WorldWideScience

Sample records for frameless single-session robotic

  1. Towards frameless maskless SRS through real-time 6DoF robotic motion compensation

    Science.gov (United States)

    Belcher, Andrew H.; Liu, Xinmin; Chmura, Steven; Yenice, Kamil; Wiersma, Rodney D.

    2017-12-01

    Stereotactic radiosurgery (SRS) uses precise dose placement to treat conditions of the CNS. Frame-based SRS uses a metal head ring fixed to the patient’s skull to provide high treatment accuracy, but patient comfort and clinical workflow may suffer. Frameless SRS, while potentially more convenient, may increase uncertainty of treatment accuracy and be physiologically confining to some patients. By incorporating highly precise robotics and advanced software algorithms into frameless treatments, we present a novel frameless and maskless SRS system where a robot provides real-time 6DoF head motion stabilization allowing positional accuracies to match or exceed those of traditional frame-based SRS. A 6DoF parallel kinematics robot was developed and integrated with a real-time infrared camera in a closed loop configuration. A novel compensation algorithm was developed based on an iterative closest-path correction approach. The robotic SRS system was tested on six volunteers, whose motion was monitored and compensated for in real-time over 15 min simulated treatments. The system’s effectiveness in maintaining the target’s 6DoF position within preset thresholds was determined by comparing volunteer head motion with and without compensation. Comparing corrected and uncorrected motion, the 6DoF robotic system showed an overall improvement factor of 21 in terms of maintaining target position within 0.5 mm and 0.5 degree thresholds. Although the system’s effectiveness varied among the volunteers examined, for all volunteers tested the target position remained within the preset tolerances 99.0% of the time when robotic stabilization was used, compared to 4.7% without robotic stabilization. The pre-clinical robotic SRS compensation system was found to be effective at responding to sub-millimeter and sub-degree cranial motions for all volunteers examined. The system’s success with volunteers has demonstrated its capability for implementation with frameless and

  2. Towards frameless maskless SRS through real-time 6DoF robotic motion compensation.

    Science.gov (United States)

    Belcher, Andrew H; Liu, Xinmin; Chmura, Steven; Yenice, Kamil; Wiersma, Rodney D

    2017-11-13

    Stereotactic radiosurgery (SRS) uses precise dose placement to treat conditions of the CNS. Frame-based SRS uses a metal head ring fixed to the patient's skull to provide high treatment accuracy, but patient comfort and clinical workflow may suffer. Frameless SRS, while potentially more convenient, may increase uncertainty of treatment accuracy and be physiologically confining to some patients. By incorporating highly precise robotics and advanced software algorithms into frameless treatments, we present a novel frameless and maskless SRS system where a robot provides real-time 6DoF head motion stabilization allowing positional accuracies to match or exceed those of traditional frame-based SRS. A 6DoF parallel kinematics robot was developed and integrated with a real-time infrared camera in a closed loop configuration. A novel compensation algorithm was developed based on an iterative closest-path correction approach. The robotic SRS system was tested on six volunteers, whose motion was monitored and compensated for in real-time over 15 min simulated treatments. The system's effectiveness in maintaining the target's 6DoF position within preset thresholds was determined by comparing volunteer head motion with and without compensation. Comparing corrected and uncorrected motion, the 6DoF robotic system showed an overall improvement factor of 21 in terms of maintaining target position within 0.5 mm and 0.5 degree thresholds. Although the system's effectiveness varied among the volunteers examined, for all volunteers tested the target position remained within the preset tolerances 99.0% of the time when robotic stabilization was used, compared to 4.7% without robotic stabilization. The pre-clinical robotic SRS compensation system was found to be effective at responding to sub-millimeter and sub-degree cranial motions for all volunteers examined. The system's success with volunteers has demonstrated its capability for implementation with frameless and maskless SRS

  3. The geometric accuracy of frameless stereotactic radiosurgery using a 6D robotic couch system

    Energy Technology Data Exchange (ETDEWEB)

    Takakura, T; Nakata, M; Yano, S; Fujimoto, T [Division of Clinical Radiology Service, Kyoto University Hospital, Kyoto (Japan); Mizowaki, T; Miyabe, Y; Nakamura, M; Hiraoka, M [Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, Kyoto (Japan)], E-mail: toru1@kuhp.kyoto-u.ac.jp

    2010-01-07

    The aim of this paper is to assess the overall geometric accuracy of the Novalis system using the Robotic Tilt Module in terms of the uncertainty in frameless stereotactic radiotherapy. We analyzed the following three metrics: (1) the correction accuracy of the robotic couch, (2) the uncertainty of the isocenter position with gantry and couch rotation, and (3) the shift in position between the isocenter and central point detected with the ExacTrac x-ray system. Based on the concept of uncertainty, the overall accuracy was calculated from these values. The accuracy in positional correction with the robotic couch was 0.07 {+-} 0.22 mm, the positional shift of the isocenter associated with gantry rotation was 0.35 mm, the positional shift of the isocenter associated with couch rotation was 0.38 mm and the difference in position between the isocenter and the ExacTrac x-ray system was 0.30 mm. The accuracy of intracranial stereotactic radiosurgery with the Novalis system in our clinic was 0.31 {+-} 0.77 mm. The overall geometric accuracy based on the concept of uncertainty was 0.31 {+-} 0.77 mm, which is within the tolerance given in the American Association of Physicists in Medicine report no. 54.

  4. The geometric accuracy of frameless stereotactic radiosurgery using a 6D robotic couch system

    International Nuclear Information System (INIS)

    Takakura, T; Nakata, M; Yano, S; Fujimoto, T; Mizowaki, T; Miyabe, Y; Nakamura, M; Hiraoka, M

    2010-01-01

    The aim of this paper is to assess the overall geometric accuracy of the Novalis system using the Robotic Tilt Module in terms of the uncertainty in frameless stereotactic radiotherapy. We analyzed the following three metrics: (1) the correction accuracy of the robotic couch, (2) the uncertainty of the isocenter position with gantry and couch rotation, and (3) the shift in position between the isocenter and central point detected with the ExacTrac x-ray system. Based on the concept of uncertainty, the overall accuracy was calculated from these values. The accuracy in positional correction with the robotic couch was 0.07 ± 0.22 mm, the positional shift of the isocenter associated with gantry rotation was 0.35 mm, the positional shift of the isocenter associated with couch rotation was 0.38 mm and the difference in position between the isocenter and the ExacTrac x-ray system was 0.30 mm. The accuracy of intracranial stereotactic radiosurgery with the Novalis system in our clinic was 0.31 ± 0.77 mm. The overall geometric accuracy based on the concept of uncertainty was 0.31 ± 0.77 mm, which is within the tolerance given in the American Association of Physicists in Medicine report no. 54.

  5. Robotic real-time translational and rotational head motion correction during frameless stereotactic radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xinmin; Belcher, Andrew H.; Grelewicz, Zachary; Wiersma, Rodney D., E-mail: rwiersma@uchicago.edu [Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois 60637 (United States)

    2015-06-15

    Purpose: To develop a control system to correct both translational and rotational head motion deviations in real-time during frameless stereotactic radiosurgery (SRS). Methods: A novel feedback control with a feed-forward algorithm was utilized to correct for the coupling of translation and rotation present in serial kinematic robotic systems. Input parameters for the algorithm include the real-time 6DOF target position, the frame pitch pivot point to target distance constant, and the translational and angular Linac beam off (gating) tolerance constants for patient safety. Testing of the algorithm was done using a 4D (XY Z + pitch) robotic stage, an infrared head position sensing unit and a control computer. The measured head position signal was processed and a resulting command was sent to the interface of a four-axis motor controller, through which four stepper motors were driven to perform motion compensation. Results: The control of the translation of a brain target was decoupled with the control of the rotation. For a phantom study, the corrected position was within a translational displacement of 0.35 mm and a pitch displacement of 0.15° 100% of the time. For a volunteer study, the corrected position was within displacements of 0.4 mm and 0.2° over 98.5% of the time, while it was 10.7% without correction. Conclusions: The authors report a control design approach for both translational and rotational head motion correction. The experiments demonstrated that control performance of the 4D robotic stage meets the submillimeter and subdegree accuracy required by SRS.

  6. Robotic real-time translational and rotational head motion correction during frameless stereotactic radiosurgery

    International Nuclear Information System (INIS)

    Liu, Xinmin; Belcher, Andrew H.; Grelewicz, Zachary; Wiersma, Rodney D.

    2015-01-01

    Purpose: To develop a control system to correct both translational and rotational head motion deviations in real-time during frameless stereotactic radiosurgery (SRS). Methods: A novel feedback control with a feed-forward algorithm was utilized to correct for the coupling of translation and rotation present in serial kinematic robotic systems. Input parameters for the algorithm include the real-time 6DOF target position, the frame pitch pivot point to target distance constant, and the translational and angular Linac beam off (gating) tolerance constants for patient safety. Testing of the algorithm was done using a 4D (XY Z + pitch) robotic stage, an infrared head position sensing unit and a control computer. The measured head position signal was processed and a resulting command was sent to the interface of a four-axis motor controller, through which four stepper motors were driven to perform motion compensation. Results: The control of the translation of a brain target was decoupled with the control of the rotation. For a phantom study, the corrected position was within a translational displacement of 0.35 mm and a pitch displacement of 0.15° 100% of the time. For a volunteer study, the corrected position was within displacements of 0.4 mm and 0.2° over 98.5% of the time, while it was 10.7% without correction. Conclusions: The authors report a control design approach for both translational and rotational head motion correction. The experiments demonstrated that control performance of the 4D robotic stage meets the submillimeter and subdegree accuracy required by SRS

  7. Three independent one-dimensional margins for single-fraction frameless stereotactic radiosurgery brain cases using CBCT

    International Nuclear Information System (INIS)

    Zhang, Qinghui; Chan, Maria F.; Burman, Chandra; Song, Yulin; Zhang, Mutian

    2013-01-01

    Purpose: Setting a proper margin is crucial for not only delivering the required radiation dose to a target volume, but also reducing the unnecessary radiation to the adjacent organs at risk. This study investigated the independent one-dimensional symmetric and asymmetric margins between the clinical target volume (CTV) and the planning target volume (PTV) for linac-based single-fraction frameless stereotactic radiosurgery (SRS).Methods: The authors assumed a Dirac delta function for the systematic error of a specific machine and a Gaussian function for the residual setup errors. Margin formulas were then derived in details to arrive at a suitable CTV-to-PTV margin for single-fraction frameless SRS. Such a margin ensured that the CTV would receive the prescribed dose in 95% of the patients. To validate our margin formalism, the authors retrospectively analyzed nine patients who were previously treated with noncoplanar conformal beams. Cone-beam computed tomography (CBCT) was used in the patient setup. The isocenter shifts between the CBCT and linac were measured for a Varian Trilogy linear accelerator for three months. For each plan, the authors shifted the isocenter of the plan in each direction by ±3 mm simultaneously to simulate the worst setup scenario. Subsequently, the asymptotic behavior of the CTV V 80% for each patient was studied as the setup error approached the CTV-PTV margin.Results: The authors found that the proper margin for single-fraction frameless SRS cases with brain cancer was about 3 mm for the machine investigated in this study. The isocenter shifts between the CBCT and the linac remained almost constant over a period of three months for this specific machine. This confirmed our assumption that the machine systematic error distribution could be approximated as a delta function. This definition is especially relevant to a single-fraction treatment. The prescribed dose coverage for all the patients investigated was 96.1%± 5.5% with an extreme

  8. Technique for Targeting Arteriovenous Malformations Using Frameless Image-Guided Robotic Radiosurgery

    International Nuclear Information System (INIS)

    Hristov, Dimitre; Liu, Lina; Adler, John R.; Gibbs, Iris C.; Moore, Teri; Sarmiento, Marily; Chang, Steve D.; Dodd, Robert; Marks, Michael; Do, Huy M.

    2011-01-01

    Purpose: To integrate three-dimensional (3D) digital rotation angiography (DRA) and two-dimensional (2D) digital subtraction angiography (DSA) imaging into a targeting methodology enabling comprehensive image-guided robotic radiosurgery of arteriovenous malformations (AVMs). Methods and Materials: DRA geometric integrity was evaluated by imaging a phantom with embedded markers. Dedicated DSA acquisition modes with preset C-arm positions were configured. The geometric reproducibility of the presets was determined, and its impact on localization accuracy was evaluated. An imaging protocol composed of anterior-posterior and lateral DSA series in combination with a DRA run without couch displacement between acquisitions was introduced. Software was developed for registration of DSA and DRA (2D-3D) images to correct for: (a) small misalignments of the C-arm with respect to the estimated geometry of the set positions and (b) potential patient motion between image series. Within the software, correlated navigation of registered DRA and DSA images was incorporated to localize AVMs within a 3D image coordinate space. Subsequent treatment planning and delivery followed a standard image-guided robotic radiosurgery process. Results: DRA spatial distortions were typically smaller than 0.3 mm throughout a 145-mm x 145-mm x 145-mm volume. With 2D-3D image registration, localization uncertainties resulting from the achievable reproducibility of the C-arm set positions could be reduced to about 0.2 mm. Overall system-related localization uncertainty within the DRA coordinate space was 0.4 mm. Image-guided frameless robotic radiosurgical treatments with this technique were initiated. Conclusions: The integration of DRA and DSA into the process of nidus localization increases the confidence with which radiosurgical ablation of AVMs can be performed when using only an image-guided technique. Such an approach can increase patient comfort, decrease time pressure on clinical and

  9. Technical Note: Evaluation of the systematic accuracy of a frameless, multiple image modality guided, linear accelerator based stereotactic radiosurgery system

    Energy Technology Data Exchange (ETDEWEB)

    Wen, N., E-mail: nwen1@hfhs.org; Snyder, K. C.; Qin, Y.; Li, H.; Siddiqui, M. S.; Chetty, I. J. [Department of Radiation Oncology, Henry Ford Health System, 2799 West Brand Boulevard, Detroit, Michigan 48202 (United States); Scheib, S. G.; Schmelzer, P. [Varian Medical System, Täfernstrasse 7, Dättwil AG 5405 (Switzerland)

    2016-05-15

    Purpose: To evaluate the total systematic accuracy of a frameless, image guided stereotactic radiosurgery system. Methods: The localization accuracy and intermodality difference was determined by delivering radiation to an end-to-end prototype phantom, in which the targets were localized using optical surface monitoring system (OSMS), electromagnetic beacon-based tracking (Calypso®), cone-beam CT, “snap-shot” planar x-ray imaging, and a robotic couch. Six IMRT plans with jaw tracking and a flattening filter free beam were used to study the dosimetric accuracy for intracranial and spinal stereotactic radiosurgery treatment. Results: End-to-end localization accuracy of the system evaluated with the end-to-end phantom was 0.5 ± 0.2 mm with a maximum deviation of 0.9 mm over 90 measurements (including jaw, MLC, and cone measurements for both auto and manual fusion) for single isocenter, single target treatment, 0.6 ± 0.4 mm for multitarget treatment with shared isocenter. Residual setup errors were within 0.1 mm for OSMS, and 0.3 mm for Calypso. Dosimetric evaluation based on absolute film dosimetry showed greater than 90% pass rate for all cases using a gamma criteria of 3%/1 mm. Conclusions: The authors’ experience demonstrates that the localization accuracy of the frameless image-guided system is comparable to robotic or invasive frame based radiosurgery systems.

  10. Technical Note: Evaluation of the systematic accuracy of a frameless, multiple image modality guided, linear accelerator based stereotactic radiosurgery system

    International Nuclear Information System (INIS)

    Wen, N.; Snyder, K. C.; Qin, Y.; Li, H.; Siddiqui, M. S.; Chetty, I. J.; Scheib, S. G.; Schmelzer, P.

    2016-01-01

    Purpose: To evaluate the total systematic accuracy of a frameless, image guided stereotactic radiosurgery system. Methods: The localization accuracy and intermodality difference was determined by delivering radiation to an end-to-end prototype phantom, in which the targets were localized using optical surface monitoring system (OSMS), electromagnetic beacon-based tracking (Calypso®), cone-beam CT, “snap-shot” planar x-ray imaging, and a robotic couch. Six IMRT plans with jaw tracking and a flattening filter free beam were used to study the dosimetric accuracy for intracranial and spinal stereotactic radiosurgery treatment. Results: End-to-end localization accuracy of the system evaluated with the end-to-end phantom was 0.5 ± 0.2 mm with a maximum deviation of 0.9 mm over 90 measurements (including jaw, MLC, and cone measurements for both auto and manual fusion) for single isocenter, single target treatment, 0.6 ± 0.4 mm for multitarget treatment with shared isocenter. Residual setup errors were within 0.1 mm for OSMS, and 0.3 mm for Calypso. Dosimetric evaluation based on absolute film dosimetry showed greater than 90% pass rate for all cases using a gamma criteria of 3%/1 mm. Conclusions: The authors’ experience demonstrates that the localization accuracy of the frameless image-guided system is comparable to robotic or invasive frame based radiosurgery systems.

