WorldWideScience

Sample records for friction reducing properties

  1. The Friction-Reducing, Antiwear and Antioxidation Properties of an Organo-Molybdenum Lube Additive without Sulfur and Phosphorus

    Institute of Scientific and Technical Information of China (English)

    Junbing Yao; Gaston Aguilar; Glenn A. Mazzamaro

    2007-01-01

    The engine oil specifications of ILSAC GF-4 (implemented 2004) and GF-5 (expected 2010) have in common three important OEM needs: (1) improved fuel economy and its retention, (2) emissions system compatibility (related to phosphorus and sulfur content), and (3) improved oil robustness for extended oil life capability (e.g., reduced high temperature deposits and engine sludge, improved oxidative stability, and better valve train wear protection). For emission systems compatibility, there is a trend towards lower phosphorus and sulfur content in engine oils while maintaining high anti-oxidation and anti-wear performances. In this paper, the friction-reducing, antiwear and antioxidant properties of a sulfur-free and phosphorus-free molybdate ester compound as lubricant additive are discussed. The investigation showed that the molybdate ester enables good friction-reducing ability of the lubricant, and maintains low friction coefficients even after period of severe oil oxidation, which indicates the potential for excellent fuel economy retention in passenger car vehicles. For other organo-molybdenum additives, the investigation showed their friction-reducing ability decreased greatly after oxidation of the oil, although the performance appeared to be very good with the fresh oil before aging. In addition, the molybdate ester demonstrated a synergistic effect in anti-wear protection with zinc dialkyl dithiophosphate (ZDDP), a well-known commonly used additive in engine oils; this suggests that excellent wear protection is possible for an engine oil with reduced sulfur and phosphorus content. Moreover, the molybdate ester is also a strong synergist with arylamine antioxidants, which can retard its depletion in oxidized oil, extend its oxidative induction time, and reduce its high temperature deposit-forming tendency. Thus, this type of sulfur-free and phosphorus-free organo-molybdenum lubricant additive truly provides multifunctional performances, reducing friction, wear

  2. REDUCED ENGINE FRICTION AND WEAR

    Energy Technology Data Exchange (ETDEWEB)

    Ron Matthews

    2005-05-01

    This Final Technical Report discusses the progress was made on the experimental and numerical tasks over the duration of this project regarding a new technique for decreasing engine friction and wear via liner rotation. The experimental subtasks involved quantifying the reduction in engine friction for a prototype rotating liner engine relative to a comparable baseline engine. Both engine were single cylinder conversions of nominally identical production four-cylinder engines. Hot motoring tests were conducted initially and revealed that liner rotation decreased engine friction by 20% under motoring conditions. A well-established model was used to estimate that liner rotation should decrease the friction of a four-cylinder engine by 40% under hot motoring conditions. Hot motoring tear-down tests revealed that the crankshaft and valve train frictional losses were essentially the same for the two engines, as expected. However, the rotating liner engine had much lower (>70%) piston assembly friction compared to the conventional engine. Finally, we used the Instantaneous IMEP method to compare the crank-angle resolved piston assembly friction for the two engines. Under hot motoring conditions, these measurements revealed a significant reduction in piston assembly friction, especially in the vicinity of compression TDC when the lubrication regime transitions from hydrodynamic through mixed and into boundary friction. We have some remaining problems with these measurements that we expect to solve during the next few weeks. We will then perform these measurements under firing conditions. We also proposed to improve the state-of-the-art of numerical modeling of piston assembly friction for conventional engines and then to extend this model to rotating liner engines. Our research team first modeled a single ring in the Purdue ring-liner test rig. Our model showed good agreement with the test rig data for a range of speeds and loads. We then modeled a complete piston

  3. Preparation and Anti-wear and Friction-reducing Properties of Barium Borate Modified with Dodecoxyl Group

    Institute of Scientific and Technical Information of China (English)

    Zeng Xiaojun; Li Fenfang; Zhou Maolin

    2007-01-01

    A novel lubricating oil additive dodecoxyl barium borate was synthesized.The product was characterized by FTIR,elemental analysis,thermo-gravimetric analysis(TGA),and scanning electron microscopy(SEM).Four-ball tests showed that the addition of a certain concentration of the additive to rapeseed oil could effectively increase both the load-carrying capacity(PB value),resistance to wear,and friction-reducing abilities.SEM observations confirmed that the additive could result in a reduced diameter of the wear scar.

  4. High friction and low wear properties of laser-textured ceramic surface under dry friction

    Science.gov (United States)

    Xing, Youqiang; Deng, Jianxin; Wu, Ze; Wu, Fengfang

    2017-08-01

    Two kinds of grooved textures with different spacing were fabricated on Al2O3/TiC ceramic surface by an Nd:YAG laser. The dry tribological properties of the textured samples were investigated by carrying out unidirectional rotary sliding friction and wear tests using a ball-on-disk tribometer. Results show that the laser textured samples exhibit higher friction coefficient and excellent wear resistance compared with the smooth sample under dry friction conditions. Furthermore, the texture morphology and spacing have a significant influence on the tribological properties. The sample with small texture spacing may be beneficial to increasing the friction coefficient, and the wavy-grooved sample exhibits the highest friction coefficient and shallowest wear depth. The increasing friction coefficient and anti-wear properties are attributed to the combined effects of the increased surface roughness, reduced real contact area, micro-cutting effect by the texture edges and entrapment of wear debris.

  5. Frictional properties of confined polymers

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, Vladimir N; Persson, Bo N J

    2008-01-01

    We present molecular dynamics friction calculations for confined hydrocarbon solids with molecular lengths from 20 to 1400 carbon atoms. Two cases are considered: a) polymer sliding against a hard substrate, and b) polymer sliding on polymer. In the first setup the shear stresses are relatively...... independent of molecular length. For polymer sliding on polymer the friction is significantly larger, and dependent on the molecular chain length. In both cases, the shear stresses are proportional to the squeezing pressure and finite at zero load, indicating an adhesional contribution to the friction force...

  6. Talc as friction reducing additive to lubricating oil

    Science.gov (United States)

    Rudenko, Pavlo; Bandyopadhyay, Amit

    2013-07-01

    Reduction of friction and wear by colloidal suspensions of ceramic powders in lubricating oils is an approach that can allow to formulate environment friendly energy saving lubricants. Commercial talc powder was evaluated as an extreme pressure additive to a lubricating oil under different temperatures and concentrations. The best lubricity was achieved at the temperature of 100 °C and the concentration of 0.15 wt% when dynamic and static friction coefficients were reduced by over 30% in comparison to reference lubricating oil alone. At high temperature, talc forms transfer film on metal surface, which reduce both friction and wear behavior in mating surfaces. However, at room temperature, film formation was not observed. Results are explained using pressure and temperature induced lamellar dehydration mechanism when products of dehydration form oxide transfer films on the friction surface.

  7. Poly(ethylene oxide) Mushrooms Adsorbed at Silica-Ionic Liquid Interfaces Reduce Friction.

    Science.gov (United States)

    Sweeney, James; Webber, Grant B; Atkin, Rob

    2016-03-01

    The adsorbed layer conformation and lubricity of 35, 100, and 300 kDa PEO adsorbed to ionic liquid (IL)-silica interfaces from 0.01 wt % solutions have been investigated using colloid probe atomic force microscopy. The ILs used were propylammonium nitrate (PAN) and 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]), which are protic and aprotic ILs, respectively. Normal force curves reveal steric interactions consistent with adsorbed polymer layers which are best fit using the mushroom model. Friction measurements show that the adsorbed polymer layer markedly reduces friction compared to surfaces sliding in the pure ILs and that lubricity increases with polymer length. When polymer is adsorbed to the sliding surfaces, friction is controlled by the creation and disruption of intermolecular interactions between entangled chains and the dragging of polymer chains through the interpenetration region. These experiments show that added polymer can reduce friction while maintaining the useful properties of ILs as lubricants.

  8. Reducing Sliding Friction with Liquid-Impregnated Surfaces

    Science.gov (United States)

    Habibi, Mohammad; Collier, C. Patrick; Boreyko, Jonathan; Nature Inspired Fluids; Interfaces Team; CenterNanophase Materials Sciences Team

    2015-11-01

    Liquid-impregnated surfaces are fabricated by infusing a lubricating liquid into the micro/nano roughness of a textured substrate, such that the surface is slippery for any deposited liquid immiscible with the lubricant. To date, liquid-impregnated surfaces have almost exclusively focused on repelling liquids by minimizing the contact angle hysteresis. Here, we demonstrate that liquid-impregnated surfaces are also capable of reducing sliding friction for solid objects. Ordered arrays of silicon micropillars were infused with lubricating liquids varying in viscosity by two orders of magnitude. Five test surfaces were used: two different micropillared surfaces with and without liquid infusion and a smooth, dry control surface. The static and kinetic coefficients of friction were measured using a polished aluminum cube as the sliding object. Compared to the smooth control surface, the sliding friction was reduced by at least a factor of two on the liquid-impregnated surfaces.

  9. Magnetic properties of friction stir processed composite

    Energy Technology Data Exchange (ETDEWEB)

    Das, Shamiparna; Martinez, Nelson Y.; Das, Santanu; Mishra, Rajiv S.; Grant, Glenn J.; Jana, Saumyadeep; Polikarpov, Evgueni

    2016-03-29

    There are many existing inspection systems each with their own advantages and drawbacks. These usually comprise of semi-remote sensors which frequently causes difficulty in reaching complex areas of a component. This study proposes to overcome that difficulty by developing embedded functional composites. Through this route, embedding can be achieved in virtually any component part and can be periodically interrogated by a reading device. The “reinforcement rich” processed areas can then be utilized to record properties like strain, temperature, stress state etc. depending on the reinforcement material. In this work, friction stir processing (FSP) was utilized to fabricate a magnetostrictive composite by embedding galfenol particles into a nonmagnetic aluminum (Al) matrix. It targets to develop a composite that produces strain in a varying magnetic field. Reinforcements were observed to be distributed uniformly in the matrix. Magnetization curves were studied using a vibrating sample magnetometer (VSM). A simple and cheap setup was developed to measure the magnetostrictive strain of the composites. Important factors affecting the magnetic properties were identified and ways to improve the magnetic properties discussed.

  10. Magnetic Properties of Friction Stir Processed Composite

    Science.gov (United States)

    Das, Shamiparna; Martinez, Nelson Y.; Das, Santanu; Mishra, Rajiv S.; Grant, Glenn J.; Jana, Saumyadeep; Polikarpov, Evgueni

    2016-07-01

    Of the many existing inspection or monitoring systems, each has its own advantages and drawbacks. These systems are usually comprised of semi-remote sensors that frequently cause difficulty in reaching complex areas of a component. This study proposes to overcome that difficulty by developing embedded functional composites, so that embedding can be achieved in virtually any component part and periodically can be interrogated by a reading device. The "reinforcement rich" processed areas can then be used to record properties such as strain, temperature, and stress state, to name a few, depending on the reinforcement material. Friction stir processing was used to fabricate a magnetostrictive composite by embedding galfenol particles into a nonmagnetic aluminum matrix. The aim was to develop a composite that produces strain in response to a varying magnetic field. Reinforcements were distributed uniformly in the matrix. Magnetization curves were studied using a vibrating sample magnetometer. A simple and cost-effective setup was developed to measure the magnetostrictive strain of the composites. Important factors affecting the magnetic properties were identified and the processing route was modified to improve the magnetic response.

  11. Friction Properties of Inkjet and Flexographic Prints on Different Papers

    Directory of Open Access Journals (Sweden)

    Simona Grigaliūnienė

    2015-03-01

    Full Text Available Friction between different papers, inkjet and flexographic prints has been experimentally investigated. Flexographic prints have been made using an anilox roller, and inkjet prints have been produced covering paper with one and four toner layers. Static (SCOF and kinetic (KCOF friction coefficients between paper and paper, paper and prints, prints and prints have been determined. Friction properties have been discovered to be different in flexographic and laser prints. The dependence of SCOF and KCOF on pressure (both decrease together with roughness measurements enables to conclude that the friction of prints is mainly governed by adhesion forces.

  12. Intrinsic structure and friction properties of graphene and graphene oxide nanosheets studied by scanning probe microscopy

    Indian Academy of Sciences (India)

    Yan-Huai Ding; Hu-Ming Ren; Fei-Hu Chang; Ping Zhang; Yong Jiang

    2013-11-01

    In this paper, atomic structure of single-layered graphene oxide (GO) and chemically reduced graphene oxide (CRGO) nanosheets was investigated using atomic force microscopy and scanning tunnelingmicroscopy (AFM and STM). Furthermore, friction properties of the graphene and GO nanosheets were studied by frictional force microscopy (FFM). STM imaging provided direct evidence and the morphology was influenced by oxygen-containing groups and defects. The atomic scale structural disorder in a hexagonal two-dimensional network of carbon atoms changes the surface condition, which also caused the frictional property variations of the samples.

  13. Frictional properties of single crystals HMX, RDX and PETN explosives.

    Science.gov (United States)

    Wu, Y Q; Huang, F L

    2010-11-15

    The frictional properties of single crystals of cyclotetramethylene tetranitramine (HMX), cyclotrimethylene trinitramine (RDX) and pentaerythritol tetranitrate (PETN) secondary explosives are examined using a sensitive friction machine. The explosive crystals used for the measurements are at least 3.5 mm wide. The friction coefficients between crystals of the same explosive (i.e., HMX on HMX, etc.), crystals of different explosives (i.e., HMX on RDX, etc.), and each explosive and a well-polished gauge steel surface are determined. The frictional surfaces are also studied under an environmental scanning electron microscope (ESEM) to analyze surface microstructural changes under increasing loading forces. The friction coefficients vary considerably with increasing normal loading forces and are particularly sensitive to slider shapes, crystal roughness and the mechanical properties of both the slider and the sample. With increasing loading forces, most friction experiments show surface damage, consisting of grooves, debris, and nano-particles, on both the slider and sample. In some cases, a strong evidence of a localized molten state is found in the central region of the friction track. Possible mechanisms that affect the friction coefficient are discussed based on microscopic observations. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Anti-friction properties of ester additives during hot rolling of aluminum{copyright}

    Energy Technology Data Exchange (ETDEWEB)

    Januszkiewicz, K.R.; Bekmesian, G.; Heenan, D.F. [Alcan International Limited, Ontario (Canada)] [and others

    1995-08-01

    Heavy esters of polyhydric alcohols, such as glycerol and synthetic polyols, are commonly used as additives in aluminum hot rolling lubricants. The presence of several hydroxyl groups allows a varying degree of esterification leading to the formation of full and partial esters. These esters are rarely separated from the main additive, and thus may be present in the finished rolling lubricant, affecting its anti-friction properties. The objective of this work was to examine the anti-friction properties of these potential ester contaminants during rolling on a laboratory hot rolling mill. Two lubricant application methods were examined; as emulsion and direct (neat oil) application. The anti-friction properties of additives were found to depend on their chemical structure and the lubricant applications method. In emulsified oils, partial esters of glycerol were found to greatly reduce friction in comparison to triglycerides, while the partial esters of synthetic polyols exhibited only a weak anti-friction effect. There was no frictional advantage observed which could be associated with using the partial esters in direct application mode. Moreover, under these conditions, the anti-friction properties of the completely esterified synthetic polyols were significantly lower than those of triglycerides, while in emulsions they were comparable. 11 refs., 7 figs., 3 tabs.

  15. Method for Investigation of Frictional Properties at Impact Loading

    Science.gov (United States)

    Sundin, K. G.; Åhrström, B. O.

    1999-05-01

    In the assessment of lubricant performance and also in various other contact applications it is of importance to know the frictional qualities of a surface. Under quasi-static conditions, normal and frictional forces are measured using force transducers but the task is more difficult when loads are transient. The experimental method presented in this paper is based on the analysis of propagating waves in a beam, due to an impact on the end surface. The impact is oblique and therefore a transverse as well as a normal force is generated. The normal force history is measured from the axial non-dispersive wave using strain gauges. Transverse force and bending moment both generate dispersive flexural waves. From the FFT of two transverse acceleration histories, the frictional force at the end of the rod is evaluated using beam theory. The relation between normal and frictional force histories displays the frictional properties at the impact. Preliminary results are presented.

  16. Friction Properties of Bio-mimetic Nano-fibrillar Arrays

    Institute of Scientific and Technical Information of China (English)

    CHEN Shao-Hua; MI Chun-Hui

    2009-01-01

    Nano-fibrillar arrays are fabricated using polystyrene materials. The average diameter of each fiber is about 300 nm.Experiments show that such a fibrillar surface possesses a relatively hydrophobic feature with a water contact angle of 142°.Nanoscale friction properties are mainly focused on.It is found that the friction force of polystyrene nano-fibrillar surfaces is obviously enhanced in contrast to polystyrene smooth surfaces.The apparent coefficient of friction increases with the applied load, but is independent of the scanning speed.An interesting observation is that the friction force increases almost linearly with the real contact area, which abides by the fundamental Bowden-Tabor law of nano-scale friction.

  17. Friction Anisotropy: A unique and intrinsic property of decagonal quasicrystals

    Energy Technology Data Exchange (ETDEWEB)

    Mulleregan, Alice; Park, Jeong Young; Salmeron, Miquel; Ogetree, D.F.; Jenks, C.J.; Thiel, P.A.; Brenner, J.; Dubois, J.M.

    2008-06-25

    We show that friction anisotropy is an intrinsic property of the atomic structure of Al-Ni-Co decagonal quasicrystals and not only of clean and well-ordered surfaces that can be prepared in vacuum [J.Y. Park et al., Science (2005)]. Friction anisotropy is manifested both in nanometer size contacts obtained with sharp atomic force microscope (AFM) tips as well as in macroscopic contacts produced in pin-on-disc tribometers. We show that the friction anisotropy, which is not observed when an amorphous oxide film covers the surface, is recovered when the film is removed due to wear. Equally important is the loss of the friction anisotropy when the quasicrystalline order is destroyed due to cumulative wear. These results reveal the intimate connection between the mechanical properties of these materials and their peculiar atomic structure.

  18. Frictional properties of high strength; Kokyodo porima sen'i kyoka purasuchikku no masatsu tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Takao, T.; Yoshino, D. [Sophia University, Tokyo (Japan); Kashima, T.; Yamanaka, A. [Toyobo Co., Ltd., Osaka (Japan)

    1999-11-10

    Dyneema fiber reinforced plastic there is the property, which expands with the reduced temperature, and the use as a superconducting coil reel material is examined. In this paper, Zylon fiber reinforced plastic also measured friction coefficient of the surface of ZFRP, and it has the similar property, and possibility of application as a coil reel material of ZFRP is examined. (NEDO)

  19. The effect of interlayers on dissimilar friction weld properties

    Science.gov (United States)

    Maldonado-Zepeda, Cuauhtemoc

    The influence of silver interlayers on the metallurgical and mechanical properties of dissimilar aluminium alloy/stainless steel friction welds are investigated. An elastic contact model is proposed that explains the conditions at and close to the contact surface, which produce Al2O3 particle fracture in dissimilar MMC/AISI 304 stainless steel friction welds. Intermixed (IM) and particle dispersed (PD) regions are formed in Ag-containing dissimilar friction welds. These regions form very early in the joining operation and both contain Ag3Al. Therefore, an interlayer (Ag) introduced with the specific aim of preventing FexAly compound formation in MMC/AISI 304 stainless steel friction welds promotes the formation of another intermetallic phase at the bondline. Since IM and PD regions are progressively removed as the friction welding operation proceeds thinner intermetallic layers are produced when long friction welding times are applied. This type of behavior is quite different from that observed in silver-free dissimilar MMC/AISI 304 stainless steel welds. Nanoparticles of silver are formed in dissimilar MMC/Ag/AISI 304 stainless steel welds produced using low friction pressures. Nanoparticle formation in dissimilar friction welds has never been previously observed or investigated. The introduction of silver interlayers decreases heat generation during welding, produces narrower softened zone regions and improved notch tensile strength properties. All research to-date has assumed per se that joint mechanical properties wholly depend on the mechanical properties and width of the intermetallic layer formed at the dissimilar joint interface. However, it is shown in this thesis that the mechanical properties of MMC/AISI 304 stainless steel joints are determined by the combined effects of intermetallic formation at the bondline and softened zone formation in MMC base material immediately adjacent to the joint interface. A methodology for calculating the notch tensile

  20. Friction Properties of OTS SAMs and Silicon Surface under Water Lubrication

    Institute of Scientific and Technical Information of China (English)

    WANG Xin; ZHANG Xiangjun; AHMED Imad; LIU Ying; WEN Shizhu

    2009-01-01

    The friction and wear properties of silicon surface covered with octadecyltrichloro-silane (OTS) self-assembled monolayers (SAMs) were investigated by a UMT-2 microtribometer with and without water as lubricant, and then compared with that of bare silicon surface. Dry friction measurement results show that OTS SAMs have a very low friction coefficient compared to bare silicon surface under lower sliding velocity and normal contact load. However, heavy wear occurs on OTS SAMs under higher contact stress and sliding velocity. Under water lubrication, OTS SAMs can prevent wear obviously and meanwhile present low coefficient of friction even under high velocities.The improved frictional and anti-wear property on OTS SAMs surface is attributed to the hydrophobic property of OTS and hydrodynamic effect of water. Furthermore, a wear critical phase diagram for OTS SAMs with and without water was proposed, which indicates that OTS SAMs working under water lubrication owns a wider range of available load and velocity to reduce friction and prevent wear.

  1. Optimization of a tribological properties of friction pairs

    Science.gov (United States)

    Dyshlovenko, S. S.; Frolov, N. D.; Kouzmin, Yr. P.; Veiko, Vadim P.

    2003-11-01

    This paper is devoted to analysis of correlation between surface microgeometry and tribological properties of friction pairs. Two experimental methods have been applied for surface microstructuring: vibrorolling and laser ablation. Dependence of different in-service characteristics on groove area has been done. Production examples are demonstrated. Preliminary comparison of laser and mechanical structuring is carried out.

  2. Comparison of tribological properties of industrial low friction coatings

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    MX2 (M=Mo, W; X=S, Se) and DLC (a-C: H and WC/C) are the two kinds of typical low friction coatings widely used in industry. The friction and wear properties of these two kinds of coatings marked as MOVIC, MOST, MoSe2/Ni, WSe2, a-C: H and WC/C coatings were determined by fretting tests in ambient air of different humidity. The results show that the coefficient of friction of MX2 coatings increases when the relative humidity of air increases whereas the coefficient of friction DLC coatings decreases with the increasing of relative humidity. MOVIC and WSe2 coatings have a poor friction and wear resistance because of non-basal planes (100) and (101) parallel to the surface in the MOVIC coating, or the rough and porous surface of WSe2 coatings. Among these six coatings, MoSe2/Ni and WC/C coatings have the highest wear resistance which seems to be unaffected by the relative humidity.

  3. Friction Properties of Polished Cvd Diamond Films Sliding against Different Metals

    Science.gov (United States)

    Lin, Zichao; Sun, Fanghong; Shen, Bin

    2016-11-01

    Owing to their excellent mechanical and tribological properties, like the well-known extreme hardness, low coefficient of friction and high chemical inertness, chemical vapor deposition (CVD) diamond films have found applications as a hard coating for drawing dies. The surface roughness of the diamond films is one of the most important attributes to the drawing dies. In this paper, the effects of different surface roughnesses on the friction properties of diamond films have been experimentally studied. Diamond films were fabricated using hot filament CVD. The WC-Co (Co 6wt.%) drawing dies were used as substrates. A gas mixture of acetone and hydrogen gas was used as the feedstock gas. The CVD diamond films were polished using mechanical polishing. Polished diamond films with three different surface roughnesses, as well as the unpolished diamond film, were fabricated in order to study the tribological performance between the CVD diamond films and different metals with oil lubrication. The unpolished and polished CVD diamond films are characterized with scanning electron microscope (SEM), atomic force microscope (AFM), surface profilometer, Raman spectrum and X-ray diffraction (XRD). The friction examinations were carried out by using a ball-on-plate type reciprocating friction tester. Low carbide steel, stainless steel, copper and aluminum materials were used as counterpart balls. Based on this study, the results presented the friction coefficients between the polished CVD films and different metals. The friction tests demonstrate that the smooth surface finish of CVD diamond films is beneficial for reducing their friction coefficients. The diamond films exhibit low friction coefficients when slid against the stainless steel balls and low carbide steel ball, lower than that slid against copper ball and aluminum ball, attributed to the higher ductility of copper and aluminum causing larger amount of wear debris adhering to the sliding interface and higher adhesive

  4. Effect of friction time on the properties of friction welded YSZ‐alumina composite and 6061 aluminium alloy

    Directory of Open Access Journals (Sweden)

    Uday M. Basheer

    2012-03-01

    Full Text Available The aim of this work was to study the effect of friction time on the microstructure and mechanical properties of alumina 0, 25, 50 wt% yttria stabilized zirconia (YSZ composite and 6061 aluminium alloy joints formed by friction welding. The alumina-YSZ composites were prepared through slip casting in plaster of Paris molds (POP and subsequently sintered at 1600°C, while the aluminium rods were machined down using a lathe machine to the dimension required. The welding process was carried out under different rotational speeds and friction times, while friction force (0.5 ton-force was kept constant. Scanning electron microscopy was used to characterize the interface of the joints structure. The experimental results showed that the friction time has a significant effect on joint structure and mechanical properties.

  5. Characteristics of frictional properties' dependency on afterslip propagation speed

    Science.gov (United States)

    Ariyoshi, K.; Matsuzawa, T.; Hasegawa, A.; Hino, R.; Hori, T.

    2016-12-01

    The propagation speed of postseismic slip seems to vary from place to place. On the 2003 Tokachi-Oki earthquake (M8), the time lag is about 80 minutes for the largest aftershock (M7.4) off Tokachi [Miyazaki and Larson, 2008 GRL] and one year for the M7 earthquakes off Kushiro [Murakami et al., 2006 GRL]. Since the distance from the epicenter of mainshock to the largest aftershock and the M7 aftershocks off Kushiro is about 40 km and 160 km, respectively, these time lags means that propagation speed of the afterslip from the mainshock to the largest aftershock is significantly higher than to the M7 afteshocks off Kushiro. On the Sanriku-Haruka-Oki earthquakes, Matsuzawa et al. [2004 EPS] pointed out that propagation speed of the postseismic slip seems to be an order of 10 km/day for shallower part of the subduction plate boundary while 10 km/month for deeper part. These results indicate that propagation speed of postseismic slip depends on frictional properties and effective normal stress in addition to slip velocity. To know the frictional properties controlling the propagation speed of postseismic slip, some numerical simulations of interplate earthquakes based on a rate- and state-dependent friction law (RSF) [Dieterich, 1979 JGR; Ruina, 1983 JGR] have been recently performed. From those previous studies, the propagation speed of postseismic slip becomes lower in case of higher frictional stability, longer characteristic slip distance [Kato and Hirasawa, 1999 PAGEOPH], and higher effective normal stress [Ariyoshi et al., 2007 EPSL]. Since we have not quantitatively understood why such cases make the postseismic slip propagation slower, it is necessary to know analytical relation between the frictional properties and the propagation speed of postseismic slip. In this study, we develop an expression for the propagation speed of postseismic slip as a function of frictional properties including effective normal stress, and discuss its validity quantitatively by

  6. Characteristics of frictional properties' relationship with afterslip propagation speed

    Science.gov (United States)

    Ariyoshi, Keisuke; Matsuzawa, Toru; Burgmann, Roland; Hasegawa, Akira; Hino, Ryota; Hori, Takane

    2017-04-01

    The propagation speed of postseismic slip seems to vary from place to place. For the 2003 Tokachi-Oki earthquake (M8), there was a time lag of about 80 minutes for the largest aftershock (M7.4) at about 40 km distance off Tokachi [Miyazaki and Larson, 2008 GRL] and of one year for the M7 earthquakes off Kushiro about 160 km away [Murakami et al., 2006 GRL]. If these aftershocks were triggered by ΔCFS increase in the passage of afterslip [Uchida et al., 2009 Gondwana Res], these time lags suggest that the propagation speed of the afterslip from the mainshock to the largest aftershock is significantly higher than to the M7 aftershocks off Kushiro. On the Sanriku-Haruka-Oki earthquakes, Matsuzawa et al. [2004 EPS] pointed out that propagation speed of the postseismic slip seems to be on the order of 10 km/day for the shallower part of the subduction plate boundary while it appears to be 10 km/month for the deeper part. These results indicate that the propagation speed of postseismic slip depends on frictional properties and effective normal stress in addition to slip velocity. To better understand the frictional properties controlling the propagation speed of postseismic slip, some numerical simulations of interplate earthquakes based on a rate- and state-dependent friction law (RSF) [Dieterich, 1979 JGR; Ruina, 1983 JGR] have been recently performed. These previous studies suggest the propagation speed of postseismic slip becomes lower in case of higher frictional stability, longer characteristic slip distance [Kato and Hirasawa, 1999 PAGEOPH], and higher effective normal stress [Ariyoshi et al., 2007 EPSL]. Since we do not quantitatively understand why such cases make the postseismic slip propagation slower, it is necessary to find an analytical relation between the frictional properties and the propagation speed of postseismic slip. In this study, we develop an expression for the propagation speed of postseismic slip as a function of frictional properties

  7. Friction-reducing micro/nanoprotrusions on electrodeposited Ni–Co alloy coating surface fabricated by laser direct writing

    Indian Academy of Sciences (India)

    Haifeng Yang; Tianchi Chen; Jiguo Qian; Jing Han; Haidong He; Longpeng Zhou; Enlan Zhao; Wei Tang; Hua Zhu

    2015-02-01

    Ni–Co coating or texturing surface has been studied extensively to improve the anti-friction ability of the surface. In this paper, we combine the advantages of Ni–Co coating and textured surface, and then use a simple, novel and easily controlled method to fabricate a series of micro/nanoprotrusions on the Ni–Co coating surface. The nanotribology properties were characterized by AFM. The result shows that the micro/nanotextured surface significantly reduced the friction forces compared with the original Ni–Co coating surface. The half-ellipsoid patterns have better tribology properties than half-hemispherical patterns. Both laser power and laser scanning speed were found to influence the friction performances.

  8. 无机盐阴离子对果胶水基润滑液减摩性能的影响%Friction Reducing Properties of Water-based Lubricant of Pectin Affected by Inorganic Salt Anion

    Institute of Scientific and Technical Information of China (English)

    屠婷婷; 王伟旭; 万勇; 蒲吉斌

    2014-01-01

    利用微摩擦磨损试验机评价果胶作为水基润滑添加剂的摩擦学性能,采用扫描电子显微镜分析磨痕表面形貌,并采用能量色散光谱仪分析摩擦磨损机制。同时还考察工业用水中存在的阴离子对含果胶水基润滑液摩擦学性能的影响。结果表明:在去离子水中加入少量的果胶就可显著改善水的摩擦学性能,并且随着果胶添加量的增大,减摩性能得到进一步提高,这主要是由于果胶在表面吸附形成的润滑膜起到良好的减摩效果;不同阴离子对果胶的摩擦学性能具有不同的影响,其影响的实质是盐析作用和吸附作用。%The tribologial performance of pectin polysaccharide as additive of water-based lubricant was studied by using micro friction and wear tester.The lubricating mechanisms of aqueous solution of pectin were analyzed by SEM and EDS. And the effect of the anions existed in the industrial water on the tribologial performance of water-based lubricant of pectin was investigated.The results pectin polysaccharide shows low friction when used as an additive in water.With the increase of the additive amount of pectin polysaccharide in water,the friction reducing performance is improved.This is mainly due to formed lubrication film by adsorption of the pectin on the surface.The types and concentration of anions shows different impacts on the friction reduction performance of the water-based lubricant of pectin,it is because of the salting-out effect and the adsorption of anions on the steel surfaces.

  9. A general review of concepts for reducing skin friction, including recommendations for future studies

    Science.gov (United States)

    Fischer, M. C.; Ash, R. L.

    1974-01-01

    Four main concepts which have significantly reduced skin friction in experimental studies are discussed; suction, gaseous injection, particle additives, and compliant wall. It is considered possible that each of these concepts could be developed and applied in viable skin friction reduction systems for aircraft application. Problem areas with each concept are discussed, and recommendations for future studies are made.

  10. Friction properties of fluorinated compounds. Fusso kagobutsu no masatsu tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Hironaka, S. (Tokyo Inst. of Technology, Tokyo (Japan). Faculty of Engineering); Sekiya, A. (National Inst. of Materials and Chemical Research, Tsukuba (Japan))

    1993-07-01

    In these years, fluorinated oils such as perfluoropolyalkyl ester and so on are developed as lubricating oil with better thermal stability as well as acid stability compared with hydrocarbon oil or ester. The results of the examination prosecuted by the present authors with a pendulum type friction tester on the friction properties in steel/steel system with perfluorooctanoic acid, n-C7F15COOH, and the synthesized compounds thereof like 1,1-dihydroperfluorooctanol, n-C7F15CH2OH, 1-hydroperfluorooctane-1,1-diol and n-C7F15CH(OH)2 as the additives clarify that they are respectively superior to the oleic acid and lauryl alcohol and expectable as the new oil agents. In the present study, 1,1-dihydroperfluorooctylamine, n-C7F15CH2NH2 are further synthesized, and the examination on the friction properties in the steel/steel system and steel/aluminium system reveals the effects thereof as the additives. 8 refs., 5 figs., 1 tab.

  11. Ion sulphuration-an effective surface engineering technique for reducing friction and wear of rubbing-pairs

    Institute of Scientific and Technical Information of China (English)

    LIU Jia-jun; WANG Hai-dou; ZHANG Ning; ZHANG Da-ming

    2004-01-01

    The low temperature ion sulphuration-an effective surface engineering technique for reducing friction and wear of rubbing-pairs was introduced. It involves the principle of ion sulphuration process, microstructure of FeS film on 1045 steel, tribological properties of FeS film on steels, microstructions and tribological properties of MoS2 and nano-FeS/MoS2 multi-layered films, as well as their applications.

  12. The effect of postprocessing on tensile property and microstructure evolution of friction stir welding aluminum alloy joint

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Z.L., E-mail: zhilihuhit@163.com [Hubei Key Laboratory of Advanced Technology of Automobile Parts, Wuhan University of Technology, Wuhan 430070 (China); State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology (China); Wang, X.S. [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Pang, Q. [School of Mechanical and Electrical Engineering, Wuhan Donghu University, Wuhan 430070 (China); Huang, F.; Qin, X.P.; Hua, L. [Hubei Key Laboratory of Advanced Technology of Automobile Parts, Wuhan University of Technology, Wuhan 430070 (China)

    2015-01-15

    Friction stir welding is an efficient manufacturing method for joining aluminum alloy and can dramatically reduce grain size conferring excellent plastic deformation properties. Consequently, friction stir welding is used to manufacture tailor welded blanks to optimize weight or performance in the final component. In the study, the microstructural evolution and mechanical properties of friction stir welding joint during plastic forming and subsequent heat treatment were investigated. The microstructural characteristics of the friction stir welding joints were studied by Electron Backscattered Diffraction and Transmission Electron Microscopy. The mechanical properties were evaluated by tensile and microhardness tests. It is found that the tensile and yield strengths of friction stir welding joints are significantly improved after severe plastic deformation due to the grain refinement. Following heat treatment, the strength of the friction stir welding joints significantly decrease due to the obvious abnormal grain growth. Careful attention must be given to the processing route of any friction stir welding joint intended for plastic forming, especially the annealing between forming passes. Severe plastic deforming of the friction stir welding joint leads to a high level of stored energy/dislocation density, which causes the abnormal grain growth during subsequent heat treatment, and consequently reduce the mechanical properties of the friction stir welding joint. - Highlights: • Great changes are observed in the microstructure of FSW joint after postprocessing. • Postprocessing shows great effect on the microstructure stability of FSW joint. • The weld shows more significant decrease in strength than the BM due to the AGG. • Attention must be given to the processing route of FSW joint for plastic forming.

  13. Sound Absorption and Friction Properties of Nano-Lotus Leaf Coated Concrete for Rigid Pavement

    Directory of Open Access Journals (Sweden)

    Marcelo GONZALEZ

    2016-09-01

    Full Text Available This paper presents the feasibility of superhydrophobic films to create the nano-lotus leaf effect on concrete surface and their influence on sound absorption and friction properties of concrete for application in rigid pavements. The study involved an evaluation of nanomaterials at the laboratory scale to analyze the effects of microtexture modification on the friction and sound absorption of concrete pavement. A number of laboratory specimens were produced by applying different amounts of nano-lotus leaf coating on the top of the textured concrete surface. The British pendulum test was used to measure the friction number, and an impedance tube was used to determine the sound absorption coefficient. Laboratory results indicate that nano-lotus leaf coated concrete can maintain the required friction property for rigid pavement, but may not increase the noise absorption. Further research must be carried out to determine possible benefit of the lotus leaf effect for reducing hydroplaning, particularly during heavy rainfall.DOI: http://dx.doi.org/10.5755/j01.ms.22.3.7638

  14. Sound Absorption and Friction Properties of Nano-Lotus Leaf Coated Concrete for Rigid Pavement

    Directory of Open Access Journals (Sweden)

    Marcelo GONZALEZ

    2016-09-01

    Full Text Available This paper presents the feasibility of superhydrophobic films to create the nano-lotus leaf effect on concrete surface and their influence on sound absorption and friction properties of concrete for application in rigid pavements. The study involved an evaluation of nanomaterials at the laboratory scale to analyze the effects of microtexture modification on the friction and sound absorption of concrete pavement. A number of laboratory specimens were produced by applying different amounts of nano-lotus leaf coating on the top of the textured concrete surface. The British pendulum test was used to measure the friction number, and an impedance tube was used to determine the sound absorption coefficient. Laboratory results indicate that nano-lotus leaf coated concrete can maintain the required friction property for rigid pavement, but may not increase the noise absorption. Further research must be carried out to determine possible benefit of the lotus leaf effect for reducing hydroplaning, particularly during heavy rainfall.DOI: http://dx.doi.org/10.5755/j01.ms.22.3.7638

  15. Dry friction and wear properties of intermetallics MoSi2

    Institute of Scientific and Technical Information of China (English)

    张厚安; 刘心宇; 陈平; 唐果宁

    2001-01-01

    The dry friction and wear properties of intermetallics MoSi2 against 45 steel under different loads were investigated with M-2 type friction and wear tester. Scanning electric microscope (SEM) equipment with microprobe was employed to analyze the morphology of the friction surface. Results show that the dry friction and wear properties are deeply affected by load. The wear rate of MoSi2 at the load of 80 N is the maximum which is 36.1 μg/m. On the condition of the load of 150 N, MoSi2 material has the better friction and wear properties: friction coefficient is 0.28 and wear rate is 10.6μg/m. With the load increasing, the main friction mechanisms change from microslip and plastic deformation to adhesive effect, and the main wear mechanisms change from plough-groove wear and oxidation-fatigue wear to adhesive wear.

  16. Comparative Evaluation of Frictional Properties, Load Deflection Rate and Surface Characteristics of Different Coloured TMA Archwires - An Invitro Study.

    Science.gov (United States)

    Aloysius, Arul Pradeep; Vijayalakshmi, Devaki; Deepika; Soundararajan, Nagachandran Kandasamy; Manohar, Vijaykumar Neelam; Khan, Nayeemullah

    2015-12-01

    During tooth movement the success of sliding mechanics is dependent upon various factors which include frictional resistance at bracket-archwire interface, surface roughness of archwire materials and elastic properties of archwires. Ion implantation techniques reduce the frictional force and allow better tooth movement clinically. The main objective of this study was to evaluate and compare the frictional properties, load deflection rate and surface characteristics of Honey dew and Purple coloured (Ion implanted) TMA wires with uncoated TMA wires. Fifteen archwire samples were divided into three groups comprising of five samples in each group namely, Group I - Uncoated TMA wires (Control), Group II - Purple coloured TMA wires and Group III- Honey dew TMA wires. Friction and load deflection rate testing were performed with the Instron Universal testing machine and the surface characteristics of the wires were evaluated before and after sliding using Scanning Electron Microscope. The mean frictional characteristics and surface roughness for Honey dew TMA wires was lesser than Purple coloured TMA wires which was statistically significant. Both the coloured TMA wires showed low frictional characteristics and less surface roughness than uncoated TMA wires (the control). The mean load deflection rate was low for both coloured ion implanted TMA wires when compared to uncoated TMA wires which was statistically significant. Coloured ion implanted TMA wires, especially Honey dew TMA wires have low friction, low load deflection rate and improved surface finish. Hence they can be used in frictionless as well as sliding mechanics, where uncoated TMA wires are inefficient.

  17. Frictional and mechanical properties of diamond-like carbon-coated orthodontic brackets.

    Science.gov (United States)

    Muguruma, Takeshi; Iijima, Masahiro; Brantley, William A; Nakagaki, Susumu; Endo, Kazuhiko; Mizoguchi, Itaru

    2013-04-01

    This study investigated the effects of a diamond-like carbon (DLC) coating on frictional and mechanical properties of orthodontic brackets. DLC films were deposited on stainless steel brackets using the plasma-based ion implantation/deposition (PBIID) method under two different atmospheric conditions. As-received metal brackets served as the control. Two sizes of stainless steel archwires, 0.018 inch diameter and 0.017 × 0.025 inch cross-section dimensions, were used for measuring static and kinetic friction by drawing the archwires through the bracket slots, using a mechanical testing machine (n = 10). The DLC-coated brackets were observed with a scanning electron microscope (SEM). Values of hardness and elastic modulus were obtained by nanoindentation testing (n = 10). Friction forces were compared by one-way analysis of variance and the Scheffé test. The hardness and elastic modulus of the brackets were compared using Kruskal-Wallis and Mann-Whitney U-tests. SEM photomicrographs showed DLC layers on the bracket surfaces with thickness of approximately 5-7 μm. DLC-coated brackets deposited under condition 2 showed significantly less static frictional force for the stainless steel wire with 0.017 × 0.025 inch cross-section dimensions than as-received brackets and DLC-coated brackets deposited under condition 1, although both DLC-coated brackets showed significantly less kinetic frictional force than as-received brackets. The hardness of the DLC layers was much higher than that of the as-received bracket surfaces. In conclusion, the surfaces of metal brackets can be successfully modified by the PBIID method to create a DLC layer, and the DLC-coating process significantly reduces frictional forces.

  18. The Influence of Normal Load and Sliding Speed on Frictional Properties of Skin

    Institute of Scientific and Technical Information of China (English)

    Wei Tang; Shi-rong Ge; Hua Zhu; Xi-chuan Cao; Ning Li

    2008-01-01

    The study of frictional properties of human skin is important for medical research, skin care products and textile exploitation. In order to investigate the influence of normal load and sliding speed on the frictional properties of skin and its possible mechanism, tests were carried out on a multi-specimen friction tester. When the normal load increases from 0.1 N to 0.9 N,normal displacement and the friction coefficient of skin increase. The friction coefficient is dependent on the load, indicating that both adhesion and deformation contribute to the friction behaviour. The deformation friction was interpreted using the plough model of fiiction. When sliding speed increases from 0.5 mm·s-1 to 4 mm·s-1,the friction coefficient increases and "stick-slip" phenomena increase, indicating that hysteretic friction contributes to the friction. The hysteretic friction was interpreted using schematic of energy translation during the rigid spherical probe sliding on the soft skin surface, which provides an explanation for the influence of the sliding speed on the frictional characteristics of the skin.

  19. HEAT INPUT AND POST WELD HEAT TREATMENT EFFECTS ON REDUCED-ACTIVATION FERRITIC/MARTENSITIC STEEL FRICTION STIR WELDS

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Wei [ORNL; Chen, Gaoqiang [ORNL; Chen, Jian [ORNL; Yu, Xinghua [ORNL; Frederick, David Alan [ORNL; Feng, Zhili [ORNL

    2015-01-01

    Reduced-activation ferritic/martensitic (RAFM) steels are an important class of structural materials for fusion reactor internals developed in recent years because of their improved irradiation resistance. However, they can suffer from welding induced property degradations. In this paper, a solid phase joining technology friction stir welding (FSW) was adopted to join a RAFM steel Eurofer 97 and different FSW parameters/heat input were chosen to produce welds. FSW response parameters, joint microstructures and microhardness were investigated to reveal relationships among welding heat input, weld structure characterization and mechanical properties. In general, FSW heat input results in high hardness inside the stir zone mostly due to a martensitic transformation. It is possible to produce friction stir welds similar to but not with exactly the same base metal hardness when using low power input because of other hardening mechanisms. Further, post weld heat treatment (PWHT) is a very effective way to reduce FSW stir zone hardness values.

  20. Comparison of fatigue property between friction stir and TIG welds

    Institute of Scientific and Technical Information of China (English)

    Xunhong Wang; Kuaishe Wang; Yang Shen; Kai Hu

    2008-01-01

    The alloy 5052 was welded by friction stir welding (FSW) and tungsten inert gas (TIG) welding. The effect of welding processes (FSW and TIG) on the fatigue properties of 5052 aluminum-welded joints was analyzed based on fatigue testing, and the S-N curve of the joints were established. The results show that the fatigue properties of FSW welded joints are better than those of TIG welded joints. The fatigue strength is determined as 65 Mpa under 106 cycling of fatigue life. The microstructure of joints is fine grains and narrow HAZ zone in FSW welds, which inhibit the growth of cracks and produce high fatigue life compared with that of TIG welds. Fracture morphologies also show that the fatigue fracture results from weld defects.

  1. Effect of infiltrating Si on friction properties of C/C composites

    Institute of Scientific and Technical Information of China (English)

    马运柱; 黄伯云; 熊翔; 肖鹏; 李江鸿; 黄启忠; 易茂忠

    2003-01-01

    In order to improve the friction-wear properties of the C/C composites for aircraft brake pairs, the fric-tion behavior of samples with infiltrating Si was investigated. The influence of Si smearing thickness on frictionproperties was studied in detail. The results show that with the increase of Si smearing thickness and β-SiC content,the friction coefficient reduces from 0.40 to 0.30; the linear wear of stators increases from 2.0 μm to 18.9 μm percycle, and that of rotors increases from 1.4 μm to 22.6 μm per cycle; mass wear of stators increases from 20.6 mgto 126.9 mg per cycle, and that of rotors increases from 13.7 mg to 166.2 mg per cycle. On the other hand, whena large number of inhomogeneous β-SiC particulates are performed, friction surfaces of the samples flake off layer bylayer and many nicks are observed.

  2. The Architecture and Frictional Properties of Faults in Shale

    Science.gov (United States)

    De Paola, N.; Imber, J.; Murray, R.; Holdsworth, R.

    2015-12-01

    The geometry of brittle fault zones in shale rocks, as well as their frictional properties at reservoir conditions, are still poorly understood. Nevertheless, these factors may control the very low recovery factors (25% for gas and 5% for oil) obtained during fracking operations. Extensional brittle fault zones (maximum displacement oil mature black shales in the Cleveland Basin (UK). Fault cores up to 50 cm wide accommodated most of the displacement, and are defined by a stair-step geometry. Their internal architecture is characterised by four distinct fault rock domains: foliated gouges; breccias; hydraulic breccias; and a slip zone up to 20 mm thick, composed of a fine-grained black gouge. Hydraulic breccias are located within dilational jogs with aperture of up to 20 cm. Brittle fracturing and cataclastic flow are the dominant deformation mechanisms in the fault core of shale faults. Velocity-step and slide-hold-slide experiments at sub-seismic slip rates (microns/s) were performed in a rotary shear apparatus under dry, water and brine-saturated conditions, for displacements of up to 46 cm. Both the protolith shale and the slip zone black gouge display shear localization, velocity strengthening behaviour and negative healing rates, suggesting that slow, stable sliding faulting should occur within the protolith rocks and slip zone gouges. Experiments at seismic speed (1.3 m/s), performed on the same materials under dry conditions, show that after initial friction values of 0.5-0.55, friction decreases to steady-state values of 0.1-0.15 within the first 10 mm of slip. Contrastingly, water/brine saturated gouge mixtures, exhibit almost instantaneous attainment of very low steady-state sliding friction (0.1), suggesting that seismic ruptures may efficiently propagate in the slip zone of fluid-saturated shale faults. Stable sliding in faults in shale can cause slow fault/fracture propagation, affecting the rate at which new fracture areas are created and, hence

  3. Microstructural Investigation and Evaluation of Mechanical Properties in Friction Stir Welded Joints

    Science.gov (United States)

    2011-08-01

    Properties in Friction Stir Welded Joints BRIAN JUSTUSSON MENTORS: DR. CONSTANTINE FOUNTZOULAS AND DR. CHIAN-FONG YEN U.S. ARMY RESEARCH LABORATORY...2011 4. TITLE AND SUBTITLE Microstructural Investigation And Evaluation Of Mechanical Properties In Friction Stir Welded Joints 5a. CONTRACT NUMBER...of the weldment can be costly and needs to be addressed. Friction Stir Welding (FSW) is a solid-state welding technique, which involves local softening

  4. Elastic Properties and Internal Friction of Two Magnesium Alloys at Elevated Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Freels, M.; Liaw, P. K.; Garlea, E.; Morrell, J. S.; Radiovic, M.

    2011-06-01

    sample of known geometry, dimensions, and mass. In addition, RUS allows determination of internal friction, or damping, at different frequencies and temperatures. Polycrystalline pure magnesium (Mg) exhibits excellent high damping properties. However, the poor mechanical properties limit the applications of pure Mg. Although alloying can improve the mechanical properties of Mg, the damping properties are reduced with additions of alloying elements. Therefore, it becomes necessary to study and develop Mg-alloys with simultaneous high damping capacity and improved mechanical properties. Moreover, studies involving the high temperature dynamic elastic properties of Mg alloys are limited. In this study, the elastic properties and internal friction of two magnesium alloys were studied at elevated temperatures using RUS. The effect of alloy composition and grain size was investigated. The wrought magnesium alloys AZ31 and ZK60 were employed. Table 1 gives the nominal chemical compositions of these two alloys. The ZK60 alloy is a commercial extruded plate with a T5 temper, i.e. solution-treated at 535 C for two hours, quenched in hot water, and aged at 185 C for 24 hours. The AZ31 alloy is a commercial rolled plate with a H24 temper, i.e. strain hardened and partially annealed.

  5. Frictional properties of lubrication greases with the addition of nickel nanoparticles in pneumatic cylinder

    Science.gov (United States)

    Chang, Ho; Lan, Chou-Wei; Guo, Jia-Bin

    2011-12-01

    This paper studies the influence of addition of 100 nm diameter nickel nano-particles on the friction properties of synthetic grease (Li base, VG100) in pneumatic cylinder. The friction force test of pneumatic cylinder equipment measures the frictional force between seal and cylinder bore in pneumatic cylinders. The lubricants with addition of nickel nano-particles were used for lubricating the contact interface between seal and cylinder bore. The friction force test equipment employ a load cell force sensor to measure the friction force between seals and cylinder bores. Results obtained from experimental tests are compared to determine the friction force between seals and cylinder bore in pneumatic cylinders. The study leads to the conclusion that the addition of nickel nano-particles to synthetic grease results in a decrease in friction force between seals and cylinder bores in pneumatic cylinder. This tribological behavior is closely related to the deposition of nano-particles on the rubbing surfaces

  6. Texturing of UHMWPE surface via NIL for low friction and wear properties

    Energy Technology Data Exchange (ETDEWEB)

    Kustandi, Tanu Suryadi; Low, Hong Yee [Institute of Materials Research and Engineering, 3 Research Link, Singapore 117602 (Singapore); Choo, Jian Huei; Sinha, Sujeet K, E-mail: hy-low@imre.a-star.edu.s, E-mail: mpesks@nus.edu.s [Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576 (Singapore)

    2010-01-13

    Wear is a major obstacle limiting the useful life of implanted ultra-high molecular weight polyethylene (UHMWPE) components in total joint arthroplasty. It has been a continuous effort in the implant industry to reduce the frictional wear problem of UHMWPE by improving the structure, morphology and mechanical properties of the polymer. In this paper, a new paradigm that utilizes nanoimprint lithography (NIL) in producing textures on the surface of UHMWPE is proposed to efficiently improve the tribological properties of the polymer. Friction and wear experiments were conducted on patterned and controlled (non-patterned) UHMWPE surfaces using a commercial tribometer, mounted with a silicon nitride ball, under a dry-sliding condition with normal loads ranging from 60 to 200 mN. It has been shown that the patterned UHMWPE surface showed a reduction in the coefficient of friction between 8% and 35% as compared with the controlled (non-patterned) surface, depending on the magnitude of the normal load. Reciprocating wear experiments also showed that the presence of surface textures on the polymer resulted in lower wear depth and width, with minimal material transfer to the sliding surface.

  7. Influence of chain ordering on frictional properties of self-assembled monolayers (SAMs) in nano-lubrication.

    Science.gov (United States)

    Cheng, Hefa; Hu, Yuanan

    2012-01-01

    Adhesion of organic films to substrates is important in applications that involve solid surfaces in sliding contact. Although the thickness of self-assembled monolayers (SAMs) is only a few nanometers, they can drastically modify the frictional properties of the underlying substrate, and thus have great potential for serving as boundary lubricants on micro- and nano-scales. This review focuses on the relationship between the structural and compositional properties of SAMs and their frictional response. Adhesion of SAMs to the substrate surface usually occurs through chemisorption of the head groups on the constituent molecules, with molecular interactions such as van der Waals interactions playing important roles in organizing the molecules into surface films, and in controlling their tribological behavior. The durability and wear resistance of SAMs depend on the nature and strength of the binding forces between the head groups and the substrate surfaces, while the adhesion and friction forces are strongly influenced by the interactions of the terminal groups with the counterfaces. Results from both experimental measurements and molecular dynamics simulations consistently indicate that structural ordering of alkyl chains in SAMs reduces their frictional response, and that SAMs formed by molecules with alkyl chains longer than 8 to 10 methylene units are well organized, exhibiting low levels of friction. Less densely packed or more disordered monolayers inherently possess greater numbers of conformational defects at room temperature and present lower barriers to defect creation under the action of a contacting surface, and thus exhibit higher friction. Cross-linking of the spacer chains can reduce the frictional response of disordered films by increasing the chain ordering, but has little impact on SAMs that are already well ordered. On the other hand, introduction of sterically demanding terminal groups and dissimilar molecules reduces molecular ordering in SAMs

  8. The analysis of the influence of the material antifrictional layer frictional properties on the parameters of the spherical bearing contact zone

    Science.gov (United States)

    Kamenskikh, A. A.; Trufanov, N. A.

    2017-02-01

    The paper presents data on the influence of the frictional properties of a material antifrictional layer on the parameters of the spherical bearing contact zone. The dependences of the friction coefficient from the load were obtained as a result of the study. Series of numerical experiments were conducted to investigate the frictional properties of a materials contact pair in the work. Regularities of the relative contact pressure and relative contact tangential stress were obtained for seven variants of the load-friction coefficient for the spherical bearing with a layer of modified fluoroplastic. The study puts emphasis on the fact that that adhesion area of the contact surface is reduced and the load is increased taking into account the fact that the friction properties of the layer has been fixed in the study.

  9. The influence of high temperatures on the tribological properties of automotive friction materials

    Science.gov (United States)

    Savage, Luke

    Temperatures of over 800C can be generated at the frictional interface within the brake systems of large vehicles, such high temperatures result in severe wear at the frictional interface, and can also lead to a very dangerous condition known as brake fade, characterised by a sharp fall in the coefficient of friction between the pad and disc, resulting in a catastrophic loss of braking efficiency. Common friction materials are very specialised composites often containing up to 15 components bound together within a phenolic resin matrix. The high temperature behaviour of the various constituents of friction materials were investigated using thermogravimetric analysis, focusing in particular on the thermal decomposition of the phenolic resin matrix material, where it has been firmly established that the thermal decomposition products of phenolic resin are the primary cause of brake fade. This has lead to the development of a novel approach for reducing fade in conventional resin based friction materials, involving a partial carbonisation to 400C. The high temperature wear characteristics of both modified and conventional friction materials were examined using standard dynamometer tests, as well as a 'continuous drag' type test machine, equipped with a heating facility. During this study a number of factors were identified as the main influences on the overall wear behaviour of friction materials. These included test temperature, sample test history, and the various effects of friction films, which were the subject of a detailed analysis. The formation of friction films was found to be an important facet of a successful friction material, producing a reduction in wear at the frictional interface. Films were examined and analysed using EDX, SEM, and X-ray diffraction techniques, which revealed the presence of a high proportion of magnetite (Fe3O4), containing iron which originated from the disc surface. It was established that the incorporation of iron in friction

  10. Using squeeze-film effect to reduce surface friction in electrostatic actuators

    DEFF Research Database (Denmark)

    Zsurzsan, Tiberiu-Gabriel; Yamamoto, Akio; Zhang, Zhe;

    2015-01-01

    This paper presents a method of reducing load friction in two degrees-of-freedom (2-DOF) transparent electrostatic induction actuator by using vibration-induced squeeze film effect. An experimental set-up was built to prove the concept. An overall 70% reduction in required driving voltage...

  11. Using squeeze-film effect to reduce surface friction in electrostatic actuators

    DEFF Research Database (Denmark)

    Zsurzsan, Tiberiu-Gabriel; Yamamoto, Akio; Zhang, Zhe

    2015-01-01

    This paper presents a method of reducing load friction in two degrees-of-freedom (2-DOF) transparent electrostatic induction actuator by using vibration-induced squeeze film effect. An experimental set-up was built to prove the concept. An overall 70% reduction in required driving voltage...

  12. Apparatus and method to reduce wear and friction between CMC-to-metal attachment and interface

    Energy Technology Data Exchange (ETDEWEB)

    Cairo, Ronald Ralph; Parolini, Jason Robert; Delvaux, John McConnell

    2016-11-22

    An apparatus to reduce wear and friction between CMC-to-metal attachment and interface, including a metal layer configured for insertion between a surface interface between a CMC component and a metal component. The surface interface of the metal layer is compliant relative to asperities of the surface interface of the CMC component. A coefficient of friction between the surface interface of the CMC component and the metal component is about 1.0 or less at an operating temperature between about 300.degree. C. to about 325.degree. C. and a limiting temperature of the metal component.

  13. Investigation Antiwear Properties of Lubricants with the Geo-Modifiers of Friction

    Directory of Open Access Journals (Sweden)

    I. Levanov

    2017-09-01

    Full Text Available The article describes the influence of the geo-modifiers of friction on the antiwear properties of lubricants. Geo-modifiers of friction are the fine powders of mineral materials. This work is directed on the investigation the influence of the geo-modifiers of friction in the form of the hard lubricant compositions, which based on a mineral serpentine, on the anti-wear properties of greases and gear oils. This composition is the fine powder serpentine with the addition of components such as chalk, borax, kaolin and talc. We compared the antiwear properties of the greases without geo-modifiers of friction and the antiwear properties of greases containing the geo-modifiers of friction from 0.5 % to 3 %. The Litol-24 and transmission oil TAD-17 was used for testihg. The four-ball machine of friction was used for tests accordance with GOST 9490-75. As geo-modifiers the serpentine was used, the fraction of which has a size from 0.87 microns to 2.2 microns. Such parameter as the wear scar diameter was used for evaluation of the antiwear properties of lubricants. As a result of tests it was established that the antiwear greases properties improved on 26-50 % depending on the concentration of the geo-modifiers of friction based on the pure serpentine.

  14. Synthesis and characterization of a lubricin mimic (mLub) to reduce friction and adhesion on the articular cartilage surface.

    Science.gov (United States)

    Lawrence, Alexandra; Xu, Xin; Bible, Melissa D; Calve, Sarah; Neu, Corey P; Panitch, Alyssa

    2015-12-01

    The lubricating proteoglycan, lubricin, facilitates the remarkable low friction and wear properties of articular cartilage in the synovial joints of the body. Lubricin lines the joint surfaces and plays a protective role as a boundary lubricant in sliding contact; decreased expression of lubricin is associated with cartilage degradation and the pathogenesis of osteoarthritis. An unmet need for early osteoarthritis treatment is the development of therapeutic molecules that mimic lubricin function and yet are also resistant to enzymatic degradation common in the damaged joint. Here, we engineered a lubricin mimic (mLub) that is less susceptible to enzymatic degradation and binds to the articular surface to reduce friction. mLub was synthesized using a chondroitin sulfate backbone with type II collagen and hyaluronic acid (HA) binding peptides to promote interaction with the articular surface and synovial fluid constituents. In vitro and in vivo characterization confirmed the binding ability of mLub to isolated type II collagen and HA, and to the cartilage surface. Following trypsin treatment to the cartilage surface, application of mLub, in combination with purified or commercially available hyaluronan, reduced the coefficient of friction, and adhesion, to control levels as assessed over macro-to micro-scales by rheometry and atomic force microscopy. In vivo studies demonstrate an mLub residency time of less than 1 week. Enhanced lubrication by mLub reduces surface friction and adhesion, which may suppress the progression of degradation and cartilage loss in the joint. mLub therefore shows potential for treatment in early osteoarthritis following injury.

  15. A Proof of Concept Experiment for Reducing Skin Friction by Using a Micro-Blowing Technique

    Science.gov (United States)

    Hwang, Danny P.

    1996-01-01

    A proof of concept experiment for reducing skin friction has been conducted in the Advanced Nozzle and Engine Components Test Facility at the NASA Lewis Research Center. In this unique concept, called the micro-blowing technique (MBT), an extremely small amount of air was blown vertically through very small holes to reduce the surface roughness and to control the gradient of the flow velocity profile on the surface thereby reducing skin friction. Research revealed that the skin was the most important factor to make this concept achievable. The proposed skin consisted of two layers. The inner layer was a low permeable porous skin for distributing the blowing air evenly while the outer layer with small holes controlled the vertical or nearly vertical blowing air. Preliminary experimental results showed that the MBT has the potential of a very large reduction in skin friction below the skin friction of a nonporous plain flat plate. Of the skins tested, three have been identified as the MBT skins. They provided very low unblown skin friction such that a large skin friction reduction, below a flat plate value, was achieved with very small amounts of blowing air. The reduction in skin friction of 55 percent was achieved at the Mach number of 0.3 for the exhaust pressure of 0.85 atm, and 60 percent reduction was obtained for the exhaust pressure of 0.24 atm (corresponding to 10 700-m altitude) at the same Mach number. A significant reduction in skin friction of over 25 percent was achieved for the exhaust pressure of 0.24 atm at the Mach number of 0.7. This implied that the MBT could be applied to a wide range of flight conditions. It is also believed that additional 10 percent reduction could be obtained by eliminating the gap between the inner layer and the outer layer. The aspect ratio of the vertical small holes for the outer layer of the MBT skin should be larger than 4 based on the preliminary conclusion from this test. Many experiments are needed to find out the

  16. DRA-10. Friction reducing additives: The activity 1987 - 1996; DRA-10. Friktionsnedsaettande tillsatser: Verksamheten 1987 - 1996

    Energy Technology Data Exchange (ETDEWEB)

    Bjurstroem, H. [AaF Energikonsult Stockholm AB (Sweden)

    1996-06-01

    The purpose of the work was to facilitate the introduction of the additives into Swedish district heating networks. R and D work has been performed in order to build up know-how that allows an assessment of the usefulness of the additives and to investigate questions that have not been treated in foreign programs, but are important in a Swedish context. The research has been focused on hydrodynamic problems and environmental questions. The influence of wall roughness has been investigated using three corrugated tubes as model rough-walled tubes. The turbulent flow is fully rough in one of the tubes: reduction deteriorates but the maximal shear stresses that can be withstood by the solution before friction reduction brakes down are increased. Flow in the other two tubes is transitionally rough and the wall structure does not affect friction reduction. In a naturally rough tube, reduction also deteriorates and critical shear stresses increase in spite of the flow being transitionally rough. The results are important for the design of heat exchangers. Pyranine, which is a leak tracing substance, reduces the domain of temperatures and mean wall shear stresses where friction reduction is obtained with cationic additive Habon-G. However, this effect may be overcome by increasing the additive concentration. Regarding environmental questions, only preliminary results are available and the main part of the work remains to be done. The information needs for an environmental assessment of the use of friction reducing additives has been defined. 27 refs

  17. Experimental study of mechanical properties of friction welded AISI 1021 steels

    Indian Academy of Sciences (India)

    Amit Handa; Vikas Chawla

    2013-12-01

    Friction welding is widely used as a mass production method in various industries. In the present study, an experimental set-up was designed in order to achieve friction welding of plastically deformed AISI 1021 steels. In this study, low alloy steel (AISI 1021) was welded under different welding parameters and afterwards the mechanical properties such as tensile strength, impact strength and hardness were experimentally determined. On the basis of the results obtained from the experimentation, the graphs were plotted. It is the strength of welded joints, which is fundamental property to the service reliability of the weldments and hence present work was undertaken to study the influence of axial pressure and rotational speed in friction welded joints. Axial pressure and rotational speed are the two major parameters which can influence the strength and hence the mechanical properties of the friction welded joints. Thus the axial pressure and rotational speed were taken as welding parameters, which reflect the mechanical properties.

  18. Effects of Rare Earths on Properties and Microstructure of Automotive Friction Materials

    Institute of Scientific and Technical Information of China (English)

    Xu Yue; Lu Liguo; Bai Jing

    2007-01-01

    Rare earth compounds as modifiers used widely in modern friction materials can enhance the interracial binding of constituents of materials and improve the comprehensive properties of materials evidently. However, there are still few reports on application of rare earth in automotive friction materials. In order to study the effect mechanism of rare earths in friction materials, a rare earth compound was selected as additive and the effects of materials doped with or without rare earth on friction and wear properties of materials were studied. The microstructure and worn surface morphology were observed by scanning electron microscopy and the macro performance was discussed. Worn surface element constitution of materials was analyzed by energy dispersive spectroscopy. Effect mechanism of rare earths on friction and wear behaviors of friction materials were discussed. The results show that doping rare earths in friction materials can stabilize friction Coefficient, lower the wear rate of materials and increase the impact strength of materials. The flexibility and fracture resistance of materials is greatly improved. Worn surface of materials doped with rare earth is compact and the surface adhesion is greatly enhanced.

  19. The distribution of superficial zone protein (SZP)/lubricin/PRG4 and boundary mode frictional properties of the bovine diarthrodial joint.

    Science.gov (United States)

    Peng, Gordon; McNary, Sean M; Athanasiou, Kyriacos A; Reddi, A Hari

    2015-09-18

    The diarthrodial, knee joint is a remarkably efficient bearing system; articulating cartilage surfaces provide nearly frictionless performance with minimal wear. The low friction properties of the cartilage surfaces are due in part to the boundary lubricant, superficial zone protein (SZP); also known as lubricin or proteoglycan 4 (PRG4). In previous work, SZP localization and cartilage friction were examined across the femoral condyles. Studies in the literature have also individually investigated the other tissues that comprise the human knee and four-legged animal stifle joint, such as the meniscus or patella. However, comparisons between individual studies are limited due to the variable testing conditions employed. Friction is a system property that is dependent on the opposing articulating surface, entraining speed, and loading. A cross-comparison of the frictional properties and SZP localization across the knee/stifle joint tissues utilizing a common testing configuration is therefore needed. The objective of this investigation was to determine the friction coefficient and SZP localization of the tissues comprising the three compartments of the bovine stifle joint: patella, patellofemoral groove, femoral condyles, meniscus, tibial plateau, and anterior cruciate ligament. The boundary mode coefficient of friction was greater in tissues of the patellofemoral compartment than the lateral and medial tibiofemoral compartments. SZP immunolocalization followed this trend with reduced depth of staining and intensity in the patella and patellofemoral groove compared to the femoral condyles and tibial plateau. These results illustrate the important role of SZP in reducing friction in the tissues and compartments of the knee/stifle joint.

  20. Friction Wear Property of Brake Materials by Copper-based Powder Metallurgy With Various Brake Speeds

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-xiu; GAO Hong-xia; WEI Xiu-lan

    2004-01-01

    The experiment is conducted on MM-1000 friction test machine, which tests friction wear property of copper-based brake materials by powder metallurgy at different brake speeds. It shows that the coefficient of friction and wear volume are greatly influenced by brake speed. When the brake speed is 4000 r/min, which is a bit higher, the material still has a higher coefficient of friction with 0.47. When the brake speed is over 4000r/min, the coefficient of friction decreased rapidly. When the brake speed is 3000r/min, the material's wear is in its minimum. That is to say no matter how higher or lower the brake speed is the wear volume is bigger relatively. With the brake speed of the lower one it mainly refers to fatigue wear; while of higher one it mainly refers to abradant and oxidation wear.

  1. Reducing friction-induced vibration using intelligent active force control (AFC) with piezoelectric actuators

    Indian Academy of Sciences (India)

    S M Hashemi-Dehkordi; A R Abu-Bakar; M Mailah

    2012-12-01

    In this paper, a novel approach to reduce the effect of mode coupling that causes friction induced vibration (FIV) is proposed by applying an intelligent active force control (AFC)-based strategy employing piezoelectric actuators with hysteresis effect to a simplified two degree-of-freedom mathematical model of a friction-induced vibration system. At first, the model is simulated and analysed using a closed loop pure Proportional-Integral-Derivative (PID) controller. Later, it is integrated with the intelligent AFC with fuzzy logic (FL) estimator and simulated under similar operating condition. After running several tests with different sets of operating and loading conditions, the results both in time and frequency domains show that the PID controller with the intelligent AFC is much more effective in reducing the vibration, compared to the pure PID controller alone.

  2. Friction and wear properties of pitch/resin densified carbon-carbon composites used for airbrakes

    Institute of Scientific and Technical Information of China (English)

    巩前明; 黄伯云; 黄启忠; 李江鸿; 吴凤秋; 李晔

    2002-01-01

    By use of X-ray diffractometry and scanning electron microscope (SEM), the friction and wear results obtained from MM-1000 dynamometer tests of CVI pitch/resin C/C composites were analyzed. By investigating the factors that affected the friction and wear properties, such as matrix carbon, application environment, graphitization degree and brake pressure, etc, friction and wear mechanism of carbon materials were probed. The results indicate that pitch densified CVI initially treated composite is more graphitizable with its graphitization degree up to 62%, and which results in uniform small debris easier to generate, more smooth friction curves with the coefficient of 0.3~0.4 and relatively higher linear wear and mass loss, compared with CVI/resin C/C composites. It was further proved by SEM observation that tribological behavior of C/C composite was system dependent. Factors determining the friction and wear properties such as the size of debris and its influence on friction and wear, brake pressure, graphization degree and debris film formation interacted and affected each other. The friction and wear mechanism of C/C composites under different high temperature treatments needs further research.

  3. Tribological Properties of the Semi-metallic Friction Material with Nano-SiC

    Institute of Scientific and Technical Information of China (English)

    CHENDong; HUANGPing; ZHUWen-jian

    2004-01-01

    The tribological properties of the semi-metallic friction materials with nano-SiC were studied by the contrast experiments. The experimental result indicates that when the nano-SiC powder substitutes the generalSiC powder, the friction coefficient is not obviously improved. On the contrary, the wear rate increases a little.The friction surfaces and the mixed powder were examined by a scanning electron microscope and the experimental data were analysed. The main reason, which leads to the high wear, is found.

