WorldWideScience

Sample records for free-newton krylov discontinuous

  1. Newton-Krylov-Schwarz methods in unstructured grid Euler flow

    Energy Technology Data Exchange (ETDEWEB)

    Keyes, D.E. [Old Dominion Univ., Norfolk, VA (United States)

    1996-12-31

    Newton-Krylov methods and Krylov-Schwarz (domain decomposition) methods have begun to become established in computational fluid dynamics (CFD) over the past decade. The former employ a Krylov method inside of Newton`s method in a Jacobian-free manner, through directional differencing. The latter employ an overlapping Schwarz domain decomposition to derive a preconditioner for the Krylov accelerator that relies primarily on local information, for data-parallel concurrency. They may be composed as Newton-Krylov-Schwarz (NKS) methods, which seem particularly well suited for solving nonlinear elliptic systems in high-latency, distributed-memory environments. We give a brief description of this family of algorithms, with an emphasis on domain decomposition iterative aspects. We then describe numerical simulations with Newton-Krylov-Schwarz methods on an aerodynamic application emphasizing comparisons with a standard defect-correction approach and subdomain preconditioner consistency.

  2. Newton-Krylov methods applied to nonequilibrium radiation diffusion

    International Nuclear Information System (INIS)

    Knoll, D.A.; Rider, W.J.; Olsen, G.L.

    1998-01-01

    The authors present results of applying a matrix-free Newton-Krylov method to a nonequilibrium radiation diffusion problem. Here, there is no use of operator splitting, and Newton's method is used to convert the nonlinearities within a time step. Since the nonlinear residual is formed, it is used to monitor convergence. It is demonstrated that a simple Picard-based linearization produces a sufficient preconditioning matrix for the Krylov method, thus elevating the need to form or store a Jacobian matrix for Newton's method. They discuss the possibility that the Newton-Krylov approach may allow larger time steps, without loss of accuracy, as compared to an operator split approach where nonlinearities are not converged within a time step

  3. Solving Eigenvalue response matrix equations with Jacobian-Free Newton-Krylov methods

    International Nuclear Information System (INIS)

    Roberts, Jeremy A.; Forget, Benoit

    2011-01-01

    The response matrix method for reactor eigenvalue problems is motivated as a technique for solving coarse mesh transport equations, and the classical approach of power iteration (PI) for solution is described. The method is then reformulated as a nonlinear system of equations, and the associated Jacobian is derived. A Jacobian-Free Newton-Krylov (JFNK) method is employed to solve the system, using an approximate Jacobian coupled with incomplete factorization as a preconditioner. The unpreconditioned JFNK slightly outperforms PI, and preconditioned JFNK outperforms both PI and Steffensen-accelerated PI significantly. (author)

  4. Physics-based preconditioning and the Newton-Krylov method for non-equilibrium radiation diffusion

    International Nuclear Information System (INIS)

    Mousseau, V.A.; Knoll, D.A.; Rider, W.J.

    2000-01-01

    An algorithm is presented for the solution of the time dependent reaction-diffusion systems which arise in non-equilibrium radiation diffusion applications. This system of nonlinear equations is solved by coupling three numerical methods, Jacobian-free Newton-Krylov, operator splitting, and multigrid linear solvers. An inexact Newton's method is used to solve the system of nonlinear equations. Since building the Jacobian matrix for problems of interest can be challenging, the authors employ a Jacobian-free implementation of Newton's method, where the action of the Jacobian matrix on a vector is approximated by a first order Taylor series expansion. Preconditioned generalized minimal residual (PGMRES) is the Krylov method used to solve the linear systems that come from the iterations of Newton's method. The preconditioner in this solution method is constructed using a physics-based divide and conquer approach, often referred to as operator splitting. This solution procedure inverts the scalar elliptic systems that make up the preconditioner using simple multigrid methods. The preconditioner also addresses the strong coupling between equations with local 2 x 2 block solves. The intra-cell coupling is applied after the inter-cell coupling has already been addressed by the elliptic solves. Results are presented using this solution procedure that demonstrate its efficiency while incurring minimal memory requirements

  5. Globalized Newton-Krylov-Schwarz Algorithms and Software for Parallel Implicit CFD

    Science.gov (United States)

    Gropp, W. D.; Keyes, D. E.; McInnes, L. C.; Tidriri, M. D.

    1998-01-01

    Implicit solution methods are important in applications modeled by PDEs with disparate temporal and spatial scales. Because such applications require high resolution with reasonable turnaround, "routine" parallelization is essential. The pseudo-transient matrix-free Newton-Krylov-Schwarz (Psi-NKS) algorithmic framework is presented as an answer. We show that, for the classical problem of three-dimensional transonic Euler flow about an M6 wing, Psi-NKS can simultaneously deliver: globalized, asymptotically rapid convergence through adaptive pseudo- transient continuation and Newton's method-, reasonable parallelizability for an implicit method through deferred synchronization and favorable communication-to-computation scaling in the Krylov linear solver; and high per- processor performance through attention to distributed memory and cache locality, especially through the Schwarz preconditioner. Two discouraging features of Psi-NKS methods are their sensitivity to the coding of the underlying PDE discretization and the large number of parameters that must be selected to govern convergence. We therefore distill several recommendations from our experience and from our reading of the literature on various algorithmic components of Psi-NKS, and we describe a freely available, MPI-based portable parallel software implementation of the solver employed here.

  6. Preconditioner considerations for an aerodynamic Newton-Krylov solver

    International Nuclear Information System (INIS)

    Chisholm, T.; Zingg, D.W.

    2003-01-01

    A fast Newton-Krylov algorithm is presented for solving the compressible Navier-Stokes equations on structured multi-block grids with application to turbulent aerodynamic flows. The one-equation Spalart-Allmaras model is used to provide the turbulent viscosity. The optimization of the algorithm is discussed. ILU(4) is suggested for a preconditioner, operating on a modified Jacobian matrix. An RCM reordering is used, with a suggested root node in the wake. The advantages of a matrix-free technique for forming matrix-vector products are shown. Three test cases are used to demonstrate convergence rates. Single-element cases are solved in less than 60 seconds on a desktop computer, while the solution of a multi-element case can be found in about 10 minutes. (author)

  7. A Newton-Krylov method with approximate Jacobian for implicit solution of Navier-Stokes on staggered overset-curvilinear grids with immersed boundaries

    Science.gov (United States)

    Asgharzadeh, Hafez; Borazjani, Iman

    2014-11-01

    Time step-size restrictions and low convergence rates are major bottle necks for implicit solution of the Navier-Stokes in simulations involving complex geometries with moving boundaries. Newton-Krylov method (NKM) is a combination of a Newton-type method for super-linearly convergent solution of nonlinear equations and Krylov subspace methods for solving the Newton correction equations, which can theoretically address both bottle necks. The efficiency of this method vastly depends on the Jacobian forming scheme e.g. automatic differentiation is very expensive and Jacobian-free methods slow down as the mesh is refined. A novel, computationally efficient analytical Jacobian for NKM was developed to solve unsteady incompressible Navier-Stokes momentum equations on staggered curvilinear grids with immersed boundaries. The NKM was validated and verified against Taylor-Green vortex and pulsatile flow in a 90 degree bend and efficiently handles complex geometries such as an intracranial aneurysm with multiple overset grids, pulsatile inlet flow and immersed boundaries. The NKM method is shown to be more efficient than the semi-implicit Runge-Kutta methods and Jabobian-free Newton-Krylov methods. We believe NKM can be applied to many CFD techniques to decrease the computational cost. This work was supported partly by the NIH Grant R03EB014860, and the computational resources were partly provided by Center for Computational Research (CCR) at University at Buffalo.

  8. A multigrid Newton-Krylov method for flux-limited radiation diffusion

    International Nuclear Information System (INIS)

    Rider, W.J.; Knoll, D.A.; Olson, G.L.

    1998-01-01

    The authors focus on the integration of radiation diffusion including flux-limited diffusion coefficients. The nonlinear integration is accomplished with a Newton-Krylov method preconditioned with a multigrid Picard linearization of the governing equations. They investigate the efficiency of the linear and nonlinear iterative techniques

  9. Parallel Newton-Krylov-Schwarz algorithms for the transonic full potential equation

    Science.gov (United States)

    Cai, Xiao-Chuan; Gropp, William D.; Keyes, David E.; Melvin, Robin G.; Young, David P.

    1996-01-01

    We study parallel two-level overlapping Schwarz algorithms for solving nonlinear finite element problems, in particular, for the full potential equation of aerodynamics discretized in two dimensions with bilinear elements. The overall algorithm, Newton-Krylov-Schwarz (NKS), employs an inexact finite-difference Newton method and a Krylov space iterative method, with a two-level overlapping Schwarz method as a preconditioner. We demonstrate that NKS, combined with a density upwinding continuation strategy for problems with weak shocks, is robust and, economical for this class of mixed elliptic-hyperbolic nonlinear partial differential equations, with proper specification of several parameters. We study upwinding parameters, inner convergence tolerance, coarse grid density, subdomain overlap, and the level of fill-in in the incomplete factorization, and report their effect on numerical convergence rate, overall execution time, and parallel efficiency on a distributed-memory parallel computer.

  10. Newton-Krylov-Schwarz algorithms for the 2D full potential equation

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Xiao-Chuan [Univ. of Colorado, Boulder, CO (United States); Gropp, W.D. [Argonne National Lab., IL (United States); Keyes, D.E. [Old Dominion Univ. Norfolk, VA (United States)] [and others

    1996-12-31

    We study parallel two-level overlapping Schwarz algorithms for solving nonlinear finite element problems, in particular, for the full potential equation of aerodynamics discretized in two dimensions with bilinear elements. The main algorithm, Newton-Krylov-Schwarz (NKS), employs an inexact finite-difference Newton method and a Krylov space iterative method, with a two-level overlapping Schwarz method as a preconditioner. We demonstrate that NKS, combined with a density upwinding continuation strategy for problems with weak shocks, can be made robust for this class of mixed elliptic-hyperbolic nonlinear partial differential equations, with proper specification of several parameters. We study upwinding parameters, inner convergence tolerance, coarse grid density, subdomain overlap, and the level of fill-in in the incomplete factorization, and report favorable choices for numerical convergence rate and overall execution time on a distributed-memory parallel computer.

  11. Code Coupling via Jacobian-Free Newton-Krylov Algorithms with Application to Magnetized Fluid Plasma and Kinetic Neutral Models

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Ilon [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-05-27

    Jacobian-free Newton-Krylov (JFNK) algorithms are a potentially powerful class of methods for solving the problem of coupling codes that address dfferent physics models. As communication capability between individual submodules varies, different choices of coupling algorithms are required. The more communication that is available, the more possible it becomes to exploit the simple sparsity pattern of the Jacobian, albeit of a large system. The less communication that is available, the more dense the Jacobian matrices become and new types of preconditioners must be sought to efficiently take large time steps. In general, methods that use constrained or reduced subsystems can offer a compromise in complexity. The specific problem of coupling a fluid plasma code to a kinetic neutrals code is discussed as an example.

  12. Parallel Jacobian-free Newton Krylov solution of the discrete ordinates method with flux limiters for 3D radiative transfer

    International Nuclear Information System (INIS)

    Godoy, William F.; Liu Xu

    2012-01-01

    The present study introduces a parallel Jacobian-free Newton Krylov (JFNK) general minimal residual (GMRES) solution for the discretized radiative transfer equation (RTE) in 3D, absorbing, emitting and scattering media. For the angular and spatial discretization of the RTE, the discrete ordinates method (DOM) and the finite volume method (FVM) including flux limiters are employed, respectively. Instead of forming and storing a large Jacobian matrix, JFNK methods allow for large memory savings as the required Jacobian-vector products are rather approximated by semiexact and numerical formulations, for which convergence and computational times are presented. Parallelization of the GMRES solution is introduced in a combined memory-shared/memory-distributed formulation that takes advantage of the fact that only large vector arrays remain in the JFNK process. Results are presented for 3D test cases including a simple homogeneous, isotropic medium and a more complex non-homogeneous, non-isothermal, absorbing–emitting and anisotropic scattering medium with collimated intensities. Additionally, convergence and stability of Gram–Schmidt and Householder orthogonalizations for the Arnoldi process in the parallel GMRES algorithms are discussed and analyzed. Overall, the introduction of JFNK methods results in a parallel, yet scalable to the tested 2048 processors, and memory affordable solution to 3D radiative transfer problems without compromising the accuracy and convergence of a Newton-like solution.

  13. An adaptation of Krylov subspace methods to path following

    Energy Technology Data Exchange (ETDEWEB)

    Walker, H.F. [Utah State Univ., Logan, UT (United States)

    1996-12-31

    Krylov subspace methods at present constitute a very well known and highly developed class of iterative linear algebra methods. These have been effectively applied to nonlinear system solving through Newton-Krylov methods, in which Krylov subspace methods are used to solve the linear systems that characterize steps of Newton`s method (the Newton equations). Here, we will discuss the application of Krylov subspace methods to path following problems, in which the object is to track a solution curve as a parameter varies. Path following methods are typically of predictor-corrector form, in which a point near the solution curve is {open_quotes}predicted{close_quotes} by some easy but relatively inaccurate means, and then a series of Newton-like corrector iterations is used to return approximately to the curve. The analogue of the Newton equation is underdetermined, and an additional linear condition must be specified to determine corrector steps uniquely. This is typically done by requiring that the steps be orthogonal to an approximate tangent direction. Augmenting the under-determined system with this orthogonality condition in a straightforward way typically works well if direct linear algebra methods are used, but Krylov subspace methods are often ineffective with this approach. We will discuss recent work in which this orthogonality condition is imposed directly as a constraint on the corrector steps in a certain way. The means of doing this preserves problem conditioning, allows the use of preconditioners constructed for the fixed-parameter case, and has certain other advantages. Experiments on standard PDE continuation test problems indicate that this approach is effective.

  14. NITSOL: A Newton iterative solver for nonlinear systems

    Energy Technology Data Exchange (ETDEWEB)

    Pernice, M. [Univ. of Utah, Salt Lake City, UT (United States); Walker, H.F. [Utah State Univ., Logan, UT (United States)

    1996-12-31

    Newton iterative methods, also known as truncated Newton methods, are implementations of Newton`s method in which the linear systems that characterize Newton steps are solved approximately using iterative linear algebra methods. Here, we outline a well-developed Newton iterative algorithm together with a Fortran implementation called NITSOL. The basic algorithm is an inexact Newton method globalized by backtracking, in which each initial trial step is determined by applying an iterative linear solver until an inexact Newton criterion is satisfied. In the implementation, the user can specify inexact Newton criteria in several ways and select an iterative linear solver from among several popular {open_quotes}transpose-free{close_quotes} Krylov subspace methods. Jacobian-vector products used by the Krylov solver can be either evaluated analytically with a user-supplied routine or approximated using finite differences of function values. A flexible interface permits a wide variety of preconditioning strategies and allows the user to define a preconditioner and optionally update it periodically. We give details of these and other features and demonstrate the performance of the implementation on a representative set of test problems.

  15. A Newton-based Jacobian-free approach for neutronic-Monte Carlo/thermal-hydraulic static coupled analysis

    International Nuclear Information System (INIS)

    Mylonakis, Antonios G.; Varvayanni, M.; Catsaros, N.

    2017-01-01

    Highlights: •A Newton-based Jacobian-free Monte Carlo/thermal-hydraulic coupling approach is introduced. •OpenMC is coupled with COBRA-EN with a Newton-based approach. •The introduced coupling approach is tested in numerical experiments. •The performance of the new approach is compared with the traditional “serial” coupling approach. -- Abstract: In the field of nuclear reactor analysis, multi-physics calculations that account for the bonded nature of the neutronic and thermal-hydraulic phenomena are of major importance for both reactor safety and design. So far in the context of Monte-Carlo neutronic analysis a kind of “serial” algorithm has been mainly used for coupling with thermal-hydraulics. The main motivation of this work is the interest for an algorithm that could maintain the distinct treatment of the involved fields within a tight coupling context that could be translated into higher convergence rates and more stable behaviour. This work investigates the possibility of replacing the usually used “serial” iteration with an approximate Newton algorithm. The selected algorithm, called Approximate Block Newton, is actually a version of the Jacobian-free Newton Krylov method suitably modified for coupling mono-disciplinary solvers. Within this Newton scheme the linearised system is solved with a Krylov solver in order to avoid the creation of the Jacobian matrix. A coupling algorithm between Monte-Carlo neutronics and thermal-hydraulics based on the above-mentioned methodology is developed and its performance is analysed. More specifically, OpenMC, a Monte-Carlo neutronics code and COBRA-EN, a thermal-hydraulics code for sub-channel and core analysis, are merged in a coupling scheme using the Approximate Block Newton method aiming to examine the performance of this scheme and compare with that of the “traditional” serial iterative scheme. First results show a clear improvement of the convergence especially in problems where significant

  16. Tensor-product preconditioners for higher-order space-time discontinuous Galerkin methods

    Science.gov (United States)

    Diosady, Laslo T.; Murman, Scott M.

    2017-02-01

    A space-time discontinuous-Galerkin spectral-element discretization is presented for direct numerical simulation of the compressible Navier-Stokes equations. An efficient solution technique based on a matrix-free Newton-Krylov method is developed in order to overcome the stiffness associated with high solution order. The use of tensor-product basis functions is key to maintaining efficiency at high-order. Efficient preconditioning methods are presented which can take advantage of the tensor-product formulation. A diagonalized Alternating-Direction-Implicit (ADI) scheme is extended to the space-time discontinuous Galerkin discretization. A new preconditioner for the compressible Euler/Navier-Stokes equations based on the fast-diagonalization method is also presented. Numerical results demonstrate the effectiveness of these preconditioners for the direct numerical simulation of subsonic turbulent flows.

  17. Tensor-Product Preconditioners for Higher-Order Space-Time Discontinuous Galerkin Methods

    Science.gov (United States)

    Diosady, Laslo T.; Murman, Scott M.

    2016-01-01

    space-time discontinuous-Galerkin spectral-element discretization is presented for direct numerical simulation of the compressible Navier-Stokes equat ions. An efficient solution technique based on a matrix-free Newton-Krylov method is developed in order to overcome the stiffness associated with high solution order. The use of tensor-product basis functions is key to maintaining efficiency at high order. Efficient preconditioning methods are presented which can take advantage of the tensor-product formulation. A diagonalized Alternating-Direction-Implicit (ADI) scheme is extended to the space-time discontinuous Galerkin discretization. A new preconditioner for the compressible Euler/Navier-Stokes equations based on the fast-diagonalization method is also presented. Numerical results demonstrate the effectiveness of these preconditioners for the direct numerical simulation of subsonic turbulent flows.

  18. Newton-Krylov-BDDC solvers for nonlinear cardiac mechanics

    KAUST Repository

    Pavarino, L.F.; Scacchi, S.; Zampini, Stefano

    2015-01-01

    The aim of this work is to design and study a Balancing Domain Decomposition by Constraints (BDDC) solver for the nonlinear elasticity system modeling the mechanical deformation of cardiac tissue. The contraction–relaxation process in the myocardium is induced by the generation and spread of the bioelectrical excitation throughout the tissue and it is mathematically described by the coupling of cardiac electro-mechanical models consisting of systems of partial and ordinary differential equations. In this study, the discretization of the electro-mechanical models is performed by Q1 finite elements in space and semi-implicit finite difference schemes in time, leading to the solution of a large-scale linear system for the bioelectrical potentials and a nonlinear system for the mechanical deformation at each time step of the simulation. The parallel mechanical solver proposed in this paper consists in solving the nonlinear system with a Newton-Krylov-BDDC method, based on the parallel solution of local mechanical problems and a coarse problem for the so-called primal unknowns. Three-dimensional parallel numerical tests on different machines show that the proposed parallel solver is scalable in the number of subdomains, quasi-optimal in the ratio of subdomain to mesh sizes, and robust with respect to tissue anisotropy.

  19. Newton-Krylov-BDDC solvers for nonlinear cardiac mechanics

    KAUST Repository

    Pavarino, L.F.

    2015-07-18

    The aim of this work is to design and study a Balancing Domain Decomposition by Constraints (BDDC) solver for the nonlinear elasticity system modeling the mechanical deformation of cardiac tissue. The contraction–relaxation process in the myocardium is induced by the generation and spread of the bioelectrical excitation throughout the tissue and it is mathematically described by the coupling of cardiac electro-mechanical models consisting of systems of partial and ordinary differential equations. In this study, the discretization of the electro-mechanical models is performed by Q1 finite elements in space and semi-implicit finite difference schemes in time, leading to the solution of a large-scale linear system for the bioelectrical potentials and a nonlinear system for the mechanical deformation at each time step of the simulation. The parallel mechanical solver proposed in this paper consists in solving the nonlinear system with a Newton-Krylov-BDDC method, based on the parallel solution of local mechanical problems and a coarse problem for the so-called primal unknowns. Three-dimensional parallel numerical tests on different machines show that the proposed parallel solver is scalable in the number of subdomains, quasi-optimal in the ratio of subdomain to mesh sizes, and robust with respect to tissue anisotropy.

  20. Krylov Iterative Methods and the Degraded Effectiveness of Diffusion Synthetic Acceleration for Multidimensional SN Calculations in Problems with Material Discontinuities

    International Nuclear Information System (INIS)

    Warsa, James S.; Wareing, Todd A.; Morel, Jim E.

    2004-01-01

    A loss in the effectiveness of diffusion synthetic acceleration (DSA) schemes has been observed with certain S N discretizations on two-dimensional Cartesian grids in the presence of material discontinuities. We will present more evidence supporting the conjecture that DSA effectiveness will degrade for multidimensional problems with discontinuous total cross sections, regardless of the particular physical configuration or spatial discretization. Fourier analysis and numerical experiments help us identify a set of representative problems for which established DSA schemes are ineffective, focusing on diffusive problems for which DSA is most needed. We consider a lumped, linear discontinuous spatial discretization of the S N transport equation on three-dimensional, unstructured tetrahedral meshes and look at a fully consistent and a 'partially consistent' DSA method for this discretization. The effectiveness of both methods is shown to degrade significantly. A Fourier analysis of the fully consistent DSA scheme in the limit of decreasing cell optical thickness supports the view that the DSA itself is failing when material discontinuities are present in a problem. We show that a Krylov iterative method, preconditioned with DSA, is an effective remedy that can be used to efficiently compute solutions for this class of problems. We show that as a preconditioner to the Krylov method, a partially consistent DSA method is more than adequate. In fact, it is preferable to a fully consistent method because the partially consistent method is based on a continuous finite element discretization of the diffusion equation that can be solved relatively easily. The Krylov method can be implemented in terms of the original S N source iteration coding with only slight modification. Results from numerical experiments show that replacing source iteration with a preconditioned Krylov method can efficiently solve problems that are virtually intractable with accelerated source iteration

  1. On the Preconditioning of a Newton-Krylov Solver for a High-Order reconstructed Discontinuous Galerkin Discretization of All-Speed Compressible Flow with Phase Change for Application in Laser-Based Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Weston, Brian T. [Univ. of California, Davis, CA (United States)

    2017-05-17

    This dissertation focuses on the development of a fully-implicit, high-order compressible ow solver with phase change. The work is motivated by laser-induced phase change applications, particularly by the need to develop large-scale multi-physics simulations of the selective laser melting (SLM) process in metal additive manufacturing (3D printing). Simulations of the SLM process require precise tracking of multi-material solid-liquid-gas interfaces, due to laser-induced melting/ solidi cation and evaporation/condensation of metal powder in an ambient gas. These rapid density variations and phase change processes tightly couple the governing equations, requiring a fully compressible framework to robustly capture the rapid density variations of the ambient gas and the melting/evaporation of the metal powder. For non-isothermal phase change, the velocity is gradually suppressed through the mushy region by a variable viscosity and Darcy source term model. The governing equations are discretized up to 4th-order accuracy with our reconstructed Discontinuous Galerkin spatial discretization scheme and up to 5th-order accuracy with L-stable fully implicit time discretization schemes (BDF2 and ESDIRK3-5). The resulting set of non-linear equations is solved using a robust Newton-Krylov method, with the Jacobian-free version of the GMRES solver for linear iterations. Due to the sti nes associated with the acoustic waves and thermal and viscous/material strength e ects, preconditioning the GMRES solver is essential. A robust and scalable approximate block factorization preconditioner was developed, which utilizes the velocity-pressure (vP) and velocity-temperature (vT) Schur complement systems. This multigrid block reduction preconditioning technique converges for high CFL/Fourier numbers and exhibits excellent parallel and algorithmic scalability on classic benchmark problems in uid dynamics (lid-driven cavity ow and natural convection heat transfer) as well as for laser

  2. A SEMI-LAGRANGIAN TWO-LEVEL PRECONDITIONED NEWTON-KRYLOV SOLVER FOR CONSTRAINED DIFFEOMORPHIC IMAGE REGISTRATION.

    Science.gov (United States)

    Mang, Andreas; Biros, George

    2017-01-01

    We propose an efficient numerical algorithm for the solution of diffeomorphic image registration problems. We use a variational formulation constrained by a partial differential equation (PDE), where the constraints are a scalar transport equation. We use a pseudospectral discretization in space and second-order accurate semi-Lagrangian time stepping scheme for the transport equations. We solve for a stationary velocity field using a preconditioned, globalized, matrix-free Newton-Krylov scheme. We propose and test a two-level Hessian preconditioner. We consider two strategies for inverting the preconditioner on the coarse grid: a nested preconditioned conjugate gradient method (exact solve) and a nested Chebyshev iterative method (inexact solve) with a fixed number of iterations. We test the performance of our solver in different synthetic and real-world two-dimensional application scenarios. We study grid convergence and computational efficiency of our new scheme. We compare the performance of our solver against our initial implementation that uses the same spatial discretization but a standard, explicit, second-order Runge-Kutta scheme for the numerical time integration of the transport equations and a single-level preconditioner. Our improved scheme delivers significant speedups over our original implementation. As a highlight, we observe a 20 × speedup for a two dimensional, real world multi-subject medical image registration problem.

  3. A Newton-Krylov method with an approximate analytical Jacobian for implicit solution of Navier-Stokes equations on staggered overset-curvilinear grids with immersed boundaries.

    Science.gov (United States)

    Asgharzadeh, Hafez; Borazjani, Iman

    2017-02-15

    The explicit and semi-implicit schemes in flow simulations involving complex geometries and moving boundaries suffer from time-step size restriction and low convergence rates. Implicit schemes can be used to overcome these restrictions, but implementing them to solve the Navier-Stokes equations is not straightforward due to their non-linearity. Among the implicit schemes for nonlinear equations, Newton-based techniques are preferred over fixed-point techniques because of their high convergence rate but each Newton iteration is more expensive than a fixed-point iteration. Krylov subspace methods are one of the most advanced iterative methods that can be combined with Newton methods, i.e., Newton-Krylov Methods (NKMs) to solve non-linear systems of equations. The success of NKMs vastly depends on the scheme for forming the Jacobian, e.g., automatic differentiation is very expensive, and matrix-free methods without a preconditioner slow down as the mesh is refined. A novel, computationally inexpensive analytical Jacobian for NKM is developed to solve unsteady incompressible Navier-Stokes momentum equations on staggered overset-curvilinear grids with immersed boundaries. Moreover, the analytical Jacobian is used to form preconditioner for matrix-free method in order to improve its performance. The NKM with the analytical Jacobian was validated and verified against Taylor-Green vortex, inline oscillations of a cylinder in a fluid initially at rest, and pulsatile flow in a 90 degree bend. The capability of the method in handling complex geometries with multiple overset grids and immersed boundaries is shown by simulating an intracranial aneurysm. It was shown that the NKM with an analytical Jacobian is 1.17 to 14.77 times faster than the fixed-point Runge-Kutta method, and 1.74 to 152.3 times (excluding an intensively stretched grid) faster than automatic differentiation depending on the grid (size) and the flow problem. In addition, it was shown that using only the

  4. Diffusion piecewise homogenization via flux discontinuity ratios

    International Nuclear Information System (INIS)

    Sanchez, Richard; Dante, Giorgio; Zmijarevic, Igor

    2013-01-01

    We analyze piecewise homogenization with flux-weighted cross sections and preservation of averaged currents at the boundary of the homogenized domain. Introduction of a set of flux discontinuity ratios (FDR) that preserve reference interface currents leads to preservation of averaged region reaction rates and fluxes. We consider the class of numerical discretizations with one degree of freedom per volume and per surface and prove that when the homogenization and computing meshes are equal there is a unique solution for the FDRs which exactly preserve interface currents. For diffusion sub-meshing we introduce a Jacobian-Free Newton-Krylov method and for all cases considered obtain an 'exact' numerical solution (eight digits for the interface currents). The homogenization is completed by extending the familiar full assembly homogenization via flux discontinuity factors to the sides of regions laying on the boundary of the piecewise homogenized domain. Finally, for the familiar nodal discretization we numerically find that the FDRs obtained with no sub-mesh (nearly at no cost) can be effectively used for whole-core diffusion calculations with sub-mesh. This is not the case, however, for cell-centered finite differences. (authors)

  5. Nonlinear Krylov acceleration of reacting flow codes

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S.; Rawat, R.; Smith, P.; Pernice, M. [Univ. of Utah, Salt Lake City, UT (United States)

    1996-12-31

    We are working on computational simulations of three-dimensional reactive flows in applications encompassing a broad range of chemical engineering problems. Examples of such processes are coal (pulverized and fluidized bed) and gas combustion, petroleum processing (cracking), and metallurgical operations such as smelting. These simulations involve an interplay of various physical and chemical factors such as fluid dynamics with turbulence, convective and radiative heat transfer, multiphase effects such as fluid-particle and particle-particle interactions, and chemical reaction. The governing equations resulting from modeling these processes are highly nonlinear and strongly coupled, thereby rendering their solution by traditional iterative methods (such as nonlinear line Gauss-Seidel methods) very difficult and sometimes impossible. Hence we are exploring the use of nonlinear Krylov techniques (such as CMRES and Bi-CGSTAB) to accelerate and stabilize the existing solver. This strategy allows us to take advantage of the problem-definition capabilities of the existing solver. The overall approach amounts to using the SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) method and its variants as nonlinear preconditioners for the nonlinear Krylov method. We have also adapted a backtracking approach for inexact Newton methods to damp the Newton step in the nonlinear Krylov method. This will be a report on work in progress. Preliminary results with nonlinear GMRES have been very encouraging: in many cases the number of line Gauss-Seidel sweeps has been reduced by about a factor of 5, and increased robustness of the underlying solver has also been observed.

  6. On performance of Krylov smoothing for fully-coupled AMG preconditioners for VMS resistive MHD

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Paul T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shadid, John N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Univ. of New Mexico, Albuquerque, NM (United States). Department of Mathematics and Statistics,; Tsuji, Paul H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-11-01

    Here, this study explores the performance and scaling of a GMRES Krylov method employed as a smoother for an algebraic multigrid (AMG) preconditioned Newton- Krylov solution approach applied to a fully-implicit variational multiscale (VMS) nite element (FE) resistive magnetohydrodynamics (MHD) formulation. In this context a Newton iteration is used for the nonlinear system and a Krylov (GMRES) method is employed for the linear subsystems. The efficiency of this approach is critically dependent on the scalability and performance of the AMG preconditioner for the linear solutions and the performance of the smoothers play a critical role. Krylov smoothers are considered in an attempt to reduce the time and memory requirements of existing robust smoothers based on additive Schwarz domain decomposition (DD) with incomplete LU factorization solves on each subdomain. Three time dependent resistive MHD test cases are considered to evaluate the method. The results demonstrate that the GMRES smoother can be faster due to a decrease in the preconditioner setup time and a reduction in outer GMRESR solver iterations, and requires less memory (typically 35% less memory for global GMRES smoother) than the DD ILU smoother.

  7. Low-rank Quasi-Newton updates for Robust Jacobian lagging in Newton methods

    International Nuclear Information System (INIS)

    Brown, J.; Brune, P.

    2013-01-01

    Newton-Krylov methods are standard tools for solving nonlinear problems. A common approach is to 'lag' the Jacobian when assembly or preconditioner setup is computationally expensive, in exchange for some degradation in the convergence rate and robustness. We show that this degradation may be partially mitigated by using the lagged Jacobian as an initial operator in a quasi-Newton method, which applies unassembled low-rank updates to the Jacobian until the next full reassembly. We demonstrate the effectiveness of this technique on problems in glaciology and elasticity. (authors)

  8. Applications of high-resolution spatial discretization scheme and Jacobian-free Newton–Krylov method in two-phase flow problems

    International Nuclear Information System (INIS)

    Zou, Ling; Zhao, Haihua; Zhang, Hongbin

    2015-01-01

    Highlights: • Using high-resolution spatial scheme in solving two-phase flow problems. • Fully implicit time integrations scheme. • Jacobian-free Newton–Krylov method. • Analytical solution for two-phase water faucet problem. - Abstract: The majority of the existing reactor system analysis codes were developed using low-order numerical schemes in both space and time. In many nuclear thermal–hydraulics applications, it is desirable to use higher-order numerical schemes to reduce numerical errors. High-resolution spatial discretization schemes provide high order spatial accuracy in smooth regions and capture sharp spatial discontinuity without nonphysical spatial oscillations. In this work, we adapted an existing high-resolution spatial discretization scheme on staggered grids in two-phase flow applications. Fully implicit time integration schemes were also implemented to reduce numerical errors from operator-splitting types of time integration schemes. The resulting nonlinear system has been successfully solved using the Jacobian-free Newton–Krylov (JFNK) method. The high-resolution spatial discretization and high-order fully implicit time integration numerical schemes were tested and numerically verified for several two-phase test problems, including a two-phase advection problem, a two-phase advection with phase appearance/disappearance problem, and the water faucet problem. Numerical results clearly demonstrated the advantages of using such high-resolution spatial and high-order temporal numerical schemes to significantly reduce numerical diffusion and therefore improve accuracy. Our study also demonstrated that the JFNK method is stable and robust in solving two-phase flow problems, even when phase appearance/disappearance exists

  9. Numerical simulation of four-field extended magnetohydrodynamics in dynamically adaptive curvilinear coordinates via Newton-Krylov-Schwarz

    KAUST Repository

    Yuan, Xuefei

    2012-07-01

    Numerical simulations of the four-field extended magnetohydrodynamics (MHD) equations with hyper-resistivity terms present a difficult challenge because of demanding spatial resolution requirements. A time-dependent sequence of . r-refinement adaptive grids obtained from solving a single Monge-Ampère (MA) equation addresses the high-resolution requirements near the . x-point for numerical simulation of the magnetic reconnection problem. The MHD equations are transformed from Cartesian coordinates to solution-defined curvilinear coordinates. After the application of an implicit scheme to the time-dependent problem, the parallel Newton-Krylov-Schwarz (NKS) algorithm is used to solve the system at each time step. Convergence and accuracy studies show that the curvilinear solution requires less computational effort than a pure Cartesian treatment. This is due both to the more optimal placement of the grid points and to the improved convergence of the implicit solver, nonlinearly and linearly. The latter effect, which is significant (more than an order of magnitude in number of inner linear iterations for equivalent accuracy), does not yet seem to be widely appreciated. © 2012 Elsevier Inc.

  10. Numerical simulation of four-field extended magnetohydrodynamics in dynamically adaptive curvilinear coordinates via Newton-Krylov-Schwarz

    KAUST Repository

    Yuan, Xuefei; Jardin, Stephen C.; Keyes, David E.

    2012-01-01

    Numerical simulations of the four-field extended magnetohydrodynamics (MHD) equations with hyper-resistivity terms present a difficult challenge because of demanding spatial resolution requirements. A time-dependent sequence of . r-refinement adaptive grids obtained from solving a single Monge-Ampère (MA) equation addresses the high-resolution requirements near the . x-point for numerical simulation of the magnetic reconnection problem. The MHD equations are transformed from Cartesian coordinates to solution-defined curvilinear coordinates. After the application of an implicit scheme to the time-dependent problem, the parallel Newton-Krylov-Schwarz (NKS) algorithm is used to solve the system at each time step. Convergence and accuracy studies show that the curvilinear solution requires less computational effort than a pure Cartesian treatment. This is due both to the more optimal placement of the grid points and to the improved convergence of the implicit solver, nonlinearly and linearly. The latter effect, which is significant (more than an order of magnitude in number of inner linear iterations for equivalent accuracy), does not yet seem to be widely appreciated. © 2012 Elsevier Inc.

  11. KRYSI, Ordinary Differential Equations Solver with Sdirk Krylov Method

    International Nuclear Information System (INIS)

    Hindmarsh, A.C.; Norsett, S.P.

    2001-01-01

    1 - Description of program or function: KRYSI is a set of FORTRAN subroutines for solving ordinary differential equations initial value problems. It is suitable for both stiff and non-stiff systems. When solving the implicit stage equations in the stiff case, KRYSI uses a Krylov subspace iteration method called the SPIGMR (Scaled Preconditioned Incomplete Generalized Minimum Residual) method. No explicit Jacobian storage is required, except where used in pre- conditioning. A demonstration problem is included with a description of two pre-conditioners that are natural for its solution by KRYSI. 2 - Method of solution: KRYSI uses a three-stage, third-order singly diagonally implicit Runge-Kutta (SDIRK) method. In the stiff case, a preconditioned Krylov subspace iteration within a (so-called) inexact Newton iteration is used to solve the system of nonlinear algebraic equations

  12. LSODKR, Stiff Ordinary Differential Equations (ODE) System Solver with Krylov Iteration and Root-finding

    International Nuclear Information System (INIS)

    Hindmarsh, A.D.; Brown, P.N.

    1996-01-01

    1 - Description of program or function: LSODKR is a new initial value ODE solver for stiff and non-stiff systems. It is a variant of the LSODPK and LSODE solvers, intended mainly for large stiff systems. The main differences between LSODKR and LSODE are the following: a) for stiff systems, LSODKR uses a corrector iteration composed of Newton iteration and one of four preconditioned Krylov subspace iteration methods. The user must supply routines for the preconditioning operations, b) within the corrector iteration, LSODKR does automatic switching between functional (fix point) iteration and modified Newton iteration, c) LSODKR includes the ability to find roots of given functions of the solution during the integration. 2 - Method of solution: Integration is by Adams or BDF (Backward Differentiation Formula) methods, at user option. Corrector iteration is by Newton or fix point iteration, determined dynamically. Linear system solution is by a preconditioned Krylov iteration, selected by user from Incomplete Orthogonalization Method, Generalized Minimum Residual Method, and two variants of Preconditioned Conjugate Gradient Method. Preconditioning is to be supplied by the user. 3 - Restrictions on the complexity of the problem: None

  13. LSODKR, Stiff Ordinary Differential Equations (ODE) System Solver with Krylov Iteration with Root-finding

    International Nuclear Information System (INIS)

    Hindmarsh, A.C.; Petzold, L.R.

    2005-01-01

    1 - Description of program or function: LSODKR is a new initial value ODE solver for stiff and non-stiff systems. It is a variant of the LSODPK and LSODE solvers, intended mainly for large stiff systems. The main differences between LSODKR and LSODE are the following: a) for stiff systems, LSODKR uses a corrector iteration composed of Newton iteration and one of four preconditioned Krylov subspace iteration methods. The user must supply routines for the preconditioning operations, b) within the corrector iteration, LSODKR does automatic switching between functional (fix point) iteration and modified Newton iteration, The nonlinear iteration method-switching differs from the method-switching in LSODA and LSODAR, but provides similar savings by using the cheaper method in the non-stiff regions of the problem. c) LSODKR includes the ability to find roots of given functions of the solution during the integration. d) LSODKR also improves on the Krylov methods in LSODPK by offering the option to save and reuse the approximate Jacobian data underlying the pre-conditioner. The LSODKR source is commented extensively to facilitate modification. Both a single-precision version and a double-precision version are available. 2 - Methods: It is assumed that the ODEs are given explicitly, so that the system can be written in the form dy/dt = f(t,y), where y is the vector of dependent variables, and t is the independent variable. Integration is by Adams or BDF (Backward Differentiation Formula) methods, at user option. Corrector iteration is by Newton or fix point iteration, determined dynamically. Linear system solution is by a preconditioned Krylov iteration, selected by user from Incomplete Orthogonalization Method, Generalized Minimum Residual Method, and two variants of Preconditioned Conjugate Gradient Method. Preconditioning is to be supplied by the user

  14. A Krylov Subspace Method for Unstructured Mesh SN Transport Computation

    International Nuclear Information System (INIS)

    Yoo, Han Jong; Cho, Nam Zin; Kim, Jong Woon; Hong, Ser Gi; Lee, Young Ouk

    2010-01-01

    Hong, et al., have developed a computer code MUST (Multi-group Unstructured geometry S N Transport) for the neutral particle transport calculations in three-dimensional unstructured geometry. In this code, the discrete ordinates transport equation is solved by using the discontinuous finite element method (DFEM) or the subcell balance methods with linear discontinuous expansion. In this paper, the conventional source iteration in the MUST code is replaced by the Krylov subspace method to reduce computing time and the numerical test results are given

  15. Accelerating Inexact Newton Schemes for Large Systems of Nonlinear Equations

    NARCIS (Netherlands)

    Fokkema, D.R.; Sleijpen, G.L.G.; Vorst, H.A. van der

    Classical iteration methods for linear systems, such as Jacobi iteration, can be accelerated considerably by Krylov subspace methods like GMRES. In this paper, we describe how inexact Newton methods for nonlinear problems can be accelerated in a similar way and how this leads to a general

  16. Portable, parallel, reusable Krylov space codes

    Energy Technology Data Exchange (ETDEWEB)

    Smith, B.; Gropp, W. [Argonne National Lab., IL (United States)

    1994-12-31

    Krylov space accelerators are an important component of many algorithms for the iterative solution of linear systems. Each Krylov space method has it`s own particular advantages and disadvantages, therefore it is desirable to have a variety of them available all with an identical, easy to use, interface. A common complaint application programmers have with available software libraries for the iterative solution of linear systems is that they require the programmer to use the data structures provided by the library. The library is not able to work with the data structures of the application code. Hence, application programmers find themselves constantly recoding the Krlov space algorithms. The Krylov space package (KSP) is a data-structure-neutral implementation of a variety of Krylov space methods including preconditioned conjugate gradient, GMRES, BiCG-Stab, transpose free QMR and CGS. Unlike all other software libraries for linear systems that the authors are aware of, KSP will work with any application codes data structures, in Fortran or C. Due to it`s data-structure-neutral design KSP runs unchanged on both sequential and parallel machines. KSP has been tested on workstations, the Intel i860 and Paragon, Thinking Machines CM-5 and the IBM SP1.

  17. Time stepping free numerical solution of linear differential equations: Krylov subspace versus waveform relaxation

    NARCIS (Netherlands)

    Bochev, Mikhail A.; Oseledets, I.V.; Tyrtyshnikov, E.E.

    2013-01-01

    The aim of this paper is two-fold. First, we propose an efficient implementation of the continuous time waveform relaxation method based on block Krylov subspaces. Second, we compare this new implementation against Krylov subspace methods combined with the shift and invert technique.

  18. Approximate tensor-product preconditioners for very high order discontinuous Galerkin methods

    Science.gov (United States)

    Pazner, Will; Persson, Per-Olof

    2018-02-01

    In this paper, we develop a new tensor-product based preconditioner for discontinuous Galerkin methods with polynomial degrees higher than those typically employed. This preconditioner uses an automatic, purely algebraic method to approximate the exact block Jacobi preconditioner by Kronecker products of several small, one-dimensional matrices. Traditional matrix-based preconditioners require O (p2d) storage and O (p3d) computational work, where p is the degree of basis polynomials used, and d is the spatial dimension. Our SVD-based tensor-product preconditioner requires O (p d + 1) storage, O (p d + 1) work in two spatial dimensions, and O (p d + 2) work in three spatial dimensions. Combined with a matrix-free Newton-Krylov solver, these preconditioners allow for the solution of DG systems in linear time in p per degree of freedom in 2D, and reduce the computational complexity from O (p9) to O (p5) in 3D. Numerical results are shown in 2D and 3D for the advection, Euler, and Navier-Stokes equations, using polynomials of degree up to p = 30. For many test cases, the preconditioner results in similar iteration counts when compared with the exact block Jacobi preconditioner, and performance is significantly improved for high polynomial degrees p.

  19. A fully implicit Newton-Krylov-Schwarz method for tokamak magnetohydrodynamics: Jacobian construction and preconditioner formulation

    KAUST Repository

    Reynolds, Daniel R.

    2012-01-01

    Single-fluid resistive magnetohydrodynamics (MHD) is a fluid description of fusion plasmas which is often used to investigate macroscopic instabilities in tokamaks. In MHD modeling of tokamaks, it is often desirable to compute MHD phenomena to resistive time scales or a combination of resistive-Alfvén time scales, which can render explicit time stepping schemes computationally expensive. We present recent advancements in the development of preconditioners for fully nonlinearly implicit simulations of single-fluid resistive tokamak MHD. Our work focuses on simulations using a structured mesh mapped into a toroidal geometry with a shaped poloidal cross-section, and a finite-volume spatial discretization of the partial differential equation model. We discretize the temporal dimension using a fully implicit or the backwards differentiation formula method, and solve the resulting nonlinear algebraic system using a standard inexact Newton-Krylov approach, provided by the sundials library. The focus of this paper is on the construction and performance of various preconditioning approaches for accelerating the convergence of the iterative solver algorithms. Effective preconditioners require information about the Jacobian entries; however, analytical formulae for these Jacobian entries may be prohibitive to derive/implement without error. We therefore compute these entries using automatic differentiation with OpenAD. We then investigate a variety of preconditioning formulations inspired by standard solution approaches in modern MHD codes, in order to investigate their utility in a preconditioning context. We first describe the code modifications necessary for the use of the OpenAD tool and sundials solver library. We conclude with numerical results for each of our preconditioning approaches in the context of pellet-injection fueling of tokamak plasmas. Of these, our optimal approach results in a speedup of a factor of 3 compared with non-preconditioned implicit tests, with

  20. Application of nonlinear Krylov acceleration to radiative transfer problems

    International Nuclear Information System (INIS)

    Till, A. T.; Adams, M. L.; Morel, J. E.

    2013-01-01

    The iterative solution technique used for radiative transfer is normally nested, with outer thermal iterations and inner transport iterations. We implement a nonlinear Krylov acceleration (NKA) method in the PDT code for radiative transfer problems that breaks nesting, resulting in more thermal iterations but significantly fewer total inner transport iterations. Using the metric of total inner transport iterations, we investigate a crooked-pipe-like problem and a pseudo-shock-tube problem. Using only sweep preconditioning, we compare NKA against a typical inner / outer method employing GMRES / Newton and find NKA to be comparable or superior. Finally, we demonstrate the efficacy of applying diffusion-based preconditioning to grey problems in conjunction with NKA. (authors)

  1. Scalable Newton-Krylov solver for very large power flow problems

    NARCIS (Netherlands)

    Idema, R.; Lahaye, D.J.P.; Vuik, C.; Van der Sluis, L.

    2010-01-01

    The power flow problem is generally solved by the Newton-Raphson method with a sparse direct solver for the linear system of equations in each iteration. While this works fine for small power flow problems, we will show that for very large problems the direct solver is very slow and we present

  2. Enhanced nonlinear iterative techniques applied to a non-equilibrium plasma flow

    Energy Technology Data Exchange (ETDEWEB)

    Knoll, D.A.; McHugh, P.R. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1996-12-31

    We study the application of enhanced nonlinear iterative methods to the steady-state solution of a system of two-dimensional convection-diffusion-reaction partial differential equations that describe the partially-ionized plasma flow in the boundary layer of a tokamak fusion reactor. This system of equations is characterized by multiple time and spatial scales, and contains highly anisotropic transport coefficients due to a strong imposed magnetic field. We use Newton`s method to linearize the nonlinear system of equations resulting from an implicit, finite volume discretization of the governing partial differential equations, on a staggered Cartesian mesh. The resulting linear systems are neither symmetric nor positive definite, and are poorly conditioned. Preconditioned Krylov iterative techniques are employed to solve these linear systems. We investigate both a modified and a matrix-free Newton-Krylov implementation, with the goal of reducing CPU cost associated with the numerical formation of the Jacobian. A combination of a damped iteration, one-way multigrid and a pseudo-transient continuation technique are used to enhance global nonlinear convergence and CPU efficiency. GMRES is employed as the Krylov method with Incomplete Lower-Upper(ILU) factorization preconditioning. The goal is to construct a combination of nonlinear and linear iterative techniques for this complex physical problem that optimizes trade-offs between robustness, CPU time, memory requirements, and code complexity. It is shown that a one-way multigrid implementation provides significant CPU savings for fine grid calculations. Performance comparisons of the modified Newton-Krylov and matrix-free Newton-Krylov algorithms will be presented.

  3. Preconditioner Updates for Solving Sequences of Linear Systems in Matrix-Free Environment

    Czech Academy of Sciences Publication Activity Database

    Duintjer Tebbens, Jurjen; Tůma, Miroslav

    2010-01-01

    Roč. 17, č. 6 (2010), s. 997-1019 ISSN 1070-5325 R&D Projects: GA AV ČR IAA100300802; GA AV ČR KJB100300703 Grant - others:GA AV ČR(CZ) M100300902 Institutional research plan: CEZ:AV0Z10300504 Source of funding: I - inštitucionálna podpora na rozvoj VO Keywords : preconditioned iterative methods * matrix-free environment * factorization updates * inexact Newton-Krylov methods * incomplete factorizations Subject RIV: BA - General Mathematics Impact factor: 1.163, year: 2010

  4. Enhanced nonlinear iterative techniques applied to a nonequilibrium plasma flow

    International Nuclear Information System (INIS)

    Knoll, D.A.

    1998-01-01

    The authors study the application of enhanced nonlinear iterative methods to the steady-state solution of a system of two-dimensional convection-diffusion-reaction partial differential equations that describe the partially ionized plasma flow in the boundary layer of a tokamak fusion reactor. This system of equations is characterized by multiple time and spatial scales and contains highly anisotropic transport coefficients due to a strong imposed magnetic field. They use Newton's method to linearize the nonlinear system of equations resulting from an implicit, finite volume discretization of the governing partial differential equations, on a staggered Cartesian mesh. The resulting linear systems are neither symmetric nor positive definite, and are poorly conditioned. Preconditioned Krylov iterative techniques are employed to solve these linear systems. They investigate both a modified and a matrix-free Newton-Krylov implementation, with the goal of reducing CPU cost associated with the numerical formation of the Jacobian. A combination of a damped iteration, mesh sequencing, and a pseudotransient continuation technique is used to enhance global nonlinear convergence and CPU efficiency. GMRES is employed as the Krylov method with incomplete lower-upper (ILU) factorization preconditioning. The goal is to construct a combination of nonlinear and linear iterative techniques for this complex physical problem that optimizes trade-offs between robustness, CPU time, memory requirements, and code complexity. It is shown that a mesh sequencing implementation provides significant CPU savings for fine grid calculations. Performance comparisons of modified Newton-Krylov and matrix-free Newton-Krylov algorithms will be presented

  5. Solving phase appearance/disappearance two-phase flow problems with high resolution staggered grid and fully implicit schemes by the Jacobian-free Newton–Krylov Method

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Ling; Zhao, Haihua; Zhang, Hongbin

    2016-04-01

    The phase appearance/disappearance issue presents serious numerical challenges in two-phase flow simulations. Many existing reactor safety analysis codes use different kinds of treatments for the phase appearance/disappearance problem. However, to our best knowledge, there are no fully satisfactory solutions. Additionally, the majority of the existing reactor system analysis codes were developed using low-order numerical schemes in both space and time. In many situations, it is desirable to use high-resolution spatial discretization and fully implicit time integration schemes to reduce numerical errors. In this work, we adapted a high-resolution spatial discretization scheme on staggered grid mesh and fully implicit time integration methods (such as BDF1 and BDF2) to solve the two-phase flow problems. The discretized nonlinear system was solved by the Jacobian-free Newton Krylov (JFNK) method, which does not require the derivation and implementation of analytical Jacobian matrix. These methods were tested with a few two-phase flow problems with phase appearance/disappearance phenomena considered, such as a linear advection problem, an oscillating manometer problem, and a sedimentation problem. The JFNK method demonstrated extremely robust and stable behaviors in solving the two-phase flow problems with phase appearance/disappearance. No special treatments such as water level tracking or void fraction limiting were used. High-resolution spatial discretization and second- order fully implicit method also demonstrated their capabilities in significantly reducing numerical errors.

  6. Why do couples discontinue unlimited free IVF treatments?

    Science.gov (United States)

    Lande, Yechezkel; Seidman, Daniel S; Maman, Ettie; Baum, Micha; Hourvitz, Ariel

    2015-03-01

    Worldwide, IVF is often discontinued before a live birth is achieved due to high costs. Even when partial financial coverage is provided, often medical providers advise treatment discontinuation. In Israel, unlimited IVF is offered free of charge for a couples' first two children. Our objective was to assess the reasons couples discontinue IVF treatments before achieving two children in a completely unlimited cost-free environment. This cohort study included all primary infertile women, reason they ceased treatments. Of the 134 couples included, only 46 ceased IVF treatments without achieving two children, after performing an average of 6.2 IVF cycles to achieve their first birth. The reasons given were: lost hope of success (13), psychological burden (18), divorce (6), medical staff recommendation (5), bureaucratic difficulties (3) and general medical condition (1). The main reasons for "drop out" in our cost-free environment were as follows: psychological burden and lost hope of success. Due to high availability of treatments, medical staff recommendation was a less significant factor in our study.

  7. A numerical method to solve the 1D and the 2D reaction diffusion equation based on Bessel functions and Jacobian free Newton-Krylov subspace methods

    Science.gov (United States)

    Parand, K.; Nikarya, M.

