WorldWideScience

Sample records for frontal cortical atrophy

  1. Significance of frontal cortical atrophy in Parkinson's disease: computed tomographic study

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Sang; Suh, Jung Ho; Chung, Tae Sub; Kim, Dong Ik [College of Medicine, Yonsei University, Seoul (Korea, Republic of)

    1987-10-15

    Fifty-five patients with Parkinson's disease were evaluated clinically and with brain computed tomography (CT) in order to determine the incidence of frontal cortical and subcortical atrophy. Twenty cases of age-related healthy control group were also scanned. The CT criteria of frontal cortical atrophy that was used in this study were the maximum width of frontal hemispheric cortical sulci and width of anterior interhemispheric fissure between frontal lobes comparing with maximum width of hemispheric cortical sulci except frontal lobes. And the criteria of frontal subcortical atrophy were bifrontal index bicaudate index, and Evans index. The results are as follows: 1. Cortical atrophic changes in Parkinson's disease were more prominent in frontal lobe rather than other causes of cortical atrophy. 2. Frontal cortical and subcortical atrophic changes were also more prominent in Parkinson's disease rather than age-related control group. 3. Subcortical atrophic changes in frontal lobe were always associated with cortical atrophic changes. 4. Changes of basal ganglia were hardly seen in Parkinson's disease. 5. Cortical atrophic changes in frontal lobe must be the one of significant findings in Parkinson's disease.

  2. Significance of frontal cortical atrophy in Parkinson's disease: computed tomographic study

    International Nuclear Information System (INIS)

    Lee, Kyung Sang; Suh, Jung Ho; Chung, Tae Sub; Kim, Dong Ik

    1987-01-01

    Fifty-five patients with Parkinson's disease were evaluated clinically and with brain computed tomography (CT) in order to determine the incidence of frontal cortical and subcortical atrophy. Twenty cases of age-related healthy control group were also scanned. The CT criteria of frontal cortical atrophy that was used in this study were the maximum width of frontal hemispheric cortical sulci and width of anterior interhemispheric fissure between frontal lobes comparing with maximum width of hemispheric cortical sulci except frontal lobes. And the criteria of frontal subcortical atrophy were bifrontal index bicaudate index, and Evans index. The results are as follows: 1. Cortical atrophic changes in Parkinson's disease were more prominent in frontal lobe rather than other causes of cortical atrophy. 2. Frontal cortical and subcortical atrophic changes were also more prominent in Parkinson's disease rather than age-related control group. 3. Subcortical atrophic changes in frontal lobe were always associated with cortical atrophic changes. 4. Changes of basal ganglia were hardly seen in Parkinson's disease. 5. Cortical atrophic changes in frontal lobe must be the one of significant findings in Parkinson's disease

  3. Frontal lobe atrophy in motor neuron diseases.

    Science.gov (United States)

    Kiernan, J A; Hudson, A J

    1994-08-01

    Neuronal degeneration in the precentral gyrus alone cannot account for the occurrence of spastic paresis in motor neuron diseases. To look for more extensive cortical atrophy we measured MRIs of the upper parts of the frontal and parietal lobes in 11 sporadic cases of classical amyotrophic lateral sclerosis (ALS), eight patients with primary lateral sclerosis (PLS) and an age- and sex-matched group of 49 neurologically normal people. None of the patients had overt dementia or other mental diseases. In PLS there is progressive spastic paresis but in contrast to ALS there is no lower motor neuron degeneration. The surface area of the precentral gyri and the amount of underlying white matter in PLS were consistently approximately 75% of the normal size. By contrast, there was some shrinkage of the precentral gyri in some of the ALS patients but the mean measurements for the group did not differ significantly from the controls. Anterior to the precentral sulci, the cortical surface area in PLS was approximately 85% of that of the controls, with correspondingly reduced white matter. In ALS the cortical surface areas of the anterior frontal lobes did not differ from those of the controls, but the amount of underlying white matter was reduced almost as much in ALS as it was in PLS. The measured changes in the frontal lobes suggest that in PLS there is simultaneous atrophy of the primary, premotor and supplementary motor areas of the cortex, with consequent degeneration of corticospinal and corticoreticular axons descending through the underlying white matter. These changes could account for the progressive upper motor neuron syndrome. In ALS, with no significant frontal cortical atrophy, the shrinkage of the white matter may be due to degeneration of axons projecting to the frontal cortex from elsewhere. Deprivation of afferents could explain the diminution of motor functions of the frontal lobes in ALS and also the changes in word fluency, judgement and attention that

  4. Cisternography contribution in the cortical atrophy diagnosis

    International Nuclear Information System (INIS)

    Calegaro, J.U.M.; Balallai, N.; Suzuki, K.

    1975-01-01

    A 37 years-old woman suffered a car accident. On admission to hospital she presented: torpor, the right pupil greater than the left, both reacting to light, and left hemiparesis with homologous Babinski reflex. She was submitted to carotid arteriogram an air-contrast study without significant findings. Eletroencephalographic examination showed diffuse parenquimatous involvement of left cerebral hemisphery. Scinticisternography demonstrated delayed reabsorption of the radioactive tracer in both frontal areas. A subsequent trepanation made the diagnosis of cortical atrophy in the areas mentioned above. This case shows aditional information concerning anatomic detail provided by isotope cisternography, that eventually can't be detected by air-contrast study [pt

  5. Cisternography contribution in the cortical atrophy diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Calegaro, J U.M. [Centro de Analises Clinicas e Medicina Nuclear, Londrina (Brazil); Balallai, N; Suzuki, K [Instituto de Neurologia e Neurocirurgia, Londrina (Brazil)

    1975-01-01

    A 37 years-old woman suffered a car accident. On admission to hospital she presented: torpor, the right pupil greater than the left, both reacting to light, and left hemiparesis with homologous Babinski reflex. She was submitted to carotid arteriogram an air-contrast study without significant findings. Eletroencephalographic examination showed diffuse parenquimatous involvement of left cerebral hemisphery. Scinticisternography demonstrated delayed reabsorption of the radioactive tracer in both frontal areas. A subsequent trepanation made the diagnosis of cortical atrophy in the areas mentioned above. This case shows aditional information concerning anatomic detail provided by isotope cisternography, that eventually can't be detected by air-contrast study.

  6. Frontal parenchymal atrophy measures in multiple sclerosis.

    Science.gov (United States)

    Locatelli, Laura; Zivadinov, Robert; Grop, Attilio; Zorzon, Marino

    2004-10-01

    The aim of this study was to establish whether, in a cross-sectional study, the normalized measures of whole and regional brain atrophy correlate better with tests assessing the cognitive function than the absolute brain atrophy measures. The neuropsychological performances and disability have been assessed in 39 patients with relapsing-remitting multiple sclerosis (MS). T1- and T2-lesion load (LL) of total brain and frontal lobes (FLs) were measured using a reproducible semiautomated technique. The whole brain volume and the regional brain parenchymal volume (RBPV) of FLs were obtained using a computerized interactive program, which incorporates semiautomated and automated segmentation processes. Normalized measures of brain atrophy, i.e., brain parenchymal fraction (BPF) and regional brain parenchymal fraction (RBPF) of FLs, were calculated. The scan-rescan, inter- and intrarater coefficient of variation (COV) and intraclass correlation coefficient (ICC) have been estimated. The RBPF of FLs showed an acceptable level of reproducibility which ranged from 1.7% for intrarater variability to 3.2% for scan-rescan variability. The mean ICC was 0.88 (CI 0.82-0.93). The RBPF of FLs demonstrated stronger magnitudes of correlation with neuropsychological functioning, disability and quantitative MRI lesion measures than RBPV. These differences were statistically significant: PColor Word Interference test, Pcognitive functions, whereas BPAV did not. The correlation analysis results were supported by the results of multiple regression analysis which showed that only the normalized brain atrophy measures were associated with tests exploring the cognitive functions. These data suggest that RBPF is a reproducible and sensitive method for measuring frontal parenchymal atrophy. The normalized measures of whole and regional brain parenchymal atrophy should be preferred to absolute measures in future studies that correlate neuropsychological performances and brain atrophy measures

  7. Cortical volumes and atrophy rates in FTD-3 CHMP2B mutation carriers and related non-carriers

    DEFF Research Database (Denmark)

    Eskildsen, Simon F; Østergaard, Lasse R; Rodell, Anders B

    2008-01-01

    with a mean interval of 16 months and surface based cortical segmentation we measured cortical thickness and volume, and quantified atrophy rates. Cortical thickness and atrophy rates were averaged within major lobes and focal effects were determined by parametric statistical maps. The volumetric atrophy...... in the frontal and occipital lobes, and in the left temporal lobe. Results indicated that cortical thickness has a higher sensitivity for detecting small changes than whole-brain volumetric measures. Comparing mutation carriers with non-carriers revealed increased atrophy rates in mutation carriers bilaterally...

  8. Shining a light on posterior cortical atrophy.

    Science.gov (United States)

    Crutch, Sebastian J; Schott, Jonathan M; Rabinovici, Gil D; Boeve, Bradley F; Cappa, Stefano F; Dickerson, Bradford C; Dubois, Bruno; Graff-Radford, Neill R; Krolak-Salmon, Pierre; Lehmann, Manja; Mendez, Mario F; Pijnenburg, Yolande; Ryan, Natalie S; Scheltens, Philip; Shakespeare, Tim; Tang-Wai, David F; van der Flier, Wiesje M; Bain, Lisa; Carrillo, Maria C; Fox, Nick C

    2013-07-01

    Posterior cortical atrophy (PCA) is a clinicoradiologic syndrome characterized by progressive decline in visual processing skills, relatively intact memory and language in the early stages, and atrophy of posterior brain regions. Misdiagnosis of PCA is common, owing not only to its relative rarity and unusual and variable presentation, but also because patients frequently first seek the opinion of an ophthalmologist, who may note normal eye examinations by their usual tests but may not appreciate cortical brain dysfunction. Seeking to raise awareness of the disease, stimulate research, and promote collaboration, a multidisciplinary group of PCA research clinicians formed an international working party, which had its first face-to-face meeting on July 13, 2012 in Vancouver, Canada, prior to the Alzheimer's Association International Conference. Copyright © 2013 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  9. Frontal assessment battery and frontal atrophy in amyotrophic lateral sclerosis

    OpenAIRE

    Terada, Tatsuhiro; Miyata, Jun; Obi, Tomokazu; Kubota, Manabu; Yoshizumi, Miho; Yamazaki, Kinya; Mizoguchi, Kouichi; Murai, Toshiya

    2017-01-01

    Abstract Objectives To determine the potential utility of the frontal assessment battery (FAB) in assessing cognitive impairments in amyotrophic lateral sclerosis (ALS), we investigated the association between the FAB score and regional gray matter volume, and ascertained whether the regional brain alterations related to cognitive impairments occur in relatively mild stage of ALS. Materials and Methods Twenty?four ALS patients with a Mini?Mental State Examination score of >23, a normal score ...

  10. Visual Dysfunction in Posterior Cortical Atrophy

    Science.gov (United States)

    Maia da Silva, Mari N.; Millington, Rebecca S.; Bridge, Holly; James-Galton, Merle; Plant, Gordon T.

    2017-01-01

    Posterior cortical atrophy (PCA) is a syndromic diagnosis. It is characterized by progressive impairment of higher (cortical) visual function with imaging evidence of degeneration affecting the occipital, parietal, and posterior temporal lobes bilaterally. Most cases will prove to have Alzheimer pathology. The aim of this review is to summarize the development of the concept of this disorder since it was first introduced. A critical discussion of the evolving diagnostic criteria is presented and the differential diagnosis with regard to the underlying pathology is reviewed. Emphasis is given to the visual dysfunction that defines the disorder, and the classical deficits, such as simultanagnosia and visual agnosia, as well as the more recently recognized visual field defects, are reviewed, along with the evidence on their neural correlates. The latest developments on the imaging of PCA are summarized, with special attention to its role on the differential diagnosis with related conditions. PMID:28861031

  11. Visual Dysfunction in Posterior Cortical Atrophy

    Directory of Open Access Journals (Sweden)

    Mari N. Maia da Silva

    2017-08-01

    Full Text Available Posterior cortical atrophy (PCA is a syndromic diagnosis. It is characterized by progressive impairment of higher (cortical visual function with imaging evidence of degeneration affecting the occipital, parietal, and posterior temporal lobes bilaterally. Most cases will prove to have Alzheimer pathology. The aim of this review is to summarize the development of the concept of this disorder since it was first introduced. A critical discussion of the evolving diagnostic criteria is presented and the differential diagnosis with regard to the underlying pathology is reviewed. Emphasis is given to the visual dysfunction that defines the disorder, and the classical deficits, such as simultanagnosia and visual agnosia, as well as the more recently recognized visual field defects, are reviewed, along with the evidence on their neural correlates. The latest developments on the imaging of PCA are summarized, with special attention to its role on the differential diagnosis with related conditions.

  12. Abnormalities of fixation, saccade and pursuit in posterior cortical atrophy.

    Science.gov (United States)

    Shakespeare, Timothy J; Kaski, Diego; Yong, Keir X X; Paterson, Ross W; Slattery, Catherine F; Ryan, Natalie S; Schott, Jonathan M; Crutch, Sebastian J

    2015-07-01

    The clinico-neuroradiological syndrome posterior cortical atrophy is the cardinal 'visual dementia' and most common atypical Alzheimer's disease phenotype, offering insights into mechanisms underlying clinical heterogeneity, pathological propagation and basic visual phenomena (e.g. visual crowding). Given the extensive attention paid to patients' (higher order) perceptual function, it is surprising that there have been no systematic analyses of basic oculomotor function in this population. Here 20 patients with posterior cortical atrophy, 17 patients with typical Alzheimer's disease and 22 healthy controls completed tests of fixation, saccade (including fixation/target gap and overlap conditions) and smooth pursuit eye movements using an infrared pupil-tracking system. Participants underwent detailed neuropsychological and neurological examinations, with a proportion also undertaking brain imaging and analysis of molecular pathology. In contrast to informal clinical evaluations of oculomotor dysfunction frequency (previous studies: 38%, current clinical examination: 33%), detailed eyetracking investigations revealed eye movement abnormalities in 80% of patients with posterior cortical atrophy (compared to 17% typical Alzheimer's disease, 5% controls). The greatest differences between posterior cortical atrophy and typical Alzheimer's disease were seen in saccadic performance. Patients with posterior cortical atrophy made significantly shorter saccades especially for distant targets. They also exhibited a significant exacerbation of the normal gap/overlap effect, consistent with 'sticky fixation'. Time to reach saccadic targets was significantly associated with parietal and occipital cortical thickness measures. On fixation stability tasks, patients with typical Alzheimer's disease showed more square wave jerks whose frequency was associated with lower cerebellar grey matter volume, while patients with posterior cortical atrophy showed large saccadic intrusions

  13. Chronic Depressive Symptomatology in Mild Cognitive Impairment Is Associated with Frontal Atrophy Rate which Hastens Conversion to Alzheimer Dementia.

    Science.gov (United States)

    Sacuiu, Simona; Insel, Philip S; Mueller, Susanne; Tosun, Duygu; Mattsson, Niklas; Jack, Clifford R; DeCarli, Charles; Petersen, Ronald; Aisen, Paul S; Weiner, Michael W; Mackin, R Scott

    2016-02-01

    Investigate the association of chronic depressive symptomatology (chrDS) with cortical atrophy rates and conversion to Alzheimer dementia (AD) over 3 years in mild cognitive impairment (MCI). In a multicenter, clinic-based study, MCI elderly participants were selected from the Alzheimer's Disease Neuroimaging Initiative repository, based on availability of both serial structural magnetic resonance imaging and chrDS endorsed on three depression-related items from the Neuropsychiatric Inventory Questionnaire (chrDS N = 32 or no depressive symptoms N = 62) throughout follow-up. Clinical and laboratory investigations were performed every 6 months during the first 2 years and yearly thereafter (median follow-up: 3 years; interquartile range: 1.5-4.0 years). Cortical atrophy rates in 16 predefined frontotemporoparietal regions affected in major depression and AD and the rate of incident AD at follow-up. ChrDS in a single domain amnestic MCI sample were associated with accelerated cortical atrophy in the frontal lobe and anterior cingulate but not with atrophy rates in temporomedial or other AD-affected regions. During follow-up, 38 participants (42.7%) developed AD. Participants with chrDS had 60% shorter conversion time to AD than those without depressive symptoms. This association remained significant in survival models adjusted for temporomedial atrophy rates and showed the same trend in models adjusted for frontal cortical atrophy rate, which all increased the risk of AD. Our results suggest that chrDS associated with progressive atrophy of frontal regions may represent an additional risk factor for conversion to dementia in MCI as opposite to representing typical prodromal AD symptomatology. Published by Elsevier Inc.

  14. Facilitating text reading in posterior cortical atrophy.

    Science.gov (United States)

    Yong, Keir X X; Rajdev, Kishan; Shakespeare, Timothy J; Leff, Alexander P; Crutch, Sebastian J

    2015-07-28

    We report (1) the quantitative investigation of text reading in posterior cortical atrophy (PCA), and (2) the effects of 2 novel software-based reading aids that result in dramatic improvements in the reading ability of patients with PCA. Reading performance, eye movements, and fixations were assessed in patients with PCA and typical Alzheimer disease and in healthy controls (experiment 1). Two reading aids (single- and double-word) were evaluated based on the notion that reducing the spatial and oculomotor demands of text reading might support reading in PCA (experiment 2). Mean reading accuracy in patients with PCA was significantly worse (57%) compared with both patients with typical Alzheimer disease (98%) and healthy controls (99%); spatial aspects of passages were the primary determinants of text reading ability in PCA. Both aids led to considerable gains in reading accuracy (PCA mean reading accuracy: single-word reading aid = 96%; individual patient improvement range: 6%-270%) and self-rated measures of reading. Data suggest a greater efficiency of fixations and eye movements under the single-word reading aid in patients with PCA. These findings demonstrate how neurologic characterization of a neurodegenerative syndrome (PCA) and detailed cognitive analysis of an important everyday skill (reading) can combine to yield aids capable of supporting important everyday functional abilities. This study provides Class III evidence that for patients with PCA, 2 software-based reading aids (single-word and double-word) improve reading accuracy. © 2015 American Academy of Neurology.

  15. Facilitating text reading in posterior cortical atrophy

    Science.gov (United States)

    Rajdev, Kishan; Shakespeare, Timothy J.; Leff, Alexander P.; Crutch, Sebastian J.

    2015-01-01

    Objective: We report (1) the quantitative investigation of text reading in posterior cortical atrophy (PCA), and (2) the effects of 2 novel software-based reading aids that result in dramatic improvements in the reading ability of patients with PCA. Methods: Reading performance, eye movements, and fixations were assessed in patients with PCA and typical Alzheimer disease and in healthy controls (experiment 1). Two reading aids (single- and double-word) were evaluated based on the notion that reducing the spatial and oculomotor demands of text reading might support reading in PCA (experiment 2). Results: Mean reading accuracy in patients with PCA was significantly worse (57%) compared with both patients with typical Alzheimer disease (98%) and healthy controls (99%); spatial aspects of passages were the primary determinants of text reading ability in PCA. Both aids led to considerable gains in reading accuracy (PCA mean reading accuracy: single-word reading aid = 96%; individual patient improvement range: 6%–270%) and self-rated measures of reading. Data suggest a greater efficiency of fixations and eye movements under the single-word reading aid in patients with PCA. Conclusions: These findings demonstrate how neurologic characterization of a neurodegenerative syndrome (PCA) and detailed cognitive analysis of an important everyday skill (reading) can combine to yield aids capable of supporting important everyday functional abilities. Classification of evidence: This study provides Class III evidence that for patients with PCA, 2 software-based reading aids (single-word and double-word) improve reading accuracy. PMID:26138948

  16. Frontal lobe atrophy of the brain in schizophrenia

    International Nuclear Information System (INIS)

    Hara, Tomio

    1981-01-01

    Reported here are the CT findings on cerebral atrophic lesion chiefly developed in the frontal lobe in schizophrenics with unusual organic encephalopathy. Encephalopathy was recognized in 84 (73%) of 115 schizophrenics and 13 (33%) of 40 neurotics. In an attempt to exclude the effects of aging on encephalopathy, the ages at CT and at the development of disease, the number of morbid years, subtypical schizophrenia and relation between the clinical severity and the atrophic condition were comparatively studied. As a result, cerebral atrophy tended to increase along with aging, but the findings differed in that atrophia classified by age covered the entire brain in general, whereas atrophia in schizophrenics was found in the frontal lobe. In particular, because of the fact that clinical severity and atrophia in the frontal lobe are high correlated and that severe atrophia is recognized even in young people, schizophrenia and atrophia in the frontal lobe are considered to be closely related to each other. It is therefore suggested that the CT findings are useful to clinicians for finding appropriate methods to deal with the prognosis of schizophrenics in their daily diagnosis and for the therapeutic prevention of encephalatrophy by stimulating the frontal lobe, thereby delaying mental deterioration. (author)

  17. Jealousy increased by induced relative left frontal cortical activity.

    Science.gov (United States)

    Kelley, Nicholas J; Eastwick, Paul W; Harmon-Jones, Eddie; Schmeichel, Brandon J

    2015-10-01

    Asymmetric frontal cortical activity may be one key to the process linking social exclusion to jealous feelings. The current research examined the causal role of asymmetric frontal brain activity in modulating jealousy in response to social exclusion. Transcranial direct-current stimulation (tDCS) over the frontal cortex to manipulate asymmetric frontal cortical activity was combined with a modified version of the Cyberball paradigm designed to induce jealousy. After receiving 15 min of tDCS, participants were excluded by a desired partner and reported how jealous they felt. Among individuals who were excluded, tDCS to increase relative left frontal cortical activity caused greater levels of self-reported jealousy compared to tDCS to increase relative right frontal cortical activity or sham stimulation. Limitations concerning the specificity of this effect and implications for the role of the asymmetric prefrontal cortical activity in motivated behaviors are discussed. (c) 2015 APA, all rights reserved).

  18. Consensus classification of posterior cortical atrophy.

    Science.gov (United States)

    Crutch, Sebastian J; Schott, Jonathan M; Rabinovici, Gil D; Murray, Melissa; Snowden, Julie S; van der Flier, Wiesje M; Dickerson, Bradford C; Vandenberghe, Rik; Ahmed, Samrah; Bak, Thomas H; Boeve, Bradley F; Butler, Christopher; Cappa, Stefano F; Ceccaldi, Mathieu; de Souza, Leonardo Cruz; Dubois, Bruno; Felician, Olivier; Galasko, Douglas; Graff-Radford, Jonathan; Graff-Radford, Neill R; Hof, Patrick R; Krolak-Salmon, Pierre; Lehmann, Manja; Magnin, Eloi; Mendez, Mario F; Nestor, Peter J; Onyike, Chiadi U; Pelak, Victoria S; Pijnenburg, Yolande; Primativo, Silvia; Rossor, Martin N; Ryan, Natalie S; Scheltens, Philip; Shakespeare, Timothy J; Suárez González, Aida; Tang-Wai, David F; Yong, Keir X X; Carrillo, Maria; Fox, Nick C

    2017-08-01

    A classification framework for posterior cortical atrophy (PCA) is proposed to improve the uniformity of definition of the syndrome in a variety of research settings. Consensus statements about PCA were developed through a detailed literature review, the formation of an international multidisciplinary working party which convened on four occasions, and a Web-based quantitative survey regarding symptom frequency and the conceptualization of PCA. A three-level classification framework for PCA is described comprising both syndrome- and disease-level descriptions. Classification level 1 (PCA) defines the core clinical, cognitive, and neuroimaging features and exclusion criteria of the clinico-radiological syndrome. Classification level 2 (PCA-pure, PCA-plus) establishes whether, in addition to the core PCA syndrome, the core features of any other neurodegenerative syndromes are present. Classification level 3 (PCA attributable to AD [PCA-AD], Lewy body disease [PCA-LBD], corticobasal degeneration [PCA-CBD], prion disease [PCA-prion]) provides a more formal determination of the underlying cause of the PCA syndrome, based on available pathophysiological biomarker evidence. The issue of additional syndrome-level descriptors is discussed in relation to the challenges of defining stages of syndrome severity and characterizing phenotypic heterogeneity within the PCA spectrum. There was strong agreement regarding the definition of the core clinico-radiological syndrome, meaning that the current consensus statement should be regarded as a refinement, development, and extension of previous single-center PCA criteria rather than any wholesale alteration or redescription of the syndrome. The framework and terminology may facilitate the interpretation of research data across studies, be applicable across a broad range of research scenarios (e.g., behavioral interventions, pharmacological trials), and provide a foundation for future collaborative work. Copyright © 2017 The Authors

  19. Cortical thickness, surface area and volume measures in Parkinson's disease, multiple system atrophy and progressive supranuclear palsy.

    Directory of Open Access Journals (Sweden)

    Amanda Worker

    Full Text Available Parkinson's disease (PD, Multiple System Atrophy (MSA and Progressive Supranuclear Palsy (PSP are neurodegenerative diseases that can be difficult to distinguish clinically. The objective of the current study was to use surface-based analysis techniques to assess cortical thickness, surface area and grey matter volume to identify unique morphological patterns of cortical atrophy in PD, MSA and PSP and to relate these patterns of change to disease duration and clinical features.High resolution 3D T1-weighted MRI volumes were acquired from 14 PD patients, 18 MSA, 14 PSP and 19 healthy control participants. Cortical thickness, surface area and volume analyses were carried out using the automated surface-based analysis package FreeSurfer (version 5.1.0. Measures of disease severity and duration were assessed for correlation with cortical morphometric changes in each clinical group.Results show that in PSP, widespread cortical thinning and volume loss occurs within the frontal lobe, particularly the superior frontal gyrus. In addition, PSP patients also displayed increased surface area in the pericalcarine. In comparison, PD and MSA did not display significant changes in cortical morphology.These results demonstrate that patients with clinically established PSP exhibit distinct patterns of cortical atrophy, particularly affecting the frontal lobe. These results could be used in the future to develop a useful clinical application of MRI to distinguish PSP patients from PD and MSA patients.

  20. Spatiotemporal Propagation of the Cortical Atrophy: Population and Individual Patterns

    Directory of Open Access Journals (Sweden)

    Igor Koval

    2018-05-01

    Full Text Available Repeated failures in clinical trials for Alzheimer’s disease (AD have raised a strong interest for the prodromal phase of the disease. A better understanding of the brain alterations during this early phase is crucial to diagnose patients sooner, to estimate an accurate disease stage, and to give a reliable prognosis. According to recent evidence, structural alterations in the brain are likely to be sensitive markers of the disease progression. Neuronal loss translates in specific spatiotemporal patterns of cortical atrophy, starting in the enthorinal cortex and spreading over other cortical regions according to specific propagation pathways. We developed a digital model of the cortical atrophy in the left hemisphere from prodromal to diseased phases, which is built on the temporal alignment and combination of several short-term observation data to reconstruct the long-term history of the disease. The model not only provides a description of the spatiotemporal patterns of cortical atrophy at the group level but also shows the variability of these patterns at the individual level in terms of difference in propagation pathways, speed of propagation, and age at propagation onset. Longitudinal MRI datasets of patients with mild cognitive impairments who converted to AD are used to reconstruct the cortical atrophy propagation across all disease stages. Each observation is considered as a signal spatially distributed on a network, such as the cortical mesh, each cortex location being associated to a node. We consider how the temporal profile of the signal varies across the network nodes. We introduce a statistical mixed-effect model to describe the evolution of the cortex alterations. To ensure a spatiotemporal smooth propagation of the alterations, we introduce a constrain on the propagation signal in the model such that neighboring nodes have similar profiles of the signal changes. Our generative model enables the reconstruction of personalized

  1. Comparison between MRI and 3D-SSP in olivopontocerebellar atrophy and cortical cerebellar atrophy

    International Nuclear Information System (INIS)

    Hamaguchi, Hirotoshi; Kanda, Fumio; Hosaka, Kayo; Fujii, Masahiko; Chihara, Kazuo

    2004-01-01

    We compared images of three-dimensional stereotactic surface projections (3D-SSP) of SPECT with MRI images in spinocerebellar degeneration patients (13 olivopontocerebellar atrophy (OPCA) and 7 cortical cerebellar atrophy (CCA)). We analyzed a brain blood flow pattern with an image of statistics by 123 I-IMP SPECT. In OPCA patients, a blood flow reduction was more remarkable in 3D-SSP than a degree of cerebellar atrophy in MRI. In patients with CCA, the cerebellum showed little blood flow reduction in 3D-SSP despite of apparent atrophy in MRI. Simultaneous examination both MRI and 3D-SSP might be useful for differential diagnosis of spinocerebellar degenerations. (author)

  2. Right-frontal cortical asymmetry predicts increased proneness to nostalgia.

    Science.gov (United States)

    Tullett, Alexa M; Wildschut, Tim; Sedikides, Constantine; Inzlicht, Michael

    2015-08-01

    Nostalgia is often triggered by feelings-such as sadness, loneliness, or meaninglessness-that are typically associated with withdrawal motivation. Here, we examined whether a trait tendency to experience withdrawal motivation is associated with nostalgia proneness. Past work indicates that baseline right-frontal cortical asymmetry is a neural correlate of withdrawal-related motivation. We therefore hypothesized that higher baseline levels of right-frontal asymmetry would predict increased proneness to nostalgia. We assessed participants' baseline levels of frontal cortical activity using EEG. Results supported the hypothesis and demonstrated that the association between relative right-frontal asymmetry and increased nostalgia remained significant when controlling for the Big Five personality traits. Overall, these findings indicate that individuals with a stronger dispositional tendency to experience withdrawal-related motivation are more prone to nostalgia. © 2015 Society for Psychophysiological Research.

  3. Motor features in posterior cortical atrophy and their imaging correlates.

    Science.gov (United States)

    Ryan, Natalie S; Shakespeare, Timothy J; Lehmann, Manja; Keihaninejad, Shiva; Nicholas, Jennifer M; Leung, Kelvin K; Fox, Nick C; Crutch, Sebastian J

    2014-12-01

    Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by impaired higher visual processing skills; however, motor features more commonly associated with corticobasal syndrome may also occur. We investigated the frequency and clinical characteristics of motor features in 44 PCA patients and, with 30 controls, conducted voxel-based morphometry, cortical thickness, and subcortical volumetric analyses of their magnetic resonance imaging. Prominent limb rigidity was used to define a PCA-motor subgroup. A total of 30% (13) had PCA-motor; all demonstrating asymmetrical left upper limb rigidity. Limb apraxia was more frequent and asymmetrical in PCA-motor, as was myoclonus. Tremor and alien limb phenomena only occurred in this subgroup. The subgroups did not differ in neuropsychological test performance or apolipoprotein E4 allele frequency. Greater asymmetry of atrophy occurred in PCA-motor, particularly involving right frontoparietal and peri-rolandic cortices, putamen, and thalamus. The 9 patients (including 4 PCA-motor) with pathology or cerebrospinal fluid all showed evidence of Alzheimer's disease. Our data suggest that PCA patients with motor features have greater atrophy of contralateral sensorimotor areas but are still likely to have underlying Alzheimer's disease. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Motor features in posterior cortical atrophy and their imaging correlates☆

    Science.gov (United States)

    Ryan, Natalie S.; Shakespeare, Timothy J.; Lehmann, Manja; Keihaninejad, Shiva; Nicholas, Jennifer M.; Leung, Kelvin K.; Fox, Nick C.; Crutch, Sebastian J.

    2014-01-01

    Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by impaired higher visual processing skills; however, motor features more commonly associated with corticobasal syndrome may also occur. We investigated the frequency and clinical characteristics of motor features in 44 PCA patients and, with 30 controls, conducted voxel-based morphometry, cortical thickness, and subcortical volumetric analyses of their magnetic resonance imaging. Prominent limb rigidity was used to define a PCA-motor subgroup. A total of 30% (13) had PCA-motor; all demonstrating asymmetrical left upper limb rigidity. Limb apraxia was more frequent and asymmetrical in PCA-motor, as was myoclonus. Tremor and alien limb phenomena only occurred in this subgroup. The subgroups did not differ in neuropsychological test performance or apolipoprotein E4 allele frequency. Greater asymmetry of atrophy occurred in PCA-motor, particularly involving right frontoparietal and peri-rolandic cortices, putamen, and thalamus. The 9 patients (including 4 PCA-motor) with pathology or cerebrospinal fluid all showed evidence of Alzheimer's disease. Our data suggest that PCA patients with motor features have greater atrophy of contralateral sensorimotor areas but are still likely to have underlying Alzheimer's disease. PMID:25086839

  5. Cortical atrophy and language network reorganization associated with a novel progranulin mutation.

    Science.gov (United States)

    Cruchaga, Carlos; Fernández-Seara, Maria A; Seijo-Martínez, Manuel; Samaranch, Lluis; Lorenzo, Elena; Hinrichs, Anthony; Irigoyen, Jaione; Maestro, Cristina; Prieto, Elena; Martí-Climent, Josep M; Arbizu, Javier; Pastor, Maria A; Pastor, Pau

    2009-08-01

    Progressive nonfluent aphasia (PNFA) is an early stage of frontotemporal degeneration. We identified a novel Cys521Tyr progranulin gene variant in a PNFA family that potentially disrupts disulphide bridging causing protein misfolding. To identify early neurodegeneration changes, we performed neuropsychological and neuroimaging studies in 6 family members (MRI [magnetic resonance imaging], fMRI [functional MRI], and 18f-fluorodeoxygenlucose positron emission tomography, including 4 mutation carriers, and in 9 unrelated controls. Voxel-based morphometry (VBM) of the carriers compared with controls showed significant cortical atrophy in language areas. Grey matter loss was distributed mainly in frontal lobes, being more prominent on the left. Clusters were located in the superior frontal gyri, left inferior frontal gyrus, left middle frontal gyrus, left middle temporal gyri and left posterior parietal areas, concordant with (18)FDG-PET hypometabolic areas. fMRI during semantic and phonemic covert word generation (CWGTs) and word listening tasks (WLTs) showed recruitment of attentional and working memory networks in the carriers indicative of functional reorganization. During CWGTs, activation in left prefrontal cortex and bilateral anterior insulae was present whereas WLT recruited mesial prefrontal and anterior temporal cortex. These findings suggest that Cys521Tyr could be associated with early brain impairment not limited to language areas and compensated by recruitment of bilateral auxiliary cortical areas.

  6. Global gray matter changes in posterior cortical atrophy: A serial imaging study

    NARCIS (Netherlands)

    Lehmann, M.; Barnes, J.; Ridgway, G.R.; Ryan, N.S.; Warrington, E.K.; Crutch, S.J.; Fox, N.C.

    2012-01-01

    Background: Posterior cortical atrophy (PCA) is a neurodegenerative condition predominantly associated with Alzheimer's disease (AD) pathology. Cross-sectional imaging studies have shown different atrophy patterns in PCA patients compared with typical amnestic Alzheimer's disease (tAD) patients,

  7. Consideration of the method of image diagnosis with respect to frontal lobe atrophy

    Science.gov (United States)

    Sato, K.; Sugawara, K.; Narita, Y.; Namura, I.

    1996-12-01

    Proposes a segmentation method for a quantitative image diagnosis as a means of realizing an objective diagnosis of the frontal lobe atrophy. From the data obtained on the grade of membership, the fractal dimensions of the cerebral tissue [cerebral spinal fluid (CSF), gray matter, and white matter] and the contours are estimated. The mutual relationship between the degree of atrophy and the fractal dimension has been analyzed based on the estimated fractal dimensions. Using a sample of 42 male and female cases, ranging In age from 50's to 70's, it has been concluded that the frontal lobe atrophy can be quantified by regarding it as an expansion of CSF region on the magnetic resonance imaging (MRI) of the brain. Furthermore, when the process of frontal lobe atrophy is separated into early and advanced stages, the volumetric change of CSF and white matter in frontal lobe displays meaningful differences between the two stages, demonstrating that the fractal dimension of CSF rises with the progress of atrophy. Moreover, an interpolation method for three-dimensional (3-D) shape reconstruction of the region of diagnostic interest is proposed and 3-D shape visualization, with respect to the degree and form of atrophy, is performed on the basis of the estimated fractal dimension of the segmented cerebral tissue.

  8. A patient with posterior cortical atrophy possesses a novel mutation in the presenilin 1 gene.

    Directory of Open Access Journals (Sweden)

    Emilia J Sitek

    Full Text Available Posterior cortical atrophy is a dementia syndrome with symptoms of cortical visual dysfunction, associated with amyloid plaques and neurofibrillary tangles predominantly affecting visual association cortex. Most patients diagnosed with posterior cortical atrophy will finally develop a typical Alzheimer's disease. However, there are a variety of neuropathological processes, which could lead towards a clinical presentation of posterior cortical atrophy. Mutations in the presenilin 1 gene, affecting the function of γ-secretase, are the most common genetic cause of familial, early-onset Alzheimer's disease. Here we present a patient with a clinical diagnosis of posterior cortical atrophy who harbors a novel Presenilin 1 mutation (I211M. In silico analysis predicts that the mutation could influence the interaction between presenilin 1 and presenilin1 enhancer-2 protein, a protein partner within the γ-secretase complex. These findings along with published literature support the inclusion of posterior cortical atrophy on the Alzheimer's disease spectrum.

  9. A Patient with Posterior Cortical Atrophy Possesses a Novel Mutation in the Presenilin 1 Gene

    Science.gov (United States)

    Sitek, Emilia J.; Narożańska, Ewa; Pepłońska, Beata; Filipek, Sławomir; Barczak, Anna; Styczyńska, Maria; Mlynarczyk, Krzysztof; Brockhuis, Bogna; Portelius, Erik; Religa, Dorota; Barcikowska, Maria

    2013-01-01

    Posterior cortical atrophy is a dementia syndrome with symptoms of cortical visual dysfunction, associated with amyloid plaques and neurofibrillary tangles predominantly affecting visual association cortex. Most patients diagnosed with posterior cortical atrophy will finally develop a typical Alzheimer's disease. However, there are a variety of neuropathological processes, which could lead towards a clinical presentation of posterior cortical atrophy. Mutations in the presenilin 1 gene, affecting the function of γ-secretase, are the most common genetic cause of familial, early-onset Alzheimer's disease. Here we present a patient with a clinical diagnosis of posterior cortical atrophy who harbors a novel Presenilin 1 mutation (I211M). In silico analysis predicts that the mutation could influence the interaction between presenilin 1 and presenilin1 enhancer-2 protein, a protein partner within the γ-secretase complex. These findings along with published literature support the inclusion of posterior cortical atrophy on the Alzheimer's disease spectrum. PMID:23593396

  10. Functional neural substrates of posterior cortical atrophy patients.

    Science.gov (United States)

    Shames, H; Raz, N; Levin, Netta

    2015-07-01

    Posterior cortical atrophy (PCA) is a neurodegenerative syndrome in which the most pronounced pathologic involvement is in the occipito-parietal visual regions. Herein, we aimed to better define the cortical reflection of this unique syndrome using a thorough battery of behavioral and functional MRI (fMRI) tests. Eight PCA patients underwent extensive testing to map their visual deficits. Assessments included visual functions associated with lower and higher components of the cortical hierarchy, as well as dorsal- and ventral-related cortical functions. fMRI was performed on five patients to examine the neuronal substrate of their visual functions. The PCA patient cohort exhibited stereopsis, saccadic eye movements and higher dorsal stream-related functional impairments, including simultant perception, image orientation, figure-from-ground segregation, closure and spatial orientation. In accordance with the behavioral findings, fMRI revealed intact activation in the ventral visual regions of face and object perception while more dorsal aspects of perception, including motion and gestalt perception, revealed impaired patterns of activity. In most of the patients, there was a lack of activity in the word form area, which is known to be linked to reading disorders. Finally, there was evidence of reduced cortical representation of the peripheral visual field, corresponding to the behaviorally assessed peripheral visual deficit. The findings are discussed in the context of networks extending from parietal regions, which mediate navigationally related processing, visually guided actions, eye movement control and working memory, suggesting that damage to these networks might explain the wide range of deficits in PCA patients.

  11. Effect of age at onset on cortical thickness and cognition in posterior cortical atrophy.

    Science.gov (United States)

    Suárez-González, Aida; Lehmann, Manja; Shakespeare, Timothy J; Yong, Keir X X; Paterson, Ross W; Slattery, Catherine F; Foulkes, Alexander J M; Rabinovici, Gil D; Gil-Néciga, Eulogio; Roldán-Lora, Florinda; Schott, Jonathan M; Fox, Nick C; Crutch, Sebastian J

    2016-08-01

    Age at onset (AAO) has been shown to influence the phenotype of Alzheimer's disease (AD), but how it affects atypical presentations of AD remains unknown. Posterior cortical atrophy (PCA) is the most common form of atypical AD. In this study, we aimed to investigate the effect of AAO on cortical thickness and cognitive function in 98 PCA patients. We used Freesurfer (v5.3.0) to compare cortical thickness with AAO both as a continuous variable, and by dichotomizing the groups based on median age (58 years). In both the continuous and dichotomized analyses, we found a pattern suggestive of thinner cortex in precuneus and parietal areas in earlier-onset PCA, and lower cortical thickness in anterior cingulate and prefrontal cortex in later-onset PCA. These cortical thickness differences between PCA subgroups were consistent with earlier-onset PCA patients performing worse on cognitive tests involving parietal functions. Our results provide a suggestion that AAO may not only affect the clinico-anatomical characteristics in AD but may also affect atrophy patterns and cognition within atypical AD phenotypes. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Effect of age at onset on cortical thickness and cognition in posterior cortical atrophy

    Science.gov (United States)

    Suárez-González, Aida; Lehmann, Manja; Shakespeare, Timothy J.; Yong, Keir X.X.; Paterson, Ross W.; Slattery, Catherine F.; Foulkes, Alexander J.M.; Rabinovici, Gil D.; Gil-Néciga, Eulogio; Roldán-Lora, Florinda; Schott, Jonathan M.; Fox, Nick C.; Crutch, Sebastian J.

    2016-01-01

    Age at onset (AAO) has been shown to influence the phenotype of Alzheimer’s disease (AD), but how it affects atypical presentations of AD remains unknown. Posterior cortical atrophy (PCA) is the most common form of atypical AD. In this study, we aimed to investigate the effect of AAO on cortical thickness and cognitive function in 98 PCA patients. We used Freesurfer (v5.3.0) to compare cortical thickness with AAO both as a continuous variable, and by dichotomizing the groups based on median age (58 years). In both the continuous and dichotomized analyses, we found a pattern suggestive of thinner cortex in precuneus and parietal areas in earlier-onset PCA, and lower cortical thickness in anterior cingulate and prefrontal cortex in later-onset PCA. These cortical thickness differences between PCA subgroups were consistent with earlier-onset PCA patients performing worse on cognitive tests involving parietal functions. Our results provide a suggestion that AAO may not only affect the clinico-anatomical characteristics in AD but may also affect atrophy patterns and cognition within atypical AD phenotypes. PMID:27318138

  13. Prominent microglial activation in cortical white matter is selectively associated with cortical atrophy in primary progressive aphasia.

    Science.gov (United States)

    Ohm, Daniel T; Kim, Garam; Gefen, Tamar; Rademaker, Alfred; Weintraub, Sandra; Bigio, Eileen; Mesulam, M-Marsel; Rogalski, Emily; Geula, Changiz

    2018-04-21

    Primary progressive aphasia (PPA) is a clinical syndrome characterized by selective language impairments associated with focal cortical atrophy favouring the language dominant hemisphere. PPA is associated with Alzheimer's disease (AD), frontotemporal lobar degeneration (FTLD), and significant accumulation of activated microglia. Activated microglia can initiate an inflammatory cascade that may contribute to neurodegeneration, but their quantitative distribution in cortical white matter and their relationship with cortical atrophy are unknown. We investigated white matter activated microglia and their association with grey matter atrophy in 10 PPA cases with either AD or FTLD-TDP pathology. Activated microglia were quantified with optical density measures of HLA-DR immunoreactivity in two regions with peak cortical atrophy, and one non-atrophied region within the language dominant hemisphere of each PPA case. Non-atrophied contralateral homologues of the language dominant regions were examined for hemispheric asymmetry. Qualitatively, greater densities of activated microglia were observed in cortical white matter when compared to grey matter. Quantitative analyses revealed significantly greater densities of activated microglia in the white matter of atrophied regions compared to non-atrophied regions in the language dominant hemisphere (p<0.05). Atrophied regions of the language dominant hemisphere also showed significantly more activated microglia compared to contralateral homologues (p<0.05). White matter activated microglia accumulate more in atrophied regions in the language dominant hemisphere of PPA. While microglial activation may constitute a response to neurodegenerative processes in white matter, the resultant inflammatory processes may also exacerbate disease progression and contribute to cortical atrophy. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. Picture agnosia as a characteristic of posterior cortical atrophy.

    Science.gov (United States)

    Sugimoto, Azusa; Midorikawa, Akira; Koyama, Shinichi; Futamura, Akinori; Hieda, Sotaro; Kawamura, Mitsuru

    2012-01-01

    Posterior cortical atrophy (PCA) is a degenerative disease characterized by progressive visual agnosia with posterior cerebral atrophy. We examine the role of the picture naming test and make a number of suggestions with regard to diagnosing PCA as atypical dementia. We investigated 3 cases of early-stage PCA with 7 control cases of Alzheimer disease (AD). The patients and controls underwent a naming test with real objects and colored photographs of familiar objects. We then compared rates of correct answers. Patients with early-stage PCA showed significant inability to recognize photographs compared to real objects (F = 196.284, p = 0.0000) as measured by analysis of variants. This difficulty was also significant to AD controls (F = 58.717, p = 0.0000). Picture agnosia is a characteristic symptom of early-stage PCA, and the picture naming test is useful for the diagnosis of PCA as atypical dementia at an early stage. Copyright © 2012 S. Karger AG, Basel.

  15. Basic visual function and cortical thickness patterns in posterior cortical atrophy.

    Science.gov (United States)

    Lehmann, Manja; Barnes, Josephine; Ridgway, Gerard R; Wattam-Bell, John; Warrington, Elizabeth K; Fox, Nick C; Crutch, Sebastian J

    2011-09-01

    Posterior cortical atrophy (PCA) is characterized by a progressive decline in higher-visual object and space processing, but the extent to which these deficits are underpinned by basic visual impairments is unknown. This study aimed to assess basic and higher-order visual deficits in 21 PCA patients. Basic visual skills including form detection and discrimination, color discrimination, motion coherence, and point localization were measured, and associations and dissociations between specific basic visual functions and measures of higher-order object and space perception were identified. All participants showed impairment in at least one aspect of basic visual processing. However, a number of dissociations between basic visual skills indicated a heterogeneous pattern of visual impairment among the PCA patients. Furthermore, basic visual impairments were associated with particular higher-order object and space perception deficits, but not with nonvisual parietal tasks, suggesting the specific involvement of visual networks in PCA. Cortical thickness analysis revealed trends toward lower cortical thickness in occipitotemporal (ventral) and occipitoparietal (dorsal) regions in patients with visuoperceptual and visuospatial deficits, respectively. However, there was also a lot of overlap in their patterns of cortical thinning. These findings suggest that different presentations of PCA represent points in a continuum of phenotypical variation.

  16. Cortical Brain Atrophy and Intra-Individual Variability in Neuropsychological Test Performance in HIV Disease

    Science.gov (United States)

    HINES, Lindsay J.; MILLER, Eric N.; HINKIN, Charles H.; ALGER, Jeffery R.; BARKER, Peter; GOODKIN, Karl; MARTIN, Eileen M.; MARUCA, Victoria; RAGIN, Ann; SACKTOR, Ned; SANDERS, Joanne; SELNES, Ola; BECKER, James T.

    2015-01-01

    Objective To characterize the relationship between dispersion-based intra-individual variability (IIVd) in neuropsychological test performance and brain volume among HIV seropositive and seronegative men and to determine the effects of cardiovascular risk and HIV infection on this relationship. Methods Magnetic Resonance Imaging (MRI) was used to acquire high-resolution neuroanatomic data from 147 men age 50 and over, including 80 HIV seropositive (HIV+) and 67 seronegative controls (HIV−) in this cross-sectional cohort study. Voxel Based Morphometry was used to derive volumetric measurements at the level of the individual voxel. These brain structure maps were analyzed using Statistical Parametric Mapping (SPM2). IIVd was measured by computing intra-individual standard deviations (ISD’s) from the standardized performance scores of five neuropsychological tests: Wechsler Memory Scale-III Visual Reproduction I and II, Logical Memory I and II, Wechsler Adult Intelligence Scale-III Letter Number Sequencing. Results Total gray matter (GM) volume was inversely associated with IIVd. Among all subjects, IIVd -related GM atrophy was observed primarily in: 1) the inferior frontal gyrus bilaterally, the left inferior temporal gyrus extending to the supramarginal gyrus, spanning the lateral sulcus; 2) the right superior parietal lobule and intraparietal sulcus; and, 3) dorsal/ventral regions of the posterior section of the transverse temporal gyrus. HIV status, biological, and cardiovascular disease (CVD) variables were not linked to IIVd -related GM atrophy. Conclusions IIVd in neuropsychological test performance may be a sensitive marker of cortical integrity in older adults, regardless of HIV infection status or CVD risk factors, and degree of intra-individual variability links with volume loss in specific cortical regions; independent of mean-level performance on neuropsychological tests. PMID:26303224

  17. The role of asymmetric frontal cortical activity in emotion-related phenomena: a review and update.

    Science.gov (United States)

    Harmon-Jones, Eddie; Gable, Philip A; Peterson, Carly K

    2010-07-01

    Conceptual and empirical approaches to the study of the role of asymmetric frontal cortical activity in emotional processes are reviewed. Although early research suggested that greater left than right frontal cortical activity was associated with positive affect, more recent research, primarily on anger, suggests that greater left than right frontal cortical activity is associated with approach motivation, which can be positive (e.g., enthusiasm) or negative in valence (e.g., anger). In addition to reviewing this research on anger, research on guilt, bipolar disorder, and various types of positive affect is reviewed with relation to their association with asymmetric frontal cortical activity. The reviewed research not only contributes to a more complete understanding of the emotive functions of asymmetric frontal cortical activity, but it also points to the importance of considering motivational direction as separate from affective valence in psychological models of emotional space. Copyright © 2009 Elsevier B.V. All rights reserved.

  18. The Progression of Posterior Cortical Atrophy to Corticobasal Syndrome: Lumping or Splitting Neurodegenerative Diseases?

    Directory of Open Access Journals (Sweden)

    Maurizio Giorelli

    2014-06-01

    Full Text Available Background: Posterior cortical atrophy is a clinical syndrome that is characterized by the progressive loss of visuospatial integration and is associated with neurodegenerative conditions.Case Report: We describe a 60‐year‐old female with simultanagnosia, oculomotor apraxia, and optic ataxia for which she received an initial clinical diagnosis of posterior cortical atrophy. Three years later, she developed Balint's syndrome, Gerstmann's syndrome, left alien hand syndrome, smooth asymmetric (left rigidity, cortical sensory loss, and spontaneous myoclonic jerks of the left arm, which suggested a final diagnosis of corticobasal syndrome.Discussion: This case report indicates that corticobasal syndrome may present with visuospatial deficits.

  19. Frontal cortical control of posterior sensory and association cortices through the claustrum.

    Science.gov (United States)

    White, Michael G; Mathur, Brian N

    2018-04-06

    The claustrum is a telencephalic gray matter nucleus that is richly interconnected with the neocortex. This structure subserves top-down executive functions that require frontal cortical control of posterior cortical regions. However, functional anatomical support for the claustrum allowing for long-range intercortical communication is lacking. To test this, we performed a channelrhodopsin-assisted long-circuit mapping strategy in mouse brain slices. We find that anterior cingulate cortex input to the claustrum is transiently amplified by claustrum neurons that, in turn, project to parietal association cortex or to primary and secondary visual cortices. Additionally, we observe that claustrum drive of cortical neurons in parietal association cortex is layer-specific, eliciting action potential generation briefly in layers II/III, IV, and VI but not V. These data are the first to provide a functional anatomical substrate through claustrum that may underlie top-down functions, such as executive attention or working memory, providing critical insight to this most interconnected and enigmatic nucleus.

  20. Cortical Atrophy is Associated with Accelerated Cognitive Decline in Mild Cognitive Impairment with Subsyndromal Depression.

    Science.gov (United States)

    Gonzales, Mitzi M; Insel, Philip S; Nelson, Craig; Tosun, Duygu; Mattsson, Niklas; Mueller, Susanne G; Sacuiu, Simona; Bickford, David; Weiner, Michael W; Mackin, R Scott

    2017-09-01

    To investigate the association between cognitive decline and cortical atrophy in individuals with mild cognitive impairment (MCI) and chronic subsyndromal symptoms of depression (SSD) over a 4-year period. Prospective cohort study. Multicenter, clinic-based. Within the Alzheimer's Disease Neuroimaging Initiative repository, the Neuropsychiatric Inventory was used to identify individuals with MCI and stable endorsement (SSD group N = 32) or no endorsement (non-SSD group N = 69) of depressive symptoms across time points. Repeated measures of cognitive outcomes, cortical atrophy, and their associations were evaluated with mixed effects models adjusting for age, education, sex, and APOE genotype. The SSD group demonstrated accelerated decline on measures of global cognition (Alzheimer Disease Assessment Scale; df = 421, t = 2.242, p = 0.025), memory (Wechsler Memory Scale-Revised Logical Memory II; df = 244, t = -2.525, p = 0.011), information processing speed (Trail Making Test Parts A [df = 421, t = 2.376, p = 0.018] and B [df = 421, t = 2.533, p = 0.012]), and semantic fluency (Category Fluency; df = 424, t = -2.418, p = 0.016), as well as accelerated frontal lobe (df = 341, t = -2.648, p = 0.008) and anterior cingulate (df = 341, t = -3.786, p confrontation naming or for rate of atrophy in any other regions. Accelerated frontal lobe and anterior cingulate atrophy was associated with cognitive decline on measures of global cognition, information processing speed, and semantic fluency (all p < 0.05), but not memory. Individuals with chronic SSD may represent an MCI subgroup that is highly vulnerable to accelerated cognitive decline, an effect that may be governed by frontal lobe and anterior cingulate atrophy. Published by Elsevier Inc.

  1. Correlation of clinical course with MRI findings in olivo-pontocerebellar atrophy and late-cortical cerebellar atrophy

    International Nuclear Information System (INIS)

    Konagaya, Masaaki; Morishita, Shinji; Konagaya, Yoko; Takayanagi, Tetsuya; Iwasaki, Satoru

    1989-01-01

    We quantitatively analyzed 1.5 T MRI in 36 cases of sporadic spinocerebellar degeneration (SCD) and 30 control cases without intracranial lesions, using graphic analyzer. SCD consisted of 21 olivo-ponto-cerebellar atrophy (OPCA) and 15 late cortical cerebellar atrophy (LCCA). There was negative correlation between vermian size and the duration of illness both in OPCA (r=0.8960, p<0.001) and LCCA (r=0.7756, p<0.01), but the progression rate in OPCA was three times greater than that in LCCA. LCCA was suggested the preclinical vermian atrophy by the statistical regression study. In OPCA, the duration of illness also revealed significant correlations with atrophy of ventral pons (r=0.8308, p<0.001) and also cerebellar hemisphere (medial hemiphere; r=0.7278, p<0.001. lateral hemisphere; r=0.6039, p<0.01). OPCA showed diffuse atrophy of cerebellar hemisphere, whereas LCCA showed medial dominant atrophy. OPCA demonstrated significant correlation between the fourth ventricle dilatation and the duration of illness (r=0.6005, p<0.01). A discriminant study significantly separated OPCA, LCCA and control each other by sizes of ventral pons and cerebellar vermis (p<0.001). In T2 weighted MRI, 10 cases out of 14 LCCA did not show hypointensity in dentate nucleus in spite of normal appearance in the other portions usually decreased intensity. The dentate nucleus of OPCA showed a significant atrophy. The insidence of putaminal hypointensity in OPCA was significantly greater than that of control group (ki-quare=6.476, p<0.05). There were no atrophies in red nucleus and tegmentum of midbrain, which indicated minimum involvement in cerebellar efferent system both in OPCA and LCCA. We concluded that the quantitative and qualitative analysis of high field MRI is useful in clinical discrimination between OPCA and LCCA. (author)

  2. Exercising self-control increases relative left frontal cortical activation.

    Science.gov (United States)

    Schmeichel, Brandon J; Crowell, Adrienne; Harmon-Jones, Eddie

    2016-02-01

    Self-control refers to the capacity to override or alter a predominant response tendency. The current experiment tested the hypothesis that exercising self-control temporarily increases approach motivation, as revealed by patterns of electrical activity in the prefrontal cortex. Participants completed a writing task that did vs did not require them to exercise self-control. Then they viewed pictures known to evoke positive, negative or neutral affect. We assessed electroencephalographic (EEG) activity while participants viewed the pictures, and participants reported their trait levels of behavioral inhibition system (BIS) and behavioral activation system (BAS) sensitivity at the end of the study. We found that exercising (vs not exercising) self-control increased relative left frontal cortical activity during picture viewing, particularly among individuals with relatively higher BAS than BIS, and particularly during positive picture viewing. A similar but weaker pattern emerged during negative picture viewing. The results suggest that exercising self-control temporarily increases approach motivation, which may help to explain the aftereffects of self-control (i.e. ego depletion). © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  3. Visuo-Spatial Imagery Impairment in Posterior Cortical Atrophy: A Cognitive and SPECT Study

    Directory of Open Access Journals (Sweden)

    Simona Gardini

    2011-01-01

    Full Text Available This study investigated the cognitive profile and the cerebral perfusion pattern in a highly educated 70 year old gentleman with posterior cortical atrophy (PCA. Visuo-perceptual abilities, spatial memory, spatial representation and navigation, visuo-spatial mental imagery, semantic and episodic-autobiographical memory were assessed. Regional cerebral blood flow (rCBF was imaged with SPECT. Cognitive testing showed visual-perceptual impairment, apperceptive visual and landmark agnosia, topographical disorientation with way-finding deficits, impaired map learning and poor mental image generation. Semantic memory was normal, while episodic-autobiographical memory was impaired. Reduced rCBF was found mainly in the right hemisphere, in the precentral gyrus, posterior cingulate and middle temporal gyri, cuneus and precuneus, in the left superior temporal and lingual gyri and in the parahippocampus bilaterally. Hypoperfusion in occipito-parietal regions was associated with visuo-spatial deficits, whereas deficits in visuo-spatial mental imagery might reflect dysfunction related to hypoperfusion in the parahippocampus and precuneus, structures which are responsible for spatial and imagery processing. Dissociating performance between preserved semantic memory and poor episodic-autobiographical recall is consistent with a pattern of normal perfusion in frontal and anterior temporal regions but abnormal rCBF in the parahippocampi. The present findings indicate that PCA involves visuo-spatial imagery deficits and provide further validation to current neuro-cognitive models of spatial representation and topographical disorientation.

  4. Diagnostic value of 18F-FDG PET and 11C-PIB PET on early stage posterior cortical atrophy

    Directory of Open Access Journals (Sweden)

    Shuai LIU

    2015-08-01

    Full Text Available Background  Posterior cortical atrophy (PCA is a kind of progressive neurodegenerative disease with cortical visual impairment as the first symptom. Because of rare clinical incidence, early onset age, special clinical symptoms and unobvious MRI abnormality, the definitive diagnosis of PCA is difficult. This study used 18F-fluoro-2-deoxy-D-glucose (18F-FDG PET and 11C-Pittsburgh compound B (11C-PIB PET for PCA patients with unobvious MRI abnormality, so as to discuss the value of PET in the early diagnosis of PCA.  Methods  Five patients diagnosed as PCA in our hospital between April 2012 and March 2015 were enrolled in this study. Cognitive function was measured by Mini-Mental State Examination (MMSE, Montreal Cognitive Assessment (MoCA, Activities of Daily Living (ADL and Clock Drawing Test (CDT. Brain MRI, 18F-FDG PET and 11C-PIB PET were performed to analyze glucose metabolism and perfusion of posterior cortex.  Results Neuropsychological tests revealed that the ability of writing, calculating, visuospatial and executive function of all these patients were impaired. Color vision tests showed abnormal results. MRI showed that the posterior atrophy (PA scores were 0-2 (average 1 on the left side and 0-1 (average 0.80 on the right side. The medial temporal atrophy (MTA scores were 1-3 (average 1.80 on the left side and 1-4 (average 2 on the right side. The ventricular enlargement (VE scores were 1-2 (average 1.80 on the left side and 1-2 (average 1.60 on the right side. 18F-FDG PET showed glucose metabolism decreased obviously on bilateral temporo-parieto-occipital cortex, precuneus and cingulate gyrus, and slightly on frontal lobes and subcortical structure. 11C-PIB PET showed radioactive 11C-PIB deposition on bilateral frontal, temporal, parietal and occipital cortex, and the outline of cerebellar cortex was clear.  Conclusions  For PCA patients whose parietal and occipital cortical atrophy is not obvious on MRI, 18F-FDG PET

  5. Joint assessment of white matter integrity, cortical and subcortical atrophy to distinguish AD from behavioral variant FTD: A two-center study

    Directory of Open Access Journals (Sweden)

    Christiane Möller

    2015-01-01

    Full Text Available We investigated the ability of cortical and subcortical gray matter (GM atrophy in combination with white matter (WM integrity to distinguish behavioral variant frontotemporal dementia (bvFTD from Alzheimer's disease (AD and from controls using voxel-based morphometry, subcortical structure segmentation, and tract-based spatial statistics. To determine which combination of MR markers differentiated the three groups with the highest accuracy, we conducted discriminant function analyses. Adjusted for age, sex and center, both types of dementia had more GM atrophy, lower fractional anisotropy (FA and higher mean (MD, axial (L1 and radial diffusivity (L23 values than controls. BvFTD patients had more GM atrophy in orbitofrontal and inferior frontal areas than AD patients. In addition, caudate nucleus and nucleus accumbens were smaller in bvFTD than in AD. FA values were lower; MD, L1 and L23 values were higher, especially in frontal areas of the brain for bvFTD compared to AD patients. The combination of cortical GM, hippocampal volume and WM integrity measurements, classified 97–100% of controls, 81–100% of AD and 67–75% of bvFTD patients correctly. Our results suggest that WM integrity measures add complementary information to measures of GM atrophy, thereby improving the classification between AD and bvFTD.

  6. Upper motor neuron predominant degeneration with frontal and temporal lobe atrophy.

    Science.gov (United States)

    Konagaya, M; Sakai, M; Matsuoka, Y; Konagaya, Y; Hashizume, Y

    1998-11-01

    The autopsy findings of a 78-year-old man mimicking primary lateral sclerosis (PLS) are reported. He showed slowly progressive spasticity, pseudobulbar palsy and character change, and died 32 months after the onset of symptoms. Autopsy revealed severe atrophy of the frontal and temporal lobes, remarkable neuronal loss and gliosis in the precentral gyrus, left temporal lobe pole and amygdala, mild degeneration of the Ammon's horn, degeneration of the corticospinal tract, and very mild involvement of the lower motor neurons. The anterior horn cells only occasionally demonstrated Bunina body by cystatin-C staining, and skein-like inclusions by ubiquitin staining. This is a peculiar case with concomitant involvement in the motor cortex and temporal lobe in motor neuron disease predominantly affecting the upper motor neuron.

  7. Glucose hypometabolism is highly localized, but lower cortical thickness and brain atrophy are widespread in cognitively normal older adults.

    Science.gov (United States)

    Nugent, Scott; Castellano, Christian-Alexandre; Goffaux, Philippe; Whittingstall, Kevin; Lepage, Martin; Paquet, Nancy; Bocti, Christian; Fulop, Tamas; Cunnane, Stephen C

    2014-06-01

    Several studies have suggested that glucose hypometabolism may be present in specific brain regions in cognitively normal older adults and could contribute to the risk of subsequent cognitive decline. However, certain methodological shortcomings, including a lack of partial volume effect (PVE) correction or insufficient cognitive testing, confound the interpretation of most studies on this topic. We combined [(18)F]fluorodeoxyglucose ([(18)F]FDG) positron emission tomography (PET) and magnetic resonance (MR) imaging to quantify cerebral metabolic rate of glucose (CMRg) as well as cortical volume and thickness in 43 anatomically defined brain regions from a group of cognitively normal younger (25 ± 3 yr old; n = 25) and older adults (71 ± 9 yr old; n = 31). After correcting for PVE, we observed 11-17% lower CMRg in three specific brain regions of the older group: the superior frontal cortex, the caudal middle frontal cortex, and the caudate (P ≤ 0.01 false discovery rate-corrected). In the older group, cortical volumes and cortical thickness were 13-33 and 7-18% lower, respectively, in multiple brain regions (P ≤ 0.01 FDR correction). There were no differences in CMRg between individuals who were or were not prescribed antihypertensive medication. There were no significant correlations between CMRg and cognitive performance or metabolic parameters measured in fasting plasma. We conclude that highly localized glucose hypometabolism and widespread cortical thinning and atrophy can be present in older adults who are cognitively normal, as assessed using age-normed neuropsychological testing measures. Copyright © 2014 the American Physiological Society.

  8. Reduced modulation of scanpaths in response to task demands in posterior cortical atrophy.

    Science.gov (United States)

    Shakespeare, Timothy J; Pertzov, Yoni; Yong, Keir X X; Nicholas, Jennifer; Crutch, Sebastian J

    2015-02-01

    A difficulty in perceiving visual scenes is one of the most striking impairments experienced by patients with the clinico-radiological syndrome posterior cortical atrophy (PCA). However whilst a number of studies have investigated perception of relatively simple experimental stimuli in these individuals, little is known about multiple object and complex scene perception and the role of eye movements in posterior cortical atrophy. We embrace the distinction between high-level (top-down) and low-level (bottom-up) influences upon scanning eye movements when looking at scenes. This distinction was inspired by Yarbus (1967), who demonstrated how the location of our fixations is affected by task instructions and not only the stimulus' low level properties. We therefore examined how scanning patterns are influenced by task instructions and low-level visual properties in 7 patients with posterior cortical atrophy, 8 patients with typical Alzheimer's disease, and 19 healthy age-matched controls. Each participant viewed 10 scenes under four task conditions (encoding, recognition, search and description) whilst eye movements were recorded. The results reveal significant differences between groups in the impact of test instructions upon scanpaths. Across tasks without a search component, posterior cortical atrophy patients were significantly less consistent than typical Alzheimer's disease patients and controls in where they were looking. By contrast, when comparing search and non-search tasks, it was controls who exhibited lowest between-task similarity ratings, suggesting they were better able than posterior cortical atrophy or typical Alzheimer's disease patients to respond appropriately to high-level needs by looking at task-relevant regions of a scene. Posterior cortical atrophy patients had a significant tendency to fixate upon more low-level salient parts of the scenes than controls irrespective of the viewing task. The study provides a detailed characterisation of

  9. The Global Cognition, Frontal Lobe Dysfunction and Behavior Changes in Chinese Patients with Multiple System Atrophy.

    Directory of Open Access Journals (Sweden)

    Bei Cao

    Full Text Available Studies on cognition in multiple system atrophy (MSA patients are limited.A total of 110 MSA patients were evaluated using Addenbrooke's Cognitive Examination-Revised (ACE-R, Frontal Assessment Battery (FAB, Frontal Behavioral Inventory (FBI, and Unified MSA Rating Scale (UMSARS tests. Fifty-five age-, sex-, education- and domicile-matched healthy controls were recruited to perform the FAB and ACE-R scales.Approximately 32.7% of the patients had global cognitive deficits with the most impaired domain being verbal fluency and visuospatial ability (26.4%, followed by memory (24.5%, language (20% and orientation/attention (20% based on a cut-off score of ACE-R ≤ 70. A total of 41.6% of the patients had frontal lobe dysfunction, with inhibitory control (60.9% as the most impaired domain based on a cut-off score of FAB ≤14. Most patients (57.2% showed moderate frontal behavior changes (FBI score 4-15, with incontinence (64.5% as the most impaired domain. The binary logistic regression model revealed that an education level < 9 years (OR:13.312, 95% CI:2.931-60.469, P = 0.001 and UMSARS ≥ 40 (OR: 2.444, 95%CI: 1.002-5.962, P< 0.049 were potential determinants of abnormal ACE-R, while MSA-C (OR: 4.326, 95%CI: 1.631-11.477, P = 0.003, an education level < 9 years (OR:2.809 95% CI:1.060-7.444, P = 0.038 and UMSARS ≥ 40 (OR:5.396, 95%CI: 2.103-13.846, P < 0.0001 were potential determinants of abnormal FAB.Cognitive impairment is common in Chinese MSA patients. MSA-C patients with low education levels and severe motor symptoms are likely to experience frontal lobe dysfunction, while MSA patients with low education levels and severe motor symptoms are likely to experience global cognitive deficits. These findings strongly suggest that cognitive impairment should not be an exclusion criterion for the diagnosis of MSA.

  10. Visualizing stages of cortical atrophy in progressive MCI from the ADNI cohort

    DEFF Research Database (Denmark)

    Eskildsen, Simon Fristed; Fonov, Vladimir; Coupé, Pierrick

    Amnestic mild cognitive impairment (MCI) is considered a condition where patients are at risk of developing clinically definite Alzheimer’s disease (AD) with an annual conversion rate of approximately 15%[1]. AD is characterized by progressive brain atrophy with major impact on the cerebral cortex...... and visualize the cortical atrophy at different stages in patients who eventually converted to clinically definite AD. We selected patients with a diagnosis of MCI from the ADNI database who converted to AD during the follow-up period. T1-weighted MRI scans were collected at time of conversion(n=140...

  11. Pronounced impairment of everyday skills and self-care in posterior cortical atrophy.

    Science.gov (United States)

    Shakespeare, Timothy J; Yong, Keir X X; Foxe, David; Hodges, John; Crutch, Sebastian J

    2015-01-01

    Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by progressive visual dysfunction and parietal, occipital, and occipitotemporal atrophy. The aim of this study was to compare the impact of PCA and typical Alzheimer's disease (tAD) on everyday functional abilities and neuropsychiatric status. The Cambridge Behavioural Inventory-Revised was given to carers of 32 PCA and 71 tAD patients. PCA patients showed significantly greater impairment in everyday skills and self-care while the tAD group showed greater impairment in aspects of memory and orientation, and motivation. We suggest that PCA poses specific challenges for those caring for people affected by the condition.

  12. Multimodal surface-based morphometry reveals diffuse cortical atrophy in traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Sorenson Donna J

    2009-12-01

    Full Text Available Abstract Background Patients with traumatic brain injury (TBI often present with significant cognitive deficits without corresponding evidence of cortical damage on neuroradiological examinations. One explanation for this puzzling observation is that the diffuse cortical abnormalities that characterize TBI are difficult to detect with standard imaging procedures. Here we investigated a patient with severe TBI-related cognitive impairments whose scan was interpreted as normal by a board-certified radiologist in order to determine if quantitative neuroimaging could detect cortical abnormalities not evident with standard neuroimaging procedures. Methods Cortical abnormalities were quantified using multimodal surfaced-based morphometry (MSBM that statistically combined information from high-resolution structural MRI and diffusion tensor imaging (DTI. Normal values of cortical anatomy and cortical and pericortical DTI properties were quantified in a population of 43 healthy control subjects. Corresponding measures from the patient were obtained in two independent imaging sessions. These data were quantified using both the average values for each lobe and the measurements from each point on the cortical surface. The results were statistically analyzed as z-scores from the mean with a p Results The TBI patient showed significant regional abnormalities in cortical thickness, gray matter diffusivity and pericortical white matter integrity that replicated across imaging sessions. Consistent with the patient's impaired performance on neuropsychological tests of executive function, cortical abnormalities were most pronounced in the frontal lobes. Conclusions MSBM is a promising tool for detecting subtle cortical abnormalities with high sensitivity and selectivity. MSBM may be particularly useful in evaluating cortical structure in TBI and other neurological conditions that produce diffuse abnormalities in both cortical structure and tissue properties.

  13. Cortical atrophy rates in Alzheimer's patients and subjects with mild cognitive impairment from the AddNeuroMed data collection

    DEFF Research Database (Denmark)

    Eskildsen, Simon Fristed; Westman, Eric; Gwadry-Sridhar, Femida

    2010-01-01

    Background: The AddNeuroMed project is a multi-centre European project which aims to identify biomarkers in Alzheimer's disease (AD). In this study we measured the rate of cortical atrophy in AD patients, subjects with mild cognitive impairment (MCI), and healthy controls (HC) using MRI. Methods...... quality control for both the acquisition and image processing were included in the study. Cortical thickness was measured using FACE (fast accurate cortex extraction) and averaged within main lobes using a stereotaxic atlas. Atrophy rates were calculated as percent decrease in cortical thickness and rate...

  14. Aphasia with left occipitotemporal hypometabolism: a novel presentation of posterior cortical atrophy?

    Science.gov (United States)

    Wicklund, Meredith R; Duffy, Joseph R; Strand, Edythe A; Whitwell, Jennifer L; Machulda, Mary M; Josephs, Keith A

    2013-09-01

    Alzheimer's disease is a common neurodegenerative disease often characterized by initial episodic memory loss. Atypical focal cortical presentations have been described, including the logopenic variant of primary progressive aphasia (lvPPA) which presents with language impairment, and posterior cortical atrophy (PCA) which presents with prominent visuospatial deficits. Both lvPPA and PCA are characterized by specific patterns of hypometabolism: left temporoparietal in lvPPA and bilateral parietoccipital in PCA. However, not every patient fits neatly into these categories. We retrospectively identified two patients with progressive aphasia and visuospatial deficits from a speech and language based disorders study. The patients were further characterized by MRI, fluorodeoxyglucose F18 and Pittsburgh Compound B (PiB) positron emission tomography. Two women, aged 62 and 69, presented with a history of a few years of progressive aphasia characterized by fluent output with normal grammar and syntax, anomia without loss of word meaning, and relatively spared repetition. They demonstrated striking deficits in visuospatial function for which they were lacking insight. Prominent hypometabolism was noted in the left occipitotemporal region and diffuse retention of PiB was noted. Posterior cortical atrophy may present focally with left occipitotemporal metabolism characterized clinically with a progressive fluent aphasia and prominent ventral visuospatial deficits with loss of insight. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. The association of cognitive impairment with gray matter atrophy and cortical lesion load in clinically isolated syndrome.

    Science.gov (United States)

    Diker, Sevda; Has, Arzu Ceylan; Kurne, Aslı; Göçmen, Rahşan; Oğuz, Kader Karlı; Karabudak, Rana

    2016-11-01

    Multiple sclerosis can impair cognition from the early stages and has been shown to be associated with gray matter damage in addition to white matter pathology. To investigate the profile of cognitive impairment in clinically isolated syndrome (CIS), and the contribution of cortical inflammation, cortical and deep gray matter atrophy, and white matter lesions to cognitive decline. Thirty patients with clinically isolated syndrome and twenty demographically- matched healthy controls underwent neuropsychologic assessment through the Rao Brief Repeatable Battery, and brain magnetic resonance imaging with double inversion recovery using a 3T scanner. Patients with clinically isolated syndrome performed significantly worse than healthy controls on tests that evaluated verbal memory, visuospatial learning and memory, and verbal fluency. Significant deep gray matter atrophy was found in the patients but cortical volume was not lower than the controls. Visual memory tests correlated with the volume of the hippocampus, cerebral white matter and deep gray matter structures and with cerebellar cortical atrophy. Cortical or white matter lesion load did not affect cognitive test results. In our patients with CIS, it was shown that cognitive impairment was mainly related to cerebral white matter, cerebellar cortical and deep gray matter atrophy, but not with cortical inflammation, at least in the early stage of disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Mesenchymal stem cells can modulate longitudinal changes in cortical thickness and its related cognitive decline in patients with multiple system atrophy

    Directory of Open Access Journals (Sweden)

    Mun Kyung eSunwoo

    2014-06-01

    Full Text Available Multiple system atrophy (MSA is an adult-onset sporadic neurodegenerative disease. Because the prognosis of MSA is fatal, neuroprotective or regenerative strategies may be invaluable in MSA treatment. Previously, we obtained clinical and imaging evidence that mesenchymal stem cell (MSC treatment could have a neuroprotective role in MSA patients. In the present study, we evaluated the effects of MSC therapy on longitudinal changes in subcortical deep grey matter volumes and cortical thickness and their association with cognitive performance. Clinical and imaging data were obtained from our previous randomized trial of autologous MSC in MSA patients. During 1-year follow-up, we assessed longitudinal differences in subcortical deep grey matter volumes and cortical thickness between placebo (n=15 and MSC groups (n=11. Next, we performed correlation analysis between the changes in cortical thickness and changes in the Korean version of the Montreal Cognitive Assessment (MoCA scores and detailed cognitive performance. There were no significant differences in age, gender ratio, disease duration, clinical severity, MoCA score, or education level between the groups. The subcortical volumetric analysis revealed that the changes in deep grey matter volumes of the caudate, putamen, and thalamus did not differ significantly between the groups. The areas of cortical thinning over time in the placebo group were more extensive, including the frontal, temporal, and parietal areas, whereas these areas in the MSC group were less extensive. Correlation analysis indicated that declines in MoCA scores and phonemic fluency were significantly correlated with cortical thinning of the frontal and posterior temporal areas and anterior temporal areas in MSA patients, respectively. These results suggest that MSC treatment in patients with MSA may modulate cortical thinning over time and related cognitive performance, inferring a future therapeutic candidate for cognitive

  17. Quantitative regional validation of the visual rating scale for posterior cortical atrophy

    International Nuclear Information System (INIS)

    Moeller, Christiane; Benedictus, Marije R.; Koedam, Esther L.G.M.; Scheltens, Philip; Flier, Wiesje M. van der; Versteeg, Adriaan; Wattjes, Mike P.; Barkhof, Frederik; Vrenken, Hugo

    2014-01-01

    Validate the four-point visual rating scale for posterior cortical atrophy (PCA) on magnetic resonance images (MRI) through quantitative grey matter (GM) volumetry and voxel-based morphometry (VBM) to justify its use in clinical practice. Two hundred twenty-nine patients with probable Alzheimer's disease and 128 with subjective memory complaints underwent 3T MRI. PCA was rated according to the visual rating scale. GM volumes of six posterior structures and the total posterior region were extracted using IBASPM and compared among PCA groups. To determine which anatomical regions contributed most to the visual scores, we used binary logistic regression. VBM compared local GM density among groups. Patients were categorised according to their PCA scores: PCA-0 (n = 122), PCA-1 (n = 143), PCA-2 (n = 79), and PCA-3 (n = 13). All structures except the posterior cingulate differed significantly among groups. The inferior parietal gyrus volume discriminated the most between rating scale levels. VBM showed that PCA-1 had a lower GM volume than PCA-0 in the parietal region and other brain regions, whereas between PCA-1 and PCA-2/3 GM atrophy was mostly restricted to posterior regions. The visual PCA rating scale is quantitatively validated and reliably reflects GM atrophy in parietal regions, making it a valuable tool for the daily radiological assessment of dementia. (orig.)

