Environmental and Occupational Health, Medical College, National Cheng Kung University, Tainan, Taiwan (China); Research Center of Environmental Trace Toxic Substances, Medical College, National Cheng Kung University, Tainan, Taiwan (China); Lin, W.T. [Department of Environmental and Occupational Health, Medical College, National Cheng Kung University, Tainan, Taiwan (China); Liao, P.C. [Department of Environmental and Occupational Health, Medical College, National Cheng Kung University, Tainan, Taiwan (China); Research Center of Environmental Trace Toxic Substances, Medical College, National Cheng Kung University, Tainan, Taiwan (China); Su, H.J. [Department of Environmental and Occupational Health, Medical College, National Cheng Kung University, Tainan, Taiwan (China); Research Center of Environmental Trace Toxic Substances, Medical College, National Cheng Kung University, Tainan, Taiwan (China); Chen, H.L. [Department of Industrial Safety and Health, Hung Kuang University, Taichung, 34 Chung Chie Rd. Sha Lu, Taichung 433, Taiwan (China)]. E-mail: hsiulin@sunrise.hk.edu.tw

    2006-05-15

    An abandoned pentachlorophenol plant and nearby area in southern Taiwan was heavily contaminated by dioxins, impurities formed in the PCP production process. The investigation showed that the average serum PCDD/Fs of residents living nearby area (62.5 pg WHO-TEQ/g lipid) was higher than those living in the non-polluted area (22.5 and 18.2 pg WHO-TEQ/g lipid) (P < 0.05). In biota samples, average PCDD/F of milkfish in sea reservoir (28.3 pg WHO-TEQ/g) was higher than those in the nearby fish farm (0.15 pg WHO-TEQ/g), and Tilapia and shrimp showed the similar trend. The average daily PCDD/Fs intake of 38% participants was higher than 4 pg WHO-TEQ/kg/day suggested by the world health organization. Serum PCDD/F was positively associated with average daily intake (ADI) after adjustment for age, sex, BMI, and smoking status. In addition, a prospective cohort study is suggested to determine the long-term health effects on the people living near factory. - Inhabitants living near a deserted PCP factory are exposed to high PCDD/F levels.

  8. Ion and X-ray techniques used for study of laser-produced plasmas

    Science.gov (United States)

    Wolowski, J.; Parys, P.; Rosinski, M.; Ryć, L.; Woryna, E.

    2015-04-01

    This review article describes apparatus for ion and X-ray diagnostics, which were used in experimental studies of laser-produced plasmas performed by the IPPLM's team in collaboration with other researchers at IPPLM and PALS Research Centre in Prague (the Czech Republic). The investigations of expanding laser-produced plasma properties in dependence on laser beam parameters were done by means of ion diagnostics devices: ion collectors (ICs), cylindrical ion energy analyzer (IEA) and the mass spectrograph of the Thomson type. At IPPLM, different types of detectors have been developed for measurement of X-ray emission. Properties of laser-produced beams of ions and X-ray radiation were analysed in the cooperative experiments performed with the use of a high-energy iodine laser PALS at the PALS Research Centre ASCR in the Czech Republic and the low-energy repetitive laser at IPPLM.

  9. Multiple One-Dimensional Search (MODS) algorithm for fast optimization of laser-matter interaction by phase-only fs-laser pulse shaping

    Science.gov (United States)

    Galvan-Sosa, M.; Portilla, J.; Hernandez-Rueda, J.; Siegel, J.; Moreno, L.; Solis, J.

    2014-09-01

    In this work, we have developed and implemented a powerful search strategy for optimization of nonlinear optical effects by means of femtosecond pulse shaping, based on topological concepts derived from quantum control theory. Our algorithm [Multiple One-Dimensional Search (MODS)] is based on deterministic optimization of a single solution rather than pseudo-random optimization of entire populations as done by commonly used evolutionary algorithms. We have tested MODS against a genetic algorithm in a nontrivial problem consisting in optimizing the Kerr gating signal (self-interaction) of a shaped laser pulse in a detuned Michelson interferometer configuration. The obtained results show that our search method (MODS) strongly outperforms the genetic algorithm in terms of both convergence speed and quality of the solution. These findings demonstrate the applicability of concepts of quantum control theory to nonlinear laser-matter interaction problems, even in the presence of significant experimental noise.

  10. Structure and mechanical properties of austenitic 316L steel produced by selective laser melting

    Science.gov (United States)

    Kuznetsov, P. A.; Zisman, A. A.; Petrov, S. N.; Goncharov, I. S.

    2016-10-01

    The mechanical properties and the impact toughness of austenitic 316L steel produced by selective laser melting at a laser power of 175-190 W have been studied. It is shown that the selective laser melting method makes it possible to significantly increase the strength properties of the steel with some decrease in the ductility and the impact toughness as compared to those of the steel produced by a traditional technology. The laser power influences insignificantly. The methods of making notches and its orientation is found to influence the impact toughness.

  11. Isolated sub-fs XUV pulse generation in Mn plasma ablation.

    Science.gov (United States)

    Ganeev, R A; Witting, T; Hutchison, C; Frank, F; Tudorovskaya, M; Lein, M; Okell, W A; Zaïr, A; Marangos, J P; Tisch, J W G

    2012-11-05

    We report studies of high-order harmonic generation in laser-produced manganese plasmas using sub-4-fs drive laser pulses. The measured spectra exhibit resonant enhancement of a small spectral region of about 2.5 eV width around the 31st harmonic (~50eV). The intensity contrast relative to the directly adjacent harmonics exceeds one order of magnitude. This finding is in sharp contrast to the results reported previously for multi-cycle laser pulses [Physical Review A 76, 023831 (2007)]. Theoretical modelling suggests that the enhanced harmonic emission forms an isolated sub-femtosecond pulse.

  12. Chemical Structure by Laser-Produced X-Rays.

    Science.gov (United States)

    1982-04-02

    replicating sub-micrometer line- width patterns. (2) Besides replicating test patterns, the tech- nique has been used to fabricare surface acoustic wave...infrared prepulse of 30ns width, which has been chipped off the main laser pulse is focused with a cylindrical lens onto a rectangular region comprising

  13. Modification of semiconductor materials using laser-produced ion streams additionally accelerated in the electric fields

    Science.gov (United States)

    Rosinski, M.; Badziak, B.; Parys, P.; Wołowski, J.; Pisarek, M.

    2009-03-01

    The laser-produced ion stream may be attractive for direct ultra-low-energy ion implantation in thin layer of semiconductor for modification of electrical and optical properties of semiconductor devices. Application of electrostatic fields for acceleration and formation of laser-generated ion stream enables to control the ion stream parameters in broad energy and current density ranges. It also permits to remove the useless laser-produced ions from the ion stream designed for implantation. For acceleration of ions produced with the use of a low fluence repetitive laser system (Nd:glass: 2 Hz, pulse duration: 3.5 ns, pulse energy:˜0.5 J, power density: 10 10 W/cm 2) in IPPLM the special electrostatic system has been prepared. The laser-produced ions passing through the diaphragm (a ring-shaped slit in the HV box) have been accelerated in the system of electrodes. The accelerating voltage up to 40 kV, the distance of the diaphragm from the target, the diaphragm diameter and the gap width were changed for choosing the desired parameters (namely the energy band of the implanted ions) of the ion stream. The characteristics of laser-produced Ge ion streams were determined with the use of precise ion diagnostic methods, namely: electrostatic ion energy analyser and various ion collectors. The laser-produced and post-accelerated Ge ions have been used for implantation into semiconductor materials for nanocrystal fabrication. The characteristics of implanted samples were measured using AES.

  14. Reactions of pulsed laser produced boron and nitrogen atoms in a condensing argon stream

    Science.gov (United States)

    Andrews, Lester; Hassanzadeh, Parviz; Burkholder, Thomas R.; Martin, J. M. L.

    1993-01-01

    Reactions of pulsed laser produced B and N atoms at high dilution in argon favored diboron species. At low laser power with minimum radiation, the dominant reaction with N2 gave BBNN (3Π). At higher laser power, reactions of N atoms contributed the B2N (2B2), BNB (2Σu+), NNBN (1Σ+), and BNBN (3Π) species. These new transient molecules were identified from mixed isotopic patterns, isotopic shifts, and ab initio calculations of isotopic spectra.

  15. Analysis of surface damage produced by pulsed laser ablation on metal Al and semiconductor Si

    Institute of Scientific and Technical Information of China (English)

    ManBao-Yuan; LiuAi-Hua; 等

    1998-01-01

    The suraface morphological changesd produced by Nd:YAG pulsed laser ablation of metal Al and semiconductor Si were carefully examined and analyzed by using scanning elkectron microscope.The formation mechanism of the droplets was discussed.and the reasons for formation of the microcracks on the laser irradiated area of the target surface were analyzed by calculating the thermal stress,the vapor pressure and the shock pressure induced by the laser supported detonation.

  16. A 113 fs fiber laser operating at 1.56 mum using a cascadable film-type saturable absorber with P3HT-incorporated single-wall carbon nanotubes coated on polyamide.

    Science.gov (United States)

    Shohda, Fumio; Nakazawa, Masataka; Mata, Junji; Tsukamoto, Jun

    2010-04-26

    We successfully fabricated a cascadable film-type single-wall carbon nanotube (SWNT) saturable absorber coated on aromatic polyamide film, in which the saturable absorption effect can be controlled with the number of films. A conductive polymer P3HT (poly-3-hexylthiophene) was adopted to obtain a uniform SWNT solution. We applied saturable absorber films to a passively mode-locked fiber laser and successfully generated a 113 fs, 42 MHz pulse by inserting two film layers between fiber connectors in the cavity.

  17. 50-GHz repetition-rate, 280-fs pulse generation at 100-mW average power from a mode-locked laser diode externally compressed in a pedestal-free pulse compressor

    Science.gov (United States)

    Tamura, Kohichi R.; Sato, Kenji

    2002-07-01

    280-fs pedestal-free pulses are generated at average output powers exceeding 100 mW at a repetition rate of 50 GHz by compression of the output of a mode-locked laser diode (MLLD) by use of a pedestal-free pulse compressor (PFPC). The MLLD consists of a monolithically integrated chirped distributed Bragg reflector, a gain section, and an electroabsorption modulator. The PFPC is composed of a dispersion-flattened dispersion-decreasing fiber and a dispersion-flattened dispersion-imbalanced nonlinear optical loop mirror. Frequency modulation for linewidth broadening is used to overcome the power limitation imposed by stimulated Brillouin scattering.

  18. Structure-property relationship of ceramic coatings on metals produced by laser processing

    NARCIS (Netherlands)

    de Hosson, J.T.M.; van den Burg, M.; Mazumder, J; Conde, O; Villar, R; Steen, W

    1996-01-01

    This paper concentrates on the mechanical performance of various ceramic coatings of Cr2O3 on steel (SAF2205), as produced by CO2 laser processing. The thickness of the coating that can be applied by laser coating is limited to about 200 mu m setting a limit to the maximum strain energy release rate

  19. MECHANICAL PERFORMANCE OF METAL-CERAMIC INTERFACES PRODUCED BY LASER PROCESSING

    NARCIS (Netherlands)

    van den Burg, M.; de Hosson, J.T.M.

    1995-01-01

    This paper concentrates on the mechanical performance of various ceramic coatings of Cr2O3 on Steel (SAF2205), as produced by CO2 laser processing. The thickness of the coating that can be applied by laser coating is limited to about 200 mu m setting a limit to the maximum strain energy release rate

  20. Tuning laser produced electron-positron jets for lab-astrophysics experiment

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hui [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fiuza, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hazi, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kemp, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Link, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pollock, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marley, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nagel, S. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Park, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schneider, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shepherd, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tommasini, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wilks, S. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Williams, G. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Barnak, D. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics (LLE); Chang, P-Y. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics (LLE); Fiksel, G. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics (LLE); Glebov, V. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics (LLE); Meyerhofer, D. D. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics (LLE); Myatt, J. F. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics (LLE); Stoeckel, C. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics (LLE); Nakai, M. [Osaka Univ. (Japan). ILE; Arikawa, Y. [Osaka Univ. (Japan). ILE; Azechi, H. [Osaka Univ. (Japan). ILE; Fujioka, S. [Osaka Univ. (Japan). ILE; Hosoda, H. [Osaka Univ. (Japan). ILE; Kojima, S. [Osaka Univ. (Japan). ILE; Miyanga, N. [Osaka Univ. (Japan). ILE; Morita, T. [Osaka Univ. (Japan). ILE; Moritaka, T. [Osaka Univ. (Japan). ILE; Nagai, T. [Osaka Univ. (Japan). ILE; Namimoto, T. [Osaka Univ. (Japan). ILE; Nishimura, H. [Osaka Univ. (Japan). ILE; Ozaki, T. [Osaka Univ. (Japan). ILE; Sakawa, Y. [Osaka Univ. (Japan). ILE; Takabe, H. [Osaka Univ. (Japan). ILE; Zhang, Z. [Osaka Univ. (Japan). ILE

    2015-02-23

    This paper reviews the experiments on the laser produced electron-positron jets using large laser facilities worldwide. The goal of the experiments was to optimize the parameter of the pair jets for their potential applications in laboratory-astrophysical experiment. Results on tuning the pair jet’s energy, number, emittance and magnetic collimation will be presented.

  1. MECHANICAL PERFORMANCE OF METAL-CERAMIC INTERFACES PRODUCED BY LASER PROCESSING

    NARCIS (Netherlands)

    van den Burg, M.; de Hosson, J.T.M.

    1995-01-01

    This paper concentrates on the mechanical performance of various ceramic coatings of Cr2O3 on Steel (SAF2205), as produced by CO2 laser processing. The thickness of the coating that can be applied by laser coating is limited to about 200 mu m setting a limit to the maximum strain energy release rate

  2. Dependence of terahertz power from laser-produced plasma on laser intensity

    Energy Technology Data Exchange (ETDEWEB)

    Shin, J.-H.; Zhidkov, A.; Jin, Z.; Hosokai, T.; Kodama, R. [Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871 (Japan); Photon Pioneers Center, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871 (Japan); Japan Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka (Japan)

    2012-07-11

    Power of terahertz radiation from plasma which is generated from air irradiated by coupled ({omega}, 2{omega}) femtosecond laser pulses is analyzed for high laser intensities, for which non-linear plasma effects on the pulse propagation become essential, with multidimensional particle-in-cell simulations including the self-consistent plasma kinetics. The growth rate of THz power becomes slower as the laser intensity increases. A reason of such a lowering of efficiency in THz emission is found to be ionization of air by the laser pulse, which results in poor focusing of laser pulses.

  3. Dependence of terahertz power from laser-produced plasma on laser intensity

    Science.gov (United States)

    Shin, J.-H.; Zhidkov, A.; Jin, Z.; Hosokai, T.; Kodama, R.

    2012-07-01

    Power of terahertz radiation from plasma which is generated from air irradiated by coupled (ω, 2ω) femtosecond laser pulses is analyzed for high laser intensities, for which non-linear plasma effects on the pulse propagation become essential, with multidimensional particle-in-cell simulations including the self-consistent plasma kinetics. The growth rate of THz power becomes slower as the laser intensity increases. A reason of such a lowering of efficiency in THz emission is found to be ionization of air by the laser pulse, which results in poor focusing of laser pulses.

  4. Optical emission from laser-produced chromium and magnesium plasma under the effect of two sequential laser pulses

    Indian Academy of Sciences (India)

    V N Rai; F Y Yueh; J P Singh

    2005-12-01

    Parametric study of optical emission from two successive laser pulses produced chromium and magnesium plasma is presented. The line emission from chromium and magnesium plasma showed an increase by more than six times for double laser pulse excitation than for single-pulse excitation. An optimum increase in emission intensity was noted for inter-pulse delay of ∼ 2–3 s for all the elements. The experimental observations were qualitatively explained on the basis of absorption of second laser pulse in the pre-formed (by first laser) coronal plasma by inverse Bremsstrahlung process, which were found responsible for the excitation of more ions and atoms in the plasma. This process starts as the plasma scale length becomes greater than the laser wavelength. This study further indicated the suitability of this technique in the field of elemental analysis.

  5. Experimental investigation of a novel microchip laser producing synchronized dual-frequency laser pulse with an 85 GHz interval

    Science.gov (United States)

    Hu, M.; An, R. D.; Zhang, H.; Huang, Q. F.; Ge, J. H.

    2013-01-01

    A novel self-Q-switched microchip laser is introduced, which can produce synchronized dual-frequency laser pulse trains. By adopting a prepump mechanism, as well as shifting the gain curve and resonance wavelengths, the relative gains of π and σ polarization modes are adjusted, which offers an effective way to finely synchronize the laser pulses. By employing a 0.9 mm length monolithic cavity, a pair of synchronized pulse trains with a frequency separation of 85 GHz (0.32 nm) is achieved, which nearly approaches the gain bandwidth of the laser medium. Another separated cavity with a length of 2.8 mm operates in the same way for further investigation of microwave generation. A radiofrequency signal with frequency of 26.565 GHz is achieved by beat-noting of the synchronized laser pulse trains with 0.1 nm wavelength separation.

  6. Satellite and Opacity Effects on Resonance Line Shapes Produced from Short-Pulse Laser Heated Foils

    Energy Technology Data Exchange (ETDEWEB)

    Shepherd, R; Audebert, P; Chen, H-K; Fournier, K B; Peyreusse, O; Moon, S; Lee, R W; Price, D; Klein, L; Gauthier, J C; Springer, P

    2002-12-03

    We measure the He-like, time-resolved emission from thin foils consisting of 250 {angstrom} of carbon-250 {angstrom} of aluminum and 500 {angstrom} aluminum illuminated with a 150 fs laser pulse at an intensity of 1 x 10{sup 19} W/cm{sup 2}. Dielectronic satellite contributions to the 1s{sup 2}-1s2p({sup 1}P), 1s{sup 2}-1s3p({sup 1}P), and 1s{sup 2}1s4p({sup 1}P) line intensities are modeled using the configuration averaged code AVERROES and is found to be significant for all three resonance lines. The contribution of opacity broadening is inferred from the data and found to be significant only in the 1s{sup 2}-1s2p({sup 1}P).

  7. Ballistic pendula for measuring the momentum of a laser-produced plasma

    Science.gov (United States)

    Grun, J.; Ripin, B. H.

    1982-12-01

    We describe the use of a ballistic pendulum array to measure the momentum of a laser-produced plasma. An in situ calibration method is described and the pendulum results are compared to measurements made with other diagnostics.

  8. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Composition and dynamics of an erosion plasma produced by microsecond laser pulses

    Science.gov (United States)

    Anisimov, V. N.; Grishina, V. G.; Derkach, O. N.; Sebrant, A. Yu; Stepanova, M. A.

    1995-08-01

    The ion and energy compositions were determined and the dynamics was studied of an erosion plume formed by microsecond CO2 laser pulses incident on a graphite target. The ionic emission lines were used to find the electron density and temperature of the plasma on the target surface. The temperature of the plasma source did not change throughout the line emission time (4 μs). At the plasma recombination stage the lines of the C II, C III, and C IV ions were accompanied by bands of the C2 molecule near the target surface and also near the surface of an substrate when a plasma flow interacted with it. Ways were found for controlling the plume expansion anisotropy and for producing plasma flows with controlled parameters by selection of the conditions during formation of a quasisteady erosion plasma flow.

  9. Astrophysical Weibel instability in counterstreaming laser-produced plasmas

    Science.gov (United States)

    Fox, William; Fiksel, Gennady; Bhattacharjee, Amitava; Change, Po-Yu; Germaschewski, Kai; Hu, Suxing; Nilson, Philip

    2014-06-01

    Astrophysical shock waves play diverse roles, including energizing cosmic rays in the blast waves of astrophysical explosions, and generating primordial magnetic fields during the formation of galaxies and clusters. These shocks are typically collisionless and require collective electromagnetic fields to couple the upstream and downstream plasmas. The Weibel instability has been proposed to provide the requisite interaction mechanism for shock formation in weakly-magnetized shocks by generating turbulent electric and magnetic fields in the shock front. This work presents the first laboratory identification of this Weibel instability between counterstreaming supersonic plasma flows and confirms its basic features, a significant step towards understanding these shocks. In the experiments, conducted on the OMEGA EP laser facility at the University of Rochester, a pair of plasmas plumes are generated by irradiating of a pair of opposing parallel plastic (CH) targets. The ion-ion interaction between the two plumes is collisionless, so as the plumes interpenetrate, supersonic, counterstreaming ion flow conditions are obtained. Electromagnetic fields formed in the interaction of the two plumes were probed with an ultrafast laser-driven proton beam, and we observed the growth of a highly striated, transverse instability with extended filaments parallel to the flows. The instability is identified as an ion-driven Weibel instability through agreement with analytic theory and particle-in-cell simulations, paving the way for further detailed laboratory study of this instability and its consequences for particle energization and shock formation.[1] W. Fox, G. Fiksel, A. Bhattacharjee, P. Y. Chang, K. Germaschewski, S. X. Hu, and P. M. Nilson, “Filamentation instability of counterstreaming laser-driven plasmas,” Phys. Rev. Lett. 111, 225002 (2013).

  10. Producing KDP and DKDP crystals for the NIF laser

    Energy Technology Data Exchange (ETDEWEB)

    Atherton, L J; Burnham, A K; Combs, R C; Couture, S A; De Yoreo, J J; Hawley-Fedder, R A; Montesant, R C; Robey, H F; Runkel, M; Staggs, M; Wegner, P J; Yan, M; Zaitseva, N P

    1999-09-02

    The cost and physics requirements of the NIF have established two important roles for potassium dihydrogen phosphate (KDP) crystals. 1. To extract more laser energy per unit of flashlamp light and laser glass, the NIF has adopted a multipass architecture as shown in Figure 1. Light is injected in the transport spatial filter, first traverses the power amplifiers, and then is directed to main amplifiers, where it makes four passes before being redirected through the power amplifiers towards the target. To enable the multipass of the main amplifiers, a KDP-containing Pockels cell rotates the polarization of the beam to make it either transmit through or reflect off a polarizer held at Brewster's angle within the main laser cavity. If transmitted, the light reflects off a mirror and makes another pass through the cavity. If reflected, it proceeds through the power amplifier to the target. the original seed crystal as the pyramid faces grow. Unfortunately, this pyramidal growth is very slow, and it takes about two years to grow a crystal to NIF size. To provide more programmatic flexibility and reduce costs in the long run, we have developed an alternative technology commonly called rapid growth. Through a combination of higher temperatures and higher supersaturation of the growth solution, a NIF-size boule can be grown in 1 to 2 months from a small ''point'' seed. However, growing boules of adequate size is not sufficient. Care must be taken to prevent inclusions of growth solution and incorporation of atomically substituted 2. Implosions for ICF work far better at shorter wavelengths due to less generation of hot electrons, which preheat the fuel and make it harder to compress. Compromising between optic lifetime and implosion efficiency, both Nova and the NIF operate at a tripled frequency of the 1053-nm fundamental frequency of a neodymium glass laser. This tripling is accomplished by two crystals, one made of KDP and one made of deuterated

  11. 5 nm structures produced by direct laser writing

    Energy Technology Data Exchange (ETDEWEB)

    Pavel, E [Storex Technologies, Bucharest 020892 (Romania); Jinga, S; Andronescu, E; Vasile, B S [Department of Science and Engineering of Oxide Materials, Faculty of Applied Chemistry and Materials Science, University ' Politehnica' of Bucharest, Bucharest 011061 (Romania); Rotiu, E; Ionescu, L; Mazilu, C, E-mail: eugenp@rdslink.ro [National Glass Institute, Bucharest 032258 (Romania)

    2011-01-14

    Here we present a new approach to overcome the optical diffraction limit by using novel materials. In the paper, we report experimental results obtained by high-resolution transmission electron microscopy (HRTEM) and optical absorption spectroscopy, for a fluorescent photosensitive glass-ceramic containing rare-earth ions such as samarium (Sm). Using a home built dynamic tester, with a low power laser, we recorded nanostructures having 5 nm line widths. In the line structure, measurements reveal the presence of silver nanocrystals with few nanometre sizes. HRTEM shows that there is a random orientation of the nanocrystals. A writing mechanism with three steps is proposed.

  12. 5 nm structures produced by direct laser writing.

    Science.gov (United States)

    Pavel, E; Jinga, S; Andronescu, E; Vasile, B S; Rotiu, E; Ionescu, L; Mazilu, C

    2011-01-14

    Here we present a new approach to overcome the optical diffraction limit by using novel materials. In the paper, we report experimental results obtained by high-resolution transmission electron microscopy (HRTEM) and optical absorption spectroscopy, for a fluorescent photosensitive glass-ceramic containing rare-earth ions such as samarium (Sm). Using a home built dynamic tester, with a low power laser, we recorded nanostructures having 5 nm line widths. In the line structure, measurements reveal the presence of silver nanocrystals with few nanometre sizes. HRTEM shows that there is a random orientation of the nanocrystals. A writing mechanism with three steps is proposed.

  13. Ultra-broad band supercontinuum produced by terawatt femtosecond laser

    Institute of Scientific and Technical Information of China (English)

    张伟力; 王清月; 邢岐荣; 柴路; K.M.Yoo

    1997-01-01

    The characteristics of supercontinuum produced by high-intensity femtosecond pulses were investigated under different interaction lengths, various pump intensities, different pump wavelengths at the fundamental 800 nm and its second-harmonic 400 nm. High transfer-efficiency supercontinuum with flat-top in liquid media was produced. As the main nonlinear mechanisms, the effects of self-phase modulation (SPM) and four-photon parametric emission were also investigated.

  14. Influence of the focal point position on the properties of a laser-produced plasma

    Science.gov (United States)

    Kasperczuk, A.; Pisarczyk, T.; Badziak, J.; Miklaszewski, R.; Parys, P.; Rosinski, M.; Wolowski, J.; Stenz, CH.; Ullschmied, J.; Krousky, E.; Masek, K.; Pfeifer, M.; Rohlena, K.; Skala, J.; Pisarczyk, P.

    2007-10-01

    This paper deals with investigations of the influence of the focusing lens focal point position on the properties of a plasma produced by a defocused laser beam. The experiment was carried out at the Prague Asterix Laser System iodine laser [K. Jungwirth, A. Cejnarova, L. Juha, B. Kralikova, J. Krasa, E. Krousky, P. Krupickova, L. Laska, K. Masek, T. Mocek, M. Pfeifer, A. Prag, O. Renner, K. Rohlena, B. Rus, J. Skala, P. Straka, and J. Ullschmied, Phys. Plasmas 8, 2495 (2001)] by using the third harmonic of laser radiation (λ=0.438μm), laser energy of 70J, pulse duration of 250ps (full width at half-maximum), and beam spot radii of 250 and 400μm. Cu and Ta were chosen as target materials. The experimental data were obtained by means of a three-frame interferometric system, ion collectors, and crater replica techniques. The reported results allow formulating an important hypothesis that the laser-produced plasma modifies strongly the laser intensity distribution. It is shown how such a modification depends on the relative position and distance of the focal point to the target surface. Of particular importance is whether the focal point is located inside or in front of the target. The irradiation geometry is crucial for the possibility of generating plasma jets by laser radiation. Well-formed jet-like plasma structures can be created if an initially homogeneous laser intensity distribution is transformed in the plasma to an annular one.

  15. Simultaneous streak and frame interferometry for electron density measurements of laser produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Quevedo, H. J., E-mail: hjquevedo@utexas.edu; McCormick, M.; Wisher, M.; Bengtson, Roger D.; Ditmire, T. [Center for High Energy Density Science, Department of Physics, University of Texas at Austin, Austin, Texas 78712 (United States)

    2016-01-15

    A system of two collinear probe beams with different wavelengths and pulse durations was used to capture simultaneously snapshot interferograms and streaked interferograms of laser produced plasmas. The snapshots measured the two dimensional, path-integrated, electron density on a charge-coupled device while the radial temporal evolution of a one dimensional plasma slice was recorded by a streak camera. This dual-probe combination allowed us to select plasmas that were uniform and axisymmetric along the laser direction suitable for retrieving the continuous evolution of the radial electron density of homogeneous plasmas. Demonstration of this double probe system was done by measuring rapidly evolving plasmas on time scales less than 1 ns produced by the interaction of femtosecond, high intensity, laser pulses with argon gas clusters. Experiments aimed at studying homogeneous plasmas from high intensity laser-gas or laser-cluster interaction could benefit from the use of this probing scheme.

  16. Simultaneous streak and frame interferometry for electron density measurements of laser produced plasmas

    Science.gov (United States)

    Quevedo, H. J.; McCormick, M.; Wisher, M.; Bengtson, Roger D.; Ditmire, T.

    2016-01-01

    A system of two collinear probe beams with different wavelengths and pulse durations was used to capture simultaneously snapshot interferograms and streaked interferograms of laser produced plasmas. The snapshots measured the two dimensional, path-integrated, electron density on a charge-coupled device while the radial temporal evolution of a one dimensional plasma slice was recorded by a streak camera. This dual-probe combination allowed us to select plasmas that were uniform and axisymmetric along the laser direction suitable for retrieving the continuous evolution of the radial electron density of homogeneous plasmas. Demonstration of this double probe system was done by measuring rapidly evolving plasmas on time scales less than 1 ns produced by the interaction of femtosecond, high intensity, laser pulses with argon gas clusters. Experiments aimed at studying homogeneous plasmas from high intensity laser-gas or laser-cluster interaction could benefit from the use of this probing scheme.

  17. Laser produced nanocavities in silica and sapphire: a parametric study

    Energy Technology Data Exchange (ETDEWEB)

    Hallo, L; Travaille, G; Tikhonchuk, V T; Breil, J [CELIA, Universite Bordeaux I, 351 cours de la Liberation, 33405 Talence (France); Bourgeade, A [CEA - CESTA, BP 2, 3334 Le Barp (France); Nkonga, B [MAB, Universite Bordeaux I, 351 cours de la Liberation, 33405 Talence (France)

    2008-05-15

    We present a model, that describes a sub-micron cavity formation in a transparent dielectric under a tight focusing of a ultra-short laser pulse. The model solves the full set of Maxwell's equations in the three-dimensional geometry along with non-linear propagation phenomenons. This allows us to initialize hydrodynamic simulations of the sub-micron cavity formation. Cavity characteristics, which depend on 3D energy release and non linear effects, have been investigated and compared with experimental results. For this work, we want to deeply acknowledge the numerical support provided by the CEA Centre de Calcul Recherche et Technologie, whose help guaranteed the achievement of this study.

  18. High contrast, 86  fs, 35  mJ pulses from a diode-pumped, Yb:glass, double-chirped-pulse amplification laser system.

    Science.gov (United States)

    Liebetrau, Hartmut; Hornung, Marco; Keppler, Sebastian; Hellwing, Marco; Kessler, Alexander; Schorcht, Frank; Hein, Joachim; Kaluza, Malte C

    2016-07-01

    We demonstrate the generation of 86 fs, 35 mJ, high-contrast laser pulses at 1030 nm with a repetition rate of 1 Hz from a diode-pumped double chirped-pulse amplification setup. The pulses exhibit a spectral bandwidth exceeding 27 nm full width at half-maximum. This could be achieved by using a laser architecture comprising two stages of chirped pulse amplification with a cross-polarized wave generation filter in between, by applying spectral shaping and by increasing the spectral hard-clip of the second stretcher. These are, to the best of our knowledge, the shortest pulses at the mJ level with ultra-high contrast generated with a diode-pumped front end at 1030 nm.

  19. Femtosecond Laser Post-Processing of Metal Parts Produced by Laser Additive Manufacturing

    Directory of Open Access Journals (Sweden)

    Mingareev Ilya

    2013-11-01

    Full Text Available High-repetition rate femtosecond laser radiation was utilized to improve surface quality of metal parts manufactured by laser additive techniques. This novel approach can be used to postprocess parts made of heat-sensitive materials, and to attain the designed net shape with micrometer precision.

  20. Pr Doped YBCO Films Produced by Pulsed Laser Deposition (Postprint)

    Science.gov (United States)

    2012-02-01

    found that the substituent was dispersed throughout the film and led to an increase in nanoparticles. EXPERIMENT Thin films of (Y1-x, Prx )Ba2Cu3O7-d...were produced by PLD using conditions previously optimized for pure YBCO. PLD targets were prepared with the composition (Y1-x, Prx )Ba2Cu3O7- d

  1. Studies of extreme ultraviolet emission from laser produced plasmas, as sources for next generation lithography

    Science.gov (United States)

    Cummins, Thomas

    The work presented in this thesis is primarily concerned with the optimisation of extreme ultraviolet (EUV) photoemission around 13.5 nm, from laser produced tin (Sn) plasmas. EUV lithography has been identified as the leading next generation technology to take over from the current optical lithography systems, due to its potential of printing smaller feature sizes on integrated circuits. Many of the problems hindering the implementation of EUV lithography for high volume manufacturing have been overcome during the past 20 years of development. However, the lack of source power is a major concern for realising EUV lithography and remains a major roadblock that must be overcome. Therefore in order to optimise and improve the EUV emission from Sn laser plasma sources, many parameters contributing to the make-up of an EUV source are investigated. Chapter 3 presents the results of varying several different experimental parameters on the EUV emission from Sn laser plasmas. Several of the laser parameters including the energy, gas mixture, focusing lens position and angle of incidence are changed, while their effect on the EUV emission is studied. Double laser pulse experiments are also carried out by creating plasma targets for the main laser pulse to interact with. The resulting emission is compared to that of a single laser pulse on solid Sn. Chapter 4 investigates tailoring the CO2 laser pulse duration to improve the efficiency of an EUV source set-up. In doing so a new technique for shortening the time duration of the pulse is described. The direct effects of shortening the CO2 laser pulse duration on the EUV emission from Sn are then studied and shown to improve the efficiency of the source. In Chapter 5 a new plasma target type is studied and compared to the previous dual laser experiments. Laser produced colliding plasma jet targets form a new plasma layer, with densities that can be optimised for re-heating with the main CO2 laser pulse. Chapter 6 will present

  2. Femtosecond fiber laser additive manufacturing of tungsten

    Science.gov (United States)

    Bai, Shuang; Liu, Jian; Yang, Pei; Zhai, Meiyu; Huang, Huan; Yang, Lih-Mei

    2016-04-01

    Additive manufacturing (AM) is promising to produce complex shaped components, including metals and alloys, to meet requirements from different industries such as aerospace, defense and biomedicines. Current laser AM uses CW lasers and very few publications have been reported for using pulsed lasers (esp. ultrafast lasers). In this paper, additive manufacturing of Tungsten materials is investigated by using femtosecond (fs) fiber lasers. Various processing conditions are studied, which leads to desired characteristics in terms of morphology, porosity, hardness, microstructural and mechanical properties of the processed components. Fully dense Tungsten part with refined grain and increased hardness was obtained and compared with parts made with different pulse widths and CW laser. The results are evidenced that the fs laser based AM provides more dimensions to modify mechanical properties with controlled heating, rapid melting and cooling rates compared with a CW or long pulsed laser. This can greatly benefit to the make of complicated structures and materials that could not be achieved before.

  3. Seeding the FEL of the SCSS Phase 1 Facility with the 13th Laser Harmonic of a Ti-Sa Laser Produced in Xe Gas

    CERN Document Server

    Lambert, G

    2005-01-01

    In order to reach very short wavelengths in systems based on Free Electrons Laser (FEL), and to have a more compact, fully coherent and tunable source, a particular seeding configuration is studied here. It is foreseen to test it as a demonstration experiment in 2006 into the SCSS phase 1 facility (Spring-8 Compact Sase Source, Japan). SCSS phase 1 is a linac-based FEL project, providing a compact SASE source with high brightness in the X-ray range. The external laser source, which is employed, is straightfully in the XUV range, the 13th harmonic of a Ti:Sa femtosecond laser (61.5 nm), generated in Xe gas. This harmonic can be now easily generated by focusing the Ti: Sa laser (25 mJ, 10 Hz, 100 fs) on a 10 Hz pulsed Xe gas cell. This High order Harmonics Generation (HHG) process provides us with a VUV beam with intense (1 μJ) and ultra-short (50 fs) properties.

  4. Investigation of Ag nanoparticles produced by nanosecond pulsed laser ablation in water

    Energy Technology Data Exchange (ETDEWEB)

    Nikolov, A.S.; Nedyalkov, N.N.; Nikov, R.G.; Atanasov, P.A. [Bulgarian Academy of Sciences, Institute of Electronics, Sofia (Bulgaria); Alexandrov, M.T. [Bulgarian Academy of Sciences, Institute of Experimental Pathology and Parasitology, Sofia (Bulgaria); Karashanova, D.B. [Bulgarian Academy of Sciences, Institute of Optical Materials and Technologies, Sofia (Bulgaria)

    2012-11-15

    A study is presented of the properties of Ag nanoparticles produced by nanosecond pulsed laser ablation in twice-distilled water. An Ag target was immersed in the liquid and irradiated by the fundamental, second, third and fourth harmonics of a Nd:YAG laser system to create different colloids. Two specific boundary values of the laser fluence were applied for each wavelength. The properties of the nanoparticles at different wavelengths of the laser radiation were examined. The characterization of the colloids was performed immediately after their fabrication. Spherical and spherical-like shapes of the nanoparticles created were established. The formation of nanowires was observed when the second and the third harmonics of the laser were used. It is connected with self-absorption of the incident laser light from the already-created nanoparticles and depends also on the laser fluence. The size distribution of the nanoparticles is estimated by transmission electron microscopy. Generally, their mean size and standard deviation decreased as the wavelength of the incident laser light was increased and increased with the increase of the laser fluence. The substantial discrepancy between the results already commented on for both characteristics considered and others, obtained by dynamic light scattering, is discussed. The structure of the nanoparticles was established to be single and polycrystalline, and the phase composition in both cases is identified as consisting of cubic silver. The nanoparticles are slightly oxidized. (orig.)

  5. Whispering-gallery-mode microdisk lasers produced by femtosecond laser direct writing.

    Science.gov (United States)

    Ku, Jin-Feng; Chen, Qi-Dai; Zhang, Ran; Sun, Hong-Bo

    2011-08-01

    We report in this Letter fabrication of whispering-gallery-mode microdisk lasers by femtosecond laser direct writing of dye-doped resins. Not only is well-defined disk shape upheld on an inverted cone-shaped supporter, but the disk also exhibits significant lasing actions characteristic of an abrupt increase of light output and the significant narrowing of the spectral lines when the threshold is approached. This work shows that the laser micronanofabrication technology is not only applicable to passive micro-optical components, but also it may play an important role in fabrication of active optoelectronic devices and their integrated photonic circuits.

  6. Modification of semiconductor materials using laser-produced ion streams additionally accelerated in the electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Rosinski, M. [Institute of Plasma Physics and Laser Microfusion, P.O. Box 49, Hery Street 23, 00-908 Warsaw (Poland)], E-mail: rosinski@ifpilm.waw.pl; Badziak, B.; Parys, P.; Wolowski, J. [Institute of Plasma Physics and Laser Microfusion, P.O. Box 49, Hery Street 23, 00-908 Warsaw (Poland); Pisarek, M. [Warsaw University of Technology, Material Science and Engineering Faculty, Warsaw (Poland)

    2009-03-01

    The laser-produced ion stream may be attractive for direct ultra-low-energy ion implantation in thin layer of semiconductor for modification of electrical and optical properties of semiconductor devices. Application of electrostatic fields for acceleration and formation of laser-generated ion stream enables to control the ion stream parameters in broad energy and current density ranges. It also permits to remove the useless laser-produced ions from the ion stream designed for implantation. For acceleration of ions produced with the use of a low fluence repetitive laser system (Nd:glass: 2 Hz, pulse duration: 3.5 ns, pulse energy:{approx}0.5 J, power density: 10{sup 10} W/cm{sup 2}) in IPPLM the special electrostatic system has been prepared. The laser-produced ions passing through the diaphragm (a ring-shaped slit in the HV box) have been accelerated in the system of electrodes. The accelerating voltage up to 40 kV, the distance of the diaphragm from the target, the diaphragm diameter and the gap width were changed for choosing the desired parameters (namely the energy band of the implanted ions) of the ion stream. The characteristics of laser-produced Ge ion streams were determined with the use of precise ion diagnostic methods, namely: electrostatic ion energy analyser and various ion collectors. The laser-produced and post-accelerated Ge ions have been used for implantation into semiconductor materials for nanocrystal fabrication. The characteristics of implanted samples were measured using AES.

  7. High-Power Laser Pulse Recirculation for Inverse Compton Scattering-Produced Gamma-Rays

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, I; Shverdin, M; Gibson, D; Brown, C

    2007-04-17

    Inverse Compton scattering of high-power laser pulses on relativistic electron bunches represents an attractive method for high-brightness, quasi-monoenergetic {gamma}-ray production. The efficiency of {gamma}-ray generation via inverse Compton scattering is severely constrained by the small Thomson scattering cross section. Furthermore, repetition rates of high-energy short-pulse lasers are poorly matched with those available from electron accelerators, resulting in low repetition rates for generated {gamma}-rays. Laser recirculation has been proposed as a method to address those limitations, but has been limited to only small pulse energies and peak powers. Here we propose and experimentally demonstrate an alternative method for laser pulse recirculation that is uniquely capable of recirculating short pulses with energies exceeding 1 J. Inverse Compton scattering of recirculated Joule-level laser pulses has a potential to produce unprecedented peak and average {gamma}-ray brightness in the next generation of sources.