  11. The Creation of a Multi-Human, Multi-Robot Interactive Jam Session

    OpenAIRE

    Weinberg, Gil; Blosser, Brian; Mallikarjuna, Trishul; Raman, Aparna

    2009-01-01

    This paper presents an interactive and improvisational jam session, including human players and two robotic musicians. The project was developed in an effort to create novel and inspiring music through human-robot collaboration. The jam session incorporates Shimon, a newly-developed socially-interactive robotic marimba player, and Haile, a perceptual robotic percussionist developed in previous work. The paper gives an overview of the musical perception modules, adaptive improvisation modes an...

  12. Upper limb robot-assisted therapy in cerebral palsy: a single-blind randomized controlled trial.

    Science.gov (United States)

    Gilliaux, Maxime; Renders, Anne; Dispa, Delphine; Holvoet, Dominique; Sapin, Julien; Dehez, Bruno; Detrembleur, Christine; Lejeune, Thierry M; Stoquart, Gaëtan

    2015-02-01

    Several pilot studies have evoked interest in robot-assisted therapy (RAT) in children with cerebral palsy (CP). To assess the effectiveness of RAT in children with CP through a single-blind randomized controlled trial. Sixteen children with CP were randomized into 2 groups. Eight children performed 5 conventional therapy sessions per week over 8 weeks (control group). Eight children completed 3 conventional therapy sessions and 2 robot-assisted sessions per week over 8 weeks (robotic group). For both groups, each therapy session lasted 45 minutes. Throughout each RAT session, the patient attempted to reach several targets consecutively with the REAPlan. The REAPlan is a distal effector robot that allows for displacements of the upper limb in the horizontal plane. A blinded assessment was performed before and after the intervention with respect to the International Classification of Functioning framework: body structure and function (upper limb kinematics, Box and Block test, Quality of Upper Extremity Skills Test, strength, and spasticity), activities (Abilhand-Kids, Pediatric Evaluation of Disability Inventory), and participation (Life Habits). During each RAT session, patients performed 744 movements on average with the REAPlan. Among the variables assessed, the smoothness of movement (P robotic group than in the control group. This single-blind randomized controlled trial provides the first evidence that RAT is effective in children with CP. Future studies should investigate the long-term effects of this therapy. © The Author(s) 2014.

  13. Immediate effects of a single session of robot-assisted gait training using Hybrid Assistive Limb (HAL) for cerebral palsy.

    Science.gov (United States)

    Matsuda, Mayumi; Mataki, Yuki; Mutsuzaki, Hirotaka; Yoshikawa, Kenichi; Takahashi, Kazushi; Enomoto, Keiko; Sano, Kumiko; Mizukami, Masafumi; Tomita, Kazuhide; Ohguro, Haruka; Iwasaki, Nobuaki

    2018-02-01

    [Purpose] Robot-assisted gait training (RAGT) using Hybrid Assistive Limb (HAL, CYBERDYNE) was previously reported beneficial for stroke and spinal cord injury patients. Here, we investigate the immediate effect of a single session of RAGT using HAL on gait function for cerebral palsy (CP) patients. [Subjects and Methods] Twelve patients (average age: 16.2 ± 7.3 years) with CP received a single session of RAGT using HAL. Gait speed, step length, cadence, single-leg support per gait cycle, hip and knee joint angle in stance, and swing phase per gait cycle were assessed before, during, and immediately after HAL intervention. [Results] Compared to baseline values, single-leg support per gait cycle (64.5 ± 15.8% to 69.3 ± 12.1%), hip extension angle in mid-stance (149.2 ± 19.0° to 155.5 ± 20.1°), and knee extension angle in mid-stance (137.6 ± 20.2° to 143.1 ± 19.5°) were significantly increased immediately after intervention. Further, the knee flexion angle in mid-swing was significantly decreased immediately after treatment (112.0 ± 15.5° to 105.2 ± 17.1°). Hip flexion angle in mid-swing also decreased following intervention (137.2 ± 14.6° to 129.7 ± 16.6°), but not significantly. Conversely, gait speed, step length, and cadence were unchanged after intervention. [Conclusion] A single-time RAGT with HAL improved single-leg support per gait cycle and hip and knee joint angle during gait, therapeutically improving gait function in CP patients.

  14. Setup Accuracy of the Novalis ExacTrac 6DOF System for Frameless Radiosurgery

    International Nuclear Information System (INIS)

    Gevaert, Thierry; Verellen, Dirk; Tournel, Koen; Linthout, Nadine; Bral, Samuel; Engels, Benedikt; Collen, Christine; Depuydt, Tom; Duchateau, Michael; Reynders, Truus; Storme, Guy; De Ridder, Mark

    2012-01-01

    Purpose: Stereotactic radiosurgery using frame-based positioning is a well-established technique for the treatment of benign and malignant lesions. By contrast, a new trend toward frameless systems using image-guided positioning techniques is gaining mainstream acceptance. This study was designed to measure the detection and positioning accuracy of the ExacTrac/Novalis Body (ET/NB) for rotations and to compare the accuracy of the frameless with the frame-based radiosurgery technique. Methods and Materials: A program was developed in house to rotate reference computed tomography images. The angles measured by the system were compared with the known rotations. The accuracy of ET/NB was evaluated with a head phantom with seven lead beads inserted, mounted on a treatment couch equipped with a robotic tilt module, and was measured with a digital water level and portal films. Multiple hidden target tests (HTT) were performed to measure the overall accuracy of the different positioning techniques for radiosurgery (i.e., frameless and frame-based with relocatable mask or invasive ring, respectively). Results: The ET/NB system can detect rotational setup errors with an average accuracy of 0.09° (standard deviation [SD] 0.06°), 0.02° (SD 0.07°), and 0.06° (SD 0.14°) for longitudinal, lateral, and vertical rotations, respectively. The average positioning accuracy was 0.06° (SD 0.04°), 0.08° (SD 0.06°), and 0.08° (SD 0.07°) for longitudinal, lateral and vertical rotations, respectively. The results of the HTT showed an overall three-dimensional accuracy of 0.76 mm (SD 0.46 mm) for the frameless technique, 0.87 mm (SD 0.44 mm) for the relocatable mask, and 1.19 mm (SD 0.45 mm) for the frame-based technique. Conclusions: The study showed high detection accuracy and a subdegree positioning accuracy. On the basis of phantom studies, the frameless technique showed comparable accuracy to the frame-based approach.

  15. Frameless neuronavigation in modern neurosurgery.

    Science.gov (United States)

    Spetzger, U; Laborde, G; Gilsbach, J M

    1995-12-01

    A fundamental effort in neurosurgery is to reduce surgical trauma. Microneurosurgical technique combined with precise localization of lesions, can minimize the invasiveness of neurosurgical procedures. This report summarizes the utility of frameless neuronavigator systems and examines their value in reducing operative invasiveness. The basic principle of neuronavigation is the virtual linkage between digitized neuroradiological data and real anatomical structures, allowing an excellent three-dimensional orientation by real-time graphic-anatomic interaction. As frameless graphic interactive neuronavigation is developed further, these devices should become an important component of the modern microneurosurgical armamentarium and reduce surgical morbidity.

  16. Accuracy and feasibility of frameless stereotactic and robot-assisted CT-based puncture in interventional radiology. A comparative phantom study

    International Nuclear Information System (INIS)

    Stoffner, R.; Widmann, G.; Bale, R.; Augschoell, C.; Boehler, D.

    2009-01-01

    Purpose: To compare the accuracy of frameless stereotactic and robot-assisted puncture in vitro based on computed tomography (CT) imaging with a slice thickness of 1, 3, and 5 mm. Materials and Methods: 300 punctures were carried out with help of the Atlas aiming device guided by the optical navigation system Stealth Station TREONplus and 150 punctures were guided by the robotic assistance system Innomotion. Conically shaped rods were punctured with Kirschner wires. The accuracy was evaluated on the basis of control CTs by measuring the Euclidean distance between the wire tip and target and the normal distance between the target and wire. Results: With the Stealth Station a mean Euclidean distance of 1.94±0.912, 2.2±1.136, and 2.74±1.166 mm at a slice thickness of 1, 3 and 5 mm, respectively, was reached. The mean normal distance was 1.64±0.919, 1.84±1.189, and 2.48±1.196 mm, respectively. The Innomotion system resulted in a mean Euclidean distance of 1.69±0.772, 1.91±0.673, and 2.30±0.881 mm, respectively, while the mean normal distance was (1.42±0.78), 1.60±0.733, and 1.98±1.002 mm, respectively. A statistical significance between accuracies with both systems with 1 mm and 3 mm slices could not be detected (p > 0.05). At a slice thickness of 5 mm, the robot was significantly more accurate, but not as accurate as when using thinner slices (p < 0.05). The procedure time is longer for the Innomotion system (∝30 vs. ∝18 min), and the practicability is higher with the Stealth Station. (orig.)

  17. Robotic Stereotaxy in Cranial Neurosurgery: A Qualitative Systematic Review.

    Science.gov (United States)

    Fomenko, Anton; Serletis, Demitre

    2017-12-14

    Modern-day stereotactic techniques have evolved to tackle the neurosurgical challenge of accurately and reproducibly accessing specific brain targets. Neurosurgical advances have been made in synergy with sophisticated technological developments and engineering innovations such as automated robotic platforms. Robotic systems offer a unique combination of dexterity, durability, indefatigability, and precision. To perform a systematic review of robotic integration for cranial stereotactic guidance in neurosurgery. Specifically, we comprehensively analyze the strengths and weaknesses of a spectrum of robotic technologies, past and present, including details pertaining to each system's kinematic specifications and targeting accuracy profiles. Eligible articles on human clinical applications of cranial robotic-guided stereotactic systems between 1985 and 2017 were extracted from several electronic databases, with a focus on stereotactic biopsy procedures, stereoelectroencephalography, and deep brain stimulation electrode insertion. Cranial robotic stereotactic systems feature serial or parallel architectures with 4 to 7 degrees of freedom, and frame-based or frameless registration. Indications for robotic assistance are diversifying, and include stereotactic biopsy, deep brain stimulation and stereoelectroencephalography electrode placement, ventriculostomy, and ablation procedures. Complication rates are low, and mainly consist of hemorrhage. Newer systems benefit from increasing targeting accuracy, intraoperative imaging ability, improved safety profiles, and reduced operating times. We highlight emerging future directions pertaining to the integration of robotic technologies into future neurosurgical procedures. Notably, a trend toward miniaturization, cost-effectiveness, frameless registration, and increasing safety and accuracy characterize successful stereotactic robotic technologies. Copyright © 2017 by the Congress of Neurological Surgeons

  18. Robotic single-site pelvic lymphadenectomy.

    Science.gov (United States)

    Tateo, Saverio; Nozza, Arrigo; Del Pezzo, Chiara; Mereu, Liliana

    2014-09-01

    To examine the feasibility of performing pelvic lymphadenectomy with robotic single site approach. Recent papers described the feasibility of robotic-single site hysterectomy [1-3] for benign and malign pathologies but only with the development of new single site 5mm instruments as the bipolar forceps, robotic single site platform can be safely utilized also for lymphadenectomy. A 65 year-old, multiparous patient with a body mass index of 22.5 and diagnosed with well differentiated adenocarcinoma of the endometrium underwent a robotic single-site peritoneal washing, total hysterectomy, bilateral adnexectomy and pelvic lymphadenectomy. The procedure was performed using the da Vinci Si Surgical System (Intuitive Surgical, Sunnyvale, CA) through a single 2,5 cm umbilical incision, with a multi-channel system and two single site robotic 5mm instruments. A 3-dimensional, HD 8.5mm endoscope and a 5mm accessory instrument were also utilized. Type I lymphonodes dissection for external iliac and obturator regions was performed [4]. Total operative time was 210 min; incision, trocar placement and docking time occurring in 12 min. Total console time was 183 min, estimated blood loss was 50 ml, no intra-operative or post-operative complications occurred. Hospital discharge occurred on post operative day 2 and total number of lymphnodes removed was 33. Difficulties in term of instrument's clashing and awkward motions have been encountered. Robotic single-site pelvic lymphadenectomy using bipolar forceps and monopolar hook is feasible. New developments are needed to improve surgical ergonomics and additional studies should be performed to explore possible benefits of this procedure. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. BILATERAL SINGLE SESSION URETEROSCOPY FOR URETERAL ...

    African Journals Online (AJOL)

    Objectives: To determine the feasibility, safety and success rate of bilateral single session rigid retrograde ureteroscopy (URS) for bilateral ureteral calculi. Patients and Methods: Thirty-five patients underwent bilateral single session ureteroscopic calculus removal. Results: Out of 70 renal units in 35 patients treated, ...

  20. Frameless stereotactic radiosurgery of a solitary liver metastasis using active breathing control and stereotactic ultrasound

    International Nuclear Information System (INIS)

    Boda-Heggemann, J.; Walter, C.; Mai, S.; Dobler, B.; Wenz, F.; Lohr, F.; Dinter, D.

    2006-01-01

    Background and purpose: radiosurgery of liver metastases is effective but a technical challenge due to respiration-induced movement. The authors report on the initial experience of the combination of active breathing control (ABC registered ) with stereotactic ultrasound (B-mode acquisition and targeting [BAT registered ]) for frameless radiosurgery. Patient and methods: a patient with a solitary, inoperable liver metastasis from cholangiocellular carcinoma is presented. ABC registered was used for tumor/liver immobilization. Tumor/liver position was controlled and corrected using ultrasound (BAT registered ). The tumor was irradiated with a single dose of 24 Gy. Results: using ABC registered , the motion of the tumor was significantly reduced and the overall positioning error was registered allowed a rapid localization of the lesion during breath hold which could be performed without difficulties for 20 s. Overall treatment time was acceptable (30 min). Conclusion: frameless stereotactic radiotherapy with the combination of ABC registered and BAT registered allows the delivery of high single doses to targets accessible to ultrasound with high precision comparable to a frame-based approach. (orig.)

  1. Accuracy of VarioGuide Frameless Stereotactic System Against Frame-Based Stereotaxy: Prospective, Randomized, Single-Center Study.

    Science.gov (United States)

    Bradac, Ondrej; Steklacova, Anna; Nebrenska, Katerina; Vrana, Jiri; de Lacy, Patricia; Benes, Vladimir

    2017-08-01

    Frameless stereotactic brain biopsy systems are widely used today. VarioGuide (VG) is a relatively novel frameless system. Its accuracy was studied in a laboratory setting but has not yet been studied in the clinical setting. The purpose of this study was to determine its accuracy and diagnostic yield and to compare this with frame-based (FB) stereotaxy. Overall, 53 patients (33 males and 20 females, 60 ± 15 years old) were enrolled into this prospective, randomized, single-center study. Twenty-six patients were randomized into the FB group and 27 patients into the VG group. Real trajectory was pointed on intraoperative magnetic resonance. The distance of the targets and angle deviation between the planned and real trajectories were computed. The overall discomfort of the patient was subjectively assessed by the visual analog scale score. The median lesion volume was 5 mL (interquartile range [IQR]: 2-16 mL) (FB) and 16 mL (IQR: 2-27 mL) (VG), P = 0.133. The mean distance of the targets was 2.7 ± 1.1 mm (FB) and 2.9 ± 1.3 mm (VG), P = 0.456. Mean angle deviation was 2.6 ± 1.3 deg (FB) and 3.5 ± 2.1 deg (VG), P = 0.074. Diagnostic yield was 93% (25/27) in VG and 96% (25/26) in FB, P = 1.000. Mean operating time was 47 ± 26 minutes (FB) and 59 ± 31 minutes (VG), P = 0.140. One minor bleeding was encountered in the VG group. Overall patient discomfort was significantly higher in the FB group (visual analog scale score 2.5 ± 2.1 vs. 1.2 ± 0.6, P = 0,004). The VG system proved to be comparable in terms of the trajectory accuracy, rate of complications and diagnostic yield compared with the "gold standard" represented by the traditional FB stereotaxy for patients undergoing brain biopsy. VG is also better accepted by patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Android Robot-Mediated Mock Job Interview Sessions for Young Adults with Autism Spectrum Disorder: A Pilot Study.