    2017-11-01

    In this paper a novel method will be introduced to solve a nonlinear partial differential equation (PDE). In the proposed method, we use the spectral collocation method based on Bessel functions of the first kind and the Jacobian free Newton-generalized minimum residual (JFNGMRes) method with adaptive preconditioner. In this work a nonlinear PDE has been converted to a nonlinear system of algebraic equations using the collocation method based on Bessel functions without any linearization, discretization or getting the help of any other methods. Finally, by using JFNGMRes, the solution of the nonlinear algebraic system is achieved. To illustrate the reliability and efficiency of the proposed method, we solve some examples of the famous Fisher equation. We compare our results with other methods.

  8. A Newton–Krylov method with an approximate analytical Jacobian for implicit solution of Navier–Stokes equations on staggered overset-curvilinear grids with immersed boundaries

    Science.gov (United States)

    Asgharzadeh, Hafez; Borazjani, Iman

    2016-01-01

    The explicit and semi-implicit schemes in flow simulations involving complex geometries and moving boundaries suffer from time-step size restriction and low convergence rates. Implicit schemes can be used to overcome these restrictions, but implementing them to solve the Navier-Stokes equations is not straightforward due to their non-linearity. Among the implicit schemes for nonlinear equations, Newton-based techniques are preferred over fixed-point techniques because of their high convergence rate but each Newton iteration is more expensive than a fixed-point iteration. Krylov subspace methods are one of the most advanced iterative methods that can be combined with Newton methods, i.e., Newton-Krylov Methods (NKMs) to solve non-linear systems of equations. The success of NKMs vastly depends on the scheme for forming the Jacobian, e.g., automatic differentiation is very expensive, and matrix-free methods without a preconditioner slow down as the mesh is refined. A novel, computationally inexpensive analytical Jacobian for NKM is developed to solve unsteady incompressible Navier-Stokes momentum equations on staggered overset-curvilinear grids with immersed boundaries. Moreover, the analytical Jacobian is used to form preconditioner for matrix-free method in order to improve its performance. The NKM with the analytical Jacobian was validated and verified against Taylor-Green vortex, inline oscillations of a cylinder in a fluid initially at rest, and pulsatile flow in a 90 degree bend. The capability of the method in handling complex geometries with multiple overset grids and immersed boundaries is shown by simulating an intracranial aneurysm. It was shown that the NKM with an analytical Jacobian is 1.17 to 14.77 times faster than the fixed-point Runge-Kutta method, and 1.74 to 152.3 times (excluding an intensively stretched grid) faster than automatic differentiation depending on the grid (size) and the flow problem. In addition, it was shown that using only the

  9. Efficient Tridiagonal Preconditioner for the Matrix-Free Truncated Newton Method

    Czech Academy of Sciences Publication Activity Database

    Lukšan, Ladislav; Vlček, Jan

    2014-01-01

    Roč. 235, 25 May (2014), s. 394-407 ISSN 0096-3003 R&D Projects: GA ČR GA13-06684S Institutional support: RVO:67985807 Keywords : unconstrained optimization * large scale optimization * matrix-free truncated Newton method * preconditioned conjugate gradient method * preconditioners obtained by the directional differentiation * numerical algorithms Subject RIV: BA - General Mathematics Impact factor: 1.551, year: 2014

  10. Reduced-Rank Adaptive Filtering Using Krylov Subspace

    Directory of Open Access Journals (Sweden)

    Sergueï Burykh

    2003-01-01

    Full Text Available A unified view of several recently introduced reduced-rank adaptive filters is presented. As all considered methods use Krylov subspace for rank reduction, the approach taken in this work is inspired from Krylov subspace methods for iterative solutions of linear systems. The alternative interpretation so obtained is used to study the properties of each considered technique and to relate one reduced-rank method to another as well as to algorithms used in computational linear algebra. Practical issues are discussed and low-complexity versions are also included in our study. It is believed that the insight developed in this paper can be further used to improve existing reduced-rank methods according to known results in the domain of Krylov subspace methods.

  11. Time-domain simulations for metallic nano-structures - a Krylov-subspace approach beyond the limitations of FDTD

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, Michael [Institut fuer Theoretische Festkoerperphysik, Universitaet Karlsruhe (Germany); Karlsruhe School of Optics and Photonics (KSOP), Universitaet Karlsruhe (Germany); Niegemann, Jens; Tkeshelashvili, Lasha; Busch, Kurt [Institut fuer Theoretische Festkoerperphysik, Universitaet Karlsruhe (Germany); DFG Forschungszentrum Center for Functional Nanostructures (CFN), Universitaet Karlsruhe (Germany); Karlsruhe School of Optics and Photonics (KSOP), Universitaet Karlsruhe (Germany)

    2008-07-01

    Numerical simulations of metallic nano-structures are crucial for the efficient design of plasmonic devices. Conventional time-domain solvers such as FDTD introduce large numerical errors especially at metallic surfaces. Our approach combines a discontinuous Galerkin method on an adaptive mesh for the spatial discretisation with a Krylov-subspace technique for the time-stepping procedure. Thus, the higher-order accuracy in both time and space is supported by unconditional stability. As illustrative examples, we compare numerical results obtained with our method against analytical reference solutions and results from FDTD calculations.

  12. Krylov subspace method with communication avoiding technique for linear system obtained from electromagnetic analysis

    International Nuclear Information System (INIS)

    Ikuno, Soichiro; Chen, Gong; Yamamoto, Susumu; Itoh, Taku; Abe, Kuniyoshi; Nakamura, Hiroaki

    2016-01-01

    Krylov subspace method and the variable preconditioned Krylov subspace method with communication avoiding technique for a linear system obtained from electromagnetic analysis are numerically investigated. In the k−skip Krylov method, the inner product calculations are expanded by Krylov basis, and the inner product calculations are transformed to the scholar operations. k−skip CG method is applied for the inner-loop solver of Variable Preconditioned Krylov subspace methods, and the converged solution of electromagnetic problem is obtained using the method. (author)

  13. Initial conditions and robust Newton-Raphson for harmonic balance analysis of free-running oscillators

    NARCIS (Netherlands)

    Virtanen, J.E.; Maten, ter E.J.W.; Honkala, M.; Hulkkonen, M.; Günther, M.; Bartel, A.; Brunk, M.; Schoeps, S.; Striebel, M.

    2012-01-01

    Poor initial conditions for Harmonic Balance (HB) analysis of free-running oscillators may lead to divergence of the direct Newton-Raphson method or may prevent to find the solution within an optimization approach. We exploit time integration to obtain estimates for the oscillation frequency and for

  14. On the numerical stability analysis of pipelined Krylov subspace methods

    Czech Academy of Sciences Publication Activity Database

    Carson, E.T.; Rozložník, Miroslav; Strakoš, Z.; Tichý, P.; Tůma, M.

    submitted 2017 (2018) R&D Projects: GA ČR GA13-06684S Grant - others:GA MŠk(CZ) LL1202 Institutional support: RVO:67985807 Keywords : Krylov subspace methods * the conjugate gradient method * numerical stability * inexact computations * delay of convergence * maximal attainable accuracy * pipelined Krylov subspace methods * exascale computations

  15. Matrix Krylov subspace methods for image restoration

    Directory of Open Access Journals (Sweden)

    khalide jbilou

    2015-09-01

    Full Text Available In the present paper, we consider some matrix Krylov subspace methods for solving ill-posed linear matrix equations and in those problems coming from the restoration of blurred and noisy images. Applying the well known Tikhonov regularization procedure leads to a Sylvester matrix equation depending the Tikhonov regularized parameter. We apply the matrix versions of the well known Krylov subspace methods, namely the Least Squared (LSQR and the conjugate gradient (CG methods to get approximate solutions representing the restored images. Some numerical tests are presented to show the effectiveness of the proposed methods.

  16. Tightly Coupled Multiphysics Algorithm for Pebble Bed Reactors

    International Nuclear Information System (INIS)

    Park, HyeongKae; Knoll, Dana; Gaston, Derek; Martineau, Richard

    2010-01-01

    We have developed a tightly coupled multiphysics simulation tool for the pebble-bed reactor (PBR) concept, a type of Very High-Temperature gas-cooled Reactor (VHTR). The simulation tool, PRONGHORN, takes advantages of the Multiphysics Object-Oriented Simulation Environment library, and is capable of solving multidimensional thermal-fluid and neutronics problems implicitly with a Newton-based approach. Expensive Jacobian matrix formation is alleviated via the Jacobian-free Newton-Krylov method, and physics-based preconditioning is applied to minimize Krylov iterations. Motivation for the work is provided via analysis and numerical experiments on simpler multiphysics reactor models. We then provide detail of the physical models and numerical methods in PRONGHORN. Finally, PRONGHORN's algorithmic capability is demonstrated on a number of PBR test cases.

  17. Parallel Implicit Algorithms for CFD

    Science.gov (United States)

    Keyes, David E.

    1998-01-01

    The main goal of this project was efficient distributed parallel and workstation cluster implementations of Newton-Krylov-Schwarz (NKS) solvers for implicit Computational Fluid Dynamics (CFD.) "Newton" refers to a quadratically convergent nonlinear iteration using gradient information based on the true residual, "Krylov" to an inner linear iteration that accesses the Jacobian matrix only through highly parallelizable sparse matrix-vector products, and "Schwarz" to a domain decomposition form of preconditioning the inner Krylov iterations with primarily neighbor-only exchange of data between the processors. Prior experience has established that Newton-Krylov methods are competitive solvers in the CFD context and that Krylov-Schwarz methods port well to distributed memory computers. The combination of the techniques into Newton-Krylov-Schwarz was implemented on 2D and 3D unstructured Euler codes on the parallel testbeds that used to be at LaRC and on several other parallel computers operated by other agencies or made available by the vendors. Early implementations were made directly in Massively Parallel Integration (MPI) with parallel solvers we adapted from legacy NASA codes and enhanced for full NKS functionality. Later implementations were made in the framework of the PETSC library from Argonne National Laboratory, which now includes pseudo-transient continuation Newton-Krylov-Schwarz solver capability (as a result of demands we made upon PETSC during our early porting experiences). A secondary project pursued with funding from this contract was parallel implicit solvers in acoustics, specifically in the Helmholtz formulation. A 2D acoustic inverse problem has been solved in parallel within the PETSC framework.

  18. Linear multifrequency-grey acceleration recast for preconditioned Krylov iterations

    International Nuclear Information System (INIS)

    Morel, Jim E.; Brian Yang, T.-Y.; Warsa, James S.

    2007-01-01

    The linear multifrequency-grey acceleration (LMFGA) technique is used to accelerate the iterative convergence of multigroup thermal radiation diffusion calculations in high energy density simulations. Although it is effective and efficient in one-dimensional calculations, the LMFGA method has recently been observed to significantly degrade under certain conditions in multidimensional calculations with large discontinuities in material properties. To address this deficiency, we recast the LMFGA method in terms of a preconditioned system that is solved with a Krylov method (LMFGK). Results are presented demonstrating that the new LMFGK method always requires fewer iterations than the original LMFGA method. The reduction in iteration count increases with both the size of the time step and the inhomogeneity of the problem. However, for reasons later explained, the LMFGK method can cost more per iteration than the LMFGA method, resulting in lower but comparable efficiency in problems with small time steps and weak inhomogeneities. In problems with large time steps and strong inhomogeneities, the LMFGK method is significantly more efficient than the LMFGA method

  19. Excluding Noise from Short Krylov Subspace Approximations to the Truncated Singular Value Decomposition (SVD)

    Science.gov (United States)

    2017-09-27

    100 times larger for the minimal Krylov subspace. 0 5 10 15 20 25 Krylov subspace dimension 10-2 10-1 100 101 102 103 104 jjĜ ¡ 1 jj F SVD...approximation Kn (G;u(0) ) 0 5 10 15 20 25 Krylov subspace dimension 10-2 10-1 100 101 102 103 104 jjx jj fo r m in x jjĜ x ¡ bjj SVD approximation Kn (G;u(0

  20. A Level Set Discontinuous Galerkin Method for Free Surface Flows

    DEFF Research Database (Denmark)

    Grooss, Jesper; Hesthaven, Jan

    2006-01-01

    We present a discontinuous Galerkin method on a fully unstructured grid for the modeling of unsteady incompressible fluid flows with free surfaces. The surface is modeled by embedding and represented by a levelset. We discuss the discretization of the flow equations and the level set equation...

  1. Physics-Based Preconditioning of a Compressible Flow Solver for Large-Scale Simulations of Additive Manufacturing Processes

    Science.gov (United States)

    Weston, Brian; Nourgaliev, Robert; Delplanque, Jean-Pierre

    2017-11-01

    We present a new block-based Schur complement preconditioner for simulating all-speed compressible flow with phase change. The conservation equations are discretized with a reconstructed Discontinuous Galerkin method and integrated in time with fully implicit time discretization schemes. The resulting set of non-linear equations is converged using a robust Newton-Krylov framework. Due to the stiffness of the underlying physics associated with stiff acoustic waves and viscous material strength effects, we solve for the primitive-variables (pressure, velocity, and temperature). To enable convergence of the highly ill-conditioned linearized systems, we develop a physics-based preconditioner, utilizing approximate block factorization techniques to reduce the fully-coupled 3×3 system to a pair of reduced 2×2 systems. We demonstrate that our preconditioned Newton-Krylov framework converges on very stiff multi-physics problems, corresponding to large CFL and Fourier numbers, with excellent algorithmic and parallel scalability. Results are shown for the classic lid-driven cavity flow problem as well as for 3D laser-induced phase change. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  2. Krylov Subspace Methods for Complex Non-Hermitian Linear Systems. Thesis

    Science.gov (United States)

    Freund, Roland W.

    1991-01-01

    We consider Krylov subspace methods for the solution of large sparse linear systems Ax = b with complex non-Hermitian coefficient matrices. Such linear systems arise in important applications, such as inverse scattering, numerical solution of time-dependent Schrodinger equations, underwater acoustics, eddy current computations, numerical computations in quantum chromodynamics, and numerical conformal mapping. Typically, the resulting coefficient matrices A exhibit special structures, such as complex symmetry, or they are shifted Hermitian matrices. In this paper, we first describe a Krylov subspace approach with iterates defined by a quasi-minimal residual property, the QMR method, for solving general complex non-Hermitian linear systems. Then, we study special Krylov subspace methods designed for the two families of complex symmetric respectively shifted Hermitian linear systems. We also include some results concerning the obvious approach to general complex linear systems by solving equivalent real linear systems for the real and imaginary parts of x. Finally, numerical experiments for linear systems arising from the complex Helmholtz equation are reported.

  3. Parallelised Krylov subspace method for reactor kinetics by IQS approach

    International Nuclear Information System (INIS)

    Gupta, Anurag; Modak, R.S.; Gupta, H.P.; Kumar, Vinod; Bhatt, K.

    2005-01-01

    Nuclear reactor kinetics involves numerical solution of space-time-dependent multi-group neutron diffusion equation. Two distinct approaches exist for this purpose: the direct (implicit time differencing) approach and the improved quasi-static (IQS) approach. Both the approaches need solution of static space-energy-dependent diffusion equations at successive time-steps; the step being relatively smaller for the direct approach. These solutions are usually obtained by Gauss-Seidel type iterative methods. For a faster solution, the Krylov sub-space methods have been tried and also parallelised by many investigators. However, these studies seem to have been done only for the direct approach. In the present paper, parallelised Krylov methods are applied to the IQS approach in addition to the direct approach. It is shown that the speed-up obtained for IQS is higher than that for the direct approach. The reasons for this are also discussed. Thus, the use of IQS approach along with parallelised Krylov solvers seems to be a promising scheme

  4. Krylov subspace methods for the solution of large systems of ODE's

    DEFF Research Database (Denmark)

    Thomsen, Per Grove; Bjurstrøm, Nils Henrik

    1998-01-01

    In Air Pollution Modelling large systems of ODE's arise. Solving such systems may be done efficientliy by Semi Implicit Runge-Kutta methods. The internal stages may be solved using Krylov subspace methods. The efficiency of this approach is investigated and verified.......In Air Pollution Modelling large systems of ODE's arise. Solving such systems may be done efficientliy by Semi Implicit Runge-Kutta methods. The internal stages may be solved using Krylov subspace methods. The efficiency of this approach is investigated and verified....

  5. Extended Krylov subspaces approximations of matrix functions. Application to computational electromagnetics

    Energy Technology Data Exchange (ETDEWEB)

    Druskin, V.; Lee, Ping [Schlumberger-Doll Research, Ridgefield, CT (United States); Knizhnerman, L. [Central Geophysical Expedition, Moscow (Russian Federation)

    1996-12-31

    There is now a growing interest in the area of using Krylov subspace approximations to compute the actions of matrix functions. The main application of this approach is the solution of ODE systems, obtained after discretization of partial differential equations by method of lines. In the event that the cost of computing the matrix inverse is relatively inexpensive, it is sometimes attractive to solve the ODE using the extended Krylov subspaces, originated by actions of both positive and negative matrix powers. Examples of such problems can be found frequently in computational electromagnetics.

  6. Programming for the Newton software development with NewtonScript

    CERN Document Server

    McKeehan, Julie

    1994-01-01

    Programming for the Newton: Software Development with NewtonScript focuses on the processes, approaches, operations, and principles involved in software development with NewtonScript.The publication first elaborates on Newton application design, views on the Newton, and protos. Discussions focus on system protos, creating and using user protos, linking and naming templates, creating the views of WaiterHelper, Newton application designs, and life cycle of an application. The text then elaborates on the fundamentals of NewtonScript, inheritance in NewtonScript, and view system and messages. Topi

  7. Hukum Newton Tentang Gerak Dalam Ruang Fase Tak Komutatif

    OpenAIRE

    Purwanto, Joko

    2014-01-01

    In this paper, the Newton's law of motions in a noncomutative phase space has been investigated. Its show that correction to the Newton's first and second law appear if we assume that the phase space has symplectic structure consistent with the rules of comutation of the noncomutative quantum mechanics. In the free particle and harmonic oscillator case the equations of motion are derived on basis of the modified Newton's second law in a noncomutative phase space.

  8. Newton Binomial Formulas in Schubert Calculus

    OpenAIRE

    Cordovez, Jorge; Gatto, Letterio; Santiago, Taise

    2008-01-01

    We prove Newton's binomial formulas for Schubert Calculus to determine numbers of base point free linear series on the projective line with prescribed ramification divisor supported at given distinct points.

  9. Numerical solution of stiff burnup equation with short half lived nuclides by the Krylov subspace method

    International Nuclear Information System (INIS)

    Yamamoto, Akio; Tatsumi, Masahiro; Sugimura, Naoki

    2007-01-01

    The Krylov subspace method is applied to solve nuclide burnup equations used for lattice physics calculations. The Krylov method is an efficient approach for solving ordinary differential equations with stiff nature such as the nuclide burnup with short lived nuclides. Some mathematical fundamentals of the Krylov subspace method and its application to burnup equations are discussed. Verification calculations are carried out in a PWR pin-cell geometry with UO 2 fuel. A detailed burnup chain that includes 193 fission products and 28 heavy nuclides is used in the verification calculations. Shortest half life found in the present burnup chain is approximately 30 s ( 106 Rh). Therefore, conventional methods (e.g., the Taylor series expansion with scaling and squaring) tend to require longer computation time due to numerical stiffness. Comparison with other numerical methods (e.g., the 4-th order Runge-Kutta-Gill) reveals that the Krylov subspace method can provide accurate solution for a detailed burnup chain used in the present study with short computation time. (author)

  10. Various Newton-type iterative methods for solving nonlinear equations

    Directory of Open Access Journals (Sweden)

    Manoj Kumar

    2013-10-01

    Full Text Available The aim of the present paper is to introduce and investigate new ninth and seventh order convergent Newton-type iterative methods for solving nonlinear equations. The ninth order convergent Newton-type iterative method is made derivative free to obtain seventh-order convergent Newton-type iterative method. These new with and without derivative methods have efficiency indices 1.5518 and 1.6266, respectively. The error equations are used to establish the order of convergence of these proposed iterative methods. Finally, various numerical comparisons are implemented by MATLAB to demonstrate the performance of the developed methods.

  11. Pushing Memory Bandwidth Limitations Through Efficient Implementations of Block-Krylov Space Solvers on GPUs

    Energy Technology Data Exchange (ETDEWEB)

    Clark, M. A. [NVIDIA Corp., Santa Clara; Strelchenko, Alexei [Fermilab; Vaquero, Alejandro [Utah U.; Wagner, Mathias [NVIDIA Corp., Santa Clara; Weinberg, Evan [Boston U.

    2017-10-26

    Lattice quantum chromodynamics simulations in nuclear physics have benefited from a tremendous number of algorithmic advances such as multigrid and eigenvector deflation. These improve the time to solution but do not alleviate the intrinsic memory-bandwidth constraints of the matrix-vector operation dominating iterative solvers. Batching this operation for multiple vectors and exploiting cache and register blocking can yield a super-linear speed up. Block-Krylov solvers can naturally take advantage of such batched matrix-vector operations, further reducing the iterations to solution by sharing the Krylov space between solves. However, practical implementations typically suffer from the quadratic scaling in the number of vector-vector operations. Using the QUDA library, we present an implementation of a block-CG solver on NVIDIA GPUs which reduces the memory-bandwidth complexity of vector-vector operations from quadratic to linear. We present results for the HISQ discretization, showing a 5x speedup compared to highly-optimized independent Krylov solves on NVIDIA's SaturnV cluster.

  12. Fully implicit kinetic modelling of collisional plasmas

    International Nuclear Information System (INIS)

    Mousseau, V.A.

    1996-05-01

    This dissertation describes a numerical technique, Matrix-Free Newton Krylov, for solving a simplified Vlasov-Fokker-Planck equation. This method is both deterministic and fully implicit, and may not have been a viable option before current developments in numerical methods. Results are presented that indicate the efficiency of the Matrix-Free Newton Krylov method for these fully-coupled, nonlinear integro-differential equations. The use and requirement for advanced differencing is also shown. To this end, implementations of Chang-Cooper differencing and flux limited Quadratic Upstream Interpolation for Convective Kinematics (QUICK) are presented. Results are given for a fully kinetic ion-electron problem with a self consistent electric field calculated from the ion and electron distribution functions. This numerical method, including advanced differencing, provides accurate solutions, which quickly converge on workstation class machines. It is demonstrated that efficient steady-state solutions can be achieved to the non-linear integro-differential equation, obtaining quadratic convergence, without incurring the large memory requirements of an integral operator. Model problems are presented which simulate plasma impinging on a plate with both high and low neutral particle recycling typical of a divertor in a Tokamak device. These model problems demonstrate the performance of the new solution method

  13. Efficient solutions to the NDA-NCA low-order eigenvalue problem

    International Nuclear Information System (INIS)

    Willert, J. A.; Kelley, C. T.

    2013-01-01

    Recent algorithmic advances combine moment-based acceleration and Jacobian-Free Newton-Krylov (JFNK) methods to accelerate the computation of the dominant eigenvalue in a k-eigenvalue calculation. In particular, NDA-NCA [1], builds a sequence of low-order (LO) diffusion-based eigenvalue problems in which the solution converges to the true eigenvalue solution. Within NDA-NCA, the solution to the LO k-eigenvalue problem is computed by solving a system of nonlinear equation using some variant of Newton's method. We show that we can speed up the solution to the LO problem dramatically by abandoning the JFNK method and exploiting the structure of the Jacobian matrix. (authors)

  14. Krylov solvers for linear algebraic systems

    CERN Document Server

    Broyden, Charles George

    2004-01-01

    The first four chapters of this book give a comprehensive and unified theory of the Krylov methods. Many of these are shown to be particular examples ofthe block conjugate-gradient algorithm and it is this observation thatpermits the unification of the theory. The two major sub-classes of thosemethods, the Lanczos and the Hestenes-Stiefel, are developed in parallel asnatural generalisations of the Orthodir (GCR) and Orthomin algorithms. Theseare themselves based on Arnoldi's algorithm and a generalised Gram-Schmidtalgorithm and their properties, in particular their stability properties,are det

  15. Investigating Multi-Array Antenna Signal Convergence using Wavelet Transform and Krylov Sequence

    Directory of Open Access Journals (Sweden)

    Muhammad Ahmed Sikander

    2018-01-01

    Full Text Available In the present world, wireless communication is becoming immensely popular for plethora of applications. Technology has been advancing at an accelerated rate leading to make communication reliable. Still, there are issues need to be address to minimize errors in the transmission. This research study expounds on the rapid convergence of the signal. Convergence is considered to be an important aspect in wireless communication. For rapid convergence, two ambiguities should be addressed; Eigenvalue spread and sparse identification or sparsity of the signal. Eigen value spread is defining as the ratio of minimum to maximum Eigenvalue, whereas sparsity is defining as the loosely bounded system. In this research, two of these attributes are investigated for MAA (Multi-Array Antenna signal using the cascading of Wavelet and Krylov processes. Specifically, the MAA signal is applied in the research because nowadays there are many physical hindrances in the communication path. These hurdles weaken the signal strength which in turn effects the quality of the reception. WT (Wavelet Transform is used to address the Eigenvalue problem and the Krylov sequence is used to attempt the sparse identification of the MAA signal. The results show that the convergence of the MMA signal is improved by applying Wavelet transform and Krylov Subspace.

  16. Investigating multi-array antenna signal convergence using wavelet transform and krylov sequence

    International Nuclear Information System (INIS)

    Sikander, M.A.; Hussain, R.; Hussain, R.

    2018-01-01

    In the present world, wireless communication is becoming immensely popular for plethora of applications. Technology has been advancing at an accelerated rate leading to make communication reliable. Still, there are issues need to be address to minimize errors in the transmission. This research study expounds on the rapid convergence of the signal. Convergence is considered to be an important aspect in wireless communication. For rapid convergence, two ambiguities should be addressed; Eigenvalue spread and sparse identification or sparsity of the signal. Eigen value spread is defining as the ratio of minimum to maximum Eigenvalue, whereas sparsity is defining as the loosely bounded system. In this research, two of these attributes are investigated for MAA (Multi-Array Antenna) signal using the cascading of Wavelet and Krylov processes. Specifically, the MAA signal is applied in the research because nowadays there are many physical hindrances in the communication path. These hurdles weaken the signal strength which in turn effects the quality of the reception. WT (Wavelet Transform) is used to address the Eigenvalue problem and the Krylov sequence is used to attempt the sparse identification of the MAA signal. The results show that the convergence of the MMA signal is improved by applying Wavelet transform and Krylov Subspace. (author)

  17. Krylov-Schur-Type restarts for the two-sided arnoldi method

    NARCIS (Netherlands)

    Zwaan, I.N.; Hochstenbach, M.E.

    2017-01-01

    We consider the two-sided Arnoldi method and propose a two-sided Krylov-Schurtype restarting method. We discuss the restart for standard Rayleigh-Ritz extraction as well as harmonic Rayleigh-Ritz extraction. Additionally, we provide error bounds for Ritz values and Ritz vectors in the context of

  18. Alquimia: Isaac Newton revisitado Alchemy: Isaac Newton Revisited

    Directory of Open Access Journals (Sweden)

    Reginaldo Carmello Corrêa de Moraes

    1997-01-01

    Full Text Available Nota sobre publicações recentes que revelam aspectos pouco conhecidos da biblioteca de Newton - os numerosos textos religiosos, místicos e herméticos. Os biógrafos de Newton resistiram muito até admitir que os escritos esotéricos fossem genuíno interesse do sábio e que tivessem importância para entender sua trajetória intelectual. As publicações aqui indicadas afirmam o contrário, seguindo trilha aberta por ensaio pioneiro de J. M. Keynes (1946.A note on recent books about an unexplored side of Newton’s library: religious, mystical and hermetic texts. Newton's biographers had resisted so much to believe that esoteric writings were in Newton’s field of interest. Even if they recognized that, they didn't believe those strange works were important elements to understand his intellectual trajectory. The studies we mention here are saying just the opposite thing, exploring the way opened by the pioneer essay of J. M. Keynes (1946.

  19. Contact discontinuities in a cold collision-free two-beam plasma

    International Nuclear Information System (INIS)

    Kirkland, K.B.; Sonnerup, B.U.O.

    1982-01-01

    A contact discontinuity in a collision-free magnetized plasma is a thin layer, possessing a nontrivial magnetic structure, across which no net plasma flow takes place (#betta#/sub n/ = 0) even though the magnetic field has a nonvanishing component (B/sub n/not =0) normal to it. This paper examines the structure of such discontinuities in a simple plasma model consisting of two oppositely directed cold ion beams and a background of cold massless electrons such that exact charge neutrality is maintained so that the electric field Eequivalent0. The basic equations describing self-consistent equilibria are developed for the more general situation where a net flow across the layer takes place (#betta#/sub n/ = 0) and where the magnetic field has two nonzero tangential components B/sub y/ and B/sub z/ but where E remains zero. These equations are then specialized to the case eta/sub n/equivalent0, B/sub z/equivalent0, and four different classes of sheets are obtained, all having thickness of the order of the ion inertial length: (1) layers separating two identical plasma and magnetic field regions. (2) an infinite array of parallel layers producing an undulated magnetic field, (3) layers containing trapped ions in closed orbits which separate two vacuum regions with uniform identical magnetic fields, and (4) layers which reflect a single plasma beam, leaving a vacuum with a revesed and compressed tangential field on the other side. Solutions for which #betta#/sub n/ = 0 but B/sub z/not =0 may also exist but have not been analyzed; rotational discontinuities are shown not to be possible in this model

  20. Mechanics and Newton-Cartan-like gravity on the Newton-Hooke space-time

    International Nuclear Information System (INIS)

    Tian Yu; Guo Hanying; Huang Chaoguang; Xu Zhan; Zhou Bin

    2005-01-01

    We focus on the dynamical aspects on Newton-Hooke space-time NH + mainly from the viewpoint of geometric contraction of the de Sitter spacetime with Beltrami metric. (The term spacetime is used to denote a space with non-degenerate metric, while the term space-time is used to denote a space with degenerate metric.) We first discuss the Newton-Hooke classical mechanics, especially the continuous medium mechanics, in this framework. Then, we establish a consistent theory of gravity on the Newton-Hooke space-time as a kind of Newton-Cartan-like theory, parallel to the Newton's gravity in the Galilei space-time. Finally, we give the Newton-Hooke invariant Schroedinger equation from the geometric contraction, where we can relate the conservative probability in some sense to the mass density in the Newton-Hooke continuous medium mechanics. Similar consideration may apply to the Newton-Hooke space-time NH - contracted from anti-de Sitter spacetime

  1. Krylov subspace method for evaluating the self-energy matrices in electron transport calculations

    DEFF Research Database (Denmark)

    Sørensen, Hans Henrik Brandenborg; Hansen, Per Christian; Petersen, D. E.

    2008-01-01

    We present a Krylov subspace method for evaluating the self-energy matrices used in the Green's function formulation of electron transport in nanoscale devices. A procedure based on the Arnoldi method is employed to obtain solutions of the quadratic eigenvalue problem associated with the infinite...... calculations. Numerical tests within a density functional theory framework are provided to validate the accuracy and robustness of the proposed method, which in most cases is an order of magnitude faster than conventional methods.......We present a Krylov subspace method for evaluating the self-energy matrices used in the Green's function formulation of electron transport in nanoscale devices. A procedure based on the Arnoldi method is employed to obtain solutions of the quadratic eigenvalue problem associated with the infinite...

  2. A fast algorithm for parabolic PDE-based inverse problems based on Laplace transforms and flexible Krylov solvers

    International Nuclear Information System (INIS)

    Bakhos, Tania; Saibaba, Arvind K.; Kitanidis, Peter K.

    2015-01-01

    We consider the problem of estimating parameters in large-scale weakly nonlinear inverse problems for which the underlying governing equations is a linear, time-dependent, parabolic partial differential equation. A major challenge in solving these inverse problems using Newton-type methods is the computational cost associated with solving the forward problem and with repeated construction of the Jacobian, which represents the sensitivity of the measurements to the unknown parameters. Forming the Jacobian can be prohibitively expensive because it requires repeated solutions of the forward and adjoint time-dependent parabolic partial differential equations corresponding to multiple sources and receivers. We propose an efficient method based on a Laplace transform-based exponential time integrator combined with a flexible Krylov subspace approach to solve the resulting shifted systems of equations efficiently. Our proposed solver speeds up the computation of the forward and adjoint problems, thus yielding significant speedup in total inversion time. We consider an application from Transient Hydraulic Tomography (THT), which is an imaging technique to estimate hydraulic parameters related to the subsurface from pressure measurements obtained by a series of pumping tests. The algorithms discussed are applied to a synthetic example taken from THT to demonstrate the resulting computational gains of this proposed method

  3. A fast algorithm for parabolic PDE-based inverse problems based on Laplace transforms and flexible Krylov solvers

    Energy Technology Data Exchange (ETDEWEB)

    Bakhos, Tania, E-mail: taniab@stanford.edu [Institute for Computational and Mathematical Engineering, Stanford University (United States); Saibaba, Arvind K. [Department of Electrical and Computer Engineering, Tufts University (United States); Kitanidis, Peter K. [Institute for Computational and Mathematical Engineering, Stanford University (United States); Department of Civil and Environmental Engineering, Stanford University (United States)

    2015-10-15

    We consider the problem of estimating parameters in large-scale weakly nonlinear inverse problems for which the underlying governing equations is a linear, time-dependent, parabolic partial differential equation. A major challenge in solving these inverse problems using Newton-type methods is the computational cost associated with solving the forward problem and with repeated construction of the Jacobian, which represents the sensitivity of the measurements to the unknown parameters. Forming the Jacobian can be prohibitively expensive because it requires repeated solutions of the forward and adjoint time-dependent parabolic partial differential equations corresponding to multiple sources and receivers. We propose an efficient method based on a Laplace transform-based exponential time integrator combined with a flexible Krylov subspace approach to solve the resulting shifted systems of equations efficiently. Our proposed solver speeds up the computation of the forward and adjoint problems, thus yielding significant speedup in total inversion time. We consider an application from Transient Hydraulic Tomography (THT), which is an imaging technique to estimate hydraulic parameters related to the subsurface from pressure measurements obtained by a series of pumping tests. The algorithms discussed are applied to a synthetic example taken from THT to demonstrate the resulting computational gains of this proposed method.

  4. A LAGRANGIAN GAUSS-NEWTON-KRYLOV SOLVER FOR MASS- AND INTENSITY-PRESERVING DIFFEOMORPHIC IMAGE REGISTRATION.

    Science.gov (United States)

    Mang, Andreas; Ruthotto, Lars

    2017-01-01

    We present an efficient solver for diffeomorphic image registration problems in the framework of Large Deformations Diffeomorphic Metric Mappings (LDDMM). We use an optimal control formulation, in which the velocity field of a hyperbolic PDE needs to be found such that the distance between the final state of the system (the transformed/transported template image) and the observation (the reference image) is minimized. Our solver supports both stationary and non-stationary (i.e., transient or time-dependent) velocity fields. As transformation models, we consider both the transport equation (assuming intensities are preserved during the deformation) and the continuity equation (assuming mass-preservation). We consider the reduced form of the optimal control problem and solve the resulting unconstrained optimization problem using a discretize-then-optimize approach. A key contribution is the elimination of the PDE constraint using a Lagrangian hyperbolic PDE solver. Lagrangian methods rely on the concept of characteristic curves. We approximate these curves using a fourth-order Runge-Kutta method. We also present an efficient algorithm for computing the derivatives of the final state of the system with respect to the velocity field. This allows us to use fast Gauss-Newton based methods. We present quickly converging iterative linear solvers using spectral preconditioners that render the overall optimization efficient and scalable. Our method is embedded into the image registration framework FAIR and, thus, supports the most commonly used similarity measures and regularization functionals. We demonstrate the potential of our new approach using several synthetic and real world test problems with up to 14.7 million degrees of freedom.

  5. Fractal aspects and convergence of Newton`s method

    Energy Technology Data Exchange (ETDEWEB)

    Drexler, M. [Oxford Univ. Computing Lab. (United Kingdom)

    1996-12-31

    Newton`s Method is a widely established iterative algorithm for solving non-linear systems. Its appeal lies in its great simplicity, easy generalization to multiple dimensions and a quadratic local convergence rate. Despite these features, little is known about its global behavior. In this paper, we will explain a seemingly random global convergence pattern using fractal concepts and show that the behavior of the residual is entirely explicable. We will also establish quantitative results for the convergence rates. Knowing the mechanism of fractal generation, we present a stabilization to the orthodox Newton method that remedies the fractal behavior and improves convergence.

  6. A combined modification of Newton`s method for systems of nonlinear equations

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, M.T.; Fernandes, E.M.G.P. [Universidade do Minho, Braga (Portugal)

    1996-12-31

    To improve the performance of Newton`s method for the solution of systems of nonlinear equations a modification to the Newton iteration is implemented. The modified step is taken as a linear combination of Newton step and steepest descent directions. In the paper we describe how the coefficients of the combination can be generated to make effective use of the two component steps. Numerical results that show the usefulness of the combined modification are presented.

  7. Solving implicit multi-mesh flow and conjugate heat transfer problems with RELAP-7

    International Nuclear Information System (INIS)

    Zou, L.; Peterson, J.; Zhao, H.; Zhang, H.; Andrs, D.; Martineau, R.

    2013-01-01

    The fully implicit simulation capability of RELAP-7 to solve multi-mesh flow and conjugate heat transfer problems for reactor system safety analysis is presented. Compared to general single-mesh simulations, the reactor system safety analysis-type of code has unique challenges due to its highly simplified, interconnected, one-dimensional, and zero-dimensional flow network describing multiple physics with significantly different time and length scales. To use the Jacobian-free Newton Krylov-type of solver, preconditioning is generally required for the Krylov method. The uniqueness of the reactor safety analysis-type of code in treating the interconnected flow network and conjugate heat transfer also introduces challenges in providing preconditioning matrix. Typical flow and conjugate heat transfer problems involved in reactor safety analysis using RELAP-7, as well as the special treatment on the preconditioning matrix are presented in detail. (authors)

  8. Solution of free-boundary problems using finite-element/Newton methods and locally refined grids - Application to analysis of solidification microstructure

    Science.gov (United States)

    Tsiveriotis, K.; Brown, R. A.

    1993-01-01

    A new method is presented for the solution of free-boundary problems using Lagrangian finite element approximations defined on locally refined grids. The formulation allows for direct transition from coarse to fine grids without introducing non-conforming basis functions. The calculation of elemental stiffness matrices and residual vectors are unaffected by changes in the refinement level, which are accounted for in the loading of elemental data to the global stiffness matrix and residual vector. This technique for local mesh refinement is combined with recently developed mapping methods and Newton's method to form an efficient algorithm for the solution of free-boundary problems, as demonstrated here by sample calculations of cellular interfacial microstructure during directional solidification of a binary alloy.

  9. Newton's gift how Sir Isaac Newton unlocked the system of the world

    CERN Document Server

    Berlinski, David

    2000-01-01

    Sir Isaac Newton, creator of the first and perhaps most important scientific theory, is a giant of the scientific era. Despite this, he has remained inaccessible to most modern readers, indisputably great but undeniably remote. In this witty, engaging, and often moving examination of Newton's life, David Berlinski recovers the man behind the mathematical breakthroughs. The story carries the reader from Newton's unremarkable childhood to his awkward undergraduate days at Cambridge through the astonishing year in which, working alone, he laid the foundation for his system of the world, his Principia Mathematica, and to the subsequent monumental feuds that poisoned his soul and wearied his supporters. An edifying appreciation of Newton's greatest accomplishment, Newton's Gift is also a touching celebration of a transcendent man.

  10. Heat kernel for Newton-Cartan trace anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Auzzi, Roberto [Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via Musei 41, Brescia, 25121 (Italy); INFN Sezione di Perugia, Via A. Pascoli, Perugia, 06123 (Italy); Nardelli, Giuseppe [Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via Musei 41, Brescia, 25121 (Italy); TIFPA - INFN, Università di Trento,c/o Dipartimento di Fisica, Povo, TN, 38123 (Italy)

    2016-07-11

    We compute the leading part of the trace anomaly for a free non-relativistic scalar in 2+1 dimensions coupled to a background Newton-Cartan metric. The anomaly is proportional to 1/m, where m is the mass of the scalar. We comment on the implications of a conjectured a-theorem for non-relativistic theories with boost invariance.

  11. Newton's apple Isaac Newton and the English scientific renaissance

    CERN Document Server

    Aughton, Peter

    2003-01-01

    In the aftermath of the English Civil War, the Restoration overturned England's medieval outlook and a new way of looking at the world allowed the genius of Isaac Newton (b. 1642) and his contemporaries to flourish. Newton had a long and eventful life apart from his scentific discoveries. He was born at the beginnings of the Civil War, his studies were disrupted by the twin disasters of the Great Plague and the Fire of London; a brilliant and enigmatic genius, Newton dabbled in alchemy, wrote over a million words on the Bible, quarrelled with his contemporaries and spent his last years as Master of the Royal Mint as well as President of the Royal Society. This book sets Newton's life and work against this dramatic intellectual rebirth; among his friends and contemporaries were Samuel Pepys, the colourful diarist, John Evelyn, the eccentric antiquarian, the astronomers Edmund Halley and John Flamsteed, and Christopher Wren, the greatest architect of his age. They were all instrumental in the founding of the Ro...

  12. Isaac Newton: Eighteenth-century Perspectives

    Science.gov (United States)

    Hall, A. Rupert

    1999-05-01

    This new product of the ever-flourishing Newton industry seems a bit far-fetched at first sight: who but a few specialists would be interested in the historiography of Newton biography in the eighteenth century? On closer inspection, this book by one of the most important Newton scholars of our day turns out to be of interest to a wider audience as well. It contains several biographical sketches of Newton, written in the decades after his death. The two most important ones are the Eloge by the French mathematician Bernard de Fontenelle and the Italian scholar Paolo Frisi's Elogio. The latter piece was hitherto unavailable in English translation. Both articles are well-written, interesting and sometimes even entertaining. They give us new insights into the way Newton was revered throughout Europe and how not even the slightest blemish on his personality or work could be tolerated. An example is the way in which Newton's famous controversy with Leibniz is treated: Newton is without hesitation presented as the wronged party. Hall has provided very useful historical introductions to the memoirs as well as footnotes where needed. Among the other articles discussed is a well-known memoir by John Conduitt, who was married to Newton's niece. This memoir, substantial parts of which are included in this volume, has been a major source of personal information for Newton biographers up to this day. In a concluding chapter, Hall gives a very interesting overview of the later history of Newton biography, in which he describes the gradual change from adoration to a more critical approach in Newton's various biographers. In short, this is a very useful addition to the existing biographical literature on Newton. A J Kox

  13. XMM-Newton operations beyond the design lifetime

    Science.gov (United States)

    Parmar, Arvind N.; Kirsch, Marcus G. F.; Muñoz, J. Ramon; Santos-Lleo, Maria; Schartel, Norbert

    2012-09-01

    After more than twelve years in orbit and two years beyond the design lifetime, XMM-Newton continues its near faultless operations providing the worldwide astronomical community with an unprecedented combination of imaging and spectroscopic X-ray capabilities together with simultaneous optical and ultra-violet monitoring. The interest from the scientific community in observing with XMM-Newton remains extremely high with the last annual Announcement of Observing Opportunity (AO-11) attracting proposals requesting 6.7 times more observing time than was available. Following recovery from a communications problem in 2008, all elements of the mission are stable and largely trouble free. The operational lifetime if currently limited by the amount of available hydrazine fuel. XMM-Newton normally uses reaction wheels for attitude control and fuel is only used when offsetting reaction wheel speed away from limiting values and for emergency Sun acquisition following an anomaly. Currently, the hydrazine is predicted to last until around 2020. However, ESA is investigating the possibility of making changes to the operations concept and the onboard software that would enable lower fuel consumption. This could allow operations to well beyond 2026.

  14. Newton and scholastic philosophy.

    Science.gov (United States)

    Levitin, Dmitri

    2016-03-01

    This article examines Isaac Newton's engagement with scholastic natural philosophy. In doing so, it makes two major historiographical interventions. First of all, the recent claim that Newton's use of the concepts of analysis and synthesis was derived from the Aristotelian regressus tradition is challenged on the basis of bibliographical, palaeographical and intellectual evidence. Consequently, a new, contextual explanation is offered for Newton's use of these concepts. Second, it will be shown that some of Newton's most famous pronouncements - from the General Scholium appended to the second edition of the Principia (1713) and from elsewhere - are simply incomprehensible without an understanding of specific scholastic terminology and its later reception, and that this impacts in quite significant ways on how we understand Newton's natural philosophy more generally. Contrary to the recent historiographical near-consensus, Newton did not hold an elaborate metaphysics, and his seemingly 'metaphysical' statements were in fact anti-scholastic polemical salvoes. The whole investigation will permit us a brief reconsideration of the relationship between the self-proclaimed 'new' natural philosophy and its scholastic predecessors.

  15. Lojasiewicz exponents and Newton polyhedra

    International Nuclear Information System (INIS)

    Pham Tien Son

    2006-07-01

    In this paper we obtain the exact value of the Lojasiewicz exponent at the origin of analytic map germs on K n (K = R or C under the Newton non-degeneracy condition, using information from their Newton polyhedra. We also give some conclusions on Newton non-degenerate analytic map germs. As a consequence, we obtain a link between Newton non-degenerate ideals and their integral closures, thus leading to a simple proof of a result of Saia. Similar results are also considered to polynomial maps which are Newton non-degenerate at infinity. (author)

  16. Residual and Backward Error Bounds in Minimum Residual Krylov Subspace Methods

    Czech Academy of Sciences Publication Activity Database

    Paige, C. C.; Strakoš, Zdeněk

    2002-01-01

    Roč. 23, č. 6 (2002), s. 1899-1924 ISSN 1064-8275 R&D Projects: GA AV ČR IAA1030103 Institutional research plan: AV0Z1030915 Keywords : linear equations * eigenproblem * large sparse matrices * iterative solutions * Krylov subspace methods * Arnoldi method * GMRES * modified Gram-Schmidt * least squares * total least squares * singular values Subject RIV: BA - General Mathematics Impact factor: 1.291, year: 2002

  17. Newton's Apple

    Science.gov (United States)

    Hendry, Archibald W.

    2007-01-01

    Isaac Newton may have seen an apple fall, but it was Robert Hooke who had a better idea of where it would land. No one really knows whether or not Isaac Newton actually saw an apple fall in his garden. Supposedly it took place in 1666, but it was a tale he told in his old age more than 60 years later, a time when his memory was failing and his…

  18. The Enigma of Newton

    Science.gov (United States)

    Nunan, E.

    1973-01-01

    Presents a brief biography of Sir Isaac Newton, lists contemporary scientists and scientific developments and discusses Newton's optical research and conceptual position concerning the nature of light. (JR)

  19. Integration of large chemical kinetic mechanisms via exponential methods with Krylov approximations to Jacobian matrix functions

    KAUST Repository

    Bisetti, Fabrizio

    2012-06-01

    Recent trends in hydrocarbon fuel research indicate that the number of species and reactions in chemical kinetic mechanisms is rapidly increasing in an effort to provide predictive capabilities for fuels of practical interest. In order to cope with the computational cost associated with the time integration of stiff, large chemical systems, a novel approach is proposed. The approach combines an exponential integrator and Krylov subspace approximations to the exponential function of the Jacobian matrix. The components of the approach are described in detail and applied to the ignition of stoichiometric methane-air and iso-octane-air mixtures, here described by two widely adopted chemical kinetic mechanisms. The approach is found to be robust even at relatively large time steps and the global error displays a nominal third-order convergence. The performance of the approach is improved by utilising an adaptive algorithm for the selection of the Krylov subspace size, which guarantees an approximation to the matrix exponential within user-defined error tolerance. The Krylov projection of the Jacobian matrix onto a low-dimensional space is interpreted as a local model reduction with a well-defined error control strategy. Finally, the performance of the approach is discussed with regard to the optimal selection of the parameters governing the accuracy of its individual components. © 2012 Copyright Taylor and Francis Group, LLC.

  20. Krylov solvers preconditioned with the low-order red-black algorithm for the PN hybrid FEM for the instant code

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yaqi; Rabiti, Cristian; Palmiotti, Giuseppe, E-mail: yaqi.wang@inl.gov, E-mail: cristian.rabiti@inl.gov, E-mail: giuseppe.palmiotti@inl.gov [Idaho National Laboratory, Idaho Falls, ID (United States)

    2011-07-01

    This paper proposes a new set of Krylov solvers, CG and GMRes, as an alternative of the Red-Black (RB) algorithm on on solving the steady-state one-speed neutron transport equation discretized with PN in angle and hybrid FEM (Finite Element Method) in space. A pre conditioner with the low-order RB iteration is designed to improve their convergence. These Krylov solvers can reduce the cost of pre-assembling the response matrices greatly. Numerical results with the INSTANT code are presented in order to show that they can be a good supplement on solving the PN-HFEM system. (author)

  1. Krylov solvers preconditioned with the low-order red-black algorithm for the PN hybrid FEM for the instant code

    International Nuclear Information System (INIS)

    Wang, Yaqi; Rabiti, Cristian; Palmiotti, Giuseppe

    2011-01-01

    This paper proposes a new set of Krylov solvers, CG and GMRes, as an alternative of the Red-Black (RB) algorithm on on solving the steady-state one-speed neutron transport equation discretized with PN in angle and hybrid FEM (Finite Element Method) in space. A pre conditioner with the low-order RB iteration is designed to improve their convergence. These Krylov solvers can reduce the cost of pre-assembling the response matrices greatly. Numerical results with the INSTANT code are presented in order to show that they can be a good supplement on solving the PN-HFEM system. (author)

  2. Hybrid parallelization of the XTOR-2F code for the simulation of two-fluid MHD instabilities in tokamaks

    Science.gov (United States)

    Marx, Alain; Lütjens, Hinrich

    2017-03-01

    A hybrid MPI/OpenMP parallel version of the XTOR-2F code [Lütjens and Luciani, J. Comput. Phys. 229 (2010) 8130] solving the two-fluid MHD equations in full tokamak geometry by means of an iterative Newton-Krylov matrix-free method has been developed. The present work shows that the code has been parallelized significantly despite the numerical profile of the problem solved by XTOR-2F, i.e. a discretization with pseudo-spectral representations in all angular directions, the stiffness of the two-fluid stability problem in tokamaks, and the use of a direct LU decomposition to invert the physical pre-conditioner at every Krylov iteration of the solver. The execution time of the parallelized version is an order of magnitude smaller than the sequential one for low resolution cases, with an increasing speedup when the discretization mesh is refined. Moreover, it allows to perform simulations with higher resolutions, previously forbidden because of memory limitations.

  3. Krylov subspace methods for solving large unsymmetric linear systems

    International Nuclear Information System (INIS)

    Saad, Y.

    1981-01-01

    Some algorithms based upon a projection process onto the Krylov subspace K/sub m/ = Span(r 0 , Ar 0 ,...,A/sup m/-1r 0 ) are developed, generalizing the method of conjugate gradients to unsymmetric systems. These methods are extensions of Arnoldi's algorithm for solving eigenvalue problems. The convergence is analyzed in terms of the distance of the solution to the subspace K/sub m/ and some error bounds are established showing, in particular, a similarity with the conjugate gradient method (for symmetric matrices) when the eigenvalues are real. Several numerical experiments are described and discussed

  4. A Magnetic Set-Up to Help Teach Newton's Laws

    Science.gov (United States)

    Panijpan, Bhinyo; Sujarittham, Thanida; Arayathanitkul, Kwan; Tanamatayarat, Jintawat; Nopparatjamjomras, Suchai

    2009-01-01

    A set-up comprising a magnetic disc, a solenoid and a mechanical balance was used to teach first-year physics students Newton's third law with the help of a free body diagram. The image of a floating magnet immobilized by the solenoid's repulsive force should help dispel a common misconception of students as regards the first law: that stationary…

  5. Newton's laws through a science adventure

    OpenAIRE

    Šuštar, Sara

    2013-01-01

    The main purpose of my diploma thesis is to create a scientific adventure based on the Newton's laws. My aim has been to introduce this topic to the kids in elementary school as well as the general public. That is why the adventure will take place in the House of Experiments. The first part is dedicated to theory and various experiments, which lead to deeper understanding of the laws. I implemented experiments on rollerblades, such as free movement, movement with the help of springs which wer...

  6. Sometimes "Newton's Method" Always "Cycles"

    Science.gov (United States)

    Latulippe, Joe; Switkes, Jennifer

    2012-01-01

    Are there functions for which Newton's method cycles for all non-trivial initial guesses? We construct and solve a differential equation whose solution is a real-valued function that two-cycles under Newton iteration. Higher-order cycles of Newton's method iterates are explored in the complex plane using complex powers of "x." We find a class of…

  7. Easy XMM-Newton Data Analysis with the Streamlined ABC Guide!

    Science.gov (United States)

    Valencic, Lynne A.; Snowden, Steven L.; Pence, William D.