  18. Quantitative regional validation of the visual rating scale for posterior cortical atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, Christiane; Benedictus, Marije R.; Koedam, Esther L.G.M.; Scheltens, Philip [VU University Medical Center, Alzheimer Center and Department of Neurology, Neuroscience Campus Amsterdam, P.O. Box 7057, Amsterdam (Netherlands); Flier, Wiesje M. van der [VU University Medical Center, Alzheimer Center and Department of Neurology, Neuroscience Campus Amsterdam, P.O. Box 7057, Amsterdam (Netherlands); VU University Medical Center, Department of Epidemiology and Biostatistics, Neuroscience Campus Amsterdam, P.O. Box 7057, Amsterdam (Netherlands); Versteeg, Adriaan; Wattjes, Mike P.; Barkhof, Frederik [VU University Medical Center, Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, P.O. Box 7057, Amsterdam (Netherlands); Vrenken, Hugo [VU University Medical Center, Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, P.O. Box 7057, Amsterdam (Netherlands); VU University Medical Center, Department of Physics and Medical Technology, Neuroscience Campus Amsterdam, P.O. Box 7057, Amsterdam (Netherlands)

    2014-02-15

    Validate the four-point visual rating scale for posterior cortical atrophy (PCA) on magnetic resonance images (MRI) through quantitative grey matter (GM) volumetry and voxel-based morphometry (VBM) to justify its use in clinical practice. Two hundred twenty-nine patients with probable Alzheimer's disease and 128 with subjective memory complaints underwent 3T MRI. PCA was rated according to the visual rating scale. GM volumes of six posterior structures and the total posterior region were extracted using IBASPM and compared among PCA groups. To determine which anatomical regions contributed most to the visual scores, we used binary logistic regression. VBM compared local GM density among groups. Patients were categorised according to their PCA scores: PCA-0 (n = 122), PCA-1 (n = 143), PCA-2 (n = 79), and PCA-3 (n = 13). All structures except the posterior cingulate differed significantly among groups. The inferior parietal gyrus volume discriminated the most between rating scale levels. VBM showed that PCA-1 had a lower GM volume than PCA-0 in the parietal region and other brain regions, whereas between PCA-1 and PCA-2/3 GM atrophy was mostly restricted to posterior regions. The visual PCA rating scale is quantitatively validated and reliably reflects GM atrophy in parietal regions, making it a valuable tool for the daily radiological assessment of dementia. (orig.)

  19. Motivated malleability: Frontal cortical asymmetry predicts the susceptibility to social influence.

    Science.gov (United States)

    Schnuerch, Robert; Pfattheicher, Stefan

    2017-07-16

    Humans, just as many other animals, regulate their behavior in terms of approaching stimuli associated with pleasure and avoiding stimuli linked to harm. A person's current and chronic motivational direction - that is, approach versus avoidance orientation - is reliably reflected in the asymmetry of frontal cortical low-frequency oscillations. Using resting electroencephalography (EEG), we show that frontal asymmetry is predictive of the tendency to yield to social influence: Stronger right- than left-side frontolateral activation during a resting-state session prior to the experiment was robustly associated with a stronger inclination to adopt a peer group's judgments during perceptual decision-making (Study 1). We posit that this reflects the role of a person's chronic avoidance orientation in socially adjusted behavior. This claim was strongly supported by additional survey investigations (Studies 2a, 2b, 2c), all of which consistently revealed that trait avoidance was positively linked to the susceptibility to social influence. The present contribution thus stresses the relevance of chronic avoidance orientation in social conformity, refining (yet not contradicting) the longstanding view that socially influenced behavior is motivated by approach-related goals. Moreover, our findings valuably underscore and extend our knowledge on the association between frontal cortical asymmetry and a variety of psychological variables.

  20. Cognitive impairment in Alzheimer's disease correlates with ventricular width and atrophy-corrected cortical glucose metabolism

    International Nuclear Information System (INIS)

    Slansky, I.; Herholz, K.; Pietrzyk, U.; Kessler, J.; Grond, M.; Mielke, R.; Heiss, W.D.

    1995-01-01

    We compared the correlation of PET and MRI with neuropsychological tests in 26 patients with probable Alzheimer's disease (AD). The width of the temporal horns and the third ventricle, regional metabolic rates of glucose (rCMRGlu) and the proportion of cerebrospinal fluid space in mesial temporal and temporoparietal cortical regions were measured with three-dimensionally coregistered PET and MRI in two planes perpendicular to the Sylvian fissure. Highly significant correlations between rCMRGlu and neuropsychological tests were found mainly in the temporoparietal cortex, with and without correction for atrophy. Correlations of similar magnitude were seen also between most tests and the width of the temporal horns and third ventricle. Changes in the third ventricle and mesial temporal lobe were best seen with MRI, whereas PET most clearly depicted alterations in neocortical association areas. These two aspects of the disease correlated with the severity of dementia to a similar degree. (orig.)

  1. Lateralized occipital degeneration in posterior cortical atrophy predicts visual field deficits.

    Science.gov (United States)

    Millington, Rebecca S; James-Galton, Merle; Maia Da Silva, Mari N; Plant, Gordon T; Bridge, Holly

    2017-01-01

    Posterior cortical atrophy (PCA), the visual variant of Alzheimer's disease, leads to high-level visual deficits such as alexia or agnosia. Visual field deficits have also been identified, but often inconsistently reported. Little is known about the pattern of visual field deficits or the underlying cortical changes leading to this visual loss. Multi-modal magnetic resonance imaging was used to investigate differences in gray matter volume, cortical thickness, white matter microstructure and functional activity in patients with PCA compared to age-matched controls. Additional analyses investigated hemispheric asymmetries in these metrics according to the visual field most affected by the disease. Analysis of structural data indicated considerable loss of gray matter in the occipital and parietal cortices, lateralized to the hemisphere contralateral to the visual loss. This lateralized pattern of gray matter loss was also evident in the hippocampus and parahippocampal gyrus. Diffusion-weighted imaging showed considerable effects of PCA on white matter microstructure in the occipital cortex, and in the corpus callosum. The change in white matter was only lateralized in the occipital lobe, however, with greatest change in the optic radiation contralateral to the visual field deficit. Indeed, there was a significant correlation between the laterality of the optic radiation microstructure and visual field loss. Detailed brain imaging shows that the asymmetric visual field deficits in patients with PCA reflect the pattern of degeneration of both white and gray matter in the occipital lobe. Understanding the nature of both visual field deficits and the neurodegenerative brain changes in PCA may improve diagnosis and understanding of this disease.

  2. Semantic word category processing in semantic dementia and posterior cortical atrophy.

    Science.gov (United States)

    Shebani, Zubaida; Patterson, Karalyn; Nestor, Peter J; Diaz-de-Grenu, Lara Z; Dawson, Kate; Pulvermüller, Friedemann

    2017-08-01

    There is general agreement that perisylvian language cortex plays a major role in lexical and semantic processing; but the contribution of additional, more widespread, brain areas in the processing of different semantic word categories remains controversial. We investigated word processing in two groups of patients whose neurodegenerative diseases preferentially affect specific parts of the brain, to determine whether their performance would vary as a function of semantic categories proposed to recruit those brain regions. Cohorts with (i) Semantic Dementia (SD), who have anterior temporal-lobe atrophy, and (ii) Posterior Cortical Atrophy (PCA), who have predominantly parieto-occipital atrophy, performed a lexical decision test on words from five different lexico-semantic categories: colour (e.g., yellow), form (oval), number (seven), spatial prepositions (under) and function words (also). Sets of pseudo-word foils matched the target words in length and bi-/tri-gram frequency. Word-frequency was matched between the two visual word categories (colour and form) and across the three other categories (number, prepositions, and function words). Age-matched healthy individuals served as controls. Although broad word processing deficits were apparent in both patient groups, the deficit was strongest for colour words in SD and for spatial prepositions in PCA. The patterns of performance on the lexical decision task demonstrate (a) general lexicosemantic processing deficits in both groups, though more prominent in SD than in PCA, and (b) differential involvement of anterior-temporal and posterior-parietal cortex in the processing of specific semantic categories of words. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Posterior cortical atrophy: An investigation of scan paths generated during Face Matching tasks.

    Directory of Open Access Journals (Sweden)

    Benjamin P Meek

    2013-06-01

    Full Text Available When viewing a face, healthy individuals focus more on the area containing the eyes and upper nose in order to retrieve important featural and configural information. In contrast, individuals with face blindness (prosopagnosia tend to direct fixations towards individual facial features – particularly the mouth. Presented here is an examination of face perception deficits in individuals with Posterior Cortical Atrophy (PCA. PCA is a rare progressive neurodegenerative disorder that is characterized by atrophy in occipito-parietal and occipito-temporal cortices. PCA primarily affects higher visual processing, while memory, reasoning, and insight remain relatively intact. A common symptom of PCA is a decreased effective field of vision caused by the inability to ‘see the whole picture’. Individuals with PCA and healthy control participants completed a same/different discrimination task in which images of faces were presented as cue-target pairs. Eye-tracking equipment and a novel computer-based perceptual task – the Viewing Window paradigm – were used to investigate scan patterns when faces were presented in open view or through a restricted-view, respectively. In contrast to previous prosopagnosia research, individuals with PCA each produced unique scan paths that focused on non-diagnostically useful locations. This focus on non-diagnostically useful locations was also present when using a restricted viewing aperture, suggesting that individuals with PCA have difficulty processing the face at either the featural or configural level. In fact, it appears that the decreased effective field of view in PCA patients is so severe that it results in an extreme dependence on local processing, such that a feature-based approach is not even possible.

  4. Impaired decision-making and selective cortical frontal thinning in Cushing's syndrome.

    Science.gov (United States)

    Crespo, Iris; Esther, Granell-Moreno; Santos, Alicia; Valassi, Elena; Yolanda, Vives-Gilabert; De Juan-Delago, Manel; Webb, Susan M; Gómez-Ansón, Beatriz; Resmini, Eugenia

    2014-12-01

    Cushing's syndrome (CS) is caused by a glucocorticoid excess. This hypercortisolism can damage the prefrontal cortex, known to be important in decision-making. Our aim was to evaluate decision-making in CS and to explore cortical thickness. Thirty-five patients with CS (27 cured, eight medically treated) and thirty-five matched controls were evaluated using Iowa gambling task (IGT) and 3 Tesla magnetic resonance imaging (MRI) to assess cortical thickness. The IGT evaluates decision-making, including strategy and learning during the test. Cortical thickness was determined on MRI using freesurfer software tools, including a whole-brain analysis. There were no differences between medically treated and cured CS patients. They presented an altered decision-making strategy compared to controls, choosing a lower number of the safer cards (P behaviour was driven by short-term reward and long-term punishment, indicating learning problems because they did not use previous experience as a feedback factor to regulate their choices. These alterations in decision-making and the decreased cortical thickness in frontal areas suggest that chronic hypercortisolism promotes brain changes which are not completely reversible after endocrine remission. © 2014 John Wiley & Sons Ltd.

  5. Scene perception in posterior cortical atrophy: categorization, description and fixation patterns.

    Science.gov (United States)

    Shakespeare, Timothy J; Yong, Keir X X; Frost, Chris; Kim, Lois G; Warrington, Elizabeth K; Crutch, Sebastian J

    2013-01-01

    Partial or complete Balint's syndrome is a core feature of the clinico-radiological syndrome of posterior cortical atrophy (PCA), in which individuals experience a progressive deterioration of cortical vision. Although multi-object arrays are frequently used to detect simultanagnosia in the clinical assessment and diagnosis of PCA, to date there have been no group studies of scene perception in patients with the syndrome. The current study involved three linked experiments conducted in PCA patients and healthy controls. Experiment 1 evaluated the accuracy and latency of complex scene perception relative to individual faces and objects (color and grayscale) using a categorization paradigm. PCA patients were both less accurate (faces < scenes < objects) and slower (scenes < objects < faces) than controls on all categories, with performance strongly associated with their level of basic visual processing impairment; patients also showed a small advantage for color over grayscale stimuli. Experiment 2 involved free description of real world scenes. PCA patients generated fewer features and more misperceptions than controls, though perceptual errors were always consistent with the patient's global understanding of the scene (whether correct or not). Experiment 3 used eye tracking measures to compare patient and control eye movements over initial and subsequent fixations of scenes. Patients' fixation patterns were significantly different to those of young and age-matched controls, with comparable group differences for both initial and subsequent fixations. Overall, these findings describe the variability in everyday scene perception exhibited by individuals with PCA, and indicate the importance of exposure duration in the perception of complex scenes.

  6. Right frontal pole cortical thickness and social competence in children with chronic traumatic brain injury: cognitive proficiency as a mediator.

    Science.gov (United States)

    Levan, Ashley; Baxter, Leslie; Kirwan, C Brock; Black, Garrett; Gale, Shawn D

    2015-01-01

    To examine the association between right frontal pole cortical thickness, social competence, and cognitive proficiency in children participants with a history of chronic traumatic brain injury (TBI). Twenty-three children (65% male; M age = 12.8 years, SD = 2.3 years) at least 1 year post-injury (M = 3.3 years, SD = 1.7 years) were evaluated with the Cognitive Proficiency Index (CPI) from the Wechsler Intelligence Scale for Children, 4th Edition, and their caregiver completed the Child Behavior Checklist. Social competence was evaluated with the Social Competence and Social Problems subscales from the Child Behavior Checklist. Right frontal pole cortical thickness was calculated via FreeSurfer from high-resolution 3-dimensional T1 magnetic resonance imaging scans. Direct effect of right frontal pole cortical thickness on social competence was significant (β = 14.09, SE = 4.6, P Right frontal pole cortical thickness significantly predicted CPI (β = 18.44, SE = 4.9, P right frontal lobe cortical integrity and social competence in pediatric participants with chronic TBI may be mediated through cognitive proficiency.

  7. Convergent dysregulation of frontal cortical cognitive and reward systems in eating disorders.

    Science.gov (United States)

    Stefano, George B; Ptáček, Radek; Kuželová, Hana; Mantione, Kirk J; Raboch, Jiří; Papezova, Hana; Kream, Richard M

    2013-05-10

    A substantive literature has drawn a compelling case for the functional involvement of mesolimbic/prefrontal cortical neural reward systems in normative control of eating and in the etiology and persistence of severe eating disorders that affect diverse human populations. Presently, we provide a short review that develops an equally compelling case for the importance of dysregulated frontal cortical cognitive neural networks acting in concert with regional reward systems in the regulation of complex eating behaviors and in the presentation of complex pathophysiological symptoms associated with major eating disorders. Our goal is to highlight working models of major eating disorders that incorporate complementary approaches to elucidate functionally interactive neural circuits defined by their regulatory neurochemical phenotypes. Importantly, we also review evidence-based linkages between widely studied psychiatric and neurodegenerative syndromes (e.g., autism spectrum disorders and Parkinson's disease) and co-morbid eating disorders to elucidate basic mechanisms involving dopaminergic transmission and its regulation by endogenously expressed morphine in these same cortical regions.

  8. 3D Shape Perception in Posterior Cortical Atrophy: A Visual Neuroscience Perspective.

    Science.gov (United States)

    Gillebert, Céline R; Schaeverbeke, Jolien; Bastin, Christine; Neyens, Veerle; Bruffaerts, Rose; De Weer, An-Sofie; Seghers, Alexandra; Sunaert, Stefan; Van Laere, Koen; Versijpt, Jan; Vandenbulcke, Mathieu; Salmon, Eric; Todd, James T; Orban, Guy A; Vandenberghe, Rik

    2015-09-16

    Posterior cortical atrophy (PCA) is a rare focal neurodegenerative syndrome characterized by progressive visuoperceptual and visuospatial deficits, most often due to atypical Alzheimer's disease (AD). We applied insights from basic visual neuroscience to analyze 3D shape perception in humans affected by PCA. Thirteen PCA patients and 30 matched healthy controls participated, together with two patient control groups with diffuse Lewy body dementia (DLBD) and an amnestic-dominant phenotype of AD, respectively. The hierarchical study design consisted of 3D shape processing for 4 cues (shading, motion, texture, and binocular disparity) with corresponding 2D and elementary feature extraction control conditions. PCA and DLBD exhibited severe 3D shape-processing deficits and AD to a lesser degree. In PCA, deficient 3D shape-from-shading was associated with volume loss in the right posterior inferior temporal cortex. This region coincided with a region of functional activation during 3D shape-from-shading in healthy controls. In PCA patients who performed the same fMRI paradigm, response amplitude during 3D shape-from-shading was reduced in this region. Gray matter volume in this region also correlated with 3D shape-from-shading in AD. 3D shape-from-disparity in PCA was associated with volume loss slightly more anteriorly in posterior inferior temporal cortex as well as in ventral premotor cortex. The findings in right posterior inferior temporal cortex and right premotor cortex are consistent with neurophysiologically based models of the functional anatomy of 3D shape processing. However, in DLBD, 3D shape deficits rely on mechanisms distinct from inferior temporal structural integrity. Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by progressive visuoperceptual dysfunction and most often an atypical presentation of Alzheimer's disease (AD) affecting the ventral and dorsal visual streams rather than the medial temporal system. We applied

  9. 3D Shape Perception in Posterior Cortical Atrophy: A Visual Neuroscience Perspective

    Science.gov (United States)

    Gillebert, Céline R.; Schaeverbeke, Jolien; Bastin, Christine; Neyens, Veerle; Bruffaerts, Rose; De Weer, An-Sofie; Seghers, Alexandra; Sunaert, Stefan; Van Laere, Koen; Versijpt, Jan; Vandenbulcke, Mathieu; Salmon, Eric; Todd, James T.; Orban, Guy A.

    2015-01-01

    Posterior cortical atrophy (PCA) is a rare focal neurodegenerative syndrome characterized by progressive visuoperceptual and visuospatial deficits, most often due to atypical Alzheimer's disease (AD). We applied insights from basic visual neuroscience to analyze 3D shape perception in humans affected by PCA. Thirteen PCA patients and 30 matched healthy controls participated, together with two patient control groups with diffuse Lewy body dementia (DLBD) and an amnestic-dominant phenotype of AD, respectively. The hierarchical study design consisted of 3D shape processing for 4 cues (shading, motion, texture, and binocular disparity) with corresponding 2D and elementary feature extraction control conditions. PCA and DLBD exhibited severe 3D shape-processing deficits and AD to a lesser degree. In PCA, deficient 3D shape-from-shading was associated with volume loss in the right posterior inferior temporal cortex. This region coincided with a region of functional activation during 3D shape-from-shading in healthy controls. In PCA patients who performed the same fMRI paradigm, response amplitude during 3D shape-from-shading was reduced in this region. Gray matter volume in this region also correlated with 3D shape-from-shading in AD. 3D shape-from-disparity in PCA was associated with volume loss slightly more anteriorly in posterior inferior temporal cortex as well as in ventral premotor cortex. The findings in right posterior inferior temporal cortex and right premotor cortex are consistent with neurophysiologically based models of the functional anatomy of 3D shape processing. However, in DLBD, 3D shape deficits rely on mechanisms distinct from inferior temporal structural integrity. SIGNIFICANCE STATEMENT Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by progressive visuoperceptual dysfunction and most often an atypical presentation of Alzheimer's disease (AD) affecting the ventral and dorsal visual streams rather than the medial

  10. Mesenchymal stem cells can modulate longitudinal changes in cortical thickness and its related cognitive decline in patients with multiple system atrophy

    Science.gov (United States)

    Sunwoo, Mun Kyung; Yun, Hyuk Jin; Song, Sook K.; Ham, Ji Hyun; Hong, Jin Yong; Lee, Ji E.; Lee, Hye S.; Sohn, Young H.; Lee, Jong-Min; Lee, Phil Hyu

    2014-01-01

    Multiple system atrophy (MSA) is an adult-onset, sporadic neurodegenerative disease. Because the prognosis of MSA is fatal, neuroprotective or regenerative strategies may be invaluable in MSA treatment. Previously, we obtained clinical and imaging evidence that mesenchymal stem cell (MSC) treatment could have a neuroprotective role in MSA patients. In the present study, we evaluated the effects of MSC therapy on longitudinal changes in subcortical deep gray matter volumes and cortical thickness and their association with cognitive performance. Clinical and imaging data were obtained from our previous randomized trial of autologous MSC in MSA patients. During 1-year follow-up, we assessed longitudinal differences in automatic segmentation-based subcortical deep gray matter volumes and vertex-wise cortical thickness between placebo (n = 15) and MSC groups (n = 11). Next, we performed correlation analysis between the changes in cortical thickness and changes in the Korean version of the Montreal Cognitive Assessment (MoCA) scores and cognitive performance of each cognitive subdomain using a multiple, comparison correction. There were no significant differences in age at baseline, age at disease onset, gender ratio, disease duration, clinical severity, MoCA score, or education level between the groups. The automated subcortical volumetric analysis revealed that the changes in subcortical deep gray matter volumes of the caudate, putamen, and thalamus did not differ significantly between the groups. The areas of cortical thinning over time in the placebo group were more extensive, including the frontal, temporal, and parietal areas, whereas these areas in the MSC group were less extensive. Correlation analysis indicated that declines in MoCA scores and phonemic fluency during the follow-up period were significantly correlated with cortical thinning of the frontal and posterior temporal areas and anterior temporal areas in MSA patients, respectively. In contrast, no

  11. Late-onset Alzheimer disease genetic variants in posterior cortical atrophy and posterior AD.

    Science.gov (United States)

    Carrasquillo, Minerva M; Khan, Qurat ul Ain; Murray, Melissa E; Krishnan, Siddharth; Aakre, Jeremiah; Pankratz, V Shane; Nguyen, Thuy; Ma, Li; Bisceglio, Gina; Petersen, Ronald C; Younkin, Steven G; Dickson, Dennis W; Boeve, Bradley F; Graff-Radford, Neill R; Ertekin-Taner, Nilüfer

    2014-04-22

    To investigate association of genetic risk factors for late-onset Alzheimer disease (LOAD) with risk of posterior cortical atrophy (PCA), a syndrome of visual impairment with predominant Alzheimer disease (AD) pathology in posterior cortical regions, and with risk of "posterior AD" neuropathology. We assessed 81 participants with PCA diagnosed clinically and 54 with neuropathologic diagnosis of posterior AD vs 2,523 controls for association with 11 significant single nucleotide polymorphisms (SNPs) from published LOAD risk genome-wide association studies. There was highly significant association with APOE ε4 and increased risk of PCA (p = 0.0003, odds ratio [OR] = 3.17) and posterior AD (p = 1.11 × 10(-17), OR = 6.43). No other locus was significant after corrections for multiple testing, although rs11136000 near CLU (p = 0.019, OR = 0.60) and rs744373 near BIN1 (p = 0.025, OR = 1. 63) associated nominally significantly with posterior AD, and rs3851179 at the PICALM locus had significant association with PCA (p = 0.0003, OR = 2.84). ABCA7 locus SNP rs3764650, which was also tested under the recessive model because of Hardy-Weinberg disequilibrium, also had nominally significant association with PCA risk. The direction of association at APOE, CLU, and BIN1 loci was the same for participants with PCA and posterior AD. The effects for all SNPs, except rs3851179, were consistent with those for LOAD risk. We identified a significant effect for APOE and nominate CLU, BIN1, and ABCA7 as additional risk loci for PCA and posterior AD. Our findings suggest that at least some of the genetic risk factors for LOAD are shared with these atypical conditions and provide effect-size estimates for their future genetic studies.

  12. Scene perception in Posterior Cortical Atrophy: categorisation, description and fixation patterns

    Directory of Open Access Journals (Sweden)

    Timothy J Shakespeare

    2013-10-01

    Full Text Available Partial or complete Balint’s syndrome is a core feature of the clinico-radiological syndrome of posterior cortical atrophy (PCA, in which individuals experience a progressive deterioration of cortical vision. Although multi-object arrays are frequently used to detect simultanagnosia in the clinical assessment and diagnosis of PCA, to date there have been no group studies of scene perception in patients with the syndrome. The current study involved three linked experiments conducted in PCA patients and healthy controls. Experiment 1 evaluated the accuracy and latency of complex scene perception relative to individual faces and objects (colour and greyscale using a categorisation paradigm. PCA patients were both less accurate (faces

  13. Cortical correlates of affective syndrome in dementia due to Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Thaís T. Hayata

    2015-07-01

    Full Text Available Neuropsychiatric symptoms in Alzheimer’s disease (AD are prevalent, however their relationship with patterns of cortical atrophy is not fully known. Objectives To compare cortical atrophy’s patterns between AD patients and healthy controls; to verify correlations between neuropsychiatric syndromes and cortical atrophy. Method 33 AD patients were examined by Neuropsychiatric Inventory (NPI. Patients and 29 controls underwent a 3T MRI scanning. We considered four NPI syndromes: affective, apathy, hyperactivity and psychosis. Correlations between structural imaging and neuropsychiatric scores were performed by Freesurfer. Results were significant with a p-value < 0.05, corrected for multiple comparisons. Results Patients exhibited atrophy in entorhinal cortices, left inferior and middle temporal gyri, and precuneus bilaterally. There was correlation between affective syndrome and cortical thickness in right frontal structures, insula and temporal pole. Conclusion Cortical thickness measures revealed atrophy in mild AD. Depression and anxiety symptoms were associated with atrophy of right frontal, temporal and insular cortices.

  14. Attention enhances multi-voxel representation of novel objects in frontal, parietal and visual cortices.

    Science.gov (United States)

    Woolgar, Alexandra; Williams, Mark A; Rich, Anina N

    2015-04-01

    Selective attention is fundamental for human activity, but the details of its neural implementation remain elusive. One influential theory, the adaptive coding hypothesis (Duncan, 2001, An adaptive coding model of neural function in prefrontal cortex, Nature Reviews Neuroscience 2:820-829), proposes that single neurons in certain frontal and parietal regions dynamically adjust their responses to selectively encode relevant information. This selective representation may in turn support selective processing in more specialized brain regions such as the visual cortices. Here, we use multi-voxel decoding of functional magnetic resonance images to demonstrate selective representation of attended--and not distractor--objects in frontal, parietal, and visual cortices. In addition, we highlight a critical role for task demands in determining which brain regions exhibit selective coding. Strikingly, representation of attended objects in frontoparietal cortex was highest under conditions of high perceptual demand, when stimuli were hard to perceive and coding in early visual cortex was weak. Coding in early visual cortex varied as a function of attention and perceptual demand, while coding in higher visual areas was sensitive to the allocation of attention but robust to changes in perceptual difficulty. Consistent with high-profile reports, peripherally presented objects could also be decoded from activity at the occipital pole, a region which corresponds to the fovea. Our results emphasize the flexibility of frontoparietal and visual systems. They support the hypothesis that attention enhances the multi-voxel representation of information in the brain, and suggest that the engagement of this attentional mechanism depends critically on current task demands. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Family Nurture Intervention in preterm infants alters frontal cortical functional connectivity assessed by EEG coherence.

    Science.gov (United States)

    Myers, M M; Grieve, P G; Stark, R I; Isler, J R; Hofer, M A; Yang, J; Ludwig, R J; Welch, M G

    2015-07-01

    To assess the impact of Family Nurture Intervention (FNI) on cortical function in preterm infants at term age. Family Nurture Intervention is a NICU-based intervention designed to establish emotional connection between mothers and preterm infants. Infants born at 26-34 weeks postmenstrual age (PMA) were divided into two groups, standard care (SC, N = 49) and FNI (FNI, N = 56). Infants had EEG recordings of ~one hour duration with 124 lead nets between 37 and 44 weeks PMA. Coherence was measured between all pairs of electrodes in ten frequency bands. Data were summarised both within and between 12 regions during two sleep states (active, quiet). Coherence levels were negatively correlated with PMA age in both groups. As compared to SC infants, FNI infants showed significantly lower levels of EEG coherence (1-18 Hz) largely within and between frontal regions. Coherence in FNI infants was decreased in regions where we previously found robust increases in EEG power. As coherence decreases with age, results suggest that FNI may accelerate brain maturation particularly in frontal brain regions, which have been shown in research by others to be involved in regulation of attention, cognition and emotion regulation; domains deficient in preterm infants. ©2015 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  16. Neuropsychological correlates of brain atrophy in Huntington's disease: a magnetic resonance imaging study

    International Nuclear Information System (INIS)

    Starkstein, S.E.; Brandt, J.; Bylsma, F.; Peyser, C.; Folstein, M.; Folstein, S.E.

    1992-01-01

    Magnetic resonance imaging and a comprehensive cognitive evaluation were carried out in a series of 29 patients with mild to moderate Huntington's disease (HD). A factor analysis of the neuropsychological test scores provided three factors: A memory/speed-of-processing factor, a 'frontal' factor, and a response inhibition factor. The memory/speed factor correlated significantly with measures of caudate atrophy, frontal atrophy, and atrophy of the left (but not the right) sylvian cistern. There were no significant correlations between the 'frontal' or response inhibition factors and measures of cortical or subcortical brain atrophy. Our findings confirm that subcortical atrophy is significantly correlated with specific cognitive deficits in HD, and demonstrate that cortical atrophy also has important association with the cognitive deficits of patients with HD. (orig.)

  17. Reduced frontal cortex thickness and cortical volume associated with pathological narcissism.

    Science.gov (United States)

    Mao, Yu; Sang, Na; Wang, Yongchao; Hou, Xin; Huang, Hui; Wei, Dongtao; Zhang, Jinfu; Qiu, Jiang

    2016-07-22

    Pathological narcissism is often characterized by arrogant behavior, a lack of empathy, and willingness to exploit other individuals. Generally, individuals with high levels of narcissism are more likely to suffer mental disorders. However, the brain structural basis of individual pathological narcissism trait among healthy people has not yet been investigated with surface-based morphometry. Thus, in this study, we investigated the relationship between cortical thickness (CT), cortical volume (CV), and individual pathological narcissism in a large healthy sample of 176 college students. Multiple regression was used to analyze the correlation between regional CT, CV, and the total Pathological Narcissism Inventory (PNI) score, adjusting for age, sex, and total intracranial volume. The results showed that the PNI score was significantly negatively associated with CT and CV in the right dorsolateral prefrontal cortex (DLPFC, key region of the central executive network, CEN), which might be associated with impaired emotion regulation processes. Furthermore, the PNI score showed significant negative associations with CV in the right postcentral gyrus, left medial prefrontal cortex (MPFC), and the CT in the right inferior frontal cortex (IFG, overlap with social brain network), which may be related to impairments in social cognition. Together, these findings suggest a unique structural basis for individual differences in pathological narcissism, distributed across different gray matter regions of the social brain network and CEN. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Dissociable Changes of Frontal and Parietal Cortices in Inherent Functional Flexibility across the Human Life Span.

    Science.gov (United States)

    Yin, Dazhi; Liu, Wenjing; Zeljic, Kristina; Wang, Zhiwei; Lv, Qian; Fan, Mingxia; Cheng, Wenhong; Wang, Zheng

    2016-09-28

    Extensive evidence suggests that frontoparietal regions can dynamically update their pattern of functional connectivity, supporting cognitive control and adaptive implementation of task demands. However, it is largely unknown whether this flexibly functional reconfiguration is intrinsic and occurs even in the absence of overt tasks. Based on recent advances in dynamics of resting-state functional resonance imaging (fMRI), we propose a probabilistic framework in which dynamic reconfiguration of intrinsic functional connectivity between each brain region and others can be represented as a probability distribution. A complexity measurement (i.e., entropy) was used to quantify functional flexibility, which characterizes heterogeneous connectivity between a particular region and others over time. Following this framework, we identified both functionally flexible and specialized regions over the human life span (112 healthy subjects from 13 to 76 years old). Across brainwide regions, we found regions showing high flexibility mainly in the higher-order association cortex, such as the lateral prefrontal cortex (LPFC), lateral parietal cortex, and lateral temporal lobules. In contrast, visual, auditory, and sensory areas exhibited low flexibility. Furthermore, we observed that flexibility of the right LPFC improved during maturation and reduced due to normal aging, with the opposite occurring for the left lateral parietal cortex. Our findings reveal dissociable changes of frontal and parietal cortices over the life span in terms of inherent functional flexibility. This study not only provides a new framework to quantify the spatiotemporal behavior of spontaneous brain activity, but also sheds light on the organizational principle behind changes in brain function across the human life span. Recent neuroscientific research has demonstrated that the human capability of adaptive task control is primarily the result of the flexible operation of frontal brain networks. However

  19. Right frontal pole cortical thickness and executive functioning in children with traumatic brain injury: the impact on social problems.

    Science.gov (United States)

    Levan, Ashley; Black, Garrett; Mietchen, Jonathan; Baxter, Leslie; Brock Kirwan, C; Gale, Shawn D

    2016-12-01

    Cognitive and social outcomes may be negatively affected in children with a history of traumatic brain injury (TBI). We hypothesized that executive function would mediate the association between right frontal pole cortical thickness and problematic social behaviors. Child participants with a history of TBI were recruited from inpatient admissions for long-term follow-up (n = 23; average age = 12.8, average time post-injury =3.2 years). Three measures of executive function, the Trail Making Test, verbal fluency test, and the Conners' Continuous Performance Test-Second edition (CPT-II), were administered to each participant while caregivers completed the Childhood Behavior Checklist (CBCL). All participants underwent brain magnetic resonance imaging following cognitive testing. Regression analysis demonstrated right frontal pole cortical thickness significantly predicted social problems. Measures of executive functioning also significantly predicted social problems; however, the mediation model testing whether executive function mediated the relationship between cortical thickness and social problems was not statistically significant. Right frontal pole cortical thickness and omission errors on the CPT-II predicted Social Problems on the CBCL. Results did not indicate that the association between cortical thickness and social problems was mediated by executive function.

  20. The oral spelling profile of posterior cortical atrophy and the nature of the graphemic representation.

    Science.gov (United States)

    Primativo, Silvia; Yong, Keir X X; Shakespeare, Timothy J; Crutch, Sebastian J

    2017-01-08

    Spelling is a complex cognitive task where central and peripheral components are involved in engaging resources from many different cognitive processes. The present paper aims to both characterize the oral spelling deficit in a population of patients affected by a neurodegenerative condition and to clarify the nature of the graphemic representation within the currently available spelling models. Indeed, the nature of graphemic representation as a linear or multi-componential structure is still debated. Different hypotheses have been raised about its nature in the orthographic lexicon, with one positing that graphemes are complex objects whereby quantity and identity are separately represented in orthographic representations and can thus be selectively impaired. Posterior cortical atrophy (PCA) is a neurodegenerative condition that mainly affects visuoperceptual and visuospatial functions. Spelling impairments are considered part of the disease. Nonetheless the spelling deficit has received little attention so far and often it has been interpreted in relation to peripheral impairments such as writing difficulties associated with visuoperceptual and visuospatial deficits. In the present study we provide a detailed characterization of the oral spelling profile in PCA. The data suggest that multiple deficits underpin oral spelling problems in PCA, with elements of surface and phonological dysgraphia but also suggesting the involvement of the graphemic buffer. A large phenotypic individual variability is reported. Moreover, the larger proportion and the specific nature of errors involving geminate (i.e., double) as compared to non-geminate (i.e., non-double) letters suggest that a further central impairment might be associated with the abstract graphemic representation of letter numerosity. The present study contributes to the clinical characterization of PCA and to the current debate in the cognitive literature on spelling models; findings, despite not definitive

  1. Genetic risk factors for the posterior cortical atrophy variant of Alzheimer's disease.

    Science.gov (United States)

    Schott, Jonathan M; Crutch, Sebastian J; Carrasquillo, Minerva M; Uphill, James; Shakespeare, Tim J; Ryan, Natalie S; Yong, Keir X; Lehmann, Manja; Ertekin-Taner, Nilufer; Graff-Radford, Neill R; Boeve, Bradley F; Murray, Melissa E; Khan, Qurat Ul Ain; Petersen, Ronald C; Dickson, Dennis W; Knopman, David S; Rabinovici, Gil D; Miller, Bruce L; González, Aida Suárez; Gil-Néciga, Eulogio; Snowden, Julie S; Harris, Jenny; Pickering-Brown, Stuart M; Louwersheimer, Eva; van der Flier, Wiesje M; Scheltens, Philip; Pijnenburg, Yolande A; Galasko, Douglas; Sarazin, Marie; Dubois, Bruno; Magnin, Eloi; Galimberti, Daniela; Scarpini, Elio; Cappa, Stefano F; Hodges, John R; Halliday, Glenda M; Bartley, Lauren; Carrillo, Maria C; Bras, Jose T; Hardy, John; Rossor, Martin N; Collinge, John; Fox, Nick C; Mead, Simon

    2016-08-01

    The genetics underlying posterior cortical atrophy (PCA), typically a rare variant of Alzheimer's disease (AD), remain uncertain. We genotyped 302 PCA patients from 11 centers, calculated risk at 24 loci for AD/DLB and performed an exploratory genome-wide association study. We confirm that variation in/near APOE/TOMM40 (P = 6 × 10(-14)) alters PCA risk, but with smaller effect than for typical AD (PCA: odds ratio [OR] = 2.03, typical AD: OR = 2.83, P = .0007). We found evidence for risk in/near CR1 (P = 7 × 10(-4)), ABCA7 (P = .02) and BIN1 (P = .04). ORs at variants near INPP5D and NME8 did not overlap between PCA and typical AD. Exploratory genome-wide association studies confirmed APOE and identified three novel loci: rs76854344 near CNTNAP5 (P = 8 × 10(-10) OR = 1.9 [1.5-2.3]); rs72907046 near FAM46A (P = 1 × 10(-9) OR = 3.2 [2.1-4.9]); and rs2525776 near SEMA3C (P = 1 × 10(-8), OR = 3.3 [2.1-5.1]). We provide evidence for genetic risk factors specifically related to PCA. We identify three candidate loci that, if replicated, may provide insights into selective vulnerability and phenotypic diversity in AD. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  2. (Con)text-specific effects of visual dysfunction on reading in posterior cortical atrophy.

    Science.gov (United States)

    Yong, Keir X X; Shakespeare, Timothy J; Cash, Dave; Henley, Susie M D; Warren, Jason D; Crutch, Sebastian J

    2014-08-01

    Reading deficits are a common early feature of the degenerative syndrome posterior cortical atrophy (PCA) but are poorly understood even at the single word level. The current study evaluated the reading accuracy and speed of 26 PCA patients, 17 typical Alzheimer's disease (tAD) patients and 14 healthy controls on a corpus of 192 single words in which the following perceptual properties were manipulated systematically: inter-letter spacing, font size, length, font type, case and confusability. PCA reading was significantly less accurate and slower than tAD patients and controls, with performance significantly adversely affected by increased letter spacing, size, length and font (cursive < non-cursive), and characterised by visual errors (69% of all error responses). By contrast, tAD and control accuracy rates were at or near ceiling, letter spacing was the only perceptual factor to influence reading speed in the same direction as controls, and, in contrast to PCA patients, control reading was faster for larger font sizes. The inverse size effect in PCA (less accurate reading of large than small font size print) was associated with lower grey matter volume in the right superior parietal lobule. Reading accuracy was associated with impairments of early visual (especially crowding), visuoperceptual and visuospatial processes. However, these deficits were not causally related to a universal impairment of reading as some patients showed preserved reading for small, unspaced words despite grave visual deficits. Rather, the impact of specific types of visual dysfunction on reading was found to be (con)text specific, being particularly evident for large, spaced, lengthy words. These findings improve the characterisation of dyslexia in PCA, shed light on the causative and associative factors, and provide clear direction for the development of reading aids and strategies to maximise and sustain reading ability in the early stages of disease. Copyright © 2014. Published by

  3. Inferior frontal gyrus links visual and motor cortices during a visuomotor precision grip force task.

    Science.gov (United States)

    Papadelis, Christos; Arfeller, Carola; Erla, Silvia; Nollo, Giandomenico; Cattaneo, Luigi; Braun, Christoph

    2016-11-01

    Coordination between vision and action relies on a fronto-parietal network that receives visual and proprioceptive sensory input in order to compute motor control signals. Here, we investigated with magnetoencephalography (MEG) which cortical areas are functionally coupled on the basis of synchronization during visuomotor integration. MEG signals were recorded from twelve healthy adults while performing a unimanual visuomotor (VM) task and control conditions. The VM task required the integration of pinch motor commands with visual sensory feedback. By using a beamformer, we localized the neural activity in the frequency range of 1-30Hz during the VM compared to rest. Virtual sensors were estimated at the active locations. A multivariate autoregressive model was used to estimate the power and coherence of estimated activity at the virtual sensors. Event-related desynchronisation (ERD) during VM was observed in early visual areas, the rostral part of the left inferior frontal gyrus (IFG), the right IFG, the superior parietal lobules, and the left hand motor cortex (M1). Functional coupling in the alpha frequency band bridged the regional activities observed in motor and visual cortices (the start and the end points in the visuomotor loop) through the left or right IFG. Coherence between the left IFG and left M1 correlated inversely with the task performance. Our results indicate that an occipital-prefrontal-motor functional network facilitates the modulation of instructed motor responses to visual cues. This network may supplement the mechanism for guiding actions that is fully incorporated into the dorsal visual stream. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. NEURAL CORRELATES FOR APATHY: FRONTAL - PREFRONTAL AND PARIETAL CORTICAL - SUBCORTICAL CIRCUITS

    Directory of Open Access Journals (Sweden)

    Rita Moretti

    2016-12-01

    Full Text Available Apathy is an uncertain nosographical entity, which includes reduced motivation, abulia, decreased empathy, and lack of emotional invovlement; it is an important and heavy-burden clinical condition which strongly impacts in every day life events, affects the common daily living abilities, reduced the inner goal directed behavior, and gives the heaviest burden on caregivers. Is a quite common comorbidity of many neurological disease, However, there is no definite consensus on the role of apathy in clinical practice, no definite data on anatomical circuits involved in its development, and no definite instrument to detect it at bedside. As a general observation, the occurrence of apathy is connected to damage of prefrontal cortex (PFC and basal ganglia; emotional affective apathy may be related to the orbitomedial PFC and ventral striatum; cognitive apathy may be associated with dysfunction of lateral PFC and dorsal caudate nuclei; deficit of autoactivation may be due to bilateral lesions of the internal portion of globus pallidus, bilateral paramedian thalamic lesions, or the dorsomedial portion of PFC. On the other hand, apathy severity has been connected to neurofibrillary tangles density in the anterior cingulate gyrus and to grey matter atrophy in the anterior cingulate (ACC and in the left medial frontal cortex, confirmed by functional imaging studies. These neural networks are linked to projects, judjing and planning, execution and selection common actions, and through the basolateral amygdala and nucleus accumbens projects to the frontostriatal and to the dorsolateral prefrontal cortex. Therefore, an alteration of these circuitry caused a lack of insight, a reduction of decision-making strategies and a reduced speedness in action decsion, major resposnible for apathy. Emergent role concerns also the parietal cortex, with its direct action motivation control.We will discuss the importance of these circuits in different pathologies

  5. Distinct roles of visual, parietal, and frontal motor cortices in memory-guided sensorimotor decisions.

    Science.gov (United States)

    Goard, Michael J; Pho, Gerald N; Woodson, Jonathan; Sur, Mriganka

    2016-08-04

    Mapping specific sensory features to future motor actions is a crucial capability of mammalian nervous systems. We investigated the role of visual (V1), posterior parietal (PPC), and frontal motor (fMC) cortices for sensorimotor mapping in mice during performance of a memory-guided visual discrimination task. Large-scale calcium imaging revealed that V1, PPC, and fMC neurons exhibited heterogeneous responses spanning all task epochs (stimulus, delay, response). Population analyses demonstrated unique encoding of stimulus identity and behavioral choice information across regions, with V1 encoding stimulus, fMC encoding choice even early in the trial, and PPC multiplexing the two variables. Optogenetic inhibition during behavior revealed that all regions were necessary during the stimulus epoch, but only fMC was required during the delay and response epochs. Stimulus identity can thus be rapidly transformed into behavioral choice, requiring V1, PPC, and fMC during the transformation period, but only fMC for maintaining the choice in memory prior to execution.

  6. Prevalence of Mathematical and Visuospatial Learning Disabilities in Patients With Posterior Cortical Atrophy.

    Science.gov (United States)

    Miller, Zachary A; Rosenberg, Lynne; Santos-Santos, Miguel A; Stephens, Melanie; Allen, Isabel E; Hubbard, H Isabel; Cantwell, Averill; Mandelli, Maria Luisa; Grinberg, Lea T; Seeley, William W; Miller, Bruce L; Rabinovici, Gil D; Gorno-Tempini, Maria Luisa

    2018-04-09

    Increased prevalence of language-based learning disabilities (LDs) has been previously reported in patients with primary progressive aphasia (PPA). This study hypothesized that patients with focal neurodegenerative syndromes outside the language network, such as posterior cortical atrophy (PCA), would have a higher rate of nonlanguage LDs, congruent with their mainly visuospatial presentation. To investigate the prevalence and type of LD (language and/or mathematical and visuospatial) in a large cohort of patients with PCA compared with patients with logopenic variant PPA (lvPPA) and amnestic Alzheimer disease (AD). This case-control study reviewed 279 medical records from a university-based clinic and research center for patients with neurodegenerative diseases for LD history, including patients with PCA (n = 95), patients with lvPPA (n = 84), and a matched cohort with amnestic AD (n = 100). No records were excluded. The study compared cognitive and neuroimaging features of patients with PCA with and without LDs. A review of the records of patients presenting from March 1, 1999, to August 31, 2014, revealed 95 PCA cases and 84 lvPPA cases. Then 100 patients with amnestic AD from this same period were chosen for comparison, matching against the groups for age, sex, and disease severity. Data analysis was performed from September 8, 2013, to November 6, 2017. Prevalence of total LD history and prevalence of language and mathematical or visuospatial LD history across all cohorts. A total of 179 atypical AD cases (95 with PCA and 84 with lvPPA) and 100 disease control cases (amnestic AD) were included in the study. The groups were not statistically different for mean (SD) age at first visit (PCA, 61.9 [7.0] years; lvPPA, 65.1 [8.7] years; amnestic AD, 64.0 [12.6] years; P = .08), mean (SD) age at first symptom (PCA, 57.5 [7.0] years; lvPPA, 61.1 [9.0] years; amnestic AD, 59.6 [13.7] years; P = .06), or sex (PCA, 66.3% female; lvPPA, 56.0% female

  7. Young woman with a four-year history of epilepsy and progressive focal cortical atrophy — What is the diagnosis?

    Directory of Open Access Journals (Sweden)

    S. Pati

    2014-01-01

    Full Text Available The pathogenesis of disease progression in drug-refractory epilepsy is poorly understood. We report the case of a young woman with a four-year history of epilepsy that progressed rapidly as evidenced by the development of progressive focal cortical atrophy. She underwent biopsy that showed perinatal ischemia and a prominent inflammatory response, including T-cell infiltration and microglial activation. There was no consensus reached on the final diagnosis although the hypothesis of dual pathology (adult variant of Rasmussen's encephalitis and perinatal stroke was considered. The possible role of inflammation in the progression of epilepsy caused by a “static” lesion (perinatal stroke is discussed.

  8. Reduced Inhibitory Control Mediates the Relationship Between Cortical Thickness in the Right Superior Frontal Gyrus and Body Mass Index.

    Science.gov (United States)

    Lavagnino, Luca; Mwangi, Benson; Bauer, Isabelle E; Cao, Bo; Selvaraj, Sudhakar; Prossin, Alan; Soares, Jair C

    2016-08-01

    Unhealthy eating behaviors often develop in the setting of inadequate inhibitory control, a function broadly ascribed to the prefrontal cortex (PFC). Regulation of inhibitory control by the PFC and its anatomical components and their contribution to increasing body mass index (BMI) are poorly understood. To study the role of PFC in the regulation of inhibitory control and body weight, we examined measures of cortical thickness in PFC sub-regions, inhibitory control (color-word interference task (CWIT)), and BMI in 91 healthy volunteers. We tested the predictive effect of PFC sub-regional cortical thickness on BMI and mediation by inhibitory control measured with CWIT. Measures of depression (BDI-II), anxiety (STAI-T) and trauma-related symptoms (TSC-40) were collected; the disinhibition scale of the three-factor eating questionnaire (TFEQ) was used to assess disinhibited eating. We then tested the relationship between BD-II, STAI-T, TSC-40, TFEQ, CWIT, and BMI with correlation analyses. Right superior frontal gyrus cortical thickness significantly predicted BMI (β=-0.91; t=-3.2; p=0.002). Mediation analysis showed a significant indirect effect of cortical thickness on BMI mediated by inhibitory control (95% CI=-6.1, -0.67). BMI was unrelated to BDI-II, STAI-T, TSC-40, or TFEQ scores. We found an inverse relationship between cortical thickness in the right-superior frontal gyrus and BMI, which was fully mediated by inhibitory control neurocognitive performance. Our results suggest possible targets for neuromodulation in obesity (ie superior frontal gyrus) and a quantifiable mediator of their effects (ie inhibitory control).

  9. Cortical atrophy and hypofibrinogenemia due to FGG and TBCD mutations in a single family: a case report.

    Science.gov (United States)

    Stephen, Joshi; Nampoothiri, Sheela; Vinayan, K P; Yesodharan, Dhanya; Remesh, Preetha; Gahl, William A; Malicdan, May Christine V

    2018-05-16

    Blended phenotypes or co-occurrence of independent phenotypically distinct conditions are extremely rare and are due to coincidence of multiple pathogenic mutations, especially due to consanguinity. Hereditary fibrinogen deficiencies result from mutations in the genes FGA, FGB, and FGG, encoding the three different polypeptide chains that comprise fibrinogen. Neurodevelopmental abnormalities have not been associated with fibrinogen deficiencies. In this study, we report an unusual patient with a combination of two independently inherited genetic conditions; fibrinogen deficiency and early onset cortical atrophy. The study describes a male child from consanguineous family presented with hypofibrinogenemia, diffuse cortical atrophy, microcephaly, hypertonia and axonal motor neuropathy. Through a combination of homozygosity mapping and exome sequencing, we identified bi-allelic pathogenic mutations in two genes: a homozygous novel truncating mutation in FGG (c.554del; p.Lys185Argfs*14) and a homozygous missense mutation in TBCD (c.1423G > A;p.Ala475Thr). Loss of function mutations in FGG have been associated with fibrinogen deficiency, while the c.1423G > A mutation in TBCD causes a novel syndrome of neurodegeneration and early onset encephalopathy. Our study highlights the importance of homozygosity mapping and exome sequencing in molecular prenatal diagnosis, especially when multiple gene mutations are responsible for the phenotype.

  10. Differential diagnosis of frontal lobe atrophy from chronic subdural hematoma or subdural hygroma on CT in aged patients. Usefulness of CT cisternogram

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Hideaki [Osaka Univ. (Japan). Faculty of Medicine

    1995-02-01

    Metrizamide CT cisternograms (CTC) were performed in order to examine the CSF passage to subarachnoid space, cerebral sulci and Sylvian fissure. The old aged 20 patients (from 63 to 88 years old) with the layer of low density area around bilateral frontal lobe (bi-frontal LDA) in plain CT finding were selected from 2000 aged patients hospitalized in Hanwa-Senboku Hospital. In these 20 patients, it was difficult to differentiate frontal lobe atrophy from the chronic subdural hematoma and subdural hygroma. Conservative therapy was applied in 19 patients for their old age or their complicated diseases. Only 1 patient was operated for subdural hygroma. The 20 patients were investigated in EEGs, severity of dementia, disturbance of consciousness, activity of daily life, their clinical course and prognosis. Only 2 of the 11 patients with type 1 CTC findings (cerebral sulci, Sylvian fissure and bi-frontal LDA were simultaneously enhanced by metrizamide) showed disturbance of consciousness and/or delirium for their serious somatic disorders. All of 6 patients with type 3 CTC findings (only bi-frontal LDA was not enhanced by metrizamide) showed disturbance of consciousness. Three patients with type 2 CTC findings (atypical findings) were reported independently. Subdural disorder elevating intracranial pressure were clarified in the cases with type 3 CTC findings. (author).

  11. Differential diagnosis of frontal lobe atrophy from chronic subdural hematoma or subdural hygroma on CT in aged patients. Usefulness of CT cisternogram

    International Nuclear Information System (INIS)

    Hayashi, Hideaki

    1995-01-01

    Metrizamide CT cisternograms (CTC) were performed in order to examine the CSF passage to subarachnoid space, cerebral sulci and Sylvian fissure. The old aged 20 patients (from 63 to 88 years old) with the layer of low density area around bilateral frontal lobe (bi-frontal LDA) in plain CT finding were selected from 2000 aged patients hospitalized in Hanwa-Senboku Hospital. In these 20 patients, it was difficult to differentiate frontal lobe atrophy from the chronic subdural hematoma and subdural hygroma. Conservative therapy was applied in 19 patients for their old age or their complicated diseases. Only 1 patient was operated for subdural hygroma. The 20 patients were investigated in EEGs, severity of dementia, disturbance of consciousness, activity of daily life, their clinical course and prognosis. Only 2 of the 11 patients with type 1 CTC findings (cerebral sulci, Sylvian fissure and bi-frontal LDA were simultaneously enhanced by metrizamide) showed disturbance of consciousness and/or delirium for their serious somatic disorders. All of 6 patients with type 3 CTC findings (only bi-frontal LDA was not enhanced by metrizamide) showed disturbance of consciousness. Three patients with type 2 CTC findings (atypical findings) were reported independently. Subdural disorder elevating intracranial pressure were clarified in the cases with type 3 CTC findings. (author)

  12. T171. REDUCED FRONTAL CORTICAL THICKNESS AND SURFACE IN A 10 YEARS FOLLOW-UP OF EARLY ONSET PSYCHOSIS

    Science.gov (United States)

    Ilzarbe, Daniel; de la Serna, Elena; Baeza, Inmaculada; Pariente, Jose; Fortea, Adriana; Redondo, Marina; Bargallo, Nuria; Castro-Fornieles, Josefina; Sugranyes, Gisela

    2018-01-01

    Abstract Background Structural volume loss of cortical gray matter over time in schizophrenia has been widely reported (Vita et al. 2012), and may be more pronounced when the disorder has an onset prior to age 18 (Early Onset Psychosis, EOP; Arango et al. 2008). More recently, studies have focused on measures of cortical morphology. The single study in EOP so far has identified greater loss of cortical thickness (CTH) in patients with schizophrenia over time (van Haren et al. 2011), whereas to our knowledge, no so far study has examined measures of surface area (SA) in EOP following a longitudinal design. We set out to examine measures of both CTH and SA in a sample of EOP at 10-year-follow-up. Methods Patients with EOP were recruited at first episode, matched by sex and age with healthy controls (HC) and re-assessed at 10 years. Subjects were evaluated clinically and structural T1 volumes were acquired using magnetic resonance imaging at baseline and 10-year-follow-up. Images were preprocessed, segmented and analysed with FreeSurfer. Quality control procedure was carried out by two raters. Images were segmented and CTH and SA values were extracted for each parcellation employing Desikan-Killiany Atlas; these were grouped in frontal, occipital, temporal, parietal and cingulate lobes so as to reduce multiple comparisons. When group or group by time effects were detected, parcellations were individually examined. A linear mixed model was built using Stata IC 13.1 to evaluate the effect of group and time on CTH and SA, including hemisphere as fixed effects and correcting by total intracranial volume and setting a critical p-value of .05. Results Thirty-nine subjects completed the follow-up. After removing 9 due to poor quality T1 images (technical problems, excess of movement), 28 subjects were finally included (13 EOP, 15 HC). There were no significant differences in age (EOP=26.9 ± 0.6 vs HC=27.2 ± 0.3 at follow-up) or sex distribution (%female: EOP=43% vs HC=38

  13. Impaired cognitive control mediates the relationship between cortical thickness of the superior frontal gyrus and role functioning in schizophrenia.

    Science.gov (United States)

    Tully, Laura M; Lincoln, Sarah Hope; Liyanage-Don, Nadia; Hooker, Christine I

    2014-02-01

    Structural abnormalities in the lateral prefrontal cortex (LPFC) are well-documented in schizophrenia and recent evidence suggests that these abnormalities relate to functional outcome. Cognitive control mechanisms, reliant on the LPFC, are impaired in schizophrenia and predict functional outcome, thus impaired cognitive control could mediate the relationship between neuroanatomical abnormalities in the LPFC and functional outcome. We used surface-based morphometry to investigate relationships between cortical surface characteristics, cognitive control, and measures of social and role functioning in 26 individuals with schizophrenia and 29 healthy controls. Results demonstrate that schizophrenia participants had thinner cortex in a region of the superior frontal gyrus (BA10). Across all participants, decreased cortical thickness in this region related to decreased cognitive control and decreased role functioning. Moreover, cognitive control fully mediated the relationship between cortical thickness in the superior frontal gyrus and role functioning, indicating that neuroanatomical abnormalities in the LPFC adversely impact role functioning via impaired cognitive control processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Patients with poor response to antipsychotics have a more severe pattern of frontal atrophy: a voxel-based morphometry study of treatment resistance in schizophrenia.

    Science.gov (United States)

    Quarantelli, Mario; Palladino, Olga; Prinster, Anna; Schiavone, Vittorio; Carotenuto, Barbara; Brunetti, Arturo; Marsili, Angela; Casiello, Margherita; Muscettola, Giovanni; Salvatore, Marco; de Bartolomeis, Andrea

    2014-01-01

    Approximately 30% of schizophrenia patients do not respond adequately to the therapy. Previous MRI studies have suggested that drug treatment resistance is associated with brain morphological abnormalities, although region-of-interest analysis of MR studies from nonresponder and responder patients failed to demonstrate a statistically significant difference between these two schizophrenia subgroups. We have used a voxel-based analysis of segmented MR studies to assess structural cerebral differences in 20 nonresponder and 15 responder patients and 16 age-matched normal volunteers. Differences between the three groups emerged bilaterally mainly at the level of the superior and middle frontal gyri, primarily due to reduced grey matter volumes in nonresponders, as compared to both normal volunteers and responder patients. Post hoc direct comparison between the two schizophrenia subgroups demonstrated significantly reduced grey matter volumes in middle frontal gyrus bilaterally, in the dorsolateral aspects of left superior frontal gyrus extending into postcentral gyrus and in the right medial temporal cortex. Our results extend and integrate previous findings suggesting a more severe atrophy in nonresponder schizophrenia patients, compared to responder patients, mainly at the level of the superior and middle frontal gyri. Longitudinal studies in drug-naïve patients are needed to assess the role of these associations.

  15. Preliminary evidence for obesity and elevations in fasting insulin mediating associations between cortisol awakening response and hippocampal volumes and frontal atrophy.

    Science.gov (United States)

    Ursache, Alexandra; Wedin, William; Tirsi, Aziz; Convit, Antonio

    2012-08-01

    Recent studies have demonstrated alterations in the cortisol awakening response (CAR) and brain abnormalities in adults with obesity and type 2 diabetes mellitus (T2DM). While adolescents with T2DM exhibit similar brain abnormalities, less is known about whether brain impairments and hypothalamic-pituitary-adrenal (HPA) axis abnormalities are already present in adolescents with pre-diabetic conditions such as insulin resistance (IR). This study included 33 adolescents with IR and 20 without IR. Adolescents with IR had a blunted CAR, smaller hippocampal volumes, and greater frontal lobe atrophy compared to controls. Mediation analyses indicated pathways whereby a smaller CAR was associated with higher BMI which was in turn associated with fasting insulin levels, which in turn was related to smaller hippocampal volume and greater frontal lobe atrophy. While we had hypothesized that HPA dysregulation may result from brain abnormalities, our findings suggest that HPA dysregulation may also impact brain structures through associations with metabolic abnormalities. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. The association between poor sleep quality and global cortical atrophy is related to age. Results from the Atahualpa Project

    Directory of Open Access Journals (Sweden)

    Oscar H. Del Brutto

    2016-07-01

    Full Text Available Community-dwellers aged ≥60 years enrolled in the Atahualpa Project underwent brain MRI and were interviewed with the Pittsburgh Sleep Quality Index. Of 290 participants, 94 (32% had poor sleep quality and 143 (49% had global cortical atrophy (GCA. In a logistic regression model (adjusted for demographics, cardiovascular risk factor, severe edentulism, symptoms of depression, the MoCA score, and neuroimaging signatures of cerebrovascular damage, poor sleep quality was associated with GCA (p=0.004. A multivariate probability model showed that the probability of moderate-to-severe GCA significantly increased in individuals with poor sleep quality aged ≥67 years. This study provides evidence for an association between poor sleep quality and GCA in older adults and the important interaction of age in this association.

  17. Cognitive impairment in Alzheimer`s disease correlates with ventricular width and atrophy-corrected cortical glucose metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Slansky, I [Max-Planck-Inst. fuer Neurologische Forschung, Koeln (Germany); Herholz, K [Max-Planck-Inst. fuer Neurologische Forschung, Koeln (Germany); Pietrzyk, U [Max-Planck-Inst. fuer Neurologische Forschung, Koeln (Germany); Kessler, J [Max-Planck-Inst. fuer Neurologische Forschung, Koeln (Germany); Grond, M [Max-Planck-Inst. fuer Neurologische Forschung, Koeln (Germany); Mielke, R [Max-Planck-Inst. fuer Neurologische Forschung, Koeln (Germany); Heiss, W D [Max-Planck-Inst. fuer Neurologische Forschung, Koeln (Germany)

    1995-05-01

    We compared the correlation of PET and MRI with neuropsychological tests in 26 patients with probable Alzheimer`s disease (AD). The width of the temporal horns and the third ventricle, regional metabolic rates of glucose (rCMRGlu) and the proportion of cerebrospinal fluid space in mesial temporal and temporoparietal cortical regions were measured with three-dimensionally coregistered PET and MRI in two planes perpendicular to the Sylvian fissure. Highly significant correlations between rCMRGlu and neuropsychological tests were found mainly in the temporoparietal cortex, with and without correction for atrophy. Correlations of similar magnitude were seen also between most tests and the width of the temporal horns and third ventricle. Changes in the third ventricle and mesial temporal lobe were best seen with MRI, whereas PET most clearly depicted alterations in neocortical association areas. These two aspects of the disease correlated with the severity of dementia to a similar degree. (orig.)

  18. Increased cerebrospinal fluid albumin and immunoglobulin A fractions forecast cortical atrophy and longitudinal functional deterioration in relapsing-remitting multiple sclerosis.

    Science.gov (United States)

    Kroth, Julia; Ciolac, Dumitru; Fleischer, Vinzenz; Koirala, Nabin; Krämer, Julia; Muthuraman, Muthuraman; Luessi, Felix; Bittner, Stefan; Gonzalez-Escamilla, Gabriel; Zipp, Frauke; Meuth, Sven G; Groppa, Sergiu

    2017-12-01

    Currently, no unequivocal predictors of disease evolution exist in patients with multiple sclerosis (MS). Cortical atrophy measurements are, however, closely associated with cumulative disability. Here, we aim to forecast longitudinal magnetic resonance imaging (MRI)-driven cortical atrophy and clinical disability from cerebrospinal fluid (CSF) markers. We analyzed CSF fractions of albumin and immunoglobulins (Ig) A, G, and M and their CSF to serum quotients. Widespread atrophy was highly associated with increased baseline CSF concentrations and quotients of albumin and IgA. Patients with increased CSF IgA and CSF IgM showed higher functional disability at follow-up. CSF markers of blood-brain barrier integrity and specific immune response forecast emerging gray matter pathology and disease progression in MS.

  19. Individual differences in approach motivation, resting-state frontal cortical activity and attentional scope

    NARCIS (Netherlands)

    Boksem, M.A.S.; Kostermans, E.; Tops, M.; de Cremer, D.

    2012-01-01

    Recent research has demonstrated that individual differences in approach motivation modulate attentional scope. In turn, approach and inhibition have been related to different neural systems that are associated with asymmetries in relative frontal activity (RFA). Here, we investigated whether such

  20. The effect of focal cortical frontal and posterior lesions on recollection and familiarity in recognition memory.

    Science.gov (United States)

    Stamenova, Vessela; Gao, Fuqiang; Black, Sandra E; Schwartz, Michael L; Kovacevic, Natasha; Alexander, Michael P; Levine, Brian

    2017-06-01

    Recognition memory can be subdivided into two processes: recollection (a contextually rich memory) and familiarity (a sense that an item is old). The brain network supporting recognition encompasses frontal, parietal and medial temporal regions. Which specific regions within the frontal lobe are critical for recollection vs. familiarity, however, are unknown; past studies of focal lesion patients have yielded conflicting results. We examined patients with focal lesions confined to medial polar (MP), right dorsal frontal (RDF), right frontotemporal (RFT), left dorsal frontal (LDF), temporal, and parietal regions and matched controls. A series of words and their humorous definitions were presented either auditorily or visually to all participants. Recall, recognition, and source memory were tested at 30 min and 24 h delay, along with "remember/know" judgments for recognized items. The MP, RDF, temporal and parietal groups were impaired on subjectively reported recollection; their intact recognition performance was supported by familiarity. None of the groups were impaired on cued recall, recognition familiarity or source memory. These findings suggest that the MP and RDF regions, along with parietal and temporal regions, are necessary for subjectively-reported recollection, while the LDF and right frontal ventral regions, as those affected in the RTF group, are not. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Frontal and parietal cortical interactions with distributed visual representations during selective attention and action selection.

    Science.gov (United States)

    Nelissen, Natalie; Stokes, Mark; Nobre, Anna C; Rushworth, Matthew F S

    2013-10-16

    Using multivoxel pattern analysis (MVPA), we studied how distributed visual representations in human occipitotemporal cortex are modulated by attention and link their modulation to concurrent activity in frontal and parietal cortex. We detected similar occipitotemporal patterns during a simple visuoperceptual task and an attention-to-working-memory task in which one or two stimuli were cued before being presented among other pictures. Pattern strength varied from highest to lowest when the stimulus was the exclusive focus of attention, a conjoint focus, and when it was potentially distracting. Although qualitatively similar effects were seen inside regions relatively specialized for the stimulus category and outside, the former were quantitatively stronger. By regressing occipitotemporal pattern strength against activity elsewhere in the brain, we identified frontal and parietal areas exerting top-down control over, or reading information out from, distributed patterns in occipitotemporal cortex. Their interactions with patterns inside regions relatively specialized for that stimulus category were higher than those with patterns outside those regions and varied in strength as a function of the attentional condition. One area, the frontal operculum, was distinguished by selectively interacting with occipitotemporal patterns only when they were the focus of attention. There was no evidence that any frontal or parietal area actively inhibited occipitotemporal representations even when they should be ignored and were suppressed. Using MVPA to decode information within these frontal and parietal areas showed that they contained information about attentional context and/or readout information from occipitotemporal cortex to guide behavior but that frontal regions lacked information about category identity.

  2. Frontal and Parietal Cortical Interactions with Distributed Visual Representations during Selective Attention and Action Selection

    Science.gov (United States)

    Stokes, Mark; Nobre, Anna C.; Rushworth, Matthew F. S.

    2013-01-01

    Using multivoxel pattern analysis (MVPA), we studied how distributed visual representations in human occipitotemporal cortex are modulated by attention and link their modulation to concurrent activity in frontal and parietal cortex. We detected similar occipitotemporal patterns during a simple visuoperceptual task and an attention-to-working-memory task in which one or two stimuli were cued before being presented among other pictures. Pattern strength varied from highest to lowest when the stimulus was the exclusive focus of attention, a conjoint focus, and when it was potentially distracting. Although qualitatively similar effects were seen inside regions relatively specialized for the stimulus category and outside, the former were quantitatively stronger. By regressing occipitotemporal pattern strength against activity elsewhere in the brain, we identified frontal and parietal areas exerting top-down control over, or reading information out from, distributed patterns in occipitotemporal cortex. Their interactions with patterns inside regions relatively specialized for that stimulus category were higher than those with patterns outside those regions and varied in strength as a function of the attentional condition. One area, the frontal operculum, was distinguished by selectively interacting with occipitotemporal patterns only when they were the focus of attention. There was no evidence that any frontal or parietal area actively inhibited occipitotemporal representations even when they should be ignored and were suppressed. Using MVPA to decode information within these frontal and parietal areas showed that they contained information about attentional context and/or readout information from occipitotemporal cortex to guide behavior but that frontal regions lacked information about category identity. PMID:24133250

  3. Fronto-striatal atrophy correlates of neuropsychiatric dysfunction in frontotemporal dementia (FTD and Alzheimer's disease (AD

    Directory of Open Access Journals (Sweden)

    Dong Seok Yi

    Full Text Available ABSTRACT Behavioural disturbances in frontotemporal dementia (FTD are thought to reflect mainly atrophy of cortical regions. Recent studies suggest that subcortical brain regions, in particular the striatum, are also significantly affected and this pathology might play a role in the generation of behavioural symptoms. Objective: To investigate prefrontal cortical and striatal atrophy contributions to behavioural symptoms in FTD. Methods: One hundred and eighty-two participants (87 FTD patients, 39 AD patients and 56 controls were included. Behavioural profiles were established using the Cambridge Behavioural Inventory Revised (CBI-R and Frontal System Behaviour Scale (FrSBe. Atrophy in prefrontal (VMPFC, DLPFC and striatal (caudate, putamen regions was established via a 5-point visual rating scale of the MRI scans. Behavioural scores were correlated with atrophy rating scores. Results: Behavioural and atrophy ratings demonstrated that patients were significantly impaired compared to controls, with bvFTD being most severely affected. Behavioural-anatomical correlations revealed that VMPFC atrophy was closely related to abnormal behaviour and motivation disturbances. Stereotypical behaviours were associated with both VMPFC and striatal atrophy. By contrast, disturbance of eating was found to be related to striatal atrophy only. Conclusion: Frontal and striatal atrophy contributed to the behavioural disturbances seen in FTD, with some behaviours related to frontal, striatal or combined fronto-striatal pathology. Consideration of striatal contributions to the generation of behavioural disturbances should be taken into account when assessing patients with potential FTD.

  4. Increased cortical curvature reflects white matter atrophy in individual patients with early multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Michael Deppe

    2014-01-01

    Conclusion: Whole-brain-averaged cortical extrinsic curvature appears to be a specific and quantitative marker for a WMV–cortex disproportionality and allows us to assess “pure” WMA without being confounded by intracranial volume. WMA seems to be a characteristic symptom in early MS and can already occur in patients with CIS and should thus be considered in future MS research and clinical studies.

  5. Machine Learning-based Individual Assessment of Cortical Atrophy Pattern in Alzheimer's Disease Spectrum: Development of the Classifier and Longitudinal Evaluation.

    Science.gov (United States)

    Lee, Jin San; Kim, Changsoo; Shin, Jeong-Hyeon; Cho, Hanna; Shin, Dae-Seock; Kim, Nakyoung; Kim, Hee Jin; Kim, Yeshin; Lockhart, Samuel N; Na, Duk L; Seo, Sang Won; Seong, Joon-Kyung

    2018-03-07

    To develop a new method for measuring Alzheimer's disease (AD)-specific similarity of cortical atrophy patterns at the individual-level, we employed an individual-level machine learning algorithm. A total of 869 cognitively normal (CN) individuals and 473 patients with probable AD dementia who underwent high-resolution 3T brain MRI were included. We propose a machine learning-based method for measuring the similarity of an individual subject's cortical atrophy pattern with that of a representative AD patient cohort. In addition, we validated this similarity measure in two longitudinal cohorts consisting of 79 patients with amnestic-mild cognitive impairment (aMCI) and 27 patients with probable AD dementia. Surface-based morphometry classifier for discriminating AD from CN showed sensitivity and specificity values of 87.1% and 93.3%, respectively. In the longitudinal validation study, aMCI-converts had higher atrophy similarity at both baseline (p < 0.001) and first year visits (p < 0.001) relative to non-converters. Similarly, AD patients with faster decline had higher atrophy similarity than slower decliners at baseline (p = 0.042), first year (p = 0.028), and third year visits (p = 0.027). The AD-specific atrophy similarity measure is a novel approach for the prediction of dementia risk and for the evaluation of AD trajectories on an individual subject level.

  6. Frontal cortical asymmetry may partially mediate the influence of social power on anger expression

    Directory of Open Access Journals (Sweden)

    Dongdong eLi

    2016-02-01

    Full Text Available When irritated by other people, powerful people usually tend to express their anger explicitly and directly, whereas people in less powerful positions are more likely not to show their feelings freely. The neural mechanism behind power and its influence on expression tendency has been scarcely explored. This study recorded frontal EEG activity at rest and frontal EEG activation while participants were engaged in a writing task describing an anger-eliciting event, in which they were irritated by people with higher or lower social power. Participants’ anger levels and expression inclination levels were self-reported on nine-point visual analog Likert scales, and also rated by independent raters based on the essays they had written. The results showed that high social power was indeed associated with greater anger expression tendency and greater left frontal activation than low social power. This is in line with the approach-inhibition theory of power. The mid-frontal asymmetric activation served as a partial mediator between social power and expression inclination. This effect may relate to the functions of the prefrontal cortex, which is in charge of information integration and evaluation and the control of motivation direction, as reported by previous studies.

  7. Posterior cortical atrophy - a prototypical case of dementia beginning with visual symptoms: case report

    Directory of Open Access Journals (Sweden)

    Leonardo Ferreira Caixeta

    2013-10-01

    Full Text Available Dementia presenting with prominent higher order visual symptoms may be observed in a range of neurodegenerative conditions and is often challenging to diagnose. We describe a case of progressive dementia presenting with prominent visual cortical symptoms. A 55-year-old, right-handed, woman with early onset of visual impairment not associated with anterior visual pathology, presenting with dyslexia, visual agnosia, Balint's syndrome, and spatial disorientation. Ophthalmologists should consider this condition especially in presenile patients with slowly progressive higher-order visual symptoms. Although described in association with different conditions, it may also occur in Alzheimer disease.