    Science.gov (United States)

    Kumazaki, Hirokazu; Warren, Zachary; Corbett, Blythe A; Yoshikawa, Yuichiro; Matsumoto, Yoshio; Higashida, Haruhiro; Yuhi, Teruko; Ikeda, Takashi; Ishiguro, Hiroshi; Kikuchi, Mitsuru

    2017-01-01

    The feasibility and preliminary efficacy of an android robot-mediated mock job interview training in terms of both bolstering self-confidence and reducing biological levels of stress in comparison to a psycho-educational approach human interview was assessed in a randomized study. Young adults (ages 18-25 years) with autism spectrum disorder (ASD) were randomized to participate either in a mock job interview training with our android robot system ( n  = 7) or a self-paced review of materials about job-interviewing skills ( n  = 8). Baseline and outcome measurements of self-reported performance/efficacy and salivary cortisol were obtained after a mock job interview with a human interviewer. After training sessions, individuals with ASD participating in the android robot-mediated sessions reported marginally improved self-confidence and demonstrated significantly lower levels of salivary cortisol as compared to the control condition. These results provide preliminary support for the feasibility and efficacy of android robot-mediated learning.

  3. Android Robot-Mediated Mock Job Interview Sessions for Young Adults with Autism Spectrum Disorder: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Hirokazu Kumazaki

    2017-09-01

    Full Text Available The feasibility and preliminary efficacy of an android robot-mediated mock job interview training in terms of both bolstering self-confidence and reducing biological levels of stress in comparison to a psycho-educational approach human interview was assessed in a randomized study. Young adults (ages 18–25 years with autism spectrum disorder (ASD were randomized to participate either in a mock job interview training with our android robot system (n = 7 or a self-paced review of materials about job-interviewing skills (n = 8. Baseline and outcome measurements of self-reported performance/efficacy and salivary cortisol were obtained after a mock job interview with a human interviewer. After training sessions, individuals with ASD participating in the android robot-mediated sessions reported marginally improved self-confidence and demonstrated significantly lower levels of salivary cortisol as compared to the control condition. These results provide preliminary support for the feasibility and efficacy of android robot-mediated learning.

  4. Clinical accuracy of ExacTrac intracranial frameless stereotactic system

    International Nuclear Information System (INIS)

    Ackerly, T.; Lancaster, C. M.; Geso, M.; Roxby, K. J.

    2011-01-01

    Purpose: In this paper, the authors assess the accuracy of the Brainlab ExacTrac system for frameless intracranial stereotactic treatments in clinical practice. Methods: They recorded couch angle and image fusion results (comprising lateral, longitudinal, and vertical shifts, and rotation corrections about these axes) for 109 stereotactic radiosurgery and 166 stereotactic radiotherapy patient treatments. Frameless stereotactic treatments involve iterative 6D image fusion corrections applied until the results conform to customizable pass criteria, theirs being 0.7 mm and 0.5 deg. for each axis. The planning CT slice thickness was 1.25 mm. It has been reported in the literature that the CT slices' thickness impacts the accuracy of localization to bony anatomy. The principle of invariance with respect to patient orientation was used to determine spatial accuracy. Results: The data for radiosurgery comprised 927 image pairs, of which 532 passed (pass ratio of 57.4%). The data for radiotherapy comprised 15983 image pairs, of which 10 050 passed (pass ratio of 62.9%). For stereotactic radiotherapy, the combined uncertainty of ExacTrac calibration, image fusion, and intrafraction motion was (95% confidence interval) 0.290-0.302 and 0.306-0.319 mm in the longitudinal and lateral axes, respectively. The combined uncertainty of image fusion and intrafraction motion in the anterior-posterior coordinates was 0.174-0.182 mm. For stereotactic radiosurgery, the equivalent ranges are 0.323-0.393, 0.337-0.409, and 0.231-0.281 mm. The overall spatial accuracy was 1.24 mm for stereotactic radiotherapy (SRT) and 1.35 mm for stereotactic radiosurgery (SRS). Conclusions: The ExacTrac intracranial frameless stereotactic system spatial accuracy is adequate for clinical practice, and with the same pass criteria, SRT is more accurate than SRS. They now use frameless stereotaxy exclusively at their center.

  5. Robotic single-access splenectomy using the Da Vinci Single-Site® platform: a case report.

    Science.gov (United States)

    Corcione, Francesco; Bracale, Umberto; Pirozzi, Felice; Cuccurullo, Diego; Angelini, Pier Luigi

    2014-03-01

    Single-access laparoscopic splenectomy can offer patients some advantages. It has many difficulties, such as instrument clashing, lack of triangulation, odd angles and lack of space. The Da Vinci Single-Site® robotic surgery platform could decrease these difficulties. We present a case of single-access robotic splenectomy using this device. A 37 year-old female with idiopathic thrombocytopenic purpura was operated on with a single-site approach, using the Da Vinci Single-Site robotic surgery device. The procedure was successfully completed in 140 min. No intraoperative and postoperative complications occurred. The patient was discharged from hospital on day 3. Single-access robotic splenectomy seems to be feasible and safe using the new robotic single-access platform, which seems to overcome certain limits of previous robotic or conventional single-access laparoscopy. We think that additional studies should also be performed to explore the real cost-effectiveness of the platform. Copyright © 2013 John Wiley & Sons, Ltd.

  6. Simulation of Intelligent Single Wheel Mobile Robot

    Directory of Open Access Journals (Sweden)

    Maki K. Rashid

    2008-11-01

    Full Text Available Stabilization of a single wheel mobile robot attracted researcher attentions in robotic area. However, the budget requirements for building experimental setups capable in investigating isolated parameters and implementing others encouraged the development of new simulation methods and techniques that beat such limitations. In this work we have developed a simulation platform for testing different control tactics to stabilize a single wheel mobile robot. The graphic representation of the robot, the dynamic solution, and, the control scheme are all integrated on common computer platform using Visual Basic. Simulation indicates that we can control such robot without knowing the detail of it's internal structure or dynamics behaviour just by looking at it and using manual operation tactics. Twenty five rules are extracted and implemented using Takagi-Sugeno's fuzzy controller with significant achievement in controlling robot motion during the dynamic simulation. The resulted data from the successful implementation of the fuzzy model are used to utilize and train a neurofuzzy controller using ANFIS scheme to produce further improvement in robot performance

  7. Frameless Angiogram-Based Stereotactic Radiosurgery for Treatment of Arteriovenous Malformations

    International Nuclear Information System (INIS)

    Lu Xingqi; Mahadevan, Anand; Mathiowitz, George; Lin, Pei-Jan P.; Thomas, Ajith; Kasper, Ekkehard M.; Floyd, Scott R.; Holupka, Edward; La Rosa, Salvatore; Wang, Frank; Stevenson, Mary Ann

    2012-01-01

    Purpose: Stereotactic radiosurgery (SRS) is an effective alternative to microsurgical resection or embolization for definitive treatment of arteriovenous malformations (AVMs). Digital subtraction angiography (DSA) is the gold standard for pretreatment diagnosis and characterization of vascular anatomy, but requires rigid frame (skull) immobilization when used in combination with SRS. With the advent of advanced proton and image-guided photon delivery systems, SRS treatment is increasingly migrating to frameless platforms, which are incompatible with frame-based DSA. Without DSA as the primary image, target definition may be less than optimal, in some cases precluding the ability to treat with a frameless system. This article reports a novel solution. Methods and Materials: Fiducial markers are implanted into the patient’s skull before angiography. Angiography is performed according to the standard clinical protocol, but, in contrast to the previous practice, without the rigid frame. Separate images of a specially designed localizer box are subsequently obtained. A target volume projected on DSA can be transferred to the localizer system in three dimensions, and in turn be transferred to multiple CT slices using the implanted fiducials. Combined with other imaging modalities, this “virtual frame” approach yields a highly precise treatment plan that can be delivered by frameless SRS technologies. Results: Phantom measurements for point and volume targets have been performed. The overall uncertainty of placing a point target to CT is 0.4 mm. For volume targets, deviation of the transformed contour from the target CT image is within 0.6 mm. The algorithm and software are robust. The method has been applied clinically, with reliable results. Conclusions: A novel and reproducible method for frameless SRS of AVMs has been developed that enables the use of DSA without the requirement for rigid immobilization. Multiple pairs of DSA can be used for better conformality

  8. Fast-MICP for frameless image-guided surgery

    International Nuclear Information System (INIS)

    Lee, Jiann-Der; Huang, Chung-Hsien; Wang, Sheng-Ta; Lin, Chung-Wei; Lee, Shin-Tseng

    2010-01-01

    Purpose: In image-guided surgery (IGS) systems, image-to-physical registration is critical for reliable anatomical information mapping and spatial guidance. Conventional stereotactic frame-based or fiducial-based approaches provide accurate registration but are not patient-friendly. This study proposes a frameless cranial IGS system that uses computer vision techniques to replace the frame or fiducials with the natural features of the patient. Methods: To perform a cranial surgery with the proposed system, the facial surface of the patient is first reconstructed by stereo vision. Accuracy is ensured by capturing parallel-line patterns projected from a calibrated LCD projector. Meanwhile, another facial surface is reconstructed from preoperative computed tomography (CT) images of the patient. The proposed iterative closest point (ICP)-based algorithm [fast marker-added ICP (Fast-MICP)] is then used to register the two facial data sets, which transfers the anatomical information from the CT images to the physical space. Results: Experimental results reveal that the Fast-MICP algorithm reduces the computational cost of marker-added ICP (J.-D. Lee et al., ''A coarse-to-fine surface registration algorithm for frameless brain surgery,'' in Proceedings of International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, pp. 836-839) to 10% and achieves comparable registration accuracy, which is under 3 mm target registration error (TRE). Moreover, two types of optical-based spatial digitizing devices can be integrated for further surgical navigation. Anatomical information or image-guided surgical landmarks can be projected onto the patient to obtain an immersive augmented reality environment. Conclusion: The proposed frameless IGS system with stereo vision obtains TRE of less than 3 mm. The proposed Fast-MICP registration algorithm reduces registration time by 90% without compromising accuracy.

  9. Fast-MICP for frameless image-guided surgery

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jiann-Der; Huang, Chung-Hsien; Wang, Sheng-Ta; Lin, Chung-Wei; Lee, Shin-Tseng [Department of Electrical Engineering, Chang Gung University, Tao-Yuan 333, Taiwan (China); Department of Medical Mechatronics, Chang Gung University, Tao-Yuan 333, Taiwan (China); Department of Neurosurgery and Medical Augmented Reality Research Center, Chang Gung Memorial Hospital, No. 199, Tunghwa Rd., Taipei 105, Taiwan (China)

    2010-09-15

    Purpose: In image-guided surgery (IGS) systems, image-to-physical registration is critical for reliable anatomical information mapping and spatial guidance. Conventional stereotactic frame-based or fiducial-based approaches provide accurate registration but are not patient-friendly. This study proposes a frameless cranial IGS system that uses computer vision techniques to replace the frame or fiducials with the natural features of the patient. Methods: To perform a cranial surgery with the proposed system, the facial surface of the patient is first reconstructed by stereo vision. Accuracy is ensured by capturing parallel-line patterns projected from a calibrated LCD projector. Meanwhile, another facial surface is reconstructed from preoperative computed tomography (CT) images of the patient. The proposed iterative closest point (ICP)-based algorithm [fast marker-added ICP (Fast-MICP)] is then used to register the two facial data sets, which transfers the anatomical information from the CT images to the physical space. Results: Experimental results reveal that the Fast-MICP algorithm reduces the computational cost of marker-added ICP (J.-D. Lee et al., ''A coarse-to-fine surface registration algorithm for frameless brain surgery,'' in Proceedings of International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, pp. 836-839) to 10% and achieves comparable registration accuracy, which is under 3 mm target registration error (TRE). Moreover, two types of optical-based spatial digitizing devices can be integrated for further surgical navigation. Anatomical information or image-guided surgical landmarks can be projected onto the patient to obtain an immersive augmented reality environment. Conclusion: The proposed frameless IGS system with stereo vision obtains TRE of less than 3 mm. The proposed Fast-MICP registration algorithm reduces registration time by 90% without compromising accuracy.

  10. Intrauterine levonorgestrel delivery with frameless fibrous delivery system: review of clinical experience

    Directory of Open Access Journals (Sweden)

    Wildemeersch D

    2017-01-01

    Full Text Available Dirk Wildemeersch,1 Amaury Andrade,2 Norman D Goldstuck,3 Thomas Hasskamp,4 Geert Jackers5 1Gynecological Outpatient Clinic and IUD Training Center, Ghent, Belgium; 2Centro de Biologia da Reprodução, Universidade Federal Juiz de Fora, Juiz de Fora, Brazil; 3Department of Obstetrics and Gynaecology, Faculty of Medicine and Health Sciences, Stellenbosch University and Tygerberg Hospital, Western Cape, South Africa; 4Klinik für Operativen Gynäkologie, GynMünster, Münster, Germany; 5Applied Controlled Release, Technology Park, Ghent (Zwijnaarde, Belgium Abstract: The concept of using a frameless intrauterine device (IUD instead of the conventional plastic framed IUD is not new. Frameless copper IUDs have been available since the late 1990s. They rely on an anchoring system to retain in the uterine cavity. The clinical experience with these IUDs suggests that frameless IUDs fit better as they are thin and, therefore, do not disturb or irritate the uterus. High tolerance and continuation rates have been achieved as complaints of pain are virtually nonexistent and the impact on menstrual blood loss is minimal. Conventional levonorgestrel-releasing intrauterine systems (LNG-IUSs are very popular as they significantly reduce menstrual bleeding and provide highly effective contraception. However, continuation of use remains problematic, particularly in young users. Total or partial expulsion and displacement of the LNG-IUS also occur too often due to spatial incompatibility within a small uterine cavity, as strong uterine contractions originate, attempting to get rid of the bothersome IUD/IUS. If not expelled, embedment ensues, often leading to chronic pain and early removal of the IUD/IUS. Several studies conducted recently have requested attention to the relationship between the LNG-IUS and the endometrial cavity. Some authors have proposed to measure the cavity width prior to inserting an IUD, as many uterine cavities are much smaller than the

  11. Total robotic radical rectal resection with da Vinci Xi system: single docking, single phase technique.

    Science.gov (United States)

    Tamhankar, Anup Sunil; Jatal, Sudhir; Saklani, Avanish

    2016-12-01

    This study aims to assess the advantages of Da Vinci Xi system in rectal cancer surgery. It also assesses the initial oncological outcomes after rectal resection with this system from a tertiary cancer center in India. Robotic rectal surgery has distinct advantages over laparoscopy. Total robotic resection is increasing following the evolution of hybrid technology. The latest Da Vinci Xi system (Intuitive Surgical, Sunnyvale, USA) is enabled with newer features to make total robotic resection possible with single docking and single phase. Thirty-six patients underwent total robotic resection in a single phase and single docking. We used newer port positions in a straight line. Median distance from the anal verge was 4.5 cm. Median robotic docking time and robotic procedure time were 9 and 280 min, respectively. Median blood loss was 100 mL. One patient needed conversion to an open approach due to advanced disease. Circumferential resection margin and longitudinal resection margins were uninvolved in all other patients. Median lymph node yield was 10. Median post-operative stay was 7 days. There were no intra-operative adverse events. The latest Da Vinci Xi system has made total robotic rectal surgery feasible in single docking and single phase. With the new system, four arm total robotic rectal surgery may replace the hybrid technique of laparoscopic and robotic surgery for rectal malignancies. The learning curve for the new system appears to be shorter than anticipated. Early perioperative and oncological outcomes of total robotic rectal surgery with the new system are promising. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Use of frameless intrauterine devices and systems in young nulliparous and adolescent women: results of a multicenter study

    Directory of Open Access Journals (Sweden)

    Wildemeersch D

    2014-08-01

    Full Text Available Dirk Wildemeersch,1 Sohela Jandi,2 Ansgar Pett,2 Kilian Nolte,3 Thomas Hasskamp,4 Marc Vrijens5 1Gynecological Outpatient Clinic and IUD Training Center, Ghent, Belgium; 2Gynecological Outpatient Clinic, Berlin, 3Gynecological Outpatient Clinic, Uetze, 4GynMünster, Münster, Germany; 5Gynecological Outpatient Clinic, Ghent, Belgium Background: The purpose of this study was to provide additional data on the experience with frameless copper and levonorgestrel (LNG intrauterine devices (IUDs in nulliparous and adolescent women. Methods: Nulliparous and adolescent women, 25 years of age or younger, using the frameless copper IUD or the frameless LNG-releasing intrauterine system (IUS, were selected from previous studies and a current multicenter post-marketing study with the frameless copper IUD. The small copper-releasing GyneFix® 200 IUD consists of four copper cylinders, each 5 mm long and only 2.2 mm wide. The frameless FibroPlant® LNG-IUS consists of a fibrous delivery system releasing the hormone levonorgestrel (LNG-IUS. The main features of these intrauterine contraceptives are that they are frameless, flexible, and anchored to the fundus of the uterus. Results: One hundred and fifty-four nulliparous and adolescent women participated in the combined study. One pregnancy occurred with the GyneFix 200 IUD after unnoticed early expulsion of the device (cumulative pregnancy rate 1.1 at one year. Two further expulsions were reported, one with the GyneFix 200 IUD and the other with the FibroPlant LNG-IUS. The cumulative expulsion rate at one year was 1.1 with the copper IUD and 2.2 with the LNG-IUS. The total discontinuation rate at one year was low (3.3 and 4.3 with the copper IUD and LNG-IUS, respectively and resulted in a high rate of continuation of use at one year (96.7 with the copper IUD and 95.7 with the LNG-IUS, respectively. Continuation rates for both frameless copper IUD and frameless LNG-IUS remained high at 3 years (>90%. There

  13. New maneuver in robotic single-port cholecystectomy

    International Nuclear Information System (INIS)

    Ege, B.; Gulen, M.