  8. Properties of Laser-Produced Highly Charged Heavy Ions for Direct Injection Scheme

    CERN Document Server

    Sakakibara, Kazuhiko; Hayashizaki, Noriyosu; Ito, Taku; Kashiwagi, Hirotsugu; Okamura, Masahiro

    2005-01-01

    To accelerate highly charged intense ion beam, we have developed the Direct Plasma Injection Scheme (DPIS) with laser ion source. In this scheme an ion beam from a laser ion source is injected directly to a RFQ linac without a low energy beam transport (LEBT) and the beam loss in the LEBT can be avoided. We achieved high current acceleration of carbon ions (60mA) by DPIS with the high current optimized RFQ. As the next setp we will use heavier elements like Ag, Pb, Al and Cu as target in LIS (using CO2, Nd-YAG or other laser) for DPIS and will examine properties of laser-produced plasma (the relationship of between charge state and laser power density, the current dependence of the distance from the target, etc).

  9. Cavitation erosion by single laser-produced bubbles

    Science.gov (United States)

    Philipp, A.; Lauterborn, W.

    1998-04-01

    In order to elucidate the mechanism of cavitation erosion, the dynamics of a single laser-generated cavitation bubble in water and the resulting surface damage on a flat metal specimen are investigated in detail. The characteristic effects of bubble dynamics, in particular the formation of a high-speed liquid jet and the emission of shock waves at the moment of collapse are recorded with high-speed photography with framing rates of up to one million frames/s. Damage is observed when the bubble is generated at a distance less than twice its maximum radius from a solid boundary ([gamma]=2, where [gamma]=s/Rmax, s is the distance between the boundary and the bubble centre at the moment of formation and Rmax is the maximum bubble radius). The impact of the jet contributes to the damage only at small initial distances ([gamma][less-than-or-eq, slant]0.7). In this region, the impact velocity rises to 83 m s[minus sign]1, corresponding to a water hammer pressure of about 0.1 GPa, whereas at [gamma]>1, the impact velocity is smaller than 25 m s[minus sign]1. The largest erosive force is caused by the collapse of a bubble in direct contact with the boundary, where pressures of up to several GPa act on the material surface. Therefore, it is essential for the damaging effect that bubbles are accelerated towards the boundary during the collapse phases due to Bjerknes forces. The bubble touches the boundary at the moment of second collapse when [gamma]jet flow through the bubble centre. Corresponding to the decay of this bubble torus into multiple tiny bubbles each collapsing separately along the circumference of the torus, the observed damage is circular as well. Bubbles in the ranges [gamma][less-than-or-eq, slant]0.3 and [gamma]=1.2 to 1.4 caused the greatest damage. The overall diameter of the damaged area is found to scale with the maximum bubble radius. Owing to the possibility of generating thousands of nearly identical bubbles, the cavitation resistance of even hard

  10. Simulations of Magnetic Field Generation in Laser-Produced Blast Waves

    Science.gov (United States)

    Lamb, D.; Fatenejad, M.; Gregori, G.; Miniati, F.; Park, H.-S.; Remington, B.; Ravasio, A.; Koenig, M.; Murphy, C. D.

    2011-10-01

    Magnetic fields are ubiquitous in the Universe. The origin of these fields and process by which they are amplified are not fully understood, although amplification is thought to involve turbulence. Experiments being conducted at medium-scale laser facilities (such as the LULI laser the Janus laser) can investigate the self-generation of magnetic fields under conditions that resemble astrophysical shocks. In these experiments, two 527 nm, 1.5 ns long laser beams are focused onto a 500 μm diameter graphite rod producing an explosion and asymmetric blast wave into a Helium filled chamber. A variety of diagnostics measure the velocity, electron density, and show that a large scale magnetic field is produced. We report preliminary hydrodynamic and MHD simulations using FLASH of a simplified version of the experiment. The results provide insights into the origin and generation of the magnetic field. This work was partially supported by the US DOE, the European Research Council, and Laserlab Europe.

  11. Characterization of 1064 nm Nd:YAG laser-produced cu plasma

    Science.gov (United States)

    Ilyas, B.; Dogar, A. H.; Ullah, S.; Nadeem, A.; Qayyum, A.

    2012-07-01

    The plasma was produced by focusing Nd:YAG laser pulses of 1064 nm wavelength on to a copper target at laser fluences of 5.35, 6.95, and 9.33 J/cm2. An ion collector placed along the target surface normal was used to record the time-of-flight (TOF) ion signal during plasma expansion in vacuum. The TOF ion pulses were deconvoluted using the Coulomb-Boltzmann-shifted function to estimate the available Cu ion charge states, equivalent plasma ion temperature, and accelerating potential in the nonequilibrium plasma. The maximum available ion charge state, equivalent plasma ion temperature, and accelerating potential are found to increase with laser fluence. In the local thermal equilibrium conditions, the accelerating potential can be supposed to apply across a distance of the order of the Debye length. The Debye length and, hence, the electric field in the laser produced plasma at three laser fluences values were estimated. The electric field was in the range of 1 MV/cm and increased with laser fluence. In the laser fluence range used in this work, the sum of thermal and adiabatic energy of the ion was slightly higher than its Coulomb energy.

  12. Residual stress in TI6AL4V objects produced by direct metal laser sintering

    Directory of Open Access Journals (Sweden)

    Van Zyl, Ian

    2016-12-01

    Full Text Available Direct Metal Laser Sintering produces 3D objects using a layer-by- layer method in which powder is deposited in thin layers. Laser beam scans over the powder fusing powder particles as well as the previous layer. High-concentration of laser energy input leads to high thermal gradients which induce residual stress within the as- built parts. Ti6Al4V (ELI samples have been manufactured by EOSINT M280 system at prescribed by EOS process-parameters. Residual stresses were measured by XRD method. Microstructure, values and directions of principal stresses inTi6Al4V DMLS samples were analysed.

  13. Nitrogen-vacancy defects in diamond produced by femtosecond laser nanoablation technique

    Science.gov (United States)

    Kononenko, Vitali V.; Vlasov, Igor I.; Gololobov, Viktor M.; Kononenko, Taras V.; Semenov, Timur A.; Khomich, Andrej A.; Shershulin, Vladimir A.; Krivobok, Vladimir S.; Konov, Vitaly I.

    2017-08-01

    A strategy for nitrogen-vacancy (NV) center production in diamond under its irradiation by 266-nm femtosecond laser pulses is suggested: NV centers can be effectively and controllably created in the regime of nanoablation of a diamond surface. The NV concentration was found to increase logarithmically with the laser pulse number in the nanoablation regime, which is realized at a laser fluence of tool to produce the requisite number of vacancies near the diamond surface and, hence, to manage the formation of NV complexes.

  14. Analysis of laser energy deposition leading to damage and ablation of HfO{sub 2} and Nb{sub 2}O{sub 5} single layers submitted to 500 fs pulses at 1030 and 343 nm

    Energy Technology Data Exchange (ETDEWEB)

    Douti, Dam-Be; Begou, Thomas; Lemarchand, Fabien; Lumeau, Julien; Commandre, Mireille; Gallais, Laurent [Aix-Marseille Universite, CNRS, Centrale Marseille, Institut Fresnel UMR 7249, Marseille (France)

    2016-07-15

    Laser- induced damage thresholds and morphologies of laser ablated sites on dielectric thin films are studied based on experiments and simulations. The films are single layers of hafnia and niobia deposited on fused silica substrates with a magnetron sputtering technique. Laser experiments are conducted with 500 fs pulses at 1030 and 343 nm, and the irradiated sites are characterized with optical profilometry and scanning electron microscopy. The results, i.e., LIDT and damage morphologies, are compared to simulations of energy deposition in the films based on the single rate equation for electron excitation, taking into account transient optical properties of the films during the pulse. The results suggest that a critical absorbed energy as a damage criterion gives consistent results both with the measured LIDT and the observed damage morphologies at fluences close to the damage threshold. Based on the numerical and experimental results, the determined LIDT evolution with the wavelength is described as nearly constant in the near-infrared region, and as rapidly decreasing with laser wavelength in the visible and near-ultraviolet regions. (orig.)

  15. High-energy, sub-30 fs near-IR pulses from a broadband optical parametric amplifier based on collinear interaction in BiB(3)O(6).

    Science.gov (United States)

    Ghotbi, M; Beutler, M; Petrov, V; Gaydardzhiev, A; Noack, F

    2009-03-01

    We report efficient generation of tunable femtosecond pulses in the near IR using a two stage, white-light seeded, collinear, femtosecond optical parametric amplifier (OPA). The OPA, based on BiB(3)O(6) crystal in both stages and pumped at 807 nm by a 1 kHz Ti:sapphire laser amplifier, provides sub-30 fs signal pulses after compression with energies exceeding 200 microJ, which corresponds to fivefold pulse shortening and approximately 30% internal conversion efficiency in the second stage considering 150 fs pump pulses with 1.5 mJ energy. The corresponding idler pulses with more than 100 microJ have sub-60 fs duration without compression. The first stage alone is capable of producing sub-20 fs pulses near 1400 nm at the microjoule level without using any compression.

  16. Laser ablation dynamics and production of thin films of lysozyme

    DEFF Research Database (Denmark)

    Schou, Jørgen; Canulescu, Stela; Matei, Andreea;

    at the Technical University of Denmark (DTU) produced thin films of average thickness up to 300 nm, which not only contained a significant amount of intact molecules, but also maintained the bioactivity. These films were produced by a nanosecond laser in the UV regime at 355 nm with 2 J/cm2. The surprising fact......, there was a considerable ablation weight loss of lysozyme from each shot. This is the first time the ablation by fs-lasers of a protein has been recorded quantitatively. Films of lysozyme produced by fs-laser irradiation will be analysed by MALDI in order to explore if there also is a significant amount of intact...... molecules in the films for fs-laser deposition....

  17. High-energy-throughput pulse compression by off-axis group-delay compensation in a laser-induced filament

    Energy Technology Data Exchange (ETDEWEB)

    Voronin, A. A. [Physics Department, International Laser Center, M. V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Alisauskas, S.; Muecke, O. D.; Pugzlys, A.; Baltuska, A. [Photonics Institute, Vienna University of Technology, Gusshausstrasse 27-387, 1040 Vienna (Austria); Zheltikov, A. M. [Physics Department, International Laser Center, M. V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Department of Physics and Astronomy, Texas A and M University, College Station, Texas 77843-3257 (United States)

    2011-08-15

    Off-axial beam dynamics of ultrashort laser pulses in a filament enable a radical energy-throughput improvement for filamentation-assisted pulse compression. We identify regimes where a weakly diverging wave, produced on the trailing edge of the pulse, catches up with a strongly diverging component, arising in the central part of the pulse, allowing sub-100-fs millijoule infrared laser pulses to be compressed to 20-25-fs pulse widths with energy throughputs in excess of 70%. Theoretical predictions have been verified by experimental results on filamentation-assisted compression of 70-fs, 1.5-{mu}m laser pulses in high-pressure argon.

  18. Proton imaging of an electrostatic field structure formed in laser-produced counter-streaming plasmas

    Science.gov (United States)

    Morita, T.; Kugland, N. L.; Wan, W.; Crowston, R.; Drake, R. P.; Fiuza, F.; Gregori, G.; Huntington, C.; Ishikawa, T.; Koenig, M.; Kuranz, C.; Levy, M. C.; Martinez, D.; Meinecke, J.; Miniati, F.; Murphy, C. D.; Pelka, A.; Plechaty, C.; Presura, R.; Quirós, N.; Remington, B. A.; Reville, B.; Ross, J. S.; Ryutov, D. D.; Sakawa, Y.; Steele, L.; Takabe, H.; Yamaura, Y.; Woolsey, N.; Park, H.-S.

    2016-03-01

    We report the measurements of electrostatic field structures associated with an electrostatic shock formed in laser-produced counter-streaming plasmas with proton imaging. The thickness of the electrostatic structure is estimated from proton images with different proton kinetic energies from 4.7 MeV to 10.7 MeV. The width of the transition region is characterized by electron scale length in the laser-produced plasma, suggesting that the field structure is formed due to a collisionless electrostatic shock.

  19. Orientation of hyperfine magnetic fields of {alpha}-iron films produced by laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Yasuike, Mamoru, E-mail: yyasu@rs.kagu.tus.ac.jp; Usui, Ryo; Yamada, Yasuhiro [Tokyo University of Science (Japan); Kobayashi, Yoshio [RIKEN (Japan)

    2012-03-15

    Iron films were produced by pulsed laser deposition (PLD) of iron in Ar gas and Moessbauer spectra of these films were obtained at room temperature. The orientation of the hyperfine magnetic field was found to vary depending on the pressure of the Ar gas. Iron films produced at low Ar pressures exhibited magnetic fields parallel to the substrate surface. The magnetic field became increasingly perpendicular to the substrate with increasing Ar pressure. Collisions with Ar gas molecules reduced the translational energies of laser-evaporated iron atoms and thus the orientation of crystals formed on the substrate varied depending on the Ar pressure.

  20. Optimization of soft x-ray line emission from laser-produced carbon plasma with laser intensity

    Indian Academy of Sciences (India)

    A Chowdhury; R A Joshi; G P Gupta; P A Naik; P D Gupta

    2003-12-01

    Absolute measurement for He- resonance (1s2 10-1s2p 11, at 40.2 Å) line emission from a laser-produced carbon plasma has been studied as a function of laser intensity. The optimum laser intensity is found to be ≈ 1.3 × 1012 W/cm2 for the maximum emission of 3.2 × 1013 photons sr-1 pulse-1. Since this line lies in the water window spectral region, it has potential application in x-ray microscopic imaging of biological sample in wet condition. Theoretical calculation using corona model for the emission of this line is also carried out with appropriate ionization and radiative recombination rate coefficients.

  1. Experimental investigation of micro-channels produced in aluminum alloy (AA 2024) through laser machining

    Science.gov (United States)

    Ahmed, Naveed; Alahmari, Abdulrahman M.; Darwish, Saied; Khan, Awais Ahmad

    2016-11-01

    Aluminum and its alloys are growingly used in various applications including micro-channel heat exchangers and heat sinks to facilitate heat transfer though micro-fluidic flows. Micro-channels with precise control over geometrical features are very important in order to design micro-fluidic flow dynamics and its characteristics. In this research, Nd:YAG laser beam micro-milling has been utilized to produce micro-channels in aluminum alloy (AA 2024) having cross-sectional size of 400 × 200 µm2. The objective was to control the material removal rate (MRR) of the process in order to get the micro-channels' geometries (width, depth and taperness of sidewalls) close to the designed geometries. In this context, parametric effects of predominant laser parameters on the process performance have been categorically studied. Quadratic mathematical models have further been developed to estimate the MRR and each geometrical aspect of micro-channels over different levels of laser parameters. Additionally, multi-objective optimization has been performed to get an optimized set of laser parameters generating the accurate machining geometries with appropriate material removal per laser scan. Finally, the models and optimization results were validated through confirmatory experimental tests. The results reveal that the précised micro-channel geometries can be obtained through laser beam micro-milling by selecting the appropriate combination of laser parameters (lamp current intensity of 84.48 %, laser pulse frequency of 35.70 kHz and laser scanning speed of 300 mm/s) that can collectively remove a required amount of material thickness per laser scan.

  2. Parabolic lithium mirror for a laser-driven hot plasma producing device

    Science.gov (United States)

    Baird, James K.

    1979-06-19

    A hot plasma producing device is provided, wherein pellets, singly injected, of frozen fuel are each ignited with a plurality of pulsed laser beams. Ignition takes place within a void area in liquid lithium contained within a pressure vessel. The void in the liquid lithium is created by rotating the pressure vessel such that the free liquid surface of molten lithium therein forms a paraboloid of revolution. The paraboloid functions as a laser mirror with a reflectivity greater than 90%. A hot plasma is produced when each of the frozen deuterium-tritium pellets sequentially arrive at the paraboloid focus, at which time each pellet is illuminated by the plurality of pulsed lasers whose rays pass through circular annuli across the top of the paraboloid. The beams from the lasers are respectively directed by associated mirrors, or by means of a single conical mirror in another embodiment, and by the mirror-like paraboloid formed by the rotating liquid lithium onto the fuel pellet such that the optical flux reaching the pellet can be made to be uniform over 96% of the pellet surface area. The very hot plasma produced by the action of the lasers on the respective singly injected fuel pellets in turn produces a copious quantity of neutrons and X-rays such that the device has utility as a neutron source or as an x-ray source. In addition, the neutrons produced in the device may be utilized to produce tritium in a lithium blanket and is thus a mechanism for producing tritium.

  3. Neutral cluster debris dynamics in droplet-based laser-produced plasma sources

    Science.gov (United States)

    Hudgins, Duane; Gambino, Nadia; Rollinger, Bob; Abhari, Reza

    2016-05-01

    The neutral cluster debris dynamics of a droplet-based laser-produced plasma is studied experimentally and analytically. Experiments were done imaging the debris with a high-speed shadowgraph system and using image processing to determine the droplet debris mean radial velocity \\overline{V} dependence on laser pulse irradiance E e. The data shows a power law dependence between the mean radial debris velocity and the incident irradiance giving \\overline{V}\\propto E\\text{e}n with n≈ 0.65 . A scaled analytical model was derived modeling the plasma ablation pressure on the droplet surface as the primary momentum exchange mechanism between the unablated droplet material and the laser pulse. The relationship between droplet debris trajectory and the droplet alignment with the laser was quantified analytically. The derived analytical model determines that the neutral cluster debris trajectory for an ablated droplet is a function of the laser profile f L, the droplet diameter D and the axial misalignment h between the laser axis and the droplet center. The analytical calculations from these models were found to be in good agreement with the measurements. This analysis has practical significance for understanding ablated droplet debris, droplet deformation by laser pulsing, and droplet breakup from very short timescale shocks.

  4. Instantaneous x-ray radiation energy from laser produced polystyrene plasmas for shock ignition conditions

    Energy Technology Data Exchange (ETDEWEB)

    Shang, Wanli; Wei, Huiyue; Li, Zhichao; Yi, Rongqing; Zhu, Tuo; Song, Tianmin; Huang, Chengwu; Yang, Jiamin [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China)

    2013-10-15

    Laser target energy coupling mechanism is crucial in the shock ignition (SI) scheme, and x-ray radiation energy is a non-negligible portion of the laser produced plasma energy. To evaluate the x-ray radiation energy amount at conditions relevant to SI scheme, instantaneous x-ray radiation energy is investigated experimentally with continuum phase plates smoothed lasers irradiating layer polystyrene targets. Comparative laser pulses without and with shock spike are employed. With the measured x-ray angular distribution, full space x-ray radiation energy and conversion efficiency are observed. Instantaneous scaling law of x-ray conversion efficiency is obtained as a function of laser intensity and time. It should be pointed out that the scaling law is available for any laser pulse shape and intensity, with which irradiates polystyrene planar target with intensity from 2 × 10{sup 14} to 1.8 × 10{sup 15} W/cm{sup 2}. Numerical analysis of the laser energy transformation is performed, and the simulation results agree with the experimental data.

  5. Dynamics expansion of laser produced plasma with different materials in magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Rabia Qindeel; Noriah Bte Bidin; Yaacob Mat daud [Laser Technology Laboratory, Physics Department, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia)], E-mail: plasmaqindeel@yahoo.com

    2008-12-01

    The dynamics expansion of the plasma generated by laser ablation of different materials has been investigated. The dynamics and confinement of laser generated plasma plumes are expanding across variable magnetic fields. A Q-switched neodymium-doped yttrium aluminum garnet laser with 1064 nm, 8 ns pulse width and 0.125 J laser energy was used to generate plasma that was allowed to expand across variable magnetic within 0.1 - 0.8 T. The expansions of laser-produced plasma of different materials are characterized by using constant laser power. CCD video camera was used to visualize and record the activities in the focal region. The plasma plume length, width and area were measured by using Matrox Inpector 2.1 and video Test 0.5 software. Spectrums of plasma beam from different materials are studied via spectrometer. The results show that the plasma generated by aluminum target is the largest than Brass and copper. The optical radiation from laser generated plasma beam spectrums are obtained in the range of UV to visible light.

  6. Titanium Matrix Composite Ti/TiN Produced by Diode Laser Gas Nitriding

    Directory of Open Access Journals (Sweden)

    Aleksander Lisiecki

    2015-01-01

    Full Text Available A high power direct diode laser, emitting in the range of near infrared radiation at wavelength 808–940 nm, was applied to produce a titanium matrix composite on a surface layer of titanium alloy Ti6Al4V by laser surface gas nitriding. The nitrided surface layers were produced as single stringer beads at different heat inputs, different scanning speeds, and different powers of laser beam. The influence of laser nitriding parameters on the quality, shape, and morphology of the surface layers was investigated. It was found that the nitrided surface layers consist of titanium nitride precipitations mainly in the form of dendrites embedded in the titanium alloy matrix. The titanium nitrides are produced as a result of the reaction between molten Ti and gaseous nitrogen. Solidification and subsequent growth of the TiN dendrites takes place to a large extent at the interface of the molten Ti and the nitrogen gas atmosphere. The direction of TiN dendrites growth is perpendicular to the surface of molten Ti. The roughness of the surface layers depends strongly on the heat input of laser nitriding and can be precisely controlled. In spite of high microhardness up to 2400 HV0.2, the surface layers are crack free.

  7. High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier, M., E-mail: maxence.gauthier@stanford.edu; Kim, J. B.; Curry, C. B.; Gamboa, E. J.; Göde, S.; Propp, A.; Glenzer, S. H. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Aurand, B.; Willi, O. [Heinrich-Heine-University Düsseldorf, Düsseldorf (Germany); Goyon, C.; Hazi, A.; Pak, A.; Ruby, J.; Williams, G. J. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Kerr, S. [University of Alberta, Edmonton, Alberta T6G 1R1 (Canada); Ramakrishna, B. [Indian Institute of Technology, Hyderabad (India); Rödel, C. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Friedrich-Schiller-University Jena, Jena (Germany)

    2016-11-15

    We report on the successful operation of a newly developed cryogenic jet target at high intensity laser-irradiation. Using the frequency-doubled Titan short pulse laser system at Jupiter Laser Facility, Lawrence Livermore National Laboratory, we demonstrate the generation of a pure proton beam a with maximum energy of 2 MeV. Furthermore, we record a quasi-monoenergetic peak at 1.1 MeV in the proton spectrum emitted in the laser forward direction suggesting an alternative acceleration mechanism. Using a solid-density mixed hydrogen-deuterium target, we are also able to produce pure proton-deuteron ion beams. With its high purity, limited size, near-critical density, and high-repetition rate capability, this target is promising for future applications.

  8. Ultrafast single-shot imaging of laser-produced plasmas via spatial division and routing

    Science.gov (United States)

    Yeola, Sarang; Kuk, Donghoon; Kim, Ki-Yong

    2017-01-01

    We have developed a single-shot imaging camera, which can capture ultrafast events occurring on femtosecond and picosecond time scales. The working principle of this camera relies on spatial division and routing of femtosecond laser pulses. Here we have employed simple optics such as mirrors to produce multiple, time-delayed laser pulses and to project time-evolving images onto separate standard cameras. This spatial division and routing method has been tested with a femtosecond amplified laser in visualizing the evolution of laser-induced ionization in air and ablation in solids in single-shots. The number of frames is currently limited to 4 but can be increased further to N x N by using 3D printed optics for spatial division and routing. Work supported by the National Science Foundation (NSF) under Award No. 1351455.

  9. Multi-keV X-Ray Conversion Efficiency in Laser-Produced Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Back, C A; Landen, O L; Hammer, J H; Suter, L J; Miller, M C; Davis, J; Grun, J

    2002-10-31

    X-ray sources are created at the Nova and Omega laser by irradiating a confined volume of Ar, Xe, or Kr gas. The gas is heated by forty 0.35 {micro}m wavelength, 1-ns square laser beams to produce He-like ions that radiate K-shell emission over mm-sized dimensions. The targets are designed to be ''underdense'', meaning that the initial gas density is lower than the critical density of the laser, n{sub c} {approx} 10{sup 21} cm{sup -3}. The laser energy is primarily absorbed by inverse bremsstrahlung and a supersonic heat wave efficiently ionizes the gas. Results from time-resolved and time-integrated diagnostics over a range of experimental parameters are compared. This work represents an important, new method for development of efficient, large-area, tailored multi-keV x-ray sources.

  10. Formation and Characterization of Alaminum Thin Films Produced by Laser Induced Forward Transfer Technique

    Directory of Open Access Journals (Sweden)

    Nafie A. ALMUSLET

    2012-12-01

    Full Text Available Picoseconds Nd – YAG laser was used in this work to irradiate pure samples of Aluminum (Al and produce plasma. The plasma plume was deposited as thin films, using Laser Induced Forward Transfer (LIFT technique, on two different types of substrate; the first one from copper and the second one from agate (SiO2. The thin films were characterized using scanning electron microscope (SEM and Energy Dispersive Analysis of X-rays (EDAX, in addition to scratch and scotch-tape for adhesion test. The effects of laser power density, the target thickness and the type of substrate on the homogeneity and adhesion of the films were investigated. The best conditions were: 2∙1013 W/cm2 laser power density, 2 µm target thickness and agate substrate. Al thin films with high quality were deduced using these conditions.

  11. Producing metal parts with selective laser sintering/hot isostatic pressing

    Science.gov (United States)

    Das, Suman; Wohlert, Martin; Beaman, Joseph J.; Bourell, David L.

    1998-12-01

    Selective laser sintering/hot isostatic pressing is a hybrid direct laser fabrication method that combines the strengths of both processes. Selective laser sintering can produce complexly shaped metal components with an integral, gas-impermeable skin. These components can then be directly post-processed to full density by containerless hot isostatic pressing. The use of the hybrid fabrication method, envisioned as a rapid, low-cost replacement for conventional metal-can hot isostatic pressing, is currently being studied for alloy 625 and Ti-6Al-4V alloys. The micro-structure and mechanical properties of selective-laser-sintering processed and hot isostatically pressed post-processed material compare well with those of conventionally processed material.

  12. High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target

    Science.gov (United States)

    Gauthier, M.; Kim, J. B.; Curry, C. B.; Aurand, B.; Gamboa, E. J.; Göde, S.; Goyon, C.; Hazi, A.; Kerr, S.; Pak, A.; Propp, A.; Ramakrishna, B.; Ruby, J.; Willi, O.; Williams, G. J.; Rödel, C.; Glenzer, S. H.

    2016-11-01

    We report on the successful operation of a newly developed cryogenic jet target at high intensity laser-irradiation. Using the frequency-doubled Titan short pulse laser system at Jupiter Laser Facility, Lawrence Livermore National Laboratory, we demonstrate the generation of a pure proton beam a with maximum energy of 2 MeV. Furthermore, we record a quasi-monoenergetic peak at 1.1 MeV in the proton spectrum emitted in the laser forward direction suggesting an alternative acceleration mechanism. Using a solid-density mixed hydrogen-deuterium target, we are also able to produce pure proton-deuteron ion beams. With its high purity, limited size, near-critical density, and high-repetition rate capability, this target is promising for future applications.

  13. Temporal and Spectral Resolved Measurement of Soft X-ray From Ultrashort Pulse Laser Produced Plasma

    Institute of Scientific and Technical Information of China (English)

    W.Theobald; L.Veisz; H.Schwoerer; R.Sauerbrey; X.Z.Tang

    2001-01-01

    Ultrashort laser pulse produced plasmas are powerful sources of incoherent XUV/soft X-ray radiation and have important applications range from microscopy to lithography. Adding a prepulse is one possible way to enhance soft X-ray emission. The experiment is performed on the Jena 10 TW laser system in IOQ, Germany. The main purpose is to measure the time-resolved soft X-ray spectrum, and study how a prepulse play an important role and enhance the X-ray emission as well as and pulse duration. We clarified the temporal behavior of X-ray emission from quartz plasma produced by intensive femtosecond 800 nm laser pulse, and obtained a quantitative pictures of the

  14. Self-limiting and complete oxidation of silicon nanostructures produced by laser ablation in water

    Science.gov (United States)

    Vaccaro, L.; Popescu, R.; Messina, F.; Camarda, P.; Schneider, R.; Gerthsen, D.; Gelardi, F. M.; Cannas, M.

    2016-07-01

    Oxidized Silicon nanomaterials produced by 1064 nm pulsed laser ablation in deionized water are investigated. High-resolution transmission electron microscopy coupled with energy dispersive X-ray spectroscopy allows to characterize the structural and chemical properties at a sub-nanometric scale. This analysis clarifies that laser ablation induces both self-limiting and complete oxidation processes which produce polycrystalline Si surrounded by a layer of SiO2 and amorphous fully oxidized SiO2, respectively. These nanostructures exhibit a composite luminescence spectrum which is investigated by time-resolved spectroscopy with a tunable laser excitation. The origin of the observed luminescence bands agrees with the two structural typologies: Si nanocrystals emit a μs-decaying red band; defects of SiO2 give rise to a ns-decaying UV band and two overlapping blue bands with lifetime in the ns and ms timescale.

  15. Electron diffraction using ultrafast electron bunches from a laser-wakefield accelerator at kHz repetition rate

    Science.gov (United States)

    He, Z.-H.; Thomas, A. G. R.; Beaurepaire, B.; Nees, J. A.; Hou, B.; Malka, V.; Krushelnick, K.; Faure, J.

    2013-02-01

    We show that electron bunches in the 50-100 keV range can be produced from a laser wakefield accelerator using 10 mJ, 35 fs laser pulses operating at 0.5 kHz. It is shown that using a solenoid magnetic lens, the electron bunch distribution can be shaped. The resulting transverse and longitudinal coherence is suitable for producing diffraction images from a polycrystalline 10 nm aluminum foil. The high repetition rate, the stability of the electron source, and the fact that its uncorrelated bunch duration is below 100 fs make this approach promising for the development of sub-100 fs ultrafast electron diffraction experiments.

  16. Measurements of X-ray doses and spectra produced by picosecond laser-irradiated solid targets.

    Science.gov (United States)

    Yang, Bo; Qiu, Rui; Yu, Minghai; Jiao, Jinlong; Lu, Wei; Yan, Yonghong; Zhang, Bo; Zhang, Zhimeng; Zhou, Weimin; Li, Junli; Zhang, Hui

    2017-02-09

    Experiments have shown that high-intensity laser interaction with a solid target can generate significant X-ray doses. This study was conducted to determine the X-ray doses and spectra produced for picosecond laser-irradiated solid targets. The photon doses and X-ray spectra in the laser forward and side directions were measured using an XG III ps 300 TW laser system. For laser intensities of 7×10(18)-4×10(19)W/cm(2), the maximum photon dose was 16.8 mSv at 50cm with a laser energy of ~153J on a 1-mm Ta target. The photon dose in the forward direction increased more significantly with increasing laser intensity than that in the side direction. For photon energies >300keV, the X-ray spectrum can be fit with an effective temperature distribution of the exponential form, dN/dE = k× exp(-E/Tx). The X-ray temperature Tx increased with the laser intensity in the forward direction with values of 0.46-0.75MeV. Tx was less strongly correlated with the laser intensity in the side direction with values of 0.29-0.32MeV. The escaping electron spectrum was also measured. The measured electron temperature was correlated with the electron temperature predicted by the ponderomotive law. The observations in this experiment were also investigated numerically. A good agreement was observed between the experimental and simulation results.

  17. Pure and Sn-doped ZnO films produced by pulsed laser deposition

    DEFF Research Database (Denmark)

    Holmelund, E.; Schou, Jørgen; Tougaard, S.;

    2002-01-01

    A new technique, metronome doping, has been used for doping of films during pulsed laser deposition (PLD). This technique makes it possible to dope continuously during film growth with different concentrations of a dopant in one deposition sequence. Films of pure and doped ZnO have been produced...

  18. Observation of Thomson Scattering off Entropy Waves in a Laser-Produced Plasma

    Institute of Scientific and Technical Information of China (English)

    ZHENG Jian; BAI Bo; LIU Wan-Dong; YU Chang-Xuan; JIANG Xiao-Hua; YUAN Xiao-Dong; LI Wen-Hong; ZHENG Zhi-Jian

    2001-01-01

    A new feature in the Thomson scattering spectrum is observed from a laser-produced aluminium plasma, which may be the Thomson scattering off entropy waves in the plasma. Such a feature is only observable when the energy of the heater beam is low enough.

  19. Selective laser melting-produced porous titanium scaffolds regenerate bone in critical size cortical bone defects

    NARCIS (Netherlands)

    J. van der Stok (Johan); O.P. van der Jagt (Olav); S. Amin Yavari (Saber); M.F.P. de Haas (Mirthe); J.H. Waarsing (Jan); H. Jahr (Holger); E.M.M. van Lieshout (Esther); P. Patka (Peter); J.A.N. Verhaar (Jan); A.A. Zadpoor (Amir Abbas); H.H. Weinans (Harrie)

    2013-01-01

    textabstractPorous titanium scaffolds have good mechanical properties that make them an interesting bone substitute material for large bone defects. These scaffolds can be produced with selective laser melting, which has the advantage of tailoring the structure's architecture. Reducing the strut siz

  20. Refractive microlenses produced by excimer laser machining of poly(methyl methacrylate)

    DEFF Research Database (Denmark)

    Jensen, Martin Frøhling; Krühne, Ulrich; H., L.

    2005-01-01

    A method has been developed whereby refractive microlenses can be produced in poly (methyl methacrylate) by excimer laser irradiation at λ = 248 nm. The lenses are formed by a combined photochemical and thermal process. The lenses are formed as depressions in the substrate material (negative focal...

  1. Characterization of lysozyme films produced by matrix assisted pulsed laser evaporation (MAPLE)

    DEFF Research Database (Denmark)

    Purice, Andreea; Schou, Jørgen; Kingshott, Peter

    2007-01-01

    Thin lysozyme films of thickness up to more than 100 nm have been produced in a dry environment by MAPLE (matrix assisted pulsed laser evaporation) from a water ice matrix. Analysis of the films demonstrates that a significant part of the lysozyme molecules is transferred to the substrate without...

  2. Magnetic trapping of superconducting submicron particles produced by laser ablation in superfluid helium

    Science.gov (United States)

    Takahashi, Yuta; Suzuki, Junpei; Yoneyama, Naoya; Tokawa, Yurina; Suzuki, Nobuaki; Matsushima, Fusakazu; Kumakura, Mitsutaka; Ashida, Masaaki; Moriwaki, Yoshiki

    2017-02-01

    We produced spherical superconducting submicron particles by laser ablation of their base metal tips in superfluid helium, and trapped them using a quadrupole magnetic field owing to the diamagnetism caused by the Meissner effect. We also measured their critical temperatures of superconductivity, by observing the threshold temperatures for the confinement of superconducting submicron particles in the trap.

  3. Attenuation correction for X-ray emission computed tomography of laser-produced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yen-Wei; Nakao, Zensho [Ryukyus Univ., Nishihara, Okinawa (Japan). Faculty of Engineering; Tamura, Shinichi

    1996-08-01

    An attenuation correction method was proposed for laser-produced plasma emission computed tomography (ECT), which is based on a relation of the attenuation coefficient and the emission coefficient in plasma. Simulation results show that the reconstructed images are dramatically improved in comparison to the reconstructions without attenuation correction. (J.P.N.)

  4. Root colonization and growth promotion of sunflower (Helianthus annuus L.) by phosphate solubilizing Enterobacter sp. Fs-11.

    Science.gov (United States)

    Shahid, Muhammad; Hameed, Sohail; Imran, Asma; Ali, Saira; van Elsas, Jan Dirk

    2012-08-01

    An Enterobacter sp. Fs-11 was isolated from sunflower rhizosphere, identified on the basis of 16S rRNA gene sequence analysis (GeneBank accession no. GQ179978) and studied for its root colonization and growth promotion ability in sunflower. Morphologically, it was rod shaped Gram-negative, motile bacterium, producing 4.5 μg mL(-1) indole acetic acid in tryptophan-supplemented medium. It utilized 27 out of 95 substrates in BIOLOG GN2 micro plate system. It was able to convert insoluble tri-calcium phosphate to soluble phosphorus up to 43.5 μg mL(-1) with decrease in pH of the medium up to 4.5 after 10 days incubation at 28 ± 2 °C in the Pikovskaya's broth. High performance liquid chromatography of cell free supernatant showed that Fs-11 produced malic acid and gluconic acid (2.43 and 16.64 μg mL(-1), respectively) in Pikovskaya's broth. Analysis of 900 bp fragment of pyrroloquinoline quinine pqqE gene sequence showed 98 % homology with that of E. cloacae pqqE gene. Confocal laser scanning microscope revealed strong colonization of fluorescently labeled Fs-11 with sunflower roots. Sunflower inoculation with Fs-11 and its rifampicin resistant derivative in sterile sand and natural soil showed that Fs-11 colonized sunflower roots up to 30 days after transplanting in both sterile sand as well as natural soil. Moreover, Fs-11 inoculation resulted in increased plant height, fresh weight, dry weight and total phosphorus contents as compared to un-inoculated plants. The data showed that Enterobacter sp. Fs-11 is an efficient phosphate solubilizing and plant growth promoting rhizobacterium and has great potential to be used as bio-inoculant for sunflower under phosphorus deficient conditions.

  5. Comparison of Maraging Steel Micro- and Nanostructure Produced Conventionally and by Laser Additive Manufacturing

    Directory of Open Access Journals (Sweden)

    Eric A. Jägle

    2016-12-01

    Full Text Available Maraging steels are used to produce tools by Additive Manufacturing (AM methods such as Laser Metal Deposition (LMD and Selective Laser Melting (SLM. Although it is well established that dense parts can be produced by AM, the influence of the AM process on the microstructure—in particular the content of retained and reversed austenite as well as the nanostructure, especially the precipitate density and chemistry, are not yet explored. Here, we study these features using microhardness measurements, Optical Microscopy, Electron Backscatter Diffraction (EBSD, Energy Dispersive Spectroscopy (EDS, and Atom Probe Tomography (APT in the as-produced state and during ageing heat treatment. We find that due to microsegregation, retained austenite exists in the as-LMD- and as-SLM-produced states but not in the conventionally-produced material. The hardness in the as-LMD-produced state is higher than in the conventionally and SLM-produced materials, however, not in the uppermost layers. By APT, it is confirmed that this is due to early stages of precipitation induced by the cyclic re-heating upon further deposition—i.e., the intrinsic heat treatment associated with LMD. In the peak-aged state, which is reached after a similar time in all materials, the hardness of SLM- and LMD-produced material is slightly lower than in conventionally-produced material due to the presence of retained austenite and reversed austenite formed during ageing.

  6. Application of solid-state nuclear track detectors of the CR-39/PM-355 type for measurements of energetic protons emitted from plasma produced by an ultra-intense laser

    Energy Technology Data Exchange (ETDEWEB)

    Szydlowski, A. [Andrzej Soltan Institute for Nuclear Studies, 05-400 Otwock-Swierk (Poland); Badziak, J. [Institute of Plasma Physics and Laser Microfusion, Hery 23, 01-497 Warsaw (Poland); Fuchs, J. [LULI, Ecole Polytechnique, CNRS, CEA, UPMC, Route de Saclay 91128 (France); Kubkowska, M., E-mail: mkubkowska@ifpilm.waw.p [Institute of Plasma Physics and Laser Microfusion, Hery 23, 01-497 Warsaw (Poland); Parys, P.; Rosinski, M.; Suchanska, R.; Wolowski, J. [Institute of Plasma Physics and Laser Microfusion, Hery 23, 01-497 Warsaw (Poland); Antici, P.; Mancic, A. [LULI, Ecole Polytechnique, CNRS, CEA, UPMC, Route de Saclay 91128 (France)

    2009-10-15

    The paper reports on applications of solid-state nuclear track detectors (SSNTDs) of the CR-39/PM-355, manufactured by Pershore Moulding Ltd., for measurements of fast protons emitted from laser-produced plasma. The experiment was performed at LULI, Ecole Politechnique, on the 100 Tera-Watt laser facility. A 1.05 mum laser pulse of 350 fs duration and intensity up to 2 x 10{sup 19} W/cm{sup 2} irradiated a thin (1-3 mum) polystyrene (PS) or Au/PS target (PS foil covered with a 0.1-0.2 mum Au layer) along the target normal. The measurements revealed that very intense MeV proton beams can be produced under specially chosen laser-target irradiation conditions. The proton beam characteristics were measured using the TOF method (ion collectors), SSNTDs, and radiochromic films (RCFs). The SSNTDs appeared to be especially useful for the experimental analysis of more energetic protons (E{sub p} > 3 MeV). Using in the same laser shots many detector samples covered with Al foils of different thicknesses (from 15 mum up to 400 mum) it was possible to estimate energy spectra of protons emitted under various irradiation conditions. The most energetic protons (of energy up to 10 MeV) and the most intense proton beams were generated from a double-layer Au/PS target.