  4. On the relationship between forearc deformation, frictional properties and megathrust earthquakes

    Science.gov (United States)

    Cubas, Nadaya; Singh, Satish

    2014-05-01

    A better understanding of the relation between the structural geology and the morphology of forearc wedges with frictional properties could provide insights on earthquake mechanics. Therefore, we study, with simple mechanical analysis allowing for inverse studies, the three subduction zones that produced the major earthquakes of the 21st century : Central Chile (Maule 2010 Mw 8.8), NE Japan (Tohoku-Oki 2011 Mw 9.0) and Sumatra (Sumatra-Andaman 2004 Mw 9.1, Nias 2005 Mw 8.7). We first apply the critical taper theory that yields the effective friction of the subduction interface, the wedge internal friction and pore fluid pressure. We then apply the limit analysis approach to constrain variations of frictional properties along the megathrust from the location and style of forearc faulting. We show that seismic ruptures most often coincide with the mechanically stable part of the wedge whereas regions undergoing aseismic slip are at critical state, consistent with evidence for active deformation. In the rupture area, we found a low effective dynamic friction, probably reflecting strong dynamic weakening. Where no frontal rupture was observed, we obtain intermediate values of long-term effective friction along the frontal aseismic zone, implying hydrostatic pore pressure. On the contrary, where the rupture reached the seafloor (Tohoku-Oki earthquake, parts of the Sumatra-Andaman 2004 earthquake), a very low long-term effective friction and a high pore pressure are observed. The difference of properties of the frontal wedge might reflect differences in permeability. A lower permeability would enhance dynamic weakening and allow for frontal propagation of ruptures. We also show that spatial variations of frictional properties between aseismic and seismogenic zones can lead to the activation of splay faults. We also show that a high pore pressure along accretionary wedges can change the vergence of frontal thrusts. As a consequence, wedge morphology and deformation can be

  5. Reducing friction in tilting-pad bearings by the use of enclosed recesses

    DEFF Research Database (Denmark)

    Heinrichson, Niels; Santos, Ilmar

    2008-01-01

    A three-dimensional thermoelastohydrodynamic model is applied to the analysis of tilting-pad bearings with spherical pivots and equipped with deep recesses in the high-pressure regions. A potential for a 10-20% reduction in the friction loss compared to conventional plain bearing pads is documented....... Design suggestions minimizing the power loss are given for various length-to-width ratios. The tilting angle in the sliding direction is more sensitive to correct positioning of the pivot point than conventional bearing pads. Improving the performance by equipping a tilting-pad bearing with a deep recess...... therefore requires accurate analysis and design of the bearing. Similarly, a high sensitivity perpendicular to the sliding direction suggests that this method of reducing friction is more feasible when using line pivots or spring beds than when using spherical pivots for controlling the tilting angle....

  6. Nanomechanical properties of friction stir welded AA6082-T6 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Koumoulos, E.P. [National Technical University of Athens, Department of Chemical Engineering 9 Heroon, Polytechneiou st., Zografos, Athens, GR-157 80 (Greece); Charitidis, C.A., E-mail: charitidis@chemeng.ntua.gr [National Technical University of Athens, Department of Chemical Engineering 9 Heroon, Polytechneiou st., Zografos, Athens, GR-157 80 (Greece); Daniolos, N.M.; Pantelis, D.I. [National Technical University of Athens, Department of Naval Architecture and Marine Engineering 9 Heroon, Polytechneiou st., Zografos, Athens, GR-157 80 (Greece)

    2011-11-25

    Lightweight alloys are of major concern, due to their functionality and applications in transport and industry applications. Friction stir welding (FSW) is a solid-state welding process for joining aluminum and other metallic alloys and has been employed in aerospace, rail, automotive and marine industries. Compared to the conventional welding techniques, FSW produces joints which do not exhibit defects caused by melting. The objective of the present study is to investigate the surface hardness (H) and elastic modulus (E) in friction stir welded aluminum alloy AA6082-T6. The findings of the present study reveal that the welding process softens the material, since the weld nugget is the region where the most deformations are recorded (dynamic recrystallization, production of an extremely fine, equiaxial structure), confirmed by optical microscopy and reduced nanomechanical properties in the welding zone. A yield-type pop-in occurs upon low loading and represents the start of phase transformation, which is monitored through a gradual slope change of the load-displacement curve. Significant pile-up is recorded during nanoindentation of the alloy through SPM imaging.

  7. Friction and wear properties of N+ ion implanted nylon 1010

    Institute of Scientific and Technical Information of China (English)

    XIONG Dang-sheng

    2004-01-01

    The PA1010 was implanted with 450 keV N+ ions to three doses of 5× 1014 cm-2 , 2.5× 1015 cm-2 and 1.25 × 1016 cm-2. The friction and wear behaviors of the ion implanted PA1010 disks rubbing with two ceramic (ZrO2 and Si3N4) balls were studied using a pin-on-disk tribometer under dry friction. The results shows that the wear resistance of PA1010 is increased with the increasing implantation doses. The adhesion, plastic deformation and plow groove are wearing mechanisms for un-implanted PA1010, while abrasive wear for implanted PA1010.

  8. Frictional properties of CeO$_{2}$-Al$_{2}$O$_{3}$-ZrO$_{2}$ plasma-sprayed film under mixed and boundary lubricating conditions

    CERN Document Server

    Kita, H; Osumi, K; 10.2109/jcersj.112.615

    2004-01-01

    In order to find a counterpart for reducing the frictional coefficient of Al/sub 2/O/sub 3/-ZrO/sub 2/-CeO/sub 2/ plasma-sprayed film, the sliding properties in mixed and boundary lubricating conditions was investigated. It was found that combination of a CrN- coated cast iron pin and an Al/sub 2/O/sub 3/-ZrO/sub 2/-CeO/sub 2/ plasma sprayed plate provided the lowest frictional coefficient among several combinations chosen from practical materials. The coefficient of friction was much lower than that of the materials combination widely used for piston ring and cylinder liner. It was inferred that the combination of a pin made of hard materials with high density, a smooth surface such as CrN-coated cast iron and a porous plate can reduce the frictional coefficient because less sliding resistance is implemented and porosity retains oil.

  9. Friction Stir Welding of 7075-T651 Aluminum Plates and Its Fatigue Crack Growth Property

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chi Ok; Sohn, Hye Jeong; Kim, Seon Jin [Pukyong National University, Busan (Korea, Republic of)

    2011-10-15

    Friction stir welding (FSW) method has extensively been used in manufacturing methods because of the several advantages over conventional welding methods, such as better mechanical properties, reduced occurrence of joining defects, high material saving, and low production time, etc. The aim of this paper is to review the optimal FSW conditions using the previous experimental results and is to investigate the fatigue crack growth rate in three different zones, WM, HAZ and BM for FSWed Al7075-T651 aluminum plates. As far as our experiments are concerned, the optimal conditions are obtained as rotation speed, 800rpm and travelling speed, 0.5mm/sec. The fatigue crack growth rate showed strong dependency on three different zones WM, HAZ and BM, and crack driving force.

  10. A reduced-order model from high-dimensional frictional hysteresis.

    Science.gov (United States)

    Biswas, Saurabh; Chatterjee, Anindya

    2014-06-08

    Hysteresis in material behaviour includes both signum nonlinearities as well as high dimensionality. Available models for component-level hysteretic behaviour are empirical. Here, we derive a low-order model for rate-independent hysteresis from a high-dimensional massless frictional system. The original system, being given in terms of signs of velocities, is first solved incrementally using a linear complementarity problem formulation. From this numerical solution, to develop a reduced-order model, basis vectors are chosen using the singular value decomposition. The slip direction in generalized coordinates is identified as the minimizer of a dissipation-related function. That function includes terms for frictional dissipation through signum nonlinearities at many friction sites. Luckily, it allows a convenient analytical approximation. Upon solution of the approximated minimization problem, the slip direction is found. A final evolution equation for a few states is then obtained that gives a good match with the full solution. The model obtained here may lead to new insights into hysteresis as well as better empirical modelling thereof.

  11. Structure and properties of fixed joints formed by ultrasonic-assisted friction-stir welding

    Energy Technology Data Exchange (ETDEWEB)

    Fortuna, S. V., E-mail: s-fortuna@ispms.ru; Ivanov, K. V., E-mail: ikv@ispms.ru; Eliseev, A. A., E-mail: alan@ispms.ru [Institute of Strength Physics and Materials ScienceTomsk, 634055 (Russian Federation); Tarasov, S. Yu., E-mail: tsy@ispms.ru; Ivanov, A. N., E-mail: ivan@ispms.ru; Rubtsov, V. E., E-mail: rvy@ispms.ru; Kolubaev, E. A., E-mail: eak@ispms.ru [Institute of Strength Physics and Materials ScienceTomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    This paper deals with structure and properties of aluminum alloy 7475 and its joints obtained by friction stir welding including under ultrasonic action. Microhardness measurements show that ultrasonic action increases strength properties of the joints. Optical and transmission electron microscopy reveals that this effect is related to the precipitation of tertiary coherent S-and T-phase particles.

  12. The study of ionic liquids and carbon nanotubes to reduce friction and wear in PS, PC and PMMA

    Science.gov (United States)

    Espejo Conesa, Cayetano

    Polymer nanocomposites obtained from nanophases such as carbon nanotubes represent one of the most important strategies in order to improve the mechanical properties of thermoplastic materials. The present work describes the use of carbon nanotubes and ionic liquids with the objective of reducing the friction coefficients and wear rates of polystyrene, polycarbonate and polymethylmethacrylate. New ionic nanofluids have been prepared and characterized from alkylimidazolium ionic liquids and single-walled or multiwalled carbon nanotubes. When used as external lubricants of polycarbonate--stainless steel contacts, under the pin-on-disk configuration, these new nanofluids give rise to ultralow friction coefficients and negligible wear damage. New polystyrene, polycarbonate and polymethylmethacrylate matrix nanocomposites containing carbon nanotubes or ionic liquid-modified carbon nanotubes have been obtained and characterized. The wear resistance of the new nanocomposites has been determined by pin-on-disk tests, as a function of the dispersed nanophases. The resistance to abrasive wear of the polystyrene matrix nanocomposites has been determined by multiple scratch tests, as a function of the dispersed nanophases, the normal applied load and the manufacturing process.

  13. Analysis on Tribological Properties of Potentially New Friction Material with Response Surface Method

    Institute of Scientific and Technical Information of China (English)

    XU Lei; ZHU Zhencai; CHEN Guoan; LI Yilei

    2011-01-01

    The tribological properties of newly developed friction material were evaluated by statistical analysis of the major affecting factors. The material for investigation was non-metallic friction material synergistically reinforced with aramid fibre and CaSO4 whisker, which was developed for hoisting applications in coal mine. The response surface method (RSM) was employed to analyze the material performances affected by the independent and interactive effect of the factors under the normal working condition and severe working condition, respectively. Results showed that under the normal working condition, the newly developed material exhibited stable tribological properties which were insensitive to the test conditions. While under the severe working condition, the sliding velocity was the most dominant factor affecting the friction coefficient.Additionally, compared to the commercially available material, the modified material showed superior wear resistance and thermal stability.

  14. Friction properties of amorphous carbon ultrathin films deposited by filtered cathodic vacuum arc and radio-frequency sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Matlak, J.; Komvopoulos, K., E-mail: kyriakos@me.berkeley.edu

    2015-03-31

    The friction properties of ultrathin films of amorphous carbon (a-C) deposited on Si(100) substrates by filtered cathodic vacuum arc and radio-frequency sputtering were investigated by surface force microscopy. Deposition parameters yielding a-C films with high sp{sup 3} content were used to deposit films of thickness between 5 and 35 nm. The coefficient of friction of both types of a-C films was measured with a 1-μm-radius conical diamond tip and normal loads in the range of 20–640 μN. The results show a strong dependence of the friction properties on the surface roughness, thickness, and structure of the a-C films, which are influenced by the intricacies of the deposition method. The dependence of the coefficient of friction on normal load and the dominance of adhesion and plowing friction mechanisms are interpreted in terms of the through-thickness variation of carbon atom hybridization of the a-C films. - Highlights: • Comparison of nanoscale friction properties of ultrathin amorphous carbon films. • Friction dependence on film roughness, thickness, and structure (hybridization). • Effect of through-thickness changes in carbon atom hybridization on film friction. • Explanation of film friction trends in terms of competing friction mechanisms.

  15. Influence of loading and rotation speed on Friction and Wear properties of CuAlBi Alloy

    Institute of Scientific and Technical Information of China (English)

    Liu Rongchang; Dong Litao; Li Xingyuan; Chen Xiuhong

    2007-01-01

    The variation of the friction coefficient of the CuAlBi alloy at different connecting loading and friction speed were investigated by using MMU-5G sliding friction-wear tester, besides, the wear mass loss of the CuAlBi alloy was measured, and the influence of loading and rotation speed on friction and wear properties of CuAlBi alloy was also discussed. The results show that the friction coefficient increase then decrease with increase of connecting loading as well as decreases with increase of friction speed, and the wear loss mass increases with increase of connecting loading and friction speed. As a result, the wear failure form of CuAlBi alloy is mainly ploughing.

  16. An engineering approach to dry friction behaviour of numerous engineering plastics with respect to the mechanical properties

    Directory of Open Access Journals (Sweden)

    G. Kalacska

    2013-02-01

    Full Text Available Twenty-one different commercial-grade engineering polymers, including virgin and composite types, were selected for testing, based on mechanical engineering practices. Three groups were formed according to typical applications: 1 Sliding machine element materials; 2 Mechanically load-carrying machine element materials that are often subjected to friction and wear effects; and 3 Additional two amorphous materials used as chemically resistant materials that have rare sliding load properties. The friction running-in state was tested using a dynamic pin-on-plate test rig. During steady-state friction tests, two pv regimes (0.8 and 2 MPa"ms–1 were analysed by a pin-on-disc test system. Based on the measured forces on ground structural steel, surface friction coefficients were calculated and analysed with respect to the mechanical effects of friction. The friction results were evaluated by the measured mechanical properties: yield stress, Shore D hardness, Young’s modulus and elongation at the break. The three material groups exhibited different trends in friction with respect to changing mechanical properties. Linear (with varying positive and negative slopes, logarithmic and exponential relationships were observed, and occasionally there were no effects observed. At steady-state friction, the elongation at the break had less effect on the friction coefficients. The dynamic sliding model, which correlates better to real machine element applications, showed that increasing hardness and yield stress decreases friction. During steady-state friction, an increase in pv regime often changed the sign of the linear relationship between the material property and the friction, which agrees with the frictional theory of polymer/steel sliding pairs.

  17. Friction Stir-Welded Dissimilar Aluminum Alloys: Microstructure, Mechanical Properties, and Physical State

    Science.gov (United States)

    Ghosh, M.; Husain, Md. M.; Kumar, K.; Kailas, S. V.

    2013-12-01

    A356 and 6061 aluminum alloys were joined by friction stir welding at constant tool rotational rate with different tool-traversing speeds. Thermomechanical data of welding showed that increment in tool speed reduced the pseudo heat index and temperature at weld nugget (WN). On the other hand, volume of material within extrusion zone, strain rate, and Zenner Hollomon parameter were reduced with decrease in tool speed. Optical microstructure of WN exhibited nearly uniform dispersion of Si-rich particles, fine grain size of 6061 Al alloy, and disappearance of second phase within 6061 Al alloy. With enhancement in welding speed, matrix grain size became finer, yet size of Si-rich particles did not reduce incessantly. Size of Si-rich particles was governed by interaction time between tool and substrate. Mechanical property of WN was evaluated. It has been found that the maximum joint efficiency of 116% with respect to that of 6061 alloy was obtained at an intermediate tool-traversing speed, where matrix grain size was significantly fine and those of Si-rich particles were substantially small.

  18. Reducing Friction and Wear of Tribological Systems through Hybrid Tribofilm Consisting of Coating and Lubricants

    Directory of Open Access Journals (Sweden)

    Shuichiro Yazawa

    2014-06-01

    Full Text Available The role of surface protective additives becomes vital when operating conditions become severe and moving components operate in a boundary lubrication regime. After protecting film is slowly removed by rubbing, it can regenerate through the tribochemical reaction of the additives at the contact. However, there are limitations about the regeneration of the protecting film when additives are totally consumed. On the other hand, there are a lot of hard coatings to protect the steel surface from wear. These can enable the functioning of tribological systems, even in adverse lubrication conditions. However, hard coatings usually make the friction coefficient higher, because of their high interfacial shear strength. Amongst hard coatings, diamond-like carbon (DLC is widely used, because of its relatively low friction and superior wear resistance. In practice, conventional lubricants that are essentially formulated for a steel/steel surface are still used for lubricating machine component surfaces provided with protective coatings, such as DLCs, despite the fact that the surface properties of coatings are quite different from those of steel. It is therefore important that the design of additive molecules and their interaction with coatings should be re-considered. The main aim of this paper is to discuss the DLC and the additive combination that enable tribofilm formation and effective lubrication of tribological systems.

  19. Frictional properties of simulated anhydrite-dolomite fault gouge and implications for seismogenic potential

    NARCIS (Netherlands)

    Pluymakers, A.M.H.; Niemeijer, A.R.; Spiers, C.J.

    2016-01-01

    The frictional properties of anhydrite-dolomite fault gouges, and the effects of CO2 upon them, are of key importance in assessing the risks associated with CO2 storage in reservoir formations capped by anhydrite-dolomite sequences, and in understanding seismicity occurring in such formations (such

  20. Frictional Properties of UV illuminated ZnO Thin Films Grown by Pulsed Laser Deposition

    Science.gov (United States)

    Chiu, Hsiang-Chih; Chang, Huan-Pu; Lo, Fang-Yu; Yeh, Yu-Ting; Department of Physics, National Taiwan Normal University Collaboration

    Zinc Oxide (ZnO) nanostructures have potential applications in nano-electro-mechanical systems (NEMS) due to their unique physical properties. ZnO is also an excellent lubricant and hence a promising candidate for protective coatings in NEMS. By means of atomic force microscopy (AFM), we have investigated the frictional properties of ZnO thin films prepared by pulsed laser deposition technique. In addition, UV illumination is used to convert the surface wettability of ZnO thin films from being more hydrophobic to superhydrophilic via the photo-catalyst effect. We found that the frictional properties of the UV illuminated, superhydrophilic ZnO surface are strongly dependent on the environment humidity. While for hydrophobic ZnO, no such dependence is found. The observed frictional behaviors can be explained by the interplay between the surface roughness, environmental humidity and the presence of nanoscale capillary condensation forming between surface asperities at the tip-ZnO contact. Our results might find applications in future ZnO related NEMS. Frictional Properties of UV illuminated ZnO Thin Films Grown by Pulsed Laser Deposition.

  1. Friction Stir Spot Welding: A Review on Joint Macro- and Microstructure, Property, and Process Modelling

    Directory of Open Access Journals (Sweden)

    X. W. Yang

    2014-01-01

    Full Text Available Friction stir spot welding (FSSW is a very useful variant of the conventional friction stir welding (FSW, which shows great potential to be a replacement of single-point joining processes like resistance spot welding and riveting. There have been many reports and some industrial applications about FSSW. Based on the open literatures, the process features and variants, macro- and microstructural characteristics, and mechanical properties of the resultant joints and numerical simulations of the FSSW process were summarized. In addition, some applications of FSSW in aerospace, aviation, and automobile industries were also reviewed. Finally, the current problems and issues that existed in FSSW were indicated.

  2. Preparation and Properties of Friction Materials by Using Two Kinds of Fibrous Industrial Minerals

    Institute of Scientific and Technical Information of China (English)

    SHEN Shang-yue; HU Shan; LI Zhen; ZHANG De; LIU Xin-hai; SONG Xu-bo

    2003-01-01

    The basic technology and properties of the brake blocks made of modified needle-like wollastonite and fibrous sepiolite were intensively researched.The impact strengthes and fixed velocity friction of the brake blocks prepared by different recipes were tested. The testing results show that it is feasible for needle-like wollastonite and fibrous sepiolite to take the place of asbestos as the reinforced materials of friction materials.The braking effect of the brake blocks is the best when the ratio of the needle-like wollastonite to the fibrous sepiolite was 1∶6.

  3. Friction stir processing (FSP: refining microstructures and improving properties

    Directory of Open Access Journals (Sweden)

    McNelley, T. R.

    2010-12-01

    Full Text Available FSP is reviewed as an allied technology of friction stir welding (FSW and additional considerations such as processing pattern and step over distance are introduced. The application of FSP to continuously cast AA5083 material in the as-cast condition is described and the extent of grain refinement and homogenization of microstructure is documented. The FSP-induced superplastic response of this material is compared to the response of conventionally processed AA5083 and the improved ductility of the FSP material is related to grain refinement and microstructure homogenization.

    Se revisa el procesado por fricción batida (FSP como un aliado tecnológico de la soldadura por fricción batida (FSW y se introducen consideraciones adicionales tales como el patrón de procesado y el paso en función de la distancia. Se describe la aplicación de FSP al material AA5083 por colada continua en la condición de colada y se documenta el grado de afino de grano y homogeneización de la microestructura. La respuesta de superplasticidad inducida por FSP se compara con la respuesta de la aleación AA5083 procesada convencionalmente y la mejora de ductilidad del material FSP se relaciona con el afino de grano y la homogeneización de la microestructura.

  4. 几种减摩剂在聚醚油中的性能评价%PERFORMANCE EVALUATION OF FRICTION REDUCERS IN POLYETHER (PAG)OIL

    Institute of Scientific and Technical Information of China (English)

    于海; 糜莉萍; 梁依经

    2016-01-01

    The compatibility and tribological properties of friction reducers (epoxy oleate,benzotri-azole aliphatic amine,amine phosphate,inactive sulfurized fatty acid ester,and boride oleic acid ester amides)in polyether (PAG)oil were investigated by four-ball test and MTM2 test machine. The results indicate that three kinds of friction reducers have a good compatibility and tribological properties with PAG,except benzotriazole aliphatic amine and inactive sulfurized fatty acid ester. The addition of amine phosphate has good effects on bearing capacity and the friction reduction for polyether. Great improve-ment in bearing capacity and friction reduction,friction factor,and traction coefficient of the PAG are observed after addition of amine phosphate.%对环氧油酸酯、苯三唑脂肪胺盐、磷酸酯胺盐、非活性硫化脂肪酸酯、硼化酰胺类油酸酯减摩剂与聚醚油的相容性及其摩擦学性能进行了考察。结果表明:磷酸酯胺盐、环氧油酸酯和硼化酰胺类油酸酯与聚醚油的相容性良好,而苯三唑脂肪胺盐和非活性硫化脂肪酸酯与聚醚油的相容性较差;磷酸酯胺盐对聚醚油具有良好的减摩效果以及承载能力,引入磷酸酯胺盐后的新配方产品相较于原配方产品,在承载能力、减摩性能以及摩擦因数、牵引系数方面均有较大的改善。

  5. Microstructuring the surface of silicon carbide ceramic by laser action for reducing friction losses in rolling bearings

    Science.gov (United States)

    Murzin, Serguei P.; Balyakin, Valeriy B.

    2017-02-01

    A possibility of microstructuring the surface of silicon carbide ceramic by pulse-periodic laser treatment was determined for reducing the coefficient of friction under actual contact stress conditions that occur in elements of the rolling bearing in operation. Temperature rate conditions for the laser treatment with pulse duration in the millisecond range were found, which lead to a change in the surface microrelief of silicon carbide ceramic obtained by diamond grinding after hot isostatic pressing. The determination of the coefficient of sliding friction was conducted with using the ball-on-disk tribometer at normal loads, which corresponds to the values of contact stresses of (0.5-1)×109 Pa. When the load was increased to the upper limit of measuring range, the friction coefficient decrease after laser treatment was more than 30% compared to the initial structure. Significant reduction of friction in rolling bearings up to this level provides an opportunity to improve efficiency of various machines.

  6. Optimization of Blank Holding Force in Deep Drawing Process Using Friction Property of Steel Blank

    Directory of Open Access Journals (Sweden)

    Prasad S. Pandhare

    2012-08-01

    Full Text Available Majority of automobile and appliances component are made by deep drawing sheet metal process. So these growing need demands a new design methodology based on metal forming simulation. With the help of metal forming simulation we can identify the problem areas and solutions can be validated in computers without any expensive shop floor operations prior to any tool construction. Metal forming simulation is also helpful at the product and tool design stage to decide various parameters. Problem and improvements in each area of the SDF technology and their interactions should be considered. In the product and process design phases in order to optimize Blank Holding Force which is one of the important parameters in Deep Drawing process. Sometimes accuracies of frictional values have more effect on the simulation results than most of the material properties. So that friction plays a major role during optimization of Blank Holding Force. In this paper, the friction is varied in six different values. CRDQ Steel is used as a material. For each value of friction and its corresponding B.H.F., Forming Limit Diagrams are drawn by using hyper mesh module of Hyper Form Solver software. Also the effect of these two parameters on occurrence of wrinkling during the process is studied. Thus, optimized range of coefficient of friction in which product is safe as well as having minimized wrinkles along with optimized B.H.F. is calculated.

  7. Effects of surface coating on reducing friction and wear of orthopaedic implants

    Directory of Open Access Journals (Sweden)

    Hee Ay Ching

    2014-01-01

    Full Text Available Coatings such as diamond-like carbon (DLC and titanium nitride (TiN are employed in joint implants due to their excellent tribological properties. Recently, graphite-like carbon (GLC and tantalum (Ta have been proven to have good potential as coating as they possess mechanical properties similar to bones—high hardness and high flexibility. The purpose of this systematic literature review is to summarize the coating techniques of these four materials in order to compare their mechanical properties and tribological outcomes. Eighteen studies published between January 2000 and February 2013 have met the inclusion criteria for this review. Details of their fabrication parameters, material and mechanical properties along with the tribological outcomes, such as friction and wear rate, were identified and are presented in a systematic way. Although experiment conditions varied, we conclude that Ta has the lowest wear rate compared to DLC, GLC and TiN because it has a lower wear rate with high contact pressure as well as higher hardness to elasticity ratio. However, a further tribology test is needed in an environment which replicates artificial joints to confirm the acceptability of these findings.

  8. Modified Vertical Bearing Capacity for Circular Foundations in Sand Using Reduced Friction Angle

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Barari, Amin; Larsen, Kim André

    2012-01-01

    Recently Bucket foundation as a large cylindrical structure that is open as the base and closed at the top, has attracted much attention in offshore projects. In order to present relationship between vertical bearing capacity of a bucket foundation relative to the corresponding capacity of a circ......Recently Bucket foundation as a large cylindrical structure that is open as the base and closed at the top, has attracted much attention in offshore projects. In order to present relationship between vertical bearing capacity of a bucket foundation relative to the corresponding capacity...... of a circular plate, several loading tests on small scale bucket foundations including the circular surface footings are performed at Aalborg University. In current research, the vertical bearing capacity of circular surface footings is investigated using reduced friction angle. It is also presented a linear...

  9. Mechanical properties of friction stir welded aluminum alloys 5083 and 5383

    Directory of Open Access Journals (Sweden)

    Jeom Kee Paik

    2009-09-01

    Full Text Available The use of high-strength aluminum alloys is increasing in shipbuilding industry, particularly for the design and construction of war ships, littoral surface craft and combat ships, and fast passenger ships. While various welding methods are used today to fabricate aluminum ship structures, namely gas metallic arc welding (GMAW, laser welding and friction stir welding (FSW, FSW technology has been recognized to have many advantages for the construction of aluminum structures, as it is a low-cost welding process. In the present study, mechanical properties of friction stir welded aluminum alloys are examined experimentally. Tensile testing is undertaken on dog-bone type test specimen for aluminum alloys 5083 and 5383. The test specimen includes friction stir welded material between identical alloys and also dissimilar alloys, as well as unwelded (base alloys. Mechanical properties of fusion welded aluminum alloys are also tested and compared with those of friction stir welded alloys. The insights developed from the present study are documented together with details of the test database. Part of the present study was obtained from the Ship Structure Committee project SR-1454 (Paik, 2009, jointly funded by its member agencies.

  10. Fluid friction in incompressible laminar convection: Reynolds' analogy revisited for variable fluid properties

    Science.gov (United States)

    Mahulikar, S. P.; Herwig, H.

    2008-03-01

    The Reynolds' analogy between the Stanton number (St) and the skin friction coefficient (cf) is popularly believed to hold when St increases with increasing cf, for simple situations. In this investigation, the validity of Reynolds' analogy between St and cf for micro-convection of liquids with variations in fluid properties is re-examined. It is found that the Sieder-Tate's property-ratio method for obtaining Nusselt number corrections is theoretically based on the validity of Reynolds' analogy. The inverse dependence of Reynolds number and skin friction coefficient is the basis for validity of the Reynolds' analogy, in convective flows with fluid property variations. This leads to the unexpected outcome that Reynolds' analogy now results in St increasing with decreasing cf. These results and their analyses indicate that the validity of Reynolds' analogy is based on deeper foundations, and the well-known validity criterion is a special case.

  11. The study on the properties of AISI 4140 and AISI 1040 steel rods welded by friction welding

    OpenAIRE

    Thanee Toomprasen; Chawalit Thinvongpituk; Sukangkana Talangkun

    2014-01-01

    This paper is aimed to investigate the properties of joint between AISI 4140 and AISI 1040 welded by friction welding. The specimens were prepared in round shape of 13 mm diameter and 100 mm long. They were welded by friction welding method under the following conditions; friction pressure of 183 MPa, friction time of 12 sec, upset pressure of 428 MPa, upset time of 7 sec. and rotational speed of 1400 rpm. The strength and hardness were tested on the welded area. The result showed finer grain...

  12. Surface topography, hardness, and frictional properties of GFRP for esthetic orthodontic wires.

    Science.gov (United States)

    Inami, Toshihiro; Tanimoto, Yasuhiro; Yamaguchi, Masaru; Shibata, Yo; Nishiyama, Norihiro; Kasai, Kazutaka

    2016-01-01

    In our previous study, glass-fiber-reinforced plastics (GFRPs) made from polycarbonate and glass fiber for esthetic orthodontic wires were prepared by using pultrusion. The purpose of the present study was to investigate the surface topography, hardness, and frictional properties of GFRPs. To investigate how fiber diameter affects surface properties, GFRP round wires with a diameter of 0.45 mm (0.018 in.) were prepared incorporating either 13 μm (GFRP-13) or 7 μm (GFRP-7) glass fibers. As controls, stainless steel (SS), cobalt-chromium-nickel alloy, β-titanium (β-Ti) alloy, and nickel-titanium (Ni-Ti) alloy were also evaluated. Under scanning electron microscopy and scanning probe microscopy, the β-Ti samples exhibited greater surface roughness than the other metallic wires and the GFRP wires. The dynamic hardness and elastic modulus of GFRP wires obtained by the dynamic micro-indentation method were much lower than those of metallic wires (p < 0.05). Frictional forces against the polymeric composite brackets of GFRP-13 and GFRP-7 were 3.45 ± 0.49 and 3.60 ± 0.38 N, respectively; frictional forces against the ceramic brackets of GFRP-13 and GFRP-7 were 3.39 ± 0.58 and 3.87 ± 0.48 N, respectively. For both bracket types, frictional forces of GFRP wires and Ni-Ti wire were nearly half as low as those of SS, Co-Cr, and β-Ti wires. In conclusion, there was no significant difference in surface properties between GFRP-13 and GFRP-7; presumably because both share the same polycarbonate matrix. We expect that GFRP wires will deliver superior sliding mechanics with low frictional resistance between the wire and bracket during orthodontic treatment.

  13. Experimental Investigation and Prediction of Mechanical Properties of Friction Stir Welded Aluminium Metal Matrix Composite Plates

    Directory of Open Access Journals (Sweden)

    Yahya BOZKURT

    2012-12-01

    Full Text Available Friction stir welding (FSW is a relatively contemporary solid state welding process and has been employed in aerospace, railway, automotive and marine industries for joining of aluminum, magnesium, zinc, titanium, copper alloys, dissimilar metals and thermoplastics. The FSW process parameters such as tool rotation speed, tool traverse speed and tilt angle play an important role in deciding the joining quality. The present study defines the effect of FSW process on the tensile properties of the AA2124/SiC/25p metal matrix composite (MMC plates. Obtained results showed that the joint efficiency decreases by increasing the tool traverse speed while tool rotation speed was kept constant. Second contribution of this study is the application of decision tree technique to predict the tensile properties of friction stir welded MMC plates. It is seen that methodology can be applied with great accuracy.DOI: http://dx.doi.org/10.5755/j01.ms.18.4.3092

  14. In Vitro Urethra Model to Characterize The Frictional Properties of Urinary Catheters

    DEFF Research Database (Denmark)

    Røn, Troels; Lee, Seunghwan

    2016-01-01

    Surface lubricity is one of the most important properties required for biomaterials or biomedical devices where tribological contacts with biological tissues are expected. While standard tribological techniques can provide sufficiently meaningful pre-clinical screening of their surface slipperine...... of sliding contacts with the urethra model with unlubricated and lubricated catheters were determined. Impact of the improved bio-relevance of friction testing methods on the evaluation of various catheter materials and surface modification methods is discussed in detail.......Surface lubricity is one of the most important properties required for biomaterials or biomedical devices where tribological contacts with biological tissues are expected. While standard tribological techniques can provide sufficiently meaningful pre-clinical screening of their surface slipperiness...... conformal sliding contacts with the catheter and high relevance to clinical catherization. With the proposed urethra model assembled in texture analyzer, the lubricity of catheters lubricated in different modes was tested. In comparison with conventional pin-on-disk tribometry, the coefficients of friction...

  15. Experimental Investigation and Prediction of Mechanical Properties of Friction Stir Welded Aluminium Metal Matrix Composite Plates

    Directory of Open Access Journals (Sweden)

    Yahya BOZKURT

    2012-12-01

    Full Text Available Friction stir welding (FSW is a relatively contemporary solid state welding process and has been employed in aerospace, railway, automotive and marine industries for joining of aluminum, magnesium, zinc, titanium, copper alloys, dissimilar metals and thermoplastics. The FSW process parameters such as tool rotation speed, tool traverse speed and tilt angle play an important role in deciding the joining quality. The present study defines the effect of FSW process on the tensile properties of the AA2124/SiC/25p metal matrix composite (MMC plates. Obtained results showed that the joint efficiency decreases by increasing the tool traverse speed while tool rotation speed was kept constant. Second contribution of this study is the application of decision tree technique to predict the tensile properties of friction stir welded MMC plates. It is seen that methodology can be applied with great accuracy.DOI: http://dx.doi.org/10.5755/j01.ms.18.4.3092

  16. Mechanical properties and structure of friction stir welds of rolled Zr-modified AA5083 alloy

    Science.gov (United States)

    Malopheyev, S.; Mironov, S.; Kaibyshev, R.

    2016-11-01

    Microstructure and mechanical properties of friction stir welds of Zr-modified AA5083 aluminum sheets were studied. The sheets were produced by cold or hot rolling with a total reduction of 80%. In both rolled conditions, the average high angle boundary spacing was 17-18 µm. The density of free dislocations was ˜5.6 × 1013 and ˜3.5 × 1014 m-2 in hot rolled and cold rolled conditions, respectively. The volume fraction of incoherent Al6Mn dispersoids with an average diameter of ˜25 nm was measured to be ˜0.076%. Defect-free welds were produced by double-side friction stir welding (FSW). Friction stir welding led to the formation of fully recrystallized microstructures with the average grain size about 2.5 µm and low dislocation density in the stir zone in both conditions. The average size and volume fraction of Al6Mn particles increased to ˜25 nm and ˜0.1%, respectively. The joint efficiency of the friction stir welds for ultimate tensile strength was found to be 74 and 94% in the cold-rolled and hot-rolled preprocessed material conditions. The relatively low weld strength was attributed to the elimination of dislocation substructure strengthening during FSW.

  17. The Friction Reducing Effect of Square-Shaped Surface Textures under Lubricated Line-Contacts—An Experimental Study

    Directory of Open Access Journals (Sweden)

    Ping Lu

    2016-07-01

    Full Text Available Surface texturing has been shown to be an effective modification approach for improving tribological performance. This study examined the friction reduction effect generated by square dimples of different sizes and geometries. Dimples were fabricated on the surface of ASP2023 steel plates using femtosecond laser-assisted surface texturing techniques, and reciprocating sliding line contact tests were carried out on a Plint TE77 tribometer using a smooth 52100 bearing steel roller and textured ASP2023 steel plates. The tribological characterization of the friction properties indicated that the textured samples had significantly lowered the friction coefficient in both boundary (15% improvement and mixed lubrication regimes (13% improvement. Moreover, the high data sampling rate results indicated that the dimples work as lubricant reservoirs in the boundary lubrication regime.

  18. Microstructure and Mechanical Properties of WE43 Alloy Produced Via Additive Friction Stir Technology

    OpenAIRE

    Calvert, Jacob Rollie

    2015-01-01

    In an effort to save weight, transportation and aerospace industries have increasing investigated magnesium alloys because of their high strength-to-weight ratio. Further efforts to save on material use and machining time have focused on the use of additive manufacturing. However, anisotropic properties can be caused by both the HCP structure of magnesium alloys as well as by layered effects left by typical additive manufacturing processes. Additive Friction Stir (AFS) is a relatively new add...

  19. New cylinder head concept for reducing costs, weight and friction losses; Neues Zylinderkopfkonzept - Reduzierung von Kosten, Masse und Reibungsverlusten

    Energy Technology Data Exchange (ETDEWEB)

    Heywood, Jonathan [ThyssenKrupp Presta Chemnitz GmbH, Chemnitz (Germany). Simulation/Testing R and D Valve Train Systems

    2009-11-15

    The camshaft bearing in an internal combustion engine plays a major role in the design of the cylinder head. The name Presta Integrated Cam Assembly (PICA) describes a large number of different development approaches for the cylinder head area. ThyssenKrupp presents a solution for reducing costs, weight and friction losses while at the same time providing lower engine-out emissions. (orig.)

  20. Fundamental Study of Nano-Scale Adhesion and Friction Properties of Graphene in Ambient Air and Liquid Environments

    Science.gov (United States)

    Ramayanam, Sai Suvineeth

    The aim of this study is to understand the fundamental tribological interactions of model contacts developed between a 'single' asperity silicon tip and a few layer graphene surface in ambient air, ionic liquid, and lubricating oil environments. The motivation to investigate such fundamental interactions stems from the need to gain an understanding of the tribological properties, morphology and defects of few layer graphene with respect to different synthesis methods including both bottom-up and top-down approaches. In particular, the surface properties of atomically thin sheets of graphene synthesized by three methods; (i) liquid phase exfoliation of graphene, (ii) chemical reduction of exfoliated graphene oxide, on a silicon oxide substrate, and (iii) graphene synthesis by halogen based plasma etching on a silicon carbide substrate are studied using atomic force microscopy, lateral force microscopy and x-ray photoelectron spectroscopy. Friction of Si 'single' asperities sliding against a few layer graphene surface in ambient air, ionic liquid, and lubricating oil environments is reported. It is found that oxygen based defects play a major role in controlling the friction and adhesion properties of few layer graphene surfaces. The role of substrate and its bonding with the few layer graphene is also an important parameter. In liquids, we report a newly observed Stribeck like behavior in the nanoscale. This work can lead to important device applications with reduced friction such as contact-based microelectromechanical systems. It also sheds light on liquid-graphene interfacial characteristics which can be proved vital in applications spanning from electrochemical energy devices to nanolubricants.

  1. Frictional and morphological properties of Au-MoS2 films sputtered from a compact target

    Science.gov (United States)

    Spalvins, T.

    1984-01-01

    AuMoS2 films 0.02 to 1.2 microns thick were sputtered from target compacted from 5 wt % Au + 95 wt % MoS2, to investigate the frictional and morphological film growth characteristics. The gold dispersion effects in MoS2 films are of interest to increase the densitification and strengthening of the film structure. Three microstructural growth stages were identified on the nano-micro-macrostructural level. During sliding both sputtered Au-MoS2 and MoS2 films have a tendency to break within the columner region. The remaining or effective film, about 0.2 microns thick, performs the lubrication. The Au-MoS2 films displayed a lower friction coefficient with a high degree of frictional stability and less wear debris generation as compared to pure MoS2 films. The more favorable frictional characteristics of the Au-MoS2 films are attributed to the effective film thickness and the high density packed columner zone which has a reduced effect on the fragmentation of the tapered crystallites during fracture.

  2. Property Evaluation of Friction Stir Welded Dissimilar Metals : AA6101-T6 and AA1350 Aluminium Alloys

    Directory of Open Access Journals (Sweden)

    Rajendran ASHOK KUMAR

    2017-02-01

    Full Text Available Next to copper, aluminium alloys are widely used in electrical industries, because of their high electrical conductivity. AA6101-T6 and AA1350 aluminium alloys are widely used in electrical bus bars. As these alloys are joined by mechanical fasteners in electrical bus bars, the conductive area has been reduced. To avoid this problem, they should be joined without removal of metal as well as their properties. Friction stir welding technique is mainly invented for joining similar and dissimilar aluminium alloys. In this investigation, friction stir welding of AA6101-T6 and AA1350 aluminium alloys was done by varying tool traversing speed, rotational speed and tilt angle with hexagonal pin profiled tool. The analysis of variance was employed to study the effect of above parameters on mechanical properties of welded joints. From the experimental results, it is observed that welded joint with the combination of 1070 rpm rotating speed, 78 mm/min traversing speed and 2° tilt angle provides better mechanical properties. Analysis of variance shows that most significant impact on tensile strength is made by variation in tool rotating speed while tool tilt angle makes the most significant impact on elongation and bending strength.DOI: http://dx.doi.org/10.5755/j01.ms.23.1.14132

  3. Frictional Properties of Feldspar and Quartz at the Temperatures of Seismogenic Zone

    Science.gov (United States)

    Arai, T.; Masuda, K.; Takahashi, M.; Fujimoto, K.; Shigematsu, N.; Sumii, T.; Okuyama, Y.

    2003-12-01

    Most of earthquakes in the crust occurred at the depth of 5 to 20km, and temperatures of 100 to 350° C. The physical properties of rocks at around these temperatures were determined by many frictional experiments. These results indicated the velocity dependence of steady state friction (a-b) was switched from velocity weakening ( seismic slip ) to velocity strengthening ( aseismic slip ) at around 350° C in the wet condition. In these experimental studies, granites were generally used. On the other hand, it is important to evaluate and to compare the physical properties of each mineral which composed of crustal rocks, for example feldspar and quartz, in order to understand the source processes of earthquakes in detail. In this study, we conducted frictional experiments by using albite, anorthite, and quartz gouges ( about 3μ m diameter ) under high pressure and high temperature in a triaxial apparatus, and compared frictional behaviors of three minerals with elevated temperature under the wet and dry conditions. These experiments were conducted by the velocity-stepping test. Temperature varied from room temperature to 600° C. In the dry conditions, experiments were conducted under the confining pressure of 150MPa. In the wet conditions, pore water pressure was applied up to 50MPa under the confining pressure of 200MPa. Sample was put between upper and lower sawcut alumina cylinders ( 20mm diameter x 40mm long ). The sawcut was oriented at 30° to the loading axis. These were jacketed with thin sleeves of annealed Cu. The values for a-b of quartz and albite were positive under the dry condition from room temperature to 600° C. On the other hand, those values of albite and quartz were negative at the temperature of 200° C and 300° C under the wet condition respectively. Those values of quartz decreased as the temperature increased from 100° C to 300° C and increased as the temperature increased from 300° C to 600° C. Those values of albite were switched

  4. Structure and Properties of Thick-Walled Joints of Alloy 1570s Prepared by Friction Stir Welding

    Science.gov (United States)

    Velichko, O. V.; Ivanov, S. Yu.; Karkhin, V. A.; Lopota, V. A.; Makhin, I. D.

    2016-09-01

    The microstructure and mechanical properties of thick-walled joints of Al - Mg - Sc alloy 1570S, prepared by friction stir welding are studied. Joint microstructural and mechanical inhomogeneity are revealed.

  5. Effect of Interface Modified by Graphene on the Mechanical and Frictional Properties of Carbon/Graphene/Carbon Composites

    OpenAIRE

    Wei Yang; Ruiying Luo; Zhenhua Hou

    2016-01-01

    In this work, we developed an interface modified by graphene to simultaneously improve the mechanical and frictional properties of carbon/graphene/carbon (C/G/C) composite. Results indicated that the C/G/C composite exhibits remarkably improved interfacial bonding mode, static and dynamic mechanical performance, thermal conductivity, and frictional properties in comparison with those of the C/C composite. The weight contents of carbon fibers, graphene and pyrolytic carbon are 31.6, 0.3 and 68...

  6. Friction Welding For Cladding Applications: Processing, Microstructure and Mechanical Properties of Inertia Friction Welds of Stainless Steel to Low Carbon Steel and Evaluation of Wrought and Welded Austenitic Stainless Steels for Cladding Applications in Acidchloride Service

    Science.gov (United States)

    Switzner, Nathan

    Friction welding, a solid-state joining method, is presented as a novel alternative process step for lining mild steel pipe and forged components internally with a corrosion resistant (CR) metal alloy for petrochemical applications. Currently, fusion welding is commonly used for stainless steel overlay cladding, but this method is costly, time-consuming, and can lead to disbonding in service due to a hard martensite layer that forms at the interface due to partial mixing at the interface between the stainless steel CR metal and the mild steel base. Firstly, the process parameter space was explored for inertia friction butt welding using AISI type 304L stainless steel and AISI 1018 steel to determine the microstructure and mechanical properties effects. A conceptual model for heat flux density versus radial location at the faying surface was developed with consideration for non-uniform pressure distribution due to frictional forces. An existing 1 D analytical model for longitudinal transient temperature distribution was modified for the dissimilar metals case and to account for material lost to the flash. Microstructural results from the experimental dissimilar friction welds of 304L stainless steel to 1018 steel were used to discuss model validity. Secondly, the microstructure and mechanical property implications were considered for replacing the current fusion weld cladding processes with friction welding. The nominal friction weld exhibited a smaller heat softened zone in the 1018 steel than the fusion cladding. As determined by longitudinal tensile tests across the bond line, the nominal friction weld had higher strength, but lower apparent ductility, than the fusion welds due to the geometric requirements for neck formation adjacent to a rigid interface. Martensite was identified at the dissimilar friction weld interface, but the thickness was smaller than that of the fusion welds, and the morphology was discontinuous due to formation by a mechanism of solid

  7. Structure-property effects on mechanical, friction and wear properties of electron modified PTFE filled EPDM composite

    Directory of Open Access Journals (Sweden)

    2009-01-01

    Full Text Available Tribological properties of Ethylene-Propylene-Diene-rubber (EPDM containing electron modified Polytetrafluoroethylene (PTFE have been investiagted with the help of pin on disk tribometer without lubrication for a testing time of 2 hrs in atmospheric conditions at a sliding speed and applied normal load of 0.05 m•s–1 and FN = 1 N, respectively. Radiation-induced chemical changes in electron modified PTFE powders were analyzed using Electron Spin Resonance (ESR and Fourier Transform Infrared (FTIR specroscopy to characterize the effects of compatibility and chemical coupling of modified PTFE powders with EPDM on mechanical, friction and wear properties. The composites showed different friction and wear behaviour due to unique morphology, dispersion behaviour and radiation functionalization of PTFE powders. In general, EPDM reinforced with electron modified PTFE powder demonstrated improvement both in mechanical and tribological properties. However, the enhanced compatibility of PTFE powder resulting from the specific chemical coupling of PTFE powder with EPDM has been found crucial for mechanical, friction and wear properties.

  8. Improvement of Weldment Properties by Hot Forming Quenching of Friction Stir Welded TWB Sheet

    Directory of Open Access Journals (Sweden)

    Dae-Hoon Ko

    2014-04-01

    Full Text Available The purpose of this study is to improve the mechanical properties and formability of friction stir welded tailor-welded blanks (TWBs of Al6061 alloy with a new forming method called hot forming quenching (HFQ in which solid-solution heat-treated aluminum sheets are formed at elevated temperature. Forming and quenching during HFQ are simultaneously performed with the forming die for the solid-solution heat-treated sheet. In this study, specimens of aluminum TWBs were prepared by friction stir welding (FSW with a butt joint. The effectiveness of FSW joining was evaluated by observation of the macrostructure for different sheet thicknesses. In order to evaluate the formability of TWBs by HFQ, a hemisphere dome stretching test of the limit dome height achieved without specimen failure was performed with various tool temperatures. A Vickers test was also performed to measure weldment hardness as a function of position. The formability and mechanical properties of products formed by HFQ are compared with those formed by conventional forming methods, demonstrating the suitability of HFQ for sheet metal forming of friction stir welded TWBs.

  9. Effects of different friction stir welding conditions on the microstructure and mechanical properties of copper plates

    Science.gov (United States)

    Nia, Ali Alavi; Shirazi, Ali

    2016-07-01

    Friction stir welding is a new and innovative welding method used to fuse materials. In this welding method, the heat generated by friction and plastic flow causes significant changes in the microstructure of the material, which leads to local changes in the mechanical properties of the weld. In this study, the effects of various welding parameters such as the rotational and traverse speeds of the tool on the microstructural and mechanical properties of copper plates were investigated; additionally, Charpy tests were performed on copper plates for the first time. Also, the effect of the number of welding passes on the aforementioned properties has not been investigated in previous studies. The results indicated that better welds with superior properties are produced when less heat is transferred to the workpiece during the welding process. It was also found that although the properties of the stir zone improved with an increasing number of weld passes, the properties of its weakest zone, the heat-affected zone, deteriorated.

  10. Process of friction-stir welding high-strength aluminum alloy and mechanical properties of joint

    Institute of Scientific and Technical Information of China (English)

    王大勇; 冯吉才; 郭德伦; 孙成彬; 栾国红; 郭和平

    2004-01-01

    The process of friction-stir welding 2A12CZ alloy has been studied. And strength and elongation tests have been performed, which demonstrated that the opportunity existed to manipulate friction-stir welding parameters in order to improve a range of material properties. The results showed that the joint strength and elongation arrived at their parameters changing, joint tensile strength and elongation had similar development. Hardness measurement indicated that the weld was softened. However, there was considerable difference in softening degree for different joint zone. The weld top had lower hardness and wider softening zone than other zone of the weld. And softening zone at advancing side was wider than that at retreating side.

  11. The macrostructure of Al-40Sn alloy and its tribological properties under dry friction

    Science.gov (United States)

    Rusin, N. M.; Skorentsev, A. L.; Kolubaev, E. A.

    2016-11-01

    The tribological properties of sintered Al-40Sn alloy under dry friction were studied. Before the tests, the samples were treated by equal channel angular pressing (ECAP) via routes A and C. The initial cellular structure of the sintered two-phase alloy restored after each even pressing with route C and transformed into the layered one in the case of route A. The thickness of the interlayers diminished with every pressing with route A. Due to thinning, Al interlayers could bend under the action of friction force oriented perpendicularly to them. As a result of the bending, the thickness of deformed subsurface layer increased, and the wear intensity of the samples with layered structure decreased.

  12. Direct Laser Interference Patterning: Tailoring of Contact Area for Frictional and Antibacterial Properties

    Directory of Open Access Journals (Sweden)

    Andreas Rosenkranz

    2016-01-01

    Full Text Available Surface functionalization by topographic micro- and nano-structures in order to achieve unique properties, like super-hydrophobicity or ultrahigh light absorption, is a common strategy in nature. In this paper, direct laser interference patterning (DLIP is presented as a promising tool allowing for the generation of such surface patterns on technical surfaces in order to mimic these biological surfaces and effects. Friction optimization and antibacterial effects by DLIP are exemplarily described. Topographic surface patterns on the micro- and nano-scale demonstrated a significant reduction in the coefficient of friction and bacterial adhesion. It was shown that in both cases, the control of the contact area between surfaces or between surface and bacteria is of utmost importance.

  13. The Friction Wear Properties and Application of Thermoplastic Polyester Elastomer and Polyoxymethylene

    Institute of Scientific and Technical Information of China (English)

    HU Ping; HUANG Chou; ZHENG Hua; TAN Zhan-ao; HUANG Zhang-chan

    2004-01-01

    The experiment of injection molding, Dais-simulating test, morphological structure investigation(Scanning Electron Microscopy, SEM),X-ray photoelectron spectroscopy(XPS)were performed on mini-automobile spherical seat which was made of thermoplastic polyester elastomer(TPEE)and oiled polyoxymethylene(POM),respectively. The friction-wear properties between the frictionl pair of polymer spherical seat and metallic(iron)spherical pin were studied. The test results indicate that the antifriction property of TPEE is superior to that of POM, while its surface chemical effect is inferior to that of POM.

  14. Mechanical and Microstructural Properties of Friction Welded AISI 304 Stainless Steel to AISI 1060 Steel AISI 1060

    Directory of Open Access Journals (Sweden)

    Ates H.

    2014-10-01

    Full Text Available Rotary Friction welding is one of the most popular methods of joining similar and dissimilar materials. It is widely used with metals and thermoplastics in a wide variety of aviation, transport and aerospace industrial component designs. This study investigates the influence of friction and upsetting pressures on the hardness, tensile properties and microstructure of the welds. The experimental results showed that as the friction and upsetting pressures increased, the hardness and tensile strength values increased, as well. The tensile fracture of welded joint occurred in the AISI 1060 side. The friction processed joints were evaluated for their integrity and quality aspects by optical and scanning electron microscopy. For the perfect interfacial bonding, sufficient upsetting and friction pressures are necessary to reach the optimal temperature and severe plastic deformation to bring these materials within the attraction range.

  15. Mechanical properties of friction stir butt-welded Al-5086 H32 plate

    Directory of Open Access Journals (Sweden)

    G. Çam

    2008-10-01

    Full Text Available Purpose: The purpose of the paper is to study Al-5086 H32 plates with a thickness of 3 mm friction stir butt-welded using different welding speeds at a tool rotational speed of 1600 rpm. Design/methodology/approach: The effect of welding speed on the weld performance of the joints was investigated by conducting optical microscopy, microhardness measurements and mechanical tests (i.e. tensile and bend tests. The effect of heat input during friction stir welding on the microstructure, and thus mechanical properties, of cold-rolled Al- 5086 plates was also determined.Findings: The experimental results indicated that the maximum tensile strength of the joints, which is about 75% that of the base plate, was obtained with a traverse speed of 200 mm/min at the tool rotational speed used, e.g. 1600 rpm, and the maximum bending angle of the joints can reach 180º. The maximum ductility performance of the joints was, on the other hand, relatively low, e.g. about 20%. These results are not unexpected due to the loss of the cold-work strengthening in the weld region as a result of the heat input during welding, and thus the confined plasticity within the stirred zone owing to strength undermatching. Higher joint performances can also be achieved by increasing the penetration depth of the stirring probe in butt-friction stir welding of Al-5086 H32 plates.Research limitations/implications: The results suggest that both strength and ductility performances can be increased by optimizing the tool penetration depth.Originality/value: Examination of mechanical properties of friction stir butt-welded Al-5086 H32 plate.

  16. Mechanical and Frictional Properties of the Elytra of Five Species of Beetles

    Institute of Scientific and Technical Information of China (English)

    Min Yu; Ilja Hermann; Zhendong Dai; Norm Gitis

    2013-01-01

    The mechanical and frictional properties of different parts of the elytra of five species of beetle were measured using a nano-indenter and a micro-tribometer.The surface microstructures of the elytra were observed by optical microscopy and scanning white light interferometry.The surface microstructures of the elytra of all five species are characterized as non-smooth concavo-convex although specific morphological differences demonstrate the diversity of beetle elytra.Young's modulus and the hardness of the elytral materials vary with the species of beetle and the sampling locations,ranging from 1.80 GPa to 12.44 GPa,and from 0.24 GPa to 0.75 GPa,respectively.In general,both the Young's modulus and the hardness are lower in samples taken from the center of the elytra than those taken from other regions,which reflects the functional heterogeneity of biological material in the process of biological evolution.The elytra have very low friction coefficient,ranging from 0.037 to 0.079,which is related to their composition and morphology.Our measurements indicate that the surface texture and its microstructural size of beetle elytra contribute to anti-friction effects.

  17. Frictional and bone ingrowth properties of engineered surface topographies produced by electron beam technology.

    Science.gov (United States)

    Biemond, J Elizabeth; Aquarius, René; Verdonschot, Nico; Buma, Pieter

    2011-05-01

    Electron beam melting (E-beam) is a new technology to produce 3-dimensional surface topographies for cementless orthopedic implants. The friction coefficients of two newly developed E-beam produced surface topographies were in vitro compared with sandblasted E-beam and titanium plasma sprayed controls. Bone ingrowth (direct bone-implant contact) was determined by implanting the samples in the femoral condyles of 6 goats for a period of 6 weeks. Friction coefficients of the new structures were comparable to the titanium plasma sprayed control. The direct bone-implant contact was 23.9 and 24.5% for the new surface structures. Bone-implant contact of the sandblasted and titanium plasma sprayed control was 18.2 and 25.5%, respectively. The frictional and bone ingrowth properties of the E-beam produced surface structures are similar to the plasma-sprayed control. However, since the maximal bone ingrowth had not been reached for the E-beam structures during the relatively short-term period, longer-term follow-up studies are needed to assess whether the E-beam structures lead to a better long-term performance than surfaces currently in use, such as titanium plasma spray coating.

  18. Effect of Interface Modified by Graphene on the Mechanical and Frictional Properties of Carbon/Graphene/Carbon Composites

    Directory of Open Access Journals (Sweden)

    Wei Yang

    2016-06-01

    Full Text Available In this work, we developed an interface modified by graphene to simultaneously improve the mechanical and frictional properties of carbon/graphene/carbon (C/G/C composite. Results indicated that the C/G/C composite exhibits remarkably improved interfacial bonding mode, static and dynamic mechanical performance, thermal conductivity, and frictional properties in comparison with those of the C/C composite. The weight contents of carbon fibers, graphene and pyrolytic carbon are 31.6, 0.3 and 68.1 wt %, respectively. The matrix of the C/G/C composite was mainly composed of rough laminar (RL pyrocarbon. The average hardness by nanoindentation of the C/G/C and C/C composite matrices were 0.473 and 0.751 GPa, respectively. The flexural strength (three point bending, interlaminar shear strength (ILSS, interfacial debonding strength (IDS, internal friction and storage modulus of the C/C composite were 106, 10.3, 7.6, 0.038 and 12.7 GPa, respectively. Those properties of the C/G/C composite increased by 76.4%, 44.6%, 168.4% and 22.8%, respectively, and their internal friction decreased by 42.1% in comparison with those of the C/C composite. Owing to the lower hardness of the matrix, improved fiber/matrix interface bonding strength, and self-lubricating properties of graphene, a complete friction film was easily formed on the friction surface of the modified composite. Compared with the C/C composite, the C/G/C composite exhibited stable friction coefficients and lower wear losses at simulating air-plane normal landing (NL and rejected take-off (RTO. The method appears to be a competitive approach to improve the mechanical and frictional properties of C/C composites simultaneously.

  19. Tensile properties and mechanical heterogeneity of friction stir welded joints of 2014 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yan-hua; LIN San-bao; WU Lin; QU Fu-xing

    2005-01-01

    2014 Al alloy of 8mm in thickness was successfully welded by friction stir welding method. The experimental results show that the tensile properties of the joints are significantly affected by the welding parameters. When the weld pitch is 0.25mm/r corresponding to the rotation speed of 400r/min and the welding speed of 100mm/min, the maximum ultimate strength of the joints is 78% that of the base material. For a certain weld joint, different parts possess different mechanical properties. In the three parts of the joint, the upper part is strongest and the middle part is poorest in mechanical properties. The mechanical properties and fracture locations of the joints are dependent on the microstructure variation and micro-hardness distributions of the joints, which attributes to the different thermo-mechanical actions on the different parts of the joints.

  20. Research on Friction Properties of Mineral Lubricants in Thin-Film-Lubricating Regime

    Institute of Scientific and Technical Information of China (English)

    Zhang Jie; Guan Tingting; Piao Jicheng

    2014-01-01

    On the basis of thin iflm lubrication theory, the inlfuence of lfuid iflm (disordered iflm), ordered iflm and ad-sorbed iflm on tribological behavior of lubricating oil in thin-iflm lubrication (TFL) regime was studied. Theμ-L (friction coefifcient versus load) curves of different oil viscosity and additive dosage were obtained by a high frequency reciprocat-ing test rig and the adsorption capacity of additive on steel surface were measured by QCM-D. Based on the Stribeck curve and thin iflm lubrication theory model, some conclusions can be drawn up, namely:(1) Theμ-L curves and the parameters of L0 andμ0, obtained from the high frequency reciprocating test rig with ball-disc contact, can be used to study tribologi-cal behaviors of lubricating oil under TFL conditions. (2) In comparison with the high viscosity base lfuid, the lower one can enter into TFL regime under lower load and keeps a lower friction coefifcient in TFL regime. (3) The polar molecules in additive formulation produce ordered adsorbed layer on steel surface to reduce friction coefifcient. And in TFL regime, the molecule’s polarity, layer thickness and saturation degree on steel surface probably can inlfuence lubricant’s tribological behaviors between the moving interfaces. Moreover, the further study would be focused on the competitive adsorption of different additives, the formation of dual-and/or tri-molecular adsorption layers, and other aspects.

  1. Structure-property relationships of dissimilar friction stir welded aluminum alloys

    Science.gov (United States)

    Quinones, Rogie Irwin Rodriguez

    In this work, the relationship between microstructure and mechanical properties of dissimilar friction stir welded AA6061-to-AA7050 aluminum alloys were evaluated. Experimental results from this study revealed that static strength increased with the tool rotational speed and was correlated with the material intermixing. Fully-reversed low cycle fatigue experimental results showed an increase in the strain hardening properties as well as the number of cycles-to-failure as the tool rotational speed was increased. Furthermore, under both static and cyclic loading, fracture of the joint was dominated by the AA6061 alloy side of the weld. In addition, inspection of the fatigue surfaces revealed that cracks initiated from intermetallic particles located near the surface. In order to determine the corrosion resistance of the dissimilar joint, corrosion defects were produced on the crown surface of the weld by static immersion in 3.5% NaCl for various exposure times. Results revealed localized corrosion damage in the thermo-mechanically affected and heat affected zones. Results demonstrated a decrease in the fatigue life, with evidence of crack initiation at the corrosion defects; however, the fatigue life was nearly independent of the exposure time. This can be attributed to total fatigue life dominated by incubation time. Furthermore, two types of failure were observed: fatigue crack initiation in the AA6061 side at high strain amplitudes (>0.3%); and fatigue crack initiation in the AA7050 side at low strain amplitudes (friction stir welded joints in order to capture the crack initiation and propagation in as-welded and pre-corroded conditions. Good correlation between experimental fatigue results and the model was achieved based on the variation in the initial defect size, microstructure, and mechanical properties of the dissimilar friction stir welded AA6061-to-AA7050 aluminum alloys.

  2. Localized Mechanical Properties of Friction Stir Processed Sensitized 5456-H116 Al

    Science.gov (United States)

    2013-04-01

    stir welding (FSW) but it does not create a joint. Friction stir welding is a solid state joining process where the material is softened such that...small randomly distributed porosity. The volumetric defects are representative of those seen in friction stir processing and friction stir welding ...retreating side on the second pass, are typical defects seen in aluminum friction stir processing and friction stir welding

  3. Mechanical Properties and Friction/Wear Behavior of Copper Alloyed Powder Composites

    Institute of Scientific and Technical Information of China (English)

    DENG Chen-hong; CHEN Guang-zhi; GE Qi-lu

    2005-01-01

    Copper alloyed powder composites containing nanoparticles were developed by hot pressing. Effects of nanoscale activated sintering aid and fine ceramic particles Al2O3 on hardness, working quality, and behaviors of friction and wear of the composites have been studied, compared with the composites including microscale activated sintering aid and microscale ceramic particles. The microstructures of the samples were analyzed by SEM. The results show that the materials with nanoscale sintering aid and fine ceramic particles have better mechanical properties and abrasive resistance than the materials with microscale activated sintering aid and microceramic particles. Moreover, element mutual transfer occurs between samples (strip) and abrasive wheel (ring).

  4. Experimental Evaluation of Mechanical Properties of Friction Welded Dissimilar Steels under Varying Axial Pressures

    Directory of Open Access Journals (Sweden)

    Handa Amit

    2016-07-01

    Full Text Available The present study emphasizes on joints two industrially important materials AISI 304 with AISI 1021steels, produced by friction welding have been investigated. Samples were welded under different axial pressures ranging from 75MPa to 135MPa, at constant speed of 920rpm. The tensile strength, torsional strength, impact strength and micro hardness values of the weldments were determined and evaluated. Simultaneously the fractrography of the tensile tested specimens were carried out, so as to understand the failure analysis. It was observed that improved mechanical properties were noticed at higher axial pressures. Ductile failures of weldments were also observed at 120MPa and 135MPa axial pressures during fractography analysis.

  5. Microstructural Characteristics and Mechanical Properties of Friction Stir Welded Thick 5083 Aluminum Alloy

    Science.gov (United States)

    Imam, Murshid; Sun, Yufeng; Fujii, Hidetoshi; Ma, Ninshu; Tsutsumi, Seiichiro; Murakawa, Hidekazu

    2016-10-01

    Joining thick sections of aluminum alloys by friction stir welding (FSW) in a single pass needs to overcome many challenges before it comes to full-scale industrial use. Important parameters controlling the structure-properties relationships both across weld cross-section and through thickness direction were investigated through mechanical testing, electron backscatter diffraction technique, transmission electron microscopy, and occurrence of serrated plastic flow. The evolution of the properties in the weld cross-section shows that the presence of undissolved and fragmented Al_6 MnFe particles cause discrepancies in establishing the Hall-Petch relationship, and derive the strengthening from the Orowan strengthening mechanism. A `stop action' friction stir weld has been prepared to understand the role of geometrical features of the tool probe in the development of the final microstructure after complete weld. Sectioning through the `stop action' weld with the probe in situ displays the individual effect of thread and flat on the grain structure formation. The material at the thread surface experiences more severe deformation than the material at flat surface. Both the high-angle boundaries and mean grain size are found to be higher at the thread surface. The strain hardening capacity, stress serration amplitude, and frequency are observed to be higher in the stir zone than other weld regions.

  6. Microstructure and Mechanical Properties of Friction Stir Welded 5083 and 7075 Aluminum Alloys

    Science.gov (United States)

    Kalemba-Rec, I.; Hamilton, C.; Kopyściański, M.; Miara, D.; Krasnowski, K.

    2017-02-01

    Through microscopy, mechanical testing, and numerical modeling, the microstructure and mechanical performance of friction stir welded aluminum alloys 7075-T651 and 5083-H111 were characterized. In particular, the influence of the weld configuration, i.e., the locations of the 7075 and 5083 alloys alternately on the advancing and retreating sides, on material flow, microstructure, and mechanical properties was considered. Thermographic data in conjunction with a process simulation demonstrated that the weld configuration significantly impacts heat generation during friction stir welding. The microstructure in the stir zone was a clear visualization of the material flow and was characterized by a vortex-like structure with alternating bands of the alloys being joined. These bands differed in elemental content and grain size. The microstructure became more complex when greater heat generation (higher temperatures) occurred. The weld configuration strongly influenced the material flow, but did not impact the tensile properties (such as yield strength, tensile strength, and elongation). The configuration of 5083 on the advancing side and 7075 on the retreating side produced the most uniform material flow. The joint efficiencies of all tested welds were above 100%.

  7. Microstructural Characteristics and Mechanical Properties of Friction Stir Welded Thick 5083 Aluminum Alloy

    Science.gov (United States)

    Imam, Murshid; Sun, Yufeng; Fujii, Hidetoshi; Ma, Ninshu; Tsutsumi, Seiichiro; Murakawa, Hidekazu

    2017-01-01

    Joining thick sections of aluminum alloys by friction stir welding (FSW) in a single pass needs to overcome many challenges before it comes to full-scale industrial use. Important parameters controlling the structure-properties relationships both across weld cross-section and through thickness direction were investigated through mechanical testing, electron backscatter diffraction technique, transmission electron microscopy, and occurrence of serrated plastic flow. The evolution of the properties in the weld cross-section shows that the presence of undissolved and fragmented Al_6MnFe particles cause discrepancies in establishing the Hall-Petch relationship, and derive the strengthening from the Orowan strengthening mechanism. A `stop action' friction stir weld has been prepared to understand the role of geometrical features of the tool probe in the development of the final microstructure after complete weld. Sectioning through the `stop action' weld with the probe in situ displays the individual effect of thread and flat on the grain structure formation. The material at the thread surface experiences more severe deformation than the material at flat surface. Both the high-angle boundaries and mean grain size are found to be higher at the thread surface. The strain hardening capacity, stress serration amplitude, and frequency are observed to be higher in the stir zone than other weld regions.

  8. The Friction and Wear Properties of the Spherical Plain Bearings with Self-lubricating Composite Liner in Oscillatory Movement

    Institute of Scientific and Technical Information of China (English)

    GUOOiang; SONGYun-feng; QIAOHong-bin; LUOWei-li

    2004-01-01

    A test method based on the condition simulation and a friction and wear test machine fecturing oscillatory movement were set up for self-lubricating spherical plain bearings ( SPB).In the machine the condi-tion parameters sueh as load, angle and frequency of oscillation and number of test cycles can be properly con-trolled. The data relating to the tribological properties of the bearing, in terms of friction coefficient, linear wearamount, temperature near friction surface and applied load, can be monitored and recorded simultaneoasly dur-ing test process by a computerized measuring system of the machine. Efforts were made to improve the measurementtechnology of the friction coefficient in oscillating motion. In result, a well-designed bearing torque mechanismwas dzveloped, which could reveal the relation between the friction coefficient and the displneemeat of oscillatingangle in any defined cycle while the curve of friction coefficient vs number of testing cycles was eontinuolusly plotted.The tribologieul properties and service life of four kinds of the bearings, i, e, the sample Ⅰ-Ⅳ with different selffilubricating composite liners, iacluding three kinds of palytetrafluoroethylene (PTFE )fiber weave/epoxy resincomposite liners and a PTFE plasticl copper grid composite liner, were evaluated by testing, and the wear mecha-nisms of the liner materials were analyzed.

  9. Acoustics of friction.

    Science.gov (United States)

    Akay, Adnan

    2002-04-01

    ultrasonic motors and other examples. Last, when considered phenomenologically, friction and boundary layer turbulence exhibit analogous properties and, when compared, each may provide clues to a better understanding of the other.

  10. Microstructure and mechanical properties of hard zone in friction stir welded X80 pipeline steel relative to different heat input

    Energy Technology Data Exchange (ETDEWEB)

    Aydin, Hakan, E-mail: hakanay@uludag.edu.tr [Engineering and Architecture Faculty, Mechanical Engineering Department, Uludag University, 16059 Gorukle-Bursa (Turkey); Nelson, Tracy W. [Mechanical Engineering Department, Brigham Young University, 435 CTB, Provo, UT 84602 (United States)

    2013-12-01

    The study was conducted to investigate the microstructure and mechanical properties of the hard zone in friction stir welded X80 pipeline steel at different heat inputs. Microstructural analysis of the welds was carried out using optical microscopy, transmission electron microscopy, and microhardness. Heat input during friction stir welding process had a significant influence on the microstructure and mechanical properties in the hard zone along the advancing side of the weld nugget. Based on the results, the linear relationships between heat input and post-weld microstructures and mechanical properties in the hard zone of friction stir welded X80 steels were established. It can be concluded that with decrease in heat input the bainitic structure in the hard zone becomes finer and so hard zone strength increases.