    2016-01-01

    The US XMM-Newton GOF has streamlined the time-honored XMM-Newton ABC Guide, making it easier to find and use what users may need to analyze their data. It takes into account what type of data a user might have, if they want to reduce the data on their own machine or over the internet with Web Hera, and if they prefer to use the command window or a GUI. The GOF has also included an introduction to analyzing EPIC and RGS spectra, and PN Timing mode data. The guide is provided for free to students, educators, and researchers for educational and research purposes. Try it out at: http://heasarc.gsfc.nasa.gov/docs/xmm/sl/intro.html

  8. Waveform control for magnetic testers using a quasi-Newton method

    International Nuclear Information System (INIS)

    Yamamoto, Ken-ichi; Hanba, Shigeru

    2008-01-01

    A nonlinear iterative learning algorithm is proposed to make a voltage waveform in the secondary coil sinusoidal in this paper. The algorithm employs a globally convergent Jacobian-free quasi-Newton type solver that has a BFGS-like structure. This method functions well, and it is demonstrated using typical soft magnetic materials

  9. The Newton papers the strange and true odyssey of Isaac Newton's manuscripts

    CERN Document Server

    Dry, Sarah

    2014-01-01

    When Isaac Newton died at 85 without a will on March 20, 1727, he left a mass of disorganized papers-upwards of 8 million words-that presented an immediate challenge to his heirs. Most of these writings, on subjects ranging from secret alchemical formulas to impassioned rejections of the Holy Trinity to notes and calculations on his core discoveries in calculus, universal gravitation, and optics, were summarily dismissed by his heirs as "not fit to be printed." Rabidly heretical, alchemically obsessed, and possibly even mad, the Newton presented in these papers threatened to undermine not just his personal reputation but the status of science itself. As a result, the private papers of the world's greatest scientist remained hidden to all but a select few for over two hundred years. In The Newton Papers, Sarah Dry divulges the story of how this secret archive finally came to light-and the complex and contradictory man it revealed. Covering a broad swath of history, Dry explores who controlled Newton's legacy, ...

  10. A block Krylov subspace time-exact solution method for linear ordinary differential equation systems

    NARCIS (Netherlands)

    Bochev, Mikhail A.

    2013-01-01

    We propose a time-exact Krylov-subspace-based method for solving linear ordinary differential equation systems of the form $y'=-Ay+g(t)$ and $y"=-Ay+g(t)$, where $y(t)$ is the unknown function. The method consists of two stages. The first stage is an accurate piecewise polynomial approximation of

  11. Integration of large chemical kinetic mechanisms via exponential methods with Krylov approximations to Jacobian matrix functions

    KAUST Repository

    Bisetti, Fabrizio

    2012-01-01

    with the computational cost associated with the time integration of stiff, large chemical systems, a novel approach is proposed. The approach combines an exponential integrator and Krylov subspace approximations to the exponential function of the Jacobian matrix

  12. Black Hole Results from XMM-Newton

    Directory of Open Access Journals (Sweden)

    Norbert Schartel

    2014-12-01

    Full Text Available XMM-Newton is one of the most successful science missions of the  European Space Agency. Since 2003 every year about 300 articles are published in refereed journals making directly use of XMM-Newton data. All XMM-Newton calls for observing proposals are highly oversubscribed by factors of six and more. In the following some scientic highlights of XMM-Newton observations of black holes are summarized.

  13. Expanding Newton Mechanics with Neutrosophy and Quadstage Method ──New Newton Mechanics Taking Law of Conservation of Energy as Unique Source Law

    Directory of Open Access Journals (Sweden)

    Fu Yuhua

    2014-06-01

    Full Text Available Neutrosophy is a new branch of philosophy, and "Quad-stage" (Four stages is the expansion of Hegel’s triad thesis, antithesis, synthesis of development. Applying Neutrosophy and "Quad-stage" method, the purposes of this paper are expanding Newton Mechanics and making it become New Newton Mechanics (NNW taking law of conservation of energy as unique source law. In this paper the examples show that in some cases other laws may be contradicted with the law of conservation of energy. The original Newton's three laws and the law of gravity, in principle can be derived by the law of conservation of energy. Through the example of free falling body, this paper derives the original Newton's second law by using the law of conservation of energy, and proves that there is not the contradiction between the original law of gravity and the law of conservation of energy; and through the example of a small ball rolls along the inclined plane (belonging to the problem cannot be solved by general relativity that a body is forced to move in flat space, derives improved Newton's second law and improved law of gravity by using law of conservation of energy. Whether or not other conservation laws (such as the law of conservation of momentum and the law of conservation of angular momentum can be utilized, should be tested by law of conservation of energy. When the original Newton's second law is not correct, then the laws of conservation of momentum and angular momentum are no longer correct; therefore the general forms of improved law of conservation of momentum and improved law of conservation of angular momentum are presented. In the cases that law of conservation of energy cannot be used effectively, New Newton Mechanics will not exclude that according to other theories or accurate experiments to derive the laws or formulas to solve some specific problems. For example, with the help of the result of general relativity, the improved Newton's formula of universal

  14. Isaac Newton: Man, Myth, and Mathematics.

    Science.gov (United States)

    Rickey, V. Frederick

    1987-01-01

    This article was written in part to celebrate the anniversaries of landmark mathematical works by Newton and Descartes. It's other purpose is to dispel some myths about Sir Isaac Newton and to encourage readers to read Newton's works. (PK)

  15. From Newton to Einstein.

    Science.gov (United States)

    Ryder, L. H.

    1987-01-01

    Discusses the history of scientific thought in terms of the theories of inertia and absolute space, relativity and gravitation. Describes how Sir Isaac Newton used the work of earlier scholars in his theories and how Albert Einstein used Newton's theories in his. (CW)

  16. A fast band–Krylov eigensolver for macromolecular functional motion simulation on multicore architectures and graphics processors

    Energy Technology Data Exchange (ETDEWEB)

    Aliaga, José I., E-mail: aliaga@uji.es [Depto. Ingeniería y Ciencia de Computadores, Universitat Jaume I, Castellón (Spain); Alonso, Pedro [Departamento de Sistemas Informáticos y Computación, Universitat Politècnica de València (Spain); Badía, José M. [Depto. Ingeniería y Ciencia de Computadores, Universitat Jaume I, Castellón (Spain); Chacón, Pablo [Dept. Biological Chemical Physics, Rocasolano Physics and Chemistry Institute, CSIC, Madrid (Spain); Davidović, Davor [Rudjer Bošković Institute, Centar za Informatiku i Računarstvo – CIR, Zagreb (Croatia); López-Blanco, José R. [Dept. Biological Chemical Physics, Rocasolano Physics and Chemistry Institute, CSIC, Madrid (Spain); Quintana-Ortí, Enrique S. [Depto. Ingeniería y Ciencia de Computadores, Universitat Jaume I, Castellón (Spain)

    2016-03-15

    We introduce a new iterative Krylov subspace-based eigensolver for the simulation of macromolecular motions on desktop multithreaded platforms equipped with multicore processors and, possibly, a graphics accelerator (GPU). The method consists of two stages, with the original problem first reduced into a simpler band-structured form by means of a high-performance compute-intensive procedure. This is followed by a memory-intensive but low-cost Krylov iteration, which is off-loaded to be computed on the GPU by means of an efficient data-parallel kernel. The experimental results reveal the performance of the new eigensolver. Concretely, when applied to the simulation of macromolecules with a few thousands degrees of freedom and the number of eigenpairs to be computed is small to moderate, the new solver outperforms other methods implemented as part of high-performance numerical linear algebra packages for multithreaded architectures.

  17. A fast band–Krylov eigensolver for macromolecular functional motion simulation on multicore architectures and graphics processors

    International Nuclear Information System (INIS)

    Aliaga, José I.; Alonso, Pedro; Badía, José M.; Chacón, Pablo; Davidović, Davor; López-Blanco, José R.; Quintana-Ortí, Enrique S.

    2016-01-01

    We introduce a new iterative Krylov subspace-based eigensolver for the simulation of macromolecular motions on desktop multithreaded platforms equipped with multicore processors and, possibly, a graphics accelerator (GPU). The method consists of two stages, with the original problem first reduced into a simpler band-structured form by means of a high-performance compute-intensive procedure. This is followed by a memory-intensive but low-cost Krylov iteration, which is off-loaded to be computed on the GPU by means of an efficient data-parallel kernel. The experimental results reveal the performance of the new eigensolver. Concretely, when applied to the simulation of macromolecules with a few thousands degrees of freedom and the number of eigenpairs to be computed is small to moderate, the new solver outperforms other methods implemented as part of high-performance numerical linear algebra packages for multithreaded architectures.

  18. Asymptotic description of plasma turbulence: Krylov-Bogoliubov methods and quasi-particles

    International Nuclear Information System (INIS)

    Sosenko, P.P.; Bertrand, P.; Decyk, V.K.

    2001-01-01

    The asymptotic theory of charged particle motion in electromagnetic fields is developed for the general case of finite Larmor-radius effects by means of Krylov-Bogoliubov averaging method. The correspondence between the general asymptotic methods, elaborated by M. Krylov and M.Bogoliubov, the quasi-particle description and gyrokinetics is established. Such a comparison is used to shed more light on the physical sense of the reduced Poisson equation, introduced in gyrokinetics, and the particle polarization drift. It is shown that the modification of the Poisson equation in the asymptotic theory is due to the non-conservation of the magnetic moment and gyrophase trembling. it is shown that the second-order modification of the adiabatic invariant can determine the conditions of global plasma stability and introduces new nonlinear terms into the reduced Poisson equation. Such a modification is important for several plasma orderings, e.g. NHD type ordering. The feasibility of numerical simulation schemes in which the polarization drift is included into the quasi-particle equations of motion, and the Poisson equation remains unchanged is analyzed. A consistent asymptotic model is proposed in which the polarization drift is included into the quasi-particle equations of motion and the particle and quasi-particle velocities are equal. It is shown that in such models there are additional modifications of the reduced Poisson equation. The latter becomes even more complicated in contrast to earlier suggestions

  19. Newton-Cartan gravity revisited

    NARCIS (Netherlands)

    Andringa, Roel

    2016-01-01

    In this research Newton's old theory of gravity is rederived using an algebraic approach known as the gauging procedure. The resulting theory is Newton's theory in the mathematical language of Einstein's General Relativity theory, in which gravity is spacetime curvature. The gauging procedure sheds

  20. Isaac Newton pocket giants

    CERN Document Server

    May, Andrew

    2015-01-01

    Isaac Newton had an extraordinary idea. He believed the physical universe and everything in it could be described in exact detail using mathematical relationships. He formulated a law of gravity that explained why objects fall downwards, how the moon causes the tides, and why planets and comets orbit the sun. While Newton's work has been added to over the years, his basic approach remains at the heart of the scientific worldview. Yet Newton's own had little in common with that of a modern scientist. He believed the universe was created to a precise and rational design - a design that was fully

  1. Some Peculiarities of Newton-Hooke Space-Times

    OpenAIRE

    Tian, Yu

    2011-01-01

    Newton-Hooke space-times are the non-relativistic limit of (anti-)de Sitter space-times. We investigate some peculiar facts about the Newton-Hooke space-times, among which the "extraordinary Newton-Hooke quantum mechanics" and the "anomalous Newton-Hooke space-times" are discussed in detail. Analysis on the Lagrangian/action formalism is performed in the discussion of the Newton-Hooke quantum mechanics, where the path integral point of view plays an important role, and the physically measurab...

  2. Sparse Jacobian construction for mapped grid visco-resistive magnetohydrodynamics

    KAUST Repository

    Reynolds, Daniel R.; Samtaney, Ravi

    2012-01-01

    employs a fully implicit formulation in time, and a mapped finite volume spatial discretization. We solve this model using inexact Newton-Krylov methods. Of critical importance in these iterative solvers is the development of an effective preconditioner

  3. NEWTON'S SECOND LAW OF MOTION, F=MA; EULER'S OR NEWTON'S?

    OpenAIRE

    Ajay Sharma

    2017-01-01

    Objective: F =ma is taught as Newton’s second law of motion all over the world. But it was given by Euler in 1775, forty-eight years after the death of Newton. It is debated here with scientific logic. Methods/Statistical analysis: The discussion partially deals with history of science so various aspects are quoted from original references. Newton did not give any equation in the Principia for second, third laws motion and law of gravitation. Conceptually, in Newton’s time, neither accele...

  4. Unstructured Cartesian refinement with sharp interface immersed boundary method for 3D unsteady incompressible flows

    Science.gov (United States)

    Angelidis, Dionysios; Chawdhary, Saurabh; Sotiropoulos, Fotis

    2016-11-01

    A novel numerical method is developed for solving the 3D, unsteady, incompressible Navier-Stokes equations on locally refined fully unstructured Cartesian grids in domains with arbitrarily complex immersed boundaries. Owing to the utilization of the fractional step method on an unstructured Cartesian hybrid staggered/non-staggered grid layout, flux mismatch and pressure discontinuity issues are avoided and the divergence free constraint is inherently satisfied to machine zero. Auxiliary/hanging nodes are used to facilitate the discretization of the governing equations. The second-order accuracy of the solver is ensured by using multi-dimension Lagrange interpolation operators and appropriate differencing schemes at the interface of regions with different levels of refinement. The sharp interface immersed boundary method is augmented with local near-boundary refinement to handle arbitrarily complex boundaries. The discrete momentum equation is solved with the matrix free Newton-Krylov method and the Krylov-subspace method is employed to solve the Poisson equation. The second-order accuracy of the proposed method on unstructured Cartesian grids is demonstrated by solving the Poisson equation with a known analytical solution. A number of three-dimensional laminar flow simulations of increasing complexity illustrate the ability of the method to handle flows across a range of Reynolds numbers and flow regimes. Laminar steady and unsteady flows past a sphere and the oblique vortex shedding from a circular cylinder mounted between two end walls demonstrate the accuracy, the efficiency and the smooth transition of scales and coherent structures across refinement levels. Large-eddy simulation (LES) past a miniature wind turbine rotor, parameterized using the actuator line approach, indicates the ability of the fully unstructured solver to simulate complex turbulent flows. Finally, a geometry resolving LES of turbulent flow past a complete hydrokinetic turbine illustrates

  5. Parallel computing techniques for rotorcraft aerodynamics

    Science.gov (United States)

    Ekici, Kivanc

    The modification of unsteady three-dimensional Navier-Stokes codes for application on massively parallel and distributed computing environments is investigated. The Euler/Navier-Stokes code TURNS (Transonic Unsteady Rotor Navier-Stokes) was chosen as a test bed because of its wide use by universities and industry. For the efficient implementation of TURNS on parallel computing systems, two algorithmic changes are developed. First, main modifications to the implicit operator, Lower-Upper Symmetric Gauss Seidel (LU-SGS) originally used in TURNS, is performed. Second, application of an inexact Newton method, coupled with a Krylov subspace iterative method (Newton-Krylov method) is carried out. Both techniques have been tried previously for the Euler equations mode of the code. In this work, we have extended the methods to the Navier-Stokes mode. Several new implicit operators were tried because of convergence problems of traditional operators with the high cell aspect ratio (CAR) grids needed for viscous calculations on structured grids. Promising results for both Euler and Navier-Stokes cases are presented for these operators. For the efficient implementation of Newton-Krylov methods to the Navier-Stokes mode of TURNS, efficient preconditioners must be used. The parallel implicit operators used in the previous step are employed as preconditioners and the results are compared. The Message Passing Interface (MPI) protocol has been used because of its portability to various parallel architectures. It should be noted that the proposed methodology is general and can be applied to several other CFD codes (e.g. OVERFLOW).

  6. Domain decomposed preconditioners with Krylov subspace methods as subdomain solvers

    Energy Technology Data Exchange (ETDEWEB)

    Pernice, M. [Univ. of Utah, Salt Lake City, UT (United States)

    1994-12-31

    Domain decomposed preconditioners for nonsymmetric partial differential equations typically require the solution of problems on the subdomains. Most implementations employ exact solvers to obtain these solutions. Consequently work and storage requirements for the subdomain problems grow rapidly with the size of the subdomain problems. Subdomain solves constitute the single largest computational cost of a domain decomposed preconditioner, and improving the efficiency of this phase of the computation will have a significant impact on the performance of the overall method. The small local memory available on the nodes of most message-passing multicomputers motivates consideration of the use of an iterative method for solving subdomain problems. For large-scale systems of equations that are derived from three-dimensional problems, memory considerations alone may dictate the need for using iterative methods for the subdomain problems. In addition to reduced storage requirements, use of an iterative solver on the subdomains allows flexibility in specifying the accuracy of the subdomain solutions. Substantial savings in solution time is possible if the quality of the domain decomposed preconditioner is not degraded too much by relaxing the accuracy of the subdomain solutions. While some work in this direction has been conducted for symmetric problems, similar studies for nonsymmetric problems appear not to have been pursued. This work represents a first step in this direction, and explores the effectiveness of performing subdomain solves using several transpose-free Krylov subspace methods, GMRES, transpose-free QMR, CGS, and a smoothed version of CGS. Depending on the difficulty of the subdomain problem and the convergence tolerance used, a reduction in solution time is possible in addition to the reduced memory requirements. The domain decomposed preconditioner is a Schur complement method in which the interface operators are approximated using interface probing.

  7. Truncated Newton-Raphson Methods for Quasicontinuum Simulations

    National Research Council Canada - National Science Library

    Liang, Yu; Kanapady, Ramdev; Chung, Peter W

    2006-01-01

    .... In this research, we report the effectiveness of the truncated Newton-Raphson method and quasi-Newton method with low-rank Hessian update strategy that are evaluated against the full Newton-Raphson...

  8. Turning around Newton's Second Law

    Science.gov (United States)

    Goff, John Eric

    2004-01-01

    Conceptual and quantitative difficulties surrounding Newton's second law often arise among introductory physics students. Simply turning around how one expresses Newton's second law may assist students in their understanding of a deceptively simple-looking equation.

  9. Initial conditions and robust Newton-Raphson for harmonic balance analysis of free-running oscillators

    NARCIS (Netherlands)

    Virtanen, J.E.; Maten, ter E.J.W.; Beelen, T.G.J.; Honkala, M.; Hulkkonen, M.

    2011-01-01

    Poor initial conditions for Harmonic Balance (HB) analysis of freerunning oscillators may lead to divergence of the direct Newton-Raphson method or may prevent to find the solution within an optimization approach. We exploit time integration to obtain estimates for the oscillation frequency and for

  10. On Optimal Short Recurrences for Generating Orthogonal Krylov Subspace Bases. Dedicated to Gene Golub

    Czech Academy of Sciences Publication Activity Database

    Liesen, J.; Strakoš, Zdeněk

    2008-01-01

    Roč. 50, č. 3 (2008), s. 485-503 ISSN 0036-1445 R&D Projects: GA AV ČR 1ET400300415; GA AV ČR IAA100300802 Institutional research plan: CEZ:AV0Z10300504 Keywords : Krylov subspace methods * orthogonal bases * short reccurences * conjugate gradient -like methods Subject RIV: IN - Informatics, Computer Science Impact factor: 2.739, year: 2008

  11. Newton-Hooke Limit of Beltrami-de Sitter Spacetime, Principles of Galilei-Hooke's Relativity and Postulate on Newton-Hooke Universal Time

    OpenAIRE

    Huang, Chao-Guang; Guo, Han-Ying; Tian, Yu; Xu, Zhan; Zhou, Bin

    2004-01-01

    Based on the Beltrami-de Sitter spacetime, we present the Newton-Hooke model under the Newton-Hooke contraction of the $BdS$ spacetime with respect to the transformation group, algebra and geometry. It is shown that in Newton-Hooke space-time, there are inertial-type coordinate systems and inertial-type observers, which move along straight lines with uniform velocity. And they are invariant under the Newton-Hooke group. In order to determine uniquely the Newton-Hooke limit, we propose the Gal...

  12. Numerical Validation of the Delaunay Normalization and the Krylov-Bogoliubov-Mitropolsky Method

    Directory of Open Access Journals (Sweden)

    David Ortigosa

    2014-01-01

    Full Text Available A scalable second-order analytical orbit propagator programme based on modern and classical perturbation methods is being developed. As a first step in the validation and verification of part of our orbit propagator programme, we only consider the perturbation produced by zonal harmonic coefficients in the Earth’s gravity potential, so that it is possible to analyze the behaviour of the mathematical expressions involved in Delaunay normalization and the Krylov-Bogoliubov-Mitropolsky method in depth and determine their limits.

  13. Extending Newton's law from nonlocal-in-time kinetic energy

    International Nuclear Information System (INIS)

    Suykens, J.A.K.

    2009-01-01

    We study a new equation of motion derived from a context of classical Newtonian mechanics by replacing the kinetic energy with a form of nonlocal-in-time kinetic energy. It leads to a hypothetical extension of Newton's second law of motion. In a first stage the obtainable solution form is studied by considering an unknown value for the nonlocality time extent. This is done in relation to higher-order Euler-Lagrange equations and a Hamiltonian framework. In a second stage the free particle case and harmonic oscillator case are studied and compared with quantum mechanical results. For a free particle it is shown that the solution form is a superposition of the classical straight line motion and a Fourier series. We discuss the link with quanta interpretations made in Pais-Uhlenbeck oscillators. The discrete nature emerges from the continuous time setting through application of the least action principle. The harmonic oscillator case leads to energy levels that approximately correspond to the quantum harmonic oscillator levels. The solution to the extended Newton equation also admits a quantization of the nonlocality time extent, which is determined by the classical oscillator frequency. The extended equation suggests a new possible way for understanding the relationship between classical and quantum mechanics

  14. Regge calculus from discontinuous metrics

    International Nuclear Information System (INIS)

    Khatsymovsky, V.M.

    2003-01-01

    Regge calculus is considered as a particular case of the more general system where the linklengths of any two neighbouring 4-tetrahedra do not necessarily coincide on their common face. This system is treated as that one described by metric discontinuous on the faces. In the superspace of all discontinuous metrics the Regge calculus metrics form some hypersurface defined by continuity conditions. Quantum theory of the discontinuous metric system is assumed to be fixed somehow in the form of quantum measure on (the space of functionals on) the superspace. The problem of reducing this measure to the Regge hypersurface is addressed. The quantum Regge calculus measure is defined from a discontinuous metric measure by inserting the δ-function-like phase factor. The requirement that continuity conditions be imposed in a 'face-independent' way fixes this factor uniquely. The term 'face-independent' means that this factor depends only on the (hyper)plane spanned by the face, not on it's form and size. This requirement seems to be natural from the viewpoint of existence of the well-defined continuum limit maximally free of lattice artefacts

  15. Accuracy of Two Three-Term and Three Two-Term Recurrences for Krylov Space Solvers

    Czech Academy of Sciences Publication Activity Database

    Gutknecht, M. H.; Strakoš, Zdeněk

    2000-01-01

    Roč. 22, č. 1 (2000), s. 213-229 ISSN 0895-4798 R&D Projects: GA ČR GA205/96/0921; GA AV ČR IAA2030706 Institutional research plan: AV0Z1030915 Keywords : linear system of equations * iterative method * Krylov space method * conjugate gradient method * tree-term recurrence * accuracy * roundoff Subject RIV: BA - General Mathematics Impact factor: 1.182, year: 2000

  16. Multi-dimensional, fully-implicit, spectral method for the Vlasov-Maxwell equations with exact conservation laws in discrete form

    Science.gov (United States)

    Delzanno, G. L.

    2015-11-01

    A spectral method for the numerical solution of the multi-dimensional Vlasov-Maxwell equations is presented. The plasma distribution function is expanded in Fourier (for the spatial part) and Hermite (for the velocity part) basis functions, leading to a truncated system of ordinary differential equations for the expansion coefficients (moments) that is discretized with an implicit, second order accurate Crank-Nicolson time discretization. The discrete non-linear system is solved with a preconditioned Jacobian-Free Newton-Krylov method. It is shown analytically that the Fourier-Hermite method features exact conservation laws for total mass, momentum and energy in discrete form. Standard tests involving plasma waves and the whistler instability confirm the validity of the conservation laws numerically. The whistler instability test also shows that we can step over the fastest time scale in the system without incurring in numerical instabilities. Some preconditioning strategies are presented, showing that the number of linear iterations of the Krylov solver can be drastically reduced and a significant gain in performance can be obtained.

  17. Newton flows for elliptic functions

    NARCIS (Netherlands)

    Helminck, G.F.; Twilt, F.

    2015-01-01

    Newton flows are dynamical systems generated by a continuous, desingularized Newton method for mappings from a Euclidean space to itself. We focus on the special case of meromorphic functions on the complex plane. Inspired by the analogy between the rational (complex) and the elliptic (i.e., doubly

  18. Introducing Newton and classical physics

    CERN Document Server

    Rankin, William

    2002-01-01

    The rainbow, the moon, a spinning top, a comet, the ebb and flood of the oceans ...a falling apple. There is only one universe and it fell to Isaac Newton to discover its secrets. Newton was arguably the greatest scientific genius of all time, and yet he remains a mysterious figure. Written and illustrated by William Rankin, "Introducting Newton and Classical Physics" explains the extraordinary ideas of a man who sifted through the accumulated knowledge of centuries, tossed out mistaken beliefs, and single-handedly made enormous advances in mathematics, mechanics and optics. By the age of 25, entirely self-taught, he had sketched out a system of the world. Einstein's theories are unthinkable without Newton's founding system. He was also a secret heretic, a mystic and an alchemist, the man of whom Edmund Halley said "Nearer to the gods may no man approach!". This is an ideal companion volume to "Introducing Einstein".

  19. s-Step Krylov Subspace Methods as Bottom Solvers for Geometric Multigrid

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Samuel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lijewski, Mike [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Almgren, Ann [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Straalen, Brian Van [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Carson, Erin [Univ. of California, Berkeley, CA (United States); Knight, Nicholas [Univ. of California, Berkeley, CA (United States); Demmel, James [Univ. of California, Berkeley, CA (United States)

    2014-08-14

    Geometric multigrid solvers within adaptive mesh refinement (AMR) applications often reach a point where further coarsening of the grid becomes impractical as individual sub domain sizes approach unity. At this point the most common solution is to use a bottom solver, such as BiCGStab, to reduce the residual by a fixed factor at the coarsest level. Each iteration of BiCGStab requires multiple global reductions (MPI collectives). As the number of BiCGStab iterations required for convergence grows with problem size, and the time for each collective operation increases with machine scale, bottom solves in large-scale applications can constitute a significant fraction of the overall multigrid solve time. In this paper, we implement, evaluate, and optimize a communication-avoiding s-step formulation of BiCGStab (CABiCGStab for short) as a high-performance, distributed-memory bottom solver for geometric multigrid solvers. This is the first time s-step Krylov subspace methods have been leveraged to improve multigrid bottom solver performance. We use a synthetic benchmark for detailed analysis and integrate the best implementation into BoxLib in order to evaluate the benefit of a s-step Krylov subspace method on the multigrid solves found in the applications LMC and Nyx on up to 32,768 cores on the Cray XE6 at NERSC. Overall, we see bottom solver improvements of up to 4.2x on synthetic problems and up to 2.7x in real applications. This results in as much as a 1.5x improvement in solver performance in real applications.

  20. From Galileo to Newton

    CERN Document Server

    Hall, Alfred Rupert

    1982-01-01

    The near century (1630–1720) that separates the important astronomical findings of Galileo Galilei (1564–1642) and the vastly influential mathematical work of Sir Isaac Newton (1642–1727) represents a pivotal stage of transition in the history of science. Tracing the revolution in physics initiated by Galileo and culminating in Newton's achievements, this book surveys the work of Huygens, Leeuwenhoek, Boyle, Descartes, and others. 35 illustrations.

  1. Subsampled Hessian Newton Methods for Supervised Learning.

    Science.gov (United States)

    Wang, Chien-Chih; Huang, Chun-Heng; Lin, Chih-Jen

    2015-08-01

    Newton methods can be applied in many supervised learning approaches. However, for large-scale data, the use of the whole Hessian matrix can be time-consuming. Recently, subsampled Newton methods have been proposed to reduce the computational time by using only a subset of data for calculating an approximation of the Hessian matrix. Unfortunately, we find that in some situations, the running speed is worse than the standard Newton method because cheaper but less accurate search directions are used. In this work, we propose some novel techniques to improve the existing subsampled Hessian Newton method. The main idea is to solve a two-dimensional subproblem per iteration to adjust the search direction to better minimize the second-order approximation of the function value. We prove the theoretical convergence of the proposed method. Experiments on logistic regression, linear SVM, maximum entropy, and deep networks indicate that our techniques significantly reduce the running time of the subsampled Hessian Newton method. The resulting algorithm becomes a compelling alternative to the standard Newton method for large-scale data classification.

  2. Krylov iterative methods and synthetic acceleration for transport in binary statistical media

    International Nuclear Information System (INIS)

    Fichtl, Erin D.; Warsa, James S.; Prinja, Anil K.

    2009-01-01

    In particle transport applications there are numerous physical constructs in which heterogeneities are randomly distributed. The quantity of interest in these problems is the ensemble average of the flux, or the average of the flux over all possible material 'realizations.' The Levermore-Pomraning closure assumes Markovian mixing statistics and allows a closed, coupled system of equations to be written for the ensemble averages of the flux in each material. Generally, binary statistical mixtures are considered in which there are two (homogeneous) materials and corresponding coupled equations. The solution process is iterative, but convergence may be slow as either or both materials approach the diffusion and/or atomic mix limits. A three-part acceleration scheme is devised to expedite convergence, particularly in the atomic mix-diffusion limit where computation is extremely slow. The iteration is first divided into a series of 'inner' material and source iterations to attenuate the diffusion and atomic mix error modes separately. Secondly, atomic mix synthetic acceleration is applied to the inner material iteration and S 2 synthetic acceleration to the inner source iterations to offset the cost of doing several inner iterations per outer iteration. Finally, a Krylov iterative solver is wrapped around each iteration, inner and outer, to further expedite convergence. A spectral analysis is conducted and iteration counts and computing cost for the new two-step scheme are compared against those for a simple one-step iteration, to which a Krylov iterative method can also be applied.

  3. Contact discontinuities in a cold collision-free two-beam plasma

    Science.gov (United States)

    Kirkland, K. B.; Sonnerup, B. U. O.

    1982-01-01

    The structure of contact discontinuities in a collision-free plasma is examined using a model of a plasma which consists of two oppositely directed cold ion beams and a background of cold massless electrons such that exact charge neutrality is maintained and that the electric field is zero. The basic equations describing self-consistent equilibria are obtained for the more general situation where a net flow across the layer takes place and where the magnetic field has two nonzero tangential components but where the electric field remains zero. These equations are then specialized to the case of no net plasma flow where one of the tangential components is zero, and four different classes of sheets are obtained, all having thickness the order of the ion inertial length. The first class is for layers separating two identical plasma and magnetic field regions, the second is for an infinite array of parallel layers producing an undulated magnetic field, the third is for layers containing trapped ions in closed orbits which separate two vacuum regions with uniform identical magnetic fields, and the fourth is for layers which reflect a single plasma beam, leaving a vacuum with a reversed and compressed tangential field on the other side.

  4. On the Convergence of Q-OR and Q-MR Krylov Methods for Solving Nonsymmetric Linear Systems

    Czech Academy of Sciences Publication Activity Database

    Duintjer Tebbens, Jurjen; Meurant, G.

    2016-01-01

    Roč. 56, č. 1 (2016), s. 77-97 ISSN 0006-3835 R&D Projects: GA ČR GA13-06684S Institutional support: RVO:67985807 Keywords : Krylov method * Q-OR method * Q-MR method * BiCG * QMR * CMRH * eigenvalue influence * prescribed convergence Subject RIV: BA - General Mathematics Impact factor: 1.670, year: 2016

  5. Newton's Cradle in Physics Education

    Science.gov (United States)

    Gauld, Colin F.

    2006-01-01

    Newton's Cradle is a series of bifilar pendulums used in physics classrooms to demonstrate the role of the principles of conservation of momentum and kinetic energy in elastic collisions. The paper reviews the way in which textbooks use Newton's Cradle and points out the unsatisfactory nature of these treatments in almost all cases. The literature…

  6. Newton's Metaphysics of Space as God's Emanative Effect

    Science.gov (United States)

    Jacquette, Dale

    2014-09-01

    In several of his writings, Isaac Newton proposed that physical space is God's "emanative effect" or "sensorium," revealing something interesting about the metaphysics underlying his mathematical physics. Newton's conjectures depart from Plato and Aristotle's metaphysics of space and from classical and Cambridge Neoplatonism. Present-day philosophical concepts of supervenience clarify Newton's ideas about space and offer a portrait of Newton not only as a mathematical physicist but an independent-minded rationalist philosopher.

  7. A conservative local discontinuous Galerkin method for the solution of nonlinear Schr(o)dinger equation in two dimensions

    Institute of Scientific and Technical Information of China (English)

    ZHANG RongPei; YU XiJun; LI MingJun; LI XiangGui

    2017-01-01

    In this study,we present a conservative local discontinuous Galerkin (LDG) method for numerically solving the two-dimensional nonlinear Schr(o)dinger (NLS) equation.The NLS equation is rewritten as a firstorder system and then we construct the LDG formulation with appropriate numerical flux.The mass and energy conserving laws for the semi-discrete formulation can be proved based on different choices of numerical fluxes such as the central,alternative and upwind-based flux.We will propose two kinds of time discretization methods for the semi-discrete formulation.One is based on Crank-Nicolson method and can be proved to preserve the discrete mass and energy conservation.The other one is Krylov implicit integration factor (ⅡF) method which demands much less computational effort.Various numerical experiments are presented to demonstrate the conservation law of mass and energy,the optimal rates of convergence,and the blow-up phenomenon.

  8. Discontinuous precipitation in a nickel-free high nitrogen austenitic stainless steel on solution nitriding

    DEFF Research Database (Denmark)

    Mohammadzadeh, Roghayeh; Akbari, Alireza; Grumsen, Flemming Bjerg

    2017-01-01

    Chromium-rich nitride precipitates in production of nickel-free austenitic stainless steel plates via pressurised solution nitriding of Fe–22.7Cr–2.4Mo ferritic stainless steel at 1473 K (1200 °C) under a nitrogen gas atmosphere was investigated. The microstructure, chemical and phase composition......, morphology and crystallographic orientation between the resulted austenite and precipitates were investigated using optical microscopy, X-ray Diffraction (XRD), Scanning and Transmission Electron Microscopy (TEM) and Electron Back Scatter Diffraction (EBSD). On prolonged nitriding, Chromium-rich nitride...... precipitates were formed firstly close to the surface and later throughout the sample with austenitic structure. Chromium-rich nitride precipitates with a rod or strip-like morphology was developed by a discontinuous cellular precipitation mechanism. STEM-EDS analysis demonstrated partitioning of metallic...

  9. Newton flows for elliptic functions: A pilot study

    NARCIS (Netherlands)

    Twilt, F.; Helminck, G.F.; Snuverink, M.; van den Brug, L.

    2008-01-01

    Elliptic Newton flows are generated by a continuous, desingularized Newton method for doubly periodic meromorphic functions on the complex plane. In the special case, where the functions underlying these elliptic Newton flows are of second-order, we introduce various, closely related, concepts of

  10. The G_Newton --> 0 Limit of Euclidean Quantum Gravity

    OpenAIRE

    Smolin, Lee

    1992-01-01

    Using the Ashtekar formulation, it is shown that the G_{Newton} --> 0 limit of Euclidean or complexified general relativity is not a free field theory, but is a theory that describes a linearized self-dual connection propagating on an arbitrary anti-self-dual background. This theory is quantized in the loop representation and, as in the full theory, an infinite dimnensional space of exact solutions to the constraint is found. An inner product is also proposed. The path integral is constructed...

  11. Discontinuation of tofacitinib after achieving low disease activity in patients with rheumatoid arthritis: a multicentre, observational study.

    Science.gov (United States)

    Kubo, Satoshi; Yamaoka, Kunihiro; Amano, Koichi; Nagano, Shuji; Tohma, Shigeto; Suematsu, Eiichi; Nagasawa, Hayato; Iwata, Kanako; Tanaka, Yoshiya

    2017-08-01

    To determine whether tofacitinib can be discontinued in patients with RA who achieve low disease activity (LDA). RA patients with LDA after tofacitinib treatment in a phase III and long-term extension study were enrolled in this multicentre, non-randomized, open, prospective, observational study. The decision of discontinuation or continuation of tofacitinib was determined based on patient-physician decision making with informed consent. The primary endpoint was the proportion of patients who remained tofacitinib-free at post-treatment week 52. Clinical outcome was compared between those who continued and those who discontinued tofacitinib. The last observation carried forward method was used for patients who could not discontinue tofacitinib before week 52. Of 64 patients, 54 discontinued and 10 continued tofacitinib therapy. At post-treatment week 52, 20 of the 54 patients (37%) of the discontinuation group remained tofacitinib-free without disease flare. Disease activity at post-treatment week 52 was higher in the discontinuation group than the continuation group. Among the discontinuation group, the RF titre at baseline was significantly lower in patients who remained tofacitinib-free than those who did not (40 vs 113 U/ml). In fact, a higher proportion of patients with lower RF remained tofacitinib-free at week 52 compared with those with higher RF at baseline. In patients who could not achieve tofacitinib-free status, re-initiation of tofacitinib or other biologics improved disease activity. It is possible to discontinue tofacitinib without flare in about a third of patients with RA. A low RF predicts maintenance of LDA after discontinuation of tofacitinib. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  12. Choosing the forcing terms in an inexact Newton method

    Energy Technology Data Exchange (ETDEWEB)

    Eisenstat, S.C. [Yale Univ., New Haven, CT (United States); Walker, H.F. [Utah State Univ., Logan, UT (United States)

    1994-12-31

    An inexact Newton method is a generalization of Newton`s method for solving F(x) = 0, F: {Re}{sup n} {r_arrow} {Re}{sup n}, in which each step reduces the norm of the local linear model of F. At the kth iteration, the norm reduction is usefully expressed by the inexact Newton condition where x{sub k} is the current approximate solution and s{sub k} is the step. In many applications, an {eta}{sub k} is first specified, and then an S{sub k} is found for which the inexact Newton condition holds. Thus {eta}{sub k} is often called a {open_quotes}forcing term{close_quotes}. In practice, the choice of the forcing terms is usually critical to the efficiency of the method and can affect robustness as well. Here, the authors outline several promising choices, discuss theoretical support for them, and compare their performance in a Newton iterative (truncated Newton) method applied to several large-scale problems.

  13. A General Algorithm for Reusing Krylov Subspace Information. I. Unsteady Navier-Stokes

    Science.gov (United States)

    Carpenter, Mark H.; Vuik, C.; Lucas, Peter; vanGijzen, Martin; Bijl, Hester

    2010-01-01

    A general algorithm is developed that reuses available information to accelerate the iterative convergence of linear systems with multiple right-hand sides A x = b (sup i), which are commonly encountered in steady or unsteady simulations of nonlinear equations. The algorithm is based on the classical GMRES algorithm with eigenvector enrichment but also includes a Galerkin projection preprocessing step and several novel Krylov subspace reuse strategies. The new approach is applied to a set of test problems, including an unsteady turbulent airfoil, and is shown in some cases to provide significant improvement in computational efficiency relative to baseline approaches.

  14. "To Improve upon Hints of Things": Illustrating Isaac Newton.

    Science.gov (United States)

    Schilt, Cornelis J

    2016-01-01

    When Isaac Newton died in 1727 he left a rich legacy in terms of draft manuscripts, encompassing a variety of topics: natural philosophy, mathematics, alchemy, theology, and chronology, as well as papers relating to his career at the Mint. One thing that immediately strikes us is the textuality of Newton's legacy: images are sparse. Regarding his scholarly endeavours we witness the same practice. Newton's extensive drafts on theology and chronology do not contain a single illustration or map. Today we have all of Newton's draft manuscripts as witnesses of his working methods, as well as access to a significant number of books from his own library. Drawing parallels between Newton's reading practices and his natural philosophical and scholarly work, this paper seeks to understand Newton's recondite writing and publishing politics.

  15. Improving the Communication Pattern in Matrix-Vector Operations for Large Scale-Free Graphs by Disaggregation

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlemann, Verena [Emory Univ., Atlanta, GA (United States); Vassilevski, Panayot S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-10-28

    Matrix-vector multiplication is the key operation in any Krylov-subspace iteration method. We are interested in Krylov methods applied to problems associated with the graph Laplacian arising from large scale-free graphs. Furthermore, computations with graphs of this type on parallel distributed-memory computers are challenging. This is due to the fact that scale-free graphs have a degree distribution that follows a power law, and currently available graph partitioners are not efficient for such an irregular degree distribution. The lack of a good partitioning leads to excessive interprocessor communication requirements during every matrix-vector product. Here, we present an approach to alleviate this problem based on embedding the original irregular graph into a more regular one by disaggregating (splitting up) vertices in the original graph. The matrix-vector operations for the original graph are performed via a factored triple matrix-vector product involving the embedding graph. And even though the latter graph is larger, we are able to decrease the communication requirements considerably and improve the performance of the matrix-vector product.

  16. Newton-Cartan gravity and torsion

    Science.gov (United States)

    Bergshoeff, Eric; Chatzistavrakidis, Athanasios; Romano, Luca; Rosseel, Jan

    2017-10-01

    We compare the gauging of the Bargmann algebra, for the case of arbitrary torsion, with the result that one obtains from a null-reduction of General Relativity. Whereas the two procedures lead to the same result for Newton-Cartan geometry with arbitrary torsion, the null-reduction of the Einstein equations necessarily leads to Newton-Cartan gravity with zero torsion. We show, for three space-time dimensions, how Newton-Cartan gravity with arbitrary torsion can be obtained by starting from a Schrödinger field theory with dynamical exponent z = 2 for a complex compensating scalar and next coupling this field theory to a z = 2 Schrödinger geometry with arbitrary torsion. The latter theory can be obtained from either a gauging of the Schrödinger algebra, for arbitrary torsion, or from a null-reduction of conformal gravity.

  17. Tensor-GMRES method for large sparse systems of nonlinear equations

    Science.gov (United States)

    Feng, Dan; Pulliam, Thomas H.

    1994-01-01

    This paper introduces a tensor-Krylov method, the tensor-GMRES method, for large sparse systems of nonlinear equations. This method is a coupling of tensor model formation and solution techniques for nonlinear equations with Krylov subspace projection techniques for unsymmetric systems of linear equations. Traditional tensor methods for nonlinear equations are based on a quadratic model of the nonlinear function, a standard linear model augmented by a simple second order term. These methods are shown to be significantly more efficient than standard methods both on nonsingular problems and on problems where the Jacobian matrix at the solution is singular. A major disadvantage of the traditional tensor methods is that the solution of the tensor model requires the factorization of the Jacobian matrix, which may not be suitable for problems where the Jacobian matrix is large and has a 'bad' sparsity structure for an efficient factorization. We overcome this difficulty by forming and solving the tensor model using an extension of a Newton-GMRES scheme. Like traditional tensor methods, we show that the new tensor method has significant computational advantages over the analogous Newton counterpart. Consistent with Krylov subspace based methods, the new tensor method does not depend on the factorization of the Jacobian matrix. As a matter of fact, the Jacobian matrix is never needed explicitly.

  18. On Newton-Cartan trace anomalies

    International Nuclear Information System (INIS)

    Auzzi, Roberto; Baiguera, Stefano; Nardelli, Giuseppe

    2016-01-01

    We classify the trace anomaly for parity-invariant non-relativistic Schrödinger theories in 2+1 dimensions coupled to background Newton-Cartan gravity. The general anomaly structure looks very different from the one in the z=2 Lifshitz theories. The type A content of the anomaly is remarkably identical to that of the relativistic 3+1 dimensional case, suggesting the conjecture that an a-theorem should exist also in the Newton-Cartan context.

  19. On Newton-Cartan trace anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Auzzi, Roberto [Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore,Via Musei 41, 25121 Brescia (Italy); INFN Sezione di Perugia,Via A. Pascoli, 06123 Perugia (Italy); Baiguera, Stefano [Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore,Via Musei 41, 25121 Brescia (Italy); Nardelli, Giuseppe [Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore,Via Musei 41, 25121 Brescia (Italy); TIFPA - INFN, c/o Dipartimento di Fisica, Università di Trento,38123 Povo (Italy)

    2016-02-01

    We classify the trace anomaly for parity-invariant non-relativistic Schrödinger theories in 2+1 dimensions coupled to background Newton-Cartan gravity. The general anomaly structure looks very different from the one in the z=2 Lifshitz theories. The type A content of the anomaly is remarkably identical to that of the relativistic 3+1 dimensional case, suggesting the conjecture that an a-theorem should exist also in the Newton-Cartan context.

  20. Goethe's Exposure of Newton's theory a polemic on Newton's theory of light and colour

    CERN Document Server

    Goethe, Johann Wolfgang von

    2016-01-01

    Johann Wolfgang von Goethe, although best known for his literary work, was also a keen and outspoken natural scientist. In the second polemic part of Zur Farbenlehre (Theory of Colours), for example, Goethe attacked Isaac Newton's ground-breaking revelation that light is heterogeneous and not immutable, as was previously thought.This polemic was unanimously rejected by the physicists of the day, and has often been omitted from compendia of Goethe's works. Indeed, although Goethe repeated all of Newton's key experiments, he was never able to achieve the same results. Many reasons have been proposed for this, ranging from the psychological — such as a blind hatred of Newtonism, self-deceit and paranoid psychosis — to accusations of incapability — Goethe simply did not understand the experiments. Yet Goethe was never to be dissuaded from this passionate conviction.This translation of Goethe's second polemic, published for the first time in English, makes it clear that Goethe did understand the thrust of Ne...

  1. Field-Split Preconditioned Inexact Newton Algorithms

    KAUST Repository

    Liu, Lulu

    2015-06-02

    The multiplicative Schwarz preconditioned inexact Newton (MSPIN) algorithm is presented as a complement to additive Schwarz preconditioned inexact Newton (ASPIN). At an algebraic level, ASPIN and MSPIN are variants of the same strategy to improve the convergence of systems with unbalanced nonlinearities; however, they have natural complementarity in practice. MSPIN is naturally based on partitioning of degrees of freedom in a nonlinear PDE system by field type rather than by subdomain, where a modest factor of concurrency can be sacrificed for physically motivated convergence robustness. ASPIN, originally introduced for decompositions into subdomains, is natural for high concurrency and reduction of global synchronization. We consider both types of inexact Newton algorithms in the field-split context, and we augment the classical convergence theory of ASPIN for the multiplicative case. Numerical experiments show that MSPIN can be significantly more robust than Newton methods based on global linearizations, and that MSPIN can be more robust than ASPIN and maintain fast convergence even for challenging problems, such as high Reynolds number Navier--Stokes equations.

  2. Field-Split Preconditioned Inexact Newton Algorithms

    KAUST Repository

    Liu, Lulu; Keyes, David E.

    2015-01-01

    The multiplicative Schwarz preconditioned inexact Newton (MSPIN) algorithm is presented as a complement to additive Schwarz preconditioned inexact Newton (ASPIN). At an algebraic level, ASPIN and MSPIN are variants of the same strategy to improve the convergence of systems with unbalanced nonlinearities; however, they have natural complementarity in practice. MSPIN is naturally based on partitioning of degrees of freedom in a nonlinear PDE system by field type rather than by subdomain, where a modest factor of concurrency can be sacrificed for physically motivated convergence robustness. ASPIN, originally introduced for decompositions into subdomains, is natural for high concurrency and reduction of global synchronization. We consider both types of inexact Newton algorithms in the field-split context, and we augment the classical convergence theory of ASPIN for the multiplicative case. Numerical experiments show that MSPIN can be significantly more robust than Newton methods based on global linearizations, and that MSPIN can be more robust than ASPIN and maintain fast convergence even for challenging problems, such as high Reynolds number Navier--Stokes equations.

  3. Newton-type methods for optimization and variational problems

    CERN Document Server

    Izmailov, Alexey F

    2014-01-01

    This book presents comprehensive state-of-the-art theoretical analysis of the fundamental Newtonian and Newtonian-related approaches to solving optimization and variational problems. A central focus is the relationship between the basic Newton scheme for a given problem and algorithms that also enjoy fast local convergence. The authors develop general perturbed Newtonian frameworks that preserve fast convergence and consider specific algorithms as particular cases within those frameworks, i.e., as perturbations of the associated basic Newton iterations. This approach yields a set of tools for the unified treatment of various algorithms, including some not of the Newton type per se. Among the new subjects addressed is the class of degenerate problems. In particular, the phenomenon of attraction of Newton iterates to critical Lagrange multipliers and its consequences as well as stabilized Newton methods for variational problems and stabilized sequential quadratic programming for optimization. This volume will b...

  4. Conformal mapping and convergence of Krylov iterations

    Energy Technology Data Exchange (ETDEWEB)

    Driscoll, T.A.; Trefethen, L.N. [Cornell Univ., Ithaca, NY (United States)

    1994-12-31

    Connections between conformal mapping and matrix iterations have been known for many years. The idea underlying these connections is as follows. Suppose the spectrum of a matrix or operator A is contained in a Jordan region E in the complex plane with 0 not an element of E. Let {phi}(z) denote a conformal map of the exterior of E onto the exterior of the unit disk, with {phi}{infinity} = {infinity}. Then 1/{vert_bar}{phi}(0){vert_bar} is an upper bound for the optimal asymptotic convergence factor of any Krylov subspace iteration. This idea can be made precise in various ways, depending on the matrix iterations, on whether A is finite or infinite dimensional, and on what bounds are assumed on the non-normality of A. This paper explores these connections for a variety of matrix examples, making use of a new MATLAB Schwarz-Christoffel Mapping Toolbox developed by the first author. Unlike the earlier Fortran Schwarz-Christoffel package SCPACK, the new toolbox computes exterior as well as interior Schwarz-Christoffel maps, making it easy to experiment with spectra that are not necessarily symmetric about an axis.

  5. Newton's law in de Sitter brane

    International Nuclear Information System (INIS)

    Ghoroku, Kazuo; Nakamura, Akihiro; Yahiro, Masanobu

    2003-01-01

    Newton potential has been evaluated for the case of dS brane embedded in Minkowski, dS 5 and AdS 5 bulks. We point out that only the AdS 5 bulk might be consistent with the Newton's law from the brane-world viewpoint when we respect a small cosmological constant observed at present universe

  6. 3, 2, 1 ... Discovering Newton's Laws

    Science.gov (United States)

    Lutz, Joe; Sylvester, Kevin; Oliver, Keith; Herrington, Deborah

    2017-01-01

    "For every action there is an equal and opposite reaction." "Except when a bug hits your car window, the car must exert more force on the bug because Newton's laws only apply in the physics classroom, right?" Students in our classrooms were able to pick out definitions as well as examples of Newton's three laws; they could…

  7. GPGPU accelerated Krylov methods for compact modeling of on-chip passive integrated structures within the Chameleon-RF workflow

    Directory of Open Access Journals (Sweden)

    Sebastian Gim

    2012-11-01

    Full Text Available Continued device scaling into the nanometer region and high frequencies of operation well into the multi-GHz region has given rise to new effects that previously had negligible impact but now present greater challenges and unprecedented complexity to designing successful mixed-signal silicon. The Chameleon-RF project was conceived to address these challenges. Creative use of domain decomposition, multi grid techniques or reduced order modeling techniques (ROM can be selectively applied at all levels of the process to efficiently prune down degrees of freedom (DoFs. However, the simulation of complex systems within a reasonable amount of time remains a computational challenge. This paper presents work done in the incorporation of GPGPU technology to accelerate Krylov based algorithms used for compact modeling of on-chip passive integrated structures within the workflow of the Chameleon-RF project. Based upon insight gained from work done above, a novel GPGPU accelerated algorithm was developed for the Krylov ROM (kROM methods and is described here for the benefit of the wider community.

  8. Moving grids for magnetic reconnection via Newton-Krylov methods

    KAUST Repository

    Yuan, Xuefei; Jardin, Stephen C.; Keyes, David E.

    2011-01-01

    This paper presents a set of computationally efficient, adaptive grids for magnetic reconnection phenomenon where the current density can develop large gradients in the reconnection region. Four-field extended MagnetoHydroDynamics (MHD) equations

  9. Newton-Krylov Methods in Power Flow and Contingency Analysis

    NARCIS (Netherlands)

    Idema, R.

    2012-01-01

    A power system is a system that provides for the generation, transmission, and distribution of electrical energy. Power systems are considered to be the largest and most complex man-made systems. As electrical energy is vital to our society, power systems have to satisfy the highest security and

  10. Moving grids for magnetic reconnection via Newton-Krylov methods

    KAUST Repository

    Yuan, Xuefei

    2011-01-01

    This paper presents a set of computationally efficient, adaptive grids for magnetic reconnection phenomenon where the current density can develop large gradients in the reconnection region. Four-field extended MagnetoHydroDynamics (MHD) equations with hyperviscosity terms are transformed so that the curvilinear coordinates replace the Cartesian coordinates as the independent variables, and moving grids\\' velocities are also considered in this transformed system as a part of interpolating the physical solutions from the old grid to the new grid as time advances. The curvilinear coordinates derived from the current density through the Monge-Kantorovich (MK) optimization approach help to reduce the resolution requirements during the computation. © 2010 Elsevier B.V. All rights reserved.

  11. Extending the Riemann-Solver-Free High-Order Space-Time Discontinuous Galerkin Cell Vertex Scheme (DG-CVS) to Solve Compressible Magnetohydrodynamics Equations

    Science.gov (United States)

    2016-06-08

    Ideal Magnetohydrodynamics,” J. Com- put. Phys., Vol. 153, No. 2, 1999, pp. 334–352. [14] Tang, H.-Z. and Xu, K., “A high-order gas -kinetic method for...notwithstanding any other provision of law , no person shall be subject to any penalty for failing to comply with a collection of information if it does...Riemann-solver-free spacetime discontinuous Galerkin method for general conservation laws to solve compressible magnetohydrodynamics (MHD) equations. The

  12. Efficient solution of parabolic equations by Krylov approximation methods

    Science.gov (United States)

    Gallopoulos, E.; Saad, Y.

    1990-01-01

    Numerical techniques for solving parabolic equations by the method of lines is addressed. The main motivation for the proposed approach is the possibility of exploiting a high degree of parallelism in a simple manner. The basic idea of the method is to approximate the action of the evolution operator on a given state vector by means of a projection process onto a Krylov subspace. Thus, the resulting approximation consists of applying an evolution operator of a very small dimension to a known vector which is, in turn, computed accurately by exploiting well-known rational approximations to the exponential. Because the rational approximation is only applied to a small matrix, the only operations required with the original large matrix are matrix-by-vector multiplications, and as a result the algorithm can easily be parallelized and vectorized. Some relevant approximation and stability issues are discussed. We present some numerical experiments with the method and compare its performance with a few explicit and implicit algorithms.