  7. Feasibility of measuring density and temperature of laser produced plasmas using spectroscopic techniques.

    Energy Technology Data Exchange (ETDEWEB)

    Edens, Aaron D.

    2008-09-01

    A wide variety of experiments on the Z-Beamlet laser involve the creation of laser produced plasmas. Having a direct measurement of the density and temperature of these plasma would an extremely useful tool, as understanding how these quantities evolve in space and time gives insight into the causes of changes in other physical processes, such as x-ray generation and opacity. We propose to investigate the possibility of diagnosing the density and temperature of laser-produced plasma using temporally and spatially resolved spectroscopic techniques that are similar to ones that have been successfully fielded on other systems. Various researchers have measured the density and temperature of laboratory plasmas by looking at the width and intensity ratio of various characteristic lines in gases such as nitrogen and hydrogen, as well as in plasmas produced off of solid targets such as zinc. The plasma conditions produce two major measurable effects on the characteristic spectral lines of that plasma. The 1st is the Stark broadening of an individual line, which depends on the electron density of the plasma, with higher densities leading to broader lines. The second effect is a change in the ratio of various lines in the plasma corresponding to different ionization states. By looking at the ratio of these lines, we can gain some understanding of the plasma ionization state and consequently its temperature (and ion density when coupled with the broadening measurement). The hotter a plasma is, the higher greater the intensity of lines corresponding to higher ionization states. We would like to investigate fielding a system on the Z-Beamlet laser chamber to spectroscopically study laser produced plasmas from different material targets.

  8. High resolution X-ray spherically bent crystal spectrometer for laser-produced plasma diagnostics

    Institute of Scientific and Technical Information of China (English)

    Shali Xiao; Hongjian Wang; Jun Shi; Changhuan Tang; Shenye Liu

    2009-01-01

    A new high spectral resolution crystal spectrometer is designed to measure very low emissive X-ray spectra of laser-produced plasma in 0.5 - 0.9 nm range. A large open aperture (30 x 20 (mm)) mica (002) spherically bent crystal with curvature radius R = 380 mm is used as dispersive and focusing element. The imaging plate is employed to obtain high spectral resolution with effective area of 30 x 80 (mm). The long designed path of the X-ray spectrometer beam is 980 mm from the source to the detector via the crystal. Experiment is carried out at a 20-J laser facility. X-ray spectra in an absolute intensity scale is obtained from Al laser produced plasmas created by laser energy of 6.78 J. Samples of spectra obtained with spectral resolution of up to E/鈻矱 ~ 1500 are presented. The results clearly show that the device is good to diagnose laser high-density plasmas.

  9. Applications of ions produced by low intensity repetitive laser pulses for implantation into semiconductor materials

    Science.gov (United States)

    Wołowski, J.; Badziak, J.; Czarnecka, A.; Parys, P.; Pisarek, M.; Rosinski, M.; Turan, R.; Yerci, S.

    This work reports experiment concerning specific applications of implantation of laser-produced ions for production of semiconductor nanocrystals. The investigation was carried out in the IPPLM within the EC STREP `SEMINANO' project. A repetitive pulse laser system of parameters: energy up to 0.8 J in a 3.5 ns-pulse, wavelength of 1.06 μ m, repetition rate of up to 10 Hz, has been employed in these investigations. The characterisation of laser-produced ions was performed with the use of `time-of-flight' ion diagnostics simultaneously with other diagnostic methods in dependence on laser pulse parameters, illumination geometry and target material. The properties of laser-implanted and modified SiO2 layers on sample surface were characterised with the use of different methods (XPS + ASD, Raman spectroscopy, PL spectroscopy) at the Middle East Technological University in Ankara and at the Warsaw University of Technology. The production of the Ge nanocrystallites has been demonstrated for annealed samples prepared in different experimental conditions.

  10. Electrostatic acceleration and deflection system for modification of semiconductor materials in laser-produced ion implantation

    Science.gov (United States)

    Rosinski, M.; Parys, P.; Wolowski, J.; Gasior, P.; Pisarek, M.

    2010-10-01

    To optimize the efficiency of laser ion implantation technology, it is advisable to properly select the laser beam characteristics (i.e. power density, target illumination geometry, etc.). In many applications, it is important to select a specific range of ion energy to implant the ions at a given depth and at a given density. To make it possible, the electrostatic system for acceleration and deflection of low-energy laser-produced ions can be used. This contribution provides a description of the experiments aimed at the implantation of Ge ions from a narrow energy band onto SiO2/Si substrates, which were conducted at IPPLM. As the source of irradiation, we used a Nd:YAG up to 10 Hz laser system with pulse duration of 3.5 ns and pulse energy ∼ 0.5 J, which gave a power density of 1010 W/cm2. The ion stream parameters were measured using the time-of-fight method. The laser-produced ions passing through the diaphragm have been accelerated in the system of electrodes. Due to the electrostatic field configuration provided by the electrode system and a diaphragm located at the axis of the system, the selected ions were focussed at the area of interest to increase implantation density. The accelerating voltage, the distance of the diaphragm from the target, the diaphragm diameter and the gap width between electrodes were changed for choosing the desired parameters of the ion stream.

  11. Synthesis and Modeling of Temperature Distribution For Nanoparticles Produced Using Nd:YAG Lasers

    Directory of Open Access Journals (Sweden)

    Mu’ataz S. Hassan

    2016-01-01

    Full Text Available Nanosecond pulses of Nd:YAG laser were employed to produce silver and silicon nanoparticles by laser ablation process in liquid. Two Nd:YAG laser systems of 6 and 10 nanoseconds pulse duration with variable laser energy in the range 700–760 mJ were employed. Morphological investigation using AFM and TEM reveals the formation of silver and silicon nanoparticles with uniform size distribution. It is found that mean nanoparticles sizes of 50 and 70 nm for silver and silicon, respectively, are produced under similar laser parameters. Moreover, theoretical model was used to estimate the temperature distributions for both silver and silicon nanoparticles. It is also found that the maximum temperature of about 50 k K° and 70 k K° for silver and silicon nanoparticles, respectively, is generated when Nd:YAG of 10 ns is used to prepare nanoparticles. Zeta potential measurements reveal that silver nanoparticles are more stable than those of silicon prepared by similar conditions.

  12. Table-top solar flares produced with laser driven magnetic reconnections

    Directory of Open Access Journals (Sweden)

    Zhong J.Y.

    2013-11-01

    Full Text Available The American Nuclear Society (ANS has presented the prestigious Edward Teller award to Dr. Bruce A. Remington during the 2011 IFSA conference due to his “pioneering scientific work in the fields of inertial confinement fusion (ICF, and especially developing an international effort in high energy density laboratory astrophysics” [1,2]. This is a great acknowledgement to the subject of high energy density laboratory astrophysics. In this context, we report here one experiment conducted to model solar flares in the laboratory with intense lasers [3]. The mega-gauss –scale magnetic fields produced by laser produced plasmas can be used to make magnetic reconnection topology. We have produced one table-top solar flare in our laboratory experiment with the same geometric setup as associated with solar flares.

  13. Applications of laser produced ion beams to nuclear analysis of materials

    Science.gov (United States)

    Mima, K.; Azuma, H.; Fujita, K.; Yamazaki, A.; Okuda, C.; Ukyo, Y.; Kato, Y.; Arrabal, R. Gonzalez; Soldo, F.; Perlado, J. M.; Nishimura, H.; Nakai, S.

    2012-07-01

    Laser produced ion beams have unique characteristics which are ultra-short pulse, very low emittance, and variety of nuclear species. These characteristics could be used for analyzing various materials like low Z ion doped heavy metals or ceramics. Energies of laser produced ion beam extend from 0.1MeV to 100MeV. Therefore, various nuclear processes can be induced in the interactions of ion beams with samples. The ion beam driven nuclear analysis has been developed for many years by using various electrostatic accelerators. To explore the applicability of laser ion beam to the analysis of the Li ion battery, a proton beam with the diameter of ˜ 1.0 μm at Takasaki Ion Acceleration for Advanced Radiation Application (TIARA), JAEA was used. For the analysis, the PIGE (Particle-Induced Gamma Ray Emission) is used. The proton beam scans over Li battery electrode samples to diagnose Li density in the LiNi0.85Co0.15O2 anode. As the results, PIGE images for Li area density distributions are obtained with the spatial resolution of better than 1.5μm FWHM. By the Li PIGE images, the depth dependence of de-intercalation levels of Li in the anode is obtained. By the POP experiments at TIARA, it is clarified that laser produced ion beam is appropriate for the Li ion battery analysis. 41.85.Lc, 41.75.Jv, 42.62.cf.

  14. Characteristics of laser supersonic heating method for producing micro metallic particles

    Science.gov (United States)

    Lin, Shih-Lung; Lin, Jehnming

    2005-10-01

    In this article, the authors analyzed the process characteristics of laser supersonic heating method for producing metallic particles and predicted the in-flight tracks and shapes of micro-particles. A pulse Nd-YAG laser was used to heat the carbon steel target placed within an air nozzle. The high-pressure air with supersonic velocity was used to carry out carbon steel particles in the nozzle. The shock wave structures at the nozzle exit were visualized by the shadowgraph method. The carbon steel particles produced by laser supersonic heating method were grabbed and the spraying angles of the particle tracks were visualized. The velocity of the in-flight particles was measured by a photodiode sensor and compared with the numerical result. The solidification of carbon steel particles with diameters of 1-50 μm in compressible flow fields were investigated. The result shows that there is no significant difference in the dimension of solid carbon steel particles produced at shock wave fields under various entrance pressures (3-7 bar) with a constant laser energy radiation.

  15. Excitation wavelength dependence of water-window line emissions from boron-nitride laser-produced plasmas.

    Science.gov (United States)

    Crank, M; Harilal, S S; Hassan, S M; Hassanein, A

    2012-02-01

    We investigated the effects of laser excitation wavelength on water-window emission lines of laser-produced boron-nitride plasmas. Plasmas are produced by focusing 1064 nm and harmonically generated 532 and 266 nm radiation from a Nd:YAG laser on BN target in vacuum. Soft x-ray emission lines in the water-window region are recorded using a grazing-incidence spectrograph. Filtered photodiodes are used to obtain complementary data for water-window emission intensity and angular dependence. Spectral emission intensity changes in nitrogen Ly-α and He-α are used to show how laser wavelength affects emission. Our results show that the relative intensity of spectral lines is laser wavelength dependent, with the ratio of Ly-α to He-α emission intensity decreasing as laser wavelength is shortened. Filtered photodiode measurements of angular dependence showed that 266 and 532 nm laser wavelengths produce uniform emission.

  16. Partially coherent sources which produce the same far zone optical force as a laser beam

    CERN Document Server

    Auñon, Juan Miguel

    2013-01-01

    On applying a theorem previously derived by Wolf and Collett, we demonstrate that partially coherent Gaussian Schell model uctuating sources (GSMS) produce exactly the same optical forces as a fully coherent laser beam. We also show that this kind of sources helps to control the light-matter interaction in biological samples which are very sensitive to thermal heating induced by higher power intensities; and hence the invasiveness of the manipulation. This is a consequence of the fact that the same photonic force can be obtained with a low intensity GSMS as with a high intensity laser beam.

  17. Laser produced spectrum of Si(2) molecule in the region of 540-1010 nm.

    Science.gov (United States)

    Ojha, K S; Gopal, R

    2008-12-01

    The laser produced spectrum of Si(2) molecule is recorded for the first time using laser ablation technique in the region of 540-1010 nm. About 110 bands are observed in the entire spectral region and all these bands are classified into three band systems, viz. E-X, F-X and G-X of Si(2) molecule lying in the region of 814-1010 nm, 630-900 nm and 546-710 nm, respectively. All these electronic transitions take place from ground state X(3)Sigma(g)(-) state. The molecular constants of all these states have been determined.

  18. Spaced-Resolved Electron Density of Aluminum Plasma Produced by Frequency-Tripled Laser

    Institute of Scientific and Technical Information of China (English)

    Yang Boqian; Han Shensheng; Zhang Jiyan; Zheng Zhijian; Yang Guohong; Yang Jiaming; Li Jun; Wang Yan

    2005-01-01

    By using the space-resolved spectrograph, the K-shell emission from laser-produced plasma was investigated. Electron density profiles along the normal direction of the target surface in aluminum laser-plasmas were obtained by two different diagnostic methods and compared with the profiles from the theoretical simulation of hydrodynamics code MULTI1D. The results corroborate the feasibility to obtain the electron density above the critical surface by the diagnostic method based on the Stark-broadened wings in the intermediately coupled plasmas.

  19. Kelvin-Helmholtz turbulence associated with collisionless shocks in laser produced plasmas.

    Science.gov (United States)

    Kuramitsu, Y; Sakawa, Y; Dono, S; Gregory, C D; Pikuz, S A; Loupias, B; Koenig, M; Waugh, J N; Woolsey, N; Morita, T; Moritaka, T; Sano, T; Matsumoto, Y; Mizuta, A; Ohnishi, N; Takabe, H

    2012-05-11

    We report the experimental results of a turbulent electric field driven by Kelvin-Helmholtz instability associated with laser produced collisionless shock waves. By irradiating an aluminum double plane target with a high-power laser, counterstreaming plasma flows are generated. As the consequence of the two plasma interactions, two shock waves and the contact surface are excited. The shock electric field and transverse modulation of the contact surface are observed by proton radiography. Performing hydrodynamic simulations, we reproduce the time evolutions of the reverse shocks and the transverse modulation driven by Kelvin-Helmholtz instability.

  20. Growth and thermoelectric properties of FeSb2 films produced by pulsed laser deposition

    DEFF Research Database (Denmark)

    Sun, Ye; Canulescu, Stela; Sun, Peijie

    2011-01-01

    by ablating specifically prepared compound targets made of Fe and Sb powders in atomic ratio of 1:4. The thermoelectric transport properties of FeSb2 films were investigated. Pulsed laser deposition was demonstrated as a method for production of good-quality FeSb2 films.......Thermoelectric FeSb2 films were produced by pulsed laser deposition on silica substrates in a low-pressure Ar environment. The growth conditions for near phase-pure FeSb2 films were confirmed to be optimized at a substrate temperature of 425°C, an Ar pressure of 2 Pa, and deposition time of 3 h...

  1. Production of a sub-10 fs electron beam with 107 electrons

    Science.gov (United States)

    Han, Jang-Hui

    2011-05-01

    We study the possibility to produce a 1.6 pC electron beam (107 electrons) with a bunch length of less than 10 fs and a beam energy of a few MeV. Such a short, relativistic beam will be useful for an electron diffraction experiment with a 10 fs time resolution. An electron beam with 107 electrons will allow a single-shot experiment with a laser pulse pump and an electron beam probe. In this design, an S-band photocathode gun is used for generating and accelerating a beam and a buncher consisting of two S-band four-cell cavities is used for temporally compressing the beam. Focusing solenoids control the beam transverse divergence and size at the sample. Numerical optimization is carried out to achieve a beam with a 4 fs full-width-at-half-maximum length, a 26 microradian root-mean-square divergence, and a 2 nm transverse coherence length at a 3.24 MeV beam energy. When state-of-the-art rf stability is considered, beam arrival time jitter at the sample is calculated to be about 10 fs.

  2. Characteristics of solid aerosols produced by optical catapulting studied by laser-induced breakdown spectroscopy

    Science.gov (United States)

    Fortes, F. J.; Laserna, J. J.

    2010-08-01

    Optical catapulting (OC) constitutes an effective method to transport small amounts of different materials in the form of a solid aerosol. In this report, laser-induced breakdown spectroscopy (LIBS) is used for the analysis of those aerosols produced by OC. For this purpose, materials were catapulted using a Q-switch Nd:YAG laser. A second Q-switch Nd:YAG laser was used for LIBS analysis of the ejected particles. Data processing of aerosols was conducted using conditional data analysis. Also, the standard deviation method was used for the qualitative identification of the ejected particles. Two modes of interaction in OC (OC with focused or defocused pulses) have been evaluated and discussed. LIBS demonstrates that the distribution (spreading) of the ejected particles along the propagation axis increased as a function of the interpulse delay time. The mass density and the thickness of the target also play an important role in OC-LIBS.

  3. Dynamics of the plume produced by nanosecond ultraviolet laser ablation of metals

    DEFF Research Database (Denmark)

    Christensen, Bo Toftmann; Schou, Jørgen; Lunney, J.G.

    2003-01-01

    The dynamics of the ablation plume of a partially ionized plasma produced by a nanosecond UV laser with different irradiation spot geometries has been explored. We have used an ensemble of quartz crystal microbalances to make the first systematic and quantitative study of how the shape of the plume...... varies as the aspect ratio (b/a) of the elliptical laser spot is varied by about a factor of ten. The flip-over effect can be described by the adiabatic expansion model of Anisimov using a value of the adiabatic constant of about gamma = 1.4. We have also studied the forward peaking of the ablation plume...... for a large number of metals at the same laser fluence. Contrary to earlier reports, we find that the more refractory metals have the broader angular distributions....

  4. Angular distribution of ions and extreme ultraviolet emission in laser-produced tin droplet plasma

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hong; Duan, Lian; Lan, Hui [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China); Wang, Xinbing, E-mail: xbwang@hust.edu.cn; Chen, Ziqi; Zuo, Duluo [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China); Lu, Peixiang [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2015-05-21

    Angular-resolved ion time-of-flight spectra as well as extreme ultraviolet radiation in laser-produced tin droplet plasma are investigated experimentally and theoretically. Tin droplets with a diameter of 150 μm are irradiated by a pulsed Nd:YAG laser. The ion time-of-flight spectra measured from the plasma formed by laser irradiation of the tin droplets are interpreted in terms of a theoretical elliptical Druyvesteyn distribution to deduce ion density distributions including kinetic temperatures of the plasma. The opacity of the plasma for extreme ultraviolet radiation is calculated based on the deduced ion densities and temperatures, and the angular distribution of extreme ultraviolet radiation is expressed as a function of the opacity using the Beer–Lambert law. Our results show that the calculated angular distribution of extreme ultraviolet radiation is in satisfactory agreement with the experimental data.

  5. X-ray emission simulation from hollow atoms produced by high intensity laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Moribayashi, Kengo; Sasaki, Akira; Zhidkov, A. [Japan Atomic Energy Research Inst., Kansai Research Establishment, Neyagawa, Osaka (Japan); Suto, Keiko [Nara Women' s Univ., Graduate School of Human Culture, Nara (Japan); Kagawa, Takashi [Nara Women' s Univ., Department of Physics, Nara (Japan)

    2001-10-01

    We theoretically study the x-ray emission from hollow atoms produced by collisions of multiply charged ions accelerated by a short pulse laser with a solid or foil. By using the multistep-capture-and-loss (MSCL) model a high conversion efficiency to x-rays in an ultrafast atomic process is obtained. It is also proposed to apply this x-ray emission process to the x-ray source. For a few keV x-rays this x-ray source has a clear advantage. The number of x-ray photons increases as the laser energy becomes larger. For a laser energy of 10 J, the number of x-ray photons of 3x10{sup 11} is estimated. (author)

  6. Coincidence spectroscopy of high-lying Rydberg states produced in strong laser fields

    Science.gov (United States)

    Larimian, Seyedreza; Erattupuzha, Sonia; Lemell, Christoph; Yoshida, Shuhei; Nagele, Stefan; Maurer, Raffael; Baltuška, Andrius; Burgdörfer, Joachim; Kitzler, Markus; Xie, Xinhua

    2016-09-01

    We demonstrate the detection of high-lying Rydberg states produced in strong laser fields with coincidence spectroscopy. Electron emission after the interaction of strong laser pulses with atoms and molecules is measured together with the parent ions in coincidence measurements. These electrons originate from high-lying Rydberg states with quantum numbers from n ˜20 up to n ≲120 formed by frustrated field ionization. Ionization rates are retrieved from the measured ionization signal of these Rydberg states. Simulations show that both tunneling ionization by a weak dc field and photoionization by blackbody radiation contribute to delayed electron emission on the nano- to microsecond scale. Furthermore, the dependence of the Rydberg-state production on the ellipticity of the driving laser field indicates that such high-lying Rydberg states are populated through electron recapture. The present experiment provides detailed quantitative information on Rydberg production in strong-field interaction.

  7. Scaling mechanisms of vapour/plasma shielding from laser-produced plasmas to magnetic fusion regimes

    Science.gov (United States)

    Sizyuk, Tatyana; Hassanein, Ahmed

    2014-02-01

    The plasma shielding effect is a well-known mechanism in laser-produced plasmas (LPPs) reducing laser photon transmission to the target and, as a result, significantly reducing target heating and erosion. The shielding effect is less pronounced at low laser intensities, when low evaporation rate together with vapour/plasma expansion processes prevent establishment of a dense plasma layer above the surface. Plasma shielding also loses its effectiveness at high laser intensities when the formed hot dense plasma plume causes extensive target erosion due to radiation fluxes back to the surface. The magnitude of emitted radiation fluxes from such a plasma is similar to or slightly higher than the laser photon flux in the low shielding regime. Thus, shielding efficiency in LPPs has a peak that depends on the laser beam parameters and the target material. A similar tendency is also expected in other plasma-operating devices such as tokamaks of magnetic fusion energy (MFE) reactors during transient plasma operation and disruptions on chamber walls when deposition of the high-energy transient plasma can cause severe erosion and damage to the plasma-facing and nearby components. A detailed analysis of these abnormal events and their consequences in future power reactors is limited in current tokamak reactors. Predictions for high-power future tokamaks are possible only through comprehensive, time-consuming and rigorous modelling. We developed scaling mechanisms, based on modelling of LPP devices with their typical temporal and spatial scales, to simulate tokamak abnormal operating regimes to study wall erosion, plasma shielding and radiation under MFE reactor conditions. We found an analogy in regimes and results of carbon and tungsten erosion of the divertor surface in ITER-like reactors with erosion due to laser irradiation. Such an approach will allow utilizing validated modelling combined with well-designed and well-diagnosed LPP experimental studies for predicting

  8. Resonant shadowgraph and schlieren studies of magnetized laser-produced plasmas

    Science.gov (United States)

    Jellison, G.; Parsons, C. R.

    1981-10-01

    Resonant shadowgraph and schlieren techniques are used to photograph the flow of laser-produced barium plasma, across a magnetic field. The plasma is formed by focusing a CO2 TEA laser onto a solid barium target in a vacuum chamber. Long 7-J pulses and short 2-J pulses are obtained, and the CO2 wavelength is 10.6 microns. A transverse magnetic field of 200-2000 G is provided by electromagnetic coils. The tunable dye laser used for optical diagnostics is pumped by a frequency-doubled Q-switched ruby laser and yields a 10-mJ, 20-nsec pulse with a spectral width of 0.25 A. For the schlieren studies, a knife edge is placed at the laser focal spot, and the camera is focused onto the plasma region. Some of the features in the photographs are understandable in view of previous work, while others are unexpected. The appearance of a narrow collimated beam has been noted in other studies (e.g., Sucov et al., 1967; Bruneteau et al., 1970). It is shown that the traditional concept of polarization drift across the field is applicable to the present experiment. The slow plasma component displays internal striations, which are interpreted as shock waves excited by the plasma.

  9. Extinction characterization of soot produced by laser ablating carbon fiber composite materials in air flow

    Science.gov (United States)

    Liu, Weiping; Ma, Zhiliang; Zhang, Zhenrong; Zhou, Menglian; Wei, Chenghua

    2015-05-01

    In order to research the dynamic process of energy coupling between an incident laser and a carbon fiber/epoxy resin composite material, an extinction characterization analysis of soot, which is produced by laser ablating and located in an air flow that is tangential to the surface of the composite material, is carried out. By the theory analyses, a relationship of mass extinction coefficient and extinction cross section of the soot is derived. It is obtained that the mass extinction coefficients of soot aggregates are the same as those of the primary particles when they contain only a few primary particles. This conclusion is significant when the soot is located in an air flow field, where the generations of the big soot aggregates are suppressed. A verification experiment is designed. The experiment employs Laser Induced Incandescence technology and laser extinction method for the soot synchronization diagnosis. It can derive a temporal curve of the mass extinction coefficient from the soot concentration and laser transmittance. The experiment results show that the mass extinction coefficient becomes smaller when the air flow velocity is higher. The reason is due to the decrease of the scatter effects of the soot particles. The experiment results agree with the theory analysis conclusion.

  10. Characterization of electrons and x-rays produced using chirped laser pulses in a laser wakefield accelerator

    Science.gov (United States)

    Zhao, T. Z.; Behm, K.; He, Z.-H.; Maksimchuk, A.; Nees, J. A.; Yanovsky, V.; Thomas, A. G. R.; Krushelnick, K.

    2016-11-01

    The electron injection process into a plasma-based laser wakefield accelerator can be influenced by modifying the parameters of the driver pulse. We present an experimental study on the combined effect of the laser pulse duration, pulse shape, and frequency chirp on the electron injection and acceleration process and the associated radiation emission for two different gas types—a 97.5% He and 2.5% N2 mixture and pure He. In general, the shortest pulse duration with minimal frequency chirp produced the highest energy electrons and the most charge. Pulses on the positive chirp side sustained electron injection and produced higher charge, but lower peak energy electrons, compared with negatively chirped pulses. A similar trend was observed for the radiant energy. The relationship between the radiant energy and the electron charge remained linear over a threefold change in the electron density and was independent of the drive pulse characteristics. X-ray spectra showed that ionization injection of electrons into the wakefield generally produced more photons than self-injection for all pulse durations/frequency chirp and had less of a spread in the number of photons around the peak x-ray energy.

  11. Processing condition influence on the characteristics of gold nanoparticles produced by pulsed laser ablation in liquids

    Energy Technology Data Exchange (ETDEWEB)

    Nikov, R.G., E-mail: rosen_nikov@abv.bg [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Nikolov, A.S.; Nedyalkov, N.N.; Atanasov, P.A. [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Alexandrov, M.T. [Institute of Experimental Pathology and Parasitology, Bulgarian Academy of Sciences, G. Bonchev Street, Building 25, Sofia 1113 (Bulgaria); Karashanova, D.B. [Institute of Optical Materials and Technologies, Bulgarian Academy of Sciences, G. Bonchev Street, Building 109, Sofia 1113 (Bulgaria)

    2013-06-01

    A study is presented of Au nanoparticles (NPs) created by nanosecond pulsed laser ablation of a solid target in double distilled water. The influence was examined of the laser wavelength on the size, shape and optical properties of the resulting NPs. Three different wavelengths: the fundamental (λ = 1064 nm), second (λ{sub SHG} = 532) and third (λ{sub THG} = 355) harmonic of a Nd:YAG laser at the same fluence were utilized to produce various colloids. Ablation at the wavelength of 532 nm was investigated in more detail to reveal the influence of self-absorption by the already created NPs on their characteristics. The colloid produced was irradiated by λ{sub irrad} = 532 nm (laser energy 40 mJ) at different times up to 25 min after the end of ablation. The initial structure of welded NPs forming wires was modified. Transmission electron microscopy and optical transmission measurements were used to evaluate the shape and size distribution of the NPs.

  12. High level compressive residual stresses produced in aluminum alloys by laser shock processing

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Rosas, G. [Centro de Ingenieria y Desarrollo Industrial, CIDESI, Av. Playa Pie de la Cuesta, 702 Desarrollo San Pablo, c.p. 76130 Santiago de Queretaro, Queretaro (Mexico)]. E-mail: ggomez@cidesi.mx; Rubio-Gonzalez, C. [Centro de Ingenieria y Desarrollo Industrial, CIDESI, Av. Playa Pie de la Cuesta, 702 Desarrollo San Pablo, c.p. 76130 Santiago de Queretaro, Queretaro (Mexico); Ocana, J.L [Departamento de Fisica Aplicada a la Ingenieria Industrial, ETSII, Universidad Politecnica de Madrid (Spain); Molpeceres, C. [Departamento de Fisica Aplicada a la Ingenieria Industrial, ETSII, Universidad Politecnica de Madrid (Spain); Porro, J.A. [Departamento de Fisica Aplicada a la Ingenieria Industrial, ETSII, Universidad Politecnica de Madrid (Spain); Chi-Moreno, W. [Instituto Tecnologico de Morelia (Mexico); Morales, M. [Departamento de Fisica Aplicada a la Ingenieria Industrial, ETSII, Universidad Politecnica de Madrid (Spain)

    2005-11-15

    Laser shock processing (LSP) has been proposed as a competitive alternative technology to classical treatments for improving fatigue and wear resistance of metals. We present a configuration and results for metal surface treatments in underwater laser irradiation at 1064 nm. A convergent lens is used to deliver 1.2 J/cm{sup 2} in a 8 ns laser FWHM pulse produced by 10 Hz Q-switched Nd:YAG, two laser spot diameters were used: 0.8 and 1.5 mm. Results using pulse densities of 2500 pulses/cm{sup 2} in 6061-T6 aluminum samples and 5000 pulses/cm{sup 2} in 2024 aluminum samples are presented. High level of compressive residual stresses are produced -1600 MPa for 6061-T6 Al alloy, and -1400 MPa for 2024 Al alloy. It has been shown that surface residual stress level is higher than that achieved by conventional shot peening and with greater depths. This method can be applied to surface treatment of final metal products.

  13. Laser-produced plasma He-alpha source for pulse radiography

    Institute of Scientific and Technical Information of China (English)

    Ruirong Wang; Weimin Chen; Chusheng Mao; Jiaqin Dong; Sizu Fu

    2009-01-01

    Through the use of time and space integrated kiloelectronvolt (keV) spectroscopy, we investigate the thermal emission of plasma, which produces strong line emission from the titanium K shell (He-α at 4.7 keV and H-α at 4.9 keV), created by laser. In order to optimize the conversion efficiency enhancement on titanium foils, the experiment is conducted under a variety of laser-driven intensity conditions. The X-ray emission intensity at 4.7 keV is measured and compared with prediction. The experimental result demonstrates that the solid Ti target laser-produced plasma (LPP) source has X-ray emission at 4.7 keV, which are all generated from electronic transitions in Ti ions at pulse width of 2.1 ns or 30 ps, the crudely evaluated He-α X-ray intensity appears to slightly increase with laser intensity enhancement, and the pre-pulse effect increases the conversion efficiency of the He-α X-ray. In addition, a 90-μm-thick Ti foil as a filter is used to transmit He-α X-ray at near 4.7 keV, creating a quasi-monochromatic transmission and greatly reducing thc lower- and higher-energy background.

  14. A Novel Spectrometer for Measuring Laser-Produced Plasma X-Ray in Inertial Confinement Fusion

    Directory of Open Access Journals (Sweden)

    Zhu Gang

    2012-01-01

    Full Text Available In the experimental investigations of inertial confinement fusion, the laser-produced high-temperature plasma contains very abundant information, such as the electron temperature and density, ionization. In order to diagnose laser-plasma distribution in space and evolution in time, an elliptical curved crystal spectrometer has been developed and applied to diagnose X-ray of laser-produced plasma in 0.2~2.46 nm region. According to the theory of Bragg diffraction, four kinds of crystal including LiF, PET, MiCa, and KAP were chosen as dispersive elements. The distance of crystal lattice varies from 0.4 to 2.6 nm. Bragg angle is in the range of 30°~67.5°, and the spectral detection angle is in 55.4°~134°. The curved crystal spectrometer mainly consists of elliptical curved crystal analyzer, vacuum configuration, aligning device, spectral detectors and three-dimensional microadjustment devices. The spectrographic experiment was carried out on the XG-2 laser facility. Emission spectrum of Al plasmas, Ti plasma, and Au plasmas have been successfully recorded by using X-ray CCD camera. It is demonstrated experimentally that the measured wavelength is accorded with the theoretical value.

  15. Volume effect of laser produced plasma on X-ray emissions

    Indian Academy of Sciences (India)

    V K Senecha; Y B S R Prasad; M P Kamath; A S Joshi; G S Solanki; A P Kulkarni; S Gupta; R Pareek; H C Pant

    2000-11-01

    An investigation of x-ray emission from Cu plasma produced by 1.054 m Nd:glass laser pulses of 5 ns duration, at 2 × 1012-2 × 1013 W cm-2 is reported. The x-ray emission has been studied as a function of target position with respect to the laser beam focus position. It has been observed that x-ray emissions from ns duration plasma show a volume effect similar to subnanosecond plasmas. Due to this effect the x-ray yield increases when target is moved away relative to the best focal plane of the laser beam. This result supports the theoretical model of Tallents and has also been testified independently using suitably modified theoretical model for our experimental conditions. While above result is in good agreement with similar experimental results obtained for sub-nanosecond laser produced plasmas, it differs from result claiming filamentation rather than pure geometrical effect leading to x-ray enhancement for ns plasmas.

  16. QCL seeded, ns-pulse, multi-line, CO2 laser oscillator for laser-produced-plasma extreme-UV source

    Science.gov (United States)

    Nowak, Krzysztof Michał; Suganuma, Takashi; Kurosawa, Yoshiaki; Ohta, Takeshi; Kawasuji, Yasufumi; Nakarai, Hiroaki; Saitou, Takashi; Fujimoto, Junichi; Mizoguchi, Hakaru; Sumitani, Akira; Endo, Akira

    2017-01-01

    Successful merger of state-of-the-art, semiconductor quantum-cascade lasers (QCL), with the mature CO2 laser technology, resulted in a delivery of highly-desired qualities of CO2 laser output that were not available previously without much effort. These qualities, such as multi-line operation, excellent spectro-temporal stability and pulse waveform control, became available from a single device of moderate complexity. This paper describes the operation principle and the unique properties of the solid{state seeded CO2 laser, invented for an application in laser-produced-plasma (LPP), extreme-UV (EUV) light source.

  17. On the use of shockwave models in laser produced plasma expansion

    Energy Technology Data Exchange (ETDEWEB)

    De Posada, E; Arronte, M A; Ponce, L; Rodriguez, E; Flores, T [Centro de Investigacion en Ciencia Aplicada y TecnologIa Avanzada, Unidad Altamira, Tamaulipas (Mexico); Lunney, J G, E-mail: edeposada@ipn.mx [School of Physics, Trinity College Dublin (Ireland)

    2011-01-01

    Interaction of medium to high peak power laser pulses with solid materials produces a plasma that expands supersonically. Expansions of such plasmas have been studied and several models have been proposed to describe it. This work presents a study of the expansion of laser produced plasmas in both vacuum and gas environment by using Langmuir probe and photography. It compares some of the most used models to identify that which better describes the expansion process. In vacuum, such process is properly described by the Anisimov model. However when expanding in a background gas it is found that the Sedov-Taylor model fits properly the position of generated shockwave but overestimates both kinetic energy and pressure of the expanding plasma. Such problem is solved by using a modification of the Freiwald-Axford model. Finally it is demonstrated that after the plasma stopping distance the plasma inters in a diffusive regime.

  18. Numerical investigation of non-local electron transport in laser-produced plasmas

    Institute of Scientific and Technical Information of China (English)

    Dong Ya-Lin; Zhao Bin; Zheng Jian

    2007-01-01

    Non-local electron transport in laser-produced plasmas under inertial confinement fusion (ICF) conditions is studied based on Fokker-Planck (FP) and hydrodynamic simulations. A comparison between the classical Spitzer-H(a)rm (SH)transport model and non-local transport models has been made. The result shows that among those non-local models the Epperlein and Short (ES) model of heat flux is in reasonable agreement with the FP simulation in overdense region.However, the non-local models are invalid in the hot underdense plasmas. Hydrodynamic simulation is performed with the flux limiting model and the non-local model, separately. The simulation results show that in the underdense region of the laser-produced plasmas the temperature given by the flux limiting model is significantly higher than that given with the non-local model.

  19. Nanostructured rhodium films for advanced mirrors produced by Pulsed Laser Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Uccello, A., E-mail: andrea.uccello@mail.polimi.it [Dipartimento di Energia, Politecnico di Milano, Milan (Italy); Dellasega, D., E-mail: david.dellasega@polimi.it [Dipartimento di Energia, Politecnico di Milano, Milan (Italy); Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA-CNR Association, Milan (Italy); Perissinotto, S., E-mail: stefano.perissinotto@iit.it [Center for Nano Science and Technology - Polimi, Istituto Italiano di Tecnologia, Milan (Italy); Lecis, N., E-mail: nora.lecis@polimi.it [Dipartimento di Meccanica, Politecnico di Milano, Milan (Italy); Passoni, M., E-mail: matteo.passoni@polimi.it [Dipartimento di Energia, Politecnico di Milano, Milan (Italy); Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA-CNR Association, Milan (Italy)

    2013-01-15

    In this paper advantages in the production by Pulsed Laser Deposition (PLD) of nanostructured, nanoengineered rhodium films to be used in tokamak First Mirrors (FMs) are shown. The peculiar PLD capability to tailor film structure at the nanoscale gives the possibility to deposit low roughness Rh films with a wide variety of structures and morphologies. By a proper movimentation of the substrate and using high fluence (10-19 J/cm{sup 2}) infrared laser pulses, it has been possible to deposit planar and homogeneous Rh films effectively suppressing surface defects on areas of the order of 10 cm{sup 2} with a satisfactory specular reflectivity. Multilayer deposition has been exploited to produce coatings with high adhesion and good mechanical properties. Finally, an estimation of the requirements to produce by PLD rhodium films suitable for the requests of ITER is provided.

  20. Astrophysics of magnetically collimated jets generated from laser-produced plasmas

    CERN Document Server

    Ciardi, A; Fuchs, J; Albertazzi, B; Riconda, C; Pépin, H; Portugall, O

    2012-01-01

    The generation of astrophysically relevant jets, from magnetically collimated, laser-produced plasmas, is investigated through three-dimensional, magneto-hydrodynamic simulations. We show that for laser intensities I ~ 10^12 - 10^14 W/cm^2, a magnetic field in excess of ~ 0.1 MG, can collimate the plasma plume into a prolate cavity bounded by a shock envelope with a standing conical shock at its tip, which re-collimates the flow into a super magneto-sonic jet beam. This mechanism is equivalent to astrophysical models of hydrodynamic inertial collimation, where an isotropic wind is focused into a jet by a confining circumstellar torus-like envelope. The results suggest an alternative mechanism for a large-scale magnetic field to produce jets from wide-angle winds. (abridged version)

  1. Radiation properties and hydrodynamics evolution of highly charged ions in laser-produced silicon plasma.

    Science.gov (United States)

    Min, Qi; Su, Maogen; Cao, Shiquan; Sun, Duixiong; O'Sullivan, Gerry; Dong, Chenzhong

    2016-11-15

    We present a simplified radiation hydrodynamic model based on the fluid dynamic equations and the radiative transfer equation, which can be used to investigate the radiation properties and dynamics evolution of highly charged ions in a laser-produced plasma in vacuum. The outputs of the model consist of the evolution of the electron temperature, atom, and ion density, and the temporal and spatial evolution of various transient particles in plasma, as well as the simulated spectrum related to certain experimental conditions in a specified spectral window. In order to test the model and provide valuable experimental feedback, a series of EUV emission spectra of silicon plasmas have been measured using the spatio-temporally resolved laser produced plasma technique. The temporal and spatial evolution of the plasma is reliably reconstructed by using this model.

  2. Astrophysics of magnetically collimated jets generated from laser-produced plasmas.

    Science.gov (United States)

    Ciardi, A; Vinci, T; Fuchs, J; Albertazzi, B; Riconda, C; Pépin, H; Portugall, O

    2013-01-11

    The generation of astrophysically relevant jets, from magnetically collimated, laser-produced plasmas, is investigated through three-dimensional, magnetohydrodynamic simulations. We show that for laser intensities I∼10(12)-10(14) W cm(-2), a magnetic field in excess of ∼0.1  MG, can collimate the plasma plume into a prolate cavity bounded by a shock envelope with a standing conical shock at its tip, which recollimates the flow into a supermagnetosonic jet beam. This mechanism is equivalent to astrophysical models of hydrodynamic inertial collimation, where an isotropic wind is focused into a jet by a confining circumstellar toruslike envelope. The results suggest an alternative mechanism for a large-scale magnetic field to produce jets from wide-angle winds.

  3. Optical Cladding Waveguides in Dielectric Crystals Produced by Femtosecond Laser Inscription

    Directory of Open Access Journals (Sweden)

    Chen Feng

    2013-11-01

    Full Text Available In this work, the recent progress of our research on optical cladding waveguides in dielectric crystals produced by femtosecond laser inscription has been overviewed. With different scales at cross sections, the cladding waveguides support guidance from single mode to highly multi-modes, and work for wavelength till mid-infrared regimes. Applications of the fabricated cladding structures as new integrated light sources are introduced.