  11. Effect of the properties of natural resin binder in a high friction composite material

    Directory of Open Access Journals (Sweden)

    S. Stephen Bernard

    2014-01-01

    Full Text Available In this paper, a high-friction composite material based on the combination of binder, friction modifiers, fibers and fillers is investigated. In the binder, up to 20% of phenol are replaced by cardanol with various weight ratios of 100/0, 95/5, 90/10, 85/15, 80/20. Cardanol may react both through the phenolic group and the double bond of the side chain yielding addition, condensation and polymerisation reactions that allow the synthesis of tailor-made products and polymers of high value. In the present work, mechanical, thermal and wear characteristics of cardanol based phenolic resin with organic ingredients were manufactured and tested. An analysis of microstructure characteristics of composites was carried out using scanning electron microscope. The effect of environment on the composite was investigated in water, salty water and oil. The results showed that the addition of cardanol reduces the wear resistance and increases the compressibility which reduces the noise propensity.

  12. Modification of vacuum plasma sprayed tungsten coating on reduced activation ferritic/martensitic steels by friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Tanigawa, Hiroyasu, E-mail: tanigawa.hiroyasu@jaea.go.jp [Fusion Research and Development Directorate, Japan Atomic Energy Agency, Rokkasho, Aomori (Japan); Ozawa, Kazumi [Fusion Research and Development Directorate, Japan Atomic Energy Agency, Rokkasho, Aomori (Japan); Morisada, Yoshiaki [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka (Japan); Noh, Sanghoon [Fusion Research and Development Directorate, Japan Atomic Energy Agency, Rokkasho, Aomori (Japan); Nuclear Material Development Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Fujii, Hidetoshi [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka (Japan)

    2015-10-15

    Highlights: • Friction stir processing (FSP) was applied on vacuum plasma spray (VPS) W to improve its low thermal conductivity and weakness due to high porosity. • FSP can achieve significant improvement both in mechanical and thermal properties of VPS-W coating. • It was indicated that the double pass FSP at 600 rpm/50 mm/min/2 ton on VPS-W show the most dense microstructure and hardest mechanical property. • Hardness test over FSPed VPS-W layer revealed that the hardness of W becomes higher than that of bulk W. • The thermal conductivity of double pass FSPed VPS-W was about 80% of bulk W at 200 °C, and it becomes equivalent to that of bulk W over 800 °C. - Abstract: Tungsten (W) is the primary candidate material as a plasma facing material in fusion devices, as for its high melting temperature, good thermal conductivity and low sputtering rate, and vacuum plasma spray (VPS) technique is preferred as it is applicable for large area without brittle interlayer, but the thermal conductivity of W layer is very poor, and easy to detach, mainly caused by its porous structure. W Friction stir processing (FSP) was applied on VPS-W to improve these poor properties, and it was suggested that FSP can contribute to significant improvement in both mechanical and thermal properties of the VPS-W coating.

  13. Hybrid joints manufactured by ultrasound enhanced friction stir welding (USE-FSW) - corrosion properties

    Science.gov (United States)

    Benfer, S.; Fürbeth, W.; Thomä, M.; Wagner, G.; Straß, B.; Wolter, B.

    2017-03-01

    To realize lightweight structures of material combinations like aluminum/magnesium and aluminum/steel an Ultrasound Enhanced Friction Stir Welding (USE-FSW) process was used. This process has a beneficial influence on the resulting microstructure (elimination of the brittle intermetallic phase Al3Mg2 as coherent layer) and the mechanical properties (increased tensile strength) of Al/Mg-joints and was now also applied for Al/steel-hybrid joints. Besides the mechanical properties the corrosion properties of the hybrid joints may play a significant role concerning the later use of the hybrid materials. Therefore, the corrosion properties of various hybrid joints have been investigated by different methods. With the Scanning Kelvin Probe (SKP) Volta potential differences between the base alloys and the welded area were investigated in air. The two-dimensional color-plots illustrate not only the Volta potential differences between the different phases but also their oxidation properties in air during the measurement time. Electrochemical measurements (open circuit potential and potentiodynamic polarization) have been carried out for the investigation of the corrosion properties of the FSW and USE-FSW hybrid joints in 0.5 molar NaCl solution. A three electrode setup within a mini-cell was used to enable measurements on different areas of the joints. This allows to observe the corrosion activity of the base alloys and the nugget phase separately. Differences between Al/steel-hybrid joints processed with and without ultrasound enhancement are discussed and compared with Al/Mg-hybrids.

  14. SYNTHESIS OF PERFLUORO-1-OCTANESULFONATED FULLERENE AND THE FRICTION PROPERTIES OF ITS THIN FILM

    Institute of Scientific and Technical Information of China (English)

    Lan Huang; Shuang Fan; Fang Wei; Xin-sheng Zhao; Jin-xin Xiao; Bu-yao Zhu

    2002-01-01

    A star-shaped compound of perfluoro-1-octanesulfonated fullerene was synthesized. The measurement of the friction for its spin-coating film by friction force microscopy (FFM) reveals that the films possess lower friction force compared to that of the star-shaped C60-polystyrene films.

  15. Numerical Simulation of Tension Properties for Al-Cu Alloy Friction Stir-Welded Joints with GTN Damage Model

    Science.gov (United States)

    Sun, Guo-Qin; Sun, Feng-Yang; Cao, Fang-Li; Chen, Shu-Jun; Barkey, Mark E.

    2015-11-01

    The numerical simulation of tensile fracture behavior on Al-Cu alloy friction stir-welded joint was performed with the Gurson-Tvergaard-Needleman (GTN) damage model. The parameters of the GTN model were studied in each region of the friction stir-welded joint by means of inverse identification. Based on the obtained parameters, the finite element model of the welded joint was built to predict the fracture behavior and tension properties. Good agreement can be found between the numerical and experimental results in the location of the tensile fracture and the mechanical properties.

  16. Effect of Shoulder Size on Weld Properties of Dissimilar Metal Friction Stir Welds

    Science.gov (United States)

    Akinlabi, E. T.

    2012-07-01

    This article reports a research study that shows the effect of shoulder diameter size on the resulting weld properties of dissimilar friction stir welds between 5754 aluminum alloy (AA) and C11000 copper (Cu). Welds were produced using three different shoulder diameter tools: 15, 18, and 25 mm by varying the rotational speed between 600 and 1200 rpm and the traverse speed between 50 and 300 mm/min to achieve the best result. Each parameter combination was chosen to represent different heat input conditions (low, intermediates and high). The welds were characterized through microstructural evaluation, tensile testing, microhardness measurements, x-ray diffraction analysis, and electrical resistivity. Microstructural evaluation of the welds revealed that the welds produced consisted of all the friction stir welding (FSW) microstructure zones with organized flow lines comprising mixture layers of aluminum (Al) and copper (Cu) at the Stir Zones. The average Ultimate Tensile Strength (UTS) of the welds considered ranged from 178 to 208 MPa. Higher Vickers microhardness values were measured at the joint interfaces of all the welds because of the presence of intermetallic compounds in these regions. The x-ray diffraction analysis revealed the presence of Al4Cu9 and Al2Cu intermetallics at the interfacial regions, and low electrical resistivities were obtained at the joint interfaces. An optimized parameter setting for FSW of Al and Cu was obtained at the weld produced at 950 rpm and 50 mm/min with the 18-mm shoulder diameter tool.

  17. Microstructure and mechanical properties of friction stir welded thin sheets of 2024-T4 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    LI Lian; TONG Jian-hua; WAN Fa-rong; LONG Yi

    2006-01-01

    Friction stir welding (FSW) is a new and promising welding processing that can produce low-cost and high-quality joints of aluminum alloys. 1 mm thick sheets of 2024-T4 aluminum alloys which are always used as building and decorating materials were welded by FSW. The microstrueture and mechanical properties of friction stir welded 1 mm thick sheets of 2024-T4 aluminum alloy were studied. It was found that the thinner the 2024 aluminum alloy, the larger the FSW technological parameters field. The grains size of weld nugget zone (WNZ) is approximately 10 times smaller than that of the parent material, but the second phase in the material is not refined apparently in the welding. The FS welded joints have about 40% higher yield strength than the parent material,but the elongation of FS welded joints is under about 50% of the parent material. The electron backscattered diffraction (EBSD)results show that there are much more low angle boundaries (LAB) in WNZ than that in parent material, which indicates that FSW causes a number of sub-grain structures in WNZ, and this is also the reason of the increase of yield strength and Vickers hardness of the welded joint.

  18. PROPERTIES OF CP: COEFFICIENT OF THERMAL EXPANSION, DECOMPOSITION KINETICS, AND REACTION TO SPARK, FRICTION AND IMPACT

    Energy Technology Data Exchange (ETDEWEB)

    Weese, R K; Burnham, A K

    2005-09-28

    The properties of pentaamine (5-cyano-2H-tetrazolato-N2) cobalt (III) perchlorate (CP), which was first synthesized in 1968, continues to be of interest for predicting behavior in handling, shipping, aging, and thermal cook-off situations. We report coefficient of thermal expansion (CTE) values over four specific temperature ranges, decomposition kinetics using linear and isothermal heating, and the reaction to three different types of stimuli: impact, spark, and friction. The CTE was measured using a Thermal Mechanical Analyzer (TMA) for samples that were uniaxially compressed at 10,000 psi and analyzed over a dynamic temperature range of -20 C to 70 C. Differential scanning calorimetry, DSC, was used to monitor CP decomposition at linear heating rates of 1-7 C min{sup -1} in perforated pans and of 0.1-1.0 C min{sup -1} in sealed pans. The kinetic triplet was calculated using the LLNL code Kinetics05, and predictions for 210 and 240 C are compared to isothermal thermogravimetric analysis (TGA) experiments. Values are also reported for spark, friction, and impact sensitivity.

  19. Study of adhesion and friction properties on a nanoparticle gradient surface: transition from JKR to DMT contact mechanics.

    Science.gov (United States)

    Ramakrishna, Shivaprakash N; Nalam, Prathima C; Clasohm, Lucy Y; Spencer, Nicholas D

    2013-01-01

    We have previously investigated the dependence of adhesion on nanometer-scale surface roughness by employing a roughness gradient. In this study, we correlate the obtained adhesion forces on nanometer-scale rough surfaces to their frictional properties. A roughness gradient with varying silica particle (diameter ≈ 12 nm) density was prepared, and adhesion and frictional forces were measured across the gradient surface in perfluorodecalin by means of atomic force microscopy with a polyethylene colloidal probe. Similarly to the pull-off measurements, the frictional forces initially showed a reduction with decreasing particle density and later an abrupt increase as the colloidal sphere began to touch the flat substrate beneath, at very low particle densities. The friction-load relation is found to depend on the real contact area (A(real)) between the colloid probe and the underlying particles. At high particle density, the colloidal sphere undergoes large deformations over several nanoparticles, and the contact adhesion (JKR type) dominates the frictional response. However, at low particle density (before the colloidal probe is in contact with the underlying surface), the colloidal sphere is suspended by a few particles only, resulting in local deformations of the colloid sphere, with the frictional response to the applied load being dominated by long-range, noncontact (DMT-type) interactions with the substrate beneath.

  20. Microstructural Characteristics and Mechanical Properties of 7050-T7451 Aluminum Alloy Friction Stir-Welded Joints

    Science.gov (United States)

    Zhou, L.; Wang, T.; Zhou, W. L.; Li, Z. Y.; Huang, Y. X.; Feng, J. C.

    2016-06-01

    The ultra-high-strength Al-Zn-Mg-Cu alloy, 7050-T7451, was friction stir welded at a constant tool rotation speed of 600 rpm. Defect-free welds were successfully obtained at a welding speed of 100 mm/min, but lack-of-penetration defect was formed at a welding speed of 400 mm/min. The as-received material was mainly composed of coarse-deformed grains with some fine recrystallized grains. Fine equiaxed, dynamic, recrystallized grains were developed in the stir zone, and elongated grains were formed in the thermomechanically affected zone with dynamic recovered subgrains. Grain sizes in different regions of friction stir-welded joints varied depending on the welding speed. The sizes and distributions of precipitates changed in different regions of the joint, and wider precipitation free zone was developed in the heat-affected zone compared to that in the base material. Hardness of the heat-affected zone was obviously lower than that of the base material, and the softening region width was related to the welding speed. The tensile strength of the defect-free joints increased with the increasing welding speed, while the lack-of-penetration defect greatly reduced the tensile strength. The tensile fracture path was significantly influenced by the position and orientation of lack-of-penetration defect.

  1. Influence of the microstructural changes and induced residual stresses on tensile properties of wrought magnesium alloy friction stir welds

    Energy Technology Data Exchange (ETDEWEB)

    Commin, Loreleie, E-mail: lorelei.commin@kit.edu [LMPF, Arts et Metiers ParisTech, rue St Dominique, 51000 Chalons en Champagne (France); Dumont, Myriam [Aix-Marseille Universite, CNRS, IM2NP (UMR 6242), Faculte St-Jerome, Case 261, Av. Escadrille Normandie-Niemen, 13 397 Marseille Cedex 20 (France); Rotinat, Rene; Pierron, Fabrice [LMPF, Arts et Metiers ParisTech, rue St Dominique, 51000 Chalons en Champagne (France); Masse, Jean-Eric; Barrallier, Laurent [MecaSurf, Arts et Metiers ParisTech, 2 cours des Arts et Metiers, 13100 Aix en Provence (France)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Study of AZ31 FSW mechanical behaviour. Black-Right-Pointing-Pointer Early yielding occurs in the TMAZ, the nugget and base metal zones undergo almost no plastic strains. Black-Right-Pointing-Pointer Texture gradient in the TMAZ localises the deformations in this area. Black-Right-Pointing-Pointer Residual stresses have a major influence in FSW mechanical behaviour. - Abstract: Friction stir welding induces a microstructural evolution and residual stresses that will influence the resulting mechanical properties. Friction stir welds produced from magnesium alloy hot rolled plates were studied. Electron back scattered diffraction was used to determine the texture evolution, residual stresses were analysed using X ray diffraction and tensile tests coupled with speckle interferometry were performed. The residual stresses induced during friction stir welding present a major influence on the final mechanical properties.

  2. Inhomogeneous cartilage properties enhance superficial interstitial fluid support and frictional properties, but do not provide a homogeneous state of stress.

    Science.gov (United States)

    Krishnan, Ramaswamy; Park, Seonghun; Eckstein, Felix; Ateshian, Gerard A

    2003-10-01

    It has been well established that articular cartilage is compositionally and mechanically inhomogenous through its depth. To what extent this structural inhomogeneity is a prerequisite for appropriate cartilage function and integrity is not well understood. The first hypothesis to be tested in this study was that the depth-dependent inhomogeneity of the cartilage acts to maximize the interstitial fluid load support at the articular surface, to provide efficient frictional and wear properties. The second hypothesis was that the inhomogeneity produces a more homogeneous state of elastic stress in the matrix than would be achieved with uniform properties. We have, for the first time, simultaneously determined depth-dependent tensile and compressive properties of human patellofemoral cartilage from unconfined compression stress relaxation tests. The results show that the tensile modulus increases significantly from 4.1 +/- 1.9 MPa in the deep zone to 8.3 +/- 3.7 MPa at the superficial zone, while the compressive modulus decreases from 0.73 +/- 0.26 MPa to 0.28 +/- 0.16 MPa. The experimental measurements were then implemented with the finite-element method to compute the response of an inhomogeneous and homogeneous cartilage layer to loading. The finite-element models demonstrate that structural inhomogeneity acts to increase the interstitial fluid load support at the articular surface. However, the state of stress, strain, or strain energy density in the solid matrix remained inhomogeneous through the depth of the articular layer, whether or not inhomogeneous material properties were employed. We suggest that increased fluid load support at the articular surface enhances the frictional and wear properties of articular cartilage, but that the tissue is not functionally adapted to produce homogeneous stress, strain, or strain energy density distributions. Interstitial fluid pressurization, but not a homogeneous elastic stress distribution, appears thus to be a

  3. Constitutive model of friction stir weld with consideration of its inhomogeneous mechanical properties

    Science.gov (United States)

    Zhang, Ling; Min, Junying; Wang, Bin; Lin, Jianping; Li, Fangfang; Liu, Jing

    2016-03-01

    In practical engineering, finite element(FE) modeling for weld seam is commonly simplified by neglecting its inhomogeneous mechanical properties. This will cause a significant loss in accuracy of FE forming analysis, in particular, for friction stir welded(FSW) blanks due to the large width and good formability of its weld seam. The inhomogeneous mechanical properties across weld seam need to be well characterized for an accurate FE analysis. Based on a similar AA5182 FSW blank, the metallographic observation and micro-Vickers hardness analysis upon the weld cross-section are performed to identify the interfaces of different sub-zones, i.e., heat affected zone(HAZ), thermal-mechanically affected zone(TMAZ) and weld nugget(WN). Based on the rule of mixture and hardness distribution, a constitutive model is established for each sub-zone to characterize the inhomogeneous mechanical properties across the weld seam. Uniaxial tensile tests of the AA5182 FSW blank are performed with the aid of digital image correlation(DIC) techniques. Experimental local stress-strain curves are obtained for different weld sub-zones. The experimental results show good agreement with those derived from the constitutive models, which demonstrates the feasibility and accuracy of these models. The proposed research gives an accurate characterization of inhomogeneous mechanical properties across the weld seam produced by FSW, which provides solutions for improving the FE simulation accuracy of FSW sheet forming.

  4. The frictional properties of faults at shallow depths: implications for rupture propagation.

    Science.gov (United States)

    De Paola, Nicola; Bullock, Rachael; Unwin, Rachel; Murray, Rosanne; Stillings, Mark; Holdsworth, Robert

    2015-04-01

    Most synoptic models of faults assume the presence of a shallow stable, velocity-strengthening aseismic region due to the presence of incohesive gouges, poorly lithified continental sediments (continental faults) and phyllosilicate-rich rocks (accretionary prisms at subduction zones). The near-surface portions of faults are therefore viewed as effective energy sinks with the potential to arrest/slow down the propagation of earthquakes, preventing them from reaching the surface. However, recent events, such as the 2009 Mw 6.3 L'Aquila and 2011 Mw 9.0 Tohoku-Oki earthquakes, have demonstrated that moderate/large co-seismic ruptures can propagate to the surface causing vast damage and destructive tsunamis. In order to better understand rupture propagation at shallow depths, we investigated the frictional properties of a range of bedrock lithologies, typical of the oceanic (gabbros) and continental crusts (granite, limestone), together with phyllosilicate-bearing lithologies typical of subduction zones and continental sedimentary deposits. Laboratory experiments have been performed in a low to high velocity rotary shear apparatus, on granular materials with grainsize up to 200 μm, under dry, water- and brine-saturated conditions, at slip rates ranging from 10 μm/s up to 1 m/s, with normal loads up to 18 MPa and displacements up to 1 m. Velocity step experiments performed at sub-seismic slip rates (10-100 μm/s) on dry, water- and brine-saturated granite and calcite rocks show that velocity strengthening behaviour evolves to velocity-neutral/-weakening behaviour due to slip localization attained after critical displacements of a few tens to hundreds of mm. The critical displacement value is inversely proportional to the applied normal load. Dry, water- and brine-saturated gabbros show velocity-weakening behaviour and slip localization regardless of the displacement attained and applied normal load. Dry, water- and brine-saturated phyllosilicate-rich gouges show

  5. Research Methods for Tribological Properties of Restorative and Preventive Coatings in Different Lubricating Media at Sliding Friction

    Directory of Open Access Journals (Sweden)

    Nikolov Mitko

    2014-10-01

    Full Text Available A large part of machines (85–90 % (Garkunov, 2003 lose their efciency due to wear of parts, which disrupts their normal interaction, causes additional loading, shocks and vibrations, leads to seizures and jams and to accidents in many cases. This paper presents research methods for tribological properties of restorative and preventive coatings in diferent lubricating media at sliding friction.

  6. Global and Local Mechanical Properties and Microstructure of Friction Stir Welds with Dissimilar Materials and/or Thicknesses

    NARCIS (Netherlands)

    Zadpoor, A.A.; Sinke, J.; Benedictus, R.

    2010-01-01

    This article studies the properties of a wide range of friction-stir-welded joints with dissimilar aluminum alloys or thicknesses. Two aluminum alloys, namely, 2024-T3 and 7075-T6, are selected for the study and are welded in ten different combinations of alloys and thicknesses. The welding paramete

  7. Global and Local Mechanical Properties and Microstructure of Friction Stir Welds with Dissimilar Materials and/or Thicknesses

    NARCIS (Netherlands)

    Zadpoor, A.A.; Sinke, J.; Benedictus, R.

    2010-01-01

    This article studies the properties of a wide range of friction-stir-welded joints with dissimilar aluminum alloys or thicknesses. Two aluminum alloys, namely, 2024-T3 and 7075-T6, are selected for the study and are welded in ten different combinations of alloys and thicknesses. The welding

  8. Geometrical and Friction Properties of Perennial Grasses and Their Weeds in View of an Electro-Separation Method

    Science.gov (United States)

    Kovalyshyn, Stepan J.; Dadak, Viktor O.; Sokolyk, Vitalij V.; Grundas, Stanisław; Stasiak, Mateusz; Tys, Jerzy

    2015-04-01

    Many seed mixtures of herbs are difficult to separate. This is confirmed by studies determining the basic geometrical and friction properties of the seeds of perennial grasses and seeds of their weeds. The results show that in most cases the value of their geometrical parameters (length, thickness, and width) and friction properties (friction coefficients for different external surfaces of internal friction coefficients) are substantially similar and differ slightly among each other. This is the evidence that these properties are impractical to use in the process of separation as signs of divisibility. In the paper, a method for electro-separation of seed mixtures of herbs based on the use of complex physical, mechanical properties and electrical components in the separation are presented. The electric field that acts as an additional working body allows considering the surface conditions and biological status of seed mixtures of particles and significantly expands the functionality of the separators. Confirmation of the effectiveness of the proposed method for separation can be seen in the example of purification of red clover and sorrel seeds. By imposition of an electric field on an inclined moving separating plane, we can completely separate weed seeds from the main crop. The results confirm the effectiveness of the electro-separating method.

  9. Investigation of Micro-wear and Micro-friction Properties for Bionic Non-smooth Concave Components

    Institute of Scientific and Technical Information of China (English)

    Han Zhi-wu; Xu Xiao-xia; Qiu Zhao-mei; Ren Lu-quan

    2005-01-01

    Five kinds of 45# steel samples with concave features on the surface were manufactured using Laser Texturing Technology (LTT). Optimum design theory was used to design the experiment, and a two-level orthogonal table -L16 (215) design was adopted . Micro-wear and micro-friction experienced by samples with concave surface features and samples with smooth surfaces were compared experimentally. The wear resistance of samples with concave surface features was increased most,and different surface morphologies had different effects on friction and wear properties.

  10. Antiwear and reducing friction performance of (2-sulphurone-benzothiazole)-3-methyl dodecanoate

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A heterocyclic derivative of (2-sulphurone-benzothiazole)-3-methyl dodecanoate was synthesized. Its tribological performance when added to liquid paraffin was evaluated on a four-ball tester and a ring-on-block machine. Results indicate that compared with the base oil the wear resistance and load-carrying capacities of the oil with novel additive are improved, and the friction coefficient is decreased. There is an optimal content of the novel compound, at which the corresponding oil gives the highest maximum non-seizure load. Above the content, the load carrying capacity of the oil is not increased but decreased. The nature of the film formed on the rubbed surface was investigated by X-ray photoelectron spectroscopy (XPS) analysis, and the action mechanism of the novel compound was discussed.

  11. Examination of mechanical properties of magnesium plates joined by friction stir welding

    Directory of Open Access Journals (Sweden)

    Aydın Şık

    2010-12-01

    Full Text Available The use of magnesium, which is the latest metal of our age, is increasing in parallel with the advances in industry and technology. Due to its lightness, durability and long life, its usage is increasing in the automotive and space-craft industries. As a result of the advances in magnesium use, there are innovations in welding methods as well. The desired mechanical properties can't be obtained after welding. While there are some difficulties in fusion welding of magnesium material and its alloys, some of them can't be joined by fusion welding at all. Weldability of a material is the property that plays an important role in enabling its wider use and determines the method of producing products out of this material. Magnesium plates were joined successfully by friction stir welding method. Welded joints are exposed to various mechanic stresses and especially to dynamic loads. Cracks are observed to occur due to dynamic loads. Plates were joined in butt position and the mechanical properties of the occurring joint are examined.

  12. Microstructures and properties analysis of dissimilar metal joint in the friction stir welded copper to aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    Wang Xijing; Zhang Zhongke; Da Chaobing; Li Jing

    2007-01-01

    This paper mainly concentrated on the feasibility of friction stir welding of dissimilar metal of aluminum alloy to copper (T2) and a preliminary analysis of welding parameters influencing on the microstructures and properties of joint was carried out. The results indicated that the thickness of workpiece played an important role in the welding parameters which could succeed in the friction stir welding of dissimilar metal of copper to aluminum alloy, and the parameters were proved to be a narrow choice. The interfacial region between copper and aluminum in the dissimilar joint was not uniformly mixed, constituted with part of incomplete mixing zone, complete mixing zone, dispersion zone and the most region's boundary was obvious. Meantime a kind banded structure with inhomogeneous width was formed. The intermetallic compounds generated during friction stir welding in the interfacial region were mainly Cu9Al4 , Al2Cu etc, and their hardness was higher than others.

  13. The study on the properties of AISI 4140 and AISI 1040 steel rods welded by friction welding

    Directory of Open Access Journals (Sweden)

    Thanee Toomprasen

    2014-06-01

    Full Text Available This paper is aimed to investigate the properties of joint between AISI 4140 and AISI 1040 welded by friction welding. The specimens were prepared in round shape of 13 mm diameter and 100 mm long. They were welded by friction welding method under the following conditions; friction pressure of 183 MPa, friction time of 12 sec, upset pressure of 428 MPa, upset time of 7 sec. and rotational speed of 1400 rpm. The strength and hardness were tested on the welded area. The result showed finer grains. in the welded area. This is the result of friction pressure and upset pressure in the welding process. In addition, the observation result indicated some changes of Ferrite and Pearlite in welded zone. This phase change resulted in the increment of hardness in AISI 4140 at the contact area and adjacent. In part of AISI 1040, the portion of Pearlite and Ferrite are not significantly changed, therefore the value of hardness is almost constant.

  14. Influence of Ultrasonic Vibrations on the Static Friction Characteristics of a Rubber/Aluminum Couple

    Institute of Scientific and Technical Information of China (English)

    程廷海; 高焓; 包钢

    2011-01-01

    A novel ultrasonic vibration approach is introduced into a chloroprene rubber/aluminum friction couple for improving the static friction properties betwesn rubber and metal.Compared to the test results without vibrations,the static friction force of a chloroprene rubber/aluminum couple decreases observably,leading to the ultimate displacement of rubber.The values of the static friction force and ultimate displacement can be ultimately reduced to 23.1% and 50% of those without ultrasonic vibrations,respectively.%A novel ultrasonic vibration approach is introduced into a chioroprene rubber/aluminum friction couple for improving the static friction properties between rubber and metal. Compared to the test results without vibrations, the static friction force of a chioroprene rubber/aluminum couple decreases observably, leading to the ultimate displacement of rubber. The values of the static friction force and ultimate displacement can be ultimately reduced to 23.1% and 50% of those without ultrasonic vibrations, respectively.

  15. Influence of friction stir welding parameters on properties of 2024 T3 aluminium alloy joints

    Directory of Open Access Journals (Sweden)

    Eramah Abdsalam M.

    2014-01-01

    Full Text Available The aim of this work is to analyse the process of friction stir welding (FSW of 3mm thick aluminium plates made of high strength aluminium alloy - 2024 T3, as well as to assess the mechanical properties of the produced joints. FSW is a modern procedure which enables joining of similar and dissimilar materials in the solid state, by the combined action of heat and mechanical work. This paper presents an analysis of the experimental results obtained by testing the butt welded joints. Tensile strength of the produced joints is assessed, as well as the distribution of hardness, micro-and macrostructure through the joints (in the base material, nugget, heat affected zone and thermo-mechanically affected zone. Different combinations of the tool rotation speed and the welding speed are used, and the dependence of the properties of the joints on these parameters of welding technology is determined. [Projekat Ministarstva nauke Republike Srbije, br. TR 34018 i br. TR 35006

  16. Friction Stir-Welded Titanium Alloy Ti-6Al-4V: Microstructure, Mechanical and Fracture Properties

    Science.gov (United States)

    Sanders, D. G.; Edwards, P.; Cantrell, A. M.; Gangwar, K.; Ramulu, M.

    2015-05-01

    Friction stir welding (FSW) has been refined to create butt welds from two sheets of Ti-6Al-4V alloy to have an ultra-fine grain size. Weld specimen testing was completed for three different FSW process conditions: As welded, stress relieved, stress relieved and machined, and for the un-welded base material. The investigation includes macrostructure, microstructure, microhardness, tensile property testing, notched bar impact testing, and fracture toughness evaluations. All experiments were conducted in accordance with industry standard testing specifications. The microstructure in the weld nugget was found to consist of refined and distorted grains of alpha in a matrix of transformed beta containing acicular alpha. The enhanced fracture toughness of the welds is a result of increased hardness, which is attributed to an increase in alpha phase, increase in transformed beta in acicular alpha, and grain refinement during the weld process. The noted general trend in mechanical properties from as welded, to stress relieved, to stress relieved and machined conditions exhibited a decrease in ultimate tensile strength, and yield strength with a small increase in ductility and a significant increase in fracture toughness.

  17. Distribution of tensile property and microstructure in friction stir weld of 6063 aluminum

    Science.gov (United States)

    Sato, Yutaka S.; Kokawa, Hiroyuki

    2001-12-01

    Dominant microstructural factors governing the global tensile properties of a friction-stir-welded joint of 6063 aluminum were examined by estimating distribution of local tensile properties corresponding to local microstructure and hardness. Yield and ultimate tensile strengths of the as-welded weld were significantly lower than those of the base material. Postweld aging and postweld solution heat-treatment and aging (SHTA) restored the strengths of the weld to the levels of the base material. Elongation was found to increase with increasing strength. Hardness tests showed that the as-welded weld was soft around the weld center and that the aged weld and the SHTA weld had relatively homogeneous distributions of high hardness. Hardness profiles of the welds were explained by precipitate distributions and precipitation sequences during the postweld heat treatments. The strengths of the welds were related to each minimum hardness value. In a weld having a heterogeneous hardness profile, the fracture occurred in the region with minimum hardness. When a weld had a homogeneous hardness profile, its fracture site depended on both crystallographic-orientation distribution of the matrix grains and strain tensor of the imposed deformation, i.e., it fractured in the region with a minimum average Taylor factor.

  18. Fabrication of friction-reducing texture surface by selective laser melting of ink-printed (SLM-IP) copper (Cu) nanoparticles(NPs)

    Science.gov (United States)

    Wang, Xinjian; Liu, Junyan; Wang, Yang; Fu, Yanan

    2017-02-01

    This paper reports a process of selective laser melting of ink-printed (SLM-IP) copper (Cu) nanoparticles(NPs) for the fabrication of full dense Cu friction-reducing texture on the metallic surface in ambient condition. This technique synthesizes pure Cu by chemical reduction route using an organic solvent during laser melting in the atmosphere environment, and provides a flexible additive manufacture approach to form complex friction-reduction texture on the metallic surface. Microtextures of ring and disc arrays have been fabricated on the stainless steel surface by SLM-IP Cu NPs. The friction coefficient has been measured under the lubricating condition of the oil. Disc texture surface (DTS) has a relatively low friction coefficient compared with ring texture surface (RTS), Cu film surface (Cu-FS) and the untreated substrate. The study suggests a further research on SLM-IP approach for complex microstructure or texture manufacturing, possibly realizing its advantage of flexibility.

  19. Formability of fiber-reinforced thermoplastics in hot press forming process based on friction properties

    NARCIS (Netherlands)

    Sachs, U.; Haanappel, S.P.; Rietman, A.D.; Thije, ten R.H.W.; Akkerman, R.

    2013-01-01

    In this paper an advanced solid state cladding process, based on Friction Stir Welding, is presented. The Friction Surface Cladding (FSC) technology enables the deposition of a solid-state coating using filler material on a substrate with good metallurgical bonding. A relatively soft AA1050 filler m

  20. Physical properties of elongated magnetic particles: magnetization and friction coefficient anisotropies.

    Science.gov (United States)

    Vereda, Fernando; de Vicente, Juan; Hidalgo-Alvarez, Roque

    2009-06-02

    Anisotropy counts: A brief review of the main physical properties of elongated magnetic particles (EMPs) is presented. The most important characteristic of an EMP is the additional contribution of shape anisotropy to the total anisotropy energy of the particle, when compared to spherical magnetic particles. The electron micrograph shows Ni-ferrite microrods fabricated by the authors.We present an overview of the main physical properties of elongated magnetic particles (EMPs), including some of their more relevant properties in suspension. When compared to a spherical magnetic particle, the most important characteristic of an EMP is an additional contribution of shape anisotropy to the total anisotropy energy of the particle. Increasing aspect ratios also lead to an increase in both the critical single-domain size of a magnetic particle and its resistance to thermally activated spontaneous reversal of the magnetization. For single-domain EMPs, magnetization reversal occurs primarily by one of two modes, coherent rotation or curling, the latter being facilitated by larger aspect ratios. When EMPs are used to prepare colloidal suspensions, other physical properties come into play, such as their anisotropic friction coefficient and the consequent enhanced torque they experience in a shear flow, their tendency to align in the direction of an external field, to form less dense sediments and to entangle into more intricate aggregates. From a more practical point of view, EMPs are discussed in connection with two interesting types of magnetic colloids: magnetorheological fluids and suspensions for magnetic hyperthermia. Advances reported in the literature regarding the use of EMPs in these two systems are included. In the final section, we present a summary of the most relevant methods documented in the literature for the fabrication of EMPs, together with a list of the most common ferromagnetic materials that have been synthesized in the form of EMPs.

  1. Effect Of Process Parameters On Mechanical Properties Of Friction Stir.Welded Joint Of Two Similar &Dissimilar Al-Alloys

    Directory of Open Access Journals (Sweden)

    Umasankar Das,

    2015-09-01

    Full Text Available Friction Stir Welding (FSW is an advance joining process for different similar and dissimilar materials. It is commonly used for joining of Aluminum alloys. However it is necessary to overcome some challenges for its wide-spread uses. Tool design and the selection of process parameters are critical issues in the usage of this process. This study focuses on the process parameters that is required for producing effective friction stir welding of two similar aluminum alloys (AA6101T6 to AA6101T6 and dissimilar Aluminum alloys (AA6101T6 alloy to AA6351T6 . Three different tool diameters such as 20 mm, 25 mm and 30 mm with three different tool rotational speeds such as 600 rpm, 800 rpm and 1200 rpm have been used to weld the joints. The welded samples were tested for mechanical properties as well as microstructure. It was observed that 30 mm tool gives better weld quality for friction stir welding of similar aluminum alloy but 25 mm tool with 1200 rpm rotational speed gave satisfactory weld quality for friction stir welding of dissimilar aluminum alloys. It is one of the important welding process that can adopted for welding of aluminum alloys with excellent mechanical properties. The results were confirmed by further experiments.

  2. Effect of tool shape and welding parameters on mechanical properties and microstructure of dissimilar friction stir welded aluminium alloys

    Directory of Open Access Journals (Sweden)

    Chetan Aneja

    2016-07-01

    Full Text Available In the present experimental study, dissimilar aluminum alloy AA5083 and AA6082 were friction stir welded by varying tool shape, welding speed and rotary speed of the tool in order to investigate the effect of varying tool shape and welding parameters on the mechanical properties as well as microstructure. The friction stir welding (FSW process parameters have great influence on heat input per unit length of weld. The outcomes of experimental study prove that mechanical properties increases with decreasing welding speed. Furthermore mechanical properties were also found to improve as the rotary speed increases and the same phenomenon was found to happen while using straight cylindrical threaded pin profile tool. The microstructure of the dissimilar joints revealed that at low welding speeds, the improved material mixing was observed. The similar phenomenon was found to happen at higher rotational speeds using straight cylindrical threaded tool.

  3. Structure, tribological and electrochemical properties of low friction TiAlSiCN/MoSeC coatings

    Energy Technology Data Exchange (ETDEWEB)

    Bondarev, A.V.; Kiryukhantsev-Korneev, Ph.V.; Sheveyko, A.N.; Shtansky, D.V., E-mail: shtansky@shs.misis.ru

    2015-02-01

    Highlights: • TiAlSiCN/MoSeC coatings for tribological applications. • Doping with MoSeC reduces friction coefficient in humid air from 0.8–0.9 to 0.05. • Doping with MoSeC increases wear resistance by one-two orders of magnitude. • TiAlSiCN/MoSeC coatings demonstrated low friction coefficient in distilled water. • TiAlSiCN/MoSeC coatings showed superior tribological properties at moderate temperatures. - Abstract: The present paper is focused on the development of hard tribological coatings with low friction coefficient (CoF) in different environments (humid air, distilled water) and at elevated temperatures. TiAlSiCN/MoSeC coatings were deposited by magnetron sputtering of four-segment targets consisting of quarter circle TiAlSiCN segments, obtained by self-propagating high-temperature synthesis, and one or two cold pressed segments made of MoSe{sub 2} and C powders in a ratio 1:1 wt%. The structure and phase composition of coatings were investigated by means of X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. The coatings were characterized in terms of their hardness, elastic modulus, and elastic recovery. The tribological properties of coatings were investigated first at room temperature against Al{sub 2}O{sub 3} and WC–Co balls, after which studied in distilled water and during continuous heating in air in the temperature range of 25–400 °C against Al{sub 2}O{sub 3} counterpart material. To evaluate their electrochemical characteristics, the coatings were tested in 1 N H{sub 2}SO{sub 4} solution. The obtained results show that the coating hardness depends on the amount of MoSeC additives and decreased from 40 to 28 (one MoSeC segment) and 12 GPa (two MoSeC segments). Doping with MoSeC resulted in a significant reduction of CoF values measured in humid air (RH 60 ± 5%) from 0.8–0.9 to 0.05 and an increase of wear resistance by one or two orders of magnitude depending on

  4. Multi-Track Friction Stir Lap Welding of 2024 Aluminum Alloy: Processing, Microstructure and Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Shengke Zou

    2016-12-01

    Full Text Available Friction stir lap welding (FSLW raises the possibility of fabricating high-performance aluminum components at low cost and high efficiency. In this study, we mainly applied FSLW to fabricate multi-track 2024 aluminum alloy without using tool tilt angle, which is important for obtaining defect-free joint but significantly increases equipment cost. Firstly, systematic single-track FSLW experiments were conducted to attain appropriate processing parameters, and we found that defect-free single-track could also be obtained by the application of two-pass processing at a rotation speed of 1000 rpm and a traverse speed of 300 mm/min. Then, multi-track FSLW experiments were conducted and full density multi-track samples were fabricated at an overlapping rate of 20%. Finally, the microstructure and mechanical properties of the full density multi-track samples were investigated. The results indicated that ultrafine equiaxed grains with the grain diameter about 9.4 μm could be obtained in FSLW samples due to the dynamic recrystallization during FSLW, which leads to a yield strength of 117.2 MPa (17.55% higher than the rolled 2024-O alloy substrate and an elongation rate of 31.05% (113.84% higher than the substrate.

  5. Microstructure evolution and tensile properties of friction-stir-welded AM50 magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Friction stir welding (FSW) technique was utilized to weld cast AM50 magnesium alloy plates. The mierostructures in the base metal (BM) and the weld joint were observed by optical microscopy. The mechanical properties were investigated by using hardness measurement and tensile test, and the fractographs were observed by scanning electron microscopy. The results show that the microstructure of the base material was characterized by bulk primary α phase, α-matrix and intermetallic compound β (orMg17Al12), and the weld nugget exhibiting recrystallized microstructure consists of α-matrix and β phase. The grain size in the weld is smaller than that in the base metal. The hardness of the weld joint is improved but the tensile strength and yield strength, as well as the elongation to failure of the base material decline. The fracture of BM has a rougher surface with more dimples, which is a characteristic of the ductile fracture, whereas the fracture on the nugget reveals a quasi-cleavage feature. The ultimate tensile strength and yield strength of the FSWed AM50 are 86.2% and 94.0% of those of the base metal, respectively.

  6. Evaluation of properties and FEM Model of the Friction welded mild Steel-Al6061-Alumina

    Directory of Open Access Journals (Sweden)

    Hazman Seli

    2013-04-01

    Full Text Available Evaluation of mechanical and interfacial properties of friction welded alumina-mild steel rods with the use of Al6061 sheet are presented in this work. SEM, EDX analysis, hardness and bending strength tests were conducted. The bonds were attained through interfacial interlocking and intermetalllic phase formation with average bending strengths in the range of 40 to 200 MPa and insignificant hardness change in the parent alumina and mild steel. A preliminary simulation was made to predict the deformation, stress, strain and temperature distribution during the joining operation using a fully coupled thermo-mechanical FE model. The aluminum alloy metal being rubbed was simulated using a phenomenological Johnson-Cook viscoplasticity material model, which suited for materials subjected to large strains, high strain rates and high temperatures. The highest stress, strain and deformation are found to be within the heat affected zone of the weld close to the periphery rubbing surface region and correspond to the highest temperature profiles observed.

  7. Evaluation of properties and FEM Model of the Friction welded mild Steel-Al6061-Alumina

    Directory of Open Access Journals (Sweden)

    Hazman Seli

    2012-01-01

    Full Text Available Evaluation of mechanical and interfacial properties of friction welded alumina-mild steel rods with the use of Al6061 sheet are presented in this work. SEM, EDX analysis, hardness and bending strength tests were conducted. The bonds were attained through interfacial interlocking and intermetalllic phase formation with average bending strengths in the range of 40 to 200 MPa and insignificant hardness change in the parent alumina and mild steel. A preliminary simulation was made to predict the deformation, stress, strain and temperature distribution during the joining operation using a fully coupled thermo-mechanical FE model. The aluminum alloy metal being rubbed was simulated using a phenomenological Johnson-Cook viscoplasticity material model, which suited for materials subjected to large strains, high strain rates and high temperatures. The highest stress, strain and deformation are found to be within the heat affected zone of the weld close to the periphery rubbing surface region and correspond to the highest temperature profiles observed.

  8. Correlation between Mechanical Properties with Specific Wear Rate and the Coefficient of Friction of Graphite/Epoxy Composites

    Directory of Open Access Journals (Sweden)

    Mahdi Alajmi

    2015-07-01

    Full Text Available The correlation between the mechanical properties of Fillers/Epoxy composites and their tribological behavior was investigated. Tensile, hardness, wear, and friction tests were conducted for Neat Epoxy (NE, Graphite/Epoxy composites (GE, and Data Palm Fiber/Epoxy with or without Graphite composites (GFE and FE. The correlation was made between the tensile strength, the modulus of elasticity, elongation at the break, and the hardness, as an individual or a combined factor, with the specific wear rate (SWR and coefficient of friction (COF of composites. In general, graphite as an additive to polymeric composite has had an eclectic effect on mechanical properties, whereas it has led to a positive effect on tribological properties, whilst date palm fibers (DPFs, as reinforcement for polymeric composite, promoted a mechanical performance with a slight improvement to the tribological performance. Statistically, this study reveals that there is no strong confirmation of any marked correlation between the mechanical and the specific wear rate of filler/Epoxy composites. There is, however, a remarkable correlation between the mechanical properties and the friction coefficient of filler/Epoxy composites.

  9. Correlation between Mechanical Properties with Specific Wear Rate and the Coefficient of Friction of Graphite/Epoxy Composites.

    Science.gov (United States)

    Alajmi, Mahdi; Shalwan, Abdullah

    2015-07-08

    The correlation between the mechanical properties of Fillers/Epoxy composites and their tribological behavior was investigated. Tensile, hardness, wear, and friction tests were conducted for Neat Epoxy (NE), Graphite/Epoxy composites (GE), and Data Palm Fiber/Epoxy with or without Graphite composites (GFE and FE). The correlation was made between the tensile strength, the modulus of elasticity, elongation at the break, and the hardness, as an individual or a combined factor, with the specific wear rate (SWR) and coefficient of friction (COF) of composites. In general, graphite as an additive to polymeric composite has had an eclectic effect on mechanical properties, whereas it has led to a positive effect on tribological properties, whilst date palm fibers (DPFs), as reinforcement for polymeric composite, promoted a mechanical performance with a slight improvement to the tribological performance. Statistically, this study reveals that there is no strong confirmation of any marked correlation between the mechanical and the specific wear rate of filler/Epoxy composites. There is, however, a remarkable correlation between the mechanical properties and the friction coefficient of filler/Epoxy composites.

  10. Experimental investigation on the effect of process environment on the mechanical properties of AA5083/Al{sub 2}O{sub 3} nanocomposite fabricated via friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Ashjari, M., E-mail: Mhd_Ashjari@yahoo.com; Mostafapour Asl, A.; Rouhi, S.

    2015-10-01

    Friction stir processing, a lately devised grain refining and also microstructure homogenizing technique, has extensively been used on aluminum alloys. Significance of limiting the grain growth during the process, has made lots of researchers make endeavor to keep, as one of the ways of controlling grain growth, the process temperature low; one way of doing so, is performing the friction stir process under water, which keeps the peak temperature low and increases the cooling rate as well. In the present work, research has been done to make known the effects of doing submerged friction stir processing on mechanical properties of AA5083/Al{sub 2}O{sub 3p} composite. The process was completed on each sample without changing the rotation and traverse speed of the tool. The pin of the tool was a threaded cylindrical one. Tensile and micro-hardness tests were used to evaluate the effect of the process on these properties of the samples. Also to study the microstructure of the samples, optical microscopy (OM) and scanning electron microscopy (SEM) micrographs were used. The results show that, underwater friction stir process is capable of producing defect-free AA5083/Al{sub 2}O{sub 3p} nanocomposite. Analyzing the properties of the processed samples showed that, by significantly reducing the grain size, water environment has positive impact on the mechanical properties of the alloy; And that, Hall–Petch effect is more powerful than Orowan mechanism in enhancing the mechanical properties of the samples.

  11. Heat-Transfer and Friction Measurements with Variable Properties for Airflow Normal to Finned and Unfinned Tube Banks

    Science.gov (United States)

    Ragsdale, Robert G.

    1958-01-01

    A single-line correlation of both the heat-transfer and pressure- drop data for electrically heated unfinned tubes is obtained by evaluating the density in the Reynolds number, specific heat, thermal conductivity, and viscosity at the film temperature, and the density in the friction coefficient at the bulk temperature. The heat-transfer data for finned tubes also exhibit an effect of physical-property variation which is removed by evaluating all properties, including density, at the primary surface temperature, and using k* = 0.015 square root of T/530 for the thermal conductivity of air where T is the absolute temperature. The pressure drop for finned tubes is correlated by the use of bulk density in both the Reynolds number and friction coefficient. The data reported are for Reynolds numbers from 2000 to 35,000, surface temperatures from 600 to 1400 R, and an air inlet temperature of 530 R.

  12. Effect of welding parameters on the mechanical and microstructural properties of friction stir welded AA- 2014 joints

    Science.gov (United States)

    Khan, R.; Bhatty, M. B.; Iqbal, F.; Zaigham, H.; Salam, I.

    2016-08-01

    In this study, the effect of processing parameters on the mechanical and microstructural properties of aluminum AA2014-T6 joints produced by friction stir welding was analyzed. Friction stir welding was carried out on a milling machine. Different samples were produced by varying the tool rotational rates (700, 1000 rpm) and travel speeds (45-105 mm/min). Tensile tests performed at room temperature were used to evaluate the mechanical properties of the joints. In order to analyze the microstructural evolution of the material, the welds’ cross-sections were observed under optical microscope. The results shows that the resulting microstructure is free of defects and tensile strength of the welded joints is upto 75% of the base metal strength.

  13. Friction and Wear Properties of Cold Gas Dynamic Sprayed α-Al2O3-Al Composite Coatings

    Directory of Open Access Journals (Sweden)

    Jie Wu

    2013-01-01

    Full Text Available Different proportions of α-Al2O3 and pure Al powders were coated onto AZ91D magnesium alloy substrates by cold gas dynamic spray. The microstructure and morphologies of the coatings were observed by scanning electron microscope. The friction and wear properties were tested by a ball-on-disk wear tester. It was found that the interfaces between grains and substrates formed close boundaries. It is revealed that the composite coatings could increase the friction or wear properties of the coatings. It was observed that the wear of coatings was converted from adhesive wear into abrasive wear with α-Al2O3 particles increasing and that the adhesive wear accompanied with abrasive wear would increase the wear rate of coatings.

  14. INFLUENCES OF TOOL PIN PROFILE ON THE MECHANICAL AND METALLURGICAL PROPERTIES OF FRICTION STIR WELDING OF DISSIMILAR ALUMINUM ALLOY

    Directory of Open Access Journals (Sweden)

    R.PALANIVEL

    2010-06-01

    Full Text Available The development of the Friction Stir Welding has provided an alternative improved way of producing aluminium joints, in a faster and reliable manner. In this study the effect of tool pin profile on the mechanical and metallurgical properties of dissimilar AA6351- AA5083H111 joints produced by FSW is analyzed. Five different tool pin profiles are developed such as straight cylindrical, threaded cylindrical, square, tapered square, and tapered octagon to weld the joints. All the welds are produced perpendicularly to the rolling direction for both alloys. Tensile tests are performed to evaluate the mechanical properties by using computerized universal testing machine. Color metallographic is carried out along various zones of the friction stir welded .Among the five tools square pin profile give better tensile strength and the stirred zone of the welded area has finer grains compared to other weld zones.

  15. Friction Stir Processing of Al with Mechanically Alloyed Al-TiO2-Graphite Powder: Microstructure and Mechanical Properties

    Science.gov (United States)

    Beygi, R.; Mehrizi, M. Zarezadeh; Eisaabadi B, G.

    2017-02-01

    Commercial pure aluminum was friction stir processed with Al-TiO2-graphite mixture pre-placed into a groove in Al. Two kinds of powders were used as starting particles for friction stir processing; as-mixed powder and 60-h ball-milled powder. Characterization by XRD, SEM and EDS analysis showed that with as-mixed powder an Al composite reinforced with Al3Ti and Al2O3 was produced. Graphite particles were remained in the matrix unchanged. Using 60-h ball-milled powder as starting particle in friction stir processing, resulted in an Al composite reinforced with TiC-Al2O3 nanoparticles dispersed uniformly into the matrix having the size of 100 nm on average. In this state, the microhardness values obtained in the stir zone were higher than those ones obtained using as-mixed powders. The mechanism of phases formation during friction stir processing with two different kinds of powders are elaborated and discussed in this study. Also the mechanical properties of samples were investigated.

  16. Friction Stir Welding of Steel: Heat Input, Microstructure, and Mechanical Property Co-relation

    Science.gov (United States)

    Husain, Md. M.; Sarkar, R.; Pal, T. K.; Prabhu, N.; Ghosh, M.

    2015-09-01

    Friction stir welding was performed to join carbon steel plates at tool rotational rate of 800-1400 rpm. Microstructure and microhardness of welded specimens were evaluated across weld centerline. Torque base index, peak temperature, cooling rate, strain, strain rate, volumetric material flow rate, and width of extruded zone at weld nugget were calculated. Peak temperature at weld nugget was ~1300-1360 K. At this temperature, ferrite transformed to austenite during welding. Austenite was decomposed in to ferrite and bainite at cooling rate of ~4-7.5 K/s. The presence of bainite was endorsed by increment in microhardness with respect to base material. Ferrite grain size at weld nugget was finer in comparison to as-received alloy. With the increment in tool rotational rate strain, strain rate, total heat input, and peak temperature at weld nugget were increased. High temperature at weld nugget promoted increment in ferrite grain size and reduction in area fraction of bainite. Heat-affected zone also experienced phase transformation and exhibited enhancement in ferrite grain size in comparison to base alloy at all welding parameters with marginal drop in microhardness. Maximum joint strength was obtained at the tool rotational rate of 1000 rpm. Increment in tool rational rate reduced the joint efficiency owing to increment in ferrite grain size and reduction in pearlite area fraction at heat-affected zone.

  17. Sound Absorption and Friction Properties of Nano-Lotus Leaf Coated Concrete for Rigid Pavement

    National Research Council Canada - National Science Library

    GONZALEZ, Marcelo; SAFIUDDIN, Md; CAO, Jingwen; TIGHE, Susan

    2016-01-01

    ... for application in rigid pavements. The study involved an evaluation of nanomaterials at the laboratory scale to analyze the effects of microtexture modification on the friction and sound absorption of concrete pavement...

  18. Correlation between Mechanical Properties with Specific Wear Rate and the Coefficient of Friction of Graphite/Epoxy Composites

    OpenAIRE

    Mahdi Alajmi; Abdullah Shalwan

    2015-01-01

    The correlation between the mechanical properties of Fillers/Epoxy composites and their tribological behavior was investigated. Tensile, hardness, wear, and friction tests were conducted for Neat Epoxy (NE), Graphite/Epoxy composites (GE), and Data Palm Fiber/Epoxy with or without Graphite composites (GFE and FE). The correlation was made between the tensile strength, the modulus of elasticity, elongation at the break, and the hardness, as an individual or a combined factor, with the specific...

  19. Mechanical Properties and Microstructure of Dissimilar Friction Stir Welds of 11Cr-Ferritic/Martensitic Steel to 316 Stainless Steel

    Science.gov (United States)

    Sato, Yutaka S.; Kokawa, Hiroyuki; Fujii, Hiromichi T.; Yano, Yasuhide; Sekio, Yoshihiro

    2015-12-01

    Dissimilar joints between ferritic and austenitic steels are of interest for selected applications in next generation fast reactors. In this study, dissimilar friction-stir welding of an 11 pct Cr ferritic/martensitic steel to a 316 austenitic stainless steel was attempted and the mechanical properties and microstructure of the resulting welds were examined. Friction-stir welding produces a stir zone without macroscopic weld-defects, but the two dissimilar steels are not intermixed. The two dissimilar steels are interleaved along a sharp zigzagging interface in the stir zone. During small-sized tensile testing of the stir zone, this sharp interface did not act as a fracture site. Furthermore, the microstructure of the stir zone was refined in both the ferritic/martensitic steel and the 316 stainless steel resulting in improved mechanical properties over the adjacent base material regions. This study demonstrates that friction-stir welding can produce welds between dissimilar steels that contain no macroscopic weld-defects and display suitable mechanical properties.

  20. Friction and wear properties of ultra-high molecular mass polyethylene reinforced with Al2O3 nano-particle

    Institute of Scientific and Technical Information of China (English)

    FAN Dong-li; XIONG Dang-sheng

    2004-01-01

    The ultra-high molecular mass polyethylene (UHMMPE) as an artificial joint acetabular material was filled with nano-powder of Al2O3 of various mass fractions. The effect of Al2O3 mass fraction on the hardness, wetting property and tribological properties of the Al2O3-UHMMPE composites under dry friction sliding against both stainless steel and Ti-6Al-4V alloy was investigated. The morphologies of the worn surfaces of composites were observed with optical microscope. The results show that, wetting property and wear resistance of the composites are improved by filling Al2O3, while the friction coefficient is decreased largely under dry friction as compared with that of the unfilled UHMMPE. This is attributed to the reinforcing function of the nano-powder of Al2O3 in the composites. The wear of UHMMPE is dominated by plowing, plastic deformation and fatigue wear; while the Al2O3-UHMMPE composites are characterized by the mild fatigue wear.

  1. Friction properties and deformation mechanisms of halite(-mica) gouges from low to high sliding velocities

    Science.gov (United States)

    Buijze, Loes; Niemeijer, André R.; Han, Raehee; Shimamoto, Toshihiko; Spiers, Christopher J.

    2017-01-01

    The evolution of friction as a function of slip rate is important in understanding earthquake nucleation and propagation. Many laboratory experiments investigating friction of fault rocks are either conducted in the low velocity regime (10-8-10-4 ms-1) or in the high velocity regime (0.01-1 m s-1). Here, we report on the evolution of friction and corresponding operating deformation mechanisms in analog gouges deformed from low to high slip rates, bridging the gap between these low and high velocity regimes. We used halite and halite-muscovite gouges to simulate processes, governing friction, active in upper crustal quartzitic fault rocks, at conditions accessible in the laboratory. The gouges were deformed over a 7 orders of magnitude range of slip rate (10-7-1 m s-1) using a low-to-high velocity rotary shear apparatus, using a normal stress of 5 MPa and room-dry humidity. Microstructural analysis was conducted to study the deformation mechanisms. Four frictional regimes as a function of slip rate could be recognized from the mechanical data, showing a transitional regime and stable sliding (10-7-10-6 m s-1), unstable sliding and weakening (10-6-10-3 m s-1), hardening (10-2-10-1 m s-1) and strong weakening (10-1-1 m s-1). Each of the four regimes can be associated with a distinct microstructure, reflecting a transition from mainly brittle deformation accompanied by pressure solution healing to temperature activated deformation mechanisms. Additionally, the frictional response of a sliding gouge to a sudden acceleration of slip rate to seismic velocities was investigated. These showed an initial strengthening, the amount of which depended on the friction level at which the step was made, followed by strong slip weakening.

  2. Microstructure, crystallographic texture and mechanical properties of friction stir welded AA2017A

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, M.M.Z., E-mail: mohamed_ahmed4@s-petrol.suez.edu.eg [Institute for Microstructural and Mechanical Processing Engineering, University of Sheffield (IMMPETUS), Mappin Street, Sheffield S1 3JD (United Kingdom); Department of Metallurgical and Materials Engineering, Suez Canal University, Suez 43721 (Egypt); Wynne, B.P.; Rainforth, W.M. [Institute for Microstructural and Mechanical Processing Engineering, University of Sheffield (IMMPETUS), Mappin Street, Sheffield S1 3JD (United Kingdom); Threadgill, P.L. [TWI LTD, Granta Park, Great Abington, Cambridge CB21 6AL (United Kingdom)

    2012-02-15

    In this study a thick section (20 mm) friction stir welded AA2017A-T451 has been characterized in terms of microstructure, crystallographic texture and mechanical properties. For microstructural analysis both optical and scanning electron microscopes have been used. A detailed crystallographic texture analysis has been carried out using the electron back scattering diffraction technique. Crystallographic texture has been examined in both shoulder and probe affected regions of the weld NG. An entirely weak texture is observed at the shoulder affected region which is mainly explained by the effect of the sequential multi pass deformation experienced by both tool probe and tool shoulder. The texture in the probe dominated region at the AS side of the weld is relatively weak but still assembles the simple shear texture of FCC metals with B/B{sup Macron} and C components existing across the whole map. However, the texture is stronger at the RS than at the AS of the weld, mainly dominated byB/B{sup Macron} components and with C component almost absent across the map. An alternating bands between (B) components and (B{sup Macron }) component are observed only at the AS side of the weld. - Highlights: Black-Right-Pointing-Pointer Detailed investigation of microstructure and crystallographic texture. Black-Right-Pointing-Pointer The grain size is varied from the top to the bottom of the NG. Black-Right-Pointing-Pointer An entirely weak texture is observed at the shoulder affected region. Black-Right-Pointing-Pointer The texture in the probe affected region is dominated by simple shear texture.

  3. Effect of Friction Stir Welding Parameters on the Mechanical and Microstructure Properties of the Al-Cu Butt Joint

    Directory of Open Access Journals (Sweden)

    Sare Celik

    2016-05-01

    Full Text Available Friction Stir Welding (FSW is a solid-state welding process used for welding similar and dissimilar materials. FSW is especially suitable to join sheet Al alloys, and this technique allows different material couples to be welded continuously. In this study, 1050 Al alloys and commercially pure Cu were produced at three different tool rotation speeds (630, 1330, 2440 rpm and three different tool traverse speeds (20, 30, 50 mm/min with four different tool position (0, 1, 1.5, 2 mm by friction stir welding. The influence of the welding parameters on the microstructure and mechanical properties of the joints was investigated. Tensile and bending tests and microhardness measurements were used to determine the mechanical properties. The microstructures of the weld zone were investigated by optical microscope and scanning electron microscope (SEM and were analyzed in an energy dispersed spectrometer (EDS. Intermetallic phases were detected based on the X-ray diffraction (XRD analysis results that evaluated the formation of phases in the weld zone. When the welding performance of the friction stir welded butt joints was evaluated, the maximum value obtained was 89.55% with a 1330 rpm tool rotational speed, 20 mm/min traverse speed and a 1 mm tool position configuration. The higher tensile strength is attributed to the dispersion strengthening of the fine Cu particles distributed over the Al material in the stir zone region.

  4. A Study on Tooling and Its Effect on Heat Generation and Mechanical Properties of Welded Joints in Friction Stir Welding

    Science.gov (United States)

    Tikader, Sujoy; Biswas, Pankaj; Puri, Asit Baran

    2016-06-01

    Friction stir welding (FSW) has been the most attracting solid state welding process as it serves numerous advantages like good mechanical, metallurgical properties etc. Non weldable aluminium alloys like 5XXX, 7XXX series can be simply joined by this process. In this present study a mathematical model has been developed and experiments were successfully performed to evaluate mechanical properties of FSW on similar aluminium alloys i.e. AA1100 for different process parameters and mainly two kind of tool geometry (straight cylindrical and conical or cylindrical tapered shaped pin with flat shoulder). Tensile strength and micro hardness for different process parameters are reported of the welded plate sample. It was noticed that in FSW of similar alloy with tool made of SS-310 tool steel, friction is the major contributor for the heat generation. It was seen that tool geometry, tool rotational speed, plunging force by the tool and traverse speed have significant effect on tensile strength and hardness of friction stir welded joints.

  5. Frictional stability-permeability relationships for fractures in shales: Friction-Permeability Relationships

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yi [Department of Energy and Mineral Engineering, EMS Energy Institute, and G3 Center, Pennsylvania State University, University Park Pennsylvania USA; Elsworth, Derek [Department of Energy and Mineral Engineering, EMS Energy Institute, and G3 Center, Pennsylvania State University, University Park Pennsylvania USA; Department of Geosciences, EMS Energy Institute, and G3 Center, Pennsylvania State University, University Park Pennsylvania USA; Wang, Chaoyi [Department of Energy and Mineral Engineering, EMS Energy Institute, and G3 Center, Pennsylvania State University, University Park Pennsylvania USA; Ishibashi, Takuya [Department of Energy and Mineral Engineering, EMS Energy Institute, and G3 Center, Pennsylvania State University, University Park Pennsylvania USA; Fukushima Renewable Energy Institute, National Institute of Advanced Industrial Science and Technology, Koriyama Japan; Fitts, Jeffrey P. [Department of Civil and Environmental Engineering, Princeton University, Princeton New Jersey USA

    2017-01-01

    There is wide concern that fluid injection in the subsurface, such as for the stimulation of shale reservoirs or for geological CO2 sequestration (GCS), has the potential to induce seismicity that may change reservoir permeability due to fault slip. However, the impact of induced seismicity on fracture permeability evolution remains unclear due to the spectrum of modes of fault reactivation (e.g., stable versus unstable). As seismicity is controlled by the frictional response of fractures, we explore friction-stability-permeability relationships through the concurrent measurement of frictional and hydraulic properties of artificial fractures in Green River shale (GRS) and Opalinus shale (OPS). We observe that carbonate-rich GRS shows higher frictional strength but weak neutral frictional stability. The GRS fracture permeability declines during shearing while an increased sliding velocity reduces the rate of permeability decline. By comparison, the phyllosilicate-rich OPS has lower friction and strong stability while the fracture permeability is reduced due to the swelling behavior that dominates over the shearing induced permeability reduction. Hence, we conclude that the friction-stability-permeability relationship of a fracture is largely controlled by mineral composition and that shale mineral compositions with strong frictional stability may be particularly subject to permanent permeability reduction during fluid infiltration.

  6. A study of a novel aesthetic archwire on its frictional properties and its applications to orthodontics

    Directory of Open Access Journals (Sweden)

    Chai Kiat Chng

    2014-01-01

    Full Text Available Objectives: To compare sliding friction of prototype 0.018-inch fiber-reinforced polymer composite (FRPC archwire with 0.018-inch nickel titanium archwire using various bracket-arch wire combinations. Materials and Methods: Two wires were tested against four different brackets (3M Gemini Twin bracket; 3M Clarity metal-reinforced ceramic bracket; Ormco Inspire ICE ceramic bracket; and 3M SmartClip using the Universal testing machine to study and compare frictional characteristics. Results: There was no significant difference noted for the frictional wear generated between the various archwire and bracket groups (P = 0.542. No statistical significance was detected within individual archwire-bracket groups. A multiple comparison of groups showed significant difference in frictional wear. Least significance difference multiple comparison revealed statistical significance (P < 0.05 when comparing Gemini-FRPC with ICE-FRPC group. No other groups showed any significant difference. Conclusion: FRPC and NiTi wire show comparable frictional wear when used with ICE, Gemini, Clarity, and SmartClip brackets.

  7. Effect of Fe content on the friction and abrasion properties of copper base overlay on steel substrate by TIG welding

    Institute of Scientific and Technical Information of China (English)

    Lü Shixiong; Song Jianling; Liu Lei; Yang Shiqin

    2009-01-01

    Copper base alloy was overlaid onto 35CrMnSiA steel plate by tungsten inert gas (TIG) welding method. The heat transfer process was simulated, the microstructures of the copper base overlay were analyzed by scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS), and the friction and abrasion properties of the overlay were measured. The results show that the Fe content increases in the overlay with increasing the welding current. And with the increase of Fe content in the overlay, the friction coefficient increases and the wear mechanism changes from oxidation wear to abrasive wear and plough wear, which is related to the size and quantity of Fe grains in the overlay. While with the increase of Fe content in the overlay, the protection of oxidation layer against the oxidation wear on the melted metal decreases.

  8. Effect of Microstructural changes on Mechanical properties of Friction stir welded Nano SiC reinforced AA6061composite

    Directory of Open Access Journals (Sweden)

    GOVIND.NANDIPATI

    2010-11-01

    Full Text Available Aluminum alloys used in aircrafts generally exhibit low weldability on fusion welding techniques. Friction stir welding (FSW has got a lot of attention as a solid state joining technique and provided an improved way of producing aluminum joints in a faster way. In the present work, nano Silicon carbide(SiC particles reinforced aluminum AA6061metal matrix composites which find applications in aircrafts are casted and friction stir welded. FSW resulted in significant grain refinement and homogeneous distribution of nano SiC particles. The Microstructural analysis is carried out using optical microscopy(OM and Scanning Electron Microscopy (SEM.The joint strength is increased compared to the conventional fusion welding techniques. The relationship between mechanical properties [hardness, UTS, Y.S] and microstructure of the welded region are studied.

  9. Effects of fibrous fillers on friction and wear properties of polytetrafluoroethylene composites under dry or wet conditions

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The friction and wear behavior and mechanism as well as the mechanical properties of polytetrafluoroethylene (PTFE) composites filled with potassium titanate whiskers (PTW) and short carbon fibers (CF) under dry, wet and alkaline conditions were investigated. Experiments indicated that owing to appropriate cooling and boundary lubricating effects, the filled PTFE composites showed much lower frictional coefficient and better wear resistance under alkaline than dry and wet sliding conditions. The wear resistance of carbon-fiber-filled PTFE was much better than that of potassium titanate-whisker-filled PTFE composites in water. Results also showed that the transfer film on counterpart rings was significantly hindered by water and alkali. Hydrophilic-filler-reinforced PTFE composites yield higher wear rate when sliding under water.

  10. A STUDY OF THE PROPERTIES OF CP: COEFFICIENT OF THERMAL EXPANSION, DECOMPOSITION KINETICS AND REACTION TO SPARK, FRICTION AND IMPACT

    Energy Technology Data Exchange (ETDEWEB)

    Weese, R K; Burnham, A K; Fontes, A T

    2005-03-30

    The properties of pentaamine (5-cyano-2H-tetrazolato-N2) cobalt (III) perchlorate (CP), which was first synthesized in 1968, continues to be of interest for predicting behavior in handling, shipping, aging, and thermal cook-off situations. We report coefficient of thermal expansion (CTE) values over four specific temperature ranges, decomposition kinetics using linear heating rates, and the reaction to three different types of stimuli: impact, spark, and friction. The CTE was measured using a Thermal Mechanical Analyzer (TMA) for samples that were uniaxially compressed at 10,000 psi and analyzed over a dynamic temperature range of -20 C to 70 C. Using differential scanning calorimetry, DSC, CP was decomposed at linear heating rates of 1, 3, and 7 C/min and the kinetic triplet calculated using the LLNL code Kinetics05. Values are also reported for spark, friction, and impact sensitivity.

  11. Fault frictional parameters and material properties revealed by slow slip events at Kilauea volcano, Hawai`i

    Science.gov (United States)

    Foster, James H.; Lowry, Anthony R.; Brooks, Benjamin A.

    2013-12-01

    categorize slow slip events at Kilauea Volcano into two distinct families based on GPS measurements of the surface displacement patterns. An event correlation filter confirms that "eastern" and "western" families are statistically distinguishable, with the western family notably self-similar. The western family exhibits quasi-periodicity with regular repeat times, while eastern family events are aperiodic or have complicated periodicity. If the decollement is the source fault for both families of events, it must have varying frictional properties at the ~10 km scale of separation. The temporal slip and spatial scaling behavior are consistent with a simplistic rate- and state-dependent frictional formalism provided that the characteristic slip distance for state evolution, Dc, is of the order of millimeters rather than the 10-100 µm typically found in lab studies, and the shear rigidity is around 2 GPa, consistent with fault gouge material.

  12. Effect of Post-Weld Heat Treatment on the Mechanical Properties of Friction Stir Welds of Dissimilar Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    P. Murali Krishna

    2011-07-01

    Full Text Available This paper focuses on the effect of post weld heat treatment (PWHT on microstructure and mechanical properties of dissimilar friction stir welding (FSW of AA2024-T6 to AA6351-T6. FSW is getting widened to be used to join the aluminum alloys. PWHT of AA2024 and AA6351 aluminum alloys are not reported so far even though these alloys are widely used in aerospace and automobile industries. A post weld solution treatment and subsequent ageing resulted in improvement in mechanical properties (hardness and tensile strength.

  13. The Influence of Friction Stir Weld Tool Form and Welding Parameters on Weld Structure and Properties: Nugget Bulge in Self-Reacting Friction Stir Welds

    Science.gov (United States)

    Schneider, Judy; Nunes, Arthur C., Jr.; Brendel, Michael S.

    2010-01-01

    Although friction stir welding (FSW) was patented in 1991, process development has been based upon trial and error and the literature still exhibits little understanding of the mechanisms determining weld structure and properties. New concepts emerging from a better understanding of these mechanisms enhance the ability of FSW engineers to think about the FSW process in new ways, inevitably leading to advances in the technology. A kinematic approach in which the FSW flow process is decomposed into several simple flow components has been found to explain the basic structural features of FSW welds and to relate them to tool geometry and process parameters. Using this modelling approach, this study reports on a correlation between the features of the weld nugget, process parameters, weld tool geometry, and weld strength. This correlation presents a way to select process parameters for a given tool geometry so as to optimize weld strength. It also provides clues that may ultimately explain why the weld strength varies within the sample population.