  13. Newton`s iteration for inversion of Cauchy-like and other structured matrices

    Energy Technology Data Exchange (ETDEWEB)

    Pan, V.Y. [Lehman College, Bronx, NY (United States); Zheng, Ailong; Huang, Xiaohan; Dias, O. [CUNY, New York, NY (United States)

    1996-12-31

    We specify some initial assumptions that guarantee rapid refinement of a rough initial approximation to the inverse of a Cauchy-like matrix, by mean of our new modification of Newton`s iteration, where the input, output, and all the auxiliary matrices are represented with their short generators defined by the associated scaling operators. The computations are performed fast since they are confined to operations with short generators of the given and computed matrices. Because of the known correlations among various structured matrices, the algorithm is immediately extended to rapid refinement of rough initial approximations to the inverses of Vandermonde-like, Chebyshev-Vandermonde-like and Toeplitz-like matrices, where again, the computations are confined to operations with short generators of the involved matrices.

  14. Active postoperative acromegaly: sustained remission after discontinuation of somatostatin analogues

    Directory of Open Access Journals (Sweden)

    Cristina Alvarez-Escola

    2016-11-01

    Full Text Available In patients with active acromegaly after pituitary surgery, somatostatin analogues are effective in controlling the disease and can even be curative in some cases. After treatment discontinuation, the likelihood of disease recurrence is high. However, a small subset of patients remains symptom-free after discontinuation, with normalized growth hormone (GH and insulin-like growth factor (IGF1 levels. The characteristics of patients most likely to achieve sustained remission after treatment discontinuation are not well understood, although limited evidence suggests that sustained remission is more likely in patients with lower GH and IGF1 levels before treatment withdrawal, in those who respond well to low-dose treatment, in those without evidence of adenoma on an MRI scan and/or in patients who receive long-term treatment. In this report, we describe the case of a 56-year-old female patient treated with lanreotide Autogel for 11 years. Treatment was successfully discontinued, and the patient is currently disease-free on all relevant parameters (clinical, biochemical and tumour status. The successful outcome in this case adds to the small body of literature suggesting that some well-selected patients who receive long-term treatment with somatostatin analogues may achieve sustained remission.

  15. Conformal mechanics in Newton-Hooke spacetime

    International Nuclear Information System (INIS)

    Galajinsky, Anton

    2010-01-01

    Conformal many-body mechanics in Newton-Hooke spacetime is studied within the framework of the Lagrangian formalism. Global symmetries and Noether charges are given in a form convenient for analyzing the flat space limit. N=2 superconformal extension is built and a new class on N=2 models related to simple Lie algebras is presented. A decoupling similarity transformation on N=2 quantum mechanics in Newton-Hooke spacetime is discussed.

  16. Stacking by electroinjection with discontinuous buffers in capillary zone electrophoresis.

    Science.gov (United States)

    Shihabi, Zak K

    2002-08-01

    The work presented here demonstrates that electroinjection can be performed using discontinuous buffers, which can result in better stacking than that obtained by hydrodynamic injection. The sample can be concentrated at the tip of the capillary leaving practically the whole capillary for sample separation. This results in several advantages, such as better sample concentration, higher plate number and shorter time of stacking. However, sample introduction by electromigration is suited for samples free or low in salt content. Samples, which are high in salt content, are better introduced by the hydrodynamic injection for stacking by the discontinuous buffers. Different simple methods to introduce the discontinuity in the buffer for electroinjection are discussed.

  17. MOOSE: A parallel computational framework for coupled systems of nonlinear equations

    International Nuclear Information System (INIS)

    Gaston, Derek; Newman, Chris; Hansen, Glen; Lebrun-Grandie, Damien

    2009-01-01

    Systems of coupled, nonlinear partial differential equations (PDEs) often arise in simulation of nuclear processes. MOOSE: Multiphysics Object Oriented Simulation Environment, a parallel computational framework targeted at the solution of such systems, is presented. As opposed to traditional data-flow oriented computational frameworks, MOOSE is instead founded on the mathematical principle of Jacobian-free Newton-Krylov (JFNK). Utilizing the mathematical structure present in JFNK, physics expressions are modularized into 'Kernels,' allowing for rapid production of new simulation tools. In addition, systems are solved implicitly and fully coupled, employing physics-based preconditioning, which provides great flexibility even with large variance in time scales. A summary of the mathematics, an overview of the structure of MOOSE, and several representative solutions from applications built on the framework are presented.

  18. The importance of Leonhard Euler's discoveries in the field of shipbuilding for the scientific evolution of academician A. N. Krylov

    Science.gov (United States)

    Sharkov, N. A.; Sharkova, O. A.

    2018-05-01

    The paper identifies the importance of the Leonhard Euler's discoveries in the field of shipbuilding for the scientific evolution of academician A. N. Krylov and for the modern knowledge in survivability and safety of ships. The works by Leonard Euler "Marine Science" and "The Moon Motion New Theory" are discussed.

  19. An Example of Guiding Scientific Research with Philosophical Principles Based on Uniqueness of Truth and Neutrosophy Deriving Newton's Second Law and the like

    OpenAIRE

    Fu Yuhua

    2015-01-01

    According to the principle of the uniqueness of truth, there should be only one truth, namely law of conservation of energy, in the area of Newton Mechanics. Through the example of free falling body, according to the neutrosophic principle considering neutralities (the small ball is falling to the middle positions), this paper derives the original Newton's second law and the original law of gravity respectively by using the law of conservation of energy.

  20. Isaac Newton Olympics.

    Science.gov (United States)

    Cox, Carol

    2001-01-01

    Presents the Isaac Newton Olympics in which students complete a hands-on activity at seven stations and evaluate what they have learned in the activity and how it is related to real life. Includes both student and teacher instructions for three of the activities. (YDS)

  1. Newton's law of cooling revisited

    International Nuclear Information System (INIS)

    Vollmer, M

    2009-01-01

    The cooling of objects is often described by a law, attributed to Newton, which states that the temperature difference of a cooling body with respect to the surroundings decreases exponentially with time. Such behaviour has been observed for many laboratory experiments, which led to a wide acceptance of this approach. However, the heat transfer from any object to its surrounding is not only due to conduction and convection but also due to radiation. The latter does not vary linearly with temperature difference, which leads to deviations from Newton's law. This paper presents a theoretical analysis of the cooling of objects with a small Biot number. It is shown that Newton's law of cooling, i.e. simple exponential behaviour, is mostly valid if temperature differences are below a certain threshold which depends on the experimental conditions. For any larger temperature differences appreciable deviations occur which need the complete nonlinear treatment. This is demonstrated by results of some laboratory experiments which use IR imaging to measure surface temperatures of solid cooling objects with temperature differences of up to 300 K.

  2. Isaac Newton and the astronomical refraction.

    Science.gov (United States)

    Lehn, Waldemar H

    2008-12-01

    In a short interval toward the end of 1694, Isaac Newton developed two mathematical models for the theory of the astronomical refraction and calculated two refraction tables, but did not publish his theory. Much effort has been expended, starting with Biot in 1836, in the attempt to identify the methods and equations that Newton used. In contrast to previous work, a closed form solution is identified for the refraction integral that reproduces the table for his first model (in which density decays linearly with elevation). The parameters of his second model, which includes the exponential variation of pressure in an isothermal atmosphere, have also been identified by reproducing his results. The implication is clear that in each case Newton had derived exactly the correct equations for the astronomical refraction; furthermore, he was the first to do so.

  3. A preconditioned inexact newton method for nonlinear sparse electromagnetic imaging

    KAUST Repository

    Desmal, Abdulla

    2015-03-01

    A nonlinear inversion scheme for the electromagnetic microwave imaging of domains with sparse content is proposed. Scattering equations are constructed using a contrast-source (CS) formulation. The proposed method uses an inexact Newton (IN) scheme to tackle the nonlinearity of these equations. At every IN iteration, a system of equations, which involves the Frechet derivative (FD) matrix of the CS operator, is solved for the IN step. A sparsity constraint is enforced on the solution via thresholded Landweber iterations, and the convergence is significantly increased using a preconditioner that levels the FD matrix\\'s singular values associated with contrast and equivalent currents. To increase the accuracy, the weight of the regularization\\'s penalty term is reduced during the IN iterations consistently with the scheme\\'s quadratic convergence. At the end of each IN iteration, an additional thresholding, which removes small \\'ripples\\' that are produced by the IN step, is applied to maintain the solution\\'s sparsity. Numerical results demonstrate the applicability of the proposed method in recovering sparse and discontinuous dielectric profiles with high contrast values.

  4. Newton slopes for Artin-Schreier-Witt towers

    DEFF Research Database (Denmark)

    Davis, Christopher; Wan, Daqing; Xiao, Liang

    2016-01-01

    We fix a monic polynomial f(x)∈Fq[x] over a finite field and consider the Artin-Schreier-Witt tower defined by f(x); this is a tower of curves ⋯→Cm→Cm−1→⋯→C0=A1, with total Galois group Zp. We study the Newton slopes of zeta functions of this tower of curves. This reduces to the study of the Newton...... slopes of L-functions associated to characters of the Galois group of this tower. We prove that, when the conductor of the character is large enough, the Newton slopes of the L-function form arithmetic progressions which are independent of the conductor of the character. As a corollary, we obtain...

  5. On the topology of the Newton boundary at infinity

    International Nuclear Information System (INIS)

    Pham Tien Son

    2007-07-01

    We will be interested in a global version of Le-Ramanujam μ -constant theorem from the Newton polyhedron point of view. More precisely, we prove a stability theorem which says that the global monodromy fibration of a polynomial with Newton non-degenerate is uniquely determined by its Newton boundary at infinity. Besides, the continuity of atypical values for a family of complex polynomial functions also is considered. (author)

  6. La malle de Newton

    CERN Document Server

    Verlet, Loup

    1993-01-01

    En 1936, une vente publique ramena au jour le contenu d'une malle où Newton avait enfermé ses manuscrits. Ô surprise, les travaux du savant y voisinaient avec les spéculations de l'exégète et de l'alchimiste. Ce n'est pas seulement la face cachée d'un exceptionnel génie scientifique qui nous était ainsi révélée, mais, au-delà du mystère d'un homme, le secret partage qui gouverne notre univers, comme le montre cette lecture originale de la naissance de la physique moderne.Dans quel monde suis-je tombé ? Pourquoi les choses sont-elles ainsi ? Comment faire avec ? Questions lancinantes de l'enfant quand la mère fait défaut, du chercheur face à la nature qui se dérobe. La réponse, Newton sait où la trouver : Dieu le Père, à jamais insaisissable, est présent «partout et toujours», Il se révèle par la bouche des prophètes, se devine dans les arcanes de l'alchimie, se manifeste par les lois admirables qui règlent le cours ordinaire des choses. Ses écrits de l'ombre l'attestent, Newton ...

  7. Voltaire-Newton... Renversant!

    CERN Multimedia

    2004-01-01

    The encounter, even improbable, between François Marie Arouet, said Voltaire, and Isaac Newton could occur only in Pays de Gex, near his city... It's indeed right above of the accelerator, in Saint-Genis, that the meeting between this two "monsters" of the 18e century took place

  8. Conceptual and Laboratory Exercise to Apply Newton's Second Law to a System of Many Forces

    Science.gov (United States)

    Mungan, Carl E.

    2012-01-01

    A pair of objects on an inclined plane are connected together by a string. The upper object is then connected to a fixed post via a spring. The situation is first analysed as a classroom exercise in using free-body diagrams to solve Newton's second law for a system of objects upon which many different kinds of force are acting (string tension,…

  9. Derivative discontinuity with localized Hartree-Fock potential

    Energy Technology Data Exchange (ETDEWEB)

    Nazarov, V. U. [Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan (China); Vignale, G. [Department of Physics, University of Missouri-Columbia, Columbia, Missouri 65211 (United States)

    2015-08-14

    The localized Hartree-Fock potential has proven to be a computationally efficient alternative to the optimized effective potential, preserving the numerical accuracy of the latter and respecting the exact properties of being self-interaction free and having the correct −1/r asymptotics. In this paper we extend the localized Hartree-Fock potential to fractional particle numbers and observe that it yields derivative discontinuities in the energy as required by the exact theory. The discontinuities are numerically close to those of the computationally more demanding Hartree-Fock method. Our potential enjoys a “direct-energy” property, whereby the energy of the system is given by the sum of the single-particle eigenvalues multiplied by the corresponding occupation numbers. The discontinuities c{sub ↑} and c{sub ↓} of the spin-components of the potential at integer particle numbers N{sub ↑} and N{sub ↓} satisfy the condition c{sub ↑}N{sub ↑} + c{sub ↓}N{sub ↓} = 0. Thus, joining the family of effective potentials which support a derivative discontinuity, but being considerably easier to implement, the localized Hartree-Fock potential becomes a powerful tool in the broad area of applications in which the fundamental gap is an issue.

  10. Newton's law in braneworlds with an infinite extra dimension

    OpenAIRE

    Ito, Masato

    2001-01-01

    We study the behavior of the four$-$dimensional Newton's law in warped braneworlds. The setup considered here is a $(3+n)$-brane embedded in $(5+n)$ dimensions, where $n$ extra dimensions are compactified and a dimension is infinite. We show that the wave function of gravity is described in terms of the Bessel functions of $(2+n/2)$-order and that estimate the correction to Newton's law. In particular, the Newton's law for $n=1$ can be exactly obtained.

  11. Newton and the origin of civilization

    CERN Document Server

    Buchwald, Jed Z

    2012-01-01

    Isaac Newton's Chronology of Ancient Kingdoms Amended, published in 1728, one year after the great man's death, unleashed a storm of controversy. And for good reason. The book presents a drastically revised timeline for ancient civilizations, contracting Greek history by five hundred years and Egypt's by a millennium. Newton and the Origin of Civilization tells the story of how one of the most celebrated figures in the history of mathematics, optics, and mechanics came to apply his unique ways of thinking to problems of history, theology, and mythology, and of how his radical ideas produced an uproar that reverberated in Europe's learned circles throughout the eighteenth century and beyond. Jed Buchwald and Mordechai Feingold reveal the manner in which Newton strove for nearly half a century to rectify universal history by reading ancient texts through the lens of astronomy, and to create a tight theoretical system for interpreting the evolution of civilization on the basis of population dynamics. It was duri...

  12. From Newton's bucket to rotating polygons

    DEFF Research Database (Denmark)

    Bach, B.; Linnartz, E. C.; Vested, Malene Louise Hovgaard

    2014-01-01

    We present an experimental study of 'polygons' forming on the free surface of a swirling water flow in a partially filled cylindrical container. In our set-up, we rotate the bottom plate and the cylinder wall with separate motors. We thereby vary rotation rate and shear strength independently...... and move from a rigidly rotating 'Newton's bucket' flow to one where bottom and cylinder wall are rotating oppositely and the surface is strongly turbulent but flat on average. Between those two extremes, we find polygonal states for which the rotational symmetry is spontaneously broken. We investigate...... the phase diagram spanned by the two rotational frequencies at a given water filling height and find polygons in a regime, where the two frequencies are sufficiently different and, predominantly, when they have opposite signs. In addition to the extension of the family of polygons found with the stationary...

  13. Reverse time migration by Krylov subspace reduced order modeling

    Science.gov (United States)

    Basir, Hadi Mahdavi; Javaherian, Abdolrahim; Shomali, Zaher Hossein; Firouz-Abadi, Roohollah Dehghani; Gholamy, Shaban Ali

    2018-04-01

    Imaging is a key step in seismic data processing. To date, a myriad of advanced pre-stack depth migration approaches have been developed; however, reverse time migration (RTM) is still considered as the high-end imaging algorithm. The main limitations associated with the performance cost of reverse time migration are the intensive computation of the forward and backward simulations, time consumption, and memory allocation related to imaging condition. Based on the reduced order modeling, we proposed an algorithm, which can be adapted to all the aforementioned factors. Our proposed method benefit from Krylov subspaces method to compute certain mode shapes of the velocity model computed by as an orthogonal base of reduced order modeling. Reverse time migration by reduced order modeling is helpful concerning the highly parallel computation and strongly reduces the memory requirement of reverse time migration. The synthetic model results showed that suggested method can decrease the computational costs of reverse time migration by several orders of magnitudes, compared with reverse time migration by finite element method.

  14. Quantum mechanics from Newton's second law and the canonical commutation relation [X, P] = i

    International Nuclear Information System (INIS)

    Palenik, Mark C

    2014-01-01

    Despite the fact that it has been known since the time of Heisenberg that quantum operators obey a quantum version of Newton's laws, students are often told that derivations of quantum mechanics must necessarily follow from the Hamiltonian or Lagrangian formulations of mechanics. Here, we first derive the existing Heisenberg equations of motion from Newton's laws and the uncertainty principle using only the equations F=((dP)/(dt)), P=m((dV)/(dt)), and [X, P] = i. Then, a new expression for the propagator is derived that makes a connection between time evolution in quantum mechanics and the motion of a classical particle under Newton's laws. The propagator is solved for three cases where an exact solution is possible: (1) the free particle; (2) the harmonic oscillator; and (3) a constant force, or linear potential in the standard interpretation. We then show that for a general for a general force F(X), by Taylor expanding X(t) in time, we can use this methodology to reproduce the Feynman path integral formula for the propagator. Such a picture may be useful for students as they make the transition from classical to quantum mechanics and help solidify the equivalence of the Hamiltonian, Lagrangian, and Newtonian pictures of physics in their minds. (paper)

  15. Some Elementary Examples from Newton's Principia -R-ES ...

    Indian Academy of Sciences (India)

    ing both differential and integral calculus. Newton used many geometrical methods extensively to derive the re- sults in spite of his having discovered calculus. Geome- try, judiciously used with limiting procedures, was one principal strategy used by Newton in the Principia. The Principia presents an enormous range of ...

  16. XMM-Newton On-demand Reprocessing Using SaaS Technology

    Science.gov (United States)

    Ibarra, A.; Fajersztejn, N.; Loiseau, N.; Gabriel, C.

    2014-05-01

    We present here the architectural design of the new on-the-fly reprocessing capabilities that will be soon developed and implemented in the new XMM-Newton Science Operation Centre. The inclusion of processing capabilities into the archive, as we plan, will be possible thanks to the recent refurbishment of the XMM-Newton science archive, its alignment with the latest web technologies and the XMM-Newton Remote Interface for Science Analysis (RISA), a revolutionary idea of providing processing capabilities through internet services.

  17. Constraint interface preconditioning for topology optimization problems

    Czech Academy of Sciences Publication Activity Database

    Kočvara, Michal; Loghin, D.; Turner, J.

    2016-01-01

    Roč. 38, č. 1 (2016), A128-A145 ISSN 1064-8275 R&D Projects: GA AV ČR IAA100750802 Grant - others:European Commission - EC(XE) 313781 Institutional support: RVO:67985556 Keywords : topology optimization * domain decomposition * Newton-Krylov Subject RIV: BA - General Mathematics Impact factor: 2.195, year: 2016 http://library.utia.cas.cz/separaty/2016/MTR/kocvara-0460325.pdf

  18. Newton's Contributions to Optics

    Indian Academy of Sciences (India)

    creativity is apparent, even in ideas and models in optics that were ... Around Newton's time, a number of leading figures in science ..... successive circles increased as integers, i.e. d increases by inte- ... of easy reflections and transmission".

  19. Angular Multigrid Preconditioner for Krylov-Based Solution Techniques Applied to the Sn Equations with Highly Forward-Peaked Scattering

    Science.gov (United States)

    Turcksin, Bruno; Ragusa, Jean C.; Morel, Jim E.

    2012-01-01

    It is well known that the diffusion synthetic acceleration (DSA) methods for the Sn equations become ineffective in the Fokker-Planck forward-peaked scattering limit. In response to this deficiency, Morel and Manteuffel (1991) developed an angular multigrid method for the 1-D Sn equations. This method is very effective, costing roughly twice as much as DSA per source iteration, and yielding a maximum spectral radius of approximately 0.6 in the Fokker-Planck limit. Pautz, Adams, and Morel (PAM) (1999) later generalized the angular multigrid to 2-D, but it was found that the method was unstable with sufficiently forward-peaked mappings between the angular grids. The method was stabilized via a filtering technique based on diffusion operators, but this filtering also degraded the effectiveness of the overall scheme. The spectral radius was not bounded away from unity in the Fokker-Planck limit, although the method remained more effective than DSA. The purpose of this article is to recast the multidimensional PAM angular multigrid method without the filtering as an Sn preconditioner and use it in conjunction with the Generalized Minimal RESidual (GMRES) Krylov method. The approach ensures stability and our computational results demonstrate that it is also significantly more efficient than an analogous DSA-preconditioned Krylov method.

  20. Disformal transformation in Newton-Cartan geometry

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Peng [Zhejiang Chinese Medical University, Department of Information, Hangzhou (China); Sun Yat-Sen University, School of Physics and Astronomy, Guangzhou (China); Yuan, Fang-Fang [Nankai University, School of Physics, Tianjin (China)

    2016-08-15

    Newton-Cartan geometry has played a central role in recent discussions of the non-relativistic holography and condensed matter systems. Although the conformal transformation in non-relativistic holography can easily be rephrased in terms of Newton-Cartan geometry, we show that it requires a nontrivial procedure to arrive at the consistent form of anisotropic disformal transformation in this geometry. Furthermore, as an application of the newly obtained transformation, we use it to induce a geometric structure which may be seen as a particular non-relativistic version of the Weyl integrable geometry. (orig.)

  1. Bargmann structures and Newton-Cartan theory

    International Nuclear Information System (INIS)

    Duval, C.; Burdet, G.; Kuenzle, H.P.; Perrin, M.

    1985-01-01

    It is shown that Newton-Cartan theory of gravitation can best be formulated on a five-dimensional extended space-time carrying a Lorentz metric together with a null parallel vector field. The corresponding geometry associated with the Bargmann group (nontrivially extended Galilei group) viewed as a subgroup of the affine de Sitter group AO(4,1) is thoroughly investigated. This new global formalism allows one to recast classical particle dynamics and the Schroedinger equation into a purely covariant form. The Newton-Cartan field equations are readily derived from Einstein's Lagrangian on the space-time extension

  2. Development of a Burnup Module DECBURN Based on the Krylov Subspace Method

    Energy Technology Data Exchange (ETDEWEB)

    Cho, J. Y.; Kim, K. S.; Shim, H. J.; Song, J. S

    2008-05-15

    This report is to develop a burnup module DECBURN that is essential for the reactor analysis and the assembly homogenization codes to trace the fuel composition change during the core burnup. The developed burnup module solves the burnup equation by the matrix exponential method based on the Krylov Subspace method. The final solution of the matrix exponential is obtained by the matrix scaling and squaring method. To develop DECBURN module, this report includes the followings as: (1) Krylov Subspace Method for Burnup Equation, (2) Manufacturing of the DECBURN module, (3) Library Structure Setup and Library Manufacturing, (4) Examination of the DECBURN module, (5) Implementation to the DeCART code and Verification. DECBURN library includes the decay constants, one-group cross section and the fission yields. Examination of the DECBURN module is performed by manufacturing a driver program, and the results of the DECBURN module is compared with those of the ORIGEN program. Also, the implemented DECBURN module to the DeCART code is applied to the LWR depletion benchmark and a OPR-1000 pin cell problem, and the solutions are compared with the HELIOS code to verify the computational soundness and accuracy. In this process, the criticality calculation method and the predictor-corrector scheme are introduced to the DeCART code for a function of the homogenization code. The examination by a driver program shows that the DECBURN module produces exactly the same solution with the ORIGEN program. DeCART code that equips the DECBURN module produces a compatible solution to the other codes for the LWR depletion benchmark. Also the multiplication factors of the DeCART code for the OPR-1000 pin cell problem agree to the HELIOS code within 100 pcm over the whole burnup steps. The multiplication factors with the criticality calculation are also compatible with the HELIOS code. These results mean that the developed DECBURN module works soundly and produces an accurate solution

  3. Eye-openers from XMM-Newton

    Science.gov (United States)

    2000-02-01

    many years of work. They are all that we hoped they would be. In the LMC we can see the elements, which go to make up new stars and planets, being released in giant stellar explosions. We can even see the creation of new stars going on, using elements scattered through space by previous stellar explosions. This is what we built the EPIC cameras for and they are really fulfilling their promise" Multiwavelength views of Hickson Group 16 The HCG-16 viewed by EPIC and by the Optical Monitor in the visible and ultraviolet wavelengths is one of approximately a hundred compact galaxy clusters listed by Canadian astronomer Paul Hickson in the 1980s. The criteria for the Hickson cluster groups included their compactness, their isolation from other galaxies and a limited magnitude range between their members. Most Hicksons are very faint, but a few can be observed with modest aperture telescopes. Galaxies in Hickson groups have a high probability of interacting. Their study has shed light on the question of galactic evolution and the effects of interaction. Investigation into their gravitational behaviour has also significantly contributed to our understanding of "dark matter", the mysterious matter that most astronomers feel comprises well over 90% of our universe. Observation of celestial objects from space over a range of X-ray, ultraviolet and visible wavelengths, is a unique feature of the XMM-Newton mission. The EPIC-PN view of the Hickson 16 group shows a handful of bright X-sources and in the background more than a hundred faint X-ray sources that XMM-Newton is revealing for the first time. Juxtaposing the X-ray view of HCG 16 with that of the Optical Monitor reveals one of the great strengths of XMM-Newton in being able to routinely compare the optical, ultraviolet and X-ray properties of objects. Many of the X-ray sources are revealed as elongated "fuzzy blobs" coincident with some of the optical galaxies. Routine access to ultraviolet images is a first for the mission

  4. Continuation Newton methods

    Czech Academy of Sciences Publication Activity Database

    Axelsson, Owe; Sysala, Stanislav

    2015-01-01

    Roč. 70, č. 11 (2015), s. 2621-2637 ISSN 0898-1221 R&D Projects: GA ČR GA13-18652S Institutional support: RVO:68145535 Keywords : system of nonlinear equations * Newton method * load increment method * elastoplasticity Subject RIV: IN - Informatics, Computer Science Impact factor: 1.398, year: 2015 http://www.sciencedirect.com/science/article/pii/S0898122115003818

  5. Newtons law of funding

    CERN Multimedia

    2008-01-01

    Isaac Newton, besides being the founder of modern physics, was also master of Britain's mint. That is a precedent which many British physicists must surely wish had become traditional. At the moment, money for physics is in short supply in Britain.

  6. Newton force from wave function collapse: speculation and test

    International Nuclear Information System (INIS)

    Diósi, Lajos

    2014-01-01

    The Diosi-Penrose model of quantum-classical boundary postulates gravity-related spontaneous wave function collapse of massive degrees of freedom. The decoherence effects of the collapses are in principle detectable if not masked by the overwhelming environmental decoherence. But the DP (or any other, like GRW, CSL) spontaneous collapses are not detectable themselves, they are merely the redundant formalism of spontaneous decoherence. To let DP collapses become testable physics, recently we extended the DP model and proposed that DP collapses are responsible for the emergence of the Newton gravitational force between massive objects. We identified the collapse rate, possibly of the order of 1/ms, with the rate of emergence of the Newton force. A simple heuristic emergence (delay) time was added to the Newton law of gravity. This non-relativistic delay is in peaceful coexistence with Einstein's relativistic theory of gravitation, at least no experimental evidence has so far surfaced against it. We derive new predictions of such a 'lazy' Newton law that will enable decisive laboratory tests with available technologies. The simple equation of 'lazy' Newton law deserves theoretical and experimental studies in itself, independently of the underlying quantum foundational considerations.

  7. INVESTIGATION OF THE MISCONCEPTION IN NEWTON II LAW

    Directory of Open Access Journals (Sweden)

    Yudi Kurniawan

    2018-04-01

    Full Text Available This study aims to provide a comprehensive description of the level of the number of students who have misconceptions about Newton's II Law. This research is located at one State Junior High School in Kab. Pandeglang. The purposive sampling was considering used in this study because it is important to distinguish students who do not know the concept of students who experience misconception. Data were collected using a three tier-test diagnostic test and analyzed descriptively quantitatively. The results showed that the level of misconception was in the two categories of high and medium levels. It needs an innovative teaching technique for subsequent research to treat Newton's Newton misconception.

  8. Preconditioned Inexact Newton for Nonlinear Sparse Electromagnetic Imaging

    KAUST Repository

    Desmal, Abdulla

    2014-05-04

    Newton-type algorithms have been extensively studied in nonlinear microwave imaging due to their quadratic convergence rate and ability to recover images with high contrast values. In the past, Newton methods have been implemented in conjunction with smoothness promoting optimization/regularization schemes. However, this type of regularization schemes are known to perform poorly when applied in imagining domains with sparse content or sharp variations. In this work, an inexact Newton algorithm is formulated and implemented in conjunction with a linear sparse optimization scheme. A novel preconditioning technique is proposed to increase the convergence rate of the optimization problem. Numerical results demonstrate that the proposed framework produces sharper and more accurate images when applied in sparse/sparsified domains.

  9. Preconditioned Inexact Newton for Nonlinear Sparse Electromagnetic Imaging

    KAUST Repository

    Desmal, Abdulla

    2014-01-06

    Newton-type algorithms have been extensively studied in nonlinear microwave imaging due to their quadratic convergence rate and ability to recover images with high contrast values. In the past, Newton methods have been implemented in conjunction with smoothness promoting optimization/regularization schemes. However, this type of regularization schemes are known to perform poorly when applied in imagining domains with sparse content or sharp variations. In this work, an inexact Newton algorithm is formulated and implemented in conjunction with a linear sparse optimization scheme. A novel preconditioning technique is proposed to increase the convergence rate of the optimization problem. Numerical results demonstrate that the proposed framework produces sharper and more accurate images when applied in sparse/sparsified domains.

  10. Preconditioned Inexact Newton for Nonlinear Sparse Electromagnetic Imaging

    KAUST Repository

    Desmal, Abdulla; Bagci, Hakan

    2014-01-01

    Newton-type algorithms have been extensively studied in nonlinear microwave imaging due to their quadratic convergence rate and ability to recover images with high contrast values. In the past, Newton methods have been implemented in conjunction with smoothness promoting optimization/regularization schemes. However, this type of regularization schemes are known to perform poorly when applied in imagining domains with sparse content or sharp variations. In this work, an inexact Newton algorithm is formulated and implemented in conjunction with a linear sparse optimization scheme. A novel preconditioning technique is proposed to increase the convergence rate of the optimization problem. Numerical results demonstrate that the proposed framework produces sharper and more accurate images when applied in sparse/sparsified domains.

  11. Teaching Newton's Laws with the iPod Touch in Conceptual Physics

    Science.gov (United States)

    Kelly, Angela M.

    2011-04-01

    One of the greatest challenges in teaching physics is helping students achieve a conceptual understanding of Newton's laws. I find that students fresh from middle school can sometimes recite the laws verbatim ("An object in motion stays in motion…" and "For every action…"), but they rarely demonstrate a working knowledge of how to apply them to observable phenomena. As a firm believer in inquiry-based teaching methods, I like to develop activities where students can experiment and construct understandings based on relevant personal experiences. Consequently, I am always looking for exciting new technologies that can readily demonstrate how physics affects everyday things. In a conceptual physics class designed for ninth-graders, I created a structured activity where students applied Newton's laws to a series of free applications downloaded on iPod Touches. The laws had been introduced during the prior class session with textual descriptions and graphical representations. The course is offered as part of the Enlace Latino Collegiate Society, a weekend enrichment program for middle and high school students in the Bronx. The majority of students had limited or no prior exposure to physics concepts, and many attended high schools where physics was not offered at all.

  12. There is grandeur in this view of Newton: Charles Darwin, Isaac Newton and Victorian conceptions of scientific virtue.

    Science.gov (United States)

    Bellon, Richard

    2014-01-01

    For Victorian men of science, the scientific revolution of the seventeenth century represented a moral awakening. Great theoretical triumphs of inductive science flowed directly from a philosophical spirit that embraced the virtues of self-discipline, courage, patience and humility. Isaac Newton exemplified this union of moral and intellectual excellence. This, at least, was the story crafted by scientific leaders like David Brewster, Thomas Chalmers, John Herschel, Adam Sedgwick and William Whewell. Not everyone accepted this reading of history. Evangelicals who decried the 'materialism' of mainstream science assigned a different meaning to Newton's legacy on behalf of their 'scriptural' alternative. High-church critics of science like John Henry Newman, on the other hand, denied that Newton's secular achievements carried any moral significance at all. These debates over Newtonian standards of philosophical behavior had a decisive influence on Charles Darwin as he developed his theory of evolution by natural selection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Quasi-Newton methods for implicit black-box FSI coupling

    CSIR Research Space (South Africa)

    Bogaers, Alfred EJ

    2014-09-01

    Full Text Available In this paper we introduce a new multi-vector update quasi-Newton (MVQN) method for implicit coupling of partitioned, transient FSI solvers. The new quasi-Newton method facilitates the use of 'black-box' field solvers and under certain circumstances...

  14. Forced-air warming discontinued: periprosthetic joint infection rates drop

    Directory of Open Access Journals (Sweden)

    Scott D. Augustine

    2017-06-01

    Full Text Available Several studies have shown that the waste heat from forced-air warming (FAW escapes near the floor and warms the contaminated air resident near the floor. The waste heat then forms into convection currents that rise up and contaminate the sterile field above the surgical table. It has been shown that a single airborne bacterium can cause a periprosthetic joint infection (PJI following joint replacement surgery. We retrospectively compared PJI rates during a period of FAW to a period of air-free conductive fabric electric warming (CFW at three hospitals. Surgical and antibiotic protocols were held constant. The pooled multicenter data showed a decreased PJI rate of 78% following the discontinuation of FAW and a switch to air-free CFW (n=2034; P=0.002. The 78% reduction in joint implant infections observed when FAW was discontinued suggests that there is a link between the waste FAW heat and PJIs.

  15. Dynamic Newton-Puiseux Theorem

    DEFF Research Database (Denmark)

    Mannaa, Bassel; Coquand, Thierry

    2013-01-01

    A constructive version of Newton-Puiseux theorem for computing the Puiseux expansions of algebraic curves is presented. The proof is based on a classical proof by Abhyankar. Algebraic numbers are evaluated dynamically; hence the base field need not be algebraically closed and a factorization...

  16. Newton\\'s equation of motion in the gravitational field of an oblate ...

    African Journals Online (AJOL)

    In this paper, we derived Newton's equation of motion for a satellite in the gravitational scalar field of a uniformly rotating, oblate spheriodal Earth using spheriodal coordinates. The resulting equation is solved for the corresponding precession and the result compared with similar ones. JONAMP Vol. 11 2007: pp. 279-286 ...

  17. Interferon alpha 2 maintenance therapy may enable high rates of treatment discontinuation in chronic myeloid leukemia.

    Science.gov (United States)

    Burchert, A; Saussele, S; Eigendorff, E; Müller, M C; Sohlbach, K; Inselmann, S; Schütz, C; Metzelder, S K; Ziermann, J; Kostrewa, P; Hoffmann, J; Hehlmann, R; Neubauer, A; Hochhaus, A

    2015-06-01

    A minority of chronic myeloid leukemia (CML) patients is capable of successfully discontinuing imatinib. Treatment modalities to increase this proportion are currently unknown. Here, we assessed the role of interferon alpha 2a (IFN) on therapy discontinuation in a previously reported cohort of 20 chronic phase CML patients who were treated upfront with IFN alpha plus imatinib followed by IFN monotherapy to maintain cytogenetic or molecular remission (MR) after imatinib discontinuation. After a median follow-up of 7.9 years (range, 5.2-12.2), relapse-free survival was 73% (8/11 patients) and 84% (5/6 patients) for patients who discontinued imatinib in major MR (MMR) and MR4/MR4.5, respectively. Ten patients discontinued IFN after a median of 4.5 years (range, 0.24-9.3). After a median of 2.8 years (range, 0.7-5.1), nine of them remain in ongoing treatment-free remission with MR5 (n=6) and MR4.5 (n=3). The four patients who still administer IFN are in stable MR5, MR4.5, MR4, and MMR, respectively. In conclusion, an IFN/imatinib induction treatment followed by a temporary IFN maintenance therapy may enable a high rate of treatment discontinuation in CML patients in at least MMR when stopping imatinib.

  18. Coupling of partitioned physics codes with quasi-Newton methods

    CSIR Research Space (South Africa)

    Haelterman, R

    2017-03-01

    Full Text Available , A class of methods for solving nonlinear simultaneous equations. Math. Comp. 19, pp. 577–593 (1965) [3] C.G. Broyden, Quasi-Newton methods and their applications to function minimization. Math. Comp. 21, pp. 368–381 (1967) [4] J.E. Dennis, J.J. More...´, Quasi-Newton methods: motivation and theory. SIAM Rev. 19, pp. 46–89 (1977) [5] J.E. Dennis, R.B. Schnabel, Least Change Secant Updates for quasi- Newton methods. SIAM Rev. 21, pp. 443–459 (1979) [6] G. Dhondt, CalculiX CrunchiX USER’S MANUAL Version 2...

  19. Problem in Two Unknowns: Robert Hooke and a Worm in Newton's Apple.

    Science.gov (United States)

    Weinstock, Robert

    1992-01-01

    Discusses the place that Robert Hooke has in science history versus the scientific contributions he made. Examines the relationship between Hooke and his contemporary, Isaac Newton, and Hooke's claims that Newton built on his ideas without receiving Newton's recognition. (26 references) (MDH)

  20. Non-Relativistic Twistor Theory and Newton-Cartan Geometry

    Science.gov (United States)

    Dunajski, Maciej; Gundry, James

    2016-03-01

    We develop a non-relativistic twistor theory, in which Newton-Cartan structures of Newtonian gravity correspond to complex three-manifolds with a four-parameter family of rational curves with normal bundle O oplus O(2)}. We show that the Newton-Cartan space-times are unstable under the general Kodaira deformation of the twistor complex structure. The Newton-Cartan connections can nevertheless be reconstructed from Merkulov's generalisation of the Kodaira map augmented by a choice of a holomorphic line bundle over the twistor space trivial on twistor lines. The Coriolis force may be incorporated by holomorphic vector bundles, which in general are non-trivial on twistor lines. The resulting geometries agree with non-relativistic limits of anti-self-dual gravitational instantons.

  1. On the classification of plane graphs representing structurally stable rational Newton flows

    NARCIS (Netherlands)

    Jongen, H.Th.; Jonker, P.; Twilt, F.

    1991-01-01

    We study certain plane graphs, called Newton graphs, representing a special class of dynamical systems which are closely related to Newton's iteration method for finding zeros of (rational) functions defined on the complex plane. These Newton graphs are defined in terms of nonvanishing angles

  2. Organising medication discontinuation

    DEFF Research Database (Denmark)

    Nixon, Michael; Kousgaard, Marius Brostrøm

    2016-01-01

    medication? Methods: Twenty four GPs were interviewed using a maximum variation sample strategy. Participant observations were done in three general practices, for one day each, totalling approximately 30 consultations. Results: The results show that different discontinuation cues (related to the type...... a medication, in agreement with the patients, from a professional perspective. Three research questions were examined in this study: when does medication discontinuation occur in general practice, how is discontinuing medication handled in the GP’s practice and how do GPs make decisions about discontinuing...

  3. Numerical simulations of microwave heating of liquids: enhancements using Krylov subspace methods

    Science.gov (United States)

    Lollchund, M. R.; Dookhitram, K.; Sunhaloo, M. S.; Boojhawon, R.

    2013-04-01

    In this paper, we compare the performances of three iterative solvers for large sparse linear systems arising in the numerical computations of incompressible Navier-Stokes (NS) equations. These equations are employed mainly in the simulation of microwave heating of liquids. The emphasis of this work is on the application of Krylov projection techniques such as Generalized Minimal Residual (GMRES) to solve the Pressure Poisson Equations that result from discretisation of the NS equations. The performance of the GMRES method is compared with the traditional Gauss-Seidel (GS) and point successive over relaxation (PSOR) techniques through their application to simulate the dynamics of water housed inside a vertical cylindrical vessel which is subjected to microwave radiation. It is found that as the mesh size increases, GMRES gives the fastest convergence rate in terms of computational times and number of iterations.

  4. Numerical simulations of microwave heating of liquids: enhancements using Krylov subspace methods

    International Nuclear Information System (INIS)

    Lollchund, M R; Dookhitram, K; Sunhaloo, M S; Boojhawon, R

    2013-01-01

    In this paper, we compare the performances of three iterative solvers for large sparse linear systems arising in the numerical computations of incompressible Navier-Stokes (NS) equations. These equations are employed mainly in the simulation of microwave heating of liquids. The emphasis of this work is on the application of Krylov projection techniques such as Generalized Minimal Residual (GMRES) to solve the Pressure Poisson Equations that result from discretisation of the NS equations. The performance of the GMRES method is compared with the traditional Gauss-Seidel (GS) and point successive over relaxation (PSOR) techniques through their application to simulate the dynamics of water housed inside a vertical cylindrical vessel which is subjected to microwave radiation. It is found that as the mesh size increases, GMRES gives the fastest convergence rate in terms of computational times and number of iterations.

  5. Early discontinuation

    DEFF Research Database (Denmark)

    Hansen, Dorte Gilså; Felde, Lina; Gichangi, Anthony

    2007-01-01

    prevalence and rate of early discontinuation of different drugs consisting of, in this study, lipid-lowering drugs, antihypertensive drugs, antidepressants, antidiabetics and drugs against osteoporosis. Material and methods This was a register study based on prescription data covering a 4-year period...... and consisting of 470,000 citizens. For each practice and group of drug, a 1-year prevalence for 2002 and the rate of early discontinuation among new users in 2002-2003 were estimated. Early discontinuation was defined as no prescriptions during the second half-year following the first prescription....... There was a positive association between the prevalence of prescribing for the specific drugs studied (antidepressants, antidiabetics, drugs against osteoporosis and lipid-lowering drugs) and early discontinuation (r = 0.29 -0.44), but not for anti-hypertensive drugs. The analysis of the association between prevalence...

  6. Eigenvalue Decomposition-Based Modified Newton Algorithm

    Directory of Open Access Journals (Sweden)

    Wen-jun Wang

    2013-01-01

    Full Text Available When the Hessian matrix is not positive, the Newton direction may not be the descending direction. A new method named eigenvalue decomposition-based modified Newton algorithm is presented, which first takes the eigenvalue decomposition of the Hessian matrix, then replaces the negative eigenvalues with their absolute values, and finally reconstructs the Hessian matrix and modifies the searching direction. The new searching direction is always the descending direction. The convergence of the algorithm is proven and the conclusion on convergence rate is presented qualitatively. Finally, a numerical experiment is given for comparing the convergence domains of the modified algorithm and the classical algorithm.

  7. Newton da Costa and the school of Curitiba

    Directory of Open Access Journals (Sweden)

    Artibano Micali

    2011-06-01

    Full Text Available This paper intends to report on the beginning of the publications of Newton da Costa outside Brazil. Two mathematicians played an important role in this beginning: Marcel Guillaume from the University of Clermont-Ferrand and Paul Dedecker from the Universities of Lille and Liège. At the same time we recall the role played by Newton da Costa and Jayme Machado Cardoso in the development of what we call here the School of Curitiba [Escola de Curitiba]. Paraconsistent logic was initiated in this school under the influence of Newton da Costa. As another contribution of this school we mention the development of the theory of quasigroups; Jayme Machado Cardoso's name has been given, by Sade, to some particular objects which are now called Cardoso quasigroups.

  8. Students’ misconceptions about Newton's second law in outer space

    International Nuclear Information System (INIS)

    Temiz, B K; Yavuz, A

    2014-01-01

    Students’ misconceptions about Newton's second law in frictionless outer space were investigated. The research was formed according to an epistemic game theoretical framework. The term ‘epistemic’ refers to students’ participation in problem-solving activities as a means of constructing new knowledge. The term ‘game’ refers to a coherent activity that consists of moves and rules. A set of questions in which students are asked to solve two similar Newton's second law problems, one of which is on the Earth and the other in outer space, was administered to 116 undergraduate students. The findings indicate that there is a significant difference between students’ epistemic game preferences and race-type (outer space or frictional surface) question. So students who used Newton's second law on the ground did not apply this law and used primitive reasoning when it came to space. Among these students, voluntary interviews were conducted with 18 students. Analysis of interview transcripts showed that: (1) the term ‘space’ causes spontaneity among students that prevents the use of the law; (2) students hesitate to apply Newton's second law in space due to the lack of a condition—the friction; (3) students feel that Newton's second law is not valid in space for a variety of reasons, but mostly for the fact that the body in space is not in contact with a surface. (paper)

  9. Newton's Contributions to Optics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 12. Newton's Contributions to Optics. Arvind Kumar. General Article Volume 11 Issue 12 December 2006 pp 10-20. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/011/12/0010-0020. Keywords.

  10. Can Newton's Third Law Be "Derived" from the Second?

    Science.gov (United States)

    Gangopadhyaya, Asim; Harrington, James

    2017-01-01

    Newton's laws have engendered much discussion over several centuries. Today, the internet is awash with a plethora of information on this topic. We find many references to Newton's laws, often discussions of various types of misunderstandings and ways to explain them. Here we present an intriguing example that shows an assumption hidden in…

  11. A variational principle for Newton-Cartan theory

    International Nuclear Information System (INIS)

    Goenner, H.F.M.

    1984-01-01

    In the framework of a space-time theory of gravitation a variational principle is set up for the gravitational field equations and the equations of motion of matter. The general framework leads to Newton's equations of motion with an unspecified force term and, for irrotational motion, to a restriction on the propagation of the shear tensor along the streamlines of matter. The field equations obtained from the variation are weaker than the standard field equations of Newton-Cartan theory. An application to fluids with shear and bulk viscosity is given. (author)

  12. Newton shows the light: a commentary on Newton (1672) 'A letter … containing his new theory about light and colours…'.

    Science.gov (United States)

    Fara, Patricia

    2015-04-13

    Isaac Newton's reputation was initially established by his 1672 paper on the refraction of light through a prism; this is now seen as a ground-breaking account and the foundation of modern optics. In it, he claimed to refute Cartesian ideas of light modification by definitively demonstrating that the refrangibility of a ray is linked to its colour, hence arguing that colour is an intrinsic property of light and does not arise from passing through a medium. Newton's later significance as a world-famous scientific genius and the apparent confirmation of his experimental results have tended to obscure the realities of his reception at the time. This paper explores the rhetorical strategies Newton deployed to convince his audience that his conclusions were certain and unchallengeable. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.

  13. Newton 1642-1727

    CERN Document Server

    Westfall, Richard S

    1994-01-01

    Le plus célèbre des savants, Isaac Newton, est aussi celui qui a le plus de biographes. Avant même sa mort, en 1727, l'un d'eux publiait un récit de la vie du grand homme. Richard Westfall, universitaire américain, est aujourd'hui le meilleur connaisseur d'un personnage en tout point extraordinaire, dont Aldous Huxley disait : « En tant qu'homme, c'est un fiasco ; en tant que monstre, il est superbe ! » Découvrant à 24 ans la loi de la gravitation universelle, établissant peu après les lois de l'optique tout en poursuivant des études alchimiques et théologiques, cet homme capable de rester des jours entiers sans manger ni dormir, absorbé par les énigmes du savoir, connaît une grave dépression dont il réchappe de justesse... pour se consacrer à l'économie de son pays : il devient directeur de la Monnaie de Londres, organisant une impitoyable chasse aux faux-monnayeurs ! L'image d'Épinal de Newton regardant une pomme tomber sort enrichie et complexifiée de ce livre fruit d'une vie de reche...

  14. The Celestial Mechanics of Newton

    Indian Academy of Sciences (India)

    hannes Kepler had announced his first two laws of plan- etary motion (AD 1609), ... "Mathematical Principles of Natural Philosophy" .... He provided two different sets of proofs .... the Sun. Newton then formulated a theory of tides based on the.

  15. Lewis, Prof. Gilbert Newton

    Indian Academy of Sciences (India)

    Home; Fellowship. Fellow Profile. Elected: 1935 Honorary. Lewis, Prof. Gilbert Newton. Date of birth: 25 October 1875. Date of death: 24 March 1946. YouTube; Twitter; Facebook; Blog. Academy News. IAS Logo. 29th Mid-year meeting. Posted on 19 January 2018. The 29th Mid-year meeting of the Academy will be held ...

  16. Space and motion in nature and Scripture: Galileo, Descartes, Newton.

    Science.gov (United States)

    Janiak, Andrew

    2015-06-01

    In the Scholium to the Definitions in Principia mathematica, Newton departs from his main task of discussing space, time and motion by suddenly mentioning the proper method for interpreting Scripture. This is surprising, and it has long been ignored by scholars. In this paper, I argue that the Scripture passage in the Scholium is actually far from incidental: it reflects Newton's substantive concern, one evident in correspondence and manuscripts from the 1680s, that any general understanding of space, time and motion must enable readers to recognize the veracity of Biblical claims about natural phenomena, including the motion of the earth. This substantive concern sheds new light on an aspect of Newton's project in the Scholium. It also underscores Newton's originality in dealing with the famous problem of reconciling theological and philosophical conceptions of nature in the seventeenth century. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Astronomical and Cosmological Symbolism in Art Dedicated to Newton and Einstein

    Science.gov (United States)

    Sinclair, R.

    2013-04-01

    Separated by two and a half centuries, Isaac Newton (1642-1727) and Albert Einstein (1879-1955) had profound impacts on our understanding of the universe. Newton established our understanding of universal gravitation, which was recast almost beyond recognition by Einstein. Both discovered basic patterns behind astronomical phenomena and became the best-known scientists of their respective periods. I will describe here how artists of the 18th and 20th centuries represented the achievements of Newton and Einstein. Representations of Newton express reverence, almost an apotheosis, portraying him as the creator of the universe. Einstein, in a different age, is represented often as a comic figure, and only rarely do we find art that hints at the profound view of the universe he developed.

  18. Life after Newton: an ecological metaphysic.

    Science.gov (United States)

    Ulanowicz, R E

    1999-05-01

    Ecology may indeed be 'deep', as some have maintained, but perhaps much of the mystery surrounding it owes more simply to the dissonance between ecological notions and the fundamentals of the modern synthesis. Comparison of the axioms supporting the Newtonian world view with those underlying the organicist and stochastic metaphors that motivate much of ecosystems science reveals strong disagreements--especially regarding the nature of the causes of events and the scalar domains over which these causes can operate. The late Karl Popper held that the causal closure forced by our mechanical perspective on nature frustrates our attempts to achieve an 'evolutionary theory of knowledge.' He suggested that the Newtonian concept of 'force' must be generalized to encompass the contingencies that arise in evolutionary processes. His reformulation of force as 'propensity' leads quite naturally to a generalization of Newton's laws for ecology. The revised tenets appear, however, to exhibit more scope and allow for change to arise from within a system. Although Newton's laws survive (albeit in altered form) within a coalescing ecological metaphysic, the axioms that Enlightenment thinkers appended to Newton's work seem ill-suited for ecology and perhaps should yield to a new and coherent set of assumptions on how to view the processes of nature.

  19. On Time-II: Newton's Time.

    Science.gov (United States)

    Raju, C. K.

    1991-01-01

    A study of time in Newtonian physics is presented. Newton's laws of motion, falsifiability and physical theories, laws of motion and law of gravitation, and Laplace's demon are discussed. Short bibliographic sketches of Laplace and Karl Popper are included. (KR)

  20. Catch a falling apple: Isaac Newton and myths of genius.

    Science.gov (United States)

    Fara, P

    1999-01-01

    Newton has become a legendary figure belonging to the distant past rather than a historical person who lived at a specific time. Historians and scientists have constantly reinterpreted many anecdotal tales describing Newton's achievements and behaviour, but the most famous concerns the falling apple in his country garden. Newton's apple conjures up multiple allegorical resonances, and examining its historical accuracy is less important than uncovering the mythical truths embedded within this symbol. Because interest groups fashion different collective versions of the past, analysing mythical tales can reveal fundamental yet conflicting attitudes towards science and its practices.

  1. A Photon Free Method to Solve Radiation Transport Equations

    International Nuclear Information System (INIS)

    Chang, B

    2006-01-01

    The multi-group discrete-ordinate equations of radiation transfer is solved for the first time by Newton's method. It is a photon free method because the photon variables are eliminated from the radiation equations to yield a N group XN direction smaller but equivalent system of equations. The smaller set of equations can be solved more efficiently than the original set of equations. Newton's method is more stable than the Semi-implicit Linear method currently used by conventional radiation codes

  2. Entropic corrections to Newton's law

    International Nuclear Information System (INIS)

    Setare, M R; Momeni, D; Myrzakulov, R

    2012-01-01

    In this short paper, we calculate separately the generalized uncertainty principle (GUP) and self-gravitational corrections to Newton's gravitational formula. We show that for a complete description of the GUP and self-gravity effects, both the temperature and entropy must be modified. (paper)

  3. Sparse contrast-source inversion using linear-shrinkage-enhanced inexact Newton method

    KAUST Repository

    Desmal, Abdulla

    2014-07-01

    A contrast-source inversion scheme is proposed for microwave imaging of domains with sparse content. The scheme uses inexact Newton and linear shrinkage methods to account for the nonlinearity and ill-posedness of the electromagnetic inverse scattering problem, respectively. Thresholded shrinkage iterations are accelerated using a preconditioning technique. Additionally, during Newton iterations, the weight of the penalty term is reduced consistently with the quadratic convergence of the Newton method to increase accuracy and efficiency. Numerical results demonstrate the applicability of the proposed method.