  8. Alzheimer's-related cortical atrophy is associated with postoperative delirium severity in persons without dementia.

    Science.gov (United States)

    Racine, Annie M; Fong, Tamara G; Travison, Thomas G; Jones, Richard N; Gou, Yun; Vasunilashorn, Sarinnapha M; Marcantonio, Edward R; Alsop, David C; Inouye, Sharon K; Dickerson, Bradford C

    2017-11-01

    Patients with dementia due to Alzheimer's disease (AD) have increased risk of developing delirium. This study investigated the relationship between a magnetic resonance imaging (MRI)-derived biomarker associated with preclinical AD and postoperative delirium. Participants were older adults (≥70 years) without dementia who underwent preoperative MRI and elective surgery. Delirium incidence and severity were evaluated daily during hospitalization. Cortical thickness was averaged across a published set of a priori brain regions to derive a measure known as the "AD signature." Logistic and linear regression was used, respectively, to test whether the AD signature was associated with delirium incidence in the entire sample (N = 145) or with the severity of delirium among those who developed delirium (N = 32). Thinner cortex in the AD signature did not predict incidence of delirium (odds ratio = 1.15, p = 0.38) but was associated with greater delirium severity among those who developed delirium (b = -1.2, p = 0.014). These results suggest that thinner cortices, perhaps reflecting underlying neurodegeneration due to preclinical AD, may serve as a vulnerability factor that increases severity once delirium occurs. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Bilateral cortical atrophy after severe brain trauma and extradural homatoma Atrofia cortical bilateral após traumatismo cranioencefálico grave e hematoma extradural

    Directory of Open Access Journals (Sweden)

    Paulo Roberto Louzada

    2007-12-01

    Full Text Available We report the case of a severe head injured 43-year old male patient with a large extradural hematoma, Glasgow Coma Scale 3 and dilated fixed pupils. Patient was promptly submitted to surgical evacuation of the lesion, but remained in persistent vegetative state in the post-operative time. Head computed tomography scans performed before surgery, and at early and late post-operative periods comparatively revealed extreme bilateral cortical atrophy. Late consequences of severe head trauma drastically affect the prognosis of patients, being its prevention, and neuroprotection against secondary injury still a therapeutical challenge for neurosurgeons.Relatamos o caso de um paciente de 43 anos, com traumatismo cranioencefálico grave, com grande hematoma extradural, Escala de Coma de Glasgow 3 e pupilas fixas e dilatadas. O paciente foi prontamente submetido à evacuação cirúrgica da lesão mas permaneceu em estado vegetativo persistente no período pós-operatório. As TC de crânio realizadas antes da cirurgia e nos períodos pós-operatórios precoce e tardio revelaram comparativamente extrema atrofia cerebral bilateral. As conseqüências tardias do traumatismo craniano grave afetam drasticamente o prognóstico dos pacientes, sendo sua prevenção, e a neuroproteção contra a injúria secundária ainda um desafio terapêutico para os neurocirurgiões.

  10. Elevated left mid-frontal cortical activity prospectively predicts conversion to bipolar I disorder

    Science.gov (United States)

    Nusslock, Robin; Harmon-Jones, Eddie; Alloy, Lauren B.; Urosevic, Snezana; Goldstein, Kim; Abramson, Lyn Y.

    2013-01-01

    Bipolar disorder is characterized by a hypersensitivity to reward-relevant cues and a propensity to experience an excessive increase in approach-related affect, which may be reflected in hypo/manic symptoms. The present study examined the relationship between relative left-frontal electroencephalographic (EEG) activity, a proposed neurophysiological index of approach-system sensitivity and approach/reward-related affect, and bipolar course and state-related variables. Fifty-eight individuals with cyclothymia or bipolar II disorder and 59 healthy control participants with no affective psychopathology completed resting EEG recordings. Alpha power was obtained and asymmetry indices computed for homologous electrodes. Bipolar spectrum participants were classified as being in a major/minor depressive episode, a hypomanic episode, or a euthymic/remitted state at EEG recording. Participants were then followed prospectively for an average 4.7 year follow-up period with diagnostic interview assessments every four-months. Sixteen bipolar spectrum participants converted to bipolar I disorder during follow-up. Consistent with hypotheses, elevated relative left-frontal EEG activity at baseline 1) prospectively predicted a greater likelihood of converting from cyclothymia or bipolar II disorder to bipolar I disorder over the 4.7 year follow-up period, 2) was associated with an earlier age-of-onset of first bipolar spectrum episode, and 3) was significantly elevated in bipolar spectrum individuals in a hypomanic episode at EEG recording. This is the first study to identify a neurophysiological marker that prospectively predicts conversion to bipolar I disorder. The fact that unipolar depression is characterized by decreased relative left-frontal EEG activity suggests that unipolar depression and vulnerability to hypo/mania may be characterized by different profiles of frontal EEG asymmetry. PMID:22775582

  11. Healthy versus Entorhinal Cortical Atrophy Identification in Asymptomatic APOE4 Carriers at Risk for Alzheimer's Disease.

    Science.gov (United States)

    Konishi, Kyoko; Joober, Ridha; Poirier, Judes; MacDonald, Kathleen; Chakravarty, Mallar; Patel, Raihaan; Breitner, John; Bohbot, Véronique D

    2018-01-01

    Early detection of Alzheimer's disease (AD) has been challenging as current biomarkers are invasive and costly. Strong predictors of future AD diagnosis include lower volume of the hippocampus and entorhinal cortex, as well as the ɛ4 allele of the Apolipoprotein E gene (APOE) gene. Therefore, studying functions that are critically mediated by the hippocampus and entorhinal cortex, such as spatial memory, in APOE ɛ4 allele carriers, may be key to the identification of individuals at risk of AD, prior to the manifestation of cognitive impairments. Using a virtual navigation task developed in-house, specifically designed to assess spatial versus non-spatial strategies, the current study is the first to differentiate functional and structural differences within APOE ɛ4 allele carriers. APOE ɛ4 allele carriers that predominantly use non-spatial strategies have decreased fMRI activity in the hippocampus and increased atrophy in the hippocampus, entorhinal cortex, and fimbria compared to APOE ɛ4 allele carriers who use spatial strategies. In contrast, APOE ɛ4 allele carriers who use spatial strategies have grey matter levels comparable to non-APOE ɛ4 allele carriers. Furthermore, in a leave-one-out analysis, grey matter in the entorhinal cortex could predict navigational strategy with 92% accuracy.

  12. Association of In Vivo [18F]AV-1451 Tau PET Imaging Results With Cortical Atrophy and Symptoms in Typical and Atypical Alzheimer Disease.

    Science.gov (United States)

    Xia, Chenjie; Makaretz, Sara J; Caso, Christina; McGinnis, Scott; Gomperts, Stephen N; Sepulcre, Jorge; Gomez-Isla, Teresa; Hyman, Bradley T; Schultz, Aaron; Vasdev, Neil; Johnson, Keith A; Dickerson, Bradford C

    2017-04-01

    Previous postmortem studies have long demonstrated that neurofibrillary tangles made of hyperphosphorylated tau proteins are closely associated with Alzheimer disease clinical phenotype and neurodegeneration pattern. Validating these associations in vivo will lead to new diagnostic tools for Alzheimer disease and better understanding of its neurobiology. To examine whether topographical distribution and severity of hyperphosphorylated tau pathologic findings measured by fluorine 18-labeled AV-1451 ([18F]AV-1451) positron emission tomographic (PET) imaging are linked with clinical phenotype and cortical atrophy in patients with Alzheimer disease. This observational case series, conducted from July 1, 2012, to July 30, 2015, in an outpatient referral center for patients with neurodegenerative diseases, included 6 patients: 3 with typical amnesic Alzheimer disease and 3 with atypical variants (posterior cortical atrophy, logopenic variant primary progressive aphasia, and corticobasal syndrome). Patients underwent [18F]AV-1451 PET imaging to measure tau burden, carbon 11-labeled Pittsburgh Compound B ([11C]PiB) PET imaging to measure amyloid burden, and structural magnetic resonance imaging to measure cortical thickness. Seventy-seven age-matched controls with normal cognitive function also underwent structural magnetic resonance imaging but not tau or amyloid PET imaging. Tau burden, amyloid burden, and cortical thickness. In all 6 patients (3 women and 3 men; mean age 61.8 years), the underlying clinical phenotype was associated with the regional distribution of the [18F]AV-1451 signal. Furthermore, within 68 cortical regions of interest measured from each patient, the magnitude of cortical atrophy was strongly correlated with the magnitude of [18F]AV-1451 binding (3 patients with amnesic Alzheimer disease, r = -0.82; P localizing and quantifying hyperphosphorylated tau in vivo, results of tau PET imaging will likely serve as a key biomarker that links a

  13. Treatment of a patient with posterior cortical atrophy (PCA) with chiropractic manipulation and Dynamic Neuromuscular Stabilization (DNS): A case report.

    Science.gov (United States)

    Francio, Vinicius T; Boesch, Ron; Tunning, Michael

    2015-03-01

    Posterior cortical atrophy (PCA) is a rare progressive neurodegenerative syndrome which unusual symptoms include deficits of balance, bodily orientation, chronic pain syndrome and dysfunctional motor patterns. Current research provides minimal guidance on support, education and recommended evidence-based patient care. This case reports the utilization of chiropractic spinal manipulation, dynamic neuromuscular stabilization (DNS), and other adjunctive procedures along with medical treatment of PCA. A 54-year-old male presented to a chiropractic clinic with non-specific back pain associated with visual disturbances, slight memory loss, and inappropriate cognitive motor control. After physical examination, brain MRI and PET scan, the diagnosis of PCA was recognized. Chiropractic spinal manipulation and dynamic neuromuscular stabilization were utilized as adjunctive care to conservative pharmacological treatment of PCA. Outcome measurements showed a 60% improvement in the patient's perception of health with restored functional neuromuscular pattern, improvements in locomotion, posture, pain control, mood, tolerance to activities of daily living (ADLs) and overall satisfactory progress in quality of life. Yet, no changes on memory loss progression, visual space orientation, and speech were observed. PCA is a progressive and debilitating condition. Because of poor awareness of PCA by physicians, patients usually receive incomplete care. Additional efforts must be centered on the musculoskeletal features of PCA, aiming enhancement in quality of life and functional improvements (FI). Adjunctive rehabilitative treatment is considered essential for individuals with cognitive and motor disturbances, and manual medicine procedures may be consider a viable option.

  14. Tau-PET Binding Distinguishes Patients With Early-stage Posterior Cortical Atrophy From Amnestic Alzheimer Disease Dementia.

    Science.gov (United States)

    Day, Gregory S; Gordon, Brian A; Jackson, Kelley; Christensen, Jon J; Rosana Ponisio, Maria; Su, Yi; Ances, Beau M; Benzinger, Tammie L S; Morris, John C

    2017-01-01

    Flortaucipir (tau) positron emission tomography (PET) binding distinguishes individuals with clinically well-established posterior cortical atrophy (PCA) due to Alzheimer disease (AD) from cognitively normal (CN) controls. However, it is not known whether tau-PET binding patterns differentiate individuals with PCA from those with amnestic AD, particularly early in the symptomatic stages of disease. Flortaucipir and florbetapir (β-amyloid) PET imaging were performed in individuals with early-stage PCA (N=5), amnestic AD dementia (N=22), and CN controls (N=47). Average tau and β-amyloid deposition were quantified using standard uptake value ratios and compared at a voxelwise level, controlling for age. PCA patients [median age-at-onset, 59 (51 to 61) years] were younger at symptom onset than similarly staged individuals with amnestic AD [75 (60 to 85) years] or CN controls [73 (61 to 90) years; P=0.002]. Flortaucipir uptake was higher in individuals with early-stage symptomatic PCA versus those with early-stage amnestic AD or CN controls, and greatest in posterior regions. Regional elevations in florbetapir were observed in areas of greatest tau deposition in PCA patients. Flortaucipir uptake distinguished individuals with PCA and amnestic AD dementia early in the symptomatic course. The posterior brain regions appear to be uniquely vulnerable to tau deposition in PCA, aligning with clinical deficits that define this disease subtype.

  15. Tau PET binding distinguishes patients with early-stage posterior cortical atrophy from amnestic Alzheimer disease dementia

    Science.gov (United States)

    Day, Gregory S.; Gordon, Brian A.; Jackson, Kelley; Christensen, Jon J.; Ponisio, Maria Rosana; Su, Yi; Ances, Beau M; Benzinger, Tammie L.S.; Morris, John C.

    2017-01-01

    Background Flortaucipir (tau) PET binding distinguishes individuals with clinically well-established posterior cortical atrophy (PCA) due to Alzheimer disease (AD) from cognitively normal (CN) controls. However, it is not known whether tau PET binding patterns differentiate individuals with PCA from those with amnestic AD, particularly early in the symptomatic stages of disease. Methods Flortaucipir and florbetapir (β-amyloid) PET-imaging were performed in individuals with early-stage PCA (N=5), amnestic AD dementia (N=22), and CN controls (N=47). Average tau and β-amyloid deposition were quantified using standard uptake value ratios and compared at a voxel-wise level, controlling for age. Results PCA patients (median age-at-onset, 59 [51–61] years) were younger at symptom-onset than similarly-staged individuals with amnestic AD (75 [60–85] years) or CN controls (73 [61–90] years; p=0.002). Flortaucipir uptake was higher in individuals with early-stage symptomatic PCA versus those with early-stage amnestic AD or CN controls, and greatest in posterior regions. Regional elevations in florbetapir were observed in areas of greatest tau deposition in PCA patients. Conclusions and Relevance Flortaucipir uptake distinguished individuals with PCA and amnestic AD dementia early in the symptomatic course. The posterior brain regions appear to be uniquely vulnerable to tau deposition in PCA, aligning with clinical deficits that define this disease subtype. PMID:28394771

  16. No difference in frontal cortical activity during an executive functioning task after acute doses of aripiprazole and haloperidol

    Directory of Open Access Journals (Sweden)

    Ingeborg eBolstad

    2015-05-01

    Full Text Available Background: Aripiprazole is an atypical antipsychotic drug that is characterized by partial dopamine D2 receptor agonism. Its pharmacodynamic profile is proposed to be beneficial in the treatment of cognitive impairment, which is prevalent in psychotic disorders. This study compared brain activation characteristics produced by aripiprazole with that of haloperidol, a typical D2 receptor antagonist, during a task targeting executive functioning.Methods: Healthy participants received an acute oral dose of haloperidol, aripiprazole or placebo before performing an executive functioning task while blood-oxygen-level-dependent (BOLD functional magnetic resonance imaging (fMRI was carried out. Results: There was a tendency towards reduced performance in the aripiprazole group compared to the two other groups. The image analysis yielded a strong task-related BOLD-fMRI response within each group. An uncorrected between-group analysis showed that aripiprazole challenge resulted in stronger activation in the frontal and temporal gyri and the putamen compared with haloperidol challenge, but after correcting for multiple testing there was no significant group difference. Conclusion: No significant group differences between aripiprazole and haloperidol in frontal cortical activation were obtained when corrected for multiple comparisons.This study is registered in ClinicalTrials.gov (identifier: 2009-016222-14; https://clinicaltrials.gov/.

  17. Frontal and temporal cortical functional recovery after electroconvulsive therapy for depression: A longitudinal functional near-infrared spectroscopy study.

    Science.gov (United States)

    Hirano, Jinichi; Takamiya, Akihiro; Yamagata, Bun; Hotta, Syogo; Miyasaka, Yukiko; Pu, Shenghong; Iwanami, Akira; Uchida, Hiroyuki; Mimura, Masaru

    2017-08-01

    While the efficacy and tolerability of electroconvulsive therapy (ECT) for depression has been well established, the acute effects of ECT on brain function remain unclear. Particularly, although cognitive dysfunction has been consistently observed after ECT, little is known about the extent and time course of ECT-induced brain functional changes, as observed during cognitive tasks. Considering the acute antidepressant effects of ECT on depression, aberrant brain functional responses during cognitive tasks in patients with depression may improve immediately after this treatment. To clarify changes in cortical functional responses to cognitive tasks following ECT, we used task-related functional near-infrared spectroscopy (NIRS) to assess 30 patients with major depressive disorder or bipolar depression before and after an ECT series, as well as 108 healthy controls. Prior to ECT, patients exhibited significantly smaller [oxy-Hb] values in the bilateral frontal cortex during a letter verbal fluency task (VFT) compared with healthy controls. We found a significant increase in [oxy-Hb] values in the bilateral frontal cortex during the VFT after ECT in the patient group. A decrease in depression severity was significantly correlated with an increase in [oxy-Hb] values in the right ventrolateral prefrontal cortex following ECT. This is the first NIRS study to evaluate brain functional changes before vs. after ECT. Impaired functional responses, observed during the cognitive task in depressed patients, were normalized after ECT. Thus, recovery from abnormal functional responses to cognitive tasks in the frontal brain regions may be associated with the acute therapeutic effects of ECT for depression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Brain atrophy in Huntington's disease: A CT-scan study

    International Nuclear Information System (INIS)

    Starkstein, S.E.; Folstein, S.E.; Brandt, J.; McDonnell, A.; Folstein, M.

    1989-01-01

    CT-scan measurements of cortical and subcortical atrophy were carried out in 34 patients with Huntington's disease (HD). While a significant correlation was observed between parameters of subcortical atrophy (bicaudate ratio, bifrontal ratio and third ventricular ratio) and duration of the disease, there was no significant correlation between these parameters and age. On the other hand, measurements of cortical atrophy (frontal fissure ratio and cortical sulci ratio) correlated significantly with age but not with duration of the disease. When a group of 24 HD patients were compared on CT-scan measurements with a group of 24 age-matched normal controls, significant differences were obtained for all the variables examined, but the bicaudate ratio showed the highest sensitivity and specificity. Even mildly affected patients, with duration of motor symptoms less than 3 years had higher bicaudate ratios than age-matched controls. (orig.)

  19. Positron Emission Tomography Imaging Reveals Auditory and Frontal Cortical Regions Involved with Speech Perception and Loudness Adaptation.

    Directory of Open Access Journals (Sweden)

    Georg Berding

    Full Text Available Considerable progress has been made in the treatment of hearing loss with auditory implants. However, there are still many implanted patients that experience hearing deficiencies, such as limited speech understanding or vanishing perception with continuous stimulation (i.e., abnormal loudness adaptation. The present study aims to identify specific patterns of cerebral cortex activity involved with such deficiencies. We performed O-15-water positron emission tomography (PET in patients implanted with electrodes within the cochlea, brainstem, or midbrain to investigate the pattern of cortical activation in response to speech or continuous multi-tone stimuli directly inputted into the implant processor that then delivered electrical patterns through those electrodes. Statistical parametric mapping was performed on a single subject basis. Better speech understanding was correlated with a larger extent of bilateral auditory cortex activation. In contrast to speech, the continuous multi-tone stimulus elicited mainly unilateral auditory cortical activity in which greater loudness adaptation corresponded to weaker activation and even deactivation. Interestingly, greater loudness adaptation was correlated with stronger activity within the ventral prefrontal cortex, which could be up-regulated to suppress the irrelevant or aberrant signals into the auditory cortex. The ability to detect these specific cortical patterns and differences across patients and stimuli demonstrates the potential for using PET to diagnose auditory function or dysfunction in implant patients, which in turn could guide the development of appropriate stimulation strategies for improving hearing rehabilitation. Beyond hearing restoration, our study also reveals a potential role of the frontal cortex in suppressing irrelevant or aberrant activity within the auditory cortex, and thus may be relevant for understanding and treating tinnitus.

  20. Positron Emission Tomography Imaging Reveals Auditory and Frontal Cortical Regions Involved with Speech Perception and Loudness Adaptation.

    Science.gov (United States)

    Berding, Georg; Wilke, Florian; Rode, Thilo; Haense, Cathleen; Joseph, Gert; Meyer, Geerd J; Mamach, Martin; Lenarz, Minoo; Geworski, Lilli; Bengel, Frank M; Lenarz, Thomas; Lim, Hubert H

    2015-01-01

    Considerable progress has been made in the treatment of hearing loss with auditory implants. However, there are still many implanted patients that experience hearing deficiencies, such as limited speech understanding or vanishing perception with continuous stimulation (i.e., abnormal loudness adaptation). The present study aims to identify specific patterns of cerebral cortex activity involved with such deficiencies. We performed O-15-water positron emission tomography (PET) in patients implanted with electrodes within the cochlea, brainstem, or midbrain to investigate the pattern of cortical activation in response to speech or continuous multi-tone stimuli directly inputted into the implant processor that then delivered electrical patterns through those electrodes. Statistical parametric mapping was performed on a single subject basis. Better speech understanding was correlated with a larger extent of bilateral auditory cortex activation. In contrast to speech, the continuous multi-tone stimulus elicited mainly unilateral auditory cortical activity in which greater loudness adaptation corresponded to weaker activation and even deactivation. Interestingly, greater loudness adaptation was correlated with stronger activity within the ventral prefrontal cortex, which could be up-regulated to suppress the irrelevant or aberrant signals into the auditory cortex. The ability to detect these specific cortical patterns and differences across patients and stimuli demonstrates the potential for using PET to diagnose auditory function or dysfunction in implant patients, which in turn could guide the development of appropriate stimulation strategies for improving hearing rehabilitation. Beyond hearing restoration, our study also reveals a potential role of the frontal cortex in suppressing irrelevant or aberrant activity within the auditory cortex, and thus may be relevant for understanding and treating tinnitus.

  1. Cingulate, Frontal and Parietal Cortical Dysfunction in Attention-Deficit/Hyperactivity Disorder

    Science.gov (United States)

    Bush, George

    2011-01-01

    Functional and structural neuroimaging have identified abnormalities of the brain that are likely to contribute to the neuropathophysiology of attention-deficit/hyperactivity disorder (ADHD). In particular, hypofunction of the brain regions comprising the cingulo-frontal-parietal (CFP) cognitive-attention network have been consistently observed across studies. These are major components of neural systems that are relevant to ADHD, including cognitive/attention networks, motor systems and reward/feedback-based processing systems. Moreover, these areas interact with other brain circuits that have been implicated in ADHD, such as the “default mode” resting state network. ADHD imaging data related to CFP network dysfunction will be selectively highlighted here to help facilitate its integration with the other information presented in this special issue. Together, these reviews will help shed light on the neurobiology of ADHD. PMID:21489409

  2. Activation of extrastriate and frontal cortical areas by visual words and word-like stimuli

    International Nuclear Information System (INIS)

    Petersen, S.E.; Fox, P.T.; Snyder, A.Z.; Raichle, M.E.

    1990-01-01

    Visual presentation of words activates extrastriate regions of the occipital lobes of the brain. When analyzed by positron emission tomography (PET), certain areas in the left, medial extrastriate visual cortex were activated by visually presented pseudowords that obey English spelling rules, as well as by actual words. These areas were not activated by nonsense strings of letters or letter-like forms. Thus visual word form computations are based on learned distinctions between words and nonwords. In addition, during passive presentation of words, but not pseudowords, activation occurred in a left frontal area that is related to semantic processing. These findings support distinctions made in cognitive psychology and computational modeling between high-level visual and semantic computations on single words and describe the anatomy that may underlie these distinctions

  3. Word wins over Face: Emotional Stroop effect activates the frontal cortical network

    Directory of Open Access Journals (Sweden)

    Shima Ovaysikia

    2011-01-01

    Full Text Available The prefrontal cortex (PFC has been implicated in higher order cognitive control of behaviour. Sometimes such control is executed through suppression of an unwanted response in order to avoid conflict. Conflict occurs when two simultaneously competing processes lead to different behavioral outcomes, as seen in tasks such as the anti-saccade, go/no-go and the Stroop task. We set out to examine whether different types of stimuli in a modified emotional Stroop task would cause similar interference effects as the original Stroop-colour/word, and whether the required suppression mechanism(s would recruit similar regions of the medial PFC (mPFC. By using emotional words and emotional faces in this Stroop experiment, we examined the two well-learned automatic behaviours of word reading and recognition of face expressions. In our emotional Stroop paradigm, words were processed faster than face expressions with incongruent trials yielding longer reaction times (RT and larger number of errors compared to the congruent trials. This novel Stroop effect activated the anterior and inferior regions of the mPFC, namely the anterior cingulate cortex (ACC, inferior frontal gyrus (IFG as well as the superior frontal gyrus. Our results suggest that prepotent behaviours such as reading and recognition of face expressions are stimulus-dependent and perhaps hierarchical, hence recruiting distinct regions of the mPFC. Moreover, the faster processing of word reading compared to reporting face expressions is indicative of the formation of stronger stimulus-response (SR associations of an over-learned behaviour compared to an instinctive one, which could alternatively be explained through the distinction between awareness and selective attention.

  4. Interaction between DRD2 and lead exposure on the cortical thickness of the frontal lobe in youth with attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Kim, Johanna Inhyang; Kim, Jae-Won; Lee, Jong-Min; Yun, Hyuk Jin; Sohn, Chul-Ho; Shin, Min-Sup; Kim, Bongseog; Chae, Jonghee; Roh, Jaewoo; Kim, Bung-Nyun

    2018-03-02

    The dopamine receptor D2 receptor (DRD2) gene and lead exposure are both thought to contribute to the pathophysiology of attention-deficit/hyperactivity disorder (ADHD). ADHD is characterized by delay in brain maturation, most prominent in the prefrontal cortex (PFC). The D2 receptor is also mainly located in the PFC, and animal studies show that lead exposure affects the dopaminergic system of the frontal lobe, indicating an overlap in neural correlates of ADHD, DRD2, and lead exposure. We examined the interaction effects of DRD2 rs1800497 and lead exposure on the cortical thickness of the frontal lobe in patients with ADHD. A 1:1 age- and gender-matched sample of 75 participants with ADHD and 75 healthy participants was included in the analysis. The interaction effects of DRD2 and lead exposure on the cortical thickness of 12 regions of interest in the frontal lobe were examined by multivariable linear regression analyses. When we investigated the DRD2×lead effects in the ADHD and HC groups separately, significant DRD2×lead effects were found in the ADHD group, but not in the healthy control group in multiple ROIs of the frontal lobe. There was a significant negative correlation between the cortical thickness of the right superior frontal gyrus and inattention scores. The present findings demonstrated significant interaction effects of DRD2 and lead exposure on the cortical thickness of the frontal lobe in ADHD. Replication studies with larger sample sizes, using a prospective design, are warranted to confirm these findings. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Altered frontal cortical volume and decision making in adolescent cannabis users

    Directory of Open Access Journals (Sweden)

    John C Churchwell

    2010-12-01

    Full Text Available Anticipating future outcomes is central to decision making and a failure to consider long-term consequences may lead to impulsive choices. Adolescence is a vulnerable period during which underdeveloped prefrontal cortical systems may contribute to poor judgment, impulsive choices, and substance abuse. Conversely, substance abuse during this period may alter neural systems involved in decision making and lead to greater impulsivity. Although a broad neural network which supports decision making undergoes extensive change during adolescent development, one region that may be critical is the medial prefrontal cortex. Altered functional integrity of this region may be specifically related to reward perception, substance abuse, and dependence. In the present investigation, we acquired structural magnetic resonance images (MRI, using a 3T Siemens Trio scanner, from 18 cannabis abusing adolescents (CA; 2 female and 16 male subjects; mean age, 17.7 years; range 16-19 years and 18 healthy controls (HC; 6 female and 12 male subjects; mean age, 17.2 years; range 16-19 years. In order to measure medial orbital prefrontal cortex (moPFC morphology related to substance abuse and impulsivity, semi-automated cortical reconstruction and volumetric segmentation of MRIs was performed with FreeSurfer. Impulsivity was evaluated with the Barratt Impulsiveness Scale (BIS. Our results indicate that cannabis abusing adolescents have decreased right moPFC volume compared to controls, p =.01, d = .92, CI.95 = .21, 1.59. Cannabis abusing adolescents also show decreased future orientation, as indexed by the BIS nonplanning subscale, when compared to controls, p = .01, d = .89, CI.95 = .23, 1.55. Moreover, total moPFC volume was positively correlated with age of first use (18 = .49, p < .03, suggesting that alterations in this region may be related to initiation of cannabis use or that early initiation may lead to reduced moPFC volume.

  6. Valence of physical stimuli, not housing conditions, affects behaviour and frontal cortical brain activity in sheep.

    Science.gov (United States)

    Vögeli, Sabine; Lutz, Janika; Wolf, Martin; Wechsler, Beat; Gygax, Lorenz

    2014-07-01

    Modulation of short-term emotions by long-term mood is little understood but relevant to understand the affective system and of importance in respect to animal welfare: a negative mood might taint experiences, whilst a positive mood might alleviate single negative events. To induce different mood states in sheep housing conditions were varied. Fourteen ewes were group-housed in an unpredictable, stimulus-poor and 15 ewes in a predictable, stimulus-rich environment. Sheep were tested individually for mood in a behavioural cognitive bias paradigm. Also, their reactions to three physical stimuli thought to differ in their perceived valence were observed (negative: pricking, intermediate: slight pressure, positive: kneading). General behaviour, activity, ear movements and positions, and haemodynamic changes in the cortical brain were recorded during stimulations. Generalised mixed-effects models and model probabilities based on the BIC (Bayesian information criterion) were used. Only weak evidence for mood difference was found. Sheep from the unpredictable, stimulus-poor housing condition had a somewhat more negative cognitive bias, showed slightly more aversive behaviour, were slightly more active and moved their ears somewhat more. Sheep most clearly differentiated the negative from the intermediate and positive stimulus in that they exhibited more aversive behaviour, less nibbling, were more active, showed more ear movements, more forward ear postures, fewer backward ear postures, and a stronger decrease in deoxyhaemoglobin when subjected to the negative stimulus. In conclusion, sheep reacted towards stimuli according to their presumed valence but their mood was not strongly influenced by housing conditions. Therefore, behavioural reactions and cortical brain activity towards the stimuli were hardly modulated by housing conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Left frontal meningioangiomatosis associated with type IIIc focal cortical dysplasia causing refractory epilepsy and literature review.

    Science.gov (United States)

    Roux, Alexandre; Mellerio, Charles; Lechapt-Zalcman, Emmanuelle; Still, Megan; Zerah, Michel; Bourgeois, Marie; Pallud, Johan

    2018-03-29

    We report the surgical management of a lesional drug-resistant epilepsy caused by a meningioangiomatosis associated with a type IIIc focal cortical dysplasia located in the left supplementary motor area in a young male patient. A first anatomical-based partial surgical resection was performed at 11 years old under general anaesthesia without intraoperative mapping, which allowed for postoperative seizure control (Engel IA) for six years. The patient then presented with intractable right sensatory and aphasic focal onset seizures despite two appropriate antiepileptic drugs. A second functional-based surgical resection was performed using intraoperative cortico-subcortical functional mapping with direct electrical stimulation under awake conditions. A complete surgical resection was performed and a left partial supplementary motor area syndrome was observed. At six postoperative months, the patient is seizure free (Engel IA) with an ongoing decrease in antiepileptic drug therapy. Intraoperative functional brain mapping can be applied to preserve the brain function and networks around a meningioangiomatosis to facilitate the resection of potentially epileptogenic perilesional dysplastic cortex and to tailor the extent of resection to functional boundaries. Copyright © 2018. Published by Elsevier Inc.

  8. Longitudinal course of cortical thickness decline in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Schuster, Christina; Kasper, Elisabeth; Machts, Judith; Bittner, Daniel; Kaufmann, Jörn; Benecke, Reiner; Teipel, Stefan; Vielhaber, Stefan; Prudlo, Johannes

    2014-10-01

    To determine longitudinal rates of cortical atrophy in classical Amyotrophic lateral sclerosis (ALS) and ALS variants. Rates of cortical thinning were determined between 2 scans, 3-15 months apart, in 77 ALS patients: 51 classical, 12 upper motor neuron (UMN), and 14 lower motor neuron (LMN) ALS variants. Cortical thickness at the first assessment was compared with 60 healthy controls matched by age and gender. Atrophy rates were compared between patient sub-groups and correlated with disease duration, progression, and severity. Using a cross-sectional analysis, we found a significant difference in cortical thickness between ALS patients and controls in the motor and extra-motor areas (left medial orbito frontal gyrus, left inferior parietal gyrus, bilateral insular cortex, right fusiform gyrus, bilateral precuneus). Using a longitudinal analysis, we found a significant decline of cortical thickness in frontal, temporal, and parietal regions over the course of the study in ALS patients. Effects were independent of the clinical subtype, with exception of the precentral gyrus (p gyrus, the UMN-dominant subjects exhibited intermediate rates of atrophy, and the classical ALS patients exhibited no such change. Atrophy of the precentral gyrus in classical ALS indicates a floor effect at the first assessment, resulting in a lack of further atrophy over time. Structural loss of the precentral gyrus appears to be an early sign of classical ALS. Over time, patterns of cortical thinning in extra-motor areas can be identified in ALS, regardless of the phenotype.

  9. [An autopsied case of dominantly affecting upper motor neuron with atrophy of the frontal and temporal lobes--with special reference to primary lateral sclerosis].

    Science.gov (United States)

    Konagaya, M; Sakai, M; Iida, M; Hashizume, Y

    1995-04-01

    In this paper, the autopsy findings of a 78-year-old man mimicking primary lateral sclerosis (PLS) are reported. His clinical symptoms were slowly progressive spasticity, pseudobulbar palsy and character change. He died of sepsis 32 months after protracting the disease. The autopsy revealed severe atrophy of the frontal and temporal lobes. The histological findings were severe neuronal loss with gliosis in the precentral gyrus and left temporal lobe tip, loss of Betz cell, prominent demyelination throughout of the corticospinal tract, axonal swelling in the cerebral peduncule, severe degeneration of the amygdala, mild degeneration of the Ammon horn, normal substantia nigra, a few neuronal cells with central chromatolysis in the facial nerve nucleus and very mild neuronal cell loss in the spinal anterior horn. The anterior horn cell only occasionally demonstrated Bunina body by H & E and cystatin-C stainings, as well as, skein-like inclusion by ubiquitin staining. Thus, this is a case of uncommon amyotrophic lateral sclerosis (ALS) dominantly affecting the upper motor neuron including the motor cortex and temporal limbic system. In analysis of nine cases of putative primary lateral sclerosis in the literature, six cases showed loss of Betz cell in the precentral gyrus, and four cases very mild involvement of the lower motor neuron such as central chromatolysis and eosinophilic inclusion body. Degeneration of the limbic system was observed in two cases. We indicated a possible subgroup with concomitant involvement in the motor cortex and temporal lobe in motor neuron disease dominantly affecting the upper motor neuron.

  10. Chronic Underactivity of Medial Frontal Cortical β2-Containing Nicotinic Receptors Increases Clozapine-Induced Working Memory Impairment in Female Rats

    Science.gov (United States)

    Levin, Edward D.; Perkins, Abigail; Brotherton, Terrell; Qazi, Melissa; Berez, Chantal; Montalvo-Ortiz, Janitza; Davis, Kasey; Williams, Paul; Christopher, N. Channelle

    2009-01-01

    Nicotinic receptor decreases in the frontal cortex and hippocampus are important mediators of cognitive impairment in both schizophrenia and Alzheimer's disease. Drug treatments for these diseases should take into account the impacts of compromised brain function on drug response. This study investigated the impact of compromised nicotinic receptor activity in the frontal cortex in rats on memory function. Since both Alzheimer's disease and schizophrenia can involve psychosis, antipsychotic drugs are often given. The impacts of antipsychotic drugs on cognitive function have been found to be quite variable. It is the hypothesis of this and previous studies that the cognitive effects of antispychotic drugs on cognitive function depend on the integrity of brain systems involved in cognition. Previously in studies of the hippocampus, we found that chronic inhibition of β2-containing nicotinic receptors with dihydro-β-erythrodine (DHβE) impaired working memory and that this effect was attenuated by the antipsychotic drug clozapine. In contrast, chronic hippocampal α7 nicotinic receptor blockade with methyllycaconitine (MLA) potentiated the clozapine-induced memory impairment which is seen in rats without compromised nicotinic receptor activity. The current study determined medial frontal cortical α7 and β2-containing nicotinic receptor involvement in memory and the interactions with antipsychotic drug therapy with clozapine. Chronic DHβE and MLA infusion effects and interactions with systemic clozapine were assessed in female rats tested for memory on the radial-arm maze. Antipsychotic drug interactions with chronic systemic nicotine were investigated because nicotinic procognitive treatment has been proposed. The same local infusion DHβE dose that impaired memory with hippocampal infusion did not impair memory when infused in the medial frontal cortex. Frontal DHβE infusion potentiated clozapine-induced memory impairment, whereas previously the memory

  11. Chronic underactivity of medial frontal cortical beta2-containing nicotinic receptors increases clozapine-induced working memory impairment in female rats.

    Science.gov (United States)

    Levin, Edward D; Perkins, Abigail; Brotherton, Terrell; Qazi, Melissa; Berez, Chantal; Montalvo-Ortiz, Janitza; Davis, Kasey; Williams, Paul; Christopher, N Channelle

    2009-03-17

    Nicotinic receptor decreases in the frontal cortex and hippocampus are important mediators of cognitive impairment in both schizophrenia and Alzheimer's disease. Drug treatments for these diseases should take into account the impacts of compromised brain function on drug response. This study investigated the impact of compromised nicotinic receptor activity in the frontal cortex in rats on memory function. Since both Alzheimer's disease and schizophrenia can involve psychosis, antipsychotic drugs are often given. The impacts of antipsychotic drugs on cognitive function have been found to be quite variable. It is the hypothesis of this and previous studies that the cognitive effects of antispychotic drugs on cognitive function depend on the integrity of brain systems involved in cognition. Previously in studies of the hippocampus, we found that chronic inhibition of beta2-containing nicotinic receptors with dihydro-beta-erythrodine (DHbetaE) impaired working memory and that this effect was attenuated by the antipsychotic drug clozapine. In contrast, chronic hippocampal alpha7 nicotinic receptor blockade with methyllycaconitine (MLA) potentiated the clozapine-induced memory impairment which is seen in rats without compromised nicotinic receptor activity. The current study determined medial frontal cortical alpha7 and beta2-containing nicotinic receptor involvement in memory and the interactions with antipsychotic drug therapy with clozapine. Chronic DHbetaE and MLA infusion effects and interactions with systemic clozapine were assessed in female rats tested for memory on the radial-arm maze. Antipsychotic drug interactions with chronic systemic nicotine were investigated because nicotinic procognitive treatment has been proposed. The same local infusion DHbetaE dose that impaired memory with hippocampal infusion did not impair memory when infused in the medial frontal cortex. Frontal DHbetaE infusion potentiated clozapine-induced memory impairment, whereas previously

  12. Cortical and Subcortical Grey and White Matter Atrophy in Myotonic Dystrophies Type 1 and 2 Is Associated with Cognitive Impairment, Depression and Daytime Sleepiness.

    Directory of Open Access Journals (Sweden)

    Christiane Schneider-Gold

    Full Text Available Central nervous system involvement is one important clinical aspect of myotonic dystrophy type 1 and 2 (DM1 and DM2. We assessed CNS involvement DM1 and DM2 by 3T MRI and correlated clinical and neuocognitive symptoms with brain volumetry and voxel-based morphometry (VBM.12 patients with juvenile or classical DM1 and 16 adult DM2 patients underwent 3T MRI, a thorough neurological and neuropsychological examination and scoring of depression and daytime sleepiness. Volumes of brain, ventricles, cerebellum, brainstem, cervical cord, lesion load and VBM results of the patient groups were compared to 33 matched healthy subjects.Clinical symptoms were depression (more pronounced in DM2, excessive daytime sleepiness (more pronounced in DM1, reduced attention and flexibility of thinking, and deficits of short-term memory and visuo-spatial abilities in both patient groups. Both groups showed ventricular enlargement and supratentorial GM and WM atrophy, with prevalence for more GM atrophy and involvement of the motor system in DM1 and more WM reduction and affection of limbic structures in DM2. White matter was reduced in DM1 in the splenium of the corpus callosum and in left-hemispheric WM adjacent to the pre- and post-central gyrus. In DM2, the bilateral cingulate gyrus and subgyral medio-frontal and primary somato-sensory WM was affected. Significant structural-functional correlations of morphological MRI findings (global volumetry and VBM with clinical findings were found for reduced flexibility of thinking and atrophy of the left secondary visual cortex in DM1 and of distinct subcortical brain structures in DM2. In DM2, depression was associated with brainstem atrophy, Daytime sleepiness correlated with volume decrease in the middle cerebellar peduncles, pons/midbrain and the right medio-frontal cortex.GM and WM atrophy was significant in DM1 and DM2. Specific functional-structural associations related morphological changes to cognitive impairment

  13. Advancing functional dysconnectivity and atrophy in progressive supranuclear palsy

    Directory of Open Access Journals (Sweden)

    Jesse A. Brown

    2017-01-01

    Full Text Available Progressive supranuclear palsy syndrome (PSP-S results from neurodegeneration within a network of brainstem, subcortical, frontal and parietal cortical brain regions. It is unclear how network dysfunction progresses and relates to longitudinal atrophy and clinical decline. In this study, we evaluated patients with PSP-S (n = 12 and healthy control subjects (n = 20 at baseline and 6 months later. Subjects underwent structural MRI and task-free functional MRI (tf-fMRI scans and clinical evaluations at both time points. At baseline, voxel based morphometry (VBM revealed that patients with mild-to-moderate clinical symptoms showed structural atrophy in subcortex and brainstem, prefrontal cortex (PFC; supplementary motor area, paracingulate, dorsal and ventral medial PFC, and parietal cortex (precuneus. Tf-fMRI functional connectivity (FC was examined in a rostral midbrain tegmentum (rMT-anchored intrinsic connectivity network that is compromised in PSP-S. In healthy controls, this network contained a medial parietal module, a prefrontal-paralimbic module, and a subcortical-brainstem module. Baseline FC deficits in PSP-S were most severe in rMT network integrative hubs in the prefrontal-paralimbic and subcortical-brainstem modules. Longitudinally, patients with PSP-S had declining intermodular FC between the subcortical-brainstem and parietal modules, while progressive atrophy was observed in subcortical-brainstem regions (midbrain, pallidum and posterior frontal (perirolandic cortex. This suggested that later-stage subcortical-posterior cortical change may follow an earlier-stage subcortical-anterior cortical disease process. Clinically, patients with more severe baseline impairment showed greater subsequent prefrontal-parietal cortical FC declines and posterior frontal atrophy rates, while patients with more rapid longitudinal clinical decline showed coupled prefrontal-paralimbic FC decline. VBM and FC can augment disease monitoring in PSP

  14. Age Effects on Cortical Thickness in Cognitively Normal Elderly Individuals

    Directory of Open Access Journals (Sweden)

    Sona Hurtz

    2014-07-01

    Full Text Available Background/Aims: Atrophy in both grey and white matter is found in normal aging. The prefrontal cortex and the frontal lobe white matter are thought to be the most affected regions. Our aim was to examine the effects of normal aging on cortical grey matter using a 3D quantitative cortical mapping method. Methods: We analyzed 1.5-tesla brain magnetic resonance imaging data from 44 cognitively normal elderly subjects using cortical pattern matching and cortical thickness analyses. Linear regression analysis was used to study the effect of age on cortical thickness. 3D map-wide correction for multiple comparisons was conducted with permutation analyses using a threshold of p Results: We found a significant negative association between age and cortical thickness in the right hemisphere (pcorrected = 0.009 and a trend level association in the left hemisphere (pcorrected = 0.081. Age-related changes were greatest in the sensorimotor, bilateral dorsal anterior cingulate and supplementary motor cortices, and the right posterior middle and inferior frontal gyri. Age effects greater in the medial than lateral visual association cortices were also seen bilaterally. Conclusion: Our novel method further validates that normal aging results in diffuse cortical thinning that is most pronounced in the frontal and visual association cortices.

  15. The Pattern of Brain Amyloid Load in Posterior Cortical Atrophy Using 18F-AV45: Is Amyloid the Principal Actor in the Disease

    Directory of Open Access Journals (Sweden)

    Emilie Beaufils

    2014-11-01

    Full Text Available Background: Posterior cortical atrophy (PCA is characterized by progressive higher-order visuoperceptual dysfunction and praxis declines. This syndrome is related to a number of underlying diseases, including, in most cases, Alzheimer's disease (AD. The aim of this study was to compare the amyloid load with 18F-AV45 positron emission tomography (PET between PCA and AD subjects. Methods: We performed 18F-AV45 PET, cerebrospinal fluid (CSF biomarker analysis and a neuropsychological assessment in 11 PCA patients and 12 AD patients. Results: The global and regional 18F-AV45 uptake was similar in the PCA and AD groups. No significant correlation was observed between global 18F-AV45 uptake and CSF biomarkers or between regional 18F-AV45 uptake and cognitive and affective symptoms. Conclusion: This 18F-AV45 PET amyloid imaging study showed no specific regional pattern of cortical 18F-AV45 binding in PCA patients. These results confirm that a distinct clinical phenotype in amnestic AD and PCA is not related to amyloid distribution.

  16. The Pattern of Brain Amyloid Load in Posterior Cortical Atrophy Using 18F-AV45: Is Amyloid the Principal Actor in the Disease?

    Science.gov (United States)

    Beaufils, Emilie; Ribeiro, Maria Joao; Vierron, Emilie; Vercouillie, Johnny; Dufour-Rainfray, Diane; Cottier, Jean-Philippe; Camus, Vincent; Mondon, Karl; Guilloteau, Denis; Hommet, Caroline

    2014-01-01

    Background Posterior cortical atrophy (PCA) is characterized by progressive higher-order visuoperceptual dysfunction and praxis declines. This syndrome is related to a number of underlying diseases, including, in most cases, Alzheimer's disease (AD). The aim of this study was to compare the amyloid load with 18F-AV45 positron emission tomography (PET) between PCA and AD subjects. Methods We performed 18F-AV45 PET, cerebrospinal fluid (CSF) biomarker analysis and a neuropsychological assessment in 11 PCA patients and 12 AD patients. Results The global and regional 18F-AV45 uptake was similar in the PCA and AD groups. No significant correlation was observed between global 18F-AV45 uptake and CSF biomarkers or between regional 18F-AV45 uptake and cognitive and affective symptoms. Conclusion This 18F-AV45 PET amyloid imaging study showed no specific regional pattern of cortical 18F-AV45 binding in PCA patients. These results confirm that a distinct clinical phenotype in amnestic AD and PCA is not related to amyloid distribution. PMID:25538727

  17. Protein phosphatase 2ACα gene knock-out results in cortical atrophy through activating hippo cascade in neuronal progenitor cells.

    Science.gov (United States)

    Liu, Bo; Sun, Li-Hua; Huang, Yan-Fei; Guo, Li-Jun; Luo, Li-Shu

    2018-02-01

    Protein phosphatase 2ACα (PP2ACα), a vital member of the protein phosphatase family, has been studied primarily as a regulator for the development, growth and protein synthesis of a lot of cell types. Dysfunction of PP2ACα protein results in neurodegenerative disease; however, this finding has not been directly confirmed in the mouse model with PP2ACα gene knock-out. Therefore, in this study presented here, we generated the PP2ACα gene knock-out mouse model by the Cre-loxP targeting gene system, with the purpose to directly observe the regulatory role of PP2ACα gene in the development of mouse's cerebral cortex. We observe that knocking-out PP2ACα gene in the central nervous system (CNS) results in cortical neuronal shrinkage, synaptic plasticity impairments, and learning/memory deficits. Further study reveals that PP2ACα gene knock-out initiates Hippo cascade in cortical neuroprogenitor cells (NPCs), which blocks YAP translocation into the nuclei of NPCs. Notably, p73, directly targeted by Hippo cascade, can bind to the promoter of glutaminase2 (GLS2) that plays a dominant role in the enzymatic regulation of glutamate/glutamine cycle. Finally, we find that PP2ACα gene knock-out inhibits the glutamine synthesis through up-regulating the activity of phosphorylated-p73 in cortical NPCs. Taken together, it concludes that PP2ACα critically supports cortical neuronal growth and cognitive function via regulating the signaling transduction of Hippo-p73 cascade. And PP2ACα indirectly modulates the glutamine synthesis of cortical NPCs through targeting p73 that plays a direct transcriptional regulatory role in the gene expression of GLS2. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Atrophy and Primary Somatosensory Cortical Reorganization after Unilateral Thoracic Spinal Cord Injury: A Longitudinal Functional Magnetic Resonance Imaging Study

    Directory of Open Access Journals (Sweden)

    Jia-Sheng Rao

    2013-01-01

    Full Text Available The effects of traumatic spinal cord injury (SCI on the changes in the central nervous system (CNS over time may depend on the dynamic interaction between the structural integrity of the spinal cord and the capacity of the brain plasticity. Functional magnetic resonance imaging (fMRI was used in a longitudinal study on five rhesus monkeys to observe cerebral activation during upper limb somatosensory tasks in healthy animals and after unilateral thoracic SCI. The changes in the spinal cord diameters were measured, and the correlations among time after the lesion, structural changes in the spinal cord, and primary somatosensory cortex (S1 reorganization were also determined. After SCI, activation of the upper limb in S1 shifted to the region which generally dominates the lower limb, and the rostral spinal cord transverse diameter adjacent to the lesion exhibited obvious atrophy, which reflects the SCI-induced changes in the CNS. A significant correlation was found among the time after the lesion, the spinal cord atrophy, and the degree of contralateral S1 reorganization. The results indicate the structural changes in the spinal cord and the dynamic reorganization of the cerebral activation following early SCI stage, which may help to further understand the neural plasticity in the CNS.

  19. Fronto-striatal atrophy in behavioural variant frontotemporal dementia & Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Maxime eBertoux

    2015-07-01

    Full Text Available Behavioural variant frontotemporal dementia (bvFTD has only recently been associated with significant striatal atrophy, whereas the striatum appears to be relatively preserved in Alzheimer’s disease (AD. Considering the critical role the striatum has in cognition and behaviour, striatal degeneration, together with frontal atrophy, could be responsible of some characteristic symptoms in bvFTD and emerges therefore as promising novel diagnostic biomarker to distinguish bvFTD and AD. Previous studies have, however, only taken either cortical or striatal atrophy into account when comparing the two diseases. In this study, we establish for the first time a profile of fronto-striatal atrophy in 23 bvFTD and 29 AD patients at presentation, based on the structural connectivity of striatal and cortical regions. Patients are compared to 50 healthy controls by using a novel probabilistic connectivity atlas, which defines striatal regions by their cortical white matter connectivity, allowing us to explore the degeneration of the frontal and striatal regions that are functionally linked. Comparisons with controls revealed that bvFTD showed substantial fronto-striatal atrophy affecting the ventral as well as anterior and posterior dorso-lateral prefrontal cortices and the related striatal subregions. By contrast, AD showed few fronto-striatal atrophy, despite having significant posterior dorso-lateral prefrontal degeneration. Direct comparison between bvFTD and AD revealed significantly more atrophy in the ventral striatal-ventromedial prefrontal cortex regions in bvFTD. Consequently, deficits in ventral fronto-striatal regions emerge as promising novel and efficient diagnosis biomarker for bvFTD. Future investigations into the contributions of these fronto-striatal loops on bvFTD symptomology are needed to develop simple diagnostic and disease tracking algorithms.

  20. Disconnection mechanism and regional cortical atrophy contribute to impaired processing of facial expressions and theory of mind in multiple sclerosis: a structural MRI study.

    Science.gov (United States)

    Mike, Andrea; Strammer, Erzsebet; Aradi, Mihaly; Orsi, Gergely; Perlaki, Gabor; Hajnal, Andras; Sandor, Janos; Banati, Miklos; Illes, Eniko; Zaitsev, Alexander; Herold, Robert; Guttmann, Charles R G; Illes, Zsolt

    2013-01-01

    Successful socialization requires the ability of understanding of others' mental states. This ability called as mentalization (Theory of Mind) may become deficient and contribute to everyday life difficulties in multiple sclerosis. We aimed to explore the impact of brain pathology on mentalization performance in multiple sclerosis. Mentalization performance of 49 patients with multiple sclerosis was compared to 24 age- and gender matched healthy controls. T1- and T2-weighted three-dimensional brain MRI images were acquired at 3Tesla from patients with multiple sclerosis and 18 gender- and age matched healthy controls. We assessed overall brain cortical thickness in patients with multiple sclerosis and the scanned healthy controls, and measured the total and regional T1 and T2 white matter lesion volumes in patients with multiple sclerosis. Performances in tests of recognition of mental states and emotions from facial expressions and eye gazes correlated with both total T1-lesion load and regional T1-lesion load of association fiber tracts interconnecting cortical regions related to visual and emotion processing (genu and splenium of corpus callosum, right inferior longitudinal fasciculus, right inferior fronto-occipital fasciculus, uncinate fasciculus). Both of these tests showed correlations with specific cortical areas involved in emotion recognition from facial expressions (right and left fusiform face area, frontal eye filed), processing of emotions (right entorhinal cortex) and socially relevant information (left temporal pole). Thus, both disconnection mechanism due to white matter lesions and cortical thinning of specific brain areas may result in cognitive deficit in multiple sclerosis affecting emotion and mental state processing from facial expressions and contributing to everyday and social life difficulties of these patients.

  1. Disconnection mechanism and regional cortical atrophy contribute to impaired processing of facial expressions and theory of mind in multiple sclerosis: a structural MRI study.

    Directory of Open Access Journals (Sweden)

    Andrea Mike

    Full Text Available Successful socialization requires the ability of understanding of others' mental states. This ability called as mentalization (Theory of Mind may become deficient and contribute to everyday life difficulties in multiple sclerosis. We aimed to explore the impact of brain pathology on mentalization performance in multiple sclerosis. Mentalization performance of 49 patients with multiple sclerosis was compared to 24 age- and gender matched healthy controls. T1- and T2-weighted three-dimensional brain MRI images were acquired at 3Tesla from patients with multiple sclerosis and 18 gender- and age matched healthy controls. We assessed overall brain cortical thickness in patients with multiple sclerosis and the scanned healthy controls, and measured the total and regional T1 and T2 white matter lesion volumes in patients with multiple sclerosis. Performances in tests of recognition of mental states and emotions from facial expressions and eye gazes correlated with both total T1-lesion load and regional T1-lesion load of association fiber tracts interconnecting cortical regions related to visual and emotion processing (genu and splenium of corpus callosum, right inferior longitudinal fasciculus, right inferior fronto-occipital fasciculus, uncinate fasciculus. Both of these tests showed correlations with specific cortical areas involved in emotion recognition from facial expressions (right and left fusiform face area, frontal eye filed, processing of emotions (right entorhinal cortex and socially relevant information (left temporal pole. Thus, both disconnection mechanism due to white matter lesions and cortical thinning of specific brain areas may result in cognitive deficit in multiple sclerosis affecting emotion and mental state processing from facial expressions and contributing to everyday and social life difficulties of these patients.

  2. Distortion of time interval reproduction in an epileptic patient with a focal lesion in the right anterior insular/inferior frontal cortices.

    Science.gov (United States)

    Monfort, Vincent; Pfeuty, Micha; Klein, Madelyne; Collé, Steffie; Brissart, Hélène; Jonas, Jacques; Maillard, Louis

    2014-11-01

    This case report on an epileptic patient suffering from a focal lesion at the junction of the right anterior insular cortex (AIC) and the adjacent inferior frontal cortex (IFC) provides the first evidence that damage to this brain region impairs temporal performance in a visual time reproduction task in which participants had to reproduce the presentation duration (3, 5 and 7s) of emotionally-neutral and -negative pictures. Strikingly, as compared to a group of healthy subjects, the AIC/IFC case considerably overestimated reproduction times despite normal variability. The effect was obtained in all duration and emotion conditions. Such a distortion in time reproduction was not observed in four other epileptic patients without insular or inferior frontal damage. Importantly, the absolute extent of temporal over-reproduction increased in proportion to the magnitude of the target durations, which concurs with the scalar property of interval timing, and points to an impairment of time-specific rather than of non temporal (such as motor) mechanisms. Our data suggest that the disability in temporal reproduction of the AIC/IFC case would result from a distorted memory representation of the encoded duration, occurring during the process of storage and/or of recovery from memory and leading to a deviation of the temporal judgment during the reproduction task. These findings support the recent proposal that the anterior insular/inferior frontal cortices would be involved in time interval representation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Perceived stress is associated with increased rostral middle frontal gyrus cortical thickness: a family-based and discordant-sibling investigation.

    Science.gov (United States)

    Michalski, L J; Demers, C H; Baranger, D A A; Barch, D M; Harms, M P; Burgess, G C; Bogdan, R

    2017-11-01

    Elevated stress perception and depression commonly co-occur, suggesting that they share a common neurobiology. Cortical thickness of the rostral middle frontal gyrus (RMFG), a region critical for executive function, has been associated with depression- and stress-related phenotypes. Here, we examined whether RMFG cortical thickness is associated with these phenotypes in a large family-based community sample. RMFG cortical thickness was estimated using FreeSurfer among participants (n = 879) who completed the ongoing Human Connectome Project. Depression-related phenotypes (i.e. sadness, positive affect) and perceived stress were assessed via self-report. After accounting for sex, age, ethnicity, average whole-brain cortical thickness, twin status and familial structure, RMFG thickness was positively associated with perceived stress and sadness and negatively associated with positive affect at small effect sizes (accounting for 0.2-2.4% of variance; p-fdr: 0.0051-0.1900). Perceived stress was uniquely associated with RMFG thickness after accounting for depression-related phenotypes. Further, among siblings discordant for perceived stress, those reporting higher perceived stress had increased RMFG thickness (P = 4 × 10 -7 ). Lastly, RMFG thickness, perceived stress, depressive symptoms, and positive affect were all significantly heritable, with evidence of shared genetic and environmental contributions between self-report measures. Stress perception and depression share common genetic, environmental, and neural correlates. Variability in RMFG cortical thickness may play a role in stress-related depression, although effects may be small in magnitude. Prospective studies are required to examine whether variability in RMFG thickness may function as a risk factor for stress exposure and/or perception, and/or arises as a consequence of these phenotypes. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  4. Interrelations between motivational stance, cortical excitability, and the frontal electroencephalogram asymmetry of emotion: A Transcranial magnetic stimulation study

    NARCIS (Netherlands)

    Schutter, D.J.L.G.; Weijer, A.D. de; Meuwese, J.D.I.; Morgan, B.E.; Honk, E.J. van

    2008-01-01

    everal electrophysiological studies have provided evidence for the frontal asymmetry of emotion. In this model the motivation to approach is lateralized to the left, whereas the motivation to avoidance is lateralized to the right hemisphere. The aim of the present experiment was to seek evidence for

  5. Healthy versus Entorhinal Cortical Atrophy Identification in Asymptomatic APOE4 Carriers at Risk for Alzheimer’s Disease

    Science.gov (United States)

    Konishi, Kyoko; Joober, Ridha; Poirier, Judes; MacDonald, Kathleen; Chakravarty, Mallar; Patel, Raihaan; Breitner, John; Bohbot, Véronique D.

    2018-01-01

    Early detection of Alzheimer’s disease (AD) has been challenging as current biomarkers are invasive and costly. Strong predictors of future AD diagnosis include lower volume of the hippocampus and entorhinal cortex, as well as the ɛ4 allele of the Apolipoprotein E gene (APOE) gene. Therefore, studying functions that are critically mediated by the hippocampus and entorhinal cortex, such as spatial memory, in APOE ɛ4 allele carriers, may be key to the identification of individuals at risk of AD, prior to the manifestation of cognitive impairments. Using a virtual navigation task developed in-house, specifically designed to assess spatial versus non-spatial strategies, the current study is the first to differentiate functional and structural differences within APOE ɛ4 allele carriers. APOE ɛ4 allele carriers that predominantly use non-spatial strategies have decreased fMRI activity in the hippocampus and increased atrophy in the hippocampus, entorhinal cortex, and fimbria compared to APOE ɛ4 allele carriers who use spatial strategies. In contrast, APOE ɛ4 allele carriers who use spatial strategies have grey matter levels comparable to non-APOE ɛ4 allele carriers. Furthermore, in a leave-one-out analysis, grey matter in the entorhinal cortex could predict navigational strategy with 92% accuracy. PMID:29278888

  6. Correlations between measures of executive attention and cortical thickness of left posterior middle frontal gyrus - a dichotic listening study

    Directory of Open Access Journals (Sweden)

    Lundervold Arvid

    2009-10-01

    Full Text Available Abstract Background The frontal lobe has been associated to a wide range of cognitive control functions and is also vulnerable to degeneration in old age. A recent study by Thomsen and colleagues showed a difference between a young and old sample in grey matter density and activation in the left middle frontal cortex (MFC and performance on a dichotic listening task. The present study investigated this brain behaviour association within a sample of healthy older individuals, and predicted a positive correlation between performance in a condition requiring executive attention and measures of grey matter structure of the posterior left MFC. Methods A dichotic listening forced attention paradigm was used to measure attention control functions. Subjects were instructed to report only the left or the right ear syllable of a dichotically presented consonant-vowel syllable pair. A conflict situation appears when subjects are instructed to report the left ear stimulus, caused by the conflict with the bottom-up, stimulus-driven right ear advantage. Overcoming this processing conflict was used as a measure of executive attention. Thickness and volumes of frontal lobe regions were derived from automated segmentation of 3D magnetic resonance image acquisitions. Results The results revealed a statistically significant positive correlation between the thickness measure of the left posterior MFC and performance on the dichotic listening measures of executive attention. Follow-up analyses showed that this correlation was only statistically significant in the subgroup that showed the typical bottom-up, stimulus-driven right ear advantage. Conclusion The results suggest that the left MFC is a part of an executive attention network, and that the dichotic listening forced attention paradigm may be a feasible tool for assessing subtle attentional dysfunctions in older adults.

  7. Vaginal Atrophy

    Science.gov (United States)

    ... an Endocrinologist Search Featured Resource Menopause Map™ View Vaginal Atrophy October 2017 Download PDFs English Editors Christine ... during this time, including vaginal dryness. What is vaginal atrophy? Vaginal atrophy (also referred to as vulvovaginal ...

  8. Posterior paralimbic and frontal metabolite impairments in asymptomatic hypertension with different treatment outcomes

    International Nuclear Information System (INIS)

    Garcia Santos, J.M.; Fuentes, L.J.; Vidal, J.B.

    2010-01-01

    Hypertension is associated with cognitive decline in elderly persons. We studied asymptomatic hypertensive subjects using brain magnetic resonance (MR) spectroscopy to evaluate metabolite impairments before the appearance of symptoms in patients with different treatment outcomes. In all, 14 healthy controls and 37 asymptomatic hypertensive patients (17 controlled and 20 resistant) underwent brain structural MR and MR spectroscopy of the posterior paralimbic (PPL) area and left frontal white matter. Ischemic burden (IB), global cortical atrophy and microbleeds were analyzed with visual scales. Metabolite ratios involving N-acetyl-aspartate (NAA), creatine (Cr), choline (Cho) and myoinositol (ml) were computed. Ultrasound measurements, including intima-media thickness, plaques and hemodynamic ratios, were obtained. Intergroup differences in IB, atrophy and metabolite ratios, and the atrophy and IB relationship were assessed with parametric and nonparametric statistical tests. In addition, the impacts of demographic, analytic and clinical factors, ischemia and atrophy, and ultrasound measurements on metabolite ratios were assessed. The significance level was set at P≤0.05. Higher atrophy scores presented with higher total or frontal IB (P<0.05). However, there was no intergroup difference in atrophy and IB. PPL ml/Cr was increased in resistant hypertension (P<0.021), whereas frontal NAA/Cr (P<0.007) showed opposite trends between controlled (increased ratios) and resistant (decreased ratios) hypertension. Unlike PPL ml/Cr, frontal NAA/Cr showed significant correlations with the lipid profile and ultrasound measurements. PPL ml/Cr increases in resistant hypertension, and frontal NAA/Cr diverges between controlled and resistant hypertension before physical and neuropsychological symptoms appear. (author)

  9. Frontal and subcortical grey matter reductions in PTSD.

    Science.gov (United States)

    O'Doherty, Daniel C M; Tickell, Ashleigh; Ryder, Will; Chan, Charles; Hermens, Daniel F; Bennett, Maxwell R; Lagopoulos, Jim

    2017-08-30

    Post-traumatic stress disorder (PTSD) is characterised by a range of debilitating psychological, physical and cognitive symptoms. PTSD has been associated with grey matter atrophy in limbic and frontal cortical brain regions. However, previous studies have reported heterogeneous findings, with grey matter changes observed beyond limbic/frontal areas. Seventy-five adults were recruited from the community, 25 diagnosed with PTSD along with 25 healthy and 25 trauma exposed age and gender matched controls. Participants underwent clinical assessment and magnetic resonance imaging. The data-analyses method Voxel Based Morphometry (VBM) was used to estimate cortical grey matter volumes. When compared to both healthy and trauma exposed controls, PTSD subjects demonstrated decreased grey matter volumes within subcortical brain regions-including the hippocampus and amygdala-along with reductions in the anterior cingulate cortex, frontal medial cortex, middle frontal gyrus, superior frontal gyrus, paracingulate gyrus, and precuneus cortex. Significant negative correlations were found between total CAPS lifetime clinical scores/sub-scores and GM volume of both the PTSD and TC groups. GM volumes of the left rACC and right amygdala showed a significant negative correlation within PTSD diagnosed subjects. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  10. Widespread cortical thinning in patients with neuromyelitis optica spectrum disorder.

    Science.gov (United States)

    Kim, S-H; Kwak, K; Hyun, J-W; Jeong, I H; Jo, H-J; Joung, A; Kim, J-H; Lee, S H; Yun, S; Joo, J; Lee, J-M; Kim, H J

    2016-07-01

    Studies on cortical involvement and its relationship with cognitive function in patients with neuromyelitis optica spectrum disorder (NMOSD) remain scarce. The objective of this study was to compare cortical thickness on magnetic resonance imaging (MRI) between patients with NMOSD and multiple sclerosis (MS) and to investigate its relationship with clinical features and cognitive function. This observational clinical imaging study of 91 patients with NMOSD, 52 patients with MS and 44 healthy controls was conducted from 1 December 2013 to 30 April 2015 at the institutional referral center. Three tesla MRI of the brain and neuropsychological tests were performed. Cortical thickness was measured using three-dimensional surface-based analysis. Both sets of patients exhibited cortical thinning throughout the entire brain cortex. Patients with MS showed a significantly greater reduction in cortical thickness over broad regions of the bilateral frontal and parieto-temporal cortices and the left precuneus compared to those with NMOSD. Memory functions in patients with MS were correlated with broad regional cortical thinning, whereas no significant associations were observed between cortical thickness and cognitive function in patients with NMOSD. Widespread cortical thinning was observed in patients with NMOSD and MS, but the extent of cortical thinning was greater in patients with MS. The more severe cortical atrophy may contribute to memory impairment in patients with MS but not in those with NMOSD. These results provide in vivo evidence that the severity and clinical relevance of cortical thinning differ between NMOSD and MS. © 2016 EAN.

  11. Dissociated roles of the parietal and frontal cortices in the scope and control of attention during visual working memory.

    Science.gov (United States)

    Li, Siyao; Cai, Ying; Liu, Jing; Li, Dawei; Feng, Zifang; Chen, Chuansheng; Xue, Gui

    2017-04-01

    Mounting evidence suggests that multiple mechanisms underlie working memory capacity. Using transcranial direct current stimulation (tDCS), the current study aimed to provide causal evidence for the neural dissociation of two mechanisms underlying visual working memory (WM) capacity, namely, the scope and control of attention. A change detection task with distractors was used, where a number of colored bars (i.e., two red bars, four red bars, or two red plus two blue bars) were presented on both sides (Experiment 1) or the center (Experiment 2) of the screen for 100ms, and participants were instructed to remember the red bars and to ignore the blue bars (in both Experiments), as well as to ignore the stimuli on the un-cued side (Experiment 1 only). In both experiments, participants finished three sessions of the task after 15min of 1.5mA anodal tDCS administered on the right prefrontal cortex (PFC), the right posterior parietal cortex (PPC), and the primary visual cortex (VC), respectively. The VC stimulation served as an active control condition. We found that compared to stimulation on the VC, stimulation on the right PPC specifically increased the visual WM capacity under the no-distractor condition (i.e., 4 red bars), whereas stimulation on the right PFC specifically increased the visual WM capacity under the distractor condition (i.e., 2 red bars plus 2 blue bars). These results suggest that the PPC and PFC are involved in the scope and control of attention, respectively. We further showed that compared to central presentation of the stimuli (Experiment 2), bilateral presentation of the stimuli (on both sides of the fixation in Experiment 1) led to an additional demand for attention control. Our results emphasize the dissociated roles of the frontal and parietal lobes in visual WM capacity, and provide a deeper understanding of the neural mechanisms of WM. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Go/No Go task performance predicts cortical thickness in the caudal inferior frontal gyrus in young adults with and without ADHD.

    Science.gov (United States)

    Newman, Erik; Jernigan, Terry L; Lisdahl, Krista M; Tamm, Leanne; Tapert, Susan F; Potkin, Steven G; Mathalon, Daniel; Molina, Brooke; Bjork, James; Castellanos, F Xavier; Swanson, James; Kuperman, Joshua M; Bartsch, Hauke; Chen, Chi-Hua; Dale, Anders M; Epstein, Jeffery N; Group, Mta Neuroimaging

    2016-09-01

    Response inhibition deficits are widely believed to be at the core of Attention-Deficit Hyperactivity Disorder (ADHD). Several studies have examined neural architectural correlates of ADHD, but research directly examining structural correlates of response inhibition is lacking. Here we examine the relationship between response inhibition as measured by a Go/No Go task, and cortical surface area and thickness of the caudal inferior frontal gyrus (cIFG), a region implicated in functional imaging studies of response inhibition, in a sample of 114 young adults with and without ADHD diagnosed initially during childhood. We used multiple linear regression models to test the hypothesis that Go/No Go performance would be associated with cIFG surface area or thickness. Results showed that poorer Go/No Go performance was associated with thicker cIFG cortex, and this effect was not mediated by ADHD status or history of substance use. However, independent of Go/No Go performance, persistence of ADHD symptoms and more frequent cannabis use were associated with thinner cIFG. Go/No Go performance was not associated with cortical surface area. The association between poor inhibitory functioning and thicker cIFG suggests that maturation of this region may differ in low performing participants. An independent association of persistent ADHD symptoms and frequent cannabis use with thinner cIFG cortex suggests that distinct neural mechanisms within this region may play a role in inhibitory function, broader ADHD symptomatology, and cannabis use. These results contribute to Research Domain Criteria (RDoC) by revealing novel associations between neural architectural phenotypes and basic neurobehavioral processes measured dimensionally.

  13. A double-blind placebo-controlled cross-over clinical trial of DONepezil In Posterior cortical atrophy due to underlying Alzheimer's Disease: DONIPAD study.

    Science.gov (United States)

    Ridha, Basil H; Crutch, Sebastian; Cutler, Dawn; Frost, Christopher; Knight, William; Barker, Suzie; Epie, Norah; Warrington, Elizabeth K; Kukkastenvehmas, Riitta; Douglas, Jane; Rossor, Martin N

    2018-05-01

    The study investigated whether donepezil exerts symptomatic benefit in patients with posterior cortical atrophy (PCA), an atypical variant of Alzheimer's disease. A single-centre, double-blind, placebo-controlled, cross-over clinical trial was performed to assess the efficacy of donepezil in patients with PCA. Each patient received either donepezil (5 mg once daily in the first 6 weeks and 10 mg once daily in the second 6 weeks) or placebo for 12 weeks. After a 2-week washout period, each patient received the other treatment arm during the following 12 weeks followed by another 2-week washout period. The primary outcome was the Mini-Mental State Examination (MMSE) at 12 weeks. Secondary outcome measures were five neuropsychological tests reflecting parieto-occipital function. Intention-to-treat analysis was used. For each outcome measure, carry-over effects were first assessed. If present, then analysis was restricted to the first 12-week period. Otherwise, the standard approach to the analysis of a 2 × 2 cross-over trial was used. Eighteen patients (13 females) were recruited (mean age 61.6 years). There was a protocol violation in one patient, who subsequently withdrew from the study due to gastrointestinal side effects. There was statistically significant (p effect on MMSE. Therefore, the analysis of treatment effect on MMSE was restricted to the first 12-week period. Treatment effect at 6 weeks was statistically significant (difference = 2.5 in favour of donepezil, 95% CI 0.1 to 5.0, p effect at 12 weeks was close, but not statistically significant (difference = 2.0 in favour of donepezil, 95% CI -0.1 to 4.5, p > 0.05). There were no statistically significant treatment effects on any of the five neuropsychological tests, except for digit span at 12 weeks (higher by 0.5 digits in favour of placebo, 95% CI 0.1 to 0.9). Gastrointestinal side effects occurred most frequently, affecting 13/18 subjects (72%), and were the cause of study discontinuation in one

  14. Proton magnetic resonance spectroscopy of the frontal, cingulate and perirolandic cortices and its relationship to skin conductance in patients with schizophrenia

    Energy Technology Data Exchange (ETDEWEB)

    Sanches, R.F.; Crippa, J.A.S.; Hallak, J.E.C.; Sousa, J.P.M. de; Zuardi, A.W. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP, (Brazil). Faculdade de Medicina. Dept. de Neurociencias e Ciencias do Comportamento]. E-mail: awzuardi@fmrp.usp.br; Araujo, D.; Santos, A.C. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP, (Brazil). Faculdade de Medicina. Div. de Radiologia

    2008-07-01

    The aim of the present study was to determine whether specific subgroups of schizophrenic patients, grouped according to electrodermal characteristics, show differences in the N-acetylaspartate/creatine plus choline (NAA / (Cr + Cho)) ratios in the frontal, cingulate and perirolandic cortices. Skin conductance levels (SCL) and skin conductance responses to auditory stimulation were measured in 38 patients with schizophrenia and in the same number of matched healthy volunteers (control). All subjects were submitted to multivoxel proton magnetic resonance spectroscopic imaging. When compared to the control group, patients presented significantly lower NAA / (Cr + Cho) ratios in the right dorsolateral prefrontal cortex (schizophrenia 0.95 {+-} 0.03; control = 1.12 {+-} 0.04) and in the right (schizophrenia 0.88 {+-} 0.02; control = 0.94 {+-} 0.03) and left (schizophrenia 0.84 {+-} 0.03; control = 0.94 {+-} 0.03) cingulates. These ratios did not differ between electrodermally responsive and non-responsive patients. When patients were divided into two groups: lower SCL (less than the mean SCL of the control group minus two standard deviations) and normal SCL (similar to the control group), the subgroup with a lower level of SCL showed a lower NAA / (Cr + Cho) ratio in the left cingulate (0.78 {+-} 0.05) than the controls (0.95 {+-} 0.02, P < 0.05) and the subgroup with normal SCL (0.88 {+-} 0.03, P < 0.05). There was a negative correlation between the NAA / (Cr + Cho) ratio in the left cingulate of patients with schizophrenia and the duration of the disease and years under medication. These data suggest the existence of a schizophrenic subgroup characterized by low SCL that could be a consequence of the lower neuronal viability observed in the left cingulate of these patients. (author)

  15. Proton magnetic resonance spectroscopy of the frontal, cingulate and perirolandic cortices and its relationship to skin conductance in patients with schizophrenia

    International Nuclear Information System (INIS)

    Sanches, R.F.; Crippa, J.A.S.; Hallak, J.E.C.; Sousa, J.P.M. de; Zuardi, A.W.; Araujo, D.; Santos, A.C.