  14. Correlation of microstructure and mechanical properties in friction stir welded 2198-T8 Al–Li alloy

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Chong, E-mail: chonggao@buaa.edu.cn [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Zhu, Zhixiong, E-mail: zz056@uowmail.edu.au [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Han, Jian; Li, Huijun [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia)

    2015-07-15

    In this study, the 1.8 mm thick cold-rolled sheets of 2198-T8 Al–Li alloy were manufactured by friction stir welding (FSW) at a rotation rate of 800 rpm and a travel speed of 300 mm/min. The microstructure and mechanical properties of different regions of the produced joint were evaluated by means of optical microscopy (OM), transmission electron microscopy (TEM), hardness testing and tensile testing. Results show that the original “pancake” grains became coarser in the heat affected zone (HAZ), transformed into equiaxed grains in the stir shoulder zone (SsZ) and stir pin zone (SpZ), and formed mixed grains with both “pancake” and equiaxed shapes in the thermo-mechanical affected zone (TMAZ). The hardness distribution in the cross-section of the FSW joint exhibited a “basin” shape. When approaching the weld centre, the hardness gradually decreased compared to the base metal (BM). The BM exhibited the highest strength due to the presence of fine T1 phase. In the HAZ, the strength decreased as T1 phase was partially dissolved. In the SsZ and SpZ, in spite of strength contribution from grain refinement, the strength further decreased as T1 phase was fully dissolved. The minimum strength in the TMAZ was related to the reduced amount of T1 phase and the presence of transition layer with sharp gradient of grain size. - Highlights: • FSW joint of 2198-T8 alloy was successfully produced. • Microstructure and precipitate evolution in FSW joint were evaluated. • Hardness and strength in different regions of FSW joint were tested. • Strengthening mechanisms in different regions of FSW joint were discussed.

  15. Frictional and bone ingrowth properties of engineered surface topographies produced by electron beam technology

    NARCIS (Netherlands)

    Biemond, J.E.; Aquarius, R.J.M.; Verdonschot, N.J.J.; Buma, P.

    2011-01-01

    BACKGROUND: Electron beam melting (E-beam) is a new technology to produce 3-dimensional surface topographies for cementless orthopedic implants. METHODS: The friction coefficients of two newly developed E-beam produced surface topographies were in vitro compared with sandblasted E-beam and titanium

  16. Frictional and bone ingrowth properties of engineered surface topographies produced by electron beam technology

    NARCIS (Netherlands)

    Biemond, J. Elizabeth; Aquarius, Rene; Verdonschot, Nicolaas Jacobus Joseph; Buma, Pieter

    2011-01-01

    Background Electron beam melting (E-beam) is a new technology to produce 3-dimensional surface topographies for cementless orthopedic implants. Methods The friction coefficients of two newly developed E-beam produced surface topographies were in vitro compared with sandblasted E-beam and titanium

  17. FRICTION PROPERTIES OF OIL-INFILTRATED POROUS AAO FILM ON AN ALUMINUM SUBSTRATE

    Institute of Scientific and Technical Information of China (English)

    C.X. Jiang; J.P. Tu; S.Y. Guo; M.F. Fu; X.B. Zhao

    2005-01-01

    The porous anodic aluminum oxide (AAO) film on a pure aluminum substrate was prepared by a two-step anodization in a 0.3M oxalic acid solution and pore-enlargement treatment in the phosphoric acid aqueous solution at 50℃. The diameter of highly ordered pore on the AAO film was about 90nm, and the thickness of the AAO film was 3μm. The mineral oil was infiltrated in the ordered nanometer sized pores of AAO film on an aluminum substrate due to the capillarity effect. The friction coefficient was measured using a ball-on-disk tribotester.The tests were conducted at loads range from 490 to 2450mN and at sliding velocities beably improved the wear resistance. As compared to the porous AAO film, the oil-infiltrated specimen had low friction coefficient. With increasing the applied load and sliding velocity,the friction coefficient of the oil-infiltrated film decreased. It indicates that the oil-infiltrated AAO film produced a new way to modify the friction and wear of aluminum alloy.

  18. Determination of the Mechanical Properties of Friction Welded Tube Yoke and Tube Joint

    Directory of Open Access Journals (Sweden)

    Efe Işık

    2016-01-01

    Full Text Available This paper deals with the friction welding of the tube yoke and the tube of the drive shaft used in light commercial vehicles. Tube yoke made from hot forged microalloyed steel and the tube made from cold drawn steel, with a ratio (thickness/outside diameter ratio of less than 0.1, were successfully welded by friction welding method. Hardness distributions on both sides of the welded joint across the welding interface were determined and the microstructure of the joint was investigated. Furthermore, joint strength was tested under tensile, static torsional, and torsional fatigue loadings. The tested data were analyzed by Weibull distribution. The maximum hardness value along the welded joint was detected as 553 Hv1. The lowest detected tensile strength of the joint was 13% less than the base materials’ tensile strength. The torsional load carrying capacity of the friction welded thin walled tubular joint without any damage was obtained as 4.252,5 Nm in 95% confidence interval. After conducting fully reversed torsional fatigue tests, the fatigue life of friction welded tubular joints was detected as 220.066,3 cycles.

  19. Effect of welding parameters and tool shape on properties of friction stir welding of Aluminum alloy AA- 6061

    Directory of Open Access Journals (Sweden)

    Ahmad Hussain Albloushi

    2016-12-01

    Full Text Available Friction stir welding (FSW is a widely used solid state joining process for soft materials such as aluminium alloys because it avoids many of the common problems of fusion welding. It has many benefits when applied to welding of aluminum alloys. FSW process parameters such as welding speed, rotational speed and tool geometry play vital roles in the weld quality. The aim of this research is to investigate the effects of different welding speeds, rotational speeds and tool pin profile on the weld quality of a AA6061 aluminum alloy. A friction stir welding tool consists of rotating shoulder and pin that heats the working piece by friction and moves a softened alloy around it to form a joint. In this research work the effect of the tool shape and welding parameters (rotating speed and welding speed on the mechanical properties of an aluminium plates will be investigated experimentally. The induced heat during the welding process played the main role in the mechanical and appearance of the joints, which is related to the welding parameters.

  20. Comparative study on fatigue properties of friction stir and MIG-pulse welded joints in 5083 Al-Mg alloy

    Institute of Scientific and Technical Information of China (English)

    ZHOU Cai-zhi; YANG Xin-qi; LUAN Guo-hong

    2005-01-01

    The objective of this investigation was to compare the fatigue properties of friction stir welds with those of MIG-pulse welds. The 5083 Al-Mg alloy was welded by single pass friction stir welding(FSW) and double-sided MIG-pulse welding. The results show that friction stir(FS) welds have a better appearance than MIG-pulse welds for the lack of voids, cracks and distortions. Compared with the parent plate, FSW welds exhibit similar fine grains, while MIG-pulse welds display a different cast microstructure due to the high heat input and the addition of welding wire. The S-N curves of FSW and MIG-pulse joints show that the fatigue life of FS welds is 18 - 26 times longer than that of MIG-pulse welds under the stress ratio of 0.1 and the calculated fatigue characteristic values of each weld increase from 38.67 MPa for MIG-pulse welds to 53.59 MPa for FSW welds.

  1. Microstructure and mechanical property of nano-SiCp reinforced high strength Mg bulk composites produced by friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Sun, K., E-mail: greatsunkai@sina.com [Key Laboratory for Advanced Materials Processing Technology, Ministry of Education (China); Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Shi, Q.Y.; Sun, Y.J.; Chen, G.Q. [Key Laboratory for Advanced Materials Processing Technology, Ministry of Education (China); Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Ultimate tensile strength of the bulk composite improved significantly. Black-Right-Pointing-Pointer Nanoparticles dispersed uniformly in the composites after friction stir process. Black-Right-Pointing-Pointer Strengthening mechanism of the composites has been studied. - Abstract: Friction stir processing has been applied to fabricate SiC-Mg bulk composites in this study. AZ63 magnesium alloy, a kind of commercial engineering materials, was selected as base metal. SiC nanoparticles with average size of 40 nm were selected as reinforced particles. After being ultrasonic dispersed in ethanol and friction stir processed with base metal, the SiC particles were uniformly dispersed. Friction stir processing without filling any particles was also applied to base metal as a comparison group. Microstructure evolution was observed by optical microscope and scanning electron microscope. Fine and uniform nugget zone were found both in comparison group and composite. The phases of the material were determined by X-ray diffraction. Transmission electron microscopy observation was conducted to study the condition of SiC nanoparticles. SiC particles were found both inside the grain and at the grain boundary. No micro-sized particle agglomeration was observed in the composite. Vicker hardness and tensile test were carried out to study the mechanical properties of the composite. The average Vicker hardness of the base metal, comparison group and composite were 80 Hv, 85 Hv and 109 Hv respectively. The ultimate tensile strength of the composite reached 312 MPa. Compared with 160 MPa of the as-casted Mg alloy, 263 MPa of the comparison group, the effect of nanoparticles on strength increase was significant.

  2. Friction-reducing and antiwear behavior of metal halide-stabilized linear phosphazene derivatives as lubricants for a steel-on-steel contact

    Institute of Scientific and Technical Information of China (English)

    ZHU; Jiamei; LIU; Weimin; LIANG; Yongmin

    2005-01-01

    A series of novel metal halide-stabilized linear phosphazene derivatives were synthesized. The friction-reducing and antiwear abilities of the resulting products as the lubricants for a steel-on-steel contact were comparatively investigated on an Optimol SRV oscillating friction and wear tester. The morphology of the worn steel surface was observed on a scanning electron microscope, while the chemical states of some typical elements on the worn steel surface were examined by means of X-ray photoelectron spectroscopy. It was found that both the side branch structures and central metals influenced the friction-reducing and antiwear behaviors of the synthetic derivatives as the lubricants, which was related to the different adsorption activities of the organic compounds composed of different organic ingredients and metallic ions on a nascent metal surface. All the synthetic lubricants except for the iron (III) derivative showed increased antiwear abilities with increasing metallic ionic radius. A protective layer originated from the tribochemical reaction together with the adsorbed boundary lubricating layer containing organic fluorine compounds, nitrogen oxide, and Fe3(PO4)2 plays an important role in improving the friction and wear behavior of the steel-on-steel system.

  3. Assessment of semi-active friction dampers

    Science.gov (United States)

    dos Santos, Marcelo Braga; Coelho, Humberto Tronconi; Lepore Neto, Francisco Paulo; Mafhoud, Jarir

    2017-09-01

    The use of friction dampers has been widely proposed for a variety of mechanical systems for which applying viscoelastic materials, fluid based dampers or other viscous dampers is impossible. An important example is the application of friction dampers in aircraft engines to reduce the blades' vibration amplitudes. In most cases, friction dampers have been studied in a passive manner, but significant improvements can be achieved by controlling the normal force in the contact region. The aim of this paper is to present and study five control strategies for friction dampers based on three different hysteresis cycles by using the Harmonic Balance Method (HBM), a numerical and experimental analysis. The first control strategy uses the friction force as a resistance when the system is deviating from its equilibrium position. The second control strategy maximizes the energy removal in each harmonic oscillation cycle by calculating the optimal normal force based on the last displacement peak. The third control strategy combines the first strategy with the homogenous modulation of the friction force. Finally, the last two strategies attempt to predict the system's movement based on its velocity and acceleration and our knowledge of its physical properties. Numerical and experimental studies are performed with these five strategies, which define the performance metrics. The experimental testing rig is fully identified and its parameters are used for numerical simulations. The obtained results show the satisfactory performance of the friction damper and selected strategy and the suitable agreement between the numerical and experimental results.

  4. Reducing the Hook Defect of Friction Stir Lap Welded Ti-6Al-4V Alloy by Slightly Penetrating into the Lower Sheet

    Science.gov (United States)

    Ji, Shude; Li, Zhengwei

    2017-02-01

    For the purpose of reducing the hook defect in friction stir lap welding joint, Ti-6Al-4V alloy was lap welded by slightly penetrating into the lower sheet. Hook feature, microstructure and mechanical properties of the lap joints were mainly discussed. Results show that using slight penetration, plastic material mainly concentrates above the lap interface, which is beneficial to suppress the primary hook and broaden the stir zone (SZ) width. Simultaneously, a very small secondary hook is formed. The void-like defect, which is formed due to high peak temperature and big temperature gradient along thickness, can be eliminated by decreasing the rotating speed. Microstructures along thickness show much difference due to big temperature gradient. SZ hardness of both the upper and lower sheets is higher than the base material due to finer grains. Bigger lap shear failure load can be obtained using 150 rpm, which is 17.1 KN. Lap joints fracture along the secondary hook and present ductile fracture mode.

  5. On the effect of β phase on the microstructure and mechanical properties of friction stir welded commercial brass alloys.

    Science.gov (United States)

    Heidarzadeh, Akbar; Saeid, Tohid

    2015-12-01

    Conventional fusion welding of brass (Cu-Zn) alloys has some difficulties such as evaporation of Zn, toxic behavior of Zn vapor, solidification cracking, distortion, and oxidation [1], [2], [3]. Fortunately, friction stir welding (FSW) has been proved to be a good candidate for joining the brass alloys, which can overcome the fusion welding short comes [4], [5], [6], [7]. The data presented here relates to FSW of the single and double phase brass alloys. The data is the microstructure and mechanical properties of the base metals and joints.

  6. Microstructure and mechanical properties of friction stir welding of AZ31B magnesium alloy added with cerium

    Institute of Scientific and Technical Information of China (English)

    于思荣; 陈显君; 黄志求; 刘耀辉

    2010-01-01

    The AZ31B magnesium alloy sheet added with 0.5 wt.% Ce was welded with friction stir welding(FSW).The microstructures and mechanical properties of the welded joint were investigated.The results showed that the microstructures in the weld nugget zone were uniform and with small equiaxed grains.The grains in the heat-affected zone and the thermo-mechanical affected zone were coarser than those in the base metal zone and the weld nugget zone.The ultimate tensile strength of AZ31B magnesium alloy added with 0.5...

  7. Microstructure and mechanical properties of spot friction stir welded ultrafine grained 1050 Al and conventional grained 6061-T6 Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y.F., E-mail: jwrisun@gmail.com [Joining and Welding Research Institute, Osaka University, Ibaraki (Japan); Fujii, H. [Joining and Welding Research Institute, Osaka University, Ibaraki (Japan); Tsuji, N. [Department of Materials Science and Engineering, Kyoto University, Kyoto (Japan)

    2013-11-15

    The ultrafine grained (UFGed) 1050 Al plates with a thickness of 2 mm, which were produced by the accumulative roll bonding technique after 5 cycles, were spot friction stir welded to 2 mm thick 6061-T6 Al alloy plates at different rotation speeds. Although the UFGed 1050 Al plates were used as the lower plates in order to reduce the heat generation therein during the welding process, the initial nano-sized lamellar structure still transformed into an equiaxial grain structure with a grain size of about 5.9 µm in the stir zone of the joints. Simultaneously, coarsening of the precipitates and formation of large quantities of nano-sized subgrains were found in the stir zone of the 6061 Al alloy plates. Microstructural observation by high resolution transmission electron microscope showed that the two plates were bonded through a transitional layer with a thickness of about 15 nm, within which a lot of screw dislocations formed due to the frictional force between the two plates. A mechanical properties evaluation revealed that the maximum shear tensile load can reach about 4127 N and the joints fractured just outside the hook region in the lower 1050 Al plate.

  8. The effect of friction stir processing on the microstructure, mechanical properties and fracture behavior of investment cast titanium aluminum vanadium

    Science.gov (United States)

    Pilchak, Adam L.

    The use of investment cast titanium components is becoming increasingly common in the aerospace industry due to the ability to produce large, one-piece components with complex geometries that were previously fabricated by mechanically fastening or welding multiple smaller parts together. However, the coarse, fully lamellar microstructure typical of investment cast alpha + beta titanium alloys results in relatively poor fatigue strength compared to forged titanium products. As a result, investment castings are not considered for use in fatigue limited structures. In recent years, friction stir processing has emerged as a solid state metalworking technique capable of substantial microstructure refinement in aluminum and nickel-aluminum-bronze alloys. The purpose of the present study is to determine the feasibility of friction stir processing and assess its effect on the microstructure and mechanical properties of the most widely used alpha + beta titanium alloy, Ti-6Al-4V. Depending on processing parameters, including tool travel speed, rotation rate and geometry, the peak temperature in the stir zone was either above or below the beta transus. The resulting microstructures consisted of either ˜1 mum equiaxed a grains, ˜25 mum prior beta grains containing a colony alpha + beta microstructure or a combination of 1 mum equiaxed alpha and fine, acicular alpha + beta. The changes in microstructure were characterized with scanning and transmission electron microscopy and electron backscatter diffraction. The texture in the stir zone was nearly random for all processing conditions, however, several components of ideal simple shear textures were observed in both the hexagonal close packed alpha and the body centered cubic beta phases which provided insight into the operative grain refinement mechanisms. Due to the relatively small volume of material affected by friction stir processing, conventionally sized test specimens were unable to be machined from the stir zone

  9. The Effects of Laser Peening and Shot Peening on Mechanical Properties in Friction Stir Welded 7075-T7351 Aluminum

    Science.gov (United States)

    Hatamleh, Omar

    2006-01-01

    Peening techniques like laser peening and shot peening were used to modify the surface of friction stir welded 7075-T7351 Aluminum Alloy specimens. The tensile coupons were machined such as the loading was applied in a direction perpendicular to the weld direction. The peening effects on the global and local mechanical properties through the different regions of the weld were characterized and assessed. The surface hardness levels resulting from various peening techniques were also investigated for both sides of the welds. Shot peening resulted in an increase to surface hardness levels, but no improvement was noticed on the mechanical properties. In contrast, mechanical properties were improved by laser peening when compared to the unpeened material.

  10. Influence of welding parameters and post-weld aging on tensile properties and fracture location of AA2139-T351 friction-stir-welded joints

    Directory of Open Access Journals (Sweden)

    Umberto Prisco

    2013-01-01

    Full Text Available Tensile properties and fracture location of AA2139-T351 friction stir welded joints are studied in the as-welded and post-weld aged condition. The experimental results show that when the joints are free of welding defects, they fail on the advancing side of the HAZ exhibiting a large amount of plastic deformation. When the revolutionary pitch exceeds a threshold value, some micro-defects are formed in the weld nugget due to insufficient heat input. In this case, the joints fail near the weld center, and the fracture occurs in a mixed mode, both ductile and brittle. However, being less ductile, post-weld aged joints are less defect-tolerant and, then, they fracture closer to the weld center, showing a reduced elongation at fracture and an UTS within the order of magnitude of the as-welded joints.

  11. Effect of post weld heat treatment on tensile properties and microstructure characteristics of friction stir welded armour grade AA7075-T651 aluminium alloy

    Institute of Scientific and Technical Information of China (English)

    P. SIVARAJ; D. KANAGARAJAN; V. BALASUBRAMANIAN

    2014-01-01

    This paper reports the effects of post weld heat treatments, namely artificial ageing and solution treatment followed by artificial ageing, on microstructure and mechanical properties of 12 mm thick friction stir welded joints of precipitation hardenable high strength armour grade AA7075-T651 aluminium alloy. The tensile properties, such as yield strength, tensile strength, elongation and notch tensile strength, are evaluated and correlated with the microhardness and microstructural features. The scanning electron microscope is used to characterie the fracture surfaces. The solution treatment followed by ageing heat treatment cycle is found to be marginally beneficial in improving the tensile properties of friction stir welds of AA7075-T651 aluminium alloy.

  12. Wear and friction properties of experimental Ti-Si-Zr alloys for biomedical applications.

    Science.gov (United States)

    Tkachenko, Serhii; Datskevich, Oleg; Kulak, Leonid; Jacobson, Staffan; Engqvist, Håkan; Persson, Cecilia

    2014-11-01

    Titanium alloys are widely used in biomedical applications due to their higher biocompatibility in comparison to other metallic biomaterials. However, they commonly contain aluminum and vanadium, whose ions may be detrimental to the nervous system. Furthermore, they suffer from poor wear resistance, which limits their applications. The aim of this study was to evaluate the tribological performance of experimental Ti-1.25Si-5Zr, Ti-2.5Si-5Zr, Ti-6Si-5Zr and Ti-2.5Si-5Zr-0.2Pd alloys as compared to that of control Ti-6Al-4V, CoCr F75 and CoCr F799 alloys. Friction and wear tests were performed using a standard ball-on-disc rig in serum solution at ambient temperature with Si3N4-balls as counterparts. The alloys microstructure and hardness were investigated using optical microscopy, XRD, scanning electron microscopy (SEM) and Vickers indentation. The coefficients of friction of the experimental Ti-Si-Zr alloys were generally lower than the commercial ones with Ti-6Si-5Zr presenting the lowest value (approx. 0.1). Their wear rates were found to be 2-7 times lower than that of the commercial Ti-6Al-4V alloy, but still higher than those of the CoCr alloys. SEM analysis of worn surfaces showed that abrasion was the predominant wear mechanism for all studied materials. Wear and friction were influenced by the formation and stability of transfer layers, and while commercial Ti-6Al-4V as well as the experimental Ti-Si-Zr alloys demonstrated extensive material transfer to the ceramic counterparts, the CoCr alloys did not show such material transfer.

  13. Microstructure and Mechanical Properties of Friction Stir Lap Welded Aluminum Alloy AA2014

    Institute of Scientific and Technical Information of China (English)

    S. Babu; G.D. Janaki Ram; P.V. Venkitakrishnan; G. Madhusudhan Reddy; K. Prasad Rao

    2012-01-01

    Friction stir lap welds were produced in 3 mm thick Alclad sheets of Al alloy 2014-T4 using two different tools (with triangular and threaded taper cylindrical pins). The effects of tool geometry on weld microstructure, lap-shear performance and failure mode were investigated. The pin profile was found to significantly influence the hook geometry, which in turn strongly influenced the joint strength and the failure mode. Welds produced in alloy 2014-T4 Alclad sheets by using triangular and threaded taper cylindrical tools exhibited an average lap-shear failure load of 16.5 and 19.5 kN, respectively, while the average failure load for standard riveted joints was only 3.4 kN. Welds produced in alloy 2014-T6 Alclad sheets and in alloy 2014-T4 bare sheets (i.e., no Alclad) were comparatively evaluated with those produced in alloy 2014-T4 Alclad sheets. While the welds made (with threaded taper cylindrical tool) in T6 and T4 conditions showed very similar lap-shear failure loads, the joint efficiency of the welds made in T6 condition (43%) was considerably lower (because of the higher base material strength) than those made in T4 condition (51%). The Alclad layers were found to present no special problems in friction stir lap welding. Welds made with triangular tool in alloy 2014-T4 Alclad and bare sheets showed very similar lap-shear failure loads. The present work provides some useful insights into the use of friction stir welding for joining Al alloys in lap configuration.

  14. Study on Friction-reducing and Anti-wear Performances of Lauric Acid Random Copolyether Aqueous Solutions%月桂酸无规共聚醚水溶液减摩抗磨性能试验研究

    Institute of Scientific and Technical Information of China (English)

    孙跃涛; 张朝辉; 刘思思

    2011-01-01

    by seperating friction surfaces. The polar molecule has saturated adsorption capacity, so it shows good friction-reducing and anti-wear properties at low mass fraction. It lays a foundation for the rosy prospect in industrial application.

  15. Influence of Friction Stir Welding on Corrosion Properties of Aw-7020M Alloy in Sea Water

    Directory of Open Access Journals (Sweden)

    Dudzik K.

    2015-03-01

    Full Text Available Friction Stir Welding (FSW, provides an alternative to MIG and TIG welding methods for joining aluminium alloys. The article presents the results of electrochemical corrosion resistance test of alloy AW- 7020M and its joints welded by FSW. The study was performed using the method of electrochemical impedance spectroscopy (EIS. Impedance spectroscopy studies showed that both, the FSW welded joint and base material AW-7020M has a good resistance to electrochemical corrosion in sea water environment, wherein the welded joint has a higher susceptibility to this type of corrosion. Research has indicated the desirability of applying the FSW method for joining AW-7020M alloy in shipbuilding industry.

  16. Production of Highly Lubricious Ti-Based Ceramic Films for Reducing Friction between Web and Transiting Roller

    Science.gov (United States)

    Kohzaki, Masao; Makita, Ryohei

    2013-05-01

    Web transiting process machines have been developed for producing flexible and printed electronics. For establishing a stable roll-to-roll transportation without web defects, the friction coefficient between the web and the transiting roller should be controlled at a low value. We produced the titanium nitride-molybdenum disulfide (TiN-MoS2) composite films by DC magnetron sputtering for improving the frictional characteristics of the transiting roller used in manufacturing process of flexible and printed electronics. The hardness of the TiN-MoS2 films was about 17 GPa at 22% MoS2. The composite films containing 22% MoS2 showed a low friction coefficient of approximately 0.1 at room temperature, which was almost equal to that of diamond-like carbon (DLC) films. In addition, only a small wear was detected on the films after the friction test. The adhesive strength of the composite films was improved by forming the Ti interlayer, and the further reduction of wear was observed.

  17. Mechanical Properties, Microstructure and Crystallographic Texture of Magnesium AZ91-D Alloy Welded by Friction Stir Welding (FSW)

    Science.gov (United States)

    Kouadri-Henni, A.; Barrallier, L.

    2014-10-01

    The objective of the study was to characterize the properties of a magnesium alloy welded by friction stir welding. The results led to a better understanding of the relationship between this process and the microstructure and anisotropic properties of alloy materials. Welding principally leads to a large reduction in grain size in welded zones due to the phenomenon of dynamic recrystallization. The most remarkable observation was that crystallographic textures appeared from a base metal without texture in two zones: the thermo-mechanically affected and stir-welded zones. The latter zone has the peculiarity of possessing a marked texture with two components on the basal plane and the pyramidal plane. These characteristics disappeared in the thermo-mechanically affected zone (TMAZ), which had only one component following the basal plane. These modifications have been explained by the nature of the plastic deformation in these zones, which occurs at a moderate temperature in the TMAZ and high temperature in the SWZ.

  18. Effect of Multi-Pass Friction Stir Processing on Mechanical Properties for AA2024/Al2O3 Nanocomposites

    Directory of Open Access Journals (Sweden)

    Essam Moustafa

    2017-09-01

    Full Text Available In the present work, an aluminum metal matrix reinforced with (Al2O3 nanoparticles was fabricated as a surface composite sheet using friction stir processing (FSP. The effects of processing parameters on mechanical properties, hardness, and microstructure grain were investigated. The results revealed that multi-pass FSP causes a homogeneous distribution and good dispersion of Al2O3 in the metal matrix, and consequently an increase in the hardness of the matrix composites. A finer grain is observed in the microstructure examination in specimens subjected to second and third passes of FSP. The improvement in the grain refinement is 80% compared to base metal. The processing parameters, particularly rotational tool speed and pass number in FSP, have a major effect on strength properties and surface hardness. The ultimate tensile strength (UTS and the average hardness are improved by 25% and 46%, respectively, due to presence of reinforcement Al2O3 nanoparticles.

  19. Characterization of the Influence of Tool Pin Profile on Microstructural and Mechanical Properties of Friction Stir Welding

    Science.gov (United States)

    Marzbanrad, Javad; Akbari, Mostafa; Asadi, Parviz; Safaee, Samad

    2014-10-01

    In this study, the effect of tool pin profile on mechanical properties, microstructural, material flow, thermal and strain distributions of friction stir welding of AA5083 was investigated. Two different tools with cylindrical and square pin profiles were employed to produce the welds. A numerical model is developed for investigating the effect of tool pin profiles on material flow, thermal and strain distributions based on thermo-mechanically coupled rigid-viscoplastic 3D FEM. Then, optical microscopy was employed to characterize the microstructures features of the weld. Finally, tensile test was carried out to characterize the mechanical properties of the weld. Obtained results showed that square pin profile produced finer grain structure and higher ultimate strength relative to cylindrical one. These results may be related to higher eccentricity, larger stirred zone, and higher temperature in the weld zone of the square pin profile.

  20. Friction in orthodontics

    Science.gov (United States)

    Prashant, P. S.; Nandan, Hemant; Gopalakrishnan, Meera

    2015-01-01

    Conventional wisdom suggests that resistance to sliding (RS) generated at the wire-bracket interface has a bearing on the force transmitted to the teeth. The relative importance of static and kinetic friction and also the effect of friction on anchorage has been a topic of debate. Lot of research work has been done to evaluate the various factors that affect friction and thus purportedly retards the rate of tooth movement. However, relevancy of these studies is questionable as the methodology used hardly simulates the oral conditions. Lately studies have concluded that more emphasis should be laid on binding and notching of archwires as these are considered to be the primary factors involved in retarding the tooth movement. This article reviews the various components involved in RS and the factors affecting friction. Further, research work should be carried out to provide cost effective alternatives aimed at reducing friction. PMID:26538873

  1. Tribological Properties of Silicone Rubber-Based Ceramizable Composites Destined for Wire Covers. Part II. Studies of Ball-on-Plate, Plate-on-Plate and Ring-on-Plate Friction Contact

    Directory of Open Access Journals (Sweden)

    R. Anyszka

    2016-09-01

    Full Text Available Tribological properties of commercially available silicone-based ceramizable composites were studied. Friction forces of three different types of ceramizable composites were measured against three different-shape steel samples. Each friction pair contact was loaded with 15, 30, 45 or 60 N. Conducted studies reveal that tribological behavior of the composites vary considerably depending on the composite type and friction contact. However, friction force was increasing with an increase of the load, which mean that the composites behave accordingly to the classic friction theory.

  2. High-Velocity Frictional Properties of Westerly Granite and the Role of Thermal Cracking on Gouge Production

    Science.gov (United States)

    Passelegue, Francois; Spanuolo, Elena; Violay, Marie; Nielsen, Stefan; Di Toro, Giulio; Schubnel, Alexandre

    2016-04-01

    With the advent of high-velocity shear apparatus, several experimental studies have been conducted in recent years improving our understanding of fault friction at seismic slip rates (0.1-10 m/s). Here, we present the results of a series of tests conducted on Westerly granite, at INGV Roma, on a Slow to HIgh Velocity Apparatus (SHIVA), coupled with a high frequency monitoring (4MHz sampling rate). Experiments were conducted under normal stress (σn) ranging from 5 to 20 MPa and at sliding velocities (V) comprised between 3 mm/s and 3 m/s. Additional experiments were conducted in the presence of pore fluid at equivalent effective normal stress. In dry conditions, two friction drops are observed. The first drop is independent of the normal stress and occurs when V become higher than a critical value (Vc≈0.15 m/s). The second friction drop occurs after a critical slip weakening distance which decreases as a power law with the power density (τV). The first, abrupt, drop is explained by flash heating and weakening mechanism while the second, smooth, drop is due to the formation and growth of molten patches on the fault surface. In wet conditions, only the second drop of friction is observed. Average values of the fracture energy are independent of normal stress and sliding velocity at V > 0.01 m/s. However, measurements of elastic wave velocities travelling through the fault strongly suggest that higher damage is induced for 0.1 temperature is high. Some AEs are even recorded few seconds after the end of the experiments, suggesting they may be due to thermal cracking induced by heat diffusion. In addition, the presence of pore fluid pressure (water) delayed the apparition of AEs at equivalent effective pressure, supporting the link between AEs and the production and diffusion of heat. Using the thermo-elastic crack model developed by Fredriech and Wong 1986, we demonstrate that damage can indeed be induced by heat diffusion. Our theoretical prediction explains well

  3. Effect of La2O3 on electrical friction and wear properties of Cu-graphite composites

    Institute of Scientific and Technical Information of China (English)

    莫飞; 凤仪; 陈阳明; 王雨晴; 钱刚; 豆亚坤; 张学斌

    2015-01-01

    Sliding friction and wear experiments using Cu-La2O3-graphite composites against Cu-5 wt.%Ag alloy ring were con-ducted at a constant sliding speed of 10 m/s, a current density of 10 A/cm2 and a load of 2.5 N/cm2. These composites with different La2O3and graphite contents were fabricated by hot-pressing. Physical and mechanical properties of the composites were examined. Morphologies of the worn surface of composites were observed using optical microscopy. X-ray photoelectron spectroscopy spectra were used to study compositions of the lubricating film. The results showed that with the increasing addition of La2O3, hardness, flexural strength and electrical resistivity increased, but the relative density dropped. The friction coefficient increased with the in-creasing addition of La2O3. Composite containing 3 vol.% of La2O3 and 37 vol.% of graphite showed the best wear resistance. The main wear mechanisms of composites were abrasive wear, oxidative wear and adhesive wear.

  4. Tribological Testing of Hemispherical Titanium Pin Lubricated by Novel Palm Oil: Evaluating Anti-Wear and Anti-Friction Properties

    Science.gov (United States)

    Sapawe, Norzahir; Samion, Syahrullail; Ibrahim, Mohd Izhan; Daud, Md Razak; Yahya, Azli; Hanafi, Muhammad Farhan

    2017-05-01

    In this study, the properties of hip implant material and lubricants were examined using a pin on disc apparatus, to compare the effect of metal-on-metal (MoM) contact with a bio-lubricant derived from palm oil. The behaviour of the lubricants was observed during the experiments, in which a hemispherical pin was loaded against a rotating disc with a groove. A titanium alloy was used to modify the hemispherical pin and disc. Before and after the experiments, the weight and surface roughness were analysed, to detect any degradation. The results were compared according to the different kinematic viscosities. The wear rates and level of friction with each lubricant were also examined. The lubricant with the highest viscosity had the lowest frictional value. Therefore, developing suitable lubricants has the potential to prolong the lifespan of prostheses or implants used in biomedical applications. The experiments collectively show that lubricants derived from palm oil could be used as efficient bio-lubricants in the future.

  5. Friction characteristics of trocars in laparoscopic surgery.

    Science.gov (United States)

    Alazmani, Ali; Roshan, Rupesh; Jayne, David G; Neville, Anne; Culmer, Peter

    2015-04-01

    This article investigates the friction characteristics of the instrument-trocar interface in laparoscopic surgery for varying linear instrument velocities, trocar seal design and material, and trocar tilt. Furthermore, the effect of applying lubrication at the instrument-trocar seal interface on friction was studied. A friction testing apparatus was designed and built to characterise the resistance force at the instrument-trocar interface as a function of the instrument's linear movement in the 12-mm trocar (at constant velocity) for different design, seal material, and angle of tilt. The resistance force depended on the trocar seal design and material properties, specifically surface roughness, elasticity, hardness, the direction of movement, and the instrument linear velocity, and varied between 0.25 and 8 N. Lubricating the shaft with silicone oil reduced the peak resistance force by 75% for all trocars and eliminated the stick-slip phenomenon evident in non-lubricated cases. The magnitude of fluctuation in resistance force depends on the trocar design and is attributed to stick-slip of the sealing mechanism and is generally higher during retraction in comparison to insertion. Trocars that have an inlet seal made of rubber/polyurethane showed higher resistance forces during retraction. Use of a lubricant significantly reduced frictional effects. Comparisons of the investigated trocars indicate that a low friction port, providing the surgeon with improved haptic feedback, can be designed by improving the tribological properties of the trocar seal interface.

  6. Research on Friction Property of WS2 Matrix Solid Lubricating Coatings%WS2基固体润滑涂层摩擦性能研究

    Institute of Scientific and Technical Information of China (English)

    侯锁霞; 高辉; 贾晓鸣

    2013-01-01

    The tribological properties of WS2 matrix solid lubricating coating were investigated by friction and wear tests.The results show that,under normal temperature,the tribological coefficient of WS2 matrix solid lubricating coatings are close to that of MoS2 matrix solid lubricating coating,however,the coating quality of WS2 metal matrix is inferior to that of MoS2 ; under high temperature,WS2 matrix coatings have stable friction coefficient,the tribological properties of WS2 coatings are superior to MoS2 matrix solid lubricating coatings.The composite coatings including MoS2,WS2 and Sb2 O3 can play a better role in friction reducing and lubrication,and the friction coefficient can reach to 0.045 under high temperature of 400℃.For the composite coatings including MoS2,WS2 and Sb2 O3,Sb2 O3 reacts preferentially with the oxygen in the air under high temperature,which slows down the oxidation rate of MoS2 and WS2,and elevates the temperature that MoS2 and WS2 can withstand.In the condition of boundary lubrication,the mixed films of FeS and MoS2 are generated by the electrochemical catalysis and heat friction chemical reaction of MoS2,which improves the boundary lubrication.%通过摩擦磨损试验,研究WS2固体润滑剂的摩擦性能.结果表明:常温工况下,WS2固体润滑剂的摩擦因数与MoS2的相近,但WS2涂层在金属基上成膜状态不如MoS2涂层;高温工况下,WS2基涂层摩擦因数稳定,摩擦性能优于MoS2基固体润滑涂层;在400℃的温度条件下,WS2、MoS2、Sb2 O3复合涂层摩擦因数可达0.045,减摩润滑作用显著提高.在高温工况下,WS2、MoS2、Sb2O3复合涂层中Sb2O3优先与空气中的氧发生反应从而减缓MoS2、WS2的氧化速度,提高MoS2、WS2所能承受的温度;在边界润滑条件下,MoS2发生电化学催化和热摩擦化学反应,生成FeS和MoS2混合膜,改善了边界润滑.

  7. Effect of Process Parameters on Microstructural Evolution, Mechanical Properties and Corrosion Behavior of Friction Stir Processed Al 7075 Alloy

    Science.gov (United States)

    Kumar, Atul; Sharma, Sandan Kumar; Pal, Kaushik; Mula, Suhrit

    2017-03-01

    Aim of the present study is to investigate the effect of process parameters on microstructural evolution, mechanical properties and corrosion behavior of an age-hardenable Al 7075 alloy. The alloy plates (6 mm thickness) were friction stir processed (FSPed) at various traverse speed, namely 25, 45, 65, 85, 100 and 150 mm/min at 2 different rpm of 508 and 720. The optimized result in terms of defect-free processed zone with refined microstructure was obtained only at a rotational speed of 720 rpm for a traverse speed of 25, 45, 65 and 85 mm/min. The microstructural evolution was investigated using optical, scanning and transmission electron microscopy. The grain size of the nugget zone was found to decrease with increase in the traverse speed from 25 to 85 mm/min at a constant rpm of 720. The mechanical properties were evaluated by Vickers hardness measurements, tensile and wear testing. Yield strength was found to be the maximum ( 366 MPa) for the FSPed sample processed at 85 mm/min. The hardness values also followed the similar increasing trend with increase in the traverse speed. The wear volume loss decreased by 38% for the sample processed at a traverse speed of 85 mm/min as compared to that of the sample processed at 25 mm/min. The friction coefficient was found to substantiate well with the wear track morphology. The improvement in mechanical properties is ascertained to the refinement of grain size at higher traverse speed (due to less heat input). The FSPed samples showed inferior corrosion resistance in contrast to that of the base metal. This is possibly due to the coarsening of precipitates and depletion of solutes in the matrix. The morphology of the corroded samples corroborated well with the corrosion behavior of the corresponding specimen.

  8. Effect of Process Parameters on Microstructural Evolution, Mechanical Properties and Corrosion Behavior of Friction Stir Processed Al 7075 Alloy

    Science.gov (United States)

    Kumar, Atul; Sharma, Sandan Kumar; Pal, Kaushik; Mula, Suhrit

    2017-02-01

    Aim of the present study is to investigate the effect of process parameters on microstructural evolution, mechanical properties and corrosion behavior of an age-hardenable Al 7075 alloy. The alloy plates (6 mm thickness) were friction stir processed (FSPed) at various traverse speed, namely 25, 45, 65, 85, 100 and 150 mm/min at 2 different rpm of 508 and 720. The optimized result in terms of defect-free processed zone with refined microstructure was obtained only at a rotational speed of 720 rpm for a traverse speed of 25, 45, 65 and 85 mm/min. The microstructural evolution was investigated using optical, scanning and transmission electron microscopy. The grain size of the nugget zone was found to decrease with increase in the traverse speed from 25 to 85 mm/min at a constant rpm of 720. The mechanical properties were evaluated by Vickers hardness measurements, tensile and wear testing. Yield strength was found to be the maximum ( 366 MPa) for the FSPed sample processed at 85 mm/min. The hardness values also followed the similar increasing trend with increase in the traverse speed. The wear volume loss decreased by 38% for the sample processed at a traverse speed of 85 mm/min as compared to that of the sample processed at 25 mm/min. The friction coefficient was found to substantiate well with the wear track morphology. The improvement in mechanical properties is ascertained to the refinement of grain size at higher traverse speed (due to less heat input). The FSPed samples showed inferior corrosion resistance in contrast to that of the base metal. This is possibly due to the coarsening of precipitates and depletion of solutes in the matrix. The morphology of the corroded samples corroborated well with the corrosion behavior of the corresponding specimen.

  9. Local reinforcement of magnesium components by friction processing. Determination of bonding mechanisms and assessment of joint properties

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, G.A. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Materialforschung

    2008-07-01

    The development of new creep-resistant and cost effective die casting magnesium alloys, such as AE, MRI, MEZ, ACM, AXJ, AJ, WE, have emerged as an alternative, to fulfil the modern demands in structurally relevant applications, such as engine blocks, gears and converter boxes. However, in most cases, magnesium components are screwed with aluminium and steel bolts, which lead the screwed joints to lose the preload force, due to relaxation. This barrier thereby limits the broad use of magnesium within this segment and should somehow find an adequate solution to help overcome this limitation. Furthermore, together with alloy development and the addition of reinforcement (MMCs), local material engineering processes have been conceived and are considered a method to improve the properties and therefore expand the number of potential applications for magnesium alloys. In this context, Friction Welding (FW) and particularly Friction Hydro Pillar Processing (FHPP), which can be described as a drill and fill process, appear to be an alternative to make the use of magnesium more widespread. For this reason, FHPP is intended to be used, to locally reinforce the mechanically fastened magnesium components. With this approach, regions submitted to the stresses imposed by tightening forces can be compensated by the use of a material with superior properties. It is not required to fabricate the whole structure from an expensive material, thus saving costs and thereby satisfying the economic pressures of an increasingly competitive global market. In the present work, a preliminary experimental matrix was defined and used to determine the optimal welding conditions for each specific material combination selected. Further, elaborate experimental techniques are used to describe the process parameters-microstructure-properties relationships and the consequent mechanisms leading to bonding in FHPP welds in similar and dissimilar configurations. The welds were performed using a hydraulic

  10. Local reinforcement of magnesium components by friction processing. Determination of bonding mechanisms and assessment of joint properties

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, G.A. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Materialforschung

    2008-07-01

    The development of new creep-resistant and cost effective die casting magnesium alloys, such as AE, MRI, MEZ, ACM, AXJ, AJ, WE, have emerged as an alternative, to fulfil the modern demands in structurally relevant applications, such as engine blocks, gears and converter boxes. However, in most cases, magnesium components are screwed with aluminium and steel bolts, which lead the screwed joints to lose the preload force, due to relaxation. This barrier thereby limits the broad use of magnesium within this segment and should somehow find an adequate solution to help overcome this limitation. Furthermore, together with alloy development and the addition of reinforcement (MMCs), local material engineering processes have been conceived and are considered a method to improve the properties and therefore expand the number of potential applications for magnesium alloys. In this context, Friction Welding (FW) and particularly Friction Hydro Pillar Processing (FHPP), which can be described as a drill and fill process, appear to be an alternative to make the use of magnesium more widespread. For this reason, FHPP is intended to be used, to locally reinforce the mechanically fastened magnesium components. With this approach, regions submitted to the stresses imposed by tightening forces can be compensated by the use of a material with superior properties. It is not required to fabricate the whole structure from an expensive material, thus saving costs and thereby satisfying the economic pressures of an increasingly competitive global market. In the present work, a preliminary experimental matrix was defined and used to determine the optimal welding conditions for each specific material combination selected. Further, elaborate experimental techniques are used to describe the process parameters-microstructure-properties relationships and the consequent mechanisms leading to bonding in FHPP welds in similar and dissimilar configurations. The welds were performed using a hydraulic

  11. Note: A rigid piezo motor with large output force and an effective method to reduce sliding friction force.

    Science.gov (United States)

    Guo, Ying; Hou, Yubin; Lu, Qingyou

    2014-05-01

    We present a completely practical TunaDrive piezo motor. It consists of a central piezo stack sandwiched by two arm piezo stacks and two leg piezo stacks, respectively, which is then sandwiched and spring-clamped by a pair of parallel polished sapphire rods. It works by alternatively fast expanding and contracting the arm/leg stacks while slowly expanding/contracting the central stack simultaneously. The key point is that sufficiently fast expanding and contracting a limb stack can make its two sliding friction forces well cancel, resulting in the total sliding friction force is piezo motor's high compactness, precision, and output force make it perfect in building a high-quality harsh-condition (vibration resistant) atomic resolution scanning probe microscope.

  12. Development of mathematical model to predict the mechanical properties of friction stir

    Directory of Open Access Journals (Sweden)

    R. Palanivel

    2011-01-01

    Full Text Available This paper presents a systematic approach to develop the mathematical model for predicting the ultimate tensile strength,yield strength, and percentage of elongation of AA6351 aluminum alloy which is widely used in automotive, aircraft anddefense Industries by incorporating (FSW friction stir welding process parameter such as tool rotational speed, weldingspeed, and axial force. FSW has been carried out based on three factors five level central composite rotatable design withfull replications technique. Response surface methodology (RSM is employed to develop the mathematical model. Analysisof variance (ANOVA Technique is used to check the adequacy of the developed mathematical model. The developedmathematical model can be used effectively at 95% confidence level. The effect of FSW process parameter on mechanicalproperties of AA6351 aluminum alloy has been analyzed in detail.

  13. Frictional, Hydraulic, and Acoustic Properties of Alpine Fault DFDP-1 Core

    Science.gov (United States)

    Carpenter, B. M.; Ikari, M.; Kitajima, H.; Kopf, A.; Marone, C.; Saffer, D. M.

    2012-12-01

    The Alpine Fault, a transpressional plate-boundary fault transecting the South Island of New Zealand, is the current focus of the Deep Fault Drilling Project (DFDP), a major fault zone drilling initiative. Phase 1 of this project included 2 boreholes that penetrated the active fault at depths of ˜100 m and ˜150 m, and provided a suite of core samples crossing the fault. Here, we report on laboratory measurements of frictional strength and constitutive behavior, permeability, and ultrasonic velocities for a suite of the recovered core samples We conducted friction experiments on powdered samples in a double-direct shear configuration at room temperature and humidity. Our results show that over a range of effective normal stresses from 10-100 MPa, friction coefficients are ~0.60-0.70, and are similar for all of the materials we tested. Rate-stepping tests document velocity-weakening behavior in the majority of wall rock samples, whereas the principal slip surface (PSS) and an adjacent clay-rich cataclasite exhibit velocity-strengthening behavior. We observe significant rates of frictional healing in all of our samples, indicating that that the fault easily regains its strength during interseismic periods. Our results indicate that seismic slip is not likely to nucleate in the clay-rich PSS at shallow depths, but might nucleate and propagate on the gouge/wall rock interface. We measured permeability using a constant head technique, on vertically oriented cylindrical mini-cores (i.e. ˜45 degrees to the plane of the Alpine Fault). We conducted these tests in a triaxial configuration, under isotropic stress conditions and effective confining pressures from ~2.5 - 63.5 MPa. We conducted ultrasonic wavespeed measurements concurrently with the permeability measurements to determine P- and S-wave velocities from time-of-flight. The permeability of all samples decreases systematically with increasing effective stress. The clay-rich cataclasite (1.37 x 10-19 m2) and PSS (1

  14. Influence of tribological additives on friction and impact performance of injection moulded polyacetal

    DEFF Research Database (Denmark)

    Laursen, Jens Lolle; Sivebæk, Ion Marius; Christoffersen, L.W.

    2009-01-01

    Tribological additives are used to improve frictional properties of injection moulded thermoplastics. The additives might however also affect the mechanical properties of the material. The influence of processing conditions on both frictional and mechanical properties is highly relevant...... in the development of tribologically modified grades. In the present study we investigate how two commonly used tribological additives, polydimethylsiloxane and polytetrafluoroethylene, affect friction and impact properties of polyacetal (polyoxymethylene). A new injection mould provides test specimens for both...... surface characteristics. The tested concentration of the additives is found to effectively reduce friction, yet are not found critical with respect to the impact properties evaluated. A noticeable interaction with respect to friction is found between the additives speaking in favour of their use...

  15. Experimental Validation of Strategy for the Inverse Estimation of Mechanical Properties and Coefficient of Friction in Flat Rolling

    Science.gov (United States)

    Yadav, Vinod; Singh, Arbind Kumar; Dixit, Uday Shanker

    2016-06-01

    Flat rolling is one of the most widely used metal forming processes. For proper control and optimization of the process, modelling of the process is essential. Modelling of the process requires input data about material properties and friction. In batch production mode of rolling with newer materials, it may be difficult to determine the input parameters offline. In view of it, in the present work, a methodology to determine these parameters online by the measurement of exit temperature and slip is verified experimentally. It is observed that the inverse prediction of input parameters could be done with a reasonable accuracy. It was also assessed experimentally that there is a correlation between micro-hardness and flow stress of the material; however the correlation between surface roughness and reduction is not that obvious.

  16. An investigation of the microstructures and properties of metal inert gas and friction stir welds in aluminum alloy 5083

    Indian Academy of Sciences (India)

    A R Yazdipour; A Shafiei M; H Jamshidi Aval

    2011-08-01

    Two different types of welds, Metal Inert Gas (MIG) and Friction Stir Welding (FSW), have been used to weld aluminum alloy 5083. The microstructure of the welds, including the nugget zone and heat affected zone, has been compared in these two methods using optical microscopy. The mechanical properties of the weld have been also investigated using the hardness and tensile tests. The results show that both the methods could successfully be used to weld such alloy. The strength of the joints is comparable to the strength of the base metal in both cases. However, FSWed samples have shown higher strength in comparison to the MIG samples. The results also show that the extension of the heat affected zone is higher in the MIG method in comparison to the FSW method. The weld metal microstructure of MIG welded specimen contains equiaxed dendrites as a result of solidification process during MIG welding while FSWed samples have wrought microstructures.

  17. Microstructure, texture, and mechanical properties of friction stir spot welded rare-earth containing ZEK100 magnesium alloy sheets

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, R.I. [Department of Mechanical Engineering, The University of Alabama, Tuscaloosa, AL 35487 (United States); Jordon, J.B., E-mail: bjordon@eng.ua.edu [Department of Mechanical Engineering, The University of Alabama, Tuscaloosa, AL 35487 (United States); Rao, H.M. [Department of Mechanical Engineering, The University of Alabama, Tuscaloosa, AL 35487 (United States); Badarinarayan, H.; Yuan, Wei [Hitachi America Ltd., R and D Division, Automotive Products Research Laboratory, Farmington Hills, MI 48335 (United States); El Kadiri, Haitham [Department of Mechanical Engineering, Mississippi State University, Starkville, MS 39759 (United States); Allison, P.G. [Department of Mechanical Engineering, The University of Alabama, Tuscaloosa, AL 35487 (United States)

    2014-11-17

    The effect of friction stir spot welding process parameters on the microstructure, texture, and mechanical properties of ZEK100 (Mg–1.0 wt% Zn–0.5 wt% RE–0.5 wt% Zr) Mg alloy was investigated. Lap-shear joints were prepared using two different tool rotational speeds (1500 and 2250 rpm) and three different shoulder plunge depths (0.0, 0.2, 0.6 mm). Microstructure analysis revealed significant grain refinement in the stir zone, when compared to the base material. Electron backscatter diffraction analysis revealed a strong texture development in the keyhole periphery and adjacent regions despite the presence of RE-elements, however, no significant texture variation was observed within the process parameters. These results suggest that the ultimate failure of the weld is more attributed to macroscopic features such as the bond width and upper sheet thickness rather than texture development.

  18. Effect of Rotational Speed on Microstructure and Mechanical Properties of Refill Friction Stir Spot Welded 2024 Al Alloy

    Science.gov (United States)

    Li, Zhengwei; Gao, Shuangsheng; Ji, Shude; Yue, Yumei; Chai, Peng

    2016-04-01

    Refill friction stir spot welding (RFSSW) was successfully used to weld alclad 2024 aluminum alloy with different thicknesses. Effects of tool rotational speed on the weld formation, microstructure, and mechanical properties of the RFSSW welds were mainly discussed. Results show that keyhole is successfully refilled and welding defects such as flash, annular groove, and material adhesion can be observed. A bright contrast bonding ligament is found embedded in the weld and it is thicker in the center. Defects of hook, void, lack of mixing, and incomplete refilling can be found at the thermo-mechanically affected zone/stir zone (TMAZ/SZ) interface, which can be attributed to weak metallurgical bonding effect. With increasing the tool rotational speed, thickness of the bonding ligament decreases, grains in the SZ coarsen, hardness of the SZ decreases, and lap shear load of the welds decreases. When changing the rotating speed, impact strength shows rather complicated variation trend.

  19. Study of Mechanical Properties and Characterization of Pipe Steel welded by Hybrid (Friction Stir Weld + Root Arc Weld) Approach

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Yong Chae [ORNL; Sanderson, Samuel [MegaStir Technologies LLC; Mahoney, Murray [Consultant; Wasson, Andrew J [ExxonMobil, Upstream Research Company (URC); Fairchild, Doug P [ExxonMobil, Upstream Research Company (URC); Wang, Yanli [ORNL; Feng, Zhili [ORNL

    2015-01-01

    Friction stir welding (FSW) has recently attracted attention as an alternative construction process for gas/oil transportation applications due to advantages compared to fusion welding techniques. A significant advantage is the ability of FSW to weld the entire or nearly the entire wall thickness in a single pass, while fusion welding requires multiple passes. However, when FSW is applied to a pipe or tube geometry, an internal back support anvil is required to resist the plunging forces exerted during FSW. Unfortunately, it may not be convenient or economical to use internal backing support due to limited access for some applications. To overcome this issue, ExxonMobil recently developed a new concept, combining root arc welding and FSW. That is, a root arc weld is made prior to FSW that supports the normal loads associated with FSW. In the present work, mechanical properties of a FSW + root arc welded pipe steel are reported including microstructure and microhardness.

  20. PTFE/30CrMnSiNi2A的重载摩擦性能%Friction Properties of PTFE/30CrMnSiNi2A Bearing at Heavy Load

    Institute of Scientific and Technical Information of China (English)

    丁水; 张绪虎; 吴阳; 叶呈武; 黄思原

    2012-01-01

    The self-lubricating bearings which were made up of PTFE and a ultrahigh strength steel 30CrMnSiNi2A were investigated by numerical simulation and experiments. The failure mode and influence of friction surface on the friction properties were analyzed. The wear mechanism was also studied based on the observation of the worn friction surface. It was found that the failure of self-lubricating bearing is attributed to the damage of lubricating layer,which is improved by excellent friction surface. Owing to the transferred lubricating film made by PTFE fabric, the friction coefficient reduced eventually.%采用PTFE与30CrMnSiNi2A钢制成自润滑轴承,在重载工况下进行了数值模拟及试验分析,研究了自润滑轴承的主要失效形式、摩擦面状态及性能对摩擦性能的影响,并分析了轴承的磨损机理.结果表明:该轴承在重载下以润滑层失效为主要破坏形式,改善摩擦面能够有效提高轴承的摩擦性能;在摩擦过程中PTFE不断被挤出,形成转移润滑膜,起到了减小摩擦因数的作用.

  1. Effect of Welding Speeds on Mechanical Properties of Level Compensation Friction Stir Welded 6061-T6 Aluminum Alloy

    Science.gov (United States)

    Wen, Quan; Yue, Yumei; Ji, Shude; Li, Zhengwei; Gao, Shuangsheng

    2016-04-01

    In order to eliminate the flash, arc corrugation and concave in weld zone, level compensation friction stir welding (LCFSW) was put forward and successfully applied to weld 6061-T6 aluminum alloy with varied welding speed at a constant tool rotational speed of 1,800 rpm in the present study. The glossy joint with equal thickness of base material can be attained, and the shoulder affected zone (SAZ) was obviously reduced. The results of transverse tensile test indicate that the tensile strength and elongation reach the maximum values of 248 MPa and 7.1% when the welding speed is 600 mm/min. The microhardness of weld nugget (WN) is lower than that of base material. The tensile fracture position locates at the heat affected zone (HAZ) of the advancing side (AS), where the microhardness is the minimum. The fracture surface morphology represents the typical ductile fracture.

  2. Micro-mechanical modeling of the cement-bone interface: the effect of friction morphology and material properties on the micromechanical response

    NARCIS (Netherlands)

    Janssen, Dennis; Mann, Kenneth A.; Verdonschot, Nicolaas Jacobus Joseph

    2008-01-01

    In order to gain insight into the micro-mechanical behavior of the cement–bone interface, the effect of parametric variations of frictional, morphological and material properties on the mechanical response of the cement–bone interface were analyzed using a finite element approach. Finite element

  3. The Vibration and Acoustic Properties of Pipes with Squeeze Film and Some Friction Damping Systems.

    Science.gov (United States)

    Li, Meng

    1991-01-01

    Available from UMI in association with The British Library. This study was motivated by the need to decrease the noise radiation and vibration of pipework in power plants, particularly at elevated temperature. A thin circular cylindrical shell has been studied theoretically. The exact solutions for natural frequencies of the symmetrical and anti-symmetrical modes for cylindrical shell vibration have been derived in matrix form. Using this theory, numerical results for natural frequencies and mode shapes with free-free, clamped-free and clamped -clamped boundary conditions have been evaluated. Based upon studies of the thin cylindrical shell theory and the physical phenomenon of air film damping of two parallel plates, the theory for predicting the loss factor of an annular double pipe damping system with a very small air gap has been developed. Flugge's thin shell equations of motion and the Navier-Stokes equation for viscous fluid were employed in the analysis. The fluid motion was expressed in terms of the shell displacement by using a travelling wave type solution. The solutions gave the fluid velocity profiles and stresses in the clearance between two cylindrical, concentric shells. According to the definition of energy dissipated in the fluid, an equation was derived for predicting the loss factor of the whole damping system. Based on the principle of similarity, an optimum design for a system generating squeeze film damping in pipes has been made. The theory was then extended to study the damping caused by various kinds of viscous fluid in the gap between the two annular structures. Experiments have been carried out to investigate the loss factor of the double pipe system with in-phase and out-of-phase modes of vibration. Friction damping has been studied experimentally on a thin-walled pipe with a coiled steel spring or wire rope attached or with a mineral wool wrapping. Flexural vibration was examined in the experiments. This study included an experimental

  4. Effects of Post-Weld Heat Treatment on the Mechanical Properties of Similar- and Dissimilar-Alloy Friction Stir Welded Blanks

    Science.gov (United States)

    Zadpoor, Amir Abbas; Sinke, Jos

    2011-01-01

    Friction stir welding is a solid state joining process with relatively low welding temperatures. Nevertheless, the mechanical properties of friction stir welded blanks are degraded after welding. Indeed, both strength and ductility of the welds are decreased after welding. Often, the resulting friction stir welded blanks need to be formed to their final structural shape. Therefore, the formability of friction stir welded blanks is of primary importance in the manufacturing of structural parts. This paper studies how the mechanical properties and particularly formability of friction stir welded blanks can be improved by applying a post weld heat treatment. Two aluminum alloys from 2000 and 7000 series, namely 2024-T3 and 7075-T6, are selected for the study. The sheet thickness of both materials is 2,0 mm. The selected alloys are welded in three configurations: 2024-T3 and 2024-T3, 7075-T6 and 7075-T6, and 2024-T3 and 7075-T6. The resulting welds are naturally aged for a few months. Three sets of standard dog bone shape tensile test specimens are then machined from the welds. The first set of the specimens is tested without any heat treatment. The second set of the specimens is solution heat treated and quenched before testing. The third set of the specimens is solution heat treated, quenched, and naturally aged for a week before testing. The mechanical properties of the three different sets of specimens are compared with each other. It is shown that careful selection of post weld heat-treatment can greatly improve the formability of friction stir welded blanks.

  5. Financial Frictions

    DEFF Research Database (Denmark)

    Vestergaard Jensen, Mads

    frictions, a call option should never be exercised early, but only at expiration or just before the underlying stock pays a dividend. Chapter one of this thesis shows that suffciently severe frictions can make early exercise optimal. Short-sale costs especially represent an important driver of early...

  6. Microstructural and Mechanical Properties of Friction Stir Welded Nickel-Aluminum Bronze (NAB) Alloy

    Science.gov (United States)

    Küçükömeroğlu, T.; Şentürk, E.; Kara, L.; İpekoğlu, G.; Çam, G.

    2016-01-01

    In this study, the applicability of friction stir welding to cast NAB alloy (i.e., C95800) with a thickness of 9 mm has been investigated. The joint performance was determined by conducting optical microscopy, microhardness measurements, and mechanical testing (e.g., tensile and Charpy impact tests). The effect of stir intensity on joint performance was also determined. A grain refinement (equiaxed fine grain structure) as well as evolution of a Widmanstätten structure was achieved within the stir zone of all the joints produced. Thus, all of the joints produced exhibited higher proof stress (i.e., between 512 and 616 MPa) than that of the base material, i.e., 397 MPa. On the other hand, only half of the specimens exhibited higher tensile strength values than that of the base plate (i.e., 794 MPa), whereas the other specimens displayed lower tensile strength than the base plate due to the existence of weld defects, namely cold bonding and/or tunnel defect.

  7. Friction Surface Morphology and Tribological Property of Copper-Steel-Aluminum Lamellar Composite Materials%层片式复合材料摩擦性能与表面形态的研究

    Institute of Scientific and Technical Information of China (English)

    高飞; 杨亭亭; 符蓉; 韩晓明

    2013-01-01

    粉末冶金材料摩擦面上多组分的混合以及第三体的存在,不利于澄清材料中不同组分对摩擦性能的贡献程度.本文采用机械组合方法制备了铜-钢-铝层片式摩擦材料,通过定速摩擦试验机,在干、湿两种条件下,观察了3种组分的摩擦表面微结构随摩擦速度的变化过程,测试了不同条件下的摩擦性能.结果表明:铜良好的塑性和焊合性,易形成与基体黏附性良好的第三体,使表面的粗糙程度增加;钢较高的强度及其氧化物的脆性,形成的第三体流动性好且与基体的结合强度有限,容易发生开裂和脱落;铝形成的富氧化铝的第三体,其颗粒间较差的黏合程度易在表面弥散分布,使表面平整度好.在摩擦速度低于900 r/min条件下,水分的润滑作用使湿摩擦条件下的摩擦系数低于干摩擦;摩擦速度高于900 r/min时,水分的冷却和清理微细第三体颗粒的作用,降低了材料的软化程度和第三体的流动性,使湿摩擦系数大于干摩擦系数.%The mixture of multi-components and the existence of third-body on the friction surface of powder metallurgy materials make it difficult to clarify the contributions of each components to the tribological property.In this paper,copper-steel-aluminum lamellar friction materials were prepared through mechanical combination.Using a constant-speed tribometer under dry and wet conditions,the changes of friction surface microstructure with respect to friction speed of the three components were investigated,and the tribological property under different conditions was measured.It was found that,the excellent ductility and bondability of copper made it easy to form third body with good bonding to the matrix,resulting in increased surface roughness.The high strength of steel and the brittleness of its oxides led to good flowability of the third body and limited its bonding strength to the matrix,making it easy to crack and spall

  8. Fabrication of Aluminum Foam-Filled Thin-Wall Steel Tube by Friction Welding and Its Compression Properties

    Directory of Open Access Journals (Sweden)

    Yoshihiko Hangai

    2014-09-01

    Full Text Available Aluminum foam has received considerable attention in various fields and is expected to be used as an engineering material owing to its high energy absorption properties and light weight. To improve the mechanical properties of aluminum foam, combining it with dense tubes, such as aluminum foam-filled tubes, was considered necessary. In this study, an aluminum foam-filled steel tube, which consisted of ADC12 aluminum foam and a thin-wall steel tube, was successfully fabricated by friction welding. It was shown that a diffusion bonding layer with a thickness of approximately 10 μm was formed, indicating that strong bonding between the aluminum foam and the steel tube was realized. By the X-ray computed tomography observation of pore structures, the fabrication of an aluminum foam-filled tube with almost uniform pore structures over the entire specimen was confirmed. In addition, it was confirmed that the aluminum foam-filled steel tube exhibited mechanical properties superior to those of the ADC12 aluminum foam and steel tube. This is considered to be attributed to the combination of the aluminum foam and steel tube, which particularly prevents the brittle fracture and collapse of the ADC12 foam by the steel tube, along with the strong metal bonding between the aluminum foam and the steel tube.

  9. Influences of post weld heat treatment on tensile properties of friction stir welded AA2519-T87 aluminium alloy joints

    Science.gov (United States)

    Sabari, S. Sree; Balasubramanian, V.; Malarvizhi, S.; Reddy, G. Madusudhan

    2015-12-01

    AA 2519-T87 is an aluminium alloy that principally contains Cu as an alloying element and is a new grade of Al-Cu alloy system. This material is a potential candidate for light combat military vehicles. Fusion welding of this alloy leads to hot cracking, porosity and alloy segregation in the weld metal region. Friction stir welding (FSW) is a solid state joining process which can overcome the above mentioned problems. However, the FSW of age hardenable aluminium alloys results in poor tensile properties in the as-welded condition (AW). Hence, post weld heat treatment (PWHT) is used to enhance deteriorated tensile properties of FSW joints. In this work, the effect of PWHT, namely artificial ageing (AA) and solution treatment (ST) followed by ageing (STA) on the microstructure, tensile properties and microhardness were systematically investigated. The microstructural features of the weld joints were characterised using an optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The tensile strength and microhardness of the joints were correlated with the grain size, precipitate size, shape and its distribution. From the investigation, it was found that STA treatment is beneficial in enhancing the tensile strength of the FSW joints of AA2519-T87 alloy and this is mainly due to the presence of fine and densely distributed precipitates in the stir zone.

  10. 增强纤维对陶瓷基摩擦材料摩擦磨损性能的影响%Effects of Reinforced Fibers on Friction and Wear Properties of Ceramic-based Friction Material

    Institute of Scientific and Technical Information of China (English)

    刘莹; 王发辉

    2012-01-01

    采用热压烧结法制备纤维增强陶瓷基摩擦材料,研究了钢纤维、钢纤维/莫来石纤维、莫来石纤维、钢纤维/硅酸铝纤维以及硅酸铝纤维增强陶瓷基摩擦材料的摩擦磨损特性.研究结果表明:不同纤维对陶瓷基摩擦材料摩擦系数的影响较为复杂.相比较添加单一纤维增强摩擦材料的情况,钢纤维增强的试样具有较好的耐磨性能,其次为莫来石纤维增强的试样,硅酸铝纤维增强的试样表现出最差的耐磨性能,钢纤维/莫来石纤维和钢纤维/硅酸铝纤维增强试样的磨损均低于相应的陶瓷纤维增强的试样;在高温下以莫来石纤维增强的试样,其磨损形式以磨粒磨损为主,而以硅酸铝纤维和钢纤维/硅酸铝纤维增强的试样的主要磨损形式为黏着磨损,钢纤维和钢纤维/莫来石纤维增强的试样的磨损属于磨粒磨损和黏着磨损.%Ceramic-based friction materials with different reinforced fibers was prepared by hot-pressing.The effects of steel fiber,steel/mullite fiber,mullite fiber,steel/aluminium-silicate fiber and aluminium-silicate fiber as reinforcing materials on the friction and wear properties of ceramic-based friction material were investigated.The results show a complex relationship between different kinds of reinforced fibers and the friction coefficients.For friction material reiforced by single fiber,steel fiber reinforced sample had the highest wear resistance,while aluminium-silicate fiber reinforced sample had the poorest wear resistance,mullite fiber reinforced sample had the moderate wear resistance.The wear rates of sample with steel/mullite fiber or steel/aluminium-silicate fiber were lower than that of the samples reinforced by the corresponding ceramic fibers.The friction and wear tests at elevated temperature reveal that the main wear mechanism of mullite fiber reinforced ceramic-based friction material was abrasive wear while the main wear mecanism for friction

  11. Mechanical and Wear Properties of Friction Stir Welded 0–6Wt% nAl2O3 Reinforced Al-13Wt%Si Composites

    Directory of Open Access Journals (Sweden)

    Patel Vinay Kumar

    2017-04-01

    Full Text Available Friction Stir Welding (FSW of an Al-13%Si alloy matrix reinforced with 0, 3 and 6 wt% Al2O3 nanoparticles (nAl2O3 is performed and the optical microstructures, tensile strength, hardness and sliding wear properties of friction stir welded joints are investigated and compared to those of base materials. Four different zones of distinct appearances were observed during FSW, which exhibited altered microstructures in the nugget zone (NZ, thermo mechanically affected zone (TMAZ, heat affected zone (HAZ, and base material zone (BMZ. The ultimate tensile strength of the base materials and their welded joints were found to be increasing with increased wt% of nano-alumina reinforcements. High joint efficiency of 89-97% was achieved in FSW. Hardness and wear resistance of friction stir welded joints were found to be better than those of the base materials.

  12. Friction and wear properties of high-velocity oxygen fuel sprayed WC-17Co coating under rotational fretting conditions

    Science.gov (United States)

    Luo, Jun; Cai, Zhenbing; Mo, Jiliang; Peng, Jinfang; Zhu, Minhao

    2016-05-01

    Rotational fretting which exist in many engineering applications has incurred enormous economic loss. Thus, accessible methods are urgently needed to alleviate or eliminate damage by rotational fretting. Surface engineering is an effective approach that is successfully adopted to enhance the ability of components to resist the fretting damage. In this paper, using a high-velocity oxygen fuel sprayed (HVOF) technique WC-17Co coating is deposited on an LZ50 steel surface to study its properties through Vickers hardness testing, scanning electric microscope (SEM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffractrometry (XRD). Rotational fretting wear tests are conducted under normal load varied from 10 N to 50 N, and angular displacement amplitudes vary from 0.125° to 1°. Wear scars are examined using SEM, EDX, optical microscopy (OM), and surface topography. The experimental results reveal that the WC-17Co coating adjusted the boundary between the partial slip regime (PSR) and the slip regime (SR) to the direction of smaller amplitude displacement. As a result, the coefficients of friction are consistently lower than the substrate's coefficients of friction both in the PSR and SR. The damage to the coating in the PSR is very slight. In the SR, the coating exhibits higher debris removal efficiency and load-carrying capacity. The bulge is not found for the coating due to the coating's higher hardness to restrain plastic flow. This research could provide experimental bases for promoting industrial application of WC-17Co coating in prevention of rotational fretting wear.

  13. Effect of tool pin profile on microstructure and tensile properties of friction stir welded dissimilar AA 6061–AA 5086 aluminium alloy joints

    Directory of Open Access Journals (Sweden)

    M. Ilangovan

    2015-06-01

    Full Text Available Joints between two different grades of aluminium alloys are need of the hour in many light weight military structures. In this investigation, an attempt has been made to join the heat treatable (AA 6061 and non-heat treatable (AA 5086 aluminium alloys by friction stir welding (FSW process using three different tool pin profiles like straight cylindrical, taper cylindrical and threaded cylindrical. The microstructures of various regions were observed and analyzed by means of optical and scanning electron microscope. The tensile properties and microhardness were evaluated for the welded joint. From this investigation it is founded that the use of threaded pin profile of tool contributes to better flow of materials between two alloys and the generation of defect free stir zone. It also resulted in higher hardness values of 83 HV in the stir zone and higher tensile strength of 169 MPa compared to other two profiles. The increase in hardness is attributed to the formation of fine grains and intermetallics in the stir zone, and in addition, the reduced size of weaker regions, such as TMAZ and HAZ regions, results in higher tensile properties.

  14. Trade Friction of Sino-US Intellectual Property and Coping Strategies%中美贸易中知识产权摩擦及应对策略

    Institute of Scientific and Technical Information of China (English)

    贾显维

    2012-01-01

    In recent years, trade friction of Sino-US intellectual property is becoming the focus of Sino-US trade friction, which has become the biggest obstacle for China's enterprises exporting to the U.S. In this paper, the causes and characteristics of trade friction of Sino-US intellectual property were analyzed, and the coping strategies of trade friction of Sino-US intellectual property were put forward from two levels of government and business, combing with China's actual conditions.%近些来,中美知识产权贸易摩擦日渐成为中美贸易摩擦的焦点,已成为中国企业对美出口的最大障碍.本文对中美知识产权贸易摩擦的特点、原因进行了分析,结合我国的实际情况,从政府及企业两个层面提出了应对中美知识产权贸易摩擦的策略.