  4. Sparse contrast-source inversion using linear-shrinkage-enhanced inexact Newton method

    KAUST Repository

    Desmal, Abdulla; Bagci, Hakan

    2014-01-01

    A contrast-source inversion scheme is proposed for microwave imaging of domains with sparse content. The scheme uses inexact Newton and linear shrinkage methods to account for the nonlinearity and ill-posedness of the electromagnetic inverse scattering problem, respectively. Thresholded shrinkage iterations are accelerated using a preconditioning technique. Additionally, during Newton iterations, the weight of the penalty term is reduced consistently with the quadratic convergence of the Newton method to increase accuracy and efficiency. Numerical results demonstrate the applicability of the proposed method.

  5. Newton's Principia: Myth and Reality

    Science.gov (United States)

    Smith, George

    2016-03-01

    Myths about Newton's Principia abound. Some of them, such as the myth that the whole book was initially developed using the calculus and then transformed into a geometric mathematics, stem from remarks he made during the priority controversy with Leibniz over the calculus. Some of the most persistent, and misleading, arose from failures to read the book with care. Among the latter are the myth that he devised his theory of gravity in order to explain the already established ``laws'' of Kepler, and that in doing so he took himself to be establishing that Keplerian motion is ``absolute,'' if not with respect to ``absolute space,'' then at least with respect to the fixed stars taken as what came later to be known as an inertial frame. The talk will replace these two myths with the reality of what Newton took himself to have established.

  6. Organising medication discontinuation: a qualitative study exploring the views of general practitioners toward discontinuing statins.

    Science.gov (United States)

    Nixon, Michael; Kousgaard, Marius Brostrøm

    2016-07-07

    Discontinuing medications is a complex decision making process and an important medical practice. It is a tool in reducing polypharmacy, reducing health system expenditure and improving patient quality of life. Few studies have looked at how general practitioners (GPs) discontinue a medication, in agreement with the patients, from a professional perspective. Three research questions were examined in this study: when does medication discontinuation occur in general practice, how is discontinuing medication handled in the GP's practice and how do GPs make decisions about discontinuing medication? Twenty four GPs were interviewed using a maximum variation sample strategy. Participant observations were done in three general practices, for one day each, totalling approximately 30 consultations. The results show that different discontinuation cues (related to the type of consultation, medical records and the patient) create situations of dissonance that can lead to the GP considering the option of discontinuation. We also show that there is a lot of ambiguity in situations of discontinuing and that some GPs trialled discontinuing as means of generating more information that could be used to deal with the ambiguity. We conclude that the practice of discontinuation should be conceptualised as a continually evaluative process and one that requires sustained reflection through a culture of systematically scheduled check-ups, routinely eliciting the patient's experience of taking drugs and trialling discontinuation. Some policy recommendations are offered including supporting GPs with lists or handbooks that directly address discontinuation and by developing more person centred clinical guidelines that discuss discontinuation more explicitly.

  7. Three lectures on Newton's laws

    OpenAIRE

    Kokarev, Sergey S.

    2009-01-01

    Three small lectures are devoted to three Newton's laws, lying in the foundation of classical mechanics. These laws are analyzed from the viewpoint of our contemporary knowledge about space, time and physical interactions. The lectures were delivered for students of YarGU in RSEC "Logos".

  8. A primeira Lei de Newton: uma abordagem didática

    OpenAIRE

    da Silva, Saulo Luis Lima

    2018-01-01

    Resumo No estudo da mecânica Newtoniana o essencial é a compreensão das leis de Newton em profundidade. Se isso acontecer, ficará fácil perceber que todos os outros fenômenos a serem estudados são consequências dessas três leis básicas do movimento formuladas por Isaac Newton. Dentre elas, a primeira lei de Newton, conhecida como lei da Inércia, é a de maior complexidade filosófica e a menos compreendida pelos alunos ao saírem de um curso de física básica. Não é incomum encontrar alunos descr...

  9. Newton law on the generalized singular brane with and without 4d induced gravity

    International Nuclear Information System (INIS)

    Jung, Eylee; Kim, Sung-Hoon; Park, D.K.

    2003-01-01

    Newton law arising due to the gravity localized on the general singular brane embedded in AdS 5 bulk is examined in the absence or presence of the 4d induced Einstein term. For the RS brane, apart from the subleading correction, Newton potential obeys 4d- and 5d-type gravitational law at long- and short-ranges if it were not for the induced Einstein term. The 4d induced Einstein term generates an intermediate range at short distance, in which the 5d Newton potential 1/r 2 emerges. For Neumann brane the long-range behavior of Newton potential is exponentially suppressed regardless of the existence of the induced Einstein term. For Dirichlet brane the expression of Newton potential is dependent on the renormalized coupling constant v ren . At particular value of v ren Newton potential on Dirichlet brane exhibits a similar behavior to that on RS brane. For other values the long-range behavior of Newton potential is exponentially suppressed as that in Neumann brane

  10. Newton's Telescope in Print: the Role of Images in the Reception of Newton's Instrument

    NARCIS (Netherlands)

    Dupré, Sven

    2008-01-01

    While Newton tried to make his telescope into a proof of the supremacy of his theory of colours over older theories, his instrument was welcomed as a way to shorten telescopes, not as a way to solve the problem of chromatic aberration. This paper argues that the image published together with the

  11. The frictional Schroedinger-Newton equation in models of wave function collapse

    Energy Technology Data Exchange (ETDEWEB)

    Diosi, Lajos [Research Institute for Particle and Nuclear Physics, H-1525 Budapest 114, PO Box 49 (Hungary)

    2007-05-15

    Replacing the Newtonian coupling G by -iG, the Schroedinger--Newton equation becomes {sup f}rictional{sup .} Instead of the reversible Schroedinger-Newton equation, we advocate its frictional version to generate the set of pointer states for macroscopic quantum bodies.

  12. Fully implicit solution of large-scale non-equilibrium radiation diffusion with high order time integration

    International Nuclear Information System (INIS)

    Brown, Peter N.; Shumaker, Dana E.; Woodward, Carol S.

    2005-01-01

    We present a solution method for fully implicit radiation diffusion problems discretized on meshes having millions of spatial zones. This solution method makes use of high order in time integration techniques, inexact Newton-Krylov nonlinear solvers, and multigrid preconditioners. We explore the advantages and disadvantages of high order time integration methods for the fully implicit formulation on both two- and three-dimensional problems with tabulated opacities and highly nonlinear fusion source terms

  13. Newton shows the light: a commentary on Newton (1672) ‘A letter … containing his new theory about light and colours…’

    Science.gov (United States)

    Fara, Patricia

    2015-01-01

    Isaac Newton's reputation was initially established by his 1672 paper on the refraction of light through a prism; this is now seen as a ground-breaking account and the foundation of modern optics. In it, he claimed to refute Cartesian ideas of light modification by definitively demonstrating that the refrangibility of a ray is linked to its colour, hence arguing that colour is an intrinsic property of light and does not arise from passing through a medium. Newton's later significance as a world-famous scientific genius and the apparent confirmation of his experimental results have tended to obscure the realities of his reception at the time. This paper explores the rhetorical strategies Newton deployed to convince his audience that his conclusions were certain and unchallengeable. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society. PMID:25750143

  14. Discontinuous precipitation in a nickel-free high nitrogen austenitic stainless steel on solution nitriding

    Science.gov (United States)

    Mohammadzadeh, Roghayeh; Akbari, Alireza; Grumsen, Flemming B.; Somers, Marcel A. J.

    2017-10-01

    Chromium-rich nitride precipitates in production of nickel-free austenitic stainless steel plates via pressurised solution nitriding of Fe-22.7Cr-2.4Mo ferritic stainless steel at 1473 K (1200 °C) under a nitrogen gas atmosphere was investigated. The microstructure, chemical and phase composition, morphology and crystallographic orientation between the resulted austenite and precipitates were investigated using optical microscopy, X-ray Diffraction (XRD), Scanning and Transmission Electron Microscopy (TEM) and Electron Back Scatter Diffraction (EBSD). On prolonged nitriding, Chromium-rich nitride precipitates were formed firstly close to the surface and later throughout the sample with austenitic structure. Chromium-rich nitride precipitates with a rod or strip-like morphology was developed by a discontinuous cellular precipitation mechanism. STEM-EDS analysis demonstrated partitioning of metallic elements between austenite and nitrides, with chromium contents of about 80 wt.% in the precipitates. XRD analysis indicated that the Chromium-rich nitride precipitates are hexagonal (Cr, Mo)2N. Based on the TEM studies, (Cr, Mo)2N precipitates presented a (1 1 1)γ//(0 0 2)(Cr, Mo)2N, ?γ//?(Cr, Mo)2N orientation relationship with respect to the austenite matrix. EBSD studies revealed that the austenite in the regions that have transformed into austenite and (Cr, Mo)2N have no orientation relation to the untransformed austenite.

  15. Newton's Path to Universal Gravitation: The Role of the Pendulum

    Science.gov (United States)

    Boulos, Pierre J.

    2006-01-01

    Much attention has been given to Newton's argument for Universal Gravitation in Book III of the "Principia". Newton brings an impressive array of phenomena, along with the three laws of motion, and his rules for reasoning to deduce Universal Gravitation. At the centre of this argument is the famous "moon test". Here it is the empirical evidence…

  16. Disk-galaxy density distribution from orbital speeds using Newton's law

    OpenAIRE

    Nicholson, Kenneth F.

    2000-01-01

    Given the dimensions (including thickness) of an axisymmetric galaxy, Newton's law is used in integral form to find the density distributions required to match a wide range of orbital speed profiles. Newton's law is not modified and no dark matter halos are required. The speed distributiions can have extreme shapes if they are reasonably smooth. Several examples are given.

  17. N=2 superconformal Newton-Hooke algebra and many-body mechanics

    International Nuclear Information System (INIS)

    Galajinsky, Anton

    2009-01-01

    A representation of the conformal Newton-Hooke algebra on a phase space of n particles in arbitrary dimension which interact with one another via a generic conformal potential and experience a universal cosmological repulsion or attraction is constructed. The minimal N=2 superconformal extension of the Newton-Hooke algebra and its dynamical realization in many-body mechanics are studied.

  18. On the Shoulders of Sir Isaac Newton and Arthur Storer

    Science.gov (United States)

    Martin, Helen E.; Evans-Gondo, Bonita

    2013-01-01

    Helen E. Martin, the author of this article, is a retired National Board Certified Teacher who has been researching Sir Isaac Newton's unpublished manuscripts for over three decades. While researching the work of Newton, a teacher she was mentoring asked for some hands-on activities to study planetary motion. The description of the activity…

  19. Laboratory Test of Newton's Second Law for Small Accelerations

    International Nuclear Information System (INIS)

    Gundlach, J. H.; Schlamminger, S.; Spitzer, C. D.; Choi, K.-Y.; Woodahl, B. A.; Coy, J. J.; Fischbach, E.

    2007-01-01

    We have tested the proportionality of force and acceleration in Newton's second law, F=ma, in the limit of small forces and accelerations. Our tests reach well below the acceleration scales relevant to understanding several current astrophysical puzzles such as the flatness of galactic rotation curves, the Pioneer anomaly, and the Hubble acceleration. We find good agreement with Newton's second law at accelerations as small as 5x10 -14 m/s 2

  20. Does the Newton's world model revive

    International Nuclear Information System (INIS)

    Meszaros, A.

    1984-03-01

    Newton's world model may have a physical meaning if the gravitation has small non-zero mass and if the observable part of the universe is the interior of a giant finite body. Both possibilities are allowed theoretically. (author)

  1. Judaism in the theology of Sir Isaac Newton

    CERN Document Server

    Goldish, Matt

    1998-01-01

    This book is based on my doctoral dissertation from the Hebrew University of Jerusalem (1996) of the same title. As a master's student, working on an entirely different project, I was well aware that many of Newton's theological manuscripts were located in our own Jewish National and University Library, but I was under the mistaken assumption that scores of highly qualified scholars must be assiduously scouring them and publishing their results. It never occurred to me to look at them at all until, having fmished my master's, I spoke to Professor David Katz at Tel-Aviv University about an idea I had for doctoral research. Professor Katz informed me that the project I had suggested was one which he himself had just fmished, but that I might be interested in working on the famous Newton manuscripts in the context of a project being organized by him, Richard Popkin, James Force, and the late Betty Jo Teeter Dobbs, to study and publish Newton's theological material. I asked him whether he was not sending me into ...

  2. An experimental test of Newton's law of gravitation for small accelerations

    International Nuclear Information System (INIS)

    Schubert, Sven

    2011-10-01

    The experiment presented in this thesis has been designed to test Newton's law of gravitation in the limit of small accelerations caused by weak gravitational forces. It is located at DESY, Hamburg, and is a modification of an experiment that was carried out in Wuppertal, Germany, until 2002 in order to measure the gravitational constant G. The idea of testing Newton's law in the case of small accelerations emerged from the question whether the flat rotation curves of spiral galaxies can be traced back to Dark Matter or to a law of gravitation that deviates from Newton on cosmic scales like e.g. MOND (Modified Newtonian Dynamics). The core of this experiment is a microwave resonator which is formed by two spherical concave mirrors that are suspended as pendulums. Masses between 1 and 9 kg symmetrically change their distance to the mirrors from far to near positions. Due to the increased gravitational force the mirrors are pulled apart and the length of the resonator increases. This causes a shift of the resonance frequency which can be translated into a shift of the mirror distance. The small masses are sources of weak gravitational forces and cause accelerations on the mirrors of about 10 -10 m/s 2 . These forces are comparable to those between stars on cosmic scales and the accelerations are in the vicinity of the characteristic acceleration of MOND a 0 ∼ 1.2.10 -10 m/s 2 , where deviations from Newton's law are expected. Thus Newton's law could be directly checked for correctness under these conditions. First measurements show that due to the sensitivity of this experiment many systematic influences have to be accounted for in order to get consistent results. Newton's law has been confirmed with an accuracy of 3%. MOND has also been checked. In order to be able to distinguish Newton from MOND with other interpolation functions the accuracy of the experiment has to be improved. (orig.)

  3. What are the Hidden Quantum Processes Behind Newton's Laws?

    OpenAIRE

    Ostoma, Tom; Trushyk, Mike

    1999-01-01

    We investigate the hidden quantum processes that are responsible for Newton's laws of motion and Newton's universal law of gravity. We apply Electro-Magnetic Quantum Gravity or EMQG to investigate Newtonian classical physics. EQMG is a quantum gravity theory that is manifestly compatible with Cellular Automata (CA) theory, a new paradigm for physical reality. EMQG is also based on a theory of inertia proposed by R. Haisch, A. Rueda, and H. Puthoff, which we modified and called Quantum Inertia...

  4. System dynamics with interaction discontinuity

    CERN Document Server

    Luo, Albert C J

    2015-01-01

    This book describes system dynamics with discontinuity caused by system interactions and presents the theory of flow singularity and switchability at the boundary in discontinuous dynamical systems. Based on such a theory, the authors address dynamics and motion mechanism of engineering discontinuous systems due to interaction. Stability and bifurcations of fixed points in nonlinear discrete dynamical systems are presented, and mapping dynamics are developed for analytical predictions of periodic motions in engineering discontinuous dynamical systems. Ultimately, the book provides an alternative way to discuss the periodic and chaotic behaviors in discontinuous dynamical systems.

  5. Discovery Science: Newton All around You.

    Science.gov (United States)

    Prigo, Robert; Humphrey, Gregg

    1993-01-01

    Presents activities for helping elementary students learn about Newton's third law of motion. Several activity cards demonstrate the concept of the law of action and reaction. The activities require only inexpensive materials that can be found around the house. (SM)

  6. Fundamentos kantianos dos axiomas do movimento de Newton

    OpenAIRE

    Vieira Coutinho Abreu Gomes, Írio

    2006-01-01

    Esse trabalho se insere na perspectiva fundacionista kantiana, particularmente no que diz respeito às três leis de Newton. Em sua obra de 1786, Princípios Metafísicos da Ciência da Natureza, Kant empreende a tarefa de fundamentar a física mecânica através de princípios metafísicos. Nosso objetivo nessa dissertação foi abordar essa obra especificamente em seu terceiro capítulo onde Kant trata dos axiomas do movimento de Newton. Nessa dissertação elucidamos a argumentação kantiana na fundamenta...

  7. Newton's Law of Cooling Revisited

    Science.gov (United States)

    Vollmer, M.

    2009-01-01

    The cooling of objects is often described by a law, attributed to Newton, which states that the temperature difference of a cooling body with respect to the surroundings decreases exponentially with time. Such behaviour has been observed for many laboratory experiments, which led to a wide acceptance of this approach. However, the heat transfer…

  8. On-the-fly XMM-Newton Spacecraft Data Reduction on the Grid

    Directory of Open Access Journals (Sweden)

    A. Ibarra

    2006-01-01

    Full Text Available We present the results of the first prototype of a XMM-Newton pipeline processing task, parallelized at a CCD level, which can be run in a Grid system. By using the Grid Way application and the XMM-Newton Science Archive system, the processing of the XMM-Newton data is distributed across the Virtual Organization (VO constituted by three different research centres: ESAC (European Space Astronomy Centre, ESTEC (the European Space research and TEchnology Centre and UCM (Complutense University of Madrid. The proposed application workflow adjusts well to the Grid environment, making use of the massive parallel resources in a flexible and adaptive fashion.

  9. Isaac Newton learns Hebrew: Samuel Johnson's Nova cubi Hebræi tabella

    Science.gov (United States)

    Joalland, Michael; Mandelbrote, Scott

    2016-01-01

    This article concerns the earliest evidence for Isaac Newton's use of Hebrew: a manuscript copy by Newton of part of a work intended to provide a reader of the Hebrew alphabet with the ability to identify or memorize more than 1000 words and to begin to master the conjugations of the Hebrew verb. In describing the content of this unpublished manuscript and establishing its source and original author for the first time, we suggest how and when Newton may have initially become acquainted with the language. Finally, basing our discussion in part on an examination of the reading marks that Newton left in the surviving copies of Hebrew grammars and lexicons that he owned, we will argue that his interest in Hebrew was not intended to achieve linguistic proficiency but remained limited to particular theological queries of singular concern.

  10. The architecture of Newton, a general-purpose dynamics simulator

    Science.gov (United States)

    Cremer, James F.; Stewart, A. James

    1989-01-01

    The architecture for Newton, a general-purpose system for simulating the dynamics of complex physical objects, is described. The system automatically formulates and analyzes equations of motion, and performs automatic modification of this system equations when necessitated by changes in kinematic relationships between objects. Impact and temporary contact are handled, although only using simple models. User-directed influence of simulations is achieved using Newton's module, which can be used to experiment with the control of many-degree-of-freedom articulated objects.

  11. Classical mechanics from Newton to Einstein : a modern introduction

    CERN Document Server

    McCall, Martin

    2011-01-01

    This new edition of Classical Mechanics, aimed at undergraduate physics and engineering students, presents in a user-friendly style an authoritative approach to the complementary subjects of classical mechanics and relativity.   The text starts with a careful look at Newton's Laws, before applying them in one dimension to oscillations and collisions. More advanced applications - including gravitational orbits and rigid body dynamics - are discussed after the limitations of Newton's inertial frames have been highlighted through an exposition of Einstein's Special Relativity. Examples gi

  12. Final report on LDRD project : coupling strategies for multi-physics applications.

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Matthew Morgan; Moffat, Harry K.; Carnes, Brian; Hooper, Russell Warren; Pawlowski, Roger P.

    2007-11-01

    Many current and future modeling applications at Sandia including ASC milestones will critically depend on the simultaneous solution of vastly different physical phenomena. Issues due to code coupling are often not addressed, understood, or even recognized. The objectives of the LDRD has been both in theory and in code development. We will show that we have provided a fundamental analysis of coupling, i.e., when strong coupling vs. a successive substitution strategy is needed. We have enabled the implementation of tighter coupling strategies through additions to the NOX and Sierra code suites to make coupling strategies available now. We have leveraged existing functionality to do this. Specifically, we have built into NOX the capability to handle fully coupled simulations from multiple codes, and we have also built into NOX the capability to handle Jacobi Free Newton Krylov simulations that link multiple applications. We show how this capability may be accessed from within the Sierra Framework as well as from outside of Sierra. The critical impact from this LDRD is that we have shown how and have delivered strategies for enabling strong Newton-based coupling while respecting the modularity of existing codes. This will facilitate the use of these codes in a coupled manner to solve multi-physic applications.

  13. SIERRA Multimechanics Module: Aria User Manual Version 4.42.

    Energy Technology Data Exchange (ETDEWEB)

    Sierra Thermal/Fluid Team

    2016-10-01

    Aria is a Galerkin finite element based program for solving coupled-physics problems described by systems of PDEs and is capable of solving nonlinear, implicit, transient and direct-to-steady state problems in two and three dimensions on parallel architectures. The suite of physics currently supported by Aria includes thermal energy transport, species transport, and electrostatics as well as generalized scalar, vector and tensor transport equations. Additionally, Aria includes support for manufacturing process flows via the incompressible Navier-Stokes equations specialized to a low Reynolds number (Re %3C 1) regime. Enhanced modeling support of manufacturing processing is made possible through use of either arbitrary Lagrangian- Eulerian (ALE) and level set based free and moving boundary tracking in conjunction with quasi-static nonlinear elastic solid mechanics for mesh control. Coupled physics problems are solved in several ways including fully-coupled Newton's method with analytic or numerical sensitivities, fully-coupled Newton- Krylov methods and a loosely-coupled nonlinear iteration about subsets of the system that are solved using combinations of the aforementioned methods. Error estimation, uniform and dynamic h-adaptivity and dynamic load balancing are some of Aria's more advanced capabilities. Aria is based upon the Sierra Framework.

  14. SIERRA Multimechanics Module: Aria User Manual Version 4.46.

    Energy Technology Data Exchange (ETDEWEB)

    Sierra Thermal/Fluid Team

    2017-09-01

    Aria is a Galerkin fnite element based program for solving coupled-physics problems described by systems of PDEs and is capable of solving nonlinear, implicit, transient and direct-to-steady state problems in two and three dimensions on parallel architectures. The suite of physics currently supported by Aria includes thermal energy transport, species transport, and electrostatics as well as generalized scalar, vector and tensor transport equations. Additionally, Aria includes support for manufacturing process fows via the incompressible Navier-Stokes equations specialized to a low Reynolds number ( %3C 1 ) regime. Enhanced modeling support of manufacturing processing is made possible through use of either arbitrary Lagrangian- Eulerian (ALE) and level set based free and moving boundary tracking in conjunction with quasi-static nonlinear elastic solid mechanics for mesh control. Coupled physics problems are solved in several ways including fully-coupled Newton's method with analytic or numerical sensitivities, fully-coupled Newton- Krylov methods and a loosely-coupled nonlinear iteration about subsets of the system that are solved using combinations of the aforementioned methods. Error estimation, uniform and dynamic h -adaptivity and dynamic load balancing are some of Aria's more advanced capabilities. Aria is based upon the Sierra Framework.

  15. SIERRA Multimechanics Module: Aria User Manual Version 4.44

    Energy Technology Data Exchange (ETDEWEB)

    Sierra Thermal/Fluid Team

    2017-04-01

    Aria is a Galerkin fnite element based program for solving coupled-physics problems described by systems of PDEs and is capable of solving nonlinear, implicit, transient and direct-to-steady state problems in two and three dimensions on parallel architectures. The suite of physics currently supported by Aria includes thermal energy transport, species transport, and electrostatics as well as generalized scalar, vector and tensor transport equations. Additionally, Aria includes support for manufacturing process fows via the incompressible Navier-Stokes equations specialized to a low Reynolds number ( %3C 1 ) regime. Enhanced modeling support of manufacturing processing is made possible through use of either arbitrary Lagrangian- Eulerian (ALE) and level set based free and moving boundary tracking in conjunction with quasi-static nonlinear elastic solid mechanics for mesh control. Coupled physics problems are solved in several ways including fully-coupled Newton's method with analytic or numerical sensitivities, fully-coupled Newton- Krylov methods and a loosely-coupled nonlinear iteration about subsets of the system that are solved using combinations of the aforementioned methods. Error estimation, uniform and dynamic h -adaptivity and dynamic load balancing are some of Aria's more advanced capabilities. Aria is based upon the Sierra Framework.

  16. A Line Search Multilevel Truncated Newton Algorithm for Computing the Optical Flow

    Directory of Open Access Journals (Sweden)

    Lluís Garrido

    2015-06-01

    Full Text Available We describe the implementation details and give the experimental results of three optimization algorithms for dense optical flow computation. In particular, using a line search strategy, we evaluate the performance of the unilevel truncated Newton method (LSTN, a multiresolution truncated Newton (MR/LSTN and a full multigrid truncated Newton (FMG/LSTN. We use three image sequences and four models of optical flow for performance evaluation. The FMG/LSTN algorithm is shown to lead to better optical flow estimation with less computational work than both the LSTN and MR/LSTN algorithms.

  17. On the stability of rotational discontinuities

    International Nuclear Information System (INIS)

    Richter, P.; Scholer, M.

    1989-01-01

    The stability of symmetric rotational discontinuities in which the magnetic field rotates by 180 degree is investigated by means of a one-dimensional self-consistent hybrid code. Rotational discontinuities with an angle Θ > 45 degree between the discontinuity normal direction and the upstream magnetic field are found to be relatively stable. The discontinuity normal is in the x direction and the initial magnetic field has finite y component only in the transition region. In the case of the ion (left-handed) sense of rotation of the tangential magnetic field, the transition region does not broaden with time. In the case of the electron (right-handed) sense of rotation, a damped wavetrain builds up in the B y component downstream of the rotational discontinuity and the discontinuity broadens with time. Rotational discontinuities with smaller angles, Θ, are unstable. Examples for a rotational discontinuity with Θ = 30 degree and the electron sense of rotation as well as a rotational discontinuity with Θ = 15 degree and the ion sense of rotation show that these discontinuities into waves. These waves travel approximately with Alfven velocity in the upstream direction and are therefore phase standing in the simulation system. The magnetic hodograms of these disintegrated discontinuities are S-shaped. The upstream portion of the hodogram is always right-handed; the downstream portion is always left-handed

  18. Variational nature, integration, and properties of Newton reaction path.

    Science.gov (United States)

    Bofill, Josep Maria; Quapp, Wolfgang

    2011-02-21

    The distinguished coordinate path and the reduced gradient following path or its equivalent formulation, the Newton trajectory, are analyzed and unified using the theory of calculus of variations. It is shown that their minimum character is related to the fact that the curve is located in a valley region. In this case, we say that the Newton trajectory is a reaction path with the category of minimum energy path. In addition to these findings a Runge-Kutta-Fehlberg algorithm to integrate these curves is also proposed.

  19. Variational nature, integration, and properties of Newton reaction path

    Science.gov (United States)

    Bofill, Josep Maria; Quapp, Wolfgang

    2011-02-01

    The distinguished coordinate path and the reduced gradient following path or its equivalent formulation, the Newton trajectory, are analyzed and unified using the theory of calculus of variations. It is shown that their minimum character is related to the fact that the curve is located in a valley region. In this case, we say that the Newton trajectory is a reaction path with the category of minimum energy path. In addition to these findings a Runge-Kutta-Fehlberg algorithm to integrate these curves is also proposed.

  20. Discontinuities in an axisymmetric generalized thermoelastic problem

    Directory of Open Access Journals (Sweden)

    Moncef Aouadi

    2005-06-01

    Full Text Available This paper deals with discontinuities analysis in the temperature, displacement, and stress fields of a thick plate whose lower and upper surfaces are traction-free and subjected to a given axisymmetric temperature distribution. The analysis is carried out under three thermoelastic theories. Potential functions together with Laplace and Hankel transform techniques are used to derive the solution in the transformed domain. Exact expressions for the magnitude of discontinuities are computed by using an exact method developed by Boley (1962. It is found that there exist two coupled waves, one of which is elastic and the other is thermal, both propagating with finite speeds with exponential attenuation, and a third which is called shear wave, propagating with constant speed but with no exponential attenuation. The Hankel transforms are inverted analytically. The inversion of the Laplace transforms is carried out using the inversion formula of the transform together with Fourier expansion techniques. Numerical results are presented graphically along with a comparison of the three theories of thermoelasticity.

  1. Newton law in DGP brane-world with semi-infinite extra dimension

    International Nuclear Information System (INIS)

    Park, D.K.; Tamaryan, S.; Miao Yangang

    2004-01-01

    Newton potential for DGP brane-world scenario is examined when the extra dimension is semi-infinite. The final form of the potential involves a self-adjoint extension parameter α, which plays a role of an additional mass (or distance) scale. The striking feature of Newton potential in this setup is that the potential behaves as seven-dimensional in long range when α is non-zero. For small α there is an intermediate range where the potential is five-dimensional. Five-dimensional Newton constant decreases with increase of α from zero. In the short range the four-dimensional behavior is recovered. The physical implication of this result is discussed in the context of the accelerating behavior of universe

  2. Newton's constant from a minimal length: additional models

    International Nuclear Information System (INIS)

    Sahlmann, Hanno

    2011-01-01

    We follow arguments of Verlinde (2010 arXiv:1001.0785 [hep-th]) and Klinkhamer (2010 arXiv:1006.2094 [hep-th]), and construct two models of the microscopic theory of a holographic screen that allow for the thermodynamical derivation of Newton's law, with Newton's constant expressed in terms of a minimal length scale l contained in the area spectrum of the microscopic theory. One of the models is loosely related to the quantum structure of surfaces and isolated horizons in loop quantum gravity. Our investigation shows that the conclusions reached by Klinkhamer regarding the new length scale l seem to be generic in all their qualitative aspects.

  3. A Non-smooth Newton Method for Multibody Dynamics

    International Nuclear Information System (INIS)

    Erleben, K.; Ortiz, R.

    2008-01-01

    In this paper we deal with the simulation of rigid bodies. Rigid body dynamics have become very important for simulating rigid body motion in interactive applications, such as computer games or virtual reality. We present a novel way of computing contact forces using a Newton method. The contact problem is reformulated as a system of non-linear and non-smooth equations, and we solve this system using a non-smooth version of Newton's method. One of the main contribution of this paper is the reformulation of the complementarity problems, used to model impacts, as a system of equations that can be solved using traditional methods.

  4. Teaching Newton's Third Law of Motion in the Presence of Student Preconception

    Science.gov (United States)

    Poon, C. H.

    2006-01-01

    The concept of interaction that underlies Newton's Laws of Motion is compared with the students' commonsense ideas of force and motion. An approach to teaching Newton's Third Law of Motion is suggested that focuses on refining the student's intuitive thinking on the nature of interaction.

  5. POEMS in Newton's Aerodynamic Frustum

    Science.gov (United States)

    Sampedro, Jaime Cruz; Tetlalmatzi-Montiel, Margarita

    2010-01-01

    The golden mean is often naively seen as a sign of optimal beauty but rarely does it arise as the solution of a true optimization problem. In this article we present such a problem, demonstrating a close relationship between the golden mean and a special case of Newton's aerodynamical problem for the frustum of a cone. Then, we exhibit a parallel…

  6. Iterative solution of linear equations in ODE codes. [Krylov subspaces

    Energy Technology Data Exchange (ETDEWEB)

    Gear, C. W.; Saad, Y.

    1981-01-01

    Each integration step of a stiff equation involves the solution of a nonlinear equation, usually by a quasi-Newton method that leads to a set of linear problems. Iterative methods for these linear equations are studied. Of particular interest are methods that do not require an explicit Jacobian, but can work directly with differences of function values using J congruent to f(x + delta) - f(x). Some numerical experiments using a modification of LSODE are reported. 1 figure, 2 tables.

  7. Local Convergence and Radius of Convergence for Modified Newton Method

    Directory of Open Access Journals (Sweden)

    Măruşter Ştefan

    2017-12-01

    Full Text Available We investigate the local convergence of modified Newton method, i.e., the classical Newton method in which the derivative is periodically re-evaluated. Based on the convergence properties of Picard iteration for demicontractive mappings, we give an algorithm to estimate the local radius of convergence for considered method. Numerical experiments show that the proposed algorithm gives estimated radii which are very close to or even equal with the best ones.

  8. How Two Differing Portraits of Newton Can Teach Us about the Cultural Context of Science

    Science.gov (United States)

    Tucci, Pasquale

    2015-01-01

    Like several scientists, Isaac Newton has been represented many times over many different periods, and portraits of Newton were often commissioned by the scientist himself. These portraits tell us a lot about the scientist, the artist and the cultural context. This article examines two very different portraits of Newton that were realized more…

  9. Coupled models in porous media: reactive transport and fractures

    International Nuclear Information System (INIS)

    Amir, L.

    2008-12-01

    This thesis deals with numerical simulation of coupled models for flow and transport in porous media. We present a new method for coupling chemical reactions and transport by using a Newton-Krylov method, and we also present a model of flow in fractured media, based on a domain decomposition method that takes into account the case of intersecting fractures. This study is composed of three parts: the first part contains an analysis, and implementation, of various numerical methods for discretizing advection-diffusion problems, in particular by using operator splitting methods. The second part is concerned with a fully coupled method for modeling transport and chemistry problems. The coupled transport-chemistry model is described, after discretization in time, by a system of nonlinear equations. The size of the system, namely the number of grid points times the number a chemical species, precludes a direct solution of the linear system. To alleviate this difficulty, we solve the system by a Newton-Krylov method, so as to avoid forming and factoring the Jacobian matrix. In the last part, we present a model of flow in 3D for intersecting fractures, by using a domain decomposition method. The fractures are treated as interfaces between sub-domains. We show existence and uniqueness of the solution, and we validate the model by numerical tests. (author)

  10. Isaac Newton's scientific method turning data into evidence about gravity and cosmology

    CERN Document Server

    Harper, William L.

    2014-01-01

    Isaac Newton's Scientific Method examines Newton's argument for universal gravity and his application of it to resolve the problem of deciding between geocentric and heliocentric world systems by measuring masses of the sun and planets. William L. Harper suggests that Newton's inferences from phenomena realize an ideal of empirical success that is richer than prediction. Any theory that can achieve this rich sort of empirical success must not only be able to predict the phenomena it purports to explain, but also have those phenomena accurately measure the parameters which explain them. Harper explores the ways in which Newton's method aims to turn theoretical questions into ones which can be answered empirically by measurement from phenomena, and to establish that propositions inferred from phenomena are provisionally accepted as guides to further research. This methodology, guided by its rich ideal of empirical success, supports a conception of scientific progress that does not require construing it as progr...

  11. Positivity-preserving dual time stepping schemes for gas dynamics

    Science.gov (United States)

    Parent, Bernard

    2018-05-01

    A new approach at discretizing the temporal derivative of the Euler equations is here presented which can be used with dual time stepping. The temporal discretization stencil is derived along the lines of the Cauchy-Kowalevski procedure resulting in cross differences in spacetime but with some novel modifications which ensure the positivity of the discretization coefficients. It is then shown that the so-obtained spacetime cross differences result in changes to the wave speeds and can thus be incorporated within Roe or Steger-Warming schemes (with and without reconstruction-evolution) simply by altering the eigenvalues. The proposed approach is advantaged over alternatives in that it is positivity-preserving for the Euler equations. Further, it yields monotone solutions near discontinuities while exhibiting a truncation error in smooth regions less than the one of the second- or third-order accurate backward-difference-formula (BDF) for either small or large time steps. The high resolution and positivity preservation of the proposed discretization stencils are independent of the convergence acceleration technique which can be set to multigrid, preconditioning, Jacobian-free Newton-Krylov, block-implicit, etc. Thus, the current paper also offers the first implicit integration of the time-accurate Euler equations that is positivity-preserving in the strict sense (that is, the density and temperature are guaranteed to remain positive). This is in contrast to all previous positivity-preserving implicit methods which only guaranteed the positivity of the density, not of the temperature or pressure. Several stringent reacting and inert test cases confirm the positivity-preserving property of the proposed method as well as its higher resolution and higher computational efficiency over other second-order and third-order implicit temporal discretization strategies.

  12. A gravitação universal na filosofia da natureza de Isaac Newton

    OpenAIRE

    Garcia, Valdinei Gomes

    2010-01-01

    Resumo: Esta pesquisa apresenta um estudo sobre o conceito de força gravitacional na filosofia da natureza de Isaac Newton. O presente texto foi elaborado a partir dos argumentos desenvolvidos por Newton para defender esse conceito em sua obra mais importante, o Philosophiae Naturalis Principia Mathematica (1687). Será visto que, em tais argumentos, Newton restringe o conceito de força gravitacional a partir de um tratamento matemático, que ele próprio elaborou em sua obra. Por outro lado, Ne...

  13. British physics Newton's law of funding

    CERN Multimedia

    2007-01-01

    In Britain, fundamental physics is in a pickle ISAAC NEWTON, besides being the founder of modern physics, was also master of Britain's mint. That is a precedent which many British physicists must surely wish had become traditional. At the moment, money for physics is in short supply in Britain.

  14. Free Fall and the Equivalence Principle Revisited

    Science.gov (United States)

    Pendrill, Ann-Marie

    2017-01-01

    Free fall is commonly discussed as an example of the equivalence principle, in the context of a homogeneous gravitational field, which is a reasonable approximation for small test masses falling moderate distances. Newton's law of gravity provides a generalisation to larger distances, and also brings in an inhomogeneity in the gravitational field.…

  15. The Cooling Law and the Search for a Good Temperature Scale, from Newton to Dalton

    Science.gov (United States)

    Besson, Ugo

    2011-01-01

    The research on the cooling law began with an article by Newton published in 1701. Later, many studies were performed by other scientists confirming or confuting Newton's law. This paper presents a description and an interpretation of Newton's article, provides a short overview of the research conducted on the topic during the 18th century, and…

  16. The Schrödinger–Newton equation and its foundations

    International Nuclear Information System (INIS)

    Bahrami, Mohammad; Großardt, André; Donadi, Sandro; Bassi, Angelo

    2014-01-01

    The necessity of quantising the gravitational field is still subject to an open debate. In this paper we compare the approach of quantum gravity, with that of a fundamentally semi-classical theory of gravity, in the weak-field non-relativistic limit. We show that, while in the former case the Schrödinger equation stays linear, in the latter case one ends up with the so-called Schrödinger–Newton equation, which involves a nonlinear, non-local gravitational contribution. We further discuss that the Schrödinger–Newton equation does not describe the collapse of the wave-function, although it was initially proposed for exactly this purpose. Together with the standard collapse postulate, fundamentally semi-classical gravity gives rise to superluminal signalling. A consistent fundamentally semi-classical theory of gravity can therefore only be achieved together with a suitable prescription of the wave-function collapse. We further discuss, how collapse models avoid such superluminal signalling and compare the nonlinearities appearing in these models with those in the Schrödinger–Newton equation. (paper)

  17. Second tyrosine kinase inhibitor discontinuation attempt in patients with chronic myeloid leukemia.

    Science.gov (United States)

    Legros, Laurence; Nicolini, Franck E; Etienne, Gabriel; Rousselot, Philippe; Rea, Delphine; Giraudier, Stéphane; Guerci-Bresler, Agnès; Huguet, Françoise; Gardembas, Martine; Escoffre, Martine; Ianotto, Jean-Christophe; Noël, Marie-Pierre; Varet, Bruno R; Pagliardini, Thomas; Touitou, Irit; Morisset, Stéphane; Mahon, Francois-Xavier

    2017-11-15

    Several studies have demonstrated that approximately one-half of patients with chronic myeloid leukemia (CML) who receive treatment with tyrosine kinase inhibitors (TKIs) and achieve and maintain a deep molecular response (DMR) are able to successfully discontinue therapy. In patients who have a molecular relapse, a DMR is rapidly regained upon treatment re-initiation. The authors report the results from RE-STIM, a French observational, multicenter study that evaluated treatment-free remission (TFR) in 70 patients who re-attempted TKI discontinuation after a first unsuccessful attempt. After the second TKI discontinuation attempt, the trigger for treatment re-introduction was the loss of a major molecular response in all patients. The median follow-up was 38.3 months (range, 4.7-117 months), and 45 patients (64.3%) lost a major molecular response after a median time off therapy of 5.3 months (range, 2-42 months). TFR rates at 12, 24, and 36 months were 48% (95% confidence interval [CI], 37.6%-61.5%), 42% (95% CI, 31.5%-55.4%), and 35% (95% CI, 24.4%-49.4%), respectively. No progression toward advanced-phase CML occurred, and no efficacy issue was observed upon TKI re-introduction. In univariate analysis, the speed of molecular relapse after the first TKI discontinuation attempt was the only factor significantly associated with outcome. The TFR rate at 24 months was 72% (95% CI, 48.8%-100%) in patients who remained in DMR within the first 3 months after the first TKI discontinuation and 36% (95% CI, 25.8%-51.3%) for others. This study is the first to demonstrate that a second TKI discontinuation attempt is safe and that a first failed attempt at discontinuing TKI does not preclude a second successful attempt. Cancer 2017;123:4403-10. © 2017 American Cancer Society. © 2017 American Cancer Society.

  18. Bohlin transformation: the hidden symmetry that connects Hooke to Newton

    International Nuclear Information System (INIS)

    Saggio, Maria Luisa

    2013-01-01

    Hooke's name is familiar to students of mechanics thanks to the law of force that bears his name. Less well-known is the influence his findings had on the founder of mechanics, Isaac Newton. In a lecture given some twenty years ago, W Arnol'd pointed out the outstanding contribution to science made by Hooke, and also noted the controversial issue of the attribution of important discoveries to Newton that were actually inspired by Hooke. It therefore seems ironic that the two most famous force laws, named after Hooke and Newton, are two geometrical aspects of the same law. This relationship, together with other illuminating aspects of Newtonian mechanics, is described in Arnol'd's book and is worth remembering in standard physics courses. In this didactical paper the duality of the two forces is expounded and an account of the more recent contributions to the subject is given. (paper)

  19. [Isaac Newton's Anguli Contactus method].

    Science.gov (United States)

    Wawrzycki, Jarosław

    2014-01-01

    In this paper we discuss the geometrical method for calculating the curvature of a class of curves from the third Book of Isaac Newton's Principia. The method involves any curve which is generated from an elementary curve (actually from any curve whose curvature we known of) by means of transformation increasing the polar angular coordinate in a constant ratio, but unchanging the polar radial angular coordinate.

  20. Anisotropic harmonic oscillator, non-commutative Landau problem and exotic Newton-Hooke symmetry

    International Nuclear Information System (INIS)

    Alvarez, Pedro D.; Gomis, Joaquim; Kamimura, Kiyoshi; Plyushchay, Mikhail S.

    2008-01-01

    We investigate the planar anisotropic harmonic oscillator with explicit rotational symmetry as a particle model with non-commutative coordinates. It includes the exotic Newton-Hooke particle and the non-commutative Landau problem as special, isotropic and maximally anisotropic, cases. The system is described by the same (2+1)-dimensional exotic Newton-Hooke symmetry as in the isotropic case, and develops three different phases depending on the values of the two central charges. The special cases of the exotic Newton-Hooke particle and non-commutative Landau problem are shown to be characterized by additional, so(3) or so(2,1) Lie symmetry, which reflects their peculiar spectral properties

  1. Isaac Newton Institute of Chile: The fifteenth anniversary of its "Yugoslavia" Branch

    Science.gov (United States)

    Dimitrijević, M. S.

    In 2002, the Isaac Newton Institute of Chile established in Belgrade its "Yugoslavia" Branch, one of 15 branches in nine countries in Eastern Europe and Eurasia. On the occasion of fifteen years since its foundation, the activities of "Yugoslavia" Branch of the Isaac Newton Institute of Chile are briefly reviewed.

  2. Preconditioned Krylov and Gauss-Seidel solutions of response matrix equations

    International Nuclear Information System (INIS)

    Lewis, E.E.; Smith, M.A.; Yang, W.S.; Wollaber, A.

    2011-01-01

    The use of preconditioned Krylov methods is examined as an alternative to the partitioned matrix acceleration applied to red-black Gauss Seidel (RBGS) iteration that is presently used in the variational nodal code, VARIANT. We employ the GMRES algorithm to treat non-symmetric response matrix equations. A pre conditioner is formulated for the within-group diffusion equation which is equivalent to partitioned matrix acceleration of RBGS iterations. We employ the pre conditioner, which closely parallels two-level p multigrid, to improve RBGS and GMRES algorithms. Of the accelerated algorithms, GMRES converges with less computational effort than RBGS and therefore is chosen for further development. The p multigrid pre conditioner requires response matrices with two or more degrees of freedom (DOF) per interface that are polynomials, which are both orthogonal and hierarchical. It is therefore not directly applicable to very fine mesh calculations that are both slow to converge and that are often modeled with response matrices with only one DOF per interface. Orthogonal matrix aggregation (OMA) is introduced to circumvent this difficulty by combining N×N fine mesh response matrices with one DOF per interface into a coarse mesh response matrix with N orthogonal DOF per interface. Numerical results show that OMA used alone or in combination with p multigrid preconditioning substantially accelerates GMRES solutions. (author)

  3. Preconditioned Krylov and Gauss-Seidel solutions of response matrix equations

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, E.E., E-mail: e-lewis@northwestern.edu [Department of Mechanical Engineering, Northwestern University, Evanston, IL (United States); Smith, M.A.; Yang, W.S.; Wollaber, A., E-mail: masmith@anl.gov, E-mail: wsyang@anl.gov, E-mail: wollaber@lanl.gov [Nuclear Engineering Division, Argonne National Laboratory, Argonne, IL (United States)

    2011-07-01

    The use of preconditioned Krylov methods is examined as an alternative to the partitioned matrix acceleration applied to red-black Gauss Seidel (RBGS) iteration that is presently used in the variational nodal code, VARIANT. We employ the GMRES algorithm to treat non-symmetric response matrix equations. A pre conditioner is formulated for the within-group diffusion equation which is equivalent to partitioned matrix acceleration of RBGS iterations. We employ the pre conditioner, which closely parallels two-level p multigrid, to improve RBGS and GMRES algorithms. Of the accelerated algorithms, GMRES converges with less computational effort than RBGS and therefore is chosen for further development. The p multigrid pre conditioner requires response matrices with two or more degrees of freedom (DOF) per interface that are polynomials, which are both orthogonal and hierarchical. It is therefore not directly applicable to very fine mesh calculations that are both slow to converge and that are often modeled with response matrices with only one DOF per interface. Orthogonal matrix aggregation (OMA) is introduced to circumvent this difficulty by combining N×N fine mesh response matrices with one DOF per interface into a coarse mesh response matrix with N orthogonal DOF per interface. Numerical results show that OMA used alone or in combination with p multigrid preconditioning substantially accelerates GMRES solutions. (author)

  4. The Newtonian Moment - Isaac Newton and the Making of Modern Culture

    Science.gov (United States)

    Feingold, Mordechai

    2004-12-01

    Isaac Newton is a legendary figure whose mythical dimension threatens to overshadow the actual man. The story of the apple falling from the tree may or may not be true, but Isaac Newton's revolutionary discoveries and their importance to the Enlightenment era and beyond are undeniable. The Newtonian Moment , a companion volume to a forthcoming exhibition by the New York Public Library, investigates the effect that Newton's theories and discoveries had, not only on the growth of science, but also on the very shape of modern culture and thought. Newton's scientific work at Cambridge was groundbreaking. From his optical experiments with prisms during the 1660s to the publication of both Principia (1687) and Opticks (1704), Newton's achievements were widely disseminated, inciting tremendous interest and excitement. Newtonianism developed into a worldview marked by many tensions: between modernity and the old guard, between the humanities and science, and the public battles between great minds. The Newtonian Moment illuminates the many facets of his colossal accomplishments, as well as the debates over the kind of knowledge that his accomplishments engendered. The book contributes to a greater understanding of the world today by offering a panoramic view of the profound impact of Newtonianism on the science, literature, art, and religion of the Enlightenment. Copiously illustrated with items drawn from the collections of the New York Public Library as well as numerous other libraries and museums, The Newtonian Moment enlightens its audience with a guided and in-depth look at the man, his world, and his enduring legacy.

  5. Newton, Goethe and the process of perception: an approach to design

    Science.gov (United States)

    Platts, Jim

    2006-06-01

    Whereas Newton traced a beam of white light passing through a prism and fanning out into the colours of the rainbow as it was refracted, Goethe looked through a prism and was concerned with understanding what his eye subjectively saw. He created a sequence of experiments which produced what appeared to be anomalies in Newton's theory. What he was carefully illustrating concerns limitations accepted when following a scientifically objective approach. Newton was concerned with the description of 'facts' derived from the analysis of observations. Goethe was concerned with the synthesis of meaning. He then went on to describe subjective techniques for training 'the mind's eye' to work efficiently in the subjective world of the imagination. Derided as 'not science', what he was actually describing is the skill which is central to creative design.

  6. Was Newton right? A search for non-Newtonian behavior of weak-field gravity

    Directory of Open Access Journals (Sweden)

    Boynton Paul

    2014-06-01

    Full Text Available Empirical tests of Einstein’s metric theory of gravitation, even in the non-relativistic, weak-field limit, could play an important role in judging theory-driven extensions of the current Standard Model of fundamental interactions. Guided by Galileo's work and his own experiments, Newton formulated a theory of gravity in which the force of attraction between two bodies is independent of composition and proportional to the inertia of each, thereby transparently satisfying Galileo's empirically informed conjecture regarding the Universality of Free Fall. Similarly, Einstein honored the manifest success of Newton’s theory by assuring that the linearized equations of GTR matched the Newtonian formalism under “classical” conditions. Each of these steps, however, was explicitly an approximation raised to the status of principle. Perhaps, at some level, Newtonian gravity does not accurately describe the physical interaction between uncharged, unmagnetized, macroscopic bits of ordinary matter. What if Newton were wrong? Detecting any significant deviation from Newtonian behavior, no matter how small, could provide new insights and possibly reveal new physics. In the context of physics as an empirical science, for us this yet unanswered question constitutes sufficient motivation to attempt precision measurements of the kind described here. In this paper we report the current status of a project to search for violation of the Newtonian inverse square law of gravity.

  7. One hundred years of pressure hydrostatics from Stevin to Newton

    CERN Document Server

    Chalmers, Alan F

    2017-01-01

    This monograph investigates the development of hydrostatics as a science. In the process, it sheds new light on the nature of science and its origins in the Scientific Revolution. Readers will come to see that the history of hydrostatics reveals subtle ways in which the science of the seventeenth century differed from previous periods. The key, the author argues, is the new insights into the concept of pressure that emerged during the Scientific Revolution. This came about due to contributions from such figures as Simon Stevin, Pascal, Boyle and Newton. The author compares their work with Galileo and Descartes, neither of whom grasped the need for a new conception of pressure. As a result, their contributions to hydrostatics were unproductive. The story ends with Newton insofar as his version of hydrostatics set the subject on its modern course. He articulated a technical notion of pressure that was up to the task. Newton compared the mathematical way in hydrostatics and the experimental way, and sided with t...

  8. Newton Decatur AL water sample polyfluor compound discovery

    Data.gov (United States)

    U.S. Environmental Protection Agency — All the pertinent information for recreation of the published (hopefully) tables and figures. This dataset is associated with the following publication: Newton, S.,...

  9. KEMAMPUAN PEMECAHAN MASALAH HUKUM GERAK NEWTON MAHASISWA MELALUI PEMBELAJARAN COOPERATIVE PROBLEM SOLVING

    Directory of Open Access Journals (Sweden)

    Agung Wahyu Nurcahyo

    2017-07-01

    Full Text Available The purpose of this study was to describe the increase in problem-solving abilities Newton's laws of motion and students' perceptions of cooperative problem solving (CPS learning. Analysis of the data is based on the student's written answers to the five problems, the results of questionnaires and interviews. This study concluded that: (1 learning CPS make a strong impact (d-effect size = 1.81 to increase problem-solving ability of students Newton's laws of motion, (2 cooperation in the learning group CPS makes the problem easier to solve and misconceptions can be corrected. Tujuan penelitian ini adalah mendeskripsikan peningkatan kemampuan pemecahan masalah hukum gerak Newton, kesulitan yang dialami, dan persepsi mahasiswa terhadap pembelajaran cooperative problem solving (CPS. Analisa data didasarkan pada jawaban tertulis mahasiswa terhadap lima permasalahan, hasil angket dan wawancara. Penelitian ini berkesimpulan bahwa (1 pembelajaran CPS memberikan dampak yang kuat (d-effect size=1,81 terhadap peningkatan kemampuan pemecahan masalah hukum gerak Newton mahasiswa dan (2 kerjasama kelompok dalam pembelajaran CPS membuat permasalahan lebih mudah dipecahkan dan miskonsepsi dapat diperbaiki.

  10. A Fast Newton-Shamanskii Iteration for a Matrix Equation Arising from M/G/1-Type Markov Chains

    Directory of Open Access Journals (Sweden)

    Pei-Chang Guo

    2017-01-01

    Full Text Available For the nonlinear matrix equations arising in the analysis of M/G/1-type and GI/M/1-type Markov chains, the minimal nonnegative solution G or R can be found by Newton-like methods. We prove monotone convergence results for the Newton-Shamanskii iteration for this class of equations. Starting with zero initial guess or some other suitable initial guess, the Newton-Shamanskii iteration provides a monotonically increasing sequence of nonnegative matrices converging to the minimal nonnegative solution. A Schur decomposition method is used to accelerate the Newton-Shamanskii iteration. Numerical examples illustrate the effectiveness of the Newton-Shamanskii iteration.

  11. A fully-implicit Particle-In-Cell Monte Carlo Collision code for the simulation of inductively coupled plasmas

    Science.gov (United States)

    Mattei, S.; Nishida, K.; Onai, M.; Lettry, J.; Tran, M. Q.; Hatayama, A.