    2008-01-01

    The aim of the present study was to determine whether specific subgroups of schizophrenic patients, grouped according to electrodermal characteristics, show differences in the N-acetylaspartate/creatine plus choline (NAA / (Cr + Cho)) ratios in the frontal, cingulate and perirolandic cortices. Skin conductance levels (SCL) and skin conductance responses to auditory stimulation were measured in 38 patients with schizophrenia and in the same number of matched healthy volunteers (control). All subjects were submitted to multivoxel proton magnetic resonance spectroscopic imaging. When compared to the control group, patients presented significantly lower NAA / (Cr + Cho) ratios in the right dorsolateral prefrontal cortex (schizophrenia 0.95 ± 0.03; control = 1.12 ± 0.04) and in the right (schizophrenia 0.88 ± 0.02; control = 0.94 ± 0.03) and left (schizophrenia 0.84 ± 0.03; control = 0.94 ± 0.03) cingulates. These ratios did not differ between electrodermally responsive and non-responsive patients. When patients were divided into two groups: lower SCL (less than the mean SCL of the control group minus two standard deviations) and normal SCL (similar to the control group), the subgroup with a lower level of SCL showed a lower NAA / (Cr + Cho) ratio in the left cingulate (0.78 ± 0.05) than the controls (0.95 ± 0.02, P < 0.05) and the subgroup with normal SCL (0.88 ± 0.03, P < 0.05). There was a negative correlation between the NAA / (Cr + Cho) ratio in the left cingulate of patients with schizophrenia and the duration of the disease and years under medication. These data suggest the existence of a schizophrenic subgroup characterized by low SCL that could be a consequence of the lower neuronal viability observed in the left cingulate of these patients. (author)

  16. Structural and functional evaluation of cortical motor areas in Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Cosottini, Mirco; Pesaresi, Ilaria; Piazza, Selina; Diciotti, Stefano; Cecchi, Paolo; Fabbri, Serena; Carlesi, Cecilia; Mascalchi, Mario; Siciliano, Gabriele

    2012-03-01

    The structural and functional data gathered with Magnetic Resonance Imaging (MRI) techniques about the brain cortical motor damage in Amyotrophic Lateral Sclerosis (ALS) are controversial. In fact some structural MRI studies showed foci of gray matter (GM) atrophy in the precentral gyrus, even in the early stage, while others did not. Most functional MRI (fMRI) studies in ALS reported hyperactivation of extra-primary motor cortices, while contradictory results were obtained on the activation of the primary motor cortex. We aimed to investigate the cortical motor circuitries in ALS patients by a combined structural and functional approach. Twenty patients with definite ALS and 16 healthy subjects underwent a structural examination with acquisition of a 3D T1-weighted sequence and fMRI examination during a maximal force handgrip task executed with the right-hand, the left-hand and with both hands simultaneously. The T1-weighted images were analyzed with Voxel-Based Morphometry (VBM) that showed several clusters of reduced cortical GM in ALS patients compared to controls including the pre and postcentral gyri, the superior, middle and inferior frontal gyri, the supplementary motor area, the superior and inferior parietal cortices and the temporal lobe, bilaterally but more extensive on the right side. In ALS patients a significant hypoactivation of the primary sensory motor cortex and frontal dorsal premotor areas as compared to controls was observed. The hypoactivated areas matched with foci of cortical atrophy demonstrated by VBM. The fMRI analysis also showed an enhanced activation in the ventral premotor frontal areas and in the parietal cortex pertaining to the fronto-parietal motor circuit which paralleled with disease progression rate and matched with cortical regions of atrophy. The hyperactivation of the fronto-parietal circuit was asymmetric and prevalent in the left hemisphere. VBM and fMRI identified structural and functional markers of an extended

  17. The atrophy pattern in the subtypes of frontotemporal lobar degeneration and Alzheimer disease by structural MRI

    International Nuclear Information System (INIS)

    Zhang Bing; Zhang Xin; Li Ming; Chen Fei; Xu Jun; Wang Huiting; Qian Lai; Zhao Hui; Xu Yun; Zhu Bin

    2012-01-01

    Objective: To analyze the patterns of cortical atrophy of the two subtypes of frontotemporal lobar degeneration (FTLD), behavioural-variant frontotemporal dementia (bvFTD) and primary progressive aphasia (PPA). And to compare them with that of Alzheimer disease (AD) to provide an objective basis for early diagnosis and differential diagnosis. Methods: A total of 83 patients were enrolled in this study and there were 30 patients with cognitively normal controls (CN), 30 with AD and 23 with FTLD (10 with bvFTD, 13 with PPA). Philips 3.0 T TX scanner and 8 channel head coil was employed. Three dimensional turbo fast echo (3D-TFE) T 1 WI sequence with high resolution was used to collect the volume data of gray matter. 3D-TFE T 1 WI images were normalized and segmented into gray matter map for statistical analysis by SPM 8 and VBM 8. The false discovery rate (FDR) was adopted in P value adjustment, P<0.001, and the cluster size was set at 5. The full width at half maximum (FWHM) was set at 4 mm for the smoothing. Paired t test was used for statistics. Results: In bvFTD, PPA and AD groups,there were diffuse regions with reduced volume in cerebral cortex and subcortical structures (such as the hippocampus, the amygdala, the caudate nuclei, et al). The most obvious atrophic region in bvFTD and PPA group was found in the frontotemporal. Compared with AD, gray matter atrophy in bvFTD was found in brain regions including bilateral temporal lobes, bilateral superior temporal pole gyri, bilateral middle temporal pole gyri, right fusiform gyrus and bilateral frontal lobes. Among them, temporal and frontal lobes atrophy had obvious right partial lateralizing, with 14 301 voxels in right temporal lobe and 5105 in left (t=-5.03, P<0.05). The number of atrophy voxels in right and left frontal lobe were 1344 and 125 (t=3.45, P<0.05). The left temporooccipital lobe atrophy was more obvious than the right in PPA,with 15 637 voxels in left and 10 723 in right (t=-2.65, P<0

  18. Subcortical frontal lesions on MRI in patients with motor neurone disease

    Energy Technology Data Exchange (ETDEWEB)

    Andreadou, E.; Sgouropoulos, P.; Varelas, P.; Papageorgiou, C. [Eginition Hospital, Athens (Greece); Gouliamos, A. [Department of Radiology, CT/MRI Unit, Areteion Hospital, University of Athens (Greece)

    1998-05-01

    MRI was performed in 32 patients with motor neurone disease (26 men and 6 women, aged 40-77 years) and in a control group of 21 subjects. Of the patients studied, 19 had definite and 11 probable amyotrophic lateral sclerosis (ALS) and two had progressive bulbar palsy. In 10 patients there were asymmetrical bilateral foci of increased signal intensity on proton-density and T{sub 2}-weighted images, confined to the white matter. Two patients had only cortical frontal atrophy and slightly increased ventricular size, whereas 20 had normal MRI. The focal lesions were not confined to corticospinal tracts, but were also observed in subcortical frontal areas. While the lesions along the corticospinal tracts correspond to pyramidal tract degeneration, the subcortical foci correlate with degeneration of the frontal bundles and indicate generalised involvement of the central nervous system. (orig.) With 3 figs., 2 tabs., 25 refs.

  19. Subcortical frontal lesions on MRI in patients with motor neurone disease

    International Nuclear Information System (INIS)

    Andreadou, E.; Sgouropoulos, P.; Varelas, P.; Papageorgiou, C.; Gouliamos, A.

    1998-01-01

    MRI was performed in 32 patients with motor neurone disease (26 men and 6 women, aged 40-77 years) and in a control group of 21 subjects. Of the patients studied, 19 had definite and 11 probable amyotrophic lateral sclerosis (ALS) and two had progressive bulbar palsy. In 10 patients there were asymmetrical bilateral foci of increased signal intensity on proton-density and T 2 -weighted images, confined to the white matter. Two patients had only cortical frontal atrophy and slightly increased ventricular size, whereas 20 had normal MRI. The focal lesions were not confined to corticospinal tracts, but were also observed in subcortical frontal areas. While the lesions along the corticospinal tracts correspond to pyramidal tract degeneration, the subcortical foci correlate with degeneration of the frontal bundles and indicate generalised involvement of the central nervous system. (orig.)

  20. Hippocampal Sclerosis of Aging, a Common Alzheimer's Disease 'Mimic': Risk Genotypes are Associated with Brain Atrophy Outside the Temporal Lobe.

    Science.gov (United States)

    Nho, Kwangsik; Saykin, Andrew J; Nelson, Peter T

    2016-01-01

    Hippocampal sclerosis of aging (HS-Aging) is a common brain disease in older adults with a clinical course that is similar to Alzheimer's disease. Four single-nucleotide polymorphisms (SNPs) have previously shown association with HS-Aging. The present study investigated structural brain changes associated with these SNPs using surface-based analysis. Participants from the Alzheimer's Disease Neuroimaging Initiative cohort (ADNI; n = 1,239), with both MRI scans and genotype data, were used to assess the association between brain atrophy and previously identified HS-Aging risk SNPs in the following genes: GRN, TMEM106B, ABCC9, and KCNMB2 (minor allele frequency for each is >30%). A fifth SNP (near the ABCC9 gene) was evaluated in post-hoc analysis. The GRN risk SNP (rs5848_T) was associated with a pattern of atrophy in the dorsomedial frontal lobes bilaterally, remarkable since GRN is a risk factor for frontotemporal dementia. The ABCC9 risk SNP (rs704180_A) was associated with multifocal atrophy whereas a SNP (rs7488080_A) nearby (∼50 kb upstream) ABCC9 was associated with atrophy in the right entorhinal cortex. Neither TMEM106B (rs1990622_T), KCNMB2 (rs9637454_A), nor any of the non-risk alleles were associated with brain atrophy. When all four previously identified HS-Aging risk SNPs were summed into a polygenic risk score, there was a pattern of associated multifocal brain atrophy in a predominately frontal pattern. We conclude that common SNPs previously linked to HS-Aging pathology were associated with a distinct pattern of anterior cortical atrophy. Genetic variation associated with HS-Aging pathology may represent a non-Alzheimer's disease contribution to atrophy outside of the hippocampus in older adults.

  1. Focal cortical dysplasia – review

    International Nuclear Information System (INIS)

    Kabat, Joanna; Król, Przemysław

    2012-01-01

    Focal cortical dysplasia is a malformation of cortical development, which is the most common cause of medically refractory epilepsy in the pediatric population and the second/third most common etiology of medically intractable seizures in adults. Both genetic and acquired factors are involved in the pathogenesis of cortical dysplasia. Numerous classifications of the complex structural abnormalities of focal cortical dysplasia have been proposed – from Taylor et al. in 1971 to the last modification of Palmini classification made by Blumcke in 2011. In general, three types of cortical dysplasia are recognized. Type I focal cortical dysplasia with mild symptomatic expression and late onset, is more often seen in adults, with changes present in the temporal lobe. Clinical symptoms are more severe in type II of cortical dysplasia usually seen in children. In this type, more extensive changes occur outside the temporal lobe with predilection for the frontal lobes. New type III is one of the above dysplasias with associated another principal lesion as hippocampal sclerosis, tumor, vascular malformation or acquired pathology during early life. Brain MRI imaging shows abnormalities in the majority of type II dysplasias and in only some of type I cortical dysplasias. The most common findings on MRI imaging include: focal cortical thickening or thinning, areas of focal brain atrophy, blurring of the gray-white junction, increased signal on T2- and FLAIR-weighted images in the gray and subcortical white matter often tapering toward the ventricle. On the basis of the MRI findings, it is possible to differentiate between type I and type II cortical dysplasia. A complete resection of the epileptogenic zone is required for seizure-free life. MRI imaging is very helpful to identify those patients who are likely to benefit from surgical treatment in a group of patients with drug-resistant epilepsy. However, in type I cortical dysplasia, MR imaging is often normal, and also in both

  2. Studies on atrophy of the brain in chronic alcoholics examined by CT scan

    International Nuclear Information System (INIS)

    Shinoda, Keiichi; Kimura, Fumiharu; Kawamura, Hiroshi; Takenaka, Masazumi; Mozai, Toshiji

    1983-01-01

    A study of atrophy of the brain using CT scan was performed in 113 patients with chronic alcoholism who had history of alcohol abuse over 150 grams in average as amount of absolute ethanol for more than ten years. They had no focal cerebral lesions such as infarction, hemorrhage or tumor, nor clinical neurological deficits. Prominent enlagement of cortical sulci and lateral ventricles was found in chronic alcoholics when compared with age-matched controls. The most remarkable change among 6 indices in all age group was enlargement of cortical sulci. The ratio of lateral ventricle area to intracranical area was more significantly increased compared with the widening of the lateral ventricle determined as a distance between two tips of bilateral frontal horns or intercaudate distance. Forty-eight of 96 patients in whom EEG was examined, showed abnormalities such as dominant slow background activities and sporadic slow bursts, which were found more frequently (25/38, 66%) in patients over 50 years of age. No correlation was found between the occurrence of EEG abnormalities and cerebral atrophy or between the degree of cerebral atrophy and the severity of hepatic dysfunction. It is concluded from our study that atrophy of the brain in chronic alcoholics may be clearly estimated by CT planimetry of the ratio of lateral ventricle area to intracranial area. (J.P.N.)

  3. Studies on atrophy of the brain in chronic alcoholics examined by CT scan

    Energy Technology Data Exchange (ETDEWEB)

    Shinoda, Keiichi; Kimura, Fumiharu; Kawamura, Hiroshi; Takenaka, Masazumi; Mozai, Toshiji (Osaka Medical Coll., Takatsuki (Japan))

    1983-09-01

    A study of atrophy of the brain using CT scan was performed in 113 patients with chronic alcoholism who had history of alcohol abuse over 150 grams in average as amount of absolute ethanol for more than ten years. They had no focal cerebral lesions such as infarction, hemorrhage or tumor, nor clinical neurological deficits. Prominent enlargement of cortical sulci and lateral ventricles was found in chronic alcoholics when compared with age-matched controls. The most remarkable change among 6 indices in all age group was enlargement of cortical sulci. The ratio of lateral ventricle area to intracranical area was more significantly increased compared with the widening of the lateral ventricle determined as a distance between two tips of bilateral frontal horns or intercaudate distance. Forty-eight of 96 patients in whom EEG was examined, showed abnormalities such as dominant slow background activities and sporadic slow bursts, which were found more frequently (25/38, 66%) in patients over 50 years of age. No correlation was found between the occurrence of EEG abnormalities and cerebral atrophy or between the degree of cerebral atrophy and the severity of hepatic dysfunction. It is concluded from our study that atrophy of the brain in chronic alcoholics may be clearly estimated by CT planimetry of the ratio of lateral ventricle area to intracranial area.

  4. Individual Differences in Asymmetric Resting-State Frontal Cortical Activity Modulate ERPs and Performance in a Global-Local Attention Task

    NARCIS (Netherlands)

    Boksem, Maarten A. S.; Kostermans, Evelien; Tops, Mattie; De Cremer, David

    2012-01-01

    Recent research has demonstrated that individual differences in approach motivation modulate attentional scope. In turn, approach and inhibition have been related to different neural systems that are associated with asymmetries in relative frontal activity (RFA). Here, we investigated whether such

  5. Cortical thinning and clinical heterogeneity in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Mezzapesa, Domenico Maria; D'Errico, Eustachio; Tortelli, Rosanna; Distaso, Eugenio; Cortese, Rosa; Tursi, Marianna; Federico, Francesco; Zoccolella, Stefano; Logroscino, Giancarlo; Dicuonzo, Franca; Simone, Isabella Laura

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) has heterogeneous clinical features that could be translated into specific patterns of brain atrophy. In the current study we have evaluated the relationship between different clinical expressions of classical ALS and measurements of brain cortical thickness. Cortical thickness analysis was conducted from 3D-MRI using FreeSurfer software in 29 ALS patients and 20 healthy controls. We explored three clinical traits of the disease, subdividing the patients into two groups for each of them: the bulbar or spinal onset, the higher or lower upper motor neuron burden, the faster or slower disease progression. We used both a whole brain vertex-wise analysis and a ROI analysis on primary motor areas. ALS patients showed cortical thinning in bilateral precentral gyrus, bilateral middle frontal gyrus, right superior temporal gyrus and right occipital cortex. ALS patients with higher upper motor neuron burden showed a significant cortical thinning in the right precentral gyrus and in other frontal extra-motor areas, compared to healthy controls. ALS patients with spinal onset showed a significant cortical thinning in the right precentral gyrus and paracentral lobule, compared to healthy controls. ALS patients with faster progressive disease showed a significant cortical thinning in widespread bilateral frontal and temporal areas, including the bilateral precentral gyrus, compared to healthy controls. Focusing on the primary motor areas, the ROI analysis revealed that the mean cortical thickness values were significantly reduced in ALS patients with higher upper motor neuron burden, spinal onset and faster disease progression related to healthy controls. In conclusion, the thickness of primary motor cortex could be a useful surrogate marker of upper motor neuron involvement in ALS; also our results suggest that cortical thinning in motor and non motor areas seem to reflect the clinical heterogeneity of the disease.

  6. Cortical thinning and clinical heterogeneity in amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Domenico Maria Mezzapesa

    Full Text Available Amyotrophic lateral sclerosis (ALS has heterogeneous clinical features that could be translated into specific patterns of brain atrophy. In the current study we have evaluated the relationship between different clinical expressions of classical ALS and measurements of brain cortical thickness. Cortical thickness analysis was conducted from 3D-MRI using FreeSurfer software in 29 ALS patients and 20 healthy controls. We explored three clinical traits of the disease, subdividing the patients into two groups for each of them: the bulbar or spinal onset, the higher or lower upper motor neuron burden, the faster or slower disease progression. We used both a whole brain vertex-wise analysis and a ROI analysis on primary motor areas. ALS patients showed cortical thinning in bilateral precentral gyrus, bilateral middle frontal gyrus, right superior temporal gyrus and right occipital cortex. ALS patients with higher upper motor neuron burden showed a significant cortical thinning in the right precentral gyrus and in other frontal extra-motor areas, compared to healthy controls. ALS patients with spinal onset showed a significant cortical thinning in the right precentral gyrus and paracentral lobule, compared to healthy controls. ALS patients with faster progressive disease showed a significant cortical thinning in widespread bilateral frontal and temporal areas, including the bilateral precentral gyrus, compared to healthy controls. Focusing on the primary motor areas, the ROI analysis revealed that the mean cortical thickness values were significantly reduced in ALS patients with higher upper motor neuron burden, spinal onset and faster disease progression related to healthy controls. In conclusion, the thickness of primary motor cortex could be a useful surrogate marker of upper motor neuron involvement in ALS; also our results suggest that cortical thinning in motor and non motor areas seem to reflect the clinical heterogeneity of the disease.

  7. Quantitative MRI study of progressive cerebral atrophy in multiple system atrophy

    International Nuclear Information System (INIS)

    Konagaya, Masaaki; Matsuoka, Yukihiko; Konagaya, Yoko

    2002-01-01

    We investigated cerebral atrophy in multiple system atrophy (MSA) by quantitative analysis of MRI. The subjects were 28 patients with MSA (14 striato-nigral degeneration; SND, 14 olivo-ponto-cerebellar atrophy; OPCA. 106 MRI examinations were performed totally) and 85 normal persons for control. The ratios of the ventral pons to the infratentorial space in the sagittal section, the putamen, cerebrum, frontal lobe and parietal and occipital lobes to the intracranial space in the horizontal section, and the temporal lobe to the intracranial space in the coronal section were measured. In the early stage of the disease, OPCA showed significant atrophy of the ventral pons compared with SND, and conversely, SND demonstrated significantly smaller putamen than that in OPCA. According to the progression of the disease, the atrophy of these neural tissues progressed, which resulted in so significant differences between SND and OPCA. The cerebral atrophy was observed in 17 MSA patients. The atrophy of the frontal lobe was much frequent and prominent to that in the temporal lobe and parietal and occipital lobes. SND showed higher incidence of the cerebral atrophy than OPCA in the early stage of the disease. In long period follow-up cases, one case showed cerebral atrophy in earlier stage, and another case in late stage. We indicated the involvement of the cerebral hemispheres in MSA, especially the frontal lobe. (author)

  8. Quantitative MRI study of progressive cerebral atrophy in multiple system atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Konagaya, Masaaki; Matsuoka, Yukihiko [Suzuka National Hospital, Suzuka, Mie (Japan); Konagaya, Yoko [JR Tokai General Hospital, Nagoya (Japan)

    2002-02-01

    We investigated cerebral atrophy in multiple system atrophy (MSA) by quantitative analysis of MRI. The subjects were 28 patients with MSA (14 striato-nigral degeneration; SND, 14 olivo-ponto-cerebellar atrophy; OPCA. 106 MRI examinations were performed totally) and 85 normal persons for control. The ratios of the ventral pons to the infratentorial space in the sagittal section, the putamen, cerebrum, frontal lobe and parietal and occipital lobes to the intracranial space in the horizontal section, and the temporal lobe to the intracranial space in the coronal section were measured. In the early stage of the disease, OPCA showed significant atrophy of the ventral pons compared with SND, and conversely, SND demonstrated significantly smaller putamen than that in OPCA. According to the progression of the disease, the atrophy of these neural tissues progressed, which resulted in so significant differences between SND and OPCA. The cerebral atrophy was observed in 17 MSA patients. The atrophy of the frontal lobe was much frequent and prominent to that in the temporal lobe and parietal and occipital lobes. SND showed higher incidence of the cerebral atrophy than OPCA in the early stage of the disease. In long period follow-up cases, one case showed cerebral atrophy in earlier stage, and another case in late stage. We indicated the involvement of the cerebral hemispheres in MSA, especially the frontal lobe. (author)

  9. Focal epileptic seizures with secondary generalization in cortical atrophy and gliosis dysplasia in the left temporal lobe and hemimegalencephaly in the left occipital lobe

    International Nuclear Information System (INIS)

    Manchev, I.; Mancheva-Ganeva, V.; Manolova, T.; Manchev, L.

    2016-01-01

    It is a case of an eight-year-old patient with cortical dysplasia and gliosis in the left temporal lobe clinically manifested with focal epileptic seizures with secondary generalization. Signs of mental retardation and a number of somatic complications - diabetes, etc., were found. The complex therapy with anticonvulsant medications, immunovenin, plasmaphoresis and anti-diabetic drugs was partially effective

  10. Brain atrophy and neuropsychological outcome after treatment of ruptured anterior cerebral artery aneurysms: a voxel-based morphometric study

    International Nuclear Information System (INIS)

    Bendel, Paula; Koskenkorva, Paeivi; Vanninen, Ritva; Koivisto, Timo; Aeikiae, Marja; Niskanen, Eini; Koenoenen, Mervi; Haenninen, Tuomo

    2009-01-01

    Cognitive impairment after aneurysmal subarachnoid hemorrhage (aSAH) is frequently detected. Here, we describe the pattern of cerebral (gray matter) atrophy and its clinical relevance after treatment of aSAH caused by a ruptured anterior cerebral artery (ACA) aneurysm. Thirty-seven aSAH patients with ACA aneurysm (17 surgical, 20 endovascular treatment) and a good or moderate clinical outcome (Glasgow Outcome Scale V or IV) and 30 controls underwent brain MRI. Voxel-based morphometric analysis was applied to compare the patients and controls. Patients also underwent a detailed neuropsychological assessment. The comparisons between controls and either all patients (n=37) or the subgroup of surgically treated patients (n=17) revealed bilateral cortical atrophy in the frontal lobes, mainly in the basal areas. The brainstem, bilateral thalamic and hypothalamic areas, and ipsilateral caudate nucleus were also involved. Small areas of atrophy were detected in temporal lobes. The hippocampus and parahippocampal gyrus showed atrophy ipsilateral to the surgical approach. In the subgroup of endovascularly treated patients (n = 15), small areas of atrophy were detected in the bilateral orbitofrontal cortex and in the thalamic region. Twenty patients (54%) showed cognitive deficits in neuropsychological assessment. Group analysis after aSAH and treatment of the ruptured ACA aneurysm revealed gray matter atrophy, principally involving the frontobasal cortical areas and hippocampus ipsilateral to the surgical approach. Areas of reduced gray matter were more pronounced after surgical than endovascular treatment. Together with possible focal cortical infarctions and brain retraction deficits in individual patients, this finding may explain the neuropsychological disturbances commonly detected after treatment of ruptured ACA aneurysms. (orig.)

  11. Brain atrophy and neuropsychological outcome after treatment of ruptured anterior cerebral artery aneurysms: a voxel-based morphometric study

    Energy Technology Data Exchange (ETDEWEB)

    Bendel, Paula; Koskenkorva, Paeivi; Vanninen, Ritva [Kuopio University Hospital and University of Kuopio, Department of Clinical Radiology, Kuopio (Finland); Koivisto, Timo; Aeikiae, Marja [Kuopio University Hospital and University of Kuopio, Department of Neurosurgery, Kuopio (Finland); Niskanen, Eini [Kuopio University Hospital and University of Kuopio, Department of Neurology, Kuopio (Finland); Kuopio University Hospital and University of Kuopio, Department of Physics, Kuopio (Finland); Koenoenen, Mervi [Kuopio University Hospital and University of Kuopio, Department of Clinical Radiology, Kuopio (Finland); Kuopio University Hospital and University of Kuopio, Department of Clinical Neurophysiology, Kuopio (Finland); Haenninen, Tuomo [Kuopio University Hospital and University of Kuopio, Department of Neurology, Kuopio (Finland)

    2009-11-15

    Cognitive impairment after aneurysmal subarachnoid hemorrhage (aSAH) is frequently detected. Here, we describe the pattern of cerebral (gray matter) atrophy and its clinical relevance after treatment of aSAH caused by a ruptured anterior cerebral artery (ACA) aneurysm. Thirty-seven aSAH patients with ACA aneurysm (17 surgical, 20 endovascular treatment) and a good or moderate clinical outcome (Glasgow Outcome Scale V or IV) and 30 controls underwent brain MRI. Voxel-based morphometric analysis was applied to compare the patients and controls. Patients also underwent a detailed neuropsychological assessment. The comparisons between controls and either all patients (n=37) or the subgroup of surgically treated patients (n=17) revealed bilateral cortical atrophy in the frontal lobes, mainly in the basal areas. The brainstem, bilateral thalamic and hypothalamic areas, and ipsilateral caudate nucleus were also involved. Small areas of atrophy were detected in temporal lobes. The hippocampus and parahippocampal gyrus showed atrophy ipsilateral to the surgical approach. In the subgroup of endovascularly treated patients (n = 15), small areas of atrophy were detected in the bilateral orbitofrontal cortex and in the thalamic region. Twenty patients (54%) showed cognitive deficits in neuropsychological assessment. Group analysis after aSAH and treatment of the ruptured ACA aneurysm revealed gray matter atrophy, principally involving the frontobasal cortical areas and hippocampus ipsilateral to the surgical approach. Areas of reduced gray matter were more pronounced after surgical than endovascular treatment. Together with possible focal cortical infarctions and brain retraction deficits in individual patients, this finding may explain the neuropsychological disturbances commonly detected after treatment of ruptured ACA aneurysms. (orig.)

  12. Effect of brain-derived neurotrophic factor on activity-regulated cytoskeleton-associated protein gene expression in primary frontal cortical neurons. Comparison with NMDA and AMPA

    DEFF Research Database (Denmark)

    El-Sayed, Mona; Hofman-Bang, Jacob; Mikkelsen, Jens D

    2011-01-01

    The effect of brain-derived neurotrophic factor (BDNF) on activity-regulated cytoskeleton-associated protein (Arc) mRNA levels in primary neuronal cultures of rat frontal cortex was characterized pharmacologically and compared to the effect on expression of c-fos, bdnf, neuritin, cox-2 as examples...

  13. Astrocyte atrophy and immune dysfunction in self-harming macaques.

    Science.gov (United States)

    Lee, Kim M; Chiu, Kevin B; Sansing, Hope A; Inglis, Fiona M; Baker, Kate C; MacLean, Andrew G

    2013-01-01

    Self-injurious behavior (SIB) is a complex condition that exhibits a spectrum of abnormal neuropsychological and locomotor behaviors. Mechanisms for neuropathogenesis could include irregular immune activation, host soluble factors, and astrocyte dysfunction. We examined the role of astrocytes as modulators of immune function in macaques with SIB. We measured changes in astrocyte morphology and function. Paraffin sections of frontal cortices from rhesus macaques identified with SIB were stained for glial fibrillary acidic protein (GFAP) and Toll-like receptor 2 (TLR2). Morphologic features of astrocytes were determined using computer-assisted camera lucida. There was atrophy of white matter astrocyte cell bodies, decreased arbor length in both white and gray matter astrocytes, and decreased bifurcations and tips on astrocytes in animals with SIB. This was combined with a five-fold increase in the proportion of astrocytes immunopositive for TLR2. These results provide direct evidence that SIB induces immune activation of astrocytes concomitant with quantifiably different morphology.

  14. Functional interaction between right parietal and bilateral frontal cortices during visual search tasks revealed using functional magnetic imaging and transcranial direct current stimulation.

    Directory of Open Access Journals (Sweden)

    Amanda Ellison

    Full Text Available The existence of a network of brain regions which are activated when one undertakes a difficult visual search task is well established. Two primary nodes on this network are right posterior parietal cortex (rPPC and right frontal eye fields. Both have been shown to be involved in the orientation of attention, but the contingency that the activity of one of these areas has on the other is less clear. We sought to investigate this question by using transcranial direct current stimulation (tDCS to selectively decrease activity in rPPC and then asking participants to perform a visual search task whilst undergoing functional magnetic resonance imaging. Comparison with a condition in which sham tDCS was applied revealed that cathodal tDCS over rPPC causes a selective bilateral decrease in frontal activity when performing a visual search task. This result demonstrates for the first time that premotor regions within the frontal lobe and rPPC are not only necessary to carry out a visual search task, but that they work together to bring about normal function.

  15. Comparison of regional brain atrophy and cognitive impairment between pure akinesia with gait freezing and Richardson's syndrome

    Science.gov (United States)

    Hong, Jin Yong; Yun, Hyuk Jin; Sunwoo, Mun Kyung; Ham, Jee Hyun; Lee, Jong-Min; Sohn, Young H.; Lee, Phil Hyu

    2015-01-01

    Pure akinesia with gait freezing (PAGF) is considered a clinical phenotype of progressive supranuclear palsy. The brain atrophy and cognitive deficits in PAGF are expected to be less prominent than in classical Richardson's syndrome (RS), but this hypothesis has not been explored yet. We reviewed the medical records of 28 patients with probable RS, 19 with PAGF, and 29 healthy controls, and compared cortical thickness, subcortical gray matter volume, and neuropsychological performance among the three groups. Patients with PAGF had thinner cortices in frontal, inferior parietal, and temporal areas compared with controls; however, areas of cortical thinning in PAGF patients were less extensive than those in RS patients. In PAGF patients, hippocampal, and thalamic volumes were also smaller than controls, whereas subcortical gray matter volumes in PAGF and RS patients were comparable. In a comparison of neuropsychological tests, PAGF patients had better cognitive performance in executive function, visual memory, and visuospatial function than RS patients had. These results demonstrate that cognitive impairment, cortical thinning, and subcortical gray matter atrophy in PAGF patients resemble to those in RS patients, though the severity of cortical thinning and cognitive dysfunction is milder. Our results suggest that, PAGF and RS may share same pathology but that it appears to affect a smaller proportion of the cortex in PAGF. PMID:26483680

  16. Comparison of regional brain atrophy and cognitive impairment between pure akinesia with gait freezing and Richardson’s syndrome

    Directory of Open Access Journals (Sweden)

    Jin Yong eHong

    2015-09-01

    Full Text Available Pure akinesia with gait freezing (PAGF is considered a clinical phenotype of progressive supranuclear palsy. The brain atrophy and cognitive deficits in PAGF are expected to be less prominent than in classical Richardson’s syndrome (RS, but this hypothesis has not been explored yet. We reviewed the medical records of 28 patients with probable RS, 19 with PAGF, and 29 healthy controls, and compared cortical thickness, subcortical grey matter volume, and neuropsychological performance among the three groups. Patients with PAGF had thinner cortices in frontal, inferior parietal, and temporal areas compared with controls; however, areas of cortical thinning in PAGF patients were less extensive than those in RS patients. In PAGF patients, hippocampal and thalamic volumes were also smaller than controls, whereas subcortical grey matter volumes in PAGF and RS patients were comparable. In a comparison of neuropsychological tests, PAGF patients had better cognitive performance in executive function, visual memory, and visuospatial function than RS patients had. These results demonstrate that cognitive impairment, cortical thinning, and subcortical grey matter atrophy in PAGF patients resemble to those in RS patients, though the severity of cortical thinning and cognitive dysfunction is milder. Our results suggest that PAGF and RS may share same pathology but that it appears to affect a smaller proportion of the cortex in PAGF.

  17. Curved reformat of the paediatric brain MRI into a 'flat-earth map' - standardised method for demonstrating cortical surface atrophy resulting from hypoxic-ischaemic encephalopathy.

    Science.gov (United States)

    Simpson, Ewan; Andronikou, Savvas; Vedajallam, Schadie; Chacko, Anith; Thai, Ngoc Jade

    2016-09-01

    Hypoxic-ischaemic encephalopathy is optimally imaged with brain MRI in the neonatal period. However neuroimaging is often also performed later in childhood (e.g., when parents seek compensation in cases of alleged birth asphyxia). We describe a standardised technique for creating two curved reconstructions of the cortical surface to show the characteristic surface changes of hypoxic-ischaemic encephalopathy in children imaged after the neonatal period. The technique was applied for 10 cases of hypoxic-ischaemic encephalopathy and also for age-matched healthy children to assess the visibility of characteristic features of hypoxic-ischaemic encephalopathy. In the abnormal brains, fissural or sulcal widening was seen in all cases and ulegyria was identifiable in 7/10. These images could be used as a visual aid for communicating MRI findings to clinicians and other interested parties.

  18. Voxel-based morphometry in the parkinson variant of multiple system atrophy

    International Nuclear Information System (INIS)

    Zhao Yanping; Wang Han; Li Zhou; Feng Feng

    2010-01-01

    Objective: To assess patterns of the gray and white matter atrophy in patients with multiple system atrophy-P (MSA-P) variant of whole brain compared with normal controls. Methods: Three dimensional fast spoiled gradient echo (3D-FSPGR) T 1 WI of whole brain were obtained from 13 patients with probable MSA-P and 14 age-matched normal controls. The volume of gray matter (GM) and white matter (WM) of MSA-P patients and normal controls was analyzed with voxel-based morphometry (VBM) using statistical parametric mapping (SPM) 8. Results: Compared with the controls, the MSA-P patients showed decreased gray matter and white matter in broad areas. Gray matter loss mainly symmetrically distributed in bilateral supplementary motor area (SMA), dorsal posterior cingulate cortex (DPCC), medial frontal gyrus, superior temporal gyrus, cerebellum cortex, eta Unilateral involvement of cortices mainly located in right primary motor cortex, somatosensory association cortex (SAC), and left ventral anterior cingulate cortex (VACC). There was white matter loss in bilateral superior frontal gyrus, bilateral precuneus, bilateral sub-gyrus of frontal lobe, left superior temporal gyrus, left cingulate gyrus, right orbitofrontal area, right sub- gyrus of temporal lobe, etc. Conclusion: VBM method is an automatic and comprehensive volumetry method and can objectively detect the difference of the whole brain structure in patients with probable MSA- P comparing with normal controls. (authors)

  19. Cerebral atrophy in Parkinson's disease - represented in CT

    International Nuclear Information System (INIS)

    Becker, H.; Schneider, E.; Hacker, H.; Fischer, P.A.; Frankfurt Univ.

    1979-01-01

    To clarify the importance of brain atrophy in relation to the symptoms of Parkinson's disease, 173 patients were examined by computed tomography (CT). In 51.4% of the CT findings, brain atrophy was considered to be pathological. Statistically significant relations of age and sex were found with regard to the extent and localization of brain atrophy. Cortical atrophy also showed a significant dependence on duration of disease. Linear measurements at the lateral ventricles and the third ventricle lead us to assume that brain atrophy in Parkinson's patients is more prevalent than in normal patients within the scope of age involution. (orig.)

  20. Cerebral atrophy in Parkinson's disease - represented in CT

    Energy Technology Data Exchange (ETDEWEB)

    Becker, H; Schneider, E; Hacker, H; Fischer, P A [Frankfurt Univ. (Germany, F.R.). Abt. fuer Neuroradiologie; Frankfurt Univ. (Germany, F.R.). Abt. fuer Neurologie)

    1979-01-01

    To clarify the importance of brain atrophy in relation to the symptoms of Parkinson's disease, 173 patients were examined by computed tomography (CT). In 51.4% of the CT findings, brain atrophy was considered to be pathological. Statistically significant relations of age and sex were found with regard to the extent and localization of brain atrophy. Cortical atrophy also showed a significant dependence on duration of disease. Linear measurements at the lateral ventricles and the third ventricle lead us to assume that brain atrophy in Parkinson's patients is more prevalent than in normal patients within the scope of age involution.

  1. Medio-Frontal and Anterior Temporal abnormalities in children with attention deficit hyperactivity disorder (ADHD during an acoustic antisaccade task as revealed by electro-cortical source reconstruction

    Directory of Open Access Journals (Sweden)

    Rockstroh Brigitte

    2011-01-01

    Full Text Available Abstract Background Attention Deficit Hyperactivity Disorder (ADHD is one of the most prevalent disorders in children and adolescence. Impulsivity is one of three core symptoms and likely associated with inhibition difficulties. To date the neural correlate of the antisaccade task, a test of response inhibition, has not been studied in children with (or without ADHD. Methods Antisaccade responses to visual and acoustic cues were examined in nine unmedicated boys with ADHD (mean age 122.44 ± 20.81 months and 14 healthy control children (mean age 115.64 ± 22.87 months, three girls while an electroencephalogram (EEG was recorded. Brain activity before saccade onset was reconstructed using a 23-source-montage. Results When cues were acoustic, children with ADHD had a higher source activity than control children in Medio-Frontal Cortex (MFC between -230 and -120 ms and in the left-hemispheric Temporal Anterior Cortex (TAC between -112 and 0 ms before saccade onset, despite both groups performing similarly behaviourally (antisaccades errors and saccade latency. When visual cues were used EEG-activity preceding antisaccades did not differ between groups. Conclusion Children with ADHD exhibit altered functioning of the TAC and MFC during an antisaccade task elicited by acoustic cues. Children with ADHD need more source activation to reach the same behavioural level as control children.

  2. Effects of disease duration on the clinical features and brain glucose metabolism in patients with mixed type multiple system atrophy.

    Science.gov (United States)

    Lyoo, C H; Jeong, Y; Ryu, Y H; Lee, S Y; Song, T J; Lee, J H; Rinne, J O; Lee, M S

    2008-02-01

    To study the effect of disease duration on the clinical, neuropsychological and [(18)F]-deoxyglucose (FDG) PET findings in patients with mixed type multiple system atrophy (MSA), this study included 16 controls and 37 mixed-type MSA patients with a shorter than a 3-year history of cerebellar or parkinsonian symptoms. We classified the patients into three groups according to the duration of parkinsonian or cerebellar symptoms (Group I = battery. We compared the FDG PET findings of each group of patients with controls. Group I patients frequently had memory and frontal executive dysfunction. They showed hypometabolism in the frontal cortex, anterior cerebellar hemisphere and vermis. They had parkinsonian motor deficits, but no basal ganglia hypometabolism. Group II and III patients frequently had multiple domain cognitive impairments, and showed hypometabolism in the frontal and parieto-temporal cortices. Hypometabolism of the bilateral caudate and the left posterolateral putamen was observed in Group II, and whole striatum in Group III. In summary, the cortical hypometabolism begins in the frontal cortex and spreads to the parieto-temporal cortex in MSA. This spreading pattern coincides with the progressive cognitive decline. Early caudate hypometabolism may also contribute to the cognitive impairment. Parkinsonian motor deficits precede putaminal hypometabolism that begins in its posterolateral part. Cerebellar hypometabolism occurs early in the clinical courses and seems to be a relevant metabolic descriptor of cerebellar deficits.

  3. Regional quantitative analysis of cortical surface maps of FDG PET images

    CERN Document Server

    Protas, H D; Hayashi, K M; Chin Lung, Yu; Bergsneider, M; Sung Cheng, Huang

    2006-01-01

    Cortical surface maps are advantageous for visualizing the 3D profile of cortical gray matter development and atrophy, and for integrating structural and functional images. In addition, cortical surface maps for PET data, when analyzed in conjunction with structural MRI data allow us to investigate, and correct for, partial volume effects. Here we compared quantitative regional PET values based on a 3D cortical surface modeling approach with values obtained directly from the 3D FDG PET images in various atlas-defined regions of interest (ROIs; temporal, parietal, frontal, and occipital lobes). FDG PET and 3D MR (SPGR) images were obtained and aligned to ICBM space for 15 normal subjects. Each image was further elastically warped in 2D parameter space of the cortical surface, to align major cortical sulci. For each point within a 15 mm distance of the cortex, the value of the PET intensity was averaged to give a cortical surface map of FDG uptake. The average PET values on the cortical surface map were calcula...

  4. Cortical changes in cerebral small vessel diseases: a 3D MRI study of cortical morphology in CADASIL

    International Nuclear Information System (INIS)

    Jouvent, E.; Bousser, M.G.; Chabriat, H.; Jouvent, E.; Bousser, M.G.; Chabriat, H.; Porcher, R.; Viswanathan, A.; Viswanathan, A.; Viswanathan, A.; O'Sullivan, M.; Dichgans, M.; Guichard, J.P.

    2008-01-01

    Brain atrophy represents a key marker of disease progression in cerebrovascular disorders. The 3D changes of cortex morphology occurring during the course of small vessel diseases of the brain (SVDB) remain poorly understood. The objective of this study was to assess the changes affecting depth and surface area of cortical sulci and their clinical and radiological correlates in a cohort of patients with cerebral autosomal dominant arteriolopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a genetic SVDB. Data were obtained from a series of 69 CADASIL patients. Validated methods were used to determine depth and surface area of four cortical sulci. The ratio of brain to intracranial cavity volumes (brain parenchymal fraction-BPF), volume of lacunar lesions (LL) and of white matter hyper-intensities, number of cerebral micro-haemorrhages, and mean apparent diffusion coefficient were also measured. Association between depth and surface area of the cortical sulci and BPF, clinical status and subcortical MRI lesions were tested. Depth and surface area of cortical sulci obtained in 54 patients were strongly correlated with both cognitive score and disability scales. Depth was related to the extent of subcortical lesions, surface area was related only to age. In additional analyses, the depth of the cingular sulcus was independently associated with the volume of LL (P 0.001), and that of the superior frontal sulcus with the mean apparent diffusion coefficient (P 0.003). In CADASIL, important morphological changes of cortical sulci occur in association with clinical worsening,extension of subcortical tissue damage and progression of global cerebral atrophy. These results suggest that the examination of cortical morphology may be of high clinical relevance in SVDB. (authors)

  5. EEG Theta Dynamics within Frontal and Parietal Cortices for Error Processing during Reaching Movements in a Prism Adaptation Study Altering Visuo-Motor Predictive Planning.

    Science.gov (United States)

    Arrighi, Pieranna; Bonfiglio, Luca; Minichilli, Fabrizio; Cantore, Nicoletta; Carboncini, Maria Chiara; Piccotti, Emily; Rossi, Bruno; Andre, Paolo

    2016-01-01

    Modulation of frontal midline theta (fmθ) is observed during error commission, but little is known about the role of theta oscillations in correcting motor behaviours. We investigate EEG activity of healthy partipants executing a reaching task under variable degrees of prism-induced visuo-motor distortion and visual occlusion of the initial arm trajectory. This task introduces directional errors of different magnitudes. The discrepancy between predicted and actual movement directions (i.e. the error), at the time when visual feedback (hand appearance) became available, elicits a signal that triggers on-line movement correction. Analysis were performed on 25 EEG channels. For each participant, the median value of the angular error of all reaching trials was used to partition the EEG epochs into high- and low-error conditions. We computed event-related spectral perturbations (ERSP) time-locked either to visual feedback or to the onset of movement correction. ERSP time-locked to the onset of visual feedback showed that fmθ increased in the high- but not in the low-error condition with an approximate time lag of 200 ms. Moreover, when single epochs were sorted by the degree of motor error, fmθ started to increase when a certain level of error was exceeded and, then, scaled with error magnitude. When ERSP were time-locked to the onset of movement correction, the fmθ increase anticipated this event with an approximate time lead of 50 ms. During successive trials, an error reduction was observed which was associated with indices of adaptations (i.e., aftereffects) suggesting the need to explore if theta oscillations may facilitate learning. To our knowledge this is the first study where the EEG signal recorded during reaching movements was time-locked to the onset of the error visual feedback. This allowed us to conclude that theta oscillations putatively generated by anterior cingulate cortex activation are implicated in error processing in semi-naturalistic motor

  6. EEG Theta Dynamics within Frontal and Parietal Cortices for Error Processing during Reaching Movements in a Prism Adaptation Study Altering Visuo-Motor Predictive Planning.

    Directory of Open Access Journals (Sweden)

    Pieranna Arrighi

    Full Text Available Modulation of frontal midline theta (fmθ is observed during error commission, but little is known about the role of theta oscillations in correcting motor behaviours. We investigate EEG activity of healthy partipants executing a reaching task under variable degrees of prism-induced visuo-motor distortion and visual occlusion of the initial arm trajectory. This task introduces directional errors of different magnitudes. The discrepancy between predicted and actual movement directions (i.e. the error, at the time when visual feedback (hand appearance became available, elicits a signal that triggers on-line movement correction. Analysis were performed on 25 EEG channels. For each participant, the median value of the angular error of all reaching trials was used to partition the EEG epochs into high- and low-error conditions. We computed event-related spectral perturbations (ERSP time-locked either to visual feedback or to the onset of movement correction. ERSP time-locked to the onset of visual feedback showed that fmθ increased in the high- but not in the low-error condition with an approximate time lag of 200 ms. Moreover, when single epochs were sorted by the degree of motor error, fmθ started to increase when a certain level of error was exceeded and, then, scaled with error magnitude. When ERSP were time-locked to the onset of movement correction, the fmθ increase anticipated this event with an approximate time lead of 50 ms. During successive trials, an error reduction was observed which was associated with indices of adaptations (i.e., aftereffects suggesting the need to explore if theta oscillations may facilitate learning. To our knowledge this is the first study where the EEG signal recorded during reaching movements was time-locked to the onset of the error visual feedback. This allowed us to conclude that theta oscillations putatively generated by anterior cingulate cortex activation are implicated in error processing in semi

  7. Accelerating regional atrophy rates in the progression from normal aging to Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Sluimer, Jasper D. [VU University Medical Centre, Department of Diagnostic Radiology, Amsterdam (Netherlands); VU University Medical Centre, Alzheimer Centre, Amsterdam (Netherlands); VU University Medical Centre, Image Analysis Centre, Amsterdam (Netherlands); VU University Medical Centre, Department of Diagnostic Radiology and Alzheimer Centre, PO Box 7057, Amsterdam (Netherlands); Flier, Wiesje M. van der; Scheltens, Philip [VU University Medical Centre, Alzheimer Centre, Amsterdam (Netherlands); VU University Medical Centre, Department of Neurology, Amsterdam (Netherlands); Karas, Giorgos B.; Barkhof, Frederik [VU University Medical Centre, Department of Diagnostic Radiology, Amsterdam (Netherlands); VU University Medical Centre, Alzheimer Centre, Amsterdam (Netherlands); VU University Medical Centre, Image Analysis Centre, Amsterdam (Netherlands); Schijndel, Ronald van [VU University Medical Centre, Image Analysis Centre, Amsterdam (Netherlands); VU University Medical Centre, Department of Informatics, Amsterdam (Netherlands); Barnes, Josephine; Boyes, Richard G. [UCL, Institute of Neurology, Dementia Research Centre, London (United Kingdom); Cover, Keith S. [VU University Medical Centre, Department of Physics and Medical Technology, Amsterdam (Netherlands); Olabarriaga, Silvia D. [University of Amsterdam, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Centre, Amsterdam (Netherlands); Fox, Nick C. [VU University Medical Centre, Department of Neurology, Amsterdam (Netherlands); UCL, Institute of Neurology, Dementia Research Centre, London (United Kingdom); Vrenken, Hugo [VU University Medical Centre, Alzheimer Centre, Amsterdam (Netherlands); VU University Medical Centre, Image Analysis Centre, Amsterdam (Netherlands); VU University Medical Centre, Department of Physics and Medical Technology, Amsterdam (Netherlands)

    2009-12-15

    We investigated progression of atrophy in vivo, in Alzheimer's disease (AD), and mild cognitive impairment (MCI). We included 64 patients with AD, 44 with MCI and 34 controls with serial MRI examinations (interval 1.8 {+-} 0.7 years). A nonlinear registration algorithm (fluid) was used to calculate atrophy rates in six regions: frontal, medial temporal, temporal (extramedial), parietal, occipital lobes and insular cortex. In MCI, the highest atrophy rate was observed in the medial temporal lobe, comparable with AD. AD patients showed even higher atrophy rates in the extramedial temporal lobe. Additionally, atrophy rates in frontal, parietal and occipital lobes were increased. Cox proportional hazard models showed that all regional atrophy rates predicted conversion to AD. Hazard ratios varied between 2.6 (95% confidence interval (CI) = 1.1-6.2) for occipital atrophy and 15.8 (95% CI = 3.5-71.8) for medial temporal lobe atrophy. In conclusion, atrophy spreads through the brain with development of AD. MCI is marked by temporal lobe atrophy. In AD, atrophy rate in the extramedial temporal lobe was even higher. Moreover, atrophy rates also accelerated in parietal, frontal, insular and occipital lobes. Finally, in nondemented elderly, medial temporal lobe atrophy was most predictive of progression to AD, demonstrating the involvement of this region in the development of AD. (orig.)

  8. Accelerating regional atrophy rates in the progression from normal aging to Alzheimer's disease

    International Nuclear Information System (INIS)

    Sluimer, Jasper D.; Flier, Wiesje M. van der; Scheltens, Philip; Karas, Giorgos B.; Barkhof, Frederik; Schijndel, Ronald van; Barnes, Josephine; Boyes, Richard G.; Cover, Keith S.; Olabarriaga, Silvia D.; Fox, Nick C.; Vrenken, Hugo

    2009-01-01

    We investigated progression of atrophy in vivo, in Alzheimer's disease (AD), and mild cognitive impairment (MCI). We included 64 patients with AD, 44 with MCI and 34 controls with serial MRI examinations (interval 1.8 ± 0.7 years). A nonlinear registration algorithm (fluid) was used to calculate atrophy rates in six regions: frontal, medial temporal, temporal (extramedial), parietal, occipital lobes and insular cortex. In MCI, the highest atrophy rate was observed in the medial temporal lobe, comparable with AD. AD patients showed even higher atrophy rates in the extramedial temporal lobe. Additionally, atrophy rates in frontal, parietal and occipital lobes were increased. Cox proportional hazard models showed that all regional atrophy rates predicted conversion to AD. Hazard ratios varied between 2.6 (95% confidence interval (CI) = 1.1-6.2) for occipital atrophy and 15.8 (95% CI = 3.5-71.8) for medial temporal lobe atrophy. In conclusion, atrophy spreads through the brain with development of AD. MCI is marked by temporal lobe atrophy. In AD, atrophy rate in the extramedial temporal lobe was even higher. Moreover, atrophy rates also accelerated in parietal, frontal, insular and occipital lobes. Finally, in nondemented elderly, medial temporal lobe atrophy was most predictive of progression to AD, demonstrating the involvement of this region in the development of AD. (orig.)

  9. Juxtacortical Lesions and Cortical Thinning in Multiple Sclerosis.

    Science.gov (United States)

    Pareto, D; Sastre-Garriga, J; Auger, C; Vives-Gilabert, Y; Delgado, J; Tintoré, M; Montalban, X; Rovira, A

    2015-12-01

    The role of juxtacortical lesions in brain volume loss in multiple sclerosis has not been fully clarified. The aim of this study was to explore the role of juxtacortical lesions on cortical atrophy and to investigate whether the presence of juxtacortical lesions is related to local cortical thinning in the early stages of MS. A total of 131 patients with clinically isolated syndrome or with relapsing-remitting MS were scanned on a 3T system. Patients with clinically isolated syndrome were classified into 3 groups based on the presence and topography of brain lesions: no lesions (n = 24), only non-juxtacortical lesions (n = 33), and juxtacortical lesions and non-juxtacortical lesions (n = 34). Patients with relapsing-remitting MS were classified into 2 groups: only non-juxtacortical lesions (n = 10) and with non-juxtacortical lesions and juxtacortical lesions (n = 30). A juxtacortical lesion probability map was generated, and cortical thickness was measured by using FreeSurfer. Juxtacortical lesion volume in relapsing-remitting MS was double that of patients with clinically isolated syndrome. The insula showed the highest density of juxtacortical lesions, followed by the temporal, parietal, frontal, and occipital lobes. Patients with relapsing-remitting MS with juxtacortical lesions showed significantly thinner cortices overall and in the parietal and temporal lobes compared with those with clinically isolated syndrome with normal brain MR imaging. The volume of subcortical structures (thalamus, pallidum, putamen, and accumbens) was significantly decreased in relapsing-remitting MS with juxtacortical lesions compared with clinically isolated syndrome with normal brain MR imaging. The spatial distribution of juxtacortical lesions was not found to overlap with areas of cortical thinning. Cortical thinning and subcortical gray matter volume loss in patients with a clinically isolated syndrome or relapsing-remitting MS was related to the presence of juxtacortical

  10. Comparison of grey matter atrophy between patients with neuromyelitis optica and multiple sclerosis: A voxel-based morphometry study

    International Nuclear Information System (INIS)

    Duan Yunyun; Liu Yaou; Liang Peipeng; Jia Xiuqin; Yu Chunshui; Qin Wen; Sun Hui; Liao Zhangyuan; Ye Jing; Li Kuncheng

    2012-01-01

    Purpose: Previous studies have established regional grey matter (GM) loss in multiple sclerosis (MS). However, whether there is any regional GM atrophy in neuromyelitis optica (NMO) and the difference between NMO and MS is unclear. The present study addresses this issue by voxel-based morphometry (VBM). Methods: Conventional magnetic resonance imaging (MRI) and T1-weighted three-dimensional MRI were obtained from 26 NMO patients, 26 relapsing–remitting MS (RRMS) patients, and 26 normal controls. An analysis of covariance model assessed with cluster size inference was used to compare GM volume among three groups. The correlations of GM volume changes with disease duration, expanded disability status scale (EDSS) and brain T2 lesion volume (LV) were analyzed. Results: GM atrophy was found in NMO patients in several regions of frontal, temporal, parietal lobes and insula (uncorrected, p < 0.001). While extensive GM atrophy was found in RRMS patients, including most cortical regions and the deep grey matter (corrected for multiple comparisons, p < 0.01). Compared with NMO, those with RRMS had significant GM loss in bilateral thalami, caudate, left parahippocampal gyrus, right hippocampus and insula (corrected, p < 0.01). In RRMS group, regional GM loss in right caudate and bilateral thalami were strongly correlated with brain T2LV. Conclusions: Our study found the difference of GM atrophy between NMO and RRMS patients mainly in deep grey matter. The correlational results suggested axonal degeneration from lesions on T2WI may be a key pathogenesis of atrophy in deep grey matter in RRMS.

  11. Astrocyte atrophy and immune dysfunction in self-harming macaques.

    Directory of Open Access Journals (Sweden)

    Kim M Lee

    Full Text Available BACKGROUND: Self-injurious behavior (SIB is a complex condition that exhibits a spectrum of abnormal neuropsychological and locomotor behaviors. Mechanisms for neuropathogenesis could include irregular immune activation, host soluble factors, and astrocyte dysfunction. METHODS: We examined the role of astrocytes as modulators of immune function in macaques with SIB. We measured changes in astrocyte morphology and function. Paraffin sections of frontal cortices from rhesus macaques identified with SIB were stained for glial fibrillary acidic protein (GFAP and Toll-like receptor 2 (TLR2. Morphologic features of astrocytes were determined using computer-assisted camera lucida. RESULTS: There was atrophy of white matter astrocyte cell bodies, decreased arbor length in both white and gray matter astrocytes, and decreased bifurcations and tips on astrocytes in animals with SIB. This was combined with a five-fold increase in the proportion of astrocytes immunopositive for TLR2. CONCLUSIONS: These results provide direct evidence that SIB induces immune activation of astrocytes concomitant with quantifiably different morphology.

  12. Analysis of the presence or absence of atrophy of the subgenual and subcallosal cingulate cortices using voxel-based morphometry on MRI is useful to select prescriptions for patients with depressive symptoms

    Directory of Open Access Journals (Sweden)

    Niida A

    2014-12-01

    Full Text Available Akira Niida,1 Richi Niida,2 Hiroshi Matsuda,3 Makoto Motomura,4 Akihiko Uechi5 1Department of Radiology, Nanbu Hospital, Itoman City, Okinawa, Japan; 2Department of Psychiatry, Nanto Clinic, Urasoe City, Okinawa, Japan; 3Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira City, Tokyo, Japan; 4Department of Human Sciences, University of the Ryukyus, Nakagami County, Okinawa, Japan; 5Cognitive Neuroscience Research Project, Kansai Gaidai University, Hirakata City, Osaka, Japan Objective: We objectively evaluated the presence or absence of atrophy of the subgenual anterior cingulate cortex (sgACC and the subcallosal anterior cingulate cortex (scACC, using new voxel-based morphometry (VBM software employing Statistical Parametric Mapping software v8 and diffeomorphic anatomic registration through an exponentiated lie algebra. We prepared a database covering young-mature adulthood and investigated the clinical usefulness of the evaluation. Subjects and methods: One hundred seven patients with major depressive disorder (MDD, 74 patients with bipolar disorder (BD, and 240 healthy control subjects underwent 1.5T magnetic resonance imaging scanning. Using new VBM software and databases covering young-mature adults and the elderly, target volumes of interest were set in the sgACC and scACC, four indicators (severity, extent, ratio, and whole-brain extent were determined, and the presence or absence of atrophy of the sgACC and scACC was evaluated on the basis of the indicators. In addition, the relationships between the presence or absence of atrophy of the sgACC and scACC and performance of diagnosing MDD and BD and therapeutic drugs were investigated. Results: It was clarified that the disease is likely to be MDD when atrophy is detected in the sgACC, and likely to be BD when no atrophy is detected in the sgACC but is detected in the scACC. Regarding the relationship with therapeutic drugs, it was clarified that, when

  13. Brain atrophy during aging

    International Nuclear Information System (INIS)

    Matsuzawa, Taiju; Yamada, Kenji; Yamada, Susumu; Ono, Shuichi; Takeda, Shunpei; Hatazawa, Jun; Ito, Masatoshi; Kubota, Kazuo

    1985-01-01

    Age-related brain atrophy was investigated in thousands of persons with no neurologic disturbances using X-CT and NMR-CT. Brain atrophy was minimal in 34-35 years old in both sexes, increased exponentially to the increasing age after 34-35 years, and probably resulted in dementia, such as vascular or multi-infarct dementia. Brain atrophy was significantly greater in men than in women at all ages. Brain volumes were maximal in 34-35 years old in both sexes with minimal individual differences which increased proportionally to the increasing age. Remarkable individual differences in the extent of brain atrophy (20 - 30 %) existed among aged subjects. Progression of brain atrophy was closely related to loss of mental activities independently of their ages. Our longitudinal study has revealed that the most important factors promoting brain atrophy during aging was the decrease in the cerebral blood flow. We have classified brain atrophy into sulcal and cisternal enlargement type (type I), ventricular enlargement type (type II) and mixed type (type III) according to the clinical study using NMR-CT. Brain atrophy of type I progresses significantly in almost all of the geriatric disorders. This type of brain atrophy progresses significantly in heavy smokers and drinkers. Therefore this type of brain atrophy might be caused by the decline in the blood flow in anterior and middle cerebral arteries. Brain atrophy of type II was caused by the disturbance of cerebrospinal fluid circulation after cerebral bleeding and subarachnoid bleeding. Brain atrophy of type III was seen in vascular dementia or multi-infarct dementia which was caused by loss of brain matter after multiple infarction, and was seen also in dementia of Alzheimer type in which degeneration of nerve cells results in brain atrophy. NMR-CT can easily detect small infarction (lacunae) and edematous lesions resulting from ischemia and hypertensive encephalopathy. (J.P.N.)

  14. [Neuroanatomy of Frontal Association Cortex].

    Science.gov (United States)

    Takada, Masahiko

    2016-11-01

    The frontal association cortex is composed of the prefrontal cortex and the motor-related areas except the primary motor cortex (i.e., the so-called higher motor areas), and is well-developed in primates, including humans. The prefrontal cortex receives and integrates large bits of diverse information from the parietal, temporal, and occipital association cortical areas (termed the posterior association cortex), and paralimbic association cortical areas. This information is then transmitted to the primary motor cortex via multiple motor-related areas. Given these facts, it is likely that the prefrontal cortex exerts executive functions for behavioral control. The functional input pathways from the posterior and paralimbic association cortical areas to the prefrontal cortex are classified primarily into six groups. Cognitive signals derived from the prefrontal cortex are conveyed to the rostral motor-related areas to transform them into motor signals, which finally enter the primary motor cortex via the caudal motor-related areas. Furthermore, it has been shown that, similar to the primary motor cortex, areas of the frontal association cortex form individual networks (known as "loop circuits") with the basal ganglia and cerebellum via the thalamus, and hence are extensively involved in the expression and control of behavioral actions.

  15. In vivo high-resolution 7 Tesla MRI shows early and diffuse cortical alterations in CADASIL.

    Science.gov (United States)

    De Guio, François; Reyes, Sonia; Vignaud, Alexandre; Duering, Marco; Ropele, Stefan; Duchesnay, Edouard; Chabriat, Hugues; Jouvent, Eric

    2014-01-01

    Recent data suggest that early symptoms may be related to cortex alterations in CADASIL (Cerebral Autosomal-Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy), a monogenic model of cerebral small vessel disease (SVD). The aim of this study was to investigate cortical alterations using both high-resolution T2* acquisitions obtained with 7 Tesla MRI and structural T1 images with 3 Tesla MRI in CADASIL patients with no or only mild symptomatology (modified Rankin's scale ≤1 and Mini Mental State Examination (MMSE) ≥24). Complete reconstructions of the cortex using 7 Tesla T2* acquisitions with 0.7 mm isotropic resolution were obtained in 11 patients (52.1±13.2 years, 36% male) and 24 controls (54.8±11.0 years, 42% male). Seven Tesla T2* within the cortex and cortical thickness and morphology obtained from 3 Tesla images were compared between CADASIL and control subjects using general linear models. MMSE, brain volume, cortical thickness and global sulcal morphology did not differ between groups. By contrast, T2* measured by 7 Tesla MRI was significantly increased in frontal, parietal, occipital and cingulate cortices in patients after correction for multiple testing. These changes were not related to white matter lesions, lacunes or microhemorrhages in patients having no brain atrophy compared to controls. Seven Tesla MRI, by contrast to state of the art post-processing of 3 Tesla acquisitions, shows diffuse T2* alterations within the cortical mantle in CADASIL whose origin remains to be determined.

  16. APPswe/PS1dE9 mice with cortical amyloid pathology show a reduced NAA/Cr ratio without apparent brain atrophy: A MRS and MRI study.

    Science.gov (United States)

    Kuhla, Angela; Rühlmann, Claire; Lindner, Tobias; Polei, Stefan; Hadlich, Stefan; Krause, Bernd J; Vollmar, Brigitte; Teipel, Stefan J

    2017-01-01

    Transgenic animal models of Aβ pathology provide mechanistic insight into some aspects of Alzheimer disease (AD) pathology related to Aβ accumulation. Quantitative neuroimaging is a possible aid to improve translation of mechanistic findings in transgenic models to human end phenotypes of brain morphology or function. Therefore, we combined MRI-based morphometry, MRS-based NAA-assessment and quantitative histology of neurons and amyloid plaque load in the APPswe/PS1dE9 mouse model to determine the interrelationship between morphological changes, changes in neuron numbers and amyloid plaque load with reductions of NAA levels as marker of neuronal functional viability. The APPswe/PS1dE9 mouse showed an increase of Aβ plaques, loss of neurons and an impairment of NAA/Cr ratio, which however was not accompanied with brain atrophy. As brain atrophy is one main characteristic in human AD, conclusions from murine to human AD pathology should be drawn with caution.

  17. CT findings of brain atrophy after chemotherapy in acute leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jun; Park, Seog Hee; Kim, Choon Yul; Bahk, Yong Whee [Catholic University Medicine College, Seoul (Korea, Republic of)

    1988-10-15

    A study was performed to evaluate the atrophic changes of the central nerve system after chemotherapy in the patients with acute leukemia. The computed tomographic findings and medical records of 20 proven acute leukemia patients under 35 years-old who developed various CNS symptoms and signs during and/or after 2 courses of chemotherapy were reviewed. The results were as follows: 1. Age distribution was from 14 to 5 years (mean was 26 years). Male was 15. 2. Presenting clinical symptoms and signs were headache (16/20), nausea and vomiting (11/20) and loss of consciousness (5/20). 3. Brain atrophy was noted in 16 patients including cortical and subcortical atrophy 15 cases and subcortical atrophy 1 case. 4. Two cases of hemorrhage, one each of intracranial hematoma and chronic subdural hematoma were found in addition to brain atrophy. This showed that chemotherapeutic agents cause brain atrophy in a considerable number of the patients with symptomatic acute leukemia.

  18. Structural plasticity of remote cortical brain regions is determined by connectivity to the primary lesion in subcortical stroke.

    Science.gov (United States)

    Cheng, Bastian; Schulz, Robert; Bönstrup, Marlene; Hummel, Friedhelm C; Sedlacik, Jan; Fiehler, Jens; Gerloff, Christian; Thomalla, Götz

    2015-09-01

    Cortical atrophy as demonstrated by measurement of cortical thickness (CT) is a hallmark of various neurodegenerative diseases. In the wake of an acute ischemic stroke, brain architecture undergoes dynamic changes that can be tracked by structural and functional magnetic resonance imaging studies as soon as 3 months after stroke. In this study, we measured changes of CT in cortical areas connected to subcortical stroke lesions in 12 patients with upper extremity paresis combining white-matter tractography and semi-automatic measurement of CT using the Freesurfer software. Three months after stroke, a significant decrease in CT of -2.6% (median, upper/lower boundary of 95% confidence interval -4.1%/-1.1%) was detected in areas connected to ischemic lesions, whereas CT in unconnected cortical areas remained largely unchanged. A cluster of significant cortical thinning was detected in the superior frontal gyrus of the stroke hemisphere using a surface-based general linear model correcting for multiple comparisons. There was no significant correlation of changes in CT with clinical outcome parameters. Our results show a specific impact of subcortical lesions on distant, yet connected cortical areas explainable by secondary neuro-axonal degeneration of distant areas.

  19. Brain atrophy during aging

    International Nuclear Information System (INIS)

    Matsuzawa, Taiju; Takeda, Shumpei; Hatazawa, Jun

    1985-01-01

    Age-related brain atrophy was investigated in thousands of persons with no neurologic disturbances using X-CT and NMR-CT and following results were obtained. Brain atrophy was minimal in 34 -- 35 years old in both sexes, increased exponentially to the increasing age after 34 -- 35 years, and probably resulted in dementia, such as vascular or multiinfarct dementia. Brain atrophy was significantly greater in men than in women at all ages. Brain volumes were maximal in 34 -- 35 years old in both sexes with minimal individual differences which increased proportionally to the increasing age. Remarkable individual differences in the extents of brain atrophy (20 -- 30 %) existed among aged subjects. Some aged subjects had little or no atrophy of their brains, as seen in young subjects, and others had markedly shrunken brains associated with senility. From these results there must be pathological factors promoting brain atrophy with a great individual difference. We have studied the relation of intelligence to brain volume, and have ascertained that progression of brain atrophy was closely related to loss of mental activities independently of their ages. Our longitudinal study has revealed that the most important factors promoting brain atrophy during aging was decrease in the cerebral blood flow. MNR-CT can easily detected small infarction (lacunae) and edematous lesions resulting from ischemia and hypertensive encephalopathy, while X-CT can not. Therefore NMR-CT is very useful for detection of subtle changes in the brain. (J.P.N.)

  20. Frontal ataxia in childhood.

    Science.gov (United States)

    Erasmus, C E; Beems, T; Rotteveel, J J

    2004-12-01

    Frontal ataxia may be the result of a unilateral frontal lesion. In this report three cases are presented with ataxia due to right frontal lesions. One case concerns a boy presenting with an unsteady gait and titubation of the trunk, mimicking developmental disequilibrium and with complex partial seizures. It proved to be caused by a small right-sided cavernoma in the middle frontal gyrus. After surgical intervention the symptoms and the seizures disappeared. Two subsequent cases concern teenage patients presenting with headache after an ENT infection and on physical examination mild dysmetric function of the upper limbs and slight disequilibrium, due to right-sided frontal lobe abscesses. After neurosurgical and antibiotic therapy the symptoms were relieved. The frontal origin of ataxia should be considered in children presenting with a "cerebellar syndrome". Frontal gait disorders consist of a clinical pattern of different gait disorders. The syndrome has been mentioned in the literature under different names. Our patients show signs compatible with the term frontal disequilibrium, a clinical pattern of frontal gait disorder. This assumes walking problems characterized by loss of control of motor planning, leading to imbalance. Remarkably, frontal ataxia may mimic developmental delay as demonstrated in the first case and may be the leading mild symptom in extensive frontal lobe damage as demonstrated by the two other cases. We suppose that frontal ataxia is the result of a disturbance in the cerebellar-frontal circuitries and an impairment of executive and planning functions of the basal ganglia-frontal lobe circuitry.

  1. Computer tomography investigation of epilepsy the brain atrophy

    International Nuclear Information System (INIS)

    Taneva, N.

    1997-01-01

    The problem of brain atrophy in patients with epilepsy is often discussed in literature. The aim of the study is to present the results of computer tomography measurements of ventricular size and sulci of brain of 90 patients with various electro-clinical forms of epilepsy, including males and females at the age of 15 to 70 years. Computer tomography measurements were performed having in mind 6 parameters (frontal horn index, FHI; Huckman's number, HZ; cella media index,CMI; width of the third and the fourth ventricles; sulci). The results were compared to the CT measurements of a control group of 40 healthy males and females in the same age range.The obtained data indicate high percentage of subcortical atrophy among patients with epilepsy. Ventricular dilatation was found to be in light extent occurring most early in the frontal brain regions (frontal horns and lateral ventricles)., furthermore observed in the young age. (author)

  2. Regional differences of relationships between atrophy and glucose metabolism of cerebral cortex in patients with Alzheimer's disease

    International Nuclear Information System (INIS)

    Toyama, H.; Uemura, K.; Kanekiyo, S.; Ishii, K.; Ishii, K.

    2002-01-01

    Aim: The purpose of this paper is to estimate a correlation between the extent of atrophy and the decline in the brain function measured with PET study among the patients with Alzheimer's disease by each brain lobe. Materials and Methods: Two groups, the normal controls (male: 8, female: 22 age: 62.4±4.9) and the patients with Alzheimer's disease (male: 6, female: 24, age: 65.9±7.2) participated in this study. The extent of atrophy was evaluated from the extracted gyrus on 2D-projection magnetic resonance imaging (MRI) and the cerebral cortical glucose metabolism was assessed on 2D-projection positron emission tomography (PET) image, and then a relationship between the cerebral atrophy and the function was evaluated by each brain lobe extracted automatically. 2D-projection of PET and MR images were made by means of the Mollweide method which keeps the area of the brain surface. In order to extract brain lobes from each subject automatically, the bitmap with different value by each brain lobe was made from a standard brain image and was automatically transformed to match each subject's brain image by using SPM99. A correlation image was generated between 2D-projection images of glucose metabolism and the area of the sulcus and the gyrus extracted from the correlation between MR and PET images clustered by K-means method. Results: The glucose metabolism of Alzheimer's disease was lower than that of normal control subjects at the frontal, parietal, and temporal lobes with the same extent of atrophy as that of the normal. There was high correlation between the area of gyrus and the glucose metabolism, and the correlation tendency of the Alzheimer's disease was steeper than that of the normal control at the parietal lobe. Conclusions: Combined analysis of regional morphology and function may be useful to distinguish pathological process such as early stage of Alzheimer's disease from normal physiological aging

  3. Frontal Lobe Seizures

    Science.gov (United States)

    ... cause of frontal lobe epilepsy remains unknown. Complications Status epilepticus. Frontal lobe seizures tend to occur in clusters and may provoke a dangerous condition called status epilepticus — in which seizure activity lasts much longer than ...

  4. Atrophy of the corpus callosum correlates with white matter lesions in patients with cerebral ischaemia

    International Nuclear Information System (INIS)

    Meguro, K.; Yamadori, A.; Constans, J.M.; Courtheoux, P.; Theron, J.; Viader, F.

    2000-01-01

    Many studies of white matter high signal (WMHS) on T2-weighted MRI have disclosed that it is related to cerebral ischaemia and to brain atrophy. Atrophy of the corpus callosum (CC) has also been studied in relation to ischaemia. Our objective was to test the hypothesis that CC atrophy could be due to ischaemia. We therefore assessed CC, WMHS and brain atrophy in patients with risk factors without strokes (the risk factor group) and in those with infarcts (the infarct group), to investigate the relationships between these factors. We studied 30 patients in the infarct group, 14 in the risk factor group, and 29 normal subjects. Using axial T1-weighted MRI, cortical atrophy and ventricular enlargement (brain atrophy) were visually rated. Using axial T2-weighted MRI, WMHS was assessed in three categories: periventricular symmetrical, periventricular asymmetrical and subcortical. Using the mid-sagittal T1-weighted image, the CC was measured in its anterior, posterior, midanterior and midposterior portions. In the normal group, no correlations were noted between parameters. In the infarct group, there were significant correlations between CC and brain atrophy, and between CC atrophy and WMHS. After removing the effects of age, gender and brain atrophy, significant correlations were noted between some CC measures and subcortical WMHS. In the risk factor group, there were significant correlations between CC and brain atrophy and between CC atrophy and WMHS. After allowance for age, gender and brain atrophy, significant correlations between some CC measures and periventricular WMHS remained. The hypothesis that CC atrophy could be due to cerebral ischaemia was supported by other analyses. Namely, for correlations between the extent of infarcts and partial CC atrophy in patients with anterior middle cerebral artery (MCA) and with posterior MCA infarcts, there were significant correlations between the extent of infarct and midanterior CC atrophy in the former, and posterior

  5. Atrophy of the corpus callosum correlates with white matter lesions in patients with cerebral ischaemia

    Energy Technology Data Exchange (ETDEWEB)

    Meguro, K.; Yamadori, A. [Section of Neuropsychology, Division of Disability Science, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, 980-8575 Sendai (Japan); Constans, J.M.; Courtheoux, P.; Theron, J. [MR Unit, University of Caen School of Medicine, Caen (France); Viader, F. [Department of Neuroradiology, University of Caen School of Medicine, Caen (France)

    2000-06-01

    Many studies of white matter high signal (WMHS) on T2-weighted MRI have disclosed that it is related to cerebral ischaemia and to brain atrophy. Atrophy of the corpus callosum (CC) has also been studied in relation to ischaemia. Our objective was to test the hypothesis that CC atrophy could be due to ischaemia. We therefore assessed CC, WMHS and brain atrophy in patients with risk factors without strokes (the risk factor group) and in those with infarcts (the infarct group), to investigate the relationships between these factors. We studied 30 patients in the infarct group, 14 in the risk factor group, and 29 normal subjects. Using axial T1-weighted MRI, cortical atrophy and ventricular enlargement (brain atrophy) were visually rated. Using axial T2-weighted MRI, WMHS was assessed in three categories: periventricular symmetrical, periventricular asymmetrical and subcortical. Using the mid-sagittal T1-weighted image, the CC was measured in its anterior, posterior, midanterior and midposterior portions. In the normal group, no correlations were noted between parameters. In the infarct group, there were significant correlations between CC and brain atrophy, and between CC atrophy and WMHS. After removing the effects of age, gender and brain atrophy, significant correlations were noted between some CC measures and subcortical WMHS. In the risk factor group, there were significant correlations between CC and brain atrophy and between CC atrophy and WMHS. After allowance for age, gender and brain atrophy, significant correlations between some CC measures and periventricular WMHS remained. The hypothesis that CC atrophy could be due to cerebral ischaemia was supported by other analyses. Namely, for correlations between the extent of infarcts and partial CC atrophy in patients with anterior middle cerebral artery (MCA) and with posterior MCA infarcts, there were significant correlations between the extent of infarct and midanterior CC atrophy in the former, and posterior

  6. Regulatory behavior and frontal activity: Considering the role of revised-BIS in relative right frontal asymmetry.

    Science.gov (United States)

    Gable, Philip A; Neal, Lauren B; Threadgill, A Hunter

    2018-01-01

    Essential to human behavior are three core personality systems: approach, avoidance, and a regulatory system governing the two motivational systems. Decades of research has linked approach motivation with greater relative left frontal-cortical asymmetry. Other research has linked avoidance motivation with greater relative right frontal-cortical asymmetry. However, past work linking withdrawal motivation with greater relative right frontal asymmetry has been mixed. The current article reviews evidence suggesting that activation of the regulatory system (revised Behavioral Inhibition System [r-BIS]) may be more strongly related to greater relative right frontal asymmetry than withdrawal motivation. Specifically, research suggests that greater activation of the r-BIS is associated with greater relative right frontal activity, and reduced r-BIS activation is associated with reduced right frontal activity (greater relative left frontal activity). We review evidence examining trait and state frontal activity using EEG, source localization, lesion studies, neuronal stimulation, and fMRI supporting the idea that r-BIS may be the core personality system related to greater relative right frontal activity. In addition, the current review seeks to disentangle avoidance motivation and r-BIS as substrates of relative right frontal asymmetry. © 2017 Society for Psychophysiological Research.

  7. Frontal ataxia in childhood.

    OpenAIRE

    Erasmus, C.E.; Beems, T.; Rotteveel, J.J.

    2004-01-01

    Frontal ataxia may be the result of a unilateral frontal lesion. In this report three cases are presented with ataxia due to right frontal lesions. One case concerns a boy presenting with an unsteady gait and titubation of the trunk, mimicking developmental disequilibrium and with complex partial seizures. It proved to be caused by a small right-sided cavernoma in the middle frontal gyrus. After surgical intervention the symptoms and the seizures disappeared. Two subsequent cases concern teen...

  8. Frontal ataxia in childhood.

    NARCIS (Netherlands)

    Erasmus, C.E.; Beems, T.; Rotteveel, J.J.

    2004-01-01

    Frontal ataxia may be the result of a unilateral frontal lesion. In this report three cases are presented with ataxia due to right frontal lesions. One case concerns a boy presenting with an unsteady gait and titubation of the trunk, mimicking developmental disequilibrium and with complex partial

  9. Features of brain atrophy in Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, I; Melamed, E; Gomori, J M

    1985-03-01

    Multiple parameters for brain volume and mass were studied in 85 parkinsonian patients and in 149 normal controls aged 24 to 89 using CT scanning. In controls there was reduction in brain substance with advancing age. Increased brain atrophy in patients with Parkinson's disease (PD) was mainly observed in the younger age group of 24 to 49. This included parameters evaluating the size of the lateral and third ventricles and the size of the subarachnoid space in the frontal interhemispheric and Sylvian fissures. With computed canonical correlation analysis a formula was obtained which expressed the tendency of the atrophic process in PD to involve the areas surrounding the third ventricle and the mesial aspect of the frontal lobes more than during normal aging.