  15. Microstructure and Mechanical Properties of Friction Stir Welded Dissimilar Titanium Alloys: TIMET-54M and ATI-425

    Directory of Open Access Journals (Sweden)

    Kapil Gangwar

    2016-10-01

    Full Text Available Weight reduction in automobiles and in aerospace industries can profoundly register for the behemoth change in the consumption of the fossil fuels and, in turn, CO2 emission. With a promising hope in hindsight for weight reduction, we have successfully produced butt joints of friction stir welded (FSWed dissimilar, and rather novice, α-β titanium alloys—ATI-425 and TIMET-54M. The study presented in this article encompasses the microstructural and mechanical properties of the joints for two cases, (1 ATI-425 on the advancing side; and (2 TIMET-54M on the advancing side. The evolution of microstructure and concomitant mechanical properties are characterized by optical microscopy, microhardness, and tensile properties. A detailed description of the microstructural evolution and its correlation with the mechanical properties have been presented in this study. Our investigations suggest that mixing patterns are dependent on the location (advancing, or retreating of the alloying sheet. However, the microstructure in the weld nugget (WN is quite similar (grain boundary α, and basket weave morphology consisting of α + β lamellae in both cases with traces of untransformed β. The thermo-mechanically affected zone (TMAZ on the either side of the weld is primarily affected by the microstructure of the base material (BM. A noticeable increase in the hardness values in the WN is accompanied by significant deflection on the advancing and retreating sides. The tensile properties extracted from the global stress strain curves are comparable with minimal difference for both cases. In both cases, the fracture occurred on the retreating side of the weld.

  16. 水溶性减阻剂在页岩气滑溜水压裂中的应用进展%Recent Advances in Water-Soluble Friction Reducers for Slickwater Hydraulic Fracturing Used in Completion of Shale Gas

    Institute of Scientific and Technical Information of China (English)

    张文龙; 伊卓; 杜凯; 祝纶宇; 刘希; 林蔚然

    2015-01-01

    Slickwater hydraulic fracturing is widely used to improve the efficiency of shale gas exploitation in North America and it also has a broad application prospect in China. The friction reducers are water-soluble polymeric additives which are added to slickwater to reduce friction loss during pumping. In this paper,the mechanism of water-soluble polymeric drag reduction was summed up,and recent progresses in the research of friction reducers,including polysaccharides friction reducers,poly(ethylene oxide) friction reducers and polyacrylamide friction reducer,used in the completion of shale gas were reviewed. The environmentally friendly friction reducers with high drag reduce ability,low damage to shale reservoir and low cost would be the development direction in future.%滑溜水压裂是致密页岩气开采主要采用的增产手段,水溶性减阻剂是滑溜水压裂液中用于降低流体在管道输送过程中所受阻力的化学试剂。介绍了减阻剂的减阻机理,综述了水溶性减阻剂在页岩气滑溜水压裂领域应用的研究进展,包括生物基多糖减阻剂、聚氧化乙烯减阻剂和聚丙烯酰胺类减阻剂在页岩气压裂领域应用的研究现状。对水溶性减阻剂的应用前景进行了展望,减阻性能好、对储层伤害低、环境友好和成本较低廉的减阻剂是未来研究的重点。

  17. Quantification of patient migration in bed: catalyst to improve hospital bed design to reduce shear and friction forces and nurses' injuries.

    Science.gov (United States)

    Kotowski, Susan E; Davis, Kermit G; Wiggermann, Neal; Williamson, Rachel

    2013-02-01

    The study objective was to quantify the movement of hospital bed occupants relative to the bed in typical bed articulations. Movement of a patient in bed results in two common adverse events: (a) increase in shear and friction forces between the patient and bed, which are extrinsic pressure ulcer risk factors, and (b) musculoskeletal injuries to nurses, resulting from repositioning patients who have migrated down in bed. The study involved 12 participants who lay supine in three hospital beds, which were articulated to common positions. Body movement relative to the bed was quantified with the use of motion capture. Cumulative movement, net displacement, and torso compression (shoulder to trochanter distance) were calculated for different bed types and bed movements. Bed design and bed movement had a significant effect on most of the dependent variables. Bed design (e.g., type) influenced cumulative movement by up to 115%, net displacement by up to 70%, and torso compression by about 20%. Bed movement (e.g., knee elevation) reduced cumulative migration by up to 35%. The quantification of patient migration provides a metric for evaluating the interaction between body and bed surfaces. Overall, the measures were sensitive to design changes in bed frames, bed articulations, and mattress inflation. Documentation of the cumulative movement, net displacement, and torso compression provides hospital bed designers quantifiable measures for reducing migration and potentially shear and friction forces when designing bed frames, bed articulations, and mattresses. Optimization of these metrics may ultimately have an impact on patient and caregiver health.

  18. Reducing Local School Property Taxes: Recent Experiences in Michigan.

    Science.gov (United States)

    Kearney, C. Philip

    1995-01-01

    Examines Michigan's attempt to abolish the school property tax and implications for New York State policymakers. Michigan substantially reduced the local property tax for local school operations, adopted a permanent set of tax and revenue limits, and devised a problematic assessment cap. Totally eliminating the local school property tax may be…

  19. Effect of Plate Thickness on Tensile Property of Ti-6Al-4V Alloy Joint Friction Stir Welded Below β-Transus Temperature

    Science.gov (United States)

    Ji, Shude; Wang, Yue; Li, Zhengwei; Ma, Lin; Zhang, Liguo; Yue, Yumei

    2017-07-01

    Defect-free joint of Ti-6Al-4V alloy was successfully friction stir welded below β-transus temperature and then tensile tests were performed. Microstructure, macrostructure, tensile properties and fracture position are mainly discussed in order to investigate how surface indentation and plate thickness influence the tensile property. Weld zone (WZ) attained below β-transus temperature that owns better tensile strength limit than base metal (BM). During the tensile test, the elongation is decided by whether BM yields. Compared with friction stir welding joint using 2.5 mm thick plate, it is very difficult for joint using 2 mm thick plates to get bigger elongation due to surface indentation. Due to the higher tensile property of the WZ, the joint without surface indentation fractures at BM, reaching the 58.46 % elongation of BM.

  20. Effect of post weld heat treatment on tensile properties and microstructure characteristics of friction stir welded armour grade AA7075-T651 aluminium alloy

    Directory of Open Access Journals (Sweden)

    P. Sivaraj

    2014-03-01

    Full Text Available This paper reports the effects of post weld heat treatments, namely artificial ageing and solution treatment followed by artificial ageing, on microstructure and mechanical properties of 12 mm thick friction stir welded joints of precipitation hardenable high strength armour grade AA7075-T651 aluminium alloy. The tensile properties, such as yield strength, tensile strength, elongation and notch tensile strength, are evaluated and correlated with the microhardness and microstructural features. The scanning electron microscope is used to characterie the fracture surfaces. The solution treatment followed by ageing heat treatment cycle is found to be marginally beneficial in improving the tensile properties of friction stir welds of AA7075-T651 aluminium alloy.

  1. Effect of Welding Parameters on Microstructure, Thermal, and Mechanical Properties of Friction-Stir Welded Joints of AA7075-T6 Aluminum Alloy

    Science.gov (United States)

    Lotfi, Amir Hossein; Nourouzi, Salman

    2014-06-01

    A high-strength Al-Zn-Mg-Cu alloy AA7075-T6 was friction-stir welded with various process parameter combinations incorporating the design of the experiment to investigate the effect of welding parameters on the microstructure and mechanical properties. A three-factors, five-level central composition design (CCD) has been used to minimize the number of experimental conditions. The friction-stir welding parameters have significant influence on the heat input and temperature profile, which in turn regulates the microstructural and mechanical properties of the joints. The weld thermal cycles and transverse distribution of microhardness of the weld joints were measured, and the tensile properties were tested. The fracture surfaces of tensile specimens were observed by a scanning electron microscope (SEM), and the formation of friction-stir processing zone has been analyzed macroscopically. Also, an equation was derived to predict the final microhardness and tensile properties of the joints, and statistical tools are used to develop the relationships. The results show that the peak temperature during welding of all the joints was up to 713 K (440 °C), which indicates the key role of the tool shoulder diameter in deciding the maximum temperature. From this investigation, it was found that the joint fabricated at a rotational speed of 1050 rpm, welding speed of 100 mm/min, and shoulder diameter of 14 mm exhibited higher mechanical properties compared to the other fabricated joints.

  2. Friction and wear calculation methods

    CERN Document Server

    Kragelsky, I V; Kombalov, V S

    1981-01-01

    Friction and Wear: Calculation Methods provides an introduction to the main theories of a new branch of mechanics known as """"contact interaction of solids in relative motion."""" This branch is closely bound up with other sciences, especially physics and chemistry. The book analyzes the nature of friction and wear, and some theoretical relationships that link the characteristics of the processes and the properties of the contacting bodies essential for practical application of the theories in calculating friction forces and wear values. The effect of the environment on friction and wear is a

  3. Frictional properties of sediments entering the Costa Rica subduction zone offshore the Osa Peninsula: implications for fault slip in shallow subduction zones

    Science.gov (United States)

    Namiki, Yuka; Tsutsumi, Akito; Ujiie, Kohtaro; Kameda, Jun

    2014-12-01

    We examined the frictional properties of sediments on the Cocos plate offshore the Osa Peninsula, Costa Rica, and explored variations in the intrinsic frictional properties of the sediment inputs to the Costa Rica subduction zone. Sediment samples were collected at Site U1381A during the Integrated Ocean Drilling Program Expedition 334, and include hemipelagic clay to silty clay material (Unit I) and pelagic silicic to calcareous ooze (Unit II). The frictional properties of the samples were tested at a normal stress of 5 MPa under water-saturated conditions and with slip velocities ranging from 0.0028 to 2.8 mm/s for up to 340 mm of displacement. The experimental results reveal that the steady-state friction coefficient values of clay to silty clay samples are as low as ~0.2, whereas those of silicic to calcareous ooze samples are as high as 0.6 to 0.8. The clay to silty clay samples show a positive dependence of friction on velocity for all tested slip velocities. In contrast, the silicic to calcareous ooze samples show a negative dependence of friction on velocity at velocities of 0.0028 to 0.28 mm/s and either neutral or positive dependence at velocities higher than 0.28 mm/s. Given the low frictional coefficient values observed for the clay to silty clay samples of Unit I, the décollement at the Costa Rica Seismogenesis Project transect offshore the Osa Peninsula likely initiates in Unit I and is initially very weak. In addition, the velocity-strengthening behavior of the clay to silty clay suggests that faults in the very shallow portion of the Costa Rica subduction zone are stable and thus behave as creeping segments. In contrast, the velocity-weakening behavior of the silicic to calcareous ooze favors unstable slip along faults. The shallow seismicity occurred at a depth as shallow as ~9 km along the Costa Rica margin offshore the Osa Peninsula (Mw 6.4, June 2002), indicating that materials characterized by velocity-weakening behavior constitute the fault

  4. Friction in volcanic environments

    Science.gov (United States)

    Kendrick, Jackie E.; Lavallée, Yan

    2016-04-01

    Volcanic landscapes are amongst the most dynamic on Earth and, as such, are particularly susceptible to failure and frictional processes. In rocks, damage accumulation is frequently accompanied by the release of seismic energy, which has been shown to accelerate in the approach to failure on both a field and laboratory scale. The point at which failure occurs is highly dependent upon strain-rate, which also dictates the slip-zone properties that pertain beyond failure, in scenarios such as sector collapse and pyroclastic flows as well as the ascent of viscous magma. High-velocity rotary shear (HVR) experiments have provided new opportunities to overcome the grand challenge of understanding faulting processes during volcanic phenomena. Work on granular ash material demonstrates that at ambient temperatures, ash gouge behaves according to Byerlee's rule at low slip velocities, but is slip-weakening, becoming increasingly lubricating as slip ensues. In absence of ash along a slip plane, rock-rock friction induces cataclasis and heating which, if sufficient, may induce melting (producing pseudotachylyte) and importantly, vesiculation. The viscosity of the melt, so generated, controls the subsequent lubrication or resistance to slip along the fault plane thanks to non-Newtonian suspension rheology. The shear-thinning behaviour and viscoelasticity of frictional melts yield a tendency for extremely unstable slip, and occurrence of frictional melt fragmentation. This velocity-dependence acts as an important feedback mechanism on the slip plane, in addition to the bulk composition, mineralogy and glass content of the magma, that all influence frictional behaviour. During sector collapse events and in pyroclastic density currents it is the frictional properties of the rocks and ash that, in-part, control the run-out distance and associated risk. In addition, friction plays an important role in the eruption of viscous magmas: In the conduit, the rheology of magma is integral

  5. Friction behavior of 304 stainless steel of varying hardness lubricated with benzene and some benzyl structures

    Science.gov (United States)

    Buckley, D. H.

    1974-01-01

    The lubricating properties of some benzyl and benzene structures were determined by using 304 stainless steel surfaces strained to various hardness. Friction coefficients and wear track widths were measured with a Bowden-Leben type friction apparatus by using a pin-on-disk specimen configuration. Results obtained indicate that benzyl monosulfide, dibenzyl disulfide, and benzyl alcohol resulted in the lowest friction coefficients for 304 stainless steel, while benzyl ether provided the least surface protection and gave the highest friction. Strainhardening of the 304 stainless steel prior to sliding resulted in reduced friction in dry sliding. With benzyl monosulfide, dibenzyl disulfide, and benzyl alcohol changes in 304 stainless steel hardness had no effect upon friction behavior.

  6. Investigation on tribology behavior of lubricants using the coefficient of friction test method

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This test method is used to determine the property of lubricants by measure the pa-rameters such as the coefficient of friction, wear value and seizure load on the Four Ball Wear TestMachine. Experiments were conducted using ASTM D5183-95 Standard Test Method (StandardTest Method For Determination Of The Coefficient of Friction of Lubricants Using the Four BallWear Test Machine) to measure the friction reducing ability , antiwear property and ex-treme-pressure property of different type of lubricants, the additives are also been studied at thesame time. From the test result, this test method can distinguish not only the property of differenttype of lubricants rapidly, sensitively and effectively but also can reflect the friction reducingability , antiwear property and extreme-pressure property of various additive formula.

  7. Microstructure, Mechanical and Corrosion Properties of Friction Stir Welding High Nitrogen Martensitic Stainless Steel 30Cr15Mo1N

    Directory of Open Access Journals (Sweden)

    Xin Geng

    2016-11-01

    Full Text Available High nitrogen martensitic stainless steel 30Cr15Mo1N plates were successfully welded by friction stir welding (FSW at a tool rotation speed of 300 rpm with a welding speed of 100 mm/min, using W-Re tool. The sound joint with no significant nitrogen loss was successfully produced. Microstructure, mechanical and corrosion properties of an FSW joint were investigated. The results suggest that the grain size of the stir zone (SZ is larger than the base metal (BM and is much larger the case in SZ-top. Some carbides and nitrides rich in chromium were found in BM while not observed in SZ. The martensitic phase in SZ could transform to austenite phase during the FSW process and the higher peak temperature, the greater degree of transformation. The hardness of SZ is significantly lower than that of the BM. An abrupt change of hardness defined as hard zone (HZ was found in the thermo-mechanically affected zone (TMAZ on the advancing side (AS, and the HZ is attributed to a combination result of temperature, deformation, and material flow behavior. The corrosion resistance of SZ is superior to that of BM, which can be attributed to less precipitation and lower angle boundaries (LABs. The corrosion resistance of SZ-bottom is slight higher than that of SZ-top because of the finer grained structure.

  8. Microstructures and Mechanical Properties of Friction Tapered Stud Overlap Welding for X65 Pipeline Steel Under Wet Conditions

    Science.gov (United States)

    Xu, Y. C.; Jing, H. Y.; Han, Y. D.; Xu, L. Y.

    2017-08-01

    This paper exhibits a novel in situ remediation technique named friction tapered stud overlap welding (FTSOW) to repair a through crack in structures and components in extremely harsh environments. Furthermore, this paper presents variations in process data, including rotational speed, stud displacement, welding force, and torque for a typical FTSOW weld. In the present study, the effects of welding parameters on the microstructures and mechanical properties of the welding joints were investigated. Inapposite welding parameters consisted of low rotational speeds and welding forces, and when utilized, they increased the occurrence of a lack of bonding and unfilled defects within the weld. The microstructures with a welding zone and heat-affected zone mainly consisted of upper bainite. The hardness value was highest in the welding zone and lowest in the base material. During the pull-out tests, all the welds failed in the stud. Moreover, the defect-free welds broke at the interface of the lap plate and substrate during the cruciform uniaxial tensile test. The best tensile test results at different depths and shear tests were 721.6 MPa and 581.9 MPa, respectively. The favorable Charpy impact-absorbed energy was 68.64 J at 0 °C. The Charpy impact tests revealed a brittle fracture characteristic with a large area of cleavage.

  9. Microstructure and Mechanical Properties of a Dissimilar Friction Stir Weld between Austenitic Stainless Steel and Low Carbon Steel

    Institute of Scientific and Technical Information of China (English)

    M.Jafarzadegan; A.Abdollah-zadeh; A.H.Feng; T.Saeid; J.Shen; H.Assadi

    2013-01-01

    Dissimilar fusion welding of austenitic stainless steels to carbon steels has some metallurgical and technical problems.It was suggested that the solid-state nature of friction stir welding (FSW) can overcome these problems and produce a sound weld with reliable mechanical properties.In this study,plates of 304 stainless steel and st37 steel were welded together by FSW at tool rotational speed of 600 r/min and welding speed of 50 mm/min.In the stir zone (SZ) of 304 stainless steel,the results showed a refined grain structure with some features of metadynamic recrystallization.In the SZ of st37 steel,the hot deformation of material in the austenite region produced small austenite grains.These grains transformed to fine ferrite and pearlite by cooling the material after FSW.The production of fine grains increased the hardness and tensile strength in the SZ of both sides with respect to their base metals (BMs).

  10. Microstructural Characteristics and Mechanical Properties of Friction Stir Spot Welded 2A12-T4 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Huijie Liu

    2013-01-01

    Full Text Available 2A12-T4 aluminum alloy was friction stir spot welded, and the microstructural characteristics and mechanical properties of the joints were investigated. A softened microstructural region existed in the joint, and it consisted of stir zone (SZ, thermal mechanically affected zone (TMAZ, and heat affected zone (HAZ. The minimum hardness was located in TMAZ, and the average hardness value in SZ can be improved by appropriately increasing welding heat input. The area of complete bonding region at the interface increased with increasing welding heat input because more interface metals were mixed. In a certain range of FSSW parameters, the tensile shear failure load of the joint increased with increasing rotation speed, but it decreased with increasing plunge rate or decreasing shoulder plunging depth. Two kinds of failure modes, that is, shear fracture mode and tensile-shear mixed fracture mode, can be observed in the tensile shear tests, and the joint that failed in the tensile-shear mixed fracture mode possessed a high carrying capability.

  11. Effect of Friction Stir Processing on Microstructure and Mechanical Properties of AZ91C Magnesium Cast Alloy Weld Zone

    Science.gov (United States)

    Hassani, Behzad; Karimzadeh, Fathallah; Enayati, Mohammad Hossein; Sabooni, Soheil; Vallant, Rudolf

    2016-07-01

    In this study, friction stir processing (FSP) was applied to the GTAW (TIG)-welded AZ91C cast alloy to refine the microstructure and optimize the mechanical properties of the weld zone. Microstructural investigation of the samples was performed by optical microscopy and the phases in the microstructure were determined by x-ray diffraction (XRD). The microstructural evaluations showed that FSP destroys the coarse dendritic microstructure. Furthermore, it dissolves the secondary hard and brittle β-Mg17Al12 phase existing at grain boundaries of the TIG weld zone. The closure and decrease in amount of porosities along with the elimination of the cracks in the microstructure were observed. These changes were followed by a significant grain refinement to an average value of 11 µm. The results showed that the hardness values increased to the mean ones, respectively, for as-cast (63 Hv), TIG weld zone (67 Hv), and stir zone (79 Hv). The yield and ultimate strength were significantly enhanced after FSP. The fractography evaluations, by scanning electron microscopy (SEM), indicated to a transition from brittle to ductile fracture surface after applying FSP to the TIG weld zone.

  12. Microstructure and mechanical properties of similar and dissimilar joints of aluminium alloy and pure copper by friction stir welding

    Directory of Open Access Journals (Sweden)

    V.C. Sinha

    2016-09-01

    Full Text Available In the present study, the microstructure and mechanical properties of similar and dissimilar friction stir welded joints of aluminium alloy (AlA and pure copper (Cu were evaluated at variable tool rotational speeds from 150 to 900 rpm in steps of 150 rpm at 60 mm/min travel speed and constant tilt angle 2°. The interfacial microstructures of the joints were characterised by optical and scanning electron microscopy. The Al4Cu9, AlCu, Al2Cu and Al2Cu3 intermetallic compounds have been observed at the interface and stir zone region of dissimilar Al/Cu FSWed joints. Variation in the grain size was observed in the stir zone depending upon the heat input value. Axial force, traverse force and torque value were analysed with variation in tool rotational speed. Residual stresses were measured at the stir zone by X-ray diffraction technique. Maximum ultimate tensile strength of ∼75% of AlA strength for AlA–AlA joints has been obtained at 750 rpm and for Cu–Cu joint tensile strength of ∼100% of tensile strength of Cu was obtained at 300 rpm. However, for Cu–AlA joint when processed at 600 rpm tool rotational speed achieved maximum ultimate tensile strength of ∼77% of AlA.

  13. Effect of Intermetallic Compound Phases on the Mechanical Properties of the Dissimilar Al/Cu Friction Stir Welded Joints

    Science.gov (United States)

    Khodir, S. A.; Ahmed, M. M. Z.; Ahmed, Essam; Mohamed, Shaymaa M. R.; Abdel-Aleem, H.

    2016-11-01

    Types and distribution of intermetallic compound phases and their effects on the mechanical properties of dissimilar Al/Cu friction stir welded joints were investigated. Three different rotation speeds of 1000, 1200 and 1400 rpm were used with two welding speeds of 20 and 50 mm/min. The results show that the microstructures inside the stir zone were greatly affected by the rotation speed. Complex layered structures that containing intermetallic compound phases such as CuAl2, Al4Cu9 were formed in the stir zone. Their amount found to be increased with increasing rotation speed. However, the increasing of the rotation speed slightly lowered the hardness of the stir zone. Many sharp hardness peaks in the stir zones were found as a result of the intermetallic compounds formed, and the highest peaks of 420 Hv were observed at a rotation speed of 1400 rpm. The joints ultimate tensile strength reached a maximum value of 105 MPa at the rotation speed of 1200 rpm and travel speed of 20 mm/min with the joint efficiency ranged between 88 and 96% of the aluminum base metal. At the travel speed of 50 mm/min, the maximum value of the ultimate tensile strength was 96 MPa at rotation speed of 1400 rpm with the joint efficiency ranged between 79 and 90%. The fracture surfaces of tensile test specimens showed no evidence for the effect of the brittle intermetallic compounds in the stir zones on the tensile strength of the joints.

  14. Site-Dependent Tension Properties of Inertia Friction-Welded Joints Made From Dissimilar Ni-based Superalloys

    Science.gov (United States)

    Senkov, O. N.; Mahaffey, D. W.; Semiatin, S. L.; Woodward, C.

    2015-03-01

    Microstructure, tensile properties, and fracture behavior of the inertia friction weld joints of dissimilar superalloys, cast Mar-M247 and wrought LSHR, were studied to assess the weld quality. Tensile tests were conducted at 23 and 704 °C on the samples containing different areas of the weld interface of the same welded material. The stress-strain curves were registered at different axial distances from the weld interface. In all tested samples, plastic deformation was localized on Mar-M247 side, outside the heat-affected zone (HAZ), and the resistance to plastic deformation of Mar-M247 increased with a decrease in the distance from the weld interface inside HAZ. Only elastic deformation occurred on the LSHR side. Fracture occurred on the Mar-M247 side, outside HAZ, or at the weld interface. In the latter case, welding defects in the form of clusters of nanometer-sized oxide and carbide particles were observed at the fracture surfaces. These results revealed that the IFW process is capable of producing the weld joints between Mar-M247 and LSHR with the fracture strength higher than that of Mar-M247. However, optimization of the IFW processing parameters is required to minimize clustering of oxide/carbide particles at the weld interface in this alloy pair.

  15. PAMPS-PAAM凝胶的启动摩擦学性能%Start-up friction properties of PAMPS-PAAM hydrogel

    Institute of Scientific and Technical Information of China (English)

    鲍磊; 张有忱

    2013-01-01

    目的 PAMPS-PAAM凝胶是应用前景较好的关节软骨替代物.前期试验表明,其压缩强度已达到关节软骨的平均压缩强度,但对其摩擦学性能的研究还较少.方法 本文选用2-丙烯酰胺-2-甲基丙磺酸(2-acrylamide-2-methylpro panesulfonic acid,AMPS)凝胶和丙烯酰胺(acrylamide,AAM)溶液制备PAMPS-PAAM互穿网络凝胶,在自制销-盘式摩擦试验机上通过PAMPS-PAAM凝胶与不锈钢试样的对磨,测试加载时间和滑行速率对材料的启动摩擦因数的影响.结果 影响PAMPS-PAAM互穿网络凝胶的启动摩擦因数的主要因素为加载时间,加载时间越长,启动摩擦因数越大.加载时间在15 min以内,启动摩擦因数随加载时间的增长急剧变化,加载时间超过15 min,启动摩擦因数的变化趋势变缓.滑行速率的变化与启动摩擦因数的大小无明显关联,且在不同的滑行速率下,启动摩擦因数的数值相差不大.结论 PAMPS-PAAM凝胶具有与软骨相近的启动摩擦性能.%Objective PAMPS-PAAM hydrogel is a substitute of articular cartilage with a good prospect of application.The compression strength of hydrogel reaches the average compression strength of articular cartilage in the former test.However,the research on the friction properties of hydrogel is in need.Methods This article adopts PAMPS-PAAM interpenetrating polymer network hydrogel which is made by AMPS hydrogel and AAM solution to launch the friction between PAMPS-PAAM hydrogel and stainless steel model with a home-made pin-plate testing machine.In the tests,the influence of loading duration and sliding velocity on the start-up friction properties are measured.Results The major factor that can influence the start-up friction coefficient of PAMPS-PAAM hydrogel is loading duration.The longer the loading duration is,the larger the start-up friction coefficient is.When the loading duration is within 15 mins,the start-up friction coefficient changes rapidly versus loading

  16. Friction welding of a nickel free high nitrogen steel: influence of forge force on microstructure, mechanical properties and pitting corrosion resistance

    Directory of Open Access Journals (Sweden)

    Mrityunjoy Hazra

    2014-01-01

    Full Text Available In the present work, nickel free high nitrogen austenitic stainless steel specimens were joined by continuous drive friction welding process by varying the amount of forge (upsetting force and keeping other friction welding parameters such as friction force, burn-off, upset time and speed of rotation as constant at appropriate levels. The joint characterization studies include microstructural examination and evaluation of mechanical (micro-hardness, impact toughness and tensile and pitting corrosion behaviour. The integrity of the joint, as determined by the optical microscopy was very high and no crack and area of incomplete bonding were observed. Welds exhibited poor Charpy impact toughness than the parent material. Toughness for friction weld specimens decreased with increase in forge force. The tensile properties of all the welds were almost the same (irrespective of the value of the applied forge force and inferior to those of the parent material. The joints failed in the weld region for all the weld specimens. Weldments exhibited lower pitting corrosion resistance than the parent material and the corrosion resistance of the weld specimens was found to decrease with increase in forge force.

  17. 石墨对风电机组用铜基摩擦材料组织及摩擦磨损性能的影响*%Effect of Graphite on the Microstructure and Tribological Properties of Copper Matrix Friction Material Used in Wind Turbine

    Institute of Scientific and Technical Information of China (English)

    魏敬丹; 陈华; 刘晓春

    2013-01-01

    A kind of copper matrix friction material used for wind turbine was prepared by powder metallurgy technolo-gy.The effect of graphite content and particle size on the microstructures and the properties of friction and wear of the ma-terials were investigated by SEM and friction wear testing machine.The results indicate that the graphite is uniformly dis-tributed by strip in the vertical direction of pressing pressure in the microstructure of material.The graphite has a good effect on reducing the friction coefficient and the lubricating film of graphite formed on the friction surface reduces the ma-terial wear during the friction.When the graphite particle size is 300~600 μm and the weight content is 15%,the sample has good friction and wear performance.%采用粉末冶金技术制备风电机组用铜基摩擦材料,借助扫描电镜及摩擦磨损试验机研究石墨的含量和石墨片尺寸对铜基摩擦材料组织和摩擦磨损性能的影响。结果表明:烧结组织中石墨呈条状且在垂直于压制压力的方向均匀分布;石墨可降低摩擦材料的摩擦因数,而摩擦表面形成的石墨润滑膜降低了材料的磨损;石墨片为300~600μm、石墨质量分数为15%的铜基粉末摩擦材料具有最佳的摩擦磨损性能。

  18. Fatigue crack growth prediction in 2xxx AA with friction stir weld HAZ properties

    Directory of Open Access Journals (Sweden)

    A. Tzamtzis

    2016-02-01

    Full Text Available An analytical model is developed to predict fatigue crack propagation rate under mode I loading in 2024 aluminum alloy with FSW HAZ material characteristics. Simulation of the HAZ local properties in parent 2024 AA was performed with overaging using specific heat treatment conditions. The model considers local cyclic hardening behavior in the HAZ to analyze crack growth. For the evaluation of the model, the analytical results have been compared with experimental fatigue crack growth on overaged 2024 alloy simulating material behavior at different positions within the HAZ. The analytical results showed that cyclic hardening at the crack tip can be used successfully with the model to predict FCG in a material at overaged condition associated with a location in the FSW HAZ.

  19. A Factorial Design to Numerically Study the Effects of Brake Pad Properties on Friction and Wear Emissions

    Directory of Open Access Journals (Sweden)

    Jens Wahlström

    2016-01-01

    Full Text Available Airborne particulate emissions originating from the wear of pads and rotors of disc brakes contribute up to 50% of the total road emissions in Europe. The wear process that takes place on a mesoscopic length scale in the contact interfaces between the pads and rotors can be explained by the creation and destruction of contact plateaus. Due to this complex contact situation, it is hard to predict how changes in the wear and material parameters of the pad friction material will affect the friction and wear emissions. This paper reports on an investigation of the effect of different parameters of the pad friction material on the coefficient of friction and wear emissions. A full factorial design is developed using a simplified version of a previously developed cellular automaton approach to investigate the effect of four factors on the coefficient of friction and wear emission. The simulated result indicates that a stable third body, a high specific wear, and a relatively high amount of metal fibres yield a high and stable mean coefficient of friction, while a stable third body, a low specific wear, a stable resin, and a relatively high amount of metal fibres give low wear emissions.

  20. Interfacial Friction and Adhesion of Polymer Brushes

    KAUST Repository

    Landherr, Lucas J. T.

    2011-08-02

    A bead-probe lateral force microscopy (LFM) technique is used to characterize the interfacial friction and adhesion properties of polymer brushes. Our measurements attempt to relate the physical structure and chemical characteristics of the brush to their properties as thin-film, tethered lubricants. Brushes are synthesized at several chain lengths and surface coverages from polymer chains of polydimethylsiloxane (PDMS), polystyrene (PS), and a poly(propylene glycol)-poly(ethylene glycol) block copolymer (PPG/PEG). At high surface coverage, PDMS brushes manifest friction coefficients (COFs) that are among the lowest recorded for a dry lubricant film (μ ≈ 0.0024) and close to 1 order of magnitude lower than the COF of a bare silicon surface. Brushes synthesized from higher molar mass chains exhibit higher friction forces than those created using lower molar mass polymers. Increased grafting density of chains in the brush significantly reduces the COF by creating a uniform surface of stretched chains with a decreased surface viscosity. Brushes with lower surface tension and interfacial shear stresses manifest the lowest COF. In particular, PDMS chains exhibit COFs lower than PS by a factor of 3.7 and lower than PPG/PEG by a factor of 4.7. A scaling analysis conducted on the surface coverage (δ) in relation to the fraction (ε) of the friction force developing from adhesion predicts a universal relation ε ∼ δ4/3, which is supported by our experimental data. © 2011 American Chemical Society.

  1. An Evaluation of Global and Local Tensile Properties of Friction-Stir Welded DP980 Dual-Phase Steel Joints Using a Digital Image Correlation Method

    Directory of Open Access Journals (Sweden)

    Hyoungwook Lee

    2015-12-01

    Full Text Available The effect of the microstructure heterogeneity on the tensile plastic deformation characteristic of friction-stir-welded (FSW dual-phase (DP steel was investigated for the potential applications on the lightweight design of vehicles. Friction-stir-welded specimens with a butt joint configuration were prepared, and quasi-static tensile tests were conducted, to evaluate the tensile properties of DP980 dual-phase steels. The friction-stir welding led to the formation of martensite and a significant hardness rise in the stir zone (SZ, but the presence of a soft zone in the heat-affected zone (HAZ was caused by tempering of the pre-existing martensite. Owing to the appearance of severe soft zone, DP980 FSW joint showed almost 93% joint efficiency with the view-point of ultimate tensile strength and relatively low ductility than the base metal (BM. The local tensile deformation characteristic of the FSW joints was also examined using the digital image correlation (DIC methodology by mapping the global and local strain distribution, and was subsequently analyzed by mechanics calculation. It is found that the tensile deformation of the FSW joints is highly heterogeneous, leading to a significant decrease in global ductility. The HAZ of the joints is the weakest region where the strain localizes early, and this localization extends until fracture with a strain near 30%, while the strain in the SZ and BM is only 1% and 4%, respectively. Local constitutive properties in different heterogeneous regions through the friction-stir-welded joint was also briefly evaluated by assuming iso-stress conditions. The local stress-strain curves of individual weld zones provide a clear indication of the heterogeneity of the local mechanical properties.

  2. Epoxide composites with thermally reduced graphite oxide and their properties

    Science.gov (United States)

    Arbuzov, A. A.; Muradyan, V. E.; Tarasov, B. P.; Sokolov, E. A.; Babenko, S. D.

    2016-05-01

    The properties of epoxide composites modified by thermal reduced graphite oxide are studied. The dielectric permittivities of epoxide composites with additives of up to 1.5 wt % of reduced graphite oxide are studied at a frequency of 9.8 GHz. It is shown that despite its low electrical conductivity, the large specific surface area of reduced graphite oxide allows us to create epoxide composites with high complex dielectric permittivities and dielectric loss tangents.

  3. The Effect of Cu Powder During Friction Stir Welding on Microstructure and Mechanical Properties of AA3003-H18

    Science.gov (United States)

    Abnar, B.; Kazeminezhad, M.; Kokabi, A. H.

    2014-08-01

    Friction stir welding (FSW) was used to join 3003-H18 non-heat-treatable aluminum alloy plates by adding copper powder. The copper powder was first added to the gap (0.1 and 0.2 mm) between two plates and then the FSW was performed. The specimens were joined at various rotational speeds of 800, 1000, and 1200 rpm at traveling speeds of 70 and 100 mm/min. The effects of rotational speed, second pass of FSW, and direction of second pass also were studied on copper particle distribution and formation of Al-Cu intermetallic compounds in the stir zone. The second pass of FSW was carried out in two ways; in line with the first pass direction (2F) and in the reverse direction of the first pass (FB). The microstructure, mechanical properties, and formation of intermetallic compounds type were investigated. In high copper powder compaction into the gap, large clusters were formed in the stir zone, while fine clusters and sound copper particles distribution were obtained in low powder compaction. The copper particle distribution and amount of Al-Cu intermetallic compounds were increased in the stir zone with increasing the rotational speed and applying the second pass. Al2Cu and AlCu intermetallic phases were formed in the stir zone and consequently the hardness was significantly increased. The copper particles and in situ intermetallic compounds were symmetrically distributed in both advancing and retreating sides of weld zone after FB passes. Thus, the wider area was reinforced by the intermetallic compounds. Also, the tensile test specimens tend to fracture from the coarse copper aggregation at the low rotational speeds. At high rotational speeds, the fracture locations are placed in HAZ and TMAZ.

  4. Fundamental study of the effect of high-salinity brines on the friction and wear properties of stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Pearsall, K.J.; Govin, G.; Eliezer, Z.; Bebout, D.G.; Bachman, A.L. (eds.)

    1981-01-01

    Friction and corrosive wear experiments were performed in a geothermal-geopressured brine and in a 3% NaCl solution in a friction and wear electrolytic cell. The formation of a passive film on 304 stainless steel has a beneficial effect on the magnitude of the coefficient of friction. When pits are electrochemically introduced in the passive film, the friction coefficient becomes even lower than the passive coefficient of friction in the 3% NaCl, but does not significantly change for the brine. The effect of corrosive wear on the surface film is more difficult to assess. Auger spectroscopy was performed on wear surfaces (subjected to both electrochemical and mechanical action) and non-wear surfaces (subjected only to electrochemical action). The surface films formed in 3% NaCl in the non-wear and wear areas including pits consisted of Cr, Fe and Ni in ratios consistent to the bulk material plus 0. In brine the surface film consists of the same elements as above; however, the surface film associated with the non-wear area and the wear area pit show a Cr depletion. Yet, the wear area film is consistent with bulk as in the case of the 3% NaCl.

  5. Tribological Properties of AlSi17Cu5Mg Alloy Modified with CuP Master Alloy with Various Speeds of Friction

    OpenAIRE

    Piątkowski J.; Wieszała R.

    2016-01-01

    The paper presents the influence of modification with phosphorus (CuP10) on the tribological properties of the alloy AlSi17Cu5Mg coupled abrasively with cast-iron EN GJL-350. Tests of coefficient of friction and wear of mass were conducted on tribological tester T-01. An important aspect in the assessment of the tribological properties is the analysis of initial material microstructure in reference to silumin which underwent modification with phosphorus. It was found that the difference in st...

  6. SURFACE DYNAMIC FRICTION OF POLYMER GELS

    Institute of Scientific and Technical Information of China (English)

    J.P.Gong; G.Kagata; Y.Iwasaki; Y.Osada

    2000-01-01

    The sliding friction of various kinds of hydrogels has been studied and it was found that the frictional behaviors of the hydrogels do not conform to Amonton's law F =μW which well describes the friction of solids. The frictional force and its dependence on the load are quite different depending on the chemical structures of the gels, surface properties of the opposing substrates, and the measurement condition. The gel friction is explained in terms of interfacial interaction, either attractive or repulsive, between the polymer chain and the solid surface. According to this model, the friction is ascribed to the viscous flow of solvent at the interface in the repulsive case. In the attractive case, the force to detach the adsorbing chain from the substrate appears as friction. The surface adhesion between glass particles and gels measured by AFM showed a good correlation with the friction, which supported the repulsion-adsorption model proposed by the authors.

  7. Friction in surface micromachined microengines

    Energy Technology Data Exchange (ETDEWEB)

    Miller, S.L.; Sniegowski, J.J.; LaVigne, G.; McWhorter, P.J.

    1996-03-01

    Understanding the frictional properties of advanced Micro-Electro- Mechanical Systems (MEMS) is essential in order to develop optimized designs and fabrication processes, as well as to qualify devices for commercial applications. We develop and demonstrate a method to experimentally measure the forces associated with sliding friction of devices rotating on a hub. The method is demonstrated on the rotating output gear of the microengine recently developed at Sandia National Laboratories. In-situ measurements of an engine running at 18300 rpm give a coefficient of friction of 0.5 for radial (normal) forces less than 4 {mu}N. For larger forces the effective coefficient of friction abruptly increases, suggesting a fundamental change in the basic nature of the interaction between the gear and hub. The experimental approach we have developed to measure the frictional forces associated with the microengine is generically applicable to other MEMS devices.

  8. Influence of Friction Stir Welding (FSW) on Mechanical and Corrosion Properties of AW-7020M and Aw-7020 Alloys

    OpenAIRE

    Dudzik Krzysztof; Jurczak Wojciech

    2016-01-01

    Friction welding associated with mixing the weld material (FSW - Friction Stir Welding ) is an alternative to MIG and TIG welding techniques for Al-alloys. This paper presents experimental results obtained from static tension tests on specimens made of AW-7020M and AW-7020 alloys and their joints welded by using FSW method carried out on flat specimens, according to Polish standards : PN-EN ISO 4136:2011 and PN-EN ISO 6892-1:2010. Results of corrosion resistance tests are also presented. The ...

  9. Prediction of grain size and mechanical properties in friction stir welded pure copper joints using a thermal model

    DEFF Research Database (Denmark)

    Heidarzadeh, A.; Jabbaribehnam, Mirmasoud; Esmaily, M.

    2015-01-01

    In this study, a thermal model was developed and applied to simulate the friction stir welding of pure copper plates with the thickness of 2 mm. The different traverse speeds of 100, 200, 300, and 400 mm min−1 and rotational speeds of 400, 700, 900 rev min−1 were considered as welding parameters....

  10. Pall摩擦耗能减震器减震性能研究%The shock absorption properties of Pall frictional energy dissipation shock absorber

    Institute of Scientific and Technical Information of China (English)

    孙志松

    2009-01-01

    Against to the fast developing status of structural shock absorption technology, the applied situation of Pall frictional energy dissipa-tion shock absorber was introduced. The basic constitution and shack absorption properties of Pall frictional energy dissipation shock absorber were analyzed, the result indicated that it can dissipate large amount seismic energy and had better shock absorption effect with energy dissipa-tion supporting of Pall frictional shock absorption device as protective structure.%针对结构减震技术迅速发展的现状,介绍了Pall摩擦耗能减震器的应用情况,就Pall摩擦耗能减震器的基本构造及减震性能进行了分析,结果表明:采用安装Pall摩擦减震装置的耗能支撑来保护结构,可耗散大量地震能量,减震效果好.

  11. Fabrication of Al/Graphite/Al2O3 Surface Hybrid Nano Composite by Friction Stir Processing and Investigating The Wear and Microstructural Properties of The Composite

    Directory of Open Access Journals (Sweden)

    A. Mostafapour

    2012-10-01

    Full Text Available Friction stir processing was applied for fabricating an aluminum alloy based hybrid nano composite reinforced with nano sized Al2O3 and micro sized graphite particles. A mixture of Al2O3 and graphite particles was packed into a groove with 1 mm width and 4.5 mm depth, which had been cut in 5083 aluminum plate of 10 mm thick. Packed groove was subjected to friction stir processing in order to implement powder mixture into the aluminum alloy matrix. Microstructural properties were investigated by means of optical microscopy and scanning electron microscopy (SEM. It was found that reinforcement particle mixture was distributed uniformly in nugget zone. Wear resistance of composite was measured by dry sliding wear test. As a result, hybrid composite revealed significant reduction in wear rate in comparison with Al/AL2O3 composite produced by friction stir processing. Worn surface of the wear test samples were examined by SEM in order to determine wear mechanism.

  12. Effect of heat treatment and number of passes on the microstructure and mechanical properties of friction stir processed AZ91C magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Dadashpour, M.; Yeşildal, R. [University of Ataturk, Erzurum (Turkmenistan); Mostafapour, A.; Rezazade, V. [University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2016-02-15

    In this paper, the effect of heat treatment and number of passes on microstructure and mechanical properties of friction stir processed AZ91C magnesium alloy samples were investigated. From six samples of as-cast AZ91C magnesium alloy, three plates were pre-heated at temperature of 375°C for 3 hours, and then were treated at temperature of 415°C for 18 hours and finally were cooled down in air. Three plates were relinquished without heat treatment. 8 mm thick as-cast AZ91C magnesium alloy plates were friction stir processed at constant traverse speed of 40 mm/min and tool rotation speed of 1250 rpm. After process, microstructural characterization of samples was analyzed using optical microscopy and tensile and Vickers hardness tests were performed. It was found that heat treated samples had finer grains, higher hardness, improved tensile strength and elongation relative to non-heat treated ones. As the number of passes increased, higher UTS and TE were achieved due to finer grains and more dissolution of β phase (Mg17Al12). The micro-hardness characteristics and tensile improvement of the friction stir processed samples depend significantly on grain size, removal of voids and porosities and dissolution of β phase in the stir zone.

  13. Model development for mechanical properties and weld quality class of friction stir welding using multi-objective Taguchi method and response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Mohamed Ackiel [University Kuala Lumpur Malaysia France Institute, Bandar Baru Bangi (Malaysia); Manurung, Yupiter HP; Berhan, Mohamed Nor [Universiti Teknologi MARA, Shah Alam (Malaysia)

    2015-06-15

    This study presents the effect of the governing parameters in friction stir welding (FSW) on the mechanical properties and weld quality of a 6mm thick 6061 T651 Aluminum alloy butt joint. The main FSW parameters, the rotational and traverse speed were optimized based on multiple mechanical properties and quality features, which focus on the tensile strength, hardness and the weld quality class using the multi-objective Taguchi method (MTM). Multi signal to noise ratio (MSNR) was employed to determine the optimum welding parameters for MTM while further analysis concerning the significant level determination was accomplished via the well-established analysis of variance (ANOVA). Furthermore, the first order model for predicting the mechanical properties and weld quality class is derived by applying response surface methodology (RSM). Based on the experimental confirmation test, the proposed method can effectively estimate the mechanical properties and weld quality class which can be used to enhance the welding performance in FSW or other applications.

  14. Influence of Al2O3 particles on the microstructure and mechanical properties of copper surface composites fabricated by friction stir processing

    Directory of Open Access Journals (Sweden)

    L. Suvarna Raju

    2014-12-01

    Full Text Available The influence of three factors, such as volume percentage of reinforcement particles (i.e. Al2O3, tool tilt angle and concave angle of shoulder, on the mechanical properties of Cu–Al2O3 surface composites fabricated via friction stir processing was studied. Taguchi method was used to optimize these factors for maximizing the mechanical properties of surface composites. The fabricated surface composites were examined by optical microscope for dispersion of reinforcement particles. It was found that Al2O3 particles are uniformly dispersed in the stir zone. The tensile properties of the surface composites increased with the increase in the volume percentage of the Al2O3 reinforcement particles. This is due to the addition of the reinforcement particles which increases the temperature of recrystallization by pinning the grain boundaries of the copper matrix and blocking the movement of the dislocations. The observed mechanical properties are correlated with microstructure and fracture features.

  15. Influence of Al2O3 particles on the microstructure and mechanical properties of copper surface composites fabricated by friction stir processing

    Institute of Scientific and Technical Information of China (English)

    L.SUVARNA RAJU; A.KUMAR

    2014-01-01

    The influence of three factors, such as volume percentage of reinforcement particles (i.e. Al2O3), tool tilt angle and concave angle of shoulder, on the mechanical properties of CueAl2O3 surface composites fabricated via friction stir processing was studied. Taguchi method was used to optimize these factors for maximizing the mechanical properties of surface composites. The fabricated surface composites were examined by optical microscope for dispersion of reinforcement particles. It was found that Al2O3 particles are uniformly dispersed in the stir zone. The tensile properties of the surface composites increased with the increase in the volume percentage of the Al2O3 reinforcement particles. This is due to the addition of the reinforcement particles which increases the temperature of recrystallization by pinning the grain boundaries of the copper matrix and blocking the movement of the dislocations. The observed mechanical properties are correlated with microstructure and fracture features.

  16. Adhesion and friction properties of GeSbTe phase change films prepared by magnetron sputtering%磁控溅射GeSbTe相变薄膜黏附与摩擦特性

    Institute of Scientific and Technical Information of China (English)

    付永忠; 程广贵; 王权

    2012-01-01

    室温下通过调整磁控溅射时间制备了不同厚度的GeSbTe薄膜.利用原子力显微镜和台阶仪观察薄膜的表面形貌,测量薄膜厚度,并借助TriboIndenter纳米力学测试系统,分析探讨了薄膜的黏附和摩擦特性.研究结果表明:随着溅射时间的增加,薄膜表面粗糙度减小,厚度增加,同时表面质量提高;探针直径、相对湿度、薄膜表面质量以及探针载荷等因素对薄膜的黏附和摩擦特性均有重要影响;在满足存储要求的前提下,通过减小探针直径、降低相对湿度能够有效降低黏附力和摩擦力;而提高薄膜表面质量,为探针施加合适的载荷,有助于改善探针与薄膜表面之间的摩擦特性.%The GeSbTe films were prepared with different RF magnetron sputtering time at room temperature. The surface topography, thickness, adhesion and friction properties of films were investigated by a-tomic force microscopy (AFM) , Talystep and Tribolndenter nanomechanical test system. The results show that the surface roughness decreases with the increasing of sputtering time, while the thickness and quality increase. The tip diameter(TD) , relative humidity(RH) ,normal load(NL) applied the tip are important factors on adhesion and friction properties of films. The adhesion and friction between the tip and GeSbTe films can be reduced obviously by the decreasing of TD and RH. The frictional performance can be improved by enhancing surface quality and choosing appropriate NL on the tip.

  17. Tactile friction of topical formulations.

    Science.gov (United States)

    Skedung, L; Buraczewska-Norin, I; Dawood, N; Rutland, M W; Ringstad, L

    2016-02-01

    The tactile perception is essential for all types of topical formulations (cosmetic, pharmaceutical, medical device) and the possibility to predict the sensorial response by using instrumental methods instead of sensory testing would save time and cost at an early stage product development. Here, we report on an instrumental evaluation method using tactile friction measurements to estimate perceptual attributes of topical formulations. Friction was measured between an index finger and an artificial skin substrate after application of formulations using a force sensor. Both model formulations of liquid crystalline phase structures with significantly different tactile properties, as well as commercial pharmaceutical moisturizing creams being more tactile-similar, were investigated. Friction coefficients were calculated as the ratio of the friction force to the applied load. The structures of the model formulations and phase transitions as a result of water evaporation were identified using optical microscopy. The friction device could distinguish friction coefficients between the phase structures, as well as the commercial creams after spreading and absorption into the substrate. In addition, phase transitions resulting in alterations in the feel of the formulations could be detected. A correlation was established between skin hydration and friction coefficient, where hydrated skin gave rise to higher friction. Also a link between skin smoothening and finger friction was established for the commercial moisturizing creams, although further investigations are needed to analyse this and correlations with other sensorial attributes in more detail. The present investigation shows that tactile friction measurements have potential as an alternative or complement in the evaluation of perception of topical formulations. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Investigation of the Effect of Friction Stir Spot Welding of BH Galvanized Steel Plates on Process Parameters and Weld Mechanical Properties

    Directory of Open Access Journals (Sweden)

    H. Sheikhhasani

    2016-10-01

    Full Text Available This study evaluates the effect of Friction Stir Spot Welding (FSSW pin shape on overlapping galvanized BH plates. FSSW is done at 4, 6 and 9 seconds dwell time at two rotational speeds (1500 and 1800 rpm by tools with 10 and 14 mm shoulder diameter. Microstructural properties (OM and SEM, Vickers micro hardness and tension are tested on the welded spots. By increasing shoulder diameter from 10 to 14 mm to joint two plates, microstructural grain size decreases by 23% in SZ and 15% in TMAZ. Maximum fracture increases as shoulder diameter increases to 32%.

  19. Peak mass and dynamical friction

    CERN Document Server

    Del Popolo, A

    1995-01-01

    We show how the results given by several authors relatively to the mass of a density peak are changed when small scale substructure induced by dynamical friction are taken into account. The peak mass obtained is compared to the result of Peacock \\& Heavens (1990) and to the peak mass when dynamical friction is absent to show how these effects conspire to reduce the mass accreted by the peak.

  20. Physically representative atomistic modeling of atomic-scale friction

    Science.gov (United States)

    Dong, Yalin

    Nanotribology is a research field to study friction, adhesion, wear and lubrication occurred between two sliding interfaces at nano scale. This study is motivated by the demanding need of miniaturization mechanical components in Micro Electro Mechanical Systems (MEMS), improvement of durability in magnetic storage system, and other industrial applications. Overcoming tribological failure and finding ways to control friction at small scale have become keys to commercialize MEMS with sliding components as well as to stimulate the technological innovation associated with the development of MEMS. In addition to the industrial applications, such research is also scientifically fascinating because it opens a door to understand macroscopic friction from the most bottom atomic level, and therefore serves as a bridge between science and engineering. This thesis focuses on solid/solid atomic friction and its associated energy dissipation through theoretical analysis, atomistic simulation, transition state theory, and close collaboration with experimentalists. Reduced-order models have many advantages for its simplification and capacity to simulating long-time event. We will apply Prandtl-Tomlinson models and their extensions to interpret dry atomic-scale friction. We begin with the fundamental equations and build on them step-by-step from the simple quasistatic one-spring, one-mass model for predicting transitions between friction regimes to the two-dimensional and multi-atom models for describing the effect of contact area. Theoretical analysis, numerical implementation, and predicted physical phenomena are all discussed. In the process, we demonstrate the significant potential for this approach to yield new fundamental understanding of atomic-scale friction. Atomistic modeling can never be overemphasized in the investigation of atomic friction, in which each single atom could play a significant role, but is hard to be captured experimentally. In atomic friction, the

  1. Analysis of Anti-Wear Properties of CuO Nanoparticles as Friction Modifiers in Mineral Oil (460cSt Viscosity Using Pin-On-Disk Tribometer

    Directory of Open Access Journals (Sweden)

    S. Bhaumik

    2015-06-01

    Full Text Available The present work investigated the anti-wear properties of CuO nanoparticles based mineral oil using pin-on-disk apparatus. The pin material selected was EN 24(untreated as it is used in gear manufacturing. Commonly used graphite macro particles (wt.% and CuO nanoparticles(wt.% were used as additives. It had been observed that the additives based mineral oil samples exhibited superior antiwear properties than pure mineral oil. Both CuO nanoparticles (0.2 wt.% and graphite (0.2 wt.% based lubricant showed significant decrease in coefficient of friction and specific wear rate. There was a reduction in both coefficient of friction (28.5 % approx. and specific wear rate (70 % approx. in case of CuO nanolubricants and graphite based mineral oil as compared with the pure mineral oil.Flash-fire point, viscosity and viscosity index also increased with the increase in additive concentration. The surface characteristics of the pin were studied using Scanning Electron Microscope (SEM and surface roughness tester. The SEM images showed more rough surfaces in case of pure mineral oil samples as compared with graphite and CuO nanoparticles based samples. The surface roughness values of the pins in case of graphite (0.2 wt.% and CuO nano particles (0.2 wt.% based lubricant were much lesser than pure mineral oil. From the results predicted minimum 0.2 wt.% CuO nanoparticles were required to enhance the antiwear property of the lubricant. This work aimed in bringing a comparative experimental analysis using CuO nanoparticles and commonly used graphite macro particles as lubricant additives on various properties such as viscosity, flash point, fire point, surface roughness and anti-wear properties. Thus, the work would be useful in developing new nano lubricants with minimum additive concentration.

  2. Polymeric composite and lubricants for the wearresistant friction units of railway mechanics

    Directory of Open Access Journals (Sweden)

    Philipp MYASNIKOV

    2009-01-01

    Full Text Available For long functioning of the friction unit it is necessary to create the steady layers between friction surfaces, which can lower considerably the friction force, and thereof also the wear reducing. Within the metal-polymer tribocoupling the friction transfer film shall function as a separating layer. The frame and kinetics of filming of friction carry at metal- binary material friction is studied, that creates the base for mining new high-performance self-lubricating polymer compositions.When the unit with a lubricant functions, a role of the uncoupling layer is being fulfilled by the lubricating film, which shall possess the given properties, that is to contain in its composition the nanoclaster additives, capable to function in a tribocoupling for a long time, constantly reappearing in a film due to the chemical reactions at friction. It is shown that introduction of nanomodified additives on the basis of phosphorus molybdate of metals into widely used lubricant compositions allows to create steady lubricant films between friction surfaces. The possible mechanism of action of inorganic phosphoprous-containing additives of the polymeric nature is discussed.

  3. Electrochemical Studies of Passive Film Formation and Corrosion of Friction Stir Processed Nickel Aluminum Bronze

    Science.gov (United States)

    2011-06-01

    friction stir welding (FSW) but is used for the purpose of refining...mechanical properties [11]. C. FRICTION STIR WELDING AND PROCESSING Friction Stir Processing (FSP) is derived from Friction Stir Welding (FSW) which was...Temple-Smith, and C. Dawes, Friction - stir butt welding , GB Patent No. 9125978.8, International patent application No. PCT/GB92/02203, 1991. [4

  4. Artificial neural networks application for modeling of friction stir welding effects on mechanical properties of 7075-T6 aluminum alloy

    Science.gov (United States)

    Maleki, E.

    2015-12-01

    Friction stir welding (FSW) is a relatively new solid-state joining technique that is widely adopted in manufacturing and industry fields to join different metallic alloys that are hard to weld by conventional fusion welding. Friction stir welding is a very complex process comprising several highly coupled physical phenomena. The complex geometry of some kinds of joints makes it difficult to develop an overall governing equations system for theoretical behavior analyse of the friction stir welded joints. Weld quality is predominantly affected by welding effective parameters, and the experiments are often time consuming and costly. On the other hand, employing artificial intelligence (AI) systems such as artificial neural networks (ANNs) as an efficient approach to solve the science and engineering problems is considerable. In present study modeling of FSW effective parameters by ANNs is investigated. To train the networks, experimental test results on thirty AA-7075-T6 specimens are considered, and the networks are developed based on back propagation (BP) algorithm. ANNs testing are carried out using different experimental data that they are not used during networks training. In this paper, rotational speed of tool, welding speed, axial force, shoulder diameter, pin diameter and tool hardness are regarded as inputs of the ANNs. Yield strength, tensile strength, notch-tensile strength and hardness of welding zone are gathered as outputs of neural networks. According to the obtained results, predicted values for the hardness of welding zone, yield strength, tensile strength and notch-tensile strength have the least mean relative error (MRE), respectively. Comparison of the predicted and the experimental results confirms that the networks are adjusted carefully, and the ANN can be used for modeling of FSW effective parameters.

  5. A Study Into Effects of Different Parameters on Mechanical Properties in Friction Stir Welding of AA 2024 Aluminium Alloy

    Directory of Open Access Journals (Sweden)

    Aydın ŞIK

    2010-02-01

    Full Text Available In this study AA2024 alloy, which is used especially in aircraft body, wings and automotive industry due to its lightness, workable aspect, high corrosion resistance and durability, was welded with stir friction method, and fatigue, hardness, bending and tension experiments of the joints obtained were conducted. Welding progress speed of the 4 mm thick sheets and stir tool rotation were determined to be the variable parameters. These parameters were taken as 20 mm shoulder width, 1000 rpm traverse speed, 1500 rpm, 2500 rpm and the progress speed was taken as 120 mm/min and 200 mm/min.

  6. Effect of the Metal Transport on the Mechanical Properties of Al-2Si Alloys Processed through Friction Stir Welding Processes

    Science.gov (United States)

    Shailesh Rao, A.; Naik, Yuvaraja

    2017-03-01

    In this study, Al-2Si alloys were joined using friction stir welding with various process parameters. The process parameters considered here were rotational speeds from 600 to 1200 rpm, feed rate from 50 to 150 mm/min with three equal increments. In this study, the mushy state metal movements during the processes are discussed. The experimental observation and results indicate that the flaw formations, surface roughness of the weld, and hardness value depend on the metal movement and are explained in this study. The microstructure of the weld zone was studied finally.

  7. Development of empirical relationships for prediction of mechanical and wear properties of AA6082 aluminum matrix composites produced using friction stir processing

    Directory of Open Access Journals (Sweden)

    I. Dinaharan

    2016-09-01

    Full Text Available Friction Stir Processing (FSP has been established as a potential solid state production method to prepare aluminum matrix composites (AMCs. FSP was effectively applied to produce AA6082 AMCs reinforced with various ceramic particles such as SiC, Al2O3, TiC, B4C and WC in this work. Empirical relationships were estimated to predict the influence of FSP process parameters on the properties such as area of stir zone, microhardness and wear rate of AMCs. FSP experiments were executed using a central composite rotatable design consisting of four factors and five levels. The FSP parameters analyzed were tool rotational speed, traverse speed, groove width and type of ceramic particle. The effect of those parameters on the properties of AMCs was deduced using the developed empirical relationships. The predicted trends were explained with the aid of observed macro and microstructures.

  8. Synthesis, characterization, and wear and friction properties of variably structured SiC/Si elements made from wood by molten Si impregnation

    DEFF Research Database (Denmark)

    Dhiman, Rajnish; Rana, Kuldeep; Bengu, Erman

    2012-01-01

    ceramic material can be achieved, thus suggesting new industrial applications. The structure and composition of numerous as-synthesized samples were characterized in detail by using a wide range of techniques. Wear and friction properties were also investigated, with polished samples. The properties found......We have synthesized pre-shaped SiC/Si ceramic material elements from charcoal (obtained from wood) by impregnation with molten silicon, which takes place in a two-stage process. In the first process, a porous structure of connected micro-crystals of β-SiC is formed, while, in the second process......, molten Si totally or partly infiltrates the remaining open regions. This process forms a dense material with cubic (β-)SiC crystallites, of which the majority is imbedded in amorphous Si. The synthesis of preshaped “sprocket” elements demonstrates that desired shapes of such a dense SiC/Si composite...

  9. Influence of pin structure on microstructure and mechanical properties of friction stir welded AA 6063 (AlMgSi 0.5) aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sayer, S.; Ceyhun, V. [Ege Univ., Izmir (Turkey)

    2008-07-01

    In this study, AA 6063 (AlMgSi0.5) Aluminum alloy plates were welded by a solid state welding procedure, friction stir welding (FSW). The influence of pin structure on the microstructure of the weld region and the mechanical properties of the joints were studied. It has been seen that the helical structure on pinscrew has an effective role on the formation of a zigzag line in the weld region. While rather long and uninterrupted zigzag lines in the weld region are obtained when right helical pinscrew is used, left helical pinscrew gave rise to shorter zigzag lines. While the zigzag line has no effect on the mechanical properties of the as-welded joint, heat treatment after the welding (PWHT) procedure seriously affects the strength of the joint due to the zigzag line formed in the weld region. The mechanical strength decreases with right helical pinscrew in PWHT, whereas, left helical pinscrew causes an increase in mechanical strength. (orig.)

  10. 考虑摩擦特性时过盈量对轴承预紧力的影响%Influence of interference on bearing preload considering frictional properties

    Institute of Scientific and Technical Information of China (English)

    宁峰平; 姚建涛; 安静涛; 孙锟; 赵永生

    2015-01-01

    alternating temperature may lead to some failures. Therefore, it is necessary to accurately determine the bearing preload to ensure the accuracy and reliability of the shaft system. Focused on applying the accurate axial preload on the bearing of spacecraft mechanism, based on statics and elastic mechanics, and also under the premise of considering the assembly dimension and friction characteristics, the relationship between the bearing preload and the tightening torque is studied. Using the relationship of locknut tightening torque and axial force, the axial force applied on the bearing is got. According to the relationship between friction and friction characteristics as well as assembly dimension, the analysis on the interception of the friction on the axial force is done. Based on the bearing force balance equations, the actual bearing preload is computed. This paper studies the influence of friction characteristics and assembly dimensions on the preload, and reveals the relationship between assembly preload and tightening torque under different assembly conditions. In most researches, the bearing preload equals the force generated by the locknut. Theoretical analysis in this paper shows that the preload is the force required for the ball deformation. It is influenced not only by the tightening torque, but also by the interception of the friction in the region of the fitting bearing with the shaft and the housing. The friction coefficient can be measured by the relation between tightening torque and axial force, which is obtained by experiment. According to the geometry parameters of the bearing 71807C and the locknut M30×1.5, as well as the physical property parameters of the spindle and bearing, the force-interference factor and force-torque coefficient can be concluded. Finally, a more precise calculation formula for the preload is drawn. The influences of the tightening torque, the interference of friction and the friction properties on the bearing preload are

  11. Quantum tunneling with friction

    Science.gov (United States)

    Tokieda, M.; Hagino, K.

    2017-05-01

    Using the phenomenological quantum friction models introduced by P. Caldirola [Nuovo Cimento 18, 393 (1941), 10.1007/BF02960144] and E. Kanai [Prog. Theor. Phys. 3, 440 (1948), 10.1143/ptp/3.4.440], M. D. Kostin [J. Chem. Phys. 57, 3589 (1972), 10.1063/1.1678812], and K. Albrecht [Phys. Lett. B 56, 127 (1975), 10.1016/0370-2693(75)90283-X], we study quantum tunneling of a one-dimensional potential in the presence of energy dissipation. To this end, we calculate the tunneling probability using a time-dependent wave-packet method. The friction reduces the tunneling probability. We show that the three models provide similar penetrabilities to each other, among which the Caldirola-Kanai model requires the least numerical effort. We also discuss the effect of energy dissipation on quantum tunneling in terms of barrier distributions.

  12. Influence of Friction Stir Welding (FSW on Mechanical and Corrosion Properties of AW-7020M and Aw-7020 Alloys

    Directory of Open Access Journals (Sweden)

    Dudzik Krzysztof

    2016-09-01

    Full Text Available Friction welding associated with mixing the weld material (FSW - Friction Stir Welding is an alternative to MIG and TIG welding techniques for Al-alloys. This paper presents experimental results obtained from static tension tests on specimens made of AW-7020M and AW-7020 alloys and their joints welded by using FSW method carried out on flat specimens, according to Polish standards : PN-EN ISO 4136:2011 and PN-EN ISO 6892-1:2010. Results of corrosion resistance tests are also presented. The tests were performed by using the electrochemical impedance spectroscopy (EIS. EIS measurement was conducted with the use of three-electrode system in a substitute sea water environment (3,5% NaCl - water solution. The impedance tests were carried out under corrosion potential. Voltage signal amplitude was equal to 10mV, and its frequency range - 100 kHz ÷ 0,1 Hz. Atlas 0531 EU&IA potentiostat was used for the tests. For the tested object an equivalent model was selected in the form of a substitute electric circuit. Results of the impedance spectroscopy tests are presented in the form of parameters which characterize corrosion process, as well as on Nyquist’s graphs together with the best-fit theoretical curve.

  13. Optimization of Friction and Wear Properties of Electroless Ni-P Coatings Under Lubrication Using Grey Fuzzy Logic

    Science.gov (United States)

    Mukhopadhyay, Arkadeb; Duari, Santanu; Barman, Tapan Kumar; Sahoo, Prasanta

    2016-12-01

    The present study aims to evaluate the friction and wear behaviour of electroless Ni-P coatings sliding against hardened chromium coated steel under lubrication. Tribological tests are carried out on a block-on-roller configuration multi tribotester. The effect of variation of applied normal load, rotation speed of the counterface roller and test duration on the coefficient of friction and wear depth is analyzed using Taguchi's robust design philosophy and design of experiments. Optimal setting of the tribo-testing parameters is evaluated using a hybrid grey fuzzy reasoning analysis in a quest to achieve optimal tribological performance of the coatings under lubrication. Analysis of variance reveals the highest contribution by applied normal load in controlling the tribological behaviour under lubrication. Whereas the interaction effect of load and time is also seen to cast a significant effect. Surface morphology studies reveal a typical nodular structure of the deposits. The coatings are seen to be amorphous in its as-deposited condition which becomes crystalline on heat treatment. Further, the synergistic effects of test parameters, microstructure of the coatings, lubrication, etc. on the tribological behaviour are assessed.

  14. Interfacial microstructure and properties of copper clad steel produced using friction stir welding versus gas metal arc welding

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Z.; Chen, Y. [Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo (Canada); Haghshenas, M., E-mail: mhaghshe@uwaterloo.ca [Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo (Canada); Nguyen, T. [Mechanical Systems Engineering, Conestoga College, Kitchener (Canada); Galloway, J. [Welding Engineering Technology, Conestoga College, Kitchener (Canada); Gerlich, A.P. [Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo (Canada)

    2015-06-15

    A preliminary study compares the feasibility and microstructures of pure copper claddings produced on a pressure vessel A516 Gr. 70 steel plate, using friction stir welding versus gas metal arc welding. A combination of optical and scanning electron microscopy is used to characterize the grain structures in both the copper cladding and heat affected zone in the steel near the fusion line. The friction stir welding technique produces copper cladding with a grain size of around 25 μm, and no evidence of liquid copper penetration into the steel. The gas metal arc welding of copper cladding exhibits grain sizes over 1 mm, and with surface microcracks as well as penetration of liquid copper up to 50 μm into the steel substrate. Transmission electron microscopy reveals that metallurgical bonding is produced in both processes. Increased diffusion of Mn and Si into the copper cladding occurs when using gas metal arc welding, although some nano-pores were detected in the FSW joint interface. - Highlights: • Cladding of steel with pure copper is possible using either FSW or GMAW. • The FSW yielded a finer grain structure in the copper, with no evidence of cracking. • The FSW joint contains some evidence of nano-pores at the interface of the steel/copper. • Copper cladding by GMAW contained surface cracks attributed to high thermal stresses. • The steel adjacent to the fusion line maintained a hardness value below 248 HV.

  15. Investigation of the effect of a diamine-based friction modifier on micropitting and the properties of tribofilms in rolling-sliding contacts

    Science.gov (United States)

    Soltanahmadi, Siavash; Morina, Ardian; van Eijk, Marcel C. P.; Nedelcu, Ileana; Neville, Anne

    2016-12-01

    The effect of N-tallow-1,3-diaminopropane (TDP) on friction, rolling wear and micropitting has been investigated with the ultimate objective of developing lubricants with no or minimal environmental impact. A mini traction machine (MTM-SLIM) has been utilised in order to generate tribofilms and observe the effect of TDP on anti-wear tribofilm formation and friction. Micropitting was induced on the surface of specimens using a micropitting rig (MPR). The x-ray photoelectron spectroscopy (XPS) surface analytical technique has been employed to investigate the effect of TDP on the chemical composition of the tribofilm while atomic force microscopy (AFM) was used to generate high resolution topographical images of the tribofilms formed on the MTM discs. Experimental and analytical results showed that TDP delays the zinc dialkyldithiophosphate (ZDDP) anti-wear tribofilm formation. TDP in combination with ZDDP induces a thinner and smoother anti-wear tribofilm with a modified chemical structure composed of mixed Fe/Zn (poly)phosphates. The sulphide contribution to the tribofilm and oxygen-to-phosphorous atomic concentration ratio are greater in the bulk of the tribofilm derived from a combination of TDP and ZDDP compared to a tribofilm derived from ZDDP alone. Surface analyses showed that utilising TDP effectively mitigates micropitting wear in the test conditions used in this study. Reduction of micropitting, relevant to rolling bearing applications, can be attributed to the improved running-in procedure, reduced friction, formation of a smoother tribofilm and modification of the tribofilm composition induced by TDP.

  16. Influence of molecular ordering on electrical and friction properties of omega-(trans-4-stilbene)alkylthiol self-assembled monolayers on Au (111)

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Yabing; Liu, Xiaosong; Hendriksen, B.L.M.; Navarro, V.; Park, Jeong Y.; Ratera, Imma; Klopp, J.M.; Edder, C.; Himpsel, Franz J.; Frechet, J.M.J.; Haller, Eugene E.; Salmeron, Miquel

    2010-04-21

    The electrical and friction properties of omega-(trans-4-stilbene)alkylthiol self-assembled monolayers (SAMs) on Au(111) were investigated using atomic force microscopy (AFM) and near edge x-ray absorption fine structure spectroscopy (NEXAFS). The sample surface was uniformly covered with a molecular film consisting of very small grains. Well-ordered and flat monolayer islands were formed after the sample was heated in nitrogen at 120 oC for 1 h. While lattice resolved AFM images revealed a crystalline phase in the islands, the area between islands showed no order. The islands exhibit substantial reduction (50percent) in friction, supporting the existence of good ordering. NEXAFS measurements revealed an average upright molecular orientation in the film, both before and after heating, with a narrower tilt-angle distribution for the heated fim. Conductance-AFM measurements revealed a two orders of magnitude higher conductivity on the ordered islands than on the disordered phase. We propose that the conductance enhancement is a result of a better pi-pi stacking between the trans-stilbene molecular units as a result of improved ordering in islands.