    2017-01-01

    The need to integrate aspects of functional, psychosocial and cosmetic impairment into medical care is increasingly accepted among the physicians and the patients. For these reasons, single-port robotic surgery emerges as the most advanced approach using the technology. In this study, authors used a new robotic dissector with monopolar electrocautery feature in order to determine the device's safety and efficacy. Between January 2015 and February 2016, 10 out of 11 consecutive cholecystectomies were included in the study. There was no significant differences in port placement and docking time between two groups (p=0.382, p=0.789). The time spent by surgeon was significantly shorter in group 2 (p=0.005). Using robotic dissector with monopolar cautery significantly shortened the console time. This new instrument (Maryland monopolar dissector) provides more feasible and faster dissection of the Calot's triangle, supporting further the advantages of robotic single-site cholecystectomy. (author)

  14. Frame and frameless linear accelerator-based radiosurgery for idiopathic trigeminal neuralgia.

    Science.gov (United States)

    Chen, Allan Y; Hsieh, Yen; McNair, Steffanie; Li, Qijuan; Xu, Kevin Y; Pappas, Conrad

    2015-01-01

    We report outcome of linear accelerator (Linac)-based stereotactic radiosurgery (SRS) for trigeminal neuralgia (TGN) utilizing rigid head frame (RF) and facemask (FM) immobilization.Method: From November 2008 to October 2012, 48 patients with idiopathic TGN underwent primary SRS by a dedicated Linac. RF immobilization was utilized for 34 patients, and frameless image-guided radiosurgery (IGRS) with FM immobilization was performed in 14 patients. Treatment outcome was assessed by patient interviews with a 7-item questionnaire. Sub-millimeter targeting accuracy (0.71±0.31 mm) was recorded for frameless IGRS by a novel hidden-target phantom method. With a follow-up of 26 months, significant pain relief was recorded in 43 (89%) patients, including 26 (54%) complete and 17 (35%) partial responses; with a significant reduction of 2.4±1.3 points ( p < 0.01) on the 5-point Barrow Neurological Institute pain scale. No significant pain relief difference ( p = 0.23) was detected between patients immobilized by RF and FM. Notable pin site problems were reported in 9 (26%) of 34 patients immobilized by RF. Frameless IGRS with FM immobilization is more patient friendly and can achieve as excellent treatment outcome as with RF immobilization for idiopathic TGN.

  15. Robotic single port cholecystectomy: current data and future perspectives.

    Science.gov (United States)

    Angelou, Anastasios; Skarmoutsos, Athanasios; Margonis, Georgios A; Moris, Demetrios; Tsigris, Christos; Pikoulis, Emmanouil

    2017-04-01

    Minimally invasive techniques are used more and more frequently. Since conventional laparoscopic approach has been the gold standard, surgeons in their effort to further reduce the invasiveness of conventional laparoscopic cholecystectomy have adopted Single Incision approach. The widespread adoption of robotics has led to the inevitable hybridization of robotic technology with laparoendoscopic single-site surgery (LESS). As a result, employment of the da Vinci surgical system may allow greater surgical maneuverability, improving ergonomics. A review of the English literature was conducted to evaluate all robotic single port cholecystectomy performed till today. Demographic data, operative parameters, postoperative outcomes and materials used for the operation were collected and assessed. A total of 12 studies, including 501 patients were analyzed. Demographics and clinical characteristics of the patients was heterogeneous, but in most studies a mean BMI port cholecystectomy is a safe and feasible alternative to conventional multiport laparoscopic or manual robotic approach. However, current data do not suggest a superiority of robotic SILC over other established methods.

  16. Wrist Rehabilitation Assisted by an Electromyography-Driven Neuromuscular Electrical Stimulation Robot After Stroke.

    Science.gov (United States)

    Hu, Xiao-Ling; Tong, Raymond Kai-yu; Ho, Newmen S K; Xue, Jing-jing; Rong, Wei; Li, Leonard S W

    2015-09-01

    Augmented physical training with assistance from robot and neuromuscular electrical stimulation (NMES) may introduce intensive motor improvement in chronic stroke. To compare the rehabilitation effectiveness achieved by NMES robot-assisted wrist training and that by robot-assisted training. This study was a single-blinded randomized controlled trial with a 3-month follow-up. Twenty-six hemiplegic subjects with chronic stroke were randomly assigned to receive 20-session wrist training with an electromyography (EMG)-driven NMES robot (NMES robot group, n = 11) and with an EMG-driven robot (robot group, n = 15), completed within 7 consecutive weeks. Clinical scores, Fugl-Meyer Assessment (FMA), Modified Ashworth Score (MAS), and Action Research Arm Test (ARAT) were used to evaluate the training effects before and after the training, as well as 3 months later. An EMG parameter, muscle co-contraction index, was also applied to investigate the session-by-session variation in muscular coordination patterns during the training. The improvement in FMA (shoulder/elbow, wrist/hand) obtained in the NMES robot group was more significant than the robot group (P rehabilitation progress. © The Author(s) 2014.

  17. Initial clinical experience with frameless radiosurgery for patients with intracranial metastases

    International Nuclear Information System (INIS)

    Kamath, Reena; Ryken, Timothy C.; Meeks, Sanford L.; Pennington, Edward C.; Ritchie, Justine; Buatti, John M.

    2005-01-01

    Purpose: To review the initial clinical experience with frameless stereotactic radiosurgery (SRS) for treating intracranial metastatic disease. Methods and Materials: Sixty-four patients received frameless SRS for intracranial metastatic disease. Minimum follow-up was 6 months with none lost to follow-up. Patients had a median of 2 metastases and a maximum of 4. The median number of isocenters was 2 with median arcs of 10 and median dose of 17.5 Gy. Thirteen patients were treated for progressive/recurrent disease after surgical resection or whole brain radiotherapy (WBRT). Fifty-one patients were treated with frameless SRS as an an adjunct to initial treatment. Of the total treated, 17 were treated with SRS alone, 20 were treated with WBRT plus SRS, 16 were treated with surgical resection plus SRS, and the remaining 11 were treated with surgical resection plus WBRT plus SRS. Results: With a median actuarial follow-up period of 8.2 months, ultimate local control was 88%. The median time to progression was 8.1 months. The median overall survival was 8.7 months. Of the 17 patients treated with SRS alone, 86% had ultimate local control with mean overall survival of 7.1 months. Of the 13 patients who received surgical resection plus SRS without WBRT as primary treatment, there was 85% ultimate local control with an overall survival of 10.3 months. Three patients treated with initial surgery alone had recurrence treated with SRS 2-3 months after resection. All these patients obtained local control and median survival was >10 months. Of the 13 patients who received WBRT followed by SRS as boost treatment, 92% had local control and mean overall survival was 7.3 months. Of 7 patients who received SRS after recurrence after WBRT, 100% had local control with median survival of 8.2 months. For 8 patients who received surgery followed by WBRT and SRS, local control was 50%; however, ultimate intracranial control was achieved in 7 of 8 patients with repeat SRS and surgical

  18. What is significant about a single nursing session? An exploratory study.

    Science.gov (United States)

    Miller, Elizabeth M

    2017-09-10

    Researchers and clinicians specializing in breastfeeding often rely on measuring one nursing session to characterize the breastfeeding relationship. However, less is known about the descriptive or statistically predictive characteristics of one nursing session. The purposes of this study are twofold: (1) to explore the relationships between variables in a single nursing session; and (2) to study the association between variables in a single nursing session and infant length-for-age (LAZ) and weight-for-age (WAZ). In 63 nursing mother-infant pairs in the United States, anthropometric measurement and observation of a single nursing session revealed six nursing session variables: fore milk fat percent, hind milk fat percent, infant milk intake, duration of session, time since last session, and time of day of session. A principle factor analysis, undertaken to explore latent variables underlying the six session variables, revealed two factors: (1) loaded highly on fore and hind milk fat percentage, reflecting the overall fat percent in a feed; and (2) loaded highly on milk intake and hind milk fat percentage, indicating the process of breast emptying. In multivariate analyses of all session variables on infant LAZ and WAZ, only hind milk fat percentage was significantly negatively associated with LAZ (β = -0.14, P = .01 (two-tailed), R 2  = 0.070), confirmed by a significant negative association between LAZ and factor one (β = -0.32, P = .05 (two-tailed), R 2  = 0.090). This research describes the dynamics of a single nursing session, and has the potential to help explain variation in infant growth and nutrition. © 2017 Wiley Periodicals, Inc.

  19. A novel robotic platform for single-port abdominal surgery

    Science.gov (United States)

    Singh, Satwinder; Cheung, Jo L. K.; Sreedhar, Biji; Hoa, Xuyen Dai; Ng, Hoi Pang; Yeung, Chung Kwong

    2018-03-01

    In this paper, a novel robot-assisted platform for single-port minimally invasive surgery is presented. A miniaturized seven degrees of freedom (dof) fully internalized in-vivo actuated robotic arm is designed. Due to in-vivo actuation, the system has a smaller footprint and can generate 20 N of gripping force. The complete work envelop of the robotic arms is 252 mm × 192 mm × 322 m. With the assistance of the cannula-swivel system, the robotic arms can also be re-positioned and have multi-quadrant reachability without any additional incision. Surgical tasks, such as lifting, gripping suturing and knot tying that are commonly used in a standard surgical procedure, were performed to verify the dexterity of the robotic arms. A single-port trans-abdominal cholecystectomy in a porcine model was successfully performed to further validate its functionality.

  20. New Developments in Robotics and Single-site Gynecologic Surgery.

    Science.gov (United States)

    Matthews, Catherine A

    2017-06-01

    Within the last 10 years there have been significant advances in minimal-access surgery. Although no emerging technology has demonstrated improved outcomes or fewer complications than standard laparoscopy, the introduction of the robotic surgical platform has significantly lowered abdominal hysterectomy rates. While operative time and cost were higher in robotic-assisted procedures when the technology was first introduced, newer studies demonstrate equivalent or improved robotic surgical efficiency with increased experience. Single-port hysterectomy has not improved postoperative pain or subjective cosmetic results. Emerging platforms with flexible, articulating instruments may increase the uptake of single-port procedures including natural orifice transluminal endoscopic cases.

  1. Significant Risk Factors for Postoperative Enlargement of Basal Ganglia Hematoma after Frameless Stereotactic Aspiration: Antiplatelet Medication and Concomitant IVH.

    Science.gov (United States)

    Son, Wonsoo; Park, Jaechan

    2017-09-01

    Frameless stereotactic aspiration of a hematoma can be the one of the treatment options for spontaneous intracerebral hemorrhage in the basal ganglia. Postoperative hematoma enlargement, however, can be a serious complication of intracranial surgery that frequently results in severe neurological deficit and even death. Therefore, it is important to identify the risk factors of postoperative hematoma growth. During a 13-year period, 101 patients underwent minimally invasive frameless stereotactic aspiration for basal ganglia hematoma. Patients were classified into two groups according to whether or not they had postoperative hematoma enlargement in a computed tomography scan. Baseline demographic data and several risk factors, such as hypertension, preoperative hematoma growth, antiplatelet medication, presence of concomitant intraventricular hemorrhage (IVH), were analysed via a univariate statistical study. Nine of 101 patients (8.9%) showed hematoma enlargement after frameless stereotactic aspiration. Among the various risk factors, concomitant IVH and antiplatelet medication were found to be significantly associated with postoperative enlargement of hematomas. In conclusion, our study revealed that aspirin use and concomitant IVH are factors associated with hematoma enlargement subsequent to frameless stereotactic aspiration for basal ganglia hematoma.

  2. Robotic-assisted single-port donor nephrectomy using the da Vinci single-site platform.

    Science.gov (United States)

    LaMattina, John C; Alvarez-Casas, Josue; Lu, Irene; Powell, Jessica M; Sultan, Samuel; Phelan, Michael W; Barth, Rolf N

    2018-02-01

    Although single-port donor nephrectomy offers improved cosmetic outcomes, technical challenges have limited its application to selected centers. Our center has performed over 400 single-port donor nephrectomies. The da Vinci single-site robotic platform was utilized in an effort to overcome the steric, visualization, ergonomic, and other technical limitations associated with the single-port approach. Food and Drug Administration device exemption was obtained. Selection criteria for kidney donation included body mass index da Vinci single-site platform. Our experience supported the safety of this approach but found that the technology added cost and complexity without tangible benefit. Development of articulating instruments, energy, and stapling devices will be necessary for increased application of robotic single-site surgery for donor nephrectomy. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Single-session versus staged procedures for elective multivessel percutaneous coronary intervention.

    Science.gov (United States)

    Toyota, Toshiaki; Morimoto, Takeshi; Shiomi, Hiroki; Yamaji, Kyohei; Ando, Kenji; Ono, Koh; Shizuta, Satoshi; Saito, Naritatsu; Kato, Takao; Kaji, Shuichiro; Furukawa, Yutaka; Nakagawa, Yoshihisa; Kadota, Kazushige; Horie, Minoru; Kimura, Takeshi

    2018-06-01

    To clarify the effect of single-session multivessel percutaneous coronary intervention (PCI) strategy relative to the staged multivessel strategy on clinical outcomes in patients with stable coronary artery disease (CAD) or non-ST-elevation acute coronary syndrome. In the Coronary REvascularisation Demonstrating Outcome Study in Kyoto PCI/coronary artery bypass grafting registry cohort-2, there were 2018 patients who underwent elective multivessel PCI. Primary outcome measure was composite of all-cause death, myocardial infarction and stroke at 5-year follow-up. Single-session multivessel PCI and staged multivessel PCI were performed in 707 patients (35.0%) and 1311 patients (65.0%), respectively. The cumulative 5-year incidence of and adjusted risk for the primary outcome measure were not significantly different between the single-session and staged groups (26.7% vs 23.0%, p=0.45; HR 0.91, 95% CI 0.72 to 1.16, p=0.47). The 30-day incidence of all-cause death was significantly higher in the single-session group than in the staged group (1.1% vs 0.2%, p=0.009). However, the causes of death in 11 patients who died within 30 days were generally not related to the procedural complications, but related to the serious clinical status before PCI. For the subgroup analyses including age, gender, extent of CAD, severe chronic kidney disease and heart failure, there was no significant interaction between the subgroup factors and the effect of the single-session strategy relative to the staged strategy for the primary outcome measure. The single-session multivessel PCI strategy was associated with at least comparable 5-year clinical outcomes compared with the staged multivessel PCI, although the prevalence of the single-session strategy was low in the present study. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. Effects of intensive arm training with the rehabilitation robot ARMin II in chronic stroke patients: four single-cases

    Directory of Open Access Journals (Sweden)

    Nef Tobias

    2009-12-01

    Full Text Available Abstract Background Robot-assisted therapy offers a promising approach to neurorehabilitation, particularly for severely to moderately impaired stroke patients. The objective of this study was to investigate the effects of intensive arm training on motor performance in four chronic stroke patients using the robot ARMin II. Methods ARMin II is an exoskeleton robot with six degrees of freedom (DOF moving shoulder, elbow and wrist joints. Four volunteers with chronic (≥ 12 months post-stroke left side hemi-paresis and different levels of motor severity were enrolled in the study. They received robot-assisted therapy over a period of eight weeks, three to four therapy sessions per week, each session of one hour. Patients 1 and 4 had four one-hour training sessions per week and patients 2 and 3 had three one-hour training sessions per week. Primary outcome variable was the Fugl-Meyer Score of the upper extremity Assessment (FMA, secondary outcomes were the Wolf Motor Function Test (WMFT, the Catherine Bergego Scale (CBS, the Maximal Voluntary Torques (MVTs and a questionnaire about ADL-tasks, progress, changes, motivation etc. Results Three out of four patients showed significant improvements (p Conclusion Data clearly indicate that intensive arm therapy with the robot ARMin II can significantly improve motor function of the paretic arm in some stroke patients, even those in a chronic state. The findings of the study provide a basis for a subsequent controlled randomized clinical trial.