  10. Correlação entre espessura cortical frontal e desempenho de funções executivas em pacientes com infecção pelo vírus da imunodeficiência humana

    Directory of Open Access Journals (Sweden)

    Tania Maria Netto

    2011-02-01

    Full Text Available OBJETIVO: Investigar a relação entre a espessura cortical medida pela ressonância magnética em regiões frontais e o desempenho em instrumentos que avaliam funções executivas em pacientes com HIV positivo. MATERIAIS E MÉTODOS: Participaram deste estudo 22 pacientes HIV-positivos, com déficits em funções executivas, sob terapia antirretroviral, idades entre 45 e 65 anos e escolaridade entre 3 e 20 anos. Foi realizada ressonância magnética com sequências convencionais, T1 3D, processado pelo Freesurfer para verificar espessura cortical. Instrumentos de avaliação das funções executivas: Teste de Trilhas, Wisconsin, Hayling, Dígitos (WAIS-III, fluência verbal ortográfica e Stroop. Para análise da relação espessura versus cognição, utilizou-se coeficiente de correlação de Pearson. RESULTADOS: Correlações significativas foram encontradas entre escores de: Wisconsin e espessura das regiões pré-central e orbitofrontal lateral à direita e pré-central esquerda; Teste de Trilhas e espessura da área pré-central direita e cíngulo anterior caudal esquerdo; e Teste Hayling e espessura da área lateral orbitofrontal esquerda. CONCLUSÃO: As correlações existentes entre medidas de espessura cortical pela ressonância magnética e desempenho cognitivo sugerem que os déficits executivos em pacientes HIV-positivos relacionam-se a uma redução da espessura cortical das regiões frontais.

  11. Childhood optic atrophy.

    Science.gov (United States)

    Mudgil, A V; Repka, M X

    2000-02-01

    To determine the causes, and relative incidence of the common causes, of optic nerve atrophy in children under 10 years old and to compare prevalent aetiologies with those given in previous studies. The Wilmer Information System database was searched to identify all children, diagnosed between 1987 and 1997 with optic atrophy, who were under 10 years old at diagnosis. The medical records of these children were reviewed retrospectively A total of 272 children were identified, Complications from premature birth were the most frequent aetiology of optic atrophy (n = 44, 16%); 68% of these premature infants having a history of intraventricular haemorrhage. Tumour was the second most common aetiology (n = 40, 15%). The most frequent tumour was pilocytic astrocytoma (50%), followed by craniopharyngioma (17%). Hydrocephalus, unrelated to tumour, was the third most common aetiology (n = 26, 10%). In 114 cases (42%), the cause of optic atrophy became manifest in the perinatal period and/or could be attributed to adverse events in utero. A cause was not determined in 4% of cases. In the last decade, prematurity and hydrocephalus appear to have become important causes of optic atrophy in childhood. This trend is probably the result of improved survival of infants with extremely low birth weight.

  12. The cortical signature of amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Federica Agosta

    Full Text Available The aim of this study was to explore the pattern of regional cortical thickness in patients with non-familial amyotrophic lateral sclerosis (ALS and to investigate whether cortical thinning is associated with disease progression rate. Cortical thickness analysis was performed in 44 ALS patients and 26 healthy controls. Group differences in cortical thickness and the age-by-group effects were assessed using vertex-by-vertex and multivariate linear models. The discriminatory ability of MRI variables in distinguishing patients from controls was estimated using the Concordance Statistics (C-statistic within logistic regression analyses. Correlations between cortical thickness measures and disease progression rate were tested using the Pearson coefficient. Relative to controls, ALS patients showed a bilateral cortical thinning of the primary motor, prefrontal and ventral frontal cortices, cingulate gyrus, insula, superior and inferior temporal and parietal regions, and medial and lateral occipital areas. There was a significant age-by-group effect in the sensorimotor cortices bilaterally, suggesting a stronger association between age and cortical thinning in ALS patients compared to controls. The mean cortical thickness of the sensorimotor cortices distinguished patients with ALS from controls (C-statistic ≥ 0.74. Cortical thinning of the left sensorimotor cortices was related to a faster clinical progression (r = -0.33, p = 0.03. Cortical thickness measurements allowed the detection and quantification of motor and extramotor involvement in patients with ALS. Cortical thinning of the precentral gyrus might offer a marker of upper motor neuron involvement and disease progression.

  13. The cortical signature of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Agosta, Federica; Valsasina, Paola; Riva, Nilo; Copetti, Massimiliano; Messina, Maria Josè; Prelle, Alessandro; Comi, Giancarlo; Filippi, Massimo

    2012-01-01

    The aim of this study was to explore the pattern of regional cortical thickness in patients with non-familial amyotrophic lateral sclerosis (ALS) and to investigate whether cortical thinning is associated with disease progression rate. Cortical thickness analysis was performed in 44 ALS patients and 26 healthy controls. Group differences in cortical thickness and the age-by-group effects were assessed using vertex-by-vertex and multivariate linear models. The discriminatory ability of MRI variables in distinguishing patients from controls was estimated using the Concordance Statistics (C-statistic) within logistic regression analyses. Correlations between cortical thickness measures and disease progression rate were tested using the Pearson coefficient. Relative to controls, ALS patients showed a bilateral cortical thinning of the primary motor, prefrontal and ventral frontal cortices, cingulate gyrus, insula, superior and inferior temporal and parietal regions, and medial and lateral occipital areas. There was a significant age-by-group effect in the sensorimotor cortices bilaterally, suggesting a stronger association between age and cortical thinning in ALS patients compared to controls. The mean cortical thickness of the sensorimotor cortices distinguished patients with ALS from controls (C-statistic ≥ 0.74). Cortical thinning of the left sensorimotor cortices was related to a faster clinical progression (r = -0.33, p = 0.03). Cortical thickness measurements allowed the detection and quantification of motor and extramotor involvement in patients with ALS. Cortical thinning of the precentral gyrus might offer a marker of upper motor neuron involvement and disease progression.

  14. Incidence of lesions as described by MRI in focal epilepsy of frontal and temporal onset

    International Nuclear Information System (INIS)

    Menzel, C.; Gruenwald, F.; Biersack, H.J.; Ostertun, B.; Solymosi, L.; Schild, H.; Bockisch, A.; Elger, C.E.

    1997-01-01

    Aim: Today, MRI is an integral part of the presurgical evaluation of patients suffering from partial epilepsy. These patients frequently show focal morphological abnormalities with potential epileptogenic character and surgical resection of these lesions is associated with superior postsurgical outcome as to seizure frequency. Apart from easily detectable defects, such as post-traumatic lesions or cerebral infarction, as wide variety of mainly small abnormalities can be detected using MRI. Methods: In this study, 484 patients suffering from partial epilepsy of temporal or frontal onset were evaluated for the incidence of different lesions in this population. Results: All lesions found were included without evaluating their potential epileptogenicity, which remains to be proven using other procedures (EEG, SPECT, PET, etc.). Involvement of the hippocampal formation was a major finding in temporal lobe epilepsy, which could be detected as sclerosis (T2w-images), atrophy (T2w-TSE or T1w-IR-images) or both (15%). In addition and in declining frequency various tumors (14%), post-traumatic lesion (-5%), and focal cortical dysplasia or other disturbances of cortical integrity (-4%) were found. These lesions are detectable with best contrast on different sequences. As a consequence it is suggested to acquire sequences in 3 dimensions including a T1w-SE, two (coronal and axial) double-echo-SE sequences and similarily two T1w-IR-sequences. The application of contrast media can be restricted to special questions, derived either from the first imaging results or from the patients history. Conclusion: Using qualitative data for interpretation, the sensitivity as to the detection of any focal pathology of a recent-generation MRI in this population was 75%, with 79% for temporal lobe epilepsies and 67% for frontal lobe epilepsies. Quantitative measurements of hippocampal volume or signal seem to be able to increase the sensitivity of the method. (orig.) [de

  15. Nonfluent/Agrammatic PPA with In-Vivo Cortical Amyloidosis and Pick’s Disease Pathology

    Directory of Open Access Journals (Sweden)

    Francesca Caso

    2013-01-01

    Full Text Available The role of biomarkers in predicting pathological findings in the frontotemporal dementia (FTD clinical spectrum disorders is still being explored. We present comprehensive, prospective longitudinal data for a 66 year old, right-handed female who met current criteria for the nonfluent/agrammatic variant of primary progressive aphasia (nfvPPA. She first presented with a 3-year history of progressive speech and language impairment mainly characterized by severe apraxia of speech. Neuropsychological and general motor functions remained relatively spared throughout the clinical course. Voxel-based morphometry (VBM showed selective cortical atrophy of the left posterior inferior frontal gyrus (IFG and underlying insula that worsened over time, extending along the left premotor strip. Five years after her first evaluation, she developed mild memory impairment and underwent PET-FDG and PiB scans that showed left frontal hypometabolism and cortical amyloidosis. Three years later (11 years from first symptom, post-mortem histopathological evaluation revealed Pick's disease, with severe degeneration of left IFG, mid-insula, and precentral gyrus. Alzheimer’s disease (AD (CERAD frequent/Braak Stage V was also detected. This patient demonstrates that biomarkers indicating brain amyloidosis should not be considered conclusive evidence that AD pathology accounts for a typical FTD clinical/anatomical syndrome.

  16. Cognitive Function and Brain Atrophy Predict Non-pharmacological Efficacy in Dementia: The Mihama-Kiho Scan Project2

    Directory of Open Access Journals (Sweden)

    Ken-ichi Tabei

    2018-04-01

    Full Text Available We aimed to determine whether neuropsychological deficits and brain atrophy could predict the efficacy of non-pharmacological interventions. Forty-six participants with mild-to-moderate dementia were monitored for 6 months; 25 underwent an intervention involving physical exercise with music, and 21 performed cognitive stimulation tasks. Participants were categorized into improvement (IMP and no-IMP subgroups. In the exercise-with-music group, the no-IMP subgroup performed worse than the IMP subgroup on the Rivermead Behavioural Memory Test at baseline. In the cognitive-stimulation group, the no-IMP subgroup performed worse than the IMP subgroup on Raven’s Colored Progressive Matrices and the cognitive functional independence measure at baseline. In the no-IMP subgroup, voxel-based morphometric analysis at baseline revealed more extensive gray matter loss in the anterior cingulate gyrus and left middle frontal gyrus in the exercise-with-music and cognitive-stimulation groups, respectively. Participants with mild-to-moderate dementia with cognitive decline and extensive cortical atrophy are less likely to show improved cognitive function after non-pharmaceutical therapy.

  17. Cognitive Function and Brain Atrophy Predict Non-pharmacological Efficacy in Dementia: The Mihama-Kiho Scan Project2.

    Science.gov (United States)

    Tabei, Ken-Ichi; Satoh, Masayuki; Ogawa, Jun-Ichi; Tokita, Tomoko; Nakaguchi, Noriko; Nakao, Koji; Kida, Hirotaka; Tomimoto, Hidekazu

    2018-01-01

    We aimed to determine whether neuropsychological deficits and brain atrophy could predict the efficacy of non-pharmacological interventions. Forty-six participants with mild-to-moderate dementia were monitored for 6 months; 25 underwent an intervention involving physical exercise with music, and 21 performed cognitive stimulation tasks. Participants were categorized into improvement (IMP) and no-IMP subgroups. In the exercise-with-music group, the no-IMP subgroup performed worse than the IMP subgroup on the Rivermead Behavioural Memory Test at baseline. In the cognitive-stimulation group, the no-IMP subgroup performed worse than the IMP subgroup on Raven's Colored Progressive Matrices and the cognitive functional independence measure at baseline. In the no-IMP subgroup, voxel-based morphometric analysis at baseline revealed more extensive gray matter loss in the anterior cingulate gyrus and left middle frontal gyrus in the exercise-with-music and cognitive-stimulation groups, respectively. Participants with mild-to-moderate dementia with cognitive decline and extensive cortical atrophy are less likely to show improved cognitive function after non-pharmaceutical therapy.

  18. Hypoxic ischemia encephalopathy leading to external hydrocephalus and the cerebral atrophy: mechanism and differential diagnosis

    International Nuclear Information System (INIS)

    Huang Zhenglin; Mo Xiaorong

    2002-01-01

    Objective: It is a study of the mechanism and differential diagnosis of the infant external hydrocephalus and cerebral atrophy. Methods: In total 84 cases of neonatal hypoxic ischemia encephalopathy followed by infant external hydrocephalus were investigated, among which 26 patients gradually were found having developed cerebral atrophy in follow up. Results: Characteristic dilation of the frontal-parietal subarachnoid space and the adjacent cistern was noted on the CT images of the external hydrocephalus. CT revealed the enlarged ventricle besides the dilated subarachnoid space in the cases of cerebral atrophy, while these two entities were indistinguishable on CT in the early stage. Conclusion: Clinical manifestations make a major differential diagnosis of the external hydrocephalus and cerebral atrophy: tic and mild delayed development of locomotion over major presentation of external hydrocephalus, while cerebral atrophy is featured by remarkable dysnoesia and severe delayed development of locomotion. In addition, hemiplegia and increased muscular tension are presented in a few cases of cerebral atrophy

  19. Curved reformat of the paediatric brain MRI into a 'flat-earth map' - standardised method for demonstrating cortical surface atrophy resulting from hypoxic-ischaemic encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Ewan [Bristol Royal Hospital for Children, Department of Pediatric Radiology, Bristol (United Kingdom); Andronikou, Savvas [Bristol Royal Hospital for Children, Department of Pediatric Radiology, Bristol (United Kingdom); University of Bristol, CRICBristol, Bristol (United Kingdom); Vedajallam, Schadie; Chacko, Anith; Thai, Ngoc Jade [University of Bristol, CRICBristol, Bristol (United Kingdom)

    2016-09-15

    Hypoxic-ischaemic encephalopathy is optimally imaged with brain MRI in the neonatal period. However neuroimaging is often also performed later in childhood (e.g., when parents seek compensation in cases of alleged birth asphyxia). We describe a standardised technique for creating two curved reconstructions of the cortical surface to show the characteristic surface changes of hypoxic-ischaemic encephalopathy in children imaged after the neonatal period. The technique was applied for 10 cases of hypoxic-ischaemic encephalopathy and also for age-matched healthy children to assess the visibility of characteristic features of hypoxic-ischaemic encephalopathy. In the abnormal brains, fissural or sulcal widening was seen in all cases and ulegyria was identifiable in 7/10. These images could be used as a visual aid for communicating MRI findings to clinicians and other interested parties. (orig.)

  20. Curved reformat of the paediatric brain MRI into a 'flat-earth map' - standardised method for demonstrating cortical surface atrophy resulting from hypoxic-ischaemic encephalopathy

    International Nuclear Information System (INIS)

    Simpson, Ewan; Andronikou, Savvas; Vedajallam, Schadie; Chacko, Anith; Thai, Ngoc Jade

    2016-01-01

    Hypoxic-ischaemic encephalopathy is optimally imaged with brain MRI in the neonatal period. However neuroimaging is often also performed later in childhood (e.g., when parents seek compensation in cases of alleged birth asphyxia). We describe a standardised technique for creating two curved reconstructions of the cortical surface to show the characteristic surface changes of hypoxic-ischaemic encephalopathy in children imaged after the neonatal period. The technique was applied for 10 cases of hypoxic-ischaemic encephalopathy and also for age-matched healthy children to assess the visibility of characteristic features of hypoxic-ischaemic encephalopathy. In the abnormal brains, fissural or sulcal widening was seen in all cases and ulegyria was identifiable in 7/10. These images could be used as a visual aid for communicating MRI findings to clinicians and other interested parties. (orig.)

  1. Spinal Muscular Atrophy FAQ

    Science.gov (United States)

    ... as ALS (Lou Gehrig’s Disease), cystic fibrosis and Duchenne muscular dystrophy. Approximately 1 in 50 Americans, or about 6 ... Pediatric Neuromuscular Clinical Research Network ( PNCR ) and the Muscular ... is the SMN2 gene? Muscle weakness and atrophy in SMA results from the ...

  2. Vestibular-related frontal cortical areas and their roles in smooth-pursuit eye movements: representation of neck velocity, neck-vestibular interactions and memory-based smooth-pursuit

    Directory of Open Access Journals (Sweden)

    Kikuro eFukushima

    2011-12-01

    Full Text Available Smooth-pursuit eye movements are voluntary responses to small slow-moving objects in the fronto-parallel plane. They evolved in primates, who possess high-acuity foveae, to ensure clear vision about the moving target. The primate frontal cortex contains two smooth-pursuit related areas; the caudal part of the frontal eye fields (FEF and the supplementary eye fields (SEF. Both areas receive vestibular inputs. We review functional differences between the two areas in smooth-pursuit. Most FEF pursuit neurons signal pursuit parameters such as eye velocity and gaze-velocity, and are involved in cancelling the vestibulo-ocular reflex by linear addition of vestibular and smooth-pursuit responses. In contrast, gaze-velocity signals are rarely represented in the SEF. Most FEF pursuit neurons receive neck velocity inputs, while discharge modulation during pursuit and trunk-on-head rotation adds linearly. Linear addition also occurs between neck velocity responses and vestibular responses during head-on-trunk rotation in a task-dependent manner. During cross-axis pursuit-vestibular interactions, vestibular signals effectively initiate predictive pursuit eye movements. Most FEF pursuit neurons discharge during the interaction training after the onset of pursuit eye velocity, making their involvement unlikely in the initial stages of generating predictive pursuit. Comparison of representative signals in the two areas and the results of chemical inactivation during a memory-based smooth-pursuit task indicate they have different roles; the SEF plans smooth-pursuit including working memory of motion-direction, whereas the caudal FEF generates motor commands for pursuit eye movements. Patients with idiopathic Parkinson’s disease were asked to perform this task, since impaired smooth-pursuit and visual working memory deficit during cognitive tasks have been reported in most patients. Preliminary results suggested specific roles of the basal ganglia in memory

  3. Cerebral blood flow and brain atrophy correlated by xenon contrast CT scanning

    International Nuclear Information System (INIS)

    Kitagawa, Y.; Meyer, J.S.; Tanahashi, N.; Rogers, R.L.; Tachibana, H.; Kandula, P.; Dowell, R.E.; Mortel, K.F.

    1985-01-01

    Correlations between cerebral blood flow (CBF) measured during stable xenon contrast CT scanning and standard CT indices of brain atrophy were investigated in the patients with senile dementia of Alzheimer type, multi-infarct dementia and idiopathic Parkinson's disease. Compared to age-matched normal volunteers, significant correlations were found in patients with idiopathic Parkinson's disease between cortical and subcortical gray matter blood flow and brain atrophy estimated by the ventricular body ratio, and mild to moderate brain atrophy were correlated with stepwise CBF reductions. However, in patients with senile dementia of Alzheimer type and multi-infarct dementia, brain atrophy was not associated with stepwise CBF reductions. Overall correlations between brain atrophy and reduced CBF were weak. Mild degrees of brain atrophy are not always associated with reduced CBF

  4. Thalamo-Cortical Disruption Contributes to Short-Term Memory Deficits in Patients with Medial Temporal Lobe Damage.

    Science.gov (United States)

    Voets, Natalie L; Menke, Ricarda A L; Jbabdi, Saad; Husain, Masud; Stacey, Richard; Carpenter, Katherine; Adcock, Jane E

    2015-11-01

    Short-term (STM) and long-term memory (LTM) have largely been considered as separate brain systems reflecting fronto-parietal and medial temporal lobe (MTL) functions, respectively. This functional dichotomy has been called into question by evidence of deficits on aspects of working memory in patients with MTL damage, suggesting a potentially direct hippocampal contribution to STM. As the hippocampus has direct anatomical connections with the thalamus, we tested the hypothesis that damage to thalamic nuclei regulating cortico-cortical interactions may contribute to STM deficits in patients with hippocampal dysfunction. We used diffusion-weighted magnetic resonance imaging-based tractography to identify anatomical subdivisions in patients with MTL epilepsy. From these, we measured resting-state functional connectivity with detailed cortical divisions of the frontal, temporal, and parietal lobes. Whereas thalamo-temporal functional connectivity reflected LTM performance, thalamo-prefrontal functional connectivity specifically predicted STM performance. Notably, patients with hippocampal volume loss showed thalamic volume loss, most prominent in the pulvinar region, not detected in patients with normal hippocampal volumes. Aberrant thalamo-cortical connectivity in the epileptic hemisphere was mirrored in a loss of behavioral association with STM performance specifically in patients with hippocampal atrophy. These findings identify thalamo-cortical disruption as a potential mechanism contributing to STM deficits in the context of MTL damage. © The Author 2015. Published by Oxford University Press.

  5. Default mode network links to visual hallucinations: A comparison between Parkinson's disease and multiple system atrophy.

    Science.gov (United States)

    Franciotti, Raffaella; Delli Pizzi, Stefano; Perfetti, Bernardo; Tartaro, Armando; Bonanni, Laura; Thomas, Astrid; Weis, Luca; Biundo, Roberta; Antonini, Angelo; Onofrj, Marco

    2015-08-01

    Studying default mode network activity or connectivity in different parkinsonisms, with or without visual hallucinations, could highlight its roles in clinical phenotypes' expression. Multiple system atrophy is the archetype of parkinsonism without visual hallucinations, variably appearing instead in Parkinson's disease (PD). We aimed to evaluate default mode network functions in multiple system atrophy in comparison with PD. Functional magnetic resonance imaging evaluated default mode network activity and connectivity in 15 multiple system atrophy patients, 15 healthy controls, 15 early PD patients matched for disease duration, 30 severe PD patients (15 with and 15 without visual hallucinations), matched with multiple system atrophy for disease severity. Cortical thickness and neuropsychological evaluations were also performed. Multiple system atrophy had reduced default mode network activity compared with controls and PD with hallucinations, and no differences with PD (early or severe) without hallucinations. In PD with visual hallucinations, activity and connectivity was preserved compared with controls and higher than in other groups. In early PD, connectivity was lower than in controls but higher than in multiple system atrophy and severe PD without hallucinations. Cortical thickness was reduced in severe PD, with and without hallucinations, and correlated only with disease duration. Higher anxiety scores were found in patients without hallucinations. Default mode network activity and connectivity was higher in PD with visual hallucinations and reduced in multiple system atrophy and PD without visual hallucinations. Cortical thickness comparisons suggest that functional, rather than structural, changes underlie the activity and connectivity differences. © 2015 International Parkinson and Movement Disorder Society.

  6. The statistical neuroanatomy of frontal networks in the macaque.

    Directory of Open Access Journals (Sweden)

    Bruno B Averbeck

    2008-04-01

    Full Text Available We were interested in gaining insight into the functional properties of frontal networks based upon their anatomical inputs. We took a neuroinformatics approach, carrying out maximum likelihood hierarchical cluster analysis on 25 frontal cortical areas based upon their anatomical connections, with 68 input areas representing exterosensory, chemosensory, motor, limbic, and other frontal inputs. The analysis revealed a set of statistically robust clusters. We used these clusters to divide the frontal areas into 5 groups, including ventral-lateral, ventral-medial, dorsal-medial, dorsal-lateral, and caudal-orbital groups. Each of these groups was defined by a unique set of inputs. This organization provides insight into the differential roles of each group of areas and suggests a gradient by which orbital and ventral-medial areas may be responsible for decision-making processes based on emotion and primary reinforcers, and lateral frontal areas are more involved in integrating affective and rational information into a common framework.

  7. In vivo high-resolution 7 Tesla MRI shows early and diffuse cortical alterations in CADASIL.

    Directory of Open Access Journals (Sweden)

    François De Guio

    Full Text Available Recent data suggest that early symptoms may be related to cortex alterations in CADASIL (Cerebral Autosomal-Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy, a monogenic model of cerebral small vessel disease (SVD. The aim of this study was to investigate cortical alterations using both high-resolution T2* acquisitions obtained with 7 Tesla MRI and structural T1 images with 3 Tesla MRI in CADASIL patients with no or only mild symptomatology (modified Rankin's scale ≤1 and Mini Mental State Examination (MMSE ≥24.Complete reconstructions of the cortex using 7 Tesla T2* acquisitions with 0.7 mm isotropic resolution were obtained in 11 patients (52.1±13.2 years, 36% male and 24 controls (54.8±11.0 years, 42% male. Seven Tesla T2* within the cortex and cortical thickness and morphology obtained from 3 Tesla images were compared between CADASIL and control subjects using general linear models.MMSE, brain volume, cortical thickness and global sulcal morphology did not differ between groups. By contrast, T2* measured by 7 Tesla MRI was significantly increased in frontal, parietal, occipital and cingulate cortices in patients after correction for multiple testing. These changes were not related to white matter lesions, lacunes or microhemorrhages in patients having no brain atrophy compared to controls.Seven Tesla MRI, by contrast to state of the art post-processing of 3 Tesla acquisitions, shows diffuse T2* alterations within the cortical mantle in CADASIL whose origin remains to be determined.

  8. Reye's syndrome with cortical laminar necrosis: MRI

    International Nuclear Information System (INIS)

    Kinoshita, T.; Takahashi, S.; Ishii, K.; Higano, S.; Matsumoto, K.; Sakamoto, K.; Haginoya, K.; Iinuma, K.

    1996-01-01

    Serial MRI findings are described in two patients with Reye's syndrome, demonstrating diffuse cortical and white matter changes. In the acute stage, T2-weighted images showed subtle but definite laminar high signal and contrast-enhanced T1-weighted images laminar enhancement, along the entire cerebral cortex bilaterally. In the chronic stage, unenhanced T1-weighted images showed diffuse cortical laminar high signal. These characteristic MRI features seemed very similar to those of laminar cortical necrosis in hypoxic brain damage. MRI also displayed delayed white matter changes with cerebral atrophy. (orig.)

  9. Progressive hemifacial atrophy with ciliary body atrophy and ocular hypotony

    Directory of Open Access Journals (Sweden)

    T Ashwini Kini

    2015-01-01

    Full Text Available Progressive hemifacial atrophy (PHA is a disease of unknown etiology affecting one-half of the face. Ocular involvement is uncommon. Atrophy of iris is rare, with only a few cases of partial atrophy being reported in the literature. We report a case of total atrophy of iris and ciliary body with associated ocular hypotony in a 16-year-old girl with PHA. We believe this is the first reported case of complete atrophy of iris and ciliary body in PHA. Ocular hypotony in PHA was thought to be due to intra-ocular inflammation. However in our case it appears to be secondary to severe atrophy of the ciliary body.

  10. Craniotomy Frontal Bone Defect

    African Journals Online (AJOL)

    2018-03-01

    Mar 1, 2018 ... Defect reconstruction and fixation of the graft: The defect of ... where all loose fragments of fractured frontal bone was removed via the ... Mandible. • Ilium. • Allograft ... pediatric patients owing to skull growth. Thus, autologous ...

  11. Role of Frontal Alpha Oscillations in Creativity

    Science.gov (United States)

    Lustenberger, Caroline; Boyle, Michael R.; Foulser, A. Alban; Mellin, Juliann M.; Fröhlich, Flavio

    2015-01-01

    Creativity, the ability to produce innovative ideas, is a key higher-order cognitive function that is poorly understood. At the level of macroscopic cortical network dynamics, recent EEG data suggests that cortical oscillations in the alpha frequency band (8 – 12 Hz) are correlated with creative thinking. However, whether alpha oscillations play a fundamental role in creativity has remained unknown. Here we show that creativity is increased by enhancing alpha power using 10 Hz transcranial alternating current stimulation (10Hz-tACS) of the frontal cortex. In a study of 20 healthy participants with a randomized, balanced cross-over design, we found a significant improvement of 7.4% in the Creativity Index measured by the Torrance Test of Creative Thinking, a comprehensive and most frequently used assay of creative potential and strengths. In a second similar study with 20 subjects, 40Hz-tACS was used in instead of 10Hz-tACS to rule out a general “electrical stimulation” effect. No significant change in the Creativity Index was found for such frontal gamma stimulation. Our results suggest that alpha activity in frontal brain areas is selectively involved in creativity; this enhancement represents the first demonstration of specific neuronal dynamics that drive creativity and can be modulated by non-invasive brain stimulation. Our findings agree with the model that alpha recruitment increases with internal processing demands and is involved in inhibitory top-down control, which is an important requirement for creative ideation. PMID:25913062

  12. Atrophy and structural covariance of the cholinergic basal forebrain in primary progressive aphasia.

    Science.gov (United States)

    Teipel, Stefan; Raiser, Theresa; Riedl, Lina; Riederer, Isabelle; Schroeter, Matthias L; Bisenius, Sandrine; Schneider, Anja; Kornhuber, Johannes; Fliessbach, Klaus; Spottke, Annika; Grothe, Michel J; Prudlo, Johannes; Kassubek, Jan; Ludolph, Albert; Landwehrmeyer, Bernhard; Straub, Sarah; Otto, Markus; Danek, Adrian

    2016-10-01

    Primary progressive aphasia (PPA) is characterized by profound destruction of cortical language areas. Anatomical studies suggest an involvement of cholinergic basal forebrain (BF) in PPA syndromes, particularly in the area of the nucleus subputaminalis (NSP). Here we aimed to determine the pattern of atrophy and structural covariance as a proxy of structural connectivity of BF nuclei in PPA variants. We studied 62 prospectively recruited cases with the clinical diagnosis of PPA and 31 healthy older control participants from the cohort study of the German consortium for frontotemporal lobar degeneration (FTLD). We determined cortical and BF atrophy based on high-resolution magnetic resonance imaging (MRI) scans. Patterns of structural covariance of BF with cortical regions were determined using voxel-based partial least square analysis. We found significant atrophy of total BF and BF subregions in PPA patients compared with controls [F(1, 82) = 20.2, p covariance analysis in healthy controls revealed associations of the BF nuclei, particularly the NSP, with left hemispheric predominant prefrontal, lateral temporal, and parietal cortical areas, including Broca's speech area (p covariance of the BF nuclei mostly with right but not with left hemispheric cortical areas (p covariance of the BF with left hemispheric cortical areas in healthy aging towards right hemispheric cortical areas in PPA, possibly reflecting a consequence of the profound and early destruction of cortical language areas in PPA. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  13. Characteristic MRI findings in multiple system atrophy: comparison of the three subtypes

    Energy Technology Data Exchange (ETDEWEB)

    Naka, H.; Ohshita, T.; Murata, Y.; Imon, Y.; Mimori, Y.; Nakamura, S. [Department of Internal Medicine, Hiroshima University School of Medicine, Hiroshima (Japan)

    2002-03-01

    We reviewed MRI findings in 29 patients with probable multiple system atrophy (MSA) to see whether there were common and or less common neuroradiological findings in the various clinical subtypes. We divided the patients into three clinical subtypes according to initial and predominant symptoms: 14 with olivopontocerebellar atrophy (OPCA), eight with the Shy-Drager syndrome (SDS) and seven with striatonigral degeneration (SND). The patients showed atrophy of the brain stem and cerebellum, high signal on T2-weighted images of the base of the pons and middle cerebellar peduncles, high and low signal on T2-weighted images of the putamen and atrophy of frontal and parietal lobes. The degree of atrophy of the middle cerebellar peduncle and cerebellum was greater in OPCA patients and a high-signal lateral rim to the putamen more frequent in SND. However, all findings were observed in all subtypes, and the degrees of atrophy of the putamen and pons and the frequency of high signal in the base of the pons were similar in the subtypes. We also found atrophy of the cerebral hemispheres, especially the frontal and parietal lobes, but its degree was not significantly different in the various subtypes. Our findings suggest that, although MSA can be divided clinically into three subtypes, most of the features on MRI are common and overlap in the subtypes, independently of the clinical presentation. (orig.)

  14. Frontal Brain Asymmetry in Depression with Comorbid Anxiety: A Neuropsychological Investigation

    OpenAIRE

    Nelson, Brady D.; Sarapas, Casey; Robison-Andrew, E. Jenna; Altman, Sarah E.; Campbell, Miranda L.; Shankman, Stewart A.

    2012-01-01

    The approach-withdrawal model posits that depression and anxiety are associated with a relative right asymmetry in frontal brain activity. Most studies have tested this model using measures of cortical brain activity such as electroencephalography. However, neuropsychological tasks that differentially employ left vs. right frontal cortical regions can also be used to test hypotheses from the model. In two independent samples (Study 1 and 2), the present study investigated the performance of c...

  15. Atrophy in the Thalamus But Not Cerebellum Is Specific for C9orf72 FTD and ALS Patients – An Atlas-Based Volumetric MRI Study

    Directory of Open Access Journals (Sweden)

    Sonja Schönecker

    2018-03-01

    Full Text Available Background: The neuropathology of patients with frontotemporal dementia (FTD or amyotrophic lateral sclerosis (ALS due to a C9orf72 mutation is characterized by two distinct types of characteristic protein depositions containing either TDP-43 or so-called dipeptide repeat proteins that extend beyond frontal and temporal regions. Thalamus and cerebellum seem to be preferentially affected by the dipeptide repeat pathology unique to C9orf72 mutation carriers.Objective: This study aimed to determine if mutation carriers showed an enhanced degree of thalamic and cerebellar atrophy compared to sporadic patients or healthy controls.Methods: Atlas-based volumetry was performed in 13 affected C9orf72 FTD, ALS and FTD/ALS patients, 45 sporadic FTD and FTD/ALS patients and 19 healthy controls. Volumes and laterality indices showing significant differences between mutation carriers and sporadic patients were subjected to binary logistic regression to determine the best predictor of mutation carrier status.Results: Compared to sporadic patients, mutation carriers showed a significant volume reduction of the thalamus, which was most striking in the occipital, temporal and prefrontal subregion of the thalamus. Disease severity measured by mini mental status examination (MMSE and FTD modified Clinical Dementia Rating Scale Sum of Boxes (FTD-CDR-SOB significantly correlated with volume reduction in the aforementioned thalamic subregions. No significant atrophy of cerebellar regions could be detected. A logistic regression model using the volume of the prefrontal and the laterality index of the occipital subregion of the thalamus as predictor variables resulted in an area under the curve (AUC of 0.88 while a model using overall thalamic volume still resulted in an AUC of 0.82.Conclusion: Our data show that thalamic atrophy in C9orf72 mutation carriers goes beyond the expected atrophy in the prefrontal and temporal subregion and is in good agreement with the

  16. Muscular atrophy in diabetic neuropathy

    DEFF Research Database (Denmark)

    Andersen, H; Gadeberg, P C; Brock, B

    1997-01-01

    Diabetic patients with polyneuropathy develop motor dysfunction. To establish whether motor dysfunction is associated with muscular atrophy the ankle dorsal and plantar flexors of the non-dominant leg were evaluated with magnetic resonance imaging in 8 patients with symptomatic neuropathy, in 8 non...... confirmed that the atrophy predominated distally. We conclude that muscular atrophy underlies motor weakness at the ankle in diabetic patients with polyneuropathy and that the atrophy is most pronounced in distal muscles of the lower leg indicating that a length dependent neuropathic process explains...

  17. Cerebellar atrophy in epileptic patients

    International Nuclear Information System (INIS)

    Taneva, N.

    1991-01-01

    52 patients with epileptic seizures of different form, frequency and duration who had received long term treatment with anticonvulsive drugs were examined on Siretom 2000, a brain scanner of II generation. 6 standard incisions were made in all patients in the area of cerebellum, side ventricules and high convexity. Additional scanning with an incision width of 5 mm was made when pathological changes were detected. There were found 3 cases of cerebellar atrophy, 3 - cerebral atrophy, 1 - combined atrophy and 4 - with other changes. It was difficult to establish any relation between the rerebellar atrophy and the type of anticonvulsant used because treatment had usually been complex. 1 fig., 1 tab., 4 refs

  18. Progressive posterior cortical dysfunction

    Directory of Open Access Journals (Sweden)

    Fábio Henrique de Gobbi Porto

    Full Text Available Abstract Progressive posterior cortical dysfunction (PPCD is an insidious syndrome characterized by prominent disorders of higher visual processing. It affects both dorsal (occipito-parietal and ventral (occipito-temporal pathways, disturbing visuospatial processing and visual recognition, respectively. We report a case of a 67-year-old woman presenting with progressive impairment of visual functions. Neurologic examination showed agraphia, alexia, hemispatial neglect (left side visual extinction, complete Balint's syndrome and visual agnosia. Magnetic resonance imaging showed circumscribed atrophy involving the bilateral parieto-occipital regions, slightly more predominant to the right . Our aim was to describe a case of this syndrome, to present a video showing the main abnormalities, and to discuss this unusual presentation of dementia. We believe this article can contribute by improving the recognition of PPCD.

  19. Progressive posterior cortical dysfunction

    Science.gov (United States)

    Porto, Fábio Henrique de Gobbi; Machado, Gislaine Cristina Lopes; Morillo, Lilian Schafirovits; Brucki, Sonia Maria Dozzi

    2010-01-01

    Progressive posterior cortical dysfunction (PPCD) is an insidious syndrome characterized by prominent disorders of higher visual processing. It affects both dorsal (occipito-parietal) and ventral (occipito-temporal) pathways, disturbing visuospatial processing and visual recognition, respectively. We report a case of a 67-year-old woman presenting with progressive impairment of visual functions. Neurologic examination showed agraphia, alexia, hemispatial neglect (left side visual extinction), complete Balint’s syndrome and visual agnosia. Magnetic resonance imaging showed circumscribed atrophy involving the bilateral parieto-occipital regions, slightly more predominant to the right. Our aim was to describe a case of this syndrome, to present a video showing the main abnormalities, and to discuss this unusual presentation of dementia. We believe this article can contribute by improving the recognition of PPCD. PMID:29213665

  20. Predictive modeling of neuroanatomic structures for brain atrophy detection

    Science.gov (United States)

    Hu, Xintao; Guo, Lei; Nie, Jingxin; Li, Kaiming; Liu, Tianming

    2010-03-01

    In this paper, we present an approach of predictive modeling of neuroanatomic structures for the detection of brain atrophy based on cross-sectional MRI image. The underlying premise of applying predictive modeling for atrophy detection is that brain atrophy is defined as significant deviation of part of the anatomy from what the remaining normal anatomy predicts for that part. The steps of predictive modeling are as follows. The central cortical surface under consideration is reconstructed from brain tissue map and Regions of Interests (ROI) on it are predicted from other reliable anatomies. The vertex pair-wise distance between the predicted vertex and the true one within the abnormal region is expected to be larger than that of the vertex in normal brain region. Change of white matter/gray matter ratio within a spherical region is used to identify the direction of vertex displacement. In this way, the severity of brain atrophy can be defined quantitatively by the displacements of those vertices. The proposed predictive modeling method has been evaluated by using both simulated atrophies and MRI images of Alzheimer's disease.

  1. Differentiation of normal pressure hydrocephalus and cerebral atrophy by computed tomography and spinal infusion test

    Energy Technology Data Exchange (ETDEWEB)

    Tans, J T.J. [Nijverheidsorganisatie TNO, The Hague (Netherlands). Dept. of Neurology and Research Unit TNO for Clinical Neurophysiology

    1979-01-01

    The diagnostic value of computed tomography (CT) and spinal infusion test (SIT) was investigated in 27 patients with normal pressure hydrocephalus (NPH) and 35 patients with cerebral atrophy. The most consistent CT finding of NPH was dilatation of the temporal horns, that of cerebral atrophy widening of the convexity sulci. However, 43% of patients with cerebral atrophy demonstrated no cortical atrophy. The SIT showed an excellent relation with isotope cisternography and continuous intracranial pressure recording. NPH and cerebral atrophy were correctly differentiated in 71% by CT and SIT. A normal SIT and a CT scan without the typical features of NPH exclude impairment of cerebrospinal fluid absorption. An abnormal SIT and a CT scan showing ventricular enlargement without dilatation of convexity sulci, require isotope cisternography and possibly intracranial pressure recording to determine the degree of the absorption deficit.

  2. Genetics Home Reference: optic atrophy type 1

    Science.gov (United States)

    ... Nerve Atrophy Encyclopedia: Visual Acuity Test Health Topic: Color Blindness Health Topic: Optic Nerve Disorders Genetic and Rare ... Disease InfoSearch: Optic atrophy 1 Kids Health: What's Color Blindness? MalaCards: autosomal dominant optic atrophy, classic form Merck ...

  3. The inheritance of peripapillary atrophy

    NARCIS (Netherlands)

    Healey, Paul R.; Mitchell, Paul; Gilbert, Clare E.; Lee, Anne J.; Ge, Dongliang; Snieder, Harold; Spector, Timothy D.; Hammond, Christopher J.

    PURPOSE. To estimate the relative importance of genes and environment in peripapillary atrophy type beta (beta-PPA) in a classic twin study. METHODS. Female twin pairs (n = 506) aged 49 to 79 years were recruited from the St. Thomas' UK Adult Twin Registry. Peripapillary atrophy was identified from

  4. Crossed cerebellar atrophy in cases with cerebrovascular disease

    International Nuclear Information System (INIS)

    Yagishita, Toshiyuki; Kojima, Shigeyuki; Hirayama, Keizo; Iwabuchi, Sadamu.

    1989-01-01

    Crossed cerebellar atrophy (CCA) was investigated by X-ray CT to establish the incidence, mechanism, and the relation to cerebral lesions in 130 cases of unilateral supratentorial cerebrovascular diseases. The 130 cases consisted of 83 males and 47 females with cerebral infarction (65 cases) and cerebral hemorrhage (65 cases). The patients' average age was 57.6 years. Crossed cerebellar atrophy was demonstrated in 8 cases (6.2%), 6 of whom had massive cerebral infarction in the middle cerebral artery area (9.2% of the 65 cases of cerebral infarction. The six cases of CCA caused by cerebral infarction had lesions in the frontal and temporal lobes. Two had a cerebral hemorrhage in the putamen and in the thalamus, respectively, accounting for 3.1% of the 65 cases of cerebral hemorrhage. Of the 2 cases, one had putaminal hemorrhage, and the other had thalamic hemorrhage. Cerebrovascular stroke had occured in these patients with CCA more than 2 months previously. In 5 of the 8 cases of CCA, atrophy was present in the basis pedunculi and the basis pontis on the side of the cerebral lesion. However, neither dilation nor deformity of the fourth ventricle was present in any of the patients, suggesting that none of the CCA patients had atrophy of the dentate nucleus. The CCA patients had massive cerebral lesion in the frontal and temporal lobes or atrophy of the basis pedunculi and basis pontis, suggesting the presence of the transsynaptic degeneration of the cortico-ponto-cerebellar pathway. In the case of the thalamic hemorrhage, who had not hemorrhagic lesion in the frontal and temporal lobes, atrophy of the basis peduncli and basis pontis was not observed. Though dilation or deformity of the fourth ventricle is not observed in this case, presence of the degeneration of the dentate-rubro-thalamic pathway cannot be denied. CCA seems to be caused by both the transsynaptic degeneration of the cortico-ponto-cerebellar pathway and the dentate-rubro-thalamic pathway. (J.P.N.)

  5. Preserved regional cerebral blood flow in the occipital cortices, brainstem, and cerebellum of patients with V180I-129M genetic Creutzfeldt-Jakob disease in serial SPECT studies.

    Science.gov (United States)

    Hayashi, Yuichi; Yoshikura, Nobuaki; Takekoshi, Akira; Yamada, Megumi; Asano, Takahiko; Kimura, Akio; Satoh, Katsuya; Kitamoto, Tetsuyuki; Inuzuka, Takashi

    2016-11-15

    Creutzfeldt-Jakob disease (CJD) with a causative point mutation of valine to isoleucine at codon 180 (V180I) is one of the major types of genetic CJD (gCJD) in Japan. V180I gCJD is rarely accompanied by a family history, and its clinical characteristics include late-onset, long disease duration, and edematous cortical hyperintensity in diffusion, fluid attenuate inversion and T2-weighted MRI. We performed serial imaging with single-photon emission computed tomography (SPECT) and MRI in three V180I gCJD cases over long-term observation. All cases were characterized by progressive dementia, parkinsonism, and the absence of cerebellar signs or cortical visual dysfunction in their clinical courses. Moreover, during the end-stage, SPECT findings showed preserved regional cerebral blood flow (rCBF) in the occipital cortices, brainstem, and cerebellum. Similarly, no apparent atrophy or increased signal intensities were observed in MRI images of the occipital and cerebellar regions. In conclusion, we report a decrease in rCBF predominantly in the frontal and temporal cortices during the early-stage, which became more widespread as the disease progressed. Importantly, rCBF was preserved in the occipital cortices, brainstem, and cerebellar regions until the end-stage, which may be distinct to V180I gCJD cases. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Dominant optic atrophy

    Directory of Open Access Journals (Sweden)

    Lenaers Guy

    2012-07-01

    Full Text Available Abstract Definition of the disease Dominant Optic Atrophy (DOA is a neuro-ophthalmic condition characterized by a bilateral degeneration of the optic nerves, causing insidious visual loss, typically starting during the first decade of life. The disease affects primary the retinal ganglion cells (RGC and their axons forming the optic nerve, which transfer the visual information from the photoreceptors to the lateral geniculus in the brain. Epidemiology The prevalence of the disease varies from 1/10000 in Denmark due to a founder effect, to 1/30000 in the rest of the world. Clinical description DOA patients usually suffer of moderate visual loss, associated with central or paracentral visual field deficits and color vision defects. The severity of the disease is highly variable, the visual acuity ranging from normal to legal blindness. The ophthalmic examination discloses on fundoscopy isolated optic disc pallor or atrophy, related to the RGC death. About 20% of DOA patients harbour extraocular multi-systemic features, including neurosensory hearing loss, or less commonly chronic progressive external ophthalmoplegia, myopathy, peripheral neuropathy, multiple sclerosis-like illness, spastic paraplegia or cataracts. Aetiology Two genes (OPA1, OPA3 encoding inner mitochondrial membrane proteins and three loci (OPA4, OPA5, OPA8 are currently known for DOA. Additional loci and genes (OPA2, OPA6 and OPA7 are responsible for X-linked or recessive optic atrophy. All OPA genes yet identified encode mitochondrial proteins embedded in the inner membrane and ubiquitously expressed, as are the proteins mutated in the Leber Hereditary Optic Neuropathy. OPA1 mutations affect mitochondrial fusion, energy metabolism, control of apoptosis, calcium clearance and maintenance of mitochondrial genome integrity. OPA3 mutations only affect the energy metabolism and the control of apoptosis. Diagnosis Patients are usually diagnosed during their early childhood, because of

  7. Extent of cortical involvement in amyotrophic lateral sclerosis--an analysis based on cortical thickness.

    Science.gov (United States)

    Thorns, Johannes; Jansma, Henk; Peschel, Thomas; Grosskreutz, Julian; Mohammadi, Bahram; Dengler, Reinhard; Münte, Thomas F

    2013-10-18

    Besides the defining involvement of upper and lower motor neurons, the involvement of extramotor structures has been increasingly acknowledged in amyotrophic lateral sclerosis (ALS). Here we investigated a group of 14 mildly to moderately affected ALS patients and 14 age-matched healthy control participants using cortical thickness analysis. Cortical thickness was determined from high resolution 3D T1 magnetic resonance images and involved semiautomatic segmentation in grey and white matter, cortical alignment and determination of thickness using the Laplace method. In addition to a whole-cortex analysis a region of interest approach was applied. ALS patients showed regions of significant cortical thinning in the pre- and postcentral gyri bilaterally. Further regions of cortical thinning included superior and inferior parietal lobule, angular and supramarginal gyrus, insula, superior frontal, temporal and occipital regions, thus further substantiating extramotor involvement in ALS. A relationship between cortical thickness of the right superior frontal cortex and clinical severity (assessed by the ALS functional rating scale) was also demonstrated. Cortical thickness is reduced in ALS not only in motor areas but in widespread non-motor cortical areas. Cortical thickness is related to clinical severity.

  8. Frontal lobe epilepsy may present as myoclonic seizures.

    Science.gov (United States)

    Cho, Yong Won; Yi, Sang Doe; Motamedi, Gholam K

    2010-04-01

    We describe a patient with seizures arising from right anterior-inferior frontal lobe presenting as myoclonic epilepsy. A 19-year-old man had experienced frequent paroxysmal bilateral myoclonic jerks involving his upper arms, shoulders, neck, and upper trunk since the age of 10. His baseline EEG showed intermittent right frontal spikes, and his ictal EEG showed rhythmic sharp theta discharges in the same area. MRI revealed cortical dysplasia in the right inferior frontal gyrus, and ictal-interictal SPECT analysis by SPM showed increased signal abnormality in this region. Diffusion tensor imaging (DTI) showed defects in fasciculi in the same area. These findings suggest that frontal lobe epilepsy should be considered in some patients with myoclonic seizures. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  9. Early MR detection of cortical and subcortical hypoxic-ischemic encephalopathy in full-term-infants

    International Nuclear Information System (INIS)

    Christophe, C.; Clercx, A.; Blum, D.; Hasaerts, D.; Segebarth, C.; Perlmutter, N.

    1994-01-01

    Four observations illustrate the potential of MR imaging in the early depiction of multiple types of neuropathologic lesions which may coexist in the full-term newborn, upon severe hypoxic-ischemic encephalopathy (HIE). In particular, diffuse, postnatal involvement of cerebral cortex and subcortical white matter (WM) is demonstrated. Cortical hyperintensity on both proton-density- and T1-weighted images is probably related to cellular necrosis which is distributed diffusely or parasigattally. Hyperintense, frontal, subcortical WM edging on proton-density-weighted images results from the increase of water concentration, induced either by infract or by edema. Diffuse WM areas of low intensity on T1-weighted images and of high intensity on T2-weighted images are presumably related to cytotoxic and/or vasogenic edema, proportional to the underlying damaged tissues. On follow-up MR examinations, several months later, the importance of cortical atrophy and of the myelination delay appeared related to the importance of the lesions detected during the post-natal period. (orig.)

  10. Correlation of volumetric and fractal measurements of brain atrophy with neuropsychological tests in patients with dementive disorders

    International Nuclear Information System (INIS)

    Czarnecka, A.; Sasiadek, M.; Filarski, J.

    2008-01-01

    Brain atrophy is one of the features of the dementive diseases, but also of other neurodegenerative disorders as well as physiological brain aging. The aim of the study was to define the relationship between the brain atrophy measurements and the degree of the severity of dementive process based on the neuropsychological tests (MMSE and Clock Drawing Test). In 68 patients with diagnosed impairment of cognitive functions due to dementia, neuropsychological tests (MMSE and Clock Drawing Test) and CT studies were performed. On the basis of CT images we evaluated cortical and subcortical atrophy with 3 methods; visual, semiautomatic (volumetric) and automatic method based on fractal geometry calculations; the latter was characterized by very short time of measurements. The correlation between neuropsychological tests and brain atrophy measurements has been assessed using Pearson's correlation test. No statistical correlation was found between the results of neuropsychological tests and measurements of the brain atrophy (both cortical and subcortical) using all three methods mentioned above. Single measurement of the generalized cortical and subcortical atrophy is not correlated with the results of neuropsychological tests. In our opinion, these measurements might be valuable in follow-up of the dementive process to compare progression of the atrophic changes with the changes of the neuropsychological tests results, especially using very quick automatic method, supplemented by local atrophy measurements. (authors)

  11. Dissociating Memory Networks in Early Alzheimer’s Disease and Frontotemporal Lobar Degeneration - A Combined Study of Hypometabolism and Atrophy

    Science.gov (United States)

    Frisch, Stefan; Dukart, Juergen; Vogt, Barbara; Horstmann, Annette; Becker, Georg; Villringer, Arno; Barthel, Henryk; Sabri, Osama; Müller, Karsten; Schroeter, Matthias L.

    2013-01-01

    Introduction We aimed at dissociating the neural correlates of memory disorders in Alzheimer’s disease (AD) and frontotemporal lobar degeneration (FTLD). Methods We included patients with AD (n = 19, 11 female, mean age 61 years) and FTLD (n = 11, 5 female, mean age 61 years) in early stages of their diseases. Memory performance was assessed by means of verbal and visual memory subtests from the Wechsler Memory Scale (WMS-R), including forgetting rates. Brain glucose utilization was measured by [18F]fluorodeoxyglucose positron emission tomography (FDG-PET) and brain atrophy by voxel-based morphometry (VBM) of T1-weighted magnetic resonance imaging (MRI) scans. Using a whole brain approach, correlations between test performance and imaging data were computed separately in each dementia group, including a group of control subjects (n = 13, 6 female, mean age 54 years) in both analyses. The three groups did not differ with respect to education and gender. Results Patients in both dementia groups generally performed worse than controls, but AD and FTLD patients did not differ from each other in any of the test parameters. However, memory performance was associated with different brain regions in the patient groups, with respect to both hypometabolism and atrophy: Whereas in AD patients test performance was mainly correlated with changes in the parieto-mesial cortex, performance in FTLD patients was correlated with changes in frontal cortical as well as subcortical regions. There were practically no overlapping regions associated with memory disorders in AD and FTLD as revealed by a conjunction analysis. Conclusion Memory test performance may not distinguish between both dementia syndromes. In clinical practice, this may lead to misdiagnosis of FTLD patients with poor memory performance. Nevertheless, memory problems are associated with almost completely different neural correlates in both dementia syndromes. Obviously, memory functions are carried out by

  12. Alcoholism, Korsakoff’s Syndrome and the Frontal Lobes

    Directory of Open Access Journals (Sweden)

    R. R. Jacobson

    1989-01-01

    Full Text Available A subset of the diffuse cerebral changes and psychometric deficits found in chronic alcoholics is similar to that seen in the frontal lobe syndrome. Certain features of alcoholic Korsakoff's syndrome (AKS also point to cortical involvement, and this may have a basis in alcohol neurotoxicity. Twenty-five patients with AKS and 24 non-Korsakoff alcoholic controls were compared using an automated CT brain scan program. In addition to evidence of their diencephalic lesions (wide third ventricles, AKS patients revealed widespread cerebral damage with greater Sylvian and interhemispheric fissure (IHF size than alcoholics. Korsakoffs were also inferior to alcoholics in performance on a category sorting test, in which non-perseverative error scores correlated significantly with IHF size. The principle of distinguishing between selective memory decline and global intellectual decline (GID was applied to 38 patients with AKS. Indices were developed for each type of deficit and much variation found in their distributions. The degree of GID correlated significantly with IHF size, showing similar trends with other cortical measures. These results suggest a cortical substrate for the degree of GID and a frontal substrate for category sorting deficits; with a probable basis in alcohol neurotoxicity rather than thiamine deficiency, which is not known to impair cortical structure. A new model is proposed of the pathophysiology of alcoholic brain damage and AKS which includes recent work on neurotransmitter sources and thalamo-frontal connections.

  13. Normalized regional brain atrophy measurements in multiple sclerosis

    International Nuclear Information System (INIS)

    Zivadinov, Robert; Locatelli, Laura; Stival, Barbara; Bratina, Alessio; Nasuelli, Davide; Zorzon, Marino; Grop, Attilio; Brnabic-Razmilic, Ozana

    2003-01-01

    There is still a controversy regarding the best regional brain atrophy measurements in multiple sclerosis (MS) studies. The aim of this study was to establish whether, in a cross-sectional study, the normalized measurements of regional brain atrophy correlate better with the MRI-defined regional brain lesions than the absolute measurements of regional brain atrophy. We assessed 45 patients with clinically definite relapsing-remitting (RR) MS (median disease duration 12 years), and measured T1-lesion load (LL) and T2-LL of frontal lobes and pons, using a reproducible semi-automated technique. The regional brain parenchymal volume (RBPV) of frontal lobes and pons was obtained by use of a computerized interactive program, which incorporates semi-automated and automated segmentation processes. A normalized measurement, the regional brain parenchymal fraction (RBPF), was calculated as the ratio of RBPV to the total volume of the parenchyma and the cerebrospinal fluid (CSF) in the frontal lobes and in the region of the pons. The total regional brain volume fraction (TRBVF) was obtained after we had corrected for the total volume of the parenchyma and the CSF in the frontal lobes and in the region of the pons for the total intracranial volume. The mean coefficient of variation (CV) for RBPF of the pons was 1% for intra-observer reproducibility and 1.4% for inter-observer reproducibility. Generally, the normalized measurements of regional brain atrophy correlated with regional brain volumes and disability better than did the absolute measurements. RBPF and TRBVF correlated with T2-LL of the pons (r=-0.37, P=0.011, and r= -0.40, P=0.0005 respectively) and with T1-LL of the pons (r=-0.27, P=0.046, and r=-0.31, P=0.04, respectively), whereas RBPV did not (r=-0.18, P = NS). T1-LL of the frontal lobes was related to RBPF (r=-0.32, P=0.033) and TRBVF (r=-0.29, P=0.05), but not to RBPV (R=-0.27, P= NS). There was only a trend of correlation between T2-LL of the frontal lobes and

  14. Clinico-MRI study of hemispheric disorder in long-term follow-up cases of multiple system atrophy

    International Nuclear Information System (INIS)

    Konagaya, Masaaki; Miwa, Shigeru; Matsuoka, Yukihiko; Konagaya, Yoko

    1998-01-01

    Twelve cases of multiple system atrophy (MSA) were studied for clinical and MRI findings of the cerebral hemispheric involvement. The subjects consisted of five olivopontocerebellar atrophy (OPCA) type and seven striatonigral degeneration (SND) type. The age at onset was 56.7±8.0 (M±SD) years, duration of illness at the first MRI study 3.2±1.1 years, duration of illness at the last study 8.1±2.2 years, and the following up duration 4.9±2.0 years. The grasping phenomenon was observed in 70% of the cases examined, snout reflex in 80%, slowness of verbal response in 88%, and decrease of spontaneous speech in 100%. Three cases finally fell into the state of mutism. Three out of ten cases were categorized as dementia by HDS-R (Hasegawa Dementia Scale-Revised) test. Besides the progression of the pontocerebellar atrophy and putaminal changes, MRI study revealed progressive frontal lobe atrophy in most cases. At six years after the onset, SND type showed significantly higher incidence of conspicuous frontal lobe atrophy and dilatation of the Sylvian fissure than OPCA type. Cerebral ventricular dilatation was common feature, and atrophy of the temporal and occipital lobes were observed in several cases. We indicated the possible involvement of the cerebral hemisphere, especially the frontal lobe, and higher nervous function in MSA. (author)

  15. Clinico-MRI study of hemispheric disorder in long-term follow-up cases of multiple system atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Konagaya, Masaaki; Miwa, Shigeru; Matsuoka, Yukihiko [Suzuka National Hospital, Mie (Japan); Konagaya, Yoko

    1998-12-01

    Twelve cases of multiple system atrophy (MSA) were studied for clinical and MRI findings of the cerebral hemispheric involvement. The subjects consisted of five olivopontocerebellar atrophy (OPCA) type and seven striatonigral degeneration (SND) type. The age at onset was 56.7{+-}8.0 (M{+-}SD) years, duration of illness at the first MRI study 3.2{+-}1.1 years, duration of illness at the last study 8.1{+-}2.2 years, and the following up duration 4.9{+-}2.0 years. The grasping phenomenon was observed in 70% of the cases examined, snout reflex in 80%, slowness of verbal response in 88%, and decrease of spontaneous speech in 100%. Three cases finally fell into the state of mutism. Three out of ten cases were categorized as dementia by HDS-R (Hasegawa Dementia Scale-Revised) test. Besides the progression of the pontocerebellar atrophy and putaminal changes, MRI study revealed progressive frontal lobe atrophy in most cases. At six years after the onset, SND type showed significantly higher incidence of conspicuous frontal lobe atrophy and dilatation of the Sylvian fissure than OPCA type. Cerebral ventricular dilatation was common feature, and atrophy of the temporal and occipital lobes were observed in several cases. We indicated the possible involvement of the cerebral hemisphere, especially the frontal lobe, and higher nervous function in MSA. (author)

  16. Reduced cortical thickness in gambling disorder

    DEFF Research Database (Denmark)

    Grant, Jon E; Odlaug, Brian Lawrence; Chamberlain, Samuel R

    2015-01-01

    with significant reductions (average 15.8-19.9 %) in cortical thickness, versus controls, predominantly in right frontal cortical regions. Pronounced right frontal morphometric brain abnormalities occur in gambling disorder, supporting neurobiological overlap with substance disorders and its recent......Gambling disorder has recently been recognized as a prototype 'behavioral addiction' by virtue of its inclusion in the DSM-5 category of 'Substance-Related and Addictive Disorders.' Despite its newly acquired status and prevalence rate of 1-3 % globally, relatively little is known regarding...... the neurobiology of this disorder. The aim of this study was to explore cortical morphometry in untreated gambling disorder, for the first time. Subjects with gambling disorder (N = 16) free from current psychotropic medication or psychiatric comorbidities, and healthy controls (N = 17), were entered...

  17. Focal cortical thinning in patients with stable relapsing-remitting multiple sclerosis. Cross-sectional-based novel estimation of gray matter kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Orbach, Lior; Menascu, Shay; Hoffmann, Chen; Achiron, Anat [Sheba Medical Center, Multiple Sclerosis Center, Tel-Hashomer (Israel); Tel-Aviv University, Sackler School of Medicine, Tel-Aviv (Israel); Miron, Shmuel [Sheba Medical Center, Multiple Sclerosis Center, Tel-Hashomer (Israel)

    2018-02-15

    The aim of our study is to identify radiological patterns of cortical gray matter atrophy (CGMA) that correlate with disease duration in patients with relapsing-remitting multiple sclerosis (RRMS). RRMS patients were randomly selected from the Sheba Multiple Sclerosis (MS) center computerized data registry based on stratification of disease duration up to 10 years. Patients were scanned by 3.0 T (Signa, GE) MRI, using a T1 weighted 3D high resolution, FSPGR, MS protocol. Neurological disability was assessed by the Expanded Disability Status Scale (EDSS). FreeSurfer was used to obtain brain volumetric segmentation and to perform cortical thickness surface-based analysis. Clusters of change in cortical thickness with correlation to disease duration were produced. Two hundred seventy-one RRMS patients, mean ± SD age 33.0 ± 7.0 years, EDSS 1.6 ± 1.2, disease duration 5.0 ± 3.4 years. Cortical thickness analysis demonstrated focal areas of cerebral thinning that correlated with disease duration. Seven clusters accounting for 11.7% of the left hemisphere surface and eight clusters accounting for 10.6% of the right hemisphere surface were identified, with cluster-wise probability of p < 0.002 and p < 0.02, respectively.The clusters included bilateral involvement of areas within the cingulate, precentral, postcentral, paracentral, superior-parietal, superior-frontal gyri and insular cortex. Mean and cluster-wise cortical thickness negatively correlated with EDSS score, p < 0.001, with stronger Spearman rho for cluster-wise measurements. We identified CGMA patterns in sensitive brain regions which give insight and better understanding of the progression of cortical gray matter loss in relation to dissemination in space and time. These patterns may serve as markers to modulate therapeutic interventions to improve the management of MS patients. (orig.)

  18. Analysis of voxel-based rCBF in patients with olivopontocerebellar atrophy of multiple system atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Young Jin; Kang, Do Young; Park, Kyung Won; Kim, Sang Ho; Kim, Jae Woo [School of Medicine, Dong-A University, Busan (Korea, Republic of)

    2004-07-01

    Olivopontocerebellar Atrophy (OPCA) is one phenotype of multiple system atrophy (MSA) and is characterized neuropathologically by neuronal degeneration in the inferior olives, pons and cerebellar cortex. The diagnosis of OPCA requires clinical evaluation to exclude other diseases. And it's usually supported by atrophy of the cerebellum and brainstem visualized on CT or MRI. But there are some reports that the disease can occur without demonstrable atrophy in these anatomic studies. There are only a few reports about perfusion SPECT imaging in patients with OPCA. The aim of this study was to describe voxel-based rCBF of OPCA in comparison of healthy volunteers. We studied 5 patients with OPCA (1 men, 4 women: age 50.4{+-}9.6y) and age matched 13 healthy volunteers (4 men, 9 women: age 54.9{+-}6.6y). All subjects injected 20mCi of Tc-99m HMPAO and scanning was initiated 20 min after injection. Images were analyzed using SPM (SPM99) with Matlab 5.3. On visual analysis, in 3 patients with OPCA, SPECT image showed significant hypoperfusion in the cerebellum. In another 2 patients, diffuse hypoperfusion was found in the both cerebro-cerebellar hemispheres, untypical perfusion pattern in OPCA. So there is existed limitation to diagnosis by only visual analysis. On SPM analysis, in OPCA patients significantly decreased perfusion was present in culmen, tonsil, tuber in Lt. cerebellum and declive, tonsil, pyramid and inf. Semi-lunar lobule in Rt. cerebellum, Rt. inf. frontal gyrus and Rt. temporal lobe (p<0.001, uncorrected). We also performed individual analysis with SPM. Two of 5 patients have additional hypoperfusion brain lesions. In one patient, decreased perfusion found in Lt. temporal, both occipital lobe, Lt. parahippocampal gyrus. In another patient, decreased perfusion found in both frontal and parietal lobe. This study is one of a few trials analysis with SPM for OPCA. We defined the specific location of decreased perfusion in patients with OPCA.

  19. Analysis of voxel-based rCBF in patients with olivopontocerebellar atrophy of multiple system atrophy

    International Nuclear Information System (INIS)

    Jeong, Young Jin; Kang, Do Young; Park, Kyung Won; Kim, Sang Ho; Kim, Jae Woo

    2004-01-01

    Olivopontocerebellar Atrophy (OPCA) is one phenotype of multiple system atrophy (MSA) and is characterized neuropathologically by neuronal degeneration in the inferior olives, pons and cerebellar cortex. The diagnosis of OPCA requires clinical evaluation to exclude other diseases. And it's usually supported by atrophy of the cerebellum and brainstem visualized on CT or MRI. But there are some reports that the disease can occur without demonstrable atrophy in these anatomic studies. There are only a few reports about perfusion SPECT imaging in patients with OPCA. The aim of this study was to describe voxel-based rCBF of OPCA in comparison of healthy volunteers. We studied 5 patients with OPCA (1 men, 4 women: age 50.4±9.6y) and age matched 13 healthy volunteers (4 men, 9 women: age 54.9±6.6y). All subjects injected 20mCi of Tc-99m HMPAO and scanning was initiated 20 min after injection. Images were analyzed using SPM (SPM99) with Matlab 5.3. On visual analysis, in 3 patients with OPCA, SPECT image showed significant hypoperfusion in the cerebellum. In another 2 patients, diffuse hypoperfusion was found in the both cerebro-cerebellar hemispheres, untypical perfusion pattern in OPCA. So there is existed limitation to diagnosis by only visual analysis. On SPM analysis, in OPCA patients significantly decreased perfusion was present in culmen, tonsil, tuber in Lt. cerebellum and declive, tonsil, pyramid and inf. Semi-lunar lobule in Rt. cerebellum, Rt. inf. frontal gyrus and Rt. temporal lobe (p<0.001, uncorrected). We also performed individual analysis with SPM. Two of 5 patients have additional hypoperfusion brain lesions. In one patient, decreased perfusion found in Lt. temporal, both occipital lobe, Lt. parahippocampal gyrus. In another patient, decreased perfusion found in both frontal and parietal lobe. This study is one of a few trials analysis with SPM for OPCA. We defined the specific location of decreased perfusion in patients with OPCA

  20. Cortical thickness patterns as state biomarker of anorexia nervosa.

    Science.gov (United States)

    Lavagnino, Luca; Mwangi, Benson; Cao, Bo; Shott, Megan E; Soares, Jair C; Frank, Guido K W

    2018-03-01

    Only few studies have investigated cortical thickness in anorexia nervosa (AN), and it is unclear whether patterns of altered cortical thickness can be identified as biomarkers for AN. Cortical thickness was measured in 19 adult women with restricting-type AN, 24 individuals recovered from restricting-type AN (REC-AN) and 24 healthy controls. Those individuals with current or recovered from AN had previously shown altered regional cortical volumes across orbitofrontal cortex and insula. A linear relevance vector machine-learning algorithm estimated patterns of regional thickness across 24 subdivisions of those regions. Region-based analysis showed higher cortical thickness in AN and REC-AN, compared to controls, in the right medial orbital (olfactory) sulcus, and greater cortical thickness for short insular gyri in REC-AN versus controls bilaterally. The machine-learning algorithm identified a pattern of relatively higher right orbital, right insular and left middle frontal cortical thickness, but lower left orbital, right middle and inferior frontal, and bilateral superior frontal cortical thickness specific to AN versus controls (74% specificity and 74% sensitivity, χ 2 p < .004); predicted probabilities differed significantly between AN and controls (p < .023). No pattern significantly distinguished the REC-AN group from controls. Higher cortical thickness in medial orbitofrontal cortex and insula probably contributes to higher gray matter volume in AN in those regions. The machine-learning algorithm identified a mixed pattern of mostly higher orbital and insular, but relatively lower superior frontal cortical thickness in individuals with current AN. These novel results suggest that regional cortical thickness patterns could be state markers for AN. © 2018 Wiley Periodicals, Inc.

  1. Cortical Thinning and Clinical Heterogeneity in Amyotrophic Lateral Sclerosis

    OpenAIRE

    Mezzapesa, Domenico Maria; D?Errico, Eustachio; Tortelli, Rosanna; Distaso, Eugenio; Cortese, Rosa; Tursi, Marianna; Federico, Francesco; Zoccolella, Stefano; Logroscino, Giancarlo; Dicuonzo, Franca; Simone, Isabella Laura

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) has heterogeneous clinical features that could be translated into specific patterns of brain atrophy. In the current study we have evaluated the relationship between different clinical expressions of classical ALS and measurements of brain cortical thickness. Cortical thickness analysis was conducted from 3D-MRI using FreeSurfer software in 29 ALS patients and 20 healthy controls. We explored three clinical traits of the disease, subdividing the patients in...

  2. Frontal Integration and Coping

    DEFF Research Database (Denmark)

    Larsen, Torben

    2012-01-01

    reciprocal to Mesolimbic dopamine activity (mood). The study aims to explore interpersonal differences in coping associated with neural properties. Method: Neuroeconomic literature search of how neural centers of Rc2/L shape risk attitude2 or coping. Results: General risk attitude is a right skewed...... to the classical tempers. In prospect, differentiating the Frontal integration pattern by temper (General risk attitude) opens an evidence-based pathway for individually tailored neural training towards advanced social objectives as multidisciplinary collaboration and healthy living. References 1. Larsen T...

  3. Cerebrospinal fluid volumetric MRI mapping as a simple measurement for evaluating brain atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Vis, J.B. de; Zwanenburg, J.J.; Kleij, L.A. van der; Spijkerman, J.M.; Hendrikse, J. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Biessels, G.J. [University Medical Center Utrecht, Department of Neurology, Brain Center Rudolf Magnus, Utrecht (Netherlands); Petersen, E.T. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Hvidovre Hospital, Danish Research Centre for Magnetic Resonance, Hvidovre (Denmark)

    2016-05-15

    To assess whether volumetric cerebrospinal fluid (CSF) MRI can be used as a surrogate for brain atrophy assessment and to evaluate how the T{sub 2} of the CSF relates to brain atrophy. Twenty-eight subjects [mean age 64 (sd 2) years] were included; T{sub 1}-weighted and CSF MRI were performed. The first echo data of the CSF MRI sequence was used to obtain intracranial volume, CSF partial volume was measured voxel-wise to obtain CSF volume (V{sub CSF}) and the T{sub 2} of CSF (T{sub 2,CSF}) was calculated. The correlation between V{sub CSF} / T{sub 2,CSF} and brain atrophy scores [global cortical atrophy (GCA) and medial temporal lobe atrophy (MTA)] was evaluated. Relative total, peripheral subarachnoidal, and ventricular V{sub CSF} increased significantly with increased scores on the GCA and MTA (R = 0.83, 0.78 and 0.78 and R = 0.72, 0.62 and 0.86). Total, peripheral subarachnoidal, and ventricular T{sub 2} of the CSF increased significantly with higher scores on the GCA and MTA (R = 0.72, 0.70 and 0.49 and R = 0.60, 0.57 and 0.41). A fast, fully automated CSF MRI volumetric sequence is an alternative for qualitative atrophy scales. The T{sub 2} of the CSF is related to brain atrophy and could thus be a marker of neurodegenerative disease. (orig.)

  4. Naltrexone treatment reverses astrocyte atrophy and immune dysfunction in self-harming macaques.

    Science.gov (United States)

    Lee, Kim M; Chiu, Kevin B; Didier, Peter J; Baker, Kate C; MacLean, Andrew G

    2015-11-01

    The role of glia in the development and treatment of behavioral abnormalities is understudied. Recent reports have observed glial activation in several disorders, including depression, autism spectrum disorders and self-injurious behaviors (SIB). In the current study, we examined SIB in the physiologically and anatomically relevant nonhuman primate (NHP) model. At the Tulane National Primate Research Center (TNPRC), approximately 5% of singly housed macaques develop symptoms of SIB. We have previously demonstrated that naltrexone hydrochloride can be effective in reducing SIB. We have also demonstrated that the astrocytes of animals with SIB are distinctly atrophic and display heightened innate immune activation compared with control animals. We have added a third group of animals (five macaques identified with SIB and treated with oral naltrexone at a dose of 3.2mg/kg) to the previous cohort (six macaques with a history of SIB but not treated, and nine animals with no history of SIB) for this study. Gray and white matter astrocytes from frontal cortical tissue were examined following necropsy. Innate immune activation of astrocytes, which was increased in SIB animals, was markedly decreased in animals receiving naltrexone, as was atrophy of both grey and white matter astrocytes. This was concomitant with improved behavioral correlates. Preventing astrocyte activation in select areas of the brain to reduce injurious behavior is an innovative concept with implications for mental health studies. Differences in multiple areas of primate brain would help determine how self-injurious behavior develops. These studies suggest a stronger role for astrocytes in the cellular events associated with self-injurious behaviors. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Frontal Structural Neural Correlates of Working Memory Performance in Older Adults.

    Science.gov (United States)

    Nissim, Nicole R; O'Shea, Andrew M; Bryant, Vaughn; Porges, Eric C; Cohen, Ronald; Woods, Adam J

    2016-01-01

    Working memory is an executive memory process that allows transitional information to be held and manipulated temporarily in memory stores before being forgotten or encoded into long-term memory. Working memory is necessary for everyday decision-making and problem solving, making it a fundamental process in the daily lives of older adults. Working memory relies heavily on frontal lobe structures and is known to decline with age. The current study aimed to determine the neural correlates of decreased working memory performance in the frontal lobes by comparing cortical thickness and cortical surface area from two demographically matched groups of healthy older adults, free from cognitive impairment, with high versus low N-Back working memory performance ( N = 56; average age = 70.29 ± 10.64). High-resolution structural T1-weighted images (1 mm isotropic voxels) were obtained on a 3T Philips MRI scanner. When compared to high performers, low performers exhibited significantly decreased cortical surface area in three frontal lobe regions lateralized to the right hemisphere: medial orbital frontal gyrus, inferior frontal gyrus, and superior frontal gyrus (FDR p frontal regions may underlie age-related decline of working memory function.

  6. Detection of brain atrophy due to ACTH or corticosteroid therapy with computed tomography

    International Nuclear Information System (INIS)

    Tamai, Isamu; Takei, Tadao; Oota, Hideomi; Maekawa, Kihei.

    1981-01-01

    Adrenocorticotropic hormone (ACTH) or corticosteroids seemed to cause brain atrophy in intants. We studied the atrophy which was caused by these drugs with computed tomography (CT). 1) Nine cases of infantile spasms examined before, during and after ACTH therepy with CT. Brain atrophy on CT was observed immediately after the completion of ACTH therapy. The brain atrophy receded slightly after several months. It was more marked in younger patients, in cases treated by hight doses of ACTH and in cases where brain atrophy had already been obserbed before ACTH therapy. 2) Twenty cases of infantile spasms or Lennox Gastaut syndrome were examined after ACTH therapy with CT. Brain atrophy was observed in twelve cases. Main features of brain atrophy were the enlargement of sylvian fissure and the widening of subarachnoid space at the frontal or temporal region. Mental retardation was observed in eighteen cases. 3) Two cases of nephrotic syndrome were treated with pulse therapy of prednisolone. CT was carried out before and after treatment. Atrophy of cerebrum was observed in these cases. 4) A case of infantile spasms treated with anticonvulsants without ACTH was studied by electroencephalography (EEG) and CT. The abnormal pattern of EEG was markedly corrected, while brain atrophy on CT was not observed after the therapy. Because of these observations the use of ACTH has to be reconsidered. ACTH should be the drug of second choice for the therapy of infantile spasms and should be used in case other anticonvulsants have no effect. ACTH should be used at lower dosages and for shorter periods of time. (author)

  7. Detection of brain atrophy due to ACTH or corticosteroid therapy with computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Tamai, I.; Takei, T. (National Sagamihara Hospital, Kanagawa (Japan)); Oota, H.; Maekawa, K.