  17. Exploring the effects of SiC reinforcement incorporation on mechanical properties of friction stir welded 7075 aluminum alloy: Fatigue life, impact energy, tensile strength

    Energy Technology Data Exchange (ETDEWEB)

    Bahrami, Mohsen, E-mail: Mohsen.bahrami@aut.ac.ir [Faculty of Mining and Metallurgical Engineering, Amirkabir University of Technology (AUT), Hafez Avenue, Tehran (Iran, Islamic Republic of); Helmi, Nader [Faculty of Mining and Metallurgical Engineering, Amirkabir University of Technology (AUT), Hafez Avenue, Tehran (Iran, Islamic Republic of); Dehghani, Kamran [Faculty of Mining and Metallurgical Engineering, Amirkabir University of Technology (AUT), Hafez Avenue, Tehran (Iran, Islamic Republic of); Centre of Excellence in Smart Structures and Dynamical Systems (Iran, Islamic Republic of); Givi, Mohammad Kazem Besharati [Department of Mechanical Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2014-02-10

    In the current research, the role of SiC nano-particles in improving the mechanical properties of friction stir welded (FSWed) 7075 aluminum alloy is investigated. To this end, friction stir welding (FSW) was conducted at 1250 rpm and 40 mm/min. The experiment carried out with and without incorporating SiC nano-particles along the joint line. Cross-sectional microstructures of the joints were characterized employing optical and scanning electron microscopy (SEM). Results achieved through X-ray diffraction (XRD) confirmed the presence of SiC powders. Moreover, it was discovered that the volume fraction of the reinforcement particles was 20%. Along with an excellent bonding between SiC nano-particles and aluminum matrix, SEM photograph demonstrated a good dispersion of SiC reinforcements. Atomic force microscopy (AFM) results were also in tight agreement with the recent SEM microstructure. Thanks to the presence of SiC nano-particles, tensile strength, percent elongation, fatigue life, and toughness of the joint improved tremendously. The fracture morphologies were in good agreement with corresponding ductility results.

  18. Effect of Surface States on Joining Mechanisms and Mechanical Properties of Aluminum Alloy (A5052 and Polyethylene Terephthalate (PET by Dissimilar Friction Spot Welding

    Directory of Open Access Journals (Sweden)

    Farazila Yusof

    2016-04-01

    Full Text Available In this research, polyethylene terephthalate (PET, as a high-density thermoplastic sheet, and Aluminum A5052, as a metal with seven distinct surface roughnesses, were joined by friction spot welding (FSW. The effect of A5052’s various surface states on the welding joining mechanism and mechanical properties were investigated. Friction spot welding was successfully applied for the dissimilar joining of PET thermoplastics and aluminum alloy A5052. During FSW, the PET near the joining interface softened, partially melted and adhered to the A5052 joining surface. The melted PET evaporated to form bubbles near the joining interface and cooled, forming hollows. The bubbles have two opposite effects: its presence at the joining interface prevent PET from contacting with A5052, while bubbles or hollows are crack origins that induce crack paths which degrade the joining strength. On the other hand, the bubbles’ flow pushed the softened PET into irregularities on the roughened surface to form mechanical interlocking, which significantly improved the strength. The tensile-shear failure load for an as-received surface (0.31 μ m Ra specimen was about 0.4–0.8 kN while that for the treated surface (>0.31 μ m Ra specimen was about 4.8–5.2 kN.

  19. Effect of Tool Geometry and Welding Speed on Mechanical Properties and Microstructure of Friction Stir Welded Joints of Aluminium Alloys AA6082-T6

    Directory of Open Access Journals (Sweden)

    Patil Hiralal Subhash

    2014-12-01

    Full Text Available Friction stir welding is a solid state innovative joining technique, widely being used for joining aluminium alloys in aerospace, marine automotive and many other applications of commercial importance. The welding parameters and tool pin profile play a major role in deciding the weld quality. In this paper, an attempt has been made to understand the influences of welding speed and pin profile of the tool on friction stir welded joints of AA6082-T6 alloy. Three different tool pin profiles (tapered cylindrical four flutes, triangular and hexagonal have been used to fabricate the joints at different welding speeds in the range of 30 to 74 mm/min. Microhardness (HV and tensile tests performed at room temperature were used to evaluate the mechanical properties of the joints. In order to analyse the microstructural evolution of the material, the weld’s cross-sections were observed optically and SEM observations were made of the fracture surfaces. From this investigation it is found that the hexagonal tool pin profile produces mechanically sound and metallurgically defect free welds compared to other tool pin profiles.

  20. Design and manufacture of intelligent Cu-based wet friction materials

    Institute of Scientific and Technical Information of China (English)

    丁华东; 韩文政; 傅苏黎; 杜建华; 遇元宏

    2004-01-01

    The friction sheets working process was analyzed. It is found that its characteristic is microregion instantaneous high temperature and the current cooling method, making the sheets cooled by the lubricating oil flowing through the friction surface, is not very efficient. Then, intelligent materials concept was introduced, the component and microstructure of intelligent Cu-based friction materials were designed, and the intelligent Cu-based wet friction materials as well as sheets were manufactured. And the intelligent friction materials working principle, i.e. the materials cooling the friction microregion in real time or the friction sheets cutting the peak value of microregion instantaneous high temperature during friction process, was given depending on the characteristics of the materials' and friction sheets' working process. Finally, it is indicated that the intelligent friction sheets excell the currently used friction sheets in properties, including anti-heating property, anti-wearing property as well as friction characteristic.

  1. Friction and Wear Properties and Dielectric Properties of Graphene Oxide and Chopped Carbon Fiber Modified Polyvinylidene Fluoride Composite Films%氧化石墨烯、短切碳纤维改性聚偏氟乙烯复合膜的摩擦磨损及介电性能

    Institute of Scientific and Technical Information of China (English)

    韩朋; 井晓静; 沈湘黔; 闵春英; 潘铁政

    2013-01-01

    采用溶液浇铸法分别制备了氧化石墨烯(GO)与短切碳纤维(CF)改性聚偏氟乙烯(PVDF)复合膜;采用摩擦磨损试验机和数字电桥研究了复合膜的摩擦磨损性能及介电性能.结果表明:在GO和CF添加量较低时(体积分数小于1%),复合膜的摩擦因数较低,同时具有时间稳定性;GO和CF添加量较高时,随时间延长,CF/PVDF复合膜的摩擦因数增大,而GO/PVDF复合膜具有时间稳定性;随着GO和CF添加量增多,复合膜的介电常数先升高后下降,介电损耗先下降后升高;随着频率的增大,复合膜的介电常数缓慢下降,而介电损耗先下降后急剧升高.%The graphene oxide (GO), chopped carbon fiber (CF) modified poly( vinylidene fluoride) (PVDF ) composite films were prepared by the solution casting process. The Friction and wear properties of composite films and dielectric property were studied by friction and wear tester and digital electric bridge, respectively. The results show that when GO or CF content was low (<1 vol. %). the friction coefficient of the films decreased and tended to be stable with time. When the content of GO or CF in the films was high, the films showed various behaviors. The friction coefficient for the former increased with time, while the later had an almost stable friction coefficient. With addition of GO or CF increasing, the dielectric constant of the composite films rose and then dropped, whilst the dielectric-loss decreased at first and then increased. And with the frequency increase the dielectric constant had a slow drop,and the dielectric-loss initially rose and then reduced dramatically.

  2. The role of friction in orthodontics

    OpenAIRE

    Mariana Ribeiro Pacheco; Wellington Corrêa Jansen; Dauro Douglas de Oliveira

    2012-01-01

    INTRODUCTION: Sliding mechanics is widely used during orthodontic treatment. One of the disadvantages of this mechanics is the friction generated at the bracket/archwire interface, which may reduce the amount of desired orthodontic movement obtained. Due to the application and great acceptance of this type of mechanics, the role of friction in Orthodontics has been of interest for both clinicians and scientists. OBJECTIVE: Therefore, this article discussed how friction affects orthodontic too...

  3. Quantum Drude friction for time-dependent density functional theory

    Science.gov (United States)

    Neuhauser, Daniel; Lopata, Kenneth

    2008-10-01

    Friction is a desired property in quantum dynamics as it allows for localization, prevents backscattering, and is essential in the description of multistage transfer. Practical approaches for friction generally involve memory functionals or interactions with system baths. Here, we start by requiring that a friction term will always reduce the energy of the system; we show that this is automatically true once the Hamiltonian is augmented by a term of the form ∫a(q ;n0)[∂j(q,t)/∂t]ṡJ(q)dq, which includes the current operator times the derivative of its expectation value with respect to time, times a local coefficient; the local coefficient will be fitted to experiment, to more sophisticated theories of electron-electron interaction and interaction with nuclear vibrations and the nuclear background, or alternately, will be artificially constructed to prevent backscattering of energy. We relate this term to previous results and to optimal control studies, and generalize it to further operators, i.e., any operator of the form ∫a(q ;n0)[∂c(q,t)/∂t]ṡC(q)dq (or a discrete sum) will yield friction. Simulations of a small jellium cluster, both in the linear and highly nonlinear excitation regime, demonstrate that the friction always reduces energy. The energy damping is essentially double exponential; the long-time decay is almost an order of magnitude slower than the rapid short-time decay. The friction term stabilizes the propagation (split-operator propagator here), therefore increasing the time-step needed for convergence, i.e., reducing the overall computational cost. The local friction also allows the simulation of a metal cluster in a uniform jellium as the energy loss in the excitation due to the underlying corrugation is accounted for by the friction. We also relate the friction to models of coupling to damped harmonic oscillators, which can be used for a more sophisticated description of the coupling, and to memory functionals. Our results open the

  4. Composition and functional properties of cholesterol reduced egg yolk.

    Science.gov (United States)

    Awad, A C; Bennink, M R; Smith, D M

    1997-04-01

    The composition and functional properties of cholesterol reduced egg yolk (CREY) were compared to those of control egg yolk (EY). The CREY was prepared by absorbing cholesterol with beta-cyclodextrin after dilution and dissociation of granules at pH 10.5. The CREY contained less lipid and protein and more carbohydrate and ash than EY. Egg lipids were fractionated into triglycerides, cholesterol esters, free cholesterol, phosphatidyl choline, and phosphatidyl ethanolamine. Free and esterified cholesterol in CREY were reduced by 91.6 and 94.4%, respectively. Triglycerides were the major lipid class in CREY. The CREY contained more oleic acid and less linoleic acid than the control. Protein solubility in 0.1 and 0.6 M NaCl and sponge cake volume did not differ. The composition of proteins soluble in 0.6 M NaCl in both egg preparations were similar as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The electrophoretic profiles of proteins soluble in 0.1 M NaCl were similar, except that lipovitellin form EY was insoluble under these conditions. The CREY was less yellow than EY, as indicated by beta-carotene concentrations and Hunter b values. These results suggest that beta-cyclodextrin can be used to produce a low cholesterol egg product with compositional and functional properties similar to EY.

  5. Transition Path Time Distribution, Tunneling Times, Friction, and Uncertainty

    Science.gov (United States)

    Pollak, Eli

    2017-02-01

    A quantum mechanical transition path time probability distribution is formulated and its properties are studied using a parabolic barrier potential model. The average transit time is well defined and readily calculated. It is smaller than the analogous classical mechanical average transit time, vanishing at the crossover temperature. It provides a direct route for determining tunneling times. The average time may be also used to define a coarse grained momentum of the system for the passage from one side of the barrier to the other. The product of the uncertainty in this coarse grained momentum with the uncertainty in the location of the particle is shown under certain conditions to be smaller than the ℏ/2 formal uncertainty limit. The model is generalized to include friction in the form of a bilinear interaction with a harmonic bath. Using an Ohmic friction model one finds that increasing the friction, increases the transition time. Only moderate values of the reduced friction coefficient are needed for the quantum transition time and coarse grained uncertainty to approach the classical limit which is smaller than ℏ/2 when the friction is not too small. These results show how one obtains classical dynamics from a pure quantum system without invoking any further assumptions, approximations, or postulates.

  6. Static friction between rigid fractal surfaces.

    Science.gov (United States)

    Alonso-Marroquin, Fernando; Huang, Pengyu; Hanaor, Dorian A H; Flores-Johnson, E A; Proust, Gwénaëlle; Gan, Yixiang; Shen, Luming

    2015-09-01

    Using spheropolygon-based simulations and contact slope analysis, we investigate the effects of surface topography and atomic scale friction on the macroscopically observed friction between rigid blocks with fractal surface structures. From our mathematical derivation, the angle of macroscopic friction is the result of the sum of the angle of atomic friction and the slope angle between the contact surfaces. The latter is obtained from the determination of all possible contact slopes between the two surface profiles through an alternative signature function. Our theory is validated through numerical simulations of spheropolygons with fractal Koch surfaces and is applied to the description of frictional properties of Weierstrass-Mandelbrot surfaces. The agreement between simulations and theory suggests that for interpreting macroscopic frictional behavior, the descriptors of surface morphology should be defined from the signature function rather than from the slopes of the contacting surfaces.

  7. Extended-Kalman-filter-based regenerative and friction blended braking control for electric vehicle equipped with axle motor considering damping and elastic properties of electric powertrain

    Science.gov (United States)

    Lv, Chen; Zhang, Junzhi; Li, Yutong

    2014-11-01

    Because of the damping and elastic properties of an electrified powertrain, the regenerative brake of an electric vehicle (EV) is very different from a conventional friction brake with respect to the system dynamics. The flexibility of an electric drivetrain would have a negative effect on the blended brake control performance. In this study, models of the powertrain system of an electric car equipped with an axle motor are developed. Based on these models, the transfer characteristics of the motor torque in the driveline and its effect on blended braking control performance are analysed. To further enhance a vehicle's brake performance and energy efficiency, blended braking control algorithms with compensation for the powertrain flexibility are proposed using an extended Kalman filter. These algorithms are simulated under normal deceleration braking. The results show that the brake performance and blended braking control accuracy of the vehicle are significantly enhanced by the newly proposed algorithms.

  8. Investigation on microstructure and mechanical properties of Friction Stir Welded AA6061-4.5Cu-10SiC composite

    Science.gov (United States)

    Herbert, Mervin A.; Shettigar, Arun Kumar; Nigalye, Akshay V.; Rao, Shrikantha S.

    2016-02-01

    The application of Metal Matrix Composites (MMCs) is restricted by the availability of properly developed fabrication methods. The main challenge here is the fabrication and welding of MMCs in a cost effective way. In the present study, synthesis of AA6061-4.5%Cu- 10%SiC composite was done by stir casting method. The joining of MMCs was performed by Friction Stir Welding (FSW) using a combination of square and threaded profile pin tool (CSTPP). Further, the welded composite was evaluated for microstructure and joint properties. The microstructural characterization showed uniform distribution of refined fine grains and numerous small particles at nugget zone. The hardness at the stir zone is higher than that of the base material. The tensile test revealed 96% joint efficiency in transverse direction.

  9. Effect of Cold Deformation on the Friction-Wear Property of a Biomedical Nickel-Free High-Nitrogen Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    Hao-Chuan Zhao; Yi-Bin Ren; Jia-Hui Dong; Xin-Min Fan; Ke Yang

    2016-01-01

    The microstructural,mechanical and corrosion properties of different cold-rolled biomedical nickel-free highnitrogen stainless steels (NFHNSSs) were investigated to study the effect of cold deformation on its dry wear resistance as well as corrosion-wear behaviors in distilled water and Hank's solution.The results indicated that NFHNSS was characterized by stable austenite and possessed excellent work-hardening capacity;due to increasing cold deformation,the corrosion resistance just decreased very slightly and the dry wear rate decreased initially but subsequently increased,while the corrosion-wear resistance was improved monotonically in both distilled water and Hank's solution in spite of the presence of corrosive ions.The friction coefficients for different cold-rolled NFHNSSs were very close under the same lubricating condition,but they were the largest in distilled water compared to that in dry wear tests and Hank's solution.

  10. 莫来石纤维含量对陶瓷基摩擦材料摩擦磨损性能的影响%Effects of Mullite Fiber Content on Friction and Wear Properties of Ceramic-based Friction Material

    Institute of Scientific and Technical Information of China (English)

    王发辉; 刘莹

    2012-01-01

    Ceramic-based friction material with 0%-24% (mass fraction) mullite fiber reinforcement was prepared by nitrogen protection hot-pressing sintering. The effect of mullite fiber content on friction and wear properties of ceramic-based friction material was studied on the XD-MSM constant speed friction tester. The worn surfaces morphology after tests was observed by scanning electron mic'rosco-py (SEM), and wear mechanism was discussed. The results show that mullite fiber could increase friction coefficients of ceramic-based friction material, and with increasing mullite fiber contents, friction coefficients continuously increase. While the wear rates also increase with increasing mullite fiber contents at high temperature. The dominant wear mechanism of ceramic-based friction material without mullite fiber is brittle spalling and fatigue wear, accompanying with abrasive wear; the main wear type converts into adhesion wear and abrasive wear when adding mullite fiber into ceramic friction material.%利用氮气保护热压烧结法制备含0%~24%(质量分数)莫来石纤维增强陶瓷基摩擦材料,采用XD-MSM型定速摩擦试验机研究莫来石纤维含量对摩擦材料摩擦磨损性能的影响,借助于扫描电子显微镜观察实验后试样的磨损表面形貌,并探讨其磨损机理.结果表明:莫来石纤维的加入能够显著提高陶瓷基摩擦材料的摩擦因数,且随莫来石纤维含量增加而增大.在高温下,陶瓷基摩擦材料的磨损率随莫来石纤维含量增加而增大.未添加莫来石纤维的陶瓷基摩擦材料磨损形式主要是脆性脱落和疲劳磨损,伴有磨粒磨损;而添加莫来石纤维的陶瓷基摩擦材料磨损形式转化为黏着磨损和磨粒磨损.

  11. Characterization of the tensile properties of friction stir welded aluminum alloy joints based on axial force, traverse speed, and rotational speed

    Science.gov (United States)

    Panda, Biranchi; Garg, A.; Jian, Zhang; Heidarzadeh, Akbar; Gao, Liang

    2016-09-01

    Friction stir welding (FSW) process has gained attention in recent years because of its advantages over the conventional fusion welding process. These advantages include the absence of heat formation in the affected zone and the absence of large distortion, porosity, oxidation, and cracking. Experimental investigations are necessary to understand the physical behavior that causes the high tensile strength of welded joints of different metals and alloys. Existing literature indicates that tensile properties exhibit strong dependence on the rotational speed, traverse speed, and axial force of the tool that was used. Therefore, this study introduces the experimental procedure for measuring tensile properties, namely, ultimate tensile strength (UTS) and tensile elongation of the welded AA 7020 Al alloy. Experimental findings suggest that a welded part with high UTS can be achieved at a lower heat input compared with the high heat input condition. A numerical approach based on genetic programming is employed to produce the functional relationships between tensile properties and the three inputs (rotational speed, traverse speed, and axial force) of the FSW process. The formulated models were validated based on the experimental data, using the statistical metrics. The effect of the three inputs on the tensile properties was investigated using 2D and 3D analyses. A high UTS was achieved, including a rotational speed of 1050 r/min and traverse speed of 95 mm/min. The results also indicate that 8 kN axial force should be set prior to the FSW process.

  12. Friction and wear in polymer-based materials

    CERN Document Server

    Bely, V A; Petrokovets, M I

    1982-01-01

    Friction and Wear in Polymer-Based Materials discusses friction and wear problems in polymer-based materials. The book is organized into three parts. The chapters in Part I cover the basic laws of friction and wear in polymer-based materials. Topics covered include frictional interaction during metal-polymer contact and the influence of operating conditions on wear in polymers. The chapters in Part II discuss the structure and frictional properties of polymer-based materials; the mechanism of frictional transfer when a polymer comes into contact with polymers, metals, and other materials; and

  13. Dry Friction and Wear Characteristics of Impregnated Graphite in a Corrosive Environment

    Institute of Scientific and Technical Information of China (English)

    JIA Qian; YUAN Xiaoyang; ZHANG Guoyuan; DONG Guangneng; ZHAO Weigang

    2014-01-01

    Tribological properties of impregnated graphite are greatly influenced by preparation technology and working conditions and it’s highly susceptible to corrosion environmental impacts, but the experimental research about it are few. In this paper, three kinds of impregnated graphite samples are prepared with different degree of graphitization, the tribological properties of these samples in the dry friction environment and in a corrosive environment are analyzed and contrasted. The tribo-test results show that the friction coefficient of samples is reduced and the amount of wear of samples increase when the graphitization degree of samples increases in dry friction condition. While in a corrosive environment (samples are soaked N2O4), the friction coefficient and amount of wear are changed little if the graphitization degree of samples are low. If the degree of graphitization increase, the friction coefficient and amount of wear of samples increase too, the amount of wear is 2 to 3 times as the samples tested in the non-corrosive environment under pv value of 30 MPa•m/s. The impregnated graphite, which friction coefficient is stable and graphitization degree is in mid level, such #2, is more appropriate to have a work in the corrosion conditions. In this paper, preparation and tribological properties especially in corrosive environment of the impregnated graphite is studied, the research conclusion can provide an experimental and theoretical basis for the selection and process improvement of graphite materials, and also provide some important design parameters for contact seal works in a corrosive environment.

  14. 石蜡含量对浇铸尼龙材料摩擦磨损性能的影响%Effect of Paraffin Content on Friction and Wear Properties of Casting Nylon Materials

    Institute of Scientific and Technical Information of China (English)

    黄建龙; 杨玉青; 党兴武; 王建吉; 王彦芳

    2013-01-01

      采用石蜡对起重机伸缩臂滑块用的浇铸尼龙材料进行改性,用MRH-3高速环块摩擦磨损试验机和RFT-Ⅲ往复式摩擦磨损试验机,研究不同石蜡含量对浇铸尼龙材料干摩擦磨损性能的影响。结果表明:石蜡的填充对改善浇铸尼龙材料力学性能和摩擦磨损性能有显著作用;石蜡含量的增加,浇铸尼龙材料的摩擦因数呈现先下降后上升的变化趋势,存在最佳的添加量,使材料的摩擦因数和磨损量最低。%The paraffin was used to modify cast nylon material for cranes telescopic boom slider,and the impacts of different paraffin content on the dry friction and wear properties of the cast nylon material were researched by using MRH-3 high-speed ring block friction and wear testing machine and RFT-Ⅲreciprocating friction and wear testing machine. The results show that:filling paraffin can improve mechanical properties,the friction and wear properties of the casting nylon material significantly. When paraffin content is increased,the friction coefficient of cast nylon material presents the trend of decreasing first and then increasing. There are optimal added amount,making the friction coefficient and the wear quantity to minimum.

  15. Ultrasonic excitation affects friction interactions between food materials and cutting tools.

    Science.gov (United States)

    Schneider, Yvonne; Zahn, Susann; Schindler, Claudia; Rohm, Harald

    2009-06-01

    In the food industry, ultrasonic cutting is used to improve separation by a reduction of the cutting force. This reduction can be attributed to the modification of tool-workpiece interactions at the cutting edge and along the tool flanks because of the superposition of the cutting movement with ultrasonic vibration of the cutting tool. In this study, model experiments were used to analyze friction between the flanks of a cutting tool and the material to be cut. Friction force at a commercial cutting sonotrode was quantified using combined cutting-friction experiments, and sliding friction tests were carried out by adapting a standard draw-off assembly and using an ultrasonic welding sonotrode as sliding surface. The impact of material parameters, ultrasonic amplitude, and the texture of the contacting food surface on friction force was investigated. The results show that ultrasonic vibration significantly reduces the sliding friction force. While the amplitude showed no influence within the tested range, the texture of the contact surface of the food affects the intensity of ultrasonic transportation effects. These effects are a result of mechanical interactions and of changes in material properties of the contact layer, which are induced by the deformation of contact points, friction heating and absorption heating because of the dissipation of mechanical vibration energy.

  16. Microstructure and Mechanical Properties of Dissimilar Friction Stir Welding between Ultrafine Grained 1050 and 6061-T6 Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Yufeng Sun

    2016-10-01

    Full Text Available The ultrafine grained (UFGed 1050 Al plates with a thickness of 2 mm, which were produced by the accumulative roll bonding technique after five cycles, were friction stir butt welded to 2 mm thick 6061-T6 Al alloy plates at a different revolutionary pitch that varied from 0.5 to 1.25 mm/rev. In the stir zone, the initial nano-sized lamellar structure of the UFGed 1050 Al alloy plate transformed into an equiaxial grain structure with a larger average grain size due to the dynamic recrystallization and subsequent grain growth. However, an equiaxial grain structure with a much smaller grain size was simultaneously formed in the 6061 Al alloy plates, together with coarsening of the precipitates. Tensile tests of the welds obtained at different welding speeds revealed that two kinds of fracture modes occurred for the specimens depending on their revolutionary pitches. The maximum tensile strength was about 110 MPa and the fractures were all located in the stir zone close to the 1050 Al side.

  17. EFFECT OF TOOL WEAR ON MICROSTRUCTURE, MECHANICAL PROPERTIES AND ACOUSTIC EMISSION OF FRICTION STIR WELDED 6061 Al ALLOY

    Institute of Scientific and Technical Information of China (English)

    W.M. Zeng; H.L. Wu; J. Zhang

    2006-01-01

    Tool condition is one of the main concerns in friction stir welding (FSW), because the geometrical condition of the tool pin including size and shape is strongly connected to the microstructure and mechanical performance of the weld. Tool wear occurs during FSW, especially for welding metal matrix composites with large amounts of abrasive particles, and high melting point materials, which significantly expedite tool wear and deteriorate the mechanical performance of welds.Tools with different pin-wear levels are used to weld 6061 Al alloy, while acoustic emission (AE) sensing, metallographic sectioning, and tensile testing are employed to evaluate the weld quality in various tool wear conditions. Structural characterization shows that the tool wear interferes with the weld quality and accounts for the formation of voids in the nugget zone. Tensile test analysis of samples verifies that both the ultimate tensile strength and the yield strength are adversely affected by the formation of voids in the nugget due to the tool wear. The failure location during tensile test clearly depends on the state of the tool wear, which led to the analysis of the relationships between the structure of the nugget and tool wear. AE signatures recorded during welding reveal that the AE hits concentrate on the higher amplitudes with increasing tool wear. The results show that the AE sensing provides a potentially effective method for the on-line monitoring of tool wear.

  18. Dissimilar friction stir welds in AA5083-AA6082. Part I: Process parameter effects on thermal history and weld properties

    Science.gov (United States)

    Peel, M. J.; Steuwer, A.; Withers, P. J.; Dickerson, T.; Shi, Q.; Shercliff, H.

    2006-07-01

    The aim of this study was to explore the so-called processing window, within which good-quality welds can be produced, for the friction stir welding of AA5083 to AA6082. To that end a systematic set of nine instrumented welds were made using rotation speeds of 280, 560, and 840 rpm and traverse speeds of 100, 200, and 300 mm/min with AA5083 on the advancing side and another nine with the materials reversed. For comparison a smaller series of AA5083-AA5083 and AA6082-AA6082 welds were also made. Thermocouple measurements, tool torque, extent of material mixing, and macrostructural observations all indicate that the temperature under the tool is more strongly dependent on the rotation than the traverse speed. It was found that in the current case, the power (energy/s) and heat input (energy/mm) do not correlate simply with the weld temperature. As a result, such metrics may not be suitable for characterizing the conditions under which welds are produced.

  19. Geodetic observations of fault creep in the Imperial Valley: hidden faults, earthquake hazard and implications for frictional properties

    Science.gov (United States)

    Lindsey, E. O.; Fialko, Y. A.

    2014-12-01

    We present new observations of the pattern of fault creep and interseismic deformation in the Imperial Valley, California using a combination of multiple InSAR viewing geometries and survey-mode GPS. We combine more than 100 survey-mode GPS velocities (Crowell et al., 2013) with Envisat InSAR observations from descending tracks 84 and 356 and ascending tracks 77 and 306 (149 total acquisitions), processed using the Stanford Method for Persistent Scatterers (StaMPS) package (Hooper et al., 2007). The result is a dense map of surface velocities across the Imperial fault and surrounding areas. The data suggest that a previously little-known extension of the Superstition Hills fault through the town of El Centro may accommodate a significant portion of the slip previously attributed to the Imperial Fault. We investigate a suite of possible models for the transfer of this slip to the Imperial and Cerro Prieto faults to the south, yielding a range of plausible hazard scenarios. Finally, we compare the geodetic data to models of earthquake cycles with rate- and state-dependent friction to assess the implications for creep depth, moment accumulation rate, and recurrence interval of large events on these faults.

  20. Residual Stresses and Tensile Properties of Friction Stir Welded AZ31B-H24 Magnesium Alloy in Lap Configuration

    Science.gov (United States)

    Naik, Bhukya Srinivasa; Cao, Xinjin; Wanjara, Priti; Friedman, Jacob; Chen, Daolun

    2015-08-01

    AZ31B-H24 Mg alloy sheets with a thickness of 2 mm were friction stir welded in lap configuration using two tool rotational rates of 1000 and 1500 rpm and two welding speeds of 10 and 20 mm/s. The residual stresses in the longitudinal and transverse directions of the weldments were determined using X-ray diffraction. The shear tensile behavior of the lap joints was evaluated at low [233 K (-40 °C)], room [298 K (25 °C)], and elevated [453 K (180 °C)] temperatures. The failure load was highest for the lower heat input condition that was obtained at a tool rotational rate of 1000 rpm and a welding speed of 20 mm/s for all the test temperatures, due to the smaller hooking height, larger effective sheet thickness, and lower tensile residual stresses, as compared to the other two welding conditions that were conducted at a higher tool rotational rate or lower welding speed. The lap joints usually fractured on the advancing side of the top sheet near the interface between the thermo-mechanically affected zone and the stir zone. Elevated temperature testing of the weld assembled at a tool rotational rate of 1000 rpm and a welding speed of 20 mm/s led to the failure along the sheet interface in shear fracture mode due to the high integrity of the joint that exhibited large plastic deformation and higher total energy absorption.

  1. Wear and friction of oxidation-resistant mechanical carbon graphites at 650 C in air

    Science.gov (United States)

    Allen, G. P.; Wisnader, D. W.

    1975-01-01

    Studies were conducted to determine the friction and wear properties of experimental carbon-graphites. Hemispherically tipped carbon-graphite rider specimens were tested in sliding contact with rotating Inconel X-750 disks in air. A surface speed of 1.33 m/sec, a load of 500 g, and a specimen temperature of 650 C were used. Results indicate: (1) hardness is not a major factor in determining friction and wear under the conditions of these studies. (2) Friction and wear as low as or lower than those observed for a good commercial seal material were attained with some of the experimental materials studied. (3) The inclusion of boron carbide (as an oxidation inhibitor) has a strong influence on wear rate. (4) Phosphate treatment reduces the friction coefficient when boron carbide is not present in the base material.

  2. Friction Stir Welding in Wrought and Cast Aluminum Alloys: Weld Quality Evaluation and Effects of Processing Parameters on Microstructure and Mechanical Properties

    Science.gov (United States)

    Pan, Yi; Lados, Diana A.

    2017-01-01

    Friction stir welding (FSW) is a solid-state process widely used for joining similar and dissimilar materials for critical applications in the transportation sector. Understanding the effects of the process on microstructure and mechanical properties is critical in design for structural integrity. In this study, four aluminum alloy systems (wrought 6061-T651 and cast A356, 319, and A390) were processed in both as-fabricated and pre-weld heat-treated (T6) conditions using various processing parameters. The effects of processing and heat treatment on the resulting microstructures, macro-/micro-hardness, and tensile properties were systematically investigated and mechanistically correlated to changes in grain size, characteristic phases, and strengthening precipitates. Tensile tests were performed at room temperature both along and across the welding zones. A new method able to evaluate weld quality (using a weld quality index) was developed based on the stress concentration calculated under tensile loading. Optimum processing parameter domains that provide both defect-free welds and good mechanical properties were determined for each alloy and associated with the thermal history of the process. These results were further related to characteristic microstructural features, which can be used for component design and materials/process optimization.

  3. Friction Stir Welding in Wrought and Cast Aluminum Alloys: Weld Quality Evaluation and Effects of Processing Parameters on Microstructure and Mechanical Properties

    Science.gov (United States)

    Pan, Yi; Lados, Diana A.

    2017-04-01

    Friction stir welding (FSW) is a solid-state process widely used for joining similar and dissimilar materials for critical applications in the transportation sector. Understanding the effects of the process on microstructure and mechanical properties is critical in design for structural integrity. In this study, four aluminum alloy systems (wrought 6061-T651 and cast A356, 319, and A390) were processed in both as-fabricated and pre-weld heat-treated (T6) conditions using various processing parameters. The effects of processing and heat treatment on the resulting microstructures, macro-/micro-hardness, and tensile properties were systematically investigated and mechanistically correlated to changes in grain size, characteristic phases, and strengthening precipitates. Tensile tests were performed at room temperature both along and across the welding zones. A new method able to evaluate weld quality (using a weld quality index) was developed based on the stress concentration calculated under tensile loading. Optimum processing parameter domains that provide both defect-free welds and good mechanical properties were determined for each alloy and associated with the thermal history of the process. These results were further related to characteristic microstructural features, which can be used for component design and materials/process optimization.

  4. On the Process-Related Rivet Microstructural Evolution, Material Flow and Mechanical Properties of Ti-6Al-4V/GFRP Friction-Riveted Joints

    Directory of Open Access Journals (Sweden)

    Natascha Z. Borba

    2017-02-01

    Full Text Available In the current work, process-related thermo-mechanical changes in the rivet microstructure, joint local and global mechanical properties, and their correlation with the rivet plastic deformation regime were investigated for Ti-6Al-4V (rivet and glass-fiber-reinforced polyester (GF-P friction-riveted joints of a single polymeric base plate. Joints displaying similar quasi-static mechanical performance to conventional bolted joints were selected for detailed characterization. The mechanical performance was assessed on lap shear specimens, whereby the friction-riveted joints were connected with AA2198 gussets. Two levels of energy input were used, resulting in process temperatures varying from 460 ± 130 °C to 758 ± 56 °C and fast cooling rates (178 ± 15 °C/s, 59 ± 15 °C/s. A complex final microstructure was identified in the rivet. Whereas equiaxial α-grains with β-phase precipitated in their grain boundaries were identified in the rivet heat-affected zone, refined α′ martensite, Widmanstätten structures and β-fleck domains were present in the plastically deformed rivet volume. The transition from equiaxed to acicular structures resulted in an increase of up to 24% in microhardness in comparison to the base material. A study on the rivet material flow through microtexture of the α-Ti phase and β-fleck orientation revealed a strong effect of shear stress and forging which induced simple shear deformation. By combining advanced microstructural analysis techniques with local mechanical testing and temperature measurement, the nature of the complex rivet plastic deformational regime could be determined.

  5. REDUCING VIBRATION WITH FRICTION-DAMPING IN HIGH-SPEED ROTOR SYSTEM%高速滚动轴承-转子系统的摩擦阻尼减振

    Institute of Scientific and Technical Information of China (English)

    王黎钦; 李文忠; 古乐; 郑德志

    2007-01-01

    为了抑制高速滚动轴承-转子系统在通过临界转速时的过大振动,本文采用了摩擦阻尼弹性支承结构.分析了该支承的减振机理和支承特性,设计了摩擦阻尼器,研究了其对转子系统不平衡响应的影响.结果表明,采用适当的机械结构,阻尼器的刚度因子和摩阻因子只与内环的锥角和接触面摩擦因数有关.通过改变这两个参数和外壳轴向刚度,可改变其刚度和阻尼特性.在转子系统支承中引入摩擦阻尼器能够降低支承刚度,从而降低系统的临界转速,避开工作转速.此外,还可增大支承阻尼,抑制临界振幅,减小系统的振动外传力.%To reduce the excessive vibration of a high-speed rotor system at the critical speed, a friction damper with a flexible support structure is introduced. The mechanism of vibration reduction and support characteristics are analyzed and a friction damper is designed. The effect on an unbalanced response is studied. Results show that the stiffness factor and the friction-damping factor of the damper are related to the cone angle and the friction factor of the inner-ring when adopting a proper structure. By changing these parameters and the Z-directional stiffness of the outer-ring, the stiffness and the damping characteristic of the damper can be varied. Introducing a friction damper into the support can reduce the stiffness and increase the damping of the support, thus decreasing the critical speed to avoid the operating speed, suppress the resonant response of a rotor system, and attenuate vibration forces to the outside.

  6. Investigation of the Mechanical Properties of AISI 316 Austenitic Stainless Steel and St 37 Low Carbon Steel Dissimilar Joint by Friction Stir Welding

    Directory of Open Access Journals (Sweden)

    A.H. Khosrovaninezhad

    2015-07-01

    Full Text Available This paper reports on the mechanical properties of the dissimilar joints between AISI 316 austenitic stainless steel and St 37 low carbon steel achieved using friction stir welding technique. The welding was carried out by means of rotational speed of 800 rpm and linear speeds of 50,100,150 mm/min. EDS and XRD techniques were employed in order to determine possible phase transformations. Tensile test, shear punch test and microhardness measurements were conducted to evaluate the mechanical properties of the joints. The results of phase investigations showed that no carbide and brittle phase were detected at the joint boundary. Also, tensile test results demonstrated that failure occurred in the St 37 base metal. According to the shear punch test, the highest ultimate shear strength and yield shear strength was achieved for the sample welded at rotational speed of 800 rpm and linear speed of 150 mm/min, while this sample showed the least elongation. In addition, the highest microhardness was measured in the stir zone of austenitic stainless steel sample welded in the above mentioned welding condition, which can be attributed to the decrease in grain size caused by recrystallization process.

  7. Scaling properties of velocity and temperature spectra above the surface friction layer in a convective atmospheric boundary layer

    Directory of Open Access Journals (Sweden)

    K. G. McNaughton

    2007-06-01

    Full Text Available We report velocity and temperature spectra measured at nine levels from 1.42 meters up to 25.7 m over a smooth playa in Western Utah. Data are from highly convective conditions when the magnitude of the Obukhov length (our proxy for the depth of the surface friction layer was less than 2 m. Our results are somewhat similar to the results reported from the Minnesota experiment of Kaimal et al. (1976, but show significant differences in detail. Our velocity spectra show no evidence of buoyant production of kinetic energy at at the scale of the thermal structures. We interpret our velocity spectra to be the result of outer eddies interacting with the ground, not "local free convection".

    We observe that velocity spectra represent the spectral distribution of the kinetic energy of the turbulence, so we use energy scales based on total turbulence energy in the convective boundary layer (CBL to collapse our spectra. For the horizontal velocity spectra this scale is (zi εo2/3, where zi is inversion height and εo is the dissipation rate in the bulk CBL. This scale functionally replaces the Deardorff convective velocity scale. Vertical motions are blocked by the ground, so the outer eddies most effective in creating vertical motions come from the inertial subrange of the outer turbulence. We deduce that the appropriate scale for the peak region of the vertical velocity spectra is (z εo2/3 where z is height above ground. Deviations from perfect spectral collapse under these scalings at large and small wavenumbers are explained in terms of the energy transport and the eddy structures of the flow.

    We find that the peaks of the temperature spectra collapse when wavenumbers are scaled using (z1/2 zi1/2. That is, the lengths of the thermal structures depend on both the lengths of the

  8. The microphysics of phyllosilicate friction

    Science.gov (United States)

    den Hartog, Sabine A. M.; Faulkner, Daniel R.; Spiers, Christopher J.

    2017-04-01

    Phyllosilicate-rich foliations in fault rocks are often thought to reduce overall fault strength and promote fault stability when forming an interconnected network. Indeed, laboratory measurements have shown that the average friction coefficient of dry phyllosilicates of 0.5 is reduced to 0.3 when wet or even 0.1 for smectite. A widely accepted interpretation of these observations is that the strength of phyllosilicates is controlled by breaking of interlayer bonds to form new cleavage surfaces when dry and by the low strength of surface-bound water films when wet. However, the correlation between phyllosilicate shear strength and interlayer bond strength, which formed the basis for this interpretation, was not reproduced in recent experiments (Behnsen and Faulkner, 2012) and is not supported by the latest calculations of the interlayer bond energies (Sakuma and Suehara, 2015). The accepted explanation for phyllosilicate friction also fails to account for the velocity dependence or (a-b) values, which decrease with temperature, reaching a minimum at intermediate temperatures, before increasing again at higher temperatures (Den Hartog et al., 2013, 2014). In this study, we developed a microphysical model for phyllosilicate friction, involving frictional sliding along atomically flat phyllosilicate grain interfaces, with overlapping grain edges forming barriers to sliding. Assuming that the amount of overlap is controlled by crystal plastic bending of grains into pores, together with rate-dependent edge-site cleavage, our model predicts most of the experimentally observed trends in frictional behaviour and provides a basis for extrapolation of laboratory friction data on phyllosilicates to natural conditions.

  9. Slow frictional waves

    Science.gov (United States)

    Viswanathan, Koushik; Sundaram, Narayan; Chandrasekar, Srinivasan

    Stick-slip, manifest as intermittent tangential motion between two dry solid surfaces, is a friction instability that governs diverse phenomena from automobile brake squeals to earthquakes. We show, using high-speed in situ imaging of an adhesive polymer interface, that low velocity stick-slip is fundamentally of three kinds, corresponding to passage of three different surface waves -- separation pulses, slip pulses and the well-known Schallamach waves. These waves, traveling much slower than elastic waves, have clear distinguishing properties. Separation pulses and Schallamach waves involve local interface separation, and propagate in opposite directions while slip pulses are characterized by a sharp stress front and do not display any interface detachment. A change in the stick-slip mode from separation to slip pulse is effected simply by increasing the normal force. Together, these three waves constitute all possible stick-slip modes in adhesive friction and are shown to have direct analogues in muscular locomotory waves in soft bodied invertebrates. A theory for slow wave propagation is also presented which is capable of explaining the attendant interface displacements, velocities and stresses.

  10. Friction Stir Welding

    Science.gov (United States)

    Nunes, Arthur C., Jr.

    2008-01-01

    Friction stir welding (FSW) is a solid state welding process invented in 1991 at The Welding Institute in the United Kingdom. A weld is made in the FSW process by translating a rotating pin along a weld seam so as to stir the sides of the seam together. FSW avoids deleterious effects inherent in melting and promises to be an important welding process for any industries where welds of optimal quality are demanded. This article provides an introduction to the FSW process. The chief concern is the physical effect of the tool on the weld metal: how weld seam bonding takes place, what kind of weld structure is generated, potential problems, possible defects for example, and implications for process parameters and tool design. Weld properties are determined by structure, and the structure of friction stir welds is determined by the weld metal flow field in the vicinity of the weld tool. Metal flow in the vicinity of the weld tool is explained through a simple kinematic flow model that decomposes the flow field into three basic component flows: a uniform translation, a rotating solid cylinder, and a ring vortex encircling the tool. The flow components, superposed to construct the flow model, can be related to particular aspects of weld process parameters and tool design; they provide a bridge to an understanding of a complex-at-first-glance weld structure. Torques and forces are also discussed. Some simple mathematical models of structural aspects, torques, and forces are included.

  11. Micromechanisms of friction and wear introduction to relativistic tribology

    CERN Document Server

    Lyubimov, Dmitrij; Pinchuk, Leonid

    2013-01-01

    The modern vision of the micromechanism of friction and wear is explored, from the examination of ideal and real crystal structure and adhesion properties to the dynamics of solid frictional interaction. The fundamental quantum-mechanical and relativity principles of particle interaction are considered as basis of friction micro-process examination. The changes in solid structure originated from the influence of different kinds of force fields are considered. The principal possibility of relativity effect manifestation by friction is explained. The critical state of friction – triboplasma – was studied. Structural peculiarities of triboplasma, the kinetics of its transformation during frictional interaction as well as the influence of plasma and postplasma processes on tribojunction friction characteristics and complex formation by friction were examined. The book addresses to tribology researchers.

  12. Analysis on Characteristics of Friction Output Force of ZD6 DC/AC Reducer%ZD6直流/交流减速器摩擦输出力特性的分析

    Institute of Scientific and Technical Information of China (English)

    雷峰

    2015-01-01

    ZD6 series of electric switch machine is one of the main control equipment at present in railway electric sta-tions in our country , more widely applied in railway. The friction connecting device of ZD6 series of electric switch ma-chine is on the speed reducer to protect the motor. After cutting off the motor circuit, the motor will rotate in high speed due to the inertia, causing damage of some transmission parts because of collision . So the transmission device of switch machine shall be adopted with friction connection, after adjusting the spring pressure according to the friction current, when the load is greater than the set value, friction mechanism will produce friction to prevent the parts from being dam-aged when switch machine is blocked and eliminate the moment of inertia of the motor in order to protect the motor and transmission part of the switch machine, wear and aging of long-term use shall affect the service life of the switch ma-chine, even endanger the running safety. So the study on output ability of friction device of reducer has important guid-ing significance for providing the basis for the action conversion process of switch machine, exploring the internal struc-ture performance of reducer as well as daily maintenance and repair of switch machine.%ZD6系列电动转辙机是目前我国铁路电气集中站场的主要控制设备之一,在铁路部门应用比较广泛。ZD6系列电动转辙机的摩擦连接装置位于减速器上,作用于保护电动机。当切断电动机电路后,电动机由于惯性还会高速旋转,使传动部件发生碰撞而损坏某些传动部件。因此转辙机的传动装置要采用摩擦连接,根据摩擦电流调整好弹簧压力后,当载荷大于设定值时,摩擦装置就会打摩擦,防止转辙机动作受阻时损坏机件,并消除电机的转动惯量,以保护电动机及转辙机的传动部分。摩擦装置材料长期使用磨损老化,影响转辙机使用寿

  13. Microstructure evolution and mechanical properties of dissimilar friction stir welded joints between AA1100-B{sub 4}C MMC and AA6063 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Guo, J. [Department of Applied Science, University of Quebec at Chicoutimi, Saguenay (QC) G7H 2B1 (Canada); Aluminium Technology Centre, National Research Council Canada, Saguenay (QC) G7H 8C3 (Canada); Gougeon, P. [Aluminium Technology Centre, National Research Council Canada, Saguenay (QC) G7H 8C3 (Canada); Chen, X.-G., E-mail: xgrant_chen@uqac.ca [Department of Applied Science, University of Quebec at Chicoutimi, Saguenay (QC) G7H 2B1 (Canada)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Microstructures and mechanical properties of dissimilar FSW between AA1100-B{sub 4}C and AA6063 alloy. Black-Right-Pointing-Pointer Effect of the welding parameters on the interface bonding, joint microstructure and mechanical properties. Black-Right-Pointing-Pointer Microstructural evolution of dissimilar joints revealed by the electron backscatter diffraction analysis. Black-Right-Pointing-Pointer Good material mixing and seamless bonding around the interfaces between Al-B{sub 4}C and the AA6063 alloy. Black-Right-Pointing-Pointer 100% joint efficiencies (UTS) achieved by all dissimilar joints. - Abstract: The feasibility of dissimilar friction stir welding (FSW) between the AA1100-16 vol.% B{sub 4}C metal matrix composite and the AA6063 alloy has been evaluated. The effect of the welding parameters on the interface bonding, joint microstructure and mechanical properties was investigated. The results revealed that all dissimilar joints produced under welding conditions investigated were stronger than the base materials of the Al-B{sub 4}C composite. Analysis of the Mg concentration and the B{sub 4}C particle distribution indicates that good material mixing and seamless bonding was achieved around the interface between the Al-B{sub 4}C composite and the Al 6063 alloy during FSW. The electron backscatter diffraction analysis (EBSD) shows that during dissimilar FSW, there was a gradual microstructural evolution on both material sides, resulting in a variety of grain structures in the different weld zones. In the weld zones of FSW joints, the materials underwent dynamic recovery and recrystallization to different extents depending on their thermal mechanical history. The grain refinement of both materials in the nugget zone was observed. It is recommended that the 6063 aluminum alloy should be fixed on the advancing side and the use of an appropriate offset to the 6063 aluminum side is preferred.

  14. 润滑油添加剂对聚合物及其复合材料摩擦磨损性能的影响%Effects of Lubricating-Oil Additives on Friction and Wear Properties of Polymers and Their Composites

    Institute of Scientific and Technical Information of China (English)

    张招柱; 薛群基; 刘维民; 沈维长

    2000-01-01

    The effects of ZDDP contained in oil on the friction and wear properties of polymers and their composites sliding against GCr15 bearing steel under oil-lubricated conditions were studied by using an MHLK-500 ring-on-block wear tester. It was found that the ZDDP contained in liquid paraffin has little effect on the friction coefficients of the polyimide (PI) and polyamide 66 (PA66), but it slightly reduces the friction coefficients of PTFE composites. The ZDDP adsorption film on the frictional surfaces of the PTFE composites exhibits obvious anti - wear properties,it greatly reduces the wear of the PTFE composites. The Pb, PbO, and MoS2 contained in PTFE have little effect on the adsorption of ZDDP to the frictional surfaces, so they have little effect on the fiiction coefficients of PTFE composites under lubrication of liquid paraffin containing ZDDP.%利用MHK-500型环-块磨损试验机研究了二烷基二硫代磷酸锌(ZDDP)对几种聚合物及其复合材料-金属摩擦副油润滑摩擦磨损性能的影响。结果表明,液体石蜡中的ZDDP对尼龙66(PA66)及聚酰亚胺(PI)-GCr15轴承钢摩擦副的摩擦系数影响不大,但却使聚四氟乙烯(PTEE)及其复合材料-GCr15轴承钢摩擦副的摩擦系数略有降低。PTEE及其复合材料-GCr15轴承钢摩擦副表面的ZDDP吸附膜具有一定的抗磨作用,它大幅度降低了Pb、PbO及MoS2填充PTFE复合材料的磨损。PTEE中的pb、pbO及MoS2对ZDDP与摩擦副表面的吸附能力影响不大,因而其对PTFE复合材料在含2(wt)%ZDDP的液体石蜡润滑下的摩擦性能影响不大。

  15. Wear Resistance and Friction Reducing Mechanism of Bronze- Steel Tribopair under Boundary Lubrication%钢-铜摩擦副在边界润滑条件下的减摩抗磨机理研究

    Institute of Scientific and Technical Information of China (English)

    冯欣

    2012-01-01

    用SRV摩擦磨损试验机分别考察了聚仅烯烃基础油含磷氮添加剂和两种含氟硅油添加剂在钢-铜摩擦副滑动下的摩擦学性能,用扫描电子显微镜(SEM)和X射线光电子能谱仪(XPS)观察并分析了铜磨斑表面形貌和磨斑表面主要元素的化学状态.结果表明:含磷氮添加剂和含氟硅油添加剂均具有优良的减摩和抗磨性能;磷、氮和氟等在摩擦表面生成的摩擦化学产物是提高摩擦副抗磨减摩性能的根本原因.%The friction and wear properties of two kinds of fluorosilicone oils and PN ( amine salt of alkoxyl phosphate) as lubricant additives in poly - alpha - olefin are evaluated using an Optimol SRV reciprocating friction and wear tester by bronze disc against AISI 52100 steel ball. The morphologies of worn surfaces of the bronze discs are examined using a scanning electron microscopy. In addition, the elemental compositions and chemical states of several typical elements on the worn surfaces of the bronze discs are examined by means of X - ray photoelectron spectroscopy. Results indicate that oils containing PN and fluorosilicone as additives exhibit excellent wear - resistance and low and stable friction coefficient. This is partly attributed to tribophysical and triboehemical reaction of phosphorus, nitrogen and fluorine with the sliding surfaces.

  16. Effect of Welding Speed on Mechanical Properties and the Strain-Hardening Behavior of Friction Stir Welded 7075 Aluminum Alloy Joints

    Science.gov (United States)

    Xu, Weifeng; Li, Zhaoxi; Sun, Xiaohong

    2017-03-01

    The effect of welding speed on the microstructural evolution, mechanical properties and strain-hardening behavior of friction stir welded (FSWed) high-strength AA7075-T651 was investigated. Large intermetallic particles and grains, whose sizes increased at lower welding speeds, were present in the heat-affected zone. FSWed joints fabricated at the higher welding speed or lower strain rates exhibited higher strength, joint efficiency and ductility than those fabricated at lower welding speeds or higher strain rates. A maximum joint efficiency of 97.5% and an elongation to failure of 15.9% were obtained using a welding speed of 400 mm/min at a strain rate of 10-5 s-1. The hardening capacity, strain-hardening exponent and strain-hardening rate of the FSWed joints were significantly higher than those of the base material, but materials exhibited stage III and stage IV hardening characteristics. The results morphology of the fracture surfaces is consistent with the above results.

  17. Statistical properties of the one-dimensional Burridge-Knopoff model of earthquakes obeying the rate and state dependent friction law

    CERN Document Server

    Kawamura, Hikaru; Kakui, Shingo; Morimoto, Syouji; Yamamoto, Takumi

    2016-01-01

    Statistical properties of the homogeneous one-dimensional spring-block (Burridge-Knopoff) model of earthquakes obeying the rate and state dependent friction law are studied by extensive computer simulations. The quantities computed include the magnitude distribution, the rupture-length distribution, the mainshock recurrence-time distribution, the seismic time correlations before and after the mainshock, the mean slip amount and the mean stress drop at the mainshock, etc. Events of the model can be classified into two distinct categories. One tends to be unilateral with its epicenter located at the rim of the rupture zone of the preceding event, while the other tends to be bilateral with enhanced "characteristic" features resembling the so-called "asperity". For both types events, the distribution of the rupture length L_r exhibits an exponential behavior at larger sizes, exp[-L_r/L_0] with a characteristic "seismic correlation length" L_0. The continuum limit of the model is examined, where the model is found...

  18. Metallographic structure, mechanical properties, and process parameter optimization of 5A06 joints formed by ultrasonic-assisted refill friction stir spot welding

    Science.gov (United States)

    Liu, Xin-bo; Qiao, Feng-bin; Guo, Li-jie; Qiu, Xiong-er

    2017-02-01

    Novel hybrid refill friction stir spot welding (RFSSW) assisted with ultrasonic oscillation was introduced to 5A06 aluminum alloy joints. The metallographic structure and mechanical properties of 5A06 aluminum alloy RFSSW joints formed without ultrasonic assistance and with lateral and longitudinal ultrasonic assistance were compared, and the ultrasonic-assisted RFSSW process parameters were optimized. The results show that compared with lateral ultrasonic oscillation, longitudinal ultrasonic oscillation strengthens the horizontal bonding ligament in the joint and has a stronger effect on the joint's shear strength. By contrast, lateral ultrasonic oscillation strengthens the vertical bonding ligament and is more effective in increasing the joint's tensile strength. The maximum shear strength of ultrasonic-assisted RFSSW 5A06 aluminum alloy joints is as high as 8761 N, and the maximum tensile strength is 3679 N when the joints are formed at a tool rotating speed of 2000 r/min, a welding time of 3.5 s, a penetration depth of 0.2 mm, and an axial pressure of 11 kN.

  19. Effect of Multiple-Pass Friction Stir Processing Overlapping on Microstructure and Mechanical Properties of As-Cast NiAl Bronze

    Science.gov (United States)

    Ni, D. R.; Xue, P.; Ma, Z. Y.

    2011-08-01

    As-cast Cu-9Al-4.5Ni-4Fe NiAl bronze alloy (NAB) was subjected to multiple-pass friction stir processing (FSP) with a 50 pct overlap. After FSP, the coarse microstructure of the base metal (BM) was transformed to defect-free material with fine microstructure. While the torchlike patterns in the stir zone (SZ) and the uplifted grains in the transitional zones (TZs) between two passes were observed in the multiple-pass FSP region, no grain coarsening was found in the remnant zone of the previous SZ after subsequent FSP pass. The hardness value of the FSP materials was higher than that of the BM and was homogeneously distributed throughout the entire multiple-pass FSP region. The FSP materials showed greatly improved tensile properties compared to the BM, and the TZs showed similar tensile strength and ductility to the single-pass FSP materials. The BM broke in a mixture mode of brittle cleavage and microvoid coalescence fracture, whereas the FSP and TZ samples failed in the latter fracture mode. The results showed that the multiple-pass overlapping (MPO) FSP was feasible to modify the microstructure of large-sized plate of the NAB.

  20. Effect of Welding Parameters and Aging Process on the Mechanical Properties of Friction Stir-Welded 6063-T4 Al Alloy

    Science.gov (United States)

    Toktaş, Alaaddin; Toktaş, Gülcan

    2012-06-01

    6063-T4 Al alloy was friction stir welded at various tool rotations (800, 1120, and 1600 rpm) and welding speeds (200 and 315 mm/min) using a specially manufactured tool with a height-adjustable and right-hand-threaded pin. The postweld aging process (at 185 °C for 7 h) was applied to a group of the welded plates. In this study, the effects of the welding parameters and the postweld aging treatment on the microstructural and mechanical properties of 6063-T4 Al alloy were studied. The maximum weld temperatures during the welding process were recorded, and the fracture surfaces of tensile specimens were examined using a scanning electron microscope. The homogeneous hardness profiles were obtained for all the weldings with no trace of softening regions. It was observed that the ultimate tensile strengths (UTS) increased slightly (on average by approx. 8%) and the percent elongations decreased (on average by approx. 33%) by the postweld aging treatment. The maximum bending forces ( F max) of all the welds were less than that of the base metal. It was observed that the F max values increased after the postweld aging process at the welding speed of 315 mm/min and decreased at the welding speed of 200 mm/min.

  1. Microstructure and mechanical properties of friction stir processed IF steel%搅拌摩擦加工IF钢的组织性能

    Institute of Scientific and Technical Information of China (English)

    赵凯; 王快社; 郝亚鑫; 王文; 徐瑞琦

    2015-01-01

    Friction stir processing was applied to cool-rolled DC04 IF steel plates with a thickness of 3 mm, and the microstructure and mechanical properties of the processed zone were investigated. A defect-free specimen with a shiny and smooth surface is fabrica-ted at a tool rotation rate of 950 r·min-1 and a travel speed of 60 mm·min-1 using additional forced cooling technology after processing. A fine equiaxed grain structure can be obtained in the processed zone, which causes a higher hardness of HV 135. 6, 1. 4 times as large as the base metal at the center of the processed zone, and the highest hardness of HV 312. 8 in the surface. The ultimate tensile strength of processed samples with and without the surface fine-grained layer increases by 50. 9% and 47. 6% compared to that of the base material, respectively. The both fracture surfaces of samples before and after friction stir processing exhibit dimple ductile fracture characterization. Grain refinement is considered to be the main reason for improving the ultimate tensile strength.%对3 mm厚的DC04冷轧IF钢板进行搅拌摩擦加工,研究加工区域的微观组织与力学性能. 在旋转速度为950 r· min-1 ,加工速度为60 mm·min-1时,采用加工后强制冷却技术可获得光滑平整且没有缺陷的加工表面. 搅拌摩擦加工后组织显著细化,加工中心的平均显微硬度约为HV 135. 6,是母材硬度的1. 4倍,表面细晶层硬度最高可达到HV 312. 8,细晶层和过渡层的抗拉强度分别比母材的抗拉强度提高50. 9%和47. 6%,加工前后试样的拉伸断口均呈微孔聚合韧性断裂特征. 细晶强化对材料抗拉强度的提高起主要作用.

  2. Quantized friction across ionic liquid thin films

    Science.gov (United States)

    Smith, Alexander M.; Lovelock, Kevin R. J.; Gosvami, Nitya Nand; Welton, Tom; Perkin, Susan

    Ionic liquids, salts in the liquid state under ambient conditions, are of great interest as precision lubricants. Ionic liquids form layered structures at surfaces, yet it is not clear how this nano-structure relates to their lubrication properties. We measured the friction force between atomically smooth solid surfaces across ionic liquid films of controlled thickness in terms of the number of ion layers. Multiple friction-load regimes emerge, each corresponding to a different number of ion layers in the film. In contrast to molecular liquids, the friction coefficients differ for each layer due to their varying composition.

  3. Quantized friction across ionic liquid thin films.

    Science.gov (United States)

    Smith, Alexander M; Lovelock, Kevin R J; Gosvami, Nitya Nand; Welton, Tom; Perkin, Susan

    2013-10-07

    Ionic liquids - salts in the liquid state under ambient conditions - are of great interest as precision lubricants. Ionic liquids form layered structures at surfaces, yet it is not clear how this nano-structure relates to their lubrication properties. We measured the friction force between atomically smooth solid surfaces across ionic liquid films of controlled thickness in terms of the number of ion layers. Multiple friction-load regimes emerge, each corresponding to a different number of ion layers in the film. In contrast to molecular liquids, the friction coefficients differ for each layer due to their varying composition.

  4. Changes in basal dip and frictional properties controlling orogenic wedge propagation and frontal collapse: the External central Betics case

    Science.gov (United States)

    Jiménez-Bonilla, Alejandro; Torvela, Taija; Balanyá, Juan-Carlos; Díaz-Azpiroz, Manuel; Expósito, Inmaculada

    2016-04-01

    Orogenic wedges and their key component, thin-skinned fold-and-thrust belts (FTBs), have been extensively studied through both field examples and modelling. The overall dynamics of FTBs are, therefore, well understood. One of the less understood aspects is: what is the combined influence of across-strike changes in the detachment properties and the basement topography on the behaviour of an orogenic wedge, as the deformation progresses towards the foreland? In this study, we use field data combined with reflection seismic interpretation and well data from the External Zones of the Central Betics FTB, S Spain, to identify a basement "threshold" coinciding with a thinning out of a weak substrate (Triassic evaporites) in the wedge basal detachment. The basal changes influenced the tempo-spatial (4D) local wedge dynamics at ~Early Langhian times, leading to stagnation of FTB propagation, topographic build-up and subsequent collapse of the FTB front, which was enhanced by arc-parallel stretching. This development led to a formation of an important depocentre filled with a thick Langhian mélange unit and later sediments deposited in the NW-migrating foreland basin. This case study illustrates the importance of across-strike changes in wedge basal properties to the stability of the FTB front, especially in terms of the collapse/extensional structures.

  5. Influence of pin geometry on mechanical and structural properties of butt friction stir welded 2024-T351 aluminum alloy

    Directory of Open Access Journals (Sweden)

    Radisavljević Igor Z.

    2015-01-01

    Full Text Available The aim of this work was to investigate the combined effect of small difference in pin geometry, together with rotation and welding speed on the weldability, mechanical and structural properties of FSW 2024-T351 Al plates. The only difference in tool pin design was the shape of thread: regular and rounded. Specimens were welded using rotation rate of 750 rev/min and welding speeds of 73 and 93 mm/min. In all four cases, specimens were defect free, with good or acceptable weld surface. Modification in pin design showed strong influence on macro structure and hardness distribution. Weak places are identified as low hardness zone, close to the nugget zone and are in good agreement with fracture location in tensile testing. Weld efficiency, as a measure of weld quality, are better in case of 310 tool, while UTS values can differ up to 13% for the equal welding parameters. Therefore, it can be assumed that small modification in tool design, particularly in pin geometry, can have great influence on weld formation and mechanical properties.

  6. Effects of Sc and Zr on mechanical property and microstructure of tungsten inert gas and friction stir welded aerospace high strength Al–Zn–Mg alloys

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Ying, E-mail: csudengying@163.com [School of Metallurgy and Environment, Central South University, Hunan, Changsha 410083 (China); School of Materials Science and Engineering, Central South University, Hunan, Changsha 410083 (China); State Key Laboratory for Power Metallurgy, Central South University, Hunan, Changsha 410083 (China); Peng, Bing [School of Metallurgy and Environment, Central South University, Hunan, Changsha 410083 (China); Xu, Guofu, E-mail: csuxgf66@csu.edu.cn [School of Materials Science and Engineering, Central South University, Hunan, Changsha 410083 (China); State Key Laboratory for Power Metallurgy, Central South University, Hunan, Changsha 410083 (China); Pan, Qinglin; Yin, Zhimin; Ye, Rui [School of Materials Science and Engineering, Central South University, Hunan, Changsha 410083 (China); Wang, Yingjun; Lu, Liying [Northeast Light Alloy Co. Ltd., Hei Longjiang, Harbin 150060 (China)

    2015-07-15

    New aerospace high strength Al–Zn–Mg and Al–Zn–Mg–0.25Sc–0.10Zr (wt%) alloys were welded by tungsten inert gas (TIG) process using a new Al–6.0Mg–0.25Sc–0.10Zr (wt%) filler material, and friction stir welding (FSW) process, respectively. Mechanical property and microstructure of the welded joints were investigated comparatively by tensile tests and microscopy methods. The results show that Sc and Zr can improve the yield strength and ultimate tensile strength of Al–Zn–Mg alloy by 59 MPa (23.3%) and 16 MPa (4.0%) in TIG welded joints, and by 77 MPa (23.8%) and 54 MPa (11.9%) in FSW welded joints, respectively. The ultimate tensile strength and elongation of new Al–Zn–Mg–Sc–Zr alloy FSW welded joint are 506±4 MPa and 6.34±0.2%, respectively, showing superior post welded performance. Mechanical property of welded joint is mainly controlled by its “weakest microstructural zone”. TIG welded Al–Zn–Mg and Al–Zn–Mg–Sc–Zr alloys reinforced with weld bead both failed at fusion boundaries. Secondary Al{sub 3}Sc{sub x}Zr{sub 1−x} particles originally present in parent alloy coarsen during TIG welding process, but they can restrain the grain growth and recrystallization here, thus improving welding performance. For two FSW welded joints, fracture occurred in weld nugget zone. Secondary Al{sub 3}Sc{sub x}Zr{sub 1−x} nano-particles almost can keep unchangeable size (20–40 nm) across the entire FSW welded joint, and thus provide effective Orowan strengthening, grain boundary strengthening and substructure strengthening to strengthen FSW joints. The positive effect from Sc and Zr additions into base metals can be better preserved by FSW process than by TIG welding process.

  7. Composites materials for friction and braking application

    Science.gov (United States)

    Crăciun, A. L.; Pinca-Bretotean, C.; Birtok-Băneasă, C.; Josan, A.

    2017-05-01

    The brake pads are an important component in the braking system of automotive. Materials used for brake pads should have stable and reliable frictional and wear properties under varying conditions of load, velocity, temperature and high durability. These factors must be satisfied simultaneously which makes it difficult to select effective brake pads material. The paper presents the results of the study for characterisation of the friction product used for automotive brake pads. In the study it was developed four frictional composites by using different percentages of coconut fibres (0%, 5%, 10%, 15%) reinforcement in aluminium matrix. The new composites tested in the laboratory, modelling appropriate percentage ratio between matrix and reinforcement volume and can be obtained with low density, high hardness properties, good thermal stability, higher ability to hold the compressive force and have a stable friction coefficient. These characteristics make them useful in automotive industry.

  8. Torsional friction damper optimization

    Science.gov (United States)

    Ye, Shaochun; Williams, Keith A.

    2006-06-01

    A new approach for the analysis of friction dampers is presented in this work. The exact form of the steady-state solution for a friction damper implemented on a primary system is developed and numerical solutions are used to determine the optimum friction in a friction damper applied to a specific primary system. When compared to classical results presented by earlier authors, the new approach provides a more optimal solution. In addition, viscous damping in the primary system may be included with the new analysis approach. The ability to optimize a friction damper when viscous damping is included in the primary system is a significant improvement over earlier methods and shows potential for serving as a guide to realizing a more accurate estimate of the optimal damping for friction dampers.

  9. Friction Reduction and Antiwear Properties of Serpentine and Oleic Acid as Lubricating Oil Additives%蛇纹石和油酸作为润滑油添加剂的减摩抗磨性能∗

    Institute of Scientific and Technical Information of China (English)

    司友波; 常秋英; 乔姣飞; 崔艳斌

    2015-01-01

    利用高能球磨机制备平均粒径约1μm的蛇纹石超细粉体,并将其与油酸按质量比2∶1混合分散到PAO10基础油中,利用四球试验机探究其作为润滑油添加剂的减摩抗磨性能,利用白光干涉仪分析磨斑表面三维形貌,并用EDAX对磨斑表面元素进行分析。结果表明:蛇纹石与油酸混合加入基础油中具有更好的减摩抗磨效果;蛇纹石粉体与油酸混合后能够在摩擦副表面形成含有Si、 Mg元素的修复膜,而单一的蛇纹石粉体在摩擦过程中不能成膜,这是因为,油酸作为分散剂能够吸附摩擦过程中产生的金属磨粒并使其分散到润滑油里,减少磨粒对摩擦表面造成的磨粒磨损;油酸有机修饰层吸附到蛇纹石颗粒表面,改善了蛇纹石颗粒在基础油中的分散性。%Ultrafine serpentine powder with average particle size of 1 μm was prepared with high⁃energy ball⁃milling method.Serpentine powder was added to the PAO10 base oil with oleic acid according to mass ratio of 2 ∶ 1.The friction and antiwear properties of the lubricant additives were investigated by four⁃ball machine, and the three dimensional mor⁃phology of worn surface was characterized by the White Light Interferometers, and the elements of worn surface were ana⁃lyzed with EDAX. Results indicate that compared to serpentine powder, the compound additives consisted of serpentine powder and oleic acid can reduce friction and wear more efficiently.A tribofilm is formed on the worn surface with the pres⁃ence of Si, Mg elements under the compound additives of serpentine powder and oleic acid, while the tribofilm cannot be formed on the worn surface lubricated under the single additive of serpentine powder.It is because that the oleic acid as a dispersant can absorb metal wear particles produced in the friction process, and disperse them into lubricant, so the abra⁃sive wear is reduced on worn surface.The organic tribofim

  10. Effect of Backing Plate Thermal Property on Friction Stir Welding of 25-mm-Thick AA6061

    Science.gov (United States)

    Upadhyay, Piyush; Reynolds, Anthony

    2014-04-01

    By using backing plates made out of materials with widely varying thermal diffusivity this work seeks to elucidate the effects of the root side thermal boundary condition on weld process variables and resulting joint properties. Welds were made in 25.4-mm-thick AA6061 using ceramic, titanium, steel, and aluminum as backing plate (BP) material. Welds were also made using a "composite backing plate" consisting of longitudinal narrow strip of low diffusivity material at the center and two side plates of high diffusivity aluminum. Stir zone temperature during the welding was measured using two thermocouples spot welded at the core of the probe: one at the midplane height and another near the tip of the probe corresponding to the root of the weld. Steady state midplane probe temperatures for all the BPs used were found to be very similar. Near root peak temperature, however, varied significantly among weld made with different BPs all other things being equal. Whereas the near root and midplane temperature were the same in the case of ceramic backing plate, the root peak temperature was 318 K (45 °C) less than the midplane temperature in the case of aluminum BP. The trends of nugget hardness and grain size in through thickness direction were in agreement with the measured probe temperatures. Hardness and tensile test results show that the use of composite BP results in stronger joint compared to monolithic steel BP.

  11. Reducing Behavioural to Structural Properties of Programs with Procedures

    NARCIS (Netherlands)

    Gurov, D.; Huisman, M.; Jones, N.D.; Müller-Olm, M.