    2017-12-01

    We present a fully-implicit electromagnetic Particle-In-Cell Monte Carlo collision code, called NINJA, written for the simulation of inductively coupled plasmas. NINJA employs a kinetic enslaved Jacobian-Free Newton Krylov method to solve self-consistently the interaction between the electromagnetic field generated by the radio-frequency coil and the plasma response. The simulated plasma includes a kinetic description of charged and neutral species as well as the collision processes between them. The algorithm allows simulations with cell sizes much larger than the Debye length and time steps in excess of the Courant-Friedrichs-Lewy condition whilst preserving the conservation of the total energy. The code is applied to the simulation of the plasma discharge of the Linac4 H- ion source at CERN. Simulation results of plasma density, temperature and EEDF are discussed and compared with optical emission spectroscopy measurements. A systematic study of the energy conservation as a function of the numerical parameters is presented.

  12. Nonlinear acceleration of SN transport calculations

    Energy Technology Data Exchange (ETDEWEB)

    Fichtl, Erin D [Los Alamos National Laboratory; Warsa, James S [Los Alamos National Laboratory; Calef, Matthew T [Los Alamos National Laboratory

    2010-12-20

    The use of nonlinear iterative methods, Jacobian-Free Newton-Krylov (JFNK) in particular, for solving eigenvalue problems in transport applications has recently become an active subject of research. While JFNK has been shown to be effective for k-eigenvalue problems, there are a number of input parameters that impact computational efficiency, making it difficult to implement efficiently in a production code using a single set of default parameters. We show that different selections for the forcing parameter in particular can lead to large variations in the amount of computational work for a given problem. In contrast, we present a nonlinear subspace method that sits outside and effectively accelerates nonlinear iterations of a given form and requires only a single input parameter, the subspace size. It is shown to consistently and significantly reduce the amount of computational work when applied to fixed-point iteration, and this combination of methods is shown to be more efficient than JFNK for our application.

  13. Dynamic implicit 3D adaptive mesh refinement for non-equilibrium radiation diffusion

    Science.gov (United States)

    Philip, B.; Wang, Z.; Berrill, M. A.; Birke, M.; Pernice, M.

    2014-04-01

    The time dependent non-equilibrium radiation diffusion equations are important for solving the transport of energy through radiation in optically thick regimes and find applications in several fields including astrophysics and inertial confinement fusion. The associated initial boundary value problems that are encountered often exhibit a wide range of scales in space and time and are extremely challenging to solve. To efficiently and accurately simulate these systems we describe our research on combining techniques that will also find use more broadly for long term time integration of nonlinear multi-physics systems: implicit time integration for efficient long term time integration of stiff multi-physics systems, local control theory based step size control to minimize the required global number of time steps while controlling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton-Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent solver convergence.

  14. Nonlinear acceleration of S_n transport calculations

    International Nuclear Information System (INIS)

    Fichtl, Erin D.; Warsa, James S.; Calef, Matthew T.

    2011-01-01

    The use of nonlinear iterative methods, Jacobian-Free Newton-Krylov (JFNK) in particular, for solving eigenvalue problems in transport applications has recently become an active subject of research. While JFNK has been shown to be effective for k-eigenvalue problems, there are a number of input parameters that impact computational efficiency, making it difficult to implement efficiently in a production code using a single set of default parameters. We show that different selections for the forcing parameter in particular can lead to large variations in the amount of computational work for a given problem. In contrast, we employ a nonlinear subspace method that sits outside and effectively accelerates nonlinear iterations of a given form and requires only a single input parameter, the subspace size. It is shown to consistently and significantly reduce the amount of computational work when applied to fixed-point iteration, and this combination of methods is shown to be more efficient than JFNK for our application. (author)

  15. Application of Quasi-Newton methods to the analysis of axisymmetric pressure vessels

    International Nuclear Information System (INIS)

    Parisi, D.A.C.

    1987-01-01

    This work studies the application of Quasi-Newton techniques to material nonlinear analysis of axisymmetrical pressure vessels by the finite element method. In the formulation the material bahavior is described by an isotropic elastoplastic model with strain hardening. The continum is discretized through triangular finite elements of axisymmetrical solids with linear interpolation of the displacement field. The incremental governing equations are derived by the virtual work. The solution of the system of simultaneous nonlinear equations is solved iteratively by the Quasi-Newton method employing the BFGS update. The numerical performance of the proposed method is compared with the Newton-Raphson method and some of its variants through some selected examples. (author) [pt

  16. An efficient preconditioning technique using Krylov subspace methods for 3D characteristics solvers

    International Nuclear Information System (INIS)

    Dahmani, M.; Le Tellier, R.; Roy, R.; Hebert, A.

    2005-01-01

    The Generalized Minimal RESidual (GMRES) method, using a Krylov subspace projection, is adapted and implemented to accelerate a 3D iterative transport solver based on the characteristics method. Another acceleration technique called the self-collision rebalancing technique (SCR) can also be used to accelerate the solution or as a left preconditioner for GMRES. The GMRES method is usually used to solve a linear algebraic system (Ax=b). It uses K(r (o) ,A) as projection subspace and AK(r (o) ,A) for the orthogonalization of the residual. This paper compares the performance of these two combined methods on various problems. To implement the GMRES iterative method, the characteristics equations are derived in linear algebra formalism by using the equivalence between the method of characteristics and the method of collision probability to end up with a linear algebraic system involving fluxes and currents. Numerical results show good performance of the GMRES technique especially for the cases presenting large material heterogeneity with a scattering ratio close to 1. Similarly, the SCR preconditioning slightly increases the GMRES efficiency

  17. Magnetic Levitation and Newton's Third Law

    Science.gov (United States)

    Aguilar, Horacio Munguia

    2007-01-01

    Newton's third law is often misunderstood by students and even their professors, as has already been pointed out in the literature. Application of the law in the context of electromagnetism can be especially problematic, because the idea that the forces of "action" and "reaction" are equal and opposite independent of the medium through which they…

  18. Isaac Newton and the Royal Mint

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 12. Isaac Newton and the Royal Mint. Biman Nath. Article-in-a-Box Volume 11 Issue 12 December 2006 pp 6-7. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/011/12/0006-0007 ...

  19. The importance of being equivalent: Newton's two models of one-body motion

    Science.gov (United States)

    Pourciau, Bruce

    2004-05-01

    As an undergraduate at Cambridge, Newton entered into his "Waste Book" an assumption that we have named the Equivalence Assumption (The Younger): "If a body move progressively in some crooked line [about a center of motion] ..., [then this] crooked line may bee conceived to consist of an infinite number of streight lines. Or else in any point of the croked line the motion may bee conceived to be on in the tangent". In this assumption, Newton somewhat imprecisely describes two mathematical models, a "polygonal limit model" and a "tangent deflected model", for "one-body motion", that is, for the motion of a "body in orbit about a fixed center", and then claims that these two models are equivalent. In the first part of this paper, we study the Principia to determine how the elder Newton would more carefully describe the polygonal limit and tangent deflected models. From these more careful descriptions, we then create Equivalence Assumption (The Elder), a precise interpretation of Equivalence Assumption (The Younger) as it might have been restated by Newton, after say 1687. We then review certain portions of the Waste Book and the Principia to make the case that, although Newton never restates nor even alludes to the Equivalence Assumption after his youthful Waste Book entry, still the polygonal limit and tangent deflected models, as well as an unspoken belief in their equivalence, infuse Newton's work on orbital motion. In particular, we show that the persuasiveness of the argument for the Area Property in Proposition 1 of the Principia depends crucially on the validity of Equivalence Assumption (The Elder). After this case is made, we present the mathematical analysis required to establish the validity of the Equivalence Assumption (The Elder). Finally, to illustrate the fundamental nature of the resulting theorem, the Equivalence Theorem as we call it, we present three significant applications: we use the Equivalence Theorem first to clarify and resolve questions

  20. A comparison of different quasi-newton acceleration methods for partitioned multi-physics codes

    CSIR Research Space (South Africa)

    Haelterman, R

    2018-02-01

    Full Text Available & structures, 88/7, pp. 446–457 (2010) 8. J.E. Dennis, J.J. More´, Quasi-Newton methods: motivation and theory. SIAM Rev. 19, pp. 46–89 (1977) A Comparison of Quasi-Newton Acceleration Methods 15 9. J.E. Dennis, R.B. Schnabel, Least Change Secant Updates... Dois Metodos de Broyden. Mat. Apl. Comput. 1/2, pp. 135– 143 (1982) 25. J.M. Martinez, A quasi-Newton method with modification of one column per iteration. Com- puting 33, pp. 353–362 (1984) 26. J.M. Martinez, M.C. Zambaldi, An Inverse Column...

  1. Iterative methods for compressible Navier-Stokes and Euler equations

    Energy Technology Data Exchange (ETDEWEB)

    Tang, W.P.; Forsyth, P.A.

    1996-12-31

    This workshop will focus on methods for solution of compressible Navier-Stokes and Euler equations. In particular, attention will be focused on the interaction between the methods used to solve the non-linear algebraic equations (e.g. full Newton or first order Jacobian) and the resulting large sparse systems. Various types of block and incomplete LU factorization will be discussed, as well as stability issues, and the use of Newton-Krylov methods. These techniques will be demonstrated on a variety of model transonic and supersonic airfoil problems. Applications to industrial CFD problems will also be presented. Experience with the use of C++ for solution of large scale problems will also be discussed. The format for this workshop will be four fifteen minute talks, followed by a roundtable discussion.

  2. Twisted Acceleration-Enlarged Newton-Hooke Hopf Algebras

    International Nuclear Information System (INIS)

    Daszkiewicz, M.

    2010-01-01

    Ten Abelian twist deformations of acceleration-enlarged Newton-Hooke Hopf algebra are considered. The corresponding quantum space-times are derived as well. It is demonstrated that their contraction limit τ → ∞ leads to the new twisted acceleration-enlarged Galilei spaces. (author)

  3. The cooling law and the search for a good temperature scale, from Newton to Dalton

    International Nuclear Information System (INIS)

    Besson, Ugo

    2011-01-01

    The research on the cooling law began with an article by Newton published in 1701. Later, many studies were performed by other scientists confirming or confuting Newton's law. This paper presents a description and an interpretation of Newton's article, provides a short overview of the research conducted on the topic during the 18th century, and discusses the relationships between the research on cooling laws and the definition of a temperature scale, as it was treated in Newton's article and in the work of Dalton, including Dalton's search for the absolute zero of temperature. It is shown that these scientists considered the exponential cooling law as a fundamental principle rather than a conjecture to be tested by means of experiments. The faith in the simplicity of natural laws and the spontaneous idea of proportionality between cause and effect seem to have strongly influenced Newton and Dalton. The topic is developed in a way that can be suitable for both undergraduate students and general physicists.

  4. Newton solution of inviscid and viscous problems

    International Nuclear Information System (INIS)

    Venkatakrishnan, V.

    1988-01-01

    The application of Newton iteration to inviscid and viscous airfoil calculations is examined. Spatial discretization is performed using upwind differences with split fluxes. The system of linear equations which arises as a result of linearization in time is solved directly using either a banded matrix solver or a sparse matrix solver. In the latter case, the solver is used in conjunction with the nested dissection strategy, whose implementation for airfoil calculations is discussed. The boundary conditions are also implemented in a fully implicit manner, thus yielding quadratic convergence. Complexities such as the ordering of cell nodes and the use of a far field vortex to correct freestream for a lifting airfoil are addressed. Various methods to accelerate convergence and improve computational efficiency while using Newton iteration are discussed. Results are presented for inviscid, transonic nonlifting and lifting airfoils and also for laminar viscous cases. 17 references

  5. General Practitioners’ Decisions about Discontinuation of Medication

    DEFF Research Database (Denmark)

    Nixon, Michael Simon; Vendelø, Morten Thanning

    2016-01-01

    insights about decision making when discontinuing medication. It also offers one of the first examinations of how the institutional context embedding GPs influences their decisions about discontinuation. For policymakers interested in the discontinuation of medication, the findings suggest that de......Purpose – The purpose of this paper is to investigate how general practitioners’ (GPs) decisions about discontinuation of medication are influenced by their institutional context. Design/methodology/approach – In total, 24 GPs were interviewed, three practices were observed and documents were...... a weak frame for discontinuation. Three reasons for this are identified: the guidelines provide dominating triggers for prescribing, they provide weak priming for discontinuation as an option, and they underscore a cognitive constraint against discontinuation. Originality/value – The analysis offers new...

  6. Factors affecting IUCD discontinuation in Nepal

    DEFF Research Database (Denmark)

    Thapa, Subash; Paudel, Ishwari Sharma; Bhattarai, Sailesh

    2015-01-01

    Information related to contraception discontinuation, especially in the context of Nepal is very limited. A nested case-control study was carried out to determine the factors affecting discontinuation of intrauterine contraceptive devices (IUCDs). A total of 115 cases (IUCD discontinuers) and 115...

  7. Sir Isaac Newton

    Directory of Open Access Journals (Sweden)

    E. A. Venter

    1964-03-01

    Full Text Available Die geweldige oplewing van die Christelike wetenskaps- gedagte in ons geeslose tyd, is ongetwyfeld ’n haas onverklaar- bare verskynsel. Dwarsdeur die eeue het Christene ook wetenskap beoefen saam met ongelowiges, maar dit was eers in ons leeftyd dat die principia van die Christelike religie ook vrugbaar gemaak is vir die wetenskapsbeoefening. In hierdie verband sal die name van Dooyeweerd, Vollenhoven, Stoker e.a. steeds met eer vermeld word. Natuurlik het belydende Christene ook voorheen wel deeglik saamgewerk aan die gebou van die wetenskap. Die intieme verband tussen religie, wysbegeerte en wetenskaps­ beoefening is toe egter nog nie suiwer ingesien nie. Uit hier­ die tydperk dateer die arbeid van sir Isaac Newton.

  8. An experimental test of Newton's law of gravitation for small accelerations

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, Sven

    2011-10-15

    The experiment presented in this thesis has been designed to test Newton's law of gravitation in the limit of small accelerations caused by weak gravitational forces. It is located at DESY, Hamburg, and is a modification of an experiment that was carried out in Wuppertal, Germany, until 2002 in order to measure the gravitational constant G. The idea of testing Newton's law in the case of small accelerations emerged from the question whether the flat rotation curves of spiral galaxies can be traced back to Dark Matter or to a law of gravitation that deviates from Newton on cosmic scales like e.g. MOND (Modified Newtonian Dynamics). The core of this experiment is a microwave resonator which is formed by two spherical concave mirrors that are suspended as pendulums. Masses between 1 and 9 kg symmetrically change their distance to the mirrors from far to near positions. Due to the increased gravitational force the mirrors are pulled apart and the length of the resonator increases. This causes a shift of the resonance frequency which can be translated into a shift of the mirror distance. The small masses are sources of weak gravitational forces and cause accelerations on the mirrors of about 10{sup -10} m/s{sup 2}. These forces are comparable to those between stars on cosmic scales and the accelerations are in the vicinity of the characteristic acceleration of MOND a{sub 0} {approx} 1.2.10{sup -10} m/s{sup 2}, where deviations from Newton's law are expected. Thus Newton's law could be directly checked for correctness under these conditions. First measurements show that due to the sensitivity of this experiment many systematic influences have to be accounted for in order to get consistent results. Newton's law has been confirmed with an accuracy of 3%. MOND has also been checked. In order to be able to distinguish Newton from MOND with other interpolation functions the accuracy of the experiment has to be improved. (orig.)

  9. De las Leyes de Newton a la Guerra de Troya

    OpenAIRE

    Plastino, Ángel Ricardo

    2014-01-01

    La publicación en 1687 del libro Philosophia Naturalis Principia Mathematica por Issac Newton marcó un importante hito en la historia del pensamiento humano. Sobre la base de tres sencillos principios de movimiento y de la ley de gravitación universal, y mediante razonamientos matemáticos, Newton logró explicar y unificar dentro de un esquema conceptual coherente una gran cantidad de fenómenos naturales: el movimiento de los planetas, las mareas, la forma de la Tierra, entre otros. Más aún, N...

  10. 27 CFR 555.128 - Discontinuance of business.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2010-04-01 2010-04-01 false Discontinuance of business... Discontinuance of business. Where an explosive materials business or operations is discontinued and succeeded by... such facts and shall be delivered to the successor. Where discontinuance of the business or operations...

  11. Long-time integration methods for mesoscopic models of pattern-forming systems

    International Nuclear Information System (INIS)

    Abukhdeir, Nasser Mohieddin; Vlachos, Dionisios G.; Katsoulakis, Markos; Plexousakis, Michael

    2011-01-01

    Spectral methods for simulation of a mesoscopic diffusion model of surface pattern formation are evaluated for long simulation times. Backwards-differencing time-integration, coupled with an underlying Newton-Krylov nonlinear solver (SUNDIALS-CVODE), is found to substantially accelerate simulations, without the typical requirement of preconditioning. Quasi-equilibrium simulations of patterned phases predicted by the model are shown to agree well with linear stability analysis. Simulation results of the effect of repulsive particle-particle interactions on pattern relaxation time and short/long-range order are discussed.

  12. Robust large-scale parallel nonlinear solvers for simulations.

    Energy Technology Data Exchange (ETDEWEB)

    Bader, Brett William; Pawlowski, Roger Patrick; Kolda, Tamara Gibson (Sandia National Laboratories, Livermore, CA)

    2005-11-01

    This report documents research to develop robust and efficient solution techniques for solving large-scale systems of nonlinear equations. The most widely used method for solving systems of nonlinear equations is Newton's method. While much research has been devoted to augmenting Newton-based solvers (usually with globalization techniques), little has been devoted to exploring the application of different models. Our research has been directed at evaluating techniques using different models than Newton's method: a lower order model, Broyden's method, and a higher order model, the tensor method. We have developed large-scale versions of each of these models and have demonstrated their use in important applications at Sandia. Broyden's method replaces the Jacobian with an approximation, allowing codes that cannot evaluate a Jacobian or have an inaccurate Jacobian to converge to a solution. Limited-memory methods, which have been successful in optimization, allow us to extend this approach to large-scale problems. We compare the robustness and efficiency of Newton's method, modified Newton's method, Jacobian-free Newton-Krylov method, and our limited-memory Broyden method. Comparisons are carried out for large-scale applications of fluid flow simulations and electronic circuit simulations. Results show that, in cases where the Jacobian was inaccurate or could not be computed, Broyden's method converged in some cases where Newton's method failed to converge. We identify conditions where Broyden's method can be more efficient than Newton's method. We also present modifications to a large-scale tensor method, originally proposed by Bouaricha, for greater efficiency, better robustness, and wider applicability. Tensor methods are an alternative to Newton-based methods and are based on computing a step based on a local quadratic model rather than a linear model. The advantage of Bouaricha's method is that it can use any

  13. 27 CFR 478.57 - Discontinuance of business.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2010-04-01 2010-04-01 false Discontinuance of business... Licenses § 478.57 Discontinuance of business. (a) Where a firearm or ammunition business is either discontinued or succeeded by a new owner, the owner of the business discontinued or succeeded shall within 30...

  14. Non-relativistic conformal symmetries and Newton-Cartan structures

    International Nuclear Information System (INIS)

    Duval, C; Horvathy, P A

    2009-01-01

    This paper provides us with a unifying classification of the conformal infinitesimal symmetries of non-relativistic Newton-Cartan spacetime. The Lie algebras of non-relativistic conformal transformations are introduced via the Galilei structure. They form a family of infinite-dimensional Lie algebras labeled by a rational 'dynamical exponent', z. The Schroedinger-Virasoro algebra of Henkel et al corresponds to z = 2. Viewed as projective Newton-Cartan symmetries, they yield, for timelike geodesics, the usual Schroedinger Lie algebra, for which z = 2. For lightlike geodesics, they yield, in turn, the Conformal Galilean Algebra (CGA) of Lukierski, Stichel and Zakrzewski (alias 'alt' of Henkel), with z = 1. Physical systems realizing these symmetries include, e.g. classical systems of massive and massless non-relativistic particles, and also hydrodynamics, as well as Galilean electromagnetism.

  15. The changing role of continuity and discontinuity in the history of philosophy and mathematics

    Directory of Open Access Journals (Sweden)

    Danie F.M. Strauss

    2017-01-01

    Full Text Available The aim of this article is to highlight the inevitability of employing discreteness and continuity as primitive (indefinable modes of explanation in the history of philosophy and mathematics. It embodies the general challenge to account for the coherence of what is unique. Gödel emphasises the coherence of ‘primitive concepts’. Greek philosophy already discovered the spatial whole and/or parts relation with its infinite divisibility. During and after the medieval era philosophers toggled between an atomistic appreciation of the continuum and its opposite, for example found in the thought of Leibniz who postulated his law of continuity (lex continui. The discovery of incommensurability (irrational numbers by the Greeks caused the first foundational crisis of mathematics, as well as its geometrisation. Leibniz and Newton did not resolve the problems surrounding the limit concept and soon it induced the third foundational crisis of mathematics. It caused Frege and the ‘continuum theoreticians’ to assign priority to the continuum – discreteness is a catastrophe. Recently Smooth Infinitesimal Analysis appreciated what is ‘continuous’ as constituting ‘an unbroken or uninterrupted whole’. Intuitionistic mathematics once more proceeded from an emphasis on the whole and/or parts relation. In spite of alternating attempts to understand continuity exclusively, either in arithmetical or in spatial terms, the history of philosophy and mathematics undeniably confirms that the co-conditioning role of these two modes of explanation remains a constant element in reflections on continuity and discontinuity. (The role of continuity and discontinuity within the disciplines of physics and biology will be discussed in a separate article.

  16. Conceptual Understanding and Representation Quality through Multi-representation Learning on Newton Law Content

    Directory of Open Access Journals (Sweden)

    Suci Furwati

    2017-08-01

    Full Text Available Abstract: Students who have good conceptual acquisition will be able to represent the concept by using multi representation. This study aims to determine the improvement of students' understanding of the concept of Newton's Law material, and the quality of representation used in solving problems on Newton's Law material. The results showed that the concept acquisition of students increased from the average of 35.32 to 78.97 with an effect size of 2.66 (strong and N-gain of 0.68 (medium. The quality of each type of student representation also increased from level 1 and level 2 up to level 3. Key Words: concept aquisition, represetation quality, multi representation learning, Newton’s Law Abstrak: Siswa yang memiliki penguasaan konsep yang baik akan mampu merepresentasikan konsep dengan menggunakan multi representasi. Penelitian ini bertujuan untuk mengetahui peningkatan pemahaman konsep siswa SMP pada materi Hukum Newton, dan kualitas representasi yang digunakan dalam menyelesaikan masalah pada materi Hukum Newton. Hasil penelitian menunjukkan bahwa penguasaan konsep siswa meningkat dari rata-rata 35,32 menjadi 78,97 dengan effect size sebesar 2,66 (kuat dan N-gain sebesar 0,68 (sedang. Kualitas tiap jenis representasi siswa juga mengalami peningkatan dari level 1 dan level 2 naik menjadi level 3. Kata kunci: hukum Newton, kualitas representasi, pemahaman konsep, pembelajaran multi representasi

  17. Management applications of discontinuity theory

    Science.gov (United States)

    Angeler, David G.; Allen, Craig R.; Barichievy, Chris; Eason, Tarsha; Garmestani, Ahjond S.; Graham, Nicholas A.J.; Granholm, Dean; Gunderson, Lance H.; Knutson, Melinda; Nash, Kirsty L.; Nelson, R. John; Nystrom, Magnus; Spanbauer, Trisha; Stow, Craig A.; Sundstrom, Shana M.

    2015-01-01

    Human impacts on the environment are multifaceted and can occur across distinct spatiotemporal scales. Ecological responses to environmental change are therefore difficult to predict, and entail large degrees of uncertainty. Such uncertainty requires robust tools for management to sustain ecosystem goods and services and maintain resilient ecosystems.We propose an approach based on discontinuity theory that accounts for patterns and processes at distinct spatial and temporal scales, an inherent property of ecological systems. Discontinuity theory has not been applied in natural resource management and could therefore improve ecosystem management because it explicitly accounts for ecological complexity.Synthesis and applications. We highlight the application of discontinuity approaches for meeting management goals. Specifically, discontinuity approaches have significant potential to measure and thus understand the resilience of ecosystems, to objectively identify critical scales of space and time in ecological systems at which human impact might be most severe, to provide warning indicators of regime change, to help predict and understand biological invasions and extinctions and to focus monitoring efforts. Discontinuity theory can complement current approaches, providing a broader paradigm for ecological management and conservation.

  18. Preconditioned Inexact Newton for Nonlinear Sparse Electromagnetic Imaging

    KAUST Repository

    Desmal, Abdulla; Bagci, Hakan

    2014-01-01

    with smoothness promoting optimization/regularization schemes. However, this type of regularization schemes are known to perform poorly when applied in imagining domains with sparse content or sharp variations. In this work, an inexact Newton algorithm

  19. The problem of Newton dynamics

    International Nuclear Information System (INIS)

    Roman Roldan, R.

    1998-01-01

    The problem of the teaching of Newton's principles of dynamics at High School level is addressed. Some usages, reasoning and wording, are pointed as the responsible for the deficient results which are revealed in the background of the first year University students in Physics. A methodology based on simplifying the common vocabulary is proposed in order to provide to the students with a clearer view of the dynamic problems. Some typical examples are shown which illustrate the proposal. (Author)

  20. The cooling law and the search for a good temperature scale, from Newton to Dalton

    Energy Technology Data Exchange (ETDEWEB)

    Besson, Ugo, E-mail: ugo.besson@unipv.it [Department of Physics ' A Volta' , University of Pavia, Via A Bassi 6, 27100 Pavia (Italy)

    2011-03-15

    The research on the cooling law began with an article by Newton published in 1701. Later, many studies were performed by other scientists confirming or confuting Newton's law. This paper presents a description and an interpretation of Newton's article, provides a short overview of the research conducted on the topic during the 18th century, and discusses the relationships between the research on cooling laws and the definition of a temperature scale, as it was treated in Newton's article and in the work of Dalton, including Dalton's search for the absolute zero of temperature. It is shown that these scientists considered the exponential cooling law as a fundamental principle rather than a conjecture to be tested by means of experiments. The faith in the simplicity of natural laws and the spontaneous idea of proportionality between cause and effect seem to have strongly influenced Newton and Dalton. The topic is developed in a way that can be suitable for both undergraduate students and general physicists.

  1. Vertebral Fractures After Discontinuation of Denosumab

    DEFF Research Database (Denmark)

    Cummings, Steven R; Ferrari, Serge; Eastell, Richard

    2018-01-01

    . We analyzed the risk of new or worsening vertebral fractures, especially multiple vertebral fractures, in participants who discontinued denosumab during the FREEDOM study or its Extension. Participants received ≥2 doses of denosumab or placebo Q6M, discontinued treatment, and stayed in the study ≥7...... months after the last dose. Of 1001 participants who discontinued denosumab during FREEDOM or Extension, the vertebral fracture rate increased from 1.2 per 100 participant-years during the on-treatment period to 7.1, similar to participants who received and then discontinued placebo (n = 470; 8.5 per 100....... Therefore, patients who discontinue denosumab should rapidly transition to an alternative antiresorptive treatment. Clinicaltrails.gov: NCT00089791 (FREEDOM) and NCT00523341 (Extension). © 2017 American Society for Bone and Mineral Research....

  2. A scalable fully implicit framework for reservoir simulation on parallel computers

    KAUST Repository

    Yang, Haijian

    2017-11-10

    The modeling of multiphase fluid flow in porous medium is of interest in the field of reservoir simulation. The promising numerical methods in the literature are mostly based on the explicit or semi-implicit approach, which both have certain stability restrictions on the time step size. In this work, we introduce and study a scalable fully implicit solver for the simulation of two-phase flow in a porous medium with capillarity, gravity and compressibility, which is free from the limitations of the conventional methods. In the fully implicit framework, a mixed finite element method is applied to discretize the model equations for the spatial terms, and the implicit Backward Euler scheme with adaptive time stepping is used for the temporal integration. The resultant nonlinear system arising at each time step is solved in a monolithic way by using a Newton–Krylov type method. The corresponding linear system from the Newton iteration is large sparse, nonsymmetric and ill-conditioned, consequently posing a significant challenge to the fully implicit solver. To address this issue, the family of additive Schwarz preconditioners is taken into account to accelerate the convergence of the linear system, and thereby improves the robustness of the outer Newton method. Several test cases in one, two and three dimensions are used to validate the correctness of the scheme and examine the performance of the newly developed algorithm on parallel computers.

  3. A scalable fully implicit framework for reservoir simulation on parallel computers

    KAUST Repository

    Yang, Haijian; Sun, Shuyu; Li, Yiteng; Yang, Chao

    2017-01-01

    The modeling of multiphase fluid flow in porous medium is of interest in the field of reservoir simulation. The promising numerical methods in the literature are mostly based on the explicit or semi-implicit approach, which both have certain stability restrictions on the time step size. In this work, we introduce and study a scalable fully implicit solver for the simulation of two-phase flow in a porous medium with capillarity, gravity and compressibility, which is free from the limitations of the conventional methods. In the fully implicit framework, a mixed finite element method is applied to discretize the model equations for the spatial terms, and the implicit Backward Euler scheme with adaptive time stepping is used for the temporal integration. The resultant nonlinear system arising at each time step is solved in a monolithic way by using a Newton–Krylov type method. The corresponding linear system from the Newton iteration is large sparse, nonsymmetric and ill-conditioned, consequently posing a significant challenge to the fully implicit solver. To address this issue, the family of additive Schwarz preconditioners is taken into account to accelerate the convergence of the linear system, and thereby improves the robustness of the outer Newton method. Several test cases in one, two and three dimensions are used to validate the correctness of the scheme and examine the performance of the newly developed algorithm on parallel computers.

  4. Weight, the Normal Force and Newton's Third Law: Dislodging a Deeply Embedded Misconception

    Science.gov (United States)

    Low, David; Wilson, Kate

    2017-01-01

    On entry to university, high-achieving physics students from all across Australia struggle to identify Newton's third law force pairs. In particular, less than one in ten can correctly identify the Newton's third law reaction pair to the weight of (gravitational force acting on) an object. Most students incorrectly identify the normal force on the…

  5. Tapering and discontinuation of methadone for chronic pain.

    Science.gov (United States)

    Breivik, Harald

    2015-06-01

    How to taper and discontinue methadone therapy for chronic pain management is illustrated through a case report. This report is adapted from paineurope 2014; Issue 4, ©Haymarket Medical Publications Ltd, and is presented with permission. paineurope is provided as a service to pain management by Mundipharma International, LTD and is distributed free of charge to healthcare professionals in Europe. Archival issues can be viewed via the website: www.paineurope.com at which health professionals can find links to the original articles and request copies of the quarterly publication and access additional pain education and pain management resources.

  6. DE NEWTON A EINSTEIN: A DEBATE EL DESTINO DEL UNIVERSO

    Directory of Open Access Journals (Sweden)

    ROGELIO PARREIRA

    2010-01-01

    Full Text Available En este artículo se describe la historia del pensamiento científico en términos de las teorías de la inercia, el espacio absoluto, la relatividad y la gravitación; de cómo Newton utilizó el trabajo de los primeros investigadores en sus teorías, y Einstein las teorías de Newton en la suya, para tratar de explicar el destino del universo. Es la descripción de un proceso revolucionario del conocimiento científico, y sus aportes al desarrollo de muchos otros campos del saber

  7. Designing stellarator coils by a modified Newton method using FOCUS

    Science.gov (United States)

    Zhu, Caoxiang; Hudson, Stuart R.; Song, Yuntao; Wan, Yuanxi

    2018-06-01

    To find the optimal coils for stellarators, nonlinear optimization algorithms are applied in existing coil design codes. However, none of these codes have used the information from the second-order derivatives. In this paper, we present a modified Newton method in the recently developed code FOCUS. The Hessian matrix is calculated with analytically derived equations. Its inverse is approximated by a modified Cholesky factorization and applied in the iterative scheme of a classical Newton method. Using this method, FOCUS is able to recover the W7-X modular coils starting from a simple initial guess. Results demonstrate significant advantages.

  8. Quasi-Newton methods for the acceleration of multi-physics codes

    CSIR Research Space (South Africa)

    Haelterman, R

    2017-08-01

    Full Text Available .E. Dennis, J.J. More´, Quasi-Newton methods: motivation and theory. SIAM Rev. 19, pp. 46–89 (1977) [11] J.E. Dennis, R.B. Schnabel, Least Change Secant Updates for quasi- Newton methods. SIAM Rev. 21, pp. 443–459 (1979) [12] G. Dhondt, CalculiX CrunchiX USER...) [25] J.M. Martinez, M.C. Zambaldi, An Inverse Column-Updating Method for solving large-scale nonlinear systems of equations. Optim. Methods Softw. 1, pp. 129–140 (1992) [26] J.M. Martinez, On the convergence of the column-updating method. Comp. Appl...

  9. Convergence and Applications of a Gossip-Based Gauss-Newton Algorithm

    Science.gov (United States)

    Li, Xiao; Scaglione, Anna

    2013-11-01

    The Gauss-Newton algorithm is a popular and efficient centralized method for solving non-linear least squares problems. In this paper, we propose a multi-agent distributed version of this algorithm, named Gossip-based Gauss-Newton (GGN) algorithm, which can be applied in general problems with non-convex objectives. Furthermore, we analyze and present sufficient conditions for its convergence and show numerically that the GGN algorithm achieves performance comparable to the centralized algorithm, with graceful degradation in case of network failures. More importantly, the GGN algorithm provides significant performance gains compared to other distributed first order methods.

  10. Deviations from Newton's law in supersymmetric large extra dimensions

    International Nuclear Information System (INIS)

    Callin, P.; Burgess, C.P.

    2006-01-01

    Deviations from Newton's inverse-squared law at the micron length scale are smoking-gun signals for models containing supersymmetric large extra dimensions (SLEDs), which have been proposed as approaches for resolving the cosmological constant problem. Just like their non-supersymmetric counterparts, SLED models predict gravity to deviate from the inverse-square law because of the advent of new dimensions at sub-millimeter scales. However SLED models differ from their non-supersymmetric counterparts in three important ways: (i) the size of the extra dimensions is fixed by the observed value of the dark energy density, making it impossible to shorten the range over which new deviations from Newton's law must be seen; (ii) supersymmetry predicts there to be more fields in the extra dimensions than just gravity, implying different types of couplings to matter and the possibility of repulsive as well as attractive interactions; and (iii) the same mechanism which is purported to keep the cosmological constant naturally small also keeps the extra-dimensional moduli effectively massless, leading to deviations from general relativity in the far infrared of the scalar-tensor form. We here explore the deviations from Newton's law which are predicted over micron distances, and show the ways in which they differ and resemble those in the non-supersymmetric case

  11. The hybridized Discontinuous Galerkin method for Implicit Large-Eddy Simulation of transitional turbulent flows

    Science.gov (United States)

    Fernandez, P.; Nguyen, N. C.; Peraire, J.

    2017-05-01

    We present a high-order Implicit Large-Eddy Simulation (ILES) approach for transitional aerodynamic flows. The approach encompasses a hybridized Discontinuous Galerkin (DG) method for the discretization of the Navier-Stokes (NS) equations, and a parallel preconditioned Newton-GMRES solver for the resulting nonlinear system of equations. The combination of hybridized DG methods with an efficient solution procedure leads to a high-order accurate NS solver that is competitive to alternative approaches, such as finite volume and finite difference codes, in terms of computational cost. The proposed approach is applied to transitional flows over the NACA 65-(18)10 compressor cascade and the Eppler 387 wing at Reynolds numbers up to 460,000. Grid convergence studies are presented and the required resolution to capture transition at different Reynolds numbers is investigated. Numerical results show rapid convergence and excellent agreement with experimental data. In short, this work aims to demonstrate the potential of high-order ILES for simulating transitional aerodynamic flows. This is illustrated through numerical results and supported by theoretical considerations.

  12. On deviations from Newton's law and the proposal for a 'Fifth Force'

    International Nuclear Information System (INIS)

    Ferreira, L.A.; Malbouisson, A.P.C.

    1986-01-01

    The results of geophysical and laboratory measurements of Newton's constant of gravitation, seem to disagree by one percent. Attempts to explain this have led to the revival of the proposal for a fifth interaction in Nature. The experimental results on measurements of G and tests of Newton's inverse square law are reviewed. The recent reanalysis of the Eoetvoes experiment and proposals for new experiments are discussed. (Author) [pt

  13. Disk-galaxy density distribution from orbital speeds using Newton's law, version 1.1

    OpenAIRE

    Nicholson, Kenneth F.

    2000-01-01

    Given the dimensions(including thickness) of an axisymmetric galaxy, Newton's law is used in integral form to find the density distributions required to match a wide range of orbital speed profiles. Newton's law is not modified and no dark-matter halos are required. The speed distributions can have extreme shapes if they are reasonably smooth. Several examples are given.

  14. A Newton-type neural network learning algorithm

    International Nuclear Information System (INIS)

    Ivanov, V.V.; Puzynin, I.V.; Purehvdorzh, B.

    1993-01-01

    First- and second-order learning methods for feed-forward multilayer networks are considered. A Newton-type algorithm is proposed and compared with the common back-propagation algorithm. It is shown that the proposed algorithm provides better learning quality. Some recommendations for their usage are given. 11 refs.; 1 fig.; 1 tab

  15. Special discontinuities in nonlinearly elastic media

    Science.gov (United States)

    Chugainova, A. P.

    2017-06-01

    Solutions of a nonlinear hyperbolic system of equations describing weakly nonlinear quasitransverse waves in a weakly anisotropic elastic medium are studied. The influence of small-scale processes of dissipation and dispersion is investigated. The small-scale processes determine the structure of discontinuities (shocks) and a set of discontinuities with a stationary structure. Among the discontinuities with a stationary structure, there are special ones that, in addition to relations following from conservation laws, satisfy additional relations required for the existence of their structure. In the phase plane, the structure of such discontinuities is represented by an integral curve joining two saddles. Special discontinuities lead to nonunique self-similar solutions of the Riemann problem. Asymptotics of non-self-similar problems for equations with dissipation and dispersion are found numerically. These asymptotics correspond to self-similar solutions of the problems.

  16. Ultrasonic assessment of shrinkage type discontinuities

    International Nuclear Information System (INIS)

    Hubber, John

    2010-01-01

    This investigation into ultrasonic internal discontinuities is intended to demonstrate typical examples of internal 'shrinkage' type discontinuities and its connection with the casting suitability, integrity and reliability in service. This type of discontinuity can be misinterpreted by ultrasonic technicians and can lead to the rejection of castings unnecessarily, due to the mis-characterization of fine shrinkage - discrete porosity. The samples for this investigation were taken from thirty ton heavy section ductile iron mill flange castings, manufactured by Graham Campbell Ferrum International. The sampled area was of discontinuities that were recorded for sizing on an area due to loss of back wall echo, but had acceptable reflectivity. A comparative sample was taken adjacent to the area of discrete porosity. The discontinuities found by this investigation are of a 'spongy' type, gaseous in appearance and are surrounded by acoustically sound material. All discontinuities discussed in this paper are centrally located in the through thickness of the casting. The porous nature of this type of discontinuity consisting of approximately 80-90% metal has its own residual strength, as indicated by the proof stress results which reveal a residual strength of up to 50-60% of that of the unaffected area of the casting. The affected areas are elliptical in shape and vary in density and through thickness throughout.

  17. Finite element and discontinuous Galerkin methods for transient wave equations

    CERN Document Server

    Cohen, Gary

    2017-01-01

    This monograph presents numerical methods for solving transient wave equations (i.e. in time domain). More precisely, it provides an overview of continuous and discontinuous finite element methods for these equations, including their implementation in physical models, an extensive description of 2D and 3D elements with different shapes, such as prisms or pyramids, an analysis of the accuracy of the methods and the study of the Maxwell’s system and the important problem of its spurious free approximations. After recalling the classical models, i.e. acoustics, linear elastodynamics and electromagnetism and their variational formulations, the authors present a wide variety of finite elements of different shapes useful for the numerical resolution of wave equations. Then, they focus on the construction of efficient continuous and discontinuous Galerkin methods and study their accuracy by plane wave techniques and a priori error estimates. A chapter is devoted to the Maxwell’s system and the important problem ...

  18. Stabilities of MHD rotational discontinuities

    International Nuclear Information System (INIS)

    Wang, S.

    1984-11-01

    In this paper, the stabilities of MHD rotational discontinuities are analyzed. The results show that the rotational discontinuities in an incompressible magnetofluid are not always stable with respect to infinitesimal perturbation. The instability condition in a special case is obtained. (author)

  19. Nonsmooth Newton method for Fischer function reformulation of contact force problems for interactive rigid body simulation

    DEFF Research Database (Denmark)

    Silcowitz, Morten; Niebe, Sarah Maria; Erleben, Kenny

    2009-01-01

    contact response. In this paper, we present a new approach to contact force determination. We reformulate the contact force problem as a nonlinear root search problem, using a Fischer function. We solve this problem using a generalized Newton method. Our new Fischer - Newton method shows improved...... qualities for specific configurations where the most widespread alternative, the Projected Gauss-Seidel method, fails. Experiments show superior convergence properties of the exact Fischer - Newton method....

  20. On preconditioner updates for sequences of saddle-point linear systems

    Directory of Open Access Journals (Sweden)

    Simone Valentina De

    2018-02-01

    Full Text Available Updating preconditioners for the solution of sequences of large and sparse saddle- point linear systems via Krylov methods has received increasing attention in the last few years, because it allows to reduce the cost of preconditioning while keeping the efficiency of the overall solution process. This paper provides a short survey of the two approaches proposed in the literature for this problem: updating the factors of a preconditioner available in a block LDLT form, and updating a preconditioner via a limited-memory technique inspired by quasi-Newton methods.

  1. A Newton Algorithm for Multivariate Total Least Squares Problems

    Directory of Open Access Journals (Sweden)

    WANG Leyang

    2016-04-01

    Full Text Available In order to improve calculation efficiency of parameter estimation, an algorithm for multivariate weighted total least squares adjustment based on Newton method is derived. The relationship between the solution of this algorithm and that of multivariate weighted total least squares adjustment based on Lagrange multipliers method is analyzed. According to propagation of cofactor, 16 computational formulae of cofactor matrices of multivariate total least squares adjustment are also listed. The new algorithm could solve adjustment problems containing correlation between observation matrix and coefficient matrix. And it can also deal with their stochastic elements and deterministic elements with only one cofactor matrix. The results illustrate that the Newton algorithm for multivariate total least squares problems could be practiced and have higher convergence rate.

  2. Running Newton constant, improved gravitational actions, and galaxy rotation curves

    International Nuclear Information System (INIS)

    Reuter, M.; Weyer, H.

    2004-01-01

    A renormalization group (RG) improvement of the Einstein-Hilbert action is performed which promotes Newton's constant and the cosmological constant to scalar functions on spacetime. They arise from solutions of an exact RG equation by means of a 'cutoff identification' which associates RG scales to the points of spacetime. The resulting modified Einstein equations for spherically symmetric, static spacetimes are derived and analyzed in detail. The modifications of the Newtonian limit due to the RG evolution are obtained for the general case. As an application, the viability of a scenario is investigated where strong quantum effects in the infrared cause Newton's constant to grow at large (astrophysical) distances. For two specific RG trajectories exact vacuum spacetimes modifying the Schwarzschild metric are obtained by means of a solution-generating Weyl transformation. Their possible relevance to the problem of the observed approximately flat galaxy rotation curves is discussed. It is found that a power law running of Newton's constant with a small exponent of the order 10 -6 would account for their non-Keplerian behavior without having to postulate the presence of any dark matter in the galactic halo

  3. Camera-pose estimation via projective Newton optimization on the manifold.

    Science.gov (United States)

    Sarkis, Michel; Diepold, Klaus

    2012-04-01

    Determining the pose of a moving camera is an important task in computer vision. In this paper, we derive a projective Newton algorithm on the manifold to refine the pose estimate of a camera. The main idea is to benefit from the fact that the 3-D rigid motion is described by the special Euclidean group, which is a Riemannian manifold. The latter is equipped with a tangent space defined by the corresponding Lie algebra. This enables us to compute the optimization direction, i.e., the gradient and the Hessian, at each iteration of the projective Newton scheme on the tangent space of the manifold. Then, the motion is updated by projecting back the variables on the manifold itself. We also derive another version of the algorithm that employs homeomorphic parameterization to the special Euclidean group. We test the algorithm on several simulated and real image data sets. Compared with the standard Newton minimization scheme, we are now able to obtain the full numerical formula of the Hessian with a 60% decrease in computational complexity. Compared with Levenberg-Marquardt, the results obtained are more accurate while having a rather similar complexity.

  4. MPPT for Photovoltaic Modules via Newton-Like Extremum Seeking Control

    Directory of Open Access Journals (Sweden)

    Ramon Leyva

    2012-07-01

    Full Text Available The paper adapts the Newton-like Extremum-Seeking Control technique to extract the maximum power from photovoltaic panels. This technique uses the gradient and Hessian of the panel characteristic in order to approximate the operating point to its optimum. The paper describes in detail the gradient and Hessian estimations carried out by means of sinusoidal dithering signals. Furthermore, we compare the proposed technique with the common Extremum Seeking Control that only uses the gradient. The comparison is done by means of PSIM simulations and it shows the different transient behaviors and the faster response of the Newton-like Extremum-Seeking Control solution.

  5. Newton-Cartan supergravity with torsion and Schrödinger supergravity

    International Nuclear Information System (INIS)

    Bergshoeff, Eric; Rosseel, Jan; Zojer, Thomas

    2015-01-01

    We derive a torsionfull version of three-dimensional N=2 Newton-Cartan supergravity using a non-relativistic notion of the superconformal tensor calculus. The “superconformal” theory that we start with is Schrödinger supergravity which we obtain by gauging the Schrödinger superalgebra. We present two non-relativistic N=2 matter multiplets that can be used as compensators in the superconformal calculus. They lead to two different off-shell formulations which, in analogy with the relativistic case, we call “old minimal” and “new minimal” Newton-Cartan supergravity. We find similarities but also point out some differences with respect to the relativistic case.

  6. Newton-Cartan supergravity with torsion and Schrödinger supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Bergshoeff, Eric [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Rosseel, Jan [Institute for Theoretical Physics, Vienna University of Technology,Wiedner Hauptstr. 8-10/136, A-1040 Vienna (Austria); Albert Einstein Center for Fundamental Physics, University of Bern,Sidlerstrasse 5, 3012 Bern (Switzerland); Zojer, Thomas [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands)

    2015-11-25

    We derive a torsionfull version of three-dimensional N=2 Newton-Cartan supergravity using a non-relativistic notion of the superconformal tensor calculus. The “superconformal” theory that we start with is Schrödinger supergravity which we obtain by gauging the Schrödinger superalgebra. We present two non-relativistic N=2 matter multiplets that can be used as compensators in the superconformal calculus. They lead to two different off-shell formulations which, in analogy with the relativistic case, we call “old minimal” and “new minimal” Newton-Cartan supergravity. We find similarities but also point out some differences with respect to the relativistic case.

  7. Enlarging the bounds of moral philosophy: Why did Isaac Newton conclude the Opticks the way he did?

    Science.gov (United States)

    Henry, John

    2017-01-01

    This paper draws attention to the remarkable closing words of Isaac Newton's Optice (1706) and subsequent editions of the Opticks (1718, 1721), and tries to suggest why Newton chose to conclude his book with a puzzling allusion to his own unpublished conclusions about the history of religion. Newton suggests in this concluding passage that the bounds of moral philosophy will be enlarged as natural philosophy is ‘perfected’. Asking what Newton might have had in mind, the paper first considers the idea that he was foreshadowing the ‘moral Newtonianism’ developed later in the eighteenth century; then it considers the idea that he was perhaps pointing to developments in natural theology. Finally, the paper suggests that Newton wanted to at least signal the importance of attempting to recover the true original religion, and perhaps was hinting at his intention to publish his own extensive research on the history of the Church.

  8. Newton-Cartan supergravity with torsion and Schrodinger supergravity

    NARCIS (Netherlands)

    Bergshoeff, Eric; Rosseel, Jan; Zojer, Thomas

    2015-01-01

    We derive a torsionfull version of three-dimensional N - 2 Newton-Cartan supergravity using a non-relativistic notion of the superconformal tensor calculus. The "superconformal" theory that we start with is Schrodinger supergravity which we obtain by gauging the Schrodinger superalgebra. We present

  9. Torsional Newton-Cartan geometry and the Schrodinger algebra

    NARCIS (Netherlands)

    Bergshoeff, Eric A.; Hartong, Jelle; Rosseel, Jan

    2015-01-01

    We show that by gauging the Schrodinger algebra with critical exponent z and imposing suitable curvature constraints, that make diffeomorphisms equivalent to time and space translations, one obtains a geometric structure known as (twistless) torsional Newton-Cartan geometry (TTNC). This is a version

  10. Emilie du Châtelet between Leibniz and Newton

    CERN Document Server

    Hagengruber, Ruth

    2012-01-01

    This book describes Emilie du Chatelet known as "Emilia Newtonmania", and her innovative and outstanding position within the controversy between Newton and Leibniz, one of the fundamental scientific discourses of her time.

  11. 3D CSEM data inversion using Newton and Halley class methods

    Science.gov (United States)

    Amaya, M.; Hansen, K. R.; Morten, J. P.

    2016-05-01

    For the first time in 3D controlled source electromagnetic data inversion, we explore the use of the Newton and the Halley optimization methods, which may show their potential when the cost function has a complex topology. The inversion is formulated as a constrained nonlinear least-squares problem which is solved by iterative optimization. These methods require the derivatives up to second order of the residuals with respect to model parameters. We show how Green's functions determine the high-order derivatives, and develop a diagrammatical representation of the residual derivatives. The Green's functions are efficiently calculated on-the-fly, making use of a finite-difference frequency-domain forward modelling code based on a multi-frontal sparse direct solver. This allow us to build the second-order derivatives of the residuals keeping the memory cost in the same order as in a Gauss-Newton (GN) scheme. Model updates are computed with a trust-region based conjugate-gradient solver which does not require the computation of a stabilizer. We present inversion results for a synthetic survey and compare the GN, Newton, and super-Halley optimization schemes, and consider two different approaches to set the initial trust-region radius. Our analysis shows that the Newton and super-Halley schemes, using the same regularization configuration, add significant information to the inversion so that the convergence is reached by different paths. In our simple resistivity model examples, the convergence speed of the Newton and the super-Halley schemes are either similar or slightly superior with respect to the convergence speed of the GN scheme, close to the minimum of the cost function. Due to the current noise levels and other measurement inaccuracies in geophysical investigations, this advantageous behaviour is at present of low consequence, but may, with the further improvement of geophysical data acquisition, be an argument for more accurate higher-order methods like those

  12. Modified Block Newton method for the lambda modes problem

    Energy Technology Data Exchange (ETDEWEB)

    González-Pintor, S., E-mail: segonpin@isirym.upv.es [Departamento de Ingeniería Química y Nuclear, Universidad Politécnica de Valencia, Camino de Vera 14, 46022 Valencia (Spain); Ginestar, D., E-mail: dginestar@mat.upv.es [Instituto de Matemática Multidisciplinar, Universidad Politécnica de Valencia, Camino de Vera 14, 46022 Valencia (Spain); Verdú, G., E-mail: gverdu@iqn.upv.es [Departamento de Ingeniería Química y Nuclear, Universidad Politécnica de Valencia, Camino de Vera 14, 46022 Valencia (Spain)

    2013-06-15

    Highlights: ► The Modal Method is based on expanding the solution in a set of dominant modes. ► Updating the set of dominant modes improve its performance. ► A Modified Block Newton Method, which use previous calculated modes, is proposed. ► The method exhibits a very good local convergence with few iterations. ► Good performance results are also obtained for heavy perturbations. -- Abstract: To study the behaviour of nuclear power reactors it is necessary to solve the time dependent neutron diffusion equation using either a rectangular mesh for PWR and BWR reactors or a hexagonal mesh for VVER reactors. This problem can be solved by means of a modal method, which uses a set of dominant modes to expand the neutron flux. For the transient calculations using the modal method with a moderate number of modes, these modes must be updated each time step to maintain the accuracy of the solution. The updating modes process is also interesting to study perturbed configurations of a reactor. A Modified Block Newton method is studied to update the modes. The performance of the Newton method has been tested for a steady state perturbation analysis of two 2D hexagonal reactors, a perturbed configuration of the IAEA PWR 3D reactor and two configurations associated with a boron dilution transient in a BWR reactor.

  13. A smooth generalized Newton method for a class of non-smooth equations

    International Nuclear Information System (INIS)

    Uko, L. U.