    1981-07-01

    Adrenocorticotropic hormone (ACTH) or corticosteroids seemed to cause brain atrophy in infants. We studied the atrophy which was caused by these drugs with computed tomography (CT). 1) Nine cases of infantile spasms examined before, during and after ACTH therapy with CT. Brain atrophy on CT was observed immediately after the completion of ACTH therapy. The brain atrophy receded slightly after several months. It was more marked in younger patients, in cases treated by high doses of ACTH and in cases where brain atrophy had already been observed before ACTH therapy. 2) Twenty cases of infantile spasms or Lennox Gastaut syndrome were examined after ACTH therapy with CT. Brain atrophy was observed in twelve cases. Main features of brain atrophy were the enlargement of sylvian fissure and the widening of subarachnoid space at the frontal or temporal region. Mental retardation was observed in eighteen cases. 3) Two cases of nephrotic syndrome were treated with pulse therapy of prednisolone. CT was carried out before and after treatment. Atrophy of cerebrum was observed in these cases. 4) A case of infantile spasms treated with anticonvulsants without ACTH was studied by electroencephalography (EEG) and CT. The abnormal pattern of EEG was markedly corrected, while brain atrophy on CT was not observed after the therapy. Because of these observations the use of ACTH has to be reconsidered. ACTH should be the drug of second choice for the therapy of infantile spasms and should be used in case other anticonvulsants have no effect. ACTH should be used at lower dosages and for shorter periods of time.

  8. Computed tomography in alcoholic cerebellar atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Haubek, A; Lee, K [Hvidovre Hospital Copenhagen (Denmark). Dept. of Radiology; Municipal Hospital, Copenhagen (Denmark). Dept. of Neurology)

    1979-01-01

    This is a controlled CT evaluation of the infratentorial region in 41 male alcoholics under age 35. Criteria for the presence of atrophy are outlined. Twelve patients had cerebellar atrophy. Vermian atrophy was present in all. Atrophy of the cerebellar hemispheres was demonstrated in eight patients as well. The results are statistically significant when compared to an age-matched group of 40 non-alcoholic males among whom two cases of vermian atrophy were found. There were clinical signs of alcoholic cerebellar atrophy in one patient only. The disparity between the clinical and the radiological data are discussed with reference to previous pneumoencephalographic findings. (orig.) 891 AJ/orig. 892 MKO.

  9. Neuronal oscillations form parietal/frontal networks during contour integration.

    Science.gov (United States)

    Castellano, Marta; Plöchl, Michael; Vicente, Raul; Pipa, Gordon

    2014-01-01

    The ability to integrate visual features into a global coherent percept that can be further categorized and manipulated are fundamental abilities of the neural system. While the processing of visual information involves activation of early visual cortices, the recruitment of parietal and frontal cortices has been shown to be crucial for perceptual processes. Yet is it not clear how both cortical and long-range oscillatory activity leads to the integration of visual features into a coherent percept. Here, we will investigate perceptual grouping through the analysis of a contour categorization task, where the local elements that form contour must be linked into a coherent structure, which is then further processed and manipulated to perform the categorization task. The contour formation in our visual stimulus is a dynamic process where, for the first time, visual perception of contours is disentangled from the onset of visual stimulation or from motor preparation, cognitive processes that until now have been behaviorally attached to perceptual processes. Our main finding is that, while local and long-range synchronization at several frequencies seem to be an ongoing phenomena, categorization of a contour could only be predicted through local oscillatory activity within parietal/frontal sources, which in turn, would synchronize at gamma (>30 Hz) frequency. Simultaneously, fronto-parietal beta (13-30 Hz) phase locking forms a network spanning across neural sources that are not category specific. Both long range networks, i.e., the gamma network that is category specific, and the beta network that is not category specific, are functionally distinct but spatially overlapping. Altogether, we show that a critical mechanism underlying contour categorization involves oscillatory activity within parietal/frontal cortices, as well as its synchronization across distal cortical sites.

  10. Pediatric frontal mucocele secondary to a bifid frontal sinus septum.

    Science.gov (United States)

    Plikaitis, Christina M; Purzycki, Adam R; Couture, Daniel; David, Lisa R

    2010-09-01

    A mucocele is a mucus-containing sac lined with epithelium that arises within a sinus when its drainage is compromised. The frontal sinus is the most common location, with frontal mucocele development occurring when the nasofrontal duct becomes obstructed because of polyps, bone tumors, prior surgery, sinusitis, trauma, or anatomic variation. We report an unusual case of a sterile pediatric frontal mucocele presenting as a slowly enlarging forehead mass due to a bifid frontal sinus septum. A 9-year-old girl presented to the craniofacial clinic for evaluation of a right frontal mass that had been slowly growing over the past year. She was otherwise healthy and had no history of previous trauma or sinus infections. Computed tomography (CT) scan results revealed a localized frontal fluid collection with protrusion and thinning of the anterior frontal bone between 2 midline bony septii. Surgical cranialization of the frontal sinus was performed. The anatomy of her lesion seen both on CT scan and intraoperatively likely explains this unusual case presentation. Instead of the usual inciting event of an intact frontal sinus drainage system becoming blocked, this patient seemed to have a primary developmental lack of any drainage system that led to her mucocele. During formation of her frontal sinus, she developed a bifid septum within the midline that excluded a portion of her frontal sinus from the lateral nasofrontal ducts. With mucus-producing epithelium trapped within these bony confines, pressure began to mount with expansion and thinning of the bone both anteriorly and posteriorly. The lack of any infectious symptoms and sterile culture results may support that this space developed primarily and was never in continuity with the external drainage system. Only 4 other patients have been reported with asymptomatic forehead swelling as the only presenting symptom, with the age ranging from 33 to 79 years. This patient represents the first clinical report of a congenital

  11. Grammatical distinctions in the left frontal cortex.

    Science.gov (United States)

    Shapiro, K A; Pascual-Leone, A; Mottaghy, F M; Gangitano, M; Caramazza, A

    2001-08-15

    Selective deficits in producing verbs relative to nouns in speech are well documented in neuropsychology and have been associated with left hemisphere frontal cortical lesions resulting from stroke and other neurological disorders. The basis for these impairments is unresolved: Do they arise because of differences in the way grammatical categories of words are organized in the brain, or because of differences in the neural representation of actions and objects? We used repetitive transcranial magnetic stimulation (rTMS) to suppress the excitability of a portion of left prefrontal cortex and to assess its role in producing nouns and verbs. In one experiment subjects generated real words; in a second, they produced pseudowords as nouns or verbs. In both experiments, response latencies increased for verbs but were unaffected for nouns following rTMS. These results demonstrate that grammatical categories have a neuroanatomical basis and that the left prefrontal cortex is selectively engaged in processing verbs as grammatical objects.

  12. Let's inhibit our excitement: the relationships between Stroop, behavioral disinhibition, and the frontal lobes.

    Science.gov (United States)

    Heflin, Lara H; Laluz, Victor; Jang, Jung; Ketelle, Robin; Miller, Bruce L; Kramer, Joel H

    2011-09-01

    The Stroop (Stroop, 1935) is a frequently used neuropsychological test, with poor performance typically interpreted as indicative of disinhibition and frontal lobe damage. This study tested those interpretations by examining relationships between Stroop performance, behavioral disinhibition, and frontal lobe atrophy. Participants were 112 patients with mild cognitive impairment or dementia, recruited through UCSF's Memory and Aging Center. Participants received comprehensive dementia evaluations including structural MRI, neuropsychological testing, and informant interviews. Freesurfer, a semiautomated parcellation program, was used to analyze 1.5T MRI scans. Behavioral disinhibition was measured using the Neuropsychiatric Inventory (Cummings, 1997; Cummings et al., 1994) Disinhibition Scale. The sample (n = 112) mean age was 65.40 (SD = 8.60) years, education was 16.64 (SD = 2.54) years, and Mini-Mental State Examination (MMSE; Folstein et al., 1975) was 26.63 (SD = 3.32). Hierarchical linear regressions were used for data analysis. Controlling for age, MMSE, and color naming, Stroop performance was not significantly associated with disinhibition (β = 0.01, ΔR² = 0.01, p = .29). Hierarchical regressions controlling for age, MMSE, color naming, intracranial volume, and temporal and parietal lobes, examined whether left or right hemisphere regions predict Stroop performance. Bilaterally, parietal lobe atrophy best predicted poorer Stroop (left: β = 0.0004, ΔR² = 0.02, p = .002; right: β = 0.0004, ΔR² = 0.02, p = .002). Of frontal regions, only dorsolateral prefrontal cortex atrophy predicted poorer Stroop (β = 0.001, ΔR² = 0.01, p = .03); left and right anterior cingulate cortex atrophy predicted better Stroop (left: β = -0.003, ΔR² = 0.01, p = .02; right: β = -0.004, ΔR² = 0.01, p = .02). These findings suggest Stroop performance is a poor measure of behavioral disinhibition and frontal lobe atrophy even among a relatively high-risk population

  13. Cerebral cortices of East african early hominids.

    Science.gov (United States)

    Falk, D

    1983-09-09

    An endocast of the frontal lobe of a reconstructed skull, which is approximately 2 million years old, from the Koobi Fora region of Kenya appears to represent the oldest human-like cortical sulcal pattern in the fossil record, while the endocast from another skull from the same region produces an endocast that appears apelike in its frontal lobe and similar to endocasts from earlier South African australopithecines. New analysis of paleoanatomical evidence thus indicates that at least two taxa of early hominids coexisted in East Africa.

  14. Acute hepatic encephalopathy presenting as cortical laminar necrosis: Case report

    International Nuclear Information System (INIS)

    Choi, Jong Mun; Kim, Yoon Hee; Roh, Sook Young

    2013-01-01

    We report on a 55-year-old man with alcoholic liver cirrhosis who presented with status epilepticus. Laboratory analysis showed markedly elevated blood ammonia. Brain magnetic resonance imaging (MRI) showed widespread cortical signal changes with restricted diffusion, involving both temporo-fronto-parietal cortex, while the perirolandic regions and occipital cortex were uniquely spared. A follow-up brain MRI demonstrated diffuse cortical atrophy with increased signals on T1-weighted images in both the basal ganglia and temporal lobe cortex, representing cortical laminar necrosis. We suggest that the brain lesions, in our case, represent a consequence of toxic effect of ammonia.

  15. Acute hepatic encephalopathy presenting as cortical laminar necrosis: Case report

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jong Mun; Kim, Yoon Hee; Roh, Sook Young [Bundang Jesaeng General Hospital, Daejin Medical Center, Seongnam (Korea, Republic of)

    2013-04-15

    We report on a 55-year-old man with alcoholic liver cirrhosis who presented with status epilepticus. Laboratory analysis showed markedly elevated blood ammonia. Brain magnetic resonance imaging (MRI) showed widespread cortical signal changes with restricted diffusion, involving both temporo-fronto-parietal cortex, while the perirolandic regions and occipital cortex were uniquely spared. A follow-up brain MRI demonstrated diffuse cortical atrophy with increased signals on T1-weighted images in both the basal ganglia and temporal lobe cortex, representing cortical laminar necrosis. We suggest that the brain lesions, in our case, represent a consequence of toxic effect of ammonia.

  16. Genetics Home Reference: spinal muscular atrophy

    Science.gov (United States)

    ... difficulty breathing. Children with this type often have joint deformities (contractures) that impair movement. In severe cases, ... Proximal spinal muscular atrophy Washington University, St. Louis: Neuromuscular Disease Center: Spinal Muscular Atrophy Patient Support and ...

  17. Hemifacial atrophy treated with autologous fat transplantation

    Directory of Open Access Journals (Sweden)

    Gandhi Vijay

    2005-01-01

    Full Text Available A 23-year-old male developed right hemifacial atrophy following marphea profunda. Facial asymmetry due to residual atrophy was treated with autologous fat harvested from buttocks with marked cosmetic improvement.

  18. Cortical Networks for Visual Self-Recognition

    Science.gov (United States)

    Sugiura, Motoaki

    This paper briefly reviews recent developments regarding the brain mechanisms of visual self-recognition. A special cognitive mechanism for visual self-recognition has been postulated based on behavioral and neuropsychological evidence, but its neural substrate remains controversial. Recent functional imaging studies suggest that multiple cortical mechanisms play self-specific roles during visual self-recognition, reconciling the existing controversy. Respective roles for the left occipitotemporal, right parietal, and frontal cortices in symbolic, visuospatial, and conceptual aspects of self-representation have been proposed.

  19. Cortical networks for visual self-recognition

    International Nuclear Information System (INIS)

    Sugiura, Motoaki

    2007-01-01

    This paper briefly reviews recent developments regarding the brain mechanisms of visual self-recognition. A special cognitive mechanism for visual self-recognition has been postulated based on behavioral and neuropsychological evidence, but its neural substrate remains controversial. Recent functional imaging studies suggest that multiple cortical mechanisms play self-specific roles during visual self-recognition, reconciling the existing controversy. Respective roles for the left occipitotemporal, right parietal, and frontal cortices in symbolic, visuospatial, and conceptual aspects of self-representation have been proposed. (author)

  20. Studies of cerebral atrophy and regional cerebral blood flow in patients with Parkinson's disease

    International Nuclear Information System (INIS)

    Kitamura, Shin

    1983-01-01

    Cerebral atrophy and regional cerebral blood flow (rCBF) of 25 patients with Parkinson's disease were studied. The rCBF was measured with the intra-arterial Xe-133 injection method. The results obtained were as follows: 1) Sixty four % of Parkinson's disease patients showed ventricular dilation, and 76% of Parkinson's disease patients showed cortical atrophy on the CT scan, but we had to allow for the effects of the natural aging process on these results. 2) No correlation was recognized either between cerebral atrophy and the severity of Parkinson's disease, or between cerebral atrophy and the duration of Parkinson's disease. 3) In Parkinson's disease patients, the mean rCBF was lower than that of normal control subjects. The difference was even more remarkable in older patients. Only 40% of Parkinson's disease patients showed hyperfrontal pattern. 4) There was no correlation either between the mean rCBF and the severity of Parkinson's disease, or between the mean rCBF and the duration of Parkinson's disease. There was no significant difference between the mean rCBF of Parkinson's disease patients receiving levodopa and that of untreated patients. 5) The mean rCBF decreased in patients with cerebral atrophy on the CT scan. 6) Parkinson's disease patients with intellectual impairment showed cerebral atrophy and a remarkable decrease of the mean rCBF. 7) The effect of aging on cerebral atrophy on the CT scan had to be allowed for, but judging from the decrease of the mean rCBF, the cerebral cortex is evidently involved in Parkinson's disease. 8) The rCBF decline in Parkinson's disease patients may be related with the diminished cortical metabolic rate due to a remote effect of striatal dysfunction and a disturbance of mesocortical dopaminergic pathways. (J.P.N.)

  1. Studies of cerebral atrophy and regional cerebral blood flow in patients with Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, Shin [Nippon Medical School, Tokyo

    1983-04-01

    Cerebral atrophy and regional cerebral blood flow (rCBF) of 25 patients with Parkinson's disease were studied. The rCBF was measured with the intra-arterial Xe-133 injection method. The results obtained were as follows: 1) Sixty four % of Parkinson's disease patients showed ventricular dilation, and 76% of Parkinson's disease patients showed cortical atrophy on the CT scan, but we had to allow for the effects of the natural aging process on these results. 2) No correlation was recognized either between cerebral atrophy and the severity of Parkinson's disease, or between cerebral atrophy and the duration of Parkinson's disease. 3) In Parkinson's disease patients, the mean rCBF was lower than that of normal control subjects. The difference was even more remarkable in older patients. Only 40% of Parkinson's disease patients showed hyperfrontal pattern. 4) There was no correlation either between the mean rCBF and the severity of Parkinson's disease, or between the mean rCBF and the duration of Parkinson's disease. There was no significant difference between the mean rCBF of Parkinson's disease patients receiving levodopa and that of untreated patients. 5) The mean rCBF decreased in patients with cerebral atrophy on the CT scan. 6) Parkinson's disease patients with intellectual impairment showed cerebral atrophy and a remarkable decrease of the mean rCBF. 7) The effect of aging on cerebral atrophy on the CT scan had to be allowed for, but judging from the decrease of the mean rCBF, the cerebral cortex is evidently involved in Parkinson's disease. 8) The rCBF decline in Parkinson's disease patients may be related with the diminished cortical metabolic rate due to a remote effect of striatal dysfunction and a disturbance of mesocortical dopaminergic pathways.

  2. Origin of human motor readiness field linked to left middle frontal gyrus by MEG and PET

    DEFF Research Database (Denmark)

    Pedersen, Jane Rygaard; Johannsen, P; Bak, Christen Kjeldahl

    1998-01-01

    Combined magnetoencephalography and positron emission tomography identified a prior source of activity in the left middle frontal gyrus duping uncued movements of the right index finger Voluntary movements gave rise to a change in the cortical electrical potential known as the Bereitschaftspotent......Combined magnetoencephalography and positron emission tomography identified a prior source of activity in the left middle frontal gyrus duping uncued movements of the right index finger Voluntary movements gave rise to a change in the cortical electrical potential known...... sources subsequently to be active were mapped to the supplementary motor area, premotor cortex, and motor cortex (M1), all in the left hemisphere. (C) 1998 Academic Press....

  3. Cortical morphology of adolescents with bipolar disorder and with schizophrenia.

    Science.gov (United States)

    Janssen, Joost; Alemán-Gómez, Yasser; Schnack, Hugo; Balaban, Evan; Pina-Camacho, Laura; Alfaro-Almagro, Fidel; Castro-Fornieles, Josefina; Otero, Soraya; Baeza, Inmaculada; Moreno, Dolores; Bargalló, Nuria; Parellada, Mara; Arango, Celso; Desco, Manuel

    2014-09-01

    Recent evidence points to overlapping decreases in cortical thickness and gyrification in the frontal lobe of patients with adult-onset schizophrenia and bipolar disorder with psychotic symptoms, but it is not clear if these findings generalize to patients with a disease onset during adolescence and what may be the mechanisms underlying a decrease in gyrification. This study analyzed cortical morphology using surface-based morphometry in 92 subjects (age range 11-18 years, 52 healthy controls and 40 adolescents with early-onset first-episode psychosis diagnosed with schizophrenia (n=20) or bipolar disorder with psychotic symptoms (n=20) based on a two year clinical follow up). Average lobar cortical thickness, surface area, gyrification index (GI) and sulcal width were compared between groups, and the relationship between the GI and sulcal width was assessed in the patient group. Both patients groups showed decreased cortical thickness and increased sulcal width in the frontal cortex when compared to healthy controls. The schizophrenia subgroup also had increased sulcal width in all other lobes. In the frontal cortex of the combined patient group sulcal width was negatively correlated (r=-0.58, padolescents with schizophrenia and bipolar disorder with psychotic symptoms there is cortical thinning, decreased GI and increased sulcal width of the frontal cortex present at the time of the first psychotic episode. Decreased frontal GI is associated with the widening of the frontal sulci which may reduce sulcal surface area. These results suggest that abnormal growth (or more pronounced shrinkage during adolescence) of the frontal cortex represents a shared endophenotype for psychosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. The validity of individual frontal alpha asymmetry EEG neurofeedback.

    Science.gov (United States)

    Quaedflieg, C W E M; Smulders, F T Y; Meyer, T; Peeters, F; Merckelbach, H; Smeets, T

    2016-01-01

    Frontal asymmetry in alpha oscillations is assumed to be associated with psychopathology and individual differences in emotional responding. Brain-activity-based feedback is a promising tool for the modulation of cortical activity. Here, we validated a neurofeedback protocol designed to change relative frontal asymmetry based on individual alpha peak frequencies, including real-time average referencing and eye-correction. Participants (N = 60) were randomly assigned to a right, left or placebo neurofeedback group. Results show a difference in trainability between groups, with a linear change in frontal alpha asymmetry over time for the right neurofeedback group during rest. Moreover, the asymmetry changes in the right group were frequency and location specific, even though trainability did not persist at 1 week and 1 month follow-ups. On the behavioral level, subjective stress on the second test day was reduced in the left and placebo neurofeedback groups, but not in the right neurofeedback group. We found individual differences in trainability that were dependent on training group, with participants in the right neurofeedback group being more likely to change their frontal asymmetry in the desired direction. Individual differences in trainability were also reflected in the ability to change frontal asymmetry during the feedback. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  5. Subcortical and cortical correlates of pitch discrimination: Evidence for two levels of neuroplasticity in musicians

    DEFF Research Database (Denmark)

    Bianchi, Federica; Hjortkjær, Jens; Santurette, Sébastien

    2017-01-01

    superior temporal gyrus, Heschl's gyrus, insular cortex, inferior frontal gyrus, and in the inferior colliculus. Both subcortical and cortical neural responses predicted the individual pitch-discrimination performance. However, functional activity in the inferior colliculus correlated with differences...

  6. Heritability analysis of surface-based cortical thickness estimation on a large twin cohort

    Science.gov (United States)

    Shen, Kaikai; Doré, Vincent; Rose, Stephen; Fripp, Jurgen; McMahon, Katie L.; de Zubicaray, Greig I.; Martin, Nicholas G.; Thompson, Paul M.; Wright, Margaret J.; Salvado, Olivier

    2015-03-01

    The aim of this paper is to assess the heritability of cerebral cortex, based on measurements of grey matter (GM) thickness derived from structural MR images (sMRI). With data acquired from a large twin cohort (328 subjects), an automated method was used to estimate the cortical thickness, and EM-ICP surface registration algorithm was used to establish the correspondence of cortex across the population. An ACE model was then employed to compute the heritability of cortical thickness. Heritable cortical thickness measures various cortical regions, especially in frontal and parietal lobes, such as bilateral postcentral gyri, superior occipital gyri, superior parietal gyri, precuneus, the orbital part of the right frontal gyrus, right medial superior frontal gyrus, right middle occipital gyrus, right paracentral lobule, left precentral gyrus, and left dorsolateral superior frontal gyrus.

  7. Origami by frontal photopolymerization.

    Science.gov (United States)

    Zhao, Zeang; Wu, Jiangtao; Mu, Xiaoming; Chen, Haosen; Qi, H Jerry; Fang, Daining

    2017-04-01

    Origami structures are of great interest in microelectronics, soft actuators, mechanical metamaterials, and biomedical devices. Current methods of fabricating origami structures still have several limitations, such as complex material systems or tedious processing steps. We present a simple approach for creating three-dimensional (3D) origami structures by the frontal photopolymerization method, which can be easily implemented by using a commercial projector. The concept of our method is based on the volume shrinkage during photopolymerization. By adding photoabsorbers into the polymer resin, an attenuated light field is created and leads to a nonuniform curing along the thickness direction. The layer directly exposed to light cures faster than the next layer; this nonuniform curing degree leads to nonuniform curing-induced volume shrinkage. This further introduces a nonuniform stress field, which drives the film to bend toward the newly formed side. The degree of bending can be controlled by adjusting the gray scale and the irradiation time, an easy approach for creating origami structures. The behavior is examined both experimentally and theoretically. Two methods are also proposed to create different types of 3D origami structures.

  8. Evolution of Cerebral Atrophy in a Patient with Super Refractory Status Epilepticus Treated with Barbiturate Coma

    Directory of Open Access Journals (Sweden)

    Christopher R. Newey

    2017-01-01

    Full Text Available Introduction. Status epilepticus is associated with neuronal breakdown. Radiological sequelae of status epilepticus include diffusion weighted abnormalities and T2/FLAIR cortical hyperintensities corresponding to the epileptogenic cortex. However, progressive generalized cerebral atrophy from status epilepticus is underrecognized and may be related to neuronal death. We present here a case of diffuse cerebral atrophy that developed during the course of super refractory status epilepticus management despite prolonged barbiturate coma. Methods. Case report and review of the literature. Case. A 19-year-old male with a prior history of epilepsy presented with focal clonic seizures. His seizures were refractory to multiple anticonvulsants and eventually required pentobarbital coma for 62 days and midazolam coma for 33 days. Serial brain magnetic resonance imaging (MRI showed development of cerebral atrophy at 31 days after admission to our facility and progression of the atrophy at 136 days after admission. Conclusion. This case highlights the development and progression of generalized cerebral atrophy in super refractory status epilepticus. The cerebral atrophy was noticeable at 31 days after admission at our facility which emphasizes the urgency of definitive treatment in patients who present with super refractory status epilepticus. Further research into direct effects of therapeutic coma is warranted.

  9. Asymmetrical frontal resting-state beta oscillations predict trait aggressive tendencies and behavioral inhibition

    OpenAIRE

    Hofman, Dennis; Schutter, Dennis J. L. G.

    2011-01-01

    Asymmetrical patterns of frontal cortical activity have been implicated in the development and expression of aggressive behavior. Along with individual motivational tendencies, the ability to restrain one's impulses might be a factor in aggressive behavior. Recently, a role for the inhibitory cortical beta rhythm was suggested. The present study investigated whether individual differences in resting state asymmetries in the beta frequency band were associated with trait aggression and behavio...

  10. Cerebral Cortex Regions Selectively Vulnerable to Radiation Dose-Dependent Atrophy

    International Nuclear Information System (INIS)

    Seibert, Tyler M.; Karunamuni, Roshan; Kaifi, Samar; Burkeen, Jeffrey; Connor, Michael; Krishnan, Anitha Priya; White, Nathan S.; Farid, Nikdokht; Bartsch, Hauke; Murzin, Vyacheslav; Nguyen, Tanya T.; Moiseenko, Vitali; Brewer, James B.; McDonald, Carrie R.; Dale, Anders M.; Hattangadi-Gluth, Jona A.

    2017-01-01

    Purpose and Objectives: Neurologic deficits after brain radiation therapy (RT) typically involve decline in higher-order cognitive functions such as attention and memory rather than sensory defects or paralysis. We sought to determine whether areas of the cortex critical to cognition are selectively vulnerable to radiation dose-dependent atrophy. Methods and Materials: We measured change in cortical thickness in 54 primary brain tumor patients who underwent fractionated, partial brain RT. The study patients underwent high-resolution, volumetric magnetic resonance imaging (T1-weighted; T2 fluid-attenuated inversion recovery, FLAIR) before RT and 1 year afterward. Semiautomated software was used to segment anatomic regions of the cerebral cortex for each patient. Cortical thickness was measured for each region before RT and 1 year afterward. Two higher-order cortical regions of interest (ROIs) were tested for association between radiation dose and cortical thinning: entorhinal (memory) and inferior parietal (attention/memory). For comparison, 2 primary cortex ROIs were also tested: pericalcarine (vision) and paracentral lobule (somatosensory/motor). Linear mixed-effects analyses were used to test all other cortical regions for significant radiation dose-dependent thickness change. Statistical significance was set at α = 0.05 using 2-tailed tests. Results: Cortical atrophy was significantly associated with radiation dose in the entorhinal (P=.01) and inferior parietal ROIs (P=.02). By contrast, no significant radiation dose-dependent effect was found in the primary cortex ROIs (pericalcarine and paracentral lobule). In the whole-cortex analysis, 9 regions showed significant radiation dose-dependent atrophy, including areas responsible for memory, attention, and executive function (P≤.002). Conclusions: Areas of cerebral cortex important for higher-order cognition may be most vulnerable to radiation-related atrophy. This is consistent with clinical observations

  11. Cerebral Cortex Regions Selectively Vulnerable to Radiation Dose-Dependent Atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Seibert, Tyler M.; Karunamuni, Roshan; Kaifi, Samar; Burkeen, Jeffrey; Connor, Michael [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); Krishnan, Anitha Priya; White, Nathan S.; Farid, Nikdokht; Bartsch, Hauke [Department of Radiology, University of California, San Diego, La Jolla, California (United States); Murzin, Vyacheslav [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); Nguyen, Tanya T. [Department of Psychiatry, University of California, San Diego, La Jolla, California (United States); Moiseenko, Vitali [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); Brewer, James B. [Department of Radiology, University of California, San Diego, La Jolla, California (United States); Department of Neurosciences, University of California, San Diego, La Jolla, California (United States); McDonald, Carrie R. [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); Department of Psychiatry, University of California, San Diego, La Jolla, California (United States); Dale, Anders M. [Department of Radiology, University of California, San Diego, La Jolla, California (United States); Department of Psychiatry, University of California, San Diego, La Jolla, California (United States); Department of Neurosciences, University of California, San Diego, La Jolla, California (United States); Hattangadi-Gluth, Jona A., E-mail: jhattangadi@ucsd.edu [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States)

    2017-04-01

    Purpose and Objectives: Neurologic deficits after brain radiation therapy (RT) typically involve decline in higher-order cognitive functions such as attention and memory rather than sensory defects or paralysis. We sought to determine whether areas of the cortex critical to cognition are selectively vulnerable to radiation dose-dependent atrophy. Methods and Materials: We measured change in cortical thickness in 54 primary brain tumor patients who underwent fractionated, partial brain RT. The study patients underwent high-resolution, volumetric magnetic resonance imaging (T1-weighted; T2 fluid-attenuated inversion recovery, FLAIR) before RT and 1 year afterward. Semiautomated software was used to segment anatomic regions of the cerebral cortex for each patient. Cortical thickness was measured for each region before RT and 1 year afterward. Two higher-order cortical regions of interest (ROIs) were tested for association between radiation dose and cortical thinning: entorhinal (memory) and inferior parietal (attention/memory). For comparison, 2 primary cortex ROIs were also tested: pericalcarine (vision) and paracentral lobule (somatosensory/motor). Linear mixed-effects analyses were used to test all other cortical regions for significant radiation dose-dependent thickness change. Statistical significance was set at α = 0.05 using 2-tailed tests. Results: Cortical atrophy was significantly associated with radiation dose in the entorhinal (P=.01) and inferior parietal ROIs (P=.02). By contrast, no significant radiation dose-dependent effect was found in the primary cortex ROIs (pericalcarine and paracentral lobule). In the whole-cortex analysis, 9 regions showed significant radiation dose-dependent atrophy, including areas responsible for memory, attention, and executive function (P≤.002). Conclusions: Areas of cerebral cortex important for higher-order cognition may be most vulnerable to radiation-related atrophy. This is consistent with clinical observations

  12. Practical one-dimensional measurements of age-related brain atrophy are validated by 3-dimensional values and clinical outcomes: a retrospective study

    International Nuclear Information System (INIS)

    Dunham, C. Michael; Cook, Albert J. II; Paparodis, Alaina M.; Huang, Gregory S.

    2016-01-01

    Age-related brain atrophy has been represented by simple 1-dimensional (1-D) measurements on computed tomography (CT) for several decades and, more recently, with 3-dimensional (3-D) analysis, using brain volume (BV) and cerebrospinal fluid volume (CSFV). We aimed to show that simple 1-D measurements would be associated with 3-D values of age-related atrophy and that they would be related to post-traumatic intracranial hemorrhage (ICH). Patients ≥60 years with head trauma were classified with central atrophy (lateral ventricular body width >30 mm) and/or cortical atrophy (sulcus width ≥2.5 mm). Composite atrophy was the presence of central or cortical atrophy. BV and CSFV were computed using a Siemens Syngo workstation (VE60A). Of 177 patients, traits were age 78.3 ± 10, ICH 32.2 %, central atrophy 39.5 %, cortical atrophy 31.1 %, composite atrophy 49.2 %, BV 1,156 ± 198 mL, and CSFV 102.5 ± 63 mL. CSFV was greater with central atrophy (134.4 mL), than without (81.7 mL, p < 0.001). BV was lower with cortical atrophy (1,034 mL), than without (1,211 mL; p < 0.001). BV was lower with composite atrophy (1,103 mL), than without (1,208 mL; p < 0.001). CSFV was greater with composite atrophy (129.1 mL), than without (76.8 mL, p < 0.001). CSFV÷BV was greater with composite atrophy (12.3 %), than without (6.7 %, p < 0.001). Age was greater with composite atrophy (80.4 years), than without (76.3, p = 0.006). Age had an inverse correlation with BV (p < 0.001) and a direct correlation with CSFV (p = 0.0002) and CSFV÷BV (p < 0.001). ICH was greater with composite atrophy (49.4 %), than without (15.6 %; p < 0.001; odds ratio = 5.3). BV was lower with ICH (1,089 mL), than without (1,188 mL; p = 0.002). CSFV÷BV was greater with ICH (11.1 %), than without (8.7 %, p = 0.02). ICH was independently associated with central atrophy (p = 0.001) and cortical atrophy (p = 0.003). Simple 1-D measurements of age-related brain atrophy are associated with 3-D values. Clinical

  13. Longitudinal changes in cortical thickness in autism and typical development.

    Science.gov (United States)

    Zielinski, Brandon A; Prigge, Molly B D; Nielsen, Jared A; Froehlich, Alyson L; Abildskov, Tracy J; Anderson, Jeffrey S; Fletcher, P Thomas; Zygmunt, Kristen M; Travers, Brittany G; Lange, Nicholas; Alexander, Andrew L; Bigler, Erin D; Lainhart, Janet E

    2014-06-01

    The natural history of brain growth in autism spectrum disorders remains unclear. Cross-sectional studies have identified regional abnormalities in brain volume and cortical thickness in autism, although substantial discrepancies have been reported. Preliminary longitudinal studies using two time points and small samples have identified specific regional differences in cortical thickness in the disorder. To clarify age-related trajectories of cortical development, we examined longitudinal changes in cortical thickness within a large mixed cross-sectional and longitudinal sample of autistic subjects and age- and gender-matched typically developing controls. Three hundred and forty-five magnetic resonance imaging scans were examined from 97 males with autism (mean age = 16.8 years; range 3-36 years) and 60 males with typical development (mean age = 18 years; range 4-39 years), with an average interscan interval of 2.6 years. FreeSurfer image analysis software was used to parcellate the cortex into 34 regions of interest per hemisphere and to calculate mean cortical thickness for each region. Longitudinal linear mixed effects models were used to further characterize these findings and identify regions with between-group differences in longitudinal age-related trajectories. Using mean age at time of first scan as a reference (15 years), differences were observed in bilateral inferior frontal gyrus, pars opercularis and pars triangularis, right caudal middle frontal and left rostral middle frontal regions, and left frontal pole. However, group differences in cortical thickness varied by developmental stage, and were influenced by IQ. Differences in age-related trajectories emerged in bilateral parietal and occipital regions (postcentral gyrus, cuneus, lingual gyrus, pericalcarine cortex), left frontal regions (pars opercularis, rostral middle frontal and frontal pole), left supramarginal gyrus, and right transverse temporal gyrus, superior parietal lobule, and

  14. Recurrent meningitis associated with frontal sinus tuber encephalocele in a patient with tuberous sclerosis.

    Science.gov (United States)

    Elbabaa, Samer K; Riggs, Angela D; Saad, Ali G

    2011-07-01

    Tuberous sclerosis complex (TSC) is a genetic neurocutaneous disorder that commonly affects the CNS. The most commonly associated brain tumors include cortical tubers, subependymal nodules, and subependymal giant cell astrocytomas (SEGAs). The authors report an unusual case of recurrent meningitis due to a tuber-containing encephalocele via the posterior wall of the frontal sinus. An 11-year-old girl presented with a history of TSC and previous SEGA resection via interhemispheric approach. She presented twice within 4 months with classic bacterial meningitis. Cerebrospinal fluid cultures revealed Streptococcus pneumoniae. Computed tomography and MR imaging of the brain showed a right frontal sinus encephalocele via a posterior frontal sinus wall defect. Both episodes of meningitis were treated successfully with standard regimens of intravenous antibiotics. The neurosurgical service was consulted to discuss surgical options. Via a bicoronal incision, a right basal frontal craniotomy was performed. A large frontal encephalocele was encountered in the frontal sinus. The encephalocele was herniating through a bony defect of the posterior sinus wall. The encephalocele was ligated and resected followed by removing frontal sinus mucosa and complete cranialization of frontal sinus. Repair of the sinus floor was conducted with fat and pericranial grafts followed by CSF diversion via lumbar drain. Histopathology of the resected encephalocele showed a TSC tuber covered with respiratory (frontal sinus) mucosa. Tuber cells were diffusely positive for GFAP. The patient underwent follow-up for 2 years without evidence of recurrent meningitis or CSF rhinorrhea. This report demonstrates that frontal tubers of TSC can protrude into the frontal sinus as acquired encephaloceles and present with recurrent meningitis. To the authors' knowledge, recurrent meningitis is not known to coincide with TSC. Careful clinical and radiographic follow-up for frontal tubers in patients with TSC is

  15. Cortical thickness in de novo patients with Parkinson disease and mild cognitive impairment with consideration of clinical phenotype and motor laterality.

    Science.gov (United States)

    Danti, S; Toschi, N; Diciotti, S; Tessa, C; Poletti, M; Del Dotto, P; Lucetti, C

    2015-12-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder with motor and non-motor symptoms, including cognitive deficits. Several magnetic resonance imaging approaches have been applied to investigate brain atrophy in PD. The aim of this study was to detect early structural cortical and subcortical changes in de novo PD whilst distinguishing cognitive status, clinical phenotype and motor laterality. Eighteen de novo PD with mild cognitive impairment (PD-MCI), 18 de novo PD without MCI (PD-NC) and 18 healthy control subjects were evaluated. In the PD-MCI group, nine were tremor dominant and nine were postural instability gait disorder (PIGD) phenotype; 11 had right-sided symptom dominance and seven had left-sided symptom dominance. FreeSurfer was used to measure cortical thickness/folding, subcortical structures and to study group differences as well as the association with clinical and neuropsychological data. Parkinson's disease with MCI showed regional thinning in the right frontal, right middle temporal areas and left insula compared to PD-NC. A reduction of the volume of the left and right thalamus and left hippocampus was found in PD-MCI compared to PD-NC. PD-MCI PIGD showed regional thinning in the right inferior parietal area compared to healthy controls. A decreased volume of the left thalamus was reported in PD-MCI with right-sided symptom dominance compared to PD-NC and PD-MCI with left-sided symptom dominance. When MCI was present, PD patients showed a fronto-temporo-parietal pattern of cortical thinning. This cortical pattern does not appear to be influenced by motor laterality, although one-sided symptom dominance may contribute to volumetric reduction of specific subcortical structures. © 2015 EAN.

  16. Morphometric golgi study of some cortical locations in wag/rij and aci rat strains

    NARCIS (Netherlands)

    Karpova, A.V.; Bikbaev, A.F.; Coenen, A.M.L.; Luijtelaar, E.L.J.M. van; Luijtelaar, E.L.J.M. van; Kuznetsova, G.D.; Coenen, A.M.L.; Chepurnov, S.A.

    2004-01-01

    The present study was aimed to investigate the neuronal organization of two neocortical frontal zones using a Golgi staining technique in genetic epileptic rats, WAG/Rij's. One cortical zone was a specific part of the somatosensory cortex, which was recently proposed to contain a cortical epileptic

  17. Evoked Potentials and Memory/Cognition Tests Validate Brain Atrophy as Measured by 3T MRI (NeuroQuant) in Cognitively Impaired Patients.

    Science.gov (United States)

    Braverman, Eric R; Blum, Kenneth; Hussman, Karl L; Han, David; Dushaj, Kristina; Li, Mona; Marin, Gabriela; Badgaiyan, Rajendra D; Smayda, Richard; Gold, Mark S

    2015-01-01

    To our knowledge, this is the largest study evaluating relationships between 3T Magnetic Resonance Imaging (MRI) and P300 and memory/cognitive tests in the literature. The 3T MRI using NeuroQuant has an increased resolution 15 times that of 1.5T MRI. Utilizing NeuroQuant 3T MRI as a diagnostic tool in primary care, subjects (N=169; 19-90 years) displayed increased areas of anatomical atrophy: 34.62% hippocampal atrophy (N=54), 57.14% central atrophy (N=88), and 44.52% temporal atrophy (N=69). A majority of these patients exhibited overlap in measured areas of atrophy and were cognitively impaired. These results positively correlated with decreased P300 values and WMS-III (WMS-III) scores differentially across various brain loci. Delayed latency (p=0.0740) was marginally associated with temporal atrophy; reduced fractional anisotropy (FA) in frontal lobes correlated with aging, delayed P300 latency, and decreased visual and working memory (p=0.0115). Aging and delayed P300 latency correlated with lower FA. The correlation between working memory and reduced FA in frontal lobes is marginally significant (p=0.0787). In the centrum semiovale (CS), reduced FA correlated with visual memory (p=0.0622). Lower demyelination correlated with higher P300 amplitude (p=0.0002). Compared to males, females have higher demyelination (p=0.0064). Along these lines, the higher the P300 amplitude, the lower the bilateral atrophy (p=0.0165). Hippocampal atrophy correlated with increased auditory memory and gender, especially in males (p=0.0087). In considering temporal lobe atrophy correlations: delayed P300 latency and high temporal atrophy (p=0.0740); high auditory memory and low temporal atrophy (p=0.0417); and high working memory and low temporal atrophy (p=0.0166). Central atrophy correlated with aging and immediate memory (p=0.0294): the higher the immediate memory, the lower the central atrophy. Generally, the validation of brain atrophy by P300 and WMS-III could lead to cost

  18. Evoked Potentials and Memory/Cognition Tests Validate Brain Atrophy as Measured by 3T MRI (NeuroQuant in Cognitively Impaired Patients.

    Directory of Open Access Journals (Sweden)

    Eric R Braverman

    Full Text Available To our knowledge, this is the largest study evaluating relationships between 3T Magnetic Resonance Imaging (MRI and P300 and memory/cognitive tests in the literature. The 3T MRI using NeuroQuant has an increased resolution 15 times that of 1.5T MRI. Utilizing NeuroQuant 3T MRI as a diagnostic tool in primary care, subjects (N=169; 19-90 years displayed increased areas of anatomical atrophy: 34.62% hippocampal atrophy (N=54, 57.14% central atrophy (N=88, and 44.52% temporal atrophy (N=69. A majority of these patients exhibited overlap in measured areas of atrophy and were cognitively impaired. These results positively correlated with decreased P300 values and WMS-III (WMS-III scores differentially across various brain loci. Delayed latency (p=0.0740 was marginally associated with temporal atrophy; reduced fractional anisotropy (FA in frontal lobes correlated with aging, delayed P300 latency, and decreased visual and working memory (p=0.0115. Aging and delayed P300 latency correlated with lower FA. The correlation between working memory and reduced FA in frontal lobes is marginally significant (p=0.0787. In the centrum semiovale (CS, reduced FA correlated with visual memory (p=0.0622. Lower demyelination correlated with higher P300 amplitude (p=0.0002. Compared to males, females have higher demyelination (p=0.0064. Along these lines, the higher the P300 amplitude, the lower the bilateral atrophy (p=0.0165. Hippocampal atrophy correlated with increased auditory memory and gender, especially in males (p=0.0087. In considering temporal lobe atrophy correlations: delayed P300 latency and high temporal atrophy (p=0.0740; high auditory memory and low temporal atrophy (p=0.0417; and high working memory and low temporal atrophy (p=0.0166. Central atrophy correlated with aging and immediate memory (p=0.0294: the higher the immediate memory, the lower the central atrophy. Generally, the validation of brain atrophy by P300 and WMS-III could lead to cost

  19. Cortical thickness abnormalities in late adolescence with online gaming addiction.

    Science.gov (United States)

    Yuan, Kai; Cheng, Ping; Dong, Tao; Bi, Yanzhi; Xing, Lihong; Yu, Dahua; Zhao, Limei; Dong, Minghao; von Deneen, Karen M; Liu, Yijun; Qin, Wei; Tian, Jie

    2013-01-01

    Online gaming addiction, as the most popular subtype of Internet addiction, had gained more and more attention from the whole world. However, the structural differences in cortical thickness of the brain between adolescents with online gaming addiction and healthy controls are not well unknown; neither was its association with the impaired cognitive control ability. High-resolution magnetic resonance imaging scans from late adolescence with online gaming addiction (n = 18) and age-, education- and gender-matched controls (n = 18) were acquired. The cortical thickness measurement method was employed to investigate alterations of cortical thickness in individuals with online gaming addiction. The color-word Stroop task was employed to investigate the functional implications of the cortical thickness abnormalities. Imaging data revealed increased cortical thickness in the left precentral cortex, precuneus, middle frontal cortex, inferior temporal and middle temporal cortices in late adolescence with online gaming addiction; meanwhile, the cortical thicknesses of the left lateral orbitofrontal cortex (OFC), insula, lingual gyrus, the right postcentral gyrus, entorhinal cortex and inferior parietal cortex were decreased. Correlation analysis demonstrated that the cortical thicknesses of the left precentral cortex, precuneus and lingual gyrus correlated with duration of online gaming addiction and the cortical thickness of the OFC correlated with the impaired task performance during the color-word Stroop task in adolescents with online gaming addiction. The findings in the current study suggested that the cortical thickness abnormalities of these regions may be implicated in the underlying pathophysiology of online gaming addiction.

  20. Cortical thickness abnormalities in late adolescence with online gaming addiction.

    Directory of Open Access Journals (Sweden)

    Kai Yuan

    Full Text Available Online gaming addiction, as the most popular subtype of Internet addiction, had gained more and more attention from the whole world. However, the structural differences in cortical thickness of the brain between adolescents with online gaming addiction and healthy controls are not well unknown; neither was its association with the impaired cognitive control ability. High-resolution magnetic resonance imaging scans from late adolescence with online gaming addiction (n = 18 and age-, education- and gender-matched controls (n = 18 were acquired. The cortical thickness measurement method was employed to investigate alterations of cortical thickness in individuals with online gaming addiction. The color-word Stroop task was employed to investigate the functional implications of the cortical thickness abnormalities. Imaging data revealed increased cortical thickness in the left precentral cortex, precuneus, middle frontal cortex, inferior temporal and middle temporal cortices in late adolescence with online gaming addiction; meanwhile, the cortical thicknesses of the left lateral orbitofrontal cortex (OFC, insula, lingual gyrus, the right postcentral gyrus, entorhinal cortex and inferior parietal cortex were decreased. Correlation analysis demonstrated that the cortical thicknesses of the left precentral cortex, precuneus and lingual gyrus correlated with duration of online gaming addiction and the cortical thickness of the OFC correlated with the impaired task performance during the color-word Stroop task in adolescents with online gaming addiction. The findings in the current study suggested that the cortical thickness abnormalities of these regions may be implicated in the underlying pathophysiology of online gaming addiction.

  1. Voxel-based morphometry in Alzheimers disease and mild cognitive impairment: Systematic review of studies addressing the frontal lobe.

    Science.gov (United States)

    Ribeiro, Luís Gustavo; Busatto, Geraldo

    2016-01-01

    Voxel-based morphometry (VBM) is a useful approach for investigating neurostructural brain changes in dementia. We systematically reviewed VBM studies of Alzheimer's disease (AD) and mild cognitive impairment (MCI), specifically focusing on grey matter (GM) atrophy in the frontal lobe. Two searches were performed on the Pubmed database. A set of exclusion criteria was applied to ensure the selection of only VBM studies that directly investigated GM volume abnormalities in AD and/or MCI patients compared to cognitively normal controls. From a total of 46 selected articles, 35 VBM studies reported GM volume reductions in the frontal lobe. The frontal subregions, where most of the volume reductions were reported, included the inferior, superior and middle frontal gyri, as well as the anterior cingulate gyrus. We also found studies in which reduced frontal GM was detected in MCI patients who converted to AD. In a minority of studies, correlations between frontal GM volumes and behavioural changes or cognitive deficits in AD patients were investigated, with variable findings. Results of VBM studies indicate that the frontal lobe should be regarded as an important brain area when investigating GM volume deficits in association with AD. Frontal GM loss might not be a feature specific to late AD only. Future VBM studies involving large AD samples are warranted to further investigate correlations between frontal volume deficits and both cognitive impairment and neuropsychiatric symptoms.

  2. Cortical visual impairment

    OpenAIRE

    Koželj, Urša

    2013-01-01

    In this thesis we discuss cortical visual impairment, diagnosis that is in the developed world in first place, since 20 percent of children with blindness or low vision are diagnosed with it. The objectives of the thesis are to define cortical visual impairment and the definition of characters suggestive of the cortical visual impairment as well as to search for causes that affect the growing diagnosis of cortical visual impairment. There are a lot of signs of cortical visual impairment. ...

  3. The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations.

    Science.gov (United States)

    Rizzolatti, Giacomo; Sinigaglia, Corrado

    2010-04-01

    The parieto-frontal cortical circuit that is active during action observation is the circuit with mirror properties that has been most extensively studied. Yet, there remains controversy on its role in social cognition and its contribution to understanding the actions and intentions of other individuals. Recent studies in monkeys and humans have shed light on what the parieto-frontal cortical circuit encodes and its possible functional relevance for cognition. We conclude that, although there are several mechanisms through which one can understand the behaviour of other individuals, the parieto-frontal mechanism is the only one that allows an individual to understand the action of others 'from the inside' and gives the observer a first-person grasp of the motor goals and intentions of other individuals.

  4. Right fronto-limbic atrophy is associated with reduced empathy in refractory unilateral mesial temporal lobe epilepsy.

    Science.gov (United States)

    Toller, Gianina; Adhimoolam, Babu; Rankin, Katherine P; Huppertz, Hans-Jürgen; Kurthen, Martin; Jokeit, Hennric

    2015-11-01

    Refractory mesial temporal lobe epilepsy (MTLE) is the most frequent focal epilepsy and is often accompanied by deficits in social cognition including emotion recognition, theory of mind, and empathy. Consistent with the neuronal networks that are crucial for normal social-cognitive processing, these impairments have been associated with functional changes in fronto-temporal regions. However, although atrophy in unilateral MTLE also affects regions of the temporal and frontal lobes that underlie social cognition, little is known about the structural correlates of social-cognitive deficits in refractory MTLE. In the present study, a psychometrically validated empathy questionnaire was combined with whole-brain voxel-based morphometry (VBM) to investigate the relationship between self-reported affective and cognitive empathy and gray matter volume in 55 subjects (13 patients with right MTLE, 9 patients with left MTLE, and 33 healthy controls). Consistent with the brain regions underlying social cognition, our results show that lower affective and cognitive empathy was associated with smaller volume in predominantly right fronto-limbic regions, including the right hippocampus, parahippocampal gyrus, thalamus, fusiform gyrus, inferior temporal gyrus, dorsomedial and dorsolateral prefrontal cortices, and in the bilateral midbrain. The only region that was associated with both affective and cognitive empathy was the right mesial temporal lobe. These findings indicate that patients with right MTLE are at increased risk for reduced empathy towards others' internal states and they shed new light on the structural correlates of impaired social cognition frequently accompanying refractory MTLE. In line with previous evidence from patients with neurodegenerative disease and stroke, the present study suggests that empathy depends upon the integrity of right fronto-limbic and brainstem regions and highlights the importance of the right mesial temporal lobe and midbrain

  5. Cortical involvement of marchiafava-bignami disease: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Han Won [Yeungnam University College of Medicine, Daegu (Korea, Republic of)

    2007-03-15

    Marchiafava-Bignami disease is a rare complication of chronic alcoholism and this malady typically manifests as callosal lesion. I report here on one patient with Marchiafava-bignami disease (MBD) who has symmetric restricted diffusion in both lateral-frontal cortices, in addition to the callosal lesion.

  6. Visuo-spatial construction in patients with frontal and parietal lobe lesions

    Directory of Open Access Journals (Sweden)

    Himani Kashyap

    2011-04-01

    Full Text Available Visuospatial construction, traditionally viewed as a putative parietal function, also requires sustained attention, planning, organization strategies and error correction, and hence frontal lobe mediation. The relative contributions of the frontal and parietal lobes are poorly understood. To examine the contributions of parietal, frontal lobes, as well as right and left cerebral hemispheres to visuospatial construction. The Stick Construction Test for two-dimensional construction and the Block Construction Test for three-dimensional construction were administered pre-surgically to patients with lesions in the parietal lobe (n =9 and the frontal lobe (n=11, along with normal control subjects (n =20 matched to the patients on age (+/- 3 years, gender, education (+/- 3 years and handedness. The patients were significantly slower than the controls on both two-dimensional and three-dimensional tests. Patients with parietal lesions were slower than those with frontal lesions on the test of three-dimensional construction. Within each lobe patients with right and left sided lesions did not differ significantly. It appears that tests of three-dimensional construction might be most sensitive to visuospatial construction deficits. Visuospatial construction involves the mediation of both frontal and parietal lobes. The function does not appear to be lateralized. The networks arising from the parieto-occipital areas and projecting to the frontal cortices (e.g., occipito-frontal fasciculus may be the basis of the mediation of both lobes in visuospatial construction. The present findings need replication from studies with larger sample sizes.

  7. New insights in the homotopic and heterotopic connectivity of the frontal portion of the human corpus callosum revealed by microdissection and diffusion tractography.

    Science.gov (United States)

    De Benedictis, Alessandro; Petit, Laurent; Descoteaux, Maxime; Marras, Carlo Efisio; Barbareschi, Mattia; Corsini, Francesco; Dallabona, Monica; Chioffi, Franco; Sarubbo, Silvio

    2016-12-01

    Extensive studies revealed that the human corpus callosum (CC) plays a crucial role in providing large-scale bi-hemispheric integration of sensory, motor and cognitive processing, especially within the frontal lobe. However, the literature lacks of conclusive data regarding the structural macroscopic connectivity of the frontal CC. In this study, a novel microdissection approach was adopted, to expose the frontal fibers of CC from the dorsum to the lateral cortex in eight hemispheres and in one entire brain. Post-mortem results were then combined with data from advanced constrained spherical deconvolution in 130 healthy subjects. We demonstrated as the frontal CC provides dense inter-hemispheric connections. In particular, we found three types of fronto-callosal fibers, having a dorso-ventral organization. First, the dorso-medial CC fibers subserve homotopic connections between the homologous medial cortices of the superior frontal gyrus. Second, the ventro-lateral CC fibers subserve homotopic connections between lateral frontal cortices, including both the middle frontal gyrus and the inferior frontal gyrus, as well as heterotopic connections between the medial and lateral frontal cortices. Third, the ventro-striatal CC fibers connect the medial and lateral frontal cortices with the contralateral putamen and caudate nucleus. We also highlighted an intricate crossing of CC fibers with the main association pathways terminating in the lateral regions of the frontal lobes. This combined approach of ex vivo microdissection and in vivo diffusion tractography allowed demonstrating a previously unappreciated three-dimensional architecture of the anterior frontal CC, thus clarifying the functional role of the CC in mediating the inter-hemispheric connectivity. Hum Brain Mapp 37:4718-4735, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Neurosyphilis with dementia and bilateral hippocampal atrophy on brain magnetic resonance imaging

    International Nuclear Information System (INIS)

    Mehrabian, S.; Raycheva, M.; Traykova, M.; Stankova, T.; Penev, L.; Georgieva-Kozarova, G.; Grigorova, O.; Traykov, L.

    2012-01-01

    Full text: Background: This article reports a rare case of active neurosyphilis in a 33-years-old man with mild to moderate dementia and marked hippocampal atrophy, mimicking early onset Alzheimer's disease. Few number of cases described bilateral hippocampal atrophy mimicking Alzheimer's disease in neurosyphilis. Case presentation: The clinical feature is characterized by a progressive cognitive decline and behavioral changes for the last 18 months. Neuropsychological examination revealed mild to moderate dementia (MMSE=16) with impaired memory, attention and executive dysfunction. Pyramidal, extrapyramidal signs, dysarthria and impairment in coordination were documented. Brain magnetic resonance imaging showed cortical atrophy with marked bilateral hippocampal atrophy. The diagnosis of active neurosyphilis was based on positive results of Venereal Disease Research Laboratory test - Treponema Pallidum. Hemagglutination reactions in blood and cerebrospinal fluid samples. In addition, cerebrospinal fluid analysis showed pleocytosis and elevated protein levels. High dose intravenous penicillin therapy was administered. During the follow up examination at 6 month, the clinical signs, and neuropsychological examinations, and cerebrospinal fluid samples showed improvement. Conclusion: This case underlines the importance of early diagnosis of neurosyphilis. The results suggest that neurosyphilis should be considered when magnetic resonance imaging results indicate mesiotemporal abnormalities and hippocampal atrophy. Neurosyphilis is a treatable condition and needs early aggressive antibiotic therapy

  9. Autobiographical memory of the recent past following frontal cortex or temporal lobe excisions.

    Science.gov (United States)

    Thaiss, Laila; Petrides, Michael

    2008-08-01

    Previous research has raised questions regarding the necessity of the frontal cortex in autobiographical memory and the role that it plays in actively retrieving contextual information associated with personally relevant events. Autobiographical memory was studied in patients with unilateral excisions restricted to the frontal cortex or temporal lobe involving the amygdalo-hippocampal region and in normal controls using an event-sampling method. We examined accuracy of free recall, use of strategies during retrieval and memory for specific aspects of the autobiographical events, including temporal order. Patients with temporal lobe excisions were impaired in autobiographical recall. By contrast, patients with frontal cortical excisions exhibited normal autobiographical recall but were less likely to use temporal order spontaneously to organize event retrieval. Instruction to organize retrieval by temporal order failed to improve recall in temporal lobe patients and increased the incidence of plausible intrusion errors in left temporal patients. In contrast, patients with frontal cortical excisions now surpassed control subjects in recall of autobiographical events. Furthermore, the retrieval accuracy for the temporal order of diary events was not impaired in these patients. In a subsequent cued recall test, temporal lobe patients were impaired in their memory for the details of the diary events and their context. In conclusion, a basic impairment in autobiographical memory (including memory for temporal context) results from damage to the temporal lobe and not the frontal cortex. Patients with frontal excisions fail to use organizational strategies spontaneously to aid retrieval but can use these effectively if instructed to do so.

  10. Electrophysiological Correlates of the Threshold to Detection of Passive Motion: An Investigation in Professional Volleyball Athletes with and without Atrophy of the Infraspinatus Muscle

    Science.gov (United States)

    Salles, José Inácio; Cossich, Victor Rodrigues Amaral; Amaral, Marcus Vinicius; Monteiro, Martim T.; Cagy, Maurício; Motta, Geraldo; Velasques, Bruna; Piedade, Roberto; Ribeiro, Pedro

    2013-01-01

    The goal of the present study is to compare the electrophysiological correlates of the threshold to detection of passive motion (TTDPM) among three groups: healthy individuals (control group), professional volleyball athletes with atrophy of the infraspinatus muscle on the dominant side, and athletes with no shoulder pathologies. More specifically, the study aims at assessing the effects of infraspinatus muscle atrophy on the cortical representation of the TTDPM. A proprioception testing device (PTD) was used to measure the TTDPM. The device passively moved the shoulder and participants were instructed to respond as soon as movement was detected (TTDPM) by pressing a button switch. Response latency was established as the delay between the stimulus (movement) and the response (button press). Electroencephalographic (EEG) and electromyographic (EMG) activities were recorded simultaneously. An analysis of variance (ANOVA) and subsequent post hoc tests indicated a significant difference in latency between the group of athletes without the atrophy when compared both to the group of athletes with the atrophy and to the control group. Furthermore, distinct patterns of cortical activity were observed in the three experimental groups. The results suggest that systematically trained motor abilities, as well as the atrophy of the infraspinatus muscle, change the cortical representation of the different stages of proprioceptive information processing and, ultimately, the cortical representation of the TTDPM. PMID:23484136

  11. Are the Symptoms of Parkinsonism Cortical in Origin?

    Directory of Open Access Journals (Sweden)

    Gordon W. Arbuthnott

    Full Text Available We present three reasons to suspect that the major deleterious consequence of dopamine loss from the striatum is a cortical malfunction. We suggest that it is cortex, rather than striatum, that should be considered as the source of the debilitating symptoms of Parkinson's disease (PD since: 1. Cortical synapses onto striatal dendritic spines are lost in PD. 2. All known treatments of the symptoms of PD disrupt beta oscillations. Oscillations that are also disrupted following antidromic activation of cortical neurons. 3. The final output of basal ganglia directly modulates thalamic connections to layer I of frontal cortical areas, regions intimately associated with motor behaviour.These three reasons combined with evidence that the current summary diagram of the basal ganglia involvement in PD is imprecise at best, suggest that a re-orientation of the treatment strategies towards cortical, rather than striatal malfunction, is overdue. Keywords: Parkinson's disease, Deep brain stimulation, Layer I, Motor cortex

  12. Carbocalcitonin treatment in Sudeck's atrophy

    International Nuclear Information System (INIS)

    Nuti, R.; Vattimo, A.; Martini, G.; Turchetti, V.; Righi, G.A.

    1987-01-01

    The efficacy of new calcitonin, the amino analog of eel calcitonin (carboCT) on Sudeck's atrophy of the foot was investigated in 14 patients. CarboCT was administered at the dose of 40 Medical Research Council (MRC) units per day, and the duration of treatment was two to ten months. No adverse effects were noted. Bone pain and local edema decreased associated with improvement of motility. CarboCT induced a slight decrease in plasma calcium, plasma phosphate, and 24-hour urinary calcium excretion. An increase in cAMP/Cr ratio, an index of parathyroid function, was also observed (probably a manifestation of the hypocalcemic effect of calcitonin and secondary parathyroid stimulation). The whole body retention of 99mTc-MDP represents a valuable index of bone turnover, it decreased progressively and significantly on treatment. A dynamic study of local bone uptake of 99mTC-MDP was performed in eight patients. After carboCT therapy, statistically significant decreases in local blood flow, early uptake, and delayed uptake were appreciated in the involved foot. These findings lead to the conclusion that carboCT is effective in the treatment of Sudeck's atrophy

  13. Carbocalcitonin treatment in Sudeck's atrophy.

    Science.gov (United States)

    Nuti, R; Vattimo, A; Martini, G; Turchetti, V; Righi, G A

    1987-02-01

    The efficacy of new calcitonin, the amino analog of eel calcitonin (carboCT) on Sudeck's atrophy of the foot was investigated in 14 patients. CarboCT was administered at the dose of 40 Medical Research Council (MRC) units per day, and the duration of treatment was two to ten months. No adverse effects were noted. Bone pain and local edema decreased associated with improvement of motility. CarboCT induced a slight decrease in plasma calcium, plasma phosphate, and 24-hour urinary calcium excretion. An increase in cAMP/Cr ratio, an index of parathyroid function, was also observed (probably a manifestation of the hypocalcemic effect of calcitonin and secondary parathyroid stimulation). The whole body retention of 99mTc-MDP represents a valuable index of bone turnover, it decreased progressively and significantly on treatment. A dynamic study of local bone uptake of 99mTC-MDP was performed in eight patients. After carboCT therapy, statistically significant decreases in local blood flow, early uptake, and delayed uptake were appreciated in the involved foot. These findings lead to the conclusion that carboCT is effective in the treatment of Sudeck's atrophy.

  14. Spinal and bulbar muscular atrophy.

    Science.gov (United States)

    Lieberman, Andrew P

    2018-01-01

    Spinal and bulbar muscular atrophy (SBMA) is an adult-onset degenerative disorder of the neuromuscular system resulting in slowly progressive weakness and atrophy of the proximal limb and bulbar muscles. The disease is caused by the expansion of a CAG/glutamine tract in the amino-terminus of the androgen receptor. That SBMA exclusively affects males reflects the fact that critical pathogenic events are hormone-dependent. These include translocation of the polyglutamine androgen receptor from the cytoplasm to the nucleus and unfolding of the mutant protein. Studies of the pathology of SBMA subjects have revealed nuclear aggregates of the mutant androgen receptor, loss of lower motor neurons in the brainstem and spinal cord, and both neurogenic and myopathic changes in skeletal muscle. Mechanisms underlying disease pathogenesis include toxicity in both lower motor neurons and skeletal muscle, where effects on transcription, intracellular transport, and mitochondrial function have been documented. Therapies to treat SBMA patients remain largely supportive, although experimental approaches targeting androgen action or promoting degradation of the mutant androgen receptor protein or the encoding RNA are under active study. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. The spectrum and severity of FUS-immunoreactive inclusions in the frontal and temporal lobes of ten cases of neuronal intermediate filament inclusion disease.

    Science.gov (United States)

    Armstrong, Richard A; Gearing, Marla; Bigio, Eileen H; Cruz-Sanchez, Felix F; Duyckaerts, Charles; Mackenzie, Ian R A; Perry, Robert H; Skullerud, Kari; Yokoo, Hedeaki; Cairns, Nigel J

    2011-02-01

    Neuronal intermediate filament inclusion disease (NIFID), a rare form of frontotemporal lobar degeneration (FTLD), is characterized neuropathologically by focal atrophy of the frontal and temporal lobes, neuronal loss, gliosis, and neuronal cytoplasmic inclusions (NCI) containing epitopes of ubiquitin and neuronal intermediate filament proteins. Recently, the 'fused in sarcoma' (FUS) protein (encoded by the FUS gene) has been shown to be a component of the inclusions of familial amyotrophic lateral sclerosis with FUS mutation, NIFID, basophilic inclusion body disease, and atypical FTLD with ubiquitin-immunoreactive inclusions (aFTLD-U). To further characterize FUS proteinopathy in NIFID, and to determine whether the pathology revealed by FUS immunohistochemistry (IHC) is more extensive than α-internexin, we have undertaken a quantitative assessment of ten clinically and neuropathologically well-characterized cases using FUS IHC. The densities of NCI were greatest in the dentate gyrus (DG) and in sectors CA1/2 of the hippocampus. Anti-FUS antibodies also labeled glial inclusions (GI), neuronal intranuclear inclusions (NII), and dystrophic neurites (DN). Vacuolation was extensive across upper and lower cortical layers. Significantly greater densities of abnormally enlarged neurons and glial cell nuclei were present in the lower compared with the upper cortical laminae. FUS IHC revealed significantly greater numbers of NCI in all brain regions especially the DG. Our data suggest: (1) significant densities of FUS-immunoreactive NCI in NIFID especially in the DG and CA1/2; (2) infrequent FUS-immunoreactive GI, NII, and DN; (3) widely distributed vacuolation across the cortex, and (4) significantly more NCI revealed by FUS than α-internexin IHC.

  16. Altered Regional Brain Cortical Thickness in Pediatric Obstructive Sleep Apnea

    Directory of Open Access Journals (Sweden)

    Paul M. Macey

    2018-01-01

    Full Text Available RationaleObstructive sleep apnea (OSA affects 2–5% of all children and is associated with cognitive and behavioral deficits, resulting in poor school performance. These psychological deficits may arise from brain injury, as seen in preliminary findings of lower gray matter volume among pediatric OSA patients. However, the psychological deficits in OSA are closely related to functions in the cortex, and such brain areas have not been specifically assessed. The objective was to determine whether cortical thickness, a marker of possible brain injury, is altered in children with OSA.MethodsWe examined regional brain cortical thicknesses using high-resolution T1-weighted magnetic resonance images in 16 pediatric OSA patients (8 males; mean age ± SD = 8.4 ± 1.2 years; mean apnea/hypopnea index ± SD = 11 ± 6 events/h and 138 controls (8.3 ± 1.1 years; 62 male; 138 subjects from the NIH Pediatric MRI database to identify cortical thickness differences in pediatric OSA subjects.ResultsCortical thinning occurred in multiple regions including the superior frontal, ventral medial prefrontal, and superior parietal cortices. The left side showed greater thinning in the superior frontal cortex. Cortical thickening was observed in bilateral precentral gyrus, mid-to-posterior insular cortices, and left central gyrus, as well as right anterior insula cortex.ConclusionChanges in cortical thickness are present in children with OSA and likely indicate disruption to neural developmental processes, including maturational patterns of cortical volume increases and synaptic pruning. Regions with thicker cortices may reflect inflammation or astrocyte activation. Both the thinning and thickening associated with OSA in children may contribute to the cognitive and behavioral dysfunction frequently found in the condition.

  17. Cortical thickness and prosocial behavior in school-age children: A population-based MRI study.

    Science.gov (United States)

    Thijssen, Sandra; Wildeboer, Andrea; Muetzel, Ryan L; Bakermans-Kranenburg, Marian J; El Marroun, Hanan; Hofman, Albert; Jaddoe, Vincent W V; van der Lugt, Aad; Verhulst, Frank C; Tiemeier, Henning; van IJzendoorn, Marinus H; White, Tonya

    2015-01-01

    Prosocial behavior plays an important role in establishing and maintaining relationships with others and thus may have important developmental implications. This study examines the association between cortical thickness and prosocial behavior in a population-based sample of 6- to 9-year-old children. The present study was embedded within the Generation R Study. Magnetic resonance scans were acquired from 464 children whose parents had completed the prosocial scale of the Strengths and Difficulties Questionnaire. To study the association between cortical thickness and prosocial behavior, we performed whole-brain surface-based analyses. Prosocial behavior was related to a thicker cortex in a cluster that covers part of the left superior frontal and rostral middle frontal cortex (p Gender moderated the association between prosocial behavior and cortical thickness in a cluster including the right rostral middle frontal and superior frontal cortex (p right superior parietal cortex, cuneus, and precuneus (p theory of mind (superior frontal cortex, rostral middle frontal cortex cuneus, and precuneus) and inhibitory control (superior frontal and rostral middle frontal cortex).

  18. Decreased prefrontal cortical dopamine transmission in alcoholism.

    Science.gov (United States)

    Narendran, Rajesh; Mason, Neale Scott; Paris, Jennifer; Himes, Michael L; Douaihy, Antoine B; Frankle, W Gordon

    2014-08-01

    Basic studies have demonstrated that optimal levels of prefrontal cortical dopamine are critical to various executive functions such as working memory, attention, inhibitory control, and risk/reward decisions, all of which are impaired in addictive disorders such as alcoholism. Based on this and imaging studies of alcoholism that have demonstrated less dopamine in the striatum, the authors hypothesized decreased dopamine transmission in the prefrontal cortex in persons with alcohol dependence. To test this hypothesis, amphetamine and [11C]FLB 457 positron emission tomography were used to measure cortical dopamine transmission in 21 recently abstinent persons with alcohol dependence and 21 matched healthy comparison subjects. [11C]FLB 457 binding potential, specific compared to nondisplaceable uptake (BPND), was measured in subjects with kinetic analysis using the arterial input function both before and after 0.5 mg kg-1 of d-amphetamine. Amphetamine-induced displacement of [11C]FLB 457 binding potential (ΔBPND) was significantly smaller in the cortical regions in the alcohol-dependent group compared with the healthy comparison group. Cortical regions that demonstrated lower dopamine transmission in the alcohol-dependent group included the dorsolateral prefrontal cortex, medial prefrontal cortex, orbital frontal cortex, temporal cortex, and medial temporal lobe. The results of this study, for the first time, unambiguously demonstrate decreased dopamine transmission in the cortex in alcoholism. Further research is necessary to understand the clinical relevance of decreased cortical dopamine as to whether it is related to impaired executive function, relapse, and outcome in alcoholism.

  19. Longitudinal association between hippocampus atrophy and episodic-memory decline.

    Science.gov (United States)

    Gorbach, Tetiana; Pudas, Sara; Lundquist, Anders; Orädd, Greger; Josefsson, Maria; Salami, Alireza; de Luna, Xavier; Nyberg, Lars

    2017-03-01

    There is marked variability in both onset and rate of episodic-memory decline in aging. Structural magnetic resonance imaging studies have revealed that the extent of age-related brain changes varies markedly across individuals. Past studies of whether regional atrophy accounts for episodic-memory decline in aging have yielded inconclusive findings. Here we related 15-year changes in episodic memory to 4-year changes in cortical and subcortical gray matter volume and in white-matter connectivity and lesions. In addition, changes in word fluency, fluid IQ (Block Design), and processing speed were estimated and related to structural brain changes. Significant negative change over time was observed for all cognitive and brain measures. A robust brain-cognition change-change association was observed for episodic-memory decline and atrophy in the hippocampus. This association was significant for older (65-80 years) but not middle-aged (55-60 years) participants and not sensitive to the assumption of ignorable attrition. Thus, these longitudinal findings highlight medial-temporal lobe system integrity as particularly crucial for maintaining episodic-memory functioning in older age. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Computed tomographic myelography characteristics of spinal cord atrophy in juvenile muscular atrophy of the upper extremity

    International Nuclear Information System (INIS)

    Hirabuki, Norio; Mitomo, Masanori; Miura, Takashi; Hashimoto, Tsutomu; Kawai, Ryuji; Kozuka, Takahiro

    1991-01-01

    Although atrophy of the lower cervical and upper thoracic cord in juvenile muscular atrophy of distal upper extremity has been reported, the atrophic patterns of the cord, especially in the transverse section, have not been studied extensively. The aim of this study is to clarify the atrophic patterns of the cord by CT myelography (CTM) and to discuss the pathogenesis of cord atrophy. Sixteen patients with juvenile muscular atrophy of distal upper extremity were examined by CTM. Atrophy of the lower cervical and upper thoracic cord, consistent with the segmental weakness, was seen in all patients. Flattening of the ventral convexity was a characteristic atrophic pattern of the cord. Bilateral cord atrophy was commonly observed; 8/12 patients with unilateral clinical form and all 4 patients with bilateral form showed bilateral cord atrophy with dominance on the clinical side. There was no correlation between the degree of cord atrophy and duration of symptoms. Flattening of the ventral convexity, associated with purely motor disturbances, reflects selective atrophy of the anterior horns in the cord, which is attributable to chronic ischemia. Cord atrophy proved to precede clinical manifestations. The characteristic atrophy of the cord provides useful information to confirm the diagnosis without long-term observation. (author). 21 refs.; 3 figs.; 2 tabs

  1. Seronegative Intestinal Villous Atrophy: A Diagnostic Challenge

    Directory of Open Access Journals (Sweden)

    Cláudio Martins

    2016-01-01

    Full Text Available Celiac disease is the most important cause of intestinal villous atrophy. Seronegative intestinal villous atrophy, including those that are nonresponsive to a gluten-free diet, is a diagnostic challenge. In these cases, before establishing the diagnosis of seronegative celiac disease, alternative etiologies of atrophic enteropathy should be considered. Recently, a new clinical entity responsible for seronegative villous atrophy was described—olmesartan-induced sprue-like enteropathy. Herein, we report two uncommon cases of atrophic enteropathy in patients with arterial hypertension under olmesartan, who presented with severe chronic diarrhea and significant involuntary weight loss. Further investigation revealed intestinal villous atrophy and intraepithelial lymphocytosis. Celiac disease and other causes of villous atrophy were ruled out. Drug-induced enteropathy was suspected and clinical improvement and histologic recovery were verified after olmesartan withdrawal. These cases highlight the importance for clinicians to maintain a high index of suspicion for olmesartan as a precipitant of sprue-like enteropathy.

  2. The IMM Frontal Face Database

    DEFF Research Database (Denmark)

    Fagertun, Jens; Stegmann, Mikkel Bille

    2005-01-01

    This note describes a data set consisting of 120 annotated monocular images of 12 different frontal human faces. Points of correspondence are placed on each image so the data set can be readily used for building statistical models of shape. Format specifications and terms of use are also given...

  3. The threshold for conscious report: Signal loss and response bias in visual and frontal cortex.

    Science.gov (United States)

    van Vugt, Bram; Dagnino, Bruno; Vartak, Devavrat; Safaai, Houman; Panzeri, Stefano; Dehaene, Stanislas; Roelfsema, Pieter R

    2018-05-04

    Why are some visual stimuli consciously detected, whereas others remain subliminal? We investigated the fate of weak visual stimuli in the visual and frontal cortex of awake monkeys trained to report stimulus presence. Reported stimuli were associated with strong sustained activity in the frontal cortex, and frontal activity was weaker and quickly decayed for unreported stimuli. Information about weak stimuli could be lost at successive stages en route from the visual to the frontal cortex, and these propagation failures were confirmed through microstimulation of area V1. Fluctuations in response bias and sensitivity during perception of identical stimuli were traced back to prestimulus brain-state markers. A model in which stimuli become consciously reportable when they elicit a nonlinear ignition process in higher cortical areas explained our results. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  4. Bereitschaftspotentials recorded from the lateral part of the superior frontal gyrus in humans.

    Science.gov (United States)

    Ohara, Shinji; Ikeda, Akio; Matsuhashi, Masao; Satow, Takeshi; Kunieda, Takeharu; Mikuni, Nobuhiro; Baba, Koichi; Mihara, Tadahiro; Miyamoto, Susumu; Shibasaki, Hiroshi

    2006-05-15

    To demonstrate the Bereitschaftspotentials (BPs) over the high lateral convexity in the superior frontal gyrus, movement-related cortical potentials with respect to the middle finger extension were recorded in seven patients with refractory epilepsy who underwent subdural implantation of platinum electrode grids and/or strips covering the high lateral frontal convexity. In two out of the seven patients, BPs were recorded from the electrodes placed on the superior frontal gyrus in the vicinity of the border between the medial and lateral frontal lobes, which were distinct from those recorded from the primary sensorimotor cortex. The results suggest the possible contribution of either the lateral dorsal non-primary motor area or the SMA to the generation of the BPs.

  5. Cortical Visual Impairment

    Science.gov (United States)

    ... resolves by one year of life. Is “cortical blindness” the same thing as CVI? Cortical blindness is ... What visual characteristics are associated with CVI? • Distinct color preferences • Variable level of vision loss, often demonstrating ...