  5. Robotic Laparoendoscopic Single-site Retroperitioneal Renal Surgery: Initial Investigation of a Purpose-built Single-port Surgical System.

    Science.gov (United States)

    Maurice, Matthew J; Ramirez, Daniel; Kaouk, Jihad H

    2017-04-01

    Robotic single-site retroperitoneal renal surgery has the potential to minimize the morbidity of standard transperitoneal and multiport approaches. Traditionally, technological limitations of non-purpose-built robotic platforms have hindered the application of this approach. To assess the feasibility of retroperitoneal renal surgery using a new purpose-built robotic single-port surgical system. This was a preclinical study using three male cadavers to assess the feasibility of the da Vinci SP1098 surgical system for robotic laparoendoscopic single-site (R-LESS) retroperitoneal renal surgery. We used the SP1098 to perform retroperitoneal R-LESS radical nephrectomy (n=1) and bilateral partial nephrectomy (n=4) on the anterior and posterior surfaces of the kidney. Improvements unique to this system include enhanced optics and intelligent instrument arm control. Access was obtained 2cm anterior and inferior to the tip of the 12th rib using a novel 2.5-cm robotic single-port system that accommodates three double-jointed articulating robotic instruments, an articulating camera, and an assistant port. The primary outcome was the technical feasibility of the procedures, as measured by the need for conversion to standard techniques, intraoperative complications, and operative times. All cases were completed without the need for conversion. There were no intraoperative complications. The operative time was 100min for radical nephrectomy, and the mean operative time was 91.8±18.5min for partial nephrectomy. Limitations include the preclinical model, the small sample size, and the lack of a control group. Single-site retroperitoneal renal surgery is feasible using the latest-generation SP1098 robotic platform. While the potential of the SP1098 appears promising, further study is needed for clinical evaluation of this investigational technology. In an experimental model, we used a new robotic system to successfully perform major surgery on the kidney through a single small

  6. Robotic right colectomy using the Da Vinci Single-Site® platform: case report.

    Science.gov (United States)

    Morelli, Luca; Guadagni, Simone; Caprili, Giovanni; Di Candio, Giulio; Boggi, Ugo; Mosca, Franco

    2013-09-01

    While single-port laparoscopy for abdominal surgery is technically challenging, the Da Vinci Single-Site® robotic surgery platform may help to overcome some of the difficulties of this rapidly evolving technique. The authors of this article present a case of single-incision, robotic right colectomy using this device. A 74-year-old female with malignant polyp of caecum was operated on with a single-site approach using the Da Vinci Single-Site® robotic surgery device. Resection and anastomosis were performed extra-corporeally after undocking the robot. The procedure was successfully completed in 200 min. No surgical complications occurred during the intervention and the post-operative stay and no conversion to laparotomy or additional trocars were required. To the best of our knowledge, this is the first case of right colectomy using the Da Vinci Single-Site® robotic surgery platform to be reported. The procedure is feasible and safe and its main advantages are restoration of triangulation and reduced instrument clashes. Copyright © 2013 John Wiley & Sons, Ltd.

  7. Robotic digital subtraction angiography systems within the hybrid operating room.

    Science.gov (United States)

    Murayama, Yuichi; Irie, Koreaki; Saguchi, Takayuki; Ishibashi, Toshihiro; Ebara, Masaki; Nagashima, Hiroyasu; Isoshima, Akira; Arakawa, Hideki; Takao, Hiroyuki; Ohashi, Hiroki; Joki, Tatsuhiro; Kato, Masataka; Tani, Satoshi; Ikeuchi, Satoshi; Abe, Toshiaki

    2011-05-01

    Fully equipped high-end digital subtraction angiography (DSA) within the operating room (OR) environment has emerged as a new trend in the fields of neurosurgery and vascular surgery. To describe initial clinical experience with a robotic DSA system in the hybrid OR. A newly designed robotic DSA system (Artis zeego; Siemens AG, Forchheim, Germany) was installed in the hybrid OR. The system consists of a multiaxis robotic C arm and surgical OR table. In addition to conventional neuroendovascular procedures, the system was used as an intraoperative imaging tool for various neurosurgical procedures such as aneurysm clipping and spine instrumentation. Five hundred one neurosurgical procedures were successfully conducted in the hybrid OR with the robotic DSA. During surgical procedures such as aneurysm clipping and arteriovenous fistula treatment, intraoperative 2-/3-dimensional angiography and C-arm-based computed tomographic images (DynaCT) were easily performed without moving the OR table. Newly developed virtual navigation software (syngo iGuide; Siemens AG) can be used in frameless navigation and in access to deep-seated intracranial lesions or needle placement. This newly developed robotic DSA system provides safe and precise treatment in the fields of endovascular treatment and neurosurgery.

  8. Robotic radical perineal cystectomy and extended pelvic lymphadenectomy: initial investigation using a purpose-built single-port robotic system.

    Science.gov (United States)

    Maurice, Matthew J; Kaouk, Jihad H

    2017-12-01

    To assess the feasibility of radical perineal cystoprostatectomy using the latest generation purpose-built single-port robotic surgical system. In two male cadavers the da Vinci ® SP1098 Surgical System (Intuitive Surgical, Sunnyvale, CA, USA) was used to perform radical perineal cystoprostatectomy and bilateral extended pelvic lymph node dissection (ePLND). New features in this model include enhanced high-definition three-dimensional optics, improved instrument manoeuvrability, and a real-time instrument tracking and guidance system. The surgery was accomplished through a 3-cm perineal incision via a novel robotic single-port system, which accommodates three double-jointed articulating robotic instruments, an articulating camera, and an accessory laparoscopic instrument. The primary outcomes were technical feasibility, intraoperative complications, and total robotic operative time. The cases were completed successfully without conversion. There were no accidental punctures or lacerations. The robotic operative times were 197 and 202 min. In this preclinical model, robotic radical perineal cystoprostatectomy and ePLND was feasible using the SP1098 robotic platform. Further investigation is needed to assess the feasibility of urinary diversion using this novel approach and new technology. © 2017 The Authors BJU International © 2017 BJU International Published by John Wiley & Sons Ltd.

  9. Reduced-port robotic total mesorectal resection for rectal cancer using a single-port access: a technical note.

    Science.gov (United States)

    Bae, Sung Uk; Jeong, Woon Kyung; Baek, Seong Kyu

    2017-12-01

    Single-port laparoscopic surgery has some advantages, including improved cosmetic outcomes and minimized parietal trauma. However, pure single-port laparoscopic rectal cancer surgery is challenging because of the difficulties in creating triangulation and applying the laparoscopic staplers with sufficient distal margins in the narrow pelvic cavity. Recently, a reduced-port robotic operation with a robotic single-port access plus one wristed robotic arm for colon cancer was introduced to overcome the limitations of single-port laparoscopic rectal surgery. Single-port laparoscopic surgery has some advantages, including improved cosmetic outcomes and minimized parietal trauma. However, the pure single-port laparoscopic rectal cancer operation is challenging. Recently, a reduced-port robotic operation with a robotic single-port access plus one wristed robotic arm for colon cancer was introduced to overcome the limitations of single-port laparoscopic rectal surgery. We performed a single-port plus an additional port robotic operation using a robotic single-port access through the umbilical incision, and the wristed robotic instruments were inserted through an additional robotic port in the right lower quadrant. The total operative and docking times were 310 min and 25 min, respectively. The total number of lymph nodes harvested was 12, and the proximal and distal resection margins were 11.1 and 2 cm, respectively. The patient was discharged on postoperative day 12 uneventfully. Based on a representative case, reduced-port robotic total mesorectal excision for rectal cancer using the single-port access appears to be feasible and safe. This approach could overcome the limitations of single-port laparoscopic rectal surgery.

  10. Analysis of translational errors in frame-based and frameless cranial radiosurgery using an anthropomorphic phantom

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Taynna Vernalha Rocha [Faculdades Pequeno Principe (FPP), Curitiba, PR (Brazil); Cordova Junior, Arno Lotar; Almeida, Cristiane Maria; Piedade, Pedro Argolo; Silva, Cintia Mara da, E-mail: taynnavra@gmail.com [Centro de Radioterapia Sao Sebastiao, Florianopolis, SC (Brazil); Brincas, Gabriela R. Baseggio [Centro de Diagnostico Medico Imagem, Florianopolis, SC (Brazil); Marins, Priscila; Soboll, Danyel Scheidegger [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil)

    2016-03-15

    Objective: To evaluate three-dimensional translational setup errors and residual errors in image-guided radiosurgery, comparing frameless and frame-based techniques, using an anthropomorphic phantom. Materials and Methods: We initially used specific phantoms for the calibration and quality control of the image-guided system. For the hidden target test, we used an Alderson Radiation Therapy (ART)-210 anthropomorphic head phantom, into which we inserted four 5- mm metal balls to simulate target treatment volumes. Computed tomography images were the taken with the head phantom properly positioned for frameless and frame-based radiosurgery. Results: For the frameless technique, the mean error magnitude was 0.22 ± 0.04 mm for setup errors and 0.14 ± 0.02 mm for residual errors, the combined uncertainty being 0.28 mm and 0.16 mm, respectively. For the frame-based technique, the mean error magnitude was 0.73 ± 0.14 mm for setup errors and 0.31 ± 0.04 mm for residual errors, the combined uncertainty being 1.15 mm and 0.63 mm, respectively. Conclusion: The mean values, standard deviations, and combined uncertainties showed no evidence of a significant differences between the two techniques when the head phantom ART-210 was used. (author)

  11. Does transition from the da Vinci Si to Xi robotic platform impact single-docking technique for robot-assisted laparoscopic nephroureterectomy?

    Science.gov (United States)

    Patel, Manish N; Aboumohamed, Ahmed; Hemal, Ashok

    2015-12-01

    To describe our robot-assisted nephroureterectomy (RNU) technique for benign indications and RNU with en bloc excision of bladder cuff (BCE) and lymphadenectomy (LND) for malignant indications using the da Vinci Si and da Vinci Xi robotic platform, with its pros and cons. The port placement described for Si can be used for standard and S robotic systems. This is the first report in the literature on the use of the da Vinci Xi robotic platform for RNU. After a substantial experience of RNU using different da Vinci robots from the standard to the Si platform in a single-docking fashion for benign and malignant conditions, we started using the newly released da Vinci Xi robot since 2014. The most important differences are in port placement and effective use of the features of da Vinci Xi robot while performing simultaneous upper and lower tract surgery. Patient positioning, port placement, step-by-step technique of single docking RNU-LND-BCE using the da Vinci Si and da Vinci Xi robot are shown in an accompanying video with the goal that centres using either robotic system benefit from the hints and tips. The first segment of video describes RNU-LND-BCE using the da Vinci Si followed by the da Vinci Xi to highlight differences. There was no need for patient repositioning or robot re-docking with the new da Vinci Xi robotic platform. We have experience of using different robotic systems for single docking RNU in 70 cases for benign (15) and malignant (55) conditions. The da Vinci Xi robotic platform helps operating room personnel in its easy movement, allows easier patient side-docking with the help of its boom feature, in addition to easy and swift movements of the robotic arms. The patient clearance feature can be used to avoid collision with the robotic arms or the patient's body. In patients with challenging body habitus and in situations where bladder cuff management is difficult, modifications can be made through reassigning the camera to a different port with

  12. Robot-assisted procedures in pediatric neurosurgery.

    Science.gov (United States)

    De Benedictis, Alessandro; Trezza, Andrea; Carai, Andrea; Genovese, Elisabetta; Procaccini, Emidio; Messina, Raffaella; Randi, Franco; Cossu, Silvia; Esposito, Giacomo; Palma, Paolo; Amante, Paolina; Rizzi, Michele; Marras, Carlo Efisio

    2017-05-01

    OBJECTIVE During the last 3 decades, robotic technology has rapidly spread across several surgical fields due to the continuous evolution of its versatility, stability, dexterity, and haptic properties. Neurosurgery pioneered the development of robotics, with the aim of improving the quality of several procedures requiring a high degree of accuracy and safety. Moreover, robot-guided approaches are of special interest in pediatric patients, who often have altered anatomy and challenging relationships between the diseased and eloquent structures. Nevertheless, the use of robots has been rarely reported in children. In this work, the authors describe their experience using the ROSA device (Robotized Stereotactic Assistant) in the neurosurgical management of a pediatric population. METHODS Between 2011 and 2016, 116 children underwent ROSA-assisted procedures for a variety of diseases (epilepsy, brain tumors, intra- or extraventricular and tumor cysts, obstructive hydrocephalus, and movement and behavioral disorders). Each patient received accurate preoperative planning of optimal trajectories, intraoperative frameless registration, surgical treatment using specific instruments held by the robotic arm, and postoperative CT or MR imaging. RESULTS The authors performed 128 consecutive surgeries, including implantation of 386 electrodes for stereo-electroencephalography (36 procedures), neuroendoscopy (42 procedures), stereotactic biopsy (26 procedures), pallidotomy (12 procedures), shunt placement (6 procedures), deep brain stimulation procedures (3 procedures), and stereotactic cyst aspiration (3 procedures). For each procedure, the authors analyzed and discussed accuracy, timing, and complications. CONCLUSIONS To the best their knowledge, the authors present the largest reported series of pediatric neurosurgical cases assisted by robotic support. The ROSA system provided improved safety and feasibility of minimally invasive approaches, thus optimizing the surgical

  13. TH-EF-BRB-08: Robotic Motion Compensation for Radiation Therapy: A 6DOF Phantom Study

    Energy Technology Data Exchange (ETDEWEB)

    Belcher, AH; Liu, X; Wiersma, R [The University of Chicago, Chicago, IL (United States)

    2016-06-15

    Purpose: The high accuracy of frame-based stereotactic radiosurgery (SRS), which uses a rigid frame fixed to the patient’s skull, is offset by potential drawbacks of poor patient compliance and clinical workflow restrictions. Recent research into frameless SRS has so far resulted in reduced accuracy. In this study, we investigate the use of a novel 6 degree-of-freedom (6DOF) robotic head motion cancellation system that continuously detects and compensates for patient head motions during a SRS delivery. This approach has the potential to reduce invasiveness while still achieving accuracies better or equal to traditional frame-based SRS. Methods: A 6DOF parallel kinematics robotics stage was constructed, and controlled using an inverse kinematics-based motion compensation algorithm. A 6DOF stereoscopic infrared (IR) marker tracking system was used to monitor real-time motions at sub-millimeter and sub-degree levels. A novel 6DOF calibration technique was first applied to properly orient the camera coordinate frame to match that of the LINAC and robotic control frames. Simulated head motions were measured by the system, and the robotic stage responded to these 6DOF motions automatically, returning the reflective marker coordinate frame to its original position. Results: After the motions were introduced to the system in the phantom-based study, the robotic stage automatically and rapidly returned the phantom to LINAC isocenter. When errors exceeded the compensation lower threshold of 0.25 mm or 0.25 degrees, the system registered the 6DOF error and generated a cancellation trajectory. The system responded in less than 0.5 seconds and returned all axes to less than 0.1 mm and 0.1 degree after the 6DOF compensation was performed. Conclusion: The 6DOF real-time motion cancellation system was found to be effective at compensating for translational and rotational motions to current SRS requirements. This system can improve frameless SRS by automatically returning