    2009-01-01

    There is an intimate link between program structure and behaviour. Exploiting this link to phrase program correctness problems in terms of the structural properties of a program graph rather than in terms of its unfoldings is a useful strategy for making analyses more tractable. This paper presents

  12. 钨含量和摩擦条件对掺钨DLC涂层摩擦性能的影响%Influences of W Content and Friction Condition on the Tribological Properties of W-Doped DLC Coatings

    Institute of Scientific and Technical Information of China (English)

    付志强; 王成彪; 岳文; 彭志坚; 于翔; 林松盛; 代明江

    2011-01-01

    考察钨含量和摩擦条件对掺钨DLC涂层摩擦性能的影响.结果发现:随着钨含量的增加,DLC涂层摩擦系数明显增加;钨含量为3.1%(原子分数)的掺钨DLC涂层的耐磨性最好.在干摩擦条件下,低钨含量的DLC涂层摩擦系数随着载荷的增加而有所增加,高钨含量的DLC涂层在高载荷时具有较低的摩擦系数;高钨含量的DLC涂层的摩擦系数随着转速的增加而增加,但转速对纯DLC涂层的摩擦系数影响很小.掺钨DLC涂层的磨损主要是由Si3N4球压入试样表面时涂层在变形过程中的微观断裂和剥落引起的.%The influences of W content and friction condition on the tribological properties of W-doped diamond-like carbon (DLC) coatings were studied. Results show that the friction coefficients of W-doped DLC coatings is augmented with the W content increasing; the W-doped DLC coatings with a W content of 3.1% exhibit the best film/substrate adhesion and wear resistance. Under the dry friction condition, the friction coefficients of W-doped DLC coatings with a low W content are increased with the rise of load while low friction coefficients of W-doped DLC coatings with a high W content are found at a high load; the friction coefficients are increased with the rotation rate increasing for the DLC coatings with a high W content, but the influence of the rotation rate on the friction coefficients of un-doped DLC coatings is unobvious. The wear of W-doped DLC coatings are produced by the micro-fracture and peeling in the coatings during the indentation of hard Si3N4 ball into the sample surface.

  13. Properties of Sisal Fiber/Wollastonite Hybrid Reinforced Friction Brake Materials%剑麻纤维/硅灰石混杂增强摩擦制动材料的性能

    Institute of Scientific and Technical Information of China (English)

    熊雪梅; 韦春; 曾铭

    2011-01-01

    By using phenol formaldehyde resins modified with nano-SiO2 as matrix,using surface-treated sisal fiber and wollastonite as reinforcement,we prepared the asbestos-free friction material.The friction and wear properties were investigated on constant speed(D-MS) tester.And the abrasion surfaces of composites were observed by scanning electron microscope(SEM).The result shows that all the properties,such as,friction coefficient and wear rate can meet the GB5763-1998 requirement.When the sisal fiber and wollastonite hybrid ratio is 1∶2,the composite has the high mechanical properties,suitable and stable coefficient of friction and relatively low wear rate especially at high temperature.%选用纳米粒子改性酚醛树脂为基体,以剑麻纤维和硅灰石混杂为增强纤维,制备了无石棉复合摩擦材料。采用D-MS定速摩擦机对样品进行定速试验,利用扫描电镜对磨损表面进行分析,研究了剑麻纤维/硅灰石不同配比对摩擦材料性能的影响。结果表明,当剑麻纤维和硅灰石的配比为1∶2时,该摩擦材料的力学性能较好,摩擦系数稳定在0.40.5之间,具有较好的耐磨性能,达到了汽车制动器衬片GB5763-1998的规定要求。

  14. Shear flow of dense granular materials near smooth walls. II. Block formation and suppression of slip by rolling friction.

    Science.gov (United States)

    Shojaaee, Zahra; Brendel, Lothar; Török, János; Wolf, Dietrich E

    2012-07-01

    The role of rotational degrees of freedom and of microscopic contact properties at smooth walls in two dimensional planar shear has been investigated by contact dynamics simulations of round hard frictional particles. Our default system setup consists of smooth frictional walls, giving rise to slip. We show that there exists a critical microscopic friction coefficient at the walls, above which they are able to shear the granular medium. We observe distinctive features at this critical point, which to our knowledge have not been reported before. Activating rolling friction at smooth walls reduces slip, leading to similar shear behavior as for rough walls (with particles glued on their surface). Our simulations with rough walls are in agreement with previous results, provided the roughness is strong enough. In the limit of small roughness amplitude, however, the distinctive features of shearing with smooth walls are confirmed.

  15. Tensile Properties and Fracture Behavior of Aluminum Alloy Foam Fabricated from Die Castings without Using Blowing Agent by Friction Stir Processing Route

    Directory of Open Access Journals (Sweden)

    Yoshihiko Hangai

    2014-03-01

    Full Text Available Al foam has been used in a wide range of applications owing to its light weight, high energy absorption and high sound insulation. One of the promising processes for fabricating Al foam involves the use of a foamable precursor. In this study, ADC12 Al foams with porosities of 67%–78% were fabricated from Al alloy die castings without using a blowing agent by the friction stir processing route. The pore structure and tensile properties of the ADC12 foams were investigated and compared with those of commercially available ALPORAS. From X-ray computed tomography (X-ray CT observations of the pore structure of ADC12 foams, it was found that they have smaller pores with a narrower distribution than those in ALPORAS. Tensile tests on the ADC12 foams indicated that as their porosity increased, the tensile strength and tensile strain decreased, with strong relation between the porosity, tensile strength, and tensile strain. ADC12 foams exhibited brittle fracture, whereas ALPORAS exhibited ductile fracture, which is due to the nature of the Al alloy used as the base material of the foams. By image-based finite element (FE analysis using X-ray CT images corresponding to the tensile tests on ADC12 foams, it was shown that the fracture path of ADC12 foams observed in tensile tests and the regions of high stress obtained from FE analysis correspond to each other. Therefore, it is considered that the fracture behavior of ADC12 foams in relation to their pore structure distribution can be investigated by image-based FE analysis.

  16. Reducing System of Parameters and the Cohen–Macaulay Property

    Indian Academy of Sciences (India)

    Björn Mäurer; Jürgen Stückrad

    2007-05-01

    Let be a local ring and let $(x_1,\\ldots,x_r)$ be part of a system of parameters of a finitely generated -module , where $r < \\dim_R M$. We will show that if $(y_1,\\ldots,y_r)$ is part of a reducing system of parameters of with $(y_1,\\ldots,y_r)M=(x_1,\\ldots,x_r)M$ then $(x_1,\\ldots,x_r)$ is already reducing. Moreover, there is such a part of a reducing system of parameters of iff for all primes $P\\in \\mathrm{Supp} M \\cap V_R(x_1,\\ldots,x_r)$ with $\\dim_R R/P = \\dim_R M-r$ the localization $M_P$ of at is an -dimensional Cohen–Macaulay module over $R_P$. Furthermore, we will show that is a Cohen–Macaulay module iff $y_d$ is a non zero divisor on $M/(y_1,\\ldots,y_{d-1})M$, where $(y_1,\\ldots,y_d)$ is a reducing system of parameters of $M(d:=\\dim_R M)$.

  17. 锚碇沉箱基础与升浆基床摩擦性能研究%Research on friction property between anchorage caisson foundation and grouting bed

    Institute of Scientific and Technical Information of China (English)

    耿铁锁; 陈亮; 张哲

    2015-01-01

    According to the first domestic offshore suspension bridge using caisson foundation,the friction property between prepacked aggregate riprap grouting bed and concrete under water,the friction coefficients between gravel bed and concrete structure are mainly studied.Firstly,the friction coefficients between gravel bed and concrete structure are obtained by laboratory and field experiments,and then,the friction property between prepacked aggregate riprap grouting bed and concrete structure under water is acquired by the numerical analysis method.The experimental results show that the friction coefficients between the common gravel bed and the concrete caisson are in the range of 0.5-0.6,which meets the corresponding code,and the friction coefficient between the prepacked aggregate riprap grouting bed and the concrete caisson is within 0.7-0.8,or even 0.9 considering the film cohesive force of concrete.%针对国内首个采用沉箱基础的海上悬索桥,主要对水下预填骨料抛石升浆基床与混凝土之间的摩擦性能,以及碎石基床与混凝土结构的摩擦因数展开研究.首先通过室内和现场实验得到碎石基床与混凝土结构的摩擦因数,在此基础上采用数值分析方法得到水下预填骨料抛石升浆基床与混凝土结构之间的摩擦性能.结果表明,普通碎石基床与混凝土沉箱之间的摩擦因数在设计规范规定的0.5~0.6内,而预填骨料抛石升浆基床与混凝土沉箱之间的摩擦因数为0.7~0.8,如考虑混凝土之间的黏结力膜作用,摩擦因数可达0.9.

  18. Association between friction and wear in diarthrodial joints lacking lubricin

    Science.gov (United States)

    Jay, Gregory D; Torres, Jahn R; Rhee, David K; Helminen, Heikki J; Hytinnen, Mika M; Cha, Chung-Ja; Elsaid, Khaled; Kim, Kyung-Suk; Cui, Yajun; Warman, Matthew L

    2007-01-01

    Objective The glycoprotein lubricin (encoded by the gene Prg4) is secreted by surface chondrocytes and synovial cells, and has been shown to reduce friction in vitro. In contrast to man-made bearings, mammalian diarthrodial joints must endogenously produce friction-reducing agents. This study was undertaken to investigate whether friction is associated with wear. Methods The lubricating ability of synovial fluid (SF) samples from humans with genetic lubricin deficiency was tested in vitro. The coefficient of friction in the knee joints of normal and lubricin-null mice was measured ex vivo; these joints were also studied by light and electron microscopy. Atomic force microscopy was used to image and measure how lubricin reduces friction in vitro. Results SF lacking lubricin failed to reduce friction in the boundary mode. Joints of lubricin-null mice showed early wear and higher friction than joints from their wild-type counterparts. Lubricin self-organized and reduced the work of adhesion between apposing asperities. Conclusion These data show that friction is coupled with wear at the cartilage surface in vivo. They imply that acquired lubricin degradation occurring in inflammatory joint diseases predisposes the cartilage to damage. Lastly, they suggest that lubricin, or similar biomolecules, will have applications in man-made devices in which reducing friction is essential. PMID:17968947

  19. On Surface Structure and Friction Regulation in Reptilian Limbless Locomotion

    CERN Document Server

    Abdel-Aal, Hisham A

    2012-01-01

    One way of controlling friction and associated energy losses is to engineer a deterministic structural pattern on the surface of the rubbing parts (i.e., texture engineering). Custom texturing enhances the quality of lubrication, reduces friction, and allows the use of lubricants of lower viscosity. To date, a standardized procedure to generate deterministic texture constructs is virtually non-existent. Many engineers, therefore, study natural species to explore surface construction and to probe the role surface topography assumes in friction control. Snakes offer rich examples of surfaces where topological features allow the optimization and control of frictional behavior. In this paper, we investigate the frictional behavior of a constrictor type reptile, Python regius. The study employed a specially designed tribo-acoustic probe capable of measuring the coefficient of friction and detecting the acoustical behavior of the skin in vivo. The results confirm the anisotropy of the frictional response of snakesk...

  20. Synthesis, characterization, and properties of reduced europium molybdates and tungstates

    Energy Technology Data Exchange (ETDEWEB)

    Abeysinghe, Dileka [Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208 (United States); Gerke, Birgit [Institut für Anorganische und Analytische Chemie, Universität Münster , Corrensstrasse 30, Münster D-48149 (Germany); Morrison, Gregory; Hsieh, Chun H.; Smith, Mark D. [Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208 (United States); Pöttgen, Rainer [Institut für Anorganische und Analytische Chemie, Universität Münster , Corrensstrasse 30, Münster D-48149 (Germany); Makris, Thomas M. [Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208 (United States); Loye, Hans-Conrad zur, E-mail: zurloye@mailbox.sc.edu [Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208 (United States)

    2015-09-15

    Single crystals of K{sub 0.094}Eu{sub 0.906}MoO{sub 4}, K{sub 0.097}Eu{sub 0.903}WO{sub 4}, EuWO{sub 4}, and EuMoO{sub 4} were grown from molten chloride fluxes contained in vacuum-sealed fused silica and structurally characterized via single crystal X-ray diffraction. The in situ reduction of Eu{sup 3+} to Eu{sup 2+} was carried out using Mo, W, and Zn as metal reducing agents. All four compounds crystallize in the tetragonal space group of I4{sub 1}/a and adopt the scheelite (CaWO{sub 4}) structure type. The magnetic susceptibility of the reported compounds shows paramagnetic behavior down to 2 K. {sup 151}Eu Mössbauer spectroscopy was used to analyze the relative Eu{sup 2+} and Eu{sup 3+} content of the samples. All the compounds were further characterized by EPR, and UV-vis spectroscopy. - Graphical abstract: TOC Caption Two new reduced europium containing quaternary oxides, K{sub 0.094}Eu{sub 0.906}MoO{sub 4} and K{sub 0.097}Eu{sub 0.903}WO{sub 4}, and two previously reported ternary reduced oxides, EuWO{sub 4} and EuMoO{sub 4}, were synthesized via an in situ reduction of Eu{sup 3+} to Eu{sup 2+} under flux method using Mo, W, and Zn as metal reducing agents. {sup 151}Eu Mössbauer spectroscopy was used to analyze the relative Eu{sup 2+} and Eu{sup 3+} content of the samples. - Highlights: • K{sub 0.094}Eu{sub 0.906}MoO{sub 4}, K{sub 0.097}Eu{sub 0.903}WO{sub 4}, EuWO{sub 4}, and EuMoO{sub 4} have been synthesized and characterized. • The in situ reduction of Eu{sup 3+} to Eu{sup 2+} was carried out using Mo, W, and Zn as metal reducing agents. • Magnetic susceptibility data were collected. • {sup 151}Eu Mössbauer spectroscopy was used to analyze Eu{sup 2+} and Eu{sup 3+} content.

  1. Surface defects and temperature on atomic friction

    Energy Technology Data Exchange (ETDEWEB)

    Fajardo, O Y; Mazo, J J, E-mail: yovany@unizar.es [Departamento de Fisica de la Materia Condensada and Instituto de Ciencia de Materiales de Aragon, CSIC-Universidad de Zaragoza, 50009 Zaragoza (Spain)

    2011-09-07

    We present a theoretical study of the effect of surface defects on atomic friction in the stick-slip dynamical regime of a minimalistic model. We focus on how the presence of defects and temperature change the average properties of the system. We have identified two main mechanisms which modify the mean friction force of the system when defects are considered. As expected, defects change the potential profile locally and thus affect the friction force. But the presence of defects also changes the probability distribution function of the tip slip length and thus the mean friction force. We corroborated both effects for different values of temperature, external load, dragging velocity and damping. We also show a comparison of the effects of surface defects and surface disorder on the dynamics of the system. (paper)

  2. Uniform Design of Optimizing Formulation of Friction Materials with Composite Mineral Fiber (CMF) and Their Friction and Wear Behavior

    Science.gov (United States)

    Yang, Yazhou; Jiang, Man; Xu, Jie; Ma, Yunhai; Tong, Jin

    2012-04-01

    In this work, the uniform design method was applied to arrange the experimental scheme for optimizing formulation of friction materials. The friction and wear of the friction materials based on the optimized formulation was carried out on a constant speed friction tester (JF150D-II), using pad-on-disc contact mode against gray cast iron disc. The worn surfaces of the friction materials were examined by scanning electron microscopy (JSM5310) and the friction mechanism was discussed. The results showed that the uniform design method was appropriate for finding the optimum formulation of the friction materials with better properties. Compared with two conventional friction materials, the friction materials based on the optimized formulation possessed higher and stable friction coefficient and higher wear resistance, even at the disc temperature of 350°C. The adhesion, strain fatigue and abrasive wear were the main wear mechanisms of the friction materials. Tribo-chemical phenomenon and plastic deformation existed on the worn surface layer.

  3. 双马来酰亚胺改性苯并噁嗪树脂的力学性能及摩擦性能%Mechanical properties and friction properties of benzoxazine resin modified by bismaleimide

    Institute of Scientific and Technical Information of China (English)

    公超; 颜红侠; 李美丽; 马雷

    2012-01-01

    Benzoxazine(BOZ) resin as a new type thermosetting PF(phenol-formaldehyde resin), has many excellent properties, but its toughness and attrition-resistance were more poor. With AE-BMI(bismaleimide with allyl ether prepolymer) as modifier, an AE-BMI/BOZ modified resin was prepared, and its mechanics properties and friction properties were investigated. The results showed that the optimum AE-BMI contents had obviously toughening and strengthening functions in BOZ resin, and its attrition-resistance was obviously enhanced. The bend strength(125.53 Mpa) and impact strength (11.57 kJ/m2) of AE-BMI/BOZ modified system were 57% and 60% respectively more than those of pure BOZ system, and the attrition rate[18.50×10-6mm3/(N·m)] and friction factor(0.27) of AE-BMI/BOZ modified system were 15.6% and 50.6% respectively less than those of pure BOZ system when mass fraction of AE-BMI was 15%.%苯并噁嗪(BOZ)树脂作为一种新型的热固性PF(酚醛树脂),具有诸多优异性能,但其韧性和耐磨性较差.以AE-BMI(含烯丙基醚的双马来酰亚胺预聚体)为改性剂制备AE-BMI/BOZ改性树脂,并对其力学性能和摩擦性能进行了研究.结果表明:适量的AE-BMI对BOZ树脂具有明显的增韧增强作用,并且其耐磨性也明显提高;当w(AE-BMI)=15%时,AE-BMI/BOZ改性体系的弯曲强度(125.53 MPa)和冲击强度(11.57 kJ/m2)分别比纯BOZ体系提高了57%和60%,并且其摩擦因数(0.27)和磨损率[18.50×10-6 mm3/(N·m)]分别比纯BOZ体系降低了15.6%和50.6%.

  4. Investigation on frictional characteristics and drawbead restraining force of steel with/without coating

    Science.gov (United States)

    Chen, Lianfeng; Zheng, Tianran; Chen, Qing; Zhang, Jun

    2013-12-01

    Advanced high strength steels (AHSS) are used more and more in automotive industry for increasing crashworthiness and weight reduction. Improving metal flow and reduce friction are important to forming the part and decrease part reject rates of AHSS. The present study focused on friction characteristics and drawbead restraining force of Dual Phase (DP) steels with or without coating, such as DP980, DP780, DP590, DP780+Z, DP780+ZF, DP590+Z, using experimental approach. The effect of material properties, temperature, sliding velocity, surface roughness, dry and lubricant on friction behavior of DP steels is investigated. The contrast of DP steels with mild IF steel is carried out. The restraining force draw through different radius of drawbead is evaluated. This study is benefit to the set up of technique parameters during sheet metal forming simulation.

  5. Management strategies to reduce conception/creation risks of intellectual property

    Directory of Open Access Journals (Sweden)

    Ramona PAKOCS

    2015-06-01

    Full Text Available This paper is focused on finding the best management strategies to reduce conception/creation risks of intellectual property. For this we performed a SWOT analysis of conception /creation risks of intellectual property, which was analysed in a Brainstorming session, where several management strategies for risk reduction were found. Then a multi-criterion analysis was conducted which resulted in finding the best management strategy to reduce conception/creation risks of intellectual property.

  6. Microstructure and Mechanical Properties of Hybrid Laser-Friction Stir Welding between AA6061-T6 Al Alloy and AZ31 Mg Alloy

    Institute of Scientific and Technical Information of China (English)

    Woong-Seong Chang; S.R.Rajesh; Chang-Keun Chun; Heung-Ju Kim

    2011-01-01

    For the purpose of improving the strength of this dissimilar joint, the present study was carried out to investigate the improvement in intermetallic layer by using a third material foil between the faying edges of the friction stir welded and hybrid welded Al6061-T6/AZ31 alloy plates. The difference in microstructural and mechanical characteristics of friction stir welded and hybrid welded Al6061-T6/AZ31 joint was compared. Hybrid buttwelding of aluminum alloy plate to a magnesium alloy plate was successfully achieved with Ni foil as filler material, while defect-free laser-friction stir welding (FSW) hybrid welding was achieved by using a laser power of 2 kW. Transverse tensile strength of the joint reached about 66% of the Mg base metal tensile strength in the case of hybrid welding with Ni foil and showed higher value than that of the friction stir welded joint with and without the third material foil. This may be due to the presence of less brittle Ni-based intermetallic phases instead of Al12Mg17.

  7. Diamond-Dispersed Fiber-Reinforced Composite for Superior Friction and Wear Properties in Extreme Environments and Method for Fabricating the Same

    Science.gov (United States)

    Street, Kenneth (Inventor); Voronov, Oleg A (Inventor); Kear, Bernard H (Inventor)

    2017-01-01

    Systems, methods, and articles of manufacture related to composite materials are discussed herein. These materials can be based on a mixture of diamond particles with a matrix and fibers or fabrics. The matrix can be formed into the composite material through optional pressurization and via heat treatment. These materials display exceptionally low friction coefficient and superior wear resistance in extreme environments.

  8. Inconel718与硬质合金摩擦磨损特性的实验研究%Experimental Study on the Friction and Wear Properties of Inconel 718/Carbide

    Institute of Scientific and Technical Information of China (English)

    黄雪红; 季德生; 赵军

    2011-01-01

    利用UMT-2多功能摩擦磨损试验机对镍基合金Inconel 718与硬质合金刀具对偶时的摩擦磨损特性进行研究,揭示法向载荷和滑动速度对摩擦副摩擦因数的影响,通过SEM观察试样摩擦形貌并分析磨损机制.研究结果表明:摩擦副的摩擦因数随着法向载荷的增大而减小,随滑动速度的增大而增大;Inconel 718镍基合金与硬质合金对偶时的磨损机制主要为黏着磨损、磨粒磨损和氧化磨损.%The friction and wear properties of Inconel 718/carbide tool were studied on a UMT-2 type wear tester, revealed the effects of normal load and sliding velocity on friction coefficient, surface topographies of pin sample and wear mechanism were analysed by SEM. The results show that the friction coefficient is decreased with the increase of load and increased with the increase of sliding velocity. The wear mechanisms are mainly adhesive wear,abration wear and oxidation wear.

  9. Iliotibial band friction syndrome.

    Science.gov (United States)

    Lavine, Ronald

    2010-07-20

    Published articles on iliotibial band friction syndrome have been reviewed. These articles cover the epidemiology, etiology, anatomy, pathology, prevention, and treatment of the condition. This article describes (1) the various etiological models that have been proposed to explain iliotibial band friction syndrome; (2) some of the imaging methods, research studies, and clinical experiences that support or call into question these various models; (3) commonly proposed treatment methods for iliotibial band friction syndrome; and (4) the rationale behind these methods and the clinical outcome studies that support their efficacy.

  10. Polymer friction Molecular Dynamics

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, Vladimir N.; Persson, Bo N. J.

    We present molecular dynamics friction calculations for confined hydrocarbon solids with molecular lengths from 20 to 1400 carbon atoms. Two cases are considered: a) polymer sliding against a hard substrate, and b) polymer sliding on polymer. In the first setup the shear stresses are relatively...... independent of molecular length. For polymer sliding on polymer the friction is significantly larger, and dependent on the molecular chain length. In both cases, the shear stresses are proportional to the squeezing pressure and finite at zero load, indicating an adhesional contribution to the friction force....

  11. Friction characteristics of floppy disks

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This note presents the principle and structure of a tribological measure for floppy disks.The precision of the force measuring system is 1 mN in loading and 3×10-6 N in friction.The resolution of the film thickness between head and floppy disk is 0.5 nm in the vertical and 1.5 nm in the horizontal direction.In order to investigate the tribological characteristics of floppy disks,six types of floppy disks have been tested and the floating properties of these disks are also studied with film measuring system.The experimental results of the surface morphology and friction coefficient of these floppy disks using the atomic force microscope/friction force mcroscope (AFM/FFM) are in accordance with the conclusion made by our own measuring system.The experimental results show that the air film thickness between head and disk is of the same order as the surface roughness of floppy disks.

  12. Network-Configurations of Dynamic Friction Patterns

    CERN Document Server

    Ghaffari, H O

    2012-01-01

    The complex configurations of dynamic friction patterns-regarding real time contact areas- are transformed into appropriate networks. With this transformation of a system to network space, many properties can be inferred about the structure and dynamics of the system. Here, we analyze the dynamics of static friction, i.e. nucleation processes, with respect to "friction networks". We show that networks can successfully capture the crack-like shear ruptures and possible corresponding acoustic features. We found that the fraction of triangles remarkably scales with the detachment fronts. There is a universal power law between nodes' degree and motifs frequency (for triangles, it reads T(k)\\proptok{\\beta} ({\\beta} \\approx2\\pm0.4)). We confirmed the obtained universality in aperture-based friction networks. Based on the achieved results, we extracted a possible friction law in terms of network parameters and compared it with the rate and state friction laws. In particular, the evolutions of loops are scaled with p...

  13. Science 101: What Causes Friction?

    Science.gov (United States)

    Robertson, Bill

    2014-01-01

    Defining friction and asking what causes it might seem like a trivial question. Friction seems simple enough to understand. Friction is a force between surfaces that pushes against things that are moving or tending to move, and the rougher the surfaces, the greater the friction. Bill Robertson answers this by saying, "Well, not exactly".…

  14. Friction stir welding tool

    Science.gov (United States)

    Tolle; Charles R. , Clark; Denis E. , Barnes; Timothy A.

    2008-04-15

    A friction stir welding tool is described and which includes a shank portion; a shoulder portion which is releasably engageable with the shank portion; and a pin which is releasably engageable with the shoulder portion.

  15. Friction behaviour of aluminium composites mixed with carbon fibers with different orientations

    Science.gov (United States)

    Caliman, R.

    2016-08-01

    The primary goal of this study work it was to distinguish a mixture of materials with enhanced friction and wearing behaviour. The composite materials may be differentiated from alloys; which can contain two more components but are formed naturally through different processes such as casting. The load applied on the specimen during the tests, is playing a very important role regarding friction coefficient and also the wearing speed. Sintered composites are gaining importance because the reinforcement serves to reduce the coefficient of thermal expansion and increase the strength and modulus. The friction tests are carried out, at the room temperature in dry condition, on a pin-on-disc machine. The exponentially decreasing areas form graphs, represented to the curves coefficient of friction, are attributed to the formation of lubricant transfer film and initial polishing surface samples. The influence of the orientation of the carbon fibers on the friction properties in the sintered polymer composites may be studied by the use of both mechanical wear tests by microscopy and through the use of phenomenological models.

  16. Mitigating Abnormal Grain Growth for Friction Stir Welded Al-Li 2195 Spun Formed Domes

    Science.gov (United States)

    Chen, Po-Shou; Russell, Carolyn

    2012-01-01

    Formability and abnormal grain growth (AGG) are the two major issues that have been encountered for Al alloy spun formed dome development using friction stir welded blanks. Material properties that have significant influence on the formability include forming range and strain hardening exponent. In this study, tensile tests were performed for two 2195 friction stir weld parameter sets at 400 F to study the effects of post weld anneal on the forming range and strain hardening exponent. It was found that the formability can be enhanced by applying a newly developed post weld anneal to heat treat the friction stir welded panels. This new post weld anneal leads to a higher forming range and much improved strain hardening exponent. AGG in the weld nugget is known to cause a significant reduction of ductility and fracture toughness. This study also investigated how AGG may be influenced by the heating rate to the solution heat treatment temperature. After post-weld annealing, friction stir welds were strained to 15% and 39% by compression at 400 F before they were subjected to SHT at 950 F for 1 hour. Salt bath SHT is very effective in reducing the grain size as it helps arrest the onset of AGG and promote normal recrystallization and grain growth. However, heat treating a 18 ft dome using a salt bath is not practical. Efforts are continuing at Marshall Space Flight Center to identify the welding parameters and heat treating parameters that can help mitigate the AGG in the friction stir welds.

  17. MODIFICATION OF FLAKE REINFORCED FRICTION BRAKE COMPOSITE MATERIAL

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    According to the recent development trend and need of the friction brake material, the flake reinforced friction brake material has been made out by adjusting the recipe and techniques. The two-dimensional flake vermiculite is selected as the reinforced stuffing of the material; the modified resin is used as the basal bed of the material. The tests manifest that the properties of mechanics are high, the friction coefficients are suitable and stable,and especially in high temperatures the wear is low. It is an excellent friction brake material.

  18. Fault rheology beyond frictional melting.

    Science.gov (United States)

    Lavallée, Yan; Hirose, Takehiro; Kendrick, Jackie E; Hess, Kai-Uwe; Dingwell, Donald B

    2015-07-28

    During earthquakes, comminution and frictional heating both contribute to the dissipation of stored energy. With sufficient dissipative heating, melting processes can ensue, yielding the production of frictional melts or "pseudotachylytes." It is commonly assumed that the Newtonian viscosities of such melts control subsequent fault slip resistance. Rock melts, however, are viscoelastic bodies, and, at high strain rates, they exhibit evidence of a glass transition. Here, we present the results of high-velocity friction experiments on a well-characterized melt that demonstrate how slip in melt-bearing faults can be governed by brittle fragmentation phenomena encountered at the glass transition. Slip analysis using models that incorporate viscoelastic responses indicates that even in the presence of melt, slip persists in the solid state until sufficient heat is generated to reduce the viscosity and allow remobilization in the liquid state. Where a rock is present next to the melt, we note that wear of the crystalline wall rock by liquid fragmentation and agglutination also contributes to the brittle component of these experimentally generated pseudotachylytes. We conclude that in the case of pseudotachylyte generation during an earthquake, slip even beyond the onset of frictional melting is not controlled merely by viscosity but rather by an interplay of viscoelastic forces around the glass transition, which involves a response in the brittle/solid regime of these rock melts. We warn of the inadequacy of simple Newtonian viscous analyses and call for the application of more realistic rheological interpretation of pseudotachylyte-bearing fault systems in the evaluation and prediction of their slip dynamics.

  19. 钢纤维和莫来石纤维增强陶瓷基摩擦材料的性能研究%Properties of Ceramic-based Friction Material Reinforced by Steel Fiber and Mullite Fiber

    Institute of Scientific and Technical Information of China (English)

    王发辉; 刘莹

    2012-01-01

    Ceramic-based friction material reinforced by steel fiber and mullite fiber was prepared by hot-pressing sin-treing. The mechanical and friction-wear properties of ceramic-based friction materials using steel fiber reinforcement, syn ergetic reinforcement by steel fiber and mullite fiber,mullite fiber reinforcement were investigated and compared. The worn surfaces and debris particles morphology at different temperatures was observed by scanning electron microscopy (SEM) , and wear mechanisms were studied. The results show that the ceramic-based friction material using synergetic reinforcement by steel fiber and mullite fiber has the highest mechanical strength, and exhibits excellent friction stability as well as wear resistance, mullite fiber reinforced ceramic-based friction material shows severe fade and has the lowest wear resistance. SEM analysis shows that from low-temperature to high-temperature the main wear mechanism of ceramic-based friction ma terial using synergetic reinforcement by steel fiber and mullite fiber converts from adhesion wear to a mixing of adhesion wear and abrasive wear, while the main wear type of mullite fiber reinforced ceramic-based friction material is abrasive wear.%采用热压烧结法制备出钢纤维和莫来石纤维增强陶瓷基摩擦材料,对比分析钢纤维、钢纤维和莫来石纤维的混杂纤维以及莫来石纤维增强陶瓷基摩擦材料的机械性能和摩擦磨损特性.利用扫描电子显微镜( SEM)观察不同温度下的磨损表面和磨屑形貌,并研究其磨损机制.研究结果表明,钢纤维和莫来石陶瓷混杂纤维增强的陶瓷基摩擦材料具有较高的机械强度以及良好的摩擦稳定性和耐磨性能,以莫来石纤维增强的陶瓷基摩擦材料,摩擦因数表现出严重的热衰退,且具有低的耐磨损性能.SEM分析表明,在从低温到高温的摩擦过程中,钢纤维和莫来石陶瓷混杂纤维增强的陶瓷基摩擦材料的磨损形式主要由

  20. Comparison of frictional resistance of esthetic and semi-esthetic self-ligating brackets

    Directory of Open Access Journals (Sweden)

    M S Kannan

    2015-01-01

    Full Text Available Aim: The frictional resistance encountered during sliding mechanics has been well established in the orthodontic literature, and it consists of complex interactions between the bracket, archwire, and method of ligation the claim of reduced friction with self-ligating brackets is often cited as a primary advantage over conventional brackets. This study was done to compare and evaluate the frictional forces generated between fully esthetic brackets and semi-aesthetic self-ligating brackets, which are of passive form and SEM (scanning electron microscope study of the Brackets after Frictional evaluation. Materials and Methods: Two types of self-ligating esthetic brackets, Damon clear (Ormco made of fully ceramic and Opal (Ultradent Products, USA and, Two types of self-ligating semi-esthetic brackets, Clarity SL (3M Unitek and Damon 3 (Ormco both of which are made of ceramic with metal slot. Arch wires with different dimensions and quality 17 × 25, 19 × 25 Titanium Molybdenum Alloy (TMA and 17 × 25, 19 × 25 stainless steel that came from plain strands of wire were used for frictional comparison test. The brackets used in this study had 0.022 × 0.028 inch slot. Results: The statistical tests showed significantly smaller amount of kinetic frictional forces is generated by Damon 3 (semi-esthetic self-ligating brackets. For each wire used, Damon 3 displayed significantly lower frictional forces (P ≤ 0.05 than any of the self-ligating system, followed by Opal (fully esthetic self-ligating brackets which generated smaller amount of frictional forces but relatively on the higher side when compared with Damon 3. Damon clear (fully esthetic self-ligating brackets generated the maximum amount of kinetic forces with all types of wire dimensions and properties when compared to the other three types of self-ligating system. Clarity SL (semi-esthetic self-ligating brackets generated smaller amount of frictional forces when compared with Damon clear and

  1. Static and dynamic friction of hierarchical surfaces

    Science.gov (United States)

    Costagliola, Gianluca; Bosia, Federico; Pugno, Nicola M.

    2016-12-01

    Hierarchical structures are very common in nature, but only recently have they been systematically studied in materials science, in order to understand the specific effects they can have on the mechanical properties of various systems. Structural hierarchy provides a way to tune and optimize macroscopic mechanical properties starting from simple base constituents and new materials are nowadays designed exploiting this possibility. This can be true also in the field of tribology. In this paper we study the effect of hierarchical patterned surfaces on the static and dynamic friction coefficients of an elastic material. Our results are obtained by means of numerical simulations using a one-dimensional spring-block model, which has previously been used to investigate various aspects of friction. Despite the simplicity of the model, we highlight some possible mechanisms that explain how hierarchical structures can significantly modify the friction coefficients of a material, providing a means to achieve tunability.

  2. Contact mechanics, friction and adhesion with application to quasicrystals

    DEFF Research Database (Denmark)

    Persson, Bo; Carbone, Giuseppe; Samoilov, Vladimir N.;

    2015-01-01

    We discuss the origin of friction and adhesion between hard solids such as quasicrystals. We emphasize the fundamental role of surface roughness in many contact mechanics problems, in particular for friction and adhesion between solid bodies. The most important property of rough surfaces is the s...

  3. Scale dependence of rock friction at high work rate.

    Science.gov (United States)

    Yamashita, Futoshi; Fukuyama, Eiichi; Mizoguchi, Kazuo; Takizawa, Shigeru; Xu, Shiqing; Kawakata, Hironori

    2015-12-10

    Determination of the frictional properties of rocks is crucial for an understanding of earthquake mechanics, because most earthquakes are caused by frictional sliding along faults. Prior studies using rotary shear apparatus revealed a marked decrease in frictional strength, which can cause a large stress drop and strong shaking, with increasing slip rate and increasing work rate. (The mechanical work rate per unit area equals the product of the shear stress and the slip rate.) However, those important findings were obtained in experiments using rock specimens with dimensions of only several centimetres, which are much smaller than the dimensions of a natural fault (of the order of 1,000 metres). Here we use a large-scale biaxial friction apparatus with metre-sized rock specimens to investigate scale-dependent rock friction. The experiments show that rock friction in metre-sized rock specimens starts to decrease at a work rate that is one order of magnitude smaller than that in centimetre-sized rock specimens. Mechanical, visual and material observations suggest that slip-evolved stress heterogeneity on the fault accounts for the difference. On the basis of these observations, we propose that stress-concentrated areas exist in which frictional slip produces more wear materials (gouge) than in areas outside, resulting in further stress concentrations at these areas. Shear stress on the fault is primarily sustained by stress-concentrated areas that undergo a high work rate, so those areas should weaken rapidly and cause the macroscopic frictional strength to decrease abruptly. To verify this idea, we conducted numerical simulations assuming that local friction follows the frictional properties observed on centimetre-sized rock specimens. The simulations reproduced the macroscopic frictional properties observed on the metre-sized rock specimens. Given that localized stress concentrations commonly occur naturally, our results suggest that a natural fault may lose its

  4. The retrieval of fingerprint friction ridge detail from elephant ivory using reduced-scale magnetic and non-magnetic powdering materials.

    Science.gov (United States)

    Weston-Ford, Kelly A; Moseley, Mark L; Hall, Lisa J; Marsh, Nicholas P; Morgan, Ruth M; Barron, Leon P

    2016-01-01

    An evaluation of reduced-size particle powdering methods for the recovery of usable fingermark ridge detail from elephant ivory is presented herein for the first time as a practical and cost-effective tool in forensic analysis. Of two reduced-size powder material types tested, powders with particle sizes ≤ 40 μm offered better chances of recovering ridge detail from unpolished ivory in comparison to a conventional powder material. The quality of developed ridge detail of these powders was also assessed for comparison and automated search suitability. Powder materials and the enhanced ridge detail on ivory were analysed by scanning electron microscopy and energy dispersive X-ray spectroscopy and interactions between their constituents and the ivory discussed. The effect of ageing on the quality of ridge detail recovered showed that the best quality was obtained within 1 week. However, some ridge detail could still be developed up to 28 days after deposition. Cyanoacrylate and fluorescently-labelled cyanoacrylate fuming of ridge detail on ivory was explored and was less effective than reduced-scale powdering in general. This research contributes to the understanding and potential application of smaller scale powdering materials for the development of ridge detail on hard, semi-porous biological material typically seized in wildlife-related crimes.

  5. PREFACE: The International Conference on Science of Friction

    Science.gov (United States)

    Miura, Kouji; Matsukawa, Hiroshi

    2007-07-01

    The first international conference on the science of friction in Japan was held at Irago, Aichi on 9-13 September 2007. The conference focused on the elementary process of friction phenomena from the atomic and molecular scale view. Topics covered in the conference are shown below.: Superlubricity and friction Electronic and phononic contributions to friction Friction on the atomic and molecular scales van der Waals friction and Casimir force Molecular motor and friction Friction and adhesion in soft matter systems Wear and crack on the nanoscale Theoretical studies on the atomic scale friction and energy dissipation Friction and chaos Mechanical properties of nanoscale contacts Friction of powder The number of participants in the conference was approximately 100, registered from 11 countries. 48 oral and 29 poster talks were presented at the conference. This volume of Journal of Physics: Conference Series includes 23 papers devoted to the above topics of friction. The successful organization of the conference was made possible by the contribution of the members of the Organizing Committee and International Advisory Committee. The conference was made possible thanks to the financial support from Aichi University of Education and the Taihokogyo Tribology Research Foundation (TTRF), and moreover thanks to the approval societies of The Physical Society of Japan, The Surface Science Society of Japan, The Japanese Society of Tribologists and Toyota Physical and Chemical Research Institute. The details of the conference are available at http://www.science-of-friction.com . Finally we want to thank the speakers for the high quality of their talks and all participants for coming to Irago, Japan and actively contributing to the conference. Kouji Miura and Hiroshi Matsukawa Editors

  6. New 'chimie douce' approach to the synthesis of hybrid nanosheets of MoS2 on CNT and their anti-friction and anti-wear properties.

    Science.gov (United States)

    Altavilla, Claudia; Sarno, Maria; Ciambelli, Paolo; Senatore, Adolfo; Petrone, Vincenzo

    2013-03-29

    Hybrid organic-inorganic oleylamine@MoS2-CNT nanocomposites with different compositions were obtained by thermal decomposition of tetrathiomolybdate in the presence of oleylamine and high quality multiwalled carbon nanotubes (CNTs) previously prepared by the CCVD technique. The nanocomposite samples were characterized by the TEM, SEM TG-MS, Raman and XRD techniques and successfully tested as anti-friction and anti-wear additives for grease lubricants.

  7. Friction Behaviors of the Hot Filament Chemical Vapor Deposition Diamond Film under Ambient Air and Water Lubricating Conditions

    Institute of Scientific and Technical Information of China (English)

    SHEN Bin; SUN Fanghong

    2009-01-01

    The friction behavior of the hot filament chemical vapor deposition(HFCVD) diamond film plays a critical role on its applications in mechanical fields and largely depends on the environment. Studies on the tribological properties of HFCVD diamond films coated on Co-cemented tungsten carbide (WC-Co) substrates are rarely reported in available literatures, especially in the water lubricating conditions. In this paper, conventional microcrystalline diamond(MCD) and fine-grained diamond(FGD) films are deposited on WC-Co substrates and their friction properties are evaluated on a reciprocating ball-on-plate tribometer, where they are brought to slide against ball-bearing steel and copper balls in dry and water lubricating conditions. Scanning electron microscopy(SEM), atomic force microscopy(AFM), surface profilometer and Raman spectroscopy are adopted to characterize as-deposited diamond films;SEM and energy dispersive X-ray(EDX) are used to investigate the worn region on the surfaces of both counterface balls and diamond films. The research results show that the friction coefficient of HFCVD diamond films always starts with a high initial value, and then gradually transits to a relative stable state. For a given counterface and a sliding condition, the FGD film presents lower stable friction coefficients by 0.02-0.03 than MCD film. The transferred materials adhered on sliding interface are supposed to have predominate effect on the friction behaviors of HFCVD diamond films. Furthermore, the effect of water lubricating on reducing friction coefficient is significant. For a given counterpart, the stable friction coefficients of MCD or FGD films reduce by about 0.07-0.08 while sliding in the water lubricating condition, relative to in dry sliding condition. This study is beneficial for widespread applications of HFCVD diamond coated mechanical components and adopting water lubricating system, replacing of oil lubricating, in a variety of mechanical processing fields to

  8. Reflections on Friction in Quantum Mechanics

    Directory of Open Access Journals (Sweden)

    Yair Rezek

    2010-08-01

    Full Text Available Distinctly quantum friction effects of three types are surveyed: internalfriction, measurement-induced friction, and quantum-fluctuation-induced friction. We demonstrate that external driving will lead to quantum internal friction, and critique the measurement-based interpretation of friction. We conclude that in general systems will experience internal and external quantum friction over and beyond the classical frictional contributions.

  9. Friction related size-effect in microforming – a review

    Directory of Open Access Journals (Sweden)

    Wang Chunju

    2014-01-01

    Full Text Available This paper presents a thorough literature review of the size effects of friction in microforming. During miniaturization, the size effects of friction occur clearly. The paper first introduces experimental research progress on size effects of friction in both micro bulk and sheet forming. The effects of several parameters are discussed. Based on the experimental results, several approaches have been performed to develop a model or functions to analyse the mechanism of size effects of friction, and simulate the micro deep drawing process by integrating them into an FE program. Following this, surface modification, e.g. a DLC film and a micro structure/textured surface, as a method to reduce friction are presented. Finally, the outlook for the size effect of friction in the future is assessed, based on the understanding of the current research progress.

  10. Friction welding thermal and metallurgical characteristics

    CERN Document Server

    Yilbas, Bekir Sami

    2014-01-01

    This book provides insight into the thermal analysis of friction welding incorporating welding parameters such as external, duration, breaking load, and material properties. The morphological and metallurgical changes associated with the resulting weld sites are analysed using characterization methods such as electron scanning microscope, energy dispersive spectroscopy, X-ray Diffraction, and Nuclear reaction analysis.

  11. Friction Stir Welding of Aluminum Alloys

    Institute of Scientific and Technical Information of China (English)

    FU Zhi-hong; HE Di-qiu; WANG Hong

    2004-01-01

    Friction stir welding(FSW), a new solid-state welding technology invited in the early 1990s,enables us weld aluminum alloys and titanium alloys etc. The processing of FSW, the microstructure in FSW alloysand the factors influencing weld quality are introduced. The complex factors affecting the properties are researched.

  12. 转管炮降低机心组导轨摩擦力研究%Reducing Bolts Rail Friction for Gatling Gun

    Institute of Scientific and Technical Information of China (English)

    徐健; 李强; 杨臻

    2016-01-01

    In order to reduce the minimal driving power ,to reduce the bolts velocity,the main roller relative to whole body,and the right-and-left rail and obliquity is researched. And the result indicates the maximal acceleration of cam ,the main roller relative to whole body is zero. It is well in non-altitude difference with bilateral angle. The optimization results shows that in the case of 9 000 rpm its driving power is 140 kw bellows to 31 kw and it is 22 % of its intrinsic ;its show in the case of 3 300 rpm 1 086.5 N to 10 000 rpm 9 779.3 N. And it shows in the no- transverse and yes-inclination 90.9%that yes- transverse and no- inclination.%为了使转管炮机心组消耗的驱动功率最小,对机心组速度、主滚轮相对机体位置、机心体左右导轨及倾角关系等对驱动功率的影响进行研究。表明最好选用机心组凸轮加速度最小,主滚轮相对机体质心位置等于零,最好用无横向位移以及有夹角的关系最好。优化结果表明:9000 rpm的射速,驱动功率由机心组加速度变化引起140 kw下降到31 kw,降到不足于原设计曲线的22%;射速为3300 rpm的主滚轮压力峰值参数化峰值1086.5 N,升高到10000 rpm的峰值9779.3 N。无横向以及有夹角降低压力有横向以及无夹角90.9%。

  13. Effect of Nitrile Rubber on Properties of Cashew-modified Phenolic Resin-based Friction Materials%丁腈橡胶对腰果壳油改性酚醛树脂基摩擦材料性能的影响∗

    Institute of Scientific and Technical Information of China (English)

    李勃; 周计明; 齐乐华; 付业伟; 潘广镇

    2016-01-01

    In order to make Cashew shell oil( CNSL)⁃phenolic resin( PF) matrix friction material meet the demand for utilization in field of heavy machinery and equipment,based on the dry process,three groups of the Cashew shell oil⁃phe⁃nolic resin matrix friction materials secondly blending modified by different content of nitrile rubber( NBR) powder were prepared,and the specimens’ mechanical properties ,heat resistance ,friction and wear performance was discussed.Experi⁃mental results show that;the addition of NBR can improve the impact strength,reduce the elastic and shear modulus.As the content of NBR increases,heat resistance of the specimens gradually decline.Specimens with 10% NBR content could en⁃sure higher friction coefficient at relatively low temperature,while the specimens modified by 5% NBR content show lowest wear rate.%为使腰果壳油-酚醛树脂基摩擦材料满足重型机械和设备的使用要求,基于干法工艺,采用丁腈橡胶对腰果壳油-酚醛树脂进行共混二次改性,研究不同含量丁腈橡胶对摩擦材料力学性能、耐热性能、摩擦磨损性能的影响。结果表明:丁腈橡胶的加入能够提高摩擦材料的冲击强度,同时降低材料的弹性模量和剪切模量,但随着橡胶含量的增加,摩擦材料的耐热性逐渐下降;丁腈橡胶含量的增加会提升摩擦材料的摩擦因数稳定性并能够保证较高的低温摩擦因数,当橡胶质量分数5%时,摩擦材料表现出最好的抗磨损性能。

  14. 聚四氟乙烯及其石墨填充复合材料的摩擦磨损特性%FRICTION AND WEAR PROPERTIES OF PTFE AND ITS GRAPHITE FILLED COMPOSITE

    Institute of Scientific and Technical Information of China (English)

    何春霞; 康丽霞

    2001-01-01

    对聚四氟乙烯(PTFE)及石墨填充PTFE复合材料在不同载荷、不同润滑条件下,以及在不同对磨时间内的摩擦磨损性能进行了研究。结果表明,石墨填充PTFE的耐磨性比纯PTFE提高很多,不同的润滑条件对PTFE和石墨填充PTFE的磨损量及摩擦系数的影响不一样,对纯PTFE,其磨损量在水润滑条件下较小,而对石墨填充PTFE,其磨损量在油润滑条件下较小。%The friction and wear properties of PTFE and graphite filled PTFE were studied in different loads, lubrications and times,and these properties were analyzed and compared. The results showed that the wear resistance of graphite filled PTFE was much higher than the pure one, the influence of different lubricating conditions on the rate and friction coefficient of PTFE and graphite filled PTFE was different, the wear rate of pure FTFE was smaller under water lubrication and that of graphite filled PTFE was smaller under oil lubrication.

  15. Thick Low-Friction nc-MeC/a-C Nanocomposite Coatings on Ti-6Al-4V Alloy: Microstructure and Tribological Properties in Sliding Contact with a Ball

    Science.gov (United States)

    Zimowski, Sławomir; Moskalewicz, Tomasz; Wendler, Bogdan; Kot, Marcin; Czyrska-Filemonowicz, Aleksandra

    2014-08-01

    In this paper, we show that duplex surface treatment, combining oxygen diffusion hardening with the subsequent deposition of thick, low-friction nanocomposite nc-MeC/a-C coatings to improve the tribological properties of the Ti-6Al-4V alloy. We have synthesized, in a magnetron sputtering process, the nanocomposite nc-MeC/a-C coatings (where Me denotes W or Ti transition metal) consisting of two dissimilar materials (nanocrystallites of transition metal carbides MeC and an amorphous carbon matrix a-C). The nano and microstructure of the substrate material and coatings were examined with the use of scanning and transmission electron microscopy as well as by X-ray diffractometry. It was found that different carbide nanocrystals of the same transition metal were embedded in an amorphous carbon matrix of both coatings. The HRTEM analysis indicated that the volume fraction of tungsten carbides in the nc-WC/a-C coating was equal to 13 pct, whereas in the nc-TiC/a-C one the volume fraction of the titanium carbides was equal to just 3 pct. The tribological properties, hardness, and scratch resistance of the coatings were investigated as well. The coefficient of friction (COF) of the coatings during dry sliding against 6 mm diameter alumina ball reached very low value, 0.05, in comparison with an oxygen-hardened alloy, whose COF was equal to 0.8. This low-friction effect of the coatings has been attributed to the formation of a self-lubricating film in sliding contact. The coatings exhibited similar failure morphology in the scratch tests. Even though the hardness was rather low, the coatings exhibited a very good wear resistance during sliding friction. The wear rate of the nc-WC/a-C coating was equal to 0.08 × 10-6 mm3 N-1 m-1 and for the nc-TiC/a-C one it was 0.28 × 10-6 mm3 N-1 m-1.

  16. Effect of moisture content on compression mechanical properties and frictional characteristics of millet grain%不同含水率对谷子籽粒压缩力学性质与摩擦特性的影响

    Institute of Scientific and Technical Information of China (English)

    杨作梅; 孙静鑫; 郭玉明

    2015-01-01

    As the first grain of“five cereals”, millet is one of the favorite grain crops and has high nutritional value and high market demand. Millet grains can be mechanically damaged under compressive load and friction in the processes of seeding, threshing, storage, and transportation. Moisture content plays an important role to mechanical properties and frictional characteristics of millet grain. The previous researches on grains’ mechanical properties were mostly about big grain kernels, but small grain kernels like millet grain have been rarely studied. In this research, a typical millet grain in Shanxi Province, Jingu-21, was selected as test material. Compression tests were carried out using a texture analyzer. Millet grains were quasi-statically loaded in vertical orientation with 7 moisture content treatments i.e. 11.4%, 12.7%, 14.2%, 17.1%, 18.7%, 21.4%and 23.7%and 25 replicates per treatment. Compression mechanical properties of millet grain were measured in terms of damage force, deformation, and damage energy, and meanwhile elastic modulus and allowable compressive stress were calculated according to Hertz theory. The damage process was analyzed, and the force-deformation curve and the variations of mechanical properties with the moisture content were obtained. The test results showed that the moisture content had a significant effect on the compression mechanical properties. The force required for initiating grain rupture decreased from 19.457 to 11.732 N as the moisture content increased, and changed slowly when moisture content was lower than 12.7%and higher than 21.4%, but decreased rapidly with moisture content increasing from 14.2% to 21.4%. Deformation and damage energy decreased initially and increased subsequently as the moisture content increased. They reached their minimums at moisture content of 17.1%and 21.4%, respectively. Elastic modulus and allowable compressive stress linearly decreased with the increase of the moisture content and the

  17. Friction Stir Processing for Efficient Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Mr. Christopher B. Smith; Dr. Oyelayo Ajayi

    2012-01-31

    Friction at contacting surfaces in relative motion is a major source of parasitic energy loss in machine systems and manufacturing processes. Consequently, friction reduction usually translates to efficiency gain and reduction in energy consumption. Furthermore, friction at surfaces eventually leads to wear and failure of the components thereby compromising reliability and durability. In order to reduce friction and wear in tribological components, material surfaces are often hardened by a variety of methods, including conventional heat treatment, laser surface hardening, and thin-film coatings. While these surface treatments are effective when used in conjunction with lubrication to prevent failure, they are all energy intensive and could potentially add significant cost. A new concept for surface hardening of metallic materials and components is Friction Stir Processing (FSP). Compared to the current surface hardening technologies, FSP is more energy efficient has no emission or waste by products and may result in better tribological performance. FSP involves plunging a rotating tool to a predetermined depth (case layer thickness) and translating the FSP tool along the area to be processed. This action of the tool produces heating and severe plastic deformation of the processed area. For steel the temperature is high enough to cause phase transformation, ultimately forming hard martensitic phase. Indeed, FSP has been used for surface modification of several metals and alloys so as to homogenize the microstructure and refine the grain size, both of which led to improved fatigue and corrosion resistance. Based on the effect of FSP on near-surface layer material, it was expected to have beneficial effects on friction and wear performance of metallic materials. However, little or no knowledge existed on the impact of FSP concerning friction and wear performance the subject of the this project and final report. Specifically for steel, which is the most dominant

  18. Wet Friction-Elements Boundary Friction Mechanism and Friction Coefficient Prediction

    Directory of Open Access Journals (Sweden)

    WANG Yanzhong

    2012-12-01

    Full Text Available The friction mechanism for the boundary friction course of friction elements engagement was explicitly expressed. The boundary friction model was built up by the surface topography. The model contained the effect of boundary film, adhesion, plough and lubrication. Based on the model, a coefficient for weakening plough for the lubrication was proposed. The modified model could fit for the working condition of wet friction elements. The friction coefficient as a function curve of rotating speed could be finally obtained by the data k and s/sm. The method provides a well interpretation of friction condition and friction coefficient prediction and the agreement between theoretical and experimental friction coefficients is reasonably good.

  19. Energy Balance of Friction and Friction Coefficient in Energetical Interpretation

    Directory of Open Access Journals (Sweden)

    S.V. Fedorov

    2015-09-01

    Full Text Available Sliding friction energy model is proposed. In this model, generalized mechanism of transformation and dissipation of energy under friction the model of elastic-plastic deformation and fracture contact volumes is considered. Energy model of the process of plastic deformation and destruction of solid bodies is based on the concept of ergodynamic of deformable bodies. Equations of energy balance of friction within the structural and energetic interpretation of deformation are proposed. The energy interpretation of the coefficient of friction is showed. From this position the friction coefficient is the most informative characteristic of the process. Experimental friction curves have been generalized. As a result of the energy analysis of friction, the energy diagram of the structural evolution of the friction surfaces is suggested.

  20. Friction Reduction of Chrome-Coated Surface with Micro-Dimple Arrays Generated by Electrochemical Micromachining

    Science.gov (United States)

    Chen, Xiaolei; Qu, Ningsong; Hou, Zhibao; Wang, Xiaolei; Zhu, Di

    2017-02-01

    Surface coating and surface texture play a significant role in enhancing the tribological properties of mechanical components. In this study, to further improve the tribological properties of a chrome-coated surface, arrays of circular- and square-shaped micro-dimples were generated on chrome-coated surfaces via electrochemical machining. Through-mask electrochemical micromachining (TMEMM) is a popular electrochemical micromachining method for generating micro-dimple arrays. However, photolithography is a necessary process in conventional TMEMM before electrochemical micromachining, which is time-consuming and expensive when used in mass production. A reusable polydimethylsiloxane mask was introduced to prepare the micro-dimples. Circular micro-dimples of 120 μm diameter and square micro-dimples of 106 μm side length were fabricated on a chrome-coated surface. The results of friction tests indicated that at a load of 220 N, 10 μm deep micro-dimples reduced the coefficient of friction (CoF) significantly compared to an untextured surface. At a load of 320 and 420 N, the CoF continually decreased when the depth of the micro-dimples was increased from 0 to 20 μm. In addition, the results showed that, compared to circular micro-dimples, square micro-dimples contributed to a higher friction reduction ratio under the same conditions. The best friction reduction ratio was found for square dimples with a depth of 20 μm.

  1. Physics of Friction in Disposable Plastic Syringes

    Science.gov (United States)

    Liebmann-Vinson, A.; Vogler, E. A.; Martin, D. A.; Montgomery, D. B.; Sugg, H. W.; Monahan, L. A.

    1997-03-01

    Nosocomial applications of disposable plastic syringes demand excellent frictional behavior with no stick-slip over a broad velocity range and, simultaneously, a tight seal between stopper and barrel. However, when used in syringe pumps at slow injection speeds, stick-slip motion is frequently observed and high "break-out" forces are often necessary to initiate plunger movement after extended storage times. We have traced this frictional behavior to a velocity-dependent interaction between the elastomeric stopper and the plastic syringe barrel mediated by the syringe lubricant, almost universally a polydimethyl siloxane fluid. Lubricant properties were altered by crosslinking the surface of the silicone oil in an oxygen plasma. Changes in surface chemistry and morphology of the crosslinked oil were correlated with changes in frictional performance.

  2. Friction enhancement in concertina locomotion of snakes.

    Science.gov (United States)

    Marvi, Hamidreza; Hu, David L

    2012-11-07

    Narrow crevices are challenging terrain for most organisms and biomimetic robots. Snakes move through crevices using sequential folding and unfolding of their bodies in the manner of an accordion or concertina. In this combined experimental and theoretical investigation, we elucidate this effective means of moving through channels. We measure the frictional properties of corn snakes, their body kinematics and the transverse forces they apply to channels of varying width and inclination. To climb channels inclined at 60°, we find snakes use a combination of ingenious friction-enhancing techniques, including digging their ventral scales to double their frictional coefficient and pushing channel walls transversely with up to nine times body weight. Theoretical modelling of a one-dimensional n-linked crawler is used to calculate the transverse force factor of safety: we find snakes push up to four times more than required to prevent sliding backwards, presumably trading metabolic energy for an assurance of wall stability.

  3. Friction enhancement in concertina locomotion of snakes

    Science.gov (United States)

    Marvi, Hamidreza; Hu, David L.

    2012-01-01

    Narrow crevices are challenging terrain for most organisms and biomimetic robots. Snakes move through crevices using sequential folding and unfolding of their bodies in the manner of an accordion or concertina. In this combined experimental and theoretical investigation, we elucidate this effective means of moving through channels. We measure the frictional properties of corn snakes, their body kinematics and the transverse forces they apply to channels of varying width and inclination. To climb channels inclined at 60°, we find snakes use a combination of ingenious friction-enhancing techniques, including digging their ventral scales to double their frictional coefficient and pushing channel walls transversely with up to nine times body weight. Theoretical modelling of a one-dimensional n-linked crawler is used to calculate the transverse force factor of safety: we find snakes push up to four times more than required to prevent sliding backwards, presumably trading metabolic energy for an assurance of wall stability. PMID:22728386

  4. Frictional characteristics of the newer orthodontic elastomeric ligatures

    Directory of Open Access Journals (Sweden)

    A V Arun

    2011-01-01

    Full Text Available Introduction: Elastomeric ligatures reduce chairside time but increase friction. Polymeric coatings and 45° angulations have been introduced to the ligature modules to combat its disadvantages and reduce friction. This in vitro study compared the frictional characteristics of six different types of the most commonly used elastomeric modules. Materials and Methods: Thecoefficient of friction for six ligation methods: the non-coated Mini Stix† and coated Super Slick Mini Stix™ (TP Orthodontics, 45° angulated but non-coated Alastik Easy-To-Tie™ (3M Unitek elastomerics and non-angulated non-coated Alastik QuiK-StiK FNx01 , 0.110′- and 0.120′-diameter elastomerics™ (Reliance Orthodontics were measured in dry conditions utilizing a jig according to the protocol of Tidy. Results: A significant difference was observed between the various types of elastomeric ligatures (P<.01. Among the six types of elastomeric ligatures, the 45° angulated elastomeric ligatures produced the least friction, followed by the coated Super Slick† elastomers. No difference in the friction was noted when the diameter of the elastomeric ligatures was varied. Conclusions: Polymeric surface coatings and introduction of angulations into elastomeric ligatures reduce the friction during sliding; however, the diameter of the ligature made no difference to sliding friction.

  5. Mapping Instabilities in Polymer Friction

    Science.gov (United States)

    Rand, Charles; Crosby, Alfred

    2005-03-01

    Schallamach waves are instabilities that occur as interfaces between a soft elastomer and rigid surface slide past each other.(1) The presence of Schallamach waves can lead to drastic changes in frictional properties. Although the occurrence of Schallamach waves has been studied for the past several decades, a general map relating fundamental material properties, geometry, and operating conditions (i.e. speed and temperature) has not been established. Using a combinatorial approach, we illustrate the role of modulus, testing velocity and surface energetics of crosslinked poly(dimethyl siloxane) on the generation Schallamach waves. This knowledge will be used with polymer patterning processes to fabricate responsive coatings for applications such as anti-fouling coatings. (1)Schallamach, A.;Wear 1971,17, 301-312.

  6. Influence of Stress History on Elastic and Frictional Properties of Core Material from IODP Expeditions 315 and 316, NanTroSEIZE Transect: Implications for the Nankai Trough Accretionary Prism

    Science.gov (United States)

    Knuth, M. W.; Tobin, H. J.; Marone, C.; Saffer, D. M.; Hashimoto, Y.

    2009-12-01

    We present results of ultrasonic P and S-wave velocity measurements on core material recovered during NanTroSEIZE Stage 1 Expeditions 315 and 316 to the Nankai Trough Accretionary Margin, focusing on how different stress paths during subduction and exhumation along regional thrust faults influence the elastic moduli and anisotropy of various components of the accretionary prism. The influence of changes in pore pressure and confining pressure on the elastic properties of prism material has important implications for its mechanical strength, and understanding how elastic properties change along various stress paths will help us use 3D seismic tomography to draw inferences about overpressurization and fluid flow within the accretionary prism. We compare the velocities measured during shipboard physical properties characterization and logging-while-drilling data from Expedition 314 with 3D seismic velocity data and the results of previous shore-based studies to establish in situ conditions for material at various locations within the prism. We test both intact core material and disaggregated gouge and unlithified sediments from the upper prism, subjecting both samples types to a progression of confining pressure, pore pressure, and axial loading conditions representing normal consolidation and overconsolidation stress paths due to compaction and dewatering during burial and subsequent uplift by thrust faulting. While making continuous ultrasonic velocity measurements to determine changes in dynamic and quasistatic elastic moduli during axial and isotropic loading, we also subject granular material to frictional shear in a biaxial double-direct shearing configuration to measure how its frictional properties vary as a function of stress history.

  7. Effect ofSr modification on friction and wear properties of ADC12 alloy%Sr变质对ADC12合金摩擦磨损性能的影响

    Institute of Scientific and Technical Information of China (English)

    王志伟; 闫洪; 熊俊杰

    2016-01-01

    利用MMD−1型销盘式磨损试验机,采用OM、SEM和EDS研究不同负载对Sr变质ADC12合金的摩擦磨损性能的影响,并探究其与合金显微组织及力学性能的关系。结果表明:当添加0.05%Sr(质量分数)时,合金显微组织中共晶Si相以颗粒状或纤维状均匀分布在晶界,富铁相则呈短棒状,此时合金力学性能最佳,且同一负载下其磨损量和摩擦因数均最低。当负载为100N时,因受到严重挤压变形,合金表面氧化膜发生破坏;基体合金以塑性屈服和严重剥层磨损为主要磨损机理;而当Sr添加量为0.05%时,合金的磨损程度最低,以粘着磨损和磨粒磨损为主要磨损机理,其摩擦磨损性能最优异。%The effect of applied load on the friction and wear properties of Sr modified ADC12 alloys, and its relationship with microstructure and mechanical properties were investigated byMMD-1 pin-on-disc wear testing machine, OM, SEM and EDS. The results show that, in the microstructure of alloy modified with 0.05%Sr(mass fraction), eutectic Si phases distribute uniformly at grain boundaries in morphologies of particle-like or fiber-like, and shape of Fe-rich intermetallics transformsto short rod-like, giving rise mechanical properties to the highest. Also the alloy wear volume and friction coefficient reach to the lowest under invariable load. At 100N, oxide films on worn surface arebroken due to the serious extruded deformation. Plastic yielding and severe delamination are mainly in the matrix alloy, while adhesive and abrasive wear characterize in the modified alloy with 0.05%Sr. The wear degree of the latter one is the minimum, and its friction and wear properties are the optimal.

  8. STUDIES OF THE REDUCTION OF PIPE FRICTION WITH THE NON-NEWTONIAN ADDITIVE CMC,

    Science.gov (United States)

    water can remarkably reduce the frictional resistance to flow. The material sodium carboxymethylcellulose was added to fresh water and subjected to...pipe friction tests under a wide range of shear rates, additive concentration, and temperature conditions. The frictional data are characterized by application of the power law expression for non-Newtonian fluids. (Author)

  9. Along-strike variations in fault frictional properties along the San Andreas Fault near Cholame, California from joint earthquake and low-frequency earthquake relocations

    Science.gov (United States)

    Harrington, R.M; Cochran, Elizabeth S.; Griffiths, E.M.; Zeng, X.; Thurber, C.

    2016-01-01

    Recent observations of low‐frequency earthquakes (LFEs) and tectonic tremor along the Parkfield–Cholame segment of the San Andreas fault suggest slow‐slip earthquakes occur in a transition zone between the shallow fault, which accommodates slip by a combination of aseismic creep and earthquakes (35  km depth). However, the spatial relationship between shallow earthquakes and LFEs remains unclear. Here, we present precise relocations of 34 earthquakes and 34 LFEs recorded during a temporary deployment of 13 broadband seismic stations from May 2010 to July 2011. We use the temporary array waveform data, along with data from permanent seismic stations and a new high‐resolution 3D velocity model, to illuminate the fine‐scale details of the seismicity distribution near Cholame and the relation to the distribution of LFEs. The depth of the boundary between earthquakes and LFE hypocenters changes along strike and roughly follows the 350°C isotherm, suggesting frictional behavior may be, in part, thermally controlled. We observe no overlap in the depth of earthquakes and LFEs, with an ∼5  km separation between the deepest earthquakes and shallowest LFEs. In addition, clustering in the relocated seismicity near the 2004 Mw 6.0 Parkfield earthquake hypocenter and near the northern boundary of the 1857 Mw 7.8 Fort Tejon rupture may highlight areas of frictional heterogeneities on the fault where earthquakes tend to nucleate.

  10. GCL与黏土接触面摩擦特性试验研究%Test and Analysis on Factors Influencing GCL-clay Interface Frictional Properties

    Institute of Scientific and Technical Information of China (English)

    李雪宁; 田正宏; 孟思宇

    2011-01-01

    Frictional parameters of interface for GCL-different underlayer were measured by using tilting table device,which could simulate stress state of slope liner system in low stress condition.Test results indicated that frictional behavior was influenced by water ratio, compaction rate of soil underlayer, and hydration condition of GCL.Beneficial proposals were given to design and construction of slope liner system in practical project according to analyzing test results.%采用自制斜板仪,模拟低应力条件下边坡衬垫系统受力状态,测量了GCL与不同下垫层接触面的摩擦特性参数.试验结果表明,下垫层土体含水率、密实程度及GCL水化条件等因素对接触面摩擦特性均产生一定影响.通过分析试验结果,对实际工程中边坡衬垫系统的设计和施工提出建议.

  11. Along-strike variations in fault frictional properties along the San Andreas Fault near Cholame, California from joint earthquake and low-frequency earthquake relocations

    Science.gov (United States)

    Harrington, Rebecca M.; Cochran, Elizabeth S.; Griffiths, Emily M.; Zeng, Xiangfang; Thurber, Clifford H.

    2016-01-01

    Recent observations of low‐frequency earthquakes (LFEs) and tectonic tremor along the Parkfield–Cholame segment of the San Andreas fault suggest slow‐slip earthquakes occur in a transition zone between the shallow fault, which accommodates slip by a combination of aseismic creep and earthquakes (fault, which accommodates slip by stable sliding (>35  km depth). However, the spatial relationship between shallow earthquakes and LFEs remains unclear. Here, we present precise relocations of 34 earthquakes and 34 LFEs recorded during a temporary deployment of 13 broadband seismic stations from May 2010 to July 2011. We use the temporary array waveform data, along with data from permanent seismic stations and a new high‐resolution 3D velocity model, to illuminate the fine‐scale details of the seismicity distribution near Cholame and the relation to the distribution of LFEs. The depth of the boundary between earthquakes and LFE hypocenters changes along strike and roughly follows the 350°C isotherm, suggesting frictional behavior may be, in part, thermally controlled. We observe no overlap in the depth of earthquakes and LFEs, with an ∼5  km separation between the deepest earthquakes and shallowest LFEs. In addition, clustering in the relocated seismicity near the 2004 Mw 6.0 Parkfield earthquake hypocenter and near the northern boundary of the 1857 Mw 7.8 Fort Tejon rupture may highlight areas of frictional heterogeneities on the fault where earthquakes tend to nucleate.

  12. The Friction and Wear Properties of CrN, Graphit-iC and Dymon-iC Coatings in Air and under Oil-lubrication.

    Institute of Scientific and Technical Information of China (English)

    J. Stallard; S. Yang; D.G. Teer

    2004-01-01

    Hard ceramic coatings such as TiN and CrN are very successful and are widely used in improving the performance of cutting and forming tools, but they are less successful in providing protection for general machine components, such as gears and engine parts. The development of low-friction wear resistant coatings that can run dry or in a minimum amount of oil is becoming increasingly important to this industry. Two recently developed carbon-based coatings Graphit-iCTM and Dymon-iC, which are shown to exhibit very high sliding wear resistance and low friction in dry conditions, are compared to a CrN coating under oil lubricated conditions. Long term pin-on-disc tests using a chrome steel counterface ball were carried out on coated HSS test samples. All the coatings performed well at very high applied contact pressures, exceeding 1.5 GPa, but the Graphit-iCTM and Dymon-iC coatings also exhibited the desirable characteristic of protecting the counterface material. Reasons for this behaviour are discussed.