  4. Importance of layer thermal conductivity on the sharpness of patterns produced by laser interference

    Energy Technology Data Exchange (ETDEWEB)

    Peláez, R.J., E-mail: rpelaez@io.cfmac.csic.es [Laser Processing Group, Instituto de Optica, CSIC, Serrano 121, 28006 Madrid (Spain); Afonso, C.N. [Laser Processing Group, Instituto de Optica, CSIC, Serrano 121, 28006 Madrid (Spain); Škereň, M. [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Brehova 7, 115 19 Prague 1 (Czech Republic); Bulíř, J. [Institute of Physics, ASCR, v.v.i., Na Slovance 2, Prague (Czech Republic)

    2016-06-30

    Highlights: • Temperature profile matches laser intensity profile in poor thermally conducting layers. • Patterns produced in poor thermally conducting layers have sharp interfaces. • Lateral heat flow smears the temperature profile in thermally conducting layers. • Both liquid and solid state dewetting occurs upon patterning thermally conducting layers. • The thermal conductivity of layers limits the minimum period achievable. - Abstract: In this work, we compare patterns produced in Ag layers having similar thickness in the range 8.3–10.8 nm but having different initial nanostructure, i.e. behaving either as discontinuous or continuous layers and thus having very different thermal conductivities. The patterns are produced by exposing a phase mask to an excimer laser operating at 193 nm and using a projection optics that leads to similar fringed patterns with periods in the range 6.3–6.7 μm. The layer breaks up into isolated NPs due to laser induced melting at the regions around the intensity maxima sites. The resulting fringes have sharp interfaces in the case of discontinuous layers while a variety of regions across the pattern with no sharp interfaces are produced in the case of continuous layers. The results show that while the temperature distribution across the pattern matches almost perfectly the laser beam intensity profile for the former case, it becomes smeared due to lateral heat flow for the latter case. These results provide evidences for significant heating at the intensity minima sites that lead to solid-state dewetting and will eventually limit the minimum period achievable in the case of continuous metal layers or thermally conducting layers.

  5. Dynamics of atomic spin-orbit-state wave packets produced by short-pulse laser photodetachment

    CERN Document Server

    Law, S M K

    2016-01-01

    We analyse the experiment by Hultgren et al. [Phys. Rev. A {\\bf 87}, 031404 (2013)] on orbital alignment and quantum beats in coherently excited atomic fine-structure manifolds produced by short-pulse laser photodetachment of C$^-$, Si$^-$ and Ge$^-$ negative ions, and derive a formula that describes the beats. Analysis of the experimental data enables us to extract the non-coherent background contribution for each species, and indicates the need for a full density matrix treatment of the problem.

  6. Measurements of Electron Density Profiles of Plasmas Produced by Nike KrF Laser for Laser Plasma Instability (LPI) Research

    Science.gov (United States)

    Oh, Jaechul; Weaver, J. L.; Obenschain, S. P.; Schmitt, A. J.; Kehne, D. M.; Karasik, M.; Chan, L.-Y.; Serlin, V.; Phillips, L.

    2013-10-01

    Knowing spatial profiles of electron density (ne) in the underdense coronal region (n Nike LPI experiment, a side-on grid imaging refractometer (GIR) was deployed for measuring the underdense plasma profiles. Plasmas were produced from flat CH targets illuminated by Nike KrF laser with total energies up to 1 kJ of 0.5 ~ 1 nsec FWHM pulses. The GIR resolved ne up to 3 ×1021 /cm3 in space taking 2D snapshot images of probe laser (λ = 263 nm, Δt = 10 ps) beamlets (50 μm spacing) refracted by the plasma at a selected time during the laser illumination. The individual beamlet transmittances were also measured for Te estimation. Time-resolved spectrometers with an absolute-intensity-calibrated photodiode array and a streak camera simultaneously detected light emission from the plasma in spectral ranges relevant to Raman (SRS) and two plasmon decay instabilities. The measured spatial profiles are compared with simulation results from the FAST3D radiation hydrocode and their effects on the LPI observations are investigated. Work supported by DoE/NNSA and performed at Naval Research Laboratory.

  7. High-power 200 fs Kerr-lens mode-locked Yb:YAG thin-disk oscillator.

    Science.gov (United States)

    Pronin, O; Brons, J; Grasse, C; Pervak, V; Boehm, G; Amann, M-C; Kalashnikov, V L; Apolonski, A; Krausz, F

    2011-12-15

    We demonstrate a power-scalable Kerr-lens mode-locked Yb:YAG thin-disk oscillator. It delivers 200 fs pulses at an average power of 17 W and a repetition rate of 40 MHz. At an increased (180 W) pump power level, the laser produces 270 fs 1.1 μJ pulses at an average power of 45 W (optical-to-optical efficiency of 25%). Semiconductor-saturable-absorber-mirror-assisted Kerr-lens mode locking (KLM) and pure KLM with a hard aperture show similar performance. To our knowledge, these are the shortest pulses achieved from a mode-locked Yb:YAG disk oscillator and this is the first demonstration of a Kerr-lens mode-locked thin-disk laser.

  8. Morphological changes produced by acid dissolution in Er:YAG laser irradiated dental enamel.

    Science.gov (United States)

    Manuela Díaz-Monroy, Jennifer; Contreras-Bulnes, Rosalía; Fernando Olea-Mejía, Oscar; Emma Rodríguez-Vilchis, Laura; Sanchez-Flores, Ignacio

    2014-06-01

    Several scientific reports have shown the effects of Er:YAG laser irradiation on enamel morphology. However, there is lack of information regarding the morphological alterations produced by the acid attack on the irradiated surfaces. The aim of this study was to evaluate the morphological changes produced by acid dissolution in Er:YAG laser irradiated dental enamel. Forty-eight enamel samples were divided into four groups (n = 12). GI (control); Groups II, III, and IV were irradiated with Er:YAG at 100 mJ (12.7 J/cm(2) ), 200 mJ (25.5 J/cm(2) ), and 300 mJ (38.2 J/cm(2) ), respectively, at 10 Hz without water irrigation. Enamel morphology was evaluated before-irradiation, after-irradiation, and after-acid dissolution, by scanning electron microscopy (SEM). Sample coating was avoided and SEM analysis was performed in a low-vacuum mode. To facilitate the location of the assessment area, a reference point was marked. Morphological changes produced by acid dissolution of irradiated enamel were observed, specifically on laser-induced undesired effects. These morphological changes were from mild to severe, depending on the presence of after-irradiation undesired effects.

  9. Phase Composition and Microstructure of Ti-Nb Alloy Produced by Selective Laser Melting

    Science.gov (United States)

    Sharkeev, Yu P.; Eroshenko, A. Yu; Kovalevskaya, Zh G.; Saprykin, A. A.; Ibragimov, E. A.; Glukhov, I. A.; Chimich, M. A.; Uvarkin, P. V.; Babakova, E. V.

    2016-07-01

    The phase composition and microstructure of Ti-Nb alloy produced from composite titanium and niobium powder by selective laser melting (SLM) was studied. Produced monolayered Ti-Nb alloy enhanced the formation of fine-grained and medium-grained zones with homogeneous element composition of 36-38% Nb mass interval. Alloy phase composition responded to β-alloy substrate phase (grain size was 5-7 pm) and non-equilibrium martensite α"- phase (grain size was 0.1-0.7 µm). α"-phase grains were found along β-phase grain boundaries and inside grains, including decreased niobium content. Alloy microhardness varied within 4200-5500 MPa.

  10. fs激光在靶背表面产生的质子束成丝%Filamented proton beams from the rear surface of target irradiated by fs laser

    Institute of Scientific and Technical Information of China (English)

    谷渝秋; 蔡达锋; 郑志坚; 温天舒; 淳于书泰; 陈家斌; 周维民; 焦春晔; 陈豪

    2004-01-01

    介绍了利用3TW/60fs钛宝石超短超强激光与20μm铜薄膜靶相互作用的实验.实验观测到质子束的角分布随激光功率密度有所变化.在较高的功率密度(~1×1018W/cm2)时,观测到环状的质子束分布,发散角较大.在较低的激光功率密度(~2×1017W/cm2)时,质子束发散角减小,质子束出现成丝现象.质子束的角分布实际上反映了从靶前输运到靶背的超热电子电流横向分布.在输运过程中,由于Weibel不稳定性会使超热电子电流出现空心化并最后破裂成丝.%Proton emission patterns from the rear surface of targets irradiated by 60fs laser pulse at different intensity have been studied. The filaments of protons emission from 20μm Cu target were observed in the shots with lower laser intensity (about 2×1017W/cm2). As the laser intensity increased up to about 1×1018W/cm2 for the same target thickness, the filaments of proton beam disappeared and a hollow proton beam emerged. The patterns of proton beams revealed the traverse distribution of hot electrons reached the rear surface of target after a long distance transportation from the front surface of target. In this process, Weibel instability will drive electron beam into hollow structure and break into filaments in the end.

  11. Manufacturing of Er:ZBLAN ridge waveguides by pulsed laser deposition and ultrafast laser micromachining for green integrated lasers

    Energy Technology Data Exchange (ETDEWEB)

    Gottmann, Jens [Lehrstuhl fuer Lasertechnik, RWTH Aachen University, Steinbachstr. 15, 52074 Aachen (Germany)], E-mail: jens.gottmann@llt.rwth-aachen.de; Moiseev, Leonid; Vasilief, Ion; Wortmann, Dirk [Lehrstuhl fuer Lasertechnik, RWTH Aachen University, Steinbachstr. 15, 52074 Aachen (Germany)

    2008-01-15

    Laser radiation is used both for the deposition of the laser active thin films and for the microstructuring to define wave guiding structures for the fabrication of waveguide lasers. Thin films of Er:ZBLAN (a fluoride glass consisting of ZrF{sub 4}, BaF{sub 2}, LaF{sub 3}, AlF{sub 3}, NaF, ErF{sub 3}) for green up-conversion lasers (545 nm) are produced by pulsed laser deposition using ArF excimer laser radiation (wavelength 193 nm). Manufacturing of the laser active waveguides by microstructuring is done using fs-laser ablation of the deposited films. The structural and optical properties of the films and the damping losses of the structured waveguides are determined in view of the design and the fabrication of compact and efficient diode pumped waveguide lasers. The resulting waveguides are polished, provided with resonator mirrors, pumped using diode lasers and characterized.

  12. High-Power and Low-Noise 10-GHz All-Active Monolithic Mode-Locked Lasers with Surface Etched Bragg Grating

    DEFF Research Database (Denmark)

    Larsson, David; Yvind, Kresten; Hvam, Jørn Märcher

    2007-01-01

    We have fabricated 4.4 mm long monolithic InAlGaAsP/InP mode-locked lasers with integrated deeply surface etched DBR-mirrors. The lasers produce 3.7 ps transform-limited Gaussian pulses with 10 mW average power and 250 fs timing jitter.......We have fabricated 4.4 mm long monolithic InAlGaAsP/InP mode-locked lasers with integrated deeply surface etched DBR-mirrors. The lasers produce 3.7 ps transform-limited Gaussian pulses with 10 mW average power and 250 fs timing jitter....

  13. Applications of laser produced ion beams to nuclear analysis of materials

    Energy Technology Data Exchange (ETDEWEB)

    Mima, K.; Azuma, H.; Fujita, K.; Yamazaki, A.; Okuda, C.; Ukyo, Y.; Kato, Y.; Arrabal, R. Gonzalez; Soldo, F.; Perlado, J. M.; Nishimura, H.; Nakai, S. [Graduate School for the Creation of New Photonics Industries, Shizuoka (Japan) and Institute de Fusion Nuclear, Universidad Politecnica de Madrid, Madrid (Spain) and Institute of Laser Engineering, Osaka University, Osaka (Japan); Toyota Central R and D Labs., Inc., Aichi (Japan); Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA), Gunnma (Japan); Toyota Central R and D Labs., Inc., Aichi (Japan)

    2012-07-11

    Laser produced ion beams have unique characteristics which are ultra-short pulse, very low emittance, and variety of nuclear species. These characteristics could be used for analyzing various materials like low Z ion doped heavy metals or ceramics. Energies of laser produced ion beam extend from 0.1MeV to 100MeV. Therefore, various nuclear processes can be induced in the interactions of ion beams with samples. The ion beam driven nuclear analysis has been developed for many years by using various electrostatic accelerators. To explore the applicability of laser ion beam to the analysis of the Li ion battery, a proton beam with the diameter of {approx} 1.0 {mu}m at Takasaki Ion Acceleration for Advanced Radiation Application (TIARA), JAEA was used. For the analysis, the PIGE (Particle-Induced Gamma Ray Emission) is used. The proton beam scans over Li battery electrode samples to diagnose Li density in the LiNi{sub 0.85}Co{sub 0.15}O{sub 2} anode. As the results, PIGE images for Li area density distributions are obtained with the spatial resolution of better than 1.5{mu}m FWHM. By the Li PIGE images, the depth dependence of de-intercalation levels of Li in the anode is obtained. By the POP experiments at TIARA, it is clarified that laser produced ion beam is appropriate for the Li ion battery analysis. 41.85.Lc, 41.75.Jv, 42.62.cf.

  14. Seeding the FEL of the SCSS Phase 1 Facility with the 13th Laser Harmonic of a Ti Sa Laser (61.5 nm) Produced in Xe Gas

    CERN Document Server

    Lambert, G; Boutu, W; Breger, P; Couprie, M E; Garzella, D; Merdji, H; Monchicourt, P; Salieres, P

    2005-01-01

    In order to reach very short wavelengths in FEL, and to have a more compact, fully coherent and tunable source, a particular seeding configuration is foreseen to be tested as a demonstration experiment in 2006 into the SCSS phase 1 facility (Spring-8 Compact Sase Source, Japan). The external source is the 13th harmonic (61.5 nm) of a Ti: Sa laser (25 mJ, 10 Hz, 100 fs) generated in 10 Hz pulsed Xe gas cell. The harmonic generation process provides us with a intense (1 μJ) and ultra-short (50 fs) VUV beam. The design of the experiment implantation is discussed, taken into account the performances of the generation process, the focusing of the selected harmonic into the modulator, and the resistance of the optical components. Besides one should consider the vacuum needs, the geometrical problems and the mechanics for the under UHV mirrors translation. One first chamber is dedicated to the harmonic generation. A second one is used for spectral selection and adaptation of the harmonic in the modulator. F...

  15. On- and off-axis spectral emission features from laser-produced gas breakdown plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, S. S.; Skrodzki, P. J.; Miloshevsky, A.; Brumfield, B. E.; Phillips, M. C.; Miloshevsky, G.

    2017-06-01

    Laser-heated gas breakdown plasmas or sparks emit profoundly in the ultraviolet and visible region of the electromagnetic spectrum with contributions from ionic, atomic, and molecular species. Laser created kernels expand into a cold ambient with high velocities during its early lifetime followed by confinement of the plasma kernel and eventually collapse. However, the plasma kernels produced during laser breakdown of gases are also capable of exciting and ionizing the surrounding ambient medium. Two mechanisms can be responsible for excitation and ionization of surrounding ambient: viz. photoexcitation and ionization by intense ultraviolet emission from the sparks produced during the early times of its creation and/or heating by strong shocks generated by the kernel during its expansion into the ambient. In this study, an investigation is made on the spectral features of on- and off-axis emission features of laser-induced plasma breakdown kernels generated in atmospheric pressure conditions with an aim to elucidate the mechanisms leading to ambient excitation and emission. Pulses from an Nd:YAG laser emitting at 1064 nm with 6 ns pulse duration are used to generate plasma kernels. Laser sparks were generated in air, argon, and helium gases to provide different physical properties of expansion dynamics and plasma chemistry considering the differences in laser absorption properties, mass density and speciation. Point shadowgraphy and time-resolved imaging were used to evaluate the shock wave and spark self-emission morphology at early and late times while space and time resolved spectroscopy is used for evaluating the emission features as well as for inferring plasma fundaments at on- and off-axis. Structure and dynamics of the plasma kernel obtained using imaging techniques are also compared to numerical simulations using computational fluid dynamics code. The emission from the kernel showed that spectral features from ions, atoms and molecules are separated in

  16. Experimental studies of the effect target geometry on the evolution of laser produced plasma plumes

    Science.gov (United States)

    Beatty, Cuyler; Anderson, Austin; Iratcabal, Jeremy; Dutra, Eric; Covington, Aaron

    2016-10-01

    The expansion of the laser plumes was shown to be dependent on the initial target geometry. A 16 channel framing camera was used to record the plume shape and propagation speeds were determined from analysis of the images. Plastic targets were manufactured using different methods including 3D printing, CNC machining and vacuum casting. Preliminary target designs were made using a 3D printer and ABS plastic material. These targets were then tested using a 3 J laser with a 5 ns duration pulse. Targets with a deep conical depression were shown to produce highly collimated plumes when compared to flat top targets. Preliminary results of these experiments will be discussed along with planned future experiments that will use the indented targets with a 30 J laser with a 0.8 ns duration pulse in preparation for pinched laser plume experiments at the Nevada Terawatt Facility. Other polymers that are readily available in a deuterated form will also be explored as part of an effort to develop a cost effective plasma plume target for follow on neutron production experiments. Dr. Austin Anderson.

  17. Characterisation of laser-produced tungsten plasma using optical spectroscopy method

    Science.gov (United States)

    Kubkowska, M.; Gasior, P.; Rosinski, M.; Wolowski, J.; Sadowski, M. J.; Malinowski, K.; Skladnik-Sadowska, E.

    2009-08-01

    This paper describes results of spectroscopic investigation of laser-produced tungsten plasma. The laser intensity on the target surface reached up to 30 GW/cm2 depending on the focusing conditions. Optical spectra emitted from plasma plumes which were formed under vacuum conditions in front of the tungsten target due to the interaction of Nd-YAG laser pulses (1.06 μm, 0.5 J), were characterised by means of an optical spectrometer (λ/Δλ= 900) in the wavelength range from 300 to 1100 nm. The spectra were recorded automatically with the use of a CCD detector with exposition time varied from 100 ns to 50 ms. On the basis of WI and WII lines it was possible to estimate electron temperature and electron density which corresponded to the expansion phase of the plasma. Te and Ne were measured as 1.1 eV and 8×1016 cm-3, respectively. The spectra collected by the ion energy analyser showed that the plasma included tungsten ions up to 6+ ion charge. Signals from the ion collector allowed to estimate the average value of ion energy of tungsten as 4.6 keV. Basing on this value the electron temperature corresponding to the initial stage of the plasma formation was estimated to be about 320 eV. Optical microscope investigation showed that laser irradiation caused structural changes on the surface of the target.

  18. Tribological Characteristic of Titanium Alloy Surface Layers Produced by Diode Laser Gas Nitriding

    Directory of Open Access Journals (Sweden)

    Lisiecki A.

    2016-06-01

    Full Text Available In order to improve the tribological properties of titanium alloy Ti6Al4V composite surface layers Ti/TiN were produced during laser surface gas nitriding by means of a novel high power direct diode laser with unique characteristics of the laser beam and a rectangular beam spot. Microstructure, surface topography and microhardness distribution across the surface layers were analyzed. Ball-on-disk tests were performed to evaluate and compare the wear and friction characteristics of surface layers nitrided at different process parameters, base metal of titanium alloy Ti6Al4V and also the commercially pure titanium. Results showed that under dry sliding condition the commercially pure titanium samples have the highest coefficient of friction about 0.45, compared to 0.36 of titanium alloy Ti6Al4V and 0.1-0.13 in a case of the laser gas nitrided surface layers. The volume loss of Ti6Al4V samples under such conditions is twice lower than in a case of pure titanium. On the other hand the composite surface layer characterized by the highest wear resistance showed almost 21 times lower volume loss during the ball-on-disk test, compared to Ti6Al4V samples.

  19. Fabrication of microchannels in single-crystal GaN by wet-chemical-assisted femtosecond-laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, Seisuke, E-mail: seisuke@riken.jp [RIKEN-Advanced Science Institute, Wako, Saitama 351-0198 (Japan); Sugioka, Koji; Midorikawa, Katsumi [RIKEN-Advanced Science Institute, Wako, Saitama 351-0198 (Japan)

    2009-09-30

    We investigated micro- and nano-fabrication of wide band-gap semiconductor gallium nitride (GaN) using a femtosecond (fs) laser. Nanoscale craters were successfully formed by wet-chemical-assisted fs-laser ablation, in which the laser beam is focused onto a single-crystal GaN substrate in a hydrochloric acid (HCl) solution. This allows efficient removal of ablation debris produced by chemical reactions during ablation, resulting in high-quality ablation. However, a two-step processing method involving irradiation by a fs-laser beam in air followed by wet etching, distorts the shape of the crater because of residual debris. The threshold fluence for wet-chemical-assisted fs-laser ablation is lower than that for fs-laser ablation in air, which is advantageous for improving fabrication resolution since it reduces thermal effects. We have fabricated craters as small as 510 nm by using a high numerical aperture (NA) objective lens with an NA of 0.73. Furthermore, we have formed three-dimensional hollow microchannels in GaN by fs-laser direct-writing in HCl solution.

  20. Fabrication of microchannels in single-crystal GaN by wet-chemical-assisted femtosecond-laser ablation

    Science.gov (United States)

    Nakashima, Seisuke; Sugioka, Koji; Midorikawa, Katsumi

    2009-09-01

    We investigated micro- and nano-fabrication of wide band-gap semiconductor gallium nitride (GaN) using a femtosecond (fs) laser. Nanoscale craters were successfully formed by wet-chemical-assisted fs-laser ablation, in which the laser beam is focused onto a single-crystal GaN substrate in a hydrochloric acid (HCl) solution. This allows efficient removal of ablation debris produced by chemical reactions during ablation, resulting in high-quality ablation. However, a two-step processing method involving irradiation by a fs-laser beam in air followed by wet etching, distorts the shape of the crater because of residual debris. The threshold fluence for wet-chemical-assisted fs-laser ablation is lower than that for fs-laser ablation in air, which is advantageous for improving fabrication resolution since it reduces thermal effects. We have fabricated craters as small as 510 nm by using a high numerical aperture (NA) objective lens with an NA of 0.73. Furthermore, we have formed three-dimensional hollow microchannels in GaN by fs-laser direct-writing in HCl solution.

  1. Characterization of intense laser-produced fast electrons using hard x-rays via bremsstrahlung

    Science.gov (United States)

    Sawada, H.; Sentoku, Y.; Bass, A.; Griffin, B.; Pandit, R.; Beg, F.; Chen, H.; McLean, H.; Link, A. J.; Patel, P. K.; Ping, Y.

    2015-11-01

    Energy distribution of high-power, short-pulse laser produced fast electrons was experimentally and numerically studied using high-energy bremsstrahlung x-rays. The hard x-ray photons and escaping electrons from various metal foils, irradiated by the 50 TW Leopard laser at Nevada Terawatt Facility, were recorded with a differential filter stack spectrometer that is sensitive to photons produced by mainly 0.5-2 MeV electrons and an electron spectrometer measuring >2 MeV electrons. The experimental bremsstrahlung and the slope of the measured escaped electrons were compared with an analytic calculation using an input electron spectrum estimated with the ponderomotive scaling. The result shows that the electron spectrum entering a Cu foil could be continuous single slope with the slope temperature of ˜1.5 MeV in the detector range. The experiment and analytic calculation were then compared with a 2D particle-in-cell code, PICLS, including a newly developed radiation transport module. The simulation shows that a two-temperature electron distribution is generated at the laser interaction region, but only the hot component of the fast electrons flow into the target during the interaction because the low energy electron component is trapped by self-generated magnetic field in the preformed plasma. A significant amount of the photons less than 100 keV observed in the experiment could be attributed to the low energy electrons entering the foil a few picoseconds later after the gating field disappears.

  2. Portable, Low-cost NMR with Laser-Lathe Lithography Produced

    Energy Technology Data Exchange (ETDEWEB)

    Herberg, J L; Demas, V; Malba, V; Bernhardt, A; Evans, L; Harvey, C; Chinn, S; Maxwell, R; Reimer, J; Pines, A

    2006-12-21

    Nuclear Magnetic Resonance (NMR) is unsurpassed in its ability to non-destructively probe chemical identity. Portable, low-cost NMR sensors would enable on-site identification of potentially hazardous substances, as well as the study of samples in a variety of industrial applications. Recent developments in RF microcoil construction (i.e. coils much smaller than the standard 5 mm NMR RF coils), have dramatically increased NMR sensitivity and decreased the limits-of-detection (LOD). We are using advances in laser pantographic microfabrication techniques, unique to LLNL, to produce RF microcoils for field deployable, high sensitivity NMR-based detectors. This same fabrication technique can be used to produce imaging coils for MRI as well as for standard hardware shimming or 'ex-situ' shimming of field inhomogeneities typically associated with inexpensive magnets. This paper describes a portable NMR system based on a laser-fabricated microcoil and homebuilt probe design. For testing this probe, we used a hand-held 2 kg Halbach magnet that can fit into the palm of a hand, and an RF probe with laser-fabricated microcoils. The focus of the paper is on the evaluation of the microcoils, RF probe, and first generation gradient coils. The setup of this system, initial results, sensitivity measurements, and future plans are discussed. The results, even though preliminary, are promising and provide the foundation for developing a portable, inexpensive NMR system for chemical analysis. Such a system will be ideal for chemical identification of trace substances on site.

  3. Final Technical Report: Magnetic Reconnection in High-Energy Laser-Produced Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Germaschewski, Kai [Univ. of New Hampshire, Durham, NH (United States); Fox, William [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Bhattacharjee, Amitava [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2017-04-06

    This report describes the final results from the DOE Grant DE-SC0007168, “Fast Magnetic Reconnection in HED Laser-Produced Plasmas.” The recent generation of laboratory high-energy-density physics facilities has opened significant physics opportunities for experimentally modeling astrophysical plasmas. The goal of this proposal is to use these new tools to study fundamental problems in plasma physics and plasma astrophysics. Fundamental topics in this area involve study of the generation, amplification, and fate of magnetic fields, which are observed to pervade the plasma universe and govern its evolution. This project combined experiments at DOE laser facilities with kinetic plasma simulation to study these processes. The primary original goal of the project was to study magnetic reconnection using a new experimental platform, colliding magnetized laser-produced plasmas. However through a series of fortuitous discoveries, the work broadened out to allow significant advancement on multiple topics in laboratory astrophysics, including magnetic reconnection, Weibel instability, and collisionless shocks.

  4. Identification of hydrogenlike and heliumlike transitions in the spectrum of laser-produced magnesium plasmas

    Science.gov (United States)

    Moreno, J. C.; Goldsmith, S.; Griem, H. R.; Cohen, Leonard; Knauer, J.

    1990-01-01

    Nonresonance spectral lines of Mg XII and Mg XI emitted by magnesium laser-produced plasmas have been observed in the extreme-vacuum-ultraviolet region and their transitions classified. As many as eight beams of the Omega laser system of the Laboratory for Laser Energetics at the University of Rochester were linearly focused onto magnesium-coated flat targets to produce linear plasma radiation sources from 3 to 6 mm long. The spectra were photographed end-on with a grazing-incidence spectrograph. The identified Mg XII lines are classified as 2s-3p, 2p-3d, 2s-4p, 2p-4d, and 3d-4f transitions. The identified Mg XI lines are classified as 1s2s-1s3p, 1s2p-1s3d, 1s2p-1s4d, 1s3p-1s4d, and 1s3d-1s4f.

  5. Generation of spectrally stable 6.5-fs visible pulses via filamentation in krypton

    Institute of Scientific and Technical Information of China (English)

    Keisuke Kaneshima; Kengo Takeuchi; Nobuhisa Ishii; Jiro Itatani

    2016-01-01

    We produced 5-μJ, 6.5-fs visible pulses at a repetition rate of 1 kHz using filamentation in a gas cell filled with krypton followed by spectral selection and phase compensation by a combination of dielectric mirrors. The visible pulses have a smooth spectrum from 520 to 650 nm with a shot-to-shot stability in each spectral component of better than 2%(standard deviation). This pulse compression scheme is simple and robust, and can be easily integrated into intense ultrashort-pulse laser systems.

  6. Initiation of vacuum insulator surface high-voltage flashover with electrons produced by laser illumination

    Science.gov (United States)

    Krasik, Ya. E.; Leopold, J. G.

    2015-08-01

    In this paper, experiments are described in which cylindrical vacuum insulator samples and samples inclined at 45° relative to the cathode were stressed by microsecond timescale high-voltage pulses and illuminated by focused UV laser beam pulses. In these experiments, we were able to distinguish between flashover initiated by the laser producing only photo-electrons and when plasma is formed. It was shown that flashover is predominantly initiated near the cathode triple junction. Even dense plasma formed near the anode triple junction does not necessarily lead to vacuum surface flashover. The experimental results directly confirm our conjecture that insulator surface breakdown can be avoided by preventing its initiation [J. G. Leopold et al., Phys. Rev. ST Accel. Beams 10, 060401 (2007)] and complement our previous experimental results [J. Z. Gleizer et al., IEEE Trans. Dielectr. Electr. Insul. 21, 2394 (2014) and J. Z. Gleizer et al., J. Appl. Phys. 117, 073301 (2015)].

  7. Initiation of vacuum insulator surface high-voltage flashover with electrons produced by laser illumination

    Energy Technology Data Exchange (ETDEWEB)

    Krasik, Ya. E.; Leopold, J. G. [Physics Department, Technion, Haifa 32000 (Israel)

    2015-08-15

    In this paper, experiments are described in which cylindrical vacuum insulator samples and samples inclined at 45° relative to the cathode were stressed by microsecond timescale high-voltage pulses and illuminated by focused UV laser beam pulses. In these experiments, we were able to distinguish between flashover initiated by the laser producing only photo-electrons and when plasma is formed. It was shown that flashover is predominantly initiated near the cathode triple junction. Even dense plasma formed near the anode triple junction does not necessarily lead to vacuum surface flashover. The experimental results directly confirm our conjecture that insulator surface breakdown can be avoided by preventing its initiation [J. G. Leopold et al., Phys. Rev. ST Accel. Beams 10, 060401 (2007)] and complement our previous experimental results [J. Z. Gleizer et al., IEEE Trans. Dielectr. Electr. Insul. 21, 2394 (2014) and J. Z. Gleizer et al., J. Appl. Phys. 117, 073301 (2015)].

  8. In-situ TiC Reinforced Composite Coating Produced by Powder Feeding Laser Cladding

    Institute of Scientific and Technical Information of China (English)

    Sen YANG; Wenjin LIU; Minlin ZHONG

    2006-01-01

    A Ni-base alloy composite coating reinforced with TiC particles of various shapes and sizes on medium carbon steel substrate was produced by multilayer laser cladding. The chemical compositions, microstructures and surface morphology of the cladded layer were analyzed using energy dispersive X-ray spectroscopy (EDX),scanning electron microscope (SEM), and X-ray diffractometry (XRD). The experimental results showed that an excellent metallurgical bonding between the coating and the substrate was obtained. The microstructure of the coating was mainly composed of γ-Ni dendrites, a small amount of CrB, Ni3B, M23C6 and dispersed TiC particles. Much more and larger TiC particles formed in the overlapping zone, which led to a slightly higher microhardness of this zone. The maximum microhardness of the coating was about HV0.21200. The effects of the laser processing parameters on the microstructures and properties of coating were also investigated.

  9. Elliptically-bent crystal spectrograph for X-ray diagnosis of laser-produced plasmas

    Institute of Scientific and Technical Information of China (English)

    Xiancai Xiong(熊先才); Xianxin Zhong(钟先信); Shali Xiao(肖沙里); Guohong Yang(杨国洪); Jie Gao(高洁)

    2004-01-01

    In order to measure spatially and temporarily resolved laser-produced plasma X-ray spectra in 0.2 - 2nm region, a novel two-channel elliptically-bent crystal spectrograph has been developed. Dispersive elements are LiF, PET, Mica, and KAP crystals, which cover Bragg angles in the range of 30 - 67.5degrees. Eccentricity and focal distance of twin ellipses are 0.9586 and 1350 mm, respectively. Spatially resolved spectrum is photographically recorded with an X-ray film or X-CCD camera in one channel, and temporarily resolved one is photographically recorded with an X-ray streak camera in another channel,thus spatially and temporarily resolved spectra can be simultaneously obtained. Spectral images were acquired with X-CCD and PET in SHENGUANG-Ⅱ laser facility, and experimental results show that the spectral resolution of the spectrograph is about 0.002 nm.

  10. Theoretical analysis of supercontinuum and colored conical emission produced during ultrashort laser pulse interaction with gases

    CERN Document Server

    Semak, V V

    2013-01-01

    We use a conceptually new approach to theoretical modeling of self-focusing in which we integrated diffractive and geometrical optics in order to explain and predict emission of white light and colored rings observed in ultrashort laser pulse interaction. In our approach laser beam propagation is described by blending solution of linear Maxwell's equation and a correction term that represents nonlinear field perturbation expressed in terms of paraxial ray-optics (eikonal) equation. No attempt is made to create appearance of exhaustive treatment via use of complex mathematical models. Rather, emphasis is placed on elegance of the formulations leading to fundamental understanding of underlying physics and, eventually, to an accurate practical numerical model capable of simulating white light generation and conical emission of colored rings produced around the filament.

  11. Exciton photoluminescence from ZnO layers produced by laser-induced gas breakdown processing

    Energy Technology Data Exchange (ETDEWEB)

    Kabashin, A.V.; Trudeau, A.; Meunier, M. [Laser Processing Laboratory, Ecole Polytechnique de Montreal, Departement de Genie Physique, Case Postale 6079, Montreal, Quebec (Canada); Marine, W. [CRMCN UPR CNRS 7251, Departement de Physique, Case 901, Faculte des Sciences de Luminy, Marseille Cedex 9 (France)

    2008-06-15

    The plasma of optically-excited gas breakdown has been used to treat a Zn target in atmospheric pressure gases (air, O{sub 2}, N{sub 2}, Ar). The breakdown is produced near the target by a pulsed CO{sub 2} laser radiation, yielding to a local erosion of the target under the irradiation spot and the formation of a porous nanostructured layer, consisting of ZnO nanoscale spheres. We show that the produced nanostructured layers exhibit an intense exciton emission band in the ultraviolet range (380-385 nm), while defect-related photoluminescent bands were weak and could be completely removed by varying the fabrication parameters. Properties of the produced layers were found to be very promising for the development of optoelectronic devices. (orig.)

  12. Absorption spectroscopy characterization measurements of a laser-produced Na atomic beam

    Energy Technology Data Exchange (ETDEWEB)

    Ching, C.H.; Bailey, J.E.; Lake, P.W.; Filuk, A.B.; Adams, R.G.; McKenney, J.

    1996-06-01

    This work describes a pulsed Na atomic beam source developed for spectroscopic diagnosis of a high-power ion diode on the Particle Beam Fusion Accelerator II. The goal is to produce a {approximately} 10{sup 12}-cm{sup {minus}3}-density Na atomic beam that can be injected into the diode acceleration gap to measure electric and magnetic fields from the Stark and Zeeman effects through laser-induced-fluorescence or absorption spectroscopy. A {approximately} 10 ns fwhm, 1.06 {micro}m, 0.6 J/cm{sup 2} laser incident through a glass slide heats a Na-bearing thin film, creating a plasma that generates a sodium vapor plume. A {approximately} 1 {micro}sec fwhm dye laser beam tuned to 5,890 {angstrom} is used for absorption measurement of the Na I resonant doublet by viewing parallel to the film surface. The dye laser light is coupled through a fiber to a spectrograph with a time-integrated CCD camera. A two-dimensional mapping of the Na vapor density is obtained through absorption measurements at different spatial locations. Time-of-flight and Doppler broadening of the absorption with {approximately} 0.1 {angstrom} spectral resolution indicate that the Na neutral vapor temperature is about 0.5 to 2 eV. Laser-induced-fluorescence from {approximately} 1 {times} 10{sup 12}-cm{sup {minus}3} Na I 3s-3p lines observed with a streaked spectrograph provides a signal level sufficient for {approximately} 0.06 {angstrom} wavelength shift measurements in a mock-up of an ion diode experiment.

  13. Curved crystal spectrometer for the measurement of X-ray lines from laser-produced plasmas

    Institute of Scientific and Technical Information of China (English)

    SHI Jun; XIAO Sha-li; WANG Hong-jian; TANG Chang-huan; LIU Shen-ye

    2008-01-01

    In order to diagnose the laser-produced plasmas, a focusing curved crystal spectrometer has been developed for measuring the X-ray lines radiated from a laser-produced plasmas. The design is based on the fact that the ray emitted from a source located at one focus of an ellipse will converge on the other focus by the reflection of the elliptical surface. The focal length and the eccentricity of the ellipse are 1350 mm and 0.9586, respectively. The spectrometer can be used to measure the X-ray lines in the wavelength range of 0.2-0.37 nm, and a LiF crystal (200) (2d = 0.4027 nm) is used as dispersive element covering Bragg angle from 30° to 67.5°. The spectrometer was tested on Shenguang-Ⅱ which can deliver laser energy of 60-80 J/pulse and the laser wavelength is 0.35 μm. Photographs of spectra including the 1s2p 1p1-1s2 1S0 resonance line(w),the 1s2p 3P2-1s2 1S0 magnetic quadrupole line(x), the 1s2p 3p1 1s2 1S0 intercombination lines(y), the 1s2p 3S1-1s2 1S0 forbidden line(z) in helium-like Ti X XI and the 1s2s2p 2P3/2-1s22s 2S1/2 line(q) in lithium-like Ti X X have been recorded with a X-ray CCD camera. The experimental result shows that the wavelength resolution(λ/△λ) is above 1000 and the elliptical crystal spectrometer is suitable for X-ray spectroscopy.

  14. Development of liquid-jet laser-produced plasma light source for EUV lithography

    Science.gov (United States)

    Abe, Tamotsu; Suganuma, Takashi; Imai, Yousuke; Sugimoto, Yukihiko; Someya, Hiroshi; Hoshino, Hideo; Soumagne, Georg; Komori, Hiroshi; Mizoguchi, Hakaru; Endo, Akira; Toyoda, Koichi

    2003-06-01

    The Extreme UV Lithography System Development Association (EUVA) was established in Japan in May 2002 and is supported by the Ministry of Economy, Trade and Industry (METI). EUVA started the light soruce development in September 2002. This development is done by the assocaition members Gigaphoton, Ushio, Komatsu, Canon, Nikon, the National Institute of Advanced Industrial Sciecne and Technology (AIST) and several Japanese universities. The target of the four-year project is the development of a EUV light source with 10W clean focus point power. For the end of the fiscal year 2003 the development of a 4W EUV light source (clean focus point power) is planned. Both, Laser-Produced-Plasma (LPP) and Discharge-Produced-Plasma (DPP) EUV light sources are investigated at first. Our group at the EUVA Hiratsuka R&D Center is working on LPP sources. We are currently focusing on the development of a driver laser and a liquid Xenon plasma target. The laser is a Nd:YAG MOPA (Master Oscillator and Power Amplifier) system oscillating at 1064 nm. Average power, repetition rate and pulse duration of the laser system are 500 Watt, 10 kHa and 30nsec, respectively. The Xenon liquefication system operates at a maximum pressure of 5MPa and a temperature range between 160 K and 190 K. The pressure inside the vacuum chamber is below 0.1Pa during system operation. This paper presents the current status of the EUV system component development as well as first experimental results of generated EUV radiation.

  15. Rapid developmental maturation of neocortical FS cell intrinsic excitability.

    Science.gov (United States)

    Goldberg, Ethan M; Jeong, Hyo-Young; Kruglikov, Ilya; Tremblay, Robin; Lazarenko, Roman M; Rudy, Bernardo

    2011-03-01

    Fast-spiking (FS) cells are a prominent subtype of neocortical γ-aminobutyric acidergic interneurons that mediate feed-forward inhibition and the temporal sculpting of information transfer in neural circuits, maintain excitation/inhibition balance, and contribute to network oscillations. FS cell dysfunction may be involved in the pathogenesis of disorders such as epilepsy, autism, and schizophrenia. Mature FS cells exhibit coordinated molecular and cellular specializations that facilitate rapid responsiveness, including brief spikes and sustained high-frequency discharge. We show that these features appear during the second and third postnatal weeks driven by upregulation of K(+) channel subunits of the Kv3 subfamily. The low membrane resistance and fast time constant characteristic of FS cells also appears during this time, driven by expression of a K(+) leak current mediated by K(ir)2 subfamily inward rectifier K(+) channels and TASK subfamily 2-pore K(+) channels. Blockade of this leak produces dramatic depolarization of FS cells suggesting the possibility for potent neuromodulation. Finally, the frequency of FS cell membrane potential oscillations increases during development and is markedly slower in TASK-1/3 knockout mice, suggesting that TASK channels regulate FS cell rhythmogenesis. Our findings imply that some of the effects of acidosis and/or anesthetics on brain function may be due to blockade of TASK channels in FS cells.