  14. TH-EF-BRB-08: Robotic Motion Compensation for Radiation Therapy: A 6DOF Phantom Study

    International Nuclear Information System (INIS)

    Belcher, AH; Liu, X; Wiersma, R

    2016-01-01

    Purpose: The high accuracy of frame-based stereotactic radiosurgery (SRS), which uses a rigid frame fixed to the patient’s skull, is offset by potential drawbacks of poor patient compliance and clinical workflow restrictions. Recent research into frameless SRS has so far resulted in reduced accuracy. In this study, we investigate the use of a novel 6 degree-of-freedom (6DOF) robotic head motion cancellation system that continuously detects and compensates for patient head motions during a SRS delivery. This approach has the potential to reduce invasiveness while still achieving accuracies better or equal to traditional frame-based SRS. Methods: A 6DOF parallel kinematics robotics stage was constructed, and controlled using an inverse kinematics-based motion compensation algorithm. A 6DOF stereoscopic infrared (IR) marker tracking system was used to monitor real-time motions at sub-millimeter and sub-degree levels. A novel 6DOF calibration technique was first applied to properly orient the camera coordinate frame to match that of the LINAC and robotic control frames. Simulated head motions were measured by the system, and the robotic stage responded to these 6DOF motions automatically, returning the reflective marker coordinate frame to its original position. Results: After the motions were introduced to the system in the phantom-based study, the robotic stage automatically and rapidly returned the phantom to LINAC isocenter. When errors exceeded the compensation lower threshold of 0.25 mm or 0.25 degrees, the system registered the 6DOF error and generated a cancellation trajectory. The system responded in less than 0.5 seconds and returned all axes to less than 0.1 mm and 0.1 degree after the 6DOF compensation was performed. Conclusion: The 6DOF real-time motion cancellation system was found to be effective at compensating for translational and rotational motions to current SRS requirements. This system can improve frameless SRS by automatically returning

  15. Neuromechanical adaptations during a robotic powered exoskeleton assisted walking session.

    Science.gov (United States)

    Ramanujam, Arvind; Cirnigliaro, Christopher M; Garbarini, Erica; Asselin, Pierre; Pilkar, Rakesh; Forrest, Gail F

    2017-04-20

    To evaluate gait parameters and neuromuscular profiles of exoskeleton-assisted walking under Max Assist condition during a single-session for; (i) able bodied (AB) individuals walking assisted with (EXO) and without (non-EXO) a powered exoskeleton, (ii) non-ambulatory SCI individuals walking assisted with a powered exoskeleton. Single-session. Motion analysis laboratory. Four AB individuals and four individuals with SCI. Powered lower extremity exoskeleton. Temporal-spatial parameters, kinematics, walking velocity and electromyography data. AB individuals in exoskeleton showed greater stance time and a significant reduction in walking velocity (P exoskeleton movements, they walked with an increased velocity and lowered stance time to resemble that of slow walking. For SCI individuals, mean percent stance time was higher and walking velocity was lower compared to all AB walking conditions (P exoskeleton and moreover with voluntary control there is a greater temporal-spatial response of the lower limbs. Also, there are neuromuscular phasic adaptions for both AB and SCI groups while walking in the exoskeleton that are inconsistent to non-EXO gait muscle activation.

  16. SU-E-T-438: Frameless Cranial Stereotactic Radiosurgery Immobilization Effectiveness Evaluation

    International Nuclear Information System (INIS)

    Tseng, T; Green, S; Sheu, R; Lo, Y

    2015-01-01

    Purpose: To evaluate immobilization effectiveness of Brainlab frameless mask in cranial stereotactic radiosurgery (SRS). Methods: Two sets of setup images were collected pre-and post-treatment for 24 frameless SRS cases. The pre-treatment images were obtained after applying 2D-2D kV image-guided shifts with patients in treatment position and approved by physicians; the post-treatment images were taken immediately after treatment completion. All cases were treated on a Novalis linac with ExacTrac positioning system and Exact Couch. The two image sets were compared with the correctional shifts measured by ExacTrac 6D auto-fusion. The shift differences were considered patient motion within the frameless mask and were used to evaluate its effectiveness for immobilization. Two-tailed paired t-test was applied for significance comparison. Results: The correctional shifts (mean±STD, median) of pre-and post-treatment images were 0.33±0.27mm, 0.26mm and 0.34±0.27mm, 0.23mm (p=0.740) in lateral direction; 0.32±0.29mm, 0.22mm and 0.48±0.30mm, 0.50mm (p=0.012) in longitudinal direction; 0.31±0.22mm, 0.24mm and 0.33±0.21mm, 0.36mm (p=0.623) in vertical direction. The radial correctional shifts (mean±STD, median) of pre -and post-treatment images were 0.60±0.38mm, 0.45mm and 0.75±0.31mm, 0.66mm (p=0.033). The shift differences (mean±STD, median, maximum) were 0.35±0.28mm, 0.3mm, 1.05mm, 0.34±0.28mm, 0.3mm, 1.00mm, 0.24±0.15mm, 0.21mm, 0.60mm and 0.61±0.32mm, 0.57mm, 1.40mm in lateral, longitudinal, vertical and radial direction, respectively. Two shifts greater than 1 mm (1.06mm and 1.02mm) were acquired from post-treatment images. However, the shift differences were only 0.09 and 0.19mm for these two shifts. Two patients with shift differences greater than 1mm (1.05 and 1.04mm) were observed and didn’t coincide with those two who had post-correctional shifts greater than 1mm. Conclusion: Image-guided SRS allowed us to set up patients with sub

  17. SU-E-T-438: Frameless Cranial Stereotactic Radiosurgery Immobilization Effectiveness Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, T; Green, S; Sheu, R; Lo, Y [Mount Sinai Medical Center, New York, NY (United States)

    2015-06-15

    Purpose: To evaluate immobilization effectiveness of Brainlab frameless mask in cranial stereotactic radiosurgery (SRS). Methods: Two sets of setup images were collected pre-and post-treatment for 24 frameless SRS cases. The pre-treatment images were obtained after applying 2D-2D kV image-guided shifts with patients in treatment position and approved by physicians; the post-treatment images were taken immediately after treatment completion. All cases were treated on a Novalis linac with ExacTrac positioning system and Exact Couch. The two image sets were compared with the correctional shifts measured by ExacTrac 6D auto-fusion. The shift differences were considered patient motion within the frameless mask and were used to evaluate its effectiveness for immobilization. Two-tailed paired t-test was applied for significance comparison. Results: The correctional shifts (mean±STD, median) of pre-and post-treatment images were 0.33±0.27mm, 0.26mm and 0.34±0.27mm, 0.23mm (p=0.740) in lateral direction; 0.32±0.29mm, 0.22mm and 0.48±0.30mm, 0.50mm (p=0.012) in longitudinal direction; 0.31±0.22mm, 0.24mm and 0.33±0.21mm, 0.36mm (p=0.623) in vertical direction. The radial correctional shifts (mean±STD, median) of pre -and post-treatment images were 0.60±0.38mm, 0.45mm and 0.75±0.31mm, 0.66mm (p=0.033). The shift differences (mean±STD, median, maximum) were 0.35±0.28mm, 0.3mm, 1.05mm, 0.34±0.28mm, 0.3mm, 1.00mm, 0.24±0.15mm, 0.21mm, 0.60mm and 0.61±0.32mm, 0.57mm, 1.40mm in lateral, longitudinal, vertical and radial direction, respectively. Two shifts greater than 1 mm (1.06mm and 1.02mm) were acquired from post-treatment images. However, the shift differences were only 0.09 and 0.19mm for these two shifts. Two patients with shift differences greater than 1mm (1.05 and 1.04mm) were observed and didn’t coincide with those two who had post-correctional shifts greater than 1mm. Conclusion: Image-guided SRS allowed us to set up patients with sub

  18. Self-Structured Organizing Single-Input CMAC Control for Robot Manipulator

    Directory of Open Access Journals (Sweden)

    ThanhQuyen Ngo

    2011-09-01

    Full Text Available This paper represents a self-structured organizing single-input control system based on differentiable cerebellar model articulation controller (CMAC for an n-link robot manipulator to achieve the high-precision position tracking. In the proposed scheme, the single-input CMAC controller is solely used to control the plant, so the input space dimension of CMAC can be simplified and no conventional controller is needed. The structure of single-input CMAC will also be self-organized; that is, the layers of single-input CMAC will grow or prune systematically and their receptive functions can be automatically adjusted. The online tuning laws of single-input CMAC parameters are derived in gradient-descent learning method and the discrete-type Lyapunov function is applied to determine the learning rates of proposed control system so that the stability of the system can be guaranteed. The simulation results of robot manipulator are provided to verify the effectiveness of the proposed control methodology.

  19. Frame-less image-guided intracranial and extracranial radiosurgery using the Cyberknife robotic system

    International Nuclear Information System (INIS)

    Gibbs, I.C.

    2006-01-01

    The Cyberknife TM is an image-guided robotic radiosurgery system. The image guidance system includes a kilo-voltage X-ray imaging source and amorphous silica detectors. The radiation delivery device is a mobile X-band linear accelerator mounted onto a robotic arm. Through a highly complex interplay between the image guidance system, an automated couch, and the high-speed linear accelerator, near real-time tracking of the target is achieved. The Cyberknife TM gained Federal Drug Administration clearance in the United States in 2001 for treatment of tumors 'anywhere in the body where radiation treatment is indicated'. Because the Cyberknife TM system does not rely on rigid fixation of a stereotactic frame, tumors outside of the intracranial compartment, even those tumors that move with respiration can be treated with a similar degree of ease as intracranial targets. A description of the Cyberknife TM technology and a review of some of the current intracranial and extracranial applications are detailed herein. (author)

  20. A tabu search algorithm for scheduling a single robot in a job-shop environment

    NARCIS (Netherlands)

    Hurink, Johann L.; Knust, S.

    1999-01-01

    We consider a single-machine scheduling problem which arises as a subproblem in a job-shop environment where the jobs have to be transported between the machines by a single transport robot. The robot scheduling problem may be regarded as a generalization of the travelling-salesman problem with time

  1. A tabu search algorithm for scheduling a single robot in a job-shop environment

    NARCIS (Netherlands)

    Hurink, Johann L.; Knust, Sigrid

    2002-01-01

    We consider a single-machine scheduling problem which arises as a subproblem in a job-shop environment where the jobs have to be transported between the machines by a single transport robot. The robot scheduling problem may be regarded as a generalization of the travelling-salesman problem with time

  2. Robotic laparoendoscopic single-site surgery: From present to future

    Directory of Open Access Journals (Sweden)

    Ayhan Verit

    2012-01-01

    Full Text Available The continued effort of improving cosmesis and reducing morbidity in urologic surgery has given rise to novel alternatives to traditional minimally invasive techniques: Laparoendoscopic Single-site Surgery (LESS and Natural Orifice Transluminal Endoscopic Surgery (NOTES. Despite the development of specialized access devices and instruments, the performance of complex procedures using LESS has been challenging due to loss of triangulation and instrument clashing. A robotic interface may represent the key factor in overcoming the critical restrictions related to NOTES and LESS. Although encouraging, current clinical evidence related to R-LESS remains limited as the current da Vinci® robotic platform has not been specifically designed for LESS. Robotic innovations are imminent and are likely to govern major changes to the current landscape of scarless surgery.

  3. Evaluation of Image-Guided Positioning for Frameless Intracranial Radiosurgery

    International Nuclear Information System (INIS)

    Lamba, Michael; Breneman, John C.; Warnick, Ronald E.

    2009-01-01

    Purpose: The standard for target alignment and immobilization in intracranial radiosurgery is frame-based alignment and rigid immobilization using a stereotactic head ring. Recent improvements in image-guidance systems have introduced the possibility of image-guided radiosurgery with nonrigid immobilization. We present data on the alignment accuracy and patient stability of a frameless image-guided system. Methods and Materials: Isocenter alignment errors were measured for in vitro studies in an anthropomorphic phantom for both frame-based stereotactic and frameless image-guided alignment. Subsequently, in vivo studies assessed differences between frame-based and image-guided alignment in patients who underwent frame-based intracranial radiosurgery. Finally, intratreatment target stability was determined by image-guided alignment performed before and after image-guided mask immobilized radiosurgery. Results: In vitro hidden target localization errors were comparable for the framed (0.7 ± 0.5 mm) and image-guided (0.6 ± 0.2 mm) techniques. The in vivo differences in alignment were 0.9 ± 0.5 mm (anteroposterior), -0.2 ± 0.4 mm (superoinferior), and 0.3 ± 0.5 mm (lateral). For in vivo stability tests, the mean distance differed between the pre- and post-treatment positions with mask-immobilized radiosurgery by 0.5 ± 0.3 mm. Conclusion: Frame-based and image-guided alignment accuracy in vitro was comparable for the system tested. In vivo tests showed a consistent trend in the difference of alignment in the anteroposterior direction, possibly due to torque to the ring and mounting system with frame-based localization. The mask system as used appeared adequate for patient immobilization.

  4. Robot-assisted single port radical nephrectomy and cholecystectomy: description and technical aspects.

    Science.gov (United States)

    Mota Filho, Francisco Hidelbrando Alves; Sávio, Luis Felipe; Sakata, Rafael Eiji; Ivanovic, Renato Fidelis; da Silva, Marco Antonio Nunes; Maia, Ronaldo; Passerotti, Carlo

    2018-01-01

    Robot-Assisted Single Site Radical Nephrectomy (RASS-RN) has been reported by surgeons in Europe and United States (1-3). To our best knowledge this video presents the first RASS-RN with concomitant cholecystectomy performed in Latin America. A 66 year-old renal transplant male due to chronic renal failure presented with an incidental 1.3cm nodule in the upper pole of the right kidney. In addition, symptomatic gallbladder stones were detected. Patient was placed in modified flank position. Multichannel single port device was placed using Hassan's technique through a 3cm supra-umbilical incision. Standard radical nephrectomy and cholecystectomy were made using na 8.5mm camera, two 5mm robotic arms and an assistant 5mm access. Surgery time and estimated blood loss were 208 minutes and 100mL, respectively. Patient did well and was discharged within less than 48 hours, without complications. Pathology report showed benign renomedullary tumor of interstitial cells and chronic cholecystitis. Robotic technology improves ergonomics, gives better precision and enhances ability to approach complex surgeries. Robot-assisted Single Port aims to reduce the morbidity of multiple trocar placements while maintaining the advantages of robotic surgery (2). Limitations include the use of semi-rigid instruments providing less degree of motion and limited space leading to crash between instruments. On the other hand, it is possible to perform complex and concomitant surgeries with just one incision. RASS-RN seems to be safe and feasible option for selected cases. Studies should be performed to better understand the results using single port technique in Urology. Copyright® by the International Brazilian Journal of Urology.

  5. Robot-assisted single port radical nephrectomy and cholecystectomy: description and technical aspects

    Directory of Open Access Journals (Sweden)

    Francisco Hidelbrando Alves Mota Filho

    Full Text Available ABSTRACT Introduction Robot-Assisted Single Site Radical Nephrectomy (RASS-RN has been reported by surgeons in Europe and United States (1–3. To our best knowledge this video presents the first RASS-RN with concomitant cholecystectomy performed in Latin America. Case A 66 year-old renal transplant male due to chronic renal failure presented with an incidental 1.3cm nodule in the upper pole of the right kidney. In addition, symptomatic gallbladder stones were detected. Results Patient was placed in modified flank position. Multichannel single port device was placed using Hassan's technique through a 3 cm supra-umbilical incision. Standard radical nephrectomy and cholecystectomy were made using an 8.5mm camera, two 5mm robotic arms and an assistant 5mm access. Surgery time and estimated blood loss were 208 minutes and 100mL, respectively. Patient did well and was discharged within less than 48 hours, without complications. Pathology report showed benign renomedullary tumor of interstitial cells and chronic cholecystitis. Discussion Robotic technology improves ergonomics, gives better precision and enhances ability to approach complex surgeries. Robot-assisted Single Port aims to reduce the morbidity of multiple trocar placements while maintaining the advantages of robotic surgery (2. Limitations include the use of semi-rigid instruments providing less degree of motion and limited space leading to crash between instruments. On the other hand, it is possible to perform complex and concomitant surgeries with just one incision. Conclusion RASS-RN seems to be safe and feasible option for selected cases. Studies should be performed to better understand the results using single port technique in Urology.