  6. Precuneus atrophy in early-onset Alzheimer's disease: a morphometric structural MRI study

    International Nuclear Information System (INIS)

    Karas, Giorgos; Scheltens, Philip; Jones, Bethany; Rombouts, Serge; Schijndel, Ronald van; Klein, Martin; Flier, Wiesje van der; Vrenken, Hugo; Barkhof, Frederik

    2007-01-01

    Alzheimer's disease (AD) usually first presents in elderly patients, but may also develop at an earlier age. Patients with an early age at onset tend to present with complaints other than memory impairment, such as visuospatial problems or apraxia, which may reflect a different distribution of cortical involvement. In this study we set out to investigate whether age at onset in patients with AD determines the pattern of atrophy on cerebral MRI scans. We examined 55 patients with AD over a wide age range and analyzed their 3-D T1-weighted structural MRI scans in standard space using voxel-based morphometry (VBM). Regression analysis was performed to estimate loss of grey matter as a function of age, corrected for mini-mental state examination (MMSE) scores and sex. The VBM analyses identified multiple areas (including the temporal and parietal lobes), showing more atrophy with advancing age. By contrast, a younger age at onset was found to be associated with lower grey matter density in the precuneus. Regionalized volumetric analysis of this region confirmed the existence of disproportionate atrophy in the precuneus in patients with early-onset AD. Application of a multivariate model with precuneus grey matter density as input, showed that precuneal and hippocampal atrophy are independent from each other. Additionally, we found that a smaller precuneus is associated with impaired visuospatial functioning. Our findings support the notion that age at onset modulates the distribution of cortical involvement, and that disproportionate precuneus atrophy is more prominent in patients with a younger age of onset. (orig.)

  7. Age-related changes of frontal-midline theta is predictive of efficient memory maintenance.

    Science.gov (United States)

    Kardos, Z; Tóth, B; Boha, R; File, B; Molnár, M

    2014-07-25

    Frontal areas are thought to be the coordinators of working memory processes by controlling other brain areas reflected by oscillatory activities like frontal-midline theta (4-7 Hz). With aging substantial changes can be observed in the frontal brain areas, presumably leading to age-associated changes in cortical correlates of cognitive functioning. The present study aimed to test whether altered frontal-midline theta dynamics during working memory maintenance may underlie the capacity deficits observed in older adults. 33-channel EEG was recorded in young (18-26 years, N=20) and old (60-71 years, N=16) adults during the retention period of a visual delayed match-to-sample task, in which they had to maintain arrays of 3 or 5 colored squares. An additional visual odd-ball task was used to be able to measure the electrophysiological indices of sustained attentional processes. Old participants showed reduced frontal theta activity during both tasks compared to the young group. In the young memory maintenance-related frontal-midline theta activity was shown to be sensitive both to the increased memory demands and to efficient subsequent memory performance, whereas the old adults showed no such task-related difference in the frontal theta activity. The decrease of frontal-midline theta activity in the old group indicates that cerebral aging may alter the cortical circuitries of theta dynamics, thereby leading to age-associated decline of working memory maintenance function. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Using fNIRS to Examine Occipital and Temporal Responses to Stimulus Repetition in Young Infants: Evidence of Selective Frontal Cortex Involvement

    Science.gov (United States)

    Emberson, Lauren L.; Cannon, Grace; Palmeri, Holly; Richards, John E.; Aslin, Richard N.

    2016-01-01

    How does the developing brain respond to recent experience? Repetition suppression (RS) is a robust and well-characterized response of to recent experience found, predominantly, in the perceptual cortices of the adult brain. We use functional near-infrared spectroscopy (fNIRS) to investigate how perceptual (temporal and occipital) and frontal cortices in the infant brain respond to auditory and visual stimulus repetitions (spoken words and faces). In Experiment 1, we find strong evidence of repetition suppression in the frontal cortex but only for auditory stimuli. In perceptual cortices, we find only suggestive evidence of auditory RS in the temporal cortex and no evidence of visual RS in any ROI. In Experiments 2 and 3, we replicate and extend these findings. Overall, we provide the first evidence that infant and adult brains respond differently to stimulus repetition. We suggest that the frontal lobe may support the development of RS in perceptual cortices. PMID:28012401

  9. Increased frontal sleep slow wave activity in adolescents with major depression

    Directory of Open Access Journals (Sweden)

    Noemi Tesler

    2016-01-01

    Full Text Available Sleep slow wave activity (SWA, the major electrophysiological characteristic of deep sleep, mirrors both cortical restructuring and functioning. The incidence of Major Depressive Disorder (MDD substantially rises during the vulnerable developmental phase of adolescence, where essential cortical restructuring is taking place. The goal of this study was to assess characteristics of SWA topography in adolescents with MDD, in order to assess abnormalities in both cortical restructuring and functioning on a local level. All night high-density EEG was recorded in 15 patients meeting DSM-5 criteria for MDD and 15 sex- and age-matched healthy controls. The actual symptom severity was assessed using the Children's Depression Rating Scale—Revised (CDRS-R. Topographical power maps were calculated based on the average SWA of the first non-rapid eye movement (NREM sleep episode. Depressed adolescents exhibited significantly more SWA in a cluster of frontal electrodes compared to controls. SWA over frontal brain regions correlated positively with the CDRS-R subscore “morbid thoughts”. Self-reported sleep latency was significantly higher in depressed adolescents compared to controls whereas sleep architecture did not differ between the groups. Higher frontal SWA in depressed adolescents may represent a promising biomarker tracing cortical regions of intense use and/or restructuring.

  10. Atrophy rates in asymptomatic amyloidosis: implications for Alzheimer prevention trials.

    Directory of Open Access Journals (Sweden)

    K Abigail Andrews

    Full Text Available There is considerable interest in designing therapeutic studies of individuals at risk of Alzheimer disease (AD to prevent the onset of symptoms. Cortical β-amyloid plaques, the first stage of AD pathology, can be detected in vivo using positron emission tomography (PET, and several studies have shown that ~1/3 of healthy elderly have significant β-amyloid deposition. Here we assessed whether asymptomatic amyloid-PET-positive controls have increased rates of brain atrophy, which could be harnessed as an outcome measure for AD prevention trials. We assessed 66 control subjects (age = 73.5±7.3 yrs; MMSE = 29±1.3 from the Australian Imaging Biomarkers & Lifestyle study who had a baseline Pittsburgh Compound B (PiB PET scan and two 3T MRI scans ~18-months apart. We calculated PET standard uptake value ratios (SUVR, and classified individuals as amyloid-positive/negative. Baseline and 18-month MRI scans were registered, and brain, hippocampal, and ventricular volumes and annualized volume changes calculated. Increasing baseline PiB-PET measures of β-amyloid load correlated with hippocampal atrophy rate independent of age (p = 0.014. Twenty-two (1/3 were PiB-positive (SUVR>1.40, the remaining 44 PiB-negative (SUVR≤1.31. Compared to PiB-negatives, PiB-positive individuals were older (76.8±7.5 vs. 71.7±7.5, p<0.05 and more were APOE4 positive (63.6% vs. 19.2%, p<0.01 but there were no differences in baseline brain, ventricle or hippocampal volumes, either with or without correction for total intracranial volume, once age and gender were accounted for. The PiB-positive group had greater total hippocampal loss (0.06±0.08 vs. 0.02±0.05 ml/yr, p = 0.02, independent of age and gender, with non-significantly higher rates of whole brain (7.1±9.4 vs. 4.7±5.5 ml/yr and ventricular (2.0±3.0 vs. 1.1±1.0 ml/yr change. Based on the observed effect size, recruiting 384 (95%CI 195-1080 amyloid-positive subjects/arm will provide 80% power to detect 25

  11. Frontal fibrosing alopecia treatment options.

    Science.gov (United States)

    Fertig, Raymond; Tosti, Antonella

    2016-11-01

    Frontal fibrosing alopecia (FFA) is a rare dermatologic disease that causes scarring and hair loss and is increasing in prevalence worldwide. FFA patients typically present with hair loss in the frontal scalp region and eyebrows which may be associated with sensations of itching or burning. FFA is a clinically distinct variant of lichen planopilaris (LPP) that affects predominantly postmenopausal women, although men and premenopausal women may also be affected. Early diagnosis and prompt treatment are necessary to prevent definitive scarring and permanent hair loss. Data from retrospective studies indicate that 5-alpha-reductase inhibitors (5aRIs) are effective in stabilizing the disease. In our clinical experience, we have seen optimal results treating FFA patients with oral finasteride in conjunction with hydroxychloroquine, topical calcineurin inhibitors (tacrolimus) and excimer laser in patients with signs of active inflammation.

  12. Alterations of whole-brain cortical area and thickness in mild cognitive impairment and Alzheimer's disease.

    Science.gov (United States)

    Li, Chuanming; Wang, Jian; Gui, Li; Zheng, Jian; Liu, Chen; Du, Hanjian

    2011-01-01

    Gray matter volume and density of several brain regions, determined by magnetic resonance imaging (MRI), are decreased in Alzheimer's disease (AD). Animal studies have indicated that changes in cortical area size is relevant to thinking and behavior, but alterations of cortical area and thickness in the brains of individuals with AD or its likely precursor, mild cognitive impairment (MCI), have not been reported. In this study, 25 MCI subjects, 30 AD subjects, and 30 age-matched normal controls were recruited for brain MRI scans and Functional Activities Questionnaire (FAQ) assessments. Based on the model using FreeSurfer software, two brain lobes were divided into various regions according to the Desikan-Killiany atlas and the cortical area and thickness of every region was compared and analyzed. We found a significant increase in cortical area of several regions in the frontal and temporal cortices, which correlated negatively with MMSE scores, and a significant decrease in cortical area of several regions in the parietal cortex and the cingulate gyrus in AD subjects. Increased cortical area was also seen in some regions of the frontal and temporal cortices in MCI subjects, whereas the cortical thickness of the same regions was decreased. Our observations suggest characteristic differences of the cortical area and thickness in MCI, AD, and normal control subjects, and these changes may help diagnose both MCI and AD.

  13. Music increases frontal EEG coherence during verbal learning.

    Science.gov (United States)

    Peterson, David A; Thaut, Michael H

    2007-02-02

    Anecdotal and some empirical evidence suggests that music can enhance learning and memory. However, the mechanisms by which music modulates the neural activity associated with learning and memory remain largely unexplored. We evaluated coherent frontal oscillations in the electroencephalogram (EEG) while subjects were engaged in a modified version of Rey's Auditory Verbal Learning Test (AVLT). Subjects heard either a spoken version of the AVLT or the conventional AVLT word list sung. Learning-related changes in coherence (LRCC) were measured by comparing the EEG during word encoding on correctly recalled trials to the immediately preceding trial on which the same word was not recalled. There were no significant changes in coherence associated with conventional verbal learning. However, musical verbal learning was associated with increased coherence within and between left and right frontal areas in theta, alpha, and gamma frequency bands. It is unlikely that the different patterns of LRCC reflect general performance differences; the groups exhibited similar learning performance. The results suggest that verbal learning with a musical template strengthens coherent oscillations in frontal cortical networks involved in verbal encoding.

  14. Frontal and temporal volumes in Childhood Absence Epilepsy.

    Science.gov (United States)

    Caplan, Rochelle; Levitt, Jennifer; Siddarth, Prabha; Wu, Keng Nei; Gurbani, Suresh; Sankar, Raman; Shields, W Donald

    2009-11-01

    This study compared frontotemporal brain volumes in children with childhood absence epilepsy (CAE) to age- and gender-matched children without epilepsy. It also examined the association of these volumes with seizure, demographic, perinatal, intelligence quotient (IQ), and psychopathology variables. Twenty-six children with CAE, aged 7.5-11.8 years, and 37 children without epilepsy underwent brain magnetic resonance imaging (MRI) scans at 1.5 Tesla. Tissue was segmented, and total brain, frontal lobe, frontal parcellations, and temporal lobe volumes were computed. All children had IQ testing and structured psychiatric interviews. Parents provided seizure, perinatal, and behavioral information on each child. The CAE group had significantly smaller gray matter volumes of the left orbital frontal gyrus as well as both left and right temporal lobes compared to the age- and gender-matched children without epilepsy. In the CAE group these volumes were related to age, gender, ethnicity, and pregnancy complications but not to seizure, IQ, and psychopathology variables. In the group of children without epilepsy, however, the volumes were related to IQ. These findings suggest that CAE impacts brain development in regions implicated in behavior, cognition, and language. In addition to supporting the cortical focus theory of CAE, these findings also imply that CAE is not a benign disorder.

  15. Acute effect of Ethanol and Taurine on frontal cortex absolute beta power before and after exercise

    Science.gov (United States)

    Cagy, Mauricio; Velasques, Bruna; Ribeiro, Pedro; Gongora, Mariana; Alvarenga, Renato; Alonso, Luciano; Pompeu, Fernando A. M. S.

    2018-01-01

    Ethanol (ET) is a substance that modulates the Central Nervous System (CNS). Frequently, ET intake occurs combined with energy drinks, which contain taurine (TA), an important amino acid found in the body (i.e brain and muscles). Although TA administration has been used in the improvement of physical performance, the impact of TA, ET and exercise remains unknown. This study aimed to analyze the acute effect of 6g of Taurine (TA), 0.6 mL∙kg-1 of Ethanol (ET), and Taurine combined with Ethanol (TA+ET) ingestion on the electrocortical activity before and after a moderate intensity exercise in 9 subjects, 5 women (counterbalanced experimental design). In each of the 4 treatments (Placebo—PL, TA, ET and TA+ET), electroencephalography (EEG) tests were conducted in order to analyze changes in absolute beta power (ABP) in the frontal lobe in 3 moments: baseline (before ingestion), peak (before exercise) and post-exercise. In the PL treatment, the frontal areas showed decrease in ABP after exercise. However, in the ET+TA treatment, ABP values were greater after exercise, except for Fp1. The ET treatment had no effect on the Superior Frontal Gyrus area (F3, Fz and F4) and ABP decreased after exercise in Fp1 and Fp2. In the TA treatment, ABP increased after exercise, while it decreased at the peak moment in most of the frontal regions, except for Fp1, F3 and Fz. We concluded that after a moderate intensity exercise, a decrease in cortical activity occurs in placebo treatment. Moreover, we found a inhibitory effect of TA on cortical activity before exercise and a increased in cortical activity after exercise. A small ET dose is not enough to alter ABP in all regions of the frontal cortex and, in combination with TA, it showed an increase in the frontal cortex activity at the post-exercise moment. PMID:29538445

  16. Significant decreases in frontal and temporal [11C]-raclopride binding after THC challenge.

    Science.gov (United States)

    Stokes, Paul R A; Egerton, Alice; Watson, Ben; Reid, Alistair; Breen, Gerome; Lingford-Hughes, Anne; Nutt, David J; Mehta, Mitul A

    2010-10-01

    Delta9-tetrahydrocannabinol (THC) increases prefrontal cortical dopamine release in animals, but this is yet to be examined in humans. In man, striatal dopamine release can be indexed using [11C]-raclopride positron emission tomography (PET), and recent reports suggest that cortical [11C]-raclopride binding may also be sensitive to dopaminergic challenges. Using an existing dataset we examined whether THC alters [11C]-raclopride binding potential (BP(ND)) in cortical regions. Thirteen healthy volunteers underwent two [11C]-raclopride PET scans following either oral 10 mg THC or placebo. Significant areas of decreased cortical [11C]-raclopride BP(ND) were identified using whole brain voxel-wise analysis and quantified using a region of interest (ROI) ratio analysis. Effect of blood flow on binding was estimated using a simplified reference tissue model analysis. Results were compared to [11C]-raclopride test-retest reliability in the ROIs identified using a separate cohort of volunteers. Voxel-wise analysis identified three significant clusters of decreased [11C]-raclopride BP(ND) after THC in the right middle frontal gyrus, left superior frontal gyrus and left superior temporal gyrus. Decreases in [11C]-raclopride BPND following THC were greater than test-retest variability in these ROIs. R1, an estimate of blood flow, significantly decreased in the left superior frontal gyrus in the THC condition but was unchanged in the other ROIs. Decreased frontal binding significantly correlated to catechol-o-methyl transferase (COMT) val108 status. We have demonstrated for the first time significant decreases in bilateral frontopolar cortical and left superior temporal gyrus [11C]-raclopride binding after THC. The interpretation of these findings in relation to prefrontal dopamine release is discussed. Copyright 2010 Elsevier Inc. All rights reserved.

  17. Functional role of frontal alpha oscillations in creativity.

    Science.gov (United States)

    Lustenberger, Caroline; Boyle, Michael R; Foulser, A Alban; Mellin, Juliann M; Fröhlich, Flavio

    2015-06-01

    Creativity, the ability to produce innovative ideas, is a key higher-order cognitive function that is poorly understood. At the level of macroscopic cortical network dynamics, recent electroencephalography (EEG) data suggests that cortical oscillations in the alpha frequency band (8-12 Hz) are correlated with creative thinking. However, whether alpha oscillations play a functional role in creativity has remained unknown. Here we show that creativity is increased by enhancing alpha power using 10 Hz transcranial alternating current stimulation (10 Hz-tACS) of the frontal cortex. In a study of 20 healthy participants with a randomized, balanced cross-over design, we found a significant improvement of 7.4% in the Creativity Index measured by the Torrance Test of Creative Thinking (TTCT), a comprehensive and most frequently used assay of creative potential and strengths. In a second similar study with 20 subjects, 40 Hz-tACS was used instead of 10 Hz-tACS to rule out a general "electrical stimulation" effect. No significant change in the Creativity Index was found for such frontal 40 Hz stimulation. Our results suggest that alpha activity in frontal brain areas is selectively involved in creativity; this enhancement represents the first demonstration of specific neuronal dynamics that drive creativity and can be modulated by non-invasive brain stimulation. Our findings agree with the model that alpha recruitment increases with internal processing demands and is involved in inhibitory top-down control, which is an important requirement for creative ideation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Representation of cognitive reappraisal goals in frontal gamma oscillations.

    Science.gov (United States)

    Kang, Jae-Hwan; Jeong, Ji Woon; Kim, Hyun Taek; Kim, Sang Hee; Kim, Sung-Phil

    2014-01-01

    Recently, numerous efforts have been made to understand the neural mechanisms underlying cognitive regulation of emotion, such as cognitive reappraisal. Many studies have reported that cognitive control of emotion induces increases in neural activity of the control system, including the prefrontal cortex and the dorsal anterior cingulate cortex, and increases or decreases (depending upon the regulation goal) in neural activity of the appraisal system, including the amygdala and the insula. It has been hypothesized that information about regulation goals needs to be processed through interactions between the control and appraisal systems in order to support cognitive reappraisal. However, how this information is represented in the dynamics of cortical activity remains largely unknown. To address this, we investigated temporal changes in gamma band activity (35-55 Hz) in human electroencephalograms during a cognitive reappraisal task that was comprised of three reappraisal goals: to decease, maintain, or increase emotional responses modulated by affect-laden pictures. We examined how the characteristics of gamma oscillations, such as spectral power and large-scale phase synchronization, represented cognitive reappraisal goals. We found that left frontal gamma power decreased, was sustained, or increased when the participants suppressed, maintained, or amplified their emotions, respectively. This change in left frontal gamma power appeared during an interval of 1926 to 2453 ms after stimulus onset. We also found that the number of phase-synchronized pairs of gamma oscillations over the entire brain increased when participants regulated their emotions compared to when they maintained their emotions. These results suggest that left frontal gamma power may reflect cortical representation of emotional states modulated by cognitive reappraisal goals and gamma phase synchronization across whole brain regions may reflect emotional regulatory efforts to achieve these goals

  19. Increased Cortical Thickness in Professional On-Line Gamers

    Science.gov (United States)

    Hyun, Gi Jung; Shin, Yong Wook; Kim, Bung-Nyun; Cheong, Jae Hoon; Jin, Seong Nam

    2013-01-01

    Objective The bulk of recent studies have tested whether video games change the brain in terms of activity and cortical volume. However, such studies are limited by several factors including cross-sectional comparisons, co-morbidity, and short-term follow-up periods. In the present study, we hypothesized that cognitive flexibility and the volume of brain cortex would be correlated with the career length of on-line pro-gamers. Methods High-resolution magnetic resonance scans were acquired in twenty-three pro-gamers recruited from StarCraft pro-game teams. We measured cortical thickness in each individual using FreeSurfer and the cortical thickness was correlated with the career length and the performance of the pro-gamers. Results Career length was positively correlated with cortical thickness in three brain regions: right superior frontal gyrus, right superior parietal gyrus, and right precentral gyrus. Additionally, increased cortical thickness in the prefrontal cortex was correlated with winning rates of the pro-game league. Increased cortical thickness in the prefrontal and parietal cortices was also associated with higher performance of Wisconsin Card Sorting Test. Conclusion Our results suggest that in individuals without pathologic conditions, regular, long-term playing of on-line games is associated with volume changes in the prefrontal and parietal cortices, which are associated with cognitive flexibility. PMID:24474988

  20. Functional magnetic resonance imaging of the frontal eye fields during saccadic eye movements

    International Nuclear Information System (INIS)

    Miki, Atsushi; Takagi, Mineo; Abe, Haruki; Nakajima, Takashi; Miyauchi, Satoru.

    1996-01-01

    We evaluated activity-induced signal intensity changes in the human cerebral cortex during horizontal saccadic eye movements using functional magnetic resonance imaging (fMRI) based on the blood-oxygenation-level-dependent (BOLD) contrast method. Compared with central fixation, significant signal increases were observed bilaterally in the middle frontal gyrus (Brodmann area 8) during saccadic conditions. The location of the activated area was consistent with that of previously reported frontal eye fields (FEF). These results suggest that fMRI has potential merit for the study of cortical control of eye movements in humans. (author)

  1. Increase in Prefrontal Cortical Volume following Cognitive Behavioural Therapy in Patients with Chronic Fatigue Syndrome

    Science.gov (United States)

    de Lange, Floris P.; Koers, Anda; Kalkman, Joke S.; Bleijenberg, Gijs; Hagoort, Peter; van der Meer, Jos W. M.; Toni, Ivan

    2008-01-01

    Chronic fatigue syndrome (CFS) is a disabling disorder, characterized by persistent or relapsing fatigue. Recent studies have detected a decrease in cortical grey matter volume in patients with CFS, but it is unclear whether this cerebral atrophy constitutes a cause or a consequence of the disease. Cognitive behavioural therapy (CBT) is an…

  2. Brain-derived neurotrophic factor promoter methylation and cortical thickness in recurrent major depressive disorder.

    Science.gov (United States)

    Na, Kyoung-Sae; Won, Eunsoo; Kang, June; Chang, Hun Soo; Yoon, Ho-Kyoung; Tae, Woo Suk; Kim, Yong-Ku; Lee, Min-Soo; Joe, Sook-Haeng; Kim, Hyun; Ham, Byung-Joo

    2016-02-15

    Recent studies have reported that methylation of the brain-derived neurotrophic factor (BDNF) gene promoter is associated with major depressive disorder (MDD). This study aimed to investigate the association between cortical thickness and methylation of BDNF promoters as well as serum BDNF levels in MDD. The participants consisted of 65 patients with recurrent MDD and 65 age- and gender-matched healthy controls. Methylation of BDNF promoters and cortical thickness were compared between the groups. The right medial orbitofrontal, right lingual, right lateral occipital, left lateral orbitofrontal, left pars triangularis, and left lingual cortices were thinner in patients with MDD than in healthy controls. Among the MDD group, right pericalcarine, right medical orbitofrontal, right rostral middle frontal, right postcentral, right inferior temporal, right cuneus, right precuneus, left frontal pole, left superior frontal, left superior temporal, left rostral middle frontal and left lingual cortices had inverse correlations with methylation of BDNF promoters. Higher levels of BDNF promoter methylation may be closely associated with the reduced cortical thickness among patients with MDD. Serum BDNF levels were significantly lower in MDD, and showed an inverse relationship with BDNF methylation only in healthy controls. Particularly the prefrontal and occipital cortices seem to indicate key regions in which BDNF methylation has a significant effect on structure.

  3. Diagnosis of multiple system atrophy.

    Science.gov (United States)

    Palma, Jose-Alberto; Norcliffe-Kaufmann, Lucy; Kaufmann, Horacio

    2018-05-01

    Multiple system atrophy (MSA) may be difficult to distinguish clinically from other disorders, particularly in the early stages of the disease. An autonomic-only presentation can be indistinguishable from pure autonomic failure. Patients presenting with parkinsonism may be misdiagnosed as having Parkinson disease. Patients presenting with the cerebellar phenotype of MSA can mimic other adult-onset ataxias due to alcohol, chemotherapeutic agents, lead, lithium, and toluene, or vitamin E deficiency, as well as paraneoplastic, autoimmune, or genetic ataxias. A careful medical history and meticulous neurological examination remain the cornerstone for the accurate diagnosis of MSA. Ancillary investigations are helpful to support the diagnosis, rule out potential mimics, and define therapeutic strategies. This review summarizes diagnostic investigations useful in the differential diagnosis of patients with suspected MSA. Currently used techniques include structural and functional brain imaging, cardiac sympathetic imaging, cardiovascular autonomic testing, olfactory testing, sleep study, urological evaluation, and dysphagia and cognitive assessments. Despite advances in the diagnostic tools for MSA in recent years and the availability of consensus criteria for clinical diagnosis, the diagnostic accuracy of MSA remains sub-optimal. As other diagnostic tools emerge, including skin biopsy, retinal biomarkers, blood and cerebrospinal fluid biomarkers, and advanced genetic testing, a more accurate and earlier recognition of MSA should be possible, even in the prodromal stages. This has important implications as misdiagnosis can result in inappropriate treatment, patient and family distress, and erroneous eligibility for clinical trials of disease-modifying drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Brain cortical characteristics of lifetime cognitive ageing.

    Science.gov (United States)

    Cox, Simon R; Bastin, Mark E; Ritchie, Stuart J; Dickie, David Alexander; Liewald, Dave C; Muñoz Maniega, Susana; Redmond, Paul; Royle, Natalie A; Pattie, Alison; Valdés Hernández, Maria; Corley, Janie; Aribisala, Benjamin S; McIntosh, Andrew M; Wardlaw, Joanna M; Deary, Ian J

    2018-01-01

    Regional cortical brain volume is the product of surface area and thickness. These measures exhibit partially distinct trajectories of change across the brain's cortex in older age, but it is unclear which cortical characteristics at which loci are sensitive to cognitive ageing differences. We examine associations between change in intelligence from age 11 to 73 years and regional cortical volume, surface area, and thickness measured at age 73 years in 568 community-dwelling older adults, all born in 1936. A relative positive change in intelligence from 11 to 73 was associated with larger volume and surface area in selective frontal, temporal, parietal, and occipital regions (r cognitive ageing and a thinner cortex for any region. Interestingly, thickness and surface area were phenotypically independent across bilateral lateral temporal loci, whose surface area was significantly related to change in intelligence. These findings suggest that associations between regional cortical volume and cognitive ageing differences are predominantly driven by surface area rather than thickness among healthy older adults. Regional brain surface area has been relatively underexplored, and is a potentially informative biomarker for identifying determinants of cognitive ageing differences.

  5. White matter atrophy and cognitive dysfunctions in neuromyelitis optica.

    Directory of Open Access Journals (Sweden)

    Frederic Blanc

    Full Text Available Neuromyelitis optica (NMO is an inflammatory disease of central nervous system characterized by optic neuritis and longitudinally extensive acute transverse myelitis. NMO patients have cognitive dysfunctions but other clinical symptoms of brain origin are rare. In the present study, we aimed to investigate cognitive functions and brain volume in NMO. The study population consisted of 28 patients with NMO and 28 healthy control subjects matched for age, sex and educational level. We applied a French translation of the Brief Repeatable Battery (BRB-N to the NMO patients. Using SIENAx for global brain volume (Grey Matter, GM; White Matter, WM; and whole brain and VBM for focal brain volume (GM and WM, NMO patients and controls were compared. Voxel-level correlations between diminished brain concentration and cognitive performance for each tests were performed. Focal and global brain volume of NMO patients with and without cognitive impairment were also compared. Fifteen NMO patients (54% had cognitive impairment with memory, executive function, attention and speed of information processing deficits. Global and focal brain atrophy of WM but not Grey Matter (GM was found in the NMO patients group. The focal WM atrophy included the optic chiasm, pons, cerebellum, the corpus callosum and parts of the frontal, temporal and parietal lobes, including superior longitudinal fascicle. Visual memory, verbal memory, speed of information processing, short-term memory and executive functions were correlated to focal WM volumes. The comparison of patients with, to patients without cognitive impairment showed a clear decrease of global and focal WM, including brainstem, corticospinal tracts, corpus callosum but also superior and inferior longitudinal fascicles. Cognitive impairment in NMO patients is correlated to the decreased of global and focal WM volume of the brain. Further studies are needed to better understand the precise origin of cognitive impairment in

  6. Analysis of MRI in chronic alcoholics with brain atrophy

    International Nuclear Information System (INIS)

    Park, Jin Sook; Kim, Myung Soon; Whang, Kum

    1997-01-01

    To quantitatively evaluate by MRI brain atrophy and abnormal parenchymal signal intensity on T2-weighted spin echo image in alcoholics. MRI of 24 alcoholic patients were retrospectively evaluated to measure brain atrophy (cerebral sulcal width, bifrontal horn distance, third ventricular width, fourth ventricular width, ambient cistern width, cerebellopontine angle cistern width, number of cerebellar sulci, and number of vermian sulci) and abnormal high signal lesions of brain parenchyma on T2-weighted spin echo image, and were compared with age matched controls (n=29). The alcoholics and controls were divided into two age groups, younger (30-49 years) and older (50-72 years), and statistical analysis was then performed. Axial and sagittal T1- and T2-weighted spin echo images were obtained using a 0.5 Tesla superconductive system. Statistical significant parameters in the supratentorial region were cerebral sulcal width, distance between lateral ends of frontal horns of both lateral ventricles, and third ventricular width (p < 0.05), and in the infratentorial region were fourth ventricular width, ambient cistern width, cerebellopontine angle cistern width, number of cerebellar sulci, and number of vermian sulci (p < 0.05). In the younger age group, statistical significant parameters were cerebral sulcal width, third ventricular width, ambient cistern width, cerebellopontine angle cistern width, number of cerebellar sulci, and number of vermian sulci (p < 0.05) and in the older group were cerebral sulcal width, bifrontal horn distance, third ventricular width, fourth ventricular width, number of cerebellar sulci, and number of vermian sulci (p < 0.05). Abnormal high signal intensity on T2-weighted spin echo images were seen in 46% of alcoholics (11/24) and in 13% of controls (3/29). High signal lesions in the older group were statistically significant (p < 0.05). Atrophic brain changes and periventricular high signal foci on T2-weighted spin echo image are

  7. Altered cortical anatomical networks in temporal lobe epilepsy

    Science.gov (United States)

    Lv, Bin; He, Huiguang; Lu, Jingjing; Li, Wenjing; Dai, Dai; Li, Meng; Jin, Zhengyu

    2011-03-01

    Temporal lobe epilepsy (TLE) is one of the most common epilepsy syndromes with focal seizures generated in the left or right temporal lobes. With the magnetic resonance imaging (MRI), many evidences have demonstrated that the abnormalities in hippocampal volume and the distributed atrophies in cortical cortex. However, few studies have investigated if TLE patients have the alternation in the structural networks. In the present study, we used the cortical thickness to establish the morphological connectivity networks, and investigated the network properties using the graph theoretical methods. We found that all the morphological networks exhibited the small-world efficiency in left TLE, right TLE and normal groups. And the betweenness centrality analysis revealed that there were statistical inter-group differences in the right uncus region. Since the right uncus located at the right temporal lobe, these preliminary evidences may suggest that there are topological alternations of the cortical anatomical networks in TLE, especially for the right TLE.

  8. Cortical Thickness and Episodic Memory Impairment in Systemic Lupus Erythematosus.

    Science.gov (United States)

    Bizzo, Bernardo Canedo; Sanchez, Tiago Arruda; Tukamoto, Gustavo; Zimmermann, Nicolle; Netto, Tania Maria; Gasparetto, Emerson Leandro

    2017-01-01

    The purpose of this study was to investigate differences in brain cortical thickness of systemic lupus erythematosus (SLE) patients with and without episodic memory impairment and healthy controls. We studied 51 patients divided in 2 groups (SLE with episodic memory deficit, n = 17; SLE without episodic memory deficit, n = 34) by the Rey Auditory Verbal Learning Test and 34 healthy controls. Groups were paired based on sex, age, education, Mini-Mental State Examination score, and accumulation of disease burden. Cortical thickness from magnetic resonance imaging scans was determined using the FreeSurfer software package. SLE patients with episodic memory deficits presented reduced cortical thickness in the left supramarginal cortex and superior temporal gyrus when compared to the control group and in the right superior frontal, caudal, and rostral middle frontal and precentral gyri when compared to the SLE group without episodic memory impairment considering time since diagnosis of SLE as covaried. There were no significant differences in the cortical thickness between the SLE without episodic memory and control groups. Different memory-related cortical regions thinning were found in the episodic memory deficit group when individually compared to the groups of patients without memory impairment and healthy controls. Copyright © 2016 by the American Society of Neuroimaging.

  9. Local-circuit phenotypes of layer 5 neurons in motor-frontal cortex of YFP-H mice

    Directory of Open Access Journals (Sweden)

    Jianing Yu

    2008-12-01

    Full Text Available Layer 5 pyramidal neurons comprise an important but heterogeneous group of cortical projection neurons. In motor-frontal cortex, these neurons are centrally involved in the cortical control of movement. Recent studies indicate that local excitatory networks in mouse motor-frontal cortex are dominated by descending pathways from layer 2/3 to 5. However, those pathways were identified in experiments involving unlabeled neurons in wild type mice. Here, to explore the possibility of class-specific connectivity in this descending pathway, we mapped the local sources of excitatory synaptic input to a genetically labeled population of cortical neurons: YFP-positive layer 5 neurons of YFP-H mice. We found, first, that in motor cortex, YFP-positive neurons were distributed in a double blade, consistent with the idea of layer 5B having greater thickness in frontal neocortex. Second, whereas unlabeled neurons in upper layer 5 received their strongest inputs from layer 2, YFP-positive neurons in the upper blade received prominent layer 3 inputs. Third, YFP-positive neurons exhibited distinct electrophysiological properties, including low spike frequency adaptation, as reported previously. Our results with this genetically labeled neuronal population indicate the presence of distinct local-circuit phenotypes among layer 5 pyramidal neurons in mouse motor-frontal cortex, and present a paradigm for investigating local circuit organization in other genetically labeled populations of cortical neurons.

  10. [Language Functions in the Frontal Association Area: Brain Mechanisms That Create Language].

    Science.gov (United States)

    Yamamoto, Kayako; Sakai, Kuniyoshi L

    2016-11-01

    Broca's area is known to be critically involved in language processing for more than 150 years. Recent neuroimaging techniques, including functional magnetic resonance imaging (fMRI) and diffusion MRI, enabled the subdivision of Broca's area based on both functional and anatomical aspects. Networks among the frontal association areas, especially the left inferior frontal gyrus (IFG), and other cortical regions in the temporal/parietal association areas, are also important for language-related information processing. Here, we review how neuroimaging studies, combined with research paradigms based on theoretical linguistics, have contributed to clarifying the critical roles of the left IFG in syntactic processing and those of language-related networks, including cortical and cerebellar regions.

  11. On the functional relevance of frontal cortex for passive and voluntarily controlled bistable vision.

    Science.gov (United States)

    de Graaf, Tom A; de Jong, Maartje C; Goebel, Rainer; van Ee, Raymond; Sack, Alexander T

    2011-10-01

    In bistable vision, one constant ambiguous stimulus leads to 2 alternating conscious percepts. This perceptual switching occurs spontaneously but can also be influenced through voluntary control. Neuroimaging studies have reported that frontal regions are activated during spontaneous perceptual switches, leading some researchers to suggest that frontal regions causally induce perceptual switches. But the opposite also seems possible: frontal activations may themselves be caused by spontaneous switches. Classically implicated in attentional processes, these same regions are also candidates for the origins of voluntary control over bistable vision. Here too, it remains unknown whether frontal cortex is actually functionally relevant. It is even possible that spontaneous perceptual switches and voluntarily induced switches are mediated by the same top-down mechanisms. To directly address these issues, we here induced "virtual lesions," with transcranial magnetic stimulation, in frontal, parietal, and 2 lower level visual cortices using an established ambiguous structure-from-motion stimulus. We found that dorsolateral prefrontal cortex was causally relevant for voluntary control over perceptual switches. In contrast, we failed to find any evidence for an active role of frontal cortex in passive bistable vision. Thus, it seems the same pathway used for willed top-down modulation of bistable vision is not used during passive bistable viewing.

  12. Frontal alpha asymmetry in OCD patients and unaffected first-degree relatives.

    Science.gov (United States)

    Grützmann, Rosa; Riesel, Anja; Klawohn, Julia; Heinzel, Stephan; Kaufmann, Christian; Bey, Katharina; Lennertz, Leonard; Wagner, Michael; Kathmann, Norbert

    2017-08-01

    Frontal electroencephalographic alpha asymmetry as an indicator of trait approach and trait inhibition systems has previously been studied in individuals with obsessive-compulsive disorder (OCD) with mixed results. We explored frontal alpha asymmetry as a possible risk factor in OCD by investigating a large sample of OCD patients (n = 113), healthy control participants (n = 113), and unaffected 1st-degree relatives of OCD patients (n = 37). Additionally, the relationship between OCD symptom dimensions and frontal alpha asymmetry was explored. OCD patients and healthy control participants did not differ in alpha asymmetry scores. Hence, the current results do not support the notion that OCD as a diagnostic entity is associated with a shift in frontal cortical activity. Furthermore, alpha asymmetry scores were not statistically related to specific OCD symptom dimensions. Reasons for inconsistent results in OCD are discussed and should be explored in future studies. Compared to OCD patients and healthy control participants, unaffected 1st-degree relatives of OCD patients showed increased left frontal activity. Such asymmetry has previously been found to be associated with positive affect and adaptive emotion regulation under stress. Because stressful life events play an important role in the onset and exacerbation of OCD, increased left frontal activity might serve as a resilience factor in unaffected 1st-degree relatives. Future studies should follow up on these results with longitudinal risk studies and pre- and posttherapy assessments to further explore causality of this putative factor. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  13. Serum folate and the severity of atrophy of the neocortex in Alzheimer disease: findings from the Nun study.

    Science.gov (United States)

    Snowdon, D A; Tully, C L; Smith, C D; Riley, K P; Markesbery, W R

    2000-04-01

    Previous studies suggested that low concentrations of folate in the blood are related to poor cognitive function, dementia, and Alzheimer disease-related neurodegeneration of the brain. Our aim was to determine whether serum folate is inversely associated with the severity of atrophy of the neocortex. Nutrients, lipoproteins, and nutritional markers were measured in the blood of 30 participants in the Nun Study from one convent who later died when they were 78-101 y old (mean: 91 y). At autopsy, several neuropathologic indicators of Alzheimer disease were determined, including the degree of atrophy of 3 lobes of the neocortex (frontal, temporal, and parietal) and the number of neocortical Alzheimer disease lesions (ie, senile plaques and neurofibrillary tangles) as assessed by a neuropathologist. The correlation between serum folate and the severity of atrophy of the neocortex was -0.40 (P = 0.03). Among a subset of 15 participants with significant numbers of Alzheimer disease lesions in the neocortex, the correlation between folate and atrophy was -0.80 (P = 0.0006). Atrophy may be specific to low folate because none of the 18 other nutrients, lipoproteins, or nutritional markers measured in the blood had significant negative correlations with atrophy. Among elderly Catholic sisters who lived in one convent, ate from the same kitchen, and were highly comparable for a wide range of environmental and lifestyle factors, low serum folate was strongly associated with atrophy of the cerebral cortex. Definitive evidence for this relation and its temporal sequence awaits the findings of other studies.

  14. Staging of cortical and deep grey matter functional connectivity changes in multiple sclerosis.

    Science.gov (United States)

    Meijer, Kim A; Eijlers, Anand J C; Geurts, Jeroen J G; Schoonheim, Menno M

    2018-02-01

    Functional connectivity is known to increase as well as decrease throughout the brain in multiple sclerosis (MS), which could represent different stages of the disease. In addition, functional connectivity changes could follow the atrophy pattern observed with disease progression, that is, moving from the deep grey matter towards the cortex. This study investigated when and where connectivity changes develop and explored their clinical and cognitive relevance across different MS stages. A cohort of 121 patients with early relapsing-remitting MS (RRMS), 122 with late RRMS and 53 with secondary progressive MS (SPMS) as well as 96 healthy controls underwent MRI and neuropsychological testing. Functional connectivity changes were investigated for (1) within deep grey matter connectivity, (2) connectivity between the deep grey matter and cortex and (3) within-cortex connectivity. A post hoc regional analysis was performed to identify which regions were driving the connectivity changes. Patients with late RRMS and SPMS showed increased connectivity of the deep grey matter, especially of the putamen and palladium, with other deep grey matter structures and with the cortex. Within-cortex connectivity was decreased, especially for temporal, occipital and frontal regions, but only in SPMS relative to early RRMS. Deep grey matter connectivity alterations were related to cognition and disability, whereas within-cortex connectivity was only related to disability. Increased connectivity of the deep grey matter became apparent in late RRMS and further increased in SPMS. The additive effect of cortical network degeneration, which was only seen in SPMS, may explain the sudden clinical deterioration characteristic to this phase of the disease. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  15. Abnormalities of hippocampal-cortical connectivity in temporal lobe epilepsy patients with hippocampal sclerosis

    Science.gov (United States)

    Li, Wenjing; He, Huiguang; Lu, Jingjing; Wang, Chunheng; Li, Meng; Lv, Bin; Jin, Zhengyu

    2011-03-01

    Hippocampal sclerosis (HS) is the most common damage seen in the patients with temporal lobe epilepsy (TLE). In the present study, the hippocampal-cortical connectivity was defined as the correlation between the hippocampal volume and cortical thickness at each vertex throughout the whole brain. We aimed to investigate the differences of ipsilateral hippocampal-cortical connectivity between the unilateral TLE-HS patients and the normal controls. In our study, the bilateral hippocampal volumes were first measured in each subject, and we found that the ipsilateral hippocampal volume significantly decreased in the left TLE-HS patients. Then, group analysis showed significant thinner average cortical thickness of the whole brain in the left TLE-HS patients compared with the normal controls. We found significantly increased ipsilateral hippocampal-cortical connectivity in the bilateral superior temporal gyrus, the right cingulate gyrus and the left parahippocampal gyrus of the left TLE-HS patients, which indicated structural vulnerability related to the hippocampus atrophy in the patient group. However, for the right TLE-HS patients, no significant differences were found between the patients and the normal controls, regardless of the ipsilateral hippocampal volume, the average cortical thickness or the patterns of hippocampal-cortical connectivity, which might be related to less atrophies observed in the MRI scans. Our study provided more evidence for the structural abnormalities in the unilateral TLE-HS patients.

  16. Cortical Thickness Changes Associated with Photoparoxysmal Response

    DEFF Research Database (Denmark)

    Hanganu, Alexandru; Groppa, Stanislav A; Deuschl, Günther

    2014-01-01

    Photoparoxysmal response (PPR) is an EEG trait of spike and spike-wave discharges in response to photic stimulation that is closely linked to idiopathic generalized epilepsy (IGE). In our previous studies we showed that PPR is associated with functional alterations in the occipital and frontal co...... in the occipital lobe, frontoparietal regions and temporal lobe, which also show functional changes associated with PPR. Patients with epilepsy present changes in the temporal lobe and supplementary motor area.......-positive-subjects presented a significant decrease of cortical thickness in the temporal cortex in the same group contrast. IGE patients exhibited lower cortical thickness in the temporal lobe bilaterally and in the right paracentral region in comparison to PPR-positive-subjects. Our study demonstrates structural changes......Photoparoxysmal response (PPR) is an EEG trait of spike and spike-wave discharges in response to photic stimulation that is closely linked to idiopathic generalized epilepsy (IGE). In our previous studies we showed that PPR is associated with functional alterations in the occipital and frontal...

  17. Influences of brain development and ageing on cortical interactive networks.

    Science.gov (United States)

    Zhu, Chengyu; Guo, Xiaoli; Jin, Zheng; Sun, Junfeng; Qiu, Yihong; Zhu, Yisheng; Tong, Shanbao

    2011-02-01

    To study the effect of brain development and ageing on the pattern of cortical interactive networks. By causality analysis of multichannel electroencephalograph (EEG) with partial directed coherence (PDC), we investigated the different neural networks involved in the whole cortex as well as the anterior and posterior areas in three age groups, i.e., children (0-10 years), mid-aged adults (26-38 years) and the elderly (56-80 years). By comparing the cortical interactive networks in different age groups, the following findings were concluded: (1) the cortical interactive network in the right hemisphere develops earlier than its left counterpart in the development stage; (2) the cortical interactive network of anterior cortex, especially at C3 and F3, is demonstrated to undergo far more extensive changes, compared with the posterior area during brain development and ageing; (3) the asymmetry of the cortical interactive networks declines during ageing with more loss of connectivity in the left frontal and central areas. The age-related variation of cortical interactive networks from resting EEG provides new insights into brain development and ageing. Our findings demonstrated that the PDC analysis of EEG is a powerful approach for characterizing the cortical functional connectivity during brain development and ageing. Copyright © 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  18. The cortical signature of impaired gesturing: Findings from schizophrenia

    Directory of Open Access Journals (Sweden)

    Petra Verena Viher

    2018-01-01

    Full Text Available Schizophrenia is characterized by deficits in gesturing that is important for nonverbal communication. Research in healthy participants and brain-damaged patients revealed a left-lateralized fronto-parieto-temporal network underlying gesture performance. First evidence from structural imaging studies in schizophrenia corroborates these results. However, as of yet, it is unclear if cortical thickness abnormalities contribute to impairments in gesture performance. We hypothesized that patients with deficits in gesture production show cortical thinning in 12 regions of interest (ROIs of a gesture network relevant for gesture performance and recognition. Forty patients with schizophrenia and 41 healthy controls performed hand and finger gestures as either imitation or pantomime. Group differences in cortical thickness between patients with deficits, patients without deficits, and controls were explored using a multivariate analysis of covariance. In addition, the relationship between gesture recognition and cortical thickness was investigated. Patients with deficits in gesture production had reduced cortical thickness in eight ROIs, including the pars opercularis of the inferior frontal gyrus, the superior and inferior parietal lobes, and the superior and middle temporal gyri. Gesture recognition correlated with cortical thickness in fewer, but mainly the same, ROIs within the patient sample. In conclusion, our results show that impaired gesture production and recognition in schizophrenia is associated with cortical thinning in distinct areas of the gesture network.

  19. Frontal lobe syndrome from bilateral globus pallidus lesions a complication of Wernicke's encephalopathy

    OpenAIRE

    Arruda, Walter Oleschko

    1991-01-01

    A 38 year-old man developed the classical clinical picture of Wernicke's encephalopathy as a consequence of prolonged total parenteral nutrition. As a late complication he developed a frontal lobe syndrome. Bilateral globus pallidus lesions were observed in the CT-scan examination. Some aspects related to the cortical syndromes caused by subcortical lesions are discussed. Relata-se um caso de encefalopatia de Wernicke que ocorreu em paciente masculino de 38 anos, como complicação de alimen...

  20. Comparison with hippocampal atrophy and hypoperfusion in Alzheimer's disease

    International Nuclear Information System (INIS)

    Chung, YA; Kim, SH; Chung, SK; Juh, RH; Sohn, HS; Suh, TS; Choe, BY

    2004-01-01

    Objective: Hypoperfusion and hippocampal atropy of the medial temporal lobe are peculiarity of Alzheimer's disease (AD). The manual ROI (region of interest) technique for hippocampal volume estimation is specific and sensitive for the detection of hippocampal atrophy. In patients with AD reported a significant correlation between hippocampal volume and hypoperfusion. This study investigated correlations between atrophy distinct medial temporal lobe structure and hypoperfusion in hippocampal volumetry. Methods: The hippocampi were individually outlined on Tl-weighted volumetry MRI and calculated with MATLAB in 12 patients with AD. All volume measurements were performed by a segmentation technique with a combination of tracing and thresholding. The volume of a given structure in each slice was obtained by automatically counting the number of pixels within the segmented regions and multiplying the number by a voxel size. In order to permit direct regional comparisons, both of each patient's Tc- 99m ECD SPECT was then registered to the patient's MRI. Delineation continued anteriorly in each contiguous slice reaching the head of the hippocampus, which was distinguished from the overlying amygdala by the presence of the alveus or uncal recess. The right hippocampus (RH) was measured first, followed by the left hippocampus (LH). The accuracy of registration was investigated in a validation study with developed brain phantom. Results:The mean total intracranial volume of the AD was significantly smaller volume (1492.9 cm 3 ) and hypo perfused than those in normal subjects. The mean hippocampal volumes were 2.01 cm 3 and l.99 cm 3 for the RH and LH. The correlations between volume and hypoperfusion in the affected hippocampi were found to be significant; especially the medial temporal lobe is markedly hypo perfused. Conclusion: Volumetry is the most sensitive tool for the detection of hippocampal abnormality in AD, and significant correlation between asymmetry in

  1. Impaired response inhibition and excess cortical thickness as candidate endophenotypes for trichotillomania

    DEFF Research Database (Denmark)

    Odlaug, Brian Lawrence; Chamberlain, Samuel R; Derbyshire, Katie L

    2014-01-01

    occupying an intermediate position. Permutation cluster analysis revealed significant excesses of cortical thickness in patients and their relatives compared to controls, in right inferior/middle frontal gyri (Brodmann Area, BA 47 & 11), right lingual gyrus (BA 18), left superior temporal cortex (BA 21......Trichotillomania is characterized by repetitive pulling out of one's own hair. Impaired response inhibition has been identified in patients with trichotillomania, along with gray matter density changes in distributed neural regions including frontal cortex. The objective of this study...

  2. Cortical network during deception detection by functional neuroimaging

    International Nuclear Information System (INIS)

    Saito, Keiichi

    2008-01-01

    We examined the coherence of cortical network during deception detection. First, we performed combined EEG-MRI experiments during the Guilty Knowledge Test (GKT) using number cards which has been used to model deception and 5 right-handed healthy participants performed the experiment. The superior frontal gyrus, the anterior cingulate cortex and the inferior parietal lobule were activated and the P 300 event-related brain potential (300-450 ms) was detected at only 'Lie' card. Secondary, we measured magnetoencephalography (MEG) data during GKT and the other 5 right-handed healthy subjects participated in the next experiment. The coherence between the superior frontal gyrus and the inferior parietal lobule showed significant differences between 'Lie' card and 'truth' cards during P 300 emerging. This results indicates that the coherence of cortical network is useful for GKT. (author)

  3. Analysis of the volumetric relationship among human ocular, orbital and fronto-occipital cortical morphology

    Science.gov (United States)

    Masters, Michael; Bruner, Emiliano; Queer, Sarah; Traynor, Sarah; Senjem, Jess

    2015-01-01

    Recent research on the visual system has focused on investigating the relationship among eye (ocular), orbital, and visual cortical anatomy in humans. This issue is relevant in evolutionary and medical fields. In terms of evolution, only in modern humans and Neandertals are the orbits positioned beneath the frontal lobes, with consequent structural constraints. In terms of medicine, such constraints can be associated with minor deformation of the eye, vision defects, and patterns of integration among these features, and in association with the frontal lobes, are important to consider in reconstructive surgery. Further study is therefore necessary to establish how these variables are related, and to what extent ocular size is associated with orbital and cerebral cortical volumes. Relationships among these anatomical components were investigated using magnetic resonance images from a large sample of 83 individuals, which also included each subject’s body height, age, sex, and uncorrected visual acuity score. Occipital and frontal gyri volumes were calculated using two different cortical parcellation tools in order to provide a better understanding of how the eye and orbit vary in relation to visual cortical gyri, and frontal cortical gyri which are not directly related to visual processing. Results indicated that ocular and orbital volumes were weakly correlated, and that eye volume explains only a small proportion of the variance in orbital volume. Ocular and orbital volumes were also found to be equally and, in most cases, more highly correlated with five frontal lobe gyri than with occipital lobe gyri associated with V1, V2, and V3 of the visual cortex. Additionally, after accounting for age and sex variation, the relationship between ocular and total visual cortical volume was no longer statistically significant, but remained significantly related to total frontal lobe volume. The relationship between orbital and visual cortical volumes remained significant for

  4. Analysis of the volumetric relationship among human ocular, orbital and fronto-occipital cortical morphology.

    Science.gov (United States)

    Masters, Michael; Bruner, Emiliano; Queer, Sarah; Traynor, Sarah; Senjem, Jess

    2015-10-01

    Recent research on the visual system has focused on investigating the relationship among eye (ocular), orbital, and visual cortical anatomy in humans. This issue is relevant in evolutionary and medical fields. In terms of evolution, only in modern humans and Neandertals are the orbits positioned beneath the frontal lobes, with consequent structural constraints. In terms of medicine, such constraints can be associated with minor deformation of the eye, vision defects, and patterns of integration among these features, and in association with the frontal lobes, are important to consider in reconstructive surgery. Further study is therefore necessary to establish how these variables are related, and to what extent ocular size is associated with orbital and cerebral cortical volumes. Relationships among these anatomical components were investigated using magnetic resonance images from a large sample of 83 individuals, which also included each subject's body height, age, sex, and uncorrected visual acuity score. Occipital and frontal gyri volumes were calculated using two different cortical parcellation tools in order to provide a better understanding of how the eye and orbit vary in relation to visual cortical gyri, and frontal cortical gyri which are not directly related to visual processing. Results indicated that ocular and orbital volumes were weakly correlated, and that eye volume explains only a small proportion of the variance in orbital volume. Ocular and orbital volumes were also found to be equally and, in most cases, more highly correlated with five frontal lobe gyri than with occipital lobe gyri associated with V1, V2, and V3 of the visual cortex. Additionally, after accounting for age and sex variation, the relationship between ocular and total visual cortical volume was no longer statistically significant, but remained significantly related to total frontal lobe volume. The relationship between orbital and visual cortical volumes remained significant for a

  5. Drug Addiction and Its Underlying Neurobiological Basis: Neuroimaging Evidence for the Involvement of the Frontal Cortex

    Science.gov (United States)

    Goldstein, Rita Z.; Volkow, Nora D.

    2005-01-01

    Objective Studies of the neurobiological processes underlying drug addiction primarily have focused on limbic subcortical structures. Here the authors evaluated the role of frontal cortical structures in drug addiction. Method An integrated model of drug addiction that encompasses intoxication, bingeing, withdrawal, and craving is proposed. This model and findings from neuroimaging studies on the behavioral, cognitive, and emotional processes that are at the core of drug addiction were used to analyze the involvement of frontal structures in drug addiction. Results The orbitofrontal cortex and the anterior cingulate gyrus, which are regions neuroanatomically connected with limbic structures, are the frontal cortical areas most frequently implicated in drug addiction. They are activated in addicted subjects during intoxication, craving, and bingeing, and they are deactivated during withdrawal. These regions are also involved in higher-order cognitive and motivational functions, such as the ability to track, update, and modulate the salience of a reinforcer as a function of context and expectation and the ability to control and inhibit prepotent responses. Conclusions These results imply that addiction connotes cortically regulated cognitive and emotional processes, which result in the overvaluing of drug reinforcers, the undervaluing of alternative reinforcers, and deficits in inhibitory control for drug responses. These changes in addiction, which the authors call I-RISA (impaired response inhibition and salience attribution), expand the traditional concepts of drug dependence that emphasize limbic-regulated responses to pleasure and reward. PMID:12359667

  6. Frontal white matter hyperintensity predicts lower urinary tract dysfunction in older adults with amnestic mild cognitive impairment and Alzheimer's disease.

    Science.gov (United States)

    Ogama, Noriko; Yoshida, Masaki; Nakai, Toshiharu; Niida, Shumpei; Toba, Kenji; Sakurai, Takashi

    2016-02-01

    Lower urinary tract symptoms often limit activities of daily life and impair quality of life in the elderly. The purpose of the present study was to determine whether regional white matter hyperintensity (WMH) can predict lower urinary tract symptoms in elderly with amnestic mild cognitive impairment or Alzheimer's disease. The participants were 461 patients aged 65-85 years diagnosed with amnestic mild cognitive impairment or Alzheimer's disease. Patients and their caregivers were asked about symptoms of lower urinary tract symptoms (urinary difficulty, frequency and incontinence). Cognition, behavior and psychological symptoms of dementia and medication were evaluated. WMH and brain atrophy were analyzed using an automatic segmentation program. Regional WMH was evaluated in the frontal, parietal, temporal and occipital lobes. Patients with urinary incontinence showed significantly greater volume of WMH. WMH increased with age, especially in the frontal lobe. WMH in the frontal lobe was closely associated with urinary incontinence after adjustment for brain atrophy and classical confounding factors. Frontal WMH was a predictive factor for urinary incontinence in older adults with amnestic mild cognitive impairment or Alzheimer's disease. Urinary incontinence in demented older adults is not an incidental event, and careful insight into regional WMH on brain magnetic resonance imaging might greatly help in diagnosing individuals with a higher risk of urinary incontinence. © 2015 Japan Geriatrics Society.

  7. A meta-analysis on progressive atrophy in intractable temporal lobe epilepsy

    Science.gov (United States)

    Caciagli, Lorenzo; Bernasconi, Andrea; Wiebe, Samuel; Koepp, Matthias J.; Bernasconi, Neda

    2017-01-01

    Objective: It remains unclear whether drug-resistant temporal lobe epilepsy (TLE) is associated with cumulative brain damage, with no expert consensus and no quantitative syntheses of the available evidence. Methods: We conducted a systematic review and meta-analysis of MRI studies on progressive atrophy, searching PubMed and Ovid MEDLINE databases for cross-sectional and longitudinal quantitative MRI studies on drug-resistant TLE. Results: We screened 2,976 records and assessed eligibility of 248 full-text articles. Forty-two articles met the inclusion criteria for quantitative evaluation. We observed a predominance of cross-sectional studies, use of different clinical indices of progression, and high heterogeneity in age-control procedures. Meta-analysis of 18/1 cross-sectional/longitudinal studies on hippocampal atrophy (n = 979 patients) yielded a pooled effect size of r = −0.42 for ipsilateral atrophy related to epilepsy duration (95% confidence interval [CI] −0.51 to −0.32; p 80% of articles reported duration-related progression in extratemporal cortical and subcortical regions. Detailed analysis of study design features yielded low to moderate levels of evidence for progressive atrophy across studies, mainly due to dominance of cross-sectional over longitudinal investigations, use of diverse measures of seizure estimates, and absence of consistent age control procedures. Conclusions: While the neuroimaging literature is overall suggestive of progressive atrophy in drug-resistant TLE, published studies have employed rather weak designs to directly demonstrate it. Longitudinal multicohort studies are needed to unequivocally differentiate aging from disease progression. PMID:28687722

  8. Quantitative estimation of brain atrophy and function with PET and MRI two-dimensional projection images

    International Nuclear Information System (INIS)

    Saito, Reiko; Uemura, Koji; Uchiyama, Akihiko; Toyama, Hinako; Ishii, Kenji; Senda, Michio

    2001-01-01

    The purpose of this paper is to estimate the extent of atrophy and the decline in brain function objectively and quantitatively. Two-dimensional (2D) projection images of three-dimensional (3D) transaxial images of positron emission tomography (PET) and magnetic resonance imaging (MRI) were made by means of the Mollweide method which keeps the area of the brain surface. A correlation image was generated between 2D projection images of MRI and cerebral blood flow (CBF) or 18 F-fluorodeoxyglucose (FDG) PET images and the sulcus was extracted from the correlation image clustered by K-means method. Furthermore, the extent of atrophy was evaluated from the extracted sulcus on 2D-projection MRI and the cerebral cortical function such as blood flow or glucose metabolic rate was assessed in the cortex excluding sulcus on 2D-projection PET image, and then the relationship between the cerebral atrophy and function was evaluated. This method was applied to the two groups, the young and the aged normal subjects, and the relationship between the age and the rate of atrophy or the cerebral blood flow was investigated. This method was also applied to FDG-PET and MRI studies in the normal controls and in patients with corticobasal degeneration. The mean rate of atrophy in the aged group was found to be higher than that in the young. The mean value and the variance of the cerebral blood flow for the young are greater than those of the aged. The sulci were similarly extracted using either CBF or FDG PET images. The purposed method using 2-D projection images of MRI and PET is clinically useful for quantitative assessment of atrophic change and functional disorder of cerebral cortex. (author)

  9. Lateralization of cortical negative motor areas.

    Science.gov (United States)

    Borggraefe, Ingo; Catarino, Claudia B; Rémi, Jan; Vollmar, Christian; Peraud, Aurelia; Winkler, Peter A; Noachtar, Soheyl

    2016-10-01

    The lateral and mesial aspects of the central and frontal cortex were studied by direct electrical stimulation of the cortex in epilepsy surgery candidates in order to determine the localization of unilateral and bilateral negative motor responses. Results of electrical cortical stimulation were examined in epilepsy surgery candidates in whom invasive electrodes were implanted. The exact localization of subdural electrodes was defined by fusion of 3-dimensional reconstructed MRI and CT images in 13 patients and by analysis of plane skull X-rays and intraoperative visual localization of the electrodes in another 7 patients. Results of electrical stimulation of the cortex were evaluated in a total of 128 patients in whom invasive electrodes were implanted for planning resective epilepsy surgery. Twenty patients, in whom negative motor responses were obtained, were included in the study. Bilateral upper limb negative motor responses were more often elicited from stimulation of the mesial frontal cortex whereas stimulation of the lateral central cortex leads to contralateral upper limb negative motor responses (pfrontal gyrus whereas contralateral negative motor responses localized predominantly in the anterior part of the precentral gyrus (pgyrus and the mesial fronto-central cortex showing functional differences with regard to unilateral and bilateral upper limb representation. The lateral fronto-central negative motor area serves predominantly contralateral upper limb motor control whereas the mesial frontal negative motor area represents bilateral upper limb movement control. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  10. Verbal memory impairments in schizophrenia associated with cortical thinning

    Directory of Open Access Journals (Sweden)

    S. Guimond

    2016-01-01

    Full Text Available Verbal memory (VM represents one of the most affected cognitive domains in schizophrenia. Multiple studies have shown that schizophrenia is associated with cortical abnormalities, but it remains unclear whether these are related to VM impairments. Considering the vast literature demonstrating the role of the frontal cortex, the parahippocampal cortex, and the hippocampus in VM, we examined the cortical thickness/volume of these regions. We used a categorical approach whereby 27 schizophrenia patients with ‘moderate to severe’ VM impairments were compared to 23 patients with ‘low to mild’ VM impairments and 23 healthy controls. A series of between-group vertex-wise GLM on cortical thickness were performed for specific regions of interest defining the parahippocampal gyrus and the frontal cortex. When compared to healthy controls, patients with ‘moderate to severe’ VM impairments revealed significantly thinner cortex in the left frontal lobe, and the parahippocampal gyri. When compared to patients with ‘low to mild’ VM impairments, patients with ‘moderate to severe’ VM impairments showed a trend of thinner cortex in similar regions. Virtually no differences were observed in the frontal area of patients with ‘low to mild’ VM impairments relative to controls. No significant group differences were observed in the hippocampus. Our results indicate that patients with greater VM impairments demonstrate significant cortical thinning in regions known to be important in VM performance. Treating VM deficits in schizophrenia could have a positive effect on the brain; thus, subgroups of patients with more severe VM deficits should be a prioritized target in the development of new cognitive treatments.

  11. Atypical frontal-posterior synchronization of Theory of Mind regions in autism during mental state attribution.

    Science.gov (United States)

    Kana, Rajesh K; Keller, Timothy A; Cherkassky, Vladimir L; Minshew, Nancy J; Just, Marcel Adam

    2009-01-01

    This study used fMRI to investigate the functioning of the Theory of Mind (ToM) cortical network in autism during the viewing of animations that in some conditions entailed the attribution of a mental state to animated geometric figures. At the cortical level, mentalizing (attribution of metal states) is underpinned by the coordination and integration of the components of the ToM network, which include the medial frontal gyrus, the anterior paracingulate, and the right temporoparietal junction. The pivotal new finding was a functional underconnectivity (a lower degree of synchronization) in autism, especially in the connections between frontal and posterior areas during the attribution of mental states. In addition, the frontal ToM regions activated less in participants with autism relative to control participants. In the autism group, an independent psychometric assessment of ToM ability and the activation in the right temporoparietal junction were reliably correlated. The results together provide new evidence for the biological basis of atypical processing of ToM in autism, implicating the underconnectivity between frontal regions and more posterior areas.

  12. A case of hepatic atrophy by irradiation

    International Nuclear Information System (INIS)

    Fukumoto, Takumi; Ku, Yonson; Saitoh, Yoichi

    1994-01-01

    A 44-year-old woman was treated with 60 Co irradiation (total dose 6000 rads) focused on the right side porta hepatis under the diagnosis of cholangiocarcinoma in 1975. Seventeen years after the treatment, she was admitted to our institution because of dull pain at right hypochondriac region. Adominal CT demonstrated an extreme hepatic atrophy and tumor mass in the right lobe of the liver. In November, 1991 right trisegmentectomy was performed under the diagnosis of hepatocellular carcinoma. Laparotomy revealed the extreme atrophy of the right lobe and associated hypertrophy of the left lobe of the liver. In this case radiation hepatitis occurred after irradiation to the liver and it was followed by the extreme hepatic atrophy as a long term effect of high dose irradiation on the liver. (author)

  13. Dysconnection of right parietal and frontal cortex in neglect syndrome

    DEFF Research Database (Denmark)

    Dietz, Martin; Nielsen, Jørgen Feldbæk; Roepstorff, Andreas

    2017-01-01

    A lesion to the right hemisphere of the brain often leads to perceptual neglect of the left side of the sensorium. The fact that lesions to different cortical regions lead to the same symptoms points to neglect as a dysconnection syndrome that may result from the dysconnection of a distributed...... network, rather than a disruption of computation in any particular brain region. To test this hypothesis, we used Bayesian analysis of effective connectivity based on electroencephalographic recordings in patients with left-sided neglect after a right-hemisphere lesion. While age-matched healthy controls...... connectivity in the left hemisphere when stimuli appeared on their right. Crucially, this parieto-frontal feedback connectivity was aggravated in patients with more severe symptoms. In contrast, patients and controls did not show differences in the local connectivity within regions. These findings suggest...

  14. Focal cortical dysplasia of the temporal lobe with late-onset partial epilepsy: serial quantitative MRI

    Energy Technology Data Exchange (ETDEWEB)

    Rademacher, J.; Seitz, R.J. [Department of Neurology, Heinrich-Heine University Duesseldorf (Germany); Aulich, A. [Department of Radiology, Heinrich-Heine University, Duesseldorf (Germany); Reifenberger, G. [Department of Neuropathology, Heinrich-Heine University, Duesseldorf (Germany); Kiwit, J.C.W. [Department of Neurosurgery, Heinrich-Heine University, Duesseldorf (Germany); Langen, K.J.; Schmidt, D. [Institute of Medicine, Research Center Juelich, Heinrich-Heine University, Duesseldorf (Germany)

    2000-06-01

    We describe serial studies of focal cortical dysplasia causing temporal lobe seizures and progressive aphasia in a 54-year-old woman. Initially, MRI volumetry of the temporal lobes showed significant left cortical thickening corresponding to an elevated aminoacid uptake in the left temporoparietal and inferior frontal cortex on SPECT using 3-[{sup 123}I]iodo-{alpha}-methyl-l-tyrosine (IMT). After 1 year there was severe shrinkage of the left temporal lobe, possibly the result of recurrent complex partial seizures. (orig.)

  15. Focal cortical dysplasia of the temporal lobe with late-onset partial epilepsy: serial quantitative MRI

    International Nuclear Information System (INIS)

    Rademacher, J.; Seitz, R.J.; Aulich, A.; Reifenberger, G.; Kiwit, J.C.W.; Langen, K.J.; Schmidt, D.

    2000-01-01

    We describe serial studies of focal cortical dysplasia causing temporal lobe seizures and progressive aphasia in a 54-year-old woman. Initially, MRI volumetry of the temporal lobes showed significant left cortical thickening corresponding to an elevated aminoacid uptake in the left temporoparietal and inferior frontal cortex on SPECT using 3-[ 123 I]iodo-α-methyl-l-tyrosine (IMT). After 1 year there was severe shrinkage of the left temporal lobe, possibly the result of recurrent complex partial seizures. (orig.)

  16. CT features of olivopontocerebellar atrophy in children

    International Nuclear Information System (INIS)

    Kumar, S.D.; Gururaj, A.K.; Jeans, W.D.

    1995-01-01

    Between 1990 and 1992, 14 children were seen in whom a clinical diagnosis of olivopontocerebellar atrophy (OPCA) had been made. The majority of patients presented with cerebellar ataxia and hypotonia. Five children had a family history of a similar illness in first-degree relatives. All cases had undergone clinical and neurologic examinations, routine laboratory tests and cranial CT. CT features were graded to quantitative the degree of atrophy in each cerebellar hemisphere, vermis and brain stem. All patients had varying degrees of atrophic changes of cerebellum, brain stem and cerebrum. These CT features appear to be distinctive enough to enable the diagnosis of OPCA to be made. (orig.)

  17. Progressive cerebral atrophy in neuromyelitis optica.

    Science.gov (United States)

    Warabi, Yoko; Takahashi, Toshiyuki; Isozaki, Eiji

    2015-12-01

    We report two cases of neuromyelitis optica patients with progressive cerebral atrophy. The patients exhibited characteristic clinical features, including elderly onset, secondary progressive tetraparesis and cognitive impairment, abnormally elevated CSF protein and myelin basic protein levels, and extremely highly elevated serum anti-AQP-4 antibody titer. Because neuromyelitis optica pathology cannot switch from an inflammatory phase to the degenerative phase until the terminal phase, neuromyelitis optica rarely appears as a secondary progressive clinical course caused by axonal degeneration. However, severe intrathecal inflammation and massive destruction of neuroglia could cause a secondary progressive clinical course associated with cerebral atrophy in neuromyelitis optica patients. © The Author(s), 2015.

  18. Atrophy progression in semantic dementia with asymmetric temporal involvement: a tensor-based morphometry study.

    Science.gov (United States)

    Brambati, S M; Rankin, K P; Narvid, J; Seeley, W W; Dean, D; Rosen, H J; Miller, B L; Ashburner, J; Gorno-Tempini, M L

    2009-01-01

    We performed a longitudinal anatomical study to map the progression of gray matter atrophy in anatomically defined predominantly left (LTLV) and right (RTLV) temporal lobe variants of semantic dementia (SD). T1-weighted MRI scans were obtained at presentation and one-year follow-up from 13 LTLV, 6 RTLV, and 25 control subjects. Tensor-based morphometry (TBM) in SPM2 was applied to derive a voxel-wise estimation of regional tissue loss over time from the deformation field required to warp the follow-up scan to the presentation scan in each subject. When compared to controls, both LTLV and RTLV showed significant progression of gray matter atrophy not only within the temporal lobe most affected at presentation, but also in the controlateral temporal regions (p<0.05 FWE corrected). In LTLV, significant progression of volume loss also involved the ventromedial frontal and the left anterior insular regions. These results identified the anatomic substrates of the previously reported clinical evolution of LTLV and RTLV into a unique 'merged' clinical syndrome characterized by semantic and behavioral deficits and bilateral temporal atrophy.

  19. Altered α-synuclein, parkin, and synphilin isoform levels in multiple system atrophy brains

    DEFF Research Database (Denmark)

    Brudek, Tomasz; Winge, Kristian; Rasmussen, Nadja Bredo

    2016-01-01

    Together with Parkinson's disease (PD) and dementia with Lewy bodies, multiple system atrophy (MSA) is a member of a diverse group of neurodegenerative disorders termed α-synucleinopathies. Previously, it has been shown that α-synuclein, parkin, and synphilin-1 display disease-specific transcript......Together with Parkinson's disease (PD) and dementia with Lewy bodies, multiple system atrophy (MSA) is a member of a diverse group of neurodegenerative disorders termed α-synucleinopathies. Previously, it has been shown that α-synuclein, parkin, and synphilin-1 display disease......-specific transcription patterns in frontal cortex in PD, dementia with Lewy bodies, and MSA, and thus may mediate the development of α-synucleinopathies. In this study, the differential expression of α-synuclein isoforms on transcriptional and translational levels was ascertained in MSA patients in comparison with PD......-synuclein in the brain. We report differential expression of α-synuclein, parkin, and synphilin-1 isoforms in multiple system atrophy (MSA) versus Parkinson's disease and normal control brains. We have focused on brain regions that are severely affected by α-synuclein pathology and neurodegeneration in MSA. The reported...

  20. Relationship of frontal D2/3 binding potentials to cognition

    DEFF Research Database (Denmark)

    Fagerlund, Birgitte; Pinborg, Lars H; Mortensen, Erik Lykke

    2013-01-01

    for set shifting. The main findings indicated a relation between D2/3 receptor binding in the frontal cortex and set shifting, planning and attention, but also support a differential involvement of cortical dopamine D2/3 receptor binding in at least some cognitive functions, perhaps particularly attention......Studies of in vivo dopamine receptors in schizophrenia have mostly focused on D2 receptors in striatal areas or on D1 receptors in cortex. No previous study has examined the correlation between cortical dopamine D2/3 receptor binding potentials and cognition in schizophrenia patients. The objective......, in schizophrenia patients compared to healthy people. The results suggest that cortical D2/3 receptor function may be more involved in some cognitive functions (i.e. attention, fluency and planning) in patients with schizophrenia than in healthy people, suggesting that information processing in schizophrenia may...

  1. Diffusion tensor imaging of the cortical plate and subplate in very-low-birth-weight infants

    Energy Technology Data Exchange (ETDEWEB)

    Dudink, Jeroen; Govaert, Paul; Zwol, Arjen L. van; Conneman, Nikk; Goudoever, Johannes B. van [Erasmus MC-Sophia Children' s Hospital, Division of Neonatology, Department of Paediatrics, Rotterdam (Netherlands); Buijs, Jan [Maxima Medical Center, Division of Neonatology, Department of Paediatrics, Veldhoven (Netherlands); Lequin, Maarten [Erasmus MC-Sophia Children' s Hospital, Division of Paediatrics, Department of Radiology, Rotterdam, Zuid-holland (Netherlands)

    2010-08-15

    Many intervention studies in preterm infants aim to improve neurodevelopmental outcome, but short-term proxy outcome measurements are lacking. Cortical plate and subplate development could be such a marker. Our aim was to provide normal DTI reference values for the cortical plate and subplate of preterm infants. As part of an ongoing study we analysed diffusion tensor imaging (DTI) images of 19 preterm infants without evidence of injury on conventional MRI, with normal outcome (Bayley-II assessed at age 2), and scanned in the first 4 days of life. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values in the frontal and temporal subplate and cortical plate were measured in single and multiple voxel regions of interest (ROI) placed on predefined regions. Using single-voxel ROIs, statistically significant inverse correlation was found between gestational age (GA) and FA of the frontal (r = -0.5938, P = 0.0058) and temporal (r = -0.4912, P = 0.0327) cortical plate. ADC values had a significant positive correlation with GA in the frontal (r = 0.5427, P = 0.0164) and temporal (r = 0.5540, P = 0.0138) subplate. Diffusion tensor imaging allows in vivo exploration of the evolving cortical plate and subplate. We provide FA and ADC values of the subplate and cortical plate in very-low-birth-weight (VLBW) infants with normal developmental outcome that can be used as reference values. (orig.)

  2. Diffusion tensor imaging of the cortical plate and subplate in very-low-birth-weight infants

    International Nuclear Information System (INIS)

    Dudink, Jeroen; Govaert, Paul; Zwol, Arjen L. van; Conneman, Nikk; Goudoever, Johannes B. van; Buijs, Jan; Lequin, Maarten

    2010-01-01

    Many intervention studies in preterm infants aim to improve neurodevelopmental outcome, but short-term proxy outcome measurements are lacking. Cortical plate and subplate development could be such a marker. Our aim was to provide normal DTI reference values for the cortical plate and subplate of preterm infants. As part of an ongoing study we analysed diffusion tensor imaging (DTI) images of 19 preterm infants without evidence of injury on conventional MRI, with normal outcome (Bayley-II assessed at age 2), and scanned in the first 4 days of life. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values in the frontal and temporal subplate and cortical plate were measured in single and multiple voxel regions of interest (ROI) placed on predefined regions. Using single-voxel ROIs, statistically significant inverse correlation was found between gestational age (GA) and FA of the frontal (r = -0.5938, P = 0.0058) and temporal (r = -0.4912, P = 0.0327) cortical plate. ADC values had a significant positive correlation with GA in the frontal (r = 0.5427, P = 0.0164) and temporal (r = 0.5540, P = 0.0138) subplate. Diffusion tensor imaging allows in vivo exploration of the evolving cortical plate and subplate. We provide FA and ADC values of the subplate and cortical plate in very-low-birth-weight (VLBW) infants with normal developmental outcome that can be used as reference values. (orig.)