  16. Study of Laser Produced Plasma of Limiter of the Aditya Tokomak for Detection of Molecular Bands

    Science.gov (United States)

    Rai, Awadhesh Kumar

    2016-06-01

    The tokamak wall protection is one of the prime concerns, and for this purpose, limiters are used. Graphite is commonly used as a limiter material and first wall material for complete coverage of the internal vacuum vessel surfaces of the tokamak. From the past few years, we are working to identify and quantify the impurities deposited on the different part of Aditya Tokamak in collaboration with the Scientists at Institute of Plasma Research, Ahmedabad, India using Laser Induced Breakdown Spectroscopy (LIBS) [1-3]. Laser induced breakdown spectroscopy (LIBS) spectra of limiter of Aditya Tokamak have been recorded in the spectral range of 200-900 nm in open atmosphere. Along with atomic and ionic spectral lines of the constituent elements of the limiter (1-3), LIBS spectra also give the molecular bands. When a high power laser beam is focused on the sample, laser induced plasma is produced on its surface. In early stage of the plasma Back ground continuum is dominated due to free-free or free-bound emission. Just after few nanoseconds the light from the plasma is dominated by ionic emission. Atomic emission spectra is dominated from the laser induced plasma during the first few microsecond after an ablation pulse where as molecular spectra is generated later when the plasma further cools down. For this purpose the LIBS spectra has been recorded with varying gate delay and gate width. The spectra of the limiter show the presence of molecular bands of CN and C2. To get better signal to background ratios of the molecular bands, different experimental parameters like gate delay, gate width, collection angle and collection point (spatial analysis off the plasama) of the plasma have been optimized. Thus the present paper deals with the variation of spectral intensity of the molecular bands with different experimental parameters. Keywords: Limiter, Molecular bands, C2, CN. References: 1. Proof-of-concept experiment for On-line LIBS Analysis of Impurity Layer Deposited on

  17. High-power EUV lithography sources based on gas discharges and laser-produced plasmas

    Science.gov (United States)

    Stamm, Uwe; Ahmad, Imtiaz; Balogh, Istvan; Birner, H.; Bolshukhin, D.; Brudermann, J.; Enke, S.; Flohrer, Frank; G„bel, Kai; G÷tze, S.; Hergenhan, G.; Kleinschmidt, J.'rgen; Kl÷pfel, Diethard; Korobotchko, Vladimir; Ringling, Jens; Schriever, Guido; Tran, C. D.; Ziener, C.

    2003-06-01

    Semiconductor chip manufacturers are expecting to use extreme UV lithography for production in 2009. EUV tools require high power, brilliant light sources at 13.5 nm with collector optics producing 120 W average power at entrance of the illuminator system. Today the power and lifetime of the EUV light source are considered as the most critical issue for EUV lithography. The present paper gives an update of the development status of EUV light sources at XTREME technologies, a joint venture of Lambda Physik AG, Goettingen, and Jenoptik LOS GmbH, Jena, Germany. Results on both laser produced plasma (LPP) and gas discharge produced plasma (GDPP), the two major technologies in EUV sources, are given. The LPP EUV sources use xenon-jet target systems and pulsed lasers with 400 W average power at 10 kHz developed at XTREME technologies. The maximum conversion efficiency form laser power into EUV in-band power is 0.75% into 2π solid angle. With 300 W laser average power at 3300 Hz repetition rate up to 1.5 W EUV radiation is generated at 13.5 nm. After a collector of 5 sr this corresponds to 0.6 W in intermediate focus without spectral purity filter and 0.5 W in intermediate focus with spectral purity filter. The direct generation of the EUV emitting plasma from electrical discharges is much simpler than LPP because the electrical energy has not to be converted into laser radiation before plasma excitation. XTREME technologies' Xenon GDPP EUV sources use the Z-pinch principle with efficient sliding discharge pre-ionization. The plasma pinch size and the available emission angle have been matched to the etendue of the optical system of 2-3 mm2 sr, i.e. no additional etendue related loss reduces the usable EUV power from the source. In continuous operation at 1000 Hz the GDPP sources emit 50W into 2π solid angle are obtained from the Z-pinch sources. Spatial and temporal emission stability of the EUV sources is in the range of a few percent. Debris shields for EUV sources

  18. Structural characterization of biomedical Co–Cr–Mo components produced by direct metal laser sintering

    Energy Technology Data Exchange (ETDEWEB)

    Barucca, G., E-mail: g.barucca@univpm.it [SIMAU, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona (Italy); Santecchia, E.; Majni, G. [SIMAU, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona (Italy); Girardin, E. [DISCO, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona (Italy); Bassoli, E.; Denti, L.; Gatto, A. [DIMeC, University of Modena and Reggio Emilia, via Vignolese 905/B, Modena 41125 (Italy); Iuliano, L. [DISPEA, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy); Moskalewicz, T. [Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków (Poland); Mengucci, P. [SIMAU, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona (Italy)

    2015-03-01

    Direct metal laser sintering (DMLS) is a technique to manufacture complex functional mechanical parts from a computer-aided design (CAD) model. Usually, the mechanical components produced by this procedure show higher residual porosity and poorer mechanical properties than those obtained by conventional manufacturing techniques. In this work, a Co–Cr–Mo alloy produced by DMLS with a composition suitable for biomedical applications was submitted to hardness measurements and structural characterization. The alloy showed a hardness value remarkably higher than those commonly obtained for the same cast or wrought alloys. In order to clarify the origin of this unexpected result, the sample microstructure was investigated by X-ray diffraction (XRD), electron microscopy (SEM and TEM) and energy dispersive microanalysis (EDX). For the first time, a homogeneous microstructure comprised of an intricate network of thin ε (hcp)-lamellae distributed inside a γ (fcc) phase was observed. The ε-lamellae grown on the {111}{sub γ} planes limit the dislocation slip inside the γ (fcc) phase, causing the measured hardness increase. The results suggest possible innovative applications of the DMLS technique to the production of mechanical parts in the medical and dental fields. - Highlights: • Samples of a Co–Cr–Mo biomedical alloy were produced by direct metal laser sintering. • Hardness values unexpectedly high were attributed to a peculiar microstructure. • Fine lamellae of the ε-phase alternated to the γ-phase were observed for the first time. • A nucleation and growth model for the observed microstructure is proposed.

  19. Parameterization of x-ray production in laser-produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Peek, J.M.

    1980-10-01

    A simple and algebraically tractable model is developed for the efficiency of x-ray production in a certain spectral region by laser driven plasmas. The model is used as a interpolation/extrapolation device for experimental and theoretical results from three different target concepts. These tests indicate that it is of use in its intended capacity. Certain relationships between independent parameters and scaling laws also result from this construction. Most notable among these is the prediction that the efficiency for producing line radiation in a certain narrow energy range scales like the inverse square of this energy.

  20. Propagation instabilities of high-intensity laser-produced electron beams.

    Science.gov (United States)

    Tatarakis, M; Beg, F N; Clark, E L; Dangor, A E; Edwards, R D; Evans, R G; Goldsack, T J; Ledingham, K W D; Norreys, P A; Sinclair, M A; Wei, M-S; Zepf, M; Krushelnick, K

    2003-05-01

    Measurements of energetic electron beams generated from ultrahigh intensity laser interactions (I>10(19) W/cm(2)) with dense plasmas are discussed. These interactions have been shown to produce very directional beams, although with a broad energy spectrum. In the regime where the beam density approaches the density of the background plasma, we show that these beams are unstable to filamentation and "hosing" instabilities. Particle-in-cell simulations also indicate the development of such instabilities. This is a regime of particular interest for inertial confinement fusion applications of these beams (i.e., "fast ignition").

  1. Thomson scattering measurement of a shock in laser-produced counter-streaming plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Morita, T.; Kuramitsu, Y.; Moritaka, T. [Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-0871 (Japan); Sakawa, Y.; Takabe, H. [Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-0871 (Japan); Graduate School of Science, Osaka University, 1-1 Machikane-yama, Toyonaka, Osaka 560-0043 (Japan); Tomita, K.; Nakayama, K.; Inoue, K.; Uchino, K. [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1, Kasugakoen, Kasuga, Fukuoka 816-8580 (Japan); Ide, T.; Tsubouchi, K. [Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Nishio, K.; Ide, H.; Kuwada, M. [Graduate School of Science, Osaka University, 1-1 Machikane-yama, Toyonaka, Osaka 560-0043 (Japan)

    2013-09-15

    We report the first direct measurement of temporally and spatially resolved plasma temperatures at a shock as well as its spatial structure and propagation in laser-produced counter-streaming plasmas. Two shocks are formed in counter-streaming collisionless plasmas early in time, and they propagate opposite directions. This indicates the existence of counter-streaming collisionless flows to keep exciting the shocks, even though the collisional effects increase later in time. The shock images are observed with optical diagnostics, and the upstream and downstream plasma parameters of one of the shocks are measured using Thomson scattering technique.

  2. Characterization of Vc-Vb Particles Reinforced Fe-Based Composite Coatings Produced by Laser Cladding

    Science.gov (United States)

    Qu, K. L.; Wang, X. H.; Wang, Z. K.

    2016-03-01

    In situ synthesized VC-VB particles reinforced Fe-based composite coatings were produced by laser beam melting mixture of ferrovanadium (Fe-V) alloy, boron carbide (B4C), CaF2 and Fe-based self-melting powders. The results showed that VB particles with black regular and irregular blocky shape and VC with black flower-like shape were uniformly distributed in the coatings. The type, amount, and size of the reinforcements were influenced by the content of FeV40 and B4C powders. Compared to the substrate, the hardness and wear resistance of the composite coatings were greatly improved.

  3. Fatigue strength of a Ti-6Al-4V alloy produced by selective laser melting

    Science.gov (United States)

    Gerov, M. V.; Vladislavskaya, E. Yu.; Terent'ev, V. F.; Prosvirnin, D. V.; Kolmakov, A. G.; Antonova, O. S.

    2016-10-01

    The fatigue properties and the fracture mechanisms of the Ti-6Al-4V alloy produced by selective laser melting (SLM) from a powder of an CL41TiELI titanium alloy have been studied. Cylindrical blanks were grown at angles of 90° and 45° to a platform. The best fatigue strength is observed in the samples the blanks of which were grown at an angle of 45°. It is found that the structure of the SLM material can contain portions with unmelted powder particles, which are the places of initiation of fatigue cracks.

  4. Anisotropic Mechanical Behavior of AlSi10Mg Parts Produced by Selective Laser Melting

    Science.gov (United States)

    Tang, Ming; Pistorius, Petrus Christiaan

    2017-03-01

    AlSi10Mg cylinders produced by laser powder-bed fusion have somewhat different yield behavior for cylinders with XY orientation and Z orientation. Earlier yielding for Z-oriented samples is likely related to micro-residual stress, resulting from the difference in thermal expansion of the aluminum matrix and cellular silicon. Smaller tensile reduction in area of Z-oriented samples is related to tearing along the softer region at the boundaries of melt pools, where the silicon cell spacing is larger. Indentation measurements confirmed the lower hardness at the edges of melt pools.

  5. Stark profiles of forbidden and allowed transitions in a dense, laser produced helium plasma.

    Science.gov (United States)

    Ya'akobi, B.; George, E. V.; Bekefi, G.; Hawryluk, R. J.

    1972-01-01

    Comparisons of experimental and theoretical Stark profiles of the allowed 2(1)P-3(1)D helium line at 6678 A and of the forbidden 2(1)P-3(1)P component at 6632 A in a dense plasma were carried out. The plasma was produced by optical breakdown of helium by means of a repetitive, high power CO2 laser. The allowed line shows good agreement with conventional theory, but discrepancies are found around the centre of the forbidden component. When normally neglected ion motions are taken into consideration, the observed discrepancies are partially removed. Tables of the Stark profiles for the pair of lines are given.

  6. Double-pulse induced harmonic generation in laser-produced plasmas

    Science.gov (United States)

    Ganeev, Rashid A.; Suzuki, Masayuki; Yoneya, Shin; Kuroda, Hiroto

    2015-12-01

    We report the studies of the metals, non-metals, powders, and nanoparticles as the targets for laser ablation induced high-order harmonic generation of ultrashort pulses using the double-pulse technique. The proposed technique demonstrates the attractiveness as the method for the studies of the high-order nonlinear optical properties of various materials. The comparative analysis of the harmonic generation using different targets showed that the species allowing easier ablation (powders, nanoparticles) produce stronger harmonic yield in the extreme ultraviolet range.

  7. Testing relativity again, laser, laser, laser, laser

    NARCIS (Netherlands)

    Einstein, A.

    2015-01-01

    laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser,

  8. Uncorrected and Corrected Distance Visual Acuity, Predictability, Efficacy, and Safety after Femtosecond Laser in Situ Keratomileusis (FS-LASIK) and Refractive Lenticule extraction (ReLEx) for Moderate and High Myopia

    DEFF Research Database (Denmark)

    Vestergaard, Anders; Justesen, Birgitte Larsen; Melsen, Charlotte

    predictability, efficacy and safety after femtosecond LASIK (FS-LASIK) with ReLEx. Setting: Department of Ophthalmology, Odense University Hospital, Denmark. Methods: Retrospective study of results after FS-LASIK and ReLEx (including ReLEx flex, ReLEx pseudo-smile, and ReLEx smile). In total, 228 eyes were...

  9. Optimization of C5+ Balmer- line intensity at 182 Å from laser-produced carbon plasma

    Indian Academy of Sciences (India)

    A Chowdhury; R A Joshi; P A Naik; P D Gupta

    2007-01-01

    Parametric dependence of the intensity of 182 Å Balmer- line (C5+; = 3 → 2), relevant to xuv soft X-ray lasing schemes, from laser-produced carbon plasma is studied in circular spot focusing geometry using a flat field grating spectrograph. The maximum spectral intensity for this line in space integrated mode occurred at a laser intensity of 1.2 × 1013 W cm-2. At this laser intensity, the space resolved measurements show that the spectral intensity of this line peaks at ∼ 1.5 mm from the target surface indicating the maximum population of C5+ ions ( = 3), at this distance. From a comparison of spatial intensity variation of this line with that of C5+ Ly- ( = 2 → 1) line, it is inferred that = 3 state of C5+ ions is predominantly populated through three-body recombination pumping of C6+ ions of the expanding plasma consistent with quantitative estimates on recombination rates of different processes.

  10. Spray and microjets produced by focusing a laser pulse into a hemispherical drop

    KAUST Repository

    Thoroddsen, Sigurdur T.

    2009-11-02

    We use high-speed video imaging to study laser disruption of the free surface of a hemispheric drop. The drop sits on a glass surface and the Nd:YAG (yttrium aluminum garnet) laser pulse propagates through the drop and is focused near the free surface from below. We focus on the evolution of the cylindrical liquid sheet and spray which emerges out of the drop and resembles typical impact crowns. The tip of the sheet emerges at velocities over 1 km/s. The tip of the crown breaks up into fine spray some of which is sucked back into the growing cavity at about 100 m/s. We measure the size of the typical spray droplets to be about 3 μm. We also show the formation of fine microjets, which are produced when the laser is focused inside the drop and the shock front hits small bubbles sitting under the free surface. For water these microjets are 5–50 μm in diameter and exit at 100–250 m/s. For higher viscositydrops, these jets can emerge at over 500 m/s.

  11. Photo-triggering and secondary electron produced ionization in electric discharge ArF* excimer lasers

    Science.gov (United States)

    Xiong, Zhongmin; Kushner, Mark J.

    2011-10-01

    Electric discharge excimer lasers are sustained in multi-atmosphere attaching gas mixtures that are typically preionized to enable a reproducible, uniform glow, which maximizes optical quality and gain. This preionization is often accomplished using UV light produced by a corona discharge within the plasma cavity. To quantify the relationship between corona discharge properties and those of the laser discharge, the triggering of electron avalanche by preionizing UV light in an electric discharge-pumped ArF* excimer laser was numerically investigated using a two-dimensional model. The preionizing UV fluxes were generated by a corona-bar discharge driven by the same voltage pulse as the main discharge sustained in a multi-atmospheric Ne/Ar/Xe/F2 gas mixture. The resulting peak photo-electron density in the inter-electrode spacing is around 108 cm-3, and its distribution is biased toward the UV source. The preionization density increases with increasing dielectric constant and capacitance of the corona bar. The symmetry and uniformity of the discharge are, however, improved significantly once the main avalanche develops. In addition to bulk electron impact ionization, the ionization generated by sheath accelerated secondary electrons was found to be important in sustaining the discharge current at experimentally observed values. At peak current, the magnitude of the ionization by sheath accelerated electrons is comparable to that from bulk electron impact in the vicinity of the cathode.

  12. Structural properties of H13 tool steel parts produced with use of selective laser melting technology

    Science.gov (United States)

    Šafka, J.; Ackermann, M.; Voleský, L.

    2016-04-01

    This paper deals with establishing of building parameters for 1.2344 (H13) tool steel processed using Selective Laser Melting (SLM) technology with layer thickness of 50 µm. In the first part of the work, testing matrix of models in the form of a cube with chamfered edge were built under various building parameters such as laser scanning speed and laser power. Resulting models were subjected to set of tests including measurement of surface roughness, inspection of inner structure with aid of Light Optical Microscopy and Scanning Electron Microscopy and evaluation of micro-hardness. These tests helped us to evaluate an influence of changes in building strategy to the properties of the resulting model. In the second part of the work, mechanical properties of the H13 steel were examined. For this purpose, the set of samples in the form of “dog bone” were printed under three different alignments towards the building plate and tested on universal testing machine. Mechanical testing of the samples should then reveal if the different orientation and thus different layering of the material somehow influence its mechanical properties. For this type of material, the producer provides the parameters for layer thickness of 30 µm only. Thus, our 50 µm building strategy brings shortening of the building time which is valuable especially for large models. Results of mechanical tests show slight variation in mechanical properties for various alignment of the sample.

  13. Stark broadening measurements in plasmas produced by laser ablation of hydrogen containing compounds

    Science.gov (United States)

    Burger, Miloš; Hermann, Jörg

    2016-08-01

    We present a method for the measurement of Stark broadening parameters of atomic and ionic spectral lines based on laser ablation of hydrogen containing compounds. Therefore, plume emission spectra, recorded with an echelle spectrometer coupled to a gated detector, were compared to the spectral radiance of a plasma in local thermal equilibrium. Producing material ablation with ultraviolet nanosecond laser pulses in argon at near atmospheric pressure, the recordings take advantage of the spatially uniform distributions of electron density and temperature within the ablated vapor. By changing the delay between laser pulse and detector gate, the electron density could be varied by more than two orders of magnitude while the temperature was altered in the range from 6,000 to 14,000 K. The Stark broadening parameters of transitions were derived from their simultaneous observation with the hydrogen Balmer alpha line. In addition, assuming a linear increase of Stark widths and shifts with electron density for non-hydrogenic lines, our measurements indicate a change of the Stark broadening-dependence of Hα over the considered electron density range. The presented results obtained for hydrated calcium sulfate (CaSO4ṡ2H2O) can be extended to any kind of hydrogen containing compounds.

  14. Characterization of >100 T magnetic fields associated with relativistic Weibel instability in laser-produced plasmas

    Science.gov (United States)

    Mishra, Rohini; Ruyer, Charles; Goede, Sebastian; Roedel, Christian; Gauthier, Maxence; Zeil, Karl; Schramm, Ulrich; Glenzer, Siegfried; Fiuza, Frederico

    2016-10-01

    Weibel-type instabilities can occur in weakly magnetized and anisotropic plasmas of relevance to a wide range of astrophysical and laboratory scenarios. It leads to the conversion of a significant fraction of the kinetic energy of the plasma into magnetic energy. We will present a detailed numerical study, using 2D and 3D PIC simulations of the Weibel instability in relativistic laser-solid interactions. In this case, the instability develops due to the counter-streaming of laser-heated electrons and the background return current. We show that the growth rate of the instability is maximized near the critical density region on the rear side of the expanded plasma, producing up to 400 MG magnetic fields for Hydrogen plasmas. We have found that this strong field can be directly probed by energetic protons accelerated in rear side of the plasma by Target Normal Sheath Acceleration (TNSA). This allows the experimental characterization of the instability from the analysis of the spatial modulation of the detected protons. Our numerical results are compared with recent laser experiments with Hydrogen jets and show good agreement with the proton modulations observed experimentally. This work was supported by the DOE Office of Science, Fusion Energy Science (FWP 100182).

  15. Experimental investigation of laser-produced-plasma EUV source based on liquid target

    Institute of Scientific and Technical Information of China (English)

    QI Li-hong; NI Qi-liang; CHEN Bo

    2005-01-01

    A laser-produced plasma(LPP) source was built using liquid as target and a Nd:YAG laser as the irradiation laser, and the LPP source's radiation with ethanol and acetone target respectively was measured by an AXUV100 silicon photodiode combined with a McPHERSON model 247 grazing incidence monochromator of the resolution Δλ≤0.075 nm and the wavelength scanning interval 0.5 nm. Both ethanol and acetone target LPP source had EUV emission at 11~20 nm wavelength. The comparison between the spectra of the two kinds of target materials shows that all the two kinds of target source's spectra are the result of oxygen ions' transitions under current source's parameters, but the spectrum intensity from different target sources is different. The spectra intensity from the ethanol target is higher than that from the acetone target. In addition, the target liquid is forced into the vacuum chamber by the background pressure supported by the connected external high pressure gas, and the influence of the background pressure on the source's intensity is investigated.

  16. Optimization of Ni-Based WC/Co/Cr Composite Coatings Produced by Multilayer Laser Cladding

    Directory of Open Access Journals (Sweden)

    Andrea Angelastro

    2013-01-01

    Full Text Available As a surface coating technique, laser cladding (LC has been developed for improving wear, corrosion, and fatigue properties of mechanical components. The main advantage of this process is the capability of introducing hard particles such as SiC, TiC, and WC as reinforcements in the metallic matrix such as Ni-based alloy, Co-based alloy, and Fe-based alloy to form ceramic-metal composite coatings, which have very high hardness and good wear resistance. In this paper, Ni-based alloy (Colmonoy 227-F and Tungsten Carbides/Cobalt/Chromium (WC/Co/Cr composite coatings were fabricated by the multilayer laser cladding technique (MLC. An optimization procedure was implemented to obtain the combination of process parameters that minimizes the porosity and produces good adhesion to a stainless steel substrate. The optimization procedure was worked out with a mathematical model that was supported by an experimental analysis, which studied the shape of the clad track generated by melting coaxially fed powders with a laser. Microstructural and microhardness analysis completed the set of test performed on the coatings.

  17. Optical coherence tomography angiography of retinal vascular occlusions produced by imaging-guided laser photocoagulation

    Science.gov (United States)

    Soetikno, Brian T.; Shu, Xiao; Liu, Qi; Liu, Wenzhong; Chen, Siyu; Beckmann, Lisa; Fawzi, Amani A.; Zhang, Hao F.

    2017-01-01

    Retinal vascular occlusive diseases represent a major form of vision loss worldwide. Rodent models of these diseases have traditionally relied upon a slit-lamp biomicroscope to help visualize the fundus and subsequently aid delivery of high-power laser shots to a target vessel. Here we describe a multimodal imaging system that can produce, image, and monitor retinal vascular occlusions in rodents. The system combines a spectral-domain optical coherence tomography system for cross-sectional structural imaging and three-dimensional angiography, and a fluorescence scanning laser ophthalmoscope for Rose Bengal monitoring and high-power laser delivery to a target vessel. This multimodal system facilitates the precise production of occlusions in the branched retinal veins, central retinal vein, and branched retinal arteries. Additionally, changes in the retinal morphology and retinal vasculature can be longitudinally documented. With our device, retinal vascular occlusions can be easily and consistently created, which paves the way for futures studies on their pathophysiology and therapeutic targets. PMID:28856036

  18. Analysis of chirality by femtosecond laser ionization mass spectrometry.

    Science.gov (United States)

    Horsch, Philipp; Urbasch, Gunter; Weitzel, Karl-Michael

    2012-09-01

    Recent progress in the field of chirality analysis employing laser ionization mass spectrometry is reviewed. Emphasis is given to femtosecond (fs) laser ionization work from the author's group. We begin by reviewing fundamental aspects of determining circular dichroism (CD) in fs-laser ionization mass spectrometry (fs-LIMS) discussing an example from the literature (resonant fs-LIMS of 3-methylcyclopentanone). Second, we present new data indicating CD in non-resonant fs-LIMS of propylene oxide.

  19. Generation of laser pulse trains for tests of multi-pulse laser wakefield acceleration

    Science.gov (United States)

    Shalloo, R. J.; Corner, L.; Arran, C.; Cowley, J.; Cheung, G.; Thornton, C.; Walczak, R.; Hooker, S. M.

    2016-09-01

    In multi-pulse laser wakefield acceleration (MP-LWFA) a plasma wave is driven by a train of low-energy laser pulses separated by the plasma period, an approach which offers a route to driving plasma accelerators with high efficiency and at high pulse repetition rates using emerging technologies such as fibre and thin-disk lasers. Whilst these laser technologies are in development, proof-of-principle tests of MP-LWFA require a pulse train to be generated from a single, high-energy ultrafast pulse. Here we demonstrate the generation of trains of up to 7 pulses with pulse separations in the range 150-170 fs from single 40 fs pulses produced by a Ti:sapphire laser.

  20. Generation of laser pulse trains for tests of multi-pulse laser wakefield acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Shalloo, R.J., E-mail: robert.shalloo@physics.ox.ac.uk; Corner, L.; Arran, C.; Cowley, J.; Cheung, G.; Thornton, C.; Walczak, R.; Hooker, S.M.

    2016-09-01

    In multi-pulse laser wakefield acceleration (MP-LWFA) a plasma wave is driven by a train of low-energy laser pulses separated by the plasma period, an approach which offers a route to driving plasma accelerators with high efficiency and at high pulse repetition rates using emerging technologies such as fibre and thin-disk lasers. Whilst these laser technologies are in development, proof-of-principle tests of MP-LWFA require a pulse train to be generated from a single, high-energy ultrafast pulse. Here we demonstrate the generation of trains of up to 7 pulses with pulse separations in the range 150–170 fs from single 40 fs pulses produced by a Ti:sapphire laser.

  1. Dynamics of low- and high-Z metal ions emitted during nanosecond laser-produced plasmas

    Science.gov (United States)

    Elsied, Ahmed M.; Diwakar, Prasoon K.; Polek, Mathew; Hassanein, Ahmed

    2016-11-01

    Dynamics of metal ions during laser-produced plasmas was studied. A 1064 nm, Nd: YAG laser pulse was used to ablate pure Al, Fe, Co, Mo, and Sn samples. Ion flux and velocity were measured using Faraday cup ion collector. Time-of-flight measurements showed decreasing ion flux and ion velocity with increasing atomic weight, and heavy metal ion flux profile exhibited multiple peaks that was not observed in lighter metals. Slow peak was found to follow shifted Maxwell Boltzmann distribution, while the fast peak was found to follow Gaussian distribution. Ion flux angular distribution that was carried out on Mo and Al using fixed laser intensity 2.5 × 1010 W/cm2 revealed that the slow ion flux peaks at small angles, that is, close to normal to the target ˜0° independent of target's atomic weight, and fast ion flux for Mo peaks at large angles ˜40° measured from the target normal, while it completely absents for Al. This difference in spatial and temporal distribution reveals that the emission mechanism of the fast and slow ions is different. From the slow ion flux angular distribution, the measured plume expansion ratio (plume forward peaking) was 1.90 and 2.10 for Al and Mo, respectively. Moreover, the effect of incident laser intensity on the ion flux emission as well as the emitted ion velocity were investigated using laser intensities varying from 2.5 × 1010 W/cm2 to 1.0 × 1011 W/cm2. Linear increase of fast ion flux and velocity, and quadratic increase of slow ion flux and velocity were observed. For further understanding of plume dynamics, laser optical emission spectroscopy was used to characterize Sn plasma by measuring the temporal and spatial evolution of plasma electron density Ne and electron temperature Te. At 3.5 mm away from the target, plasma density showed slow decrease with time, however electron temperature was observed to decrease dramatically. The maximum plasma density and temperature occurred at 0.5 mm away from target and were measured to

  2. Chemical/structural characterization of carbon nanoparticles produced by laser pyrolysis and used for nanotube growth

    Energy Technology Data Exchange (ETDEWEB)

    Orlanducci, S.; Valentini, F.; Piccirillo, S.; Terranova, M.L.; Botti, S.; Ciardi, R.; Rossi, M.; Palleschi, G

    2004-09-15

    Carbon nanoparticles produced by CO{sub 2} laser pyrolysis have been investigated using morphological and structural probes such as high-resolution scanning electron microscopy, transmission electron microscopy, Raman spectroscopy and electron diffraction, as well as chemical probes, such as gas chromatography-mass spectrometry and fast atom bombardment-mass spectrometry. The produced particles resulted to have a spherical shape and a diameter of about 50 nm with graphitic domains of the order of 80 A. They contain appreciable fractions of polycyclic aromatic hydrocarbons, which can be extracted with toluene, as well as fullerene units. The implications of these results for the use of carbon nanopowders in the carbon nanotube synthesis are also discussed.

  3. Metallurgical and Mechanical Evaluation of 4340 Steel Produced by Direct Metal Laser Sintering

    Science.gov (United States)

    Jelis, Elias; Clemente, Matthew; Kerwien, Stacey; Ravindra, Nuggehalli M.; Hespos, Michael R.

    2015-03-01

    Direct metal laser sintering (DMLS) was used to produce high-strength low-alloy 4340 steel specimens. Mechanical and metallurgical analyses were performed on the specimens to determine the samples with the highest strengths and the least porosity. The optimal process parameters were thus defined based on the corresponding experimental conditions. Additionally, the effects of fabricating specimens with both virgin and recycled powders were studied. Scanning electron microscopy and electron-dispersive spectroscopy were performed on both types of powders to determine the starting morphology and composition. The initial tensile results are promising, suggesting that DMLS can produce specimens equal in strength to wrought materials. However, there is evidence of cracking on several of the heat-treated tensile specimens that is unexplained. Several theories point to disturbances in the build chamber environment that went undetected while the specimens were being fabricated.

  4. Route to the minimum pulse duration in normal-dispersion fiber lasers

    Science.gov (United States)

    Chong, Andy; Renninger, William H.; Wise, Frank W.

    2011-01-01

    The factors that control the pulse duration in all-normal-dispersion lasers are identified. To minimize the pulse duration, the cavity dispersion should be as small as possible. For fixed dispersion, increasing pulse energy leads to shorter, but more-structured, pulses. Experiments performed with ordinary single-mode fiber at 1 μm wavelength agree reasonably with numerical simulations, and produce clean ~80-fs pulses. The simulations indicate that 30-fs pulses can be reached at higher energies. PMID:19015693

  5. Pulse radiolysis of liquid water using picosecond electron pulses produced by a table-top terawatt laser system

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, Ned [Center for Ultrafast Optical Science, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, Michigan 48109-2099 (United States); Flippo, Kirk [Center for Ultrafast Optical Science, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, Michigan 48109-2099 (United States); Nemoto, Koshichi [Center for Ultrafast Optical Science, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, Michigan 48109-2099 (United States); Umstadter, Donald [Center for Ultrafast Optical Science, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, Michigan 48109-2099 (United States); Crowell, Robert A. [Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Jonah, Charles D. [Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Trifunac, Alexander D. [Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2000-06-01

    A laser based electron generator is shown, for the first time, to produce sufficient charge to conduct time resolved investigations of radiation induced chemical events. Electron pulses generated by focussing terawatt laser pulses into a supersonic helium gas jet are used to ionize liquid water. The decay of the hydrated electrons produced by the ionizing electron pulses is monitored with 0.3 {mu}s time resolution. Hydrated electron concentrations as high as 22 {mu}M were generated. The results show that terawatt lasers offer both an alternative to linear accelerators and a means to achieve subpicosecond time resolution for pulse radiolysis studies. (c) 2000 American Institute of Physics.

  6. Mechanical properties of the samples produced by volume powder cladding of stainless steel using a continuous fiber laser

    Science.gov (United States)

    Bykovskiy, D. P.; Petrovskiy, V. N.; Mironov, V. D.; Osintsev, A. V.; Ochkov, K. Yu

    2016-09-01

    Samples for tensile tests were manufactured by using one of the additive technologies - direct laser material deposition. Investigations were carried out at the facility Huffman HC-205 equipped with a fiber laser with a power up to 3.5 kW. Various strategies of layering metallic powder of stainless steel 316L were considered to optimize the modes of constructing the samples. We measured the stress-strain state of the produced samples by the method of digital image correlation. It is found that the nominal tensile strength of the samples produced by the direct growing using laser powder of 316L steel is of high level - 767 MPa.

  7. Colloidal dispersions of maghemite nanoparticles produced by laser pyrolysis with application as NMR contrast agents

    Energy Technology Data Exchange (ETDEWEB)

    Veintemillas-Verdaguer, Sabino [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid (Spain); Morales, Maria del Puerto [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid (Spain); Bomati-Miguel, Oscar [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid (Spain); Bautista, Carmen [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid (Spain); Zhao, Xinqing [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid (Spain); Bonville, Pierre [CEA, CE Saclay, DSM/DRECAM/SPEC, 91191 Gif-Sur-Yvette (France); Alejo, Rigoberto Perez de [Universidad Complutense de Madrid, Unidad de RMN, Paseo Juan XXIII, 1, 28040 Madrid (Spain); Ruiz-Cabello, Jesus [Universidad Complutense de Madrid, Unidad de RMN, Paseo Juan XXIII, 1, 28040 Madrid (Spain); Santos, Martin [Hospital Universitario Puerta de Hierro, Servicio de Cirugia Experimental. C/San Martin de Porres 4, 28035 Madrid (Spain); Tendillo-Cortijo, Francisco J [Hospital Universitario Puerta de Hierro, Servicio de Cirugia Experimental. C/San Martin de Porres 4, 28035 Madrid (Spain); Ferreiros, Joaquin [Hospital Clinico de Madrid ' San Carlos' , Ciudad Universitaria, 28040 Madrid (Spain)

    2004-08-07

    Biocompatible magnetic dispersions have been prepared from {gamma}-Fe{sub 2}O{sub 3} nanoparticles (5 nm) synthesized by continuous laser pyrolysis of Fe(CO){sub 5} vapours. The feasibility of using these dispersions as magnetic resonance imaging (MRI) contrast agents has been analysed in terms of chemical structure, magnetic properties, {sup 1}H NMR relaxation times and biokinetics. The magnetic nanoparticles were dispersed in a strong alkaline solution in the presence of dextran, yielding stable colloids in a single step. The dispersions consist of particle-aggregates 25 nm in diameter measured using transmission electron microscope and a hydrodynamic diameter of 42 nm measured using photon correlation spectroscopy. The magnetic and relaxometric properties of the dispersions were of the same order of magnitude as those of commercial contrast agents produced using coprecipitation. However, these dispersions, when injected intravenously in rats at standard doses showed a mono-exponential blood clearance instead of a biexponential one, with a blood half-life of 7 {+-} 1 min. Furthermore, an important enhancement of the image contrast was observed after the injection, mainly located at the liver and the spleen of the rat. In conclusion, the laser pyrolysis technique seems to be a good alternative to the coprecipitation method for producing MRI contrast agents, with the advantage of being a continuous synthesis method that leads to very uniform particles capable of being dispersed and therefore transformed in a biocompatible magnetic liquid.

  8. Impact of laser produced X-rays on the surface of gold

    Energy Technology Data Exchange (ETDEWEB)

    Latif, Hamid [Department of Physics, University of Engineering and Technology, Lahore 54890 (Pakistan)], E-mail: h4hamidlatif@yahoo.com; Rafique, M. Shahid; Khaleeq-ur-Rahaman, M. [Department of Physics, University of Engineering and Technology, Lahore 54890 (Pakistan); Rawat, R.S. [Plasma Research Laboratory, NIE Nanyang Technological University (Singapore); Sattar, Abdul [Department of Physics, University of Engineering and Technology, Lahore 54890 (Pakistan); Naseem, Shahzad [MERC, Punjab University, Lahore (Pakistan); Lee, P. [Plasma Research Laboratory, NIE Nanyang Technological University (Singapore)

    2008-09-15

    In the paper an attempt has been made to use the laser-induced plasma as an X-ray source for the growth of nanostructures on the surface of gold. For this purpose, an Nd:YAG laser operated at second harmonics ({lambda} = 532 nm, E = 400 mJ) is used to produce plasma from analytical grade 5N pure Al, Cu and W targets. An analytical grade (5N pure) gold substrate was irradiated by X-rays generated from Al, Cu and W plasma under the vacuum {approx}10{sup -4} Torr. The surface was analyzed by two techniques, XRD and AFM. The aberrations in the XRD peaks show that there are significant structural changes in the exposed gold, in terms of decreased reflection intensities, increased dislocation line density, changes in the d-spacing and disturbance in the periodicity of the planes. AFM used to explore the topography of the irradiated gold reveals that regardless of the source, nm sized hillocks have been produced on the gold surface. The roughness of the surface has increased due to the growth of these hillocks.

  9. Ultrafast Laser Pulses for Structuring Materials at Micro/Nano Scale: From Waveguides to Superhydrophobic Surfaces

    Directory of Open Access Journals (Sweden)

    Daniel S. Correa

    2017-01-01

    Full Text Available The current demand for fabricating optical and photonic devices displaying high performance, using low-cost and time-saving methods, prompts femtosecond (fs-laser processing as a promising methodology. High and low repetition femtosecond lasers enable surface and/or bulk modification of distinct materials, which can be used for applications ranging from optical waveguides to superhydrophobic surfaces. Herein, some fundamental aspects of fs-laser processing of materials, as well as the basics of their most common experimental apparatuses, are introduced. A survey of results on polymer fs-laser processing, resulting in 3D waveguides, electroluminescent structures and active hybrid-microstructures for luminescence or biological microenvironments is presented. Similarly, results of fs-laser processing on glasses, gold and silicon to produce waveguides containing metallic nanoparticles, analytical chemical sensors and surface with modified features, respectively, are also described. The complexity of fs-laser micromachining involves precise control of material properties, pushing ultrafast laser processing as an advanced technique for micro/nano devices.

  10. Generation of high energy, 30 fs pulses at 527 nm by hollow-fiber compression technique.

    Science.gov (United States)

    Xia, J; Altucci, C; Amoruso, S; Bruzzese, R; Velotta, R; Wang, X

    2008-03-17

    The compression of 300-fs-long, chirp-free laser pulses at 527 nm down to 30 fs is reported. The laser pulses, originated from a frequency-doubled, mode-locked Nd:glass laser, were compressed by a 0.7-m-long, 150-microm-bore-diameter, argon-filled hollow fiber, and a pair of SF10 prisms with a final energy of 160 microJ. These are the shortest, high energy pulses ever produced by direct pulse compression at the central wavelength of 527 nm. The spectral broadening of the pulses propagating inside the hollow fiber was experimentally examined for various filling-gas pressures and input pulse energies. The spectral width of the pulses was broadened up to 25 nm, and 27 nm for argon- and krypton-filled hollow fiber, respectively, at a gas pressure lower than 2 bar. The physical limitations of the hollow-fiber pulse compression technique applied in the visible range are also studied.

  11. Surface, electrical and mechanical modifications of PMMA after implantation with laser produced iron plasma ions

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Qazi Salman; Bashir, Shazia, E-mail: shaziabashir@gcu.edu.pk; Jalil, Sohail Abdul; Shabbir, Muhammad Kaif; Mahmood, Khaliq; Akram, Mahreen; Khalid, Ayesha; Yaseen, Nazish; Arshad, Atiqa

    2016-07-01

    Laser Produced Plasma (LPP) was employed as an ion source for the modifications in surface, electrical and mechanical properties of poly methyl (methacrylate) PMMA. For this purpose Nd:YAG laser (532 nm, 6 ns, 10 Hz) at a fluence of 12.7 J/cm{sup 2} was employed to generate Fe plasma. The fluence and energy measurements of laser produced Fe plasma ions were carried out by employing Thomson Parabola Technique in the presence of magnetic field strength of 0.5 T, using CR-39 as Solid State Nuclear Track Detector (SSNTD). It has been observed that ion fluence ejecting from ablated plasma was maximum at an angle of 5° with respect to the normal to the Fe target surface. PMMA substrates were irradiated with Fe ions of constant energy of 0.85 MeV at various ion fluences ranging from 3.8 × 10{sup 6} ions/cm{sup 2} to 1.8 × 10{sup 8} ions/cm{sup 2} controlled by varying laser pulses from 3000 to 7000. Optical microscope and Scanning Electron Microscope (SEM) were utilized for the analysis of surface features of irradiated PMMA. Results depicted the formation of chain scission, crosslinking, dendrites and star like structures. To explore the electrical behavior, four probe method was employed. The electrical conductivity of ion irradiated PMMA was increased with increasing ion fluence. The surface hardness was measured by shore D hardness tester and results showed the monotonous increment in surface hardness with increasing ion fluence. The increasing trend of surface hardness and electrical conductivity with increasing Fe ion fluence has been well correlated with the surface morphology of ion implanted PMMA. The temperature rise of PMMA surface due to Fe ion irradiation is evaluated analytically and comes out to be in the range of 1.72 × 10{sup 4} to 1.82 × 10{sup 4} K. The values of total Linear Energy Transfer (LET) or stopping power of 0.8 MeV Fe ions in PMMA is 61.8 eV/Å and their range is 1.34 μm evaluated by SRIM simulation.

  12. Microstructure fabrication with a CO2 laser system: characterization and fabrication of cavities produced by raster scanning of the laser beam.

    Science.gov (United States)

    Jensen, Martin F; Noerholm, Mikkel; Christensen, Leif Højslet; Geschke, Oliver

    2003-11-01

    In this paper we describe the use of a CO(2) laser for production of cavities and microstructures in poly(methyl methacrylate) (PMMA) by moving the laser beam over the PMMA surface in a raster pattern. The topography of the cavities thus produced is studied using stylus and optical profilometry and scanning electron microscopy (SEM). The microstructures display artifacts from the laser ablation process and we describe how the laser ablation parameters can be optimized in order to minimize these artifacts. Using this technique it is possible to generate structures with a depth from 50 microm and a minimum width of approximately 200 microm up to depth and widths of several mm, governed by the beam size and the laser settings.