  6. Single-session Gamma Knife radiosurgery for optic pathway/hypothalamic gliomas.

    Science.gov (United States)

    El-Shehaby, Amr M N; Reda, Wael A; Abdel Karim, Khaled M; Emad Eldin, Reem M; Nabeel, Ahmed M

    2016-12-01

    OBJECTIVE Because of their critical and central location, it is deemed necessary to fractionate when considering irradiating optic pathway/hypothalamic gliomas. Stereotactic fractionated radiotherapy is considered safer when dealing with gliomas in this location. In this study, the safety and efficacy of single-session stereotactic radiosurgery for optic pathway/hypothalamic gliomas were reviewed. METHODS Between December 2004 and June 2014, 22 patients with optic pathway/hypothalamic gliomas were treated by single-session Gamma Knife radiosurgery. Twenty patients were available for follow-up for a minimum of 1 year after treatment. The patients were 5 to 43 years (median 16 years) of age. The tumor volume was 0.15 to 18.2 cm 3 (median 3.1 cm 3 ). The prescription dose ranged from 8 to 14 Gy (median 11.5 Gy). RESULTS The mean follow-up period was 43 months. Five tumors involved the optic nerve only, and 15 tumors involved the chiasm/hypothalamus. Two patients died during the follow-up period. The tumors shrank in 12 cases, remained stable in 6 cases, and progressed in 2 cases, thereby making the tumor control rate 90%. Vision remained stable in 12 cases, improved in 6 cases, and worsened in 2 cases in which there was tumor progression. Progression-free survival was 83% at 3 years. CONCLUSIONS The initial results indicate that single-session Gamma Knife radiosurgery is a safe and effective treatment option for optic pathway/hypothalamic gliomas.

  7. Autism and social robotics: A systematic review.

    Science.gov (United States)

    Pennisi, Paola; Tonacci, Alessandro; Tartarisco, Gennaro; Billeci, Lucia; Ruta, Liliana; Gangemi, Sebastiano; Pioggia, Giovanni

    2016-02-01

    Social robotics could be a promising method for Autism Spectrum Disorders (ASD) treatment. The aim of this article is to carry out a systematic literature review of the studies on this topic that were published in the last 10 years. We tried to address the following questions: can social robots be a useful tool in autism therapy? We followed the PRISMA guidelines, and the protocol was registered within PROSPERO database (CRD42015016158). We found many positive implications in the use of social robots in therapy as for example: ASD subjects often performed better with a robot partner rather than a human partner; sometimes, ASD patients had, toward robots, behaviors that TD patients had toward human agents; ASDs had a lot of social behaviors toward robots; during robotic sessions, ASDs showed reduced repetitive and stereotyped behaviors and, social robots manage to improve spontaneous language during therapy sessions. Therefore, robots provide therapists and researchers a means to connect with autistic subjects in an easier way, but studies in this area are still insufficient. It is necessary to clarify whether sex, intelligence quotient, and age of participants affect the outcome of therapy and whether any beneficial effects only occur during the robotic session or if they are still observable outside the clinical/experimental context. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  8. Premenstrual mood and empathy after a single light therapy session.

    Science.gov (United States)

    Aan Het Rot, Marije; Miloserdov, Kristina; Buijze, Anna L F; Meesters, Ybe; Gordijn, Marijke C M

    2017-10-01

    To examine whether acute changes in cognitive empathy might mediate the impact of light therapy on mood, we assessed the effects of a single light-therapy session on mood and cognitive empathy in 48 premenstrual women, including 17 who met Premenstrual Symptoms Screening Tool criteria for moderate-to-severe premenstrual syndrome / premenstrual dysphoric disorder (PMS/PMDD). Using a participant-blind between-groups design, 23 women underwent 30min of morning light therapy (5,000lx; blue-enriched polychromatic light, 17,000K) while 25 women had a sham session (200lx, polychromatic light, 5,000K). We administered the Positive Affect and Negative Affect Schedule and the Affect Grid right before and after the intervention, and 60min later upon completion of a computerized empathic accuracy task. There were no significant effects of light condition on cognitive empathy as assessed using the computer task. Nonetheless, bright light reduced negative affect, specifically in women not using hormonal contraceptives. No effects of bright light on mood were observed in women who were using contraceptives. If a single light-therapy session does not alter cognitive empathy, then cognitive empathy may not mediate the impact of light therapy on mood in premenstrual women. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Robot-assisted laparoscopic skills development: formal versus informal training.

    Science.gov (United States)

    Benson, Aaron D; Kramer, Brandan A; Boehler, Margaret; Schwind, Cathy J; Schwartz, Bradley F

    2010-08-01

    The learning curve for robotic surgery is not completely defined, and ideal training components have not yet been identified. We attempted to determine whether skill development would be accelerated with formal, organized instruction in robotic surgical techniques versus informal practice alone. Forty-three medical students naive to robotic surgery were randomized into two groups and tested on three tasks using the robotic platform. Between the testing sessions, the students were given equally timed practice sessions. The formal training group participated in an organized, formal training session with instruction from an attending robotic surgeon, whereas the informal training group participated in an equally timed unstructured practice session with the robot. The results were compared based on technical score and time to completion of each task. There was no difference between groups in prepractice testing for any task. In postpractice testing, there was no difference between groups for the ring transfer tasks. However, for the suture placement and knot-tying task, the technical score of the formal training group was significantly better than that of the informal training group (p formal training may not be necessary for basic skills, formal instruction for more advanced skills, such as suture placement and knot tying, is important in developing skills needed for effective robotic surgery. These findings may be important in formulating potential skills labs or training courses for robotic surgery.

  10. Robotic single port cholecystectomy (R-LESS-C): experience in 36 patients.

    Science.gov (United States)

    Uras, Cihan; Böler, Deniz Eren; Ergüner, Ilknur; Hamzaoğlu, Ismail

    2014-07-01

    Laparoendoscopic single-site surgery (LESS) has emerged as a result of a search for "pain-less" and "scar-less" surgery. Laparoendoscopic single-site cholecystectomy (LESS-C) is probably the most common application in general surgery, although it harbors certain limitations. It was proposed that the da Vinci Single-Site (Si) robotic system may overcome some of the difficulties experienced during LESS, providing three dimensional views and the ability to work in a right-handed fashion. Thirty-six robotic single port cholecystectomies (R-LESS-C) performed with the da Vinci Si robotic system are evaluated in this paper R-LESS-C performed in 36 patients were reviewed. The data related to the perioperative period (i.e., anesthesia time, operation time, docking time, and console time) was recorded prospectively, whereas the hospitalization period, postoperative visual analogue scale (VAS) pain scores were collected retrospectively. A total number of 36 patients, with a mean age of 40.1 years (21-64 years), underwent R-LESS-C. There were five men and 31 women. The mean anesthesia and operation times were 79.3 minutes (45-130 minutes) and 61.8 minutes (34-110 minutes), respectively. The mean docking time was 9.8 minutes (4-30 minutes) and the mean console time was 24.9 minutes (7-60 minutes). The mean hospital stay was 1.05 days (1-2 days) and the mean pain score (VAS) was 3.6 (2-8) in the first 24 hours. Incisional hernia was recorded in one patient. R-LESS-C can be performed reliably with acceptable operative times and safety. The da Vinci Si robotic system may ease LESS-C. Two issues should be considered for routine use: expensive resources are needed and the incidence of incisional hernia may increase. Copyright © 2013. Published by Elsevier B.V.

  11. Premenstrual mood and empathy after a single light therapy session

    NARCIS (Netherlands)

    aan het Rot, Marije; Miloserdov, Kristina; Buijze, Anna L. F.; Meesters, Ybe; Gordijn, Marijke C. M.

    2017-01-01

    To examine whether acute changes in cognitive empathy might mediate the impact of light therapy on mood, we assessed the effects of a single light-therapy session on mood and cognitive empathy in 48 premenstrual women, including 17 who met Premenstrual Symptoms Screening Tool criteria for

  12. The Neuromuscular, Biochemical, and Endocrine Responses to a Single-Session Vs. Double-Session Training Day in Elite Athletes.

    Science.gov (United States)

    Johnston, Michael J; Cook, Christian J; Drake, David; Costley, Lisa; Johnston, Julie P; Kilduff, Liam P

    2016-11-01

    Johnston, MJ, Cook, CJ, Drake, D, Costley, L, Johnston, JP, and Kilduff, LP. The neuromuscular, biochemical, and endocrine responses to a single-session vs. double-session training day in elite athletes. J Strength Cond Res 30(11): 3098-3106, 2016-The aim of this study was to compare the acute neuromuscular, biochemical, and endocrine responses of a training day consisting of a speed session only with performing a speed-and-weights training session on the same day. Fifteen men who were academy-level rugby players completed 2 protocols in a randomized order. The speed-only protocol involved performing 6 maximal effort repetitions of 50-m running sprints with 5 minutes of recovery between each sprint, whereas the speed-and-weights protocol involved the same sprinting session but was followed 2 hours later by a lower-body weights session consisting of 4 sets of 5 backsquats and Romanian deadlift at 85% one repetition maximum. Testosterone, cortisol, creatine kinase, lactate, and perceived muscle soreness were determined immediately before, immediately after, 2 hours after, and 24 hours after both the protocols. Peak power, relative peak power, jump height, and average rate of force development were determined from a countermovement jump (CMJ) at the same time points. After 24-hours, muscle soreness was significantly higher after the speed-and-weights protocol compared with the speed-only protocol (effect size η = 0.253, F = 4.750, p ≤ 0.05). There was no significant difference between any of the CMJ variables at any of the posttraining time points. Likewise, creatine kinase, testosterone, and cortisol were unaffected by the addition of a weight-training session. These data indicate that the addition of a weight-training session 2 hours after a speed session, whereas increasing the perception of fatigue the next day does not result in a difference in endocrine response or in neuromuscular capability.

  13. Construction of a Urologic Robotic Surgery Training Curriculum: How Many Simulator Sessions Are Required for Residents to Achieve Proficiency?

    Science.gov (United States)

    Wiener, Scott; Haddock, Peter; Shichman, Steven; Dorin, Ryan

    2015-11-01

    To define the time needed by urology residents to attain proficiency in computer-aided robotic surgery to aid in the refinement of a robotic surgery simulation curriculum. We undertook a retrospective review of robotic skills training data acquired during January 2012 to December 2014 from junior (postgraduate year [PGY] 2-3) and senior (PGY4-5) urology residents using the da Vinci Skills Simulator. We determined the number of training sessions attended and the level of proficiency achieved by junior and senior residents in attempting 11 basic or 6 advanced tasks, respectively. Junior residents successfully completed 9.9 ± 1.8 tasks, with 62.5% completing all 11 basic tasks. The maximal cumulative success rate of junior residents completing basic tasks was 89.8%, which was achieved within 7.0 ± 1.5 hours of training. Of senior residents, 75% successfully completed all six advanced tasks. Senior residents attended 6.3 ± 3.5 hours of training during which 5.1 ± 1.6 tasks were completed. The maximal cumulative success rate of senior residents completing advanced tasks was 85.4%. When designing and implementing an effective robotic surgical training curriculum, an allocation of 10 hours of training may be optimal to allow junior and senior residents to achieve an acceptable level of surgical proficiency in basic and advanced robotic surgical skills, respectively. These data help guide the design and scheduling of a residents training curriculum within the time constraints of a resident's workload.

  14. TH-C-BRC-02: A Review of Emerging Technologies in Robotic SRS/SBRT Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L. [Stanford University Cancer Center (United States)

    2016-06-15

    The delivery techniques for SRS/SBRT have been under rapid developments in recent years, which pose new challenges to medical physicists ranging from planning and quality assurance to imaging and motion management. This educational course will provide a general overview of the latest delivery techniques in SRS/SBRT, and discuss the clinical processes to address the challenges of each technique with special emphasis on dedicated gamma-ray based device, robotic x-band linac-based system and conventional C-arm s-band linac-based SRS systems. (1). Gamma-ray based SRS/SRT: This is the gold standard of intracranial SRS. With the advent of precision imaging guidance and frameless patient positioning capabilities, novel stereoscopic CBCT and automatic dose adaption solution are introduced to the Gamma-ray based SRS for the first time. The first North American system has been approved by the US regulatory for patient treatments in the spring of 2016. (2). Robotic SRS/SBRT system: A number of technological milestones have been developed in the past few years, including variable aperture collimator, sequential optimization technique, and the time reduction technique. Recently, a new robotic model allows the option of a multi-leaf collimator. These technological advances have reduced the treatment time and improved dose conformity significantly and could potentially expand the application of radiosurgery for the treatment of targets not previously suitable for robotic SRS/SBRT or fractionated stereotactic radiotherapy. These technological advances have created new demanding mandates on hardware and patient quality assurance (QA) tasks, as well as the need for updating/educating the physicists in the community on these requirements. (3). Conventional Linac based treatments: Modulated arc therapy (MAT) has gained wide popularities in Linac-based treatments in recent years due to its high delivery efficiency and excellent dose conformities. Recently, MAT has been introduced to

  15. TH-C-BRC-02: A Review of Emerging Technologies in Robotic SRS/SBRT Delivery

    International Nuclear Information System (INIS)

    Wang, L.

    2016-01-01

    The delivery techniques for SRS/SBRT have been under rapid developments in recent years, which pose new challenges to medical physicists ranging from planning and quality assurance to imaging and motion management. This educational course will provide a general overview of the latest delivery techniques in SRS/SBRT, and discuss the clinical processes to address the challenges of each technique with special emphasis on dedicated gamma-ray based device, robotic x-band linac-based system and conventional C-arm s-band linac-based SRS systems. (1). Gamma-ray based SRS/SRT: This is the gold standard of intracranial SRS. With the advent of precision imaging guidance and frameless patient positioning capabilities, novel stereoscopic CBCT and automatic dose adaption solution are introduced to the Gamma-ray based SRS for the first time. The first North American system has been approved by the US regulatory for patient treatments in the spring of 2016. (2). Robotic SRS/SBRT system: A number of technological milestones have been developed in the past few years, including variable aperture collimator, sequential optimization technique, and the time reduction technique. Recently, a new robotic model allows the option of a multi-leaf collimator. These technological advances have reduced the treatment time and improved dose conformity significantly and could potentially expand the application of radiosurgery for the treatment of targets not previously suitable for robotic SRS/SBRT or fractionated stereotactic radiotherapy. These technological advances have created new demanding mandates on hardware and patient quality assurance (QA) tasks, as well as the need for updating/educating the physicists in the community on these requirements. (3). Conventional Linac based treatments: Modulated arc therapy (MAT) has gained wide popularities in Linac-based treatments in recent years due to its high delivery efficiency and excellent dose conformities. Recently, MAT has been introduced to

  16. Clinical Perspective A case of effective single-session treatment for ...

    African Journals Online (AJOL)

    This article reports a systematic clinical case study of the psychological assessment and treatment of Daniel (9), a coloured South African boy with a diagnosis of attention deficit hyperactivity disorder (ADHD) (inattentive type). The case is of scientific interest because: (1) there was only a single treatment session, in which ...

  17. Compact teleoperated laparoendoscopic single-site robotic surgical system: Kinematics, control, and operation.

    Science.gov (United States)

    Isaac-Lowry, Oran Jacob; Okamoto, Steele; Pedram, Sahba Aghajani; Woo, Russell; Berkelman, Peter

    2017-12-01

    To date a variety of teleoperated surgical robotic systems have been developed to improve a surgeon's ability to perform demanding single-port procedures. However typical large systems are bulky, expensive, and afford limited angular motion, while smaller designs suffer complications arising from limited motion range, speed, and force generation. This work was to develop and validate a simple, compact, low cost single site teleoperated laparoendoscopic surgical robotic system, with demonstrated capability to carry out basic surgical procedures. This system builds upon previous work done at the University of Hawaii at Manoa and includes instrument and endoscope manipulators as well as compact articulated instruments designed to overcome single incision geometry complications. A robotic endoscope holder was used for the base, with an added support frame for teleoperated manipulators and instruments fabricated mostly from 3D printed parts. Kinematics and control methods were formulated for the novel manipulator configuration. Trajectory following results from an optical motion tracker and sample task performance results are presented. Results indicate that the system has successfully met the goal of basic surgical functionality while minimizing physical size, complexity, and cost. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Diffusion tractography imaging-guided frameless linear accelerator stereotactic radiosurgical thalamotomy for tremor: case report.