  13. Influence of Polyalkylmethacrylate VIIs on Boundary Film Formation,Friction,Wear and Efficiency of Lubricants

    Institute of Scientific and Technical Information of China (English)

    Michael Müller; Hugh Spikes; Alex Tsay

    2006-01-01

    Polyalkylmethacrylates (PAMAs) are well-known as viscosity index improvers and dispersant boosters. This paper shows that PAMAs are able to adsorb from oil solution on to metal surfaces, to produce thick, viscous boundary films.These films enhance lubricant film formation in slow speed and high temperature conditions and thus produce a significant reduction of friction. A systematic study of this phenomenon has made use of the highly flexible nature of PAMA chemistry. A range of dispersant and non-dispersant polymethacrylates has been synthesized. The influence of different functionalities, molecular weights and architectures on both boundary film formation and friction has been explored using optical interferometry and friction-speed charting. From the results, guidelines have been developed for designing PAMAs having optimal boundary lubricating properties.Through their ability to form boundary films PAMAs can significantly contribute to reduce wear in engine, gear and hydraulic lubrication. As a consequence of their viscometric and tribological performance PAMAs can furthermore improve fuel and energy efficiency in different, namely engine and hydraulic applications.Extensive work is currently conducted in the lubricant industry to develop engine oils with lower sulfur, phosphorus and metal content (low SAPS) and to optimize their frictional properties through the use of friction modifiers or synthetic base stocks. We have investigated the contribution of PAMA viscosity index improvers and boosters to improve fuel economy and to reduce wear levels. This paper reports our efforts to develop a new range of PAMAs that have been optimized in terms of composition, architecture, molecular weight and functionality and which can be used in low viscosity, low SAPS formulations to help meet the stringent requirements of modern engine oils.

  14. Friction and Wear Behaviors of Nano-Silicates in Water

    Institute of Scientific and Technical Information of China (English)

    Chen Boshui; Lou Fang; Fang Jianhua; Wang Jiu; Li Jia

    2009-01-01

    Nano-metric magnesium silicate and zinc silicate with particle size of about 50--70nm were prepared in water by the method of chemical deposition. The antiwear and friction reducing abilities of the nano-silicates, as well as their compos-ites with oleie acid tri-ethanolamine (OATEA), were evaluated on a four-ball friction tester. The topographies and tribochemical features of the worn surfaces were analyzed by scanning electron microscope (SEM) and X-ray photoelectron spectroscope (XPS). Results show that nano-silicates alone provide poor antiwear and friction reducing abilities in water, but exhibits excellent synergism with OATEA in reducing friction and wear. The synergism in reducing friction and wear between naao-silicates and OATEA does exist almost regardless of particle sizes and species, and may be attributed, on one hand, to the formation of an adsorption film of OATEA, and, on the other hand, to the formation oftdbochemical species of silicon dioxide and iron oxides on the friction surfaces. Tribo-reactions and tribo-adsorptions of nano-silicates and OATEA would produce hereby an effective composite boondary lubrication film, which could efficiently enhance the anti-wear and friction-reducing abilities of water.

  15. Intelligent Flow Friction Estimation

    Directory of Open Access Journals (Sweden)

    Dejan Brkić

    2016-01-01

    Full Text Available Nowadays, the Colebrook equation is used as a mostly accepted relation for the calculation of fluid flow friction factor. However, the Colebrook equation is implicit with respect to the friction factor (λ. In the present study, a noniterative approach using Artificial Neural Network (ANN was developed to calculate the friction factor. To configure the ANN model, the input parameters of the Reynolds Number (Re and the relative roughness of pipe (ε/D were transformed to logarithmic scales. The 90,000 sets of data were fed to the ANN model involving three layers: input, hidden, and output layers with, 2, 50, and 1 neurons, respectively. This configuration was capable of predicting the values of friction factor in the Colebrook equation for any given values of the Reynolds number (Re and the relative roughness (ε/D ranging between 5000 and 108 and between 10−7 and 0.1, respectively. The proposed ANN demonstrates the relative error up to 0.07% which had the high accuracy compared with the vast majority of the precise explicit approximations of the Colebrook equation.

  16. Skin tribology: Science friction?

    NARCIS (Netherlands)

    Heide, van der E.; Zeng, X.; Masen, M.A.

    2013-01-01

    The application of tribological knowledge is not just restricted to optimizing mechanical and chemical engineering problems. In fact, effective solutions to friction and wear related questions can be found in our everyday life. An important part is related to skin tribology, as the human skin is fre

  17. Gravitomagnetic dynamical friction

    CERN Document Server

    Cashen, Benjamin; Kesden, Michael

    2016-01-01

    A supermassive black hole moving through a field of stars will gravitationally scatter the stars, inducing a backreaction force on the black hole known as dynamical friction. In Newtonian gravity, the axisymmetry of the system about the black hole's velocity $\\mathbf{v}$ implies that the dynamical friction must be anti-parallel to $\\mathbf{v}$. However, in general relativity the black hole's spin $\\mathbf{S}$ need not be parallel to $\\mathbf{v}$, breaking the axisymmetry of the system and generating a new component of dynamical friction similar to the Lorentz force $\\mathbf{F} = q\\mathbf{v} \\times \\mathbf{B}$ experienced by a particle with charge $q$ moving in a magnetic field $\\mathbf{B}$. We call this new force gravitomagnetic dynamical friction and calculate its magnitude for a spinning black hole moving through a field of stars with Maxwellian velocity dispersion $\\sigma$, assuming that both $v$ and $\\sigma$ are much less than the speed of light $c$. We use post-Newtonian equations of motion accurate to $...

  18. Friction and Wear Behaviors of Nanostructured Metals

    Institute of Scientific and Technical Information of China (English)

    Zhong HAN; Yusheng ZHANG; Ke LU

    2008-01-01

    Nanostructured (ns) materials, i.e., polycrystalline materials with grain sizes in the nanometer regime (typically below 100 nm), have drawn considerable attention in the past decades due to their unique properties such as high strength and hardness. Wear resistance of ns materials, one of the most important properties for engineering materials, has been extensively investigated in the past decades. Obvious differences have been identified in friction and wear behaviors Between the ns materials and their corresponding coarse-grained (cg) counterparts, consistently correlating with their unique structure characteristics and mechanical properties. On the other hand, the superior tribological properties of ns materials illustrate their potential applications under contact loads. The present overview will summarize the important progresses achieved on friction and wear behaviors of ns metallic materials, including ultrafine-grained (ufg) materials in recent years. Tribological properties and effects on friction and wear behaviors of ns materials will be discussed under different wear conditions including abrasive wear, sliding wear, and fretting wear. Their correlations with mechanical properties will be analyzed. Perspectives on development of this field will be highlighted as well.

  19. Experimentation Toward the Analysis of Gear Noise Sources Controlled by Sliding Friction and Surface Roughness

    Science.gov (United States)

    Asnani, Vivake M.

    2004-01-01

    In helicopters and other rotorcraft, the gearbox is a major source of noise and vibration (N&V). The two N&V excitation mechanisms are the relative displacements between mating gears (transmission errors) and the friction associated with sliding between gear teeth. Historically, transmission errors have been minimized via improved manufacturing accuracies and tooth modifications. Yet, at high torque loads, noise levels are still relatively high though transmission errors might be somewhat minimal. This suggests that sliding friction is indeed a dominant noise source for high power density rotorcraft gearboxes. In reality, friction source mechanism is associated with surface roughness, lubrication regime properties, time-varying friction forces/torques and gear-mesh interface dynamics. Currently, the nature of these mechanisms is not well understood, while there is a definite need for analytical tools that incorporate sliding resistance and surface roughness, and predict their effects on the vibro- acoustic behavior of gears. Toward this end, an experiment was conducted to collect sound and vibration data on the NASA Glenn Gear-Noise Rig. Three iterations of the experiment were accomplished: Iteration 1 tested a baseline set of gears to establish a benchmark. Iteration 2 used a gear-set with low surface asperities to reduce the sliding friction excitation. Iteration 3 incorporated low viscosity oil with the baseline set of gears to examine the effect of lubrication. The results from this experiment will contribute to a two year project in collaboration with the Ohio State University to develop the necessary mathematical and computer models for analyzing geared systems and explain key physical phenomena seen in experiments. Given the importance of sliding friction in the gear dynamic and vibro-acoustic behavior of rotorcraft gearboxes, there is considerable potential for research & developmental activities. Better models and understanding will lead to quiet and

  20. In situ thermally reduced graphene oxide/epoxy composites: thermal and mechanical properties

    Science.gov (United States)

    Olowojoba, Ganiu B.; Eslava, Salvador; Gutierrez, Eduardo S.; Kinloch, Anthony J.; Mattevi, Cecilia; Rocha, Victoria G.; Taylor, Ambrose C.

    2016-10-01

    Graphene has excellent mechanical, thermal, optical and electrical properties and this has made it a prime target for use as a filler material in the development of multifunctional polymeric composites. However, several challenges need to be overcome to take full advantage of the aforementioned properties of graphene. These include achieving good dispersion and interfacial properties between the graphene filler and the polymeric matrix. In the present work, we report the thermal and mechanical properties of reduced graphene oxide/epoxy composites prepared via a facile, scalable and commercially viable method. Electron micrographs of the composites demonstrate that the reduced graphene oxide (rGO) is well dispersed throughout the composite. Although no improvements in glass transition temperature, tensile strength and thermal stability in air of the composites were observed, good improvements in thermal conductivity (about 36 %), tensile and storage moduli (more than 13 %) were recorded with the addition of 2 wt% of rGO.

  1. Reduction of Friction of Metals Using Laser-Induced Periodic Surface Nanostructures

    Directory of Open Access Journals (Sweden)

    Zhuo Wang

    2015-10-01

    Full Text Available We report on the effect of femtosecond-laser-induced periodic surface structures (LIPSS on the tribological properties of stainless steel. Uniform periodic nanostructures were produced on AISI 304L (American Iron and Steel Institute steel grade steel surfaces using an 800-nm femtosecond laser. The spatial periods of LIPSS measured by field emission scanning electron microscopy ranged from 530 to 570 nm. The tribological properties of smooth and textured surfaces with periodic nanostructures were investigated using reciprocating ball-on-flat tests against AISI 440C balls under both dry and starved oil lubricated conditions. The friction coefficient of LIPSS covered surfaces has shown a lower value than that of the smooth surface. The induced periodic nanostructures demonstrated marked potential for reducing the friction coefficient compared with the smooth surface.

  2. Thermophysical and mechanical properties of Fe-(8-9)%Cr reduced activation steels

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J.; Robertson, J.P.; Klueh, R.L. [Oak Ridge National Lab., TN (United States)

    1998-09-01

    The key thermophysical and mechanical properties for 8--9%Cr reduced activation ferritic/martensitic steels are summarized, including temperature-dependent tensile properties in the unirradiated and irradiated conditions, stress-rupture behavior, elastic constants, thermal conductivity, thermal expansion, specific heat, and ductile-to-brittle transition temperature. The estimated lower and upper temperatures limits for structural applications are 250 and 550 C due to radiation hardening/embrittlement and thermal creep considerations, respectively.

  3. Optimum design of brake friction material using hybrid entropy-GRA approach

    Directory of Open Access Journals (Sweden)

    Kumar Naresh

    2016-01-01

    Full Text Available The effect of Kevlar and natural fibres on the performance of brake friction materials was evaluated. Four friction material specimens were developed by varying the proportion of Kevlar and natural fibres. Two developed composite contained 5-10 wt.% of Kevlar fibre while in the other two the Kevlar fibre was replaced with same amount of natural fibre. SAE J661 protocol was used for the assessment of the tribological properties on a Chase testing machine. Result shows that the specimens containing Kevlar fibres shows higher friction and wear performance, whereas Kevlar replacement with natural fibre resulted in improved fade, recovery and friction fluctuations. Further hybrid entropy-GRA (grey relation analysis approach was applied to select the optimal friction materials using various performance defining attributes (PDA including friction, wear, fade, recovery, friction fluctuations and cost. The friction materials with 10 wt% of natural fibre exhibited the best overall quality.

  4. Weldability of AISI 304 to copper by friction welding

    Energy Technology Data Exchange (ETDEWEB)

    Kirik, Ihsan [Batman Univ. (Turkey); Balalan, Zulkuf [Firat Univ., Elazig (Turkey)

    2013-06-01

    Friction welding is a solid-state welding method, which can join different materials smoothly and is excessively used in manufacturing industry. Friction welding method is commonly used in welding applications of especially cylindrical components, pipes and materials with different properties, for which other welding methods remain incapable. AISI 304 stainless steel and a copper alloy of 99.6 % purity were used in this study. This couple was welded in the friction welding machine. After the welding process, samples were analyzed macroscopically and microscopically, and their microhardness was measured. Tensile test was used to determine the bond strength of materials that were joined using the friction welding method. At the end of the study, it was observed that AISI 304 stainless steel and copper could be welded smoothly using the friction welding method and the bond strength is close to the tensile strength of copper. (orig.)

  5. Measurement of Normal and Friction Forces in a Rolling Process

    DEFF Research Database (Denmark)

    Henningsen, Poul; Arentoft, Mogens; Wanheim, Tarras

    2004-01-01

    For the rolling process, knowledge about interface conditions is important since it directly influences the maximum reduction ratio and thereby the num-ber of steps required for a given reduction. The mechanical properties of the produced sheet and the surface quality of it are also influenced...... by the fric-tion conditions. To achieve this important informa-tion, measurements of the normal pressure and friction stresses in the deformation zone are re-quested. The direction of the friction stresses is changing during the rolling gap. At the entrance of the de-formation zone, the peripherical velocity...... of the roll is higher than for the incoming material, which causes frictional stresses at the material acting in the rolling direction. At the outlet of the rolling gap, the velocity of the deformed material exceeds the velocity of the roll, generating frictional stresses contrary to the direction of rolling...

  6. Dynamic SEM wear studies of tungsten carbide cermets. [friction and wear experiments

    Science.gov (United States)

    Brainard, W. A.; Buckley, D. H.

    1975-01-01

    Dynamic friction and wear experiments were conducted in a scanning electron microscope. The wear behavior of pure tungsten carbide and composite with 6 and 15 weight percent cobalt binder was examined, and etching of the binder was done to selectively determine the role of the binder in the wear process. Dynamic experiments were conducted as the tungsten carbide (WC) and bonded WC cermet surfaces were transversed by a 50 micron radiused diamond stylus. These studies show that the predominant wear process in WC is fracture initiated by plastic deformation, and the wear of the etched cermets is similar to pure WC. The presence of the cobalt binder reduces both friction and wear. The cementing action of the cobalt reduces granular separation, and promotes a dense polished layer because of its low shear strength film-forming properties. The wear debris generated from unetched surface is approximately the same composition as the bulk.

  7. Friction Stir Welding of ODS and RAFM Steels

    Science.gov (United States)

    Yu, Zhenzhen; Feng, Zhili; Hoelzer, David; Tan, Lizhen; Sokolov, Mikhail A.

    2015-09-01

    Advanced structural materials such as oxide dispersion strengthened steels and reduced-activation ferritic/martensitic steels are desired in fusion reactors as primary candidate materials for first wall and blanket structures, due to their excellent radiation and high-temperature creep resistance. However, their poor fusion weldability has been the major technical challenge limiting practical applications. For this reason, solid-state friction stir welding (FSW) has been considered for such applications. In this work, the effect of FSW parameters on joining similar and dissimilar advanced structural steels was investigated. Scanning electron microscopy and electron backscatter diffraction methods were used to reveal the effects of FSW on grain size, micro-texture distribution, and phase stability. Hardness mapping was performed to evaluate mechanical properties. Post weld heat treatment was also performed to tailor the microstructure in the welds in order to match the weld zone mechanical properties to the base material.

  8. Microstructure Evolution during Friction Stir Spot Welding of TRIP steel

    DEFF Research Database (Denmark)

    Lomholt, Trine Colding

    Transformation Induced Plasticity (TRIP) steels have been developed for automotive applications due to the excellent high strength and formability. The microstructure of TRIP steels is a complex mixture of various microstructural constituents; ferrite, bainite, martensite and retained austenite....... The TRIP effect is activated under the influence of an external load, thereby leading to a martensitic transformation of the retained austenite. This transformation induced plasticity contributes to the excellent mechanical properties of this class of steels and provides high tensile strength without...... and thereby reduced weight of the vehicles. One of the limitations for the wide application of TRIP steel is associated with joining, since so far no method has succeeded in joining TRIP steel, without comprising the steel properties. In this study, the potential of joining TRIP steel with Friction Stir Spot...

  9. Effects of the tool rotational speed and shoulder penetration depth on mechanical properties and failure modes of friction stir spot welds of aluminum 2024-T3 sheets

    Energy Technology Data Exchange (ETDEWEB)

    Paidar, Moslem; Khodabandeh, Alireza; Najafi, Hamidreza [Islamic Azad University, Tehran (Iran, Islamic Republic of); Roughaghdam, Alireza Sabour [Tarbiat Modares University, Tehran (Iran, Islamic Republic of)

    2014-12-15

    In this work, friction stir spot welding with 1.6 mm thickness of the 2024-T3 aluminum alloy is carried out. The effects of the tool rotational speed and shoulder penetration depth on surface appearance, macrostructure, temperature profile, maximum failure load and failure modes are investigated. Results show that, the effect of the tool rotational speed on maximum tensile shear load is similar to the effect of the shoulder penetration depth, increasing tool rotational speed and shoulder penetration depth resulted in the increase of the tensile shear load. Maximum load of about 8282 N is obtained by using 1000 rpm rotational speed and 0.7 mm shoulder penetration depth. Observation of the failed specimens indicates two types of failure modes under tensile shear loading, the shear fracture that occurs in low shoulder penetration depths and tensile shear fracture that occurs in high shoulder penetration depths.

  10. Study of nonlinear absorption properties of reduced graphene oxide by Z-scan technique

    Science.gov (United States)

    Sreeja, V. G.; Vinitha, G.; Reshmi, R.; Anila, E. I.; Jayaraj, M. K.

    2017-05-01

    Graphene has generated enormous research interest during the last decade due to its significant unique properties and wide applications in the field of optoelectronics and photonics. This research studied the structural and nonlinear absorption properties of reduced graphene oxide (rGO) synthesized by Modified Hummer's method. Structural and physiochemical properties of the rGO were explored with the help of Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy (Raman). Nonlinear absorption property in rGO, was investigated by open aperture Z-scan technique by using a continuous wave (CW) laser. The Z-scan results demonstrate saturable absorption property of rGO with a nonlinear absorption coefficient, β, of -2.62 × 10-4 cm/W, making it suitable for applications in Q switching, generation of ultra-fast high energy pulses in laser cavity and mode lockers.

  11. Scale effects in sliding friction: An experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Blau, P.J.

    1991-07-24

    Solid friction is considered by some to be a fundamental property of two contacting materials, while others consider it to be a property of the larger tribosystem in which the materials are contained. A set of sliding friction experiments were designed to investigate the hypothesis that the unlubricated sliding friction between two materials is indeed a tribosystems-related property and that the relative influence of the materials properties or those of the machine on friction varies from one situation to another. Three tribometers were used: a friction microprobe (FMP), a typical laboratory-scale reciprocating pin-on-flat device, and a heavy-duty commercial wear tester. The slider material was stainless steel (AISI 440C) and the flat specimen material was an ordered alloy of Ni{sub 3}Al (IC-50). Sphere-on-flat geometry was used at ambient conditions and at normal forces ranging from 0.01 N to 100 N and average sliding velocities of 0.01 to 100.0 mm/s. The nominal, steady-state sliding friction coefficient tended to decrease with increases in normal force for each of the three tribometers, and the steady state value of sliding friction tended to increase as the mass of the machine increased. The variation of the friction force during sliding was also a characteristic of the test system. These studies provide further support to the idea that the friction of both laboratory-scale and engineering tribosystems should be treated as a parameter which may take on a range of characteristic values and not conceived as having a single, unique value for each material pair.

  12. Friction Stir Welding of Shipbuilding Steel with Primer

    Directory of Open Access Journals (Sweden)

    José Azevedo

    2016-03-01

    Full Text Available Abstract Friction Stir Welding has proven its merits for welding of aluminium alloys and is focused in expanding its material database to steel and titanium and also to assess new joint configurations. The use of welded structures in shipbuilding industry has a long tradition and continuously seeks for innovation in terms of materials and processes maintaining, or even, reducing costs. Several studies have been performed in the past years on FSW of steel. However, just recently were reported defect-free welds, free of martensite with stable parameters in steel without Primer. FSW of steel with primer has not been addressed. This work aims to fulfil a knowledge gap related to the use of friction stir for welding shipbuilding steel by analysing the effect of welding parameters on the metallurgical characteristics and mechanical properties of welds obtained with an innovative FSW tool in joining steel plates with a primer. Welds were performed in 4mm thick GL-A36 steel plates painted with a zinc based primer followed by a detailed microscopic, chemical and mechanical analysis. The results that matching fatigue properties are obtained using this technique, in FSW of shipbuilding steel with Primer.

  13. Friction and wear behavior of carbon fiber reinforced brake materials

    Institute of Scientific and Technical Information of China (English)

    Du-qing CHENG; Xue-tao WANG; Jian ZHU; Dong-bua QIU; Xiu-wei CHENG; Qing-feng GUAN

    2009-01-01

    A new composite brake material was fabri-cated with metallic powders, barium sulphate and modified phenolic resin as the matrix and carbon fiber as the reinforced material. The friction, wear and fade character-istics of this composite were determined using a D-MS friction material testing machine. The surface structure of carbon fiber reinforced friction materials was analyzed by scanning electronic microscopy (SEM). Glass fiber-reinforced and asbestos fiber-reinforced composites with the same matrix were also fabricated for comparison. The carbon fiber-reinforced friction materials (CFRFM) shows lower wear rate than those of glass fiber- and asbestos fiber-reinforced composites in the temperature range of 100℃-300℃. It is interesting that the frictional coefficient of the carbon fiber-reinforced friction materials increases as frictional temperature increases from 100℃ to 300℃, while the frictional coefficients of the other two composites decrease during the increasing temperatures. Based on the SEM observation, the wear mechanism of CFRFM at low temperatures included fiber thinning and pull-out. At high temperature, the phenolic matrix was degraded and more pull-out enhanced fiber was demonstrated. The properties of carbon fiber may be the main reason that the CFRFM possess excellent tribological performances.

  14. The behaviour of molybdenum dialkyldithiocarbamate friction modifier additives

    CERN Document Server

    Graham, J C H

    2001-01-01

    In recent years there has been growing concern to produce energy-efficient lubricated components and modem engine oil specifications require lubricants to demonstrate fuel efficiency in standardised engine tests. One important method of producing low friction and thus fuel-efficient lubricants is to use oil-soluble, molybdenum-containing, friction modifier additives. In optimal conditions these additives are able to produce very low friction coefficients, in the range 0.045 to 0.075 in boundary lubrication conditions. Very little is known about the chemical and physical mechanisms by which oil soluble molybdenum additives form low friction films in tribological contacts. Information about their activity could lead to optimal use of these additives in lubricants and, therefore, more efficient engine running. The work outlined in this thesis investigated the behaviour of oil-soluble molybdenum additives and showed that these additives were able to effectively reduce friction in the absence of other additives su...

  15. Studying properties of carbonaceous reducers and process of forming primary titanium slags

    Directory of Open Access Journals (Sweden)

    T. K. Balgabekov

    2014-10-01

    Full Text Available When smelting a rich titanium slag the most suitable are low-ash reducers, and the studies revealed the suitability for this purpose of special coke and coal. An important property of a reducer is its specific resistance. Therefore there were carried out studies for measuring electric resistance of briquettes consisting of ilmenite concentrate and different carbonaceous reducers. It is recommended to jointly smelt the briquetted and powdered burden (the amount of the powdered burden varies form 20 tо 50 %, this leads to the increase of technical-economic indicators of the process.

  16. Electronic and transport properties of reduced and oxidized nanocrystalline TiO2 films

    Science.gov (United States)

    Rothschild, A.; Komem, Y.; Levakov, A.; Ashkenasy, N.; Shapira, Yoram

    2003-01-01

    Electronic properties of reduced (vacuum-annealed) and oxidized (air-annealed) TiO2 films were investigated by in situ conductivity and current-voltage measurements as a function of the ambient oxygen pressure and temperature, and by ex situ surface photovoltage spectroscopy. The films were quite conductive in the reduced state but their resistance drastically increased upon exposure to air at 350 °C. In addition, the surface potential barrier was found to be much larger for the oxidized versus the reduced films. This behavior may be attributed to the formation of surface and grain boundary barriers due to electron trapping at interface states associated with chemisorbed oxygen species.

  17. Friction in rail guns

    Science.gov (United States)

    Kay, P. K.

    1984-01-01

    The influence of friction is included in the present equations describing the performance of an inductively driven rail gun. These equations, which have their basis in an empirical formulation, are applied to results from two different experiments. Only an approximate physical description of the problem is attempted, in view of the complexity of details in the interaction among forces of this magnitude over time periods of the order of milisecs.

  18. Friction reduction using discrete surface textures: principle and design

    Science.gov (United States)

    Hsu, Stephen M.; Jing, Yang; Hua, Diann; Zhang, Huan

    2014-08-01

    There have been many reports on the use of dimples, grooves, and other surface textures to control friction in sliding interfaces. The effectiveness of surface textures in friction reduction has been demonstrated in conformal contacts under high speed low load applications such as mechanical seals and automotive water pump seals, etc., resulting in reduced friction and longer durability. For sliding components with higher contact pressures or lower speeds, conflicting results were reported. Reasons for the inconsistency may be due to the differences in texture fabrication techniques, lack of dimple size and shape uniformity, and different tester used. This paper examines the basic principles on which surface textural patterns influence friction under the three principle lubrication regimes: hydrodynamic, elastohydrodynamic, and boundary lubrication regimes. Our findings suggest that each regime requires specific dimple size, shape, depth, and areal density to achieve friction reduction. Control experiments were also conducted to explore mechanisms of friction reduction. The dimple geometric shape and the dimple's orientation with respect to the sliding direction influence friction significantly. The underlying mechanisms for friction control via textures are discussed.

  19. Biomechanics of iliotibial band friction syndrome in runners.

    Science.gov (United States)

    Orchard, J W; Fricker, P A; Abud, A T; Mason, B R

    1996-01-01

    We propose a biomechanical model to explain the pathogenesis of iliotibial band friction syndrome in distance runners. The model is based on a kinematic study of nine runners with iliotibial band friction syndrome, a cadaveric study of 11 normal knees, and a literature review. Friction (or impingement) occurs near footstrike, predominantly in the foot contact phase, between the posterior edge of the iliotibial band and the underlying lateral femoral epicondyle. The study subjects had an average knee flexion angle of 21.4 degrees +/- 4.3 degrees at footstrike, with friction occurring at, or slightly below, the 30 degrees of flexion traditionally described in the literature. In the cadavers we examined, there was substantial variation in the width of the iliotibial bands. This variation may affect individual predisposition to iliotibial band friction syndrome. Downhill running predisposes the runner to iliotibial band friction syndrome because the knee flexion angle at footstrike is reduced. Sprinting and faster running on level ground are less likely to cause or aggravate iliotibial band friction syndrome because, at footstrike, the knee is flexed beyond the angles at which friction occurs.

  20. Effect of ZrSiO4 on the Friction Performance of Automotive Brake Friction Materials

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Friction-wear properties of the ZrSiO4 reinforced samples were measured and compared with those of plain bronze based ones. For this purpose, density, hardness, friction coefficient wear behaviour of the samples were tested. Microstructures of samples before and after sintering and worn surfaces were also investigated by scanning electron microscopy (SEM), and the wear types were determined. The optimum friction-wear behaviour was obtained in the sample compacted at 500 MPa and sintered at 820℃. Density of the final samples decreased with increasing the amount of reinforcing elements (ZrSiO4) before pre-sintering. However after sintering, there is no change in density of the samples including reinforcing elements (ZrSiO4). With increasing friction surface temperature, a reduction in the friction coefficient of the samples was observed.However, the highest reductions in the friction coefficients were observed in the as-received samples containing 0,5% reinforced ZrSiO4. The SEM images of the sample indicated that while bronze-based break lining material without ZrSiO4 showed abrasive wear behaviour, increasing the amount of ZrSiO4 resulted a change in abrasive to adhesive wear mechanism. All samples exhibited friction-wear values, which were within the values shown in SAE-J661 standard. With increasing the amount of reinforcing ZrSiO4, wear resistance of the samples was increased. However samples reinforced with 5% and 6% ZrSiO4 showed the best results.

  1. 假肢材料与人体下肢皮肤界面的摩擦特性%Frictional Properties on Human Skin of Lower Limb/prosthetic Material Interface

    Institute of Scientific and Technical Information of China (English)

    徐萍; 石磊; 庞强; 李炜

    2015-01-01

    By using an UMT-II tribometer to simulate prosthetic socket/residual limb skin interface under a reciprocating sliding wear mode, the terminological behavior between four kinds of prosthetic silicone material with different surface structure and limb skin is investigated. The results show that the relative sliding occurred on the both silicone material/skin interface and prosthetic socket/silicone material interface at the beginning of the reciprocating wear mode, consequently, the friction coefficient is relatively high. Then it decreased and gradually reached steady with the adhesion appearing on the interfaces. The coarse micro convex body on the back of silicone material increased the adhesion with skin, which resulted in less friction consumption energy. The knitting structure on the front of silicone material not only increased the relative sliding and friction consumption energy with prosthetic socket, but also decreased the accommodation of skin elastic deformation between the back of silicone material and skin during reciprocating friction process. Thereby, the friction coefficient and the energy consumption on the interface reduce. In conclusion, the silicone material with the coarse micro convex body on the back and the knitting structure on the reverse side would lower the risk of skin damage and eventually improves the wearing comfort of amputees.%采用UMT-II多功能摩擦磨损试验机,在往复摩擦模式下模拟假肢接收腔/残肢皮肤界面,研究了4种不同表面结构的硅胶内衬套材料与皮肤的摩擦学行为。结果表明:硅胶材料/皮肤界面、接收腔/硅胶材料界面在往复摩擦模式初期均会产生相对滑动,摩擦因数较大;随着界面间产生黏着,摩擦因数减小,逐渐趋于稳态。硅胶材料反面上的粗大微凸体,增加了与皮肤的粘结性,摩擦能耗减少;正面上的针织结构不但增加了往复摩擦过程中与接受腔之间的相对滑动量及摩

  2. Friction Stir Spot Welding of Advanced High Strength Steels

    Energy Technology Data Exchange (ETDEWEB)

    Hovanski, Yuri; Grant, Glenn J.; Santella, M. L.

    2009-11-13

    Friction stir spot welding techniques were developed to successfully join several advanced high strength steels. Two distinct tool materials were evaluated to determine the effect of tool materials on the process parameters and joint properties. Welds were characterized primarily via lap shear, microhardness, and optical microscopy. Friction stir spot welds were compared to the resistance spot welds in similar strength alloys by using the AWS standard for resistance spot welding high strength steels. As further comparison, a primitive cost comparison between the two joining processes was developed, which included an evaluation of the future cost prospects of friction stir spot welding in advanced high strength steels.

  3. Friction Stir Welding and Processing

    Energy Technology Data Exchange (ETDEWEB)

    Hovanski, Yuri; Carsley, John; Clarke, Kester D.; Krajewski, Paul E.

    2015-05-01

    With nearly twenty years of international research and collaboration in friction stir welding (FSW) and processing industrial applications have spread into nearly every feasible market. Currently applications exist in aerospace, railway, automotive, personal computers, technology, marine, cutlery, construction, as well as several other markets. Implementation of FSW has demonstrated diverse opportunities ranging from enabling new materials to reducing the production costs of current welding technologies by enabling condensed packaging solutions for traditional fabrication and assembly. TMS has sponsored focused instruction and communication in this technology area for more than fifteen years, with leadership from the Shaping and Forming Committee, which organizes a biannual symposium each odd year at the annual meeting. A focused publication produced from each of these symposia now comprises eight volumes detailing the primary research and development activities in this area over the last two decades. The articles assembled herein focus on both recent developments and technology reviews of several key markets from international experts in this area.

  4. Effect of Al2O3 on the friction performance of P/M composite materials for friction applications

    Science.gov (United States)

    Ivǎnuş, R. C.; ǎnuş, D., IV; Cǎlmuc, F.

    2010-06-01

    Bronze bearings are one of most used friction materials. In those applications where higher mechanical properties are needed, iron base bearings can be an alternative to bronze base materials, or other alloying elements added to bronze. The paper presents the results obtained in metal matrix composites field with friction characteristics, for automotive brakes, by P/M. The scope of these researches was the improvement of wear resistance and friction properties of metal matrix composites. Friction-wear properties of the Al2O3 reinforced samples were measured and compared with those of plain bronze based ones. For this purpose, density, hardness, friction coefficient wear behaviour of the samples were tested.Microstructures of samples before and after sintering and worn surfaces were also investigated by scanning electron microscopy (SEM), and the wear types were determined. The optimum friction-wear behaviour was obtained in the sample compacted at 500 MPa and sintered at 820°C. Density of the final samples decreased with increasing the amount of reinforcing elements (Al2O3) before presintering. However after sintering, there is no change in density of the samples including reinforcing elements (Al2O3). With increasing friction surface temperature, a reduction in the friction coefficient of the samples was observed. However, the highest reductions in the friction coefficients were observed in the as-received samples containing 0,5% reinforced Al2O3. The SEM images of the sample indicated that while bronze-based break lining material without Al2O3 showed abrasive wear behaviour, increasing the amount of Al2O3 resulted in a change of abrasive to adhesive wear mechanism. With increasing the amount of reinforcing Al2O3, wear resistance of the samples was increased. However samples reinforced with 5% and 6% Al2O3 showed the best results.

  5. Combustion synthesis of CdS/reduced graphene oxide composites and their photocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jianxiu [School of Materials Science and Engineering, Liaocheng University, Liaocheng, Shandong 252000 (China); Pu, Xipeng, E-mail: xipengpu@hotmail.com [School of Materials Science and Engineering, Liaocheng University, Liaocheng, Shandong 252000 (China); Zhang, Dafeng [School of Materials Science and Engineering, Liaocheng University, Liaocheng, Shandong 252000 (China); Seo, Hyo Jin, E-mail: hjseo@pknu.ac.kr [Department of Physics and Center for Marine-Integrated Biomedical Technology, Pukyong National University, Busan 608-737 (Korea, Republic of); Du, Kaiping [School of Materials Science and Engineering, Liaocheng University, Liaocheng, Shandong 252000 (China); Cai, Peiqing [Department of Physics and Center for Marine-Integrated Biomedical Technology, Pukyong National University, Busan 608-737 (Korea, Republic of)

    2014-09-15

    Highlights: • CdS/reduced graphene oxide composites were prepared by a combustion method. • The phase changed from hexagonal to cubic phase by increasing the added amount of GO. • The composites showed excellent visible-light photocatalytic properties. • The plausible mechanism of photodegradation was discussed. - Abstract: CdS/reduced graphene oxide composites were synthesized by a simple one-pot combustion method using cadmium nitrate, thiourea and graphite as raw materials. The structure, morphologies, and photocatalytic properties of the as-prepared samples were studied by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, photoluminescence and ultraviolet–visible spectrophotometry. The results show that the structure of CdS in as-prepared samples changes from hexagonal to cubic phase by increasing the added amount of graphene oxide. During combustion reaction, graphene oxide was reduced to reduced graphene oxide. As-obtained CdS/reduced graphene oxide composites show high visible-light photoactivities, attributed to the minimized recombination of photoinduced electrons and holes and the high surface area of reduced graphene oxide sheets.

  6. High Speed Friction Microscopy and Nanoscale Friction Coefficient Mapping

    OpenAIRE

    Bosse, James L.; Lee, Sungjun; Huey, Bryan D; Andersen, Andreas Sø; Sutherland, Duncan S

    2014-01-01

    As mechanical devices in the nano/micro length scale are increasingly employed, it is crucial to understand nanoscale friction and wear especially at technically relevant sliding velocities. Accordingly, a novel technique has been developed for Friction Coefficient Mapping (FCM), leveraging recent advances in high speed AFM. The technique efficiently acquires friction versus force curves based on a sequence of images at a single location, each with incrementally lower loads. As a result, true...

  7. Fatigue crack paths and properties in A356-T6 aluminum alloy microstructurally modified by friction stir processing under different conditions

    Directory of Open Access Journals (Sweden)

    A. Tajiri

    2015-10-01

    Full Text Available A356-T6 cast aluminum alloy is a light weight structural material, but fatigue crack initiates and propagates from a casting defect leading to final fracture. Thus it is important to eliminate casting defects. In this study, friction stir processing (FSP was applied to A356-T6, in which rotating tool with probe and shoulder was plunged into the material and travels along the longitudinal direction to induce severe plastic deformation, resulting in the modification of microstructure. Two different processing conditions with low and high tool rotational speeds were tried and subsequently fully reversed fatigue tests were performed to investigate the effect of processing conditions on the crack initiation and propagation behavior. The fatigue strengths were successfully improved by both conditions due to the elimination of casting defects. But the lower tool rotational speed could further improve fatigue strength than the higher speed. EBSD analyses revealed that the higher tool rotational speed resulted in the severer texture having detrimental effects on fatigue crack initiation and propagation resistances.

  8. Effects of process parameters on microstructure and mechanical properties of friction stir lap linear welded 6061 aluminum alloy to NZ30K magnesium alloy

    Directory of Open Access Journals (Sweden)

    Shuai Tan

    2017-03-01

    Full Text Available The microstructures and lap-shear behaviors of friction stir lap linear welded as-extruded 6061 Al alloy to as-cast Mg–3.0Nd–0.2Zn–0.7Zr (wt.% (NZ30K alloy joints were examined. Various tool rotation and travel speeds were adopted to prepare the joints. The analysis of temperature field indicates that the peak temperature for each sample can reach 450 °C, which exceeds the eutectic reaction temperatures of 437 °C and 450 °C according to the binary phase diagram of Al–Mg system. The fierce intermixing can be found at the interface between Al and Mg alloys, forming the intermetallic of Al3Mg2. Welds with the rotation speed of 900 rpm and travel speed of 120 mm/min display the highest tensile shear failure load of about 2.24 kN. The value was increased by 13% after the sample was heat treated at 400 °C for 0.5 h.

  9. Enhanced surface friction coefficient and hydrophobicity of TPE substrates using an APPJ system

    Energy Technology Data Exchange (ETDEWEB)

    Sainz-García, Elisa, E-mail: elisa.sainzg@unirioja.es; Alba-Elías, Fernando, E-mail: fernando.alba@unirioja.es; Múgica-Vidal, Rodolfo, E-mail: rodolfo.mugica@alum.unirioja.es; González-Marcos, Ana, E-mail: ana.gonzalez@unirioja.es

    2015-02-15

    Highlights: • Coatings on thermoplastic elastomers by atmospheric pressure plasma jet. • Study of influence of APTES and FLUSI percentage on the coating's properties. • The best sample (AF{sub 75}) used 75% of APTES and 25% of FLUSI as precursor mixture. • Sample AF{sub 75} reduced a 51.5% the FC and increased a 4.4% the WCA. - Abstract: An APPJ system was used to deposit a coating that combines a low friction coefficient with a high water contact angle (WCA) on a thermoplastic elastomer substrate (TPE) that is used in automotive profiling. The main drawback of this research is that groups that improve the hydrophobicity of the surface worsen its tribological properties. To overcome this, this study explored the use of various mixtures of differing proportions of two precursors. They were a siloxane, aminopropyltriethoxysilane (APTES) that was used to reduce the friction coefficient by its content of SiO{sub x} and a fluorinated compound, (heptadecafluoro-1,1,2,2-tetrahydrodecyl)trimethoxysilane (FLUSI) that was used to improve the water-repellency characteristics, due to the presence of CF{sub 2} long chains. The coatings were characterized by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), X-ray Photoelectron Spectroscopy (XPS), dynamic Water Contact Angle (WCA), stability tests and tribological tests. It was found that an increase of the absorbance area under the SiOSi peak and inorganic groups is related to lower friction coefficients. On the other hand, the higher the CF{sub 2} percentage is, the higher the WCA is. The sample that was coated with 25% of FLUSI and 75% of APTES combined the improvements of both functional properties, the friction coefficient and the WCA. It has an average friction coefficient that is (0.530 ± 0.050) 51.5% lower and a WCA that is (θ{sub adv} = 119.8° ± 4.75) 4.4% higher than the uncoated TPE sample. A satisfactory

  10. A Microphysical Model for Phyllosilicate Friction

    Science.gov (United States)

    Den Hartog, S. A. M.; Faulkner, D.; Spiers, C. J.

    2016-12-01

    Phyllosilicate-rich foliations in fault rocks are often thought to reduce overall fault strength and promote fault stability when forming an interconnected network. Indeed, laboratory measurements have shown that the average friction coefficient of dry phyllosilicates of 0.5 is reduced to 0.3 when wet or even 0.1 for smectite. A widely accepted interpretation of these observations is that the strength of phyllosilicates is controlled by breaking of interlayer bonds to form new cleavage surfaces when dry and by the low strength of surface-bound water films when wet. However, the correlation between phyllosilicate shear strength and interlayer bond strength, which formed the basis for this interpretation, was not reproduced in recent experiments (Behnsen and Faulkner, 2012) and is not supported by the latest calculations of the interlayer bond energies (Sakuma and Suehara, 2015). The accepted explanation for phyllosilicate friction also fails to account for the velocity dependence or (a-b) values, which decrease with temperature, reaching a minimum at intermediate temperatures, before increasing again at higher temperatures (Den Hartog et al., 2013, 2014). In this study, we developed a microphysical model for phyllosilicate friction, involving frictional sliding along atomically flat phyllosilicate grain interfaces, with overlapping grain edges forming barriers to sliding. Assuming that the amount of overlap is controlled by crystal plastic bending of grains into pores, together with rate-dependent edge-site cleavage, our model predicts the experimentally observed temperature dependence of (a-b) and provides a basis for extrapolation of laboratory friction data on phyllosilicates to natural conditions.

  11. Mo含量对TiMoN薄膜微观组织和摩擦磨损性能的影响%EFFECTS OF Mo CONTENT ON THE MICROSTRUCTURE AND FRICTION AND WEAR PROPERTIES OF TiMoN FILMS

    Institute of Scientific and Technical Information of China (English)

    许俊华; 鞠洪博; 喻利花

    2012-01-01

    Over the past years, hard wear resistant TiN coatings deposited by magnetron sputtering have gained increasing importance in the field of decorative and cutting tool coatings. With the ongoing trend to multifunctional operating cutting tools, new solutions in the design of tools are demanded. The alloying of TiN coatings with additional elements, for instance, can effectively enhance hardness, wear resistance and so on. Both TiAlN and TiSiN coatings, well-studied nitride systems, yield superior oxidation resistance, and extend the life of cutting tools by significant margins in comparison with TiN coatings. Numerous research activities focus on TiAIN, TiSiN systems, whereas limited efforts have been made to characterize TiMoN coatings. Low coefficient of friction is a common property in various Mo-containing coatings that can react with oxygen in the air into Magneli phase (MoO3). The effects of Mo alloying on mechanical properties and wear resistance of TiN-based coatings remain to be investigated. TiMoN composite films with various Mo concentrations were deposited using RF reactive magnetron sputtering and characterized by SEM, EDS, XRD, nano-indentation and wearing tester. The results show that TiMoN coatings have fcc structure. When atomic fraction of Mo in total metallic elements (X) is less than 68.37%, a TiMoN solid solution was formed by dissolution of Mo into the TiN lattice; when X is more than 68.37%, a TiMoN solid solution was formed by dissolution of Ti into the Mo2N lattice. With Mo contents increase, preferential orientation change, microhardness increase significantly, the coefficient friction and grain size decrease, friction and wear of TiMoN coatings are excellent. Low coefficient friction can be primarily attributed to the formation of lubricious MoO3 on the wear track surface in dry sliding wear conditions. The principles of a crystal chemical model relating the lubricity of complex oxides to their ionic potentials can explain this mechanism.%

  12. In-process discontinuity detection during friction stir welding

    Science.gov (United States)

    Shrivastava, Amber

    The objective of this work is to develop a method for detecting the creation of discontinuities (e.g., voids) during friction stir welding. Friction stir welding is inherently cost-effective, however, the need for significant weld inspection can make the process cost-prohibitive. A new approach to weld inspection is required -- where an in-situ characterization of weld quality can be obtained, reducing the need for post-process inspection. Friction stir welds with discontinuity and without discontinuity were created. In this work, discontinuities are generated by reducing the friction stir tool rotation frequency and increasing the tool traverse speed in order to create "colder" welds. During the welds, forces are measured. Discontinuity sizes for welds are measured by computerized tomography. The relationship between the force transients and the discontinuity sizes indicate that the force measurement during friction stir welding can be effectively used for detecting discontinuities in friction stir welds. The normalized force transient data and normalized discontinuity size are correlated to develop a criterion for discontinuity detection. Additional welds are performed to validate the discontinuity detection method. The discontinuity sizes estimated by the force measurement based method are in good agreement with the discontinuity sizes measured by computerized tomography. These results show that the force measurement based discontinuity detection model method can be effectively used to detect discontinuities during friction stir welding.

  13. Friction laws for lubricated nanocontacts

    Science.gov (United States)

    Buzio, R.; Boragno, C.; Valbusa, U.

    2006-09-01

    We have used friction force microscopy to probe friction laws for nanoasperities sliding on atomically flat substrates under controlled atmosphere and liquid environment, respectively. A power law relates friction force and normal load in dry air, whereas a linear relationship, i.e., Amontons' law, is observed for junctions fully immersed in model lubricants, namely, octamethylciclotetrasiloxane and squalane. Lubricated contacts display a remarkable friction reduction, with liquid and substrate specific friction coefficients. Comparison with molecular dynamics simulations suggests that load-bearing boundary layers at junction entrance cause the appearance of Amontons' law and impart atomic-scale character to the sliding process; continuum friction models are on the contrary of limited predictive power when applied to lubrication effects. An attempt is done to define general working conditions leading to the manifestation of nanoscale lubricity due to adsorbed boundary layers.

  14. Friction surfaced Stellite6 coatings

    Energy Technology Data Exchange (ETDEWEB)

    Rao, K. Prasad; Damodaram, R. [Department of Metallurgical and Materials Engineering - Indian Institute of Technology Madras, Chennai 600 036 (India); Rafi, H. Khalid, E-mail: khalidrafi@gmail.com [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600 036 (India); Ram, G.D. Janaki [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600 036 (India); Reddy, G. Madhusudhan [Metal Joining Group, Defence Metallurgical Research Laboratory (DMRL) Kanchanbagh, Hyderabad 500 058 (India); Nagalakshmi, R. [Welding Research Institute, Bharat Heavy Electricals Limited, Tiruchirappalli 620 014 (India)

    2012-08-15

    Solid state Stellite6 coatings were deposited on steel substrate by friction surfacing and compared with Stellite6 cast rod and coatings deposited by gas tungsten arc and plasma transferred arc welding processes. Friction surfaced coatings exhibited finer and uniformly distributed carbides and were characterized by the absence of solidification structure and compositional homogeneity compared to cast rod, gas tungsten arc and plasma transferred coatings. Friction surfaced coating showed relatively higher hardness. X-ray diffraction of samples showed only face centered cubic Co peaks while cold worked coating showed hexagonally close packed Co also. - Highlights: Black-Right-Pointing-Pointer Stellite6 used as coating material for friction surfacing. Black-Right-Pointing-Pointer Friction surfaced (FS) coatings compared with casting, GTA and PTA processes. Black-Right-Pointing-Pointer Finer and uniformly distributed carbides in friction surfaced coatings. Black-Right-Pointing-Pointer Absence of melting results compositional homogeneity in FS Stellite6 coatings.

  15. Solid friction between soft filaments

    CERN Document Server

    Ward, Andrew; Schwenger, Walter; Welch, David; Lau, A W C; Vitelli, Vincenzo; Mahadevan, L; Dogic, Zvonimir

    2015-01-01

    Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments' overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes' drag, can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. Our findings demonstrate how altering a filament's elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the prop...

  16. Frictorq, fabric friction tester : a comparartive study eith kes

    OpenAIRE

    2009-01-01

    Coeficiente of friction is one of the factors involved in the so-called parameter fabric hand its importance justifies the number of contributions give in the past to this problem. more recently, a new laboratory instrument was proposed by the authors for the assessment of tis property. A comparative study with another widely respected instruments, the Kes-friction, is the main purpose of this research.

  17. 复合组分对复合磺酸钙基润滑脂摩擦磨损性能的影响%Influence of Compound Components on Friction and Wear Properties of the Calcium Sulfonate Complex Grease

    Institute of Scientific and Technical Information of China (English)

    谢龙; 程型国; 周圆

    2012-01-01

    The four kinds of calcium of sulfonate complex greases were prepared. The influence of calcium 12-hydroxys-tearate and calcium tetraborate on friction and wear behavior of the prepared calcium sulfonate complex greases was evaluated by four-ball tester and SRV friction and wear testing machine,and the chemical states of typical elements on the wear scar of steel ball were analyzed by means of the XPS. It is shown that excellent extreme pressure property of calcium sulfonate complex grease is mainly from layered calcium carbonate in the form of calcite rather than action of the boundary layer of FeS,CaS,Fe3C and CaC2. Antiwear characteristic could be attributed to the polar adsorption film formed by calcium 12-hydroxystearate and calcium tetraborate.%制备4种不同组分的复合磺酸钙基润滑脂,采用四球摩擦磨损机和SVR高频线性振动试验机,考察12-羟基硬脂酸钙、硼酸钙对复合磺酸钙基润滑脂摩擦磨损性能的影响,采用XPS分析钢球磨斑表面主要元素的化学状态.结果表明,复合磺酸钙基润滑脂优良的极压性主要来源于层状结构的方解型碳酸钙沉积膜,而不是FeS、CaS、Fe3C、CaC2反应膜;抗磨性归功于硼酸钙、12-羟基硬脂酸钙所形成的极性吸附膜.

  18. Static and kinetic friction characteristics of nanowire on different substrates

    Science.gov (United States)

    Kim, Hyun-Joon; Nguyen, Gia Hau; Ky, Dinh Le Cao; Tran, Da Khoa; Jeon, Ki-Joon; Chung, Koo-Hyun

    2016-08-01

    Friction characteristics of nanowires (NWs), which may be used as building blocks for nano-devices, are crucial, especially for cases where contact sliding occurs during the device operation. In this work, the static and kinetic friction characteristics of oxidized Si NWs deposited on thermally grown SiO2 and chemical vapor-deposited single layer graphene were investigated using an atomic force microscope (AFM). Kinetic friction between the oxidized Si NWs and the substrates was directly measured by the AFM. Static friction was also obtained from the most bent state of the NWs using the individually determined elastic moduli of the NWs from kinetic friction experiments based on elastic beam theory. Furthermore, the shear stress between the oxidized Si NWs and the substrates was estimated based on adhesive contact theory. It was found that both static and kinetic friction increased as the radius of the NWs increased. The friction of the oxidized Si NWs on the graphene substrate was found to be smaller than that on the SiO2 substrate, which suggests that chemical vapor-deposited graphene can be used as a lubricant or as a protective layer in nano-devices to reduce friction. The shear stress estimated from the kinetic friction data between the oxidized Si NWs and the SiO2 substrate ranged from 7.5 to 12.3 MPa while that between the oxidized Si NWs and the graphene substrate ranged from 4.7 to 7.0 MPa. The result also indicated that the dependence of shear stress on the radius of the NWs was not significant. These findings may provide insight into the friction characteristics of NWs.

  19. Micromechanical study of macroscopic friction and dissipation in idealised granular materials: the effect of interparticle friction

    NARCIS (Netherlands)

    Kruyt, N.P.; Rothenburg, L.; Gutkowski, Witold; Kowalewski, Tomasz A.

    2004-01-01

    Using Discrete Element Method (DEM) simulations with varying interparticle friction coefficient, the relation between interparticle friction coefficient and macroscopic continuum friction and dissipation is investigated. As expected, macroscopic friction and dilatancy increase with interparticle fri

  20. Self-dispersed crumpled graphene balls in oil for friction and wear reduction

    Science.gov (United States)

    Dou, Xuan; Koltonow, Andrew R.; He, Xingliang; Jang, Hee Dong; Wang, Qian; Chung, Yip-Wah; Huang, Jiaxing

    2016-01-01

    Ultrafine particles are often used as lubricant additives because they are capable of entering tribological contacts to reduce friction and protect surfaces from wear. They tend to be more stable than molecular additives under high thermal and mechanical stresses during rubbing. It is highly desirable for these particles to remain well dispersed in oil without relying on molecular ligands. Borrowing from the analogy that pieces of paper that are crumpled do not readily stick to each other (unlike flat sheets), we expect that ultrafine particles resembling miniaturized crumpled paper balls should self-disperse in oil and could act like nanoscale ball bearings to reduce friction and wear. Here we report the use of crumpled graphene balls as a high-performance additive that can significantly improve the lubrication properties of polyalphaolefin base oil. The tribological performance of crumpled graphene balls is only weakly dependent on their concentration in oil and readily exceeds that of other carbon additives such as graphite, reduced graphene oxide, and carbon black. Notably, polyalphaolefin base oil with only 0.01–0.1 wt % of crumpled graphene balls outperforms a fully formulated commercial lubricant in terms of friction and wear reduction. PMID:26811466

  1. YAG激光微坑刻蚀分布对缸套-活塞环摩擦磨损性能影响%Friction and Wear Properties of Cylinder Liner and Piston Ring with Different YAG Laser Honing Micro-Pits Distributions

    Institute of Scientific and Technical Information of China (English)

    占剑; 杨明江

    2011-01-01

    通过改变激光刻蚀微坑面积占有率Sp及微坑分布角度θ等参数,测得摩擦副运行过程中缸套-活塞环间摩擦系数及缸套下试块磨损量,研究激光刻蚀工艺对缸套-活塞环摩擦副摩擦磨损性能的影响.得出在其他参数不变,θ为30°时,摩擦副间温度及摩擦系数最低,θ为45°时,磨损量最小;深径比为0.1、θ为30°时,Sp为35%,摩擦磨损特性最佳.将激光刻蚀缸套与机械珩磨摩擦磨损特性进行比较,激光微坑刻蚀得到了更低的摩擦系数和更小的磨损量.%To study the effect of laser honing on friction and wear properties, the friction coefficient between cylinder liner testing block and piston ring as well as the wear of bottom cylinder liner testing block were measured by varying area density of micro-pits Sp and micro-pits distribution angle θ. Results show that temperature and friction coefficient between the friction pairs reach their minimum values at θ= 30°, and the wear gives its lowest value at θ= 45°. Best friction and wear properties achieves ate = 0.1, θ = 30°, Sp = 35%. Compared with the mechanical honing, the laser honing gives the lower friction coefficient and less wear.

  2. Influence of friction stir welding parameters on metallurgical and mechanical properties of dissimilar joint between semi-solid metal 356-T6 and aluminum alloys 6061-T651

    Directory of Open Access Journals (Sweden)

    Muhamad Tehyo

    2012-09-01

    Full Text Available The objective of this research is to investigate the effect of welding parameters on the microstructure and mechanicalproperties of friction stir (FS welded butt joints of dissimilar aluminum alloy sheets between Semi-Solid Metal (SSM 356-T6and AA6061-T651 by a computerized numerical control (CNC machine. The base materials of SSM356-T6 and AA6061-T651were located on the advancing side (AS and on the retreating side (RS, respectively. For this experiment, the FS weldedmaterials were joined under two different tool rotation speeds (1,750 and 2,000 rpm and six welding speeds (20, 50, 80, 120, 160,and 200 mm/min, which are the two prime joining parameters in FSW. From the investigation, the higher tool rotation speedaffected the weaker material’s (SSM maximum tensile strength less than that under the lower rotation speed. As for weldingspeed associated with various tool rotation speeds, an increase in the welding speed affected lesser the base material’s tensilestrength up to an optimum value; after which its effect increased. Tensile elongation was generally greater at greater toolrotation speed. An averaged maximum tensile strength of 206.3 MPa was derived from a welded specimen produced at the toolrotation speed of 2,000 rpm associated with the welding speed of 80 mm/min. In the weld nugget, higher hardness was observedin the stir zone than that in the thermo-mechanically affected zone. Away from the weld nugget, hardness levels increased backto the levels of the base materials. The microstructures of the welding zone in the FS welded dissimilar joint can be characterizedboth by the recrystallization of SSM356-T6 grains and AA6061-T651 grain layers.

  3. Morphology and the physical and thermal properties of thermoplastic polyurethane reinforced with thermally reduced graphene oxide

    OpenAIRE

    Strankowski Michał; Piszczyk Łukasz; Kosmela Paulina; Korzeniewski Piotr

    2015-01-01

    In this study, thermally reduced graphene oxide (TRG)-containing polyurethane nanocomposites were obtained by the extrusion method. The content of TRG incorporated into polyurethane elastomer systems equaled 0.5, 1.0, 2.0 and 3.0 wt%. The morphology, static and dynamic mechanical properties, and thermal stability of the modified materials were investigated. The application of TRG resulted in a visible increase in material stiffness as confirmed by the measurements of complex compression modul...

  4. Friction or Closure

    DEFF Research Database (Denmark)

    Lundahl, Mikela

    2014-01-01

    . The anthropologist Anna Tsing has developed the concept-metaphor friction as a way to discuss the energy created when various actors narrate “the same” event(s) in different ways, and see the other participants’ accounts as fantasies or even fabrications. I will use my position as researcher and my relations...... is Stone Town in Zanzibar and the de-velopment and dissolution going on under the shadow of the UNESCO World Heritage flag; a growing tourism; a global and local increase in islamisation; and the political tension within the Tanzanian union. My main focus is narratives of the identity of Zanzibar since...

  5. Physical Properties Investigation of Reduced Graphene Oxide Thin Films Prepared by Material Inkjet Printing

    Directory of Open Access Journals (Sweden)

    Veronika Schmiedova

    2017-01-01

    Full Text Available The article is focused on the study of the optical properties of inkjet-printed graphene oxide (GO layers by spectroscopic ellipsometry. Due to its unique optical and electrical properties, GO can be used as, for example, a transparent and flexible electrode material in organic and printed electronics. Spectroscopic ellipsometry was used to characterize the optical response of the GO layer and its reduced form (rGO, obtainable, for example, by reduction of prepared layers by either annealing, UV radiation, or chemical reduction in the visible range. The thicknesses of the layers were determined by a mechanical profilometer and used as an input parameter for optical modeling. Ellipsometric spectra were analyzed according to the dispersion model and the influence of the reduction of GO on optical constants is discussed. Thus, detailed analysis of the ellipsometric data provides a unique tool for qualitative and also quantitative description of the optical properties of GO thin films for electronic applications.

  6. A Study on Friction Stir Welding of 12mm Thick Aluminum Alloy Plates

    Institute of Scientific and Technical Information of China (English)

    Deepati Anil Kumar; Pankaj Biswas; Sujoy Tikader; M. M. Mahapatra; N. R. Mandal

    2013-01-01

    Most of the investigations regarding friction stir welding (FSW) of aluminum alloy plates have been limited to about 5 to 6 mm thick plates. In prior work conducted the various aspects concerning the process parameters and the FSW tool geometry were studied utilizing friction stir welding of 12 mm thick commercial grade aluminum alloy. Two different simple-to-manufacture tool geometries were used. The effect of varying welding parameters and dwell time of FSW tool on mechanical properties and weld quality was examined. It was observed that in order to achieve a defect free welding on such thick aluminum alloy plates, tool having trapezoidal pin geometry was suitable. Adequate tensile strength and ductility can be achieved utilizing a combination of high tool rotational speed of about 2000 r/min and low speed of welding around 28 mm/min. At very low and high dwell time the ductility of welded joints are reduced significantly.

  7. Improvement on microstructure and properties of friction stir welded joint of Fe-36%Ni alloy%Fe-36%Ni合金搅拌摩擦焊接头组织与性能的改善

    Institute of Scientific and Technical Information of China (English)

    赵玥; 吴爱萍; 任家烈; Yutaka S.Sato; Hiroyuki Kokawa

    2012-01-01

    随着能源业的发展,Fe-36%Ni合金作为结构材料的应用需求越来越广,而电弧焊时存在严重的热裂纹和再热裂纹问题.采用搅拌摩擦焊方法焊接Fe-36%Ni合金可以有效地避免电弧焊带来的裂纹问题,获得成形良好的接头.但已有研究获得的焊缝组织均有晶粒粗化的特点,导致其接头力学性能低于母材.因此,需要解决晶粒粗化问题,寻找组织与性能获得改善的方法.采用控制焊接工艺的方法改善Fe-36%Ni合金搅拌摩擦焊接头的组织和性能.结果表明,在较低的焊接速度下,调整搅拌头转速更适合于控制Fe-36%Ni合金搅拌摩擦焊接头的晶粒尺寸.搅拌头低转速带来较低的焊接热输入,使焊缝具有晶粒尺寸与母材相当或较母材晶粒细化的组织.晶粒尺寸是接头力学性能的主导因素.在400 r/min和2 mm/s的焊接工艺下可获得与母材晶粒尺寸相近、强度和硬度相当、断后伸长率也较高的接头.%With the development of the energy industry, Fe-36wt%Ni alloy,as a construction material,has great potential in manufacturing liquefied natural gas storage and transportation equipment. However, it has very high hot cracking susceptibility during the conventional arc welding process. Friction stir welding of Fe-36wt% Ni can effectively avoid cracking problems occurred in fusion welding. However, due to the coarse grain in stir zone,the mechanical properties of Fe-36wt%Ni joint are lower than that of the base metal. Therefore,it i3 necessary to improve the microstructure and mechanical properties of friction stir welded joint of Fe-36wt% Ni alloy. The effect of welding parameters on micro-structures and the mechanical properties were investigated. It reveals that the grain size in stir zone of Fe-36wt% Ni alloy joint mainly affect by the rotational speed when the welding speed is relatively low. Lower rotational speeds produce the lower heat input and results in the finer grain size

  8. Study of lubrication behavior of pure water for hydrophobic friction pair

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The perfluorooctyltrichlorosilane molecular layer was self-assembled on glass plate. The tribological properties of the molecular layer in water were studied with the method of ball on disk. An interesting phenomenon was found that low friction coefficients of 0.02―0.08 were obtained when the friction pair was lubricated with only a water droplet. Whereas, when the friction pair was encircled with large amount of water or fully immersed in water, the friction coefficient was higher than that under a droplet lubrication. A mechanism of water droplet lubrication was proposed that the surface tension caused by the solid-liquid-air three-phase interface makes water molecules enter into the contact zone, which separates the two friction surfaces and provides a low friction coefficient. However, water film can hardly form when more water encircles the friction pair, due to the attraction between water molecules.

  9. Friction analysis of kinetic schemes : the friction coefficient

    NARCIS (Netherlands)

    Lolkema, Juke S.

    1995-01-01

    Friction analysis is proposed as the application of general control analysis to single enzymes to describe the control of elementary kinetic steps on the overall catalytic rate. For each transition, a friction coefficient is defined that measures the sensitivity of the turnover rate to the free ener

  10. FRICTION ANALYSIS OF KINETIC SCHEMES - THE FRICTION COEFFICIENT

    NARCIS (Netherlands)

    LOLKEMA, JS

    1995-01-01

    Friction analysis is proposed as the application of general control analysis to single enzymes to describe the control of elementary kinetic steps on the overall catalytic rate. For each transition, a friction coefficient is defined that measures the sensitivity of the turnover rate to the free ener

  11. Friction analysis of kinetic schemes : the friction coefficient

    NARCIS (Netherlands)

    Lolkema, Juke S.

    1995-01-01

    Friction analysis is proposed as the application of general control analysis to single enzymes to describe the control of elementary kinetic steps on the overall catalytic rate. For each transition, a friction coefficient is defined that measures the sensitivity of the turnover rate to the free ener

  12. Method of dimensionality reduction in contact mechanics and friction

    CERN Document Server

    Popov, Valentin L

    2015-01-01

    This book describes for the first time a simulation method for the fast calculation of contact properties and friction between rough surfaces in a complete form. In contrast to existing simulation methods, the method of dimensionality reduction (MDR) is based on the exact mapping of various types of three-dimensional contact problems onto contacts of one-dimensional foundations. Within the confines of MDR, not only are three dimensional systems reduced to one-dimensional, but also the resulting degrees of freedom are independent from another. Therefore, MDR results in an enormous reduction of the development time for the numerical implementation of contact problems as well as the direct computation time and can ultimately assume a similar role in tribology as FEM has in structure mechanics or CFD methods, in hydrodynamics. Furthermore, it substantially simplifies analytical calculation and presents a sort of “pocket book edition” of the entirety contact mechanics. Measurements of the rheology of bodies in...

  13. Wear resistance and friction reduction in acrylo nitrile butadiene rubber through hybrid combination of graphite flakes and nano tungsten disulphide

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Neha, E-mail: neha87bhu@gmail.com [Defence Material Store Research Development and Establishment (DMSRDE), DRDO, GT Road, Kanpur 208013, U.P (India); Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra (India); Pandey, Akanksha; Parihar, A. S.; Mishra, A. K.; Mukhopadhyay, K.; Prasad, N. E. [Defence Material Store Research Development and Establishment (DMSRDE), DRDO, GT Road, Kanpur 208013, U.P (India); Gandhi, M. N.; Bhattacharyya, A. R. [Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra (India)

    2016-05-06

    Friction and wear have considerable role in the life span of two interacting parts. Incorporation of nanofillers in polymers/elastomers matrix causes commendable changes in its tribologicalproperties. The main purpose of this work is to reduce the coefficient of friction and wear rate of Acrylo Nitrile Butadiene rubber (NBR). To achieve such objective traditionally well knownlubricants graphite(G), tungsten disulphide (WS{sub 2}) and there hybrid combination was incorporated in NBR matrix. Effect of applied load (force) and concentration of fillers on tribological properties of NBR had been studied. The filler incorporation enhanced the hardnessby 8%, showed resistance to hydraulic oil and aging effect also got improved significantly. A particular optimized concentration of NBR with hybrid combination of 2% WS{sub 2} and 4% Graphite showed minimum coefficient of friction as well as wear rate. A hypothesis could be attributed that similar lamellar structure of WS{sub 2} and Graphite along with formation of a stable nanoscale disulfide tribofilmcould result in lowering of friction. These substantially improved properties of nanoreinforced rubber materials would definitely pave promising path for plethora of potential technological applications.

  14. Wear resistance and friction reduction in acrylo nitrile butadiene rubber through hybrid combination of graphite flakes and nano tungsten disulphide

    Science.gov (United States)

    Agrawal, Neha; Pandey, Akanksha; Parihar, A. S.; Mishra, A. K.; Gandhi, M. N.; Bhattacharyya, A. R.; Mukhopadhyay, K.; Prasad, N. E.

    2016-05-01

    Friction and wear have considerable role in the life span of two interacting parts. Incorporation of nanofillers in polymers/elastomers matrix causes commendable changes in its tribologicalproperties. The main purpose of this work is to reduce the coefficient of friction and wear rate of Acrylo Nitrile Butadiene rubber (NBR). To achieve such objective traditionally well knownlubricants graphite(G), tungsten disulphide (WS2) and there hybrid combination was incorporated in NBR matrix. Effect of applied load (force) and concentration of fillers on tribological properties of NBR had been studied. The filler incorporation enhanced the hardnessby 8%, showed resistance to hydraulic oil and aging effect also got improved significantly. A particular optimized concentration of NBR with hybrid combination of 2% WS2 and 4% Graphite showed minimum coefficient of friction as well as wear rate. A hypothesis could be attributed that similar lamellar structure of WS2 and Graphite along with formation of a stable nanoscale disulfide tribofilmcould result in lowering of friction. These substantially improved properties of nanoreinforced rubber materials would definitely pave promising path for plethora of potential technological applications.

  15. Static and kinetic friction characteristics of nanowire on different substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Joon [Department of Precision Mechanical Engineering, Kyungpook National University, Sangju 37224 (Korea, Republic of); Nguyen, Gia Hau; Ky, Dinh Le Cao; Tran, Da Khoa [School of Mechanical Engineering, University of Ulsan, Ulsan 44610 (Korea, Republic of); Jeon, Ki-Joon [Department of Environmental Engineering, Inha University, Incheon 22212 (Korea, Republic of); Chung, Koo-Hyun, E-mail: khchung@ulsan.ac.kr [School of Mechanical Engineering, University of Ulsan, Ulsan 44610 (Korea, Republic of)

    2016-08-30

    Highlights: • Direct measurement of kinetic friction of oxidized Si NW using AFM. • Determination of static friction of oxidized Si NW from most bent state. • Friction characteristics of oxidized Si NW on SiO{sub 2} and graphene. • Estimation of shear stress between cylindrical NW and flat substrate. • No significant dependence of shear stress on NW radius. - Abstract: Friction characteristics of nanowires (NWs), which may be used as building blocks for nano-devices, are crucial, especially for cases where contact sliding occurs during the device operation. In this work, the static and kinetic friction characteristics of oxidized Si NWs deposited on thermally grown SiO{sub 2} and chemical vapor-deposited single layer graphene were investigated using an atomic force microscope (AFM). Kinetic friction between the oxidized Si NWs and the substrates was directly measured by the AFM. Static friction was also obtained from the most bent state of the NWs using the individually determined elastic moduli of the NWs from kinetic friction experiments based on elastic beam theory. Furthermore, the shear stress between the oxidized Si NWs and the substrates was estimated based on adhesive contact theory. It was found that both static and kinetic friction increased as the radius of the NWs increased. The friction of the oxidized Si NWs on the graphene substrate was found to be smaller than that on the SiO{sub 2} substrate, which suggests that chemical vapor-deposited graphene can be used as a lubricant or as a protective layer in nano-devices to reduce friction. The shear stress estimated from the kinetic friction data between the oxidized Si NWs and the SiO{sub 2} substrate ranged from 7.5 to 12.3 MPa while that between the oxidized Si NWs and the graphene substrate ranged from 4.7 to 7.0 MPa. The result also indicated that the dependence of shear stress on the radius of the NWs was not significant. These findings may provide insight into the friction characteristics

  16. Reduced silanized graphene oxide/epoxy-polyurethane composites with enhanced thermal and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jing, E-mail: linjin00112043@126.com [School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006 (China); Zhang, Peipei [Worcester Polytechnic Institute, Worcester, MA 01605 (United States); Zheng, Cheng; Wu, Xu; Mao, Taoyan; Zhu, Mingning; Wang, Huaquan; Feng, Danyan; Qian, Shuxuan; Cai, Xianfang [School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006 (China)

    2014-10-15

    Graphical abstract: The synthesis route for EPUAs/R-Si-GEO composites. - Highlights: • Reduced silanized graphene oxide as fillers. • The graphene layers were well distributed in the epoxy-polyurethane composites. • The thermal stabilities of composites were greatly improved by incorporation of the graphene. • Mechanical properties of composites were greatly enhanced by the incorporation of the graphene. - Abstract: This paper describes the synthesis of reduced silanized graphene oxide/epoxy-polyurethane (EPUAs/R-Si-GEO) composites with enhanced thermal and mechanical properties. Graphene oxide (GEO), prepared from natural graphite flakes, was modified with methacryloxypropyltrimethoxysilane to prepare silanized GEO (Si-GEO), and was then reduced by NaHSO{sub 3} to prepare R-Si-GEO (partially reduced Si-GEO). EPAc/R-Si-GEO (R-Si-GEO/epoxy acrylate copolymers) was synthesized via an in situ polymerization of R-Si-GEO and epoxy acrylic monomers. EPUAs/R-Si-GEO was obtained by curing reaction between EPAc/R-Si-GEO and an isocyanate curing agent. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) were used to characterize the surface and crystal structure of the modified graphene and EPUAs/R-Si-GEO. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize their morphology. Thermal gravimetric analysis (TGA), tensile strength, elongation at break, and cross-linking density measurements showed that the thermal stability and mechanical properties of EPUAs/R-Si-GEO were greatly enhanced by the addition of R-Si-GEO.

  17. Corrosion effects on friction factors

    Energy Technology Data Exchange (ETDEWEB)