  13. Laser deposition and structuring of laser active planar waveguides of Er:ZBLAN, Nd:YAG and Nd:GGG for integrated waveguide lasers

    Science.gov (United States)

    Gottmann, Jens; Moiseev, Leonid; Wortmann, Dirk; Vasilief, Ion; Starovoytova, Larisa; Ganser, Dimitri; Wagner, Ralph

    2007-02-01

    Laser radiation is used both for the deposition of the laser active thin films and for the micro structuring to define wave guiding structures for the fabrication of waveguide lasers. Thin films of Er:ZBLAN (a glass consisting of ZrF 4, BaF II, LaF 3, AlF 3, NaF, ErF 3) for green upconversion lasers (545 nm), Nd:YAG (Y 3Al 5O 12) and Nd:GGG (Gd 3Ga 5O 12) for infrared lasers (1064 nm) are produced. Manufacturing of the laser active waveguides by micro-structuring is done using fs laser ablation of the deposited films. The structural and optical properties of the films and the damping losses of the structured waveguides are determined in view of the design and the fabrication of compact and efficient diode pumped waveguide lasers. The resulting waveguides are polished, provided with resonator mirrors, pumped using diode lasers and characterized. Laser operation of a ridge waveguide structure grown by pulsed laser deposition and structured by fs laser ablation is demonstrated. A 1 μm thick, 100 μm wide and 3 mm long structured waveguide consisting of amorphous neodymium doped Gd 3Ga 5O 12 has shown laser activity at 1.068 μm when pumped by a diode laser at 808 nm.

  14. Investigation of laser produced x-ray plasma created from high pressure gas-puff target using Nd:YAG laser

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Masayuki [School of Science and Engineering, Kinki University, Higashi-Osaka, Osaka (Japan); Daido, Hiroyuki; Choi, I.W. [Osaka Univ., Suita (Japan). Inst. of Laser Engineering] (and others)

    2000-03-01

    We characterize a laser produced gas puff plasma for soft x-ray generation. Strong emission in 11.4 nm wavelength region was observed, using krypton and xenon gas puff targets irradiated by a Nd:YAG laser with an energy of 0.7 J/8 ns. Space resolved x-ray spectral measurement indicated that the source size on the Rayleigh length and the gas density profile. (author)

  15. K-shell X-ray spectroscopy of laser produced aluminum plasma

    Science.gov (United States)

    Kaur, Channprit; Chaurasia, S.; Poswal, A. K.; Munda, D. S.; Rossall, A. K.; Deo, M. N.; Sharma, Surinder M.

    2017-01-01

    Optimization of a laser produced plasma (LPP) X-ray source has been performed by analyzing K-shell emission spectra of Al plasma at a laser intensity of 1013-1014 W/cm2. The effect of varying the laser intensity on the emissivity of the K-shell resonance lines is studied and found to follow a power law, Ix =(IL) α with α=2.2, 2.3, 2.4 for Heβ, Heγ, Heδ respectively. The emission of these resonance lines has been found to be heavily anisotropic. A Python language based code has been developed to generate an intensity profile of K-shell spectral lines from the raw data. In theoretical calculations, the temperature is estimated by taking the ratio of the Li-like satellite (1s22p-1s2p3p) and the Heβ (1s2-1s3p) resonance line and the ratio of the He-like satellite (1s2p-2p2) and the Lyα (1s-2p) resonance line. To determine the plasma density, stark broadening of the Lyβ spectral line is used. Simulation was carried out using the FLYCHK code to generate a synthetic emission spectrum. The results obtained by FLYCHK are Te=160 eV, Th=1 keV, f=0.008, ne=5×1020 cm-3 and the analytical model resulted Te=260-419 eV and ne=3x1020 cm-3.

  16. Real-time measurement of materials properties at high temperatures by laser produced plasmas

    Science.gov (United States)

    Kim, Yong W.

    1990-01-01

    Determination of elemental composition and thermophysical properties of materials at high temperatures, as visualized in the context of containerless materials processing in a microgravity environment, presents a variety of unusual requirements owing to the thermal hazards and interferences from electromagnetic control fields. In addition, such information is intended for process control applications and thus the measurements must be real time in nature. A new technique is described which was developed for real time, in-situ determination of the elemental composition of molten metallic alloys such as specialty steel. The technique is based on time-resolved spectroscopy of a laser produced plasma (LPP) plume resulting from the interaction of a giant laser pulse with a material target. The sensitivity and precision were demonstrated to be comparable to, or better than, the conventional methods of analysis which are applicable only to post-mortem specimens sampled from a molten metal pool. The LPP technique can be applied widely to other materials composition analysis applications. The LPP technique is extremely information rich and therefore provides opportunities for extracting other physical properties in addition to the materials composition. The case in point is that it is possible to determine thermophysical properties of the target materials at high temperatures by monitoring generation and transport of acoustic pulses as well as a number of other fluid-dynamic processes triggered by the LPP event. By manipulation of the scaling properties of the laser-matter interaction, many different kinds of flow events, ranging from shock waves to surface waves to flow induced instabilities, can be generated in a controllable manner. Time-resolved detection of these events can lead to such thermophysical quantities as volume and shear viscosities, thermal conductivity, specific heat, mass density, and others.

  17. Preliminary fsLIBS study on bone tumors.

    Science.gov (United States)

    Gill, Ruby K; Smith, Zachary J; Panchal, Ripul R; Bishop, John W; Gandour-Edwards, Regina; Wachsmann-Hogiu, Sebastian

    2015-12-01

    The aim of this study is to evaluate the capability of femtosecond Laser Induced Breakdown Spectroscopy (fsLIBS) to discriminate between normal and cancerous bone, with implications to femtosecond laser surgery procedures. The main advantage of using femtosecond lasers for surgery is that the same laser that is being used to ablate can also be used for a feedback system to prevent ablation of certain tissues. For bone tumor removal, this technique has the potential to reduce the number of repeat surgeries that currently must be performed due to incomplete removal of the tumor mass. In this paper, we performed fsLIBS on primary bone tumor, secondary tumor in bone, and normal bone. These tissues were excised from consenting patients and processed through the UC Davis Cancer Center Biorepository. For comparison, each tumor sample had a matched normal bone sample. fsLIBS was performed to characterize the spectral signatures of each tissue type. A minimum of 20 spectra were acquired for each sample. We did not detect significant differences between the fsLIBS spectra of secondary bone tumors and their matched normal bone samples, likely due to the heterogeneous nature of secondary bone tumors, with normal and cancerous tissue intermingling. However, we did observe an increase in the fsLIBS magnesium peak intensity relative to the calcium peak intensity for the primary bone tumor samples compared to the normal bone samples. These results show the potential of using femtosecond lasers for both ablation and a real-time feedback control system for treatment of primary bone tumors.

  18. Size properties of colloidal nanoparticles produced by nanosecond pulsed laser ablation and studying the effects of liquid medium and laser fluence

    Energy Technology Data Exchange (ETDEWEB)

    Mahdieh, Mohammad Hossein, E-mail: mahdm@iust.ac.ir; Fattahi, Behzad

    2015-02-28

    Highlights: • Colloidal aluminum- and titanium-based nanoparticles fabricated by laser ablation. • Various liquid environments and laser fluences were applied as variable parameters. • Physical characteristics of liquid medium influence ablation process and nanoparticle formation. • Size properties of prepared nanoparticles depend on liquid medium and laser fluence. • Ablation of both metals in ethanol results in nanoparticles with smaller size. - Abstract: In this paper, pulsed laser ablation method was used for synthesis of colloidal nanoparticles of aluminum and titanium targets in distilled water, ethanol, and acetone as liquid environments. Ultraviolet–visible (UV–vis) absorption spectrophotometer and scanning electron microscope (SEM) were used for characterization of produced nanoparticles. Using image processing technique and analyzing the SEM images, nanoparticles’ mean size and size distribution were achieved. The results show that liquid medium has strong effect on size properties of produced nanoparticles. From the results, it was found that ablation of both metal targets in ethanol medium leads to formation of smaller size nanoparticles with narrower size distributions. The influence of laser fluence was also investigated. According to the results, higher laser fluence produces larger mean size nanoparticles with broader size distribution.

  19. Dispersion-managed semiconductor mode-locked ring laser.

    Science.gov (United States)

    Resan, Bojan; Archundia, Luis; Delfyett, Peter J; Alphonse, Gerard

    2003-08-01

    A novel breathing-mode external sigma-ring-cavity semiconductor mode-locked laser is developed. Intracavity pulse compression and stretching produce linearly chirped pulses with an asymmetric exponential temporal profile. External dispersion compensation reduces the pulse duration to 274 fs (within 10% of the bandwidth limit).

  20. X-ray optical diagnostic of laser produced plasmas for nuclear fusion and X-ray lasers

    Energy Technology Data Exchange (ETDEWEB)

    Butzbach, R.

    2001-07-01

    In the present work, the conception, design and appliance of toroidally bent crystals for the X-ray optical diagnostics of laser produced plasmas is discussed. The first part of this work deals with the development, design and characterization of an X-Ray microscope for the observation of Rayleigh-Taylor instabilities, which act against the confinement and ignition of the fuel in the inertial confinement fusion process. The aim of the second part of the present work was the diagnostic of the lasing medium for amplified spontaneous emission close to the water window. For this purpose, an one-dimensionally (1-D) imaging X-ray spectrometer based on toroidally bent quartz crystals was developed for the observation of the Ni-like 4f-3d transition of Yb, Hf, Ta, and W ions, which should be related to the amplified 4d-4p emission, since the 4f niveau is very close to the 4d niveau. Thus, the 4f-3d transition can serve as an indicator for the population of the 4d niveau. (orig.)

  1. Structure and reactivity of Pd-Pt clusters produced by laser vaporization of bulk alloys

    Science.gov (United States)

    Rousset, J. L.; Cadrot, A. M.; Lianos, L.; Renouprez, A. J.

    Pd-Pt nanoclusters are obtained by the focusing of an Nd:YAG laser onto rods of alloys. The aggregates, which are produced by plasma cooling via short helium bursts synchronized with the laser pulses, are collected on amorphous carbon or silicon substrates, in a UHV chamber. Transmission electron microscopy (TEM) experiments show that the diameters of the clusters range between 1.5 and 4.5 nm, and analytical microscopy indicates that they have the same composition as the vaporized rods. Low-energy ion scattering (LEIS) also shows that the surface of the obtained clusters is Pd enriched: the Pd concentration in the first atomic layer is found to be equal to 38% for a Pd17Pt83 rod composition and 87% for the Pd65 Pt35 alloy. The catalytic activity of these clusters in the hydrogenation of 1,3-butadiene to butenes and butane is measured in static mode, with mass spectrometry detection. The reactivity of the bimetallic clusters is explained by the atomic local order and low-coordination sites considered as ``hot sites''.

  2. Structured Mo/Si multilayers for IR-suppression in laser-produced EUV light sources.

    Science.gov (United States)

    Trost, Marcus; Schröder, Sven; Duparré, Angela; Risse, Stefan; Feigl, Torsten; Zeitner, Uwe D; Tünnermann, Andreas

    2013-11-18

    Laser produced plasma sources are considered attractive for high-volume extreme-ultraviolet (EUV) lithography because of their high power at the target wavelength 13.5 nm. However, besides the required EUV light, a large amount of infrared (IR) light from the CO2 drive laser is scattered and reflected from the plasma as well as from the EUV mirrors in the optical system. Since these mirrors typically consist of molybdenum and silicon, the reflectance at IR wavelengths is even higher than in the EUV, which leads to high energy loads in the optical system. One option to reduce this is to structure the EUV multilayer, in particular the collector mirror, with an IR grating that has a high IR-suppression in the zeroth order. In this paper, the characterization of such an optical element is reported, including the IR-diffraction efficiency, the EUV performance (reflectance and scattering), and the relevant surface roughness. The measurement results are directly linked to the individual manufacturing steps.

  3. On the Rydberg transitions and elemental compositions in the laser produced Al (6063) plasma

    Science.gov (United States)

    Baig, M. A.; Fareed, M. A.; Rashid, B.; Ali, R.

    2011-08-01

    We present new studies on the optical emission spectra of the laser produced Al 6063 alloy plasma generated by the 1064 nm Nd: YAG laser. The spectrum reveals Rydberg transitions; nd 2D3/2,5/2 → 3p 2P1/2,3/2 (n = 3 - 8), ns 2S1/2 → 3p 2P1/2,3/2 (n = 4-6), and the dominant spectral lines of the other constituent elements. We have extracted the relative abundance of the impurities using the relative intensity ratio method. Besides, we have calculated the electron temperature (˜7580 K) from the Boltzmann plot method and the electron number densities (˜1.4 × 1017/cm3) from the Stark widths of the aluminum spectral lines. The plasma parameters determined in the present work are in agreement with that reported in the literature. The molecular vibrational transitions of the AlO free radical associated with the B 2∑→X 2∑ band system have also been identified.

  4. On the Rydberg transitions and elemental compositions in the laser produced Al (6063) plasma

    Energy Technology Data Exchange (ETDEWEB)

    Baig, M. A.; Fareed, M. A.; Rashid, B.; Ali, R. [Atomic and Molecular Physics Laboratory, Department of Physics, Quaid-i-Azam University, 45320 Islamabad (Pakistan)

    2011-08-15

    We present new studies on the optical emission spectra of the laser produced Al 6063 alloy plasma generated by the 1064 nm Nd: YAG laser. The spectrum reveals Rydberg transitions; nd {sup 2}D{sub 3/2,5/2}{yields} 3p {sup 2}P{sub 1/2,3/2} (n = 3 - 8), ns {sup 2}S{sub 1/2}{yields} 3p {sup 2}P{sub 1/2,3/2} (n 4-6), and the dominant spectral lines of the other constituent elements. We have extracted the relative abundance of the impurities using the relative intensity ratio method. Besides, we have calculated the electron temperature ({approx}7580 K) from the Boltzmann plot method and the electron number densities ({approx}1.4 x 10{sup 17}/cm{sup 3}) from the Stark widths of the aluminum spectral lines. The plasma parameters determined in the present work are in agreement with that reported in the literature. The molecular vibrational transitions of the AlO free radical associated with the B {sup 2}{Sigma}{yields}X {sup 2}{Sigma} band system have also been identified.

  5. Pulsed laser ablation and deposition of niobium carbide

    Energy Technology Data Exchange (ETDEWEB)

    Sansone, M.; De Bonis, A. [Dipartimento di Scienze, Università della Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza (Italy); Santagata, A. [Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, UOS Tito Scalo, C.da Santa Loja, 85010 Tito, PZ (Italy); Rau, J.V. [Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Via del Fosso del Cavaliere, 100, 00133 Rome (Italy); Galasso, A. [Dipartimento di Scienze, Università della Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza (Italy); Teghil, R., E-mail: roberto.teghil@unibas.it [Dipartimento di Scienze, Università della Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza (Italy)

    2016-06-30

    Highlights: • We have deposited in vacuum niobium carbide films by fs and ns PLD. • We have compared PLD performed by ultra-short and short laser pulses. • The films deposited by fs PLD of NbC are formed by nanoparticles. • The structure of the films produced by fs PLD at 500 °C corresponds to NbC. - Abstract: NbC crystalline films have been deposited in vacuum by ultra-short pulsed laser deposition technique. The films have been characterized by transmission and scanning electron microscopies and by X-ray diffraction. To clarify the ablation–deposition mechanism, the plasma produced by the ablation process has been characterized by optical emission spectroscopy and fast imaging. A comparison of the results with those obtained by ns pulsed deposition of the same target has been carried out.

  6. Scaffolds of PDLLA/bioglass 58S produced via selective laser sintering

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Rafaela do Vale; Salmoria, Gean Vitor; Moura, Marcela Oliveira Caldeira de; Aragones, Aguedo; Fredel, Marcio Celso, E-mail: rafaelavpereira@gmail.com [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2014-08-15

    Scaffolds of PDLLA were produced to be implemented in maxillofacial surgeries inducing bone repair and regeneration. To prepare these scaffolds, bioglass (BG58S) was synthesized by sol-gel method, in order to be applied as osteoconductive dispersed particles in PDLLA matrix. Once presenting greater facility on parts fabrication, this polymeric matrix enables complex geometries production besides presenting compatible degradation rate for scaffold absorption and bone regeneration. Scaffolds production was performed by selective laser sintering in order to obtain tailored-made parts. FTIR and XRD analyses were carried out to observe the composition and evaluate the presence of crystallized phases in bioglass, obtaining Wollastonite. SEM was used to observe the BG particle distribution in PDLLA matrix and flexural test was performed to evaluate the composite mechanical properties. Results showed that was possible to obtain pieces using SLS method and with addition of 10%wt BG to polymeric matrix, flexural modulus and strength increased regarding to pure polymer. (author)

  7. Air side thermal performance of wavy fin heat exchangers produced by selective laser melting

    Science.gov (United States)

    Kuehndel, J.; Kerler, B.; Karcher, C.

    2016-09-01

    Wavy fins are widely used for off-road vehicle coolers, due to their dust resistance. In this study, heat exchanger elements with wavy fins were examined in an experimental study. Due to independence of tooling and degrees of freedom in design, rapid prototyping technique selective laser melting was used to produce heat exchanger elements with high dimensional accuracy. Tests were conducted for air side Reynolds number Re of 1400-7400 varying wavy amplitude and wave length at a constant water flow rate of 9.0m3/h inside the tubes. The effects of wavy amplitude and wave length on the air side thermal performance were studied. Experimental correlation equations for Nu and ­ were derived by regression analysis.

  8. Characterization of 316L Steel Cellular Dodecahedron Structures Produced by Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Konda Gokuldoss Prashanth

    2016-10-01

    Full Text Available The compression behavior of different 316L steel cellular dodecahedron structures with different density values were studied. The 316L steel structures produced using the selective laser melting process has four different geometries: single unit cells with and without the addition of base plates beneath and on top, and sandwich structures with multiple unit cells with different unit cell sizes. The relation between the relative compressive strength and the relative density was compared using different Gibson-Ashby models and with other published reports. The different aspects of the deformation and the mechanical properties were evaluated and the deformation at distinct loading levels was recorded. Finite element method (FEM simulations were carried out with the defined structures and the mechanical testing results were compared. The calculated theory, simulation estimation, and the observed experimental results are in good agreement.

  9. Spectroscopic study of emission coal mineral plasma produced by laser ablation

    Science.gov (United States)

    Vera, L. P.; Pérez, J. A.; Riascos, H.

    2014-05-01

    Spectroscopic analysis of plasma produced by laser ablation of coal samples using 1064 nm radiation pulses from a Q-switched Nd:YAG on different target under air ambient, was performed. The emission of molecular band systems such as C2 Swan System (d3Πg→a3Πu), the First Negative System N2 (Band head at 501,53 nm) and emission lines of the C I, C II, were investigated using the optical emission spectroscopy technique. The C2 molecular spectra (Swan band) were analyzed to determine vibrational temperature (0,62 eV); the density and electron temperature of the plasma have been evaluated using Stark broadening and the intensity of the nitrogen emission lines N II, the found values of 1,2 eV and 2,2 x1018 cm-3 respectively.

  10. Double shock front formation in cylindrical radiative blast waves produced by laser irradiation of krypton gas

    Energy Technology Data Exchange (ETDEWEB)

    Kim, I.; Quevedo, H. J.; Feldman, S.; Bang, W.; Serratto, K.; McCormick, M.; Aymond, F.; Dyer, G.; Bernstein, A. C.; Ditmire, T. [Center for High Energy Density Science, Department of Physics, The University of Texas at Austin, C1510, Austin, Texas 78712 (United States)

    2013-12-15

    Radiative blast waves were created by irradiating a krypton cluster source from a supersonic jet with a high intensity femtosecond laser pulse. It was found that the radiation from the shock surface is absorbed in the optically thick upstream medium creating a radiative heat wave that travels supersonically ahead of the main shock. As the blast wave propagates into the heated medium, it slows and loses energy, and the radiative heat wave also slows down. When the radiative heat wave slows down to the transonic regime, a secondary shock in the ionization precursor is produced. This paper presents experimental data characterizing both the initial and secondary shocks and numerical simulations to analyze the double-shock dynamics.

  11. Fast gated imaging of the collisionless interaction of a laser-produced and magnetized ambient plasma

    Science.gov (United States)

    Heuer, P. V.; Schaeffer, D. B.; Knall, E. N.; Constantin, C. G.; Hofer, L. R.; Vincena, S.; Tripathi, S.; Niemann, C.

    2017-03-01

    The collisionless interaction between a laser-produced carbon plasma (LPP) and an ambient hydrogen plasma in a background magnetic field was studied in a high shot rate experiment which allowed large planar data sets to be collected. Plasma fluorescence was imaged with a fast-gated camera with and without carbon line filters. The resulting images were compared to high-resolution two dimensional (2D) data planes of measured magnetic field and electric potential. Several features in the fluorescence images coincide with features in the field data. Relative intensity was used to determine the initial angular velocity distribution of the LPP and the growth rate of instabilities. These observations may be applied to understand fluorescence images from similar experiments where 2D planes of field data are not available.

  12. Structure of the plasma fireball produced by a CO2 laser.

    Science.gov (United States)

    George, E. V.; Bekefi, G.; Ya'akobi, B.

    1971-01-01

    Study of the space and time resolved structure of a helium plasma produced with a repetitive CO2 laser during the first 15 microsec of the afterglow period. The spectra of several neutral and ionized helium lines are used in the determination of the density and temperature profiles of the luminous fireball. It is found that the plasma is comprised of a dense hot core, which emits primarily ionic lines, and a well-defined tenuous outer shell, which is primarily the source of neutral emission lines. This ?two-component' plasma structure develops at about 0.4 microsec after breakdown, at about the time when the luminous fireball dissipates its expansion energy and comes to a virtual standstill.

  13. Corrosion of Ti6Al4V pins produced by direct metal laser sintering

    Science.gov (United States)

    de Damborenea, J. J.; Arenas, M. A.; Larosa, Maria Aparecida; Jardini, André Luiz; de Carvalho Zavaglia, Cecília Amélia; Conde, A.

    2017-01-01

    Direct Metal Laser Sintering (DMLS) technique allows the manufacturing a wide variety of medical devices for any type of prosthetic surgery (HIP, dental, cranial, maxillofacial) as well as for internal fixation devices (K-Wires or Steinmann Pins). There are a large number of research studies on DMLS, including microstructural characterization, mechanical properties and those based on production quality assurance but the influence of porosity in the corrosion behavior of these materials not been sufficiently considered. In the present paper, surgical pins of Ti6Al4V have been produced by DMLS. After testing in a phosphate buffered saline solution, the surface of the titanium alloy appeared locally covered by a voluminous white oxide. This unexpected behavior was presumably due to the existence of internal defects in the pins as result of the manufacturing process. The importance of these defects-that might act as crevice nucleation sites- has been revealed by electrochemical techniques and confirmed by computed tomography.

  14. Neutron measurements of stresses in a test artifact produced by laser-based additive manufacturing

    Science.gov (United States)

    Gnäupel-Herold, Thomas; Slotwinski, John; Moylan, Shawn

    2014-02-01

    A stainless steel test artifact produced by Direct Metal Laser Sintering and similar to a proposed standardized test artifact was examined using neutron diffraction. The artifact contained a number of structures with different aspect ratios pertaining to wall thickness, height above base plate, and side length. Through spatial resolutions of the order of one millimeter the volumetric distribution of stresses in several was measured. It was found that the stresses peak in the tensile region around 500 MPa near the top surface, with balancing compressive stresses in the interior. The presence of a support structure (a one millimeter high, thin walled, hence weaker, lattice structure deposited on the base plate, followed by a fully dense AM structure) has only minor effects on the stresses.

  15. Growth and thermoelectric properties of FeSb2 films produced by pulsed laser deposition

    DEFF Research Database (Denmark)

    Canulescu, Stela; SUN, Ye; Schou, Jørgen

    FeSb2, a strongly correlated semiconductor, has promising application potential for thermoelectric cooling at cryogenic temperatures [1,2]. Single crystals of FeSb2 were found to exhibit colossal thermopower (S) values up to ~ −45000 μVK-1 and record high power factors up to 2300 μWK−2 cm−1 at 12 K...... enhanced thermoelectric performance. Herein, FeSb2 films were produced on silica substrates in a low-pressure Ar environment by a pulsed Nd:YAG laser at 355 nm. The effect of growth parameters, such as substrate temperature, Ar pressure, incident fluence and growth time, on the PLD growth of FeSb2...

  16. Studies on high-quality electron beams and tunable x-ray sources produced by laser wakefield accelerators

    Science.gov (United States)

    Zeng, Ming; Luo, Ji; Chen, Min; Sheng, Zheng-Ming

    2016-11-01

    The applications of laser wake field accelerators (LWFA) rely heavily on the quality of produced high energy electron beams and X-ray sources. We present our recent progress on this issue. Firstly we propose a bichromatic laser ionization injection scheme for obtaining high quality electron beams. With the laser pulse combinations of 800 nm and 267 nm, or 2400 nm and 800 nm in wavelengths, electron beams with energy spread of 1% or lower can be produced. Secondly we propose polarization tunable X-ray sources based on LWFA. By shooting a laser pulse into a preformed plasma channel with a skew angle referring to the channel axis, the plasma channel can act as a helical undulator for elliptically polarized X-rays.

  17. Rayleigh-Taylor-Induced Electromagnetic Fields in Laser-Produced Plasmas

    Science.gov (United States)

    Manuel, Mario J.-E.

    Spontaneous electromagnetic fields can be important to the dynamic evolution of a plasma by directing heat flow as well as providing additional pressures on the conducting fluids through the Lorentz force. Electromagnetic fields are predicted to affect fluid behavior during the core-collapse of supernovae through generation of fields due to hydrodynamic instabilities. In the coronae of stars, self-generated magnetic fields lead to filamentary structure in the hot plasma. Recent experiments by Gregori et al. investigated sources of protogalactic magnetic fields generated by laser-produced shock waves. In inertial confinement fusion experiments, self-generated electromagnetic fields can also play a role and have recently become of great interest to the community. Present day laser facilities provide a unique opportunity to study spontaneous field-generation in these extreme environments under controlled conditions. Instability-induced electromagnetic fields were investigated using a novel monoenergetic-proton radiography system. Fusion protons generated by an 'exploding-pusher' implosion were used to probe laser-irradiated plastic foils with various preimposed surface perturbations. Imaging protons are sensitive to electromagnetic fields and density modulations in the plasma through the Lorentz force and Coulomb collisions, respectively. Corresponding x-ray radiographs of these targets provided mass density distributions and Coulomb effects on protons were assessed using a Monte Carlo code written using the Geant4 framework. Proton fluence distributions were recorded on CR-39 detectors and Fourier analyzed to infer path-integrated field strengths. Rayleigh-Taylor (RT) growth of preimposed surface perturbations generated magnetic fields by the RT-induced Biermann battery and were measured for the first time. Good data were obtained during linear growth and when compared to ideal calculations, demonstrated that field diffusion near the source played an important role

  18. Green and red Anti-Stokes emission of U3+: LaCl3produced by infrared laser

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Anti-Stokes green and red emission from U3+: LaCl3 can be produced by infrared laser excitation at 975.3 nm, 977.7 nm and 979.4 nm at 8K. The upconversion luminescence intensity dependence upon the excitation laser power was measured and analyzed. The results show that depending on the excitation wavelength, the mechanisms responsible for the upconversion process are two-photon absorption and excited-state absorption.

  19. Characteristics of ultrafast K line hard x-ray source from femtosecond terawatt laser-produced plasma

    Institute of Scientific and Technical Information of China (English)

    陈敏; 陈建文; 高鸿奕; 陆培祥; 徐至展

    2003-01-01

    Theoretical studies and analytical scalings were carried out to find the optimized laser parameters and target conditions so that ultrashort hard x-ray pulses and high x-ray power could be achieved. The dependence of laser intensity and wavelength on the yield of K-shell x-ray emission was studied. We propose an optimal design for a foil target for producing high-yield hard x-ray pulses of customizing duration.

  20. Tensile Properties Characterization of AlSi10Mg Parts Produced by Direct Metal Laser Sintering via Nested Effects Modeling

    OpenAIRE

    Biagio Palumbo; Francesco Del Re; Massimo Martorelli; Antonio Lanzotti; Pasquale Corrado

    2017-01-01

    A statistical approach for the characterization of Additive Manufacturing (AM) processes is presented in this paper. Design of Experiments (DOE) and ANalysis of VAriance (ANOVA), both based on Nested Effects Modeling (NEM) technique, are adopted to assess the effect of different laser exposure strategies on physical and mechanical properties of AlSi10Mg parts produced by Direct Metal Laser Sintering (DMLS). Due to the wide industrial interest in AM technologies in many different fields, it is...

  1. Optimization of X-Ray-Emission from a Laser-Produced Plasma in a Narrow Wavelength Band

    NARCIS (Netherlands)

    van Dorssen, G. E.; E. Louis,; F. Bijkerk,

    1992-01-01

    The X-ray emission from laser-produced plasmas at an X-ray wavelength of approximately 10.4 nm was measured for Al and Gd target materials. The laser power density on the target surface was varied between 1.5 x 10(10) and 3 x 10(12) W/cm2 to obtain different electron temperatures. The output from th

  2. Imaging through flesh tissue using fs electronic holographic gating method

    Institute of Scientific and Technical Information of China (English)

    侯比学; 陈国夫; 郝志琦; 丰善; 王淑岩; 王屹山; 王国志

    1999-01-01

    The experimental results of imaging through flesh tissue using fs electronic holographic gating method is reported. In the experiment, Ti: sapphire mode-locked laser is used as light source, of which the repetition rate is 100 MHz, central wavelength 800 mn, duration of pulse 20 fs, output power 80 mW. Tissue is a 7 mm thick chicken slice, and the imaged object is a metal wire with diameter of 0.5 mm. A general CCD is used to record holograms and a clear image of metal wire is obtained. Several relevant problems are discussed.

  3. High-Power and Low-Noise 10-GHz All-Active Monolithic Mode-Locked Lasers with Surface Etched Bragg Grating

    OpenAIRE

    Larsson, David; Yvind, Kresten; Hvam, Jørn Märcher

    2007-01-01

    We have fabricated 4.4 mm long monolithic InAlGaAsP/InP mode-locked lasers with integrated deeply surface etched DBR-mirrors. The lasers produce 3.7 ps transform-limited Gaussian pulses with 10 mW average power and 250 fs timing jitter.

  4. Fatigue of Ti6Al4V Structural Health Monitoring Systems Produced by Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Maria Strantza

    2016-02-01

    Full Text Available Selective laser melting (SLM is an additive manufacturing (AM process which is used for producing metallic components. Currently, the integrity of components produced by SLM is in need of improvement due to residual stresses and unknown fracture behavior. Titanium alloys produced by AM are capable candidates for applications in aerospace and industrial fields due to their fracture resistance, fatigue behavior and corrosion resistance. On the other hand, structural health monitoring (SHM system technologies are promising and requested from the industry. SHM systems can monitor the integrity of a structure and during the last decades the research has primarily been influenced by bionic engineering. In that aspect a new philosophy for SHM has been developed: the so-called effective structural health monitoring (eSHM system. The current system uses the design freedom provided by AM. The working principle of the system is based on crack detection by means of a network of capillaries that are integrated in a structure. The main objective of this research is to evaluate the functionality of Ti6Al4V produced by the SLM process in the novel SHM system and to confirm that the eSHM system can successfully detect cracks in SLM components. In this study four-point bending fatigue tests on Ti6Al4V SLM specimens with an integrated SHM system were conducted. Fractographic analysis was performed after the final failure, while finite element simulations were used in order to determine the stress distribution in the capillary region and on the component. It was proven that the SHM system does not influence the crack initiation behavior during fatigue. The results highlight the effectiveness of the eSHM on SLM components, which can potentially be used by industrial and aerospace applications.

  5. High-resolution X-ray focusing concave (elliptical) curved crystal spectrograph for laser-produced plasma

    Institute of Scientific and Technical Information of China (English)

    Shali xiao(肖沙里); Yingjun Pan(潘英俊); Xianxin Zhong(钟先信); Xiancai Xiong(熊先才); Guohong Yang(杨国洪); Zongli Liu(刘宗礼); Yongkun Ding(丁永坤)

    2004-01-01

    The X-ray spectrum emitted from laser-produced plasma contains plentiful information.X-ray spectrometer is a powerful tool for plasma diagnosis and studying the information and evolution of the plasma.X-ray concave(elliptical)curved crystals analyzer was designed and manufactured to investigate the properties of laser-produced plasma.The experiment was carried out on Mianyang Xingguang-ⅡFacility and aimed at investigating the characteristics of a high density iron plasma.Experimental results using KAP,LIF,PET,and MICA curved crystal analyzers are described,and the spectra of Au,Ti laser-produced plasma are shown.The focusing crystal analyzer clearly gave an increase in sensitivity over a flat crystal.

  6. Commercial mode-locked vertical external cavity surface emitting lasers

    Science.gov (United States)

    Lubeigt, Walter; Bialkowski, Bartlomiej; Lin, Jipeng; Head, C. Robin; Hempler, Nils; Maker, Gareth T.; Malcolm, Graeme P. A.

    2017-02-01

    In recent years, M Squared Lasers have successfully commercialized a range of mode-locked vertical external cavity surface emitting lasers (VECSELs) operating between 920-1050nm and producing picosecond-range pulses with average powers above 1W at pulse repetition frequencies (PRF) of 200MHz. These laser products offer a low-cost, easy-to-use and maintenance-free tool for the growing market of nonlinear microscopy. However, in order to present a credible alternative to ultrafast Ti-sapphire lasers, pulse durations below 200fs are required. In the last year, efforts have been directed to reduce the pulse duration of the Dragonfly laser system to below 200fs with a target average power above 1W at a PRF of 200MHz. This paper will describe and discuss the latest efforts undertaken to approach these targets in a laser system operating at 990nm. The relatively low PRF operation of Dragonfly lasers represents a challenging requirement for mode-locked VECSELs due to the very short upper state carrier lifetime, on the order of a few nanoseconds, which can lead to double pulsing behavior in longer cavities as the time between consecutive pulses is increased. Most notably, the design of the Dragonfly VECSEL cavity was considerably modified and the laser system extended with a nonlinear pulse stretcher and an additional compression stage. The improved Dragonfly laser system achieved pulse duration as short as 130fs with an average power of 0.85W.

  7. Improving the fatigue performance of porous metallic biomaterials produced by Selective Laser Melting.

    Science.gov (United States)

    Van Hooreweder, Brecht; Apers, Yanni; Lietaert, Karel; Kruth, Jean-Pierre

    2017-01-01

    This paper provides new insights into the fatigue properties of porous metallic biomaterials produced by additive manufacturing. Cylindrical porous samples with diamond unit cells were produced from Ti6Al4V powder using Selective Laser Melting (SLM). After measuring all morphological and quasi-static properties, compression-compression fatigue tests were performed to determine fatigue strength and to identify important fatigue influencing factors. In a next step, post-SLM treatments were used to improve the fatigue life of these biomaterials by changing the microstructure and by reducing stress concentrators and surface roughness. In particular, the influence of stress relieving, hot isostatic pressing and chemical etching was studied. Analytical and numerical techniques were developed to calculate the maximum local tensile stress in the struts as function of the strut diameter and load. With this method, the variability in the relative density between all samples was taken into account. The local stress in the struts was then used to quantify the exact influence of the applied post-SLM treatments on the fatigue life. A significant improvement of the fatigue life was achieved. Also, the post-SLM treatments, procedures and calculation methods can be applied to different types of porous metallic structures and hence this paper provides useful tools for improving fatigue performance of metallic biomaterials.

  8. Structural characterization of biomedical Co-Cr-Mo components produced by direct metal laser sintering.

    Science.gov (United States)

    Barucca, G; Santecchia, E; Majni, G; Girardin, E; Bassoli, E; Denti, L; Gatto, A; Iuliano, L; Moskalewicz, T; Mengucci, P

    2015-03-01

    Direct metal laser sintering (DMLS) is a technique to manufacture complex functional mechanical parts from a computer-aided design (CAD) model. Usually, the mechanical components produced by this procedure show higher residual porosity and poorer mechanical properties than those obtained by conventional manufacturing techniques. In this work, a Co-Cr-Mo alloy produced by DMLS with a composition suitable for biomedical applications was submitted to hardness measurements and structural characterization. The alloy showed a hardness value remarkably higher than those commonly obtained for the same cast or wrought alloys. In order to clarify the origin of this unexpected result, the sample microstructure was investigated by X-ray diffraction (XRD), electron microscopy (SEM and TEM) and energy dispersive microanalysis (EDX). For the first time, a homogeneous microstructure comprised of an intricate network of thin ε (hcp)-lamellae distributed inside a γ (fcc) phase was observed. The ε-lamellae grown on the {111}γ planes limit the dislocation slip inside the γ (fcc) phase, causing the measured hardness increase. The results suggest possible innovative applications of the DMLS technique to the production of mechanical parts in the medical and dental fields. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Thick metallic coatings produced by coaxial and side laser cladding : Processing and properties

    NARCIS (Netherlands)

    Ocelík, V.; De Hosson, J.T.M.

    2010-01-01

    Cobalt and iron-based, defect-free coatings with thicknesses from 1 to 3.3. mm were created by a laser cladding process on different steel substrates. Extensive laser cladding experiments with a gradual change of laser power were used to study relations between main processing parameters and geometr

  10. The spatial thickness distribution of metal films produced by large area pulsed laser deposition

    DEFF Research Database (Denmark)

    Pryds, Nini; Schou, Jørgen; Linderoth, Søren

    2007-01-01

    Thin films of metals have been deposited in the large-area Pulsed Laser Deposition (PLD) Facility at Riso National Laboratory. Thin films of Ag and Ni were deposited with laser pulses from an excimer laser at 248 nm with a rectangular beam spot at a fluence of 10 J/cm(2) on glass substrates of 12...

  11. Development of a compact laser-produced plasma soft X-ray source for radiobiology experiments

    Energy Technology Data Exchange (ETDEWEB)

    Adjei, Daniel, E-mail: nana.adjeidan@gmail.com [Institute of Optoelectronics, Military University of Technology, 2, Kaliskiego Str., 00-908 Warsaw (Poland); Radiation Protection Institute, Ghana Atomic Energy Commission, P.O. Box LG 80, Legon, Accra (Ghana); Ayele, Mesfin Getachew; Wachulak, Przemyslaw; Bartnik, Andrzej; Wegrzynski, Łukasz; Fiedorowicz, Henryk [Institute of Optoelectronics, Military University of Technology, 2, Kaliskiego Str., 00-908 Warsaw (Poland); Vyšín, Luděk [Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8 (Czech Republic); Faculty of Nuclear Sciences and Engineering Physics, Czech Technical University in Prague, Břehová 7, 115 19 Prague 1 (Czech Republic); Wiechec, Anna; Lekki, Janusz; Kwiatek, Wojciech M. [Institute of Nuclear Physics, Polish Academy of Sciences, 152, Radzikowskiego Str., 31-342 Cracow (Poland); Pina, Ladislav [Faculty of Nuclear Sciences and Engineering Physics, Czech Technical University in Prague, Břehová 7, 115 19 Prague 1 (Czech Republic); Davídková, Marie [Institute of Nuclear Physics, Czech Academy of Sciences, Řež (Czech Republic); Juha, Libor [Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8 (Czech Republic)

    2015-12-01

    A desk-top laser-produced plasma (LPP) source of soft X-rays (SXR) has been developed for radiobiology research. The source is based on a double-stream gas puff target, irradiated with the focused beam of a commercial Nd:YAG laser. The source has been optimized to get a maximum photon emission from LPP in the X-ray “water window” spectral wavelength range from 2.3 nm (i.e., an absorption edge of oxygen) to 4.4 nm (i.e., an absorption edge of carbon) (280–540 eV in photon energy units) by using argon gas-puff target and spectral filtering by free-standing thin foils. The present source delivers nanosecond pulses of soft X-rays at a fluence of about 4.2 × 10{sup 3} photons/μm{sup 2}/pulse on a sample placed inside the vacuum chamber. In this paper, the source design, radiation output characterization measurements and initial irradiation experiments are described. The source can be useful in addressing observations related to biomolecular, cellular and organisms’ sensitivity to pulsed radiation in the “water window”, where carbon atoms absorb X-rays more strongly than the oxygen, mostly present in water. The combination of the SXR source and the radiobiology irradiation layout, reported in this article, make possible a systematic investigation of relationships between direct and indirect action of ionizing radiation, an increase of a local dose in carbon-rich compartments of the cell (e.g., lipid membranes), an experimental estimation of a particular role of the Auger effect (in particular in carbon atoms) in the damage to biological systems, and the study of ionization/excitation-density (LET – Linear Energy Transfer) and dose-rate effects in radiobiology.