    1995-10-01

    This paper presents a Newton-type iterative scheme for finding the zero of the sum of a differentiable function and a multivalued maximal monotone function. Local and semi-local convergence results are proved for the Newton scheme, and an analogue of the Kantorovich theorem is proved for the associated modified scheme that uses only one Jacobian evaluation for the entire iteration. Applications in variational inequalities are discussed, and an illustrative numerical example is given. (author). 24 refs

  14. Management applications of discontinuity theory | Science ...

    Science.gov (United States)

    1.Human impacts on the environment are multifaceted and can occur across distinct spatiotemporal scales. Ecological responses to environmental change are therefore difficult to predict, and entail large degrees of uncertainty. Such uncertainty requires robust tools for management to sustain ecosystem goods and services and maintain resilient ecosystems. 2.We propose an approach based on discontinuity theory that accounts for patterns and processes at distinct spatial and temporal scales, an inherent property of ecological systems. Discontinuity theory has not been applied in natural resource management and could therefore improve ecosystem management because it explicitly accounts for ecological complexity. 3.Synthesis and applications. We highlight the application of discontinuity approaches for meeting management goals. Specifically, discontinuity approaches have significant potential to measure and thus understand the resilience of ecosystems, to objectively identify critical scales of space and time in ecological systems at which human impact might be most severe, to provide warning indicators of regime change, to help predict and understand biological invasions and extinctions and to focus monitoring efforts. Discontinuity theory can complement current approaches, providing a broader paradigm for ecological management and conservation This manuscript provides insight on using discontinuity approaches to aid in managing complex ecological systems. In part

  15. Newton's First Law: A Learning Cycle Approach

    Science.gov (United States)

    McCarthy, Deborah

    2005-01-01

    To demonstrate how Newton's first law of motion applies to students' everyday lives, the author developed a learning cycle series of activities on inertia. The discrepant event at the heart of these activities is sure to elicit wide-eyed stares and puzzled looks from students, but also promote critical thinking and help bring an abstract concept…

  16. Low-Dose Aspirin Discontinuation and Risk of Cardiovascular Events: A Swedish Nationwide, Population-Based Cohort Study.

    Science.gov (United States)

    Sundström, Johan; Hedberg, Jakob; Thuresson, Marcus; Aarskog, Pernilla; Johannesen, Kasper Munk; Oldgren, Jonas

    2017-09-26

    There are increasing concerns about risks associated with aspirin discontinuation in the absence of major surgery or bleeding. We investigated whether long-term low-dose aspirin discontinuation and treatment gaps increase the risk of cardiovascular events. We performed a cohort study of 601 527 users of low-dose aspirin for primary or secondary prevention in the Swedish prescription register between 2005 and 2009 who were >40 years of age, were free from previous cancer, and had ≥80% adherence during the first observed year of treatment. Cardiovascular events were identified with the Swedish inpatient and cause-of-death registers. The first 3 months after a major bleeding or surgical procedure were excluded from the time at risk. During a median of 3.0 years of follow-up, 62 690 cardiovascular events occurred. Patients who discontinued aspirin had a higher rate of cardiovascular events than those who continued (multivariable-adjusted hazard ratio, 1.37; 95% confidence interval, 1.34-1.41), corresponding to an additional cardiovascular event observed per year in 1 of every 74 patients who discontinue aspirin. The risk increased shortly after discontinuation and did not appear to diminish over time. In long-term users, discontinuation of low-dose aspirin in the absence of major surgery or bleeding was associated with a >30% increased risk of cardiovascular events. Adherence to low-dose aspirin treatment in the absence of major surgery or bleeding is likely an important treatment goal. © 2017 American Heart Association, Inc.

  17. CAIXA: a catalogue of AGN in the XMM-Newton archive. III. Excess variance analysis

    NARCIS (Netherlands)

    Ponti, G.; Papadakis, I.; Bianchi, S.; Guainazzi, M.; Matt, G.; Uttley, P.; Bonilla, N.F.

    2012-01-01

    Context. We report on the results of the first XMM-Newton systematic "excess variance" study of all the radio quiet, X-ray un-obscured AGN. The entire sample consist of 161 sources observed by XMM-Newton for more than 10 ks in pointed observations, which is the largest sample used so far to study

  18. Improved Quasi-Newton method via PSB update for solving systems of nonlinear equations

    Science.gov (United States)

    Mamat, Mustafa; Dauda, M. K.; Waziri, M. Y.; Ahmad, Fadhilah; Mohamad, Fatma Susilawati

    2016-10-01

    The Newton method has some shortcomings which includes computation of the Jacobian matrix which may be difficult or even impossible to compute and solving the Newton system in every iteration. Also, the common setback with some quasi-Newton methods is that they need to compute and store an n × n matrix at each iteration, this is computationally costly for large scale problems. To overcome such drawbacks, an improved Method for solving systems of nonlinear equations via PSB (Powell-Symmetric-Broyden) update is proposed. In the proposed method, the approximate Jacobian inverse Hk of PSB is updated and its efficiency has improved thereby require low memory storage, hence the main aim of this paper. The preliminary numerical results show that the proposed method is practically efficient when applied on some benchmark problems.

  19. Identifying the factors underlying discontinuation of triptans.

    Science.gov (United States)

    Wells, Rebecca E; Markowitz, Shira Y; Baron, Eric P; Hentz, Joseph G; Kalidas, Kavita; Mathew, Paul G; Halker, Rashmi; Dodick, David W; Schwedt, Todd J

    2014-02-01

    To identify factors associated with triptan discontinuation among migraine patients. It is unclear why many migraine patients who are prescribed triptans discontinue this treatment. This study investigated correlates of triptan discontinuation with a focus on potentially modifiable factors to improve compliance. This multicenter cross-sectional survey (n = 276) was performed at US tertiary care headache clinics. Headache fellows who were members of the American Headache Society Headache Fellows Research Consortium recruited episodic and chronic migraine patients who were current triptan users (use within prior 3 months and for ≥1 year) or past triptan users (no use within 6 months; prior use within 2 years). Univariate analyses were first completed to compare current triptan users to past users for: migraine characteristics, other migraine treatments, triptan education, triptan efficacy, triptan side effects, type of prescribing provider, Migraine Disability Assessment (MIDAS) scores and Beck Depression Inventory (BDI) scores. Then, a multivariable logistic regression model was selected from all possible combinations of predictor variables to determine the factors that best correlated with triptan discontinuation. Compared with those still using triptans (n = 207), those who had discontinued use (n = 69) had higher rates of medication overuse (30 vs. 18%, P = .04) and were more likely to have ever used opioids for migraine treatment (57 vs. 38%, P = .006) as well as higher MIDAS (mean 63 vs. 37, P = .001) and BDI scores (mean 10.4 vs. 7.4, P = .009). Compared with discontinued users, current triptan users were more likely to have had their triptan prescribed by a specialist (neurologist, headache specialist, or pain specialist) (74 vs. 54%, P = .002) and were more likely to report headache resolution (53 vs. 14%, P  24 (2.6, [1.5, 4.6]), BDI >4 (2.5, [1.4, 4.5]), and a history of ever using opioids for migraine therapy (2.2, [1

  20. Newton-Hooke spacetimes, Hpp-waves and the cosmological constant

    International Nuclear Information System (INIS)

    Gibbons, G W; Patricot, C E

    2003-01-01

    We show explicitly how the Newton-Hooke groups N ± 10 act as symmetries of the equations of motion of non-relativistic cosmological models with a cosmological constant. We give the action on the associated non-relativistic spacetimes M ± 4 and show how these may be obtained from a null reduction of five-dimensional homogeneous pp-wave Lorentzian spacetimes M ± 5 . This allows us to realize the Newton-Hooke groups and their Bargmann-type central extensions as subgroups of the isometry groups of M ± 5 . The extended Schroedinger-type conformal group is identified and its action on the equations of motion given. The non-relativistic conformal symmetries also have applications to time-dependent harmonic oscillators. Finally we comment on a possible application to Gao's generalization of the matrix model

  1. Long-interval Cytapheresis as a Novel Therapeutic Strategy Leading to Dosage Reduction and Discontinuation of Steroids in Steroid-dependent Ulcerative Colitis.

    Science.gov (United States)

    Iizuka, Masahiro; Etou, Takeshi; Kumagai, Makoto; Matsuoka, Atsushi; Numata, Yuka; Sagara, Shiho

    2017-10-15

    Objective This study was performed to confirm the efficacy of long-interval cytapheresis on steroid-dependent ulcerative colitis (UC). Methods To discontinue steroids in patients with steroid-dependent UC, we previously designed a novel regimen of cytapheresis (CAP), which we termed "long-interval cytapheresis (LI-CAP)", in which CAP was performed as one session every two or three weeks and continued during the whole period of tapering steroid dosage. In this study, we performed LI-CAP therapy 20 times (11 male and 9 female; mean age 41.8 years) between April 2010 and April 2015 for 14 patients with steroid-dependent UC. We evaluated the effectiveness of LI-CAP by examining the improvement in Lichtiger's clinical activity index (CAI), the rate of clinical remission, and the rate of steroid discontinuation. We further examined the rate of sustained steroid-free clinical remission at 6 and 12 months after LI-CAP in patients who successfully discontinued steroid-use after LI-CAP. The primary endpoint was the rate of discontinuation of steroids after LI-CAP. Results The mean CAI score before LI-CAP (7.550) significantly decreased to 1.65 after LI-CAP (psteroid discontinuation after LI-CAP was 60.0%. The mean dose of daily prednisolone was significantly decreased after LI-CAP (2.30 mg) compared with that before therapy (17.30 mg) (p=0.0003). The rate of sustained steroid-free clinical remission after LI-CAP was 66.7% at 6 months and 66.7% at 12 months. Conclusion We confirmed that LI-CAP has therapeutic effects on reducing the dosage and discontinuing steroids in patients with steroid-dependent UC.

  2. Study on the algorithm for Newton-Rapson iteration interpolation of NURBS curve and simulation

    Science.gov (United States)

    Zhang, Wanjun; Gao, Shanping; Cheng, Xiyan; Zhang, Feng

    2017-04-01

    In order to solve the problems of Newton-Rapson iteration interpolation method of NURBS Curve, Such as interpolation time bigger, calculation more complicated, and NURBS curve step error are not easy changed and so on. This paper proposed a study on the algorithm for Newton-Rapson iteration interpolation method of NURBS curve and simulation. We can use Newton-Rapson iterative that calculate (xi, yi, zi). Simulation results show that the proposed NURBS curve interpolator meet the high-speed and high-accuracy interpolation requirements of CNC systems. The interpolation of NURBS curve should be finished. The simulation results show that the algorithm is correct; it is consistent with a NURBS curve interpolation requirements.

  3. 27 CFR 478.127 - Discontinuance of business.

    Science.gov (United States)

    2010-04-01

    ... business was located: Provided, however, Where State law or local ordinance requires the delivery of... 27 Alcohol, Tobacco Products and Firearms 3 2010-04-01 2010-04-01 false Discontinuance of business... Records § 478.127 Discontinuance of business. Where a licensed business is discontinued and succeeded by a...

  4. The XMM-Newton Science Archive and its integration into ESASky

    Science.gov (United States)

    Loiseau, N.; Baines, D.; Colomo, E.; Giordano, F.; Merín, B.; Racero, E.; Rodríguez, P.; Salgado, J.; Sarmiento, M.

    2017-07-01

    We describe the variety of functionalities of the XSA (XMM-Newton Science Archive) that allow to search and access the XMM-Newton data and catalogues. The web interface http://nxsa.esac.esa.int/ is very flexible allowing different kinds of searches by a single position or target name, or by a list of targets, with several selecting options (target type, text in the abstract, etc.), and with several display options. The resulting data can be easily broadcast to Virtual Observatory (VO) facilities for a first look analysis, or for cross-matching the results with info from other observatories. Direct access via URL or command line are also possible for scripts usage, or to link XMM-Newton data from other interfaces like Vizier, ADS, etc. The full metadata content of the XSA can be queried through the TAP (Table access Protocol) via ADQL (Astronomical Data Query Language). We present also the roadmap for future improvements of the XSA including the integration of the Upper Limit server, the on-the-fly data analysis, and the interactive visualization of EPIC sources spectra and light curves and RGS spectra, among other advanced features. Within this modern visualization philosophy XSA is also being integrated into ESASky (http://sky.esa.int). ESASky is the science-driven multi-wavelength discovery portal for all the ESA Astronomy Missions (Integral, HST, Herschel, Suzaku, Planck, etc.), and other space and ground telescope data. The system offers progressive multi-resolution all-sky projections of full mission datasets using HiPS, a new generation of HEALPix projections developed by CDS, precise footprints to connect to individual observations, and direct access to science-ready data from the underlying mission specific science archives. XMM-Newton EPIC and OM all-sky HiPS maps, catalogues and links to the observations are available through ESASky.

  5. The continuous, desingularized Newton method for meromorphic functions

    NARCIS (Netherlands)

    Jongen, H.Th.; Jonker, P.; Twilt, F.

    For any (nonconstant) meromorphic function, we present a real analytic dynamical system, which may be interpreted as an infinitesimal version of Newton's method for finding its zeros. A fairly complete description of the local and global features of the phase portrait of such a system is obtained

  6. Time-dependent liquid metal flows with free convection and free surfaces

    International Nuclear Information System (INIS)

    McClelland, M.A.

    1990-11-01

    A finite element analysis is given for time-dependent liquid metal flows with free convection and free surfaces. Consideration is given to a two-dimensional shallow trough with vertical walls maintained at different temperatures. The spatial formulation incorporates mixed Lagrangian approximations to the velocity, pressure, temperature, and interface position. The time integration method is performed using the Trapezoid Rule with step-size control. The Galerkin method is employed to reduce the problem to a set of nonlinear algebraic equations which are solved with the Newton-Raphson method. Calculations are performed for conditions relevant to the electron beam vaporization of refractory metals. The Prandtl number is 0.015, and Grashof numbers are in the transition region between laminar and turbulent flow. The results reveal the effects of flow intensity, surface-tension gradients, and mesh and time-step refinement

  7. Discontinuity formulas for multiparticle amplitudes

    International Nuclear Information System (INIS)

    Stapp, H.P.

    1976-03-01

    It is shown how discontinuity formulas for multiparticle scattering amplitudes are derived from unitarity and analyticity. The assumed analyticity property is the normal analytic structure, which was shown to be equivalent to the space-time macrocausality condition. The discontinuity formulas to be derived are the basis of multi-particle fixed-t dispersion relations

  8. Hořava-Lifshitz gravity from dynamical Newton-Cartan geometry

    International Nuclear Information System (INIS)

    Hartong, Jelle; Obers, Niels A.

    2015-01-01

    Recently it has been established that torsional Newton-Cartan (TNC) geometry is the appropriate geometrical framework to which non-relativistic field theories couple. We show that when these geometries are made dynamical they give rise to Hořava-Lifshitz (HL) gravity. Projectable HL gravity corresponds to dynamical Newton-Cartan (NC) geometry without torsion and non-projectable HL gravity corresponds to dynamical NC geometry with twistless torsion (hypersurface orthogonal foliation). We build a precise dictionary relating all fields (including the scalar khronon), their transformations and other properties in both HL gravity and dynamical TNC geometry. We use TNC invariance to construct the effective action for dynamical twistless torsional Newton-Cartan geometries in 2+1 dimensions for dynamical exponent 1

  9. Hořava-Lifshitz gravity from dynamical Newton-Cartan geometry

    Energy Technology Data Exchange (ETDEWEB)

    Hartong, Jelle [Physique Théorique et Mathématique and International Solvay Institutes, Université Libre de Bruxelles,C.P. 231, 1050 Brussels (Belgium); Obers, Niels A. [The Niels Bohr Institute, Copenhagen University,Blegdamsvej 17, DK-2100 Copenhagen Ø (Denmark)

    2015-07-29

    Recently it has been established that torsional Newton-Cartan (TNC) geometry is the appropriate geometrical framework to which non-relativistic field theories couple. We show that when these geometries are made dynamical they give rise to Hořava-Lifshitz (HL) gravity. Projectable HL gravity corresponds to dynamical Newton-Cartan (NC) geometry without torsion and non-projectable HL gravity corresponds to dynamical NC geometry with twistless torsion (hypersurface orthogonal foliation). We build a precise dictionary relating all fields (including the scalar khronon), their transformations and other properties in both HL gravity and dynamical TNC geometry. We use TNC invariance to construct the effective action for dynamical twistless torsional Newton-Cartan geometries in 2+1 dimensions for dynamical exponent 1

  10. A multi-reference filtered-x-Newton narrowband algorithm for active isolation of vibration and experimental investigations

    Science.gov (United States)

    Wang, Chun-yu; He, Lin; Li, Yan; Shuai, Chang-geng

    2018-01-01

    In engineering applications, ship machinery vibration may be induced by multiple rotational machines sharing a common vibration isolation platform and operating at the same time, and multiple sinusoidal components may be excited. These components may be located at frequencies with large differences or at very close frequencies. A multi-reference filtered-x Newton narrowband (MRFx-Newton) algorithm is proposed to control these multiple sinusoidal components in an MIMO (multiple input and multiple output) system, especially for those located at very close frequencies. The proposed MRFx-Newton algorithm can decouple and suppress multiple sinusoidal components located in the same narrow frequency band even though such components cannot be separated from each other by a narrowband-pass filter. Like the Fx-Newton algorithm, good real-time performance is also achieved by the faster convergence speed brought by the 2nd-order inverse secondary-path filter in the time domain. Experiments are also conducted to verify the feasibility and test the performance of the proposed algorithm installed in an active-passive vibration isolation system in suppressing the vibration excited by an artificial source and air compressor/s. The results show that the proposed algorithm not only has comparable convergence rate as the Fx-Newton algorithm but also has better real-time performance and robustness than the Fx-Newton algorithm in active control of the vibration induced by multiple sound sources/rotational machines working on a shared platform.

  11. Testing discontinuities in nonparametric regression

    KAUST Repository

    Dai, Wenlin

    2017-01-19

    In nonparametric regression, it is often needed to detect whether there are jump discontinuities in the mean function. In this paper, we revisit the difference-based method in [13 H.-G. Müller and U. Stadtmüller, Discontinuous versus smooth regression, Ann. Stat. 27 (1999), pp. 299–337. doi: 10.1214/aos/1018031100

  12. Testing discontinuities in nonparametric regression

    KAUST Repository

    Dai, Wenlin; Zhou, Yuejin; Tong, Tiejun

    2017-01-01

    In nonparametric regression, it is often needed to detect whether there are jump discontinuities in the mean function. In this paper, we revisit the difference-based method in [13 H.-G. Müller and U. Stadtmüller, Discontinuous versus smooth regression, Ann. Stat. 27 (1999), pp. 299–337. doi: 10.1214/aos/1018031100

  13. Excursions in fluvial (dis)continuity

    Science.gov (United States)

    Grant, Gordon E.; O'Connor, James E.; Safran, Elizabeth

    2017-01-01

    Lurking below the twin concepts of connectivity and disconnectivity are their first, and in some ways, richer cousins: continuity and discontinuity. In this paper we explore how continuity and discontinuity represent fundamental and complementary perspectives in fluvial geomorphology, and how these perspectives inform and underlie our conceptions of connectivity in landscapes and rivers. We examine the historical roots of continuum and discontinuum thinking, and how much of our understanding of geomorphology rests on contrasting views of continuity and discontinuity. By continuum thinking we refer to a conception of geomorphic processes as well as geomorphic features that are expressed along continuous gradients without abrupt changes, transitions, or thresholds. Balance of forces, graded streams, and hydraulic geometry are all examples of this perspective. The continuum view has played a prominent role in diverse disciplinary fields, including ecology, paleontology, and evolutionary biology, in large part because it allows us to treat complex phenomena as orderly progressions and invoke or assume equilibrium processes that introduce order and prediction into our sciences.In contrast the discontinuous view is a distinct though complementary conceptual framework that incorporates non-uniform, non-progressive, and non-equilibrium thinking into understanding geomorphic processes and landscapes. We distinguish and discuss examples of three different ways in which discontinuous thinking can be expressed: 1) discontinuous spatial arrangements or singular events; 2) specific process domains generally associated with thresholds, either intrinsic or extrinsic; and 3) physical dynamics or changes in state, again often threshold-linked. In moving beyond the continuous perspective, a fertile set of ideas comes into focus: thresholds, non-equilibrium states, heterogeneity, catastrophe. The range of phenomena that is thereby opened up to scientific exploration similarly expands

  14. Discontinuation of tyrosine kinase inhibitors in chronic myeloid leukemia: Recommendations for clinical practice from the French Chronic Myeloid Leukemia Study Group.

    Science.gov (United States)

    Rea, Delphine; Ame, Shanti; Berger, Marc; Cayuela, Jean-Michel; Charbonnier, Aude; Coiteux, Valérie; Cony-Makhoul, Pascale; Dubruille, Viviane; Dulucq, Stéphanie; Etienne, Gabriel; Legros, Laurence; Nicolini, Franck; Roche-Lestienne, Catherine; Escoffre-Barbe, Martine; Gardembas, Martine; Guerci-Bresler, Agnès; Johnson-Ansah, Hyacinthe; Rigal-Huguet, Françoise; Rousselot, Philippe; Mahon, François-Xavier

    2018-05-03

    The ultimate goal of chronic myeloid leukemia management in the tyrosine kinase inhibitor (TKI) era for patients who obtain deep molecular responses is maintaining a durable off-treatment response after treatment discontinuation; this situation is called treatment-free remission (TFR). Knowledge accumulated during the last 10 years justifies moving TFR strategies from research to clinical practice. Twenty experts from the French Chronic Myeloid Leukemia Study Group (France Intergroupe des Leucémies Myéloïdes Chroniques), including 17 hematologists, 2 molecular biologists, and 1 cytogeneticist, critically reviewed published data with the goal of developing evidence-based recommendations for TKI discontinuation in clinical practice. Clinically relevant questions were addressed, including the selection of candidate patients (with known prognostic factors for outcomes taken into account), detailed monitoring procedures during the treatment-free phase, a definition of relapse requiring therapy resumption, and monitoring after treatment reintroduction. This work presents consensus statements with the aim of guiding physicians and biologists by means of pragmatic recommendations for safe TKI discontinuation in daily practice. Cancer 2018. © 2018 American Cancer Society. © 2018 American Cancer Society.

  15. Green's function approach to neutron flux discontinuities

    International Nuclear Information System (INIS)

    Saad, E.A.; El-Wakil, S.A.

    1980-01-01

    The present work is devoted to the presentation of analytical method for the calculation of elastically and inelastically slowed down neutrons in an infinite non-absorbing medium. On the basis of the central limit theory (CLT) and the integral transform technique the slowing down equation including inelastic scattering, in terms of the Green function of elastic scattering, is solved. The Green function is decomposed according to the number of collisions. Placzec discontinuity associated with elastic scattering in addition to two discontinuities due to inelastic scattering are investigated. Numerical calculations for Fe 56 show that the elastic discontinuity produces about 41.8% change in the collision density whilst the ratio of the inelastic collision density discontinuity at qsub(o)sup(+) to the Placzec discontinuity at usub(o) + 1n 1/oc gives 55.7 percent change. (author)

  16. Demonstrating Kinematics and Newton's Laws in a Jump

    Science.gov (United States)

    Kamela, Martin

    2007-01-01

    When students begin the study of Newton's laws they are generally comfortable with static equilibrium type problems, but dynamic examples where forces are not constant are more challenging. The class exercise presented here helps students to develop an intuitive grasp of both the position-velocity-acceleration relation and the force-acceleration…

  17. Gamow on Newton: Another Look at Centripetal Acceleration

    Science.gov (United States)

    Corrao, Christian

    2012-01-01

    Presented here is an adaptation of George Gamow's derivation of the centripetal acceleration formula as it applies to Earth's orbiting Moon. The derivation appears in Gamows short but engaging book "Gravity", first published in 1962, and is essentially a distillation of Newton's work. While "TPT" contributors have offered several insightful…

  18. Proving Newton Right or Wrong with Blur Photography

    Science.gov (United States)

    Davidhazy, Andrew

    2012-01-01

    Sir Isaac Newton determined that the acceleration constant for gravity was 32 ft./per/sec/sec. This is a fact that most students become familiar with over time and through various means. This article describes how this can be demonstrated in a technology classroom using simple photographic equipment. (Contains 5 figures.)

  19. Self-adaptive Newton-based iteration strategy for the LES of turbulent multi-scale flows

    International Nuclear Information System (INIS)

    Daude, F.; Mary, I.; Comte, P.

    2014-01-01

    An improvement of the efficiency of implicit schemes based on Newton-like methods for the simulation of turbulent flows by compressible LES or DNS is proposed. It hinges on a zonal Self-Adaptive Newton method (hereafter denoted SAN), capable of taking advantage of Newton convergence rate heterogeneities in multi-scale flow configurations due to a strong spatial variation of the mesh resolution, such as transitional or turbulent flows controlled by small actuators or passive devices. Thanks to a predictor of the local Newton convergence rate, SAN provides computational savings by allocating resources in regions where they are most needed. The consistency with explicit time integration and the efficiency of the method are checked in three test cases: - The standard test-case of 2-D linear advection of a vortex, on three different two-block grids. - Transition to 3-D turbulence on the lee-side of an airfoil at high angle of attack, which features a challenging laminar separation bubble with a turbulent reattachment. - A passively-controlled turbulent transonic cavity flow, for which the CPU time is reduced by a factor of 10 with respect to the baseline algorithm, illustrates the interest of the proposed algorithm. (authors)

  20. On topological modifications of Newton's law

    International Nuclear Information System (INIS)

    Floratos, E.G.; Leontaris, G.K.

    2012-01-01

    Recent cosmological data for very large distances challenge the validity of the standard cosmological model. Motivated by the observed spatial flatness the accelerating expansion and the various anisotropies with preferred axes in the universe we examine the consequences of the simple hypothesis that the three-dimensional space has a global R 2 × S 1 topology. We take the radius of the compactification to be the observed cosmological scale beyond which the accelerated expansion starts. We derive the induced corrections to the Newton's gravitational potential and we find that for distances smaller than the S 1 radius the leading 1/r-term is corrected by convergent power series of multipole form in the polar angle making explicit the induced anisotropy by the compactified third dimension. On the other hand, for distances larger than the compactification scale the asymptotic behavior of the potential exhibits a logarithmic dependence with exponentially small corrections. The change of Newton's force from 1/r 2 to 1/r behavior implies a weakening of the deceleration for the expanding universe. Such topologies can also be created locally by standard Newtonian axially symmetric mass distributions with periodicity along the symmetry axis. In such cases we can use our results to obtain measurable modifications of Newtonian orbits for small distances and flat rotation spectra, for large distances at the galactic level

  1. Special relativity, electrodynamics, and general relativity from Newton to Einstein

    CERN Document Server

    Kogut, John B

    2018-01-01

    Special Relativity, Electrodynamics and General Relativity: From Newton to Einstein, Second Edition, is intended to teach (astro)physics, astronomy, and cosmology students how to think about special and general relativity in a fundamental, but accessible, way. Designed to render any reader a "master of relativity," everything on the subject is comprehensible and derivable from first principles. The book emphasizes problem solving, contains abundant problem sets, and is conveniently organized to meet the needs of both student and instructor. Fully revised, updated and expanded second edition Includes new chapters on magnetism as a consequence of relativity and electromagnetism Contains many improved and more engaging figures Uses less algebra resulting in more efficient derivations Enlarged discussion of dynamics and the relativistic version of Newton's second law

  2. Neural networks with discontinuous/impact activations

    CERN Document Server

    Akhmet, Marat

    2014-01-01

    This book presents as its main subject new models in mathematical neuroscience. A wide range of neural networks models with discontinuities are discussed, including impulsive differential equations, differential equations with piecewise constant arguments, and models of mixed type. These models involve discontinuities, which are natural because huge velocities and short distances are usually observed in devices modeling the networks. A discussion of the models, appropriate for the proposed applications, is also provided. This book also: Explores questions related to the biological underpinning for models of neural networks\\ Considers neural networks modeling using differential equations with impulsive and piecewise constant argument discontinuities Provides all necessary mathematical basics for application to the theory of neural networks Neural Networks with Discontinuous/Impact Activations is an ideal book for researchers and professionals in the field of engineering mathematics that have an interest in app...

  3. VCODE, Ordinary Differential Equation Solver for Stiff and Non-Stiff Problems

    International Nuclear Information System (INIS)

    Cohen, Scott D.; Hindmarsh, Alan C.

    2001-01-01

    1 - Description of program or function: CVODE is a package written in ANSI standard C for solving initial value problems for ordinary differential equations. It solves both stiff and non stiff systems. In the stiff case, it includes a variety of options for treating the Jacobian of the system, including dense and band matrix solvers, and a preconditioned Krylov (iterative) solver. 2 - Method of solution: Integration is by Adams or BDF (Backward Differentiation Formula) methods, at user option. Corrector iteration is by functional iteration or Newton iteration. For the solution of linear systems within Newton iteration, users can select a dense solver, a band solver, a diagonal approximation, or a preconditioned Generalized Minimal Residual (GMRES) solver. In the dense and band cases, the user can supply a Jacobian approximation or let CVODE generate it internally. In the GMRES case, the pre-conditioner is user-supplied

  4. Newton's Law: Not so Simple after All

    Science.gov (United States)

    Robertson, William C.; Gallagher, Jeremiah; Miller, William

    2004-01-01

    One of the most basic concepts related to force and motion is Newton's first law, which essentially states, "An object at rest tends to remain at rest unless acted on by an unbalanced force. An object in motion in a straight line tends to remain in motion in a straight line unless acted upon by an unbalanced force." Judging by the time and space…

  5. Delirium Associated With Fluoxetine Discontinuation: A Case Report.

    Science.gov (United States)

    Fan, Kuang-Yuan; Liu, Hsing-Cheng

    Withdrawal symptoms on selective serotonin reuptake inhibitor (SSRI) discontinuation have raised clinical attention increasingly. However, delirium is rarely reported in the SSRI discontinuation syndrome. We report a case of delirium developing after fluoxetine discontinuation in a 65-year-old female patient with major depressive disorder. She experienced psychotic depression with limited response to treatment of fluoxetine 40 mg/d and quetiapine 100 mg/d for 3 months. After admission, we tapered fluoxetine gradually in 5 days because of its limited effect. However, delirious pictures developed 2 days after we stopped fluoxetine. Three days later, we added back fluoxetine 10 mg/d. Her delirious features gradually improved, and the clinical presentation turned into previous psychotic depression state. We gradually increased the medication to fluoxetine 60 mg/d and olanzapine 20 mg/d in the following 3 weeks. Her psychotic symptoms decreased, and there has been no delirious picture noted thereafter. Delirium associated with fluoxetine discontinuation is a much rarer complication in SSRI discontinuation syndrome. The symptoms of SSRI discontinuation syndrome may be attributable to a rapid decrease in serotonin availability. In general, the shorter the half-life of any medication, the greater the likelihood patients will experience discontinuation symptoms. Genetic vulnerability might be a potential factor to explain that SSRI discontinuation syndrome also occurred rapidly in people taking long-half-life fluoxetine. The genetic polymorphisms of both pharmacokinetic and pharmacodynamic pathways might be potentially associated with SSRI discontinuation syndrome.

  6. Discretization errors at free boundaries of the Grad-Schlueter-Shafranov equation

    International Nuclear Information System (INIS)

    Meyer-Spasche, R.; Fornberg, B.

    1990-10-01

    The numerical error of standard finite-difference schemes is analyzed at free boundaries of the Grad-Schlueter-Shafranov equation of plasma physics. A simple correction strategy is devised to eliminate (to leading order) the errors which arise as the free boundary crosses the rectangular grid at irregular locations. The resulting scheme can be solved by Gauss-Newton or Inverse iterations, or by multigrid iterations. Extrapolation (from 2nd to 3rd order of accuracy) is possible for the new scheme. (orig.)

  7. A CD with the wishes for the 21st century from thousands of readers of the science magazine "Newton", was buried at the Atlas construction site on 16.03.2000 (handling the CD: Giorgio Riviecco, Editor of "Newton")

    CERN Multimedia

    Laurent Guiraud

    2000-01-01

    A CD with the wishes for the 21st century from thousands of readers of the science magazine "Newton", was buried at the Atlas construction site on 16.03.2000 (handling the CD: Giorgio Riviecco, Editor of "Newton")

  8. An implicit Smooth Particle Hydrodynamic code

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, Charles E. [Univ. of New Mexico, Albuquerque, NM (United States)

    2000-05-01

    An implicit version of the Smooth Particle Hydrodynamic (SPH) code SPHINX has been written and is working. In conjunction with the SPHINX code the new implicit code models fluids and solids under a wide range of conditions. SPH codes are Lagrangian, meshless and use particles to model the fluids and solids. The implicit code makes use of the Krylov iterative techniques for solving large linear-systems and a Newton-Raphson method for non-linear corrections. It uses numerical derivatives to construct the Jacobian matrix. It uses sparse techniques to save on memory storage and to reduce the amount of computation. It is believed that this is the first implicit SPH code to use Newton-Krylov techniques, and is also the first implicit SPH code to model solids. A description of SPH and the techniques used in the implicit code are presented. Then, the results of a number of tests cases are discussed, which include a shock tube problem, a Rayleigh-Taylor problem, a breaking dam problem, and a single jet of gas problem. The results are shown to be in very good agreement with analytic solutions, experimental results, and the explicit SPHINX code. In the case of the single jet of gas case it has been demonstrated that the implicit code can do a problem in much shorter time than the explicit code. The problem was, however, very unphysical, but it does demonstrate the potential of the implicit code. It is a first step toward a useful implicit SPH code.

  9. Newton's 'Principia Mathematica Philosophia' and Planck's elementary constants

    International Nuclear Information System (INIS)

    Rompe, R.; Treder, H.J.

    1987-01-01

    Together with Planck's elementary constants Newton's principles prove a guaranteed basis of physics and 'exact' sciences of all directions. The conceptions in physics are competent at all physical problems as well as technology too. Classical physics was founded in such a way to reach far beyond the physics of macroscopic bodies. (author)

  10. Genius Is Not Immune to Persistent Misconceptions: Conceptual Difficulties Impeding Isaac Newton and Contemporary Physics Students.

    Science.gov (United States)

    Steinberg, Melvin S.; And Others

    Recent research has shown that serious misconceptions frequently survive high school and university instruction in mechanics. It is interesting to inquire whether Newton himself encountered conceptual difficulties before he wrote the "Principia." This paper compares Newton's pre-"Principia" beliefs, based upon his writings,…

  11. Existence and multiplicity of solutions to elliptic problems with discontinuities and free boundary conditions

    Directory of Open Access Journals (Sweden)

    Sabri Bensid

    2010-04-01

    Full Text Available We study the nonlinear elliptic problem with discontinuous nonlinearity $$displaylines{ -Delta u = f(uH(u-mu quadhbox{in } Omega, cr u =h quad hbox{on }partial Omega, }$$ where $H$ is the Heaviside unit function, $f,h$ are given functions and $mu$ is a positive real parameter. The domain $Omega$ is the unit ball in $mathbb{R}^n$ with $ngeq 3$. We show the existence of a positive solution $u$ and a hypersurface separating the region where $-Delta u=0$ from the region where $-Delta u=f(u$. Our method relies on the implicit function theorem and bifurcation analysis.

  12. Newton's Use of the Pendulum to Investigate Fluid Resistance: A Case Study and Some Implications for Teaching about the Nature of Science

    Science.gov (United States)

    Gauld, Colin F.

    2009-01-01

    Books I and III of Newton's "Principia" develop Newton's dynamical theory and show how it explains a number of celestial phenomena. Book II has received little attention from historians or educators because it does not play a major role in Newton's argument. However, it is in Book II that we see most clearly Newton both as a theoretician and an…

  13. Simulation on the Effects of Surfactants and Observed Thermocapillary Motion for Laser Melting Physics

    Science.gov (United States)

    Nourgaliev, Robert; Barney, Rebecca; Weston, Brian; Delplanque, Jean-Pierre; McCallen, Rose

    2017-11-01

    A newly developed, robust, high-order in space and time, Newton-Krylov based reconstructed discontinuous Galerkin (rDG) method is used to model and analyze thermocapillary convection in melt pools. The application of interest is selective laser melting (SLM) which is an Additive Manufacturing (AM, 3D metal laser printing) process. These surface tension driven flows are influenced by temperature gradients and surfactants (impurities), and are known as the Marangoni flow. They have been experimentally observed in melt pools for welding applications, and are thought to influence the microstructure of the re-solidified material. We study the effects of the laser source configuration (power, beam size and scanning speed), as well as surfactant concentrations. Results indicate that the surfactant concentration influences the critical temperature, which governs the direction of the surface thermocapillary traction. When the surface tension traction changes sign, very complex flow patterns emerge, inducing hydrodynamic instability under certain conditions. These in turn would affect the melt pool size (depth) and shape, influencing the resulting microstructure, properties, and performance of a finished product part produced using 3D metal laser printing technologies. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Information management release number LLNL-ABS-735908.

  14. Decentralized Quasi-Newton Methods

    Science.gov (United States)

    Eisen, Mark; Mokhtari, Aryan; Ribeiro, Alejandro

    2017-05-01

    We introduce the decentralized Broyden-Fletcher-Goldfarb-Shanno (D-BFGS) method as a variation of the BFGS quasi-Newton method for solving decentralized optimization problems. The D-BFGS method is of interest in problems that are not well conditioned, making first order decentralized methods ineffective, and in which second order information is not readily available, making second order decentralized methods impossible. D-BFGS is a fully distributed algorithm in which nodes approximate curvature information of themselves and their neighbors through the satisfaction of a secant condition. We additionally provide a formulation of the algorithm in asynchronous settings. Convergence of D-BFGS is established formally in both the synchronous and asynchronous settings and strong performance advantages relative to first order methods are shown numerically.

  15. A parallel multi-domain solution methodology applied to nonlinear thermal transport problems in nuclear fuel pins

    Energy Technology Data Exchange (ETDEWEB)

    Philip, Bobby, E-mail: philipb@ornl.gov [Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831 (United States); Berrill, Mark A.; Allu, Srikanth; Hamilton, Steven P.; Sampath, Rahul S.; Clarno, Kevin T. [Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831 (United States); Dilts, Gary A. [Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545 (United States)

    2015-04-01

    This paper describes an efficient and nonlinearly consistent parallel solution methodology for solving coupled nonlinear thermal transport problems that occur in nuclear reactor applications over hundreds of individual 3D physical subdomains. Efficiency is obtained by leveraging knowledge of the physical domains, the physics on individual domains, and the couplings between them for preconditioning within a Jacobian Free Newton Krylov method. Details of the computational infrastructure that enabled this work, namely the open source Advanced Multi-Physics (AMP) package developed by the authors is described. Details of verification and validation experiments, and parallel performance analysis in weak and strong scaling studies demonstrating the achieved efficiency of the algorithm are presented. Furthermore, numerical experiments demonstrate that the preconditioner developed is independent of the number of fuel subdomains in a fuel rod, which is particularly important when simulating different types of fuel rods. Finally, we demonstrate the power of the coupling methodology by considering problems with couplings between surface and volume physics and coupling of nonlinear thermal transport in fuel rods to an external radiation transport code.

  16. Curvilinear immersed-boundary method for simulating unsteady flows in shallow natural streams with arbitrarily complex obstacles

    Science.gov (United States)

    Kang, Seokkoo; Borazjani, Iman; Sotiropoulos, Fotis

    2008-11-01

    Unsteady 3D simulations of flows in natural streams is a challenging task due to the complexity of the bathymetry, the shallowness of the flow, and the presence of multiple nature- and man-made obstacles. This work is motivated by the need to develop a powerful numerical method for simulating such flows using coherent-structure-resolving turbulence models. We employ the curvilinear immersed boundary method of Ge and Sotiropoulos (Journal of Computational Physics, 2007) and address the critical issue of numerical efficiency in large aspect ratio computational domains and grids such as those encountered in long and shallow open channels. We show that the matrix-free Newton-Krylov method for solving the momentum equations coupled with an algebraic multigrid method with incomplete LU preconditioner for solving the Poisson equation yield a robust and efficient procedure for obtaining time-accurate solutions in such problems. We demonstrate the potential of the numerical approach by carrying out a direct numerical simulation of flow in a long and shallow meandering stream with multiple hydraulic structures.

  17. General practitioners' decisions about discontinuation of medication: an explorative study.

    Science.gov (United States)

    Nixon, Michael Simon; Vendelø, Morten Thanning

    2016-06-20

    Purpose - The purpose of this paper is to investigate how general practitioners' (GPs) decisions about discontinuation of medication are influenced by their institutional context. Design/methodology/approach - In total, 24 GPs were interviewed, three practices were observed and documents were collected. The Gioia methodology was used to analyse data, drawing on a theoretical framework that integrate the sensemaking perspective and institutional theory. Findings - Most GPs, who actively consider discontinuation, are reluctant to discontinue medication, because the safest course of action for GPs is to continue prescriptions, rather than discontinue them. The authors conclude that this is in part due to the ambiguity about the appropriateness of discontinuing medication, experienced by the GPs, and in part because the clinical guidelines do not encourage discontinuation of medication, as they offer GPs a weak frame for discontinuation. Three reasons for this are identified: the guidelines provide dominating triggers for prescribing, they provide weak priming for discontinuation as an option, and they underscore a cognitive constraint against discontinuation. Originality/value - The analysis offers new insights about decision making when discontinuing medication. It also offers one of the first examinations of how the institutional context embedding GPs influences their decisions about discontinuation. For policymakers interested in the discontinuation of medication, the findings suggest that de-stigmatising discontinuation on an institutional level may be beneficial, allowing GPs to better justify discontinuation in light of the ambiguity they experience.

  18. Female body as a fetish in Helmut Newton's photography

    Directory of Open Access Journals (Sweden)

    Pantović Katarina

    2017-01-01

    Full Text Available The paper illuminates some of the principles by which Helmut Newton's photographic poetics functions. It is examined from the perspectives of recent art history, feminist critique and psychoanalytic theory. His photographs came to a standstill not far from pornography, yet they stayed within the jet-set community, reflecting at the same time the sexual revolution in the 60s and 70s of the twentieth century and the rising of the fashion and film industries and other Western emancipatory movements. Newton's obscure photojournalism provoked conventions, presenting the female body as a fetish and object of erotic pleasure, affirming, nonetheless, a new feminine self-consciousness and freedom. Thus, he constituted modern eroticism by connecting fetishism, voyeurism and sadomasochism, creating a provocative hybrid photography that embraced fashion, eroticism and portrait, hence documenting, in highly stylistic manner, the decadency and eccentricity of the lifestyle of the rich.

  19. Stabilized quasi-Newton optimization of noisy potential energy surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Bastian; Goedecker, Stefan, E-mail: stefan.goedecker@unibas.ch [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Alireza Ghasemi, S. [Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, IR-Zanjan (Iran, Islamic Republic of); Roy, Shantanu [Computational and Systems Biology, Biozentrum, University of Basel, CH-4056 Basel (Switzerland)

    2015-01-21

    Optimizations of atomic positions belong to the most commonly performed tasks in electronic structure calculations. Many simulations like global minimum searches or characterizations of chemical reactions require performing hundreds or thousands of minimizations or saddle computations. To automatize these tasks, optimization algorithms must not only be efficient but also very reliable. Unfortunately, computational noise in forces and energies is inherent to electronic structure codes. This computational noise poses a severe problem to the stability of efficient optimization methods like the limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm. We here present a technique that allows obtaining significant curvature information of noisy potential energy surfaces. We use this technique to construct both, a stabilized quasi-Newton minimization method and a stabilized quasi-Newton saddle finding approach. We demonstrate with the help of benchmarks that both the minimizer and the saddle finding approach are superior to comparable existing methods.

  20. On Newton's third law and its symmetry-breaking effects

    International Nuclear Information System (INIS)

    Pinheiro, Mario J

    2011-01-01

    The law of action-reaction, considered by Ernst Mach as the cornerstone of physics, is thoroughly used to derive the conservation laws of linear and angular momentum. However, the conflict between momentum conservation law and Newton's third law, on experimental and theoretical grounds, calls for more attention. We give a background survey of several questions raised by the action-reaction law and, in particular, the role of the physical vacuum is shown to provide an appropriate framework for clarifying the occurrence of possible violations of the action-reaction law. Then, in the framework of statistical mechanics, using a maximizing entropy procedure, we obtain an expression for the general linear momentum of a body particle. The new approach presented here shows that Newton's third law is not verified in systems out of equilibrium due to an additional entropic gradient term present in the particle's momentum.

  1. Stabilized quasi-Newton optimization of noisy potential energy surfaces

    International Nuclear Information System (INIS)

    Schaefer, Bastian; Goedecker, Stefan; Alireza Ghasemi, S.; Roy, Shantanu

    2015-01-01

    Optimizations of atomic positions belong to the most commonly performed tasks in electronic structure calculations. Many simulations like global minimum searches or characterizations of chemical reactions require performing hundreds or thousands of minimizations or saddle computations. To automatize these tasks, optimization algorithms must not only be efficient but also very reliable. Unfortunately, computational noise in forces and energies is inherent to electronic structure codes. This computational noise poses a severe problem to the stability of efficient optimization methods like the limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm. We here present a technique that allows obtaining significant curvature information of noisy potential energy surfaces. We use this technique to construct both, a stabilized quasi-Newton minimization method and a stabilized quasi-Newton saddle finding approach. We demonstrate with the help of benchmarks that both the minimizer and the saddle finding approach are superior to comparable existing methods

  2. Newton's second law in a non-commutative space

    International Nuclear Information System (INIS)

    Romero, Juan M.; Santiago, J.A.; Vergara, J. David

    2003-01-01

    In this Letter we show that corrections to Newton's second law appear if we assume a symplectic structure consistent with the commutation rules of the non-commutative quantum mechanics. For central field we find that the correction term breaks the rotational symmetry. For the Kepler problem, this term is similar to a Coriolis force

  3. Discontinuous Galerkin Method for Hyperbolic Conservation Laws

    KAUST Repository

    Mousikou, Ioanna

    2016-11-11

    Hyperbolic conservation laws form a special class of partial differential equations. They describe phenomena that involve conserved quantities and their solutions show discontinuities which reflect the formation of shock waves. We consider one-dimensional systems of hyperbolic conservation laws and produce approximations using finite difference, finite volume and finite element methods. Due to stability issues of classical finite element methods for hyperbolic conservation laws, we study the discontinuous Galerkin method, which was recently introduced. The method involves completely discontinuous basis functions across each element and it can be considered as a combination of finite volume and finite element methods. We illustrate the implementation of discontinuous Galerkin method using Legendre polynomials, in case of scalar equations and in case of quasi-linear systems, and we review important theoretical results about stability and convergence of the method. The applications of finite volume and discontinuous Galerkin methods to linear and non-linear scalar equations, as well as to the system of elastodynamics, are exhibited.

  4. Discontinuous Galerkin Method for Hyperbolic Conservation Laws

    KAUST Repository

    Mousikou, Ioanna

    2016-01-01

    Hyperbolic conservation laws form a special class of partial differential equations. They describe phenomena that involve conserved quantities and their solutions show discontinuities which reflect the formation of shock waves. We consider one-dimensional systems of hyperbolic conservation laws and produce approximations using finite difference, finite volume and finite element methods. Due to stability issues of classical finite element methods for hyperbolic conservation laws, we study the discontinuous Galerkin method, which was recently introduced. The method involves completely discontinuous basis functions across each element and it can be considered as a combination of finite volume and finite element methods. We illustrate the implementation of discontinuous Galerkin method using Legendre polynomials, in case of scalar equations and in case of quasi-linear systems, and we review important theoretical results about stability and convergence of the method. The applications of finite volume and discontinuous Galerkin methods to linear and non-linear scalar equations, as well as to the system of elastodynamics, are exhibited.

  5. The structure of rotational discontinuities

    International Nuclear Information System (INIS)

    Neugebauer, M.

    1989-01-01

    This study examines the structures of a set of rotational discontinuities detected in the solar wind by the ISEE-3 spacecraft. It is found that the complexity of the structure increases as the angle θ between the propagation vector k and the magnetic field decreases. For rotational discontinuities that propagate at a large angle to the field with an ion (left-hand) sense of rotation, the magnetic hodograms tend to be flattened, in agreement with prior numerical simulations. When θ is large, angular overshoots are often observed at one or both ends of the discontinuity. When the propagation is nearly parallel to the field (i.e., when θ is small), many different types of structure are seen, ranging from straight lines, the S-shaped curves, to complex, disorganized shapes

  6. Fast solution of Cahn–Hilliard variational inequalities using implicit time discretization and finite elements

    KAUST Repository

    Bosch, Jessica

    2014-04-01

    We consider the efficient solution of the Cahn-Hilliard variational inequality using an implicit time discretization, which is formulated as an optimal control problem with pointwise constraints on the control. By applying a semi-smooth Newton method combined with a Moreau-Yosida regularization technique for handling the control constraints we show superlinear convergence in function space. At the heart of this method lies the solution of large and sparse linear systems for which we propose the use of preconditioned Krylov subspace solvers using an effective Schur complement approximation. Numerical results illustrate the competitiveness of this approach. © 2014 Elsevier Inc.

  7. Has ESA's XMM-Newton cast doubt over dark energy?

    Science.gov (United States)

    2003-12-01

    Galaxy cluster RXJ0847 hi-res Size hi-res: 100k Galaxy cluster RXJ0847 The fuzzy object at the centre of the frame is one of the galaxy clusters observed by XMM-Newton in its investigation of the distant Universe. The cluster, designated RXJ0847.2+3449, is about 7 000 million light years away, so we see it here as it was 7 000 million years ago, when the Universe was only about half of its present age. This cluster is made up of several dozen galaxies. Observations of eight distant clusters of galaxies, the furthest of which is around 10 thousand million light years away, were studied by an international group of astronomers led by David Lumb of ESA's Space Research and Technology Centre (ESTEC) in the Netherlands. They compared these clusters to those found in the nearby Universe. This study was conducted as part of the larger XMM-Newton Omega Project, which investigates the density of matter in the Universe under the lead of Jim Bartlett of the College de France. Clusters of galaxies are prodigious emitters of X-rays because they contain a large quantity of high-temperature gas. This gas surrounds galaxies in the same way as steam surrounds people in a sauna. By measuring the quantity and energy of X-rays from a cluster, astronomers can work out both the temperature of the cluster gas and also the mass of the cluster. Theoretically, in a Universe where the density of matter is high, clusters of galaxies would continue to grow with time and so, on average, should contain more mass now than in the past. Most astronomers believe that we live in a low-density Universe in which a mysterious substance known as 'dark energy' accounts for 70% of the content of the cosmos and, therefore, pervades everything. In this scenario, clusters of galaxies should stop growing early in the history of the Universe and look virtually indistinguishable from those of today. In a paper soon to be published by the European journal Astronomy and Astrophysics, astronomers from the XMM-Newton

  8. When Newton's cooling law doesn't hold

    International Nuclear Information System (INIS)

    Tarnow, E.

    1994-01-01

    What is the fastest way to cool something? If the object is macroscopic it is to lower the surrounding temperature as much as possible and let Newton's cooling law take effect. If we enter the microscopic world where quantum mechanics rules, this procedure may no longer be the best. This is shown in a simple example where we calculate the optimum cooling rate for an asymmetric two-state system

  9. Discontinuation Decision in Assisted Reproductive Techniques

    Directory of Open Access Journals (Sweden)

    Ashraf Moini

    2009-01-01

    Full Text Available Background: In vitro fertilization (IVF and intra cytoplasmic sperm injection (ICSI are recognizedas established and increasingly successful forms of treatment for infertility, yet significant numbersof couples discontinue treatment without achieving a live birth. This study aims to identify majorfactors that influence the decision to discontinue IVF/ICSI treatments.Materials and Methods: We studied the data of 338 couples who discontinued their infertilitytreatments after three cycles; based on medical records and phone contact. The main measure wasthe reason for stopping their treatments.Results: Economical problems were cited by 212 couples (62.7%, as their mean income wassignificantly less than other couples (p<0.0001. Lack of success was reported as a reason by229 (67.8%, from whom 165 (72% also had economical problems. Achieving independent-ART pregnancy was the reason for discontinuation in 20 (5.9% couples. Psychological stress,depression and anxiety were reported as other cessation factors by 169 (50%, 148 (43.8% and 182(53.8% couples, respectively.Conclusion: This survey suggests that the most common reasons for assisted reproductivetechnique (ART discontinuation after three cycles are: prior unsuccessful cycles, economicaland psychological problems. Therefore, the substantial proportion of couples could benefit frompsychological intervention, increasing awareness of ART outcomes and health funding to copemore adequately with failed treatments.

  10. Observations of MCG-5-23-16 with Suzaku, XMM-Newton and Nustar

    DEFF Research Database (Denmark)

    Zoghbi, A.; Cackett, E. M.; Reynolds, C.

    2014-01-01

    MCG-5-23-16 is one of the first active galactic nuclei (AGNs) where relativistic reverberation in the iron K line originating in the vicinity of the supermassive black hole was found, based on a short XMM-Newton observation. In this work, we present the results from long X-ray observations using...... Suzaku, XMM-Newton, and NuSTAR designed to map the emission region using X-ray reverberation. A relativistic iron line is detected in the lag spectra on three different timescales, allowing the emission from different regions around the black hole to be separated. Using NuSTAR coverage of energies above...

  11. Listening in the Silences for Fred Newton Scott

    Science.gov (United States)

    Mastrangelo, Lisa

    2009-01-01

    As part of her recent sabbatical, the author proposed going to the University of Michigan Bentley Archives to do research on Fred Newton Scott, founder and chair of the Department of Rhetoric and teacher from 1889 to 1926 at the University of Michigan. Scott ran the only graduate program in rhetoric and composition in the country between those…

  12. Dramatic (and Simple!) Demonstration of Newton's Third Law

    Science.gov (United States)

    Feldman, Gerald

    2011-01-01

    An operational understanding of Newton's third law is often elusive for students. Typical examples of this concept are given for contact forces that are closer to the students' everyday experience. While this is a good thing in general, the reaction force can sometimes be taken for granted, and the students can miss the opportunity to really think…

  13. The flight of Newton's cannonball

    Science.gov (United States)

    Pesnell, W. Dean

    2018-05-01

    Newton's Cannon is a thought experiment used to motivate orbital motion. Cannonballs were fired from a high mountain at increasing muzzle velocity until they orbit the Earth. We will use the trajectories of these cannonballs to describe the shape of orbital tunnels that allow a cannonball fired from a high mountain to pass through the Earth. A sphere of constant density is used as the model of the Earth to take advantage of the analytic solutions for the interior trajectories that exist for that model. For the example shown, the cannonball trajectories that pass through the Earth intersect near the antipodal point of the cannon.