  3. Grey Matter Atrophy in Multiple Sclerosis: Clinical Interpretation Depends on Choice of Analysis Method.

    Directory of Open Access Journals (Sweden)

    Veronica Popescu

    Full Text Available Studies disagree on the location of grey matter (GM atrophy in the multiple sclerosis (MS brain.To examine the consistency between FSL, FreeSurfer, SPM for GM atrophy measurement (for volumes, patient/control discrimination, and correlations with cognition.127 MS patients and 50 controls were included and cortical and deep grey matter (DGM volumetrics were performed. Consistency of volumes was assessed with Intraclass Correlation Coefficient/ICC. Consistency of patients/controls discrimination was assessed with Cohen's d, t-tests, MANOVA and a penalized double-loop logistic classifier. Consistency of association with cognition was assessed with Pearson correlation coefficient and ANOVA. Voxel-based morphometry (SPM-VBM and FSL-VBM and vertex-wise FreeSurfer were used for group-level comparisons.The highest volumetry ICC were between SPM and FreeSurfer for cortical regions, and the lowest between SPM and FreeSurfer for DGM. The caudate nucleus and temporal lobes had high consistency between all software, while amygdala had lowest volumetric consistency. Consistency of patients/controls discrimination was largest in the DGM for all software, especially for thalamus and pallidum. The penalized double-loop logistic classifier most often selected the thalamus, pallidum and amygdala for all software. FSL yielded the largest number of significant correlations. DGM yielded stronger correlations with cognition than cortical volumes. Bilateral putamen and left insula volumes correlated with cognition using all methods.GM volumes from FreeSurfer, FSL and SPM are different, especially for cortical regions. While group-level separation between MS and controls is comparable, correlations between regional GM volumes and clinical/cognitive variables in MS should be cautiously interpreted.

  4. Cortical bone metastases

    International Nuclear Information System (INIS)

    Davis, T.M. Jr.; Rogers, L.F.; Hendrix, R.W.

    1986-01-01

    Twenty-five cases of bone metastases involving the cortex alone are reviewed. Seven patients had primary lung carcinoma, while 18 had primary tumors not previously reported to produce cortical bone metastases (tumors of the breast, kidney, pancreas, adenocarcinoma of unknown origin, multiple myeloma). Radiographically, these cortical lesions were well circumscribed, osteolytic, and produced soft-tissue swelling and occasional periosteal reaction. A recurrent pattern of metadiaphyseal involvement of the long bones of the lower extremity (particularly the femur) was noted, and is discussed. Findings reported in the literature, review, pathophysiology, and the role of skeletal radiographs, bone scans, and CT scans in evaluating cortical bone metastases are addressed

  5. Subregions of the human superior frontal gyrus and their connections.

    Science.gov (United States)

    Li, Wei; Qin, Wen; Liu, Huaigui; Fan, Lingzhong; Wang, Jiaojian; Jiang, Tianzi; Yu, Chunshui

    2013-09-01

    The superior frontal gyrus (SFG) is located at the superior part of the prefrontal cortex and is involved in a variety of functions, suggesting the existence of functional subregions. However, parcellation schemes of the human SFG and the connection patterns of each subregion remain unclear. We firstly parcellated the human SFG into the anteromedial (SFGam), dorsolateral (SFGdl), and posterior (SFGp) subregions based on diffusion tensor tractography. The SFGam was anatomically connected with the anterior and mid-cingulate cortices, which are critical nodes of the cognitive control network and the default mode network (DMN). The SFGdl was connected with the middle and inferior frontal gyri, which are involved in the cognitive execution network. The SFGp was connected with the precentral gyrus, caudate, thalamus, and frontal operculum, which are nodes of the motor control network. Resting-state functional connectivity analysis further revealed that the SFGam was mainly correlated with the cognitive control network and the DMN; the SFGdl was correlated with the cognitive execution network and the DMN; and the SFGp was correlated with the sensorimotor-related brain regions. The SFGam and SFGdl were further parcellated into three and two subclusters that are well corresponding to Brodmann areas. These findings suggest that the human SFG consists of multiple dissociable subregions that have distinct connection patterns and that these subregions are involved in different functional networks and serve different functions. These results may improve our understanding on the functional complexity of the SFG and provide us an approach to investigate the SFG at the subregional level. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Genetics Home Reference: spinal muscular atrophy with progressive myoclonic epilepsy

    Science.gov (United States)

    ... myoclonic epilepsy Spinal muscular atrophy with progressive myoclonic epilepsy Printable PDF Open All Close All Enable Javascript ... boxes. Description Spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME) is a neurological condition that causes ...

  7. Frontal anatomy and reaction time in Autism

    NARCIS (Netherlands)

    Schmitz, Nicole; Daly, Eileen; Murphy, Declan

    2007-01-01

    Widespread frontal lobe abnormalities, encompassing anatomy and function, are known to be implicated in Autistic Spectrum Disorders (ASD). The correlation between neurobiology and behaviour, however, is poorly understood in ASD. The aim of this study was to investigate frontal lobe anatomy and

  8. Asymmetric Frontal Brain Activity and Parental Rejection

    NARCIS (Netherlands)

    Huffmeijer, R.; Alink, L.R.A.; Tops, M.; Bakermans-Kranenburg, M.J.; van IJzendoorn, M.H.

    2013-01-01

    Asymmetric frontal brain activity has been widely implicated in reactions to emotional stimuli and is thought to reflect individual differences in approach-withdrawal motivation. Here, we investigate whether asymmetric frontal activity, as a measure of approach-withdrawal motivation, also predicts

  9. The frontal lobes and inhibitory function

    International Nuclear Information System (INIS)

    Konishi, Seiki

    2011-01-01

    Neuropsychological studies using traditional tasks of inhibitory functions, such as the Wisconsin card sorting test (WCST) and the Go/No-Go Task have revealed that the frontal lobe is responsible for several types of inhibitory functions. However, the detailed psychological nature of the inhibitory functions and the precise location of their critical foci within the frontal lobe remain to be investigated. Functional magnetic resonance imaging provides spatial and temporal resolution that allowed us to illuminate at least 4 frontal regions involved in inhibitory functions: the dorsolateral, ventrolateral, and rostral parts of the frontal lobe and the presupplementary motor area (preSMA). The ventrolateral part of the frontal lobe in the right hemisphere was activated during response inhibition. The preSMA in the left hemisphere was activated during inhibition of proactive interference immediately after the dimension changes of the WCST. The rostral part of the frontal lobe in the left hemisphere was activated during inhibition long after the dimension changes. The dorsolateral part of the frontal lobe in the left hemisphere was activated at the dimension changes in the first time, but not in the second time. These findings provide clues to our understanding of functional differentiation of inhibitory functions and their localization in the frontal lobe. (author)

  10. Assessment of vaginal atrophy: a review

    NARCIS (Netherlands)

    Weber, M. A.; Limpens, J.; Roovers, J. P. W. R.

    2015-01-01

    The aim of this study is to provide an evidence-based definition of vaginal atrophy (VA) and present an overview of subjective and objective measurements of VA applicable in clinical practice and research. A systematic literature search was performed in MEDLINE and EMBASE to identify studies

  11. Cube propagation for focal brain atrophy estimation

    DEFF Research Database (Denmark)

    Pai, Akshay Sadananda Uppinakudru; Sørensen, Lauge; Darkner, Sune

    2013-01-01

    Precise and robust whole brain, ventricle, and hippocampal atrophy measurements are important as they serve as biomarkers for Alzheimer’s disease. They are used as secondary outcomes in drug trials, and they correlate with the cognitive scores. When two successive scans are non-linearly aligned...

  12. Preimplantation genetic diagnosis of spinal muscular atrophy

    NARCIS (Netherlands)

    Dreesen, JCFM; Bras, M; de Die-Smulders, C; Dumoulin, JCM; Cobben, JM; Evers, JLH; Smeets, HJM; Geraedts, JPM

    After Duchenne muscular dystrophy, spinal muscular atrophy (SMA) is the most common severe neuromuscular disease in childhood. Since 1995, homozygous deletions in exon 7 of the survival motor neuron (SMN) gene have been described in >90-95% of SMA patients. However, the presence of a highly

  13. Progressive Hemifacial Atrophy with Morphea of Cheek

    Directory of Open Access Journals (Sweden)

    Ajit Auluck

    2006-01-01

    Full Text Available Scleroderma is a rare collagen disorder in which fibrosis of skin, subcutaneous tissues and muscles can occur with occasional involvement of bones. Localized scleroderma is a benign condition but can cause significant deformity when it affects the face. We report a case of localized scleroderma of the face causing progressive hemifacial atrophy.

  14. Cortical thinning in cognitively normal elderly cohort of 60 to 89 year old from AIBL database and vulnerable brain areas

    Science.gov (United States)

    Lin, Zhongmin S.; Avinash, Gopal; Yan, Litao; McMillan, Kathryn

    2014-03-01

    Age-related cortical thinning has been studied by many researchers using quantitative MR images for the past three decades and vastly differing results have been reported. Although results have shown age-related cortical thickening in elderly cohort statistically in some brain regions under certain conditions, cortical thinning in elderly cohort requires further systematic investigation. This paper leverages our previously reported brain surface intensity model (BSIM)1 based technique to measure cortical thickness to study cortical changes due to normal aging. We measured cortical thickness of cognitively normal persons from 60 to 89 years old using Australian Imaging Biomarkers and Lifestyle Study (AIBL) data. MRI brains of 56 healthy people including 29 women and 27 men were selected. We measured average cortical thickness of each individual in eight brain regions: parietal, frontal, temporal, occipital, visual, sensory motor, medial frontal and medial parietal. Unlike the previous published studies, our results showed consistent age-related thinning of cerebral cortex in all brain regions. The parietal, medial frontal and medial parietal showed fastest thinning rates of 0.14, 0.12 and 0.10 mm/decade respectively while the visual region showed the slowest thinning rate of 0.05 mm/decade. In sensorimotor and parietal areas, women showed higher thinning (0.09 and 0.16 mm/decade) than men while in all other regions men showed higher thinning than women. We also created high resolution cortical thinning rate maps of the cohort and compared them to typical patterns of PET metabolic reduction of moderate AD and frontotemporal dementia (FTD). The results seemed to indicate vulnerable areas of cortical deterioration that may lead to brain dementia. These results validate our cortical thickness measurement technique by demonstrating the consistency of the cortical thinning and prediction of cortical deterioration trend with AIBL database.

  15. Frontal Lobe Contusion in Mice Chronically Impairs Prefrontal-Dependent Behavior.

    Directory of Open Access Journals (Sweden)

    Austin Chou

    Full Text Available Traumatic brain injury (TBI is a major cause of chronic disability in the world. Moderate to severe TBI often results in damage to the frontal lobe region and leads to cognitive, emotional, and social behavioral sequelae that negatively affect quality of life. More specifically, TBI patients often develop persistent deficits in social behavior, anxiety, and executive functions such as attention, mental flexibility, and task switching. These deficits are intrinsically associated with prefrontal cortex (PFC functionality. Currently, there is a lack of analogous, behaviorally characterized TBI models for investigating frontal lobe injuries despite the prevalence of focal contusions to the frontal lobe in TBI patients. We used the controlled cortical impact (CCI model in mice to generate a frontal lobe contusion and studied behavioral changes associated with PFC function. We found that unilateral frontal lobe contusion in mice produced long-term impairments to social recognition and reversal learning while having only a minor effect on anxiety and completely sparing rule shifting and hippocampal-dependent behavior.

  16. Rostro-Caudal Organization of Connectivity between Cingulate Motor Areas and Lateral Frontal Regions

    Directory of Open Access Journals (Sweden)

    Kep Kee Loh

    2018-01-01

    Full Text Available According to contemporary views, the lateral frontal cortex is organized along a rostro-caudal functional axis with increasingly complex cognitive/behavioral control implemented rostrally, and increasingly detailed motor control implemented caudally. Whether the medial frontal cortex follows the same organization remains to be elucidated. To address this issue, the functional connectivity of the 3 cingulate motor areas (CMAs in the human brain with the lateral frontal cortex was investigated. First, the CMAs and their representations of hand, tongue, and eye movements were mapped via task-related functional magnetic resonance imaging (fMRI. Second, using resting-state fMRI, their functional connectivity with lateral prefrontal and lateral motor cortical regions of interest (ROIs were examined. Importantly, the above analyses were conducted at the single-subject level to account for variability in individual cingulate morphology. The results demonstrated a rostro-caudal functional organization of the CMAs in the human brain that parallels that in the lateral frontal cortex: the rostral CMA has stronger functional connectivity with prefrontal regions and weaker connectivity with motor regions; conversely, the more caudal CMAs have weaker prefrontal and stronger motor connectivity. Connectivity patterns of the hand, tongue and eye representations within the CMAs are consistent with that of their parent CMAs. The parallel rostral-to-caudal functional organization observed in the medial and lateral frontal cortex could likely contribute to different hierarchies of cognitive-motor control.

  17. Role of the left frontal aslant tract in stuttering: a brain stimulation and tractographic study.

    Science.gov (United States)

    Kemerdere, Rahsan; de Champfleur, Nicolas Menjot; Deverdun, Jérémy; Cochereau, Jérôme; Moritz-Gasser, Sylvie; Herbet, Guillaume; Duffau, Hugues

    2016-01-01

    The neural correlates of stuttering are to date incompletely understood. Although the possible involvement of the basal ganglia, the cerebellum and certain parts of the cerebral cortex in this speech disorder has previously been reported, there are still not many studies investigating the role of white matter fibers in stuttering. Axonal stimulation during awake surgery provides a unique opportunity to study the functional role of structural connectivity. Here, our goal was to investigate the white matter tracts implicated in stuttering, by combining direct electrostimulation mapping and postoperative tractography imaging, with a special focus on the left frontal aslant tract. Eight patients with no preoperative stuttering underwent awake surgery for a left frontal low-grade glioma. Intraoperative cortical and axonal electrical mapping was used to interfere in speech processing and subsequently provoke stuttering. We further assessed the relationship between the subcortical sites leading to stuttering and the spatial course of the frontal aslant tract. All patients experienced intraoperative stuttering during axonal electrostimulation. On postsurgical tractographies, the subcortical distribution of stimulated sites matched the topographical position of the left frontal aslant tract. This white matter pathway was preserved during surgery, and no patients had postoperative stuttering. For the first time to our knowledge, by using direct axonal stimulation combined with postoperative tractography, we provide original data supporting a pivotal role of the left frontal aslant tract in stuttering. We propose that this speech disorder could be the result of a disconnection within a large-scale cortico-subcortical circuit subserving speech motor control.

  18. Frontal white matter anisotropy and antidepressant remission in late-life depression.

    Directory of Open Access Journals (Sweden)

    Warren D Taylor

    2008-09-01

    Full Text Available Neuroanatomic features associated with antidepressant treatment outcomes in older depressed individuals are not well established. This study used diffusion tensor imaging to examine frontal white matter structure in depressed subjects undergoing a 12-week trial of sertraline. We hypothesized that remission would be associated with higher frontal anisotropy measures, and failure to remit with lower anisotropy.74 subjects with Major Depressive Disorder and age 60 years or older were enrolled in a twelve-week open-label trial of sertraline and completed clinical assessments and 1.5T magnetic resonance brain imaging. The apparent diffusion coefficient (ADC and fractional anisotropy (FA were measured in regions of interest placed in the white matter of the dorsolateral prefrontal cortex, anterior cingulate cortex, and corpus callosum. Differences in ADC and FA values between subjects who did and did not remit to treatment over the study period were assessed using generalized estimating equations, controlling for age, sex, medical comorbidity and baseline depression severity.Subjects who did not remit to sertraline exhibited higher FA values in the superior frontal gyri and anterior cingulate cortices bilaterally. There were no statistically significant associations between ADC measures and remission.Failure to remit to sertraline is associated with higher frontal FA values. Functional imaging studies demonstrate that depression is characterized by functional disconnection between frontal and limbic regions. Those individuals where this disconnection is related to structural changes as detected by DTI may be more likely to respond to antidepressants.ClinicalTrials.gov NCT00339066.

  19. Insulin is Differentially Related to Cognitive Decline and Atrophy in Alzheimer’s Disease and Aging

    Science.gov (United States)

    Burns, Jeffrey M.; Honea, Robyn A.; Vidoni, Eric D.; Hutfles, Lewis; Brooks, William M.; Swerdlow, Russell H.

    2012-01-01

    We assessed the relationship of insulin resistance with cognitive decline and brain atrophy over two years in early Alzheimer’s disease (AD, n=48) and nondemented controls (n=61). Intravenous glucose tolerance tests were conducted at baseline to determine insulin area-under-the-curve (AUC). A standard battery of cognitive tasks and MRI were conducted at baseline and 2-year follow-up. In nondemented controls, higher baseline insulin AUC was associated with 2-year decline in global cognitive performance (beta=−0.36, p=0.005). In early AD, however, higher insulin AUC was associated with less decline in global cognitive performance (beta=0.26, p=0.06), slower global brain atrophy (beta=0.40, p=0.01) and less regional atrophy in the bilateral hippocampi and cingulate cortices. While insulin resistance is associated with cognitive decline in nondemented aging, higher peripheral insulin may have AD-specific benefits or insulin signaling may be affected by systemic physiologic changes associated with AD. PMID:21745566

  20. Visual assessment of posterior atrophy development of a MRI rating scale

    Energy Technology Data Exchange (ETDEWEB)

    Koedam, Esther L.G.E.; Scheltens, Philip; Pijnenburg, Yolande A.L. [VU University Medical Centre, Department of Neurology and Alzheimer Centre, PO Box 7057, MB, Amsterdam (Netherlands); Lehmann, Manja; Fox, Nick [UCL Institute of Neurology, Dementia Research Centre, London (United Kingdom); Flier, Wiesje M. van der [VU University Medical Centre, Department of Neurology and Alzheimer Centre, PO Box 7057, MB, Amsterdam (Netherlands); VU University Medical Centre, Department Epidemiology and Biostatistics, PO Box 7057, MB, Amsterdam (Netherlands); Barkhof, Frederik; Wattjes, Mike P. [VU University Medical Centre, Department of Radiology, PO Box 7057, MB, Amsterdam (Netherlands)

    2011-12-15

    To develop a visual rating scale for posterior atrophy (PA) assessment and to analyse whether this scale aids in the discrimination between Alzheimer's disease (AD) and other dementias. Magnetic resonance imaging of 118 memory clinic patients were analysed for PA (range 0-3), medial temporal lobe atrophy (MTA) (range 0-4) and global cortical atrophy (range 0-3) by different raters. Weighted-kappas were calculated for inter- and intra-rater agreement. Relationships between PA and MTA with the MMSE and age were estimated with linear-regression analysis. Intra-rater agreement ranged between 0.93 and 0.95 and inter-rater agreement between 0.65 and 0.84. Mean PA scores were higher in AD compared to controls (1.6 {+-} 0.9 and 0.6 {+-} 0.7, p < 0.01), and other dementias (0.8 {+-} 0.8, p < 0.01). PA was not associated with age compared to MTA (B = 1.1 (0.8) versus B = 3.1 (0.7), p < 0.01). PA and MTA were independently negatively associated with the MMSE (B = -1.6 (0.5), p < 0.01 versus B = -1.4 (0.5), p < 0.01). This robust and reproducible scale for PA assessment conveys independent information in a clinical setting and may be useful in the discrimination of AD from other dementias. (orig.)

  1. Progression of brain atrophy in spinocerebellar ataxia type 2: a longitudinal tensor-based morphometry study.

    Science.gov (United States)

    Mascalchi, Mario; Diciotti, Stefano; Giannelli, Marco; Ginestroni, Andrea; Soricelli, Andrea; Nicolai, Emanuele; Aiello, Marco; Tessa, Carlo; Galli, Lucia; Dotti, Maria Teresa; Piacentini, Silvia; Salvatore, Elena; Toschi, Nicola

    2014-01-01

    Spinocerebellar ataxia type 2 (SCA2) is the second most frequent autosomal dominant inherited ataxia worldwide. We investigated the capability of magnetic resonance imaging (MRI) to track in vivo progression of brain atrophy in SCA2 by examining twice 10 SCA2 patients (mean interval 3.6 years) and 16 age- and gender-matched healthy controls (mean interval 3.3 years) on the same 1.5 T MRI scanner. We used T1-weighted images and tensor-based morphometry (TBM) to investigate volume changes and the Inherited Ataxia Clinical Rating Scale to assess the clinical deficit. With respect to controls, SCA2 patients showed significant higher atrophy rates in the midbrain, including substantia nigra, basis pontis, middle cerebellar peduncles and posterior medulla corresponding to the gracilis and cuneatus tracts and nuclei, cerebellar white matter (WM) and cortical gray matter (GM) in the inferior portions of the cerebellar hemisphers. No differences in WM or GM volume loss were observed in the supratentorial compartment. TBM findings did not correlate with modifications of the neurological deficit. In conclusion, MRI volumetry using TBM is capable of demonstrating the progression of pontocerebellar atrophy in SCA2, supporting a possible role of MRI as biomarker in future trials.

  2. Visual assessment of posterior atrophy development of a MRI rating scale

    International Nuclear Information System (INIS)

    Koedam, Esther L.G.E.; Scheltens, Philip; Pijnenburg, Yolande A.L.; Lehmann, Manja; Fox, Nick; Flier, Wiesje M. van der; Barkhof, Frederik; Wattjes, Mike P.

    2011-01-01

    To develop a visual rating scale for posterior atrophy (PA) assessment and to analyse whether this scale aids in the discrimination between Alzheimer's disease (AD) and other dementias. Magnetic resonance imaging of 118 memory clinic patients were analysed for PA (range 0-3), medial temporal lobe atrophy (MTA) (range 0-4) and global cortical atrophy (range 0-3) by different raters. Weighted-kappas were calculated for inter- and intra-rater agreement. Relationships between PA and MTA with the MMSE and age were estimated with linear-regression analysis. Intra-rater agreement ranged between 0.93 and 0.95 and inter-rater agreement between 0.65 and 0.84. Mean PA scores were higher in AD compared to controls (1.6 ± 0.9 and 0.6 ± 0.7, p < 0.01), and other dementias (0.8 ± 0.8, p < 0.01). PA was not associated with age compared to MTA (B = 1.1 (0.8) versus B = 3.1 (0.7), p < 0.01). PA and MTA were independently negatively associated with the MMSE (B = -1.6 (0.5), p < 0.01 versus B = -1.4 (0.5), p < 0.01). This robust and reproducible scale for PA assessment conveys independent information in a clinical setting and may be useful in the discrimination of AD from other dementias. (orig.)

  3. Progression of brain atrophy in spinocerebellar ataxia type 2: a longitudinal tensor-based morphometry study.

    Directory of Open Access Journals (Sweden)

    Mario Mascalchi

    Full Text Available Spinocerebellar ataxia type 2 (SCA2 is the second most frequent autosomal dominant inherited ataxia worldwide. We investigated the capability of magnetic resonance imaging (MRI to track in vivo progression of brain atrophy in SCA2 by examining twice 10 SCA2 patients (mean interval 3.6 years and 16 age- and gender-matched healthy controls (mean interval 3.3 years on the same 1.5 T MRI scanner. We used T1-weighted images and tensor-based morphometry (TBM to investigate volume changes and the Inherited Ataxia Clinical Rating Scale to assess the clinical deficit. With respect to controls, SCA2 patients showed significant higher atrophy rates in the midbrain, including substantia nigra, basis pontis, middle cerebellar peduncles and posterior medulla corresponding to the gracilis and cuneatus tracts and nuclei, cerebellar white matter (WM and cortical gray matter (GM in the inferior portions of the cerebellar hemisphers. No differences in WM or GM volume loss were observed in the supratentorial compartment. TBM findings did not correlate with modifications of the neurological deficit. In conclusion, MRI volumetry using TBM is capable of demonstrating the progression of pontocerebellar atrophy in SCA2, supporting a possible role of MRI as biomarker in future trials.

  4. Trade-off of cerebello-cortical and cortico-cortical functional networks for planning in 6-year-old children.

    Science.gov (United States)

    Kipping, Judy A; Margulies, Daniel S; Eickhoff, Simon B; Lee, Annie; Qiu, Anqi

    2018-05-03

    Childhood is a critical period for the development of cognitive planning. There is a lack of knowledge on its neural mechanisms in children. This study aimed to examine cerebello-cortical and cortico-cortical functional connectivity in association with planning skills in 6-year-olds (n = 76). We identified the cerebello-cortical and cortico-cortical functional networks related to cognitive planning using activation likelihood estimation (ALE) meta-analysis on existing functional imaging studies on spatial planning, and data-driven independent component analysis (ICA) of children's resting-state functional MRI (rs-fMRI). We investigated associations of cerebello-cortical and cortico-cortical functional connectivity with planning ability in 6-year-olds, as assessed using the Stockings of Cambridge task. Long-range functional connectivity of two cerebellar networks (lobules VI and lateral VIIa) with the prefrontal and premotor cortex were greater in children with poorer planning ability. In contrast, cortico-cortical association networks were not associated with the performance of planning in children. These results highlighted the key contribution of the lateral cerebello-frontal functional connectivity, but not cortico-cortical association functional connectivity, for planning ability in 6-year-olds. Our results suggested that brain adaptation to the acquisition of planning ability during childhood is partially achieved through the engagement of the cerebello-cortical functional connectivity. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Influence of motivation on control hierarchy in the human frontal cortex.

    Science.gov (United States)

    Bahlmann, Jörg; Aarts, Esther; D'Esposito, Mark

    2015-02-18

    The frontal cortex mediates cognitive control and motivation to shape human behavior. It is generally observed that medial frontal areas are involved in motivational aspects of behavior, whereas lateral frontal regions are involved in cognitive control. Recent models of cognitive control suggest a rostro-caudal gradient in lateral frontal regions, such that progressively more rostral (anterior) regions process more complex aspects of cognitive control. How motivation influences such a control hierarchy is still under debate. Although some researchers argue that both systems work in parallel, others argue in favor of an interaction between motivation and cognitive control. In the latter case it is yet unclear how motivation would affect the different levels of the control hierarchy. This was investigated in the present functional MRI study applying different levels of cognitive control under different motivational states (low vs high reward anticipation). Three levels of cognitive control were tested by varying rule complexity: stimulus-response mapping (low-level), flexible task updating (mid-level), and sustained cue-task associations (high-level). We found an interaction between levels of cognitive control and motivation in medial and lateral frontal subregions. Specifically, flexible updating (mid-level of control) showed the strongest beneficial effect of reward and only this level exhibited functional coupling between dopamine-rich midbrain regions and the lateral frontal cortex. These findings suggest that motivation differentially affects the levels of a control hierarchy, influencing recruitment of frontal cortical control regions depending on specific task demands. Copyright © 2015 the authors 0270-6474/15/353207-11$15.00/0.

  6. Dose-Dependent Cortical Thinning After Partial Brain Irradiation in High-Grade Glioma

    Energy Technology Data Exchange (ETDEWEB)

    Karunamuni, Roshan [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California (United States); Bartsch, Hauke; White, Nathan S. [Department of Radiology, University of California San Diego, La Jolla, California (United States); Moiseenko, Vitali; Carmona, Ruben; Marshall, Deborah C.; Seibert, Tyler M. [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California (United States); McDonald, Carrie R. [Department of Psychiatry, University of California San Diego, La Jolla, California (United States); Farid, Nikdokht; Krishnan, Anithapriya; Kuperman, Joshua [Department of Radiology, University of California San Diego, La Jolla, California (United States); Mell, Loren [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California (United States); Brewer, James B.; Dale, Anders M. [Department of Radiology, University of California San Diego, La Jolla, California (United States); Hattangadi-Gluth, Jona A., E-mail: jhattangadi@ucsd.edu [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California (United States)

    2016-02-01

    Purpose: Radiation-induced cognitive deficits may be mediated by tissue damage to cortical regions. Volumetric changes in cortex can be reliably measured using high-resolution magnetic resonance imaging (MRI). We used these methods to study the association between radiation therapy (RT) dose and change in cortical thickness in high-grade glioma (HGG) patients. Methods and Materials: We performed a voxel-wise analysis of MRI from 15 HGG patients who underwent fractionated partial brain RT. Three-dimensional MRI was acquired pre- and 1 year post RT. Cortex was parceled with well-validated segmentation software. Surgical cavities were censored. Each cortical voxel was assigned a change in cortical thickness between time points, RT dose value, and neuroanatomic label by lobe. Effects of dose, neuroanatomic location, age, and chemotherapy on cortical thickness were tested using linear mixed effects (LME) modeling. Results: Cortical atrophy was seen after 1 year post RT with greater effects at higher doses. Estimates from LME modeling showed that cortical thickness decreased by −0.0033 mm (P<.001) for every 1-Gy increase in RT dose. Temporal and limbic cortex exhibited the largest changes in cortical thickness per Gy compared to that in other regions (P<.001). Age and chemotherapy were not significantly associated with change in cortical thickness. Conclusions: We found dose-dependent thinning of the cerebral cortex, with varying neuroanatomical regional sensitivity, 1 year after fractionated partial brain RT. The magnitude of thinning parallels 1-year atrophy rates seen in neurodegenerative diseases and may contribute to cognitive decline following high-dose RT.

  7. Preconditioning of Spatial and Auditory Cues: Roles of the Hippocampus, Frontal Cortex, and Cue-Directed Attention

    Directory of Open Access Journals (Sweden)

    Andrew C. Talk

    2016-12-01

    Full Text Available Loss of function of the hippocampus or frontal cortex is associated with reduced performance on memory tasks, in which subjects are incidentally exposed to cues at specific places in the environment and are subsequently asked to recollect the location at which the cue was experienced. Here, we examined the roles of the rodent hippocampus and frontal cortex in cue-directed attention during encoding of memory for the location of a single incidentally experienced cue. During a spatial sensory preconditioning task, rats explored an elevated platform while an auditory cue was incidentally presented at one corner. The opposite corner acted as an unpaired control location. The rats demonstrated recollection of location by avoiding the paired corner after the auditory cue was in turn paired with shock. Damage to either the dorsal hippocampus or the frontal cortex impaired this memory ability. However, we also found that hippocampal lesions enhanced attention directed towards the cue during the encoding phase, while frontal cortical lesions reduced cue-directed attention. These results suggest that the deficit in spatial sensory preconditioning caused by frontal cortical damage may be mediated by inattention to the location of cues during the latent encoding phase, while deficits following hippocampal damage must be related to other mechanisms such as generation of neural plasticity.

  8. Preconditioning of Spatial and Auditory Cues: Roles of the Hippocampus, Frontal Cortex, and Cue-Directed Attention

    Science.gov (United States)

    Talk, Andrew C.; Grasby, Katrina L.; Rawson, Tim; Ebejer, Jane L.

    2016-01-01

    Loss of function of the hippocampus or frontal cortex is associated with reduced performance on memory tasks, in which subjects are incidentally exposed to cues at specific places in the environment and are subsequently asked to recollect the location at which the cue was experienced. Here, we examined the roles of the rodent hippocampus and frontal cortex in cue-directed attention during encoding of memory for the location of a single incidentally experienced cue. During a spatial sensory preconditioning task, rats explored an elevated platform while an auditory cue was incidentally presented at one corner. The opposite corner acted as an unpaired control location. The rats demonstrated recollection of location by avoiding the paired corner after the auditory cue was in turn paired with shock. Damage to either the dorsal hippocampus or the frontal cortex impaired this memory ability. However, we also found that hippocampal lesions enhanced attention directed towards the cue during the encoding phase, while frontal cortical lesions reduced cue-directed attention. These results suggest that the deficit in spatial sensory preconditioning caused by frontal cortical damage may be mediated by inattention to the location of cues during the latent encoding phase, while deficits following hippocampal damage must be related to other mechanisms such as generation of neural plasticity. PMID:27999366

  9. Bilateral optical nerve atrophy secondary to lateral occipital lobe infarction.

    Science.gov (United States)

    Mao, Junfeng; Wei, Shihui

    2013-06-01

    To report a phenomenon of optical nerve atrophy secondary to lateral occipital lobe infarction. Two successive patients with unilateral occipital lobe infarction who experienced bilateral optical nerve atrophy during the follow-up underwent cranial imaging, fundus photography, and campimetry. Each patient was diagnosed with occipital lobe infarction by cranial MRI. During the follow-up, a bilateral optic atrophy was revealed, and campimetry showed a right homonymous hemianopia of both eyes with concomitant macular division. Bilateral optic atrophy was related to occipital lobe infarction, and a possible explanation for the atrophy was transneuronal degeneration caused by occipital lobe infarction.

  10. The rat orbital and agranular insular prefrontal cortical areas: a cytoarchitectonic and chemoarchitectonic study

    NARCIS (Netherlands)

    van de Werd, H.J.J.M.; Uylings, H.B.M.

    2008-01-01

    Cytoarchitectonic characterization of borders is necessary for stereological studies (e.g., total cell number estimation), in which particular cortical areas have to be defined. In this study, cytoarchitectonic characteristics are described and illustrated for the rat ventral or orbital frontal

  11. Cortical thickness differences between bipolar depression and major depressive disorder.

    Science.gov (United States)

    Lan, Martin J; Chhetry, Binod Thapa; Oquendo, Maria A; Sublette, M Elizabeth; Sullivan, Gregory; Mann, J John; Parsey, Ramin V

    2014-06-01

    Bipolar disorder (BD) is a psychiatric disorder with high morbidity and mortality that cannot be distinguished from major depressive disorder (MDD) until the first manic episode. A biomarker able to differentiate BD and MDD could help clinicians avoid risks of treating BD with antidepressants without mood stabilizers. Cortical thickness differences were assessed using magnetic resonance imaging in BD depressed patients (n = 18), MDD depressed patients (n = 56), and healthy volunteers (HVs) (n = 54). A general linear model identified clusters of cortical thickness difference between diagnostic groups. Compared to the HV group, the BD group had decreased cortical thickness in six regions, after controlling for age and sex, located within the frontal and parietal lobes, and the posterior cingulate cortex. Mean cortical thickness changes in clusters ranged from 7.6 to 9.6% (cluster-wise p-values from 1.0 e-4 to 0.037). When compared to MDD, three clusters of lower cortical thickness in BD were identified that overlapped with clusters that differentiated the BD and HV groups. Mean cortical thickness changes in the clusters ranged from 7.5 to 8.2% (cluster-wise p-values from 1.0 e-4 to 0.023). The difference in cortical thickness was more pronounced when the subgroup of subjects with bipolar I disorder (BD-I) was compared to the MDD group. Cortical thickness patterns were distinct between BD and MDD. These results are a step toward developing an imaging test to differentiate the two disorders. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Cranialization of the frontal sinus for secondary mucocele prevention following open surgery for benign frontal lesions.

    Directory of Open Access Journals (Sweden)

    Gilad Horowitz

    Full Text Available OBJECTIVE: To compare frontal sinus cranialization to obliteration for future prevention of secondary mucocele formation following open surgery for benign lesions of the frontal sinus. STUDY DESIGN: Retrospective case series. SETTING: Tertiary academic medical center. PATIENTS: Sixty-nine patients operated for benign frontal sinus pathology between 1994 and 2011. INTERVENTIONS: Open excision of benign frontal sinus pathology followed by either frontal obliteration (n = 41, 59% or frontal cranialization (n = 28, 41%. MAIN OUTCOME MEASURES: The prevalence of post-surgical complications and secondary mucocele formation were compiled. RESULTS: Pathologies included osteoma (n = 34, 49%, mucocele (n = 27, 39%, fibrous dysplasia (n = 6, 9%, and encephalocele (n = 2, 3%. Complications included skin infections (n = 6, postoperative cutaneous fistula (n = 1, telecanthus (n = 4, diplopia (n = 3, nasal deformity (n = 2 and epiphora (n = 1. None of the patients suffered from postoperative CSF leak, meningitis or pneumocephalus. Six patients, all of whom had previously undergone frontal sinus obliteration, required revision surgery due to secondary mucocele formation. Statistical analysis using non-inferiority test reveal that cranialization of the frontal sinus is non-inferior to obliteration for preventing secondary mucocele formation (P<0.0001. CONCLUSION: Cranialization of the frontal sinus appears to be a good option for prevention of secondary mucocele development after open excision of benign frontal sinus lesions.

  13. Reduced right frontal fractional anisotropy correlated with early elevated plasma LDL levels in obese young adults.

    Directory of Open Access Journals (Sweden)

    Baohui Lou

    Full Text Available OBJECTIVE: To investigate the underlying physiological mechanisms of the structural differences in gray matter (GM and white matter (WM associated with obesity in young Chinese adults. MATERIALS AND METHODS: A total of 49 right-handed obese or overweight (n = 22, mean age 31.72±8.04 years and normal weight (n = 27, mean age 29.04±7.32 years Han Chinese individuals were recruited. All participants underwent voxel-based morphometry analysis of T1-weighted MRI and tract-based spatial statistics analysis of diffusion tensor imaging. Partial correlation analysis was performed between the physiological data obtained and the abnormal structural alterations. RESULTS: In the OO group, GM atrophy occurred in the left prefrontal cortex, bilateral cingulate gyrus, and the right temporal lobe, while enlargement was observed in the bilateral putamen. WM atrophy was observed predominantly in the regions that regulate food intake, such as the bilateral basal ganglia, the right amygdala, and the left insula. The OO group exhibited lower fractional anisotropy (FA in bilateral frontal corticospinal tracts and the right brainstem. Significant negative correlations were observed between FA values of those three clusters and BMI, and waist circumference, while the volume of bilateral putamen positively correlated with both BMI and waist circumference. High plasma LDL levels were correlated with low FA values in the right frontal corticospinal tract. Interestingly, the negative correlation was limited to male participants. CONCLUSIONS: Obesity-related alterations of GM and WM volumes were observed predominantly in food reward circuit, which may motivate abnormal dietary intake. Further, early elevated plasma LDL might contribute to low right frontal FA values of male adults, which requires further demonstration by larger-scale and longitudinal studies.

  14. Evaluation of hepatic atrophy after transcatheter arterial embolization

    International Nuclear Information System (INIS)

    Chung, Hwan Hoon; Lee, Mee Ran; Oh, Min Cheol; Park, Chul Min; Seol, Hae Young; Cha, In Ho

    1995-01-01

    Hepatic atrophy has been recognized as a complication of hepatic and biliary disease but we have often found it in follow up CT after transcatheter arterial embolization (TACE). The purpose of this study is to evaluate the characteristics of hepatic atrophy after TACE. Of 53 patients who had TACE. We evaluated the relationship between the incidence of hepatic atrophy and the number of TACE, and also evaluated the average number of TACE in patients with hepatic atrophy. Of 20 patients who had received more than average number of TACE for development of hepatic atrophy (2 times with portal vein obstruction, 2.7 times without portal vein obstruction in this study), we evaluated the relationship between the lipiodol uptake pattern of tumor and the incidence of hepatic atrophy. There were 8 cases of hepatic atrophy (3 with portal vein obstruction, 5 without portal vein obstruction), average number for development of hepatic atrophy were 2.5 times. As the number of TACE were increased, the incidence of hepatic atrophy were also increased. Of 20 patients who received more than average number of TACE for development of hepatic atrophy, we noted 6 cases of hepatic atrophy in 11 patients with dense homogenous lipiodol uptake pattern of tumor and noted only 1 case of hepatic atrophy in 9 patient with inhomogenous lipiodol uptake pattern. Hepatic atrophy was one of the CT findings after TACE even without portal vein obstruction. Average number of TACE was 2.5 times and risk factors for development of hepatic atrophy were portal vein obstruction, increased number of TACE, and dense homogenous lipiodol uptake pattern of tumor

  15. Detection of cortical activities on eye movement using functional magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Masaki; Kawai, Kazushige; Kitahara, Kenji [Jikei Univ., Tokyo (Japan). School of Medicine; Soulie, D.; Cordoliani, Y.S.; Iba-Zizen, M.T.; Cabanis, E.A.

    1997-11-01

    Cortical activity during eye movement was examined with functional magnetic resonance imaging. Horizontal saccadic eye movements and smooth pursuit eye movements were elicited in normal subjects. Activity in the frontal eye field was found during both saccadic and smooth pursuit eye movements at the posterior margin of the middle frontal gyrus and in parts of the precentral sulcus and precentral gyrus bordering the middle frontal gyrus (Brodmann`s areas 8, 6, and 9). In addition, activity in the parietal eye field was found in the deep, upper margin of the angular gyrus and of the supramarginal gyrus (Brodmann`s areas 39 and 40) during saccadic eye movement. Activity of V5 was found at the intersection of the ascending limb of the inferior temporal sulcus and the lateral occipital sulcus during smooth pursuit eye movement. Our results suggest that functional magnetic resonance imaging is useful for detecting cortical activity during eye movement. (author)

  16. Detection of cortical activities on eye movement using functional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Yoshida, Masaki; Kawai, Kazushige; Kitahara, Kenji; Soulie, D.; Cordoliani, Y.S.; Iba-Zizen, M.T.; Cabanis, E.A.

    1997-01-01

    Cortical activity during eye movement was examined with functional magnetic resonance imaging. Horizontal saccadic eye movements and smooth pursuit eye movements were elicited in normal subjects. Activity in the frontal eye field was found during both saccadic and smooth pursuit eye movements at the posterior margin of the middle frontal gyrus and in parts of the precentral sulcus and precentral gyrus bordering the middle frontal gyrus (Brodmann's areas 8, 6, and 9). In addition, activity in the parietal eye field was found in the deep, upper margin of the angular gyrus and of the supramarginal gyrus (Brodmann's areas 39 and 40) during saccadic eye movement. Activity of V5 was found at the intersection of the ascending limb of the inferior temporal sulcus and the lateral occipital sulcus during smooth pursuit eye movement. Our results suggest that functional magnetic resonance imaging is useful for detecting cortical activity during eye movement. (author)

  17. [A case of hereditary sensory and autonomic neuropathy type 1E with frontal lobe dysfunction as an initial symptom].

    Science.gov (United States)

    Watanabe, Masashi; Matsumoto, Yushi; Okamoto, Kensho; Okuda, Bungo; Mizuta, Ikuko; Mizuno, Toshiki

    2017-12-27

    A 49-year-old man had developed gradually personality change, gait disturbance, and hearing loss for five years. On admission, he presented with frontal release signs, stuttering, vertical gaze palsy, sensorineural deafness, muscle rigidity, ataxia, and sensory disturbance with areflexia in the lower extremities. Brain MRI demonstrated atrophy in the cerebellum and midbrain tegmentum as well as cerebral atrophy, predominantly in the frontal lobe. He was tentatively diagnosed as progressive supranuclear palsy on the basis of clinical features and imagings. On nerve conduction study, no sensory nerve action potentials were elicited in the upper and lower extremities. Details of family history revealed a hereditary sensory neuropathy with autosomal dominant inheritance in his relatives. Because genetic analysis showed a rare missense mutation (c.1483T>C, p.Y495H) in DNA methyltransferase 1 gene, we diagnosed him as having hereditary sensory and autonomic neuropathy type 1E (HSAN1E). In addition, p.M232R mutation in prion protein gene was detected. It should be kept in mind that there are some patients with HSAN1E presenting with frontal lobe dysfunction as an initial symptom and with clinical features mimicking progressive supranuclear palsy.

  18. Cortical Thinning and Altered Cortico-Cortical Structural Covariance of the Default Mode Network in Patients with Persistent Insomnia Symptoms.

    Science.gov (United States)

    Suh, Sooyeon; Kim, Hosung; Dang-Vu, Thien Thanh; Joo, Eunyeon; Shin, Chol

    2016-01-01

    Recent studies have suggested that structural abnormalities in insomnia may be linked with alterations in the default-mode network (DMN). This study compared cortical thickness and structural connectivity linked to the DMN in patients with persistent insomnia (PI) and good sleepers (GS). The current study used a clinical subsample from the longitudinal community-based Korean Genome and Epidemiology Study (KoGES). Cortical thickness and structural connectivity linked to the DMN in patients with persistent insomnia symptoms (PIS; n = 57) were compared to good sleepers (GS; n = 40). All participants underwent MRI acquisition. Based on literature review, we selected cortical regions corresponding to the DMN. A seed-based structural covariance analysis measured cortical thickness correlation between each seed region of the DMN and other cortical areas. Association of cortical thickness and covariance with sleep quality and neuropsychological assessments were further assessed. Compared to GS, cortical thinning was found in PIS in the anterior cingulate cortex, precentral cortex, and lateral prefrontal cortex. Decreased structural connectivity between anterior and posterior regions of the DMN was observed in the PIS group. Decreased structural covariance within the DMN was associated with higher PSQI scores. Cortical thinning in the lateral frontal lobe was related to poor performance in executive function in PIS. Disrupted structural covariance network in PIS might reflect malfunctioning of antero-posterior disconnection of the DMN during the wake to sleep transition that is commonly found during normal sleep. The observed structural network alteration may further implicate commonly observed sustained sleep difficulties and cognitive impairment in insomnia. © 2016 Associated Professional Sleep Societies, LLC.

  19. Corpus callosum lipoma with frontal encephalocele

    International Nuclear Information System (INIS)

    Srinivasa Rao, A.; Rao, V.R.K.; Ravi Mandalam, K.; Gupta, A.K.; Kumar, S.; Joseph, S.; Unni, M.

    1990-01-01

    Computed tomographic and plain X-ray observations in a patient with corpus callosum lipoma associated with frontal encephalocele are reported. The rarity of the lesion and the specific diagnostic criteria on CT are emphasised. (orig.)

  20. Intraoperative subcortical mapping of a language-associated deep frontal tract connecting the superior frontal gyrus to Broca's area in the dominant hemisphere of patients with glioma.

    Science.gov (United States)

    Fujii, Masazumi; Maesawa, Satoshi; Motomura, Kazuya; Futamura, Miyako; Hayashi, Yuichiro; Koba, Itsuko; Wakabayashi, Toshihiko

    2015-06-01

    The deep frontal pathway connecting the superior frontal gyrus to Broca's area, recently named the frontal aslant tract (FAT), is assumed to be associated with language functions, especially speech initiation and spontaneity. Injury to the deep frontal lobe is known to cause aphasia that mimics the aphasia caused by damage to the supplementary motor area. Although fiber dissection and tractography have revealed the existence of the tract, little is known about its function. The aim of this study was to determine the function of the FAT via electrical stimulation in patients with glioma who underwent awake surgery. The authors analyzed the data from subcortical mapping with electrical stimulation in 5 consecutive cases (3 males and 2 females, age range 40-54 years) with gliomas in the left frontal lobe. Diffusion tensor imaging (DTI) and tractography of the FAT were performed in all cases. A navigation system and intraoperative MRI were used in all cases. During the awake phase of the surgery, cortical mapping was performed to find the precentral gyrus and Broca's area, followed by tumor resection. After the cortical layer was removed, subcortical mapping was performed to assess language-associated fibers in the white matter. In all 5 cases, positive responses were obtained at the stimulation sites in the subcortical area adjacent to the FAT, which was visualized by the navigation system. Speech arrest was observed in 4 cases, and remarkably slow speech and conversation was observed in 1 case. The location of these sites was also determined on intraoperative MR images and estimated on preoperative MR images with DTI tractography, confirming the spatial relationships among the stimulation sites and white matter tracts. Tumor removal was successfully performed without damage to this tract, and language function did not deteriorate in any of the cases postoperatively. The authors identified the left FAT and confirmed that it was associated with language functions. This

  1. Sensorimotor gating deficits in multiple system atrophy

    DEFF Research Database (Denmark)

    Zoetmulder, Marielle; Biernat, Heidi Bryde; Nikolic, Miki

    2014-01-01

    Prepulse inhibition (PPI) of the auditory blink reflex is a measure of sensorimotor gating, which reflects an organism's ability to filter out irrelevant sensory information. PPI has never been studied in patients with multiple system atrophy (MSA), although sensorimotor deficits are frequently a...... associated with synucleinopathies. We investigated whether alterations in PPI were more pronounced in MSA compared with Parkinson's disease (PD), idiopathic rapid eye movement sleep behavior disorder (iRBD) and healthy controls....

  2. Cerebellar and cerebral atrophy in trichothiodystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hye-Kyung; Sargent, Michael A.; Poskitt, Kenneth J. [British Columbia Children' s Hospital, Department of Radiology, Vancouver, BC (Canada); Prendiville, Julie S. [British Columbia Children' s Hospital, Division of Paediatric Dermatology, Department of Paediatrics, Vancouver, BC (Canada)

    2005-10-01

    Trichothiodystrophy is a rare neuroectodermal disorder of autosomal recessive inheritance that is characterized by brittle hair, nail dysplasia, ichthyosis, mental retardation, and gonadal failure. We describe a female patient whose cranial MRI revealed almost total lack of myelination in the supratentorial white matter, which is similar to the previously described cases. In addition, there was progressive cerebellar and cerebral atrophy, which has not been well documented in association with trichothiodystrophy. (orig.)

  3. [Frontal dementia or dementia praecox? A case report of a psychotic disorder with a severe decline].

    Science.gov (United States)

    Vanderzeypen, F; Bier, J C; Genevrois, C; Mendlewicz, J; Lotstra, F

    2003-01-01

    anatomical abnormality. Frontotemporal lobar degeneration (FTLD) is one of the most common causes of cortical dementia. FTLD is associated with an anatomical atrophy that can be generalised, with a frontotemporal or focal lobar predominance. Histologically there is severe neuronal loss, gliosis and a state of spongiosis. In a minority of case Pick cells and Pick bodies are also found. The usual clinical features of FTLD are divided in three prototypic syndromes: frontotemporal dementia (FTD), progressive non-fluent aphasia (PA) and semantic dementia (SD). FTD is the most common clinical manifestation of FTLD. FTD is first characterised by profound alteration in personality and social conduct, characterised by inertia and loss of volition or social disinhibition and distractibility. There is emotional blunting and loss of insight. Speech output is typically economical, leading ultimately to mutism, although a press of speech may be present in some overactive, disinhibited patients. Memory is relatively preserved in the early stage of the disease. Cognitive deficits occur in the domains of attention, planning and problems solving, whereas primary tools of language, perception and spatial functions are well preserved. PA is an initial disorder of expressive language, characterised by effortful speech production, phonologic and grammatical errors. Difficulties in reading and writing also occur but understanding of word meaning is relatively well preserved. In SD a severe naming and word comprehension impairment occur on the beginning in the context of fluent, effortless, and grammatical speech output. There is also an inability to recognise the meaning of visual percepts. The clinical syndromes of FTLD are associated with the brain topography of the degeneration. So considerable clinical overlap can exist between schizophrenia and FTLD and the object of the following case report is to remind the difficulty to make a differential diagnosis between these two pathologies. A 34 year

  4. Proximal spinal muscular atrophy: current orthopedic perspective

    Directory of Open Access Journals (Sweden)

    Haaker G

    2013-11-01

    Full Text Available Gerrit Haaker, Albert Fujak Department of Orthopaedic Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany Abstract: Spinal muscular atrophy (SMA is a hereditary neuromuscular disease of lower motor neurons that is caused by a defective "survival motor neuron" (SMN protein that is mainly associated with proximal progressive muscle weakness and atrophy. Although SMA involves a wide range of disease severity and a high mortality and morbidity rate, recent advances in multidisciplinary supportive care have enhanced quality of life and life expectancy. Active research for possible treatment options has become possible since the disease-causing gene defect was identified in 1995. Nevertheless, a causal therapy is not available at present, and therapeutic management of SMA remains challenging; the prolonged survival is increasing, especially orthopedic, respiratory and nutritive problems. This review focuses on orthopedic management of the disease, with discussion of key aspects that include scoliosis, muscular contractures, hip joint disorders, fractures, technical devices, and a comparative approach of conservative and surgical treatment. Also emphasized are associated complications including respiratory involvement, perioperative care and anesthesia, nutrition problems, and rehabilitation. The SMA disease course can be greatly improved with adequate therapy with established orthopedic procedures in a multidisciplinary therapeutic approach. Keywords: spinal muscular atrophy, scoliosis, contractures, fractures, lung function, treatment, rehabilitation, surgery, ventilation, nutrition, perioperative management

  5. Cellular and molecular mechanisms of muscle atrophy

    Directory of Open Access Journals (Sweden)

    Paolo Bonaldo

    2013-01-01

    Full Text Available Skeletal muscle is a plastic organ that is maintained by multiple pathways regulating cell and protein turnover. During muscle atrophy, proteolytic systems are activated, and contractile proteins and organelles are removed, resulting in the shrinkage of muscle fibers. Excessive loss of muscle mass is associated with poor prognosis in several diseases, including myopathies and muscular dystrophies, as well as in systemic disorders such as cancer, diabetes, sepsis and heart failure. Muscle loss also occurs during aging. In this paper, we review the key mechanisms that regulate the turnover of contractile proteins and organelles in muscle tissue, and discuss how impairments in these mechanisms can contribute to muscle atrophy. We also discuss how protein synthesis and degradation are coordinately regulated by signaling pathways that are influenced by mechanical stress, physical activity, and the availability of nutrients and growth factors. Understanding how these pathways regulate muscle mass will provide new therapeutic targets for the prevention and treatment of muscle atrophy in metabolic and neuromuscular diseases.

  6. Beyond the sniffer: frontal sinuses in Carnivora.

    Science.gov (United States)

    Curtis, Abigail A; Van Valkenburgh, Blaire

    2014-11-01

    Paranasal sinuses are some of the most poorly understood features of mammalian cranial anatomy. They are highly variable in presence and form among species, but their function is not well understood. The best-supported explanations for the function of sinuses is that they opportunistically fill mechanically unnecessary space, but that in some cases, sinuses in combination with the configuration of the frontal bone may improve skull performance by increasing skull strength and dissipating stresses more evenly. We used CT technology to investigate patterns in frontal sinus size and shape disparity among three families of carnivores: Canidae, Felidae, and Hyaenidae. We provide some of the first quantitative data on sinus morphology for these three families, and employ a novel method to quantify the relationship between three-dimensional sinus shape and skull shape. As expected, frontal sinus size and shape were more strongly correlated with frontal bone size and shape than with the morphology of the skull as a whole. However, sinus morphology was also related to allometric differences among families that are linked to biomechanical function. Our results support the hypothesis that frontal sinuses most often opportunistically fill space that is mechanically unnecessary, and they can facilitate cranial shape changes that reduce stress during feeding. Moreover, we suggest that the ability to form frontal sinuses allows species to modify skull function without compromising the performance of more functionally constrained regions such as the nasal chamber (heat/water conservation, olfaction), and braincase (housing the brain and sensory structures). © 2014 Wiley Periodicals, Inc.

  7. Mind the movement: Frontal asymmetry stands for behavioral motivation, bilateral frontal activation for behavior.

    Science.gov (United States)

    Rodrigues, Johannes; Müller, Mathias; Mühlberger, Andreas; Hewig, Johannes

    2018-01-01

    Frontal asymmetry has been investigated over the past 30 years, and several theories have been developed about its meaning. The original theory of Davidson and its diversification by Harmon-Jones & Allen allocated approach motivation to relative left frontal brain activity and withdrawal motivation to relative right frontal brain activity. Hewig and colleagues extended this theory by adding bilateral frontal activation representing a biological correlate of the behavioral activation system if actual behavior is shown. Wacker and colleagues formulated a theory related to the revised reinforcement sensitivity theory by Gray & McNaughton. Here, relative left frontal brain activation represents the revised behavioral activation system and behavior, while relative right frontal brain activation represents the revised behavioral inhibition system, representing the experience of conflict. These theories were investigated with a newly developed paradigm where participants were able to move around freely in a virtual T maze via joystick while having their EEG recorded. Analyzing the influence of frontal brain activation during this virtual reality task on observable behavior for 30 participants, we found more relative left frontal brain activation during approach behavior and more relative right brain activation for withdrawal behavior of any kind. Additionally, there was more bilateral frontal brain activation when participants were engaged in behavior compared to doing nothing. Hence, this study provides evidence for the idea that frontal asymmetry stands for behavioral approach or avoidance motivation, and bilateral frontal activation stands for behavior. Additionally, observable behavior is not only determined by frontal asymmetry, but also by relevant traits. © 2017 Society for Psychophysiological Research.

  8. Mapping cortical mesoscopic networks of single spiking cortical or sub-cortical neurons.

    Science.gov (United States)

    Xiao, Dongsheng; Vanni, Matthieu P; Mitelut, Catalin C; Chan, Allen W; LeDue, Jeffrey M; Xie, Yicheng; Chen, Andrew Cn; Swindale, Nicholas V; Murphy, Timothy H

    2017-02-04

    Understanding the basis of brain function requires knowledge of cortical operations over wide-spatial scales, but also within the context of single neurons. In vivo, wide-field GCaMP imaging and sub-cortical/cortical cellular electrophysiology were used in mice to investigate relationships between spontaneous single neuron spiking and mesoscopic cortical activity. We make use of a rich set of cortical activity motifs that are present in spontaneous activity in anesthetized and awake animals. A mesoscale spike-triggered averaging procedure allowed the identification of motifs that are preferentially linked to individual spiking neurons by employing genetically targeted indicators of neuronal activity. Thalamic neurons predicted and reported specific cycles of wide-scale cortical inhibition/excitation. In contrast, spike-triggered maps derived from single cortical neurons yielded spatio-temporal maps expected for regional cortical consensus function. This approach can define network relationships between any point source of neuronal spiking and mesoscale cortical maps.

  9. Altered cortical communication in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Blain-Moraes, Stefanie; Mashour, George A; Lee, Heonsoo; Huggins, Jane E; Lee, Uncheol

    2013-05-24

    Amyotrophic lateral sclerosis (ALS) is a disorder associated primarily with the degeneration of the motor system. More recently, functional connectivity studies have demonstrated potentially adaptive changes in ALS brain organization, but disease-related changes in cortical communication remain unknown. We recruited individuals with ALS and age-matched controls to operate a brain-computer interface while electroencephalography was recorded over three sessions. Using normalized symbolic transfer entropy, we measured directed functional connectivity from frontal to parietal (feedback connectivity) and parietal to frontal (feedforward connectivity) regions. Feedback connectivity was not significantly different between groups, but feedforward connectivity was significantly higher in individuals with ALS. This result was consistent across a broad electroencephalographic spectrum (4-35 Hz), and in theta, alpha and beta frequency bands. Feedback connectivity has been associated with conscious state and was found to be independent of ALS symptom severity in this study, which may have significant implications for the detection of consciousness in individuals with advanced ALS. We suggest that increases in feedforward connectivity represent a compensatory response to the ALS-related loss of input such that sensory stimuli have sufficient strength to cross the threshold necessary for conscious processing in the global neuronal workspace. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Anterior Cortical Development During Adolescence in Bipolar Disorder.

    Science.gov (United States)

    Najt, Pablo; Wang, Fei; Spencer, Linda; Johnston, Jennifer A Y; Cox Lippard, Elizabeth T; Pittman, Brian P; Lacadie, Cheryl; Staib, Lawrence H; Papademetris, Xenophon; Blumberg, Hilary P

    2016-02-15

    Increasing evidence supports a neurodevelopmental model for bipolar disorder (BD), with adolescence as a critical period in its development. Developmental abnormalities of anterior paralimbic and heteromodal frontal cortices, key structures in emotional regulation processes and central in BD, are implicated. However, few longitudinal studies have been conducted, limiting understanding of trajectory alterations in BD. In this study, we performed longitudinal neuroimaging of adolescents with and without BD and assessed volume changes over time, including changes in tissue overall and within gray and white matter. Larger decreases over time in anterior cortical volumes in the adolescents with BD were hypothesized. Gray matter decreases and white matter increases are typically observed during adolescence in anterior cortices. It was hypothesized that volume decreases over time in BD would reflect alterations in those processes, showing larger gray matter contraction and decreased white matter expansion. Two high-resolution magnetic resonance imaging scans were obtained approximately 2 years apart for 35 adolescents with bipolar I disorder (BDI) and 37 healthy adolescents. Differences over time between groups were investigated for volume overall and specifically for gray and white matter. Relative to healthy adolescents, adolescents with BDI showed greater volume contraction over time in a region including insula and orbitofrontal, rostral, and dorsolateral prefrontal cortices (p adolescence in BDI in anterior cortices, including altered developmental trajectories of anterior gray and white matter. Published by Elsevier Inc.

  11. Anatomical abnormalities in gray and white matter of the cortical surface in persons with schizophrenia.

    Directory of Open Access Journals (Sweden)

    Tiziano Colibazzi

    Full Text Available Although schizophrenia has been associated with abnormalities in brain anatomy, imaging studies have not fully determined the nature and relative contributions of gray matter (GM and white matter (WM disturbances underlying these findings. We sought to determine the pattern and distribution of these GM and WM abnormalities. Furthermore, we aimed to clarify the contribution of abnormalities in cortical thickness and cortical surface area to the reduced GM volumes reported in schizophrenia.We recruited 76 persons with schizophrenia and 57 healthy controls from the community and obtained measures of cortical and WM surface areas, of local volumes along the brain and WM surfaces, and of cortical thickness.We detected reduced local volumes in patients along corresponding locations of the brain and WM surfaces in addition to bilateral greater thickness of perisylvian cortices and thinner cortex in the superior frontal and cingulate gyri. Total cortical and WM surface areas were reduced. Patients with worse performance on the serial-position task, a measure of working memory, had a higher burden of WM abnormalities.Reduced local volumes along the surface of the brain mirrored the locations of abnormalities along the surface of the underlying WM, rather than of abnormalities of cortical thickness. Moreover, anatomical features of white matter, but not cortical thickness, correlated with measures of working memory. We propose that reductions in WM and smaller total cortical surface area could be central anatomical abnormalities in schizophrenia, driving, at least partially, the reduced regional GM volumes often observed in this illness.

  12. Development of global cortical networks in early infancy.

    Science.gov (United States)

    Homae, Fumitaka; Watanabe, Hama; Otobe, Takayuki; Nakano, Tamami; Go, Tohshin; Konishi, Yukuo; Taga, Gentaro

    2010-04-07

    Human cognition and behaviors are subserved by global networks of neural mechanisms. Although the organization of the brain is a subject of interest, the process of development of global cortical networks in early infancy has not yet been clarified. In the present study, we explored developmental changes in these networks from several days to 6 months after birth by examining spontaneous fluctuations in brain activity, using multichannel near-infrared spectroscopy. We set up 94 measurement channels over the frontal, temporal, parietal, and occipital regions of the infant brain. The obtained signals showed complex time-series properties, which were characterized as 1/f fluctuations. To reveal the functional connectivity of the cortical networks, we calculated the temporal correlations of continuous signals between all the pairs of measurement channels. We found that the cortical network organization showed regional dependency and dynamic changes in the course of development. In the temporal, parietal, and occipital regions, connectivity increased between homologous regions in the two hemispheres and within hemispheres; in the frontal regions, it decreased progressively. Frontoposterior connectivity changed to a "U-shaped" pattern within 6 months: it decreases from the neonatal period to the age of 3 months and increases from the age of 3 months to the age of 6 months. We applied cluster analyses to the correlation coefficients and showed that the bilateral organization of the networks begins to emerge during the first 3 months of life. Our findings suggest that these developing networks, which form multiple clusters, are precursors of the functional cerebral architecture.

  13. Effective Connectivity Hierarchically Links Temporoparietal and Frontal Areas of the Auditory Dorsal Stream with the Motor Cortex Lip Area during Speech Perception

    Science.gov (United States)

    Murakami, Takenobu; Restle, Julia; Ziemann, Ulf

    2012-01-01

    A left-hemispheric cortico-cortical network involving areas of the temporoparietal junction (Tpj) and the posterior inferior frontal gyrus (pIFG) is thought to support sensorimotor integration of speech perception into articulatory motor activation, but how this network links with the lip area of the primary motor cortex (M1) during speech…

  14. White matter lesions and temporal lobe atrophy related to incidence of both dementia and major depression in 70-year-olds followed over 10 years.

    Science.gov (United States)

    Gudmundsson, P; Olesen, P J; Simoni, M; Pantoni, L; Östling, S; Kern, S; Guo, X; Skoog, I

    2015-05-01

    A number of studies have suggested associations between dementia and depression in older adults. One reason could be that these disorders share structural correlates, such as white matter lesions (WMLs) and cortical atrophy. No study has examined whether these lesions precede both dementia and depression independently of each other in the general population. Whether WMLs and cortical atrophy on computed tomography predict dementia and depression was investigated in a population-based sample of 70-year-olds (n = 380) followed over 10 years. Exclusion criteria were dementia, major depression, history of stroke and a Mini-Mental State Examination score below 26 at baseline in 2000-2001. Dementia was diagnosed according to the Diagnostic and Statistical Manual of Mental Disorders, third edition, revised, and depression according to the Diagnostic and Statistical Manual of Mental Disorders, fifth edition. Primary outcomes included dementia and major depression at 10-year follow-up. Adjusted logistic regression models, including both WMLs and temporal lobe atrophy, showed that moderate to severe WMLs [odds ratio (OR) 3.96, 95% confidence interval (CI) 1.23-12.76] and temporal lobe atrophy (OR 2.93, 95% CI 1.13-7.60) predicted dementia during a 10-year follow-up independently of major depression. Similarly, both moderate to severe WMLs (OR 3.84, 95% CI 1.25-11.76) and temporal lobe atrophy (OR 2.52, 95% CI 1.06-5.96) predicted depression even after controlling for incident dementia. White matter lesions and temporal lobe atrophy preceded 10-year incidence of both dementia and depression in 70-year-olds. Shared structural correlates could explain the reported associations between dementia and depression. These brain changes may represent independent and complementary pathways to dementia and depression. Strategies to slow progression of vascular pathology and neurodegeneration could indirectly prevent both dementia and depression in older adults. © 2015 EAN.

  15. Cortical myoclonus and cerebellar pathology

    NARCIS (Netherlands)

    Tijssen, MAJ; Thom, M; Ellison, DW; Wilkins, P; Barnes, D; Thompson, PD; Brown, P

    2000-01-01

    Objective To study the electrophysiologic and pathologic findings in three patients with cortical myoclonus. In two patients the myoclonic ataxic syndrome was associated with proven celiac disease. Background: The pathologic findings in conditions associated with cortical myoclonus commonly involve

  16. Cortical myoclonus and cerebellar pathology

    NARCIS (Netherlands)

    Tijssen, M. A.; Thom, M.; Ellison, D. W.; Wilkins, P.; Barnes, D.; Thompson, P. D.; Brown, P.

    2000-01-01

    OBJECTIVE: To study the electrophysiologic and pathologic findings in three patients with cortical myoclonus. In two patients the myoclonic ataxic syndrome was associated with proven celiac disease. BACKGROUND: The pathologic findings in conditions associated with cortical myoclonus commonly involve

  17. OBscure but not OBsolete: Perturbations of the frontal cortex in common between rodent olfactory bulbectomy model and major depression.

    Science.gov (United States)

    Rajkumar, Ramamoorthy; Dawe, Gavin S

    2018-04-07

    Olfactory bulbectomy (OBX) has been used as a model of depression over several decades. This model presupposes a mechanism that is still not proven in clinical depression. A wealth of clinical literature has focused on the derangements in frontal cortex (prefrontal, orbitofrontal and anterior cingulate cortices) associated with depression. In this comprehensive review, anatomical, electrophysiological and molecular sequelae of bulbectomy in the rodent frontal cortex are explored and compared with findings on brains of humans with major depression. Certain commonalities in neurobiological features of the perturbed frontal cortex in the bulbectomised rodent and the depressed human brain are evident. Also, meta-analysis reports on clinical studies on depressed patients provide prima facie evidence that perturbations in the frontal cortex are associated with major depression. Analysing the pattern of perturbations in the chemical neuroanatomy of the frontal cortex will contribute to understanding of the neurobiology of depression. Revisiting the OBX model of depression to examine these neurobiological changes in frontal cortex with contemporary imaging, proteomics, lipidomics, metabolomics and epigenomics technologies is proposed as an approach to enhance the translational value of this animal model to facilitate identification of targets and biomarkers for clinical depression. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Post-adolescent developmental changes in cortical complexity.

    Science.gov (United States)

    Sandu, Anca-Larisa; Izard, Edouard; Specht, Karsten; Beneventi, Harald; Lundervold, Arvid; Ystad, Martin

    2014-11-27

    Post-adolescence is known to be a period of general maturation and development in the human brain. In brain imaging, volumetric and morphologic cortical grey-matter changes can easily be assessed, but the analysis of cortical complexity seems to have been broadly neglected for this age interval. Magnetic resonance imaging (MRI) was used to acquire structural brain images. The study involved 17 adolescents (mean age 14.1 ± 0.27, 11 girls) who were compared with 14 young adults (mean age 24.24 ± 2.76, 7 women) for measures of brain complexity (fractal dimension--FD), grey matter (GM) volume and surface-area of cortical ribbon. FD was calculated using box-counting and Minkowski-Bouligand methods; FD and GM volume were measured for the whole brain, each hemisphere and lobes: frontal, occipital, parietal and temporal. The results show that the adults have a lower cortical complexity than the adolescents, which was significant for whole brain, left and right hemisphere, frontal and parietal lobes for both genders; and only for males in left temporal lobe. The GM volume was smaller in men than in boys for almost all measurements, and smaller in women than in girls just for right parietal lobe. A significant Pearson correlation was found between FD and GM volume for whole brain and each hemisphere in both genders. The decrease of the GM surface-area was significant in post-adolescence for males, not for females. During post-adolescence there are common changes in cortical complexity in the same regions for both genders, but there are also gender specific changes in some cortical areas. The sex differences from different cortical measurements (FD, GM volume and surface-area of cortical ribbon) could suggest a maturation delay in specific brain regions for each gender in relation to the other and might be explained through the functional role of the corresponding regions reflected in gender difference of developed abilities.

  19. Healthy brain connectivity predicts atrophy progression in non-fluent variant of primary progressive aphasia.

    Science.gov (United States)

    Mandelli, Maria Luisa; Vilaplana, Eduard; Brown, Jesse A; Hubbard, H Isabel; Binney, Richard J; Attygalle, Suneth; Santos-Santos, Miguel A; Miller, Zachary A; Pakvasa, Mikhail; Henry, Maya L; Rosen, Howard J; Henry, Roland G; Rabinovici, Gil D; Miller, Bruce L; Seeley, William W; Gorno-Tempini, Maria Luisa

    2016-10-01

    Neurodegeneration has been hypothesized to follow predetermined large-scale networks through the trans-synaptic spread of toxic proteins from a syndrome-specific epicentre. To date, no longitudinal neuroimaging study has tested this hypothesis in vivo in frontotemporal dementia spectrum disorders. The aim of this study was to demonstrate that longitudinal progression of atrophy in non-fluent/agrammatic variant primary progressive aphasia spreads over time from a syndrome-specific epicentre to additional regions, based on their connectivity to the epicentre in healthy control subjects. The syndrome-specific epicentre of the non-fluent/agrammatic variant of primary progressive aphasia was derived in a group of 10 mildly affected patients (clinical dementia rating equal to 0) using voxel-based morphometry. From this region, the inferior frontal gyrus (pars opercularis), we derived functional and structural connectivity maps in healthy controls (n = 30) using functional magnetic resonance imaging at rest and diffusion-weighted imaging tractography. Graph theory analysis was applied to derive functional network features. Atrophy progression was calculated using voxel-based morphometry longitudinal analysis on 34 non-fluent/agrammatic patients. Correlation analyses were performed to compare volume changes in patients with connectivity measures of the healthy functional and structural speech/language network. The default mode network was used as a control network. From the epicentre, the healthy functional connectivity network included the left supplementary motor area and the prefrontal, inferior parietal and temporal regions, which were connected through the aslant, superior longitudinal and arcuate fasciculi. Longitudinal grey and white matter changes were found in the left language-related regions and in the right inferior frontal gyrus. Functional connectivity strength in the healthy speech/language network, but not in the default network, correlated with

  20. Mindfulness based cognitive therapy improves frontal control in bipolar disorder: a pilot EEG study

    Directory of Open Access Journals (Sweden)

    Howells Fleur M

    2012-02-01

    Full Text Available Abstract Background Cognitive processing in Bipolar Disorder is characterized by a number of attentional abnormalities. Mindfulness Based Cognitive Therapy combines mindfulness meditation, a form of attentional training, along with aspects of cognitive therapy, and may improve attentional dysfunction in bipolar disorder patients. Methods 12 euthymic BD patients and 9 control participants underwent record of electroencephalography (EEG, band frequency analysis during resting states (eyes open, eyes closed and during the completion of a continuous performance task (A-X version, EEG event-related potential (ERP wave component analysis. The individuals with BD completed an 8-week MBCT intervention and record of EEG was repeated. Results (1 Brain activity, individuals with BD showed significantly decreased theta band power, increased beta band power, and decreased theta/beta ratios during the resting state, eyes closed, for frontal and cingulate cortices. Post MBCT intervention improvement over the right frontal cortex was seen in the individuals with BD, as beta band power decreased. (2 Brain activation, individuals with BD showed a significant P300-like wave form over the frontal cortex during the cue. Post MBCT intervention the P300-like waveform was significantly attenuated over the frontal cortex. Conclusions Individuals with BD show decreased attentional readiness and activation of non-relevant information processing during attentional processes. These data are the first that show, MBCT in BD improved attentional readiness, and attenuated activation of non-relevant information processing during attentional processes.

  1. Manipulation of the extrastriate frontal loop can resolve visual disability in blindsight patients.

    Science.gov (United States)

    Badgaiyan, Rajendra D

    2012-12-01

    Patients with blindsight are not consciously aware of visual stimuli in the affected field of vision but retain nonconscious perception. This disability can be resolved if nonconsciously perceived information can be brought to their conscious awareness. It can be accomplished by manipulating neural network of visual awareness. To understand this network, we studied the pattern of cortical activity elicited during processing of visual stimuli with or without conscious awareness. The analysis indicated that a re-entrant signaling loop between the area V3A (located in the extrastriate cortex) and the frontal cortex is critical for processing conscious awareness. The loop is activated by visual signals relayed in the primary visual cortex, which is damaged in blindsight patients. Because of the damage, V3A-frontal loop is not activated and the signals are not processed for conscious awareness. These patients however continue to receive visual signals through the lateral geniculate nucleus. Since these signals do not activate the V3A-frontal loop, the stimuli are not consciously perceived. If visual input from the lateral geniculate nucleus is appropriately manipulated and made to activate the V3A-frontal loop, blindsight patients can regain conscious vision. Published by Elsevier Ltd.

  2. Intertemporal Decision Making After Brain Injury: Amount-Dependent Steeper Discounting after Frontal Cortex Damage

    Directory of Open Access Journals (Sweden)

    Białaszek Wojciech

    2017-12-01

    Full Text Available Traumatic brain injuries to the frontal lobes are associated with many maladaptive forms of behavior. We investigated the association between brain damage and impulsivity, as measured by the rate of delay discounting (i.e., the extent to which future outcomes are devalued in time. The main aim of this study was to test the hypothesis of steeper discounting of different amounts in a group of patients with frontal lobe damage. We used a delay discounting task in the form of a structured interview. A total of 117 participants were divided into five groups: three neurological groups and two groups without brain damage. Our analyses showed that patients with focal damage to the frontal lobes demonstrated steeper delay discounting than other participants. Other clinical groups demonstrated similar discounting rates. The data pattern related to the magnitude effect on the group level suggested that the magnitude effect is absent in the group of patients with damage to the frontal lobes; however, results were less consistent on an individual level. Amount-dependent discounting was observed in only two groups, the healthy control group and the neurological group with other cortical areas damaged.

  3. Frontal and parietal theta burst TMS impairs working memory for visual-spatial conjunctions.

    Science.gov (United States)

    Morgan, Helen M; Jackson, Margaret C; van Koningsbruggen, Martijn G; Shapiro, Kimron L; Linden, David E J

    2013-03-01

    In tasks that selectively probe visual or spatial working memory (WM) frontal and posterior cortical areas show a segregation, with dorsal areas preferentially involved in spatial (e.g. location) WM and ventral areas in visual (e.g. object identity) WM. In a previous fMRI study [1], we showed that right parietal cortex (PC) was more active during WM for orientation, whereas left inferior frontal gyrus (IFG) was more active during colour WM. During WM for colour-orientation conjunctions, activity in these areas was intermediate to the level of activity for the single task preferred and non-preferred information. To examine whether these specialised areas play a critical role in coordinating visual and spatial WM to perform a conjunction task, we used theta burst transcranial magnetic stimulation (TMS) to induce a functional deficit. Compared to sham stimulation, TMS to right PC or left IFG selectively impaired WM for conjunctions but not single features. This is consistent with findings from visual search paradigms, in which frontal and parietal TMS selectively affects search for conjunctions compared to single features, and with combined TMS and functional imaging work suggesting that parietal and frontal regions are functionally coupled in tasks requiring integration of visual and spatial information. Our results thus elucidate mechanisms by which the brain coordinates spatially segregated processing streams and have implications beyond the field of working mem