  12. Biological evaluation of an apatite-mullite glass-ceramic produced via selective laser sintering.

    Science.gov (United States)

    Goodridge, Ruth D; Wood, David J; Ohtsuki, Chikara; Dalgarno, Kenneth W

    2007-03-01

    The biological performance of a porous apatite-mullite glass-ceramic, manufactured via a selective laser sintering (SLS) method, was evaluated to determine its potential as a bone replacement material. Direct contact and extract assays were used to assess the cytotoxicity of the material. A pilot animal study, implanting the material into rabbit tibiae for 4 weeks, was also carried out to assess in vivo bioactivity. The material produced by SLS did not show any acute cytotoxic effects by either contact or extract methods. There was no evidence of an apatite layer forming on the surface of the material when soaked in SBF for 30 days, suggesting that the material was unlikely to exhibit bioactive behaviour in vivo. It is hypothesized that the material was unable to form an apatite layer in SBF due to the fact that this glass-ceramic was highly crystalline and the fluorapatite crystal phase was relatively stable in SBF, as were the two aluminosilicate crystal phases. There was thus no release of calcium and phosphorus and no formation of silanol groups to trigger apatite deposition from solution within the test time period. Following implantation in rabbit tibiae for 4 weeks, bone was seen to have grown into the porous structure of the laser-sintered parts, and appeared to be very close to, or directly contacting, the material surface. This result may reflect the local environment in vivo compared to that artificially found with the in vitro SBF test and, furthermore, confirms previous in vivo data on these glass-ceramics.

  13. The biocompatibility of dense and porous Nickel-Titanium produced by selective laser melting.

    Science.gov (United States)

    Habijan, T; Haberland, C; Meier, H; Frenzel, J; Wittsiepe, J; Wuwer, C; Greulich, C; Schildhauer, T A; Köller, M

    2013-01-01

    Nickel-Titanium shape memory alloys (NiTi-SMA) are of biomedical interest due to their unusual range of pure elastic deformability and their elastic modulus, which is closer to that of bone than any other metallic or ceramic material. Newly developed porous NiTi, produced by Selective Laser Melting (SLM), is currently under investigation as a potential carrier material for human mesenchymal stem cells (hMSC). SLM enables the production of highly complex and tailor-made implants for patients on the basis of CT data. Such implants could be used for the reconstruction of the skull, face, or pelvis. hMSC are a promising cell type for regenerative medicine and tissue engineering due to their ability to support the regeneration of critical size bone defects. Loading porous SLM-NiTi implants with autologous hMSC may enhance bone growth and healing for critical bone defects. The purpose of this study was to assess whether porous SLM-NiTi is a suitable carrier for hMSC. Specimens of varying porosity and surface structure were fabricated via SLM. hMSC were cultured for 8 days on NiTi specimens, and cell viability was analyzed using two-color fluorescence staining. Viable cells were detected on all specimens after 8 days of cell culture. Cell morphology and surface topography were analyzed by scanning electron microscopy (SEM). Cell morphology and surface topology were dependent on the orientation of the specimens during SLM production. The Nickel ion release can be reduced significantly by aligned laser processing conditions. The presented results clearly attest that both dense SLM-NiTi and porous SLM-NiTi are suitable carriers for hMSC. Nevertheless, before carrying out in vivo studies, some work on optimization of the manufacturing process and post-processing is required.

  14. Development of a compact laser-produced plasma soft X-ray source for radiobiology experiments

    Science.gov (United States)

    Adjei, Daniel; Ayele, Mesfin Getachew; Wachulak, Przemyslaw; Bartnik, Andrzej; Wegrzynski, Łukasz; Fiedorowicz, Henryk; Vyšín, Luděk; Wiechec, Anna; Lekki, Janusz; Kwiatek, Wojciech M.; Pina, Ladislav; Davídková, Marie; Juha, Libor

    2015-12-01

    A desk-top laser-produced plasma (LPP) source of soft X-rays (SXR) has been developed for radiobiology research. The source is based on a double-stream gas puff target, irradiated with the focused beam of a commercial Nd:YAG laser. The source has been optimized to get a maximum photon emission from LPP in the X-ray "water window" spectral wavelength range from 2.3 nm (i.e., an absorption edge of oxygen) to 4.4 nm (i.e., an absorption edge of carbon) (280-540 eV in photon energy units) by using argon gas-puff target and spectral filtering by free-standing thin foils. The present source delivers nanosecond pulses of soft X-rays at a fluence of about 4.2 × 103 photons/μm2/pulse on a sample placed inside the vacuum chamber. In this paper, the source design, radiation output characterization measurements and initial irradiation experiments are described. The source can be useful in addressing observations related to biomolecular, cellular and organisms' sensitivity to pulsed radiation in the "water window", where carbon atoms absorb X-rays more strongly than the oxygen, mostly present in water. The combination of the SXR source and the radiobiology irradiation layout, reported in this article, make possible a systematic investigation of relationships between direct and indirect action of ionizing radiation, an increase of a local dose in carbon-rich compartments of the cell (e.g., lipid membranes), an experimental estimation of a particular role of the Auger effect (in particular in carbon atoms) in the damage to biological systems, and the study of ionization/excitation-density (LET - Linear Energy Transfer) and dose-rate effects in radiobiology.

  15. X-ray High-resolution Spectroscopy for Laser-produced Plasma

    Science.gov (United States)

    Barbato, F.; Scarpellini, D.; Malizia, A.; Gaudio, P.; Richetta, M.; Antonelli, L.

    The study of the emission spectrum gives information about the material generating the spectrum itself and the condition in which this is generated. The wavelength spectra lines are linked to the specific element and plasma conditions (electron temperature, density), while their shape is influenced by several physical effects like Stark and Doppler ones. In this work we study the X-ray emission spectra of a copper laser-produced plasma by using a spherical bent crystal spectrometer to measure the electron temperature. The facility used is the laser TVLPS, at the Tor Vergata University in Rome. It consists of a Nd:Glass source (in first harmonic - 1064 nm) whose pulse parameters are: 8 J in energy, time duration of 15 ns and a focal spot diameter of 200 μm. The adopted spectrometer is based on a spherical bent crystal of muscovite. The device combines the focusing property of a spherical mirror with the Bragg's law. This allows to obtain a great power resolution but a limited range of analysis. In our case the resolution is on average 80 eV. As it is well-known, the position of the detector on the Rowland's circle is linked to the specific spectral range which has been studied. To select the area to be investigated, we acquired spectra by means of a flat spectrometer. The selected area is centered on 8.88 Å. To calibrate the spectrum we wrote a ray-tracing MATLAB code, which calculates the detector alignment parameters and calibration curve. We used the method of line ratio to measure the electron temperature. This is possible because we assumed the plasma to be in LTE condition. The temperature value was obtained comparing the experimental one, given by the line ratio, with the theoretical one, preceded by FLYCHK simulations.

  16. Soft-Bake Purification of SWCNTs Produced by Pulsed Laser Vaporization

    Science.gov (United States)

    Yowell, Leonard; Nikolaev, Pavel; Gorelik, Olga; Allada, Rama Kumar; Sosa, Edward; Arepalli, Sivaram

    2013-01-01

    The "soft-bake" method is a simple and reliable initial purification step first proposed by researchers at Rice University for single-walled carbon nanotubes (SWCNT) produced by high-pressure carbon mon oxide disproportionation (HiPco). Soft-baking consists of annealing as-produced (raw) SWCNT, at low temperatures in humid air, in order to degrade the heavy graphitic shells that surround metal particle impurities. Once these shells are cracked open by the expansion and slow oxidation of the metal particles, the metal impurities can be digested through treatment with hydrochloric acid. The soft-baking of SWCNT produced by pulsed-laser vaporization (PLV) is not straightforward, because the larger average SWCNT diameters (.1.4 nm) and heavier graphitic shells surrounding metal particles call for increased temperatures during soft-bake. A part of the technology development focused on optimizing the temperature so that effective cracking of the graphitic shells is balanced with maintaining a reasonable yield, which was a critical aspect of this study. Once the ideal temperature was determined, a number of samples of raw SWCNT were purified using the soft-bake method. An important benefit to this process is the reduced time and effort required for soft-bake versus the standard purification route for SWCNT. The total time spent purifying samples by soft-bake is one week per batch, which equates to a factor of three reduction in the time required for purification as compared to the standard acid purification method. Reduction of the number of steps also appears to be an important factor in improving reproducibility of yield and purity of SWCNT, as small deviations are likely to get amplified over the course of a complicated multi-step purification process.

  17. Study of the radiation X-UV produced during the relativistic interaction between a femtosecond laser and an helium plasma; Etude du rayonnement X-UV produit lors de l'interaction relativiste entre un laser femtoseconde et un plasme d'helium

    Energy Technology Data Exchange (ETDEWEB)

    Ta Phuoc, K

    2002-10-15

    The aim of this work is to design a new source of X-radiation that is both femtosecond and polychromatic. We have studied the Larmor radiation emitted during the relativistic interaction between an intense femtosecond laser and an under dense helium plasma. When the value of a{sub 0}, the laser force parameter, is below 1 and when the interaction is volume is important, the characteristics of the emitted radiation are those of Bremsstrahlung radiation and radiative recombination. When the value of a{sub 0} is about 5 the emitted radiation is strongly different and look like much more the Larmor radiation. Nevertheless some features such as the shape of the angular distribution or the amplitude of the laser polarization effect are not yet well understood. The spectra of the X-ray produced is peaked around 150 eV and spreads up to 2 keV. The number of photons produced by laser shot is over 10{sup 9} and the duration of the X-ray impulse is expected to be in the same order of magnitude as that of the laser impulse: 30 fs. The average photon flux is 2*10{sup 3} ph/s/0.1%BW at 2 keV and reaches 6*10{sup 7} ph/s/0.1%BW at 0.15 keV. The average brilliance is 1.5*10{sup 4} ph/s/mm{sup 2}/mrad{sup 2}/0.1%BW at 2 keV and 8*10{sup 4} ph/s/mm{sup 2}/mrad{sup 2}/0.1%BW at 0.15 keV. Different ways are considered to improve the characteristics of this new X-ray source. (A.C.)

  18. Analytical description of generation of the residual current density in the plasma produced by a few-cycle laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Silaev, A. A., E-mail: silaev@appl.sci-nnov.ru; Vvedenskii, N. V., E-mail: vved@appl.sci-nnov.ru [Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); University of Nizhny Novgorod, Nizhny Novgorod 603950 (Russian Federation)

    2015-05-15

    When a gas is ionized by a few-cycle laser pulse, some residual current density (RCD) of free electrons remains in the produced plasma after the passage of the laser pulse. This quasi-dc RCD is an initial impetus to plasma polarization and excitation of the plasma oscillations which can radiate terahertz (THz) waves. In this work, the analytical model for calculation of RCD excited by a few-cycle laser pulse is developed for the first time. The dependences of the RCD on the carrier-envelope phase (CEP), wavelength, duration, and intensity of the laser pulse are derived. It is shown that maximum RCD corresponding to optimal CEP increases with the laser pulse wavelength, which indicates the prospects of using mid-infrared few-cycle laser pulses in the schemes of generation of high-power THz pulses. Analytical formulas for optimal pulse intensity and maximum efficiency of excitation of the RCD are obtained. Basing on numerical solution of the 3D time-dependent Schrödinger equation for hydrogen atoms, RCD dependence on CEP is calculated in a wide range of wavelengths. High accuracy of analytical formulas is demonstrated at the laser pulse parameters which correspond to the tunneling regime of ionization.

  19. Theoretical analysis and numerical simulation of the impulse delivering from laser-produced plasma to solid target

    Institute of Scientific and Technical Information of China (English)

    Yang Yan-Nan; Yang Bo; Zhu Jin-Rong; Shen Zhong-Hua; Lu Jian; Ni Xiao-Wu

    2008-01-01

    A plasma is produced in air by using a high-intensity Q-switch Nd:YAG pulsed laser to irradiate a solid target,and the impulses delivering from the plasma to the target are measured at different laser power densities. Analysing the formation process of laser plasma and the laser supported detonation wave (LSDW) and using fluid mechanics theory and Pirri's methods, an approximately theoretical solution of the impulse delivering from the plasma to the target under our experimental condition is found. Furthermore, according to the formation time of plasma and the variation of pressure in plasma in a non-equilibrium state, a physical model of the interaction between the pulse laser and the solid target is developed. The plasma evolutions with time during and after the laser pulse irradiating the target are simulated numerically by using a three-dimensional difference scheme. And the numerical solutions of the impulse delivering from the plasma to the target are obtained. A comparison among the theoretical, numerical and experimental results and their analyses are performed. The experimental results are explained reasonably. The consistency between numerical results and experimental results implies that the numerical calculation model used in this paper can well describe the mechanical action of the laser on the target.

  20. The biocompatibility of dense and porous Nickel-Titanium produced by selective laser melting

    Energy Technology Data Exchange (ETDEWEB)

    Habijan, T., E-mail: Tim.Habijan@rub.de [Surgical Research, Department of Surgery, BG Kliniken Bergmannsheil, Ruhr-University Bochum, Buerkle-de-la-Camp-Platz 1, 44789 Bochum (Germany); Haberland, C.; Meier, H. [Institute Product and Service Engineering, Ruhr-University Bochum (Germany); Frenzel, J. [Institute for Materials, Ruhr-University Bochum (Germany); Wittsiepe, J. [Department of Hygiene, Social and Environmental Medicine, Ruhr-University Bochum (Germany); Wuwer, C.; Greulich, C.; Schildhauer, T.A.; Koeller, M. [Surgical Research, Department of Surgery, BG Kliniken Bergmannsheil, Ruhr-University Bochum, Buerkle-de-la-Camp-Platz 1, 44789 Bochum (Germany)

    2013-01-01

    Nickel-Titanium shape memory alloys (NiTi-SMA) are of biomedical interest due to their unusual range of pure elastic deformability and their elastic modulus, which is closer to that of bone than any other metallic or ceramic material. Newly developed porous NiTi, produced by Selective Laser Melting (SLM), is currently under investigation as a potential carrier material for human mesenchymal stem cells (hMSC). SLM enables the production of highly complex and tailor-made implants for patients on the basis of CT data. Such implants could be used for the reconstruction of the skull, face, or pelvis. hMSC are a promising cell type for regenerative medicine and tissue engineering due to their ability to support the regeneration of critical size bone defects. Loading porous SLM-NiTi implants with autologous hMSC may enhance bone growth and healing for critical bone defects. The purpose of this study was to assess whether porous SLM-NiTi is a suitable carrier for hMSC. Specimens of varying porosity and surface structure were fabricated via SLM. hMSC were cultured for 8 days on NiTi specimens, and cell viability was analyzed using two-color fluorescence staining. Viable cells were detected on all specimens after 8 days of cell culture. Cell morphology and surface topography were analyzed by scanning electron microscopy (SEM). Cell morphology and surface topology were dependent on the orientation of the specimens during SLM production. The Nickel ion release can be reduced significantly by aligned laser processing conditions. The presented results clearly attest that both dense SLM-NiTi and porous SLM-NiTi are suitable carriers for hMSC. Nevertheless, before carrying out in vivo studies, some work on optimization of the manufacturing process and post-processing is required. - Highlights: Black-Right-Pointing-Pointer Specimens, varying in porosity and surface structure were produced via SLM. Black-Right-Pointing-Pointer Biocompatibility of these specimens was analyzed. Black

  1. Facilitation of a nociceptive flexion reflex in man by nonnoxious radiant heat produced by a laser.

    Science.gov (United States)

    Plaghki, L; Bragard, D; Le Bars, D; Willer, J C; Godfraind, J M

    1998-05-01

    Electromyographic recordings were made in healthy volunteers from the knee-flexor biceps femoris muscle of the nociceptive RIII reflex elicited by electrical stimulation of the cutaneous sural nerve. The stimulus intensity was adjusted to produce a moderate pricking-pain sensation. The test responses were conditioned by a nonnoxious thermal (CO2 laser stimulator and consisted of a 100-ms pulse of heat with a beam diameter of 20 mm. Its power was 22.7 +/- 4.2 W (7.2 mJ/mm2), and it produced a sensation of warmth. The maximum surface temperature reached at the end of the period of stimulation was calculated to be 7 degrees C above the actual reference temperature of the skin (32 degrees C). The interval between the laser (conditioning) and electrical (test) stimuli was varied from 50 to 3, 000 ms in steps of 50 ms. It was found that the nociceptive flexion reflex was facilitated by the thermal stimulus; this modulation occurred with particular conditioning-test intervals, which peaked at 500 and 1,100 ms with an additional late, long-lasting phase between 1,600 and 2,300 ms. It was calculated that the conduction velocities of the cutaneous afferent fibers responsible for facilitating the RIII reflex, fell into three ranges: one corresponding to A delta fibers (3.2 m/s) and two in the C fiber range (1.3 and 0.7 m/s). It is concluded that information emanating from warm receptors and nociceptors converges. In this respect, the present data show, for the first time, that in man, conditioning nonnociceptive warm thermoreceptive A delta and C fibers results in an interaction at the spinal level with a nociceptive reflex. This interaction may constitute a useful means whereby signals add together to trigger flexion reflexes in defensive reactions and other basic motor behaviors. It also may contribute to hyperalgesia in inflammatory processes. The methodology used in this study appears to be a useful noninvasive tool for exploring the thermoalgesic mechanisms in both

  2. Tensile Properties Characterization of AlSi10Mg Parts Produced by Direct Metal Laser Sintering via Nested Effects Modeling

    Directory of Open Access Journals (Sweden)

    Biagio Palumbo

    2017-02-01

    Full Text Available A statistical approach for the characterization of Additive Manufacturing (AM processes is presented in this paper. Design of Experiments (DOE and ANalysis of VAriance (ANOVA, both based on Nested Effects Modeling (NEM technique, are adopted to assess the effect of different laser exposure strategies on physical and mechanical properties of AlSi10Mg parts produced by Direct Metal Laser Sintering (DMLS. Due to the wide industrial interest in AM technologies in many different fields, it is extremely important to ensure high parts performances and productivity. For this aim, the present paper focuses on the evaluation of tensile properties of specimens built with different laser exposure strategies. Two optimal laser parameters settings, in terms of both process quality (part performances and productivity (part build rate, are identified.

  3. Nitinol laser cutting: microstructure and functional properties of femtosecond and continuous wave laser processing

    Science.gov (United States)

    Biffi, C. A.; Tuissi, A.

    2017-03-01

    Thermal processing can affect the properties of smart materials, and the correct selection of the best manufacturing technology is fundamental for producing high tech smart devices, containing embedded functional properties. In this work cutting of thin superelastic Nitinol plates using a femtosecond (fs) and continuous wave (CW) laser was studied. Diamond shaped elements were cut to characterize the kerf qualitative features; microstructural analysis of the cross sections allowed identification of thermal damage characteristics introduced into the material during the laser processes. A thermally undamaged microstructure was observed for fs laser cutting, while CW was seen to be characterized by a large heat-affected zone. Functional properties were investigated by differential scanning calorimetry and tensile testing of laser cut microelements and of the reference material. It was seen that the martensitic transformation behavior of Nitinol is not affected by fs regime, while cw cutting provokes an effect equivalent to a high temperature thermal treatment in the material surrounding the cutting kerf, degradating the material properties. Finally, tensile testing indicated that superelastic performances were guaranteed by fs regime, while strong reduction of the recoverable strain was detected in the CW processed sample.

  4. Characterization of a UV VUV light source based on a gas-target ns-laser-produced plasma

    Science.gov (United States)

    Di Palma, Tonia M.; Borghese, Antonio

    2007-01-01

    We report measurements of the temporal and spatial evolution of plasmas, produced on gaseous targets by focused ns-Nd:YAG laser. Characterization of the UV-VUV light source includes time-resolved visualization of the spatial growth and the spectroscopic signatures of plasmas produced on pulsed, supersonic jets of helium, argon, nitrogen and xenon gases into a vacuum chamber. Photon fluxes of up to 1012 photons cm-2 nm-1/pulse have been measured in the wavelength region 100-260 nm within the first 30 ns following the laser pulse. Also discussed for comparison are plasma signatures in helium, argon and nitrogen gases at standard temperature and pressure. The results indicate availability of photon fluxes, at typical laser repetition rates, that are at least one order of magnitude higher than those achieved from commercial c.w. lamp light sources.

  5. Statistics and characteristics of xuv transition arrays from laser-produced plasmas of the elements tin through iodine

    DEFF Research Database (Denmark)

    Svendsen, Winnie Edith; O'Sullivan, G.

    1994-01-01

    Spectra of laser-produced plasmas of the elements from tin to iodine contain weak bands of quasicontinuum overlaid by weak emission lines in the 70–120-Å region. Multiconfiguration-Dirac-Fock calculations show that these features are consistent with theoretical spectra for 4dN-4dN-1(5f+6p) transi...

  6. Feasibility study on temporal-resolved diffraction of high-energy electrons produced in femtosecond laser-plasmas

    CERN Document Server

    Zhang Jun; Cang Yu; Chen Qing; Peng Lian Mao; Wang Huai Bin; Zhong Jia Yong

    2002-01-01

    The high-energy electrons can be produced in the interaction between intense ultra-short laser pulses and Al targets. The diffraction may take place when high-energy electrons pass through an Al single crystal. Feasibility is studied using such diffraction as a method to analyze the structures of crystals

  7. Thickness determination of large-area films of yttria-stabilized zirconia produced by pulsed laser deposition

    DEFF Research Database (Denmark)

    Pryds, N.; Christensen, Bo Toftmann; Bilde-Sørensen, Jørgen;

    2006-01-01

    Films of yuria-stabilized zirconia (YSZ) on a polished silicon substrate of diameter up to 125 mm have been produced in a large-area pulsed laser deposition (PLD) setup under typical PLD conditions. The film thickness over the full film area has been determined by energy-dispersive Xray spectrome...

  8. Bremsstrahlung measurements for characterization of intense short-pulse, laser produced fast electrons with OMEGA EP

    Science.gov (United States)

    Daykin, Tyler; Sawada, Hiroshi; Sentoku, Yasuhiko; Pandit, Rishi; Chen, Cliff; Beg, Farhat; Chen, Hui; McLean, Harry; Patel, Pravesh; Tommasini, Riccardo

    2016-10-01

    Understanding relativistic fast electron generation and transport inside solids is important for applications such as generation of high energy x-ray sources and fast ignition. An experiment was carried out to study the scaling of the fast electron spectrum and bremsstrahlung generation in multi-pico second laser interactions using 1 ps and 10 ps OMEGA EP short-pulse beam to generate fast electrons at a similar peak intensity of 5x1018 W/cm2. The bremsstrahlung produced by collisions of the fast electrons with background ions was recorded using differential filter stacked spectrometers. A preliminary analysis with a Monte Carlo Code ITS shows that the electrons injection having an electron slope 1.8 MeV matched well with the high energy component of the 1 ps and 10 ps bremsstrahlung measurements. Details of the data analysis and modeling with Monte Carlo and a hybrid particle-in-cell codes will be presented at the conference. Work supported by the UNR Office of the Provost and by DOE/OFES under Contract No. DE-SC0008827. This collaborative work was partially supported under the auspices of the US DOE by LLNL under Contracts No. DE-AC52-07NA27344 and No. DE-FG-02-05ER54834.

  9. Generation of scaled protogalactic seed magnetic fields in laser-produced shock waves

    Science.gov (United States)

    Gregori, G.; Ravasio, A.; Murphy, C. D.; Schaar, K.; Baird, A.; Bell, A. R.; Benuzzi-Mounaix, A.; Bingham, R.; Constantin, C.; Drake, R. P.; Edwards, M.; Everson, E. T.; Gregory, C. D.; Kuramitsu, Y.; Lau, W.; Mithen, J.; Niemann, C.; Park, H.-S.; Remington, B. A.; Reville, B.; Robinson, A. P. L.; Ryutov, D. D.; Sakawa, Y.; Yang, S.; Woolsey, N. C.; Koenig, M.; Miniati, F.

    2012-01-01

    The standard model for the origin of galactic magnetic fields is through the amplification of seed fields via dynamo or turbulent processes to the level consistent with present observations. Although other mechanisms may also operate, currents from misaligned pressure and temperature gradients (the Biermann battery process) inevitably accompany the formation of galaxies in the absence of a primordial field. Driven by geometrical asymmetries in shocks associated with the collapse of protogalactic structures, the Biermann battery is believed to generate tiny seed fields to a level of about 10-21 gauss (refs 7, 8). With the advent of high-power laser systems in the past two decades, a new area of research has opened in which, using simple scaling relations, astrophysical environments can effectively be reproduced in the laboratory. Here we report the results of an experiment that produced seed magnetic fields by the Biermann battery effect. We show that these results can be scaled to the intergalactic medium, where turbulence, acting on timescales of around 700 million years, can amplify the seed fields sufficiently to affect galaxy evolution.

  10. Rapid prototyping: porous titanium alloy scaffolds produced by selective laser melting for bone tissue engineering.

    Science.gov (United States)

    Warnke, Patrick H; Douglas, Timothy; Wollny, Patrick; Sherry, Eugene; Steiner, Martin; Galonska, Sebastian; Becker, Stephan T; Springer, Ingo N; Wiltfang, Jörg; Sivananthan, Sureshan

    2009-06-01

    Selective laser melting (SLM), a method used in the nuclear, space, and racing industries, allows the creation of customized titanium alloy scaffolds with highly defined external shape and internal structure using rapid prototyping as supporting external structures within which bone tissue can grow. Human osteoblasts were cultured on SLM-produced Ti6Al4V mesh scaffolds to demonstrate biocompatibility using scanning electron microscopy (SEM), fluorescence microscopy after cell vitality staining, and common biocompatibility tests (lactate dihydrogenase (LDH), 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), 5-bromo-2-deoxyuridine (BrdU), and water soluble tetrazolium (WST)). Cell occlusion of pores of different widths (0.45-1.2 mm) was evaluated. Scaffolds were tested for resistance to compressive force. SEM investigations showed osteoblasts with well-spread morphology and multiple contact points. Cell vitality staining and biocompatibility tests confirmed osteoblast vitality and proliferation on the scaffolds. Pore overgrowth increased during 6 weeks' culture at pore widths of 0.45 and 0.5 mm, and in the course of 3 weeks for pore widths of 0.55, 0.6, and 0.7 mm. No pore occlusion was observed on pores of width 0.9-1.2 mm. Porosity and maximum compressive load at failure increased and decreased with increasing pore width, respectively. In summary, the scaffolds are biocompatible, and pore width influences pore overgrowth, resistance to compressive force, and porosity.

  11. Tribological behavior of Ti6Al4V cellular structures produced by Selective Laser Melting.

    Science.gov (United States)

    Bartolomeu, F; Sampaio, M; Carvalho, O; Pinto, E; Alves, N; Gomes, J R; Silva, F S; Miranda, G

    2017-05-01

    Additive manufacturing (AM) technologies enable the fabrication of innovative structures with complex geometries not easily manufactured by traditional processes. Regarding metallic cellular structures with tailored/customized mechanical and wear performance aiming to biomedical applications, Selective Laser Melting (SLM) is a remarkable solution for their production. Focusing on prosthesis and implants, in addition to a suitable Young's modulus it is important to assess the friction response and wear resistance of these cellular structures in a natural environment. In this sense, five cellular Ti6Al4V structures with different open-cell sizes (100-500µm) were designed and produced by SLM. These structures were tribologicaly tested against alumina using a reciprocating sliding ball-on-plate tribometer. Samples were submerged in Phosphate Buffered Saline (PBS) fluid at 37°C, in order to mimic in some extent the human body environment. The results showed that friction and wear performance of Ti6Al4V cellular structures is influenced by the structure open-cell size. The higher wear resistance was obtained for structures with 100µm designed open-cell size due to the higher apparent area of contact to support tribological loading.

  12. Spectroscopy of the tungsten plasma produced by pulsed plasma-ion streams or laser beams

    Science.gov (United States)

    Skladnik-Sadowska, E.; Malinowski, K.; Sadowski, M. J.; Wolowski, J.; Gasior, P.; Kubkowska, M.; Rosinski, M.; Marchenko, A. K.; Sartowska, B.

    2009-06-01

    The paper reports on experiments, which concerned studies of plasma produced from a tungsten (W) target bombarded by powerful (ca. 5 μs, 1-5 MW/cm 2) plasma-ion streams in RPI-IBIS plasma accelerator, and a similar target irradiated with intense Nd:YAG laser pulses (0.5 J, 3 ns, ca. 5.3 × 10 9 W/cm 2) in another vacuum chamber. In both experiments optical measurements were performed with a Mechelle ®900 spectrometer, which enabled the spectrum from 300 nm to 1100 nm to be recorded, and different WI- and WII-lines to be identified. From space- and time-resolved measurements of those lines, basic W-plasma parameters were estimated. During W-plasma expansion the electron temperature was found to be 0.8-1 eV and electron concentration (2-8) × 10 16 cm -3. The emission of higher-ionized W-ions (up to W +6) was confirmed by measurements with an ion-energy analyzer. Structural changes in the irradiated targets were investigated with an optical microscope and SEM.

  13. Spectroscopy of the tungsten plasma produced by pulsed plasma-ion streams or laser beams

    Energy Technology Data Exchange (ETDEWEB)

    Skladnik-Sadowska, E.; Malinowski, K. [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland); Sadowski, M.J., E-mail: msadowski@ipj.gov.p [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland); Institute of Plasma Physics and Laser Microfusion (IPPLM), 01-497 Warsaw (Poland); Wolowski, J.; Gasior, P.; Kubkowska, M.; Rosinski, M. [Institute of Plasma Physics and Laser Microfusion (IPPLM), 01-497 Warsaw (Poland); Marchenko, A.K. [Institute of Plasma Physics, NSC KIPT, 61-108 Kharkov (Ukraine); Sartowska, B. [Institute of Nuclear Chemistry and Technology, 03-195 Warsaw (Poland)

    2009-06-15

    The paper reports on experiments, which concerned studies of plasma produced from a tungsten (W) target bombarded by powerful (ca. 5 mus, 1-5 MW/cm{sup 2}) plasma-ion streams in RPI-IBIS plasma accelerator, and a similar target irradiated with intense Nd:YAG laser pulses (0.5 J, 3 ns, ca. 5.3 x 10{sup 9} W/cm{sup 2}) in another vacuum chamber. In both experiments optical measurements were performed with a Mechelle 900 spectrometer, which enabled the spectrum from 300 nm to 1100 nm to be recorded, and different WI- and WII-lines to be identified. From space- and time-resolved measurements of those lines, basic W-plasma parameters were estimated. During W-plasma expansion the electron temperature was found to be 0.8-1 eV and electron concentration (2-8) x 10{sup 16} cm{sup -3}. The emission of higher-ionized W-ions (up to W{sup +6}) was confirmed by measurements with an ion-energy analyzer. Structural changes in the irradiated targets were investigated with an optical microscope and SEM.

  14. Formation of electron energy spectra during magnetic reconnection in laser-produced plasma

    Science.gov (United States)

    Huang, Kai; Lu, Quanming; Huang, Can; Dong, Quanli; Wang, Huanyu; Fan, Feibin; Sheng, Zhengming; Wang, Shui; Zhang, Jie

    2017-10-01

    Energetic electron spectra formed during magnetic reconnection between two laser-produced plasma bubbles are investigated by the use of two-dimensional particle-in-cell simulations. It is found that the evolution of such an interaction between the two plasma bubbles can be separated into two distinct stages: squeezing and reconnection stages. In the squeezing stage, when the two plasma bubbles expand quickly and collide with each other, the magnetic field in the inflow region is greatly enhanced. In the second stage, a thin current sheet is formed between the two plasma bubbles, and then, magnetic reconnection occurs therein. During the squeezing stage, electrons are heated in the perpendicular direction by betatron acceleration due to the enhancement of the magnetic field around the plasma bubbles. Meanwhile, non-thermal electrons are generated by the Fermi mechanism when these electrons bounce between the two plasma bubbles approaching quickly and get accelerated mainly by the convective electric field associated with the plasma bubbles. During the reconnection stage, electrons get further accelerated mainly by the reconnection electric field in the vicinity of the X line. When the expanding speed of the plasma bubbles is sufficiently large, the formed electron energy spectra have a kappa distribution, where the lower energy part satisfies a Maxwellian function and the higher energy part is a power-law distribution. Moreover, the increase in the expanding speed will result in the hardening of formed power-law spectra in both the squeezing and reconnection stages.

  15. Application of laser produced ion beams to nuclear analysis of materials

    Science.gov (United States)

    Mima, Kunioki; Fujita, K.; Azuma, H.; Yamazaki, A.; Kato, Y.; Okuda, C.; Ukyo, Y.; Sawada, H.; Gonzalez-Arrabal, Raquel; Perlado, J. M.; Nishimura, H.; Nakai, S.

    2013-11-01

    The ion beam driven nuclear analysis has been developed for many years by using various electrostatic accelerators. A proton micro-beam with the beam diameter of ˜1.5 μm at Takasaki Ion Acceleration for Advanced Radiation Application (TIARA), JAEA was used to analyze the positive electrode of the Li-ion battery with PIGE and PIXE. WThe PIGE and PIXE images of Li and Ni respectively for LixNi0.8Co0.15Al0.05O2(x = 0.75 ˜ 1.0) anodes have been taken. The PIGE images of LixNi0.8Co0.15Al0.05O2 particles and the depth profile of the Li density have been obtained with high spatial resolution (a few μm). The images of the Li density distribution are very useful for the R&D of the Li ion battery. In order to make the in-situ ion beam analysis of the Li battery possible, a compact accelerator for a high quality MeV proton beam is necessary. Form this point of view, the diagnostics of Li ion battery is an appropriate field for the applications of laser produced ion beams.

  16. Application of laser produced ion beams to nuclear analysis of materials

    Directory of Open Access Journals (Sweden)

    Mima Kunioki

    2013-11-01

    Full Text Available The ion beam driven nuclear analysis has been developed for many years by using various electrostatic accelerators. A proton micro-beam with the beam diameter of ∼1.5 μm at Takasaki Ion Acceleration for Advanced Radiation Application (TIARA, JAEA was used to analyze the positive electrode of the Li-ion battery with PIGE and PIXE. WThe PIGE and PIXE images of Li and Ni respectively for LixNi0.8Co0.15Al0.05O2(x = 0.75 ∼ 1.0 anodes have been taken. The PIGE images of LixNi0.8Co0.15Al0.05O2 particles and the depth profile of the Li density have been obtained with high spatial resolution (a few μm. The images of the Li density distribution are very useful for the R&D of the Li ion battery. In order to make the in-situ ion beam analysis of the Li battery possible, a compact accelerator for a high quality MeV proton beam is necessary. Form this point of view, the diagnostics of Li ion battery is an appropriate field for the applications of laser produced ion beams.

  17. Stable droplet generator for a high brightness laser produced plasma extreme ultraviolet source

    Science.gov (United States)

    Vinokhodov, A.; Krivokorytov, M.; Sidelnikov, Yu.; Krivtsun, V.; Medvedev, V.; Bushuev, V.; Koshelev, K.; Glushkov, D.; Ellwi, S.

    2016-10-01

    We present the results of the low-melting liquid metal droplets generation based on excited Rayleigh jet breakup. We discuss on the operation of the industrial and in-house designed and manufactured dispensing devices for the droplets generation. Droplet diameter can be varied in the range of 30-90 μm. The working frequency of the droplets, velocity, and the operating temperature were in the ranges of 20-150 kHz, 4-15 m/s, and up to 250 °C, respectively. The standard deviations for the droplet center of mass position both their diameter σ < 1 μm at the distance of 45 mm from the nozzle. Stable operation in the long-term (over 1.5 h) was demonstrated for a wide range of the droplet parameters: diameters, frequencies, and velocities. Physical factors affecting the stability of the generator operation have been identified. The technique for droplet synchronization, allowing using the droplet as a target for laser produced plasma, has been created; in particular, the generator has been successfully used in a high brightness extreme ultraviolet (EUV) light source. The operation with frequency up to 8 kHz was demonstrated as a result of the experimental simulation, which can provide an average brightness of the EUV source up to ˜1.2 kW/mm2 sr.

  18. TiC Reinforcement Composite Coating Produced Using Graphite of the Cast Iron by Laser Cladding

    Directory of Open Access Journals (Sweden)

    Yanhui Liu

    2016-09-01

    Full Text Available In this study, a TiC-reinforced composite coating was produced to improve the wear resistance of a pearlite matrix grey iron using a pre-placed Ti powder by laser cladding. Results of scanning electron microscopy (SEM, X-ray diffractometer (XRD, and energy dispersive X-ray spectroscopy (EDS confirmed that the coating was composed of TiC particles and two kinds of α-Fe phase. The fine TiC particles were only a few microns in size and uniformly distributed on the matrix phase in the composite coating. The microstructure characteristic of the composite coating resulted in the microhardness rising to about 1000 HV0.3 (China GB/T 4342-1991 and the wear resistance significantly increased relative to the substrate. In addition, the fine and homogeneous solidification microstructure without graphite phase in the transition zone led to a good metallurgical bonding and transition between the coating and the substrate. It was of great significance for the cast iron to modify the surface and repair surface defects or surface damage.

  19. Longitudinal bunch profile diagnostics in the 50fs range using coherent Smith-Purcell radiation

    CERN Document Server

    Delerue, Nicolas; Maclean, Ewen; Reichold, Armin

    2009-01-01

    We have considered the possibility of using coherent Smith-Purcell radiation for the single-shot determination of the longitudinal profile of 50 fs (FWHM) long electron bunches. This length is typical for the bunches currently produced by Laser Wakefield Acceleration and is at the limit of what is achievable by alternative techniques, such as Electro-Optic sampling. It is concluded that there are no obstacles, either theoretical or experimental, in the implementation of this technique. A set of three gratings, with periods of 15, 85 and 500 micrometres, will produce detectable energy in the wavelength region 10-1000 micrometres, which should be adequate for the reconstruction of the bunch shape by the Kramers-Kronig technique. For bunch charges of 109 electrons, or more, the radiated energy can be detected by room temperature pyroelectric detectors. The limits of possible extension of the technique to even shorter lengths are also considered.

  20. Generation of 9.5 fs pulse by use of chirped mirrors in Ti: sapphire laser cavity%钛宝石激光器9.5fs脉冲输出中的啁啾镜色散补偿

    Institute of Scientific and Technical Information of China (English)

    王胭脂; 柴路; 王清月; 邵建达; 董洪成; 晋云霞; 贺洪波; 易葵; 范正修; 宋有建; 胡明列

    2011-01-01

    根据钛宝石激光器的要求,实验设计了中心波长800 nm带宽200 nm的啁啾镜,在700-900 nm波长范围内提供约-60 fs2群延迟色散(group delay dispersion,GDD).采用双射频离子束溅射方法进行制备,用实验室搭建的白光干涉仪进行色散性能测试,从测试结果可以看出,制备的啁啾镜的性能和设计值符合得比较好.制备得到的非成对啁啾镜在钛宝石激光谐振腔中进行色散补偿,锁模后分别获得了12fs和9.5 fs的激光脉冲输出.这是目前报道的使用国产啁啾镜获得的最短的飞秒激光脉冲输出.%According to the requirement of Ti: sapphire laser, the optimized chirped mirrors (CM) are designed to provide group delay dispersion (GDD) of around - 60 fs2 with bandwidth 200 nm at a center wavelength of 800 nm. The CMs are manufactured by time controlled ion beam sputtering. The GDD is determined by using a home-built white light interferometer. The measurement results show that the manufactured CM can meat our requirement. By balancing the intra-cavity dispersion with our manufactured chirped mirrors, 12 fs and 9.5 fs pulses have been obtained respecitively.

  1. APPLICATION OF LASER ADDITIVE MANUFACTURING TO PRODUCE DIES FOR ALUMINIUM HIGH PRESSURE DIE-CASTING#

    Directory of Open Access Journals (Sweden)

    M.F.V.T. Pereira

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: A number of laser additive manufacturing (LAM technologies can produce fully-dense metal components that potentially offer opportunities to apply the technology in die or mould making (known as rapid tooling. From these LAM technologies, three were selected for evaluation of their suitability as die cavity inserts in the manufacture of high pressure die-casting (HPDC dies. Apart from comparing the different LAM inserts with one another, their performance was also compared with components manufactured in a standard hot work steel. In the HPDC process, the die is unique to each component to be produced. Die cavities in particular are subjected to demanding conditions, such as cyclic heating caused by the introduction of molten aluminium at over 650°C, followed by cooling in water-based die release medium at temperatures around 25°C. Besides cyclic heating, the die cavities are also exposed to pressures exceeding 1500 MPa during the injection of molten aluminium into the cavities. This application of LAM, therefore, poses extreme challenges to the technology. The results of this study confirmed that the metals used in some of the LAM technologies did indeed meet the demanding requirements of the current application, and can lead to significant time- and cost-saving during product or process developments. Based on these findings, a number of recommendations are made for users interested in the application of LAM to produce die cavities.