  14. Illustrating Newton's Second Law with the Automobile Coast-Down Test.

    Science.gov (United States)

    Bryan, Ronald A.; And Others

    1988-01-01

    Describes a run test of automobiles for applying Newton's second law of motion and the concept of power. Explains some automobile thought-experiments and provides the method and data of an actual coast-down test. (YP)

  15. Extension of Newton's Dynamical Spectral Shift for Photons in ...

    African Journals Online (AJOL)

    Extension of Newton's Dynamical Spectral Shift for Photons in Gravitational Fields of Static Homogeneous Spherical Massive Bodies. ... is perfectly in agreement with the physical fact that gravitational scalar potential is negative and increase in recession leads to decrease in kinetic energy and hence decrease in frequency.

  16. Conference | From Newton to Hawking and beyond | 28 May

    CERN Multimedia

    2013-01-01

    From Newton to Hawking and beyond: Why disability equality is relevant to the world of particle physics, Dr Tom Shakespeare.    Tuesday, 28 May 2013 - 11.30 am - 1 pm Main Auditorium – Room 500-1-001 Conference organised by the CERN Diversity Programme English with French interpretation According to the recent world report on disability, 15% of the world’s population is disabled.  Among that group could be numbered famous physicists such as Isaac Newton and Paul Dirac, neither of whom could be classed as “neuro-typical”, and Stephen Hawking.  This presentation will provide some basic data about global disability, and the socially imposed barriers which disabled people face.  It will also include some stories about high achieving people with disabilities.  Finally, some practical suggestions will be offered on how to respect and include people with disabilities in the workplace. Tom Shakespeare is a social sci...

  17. Factors predicting successful discontinuation of continuous renal replacement therapy.

    Science.gov (United States)

    Katayama, S; Uchino, S; Uji, M; Ohnuma, T; Namba, Y; Kawarazaki, H; Toki, N; Takeda, K; Yasuda, H; Izawa, J; Tokuhira, N; Nagata, I

    2016-07-01

    This multicentre, retrospective observational study was conducted from January 2010 to December 2010 to determine the optimal time for discontinuing continuous renal replacement therapy (CRRT) by evaluating factors predictive of successful discontinuation in patients with acute kidney injury. Analysis was performed for patients after CRRT was discontinued because of renal function recovery. Patients were divided into two groups according to the success or failure of CRRT discontinuation. In multivariate logistic regression analysis, urine output at discontinuation, creatinine level and CRRT duration were found to be significant variables (area under the receiver operating characteristic curve for urine output, 0.814). In conclusion, we found that higher urine output, lower creatinine and shorter CRRT duration were significant factors to predict successful discontinuation of CRRT.

  18. Trapped particles at a magnetic discontinuity

    Science.gov (United States)

    Stern, D. P.

    1972-01-01

    At a tangential discontinuity between two constant magnetic fields a layer of trapped particles can exist, this work examines the conditions under which the current carried by such particles tends to maintain the discontinuity. Three cases are examined. If the discontinuity separates aligned vacuum fields, the only requirement is that they be antiparallel. With arbitrary relative orientations, the field must have equal intensities on both sides. Finally, with a guiding center plasma on both sides, the condition reduces to a relation which is also derivable from hydromagnetic theory. Arguments are presented for the occurrence of such trapped modes in the magnetopause and for the non-existence of specular particle reflection.

  19. Medium-resolution isaac newton telescope library of empirical spectra

    NARCIS (Netherlands)

    Sanchez-Blazquez, P.; Peletier, R. F.; Jimenez-Vicente, J.; Cardiel, N.; Cenarro, A. J.; Falcon-Barroso, J.; Gorgas, J.; Selam, S.; Vazdekis, A.

    2006-01-01

    A new stellar library developed for stellar population synthesis modelling is presented. The library consists of 985 stars spanning a large range in atmospheric parameters. The spectra were obtained at the 2.5-m Isaac Newton Telescope and cover the range lambda lambda 3525-7500 angstrom at 2.3

  20. Discontinuity effects in dynamically loaded tilting pad journal bearings

    DEFF Research Database (Denmark)

    Thomsen, Kim; Klit, Peder; Vølund, Anders

    2011-01-01

    This paper describes two discontinuity effects that can occur when modelling radial tilting pad bearings subjected to high dynamic loads. The first effect to be treated is a pressure build-up discontinuity effect. The second effect is a contact-related discontinuity that disappears when a contact...... force is included in the theoretical model. Methods for avoiding the pressure build-up discontinuity effect are proposed....

  1. Dark Matter Search Using XMM-Newton Observations of Willman 1

    Science.gov (United States)

    Lowenstein, Michael; Kusenko, Alexander

    2012-01-01

    We report the results of a search for an emission line from radiatively decaying dark matter in the ultra-faint dwarf spheroidal galaxy Willman 1 based on analysis of spectra extracted from XMM-Newton X-ray Observatory data. The observation follows up our analysis of Chandra data of Willman 1that resulted in line flux upper limits over the Chandra bandpass and evidence of a 2.5 keY feature at a significance below the 99% confidence threshold used to define the limits. The higher effective area of the XMM-Newton detectors, combined with application of recently developing methods for extended-source analysis, allow us to derive improved constraints on the combination of mass and mixing angle of the sterile neutrino dark matter candidate. We do not confirm the Chandra evidence for a 2.5 keV emission line.

  2. Efficient management of high level XMM-Newton science data products

    Science.gov (United States)

    Zolotukhin, Ivan

    2015-12-01

    Like it is the case for many large projects, XMM-Newton data have been used by the community to produce many valuable higher level data products. However, even after 15 years of the successful mission operation, the potential of these data is not yet fully uncovered, mostly due to the logistical and data management issues. We present a web application, http://xmm-catalog.irap.omp.eu, to highlight an idea that existing public high level data collections generate significant added research value when organized and exposed properly. Several application features such as access to the all-time XMM-Newton photon database and online fitting of extracted sources spectra were never available before. In this talk we share best practices we worked out during the development of this website and discuss their potential use for other large projects generating astrophysical data.

  3. ESA's XMM-Newton gains deep insights into the distant Universe

    Science.gov (United States)

    2003-07-01

    First image from the XMM-LSS survey hi-res Size hi-res: 87 kb Credits: ESA First image from the XMM-LSS survey The first image from the XMM-LSS survey is actually a combination of fourteen separate 'pointings' of the space observatory. It represents a region of the sky eight times larger than the full Moon and contains around 25 clusters. The circles represent the sources previously known from the 1991 ROSAT All-Sky Survey. A computer programme zooms in on an interesting region hi-res Size hi-res: 86 kb Credits: ESA A computer programme zooms in on an interesting region A computer programme zooms in on an interesting region of the image and identifies the possible cluster. Each point on this graph represents a single X-ray photons detected by XMM-Newton. Most come from distant actie galaxies and the computer must perform a sophisticated, statistical computation to determine which X-ray come from clusters. Contour map of clusters hi-res Size hi-res: 139 kb Credits: ESA Contour map of clusters The computer programme transforms the XMM-Newton data into a contour map of the cluster's probable extent and superimposes it over the CFHT snapshot, allowing the individual galaxies in the cluster to be targeted for further observations with ESO's VLT, to measure its distance and locate the cluster in the universe. Unlike grains of sand on a beach, matter is not uniformly spread throughout the Universe. Instead, it is concentrated into galaxies like our own which themselves congregate into clusters. These clusters are 'strung' throughout the Universe in a web-like structure. Astronomers have studied this large-scale structure of the nearby Universe but have lacked the instruments to extend the search to the large volumes of the distant Universe. Thanks to its unrivalled sensitivity, in less than three hours, ESA's X-ray observatory XMM-Newton can see back about 7000 million years to a cosmological era when the Universe was about half its present size, and clusters of galaxies

  4. Discontinuities during UV writing of waveguides

    DEFF Research Database (Denmark)

    Svalgaard, Mikael; Harpøth, Anders; Andersen, Marc

    2005-01-01

    UV writing of waveguides can be hampered by discontinuities where the index change process suddenly shuts down. We show that thermal effects may account for this behaviour.......UV writing of waveguides can be hampered by discontinuities where the index change process suddenly shuts down. We show that thermal effects may account for this behaviour....

  5. Modified Newton-Raphson GRAPE methods for optimal control of spin systems

    International Nuclear Information System (INIS)

    Goodwin, D. L.; Kuprov, Ilya

    2016-01-01

    Quadratic convergence throughout the active space is achieved for the gradient ascent pulse engineering (GRAPE) family of quantum optimal control algorithms. We demonstrate in this communication that the Hessian of the GRAPE fidelity functional is unusually cheap, having the same asymptotic complexity scaling as the functional itself. This leads to the possibility of using very efficient numerical optimization techniques. In particular, the Newton-Raphson method with a rational function optimization (RFO) regularized Hessian is shown in this work to require fewer system trajectory evaluations than any other algorithm in the GRAPE family. This communication describes algebraic and numerical implementation aspects (matrix exponential recycling, Hessian regularization, etc.) for the RFO Newton-Raphson version of GRAPE and reports benchmarks for common spin state control problems in magnetic resonance spectroscopy.

  6. Modified Newton-Raphson GRAPE methods for optimal control of spin systems

    Energy Technology Data Exchange (ETDEWEB)

    Goodwin, D. L.; Kuprov, Ilya, E-mail: i.kuprov@soton.ac.uk [School of Chemistry, University of Southampton, Highfield Campus, Southampton SO17 1BJ (United Kingdom)

    2016-05-28

    Quadratic convergence throughout the active space is achieved for the gradient ascent pulse engineering (GRAPE) family of quantum optimal control algorithms. We demonstrate in this communication that the Hessian of the GRAPE fidelity functional is unusually cheap, having the same asymptotic complexity scaling as the functional itself. This leads to the possibility of using very efficient numerical optimization techniques. In particular, the Newton-Raphson method with a rational function optimization (RFO) regularized Hessian is shown in this work to require fewer system trajectory evaluations than any other algorithm in the GRAPE family. This communication describes algebraic and numerical implementation aspects (matrix exponential recycling, Hessian regularization, etc.) for the RFO Newton-Raphson version of GRAPE and reports benchmarks for common spin state control problems in magnetic resonance spectroscopy.

  7. Q-Step methods for Newton-Jacobi operator equation | Uwasmusi ...

    African Journals Online (AJOL)

    The paper considers the Newton-Jacobi operator equation for the solution of nonlinear systems of equations. Special attention is paid to the computational part of this method with particular reference to the q-step methods. Journal of the Nigerian Association of Mathematical Physics Vol. 8 2004: pp. 237-241 ...

  8. Motion of Charged Particles near Magnetic Field Discontinuities

    International Nuclear Information System (INIS)

    Dodin, I.Y.; Fisch, N.J.

    2000-01-01

    The motion of charged particles in slowly changing magnetic fields exhibits adiabatic invariance even in the presence of abrupt magnetic discontinuities. Particles near discontinuities in magnetic fields, what we call ''boundary particles'', are constrained to remain near an arbitrarily fractured boundary even as the particle drifts along the discontinuity. A new adiabatic invariant applies to the motion of these particles

  9. The RNA Newton polytope and learnability of energy parameters.

    Science.gov (United States)

    Forouzmand, Elmirasadat; Chitsaz, Hamidreza

    2013-07-01

    Computational RNA structure prediction is a mature important problem that has received a new wave of attention with the discovery of regulatory non-coding RNAs and the advent of high-throughput transcriptome sequencing. Despite nearly two score years of research on RNA secondary structure and RNA-RNA interaction prediction, the accuracy of the state-of-the-art algorithms are still far from satisfactory. So far, researchers have proposed increasingly complex energy models and improved parameter estimation methods, experimental and/or computational, in anticipation of endowing their methods with enough power to solve the problem. The output has disappointingly been only modest improvements, not matching the expectations. Even recent massively featured machine learning approaches were not able to break the barrier. Why is that? The first step toward high-accuracy structure prediction is to pick an energy model that is inherently capable of predicting each and every one of known structures to date. In this article, we introduce the notion of learnability of the parameters of an energy model as a measure of such an inherent capability. We say that the parameters of an energy model are learnable iff there exists at least one set of such parameters that renders every known RNA structure to date the minimum free energy structure. We derive a necessary condition for the learnability and give a dynamic programming algorithm to assess it. Our algorithm computes the convex hull of the feature vectors of all feasible structures in the ensemble of a given input sequence. Interestingly, that convex hull coincides with the Newton polytope of the partition function as a polynomial in energy parameters. To the best of our knowledge, this is the first approach toward computing the RNA Newton polytope and a systematic assessment of the inherent capabilities of an energy model. The worst case complexity of our algorithm is exponential in the number of features. However, dimensionality

  10. A Short Essay on the Uses of Free Energy

    Science.gov (United States)

    Koutandos, Spyridon

    2013-01-01

    In this article we examine cases of more classical and less classical nature compared to results found by quantum mechanics and attribute a form of Free Energy discontinuity for each case within a boundary layer. The concept of a boundary layer is broadened as to include areas of first or second variations of the Gibbs free energy. It is…

  11. Fast and exact Newton and Bidirectional fitting of Active Appearance Models.

    Science.gov (United States)

    Kossaifi, Jean; Tzimiropoulos, Yorgos; Pantic, Maja

    2016-12-21

    Active Appearance Models (AAMs) are generative models of shape and appearance that have proven very attractive for their ability to handle wide changes in illumination, pose and occlusion when trained in the wild, while not requiring large training dataset like regression-based or deep learning methods. The problem of fitting an AAM is usually formulated as a non-linear least squares one and the main way of solving it is a standard Gauss-Newton algorithm. In this paper we extend Active Appearance Models in two ways: we first extend the Gauss-Newton framework by formulating a bidirectional fitting method that deforms both the image and the template to fit a new instance. We then formulate a second order method by deriving an efficient Newton method for AAMs fitting. We derive both methods in a unified framework for two types of Active Appearance Models, holistic and part-based, and additionally show how to exploit the structure in the problem to derive fast yet exact solutions. We perform a thorough evaluation of all algorithms on three challenging and recently annotated inthe- wild datasets, and investigate fitting accuracy, convergence properties and the influence of noise in the initialisation. We compare our proposed methods to other algorithms and show that they yield state-of-the-art results, out-performing other methods while having superior convergence properties.

  12. Signal integrity analysis on discontinuous microstrip line

    International Nuclear Information System (INIS)

    Qiao, Qingyang; Dai, Yawen; Chen, Zipeng

    2013-01-01

    In high speed PCB design, microstirp lines were used to control the impedance, however, the discontinuous microstrip line can cause signal integrity problems. In this paper, we use the transmission line theory to study the characteristics of microstrip lines. Research results indicate that the discontinuity such as truncation, gap and size change result in the problems such as radiation, reflection, delay and ground bounce. We change the discontinuities to distributed parameter circuits, analysed the steady-state response and transient response and the phase delay. The transient response cause radiation and voltage jump.

  13. The Use of Kruskal-Newton Diagrams for Differential Equations

    International Nuclear Information System (INIS)

    Fishaleck, T.; White, R.B.

    2008-01-01

    The method of Kruskal-Newton diagrams for the solution of differential equations with boundary layers is shown to provide rapid intuitive understanding of layer scaling and can result in the conceptual simplification of some problems. The method is illustrated using equations arising in the theory of pattern formation and in plasma physics.

  14. Newton's Laws, Euler's Laws and the Speed of Light

    Science.gov (United States)

    Whitaker, Stephen

    2009-01-01

    Chemical engineering students begin their studies of mechanics in a department of physics where they are introduced to the mechanics of Newton. The approach presented by physicists differs in both perspective and substance from that encountered in chemical engineering courses where Euler's laws provide the foundation for studies of fluid and solid…

  15. The role of competing knowledge structures in undermining learning: Newton's second and third laws

    Science.gov (United States)

    Low, David J.; Wilson, Kate F.

    2017-01-01

    We investigate the development of student understanding of Newton's laws using a pre-instruction test (the Force Concept Inventory), followed by a series of post-instruction tests and interviews. While some students' somewhat naive, pre-existing models of Newton's third law are largely eliminated following a semester of teaching, we find that a particular inconsistent model is highly resilient to, and may even be strengthened by, instruction. If test items contain words that cue students to think of Newton's second law, then students are more likely to apply a "net force" approach to solving problems, even if it is inappropriate to do so. Additional instruction, reinforcing physical concepts in multiple settings and from multiple sources, appears to help students develop a more connected and consistent level of understanding. We recommend explicitly encouraging students to check their work for consistency with physical principles, along with the standard checks for dimensionality and order of magnitude, to encourage reflective and rigorous problem solving.

  16. Accountability Accentuates Interindividual-Intergroup Discontinuity by Enforcing Parochialism

    OpenAIRE

    Wildschut, T.; Van Horen, F.; Hart, C.

    2015-01-01

    Interindividual-intergroup discontinuity is the tendency for relations between groups to be more competitive than relations between individuals. We examined whether the discontinuity effect arises in part because group members experience normative pressure to favor the ingroup (parochialism). Building on the notion that accountability enhances normative pressure, we hypothesized that the discontinuity effect would be larger when accountability is present (compared to absent). A prisoner’s dil...

  17. Discontinuities and the magnetospheric phenomena

    International Nuclear Information System (INIS)

    Rajaram, R.; Kalra, G.L.; Tandon, J.N.

    1978-01-01

    Wave coupling at contact discontinuities has an important bearing on the transmission of waves from the solar wind into the magnetosphere across the cusp region of the solar wind-magnetosphere boundary and on the propagation of geomagnetic pulsations in the polar exosphere. Keeping this in view, the problems of wave coupling across a contact discontinuity in a collisionless plasma, described by a set of double adiabatic fluid equations, is examined. The magnetic field is taken normal to the interface and it is shown that total reflection is not possible for any angle of incidence. The Alfven and the magneto-acoustic waves are not coupled. The transmission is most efficient for small density discontinuities. Inhibition of the transmission of the Alfven wave by the sharp density gradients above the F2-peak in the polar exosphere appears to account for the decrease in the pulsation amplitude, on the ground, as the poles are approached from the auroral zone. (author)

  18. Strategies for discontinuation of proton pump inhibitors

    DEFF Research Database (Denmark)

    Haastrup, Peter; Paulsen, Maja S; Begtrup, Luise M

    2014-01-01

    PURPOSE: Proton pump inhibitors (PPIs) are considered to be overprescribed. Consensus on how to attempt discontinuation is, however, lacking. We therefore conducted a systematic review of clinical studies on discontinuation of PPIs. METHODS: Systematic review based on clinical studies investigating...

  19. On the stability of rotational discontinuities and intermediate shocks

    International Nuclear Information System (INIS)

    Lee, L.C.; Huang, L.; Chao, J.K.

    1989-01-01

    The stability of rotational discontinuities and intermediate shocks is studied based on a hybrid simulation code. The simulation results show that rotational discontinuities are stable and intermediate shocks are not stationary. Intermediate shocks tend to evolve to rotational discontinuities and waves. The authors employ several different initial profiles for the magnetic field in the transition region and find that the final structure of the discontinuities or shocks is not sensitive to the initial magnetic field profile. The present results are different from those obtained from the resistive MHD simulations. Furthermore, their study indicates that the kinetic effect of particles plays an important role in the structure and stability of rotational discontinuities and intermediate shocks

  20. Producción de entropía y ley de enfriamiento de newton

    OpenAIRE

    Barragán, Daniel

    2010-01-01

    Para un sistema con una fuente interna de generación de calor se analizan, en el marco de la termodinámica de los procesos irreversibles, las ecuaciones evolutivas que describen la transferencia de calor según la ley de enfriamiento de Newton. A partir del balance de flujo de entropía se muestra que la generación de entropía no es mínima en el estado estacionario descrito por la ley de enfriamiento de Newton. Igualmente, se discute cómo realizar el balance de flujos en el sistema, su conex...

  1. HIGH-RESOLUTION XMM-NEWTON SPECTROSCOPY OF THE COOLING FLOW CLUSTER A3112

    Energy Technology Data Exchange (ETDEWEB)

    Bulbul, G. Esra; Smith, Randall K.; Foster, Adam [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Cottam, Jean; Loewenstein, Michael; Mushotzky, Richard; Shafer, Richard, E-mail: ebulbul@cfa.harvard.edu [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    2012-03-01

    We examine high signal-to-noise XMM-Newton European Photon Imaging Camera (EPIC) and Reflection Grating Spectrometer (RGS) observations to determine the physical characteristics of the gas in the cool core and outskirts of the nearby rich cluster A3112. The XMM-Newton Extended Source Analysis Software data reduction and background modeling methods were used to analyze the XMM-Newton EPIC data. From the EPIC data, we find that the iron and silicon abundance gradients show significant increase toward the center of the cluster while the oxygen abundance profile is centrally peaked but has a shallower distribution than that of iron. The X-ray mass modeling is based on the temperature and deprojected density distributions of the intracluster medium determined from EPIC observations. The total mass of A3112 obeys the M-T scaling relations found using XMM-Newton and Chandra observations of massive clusters at r{sub 500}. The gas mass fraction f{sub gas} = 0.149{sup +0.036}{sub -0.032} at r{sub 500} is consistent with the seven-year Wilkinson Microwave Anisotropy Probe results. The comparisons of line fluxes and flux limits on the Fe XVII and Fe XVIII lines obtained from high-resolution RGS spectra indicate that there is no spectral evidence for cooler gas associated with the cluster with temperature below 1.0 keV in the central <38'' ({approx}52 kpc) region of A3112. High-resolution RGS spectra also yield an upper limit to the turbulent motions in the compact core of A3112 (206 km s{sup -1}). We find that the contribution of turbulence to total energy is less than 6%. This upper limit is consistent with the energy contribution measured in recent high-resolution simulations of relaxed galaxy clusters.

  2. A direct Newton-Raphson economic dispatch

    International Nuclear Information System (INIS)

    Lin, C.E.; Chen, S.T.; Huang, C.L.

    1992-01-01

    This paper presents a new method to solve the real-time economic dispatch problem using an alternative Jacobian matrix considering system constraints. The transition loss is approximately expressed in terms of generating powers and the generalized generation shift distribution factor. Based on this expression, a set of simultaneous equations of Jacobian matrix is formulated and solved by the Newton-Raphson method. The proposed method eliminates the penalty factor calculation, and solves the economic dispatch directly. The proposed method obtains very fast solution speed and maintains good accuracy from test examples. It is good approach to solve the economic dispatch problem

  3. Newton's Investigation of the Resistance to Moving Bodies in Continuous Fluids and the Nature of "Frontier Science"

    Science.gov (United States)

    Gauld, Colin F.

    2010-01-01

    Newton's experiments into the resistance which fluids offer to moving bodies provide some insight into the way he related theory and experiment. His theory demonstrates a way of thought typical of 17th century physics and his experiments are simple enough to be replicated by present day students. Newton's investigations using pendulums were…

  4. Quantum Mechanics from Newton's Second Law and the Canonical Commutation Relation [X,P]=i

    OpenAIRE

    Palenik, Mark C.

    2014-01-01

    Despite the fact that it has been known since the time of Heisenberg that quantum operators obey a quantum version of Newton's laws, students are often told that derivations of quantum mechanics must necessarily follow from the Hamiltonian or Lagrangian formulations of mechanics. Here, we first derive the existing Heisenberg equations of motion from Newton's laws and the uncertainty principle using only the equations $F=\\frac{dP}{dt}$, $P=m\\frac{dV}{dt}$, and $\\left[X,P\\right]=i$. Then, a new...

  5. Truncated Gauss-Newton Implementation for Multi-Parameter Full Waveform Inversion

    Science.gov (United States)

    Liu, Y.; Yang, J.; Dong, L.; Wang, Y.

    2014-12-01

    Full waveform inversion (FWI) is a numerical optimization method which aims at minimizing the difference between the synthetic and recorded seismic data to obtain high resolution subsurface images. A practical implementation for FWI is the adjoint-state method (AD), in which the data residuals at receiver locations are simultaneously back-propagated to form the gradient. Scattering-integral method (SI) is an alternative way which is based on the explicit building of the sensitivity kernel (Fréchet derivative matrix). Although it is more memory-consuming, SI is more efficient than AD when the number of the sources is larger than the number of the receivers. To improve the convergence of FWI, the information carried out by the inverse Hessian operator is crucial. Taking account accurately of the effect of this operator in FWI can correct illumination deficits, reserve the amplitude of the subsurface parameters, and remove artifacts generated by multiple reflections. In multi-parameter FWI, the off-diagonal blocks of the Hessian operator reflect the coupling between different parameter classes. Therefore, incorporating its inverse could help to mitigate the trade-off effects. In this study, we focus on the truncated Gauss-Newton implementation for multi-parameter FWI. The model update is computed through a matrix-free conjugate gradient solution of the Newton linear system. Both the gradient and the Hessian-vector product are calculated using the SI approach instead of the first- and second-order AD. However, the gradient expressed by kernel-vector product is calculated through the accumulation of the decomposed vector-scalar products. Thus, it's not necessary to store the huge sensitivity matrix beforehand. We call this method the matrix decomposition approach (MD). And the Hessian-vector product is replaced by two kernel-vector products which are then calculated by the above MD. By this way, we don't need to solve two additional wave propagation problems as in the

  6. Adaptation of XMM-Newton SAS to GRID and VO architectures via web

    Science.gov (United States)

    Ibarra, A.; de La Calle, I.; Gabriel, C.; Salgado, J.; Osuna, P.

    2008-10-01

    The XMM-Newton Scientific Analysis Software (SAS) is a robust software that has allowed users to produce good scientific results since the beginning of the mission. This has been possible given the SAS capability to evolve with the advent of new technologies and adapt to the needs of the scientific community. The prototype of the Remote Interface for Science Analysis (RISA) presented here, is one such example, which provides remote analysis of XMM-Newton data with access to all the existing SAS functionality, while making use of GRID computing technology. This new technology has recently emerged within the astrophysical community to tackle the ever lasting problem of computer power for the reduction of large amounts of data.

  7. 2016 Newton County, Georgia ADS100 4-Band 8 Bit Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set consists of 0.5-foot pixel resolution, natural color orthoimages covering Newton County, Georgia. An orthoimage is remotely sensed image data in which...

  8. The myth of DSM's invention of new categories of disorder: Houts's diagnostic discontinuity thesis disconfirmed.

    Science.gov (United States)

    Wakefield, J C

    2001-05-01

    Houts (2001) argues that increases in DSM diagnostic categories are due to the invention of new disorders that are discontinuous with old conceptions of disorder and would not have been previously diagnosed. He maintains that DSM category increases are not comparable in nature to ICD category increases, which are mainly refinements of recognized disorders. I survey categories of disorder introduced after DSM-II and assess whether they are discontinuous with old concepts and categories of disorder. Candidate categories are identified from: Houts and Follette (1998), Mentalism, mechanisms, and medical analogues: Reply to Wakefield. Journal of Consulting and Clinical Psychology; Kutchins and Kirk (1997) Making us crazy: DSM: The psychiatric bible and the creation of mental disorders. New York: Free Press; and my own list. The result is that virtually none of the candidate categories are invented, discontinuous categories. In almost every case, the newly labeled conditions were considered disorders at the time of DSM-II and would have been diagnosed under DSM-II categories. I also reexamine DSM-IV sleep disorder categories, which Houts claims are discontinuous with past diagnostic conceptions. The result is that all DSM-IV sleep disorders were recognized as disorders at the time of DSM-II, and most were recognized as mental disorders. I conclude that DSM category increases are comparable in nature to ICD category increases, and that the invention-of-disorder account cannot explain the vast majority of such increases.

  9. Newton's second law and the multiplication of distributions

    Science.gov (United States)

    Sarrico, C. O. R.; Paiva, A.

    2018-01-01

    Newton's second law is applied to study the motion of a particle subjected to a time dependent impulsive force containing a Dirac delta distribution. Within this setting, we prove that this problem can be rigorously solved neither by limit processes nor by using the theory of distributions (limited to the classical Schwartz products). However, using a distributional multiplication, not defined by a limit process, a rigorous solution emerges.

  10. Inexact proximal Newton methods for self-concordant functions

    DEFF Research Database (Denmark)

    Li, Jinchao; Andersen, Martin Skovgaard; Vandenberghe, Lieven

    2016-01-01

    with an application to L1-regularized covariance selection, in which prior constraints on the sparsity pattern of the inverse covariance matrix are imposed. In the numerical experiments the proximal Newton steps are computed by an accelerated proximal gradient method, and multifrontal algorithms for positive definite...... matrices with chordal sparsity patterns are used to evaluate gradients and matrix-vector products with the Hessian of the smooth component of the objective....

  11. Socio-Economic Differentials in Contraceptive Discontinuation in India

    Directory of Open Access Journals (Sweden)

    Kiran Agrahari

    2016-05-01

    Full Text Available Fertility divergence amid declining in use of modern contraception in many states of India needs urgent research and programmatic attention. Although utilization of antenatal, natal, and post-natal care has shown spectacular increase in post National Rural Health Mission (NRHM period, the contraceptive use had shown a declining trend. Using the calendar data from the National Family Health Survey–3, this article examines the reasons of contraceptive discontinuation among spacing method users by socio-economic groups in India. Bivariate and multivariate analyses and life table discontinuation rates are used in the analyses. Results suggest that about half of the pill users, two fifths of the condom users, one third of traditional method users, and one fifth of IUD users discontinue a method in first 12 months of use. However, the discontinuation of all three modern spacing methods declines in subsequent period (within 12-36 months. The probability of method failure was highest among traditional method users and higher among poor and less educated that may lead to unwanted/mistimed birth. Although discontinuation of condom declines with economic status, it does not show any large variation for pill users. The contraceptive discontinuation was significantly associated with duration of use, age, parity, contraceptive method, religion, and contraceptive intention. Based on these findings, it is suggested that follow-up services to modern spacing method users, increasing counseling for spacing method users, motivating the traditional method user to use modern spacing method, and improving the overall quality of family planning services can reduce the discontinuation of spacing method.

  12. Newton Power Flow Methods for Unbalanced Three-Phase Distribution Networks

    NARCIS (Netherlands)

    Sereeter, B.; Vuik, C.; Witteveen, C.

    2017-01-01

    Two mismatch functions (power or current) and three coordinates (polar, Cartesian andcomplex form) result in six versions of the Newton–Raphson method for the solution of powerflow problems. In this paper, five new versions of the Newton power flow method developed forsingle-phase problems in our

  13. Newtonian cosmology Newton would understand

    International Nuclear Information System (INIS)

    Lemons, D.S.

    1988-01-01

    Isaac Newton envisioned a static, infinite, and initially uniform, zero field universe that was gravitationally unstable to local condensations of matter. By postulating the existence of such a universe and using it as a boundary condition on Newtonian gravity, a new field equation for gravity is derived, which differs from the classical one by a time-dependent cosmological term proportional to the average mass density of the universe. The new field equation not only makes Jeans' analysis of the gravitational instability of a Newtonian universe consistent, but also gives rise to a family of Newtonian evolutionary cosmologies parametrized by a time-invariant expansion velocity. This Newtonian cosmology contrasts with both 19th-century ones and with post general relativity Newtonian cosmology

  14. You err, Einstein.. Newton, Einstein, Heisenberg, and Feynman discuss quantum physics

    International Nuclear Information System (INIS)

    Fritzsch, Harald

    2008-01-01

    Harald Fritzsch and his star physicists Einstein, Heisenberg, and Feynman explain the central concept of nowadays physics, quantum mechanics, without it nothing goes in modern world. And the great Isaac newton puts the questions, which all would put

  15. Numerical evaluation of general n-dimensional integrals by the repeated use of Newton-Cotes formulas

    International Nuclear Information System (INIS)

    Nihira, Takeshi; Iwata, Tadao.

    1992-07-01

    The composites Simpson's rule is extended to n-dimensional integrals with variable limits. This extension is illustrated by means of the recursion relation of n-fold series. The structure of calculation by the Newton-Cotes formulas for n-dimensional integrals is clarified with this method. A quadrature formula corresponding to the Newton-Cotes formulas can be readily constructed. The results computed for some examples are given, and the error estimates for two or three dimensional integrals are described using the error term. (author)

  16. Krylov Techniques for 3D Problems in Transport Theory

    International Nuclear Information System (INIS)

    Ruben Panta Pazos

    2006-01-01

    When solving integral-differential equations by means of numerical methods one has to deal with large systems of linear equations, such as happens in transport theory [10]. Many iterative techniques are now used in Transport Theory in order to solve problems of 2D and 3D dimensions. In this paper, we choose two problems to solve the following transport equation, [Equation] where x: represents the spatial variable, μ: the cosine of the angle, ψ: the angular flux, h(x, μ): is the collision frequency, k(x, μ, μ'): the scattering kernel, q(x, μ): the source. The aim of this work is the straightforward application of the Krylov spaces technique [2] to the governing equation or to its discretizations derived of the discrete ordinates method (choosing a finite number of directions and then approximating the integral term by means of a proper sum). The equation (1) can be written in functional form as [Equation] with ψ in the Hilbert space L 2 ([0,a] x [-1,1])., and q is the source function. The operator derived from a discrete ordinates scheme that approximates the operator [Equation] generates the following subspace [Equation] i.e. the subspace generated by the iterations of order 0, 1, 2,..., m-1 of the source function q. Two methods are specially outstanding, the Lanczos method to solve the problem given by equation (2) with certain boundary conditions, and the conjugate gradient method to solve the same problem with identical boundary conditions. We discuss and accelerate the basic iterative method [8]. An important conclusion is the generation of these methods to solve linear systems in Hilbert spaces, if verify the convergence conditions, which are outlined in this work. The first problem is a cubic domain with two regions, one with a source near the vertex at the origin and the shield region. In this case, the Cartesian planes (specifically 0 < x < L, 0 < y < L, 0 < z < L) are reflexive boundaries and the rest faces of the cube are vacuum boundaries. The

  17. Drawing and Using Free Body Diagrams: Why It May Be Better Not to Decompose Forces

    Science.gov (United States)

    Aviani, Ivica; Erceg, Nataša; Mešic, Vanes

    2015-01-01

    In this study we investigated how two different approaches to drawing free body diagrams influence the development of students' understanding of Newton's laws, including their ability to identify real forces. For this purpose we developed a 12-item two-tier multiple choice survey and conducted a quasiexperiment. This experiment included two groups…

  18. Continuous and discontinuous transitions to synchronization.

    Science.gov (United States)

    Wang, Chaoqing; Garnier, Nicolas B

    2016-11-01

    We describe how the transition to synchronization in a system of globally coupled Stuart-Landau oscillators changes from continuous to discontinuous when the nature of the coupling is moved from diffusive to reactive. We explain this drastic qualitative change as resulting from the co-existence of a particular synchronized macrostate together with the trivial incoherent macrostate, in a range of parameter values for which the latter is linearly stable. In contrast to the paradigmatic Kuramoto model, this particular state observed at the synchronization transition contains a finite, non-vanishing number of synchronized oscillators, which results in a discontinuous transition. We consider successively two situations where either a fully synchronized state or a partially synchronized state exists at the transition. Thermodynamic limit and finite size effects are briefly discussed, as well as connections with recently observed discontinuous transitions.

  19. Actor Bonds in Situations of Discontinuous Business Activities

    DEFF Research Database (Denmark)

    Skaates, Maria Anne

    2000-01-01

    Demand in many industrial buying situations, e.g. project purchases or procurement related to virtual organizations, is discontinuous. In situations of discontinuity, networks are often more of an ad hos informational and social nature, as strong activity and resource links are not present....... Furthermore the governance structure of markets characterized by discontinuous business activities is either that of the "socially constructed market" (Skaates, 2000) or that of the (socially constructed) network (Håkansson and Johanson, 1993). Additionally relationships and actor bonds vary substantially...

  20. Implementing WebQuest Based Instruction on Newton's Second Law

    Science.gov (United States)

    Gokalp, Muhammed Sait; Sharma, Manjula; Johnston, Ian; Sharma, Mia

    2013-01-01

    The purpose of this study was to investigate how WebQuests can be used in physics classes for teaching specific concepts. The study had three stages. The first stage was to develop a WebQuest on Newton's second law. The second stage involved developing a lesson plan to implement the WebQuest in class. In the final stage, the WebQuest was…

  1. Rotational discontinuities and the structure of the magnetopause

    International Nuclear Information System (INIS)

    Swift, D.W.; Lee, L.C.

    1983-01-01

    Symmetric and asymmetric rotational discontinuities are studied by means of a one-dimensional computer simulation and by single-particle trajectory calculations. The numerical simulations show the symmetric rotation to be stable for both ion and electron senses of rotation with a thickness of the order of a few ion gyroradii when the rotation angle of the tangential field is 180 0 or less. Larger rotation angles tend to be unstable. In an expansive discontinuity, when the magnetic field on the downstream side of the discontinuity is larger, an expanding transition layer separating the high-field from a low-field region develops on the downstream side, and a symmetric rotational discontinuity forms at the upstream edge. The implication of these results for magnetopause structure and energy flow through the magnetopause is described

  2. [Discontinuation of depression treatment from the perspective of suicide prevention].

    Science.gov (United States)

    Cho, Yoshinori

    2012-01-01

    It is assumed that discontinuation of treatment for depression may increase the risk of suicide. A population-based register study in Denmark did not find a lower risk among people over age 50 who followed treatment in comparison with those who discontinued treatment with antidepressants at an early stage. This result, however, does not allow us to think superficially that early discontinuation of treatment does not increase the risk of suicide. It is because the study has limitations without information of such as psychiatric diagnoses, severity of the depressed state, and reasons of discontinuation. It is safe for clinicians to aim at preventing discontinuation of treatment. Particularly, in Japan and South Korea where there is a sociocultural climate of tolerability for suicide, suicide can occur in milder depressed state and discontinuation of treatment should be taken more seriously than in Western countries.

  3. Newton-like methods for Navier-Stokes solution

    Science.gov (United States)

    Qin, N.; Xu, X.; Richards, B. E.

    1992-12-01

    The paper reports on Newton-like methods called SFDN-alpha-GMRES and SQN-alpha-GMRES methods that have been devised and proven as powerful schemes for large nonlinear problems typical of viscous compressible Navier-Stokes solutions. They can be applied using a partially converged solution from a conventional explicit or approximate implicit method. Developments have included the efficient parallelization of the schemes on a distributed memory parallel computer. The methods are illustrated using a RISC workstation and a transputer parallel system respectively to solve a hypersonic vortical flow.

  4. Constraining the neutron star equation of state using XMM-Newton

    NARCIS (Netherlands)

    Kaastra, J.; Mendez, M.; In 't Zand, J. J. M.; Jonker, P.G.

    We have identified three possible ways in which future XMM-Newton observations can provide significant constraints on the equation of state of neutron stars. First, using a long observation of the neutron star X-ray transient Cen X-4 in quiescence one can use the RGS spectrum to constrain the

  5. Constraining the neutron star equation of state using XMM-Newton

    NARCIS (Netherlands)

    Jonker, P.G.; Kaastra, J.S.; Méndez, M.; in 't Zand, J.J.M.

    2008-01-01

    We have identified three possible ways in which future XMM-Newton observations can provide significant constraints on the equation of state of neutron stars. First, using a long observation of the neutron star X-ray transient Cen X-4 in quiescence one can use the RGS spectrum to constrain the

  6. Design of reciprocal unit based on the Newton-Raphson approximation

    DEFF Research Database (Denmark)

    Gundersen, Anders Torp; Winther-Almstrup, Rasmus; Boesen, Michael

    A design of a reciprocal unit based on Newton-Raphson approximation is described and implemented. We present two different designs for single precisions where one of them is extremely fast but the trade-off is an increase in area. The solution behind the fast design is that the design is fully...

  7. Newton-sor iterative method for solving the two-dimensional porous ...

    African Journals Online (AJOL)

    In this paper, we consider the application of the Newton-SOR iterative method in obtaining the approximate solution of the two-dimensional porous medium equation (2D PME). The nonlinear finite difference approximation equation to the 2D PME is derived by using the implicit finite difference scheme. The developed ...

  8. A Framework for Generalising the Newton Method and Other Iterative Methods from Euclidean Space to Manifolds

    OpenAIRE

    Manton, Jonathan H.

    2012-01-01

    The Newton iteration is a popular method for minimising a cost function on Euclidean space. Various generalisations to cost functions defined on manifolds appear in the literature. In each case, the convergence rate of the generalised Newton iteration needed establishing from first principles. The present paper presents a framework for generalising iterative methods from Euclidean space to manifolds that ensures local convergence rates are preserved. It applies to any (memoryless) iterative m...

  9. Searching for propeller-phase ULXs in the XMM-Newton Serendipitous Source Catalogue

    Science.gov (United States)

    Earnshaw, H. P.; Roberts, T. P.; Sathyaprakash, R.

    2018-05-01

    We search for transient sources in a sample of ultraluminous X-ray sources (ULXs) from the 3XMM-DR4 release of the XMM-Newton Serendipitous Source Catalogue in order to find candidate neutron star ULXs alternating between an accreting state and the propeller regime, in which the luminosity drops dramatically. By examining their fluxes and flux upper limits, we identify five ULXs that demonstrate long-term variability of over an order of magnitude. Using Chandra and Swift data to further characterize their light curves, we find that two of these sources are detected only once and could be X-ray binaries in outburst that only briefly reach ULX luminosities. Two others are consistent with being super-Eddington accreting sources with high levels of inter-observation variability. One source, M51 ULX-4, demonstrates apparent bimodal flux behaviour that could indicate the propeller regime. It has a hard X-ray spectrum, but no significant pulsations in its timing data, although with an upper limit of 10 per cent of the signal pulsed at ˜1.5 Hz a pulsating ULX cannot be excluded, particularly if the pulsations are transient. By simulating XMM-Newton observations of a population of pulsating ULXs, we predict that there could be approximately 200 other bimodal ULXs that have not been observed sufficiently well by XMM-Newton to be identified as transient.

  10. An approximate block Newton method for coupled iterations of nonlinear solvers: Theory and conjugate heat transfer applications

    Science.gov (United States)

    Yeckel, Andrew; Lun, Lisa; Derby, Jeffrey J.

    2009-12-01

    A new, approximate block Newton (ABN) method is derived and tested for the coupled solution of nonlinear models, each of which is treated as a modular, black box. Such an approach is motivated by a desire to maintain software flexibility without sacrificing solution efficiency or robustness. Though block Newton methods of similar type have been proposed and studied, we present a unique derivation and use it to sort out some of the more confusing points in the literature. In particular, we show that our ABN method behaves like a Newton iteration preconditioned by an inexact Newton solver derived from subproblem Jacobians. The method is demonstrated on several conjugate heat transfer problems modeled after melt crystal growth processes. These problems are represented by partitioned spatial regions, each modeled by independent heat transfer codes and linked by temperature and flux matching conditions at the boundaries common to the partitions. Whereas a typical block Gauss-Seidel iteration fails about half the time for the model problem, quadratic convergence is achieved by the ABN method under all conditions studied here. Additional performance advantages over existing methods are demonstrated and discussed.

  11. Risk of discontinuation of Advanced Therapy Medicinal Products clinical trials.

    Science.gov (United States)

    Hanna, Eve; Rémuzat, Cecile; Auquier, Pascal; Toumi, Mondher

    2016-01-01

    Advanced therapy medicinal products (ATMPs) constitute a class of innovative products that encompasses gene therapy, somatic cell therapy, and tissue-engineered products (TEP). There is an increased investment of commercial and non-commercial sponsors in this field and a growing number of ATMPs randomized clinical trials (RCT) and patients enrolled in such trials. RCT generate data to prove the efficacy of a new therapy, but the discontinuation of RCTs wastes scarce resources. Our objective is to identify the number and characteristics of discontinued ATMPs trials in order to evaluate the rate of discontinuation. We searched for ATMPs trials conducted between 1999 to June 2015 using three databases, which are Clinicaltrials.gov, the International Clinical Trials Registry Platform (ICTRP), and the EU Drug Regulating Authorities Clinical Trials (EudraCT). We selected the ATMPs trials after elimination of the duplicates. We identified the disease areas and the sponsors as commercial or non-commercial organizations. We classified ATMPs by type and trial status, that is, ongoing, completed, terminated, discontinued, and prematurely ended. Then, we calculated the rate of discontinuation. Between 1999 and June 2015, 143 withdrawn, terminated, or prematurely ended ATMPs clinical trials were identified. Between 1999 and June 2013, 474 ongoing and completed clinical trials were identified. Therefore, the rate of discontinuation of ATMPs trials is 23.18%, similar to that for non-ATMPs drugs in development. The probability of discontinuation is, respectively, 27.35, 16.28, and 16.34% for cell therapies, gene therapies, and TEP. The highest discontinuation rate is for oncology (43%), followed by cardiology (19.2%). It is almost the same for commercial and non-commercial sponsors; therefore, the discontinuation reason may not be financially driven. No failure risk rate per development phase is available for ATMPs. The discontinuation rate may prove helpful when assessing the

  12. La-doped BaTiO3 heterostructures: Compensating the polarization discontinuity

    Directory of Open Access Journals (Sweden)

    D. P. Kumah

    2013-12-01

    Full Text Available We demonstrate a route to manipulate the polarization and internal electric field of a complex oxide heterostructure using a layering sequence based on the LaAlO3-SrTiO3 interface. By combining sensitive atomic-level mapping of the structure using direct x-ray phase-retrieval methods with theoretical modeling of the electrostatic charge and polarization, we have devised a novel single-domain polar heterostructure. We find that ionic rearrangement results in strain and free energy minimization, and eliminates the polarization discontinuity leading to a two-fold increase of the spontaneous polarization towards the surface of an ultra-thin single-domain BaTiO3 film.

  13. 41 CFR 109-39.105 - Discontinuance or curtailment of service.

    Science.gov (United States)

    2010-07-01

    ... AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.1-Establishment, Modification, and Discontinuance of Interagency Fleet Management Systems § 109-39.105 Discontinuance or... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Discontinuance or...

  14. What happens when people discontinue taking medications? Lessons from COMBINE.

    Science.gov (United States)

    Stout, Robert L; Braciszewski, Jordan M; Subbaraman, Meenakshi Sabina; Kranzler, Henry R; O'Malley, Stephanie S; Falk, Daniel

    2014-12-01

    We use intensive longitudinal data methods to illuminate processes affecting patients' drinking in relation to the discontinuation of medications within an alcohol treatment study. Although previous work has focused on broad measures of medication adherence, we focus on dynamic changes in drinking both before and after patients discontinue. We conducted secondary data analyses using the COMBINE (Combined Pharmacotherapies and Behavioral Interventions for Alcohol Dependence) study, focused on participants who discontinued medications prior to the planned end of treatment. Using an interrupted time-series analysis, we analysed drinking in the weeks before and after discontinuation and also studied outcomes at the end of the COMBINE follow-up. Unites States of America. We describe the subsample of COMBINE participants who discontinued medications (n = 450), and compare them with those who were medication-adherent (n = 559) and with those who discontinued but had substantial missing data (n = 217). The primary outcomes were percentage of days abstinent (PDA) and percentage of heavy drinking days (PHDD). Medication adherence data were used to approximate the date of discontinuation. For many patients, an increase in drinking began weeks before discontinuation (PDA: F(1,4803) = 19.07, P < 0.001; PHDD: F(1,4804) = 8.58, P = 0.003) then escalated at discontinuation (PDA: F(1,446) = 5.05, P = 0.025; PHDD: F(1,446) = 4.52, P = 0.034). Among other effects, the amount of change was moderated by the reason for discontinuation (e.g. adverse event; PDA: F(2,4803) = 3.85, P = 0.021; PHDD: F(2,4804) = 5.36, P = 0.005) and also whether it occurred in the first or second half of treatment (PDA: F(1,4803) = 5.23, P = 0.022; PHDD: F(1,4804) = 8.79, P = 0.003). A patient's decision to stop taking medications during alcohol treatment appears to take place during a weeks-long process of disengagement from treatment. Patients who discontinue medications early in treatment or without

  15. Supporting the learning of Newton's laws with graphical data

    Science.gov (United States)

    Piggott, David

    Teaching physics provides the opportunity for a very unique interaction between students and instructor that is not found in chemistry or biology. Physics has a heavy emphasis on trying to alter students' misconceptions about how things work in the real word. In chemistry and microbiology this is not an issue because the topics of discussion in those classes are a new experience for the students. In the case of physics the students have everyday experience with the different concepts discussed. This causes the students to build incorrect mental models explaining how different things work. In order to correct these mental models physics teachers must first get the students to vocalize these misconceptions. Then the teacher must confront the students with an example that exposes the false nature of their model. Finally, the teacher must help the student resolve these discrepancies and form the correct model. This study attempts to resolve these discrepancies by giving the students concrete evidence via graphs of Newton's laws. The results reported here indicate that this method of eliciting the misconception, confronting the misconception, and resolving the misconception is successful with Newton's third law, but only marginally successful for first and second laws.

  16. Gravitation: Field theory par excellence Newton, Einstein, and beyond

    International Nuclear Information System (INIS)

    Yilmaz, H.

    1984-01-01

    Newtonian gravity satifies the two principles of equivalence m/sub i/ = m/sub p/ (the passive principle) and m/sub a/ = m/sub p/ (the active principle). A relativistic gauge field concept in D = s+1 dimensional curved-space will, in general, violate these two principles as in m/sub p/ = αm/sub i/, m/sub a/ = lambdam/sub p/ where α = D: 3 and lambda measures the presence of the field stress-energy t/sup ν//sub μ/ in the field equations. It is shown that α = 1, lambda = 0 corresponds to general relativity and α = 1, lambda = 1 to the theory of the author. It is noted that the correspondence limit of general relativity is not Newton's theory but a theory suggested by Robert Hooke a few years before Newton published his in Principia. The gauge is independent of the two principles but had to do with local special relativistic correspondence and compatibility with quantum mechanics. It is shown that unless α = 1, lambda = 1 the generalized theory cannot predict correctly many observables effects, including the 532'' per century Newtonian part in Mercury's perihelion advance

  17. XMM-Newton detects X-ray 'solar cycle' in distant star

    Science.gov (United States)

    2004-05-01

    The Sun as observed by SOHO hi-res Size hi-res: 708 Kb The Sun as observed by SOHO The Sun as observed by the ESA/NASA SOHO observatory near the minimum of the solar cycle (left) and near its maximum (right). The signs of solar activity near the maximum are clearly seen. New XMM-Newton observations suggest that this behaviour may be typical of stars like the Sun, such as HD 81809 in the constellation Hydra. Solar flare - 4 November 2003 The huge flare produced on 4 November 2003 This image of the Sun, obtained by the ESA/NASA SOHO observatory, shows the powerful X-ray flare that took place on 4 November 2003. The associated coronal mass ejection, coming out of the Sun at a speed of 8.2 million kilometres per hour, hit the Earth several hours later and caused disruptions to telecommunication and power distribution lines. New XMM-Newton observations suggest that this behaviour may be typical of stars like the Sun, such as HD 81809 in the constellation Hydra. Since the time Galileo discovered sunspots, in 1610, astronomers have measured their number, size and location on the disc of the Sun. Sunspots are relatively cooler areas on the Sun that are observed as dark patches. Their number rises and falls with the level of activity of the Sun in a cycle of about 11 years. When the Sun is very active, large-scale phenomena take place, such as the flares and coronal mass ejections observed by the ESA/NASA solar observatory SOHO. These events release a large amount of energy and charged particles that hit the Earth and can cause powerful magnetic storms, affecting radio communications, power distribution lines and even our weather and climate. During the solar cycle, the X-ray emission from the Sun varies by a large amount (about a factor of 100) and is strongest when the cycle is at its peak and the surface of the Sun is covered by the largest number of spots. ESA's X-ray observatory, XMM-Newton, has now shown for the first time that this cyclic X-ray behaviour is common to

  18. Area Regge calculus and discontinuous metrics

    International Nuclear Information System (INIS)

    Wainwright, Chris; Williams, Ruth M

    2004-01-01

    Taking the triangle areas as independent variables in the theory of Regge calculus can lead to ambiguities in the edge lengths, which can be interpreted as discontinuities in the metric. We construct solutions to area Regge calculus using a triangulated lattice and find that on a spacelike or timelike hypersurface no such discontinuity can arise. On a null hypersurface however, we can have such a situation and the resulting metric can be interpreted as a so-called refractive wave

  19. Physics-based process model approach for detecting discontinuity during friction stir welding

    Energy Technology Data Exchange (ETDEWEB)

    Shrivastava, Amber; Pfefferkorn, Frank E.; Duffie, Neil A.; Ferrier, Nicola J.; Smith, Christopher B.; Malukhin, Kostya; Zinn, Michael

    2015-02-12

    The goal of this work is to develop a method for detecting the creation of discontinuities during friction stir welding. This in situ weld monitoring method could significantly reduce the need for post-process inspection. A process force model and a discontinuity force model were created based on the state-of-the-art understanding of flow around an friction stir welding (FSW) tool. These models are used to predict the FSW forces and size of discontinuities formed in the weld. Friction stir welds with discontinuities and welds without discontinuities were created, and the differences in force dynamics were observed. In this paper, discontinuities were generated by reducing the tool rotation frequency and increasing the tool traverse speed in order to create "cold" welds. Experimental force data for welds with discontinuities and welds without discontinuities compared favorably with the predicted forces. The model currently overpredicts the discontinuity size.

  20. Accountability Accentuates Interindividual-Intergroup Discontinuity by Enforcing Parochialism

    NARCIS (Netherlands)

    Wildschut, T.; Van Horen, F.; Hart, C.

    2015-01-01

    Interindividual-intergroup discontinuity is the tendency for relations between groups to be more competitive than relations between individuals. We examined whether the discontinuity effect arises in part because group members experience normative pressure to favor the ingroup (parochialism).