    AFRIKAANSE OPSOMMING: ’n Aantal laser laagvervaardigingstegnologieë (LLV tegnolgieë is in staat om volledig digte metaalkomponente te lewer, wat tot gevolg het dat hierdie tegnologie potensieel vir vormingsmatrys- of gietmatrysvervaardiging gebruik kan word (bekend as snelgereedskap. Drie van hierdie LLV tegnologieë is gekies vir evaluasie van hulle geskiktheid as gietvorminsetsels tydens die vervaardiging van gietmatryse vir hoë druk matrysgiet (HDMG. Benewens die onderlinge

  2. Application of laser-produced-plasmas to determination of carbon content in steel; Aplicacion de los plasmas generados por laser a la determinacion de carbono en aceros

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, M.; Aragon, C.; Aguilera, J. A.; Campos, J.

    1994-07-01

    This paper describes an analytical method to determine carbon content in solid and molten steel. It is based on the study of the emission spectrum from a Nd-YAG laser produced plasma. The light emitted from the plasma is focused to the entrance slit of a spectrometer and detected by an OMA III system. For every laser pulse an spectral range of 100 A are recorded. With the use of time-resolved spectroscopy a precision of 1.6 % and a detection limit of 65 ppm of carbon content in steel have been obtained. These values are similar to those of other accurate conventional techniques but using optics fiber and laser excitation it is possible to made sample calibrations in hostile environments. Also, as the analysis are made in real time changes in sample composition can be measured without stopping production processes. (Author) 26 refs.

  3. Measurement of Laser Plasma Instability (LPI) Driven Light Scattering from Plasmas Produced by Nike KrF Laser

    Science.gov (United States)

    Oh, Jaechul; Weaver, J. L.; Phillips, L.; Obenschain, S. P.; Schmitt, A. J.; Kehne, D. M.; Serlin, V.; Lehmberg, R. H.; McLean, E. A.; Manka, C. K.

    2010-11-01

    With short wavelength (248 nm), large bandwidth (1˜3 THz), and ISI beam smoothing, Nike KrF laser provides unique research opportunities and potential for direct-drive inertial confinement fusion. Previous Nike experiments observed two plasmon decay (TPD) driven signals from CH plasmas at the laser intensities above ˜2x10^15 W/cm^2 with total laser energies up to 1 kJ of ˜350 ps FWHM pulses. We have performed a further experiment with longer laser pulses (0.5˜4.0 ns FWHM) and will present combined results of the experiments focusing on light emission data in spectral ranges relevant to the Raman (SRS) and TPD instabilities. Time- or space-resolved spectral features of TPD were detected at different viewing angles and the absolute intensity calibrated spectra of thermal background were used to obtain blackbody temperatures in the plasma corona. The wave vector distribution in k-space of the participating TPD plasmons will be also discussed. These results show promise for the proposed direct-drive designs.

  4. Reinforced SiC/Al composite layer produced by laser particle injection

    NARCIS (Netherlands)

    Vreeling, J.A.; Ocelik, V.; Pei, Y.T.; de Hosson, J.T.M.; Brebbia, CA; Kenny, JM

    1999-01-01

    SiC particles with a mean size of 80 mu m were injected into Al substrate:by the laser particle injection process with the aim to improve the surface properties of aluminium. Experimental difficulties induced by the big difference in absorptivity of laser energy between Al and SiC lead to an extreme

  5. Characterisation of a metal matrix composite produced with laser particle injection

    NARCIS (Netherlands)

    Kloosterman, AB; De Hosson, JTM; Sudarshan, TS; Jeandin, M; Khor, KA

    1998-01-01

    This paper concentrates on the laser particle injection process. TiC, TiN end SiC particles were injected into Ti-6Al-4V, which resulted in the formation of a metal matrix composite with modest dissolution of the added particles. The laser tracks with SIC exhibited a diversity of microstructures

  6. Characterisation of a metal matrix composite produced with laser particle injection

    NARCIS (Netherlands)

    Kloosterman, AB; De Hosson, JTM; Sudarshan, TS; Jeandin, M; Khor, KA

    1998-01-01

    This paper concentrates on the laser particle injection process. TiC, TiN end SiC particles were injected into Ti-6Al-4V, which resulted in the formation of a metal matrix composite with modest dissolution of the added particles. The laser tracks with SIC exhibited a diversity of microstructures wit

  7. Surface morphology of thin lysozyme films produced by matrix-assisted pulsed laser evaporation (MAPLE)

    DEFF Research Database (Denmark)

    Purice, Andreea; Schou, Jørgen; Pryds, Nini;

    2007-01-01

    Thin films of the protein, lysozyme, have been deposited by the matrix-assisted pulsed laser evaporation (MAPLE) technique. Frozen targets of 0.3-1.0 wt.% lysozyme dissolved in ultrapure water were irradiated by laser light at 355 mn with a fluence of 2 J/cm(2). The surface quality of the thin ly...

  8. Evolution analysis of EUV radiation from laser-produced tin plasmas based on a radiation hydrodynamics model

    Science.gov (United States)

    Su, M. G.; Min, Q.; Cao, S. Q.; Sun, D. X.; Hayden, P.; O’Sullivan, G.; Dong, C. Z.

    2017-01-01

    One of fundamental aims of extreme ultraviolet (EUV) lithography is to maximize brightness or conversion efficiency of laser energy to radiation at specific wavelengths from laser produced plasmas (LPPs) of specific elements for matching to available multilayer optical systems. Tin LPPs have been chosen for operation at a wavelength of 13.5 nm. For an investigation of EUV radiation of laser-produced tin plasmas, it is crucial to study the related atomic processes and their evolution so as to reliably predict the optimum plasma and experimental conditions. Here, we present a simplified radiation hydrodynamic model based on the fluid dynamic equations and the radiative transfer equation to rapidly investigate the evolution of radiation properties and dynamics in laser-produced tin plasmas. The self-absorption features of EUV spectra measured at an angle of 45° to the direction of plasma expansion have been successfully simulated and explained, and the evolution of some parameters, such as the plasma temperature, ion distribution and density, expansion size and velocity, have also been evaluated. Our results should be useful for further understanding of current research on extreme ultraviolet and soft X-ray source development for applications such as lithography, metrology and biological imaging. PMID:28332621

  9. Soft-x-ray imaging from an ultrashort-pulse laser-produced plasma using a multilayer coated optic

    Science.gov (United States)

    Norby, J. R.; van Woerkom, L. D.

    1996-02-01

    Measurements are presented of soft-x-ray images from a plasma produced by a high-intensity ultrashort-pulse laser. For the intensity range of 1015-1016 W / cm2 the soft-x-ray source appears to follow the spatial profile of the driving laser. A curved multilayer coated optic is used to collect 13.5-nm light and form a magnified image of the plasma. Knife-edge scans have been performed in the image plane and show a geometrically limited spot size of 280 mu m.

  10. Diagnostics of Carbon Nanotube Formation in a Laser Produced Plume: An Investigation of the Metal Catalyst by Laser Ablation Atomic Fluorescence Spectroscopy

    Science.gov (United States)

    deBoer, Gary; Scott, Carl

    2003-01-01

    Carbon nanotubes, elongated molecular tubes with diameters of nanometers and lengths in microns, hold great promise for material science. Hopes for super strong light-weight material to be used in spacecraft design is the driving force behind nanotube work at JSC. The molecular nature of these materials requires the appropriate tools for investigation of their structure, properties, and formation. The mechanism of nanotube formation is of particular interest because it may hold keys to controlling the formation of different types of nanotubes and allow them to be produced in much greater quantities at less cost than is currently available. This summer's work involved the interpretation of data taken last summer and analyzed over the academic year. The work involved diagnostic studies of carbon nanotube formation processes occurring in a laser-produced plume. Laser ablation of metal doped graphite to produce a plasma plume in which carbon nanotubes self assemble is one method of making carbon nanotube. The laser ablation method is amenable to applying the techniques of laser spectroscopy, a powerful tool for probing the energies and dynamics of atomic and molecular species. The experimental work performed last summer involved probing one of the metal catalysts, nickel, by laser induced fluorescence. The nickel atom was studied as a function of oven temperature, probe laser wavelength, time after ablation, and position in the laser produced plume. This data along with previously obtained data on carbon was analyzed over the academic year. Interpretations of the data were developed this summer along with discussions of future work. The temperature of the oven in which the target is ablated greatly influences the amount of material ablated and the propagation of the plume. The ablation conditions and the time scale of atomic and molecular lifetimes suggest that initial ablation of the metal doped carbon target results in atomic and small molecular species. The metal

  11. Selective laser melting-produced porous titanium scaffolds regenerate bone in critical size cortical bone defects.

    Science.gov (United States)

    Van der Stok, Johan; Van der Jagt, Olav P; Amin Yavari, Saber; De Haas, Mirthe F P; Waarsing, Jan H; Jahr, Holger; Van Lieshout, Esther M M; Patka, Peter; Verhaar, Jan A N; Zadpoor, Amir A; Weinans, Harrie

    2013-05-01

    Porous titanium scaffolds have good mechanical properties that make them an interesting bone substitute material for large bone defects. These scaffolds can be produced with selective laser melting, which has the advantage of tailoring the structure's architecture. Reducing the strut size reduces the stiffness of the structure and may have a positive effect on bone formation. Two scaffolds with struts of 120-µm (titanium-120) or 230-µm (titanium-230) were studied in a load-bearing critical femoral bone defect in rats. The defect was stabilized with an internal plate and treated with titanium-120, titanium-230, or left empty. In vivo micro-CT scans at 4, 8, and 12 weeks showed more bone in the defects treated with scaffolds. Finally, 18.4 ± 7.1 mm(3) (titanium-120, p = 0.015) and 18.7 ± 8.0 mm(3) (titanium-230, p = 0.012) of bone was formed in those defects, significantly more than in the empty defects (5.8 ± 5.1 mm(3) ). Bending tests on the excised femurs after 12 weeks showed that the fusion strength reached 62% (titanium-120) and 45% (titanium-230) of the intact contralateral femurs, but there was no significant difference between the two scaffolds. This study showed that in addition to adequate mechanical support, porous titanium scaffolds facilitate bone formation, which results in high mechanical integrity of the treated large bone defects.

  12. Direct structuring of solids by EUV radiation from a table-top laser produced plasma source

    Science.gov (United States)

    Barkusky, Frank; Bayer, Armin; Peth, Christian; Mann, Klaus

    2009-05-01

    In recent years, technological developments in the area of extreme ultraviolet lithography (EUVL) have experienced great improvements. Currently, the application of EUV radiation apart from microlithography comes more and more into focus. Main goal of our research is to utilize the unique interaction between soft x-ray radiation and matter for probing, modifying, and structuring solid surfaces. In this contribution we present a setup capable of generating and focusing EUV radiation. It consists of a table-top laser-produced plasma source. In order to obtain a small focal spot resulting in high EUV fluence, a modified Schwarzschild objective consisting of two spherical mirrors with Mo/Si multilayer coatings is adapted to this source, simultaneously blocking unwanted out-of-band radiation. By demagnified (10x) imaging of the plasma an EUV spot of 5 μm diameter with a maximum energy density of ~0.72 J/cm² is generated (pulse length 8.8 ns). We present first applications of this integrated source and optics system, demonstrating its potential for high-resolution modification and structuring of solid surfaces. As an example, etch rates for PMMA, PC and PTFE depending on EUV fluences were determined, indicating a linear etch behavior for lower energy densities. In order to investigate changes of the chemical composition of PMMA induced by EUV radiation we present FTIR and NEXAFS measurements on irradiated samples. The latter were performed using the laboratory source tuned to the XUV spectral range around the carbon K-edge (λ ~ 4.4 nm) and a flat-field spectrometer. For showing the potential of this setup, first damage tests were performed on grazing incidence gold mirrors. For these thin Gold films, threshold energy densities could be determined, scaling linear with the film thickness.

  13. Turbulent Dynamo Amplification of Magnetic Fields in Laser-Produced Plasmas

    Science.gov (United States)

    Tzeferacos, Petros

    2016-10-01

    Magnetic fields are ubiquitous in the Universe, as revealed by diffuse radio-synchrotron emission and Faraday rotation observations, with strengths from a few nG to tens of μG. The energy density of these fields is typically comparable to the energy density of the fluid motions of the plasma in which they are embedded, making magnetic fields essential players in the dynamics of the luminous matter in the Universe. The standard model for the origin of these intergalactic magnetic fields is through the amplification of seed fields via turbulent dynamo to the level consistent with current observations. We have conceived and conducted a series of experiments using high-power laser facilities to study the amplification of magnetic fields via turbulence. In these experiments, we characterize the properties of the fluid and the magnetic field turbulence using a comprehensive suite of plasma and magnetic field diagnostics. We describe the large-scale 3D simulations we performed with the radiation-MHD code FLASH on ANL's Mira to help design and interpret the experiments. We then discuss the results of the experiments, which indicate magnetic Reynolds numbers above the expected dynamo threshold are achieved and seed magnetic fields produced by the Biermann battery mechanism are amplified by turbulent dynamo. We relate our findings to processes occurring in galaxy clusters. We acknowledge funding and resources from the ERC (FP7/2007-2013, no. 256973 and 247039), and the U.S. DOE, Contract No. B591485 to LLNL, FWP 57789 to ANL, Grant No. DE-NA0002724 to the University of Chicago, and contract DE-AC02-06CH11357 to ALCF at ANL.

  14. Long all-active monolithic mode-locked lasers with surface-etched bragg gratings

    OpenAIRE

    Larsson, David; Yvind, Kresten; Hvam, Jørn Märcher

    2007-01-01

    We have fabricated 4.4-mm-long monolithic InAlGaAsP–InP mode-locked lasers with integrated deeply surface etched distributed Bragg reflector (DBR) mirrors. The lasers produce 3.7-ps transform-limited Gaussian pulses with 10-mW average output power and 250-fs absolute timing jitter. The performance of the DBR lasers is compared to the performance of Fabry–PÉrot mode-locked lasers from the same wafer and to the performance of earlier reported long monolithic DBR mode-locked lasers and is found ...

  15. Long all-active monolithic mode-locked lasers with surface-etched bragg gratings

    DEFF Research Database (Denmark)

    Larsson, David; Yvind, Kresten; Hvam, Jørn Märcher

    2007-01-01

    We have fabricated 4.4-mm-long monolithic InAlGaAsP–InP mode-locked lasers with integrated deeply surface etched distributed Bragg reflector (DBR) mirrors. The lasers produce 3.7-ps transform-limited Gaussian pulses with 10-mW average output power and 250-fs absolute timing jitter. The performance...... of the DBR lasers is compared to the performance of Fabry–PÉrot mode-locked lasers from the same wafer and to the performance of earlier reported long monolithic DBR mode-locked lasers and is found to be better....

  16. Subpicosecond pulse generation from an all solid-state laser

    Science.gov (United States)

    Keen, S. J.; Ferguson, A. I.

    1989-11-01

    An all-solid-state (holosteric) laser source which produces subpicosecond pulses at 1.4 microns is described. The system consists of a diode laser pumped Nd:YAG laser which is frequency-modulated (FM) mode-locked and Q-switched at 1.32 microns. In continuous wave operation the laser produces pulses of 19 ps while simultaneous Q-switching and mode-locking result in 30 ps pulses being contained in a Q-switched envelope of energy 2.1 microJ. The output of the laser, when passed through a 1 km single-mode optical fiber, produces a spectrally broad Raman signal with its peak at 1.4 microns and the overall conversion efficiency at 12 percent. The pulse duration at 1.4 microns has been measured to be 280 fs. This is the first time that subpicosecond light pulses have been generated by an all-solid-state laser system.

  17. Enhanced light scattering in Si nanostructures produced by pulsed laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sberna, P. M.; Scapellato, G. G.; Boninelli, S.; Miritello, M.; Crupi, I.; Bruno, E.; Privitera, V.; Simone, F.; Mirabella, S. [MATIS IMM-CNR and Dipartimento di Fisica e Astronomia, Università di Catania, via S. Sofia 64, 95123 Catania (Italy); Piluso, N. [IMM-CNR, VIII strada 5, 95121 Catania (Italy)

    2013-11-25

    An innovative method for Si nanostructures (NS) fabrication is proposed, through nanosecond laser irradiation (λ = 532 nm) of thin Si film (120 nm) on quartz. Varying the laser energy fluences (425–1130 mJ/cm{sup 2}) distinct morphologies of Si NS appear, going from interconnected structures to isolated clusters. Film breaking occurs through a laser-induced dewetting process. Raman scattering is enhanced in all the obtained Si NS, with the largest enhancement in interconnected Si structures, pointing out an increased trapping of light due to multiple scattering. The reported method is fast, scalable and cheap, and can be applied for light management in photovoltaics.

  18. Investigation of coatings of austenitic steels produced by supersonic laser deposition

    Science.gov (United States)

    Gorunov, A. I.; Gilmutdinov, A. Kh.

    2017-02-01

    The structure and properties of stainless austenitic steel coatings obtained by the supersonic laser deposition are studied in the paper. Implantation of the powder particles into the substrate surface and simultaneous plastic deformation at partial melting improved the mechanical properties of the coatings - tensile strength limit was 650 MPa and adhesion strength was 105 MPa. It was shown that insufficient laser power leads to disruption of the deposition process stability and coating cracking. Surface temperature increase caused by laser heating above 1300 °C resulted in coating melting. The X-ray analysis showed that radiation intensifies the cold spray process and does not cause changes in the austenitic base structure.

  19. Particle acceleration by ultra-intense laser-plasma interactions

    CERN Document Server

    Nakajima, K

    2002-01-01

    The mechanism of particle acceleration by ultra-increase laser-plasma interaction is explained. Laser light can generate very high electric field by focusing with electromagnetic field matched phase with frequency. 1018 W/cm sup 2 laser light produce about 3 TV/m electric field. Many laser accelerators, which particle acceleration method satisfies phase matching particle and electric field, are proposed. In these accelerators, the Inverse Cherenkov Accelerator, Inverse FEL Accelerator and Laser-Plasma Accelerator are explained. Three laser-plasma acceleration mechanisms: Plasma Beat Wave Accelerator, Laser Wake-Field Accelerator (LWFA) and Self-Modulated LWFA, showed particle acceleration by experiments. By developing a high speed Z pinch capillary-plasma optical waveguide, 2.2 TW and 90 fs laser pulse could be propagated 2 cm at 40 mu m focusing radius in 1999. Dirac acceleration or ultra-relativistic ponderomotive acceleration mechanism can increase energy exponentially. (S.Y.)

  20. Recent Advances in Synthesis and Characterization of SWCNTs Produced by Laser Oven Process

    Science.gov (United States)

    Aepalli, Sivaram

    2004-01-01

    Results from the parametric study of the two-laser oven process indicated possible improvements with flow conditions and laser characteristics. Higher flow rates, lower operating pressures coupled with changes in flow tube material are found to improve the nanotube yields. The collected nanotube material is analyzed using a combination of characterization techniques including SEM, TEM, TGA, Raman and UV-VIS-NIR to estimate the purity of the samples. In-situ diagnostics of the laser oven process is now extended to include the surface temperature of the target material. Spectral emission from the target surface is compared with black body type emission to estimate the temperature. The surface temperature seemed to correlate well with the ablation rate as well as the quality of the SWCNTs. Recent changes in improving the production rate by rastering the target and using cw laser will be presented.

  1. Electron number density and temperature measurements in laser produced brass plasma

    Science.gov (United States)

    Shaltout, A. A.; Mostafa, N. Y.; Abdel-Aal, M. S.; Shaban, H. A.

    2010-04-01

    Laser-induced breakdown spectroscopy (LIBS) has been used for brass plasma diagnostic using a Nd:YAG laser at 1064 nm. Optimal experimental conditions were evaluated, including repetition rate, number of laser shots on sample, and laser energy. The plasma temperatures and the electron number densities were determined from the emission spectra of LIBS. Cu and Zn spectral lines were used for excitation temperature calculation using Saha-Boltzmann distribution as well as line pair ratio. It was found that, the excitation temperature calculated by using Saha-Boltzmann distribution and line pair ratio methods are not the same. The electron number density has been evaluated from the Stark broadening of Hα transition at 656.27 nm and the calculated electron number density is agreement with literature.

  2. Diamond nanospherulite: A novel material produced at carbon-water interface by pulsed-laser ablation

    Institute of Scientific and Technical Information of China (English)

    王育煌; 黄群健; 陈忠; 黄荣彬; 郑兰荪

    1997-01-01

    Formation of carbon nanoparticles with perfectly spherical.shape and diamond structure (diamond nanospherulite) by laser-ablating a variety of carbon samples in water is reported for the first time The studies reveal that molten carbon nanoparticles generated by laser ablation are quenched directly by water and end up as diamond nanospherulites,possibly due to the high pressure arising from surface tension and the high stability resulting from termination of dangling bonds with hydrogen atoms.

  3. Low temperature plasmas created by photoionization of gases with intense radiation pulses from laser-produced plasma sources

    Science.gov (United States)

    Bartnik, A.; Pisarczyk, T.; Wachulak, P.; Chodukowski, T.; Fok, T.; Wegrzyński, Ł.; Kalinowska, Z.; Fiedorowicz, H.

    2016-12-01

    A comparative study of photoionized plasmas created by soft X-ray (SXR) and extreme ultraviolet (EUV) laser plasma sources was performed. The sources, employing high or low energy laser systems, utilized double-stream Xe/He gas-puff targets irradiated with laser pulses of different parameters. The SXR/EUV beams were used for irradiation of a gas stream, injected into a vacuum chamber synchronously with the radiation pulse. Photoionized plasmas produced this way in Ne gas emitted radiation in the SXR/EUV range. The corresponding spectra were dominated by emission lines originating from singly charged ions. Significant differences between spectra obtained in different experimental conditions concern specific transitions in Ne II ions. Creation of photoionized plasmas by SXR or EUV irradiation resulted in K-shell or L-shell emissions respectively. In case of the low energy system absorption spectra were measured additionally. In case of the high energy system, the electron density measurements were performed by laser interferometry, employing a femtosecond laser system. A maximum electron density reached the value of 2·1018cm-3. For the low energy system, a detection limit was too high for the interferometric measurements, thus only an upper estimation for electron density could be made.

  4. Development of Laser-Produced Tin Plasma-Based EUV Light Source Technology for HVM EUV Lithography

    Directory of Open Access Journals (Sweden)

    Junichi Fujimoto

    2012-01-01

    Full Text Available Since 2002, we have been developing a carbon dioxide (CO2 laser-produced tin (Sn plasma (LPP extreme ultraviolet (EUV light source, which is the most promising solution because of the 13.5 nm wavelength high power (>200 W light source for high volume manufacturing. EUV lithography is used for its high efficiency, power scalability, and spatial freedom around plasma. We believe that the LPP scheme is the most feasible candidate for the EUV light source for industrial use. We have several engineering data from our test tools, which include 93% Sn ionization rate, 98% Sn debris mitigation by a magnetic field, and 68% CO2 laser energy absorption rate. The way of dispersion of Sn by prepulse laser is key to improve conversion efficiency (CE. We focus on prepulsed laser pulsed duration. When we have optimized pulse duration from nanosecond to picosecond, we have obtained maximum 4.7% CE (CO2 laser to EUV; our previous data was 3.8% at 2 mJ EUV pulse energy. Based on these data we are developing our first light source as our product: “GL200E.” The latest data and the overview of EUV light source for the industrial EUV lithography are reviewed in this paper.

  5. Optical properties of carbon nanostructures produced by laser irradiation on chemically modified multi-walled carbon nanotubes

    Science.gov (United States)

    Santiago, Enrique Vigueras; López, Susana Hernández; Camacho López, Marco A.; Contreras, Delfino Reyes; Farías-Mancilla, Rurik; Flores-Gallardo, Sergio G.; Hernández-Escobar, Claudia A.; Zaragoza-Contreras, E. Armando

    2016-10-01

    This research focused on the nanosecond (Nd: YAG-1064 nm) laser pulse effect on the optical and morphological properties of chemically modified multi-walled carbon nanotubes (MWCNT). Two suspensions of MWCNT in tetrahydrofuran (THF) were prepared, one was submitted to laser pulses for 10 min while the other (blank) was only mechanically homogenized during the same time. Following the laser irradiation, the suspension acquired a yellow-amber color, in contrast to the black translucent appearance of the blank. UV-vis spectroscopy confirmed this observation, showing the blank a higher absorption. Additionally, photoluminescence measurements exhibited a broad blue-green emission band both in the blank and irradiated suspension when excited at 369 nm, showing the blank a lower intensity. However, a modification in the excitation wavelength produced a violet to green tuning in the irradiated suspension, which did not occur in the blank. Lastly, the electron microscopy analysis of the treated nanotubes showed the abundant formation of amorphous carbon, nanocages, and nanotube unzipping, exhibiting the intense surface modification produced by the laser pulse. Nanotube surface modification and the coexistence with the new carbon nanostructures were considered as the conductive conditions for optical properties modification.

  6. A scaling model for plasma columns produced by CO2 laser-induced breakdown in a solenoidal field

    Science.gov (United States)

    Ahlborn, B.; Vlases, G. C.; Pietrzyk, Z. A.

    1982-12-01

    An analytical model is derived for the plasma cylinder produced by a long pulse (approximately microsec) CO2 laser of power p(l) (watts) which is incident upon neutral hydrogen imbedded in a strong axial magnetic field. Under certain conditions the leading edge of the plasma propagates away from the laser as an optical detonation, where the leading shock front fully ionizes the background gas, and the inverse bremsstrahlung absorption zone immediately behind it is equivalent to the chemical energy release zone in an ordinary detonation. The front velocity is V(od) = (3E(i)/m) to the 1/2 power, where E(i) is the ionization (and dissociation) energy. This velocity is in agreement with experiments and with certain stability considerations. Radial expansion takes place immediately behind the detonation front and reduces the density to about 1/3 of the initial filling gas density. Far behind the leading edge, the laser-produced plasma acquires an equilibrium radius and steady pressure, density, and temperature determined by a balance between laser energy absorption and conduction and radiation losses. The density profile maintains a shallow minimum on axis.

  7. Time and space correlated investigations of confinement effects due to static axial magnetic fields acting on laser produced carbon plasmas

    Science.gov (United States)

    Favre, Mario; Wyndham, Edmund; Veloso, Felipe; Bhuyan, Heman; Reyes, Sebastian; Ruiz, Hugo Marcelo; Caballero-Bendixsen, Luis Sebastian

    2016-10-01

    We present further detailed studies of the dynamics and plasma properties of a laser produced Carbon plasma expanding in a static axial magnetic field. The laser plasmas are produced in vacuum, 1 .10-6 Torr, using a graphite target, with a Nd:YAG laser, 3.5 ns, 340 mJ at 1.06 μm, focused at 2 .109 W/cm2, and propagate in static magnetic fields of maximum value 0.2 T. 15 ns time and spaced resolved OES is used to investigate plasma composition. 50 ns time resolved plasma imaging is used to visualize the plasma dynamics. A mm size B-dot probe is used, in combination with a Faraday cup, to characterize the interaction between the expanding plasma and the magnetic field. As a result of time and space correlated measurements, unique features of the laser plasma dynamics in the presence of the magnetic field are identified, which highlight the confinement effects of the static magnetic field Funded by project FONDECYT 1141119.

  8. Inverse Calibration Free fs-LIBS of Copper-Based Alloys

    Science.gov (United States)

    Smaldone, Antonella; De Bonis, Angela; Galasso, Agostino; Guarnaccio, Ambra; Santagata, Antonio; Teghil, Roberto

    2016-09-01

    In this work the analysis by Laser Induced Breakdown Spectroscopy (LIBS) technique of copper-based alloys having different composition and performed with fs laser pulses is presented. A Nd:Glass laser (Twinkle Light Conversion, λ = 527 nm at 250 fs) and a set of bronze and brass certified standards were used. The inverse Calibration-Free method (inverse CF-LIBS) was applied for estimating the temperature of the fs laser induced plasma in order to achieve quantitative elemental analysis of such materials. This approach strengthens the hypothesis that, through the assessment of the plasma temperature occurring in fs-LIBS, straightforward and reliable analytical data can be provided. With this aim the capability of the here adopted inverse CF-LIBS method, which is based on the fulfilment of the Local Thermodynamic Equilibrium (LTE) condition, for an indirect determination of the species excitation temperature, is shown. It is reported that the estimated temperatures occurring during the process provide a good figure of merit between the certified and the experimentally determined composition of the bronze and brass materials, here employed, although further correction procedure, like the use of calibration curves, can be demanded. The reported results demonstrate that the inverse CF-LIBS method can be applied when fs laser pulses are used even though the plasma properties could be affected by the matrix effects restricting its full employment to unknown samples provided that a certified standard having similar composition is available.

  9. Ultrafast, ultrahigh-peak power Ti:sapphire laser system

    Energy Technology Data Exchange (ETDEWEB)

    Yamakawa, Koichi; Aoyama, Makoto; Matsuoka, Shinichi; Akahane, Yutaka; Kase, Teiji; Nakano, Fumihiko; Sagisaka, Akito [Advanced Photon Research Center, Kansai Research Establishment, Japan Atomic Energy Research Inst., Kizu, Kyoto (Japan)

    2001-01-01

    We review progress in the generation of multiterawatt optical pulses in the 10-fs range. We describe a design, performance and characterization of a Ti:sapphire laser system based on chirped-pulse amplification, which has produced a peak power in excess of 100-TW with sub-20-fs pulse durations and an average power of 19-W at a 10-Hz repetition rate. We also discuss extension of this system to the petawatt power level and potential applications in the relativistic, ultrahigh intensity regimes. (author)

  10. Phase contrast imaging using Betatron x-ray beams produced by a 100 TW high intensity laser system

    Science.gov (United States)

    Fourmaux, Sylvain; Corde, Sebastien; Ta Phuoc, Kim; Lassonde, Philippe; Martin, Francois; Malka, Victor; Rousse, Antoine; Kieffer, Jean

    2011-10-01

    Development of x-ray phase contrast imaging applications with a laboratory scale source have been limited by the long exposure time needed to obtain one image. We demonstrate, using the Betatron x-ray radiation produced when electrons are accelerated and wiggled in the laser-wakefield cavity, the potential of Betatron x-ray radiation for femtosecond phase contrast imaging. We characterize the x-ray source using a knife edge technique and nylon wires for calibration. We then show that high-quality phase contrast images of complex objects located in air, can be obtained with only a single laser shot. The Betatron x-ray source used in this demonstration experiment has a source diameter of 1.7 microns and produces a synchrotron spectrum with critical energy Ec = 12 . 3 + / - 2 . 5 keV and 109 photons per shot in the whole spectrum.

  11. Dimensional Accuracy and Surface Roughness Analysis for AlSi10Mg Produced by Selective Laser Melting (SLM

    Directory of Open Access Journals (Sweden)

    Kamarudin K.

    2016-01-01

    Full Text Available Selective Laser Melting (SLM is an Additive Manufacturing (AM technique that built 3D part in a layer-by-layer method by melting the top surface layer of a powder bed with a high intensity laser according to sliced 3D CAD data. AlSi10Mg alloy is a traditional cast alloy that is broadly used for die-casting process and used in automotive industry due its good mechanical properties. This paper seeks to investigate the requirement SLM in rapid tooling application. The feasibility study is done by examining the surface roughness and dimensional accuracy as compared to the benchmark part produced through the SLM process with constant parameters. The benchmark produced by SLM shows the potential of SLM in a manufacturing application particularly in moulds.

  12. Spectroscopy of laser-produced plasmas: Setting up of high-performance laser-induced breakdown spectroscopy system

    Indian Academy of Sciences (India)

    V K Unnikrishnan; Kamlesh Alti; Rajesh Nayak; Rodney Bernard; V B Kartha; C Santhosh; G P Gupta; B M Suri

    2010-12-01

    It is a well-known fact that laser-induced breakdown spectroscopy (LIBS) has emerged as one of the best analytical techniques for multi-elemental compositional analysis of samples. We report assembling and optimization of LIBS set up using high resolution and broad-range echelle spectrograph coupled to an intensified charge coupled device (ICCD) to detect and quantify trace elements in environmental and clinical samples. Effects of variations of experimental parameters on spectroscopy signals of copper and brass are reported. Preliminary results of some plasma diagnostic calculations using recorded time-resolved optical emission signals are also reported for brass samples.

  13. Self-similar solution of laser-produced plasma expansion into vacuum with kappa-distributed electrons

    Directory of Open Access Journals (Sweden)

    Bennaceur-Doumaz Djamila

    2016-06-01

    Full Text Available The expansion of semi-infinite laser produced plasma into vacuum is analyzed with a hydrodynamic model for cold ions assuming electrons modeled by a kappa-type distribution. Self-similar analytic expressions for the potential, velocity, and density of the plasma have been derived. It is shown that nonthermal energetic electrons have the role of accelerating the self-similar expansion.

  14. A nucleation and growth model of silicon nanoparticles produced by pulsed laser deposition via Monte Carlo simulation

    Science.gov (United States)

    Wang, Yinglong; Qin, Aili; Chu, Lizhi; Deng, Zechao; Ding, Xuecheng; Guan, Li

    2017-02-01

    We simulated the nucleation and growth of Si nanoparticles produced by pulse laser deposition using Monte Carlo method at the molecular (microscopic) level. In the model, the mechanism and thermodynamic conditions of nucleation and growth of Si nanoparticles were described. In a real physical scale of target-substrate configuration, the model was used to analyze the average size distribution of Si nanoparticles in argon ambient gas and the calculated results are in agreement with the experimental results.

  15. Shack-Hartmann Electron Densitometer (SHED): An Optical System for Diagnosing Free Electron Density in Laser-Produced Plasmas

    Science.gov (United States)

    2016-11-01

    the free electron density in USPL-created plasmas are limited in the number of space-time dimensions that can be measured simultaneously. One...profile, and c) parabolic density profile 2.1 Cylindrical Geometry This geometry is a first -order approximation of that created in the...Free Electron Density in Laser-Produced Plasmas by Anthony R Valenzuela Approved for public release; distribution is

  16. External injection and acceleration of electron bunch in front of the plasma wakefield produced by a periodic chirped laser pulse

    Science.gov (United States)

    Eslami, Esmaeil; Afhami, Saeedeh

    2017-01-01

    Herein, we present the analytical results on the behavior of the electron bunch injected in front of the plasma wakefield produced by a chirped laser pulse. In particular, a periodic chirped pulse may produce an ultra-relativistic electron bunch with a relatively small energy spread. The electrons are trapped near the region of the first accelerating maximum of the wakefield and are compressed in both the longitudinal and transverse directions (betatron oscillation). Our results are in good agreement with the one-dimensional results recently published.

  17. Dry wear behaviors of wear resistant composite coatings produced by laser cladding

    Institute of Scientific and Technical Information of China (English)

    Jiang Xu; Wenjin Liu; Minlin Zhong

    2004-01-01

    Using different proportional mixtures of Ni-coated MoS2, TiC and pure Ni powders, new typical wear resistant and selflubricant coatings were formed on low carbon steel by laser cladding process. The microstructures and phase composition of the composite coatings were studied by SEM and XRD. The typical microstructure of the composite coating is composed of multisulfide phases including binary element sulfide and ternary element sulfide, γ-Ni, TiC and Mo2C. Wear tests were carried out using an FALEX-6 type pin-on-disc machine. The friction coefficient and mass loss of three kinds of MoS2/TiC/Ni laser clad coatings are lower than those of quenched 45 steel, and the worn surfaces of the laser cladding coatings are very smooth. Because of high hardness combined with low friction, the laser cladding composite coating with a mixture of 70% Ni-coated MoS2, 20%TiC and 10%pure Ni powder presents better wear behaviors than the composite coating with other powder blends. The composition analysis of the worn surface of GCr15 bearing steel shows that the transferred film from the laser cladding coating to the opposite surface of GCr15beating steel contains an amount of sulfide, which can change the micro-friction mechanism and lead to a reduced friction coefficient.

  18. Hydrodynamic determinants of cell necrosis and molecular delivery produced by pulsed laser microbeam irradiation of adherent cells.

    Science.gov (United States)

    Compton, Jonathan L; Hellman, Amy N; Venugopalan, Vasan

    2013-11-05

    Time-resolved imaging, fluorescence microscopy, and hydrodynamic modeling were used to examine cell lysis and molecular delivery produced by picosecond and nanosecond pulsed laser microbeam irradiation in adherent cell cultures. Pulsed laser microbeam radiation at λ = 532 nm was delivered to confluent monolayers of PtK2 cells via a 40×, 0.8 NA microscope objective. Using laser microbeam pulse durations of 180-1100 ps and pulse energies of 0.5-10.5 μJ, we examined the resulting plasma formation and cavitation bubble dynamics that lead to laser-induced cell lysis, necrosis, and molecular delivery. The cavitation bubble dynamics are imaged at times of 0.5 ns to 50 μs after the pulsed laser microbeam irradiation, and fluorescence assays assess the resulting cell viability and molecular delivery of 3 kDa dextran molecules. Reductions in both the threshold laser microbeam pulse energy for plasma formation and the cavitation bubble energy are observed with decreasing pulse duration. These energy reductions provide for increased precision of laser-based cellular manipulation including cell lysis, cell necrosis, and molecular delivery. Hydrodynamic analysis reveals critical values for the shear-stress impulse generated by the cavitation bubble dynamics governs the location and spatial extent of cell necrosis and molecular delivery independent of pulse duration and pulse energy. Specifically, cellular exposure to a shear-stress impulse J≳0.1 Pa s ensures cell lysis or necrosis, whereas exposures in the range of 0.035≲J≲0.1 Pa s preserve cell viability while also enabling molecular delivery of 3 kDa dextran. Exposure to shear-stress impulses of J≲0.035 Pa s leaves the cells unaffected. Hydrodynamic analysis of these data, combined with data from studies of 6 ns microbeam irradiation, demonstrates the primacy of shear-stress impulse in determining cellular outcome resulting from pulsed laser microbeam irradiation spanning a nearly two-orders-of-magnitude range of

  19. Stability of contamination-free gold and silver nanoparticles produced by nanosecond laser ablation of solid targets in water

    Energy Technology Data Exchange (ETDEWEB)

    Nikov, R.G., E-mail: rosen_nikov@abv.bg [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko shousse 72, Sofia 1784 (Bulgaria); Nikolov, A.S.; Nedyalkov, N.N. [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko shousse 72, Sofia 1784 (Bulgaria); Dimitrov, I.G. [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko shousse 72, Sofia 1784 (Bulgaria); Institute of Experimental Pathology and Parasitology, Bulgarian Academy of Sciences, G. Bonchev Street, bl. 25, Sofia 1113 (Bulgaria); Atanasov, P.A. [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko shousse 72, Sofia 1784 (Bulgaria); Alexandrov, M.T. [Institute of Experimental Pathology and Parasitology, Bulgarian Academy of Sciences, G. Bonchev Street, bl. 25, Sofia 1113 (Bulgaria)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Au and Ag colloids were prepared by nanosecond laser ablation of solids in water. Black-Right-Pointing-Pointer The alteration of the produced colloids during one month was investigated. Black-Right-Pointing-Pointer Optical transmission spectra of the samples were measured from 350 to 800 nm. Black-Right-Pointing-Pointer TEM measurements were made of as-prepared colloids and on the 30-th day. Black-Right-Pointing-Pointer Zeta potential measurements were performed of as-prepared samples. - Abstract: Preparation of noble metal nanoparticle (NPs) colloids using pulsed laser ablation in water has an inherent advantage compared to the different chemical methods used, especially when biological applications of the colloids are considered. The fabrication method is simple and the NPs prepared in this way are contamination free. The method of laser ablation of a solid target in water is applied in the present work in order to obtain gold and silver NP colloids. The experiment was preformed by using the fundamental wavelength (1064 nm) of a Nd:YAG laser system. The target immersed in double distilled water was irradiated for 20 min by laser pulses with duration of 15 ns and repetition rate of 10 Hz. The sedimentation and aggregation of NPs in the colloids, stored at constant temperature, as a function of the time after preparation were investigated. The analyses are based on optical transmission spectroscopy in UV and vis regions. The change of the plasmon resonance wavelength as a function of time was studied. Zeta potential measurement was also utilized to measure the charge of the NPs in the colloids. The size distribution of the NPs and its change in time was determined by transmission electron microscopy (TEM). On the basis of the results obtained, the optimal conditions of post fabrication manipulation with gold and silver colloids are defined in view of producing stable NPs with a narrow size distribution.

  20. Isochoric heating of reduced mass targets by ultra-intense laser produced relativistic electrons

    Energy Technology Data Exchange (ETDEWEB)

    Neumayer, P; Lee, H J; Offerman, D; Shipton, E; Kemp, A; Kritcher, A L; Doppner, T; Back, C A; Glenzer, S H

    2009-02-04

    We present measurements of the chlorine K-alpha emission from reduced mass targets, irradiated with ultra-high intensity laser pulses. Chlorinated plastic targets with diameters down to 50 micrometers and mass of a few 10{sup -8} g were irradiated with up to 7 J of laser energy focused to intensities of several 10{sup 19} W/cm{sup 2}. The conversion of laser energy to K-alpha radiation is measured, as well as high resolution spectra that allow observation of line shifts, indicating isochoric heating of the target up to 18 eV. A zero-dimensional 2-temperature equilibration model, combined with electron impact K-shell ionization and post processed spectra from collisional radiative calculations reproduces the observed K-alpha yields and line shifts, and shows the importance of target expansion due to the hot electron pressure.