    Science.gov (United States)

    Kim, Won; Sharim, Justin; Tenn, Stephen; Kaprealian, Tania; Bordelon, Yvette; Agazaryan, Nzhde; Pouratian, Nader

    2018-01-01

    Essential tremor and Parkinson's disease-associated tremor are extremely prevalent within the field of movement disorders. The ventral intermediate (VIM) nucleus of the thalamus has been commonly used as both a neuromodulatory and neuroablative target for the treatment of these forms of tremor. With both deep brain stimulation and Gamma Knife radiosurgery, there is an abundance of literature regarding the surgical planning, targeting, and outcomes of these methodologies. To date, there have been no reports of frameless, linear accelerator (LINAC)-based thalomotomies for tremor. The authors report the case of a patient with tremor-dominant Parkinson's disease, with poor tremor improvement with medication, who was offered LINAC-based thalamotomy. High-resolution 0.9-mm isotropic MR images were obtained, and simulation was performed via CT with 1.5-mm contiguous slices. The VIM thalamic nucleus was determined using diffusion tensor imaging (DTI)-based segmentation on FSL using probabilistic tractography. The supplemental motor and premotor areas were the cortical target masks. The authors centered their isocenter within the region of the DTI-determined target and treated the patient with 140 Gy in a single fraction. The DTI-determined target had coordinates of 14.2 mm lateral and 8.36 mm anterior to the posterior commissure (PC), and 3 mm superior to the anterior commissure (AC)-PC line, which differed by 3.30 mm from the original target determined by anatomical considerations (15.5 mm lateral and 7 mm anterior to the PC, and 0 mm superior to the AC-PC line). There was faint radiographic evidence of lesioning at the 3-month follow-up within the target zone, which continued to consolidate on subsequent scans. The patient experienced continued right upper-extremity resting tremor improvement starting at 10 months until it was completely resolved at 22 months of follow-up. Frameless LINAC-based thalamotomy guided by DTI-based thalamic segmentation is a feasible method

  19. SU-F-T-631: Linear Accelerator-Based Frameless Extracranial Radiosurgery for Treatment of Occipital Neuralgia for Non-Surgical Candidates

    Energy Technology Data Exchange (ETDEWEB)

    Denton, T; Howe, J [Associates In Medical Physics, Louisville, KY (United States); Spalding, A [The Norton Cancer Institute Radiation Center, Louisville, KY (United States)

    2016-06-15

    Purpose: Occipital neuralgia is a condition wherein pain is transmitted by the occipital nerves. Non-invasive therapies generally alleviate symptoms; however, persistent or recurring pain may require invasive procedures. Repeated invasive procedures upon failure are considered higher risk and are often contraindicated due to compounding inherent risk. SRS has not been explored as a treatment option largely due to the extracranial nature of the target (as opposed to the similar, more established trigeminal neuralgia), but advances in linear-accelerator frameless-based SRS now present an opportunity to evaluate the novel potential of this modality for this application. Methods: Patient presented with severe occipital pain following decompression and fusion of the cervical vertebrae with prior intervention attempted via radiofrequency ablation yielding temporary pain cessation. A 0.6 mm slice spacing CT was obtained for treatment planning, and a cervical spine oriented 1.0 mm slice spacing CT myelogram was obtained for the purpose of defining the targeted C2 occipital dorsal root ganglion (to receive 80 Gy to the isocenter) and spinal cord. Results: The spinal cord was most proximally 12.0 mm from the isocenter receiving a maximum dose of 3.36 Gy, and doses to 0.35 and 1.2 cc of 1.84 Gy and 0.79 Gy, respectively. The brain maximum dose was 2.29 Gy. The treatment was successfully performed with a NovalisTX (Varian) equipped with ExacTrac stereoscopic x-ray image guidance (BrainLAB). Treatment time was 59 minutes for 18,323 MUs. Imaging was performed prior to each arc delivery resulting in twenty-one imaging sessions (twelve requiring positional corrections with the remaining verified within tolerance). The average deviation magnitude requiring a positional or rotational correction was 0.96±0.25 mm, 0.8±0.41° while the average deviation magnitude deemed within tolerance was 0.41±0.12 mm, 0.57±0.28°. Conclusion: Linear accelerator-based frameless radiosurgery

  20. SU-F-T-631: Linear Accelerator-Based Frameless Extracranial Radiosurgery for Treatment of Occipital Neuralgia for Non-Surgical Candidates

    International Nuclear Information System (INIS)

    Denton, T; Howe, J; Spalding, A

    2016-01-01

    Purpose: Occipital neuralgia is a condition wherein pain is transmitted by the occipital nerves. Non-invasive therapies generally alleviate symptoms; however, persistent or recurring pain may require invasive procedures. Repeated invasive procedures upon failure are considered higher risk and are often contraindicated due to compounding inherent risk. SRS has not been explored as a treatment option largely due to the extracranial nature of the target (as opposed to the similar, more established trigeminal neuralgia), but advances in linear-accelerator frameless-based SRS now present an opportunity to evaluate the novel potential of this modality for this application. Methods: Patient presented with severe occipital pain following decompression and fusion of the cervical vertebrae with prior intervention attempted via radiofrequency ablation yielding temporary pain cessation. A 0.6 mm slice spacing CT was obtained for treatment planning, and a cervical spine oriented 1.0 mm slice spacing CT myelogram was obtained for the purpose of defining the targeted C2 occipital dorsal root ganglion (to receive 80 Gy to the isocenter) and spinal cord. Results: The spinal cord was most proximally 12.0 mm from the isocenter receiving a maximum dose of 3.36 Gy, and doses to 0.35 and 1.2 cc of 1.84 Gy and 0.79 Gy, respectively. The brain maximum dose was 2.29 Gy. The treatment was successfully performed with a NovalisTX (Varian) equipped with ExacTrac stereoscopic x-ray image guidance (BrainLAB). Treatment time was 59 minutes for 18,323 MUs. Imaging was performed prior to each arc delivery resulting in twenty-one imaging sessions (twelve requiring positional corrections with the remaining verified within tolerance). The average deviation magnitude requiring a positional or rotational correction was 0.96±0.25 mm, 0.8±0.41° while the average deviation magnitude deemed within tolerance was 0.41±0.12 mm, 0.57±0.28°. Conclusion: Linear accelerator-based frameless radiosurgery

  1. A novel robotic system for single-port urologic surgery: first clinical investigation.

    Science.gov (United States)

    Kaouk, Jihad H; Haber, Georges-Pascal; Autorino, Riccardo; Crouzet, Sebastien; Ouzzane, Adil; Flamand, Vincent; Villers, Arnauld

    2014-12-01

    The idea of performing a laparoscopic procedure through a single abdominal incision was conceived with the aim of expediting postoperative recovery. To determine the clinical feasibility and safety of single-port urologic procedures by using a novel robotic surgical system. This was a prospective institutional review board-approved, Innovation, Development, Exploration, Assessment, Long-term Study (IDEAL) phase 1 study. After enrollment, patients underwent a major urologic robotic single-port procedure over a 3-wk period in July 2010. The patients were followed for 3 yr postoperatively. Different types of urologic surgeries were performed using the da Vinci SP Surgical System. This system is intended to provide the same core clinical capabilities as the existing multiport da Vinci system, except that three articulating endoscopic instruments and an articulating endoscopic camera are inserted into the patient through a single robotic port. The main outcomes were the technical feasibility of the procedures (as measured by the rate of conversions) and the safety of the procedures (as measured by the incidence of perioperative complications). Secondary end points consisted of evaluating other key surgical perioperative outcomes as well as midterm functional and oncologic outcomes. A total of 19 patients were enrolled in the study. Eleven of them underwent radical prostatectomy; eight subjects underwent nephrectomy procedures (partial nephrectomy, four; radical nephrectomy, two; and simple nephrectomy, two). There were no conversions to alternative surgical approaches. Overall, two major (Clavien grade 3b) postoperative complications were observed in the radical prostatectomy group and none in the nephrectomy group. At 1-yr follow-up, one radical prostatectomy patient experienced biochemical recurrence, which was successfully treated with salvage radiation therapy. The median warm ischemia time for three of the partial nephrectomies was 38 min. At 3-yr follow-up all

  2. Effect of Link Flexibility on tip position of a single link robotic arm

    Science.gov (United States)

    Madhusudan Raju, E.; Siva Rama Krishna, L.; Mouli, Y. Sharath Chandra; Nageswara Rao, V.

    2015-12-01

    The flexible robots are widely used in space applications due to their quick response, lower energy consumption, lower overall mass and operation at high speed compared to conventional industrial rigid link robots. These robots are inherently flexible, so that the kinematics of flexible robots can't be solved with rigid body assumptions. The flexibility in links and joints affects end-point positioning accuracy of the robot. It is important to model the link kinematics with precision which in turn simplifies modelling of dynamics of flexible robots. The main objective of this paper is to evaluate the effect of link flexibility on a tip position of a single link robotic arm for a given motion. The joint is assumed to be rigid and only link flexibility is considered. The kinematics of flexible link problem is evaluated by Assumed Modes Method (AMM) using MAT LAB Programming. To evaluate the effect of link flexibility (with and without payload) of robotic arm, the normalized tip deviation is found for flexible link with respect to a rigid link. Finally, the limiting inertia for payload mass is found if the allowable tip deviation is 5%.

  3. Patient-specific surgical simulator for the pre-operative planning of single-incision laparoscopic surgery with bimanual robots.

    Science.gov (United States)

    Turini, Giuseppe; Moglia, Andrea; Ferrari, Vincenzo; Ferrari, Mauro; Mosca, Franco

    2012-01-01

    The trend of surgical robotics is to follow the evolution of laparoscopy, which is now moving towards single-incision laparoscopic surgery. The main drawback of this approach is the limited maneuverability of the surgical tools. Promising solutions to improve the surgeon's dexterity are based on bimanual robots. However, since both robot arms are completely inserted into the patient's body, issues related to possible unwanted collisions with structures adjacent to the target organ may arise. This paper presents a simulator based on patient-specific data for the positioning and workspace evaluation of bimanual surgical robots in the pre-operative planning of single-incision laparoscopic surgery. The simulator, designed for the pre-operative planning of robotic laparoscopic interventions, was tested by five expert surgeons who evaluated its main functionalities and provided an overall rating for the system. The proposed system demonstrated good performance and usability, and was designed to integrate both present and future bimanual surgical robots.

  4. Initial experience with the new da Vinci single-port robot-assisted platform.

    Science.gov (United States)

    Ballestero Diego, R; Zubillaga Guerrero, S; Truan Cacho, D; Carrion Ballardo, C; Velilla Diez, G; Calleja Hermosa, P; Gutiérrez Baños, J L

    2017-06-01

    To describe our experience in the first cases of urological surgeries performed with the da Vinci single-port robot-assisted platform. We performed 5 single-port robot-assisted surgeries (R-LESS) between May and October 2014. We performed 3 ureteral reimplant surgeries, one ureteropyeloplasty in an inverted kidney and 1 partial nephrectomy. The perioperative and postoperative results were collected, as well as a report of the complications according to the Clavien classification system. Of the 5 procedures, 4 were performed completely by LESS, while 1 procedure was reconverted to multiport robot-assisted surgery. There were no intraoperative complications. We observed perioperative complications in 4 patients, all of which were grade 1 or 2. The mean surgical time was 262minutes (range, 230-300). In our initial experience with the da Vinci device, R-LESS surgery was feasible and safe. There are still a number of limitations in its use, which require new and improved R-LESS platforms. Copyright © 2016 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. Robust frameless stereotactic localization in extra-cranial radiotherapy

    International Nuclear Information System (INIS)

    Riboldi, Marco; Baroni, Guido; Spadea, Maria Francesca; Bassanini, Fabio; Tagaste, Barbara; Garibaldi, Cristina; Orecchia, Roberto; Pedotti, Antonio

    2006-01-01

    In the field of extra-cranial radiotherapy, several inaccuracies can make the application of frameless stereotactic localization techniques error-prone. When optical tracking systems based on surface fiducials are used, inter- and intra-fractional uncertainties in marker three-dimensional (3D) detection may lead to inexact tumor position estimation, resulting in erroneous patient setup. This is due to the fact that external fiducials misdetection results in deformation effects that are poorly handled in a rigid-body approach. In this work, the performance of two frameless stereotactic localization algorithms for 3D tumor position reconstruction in extra-cranial radiotherapy has been specifically tested. Two strategies, unweighted versus weighted, for stereotactic tumor localization were examined by exploiting data coming from 46 patients treated for extra-cranial lesions. Measured isocenter displacements and rotations were combined to define isocentric procedures, featuring 6 degrees of freedom, for correcting patient alignment (isocentric positioning correction). The sensitivity of the algorithms to uncertainties in the 3D localization of fiducials was investigated by means of 184 numerical simulations. The performance of the implemented isocentric positioning correction was compared to conventional point-based registration. The isocentric positioning correction algorithm was tested on a clinical dataset of inter-fractional and intra-fractional setup errors, which was collected by means of an optical tracker on the same group of patients. The weighted strategy exhibited a lower sensitivity to fiducial localization errors in simulated misalignments than those of the unweighted strategy. Isocenter 3D displacements provided by the weighted strategy were consistently smaller than those featured by the unweighted strategy. The peak decrease in median and quartile values of isocenter 3D displacements were 1.4 and 2.7 mm, respectively. Concerning clinical data, the

  6. Group sessions with Paro in a nursing home: Structure, observations and interviews.

    Science.gov (United States)

    Robinson, Hayley; Broadbent, Elizabeth; MacDonald, Bruce

    2016-06-01

    We recently reported that a companion robot reduced residents' loneliness in a randomised controlled trial at an aged-care facility. This report aims to provide additional, previously unpublished data about how the sessions were run, residents' interactions with the robot and staff perspectives. Observations were conducted focusing on engagement, how residents treated the robot and if the robot acted as a social catalyst. In addition, 16 residents and 21 staff were asked open-ended questions at the end of the study about the sessions and the robot. Observations indicated that some residents engaged on an emotional level with Paro, and Paro was treated as both an agent and an artificial object. Interviews revealed that residents enjoyed sharing, interacting with and talking about Paro. This study supports other research showing Paro has psychosocial benefits and provides a guide for those wishing to use Paro in a group setting in aged care. © 2015 AJA Inc.

  7. Single-site robotic cholecystectomy and robotics training: should we start in the junior years?

    Science.gov (United States)

    Ayabe, Reed I; Parrish, Aaron B; Dauphine, Christine E; Hari, Danielle M; Ozao-Choy, Junko J

    2018-04-01

    It has become increasingly important to expose surgical residents to robotic surgery as its applications continue to expand. Single-site robotic cholecystectomy (SSRC) is an excellent introductory case to robotics. Resident involvement in SSRC is known to be feasible. Here, we sought to determine whether it is safe to introduce SSRC to junior residents. A total of 98 SSRC cases were performed by general surgery residents between August 2015 and August 2016. Cases were divided into groups based on resident level: second- and third-years (juniors) versus fourth- and fifth-years (seniors). Patient age, gender, race, body mass index, and comorbidities were recorded. The number of prior laparoscopic cholecystectomies completed by participating residents was noted. Outcomes including operative time, console time, rate of conversion to open cholecystectomy, and complication rate were compared between groups. Juniors performed 54 SSRC cases, whereas seniors performed 44. There were no significant differences in patient age, gender, race, body mass index, or comorbidities between the two groups. Juniors had less experience with laparoscopic cholecystectomy. There was no significant difference in mean operative time (92.7 min versus 98.0 min, P = 0.254), console time (48.7 min versus 50.8 min, P = 0.639), or complication rate (3.7% versus 2.3%, P = 0.68) between juniors and seniors. SSRC is an excellent way to introduce general surgery residents to robotics. This study shows that with attending supervision, SSRC is feasible and safe for both junior and senior residents with very low complication rates and no adverse effect on operative time. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Towards Sociable Robots

    DEFF Research Database (Denmark)

    Ngo, Trung Dung

    This thesis studies aspects of self-sufficient energy (energy autonomy) for truly autonomous robots and towards sociable robots. Over sixty years of history of robotics through three developmental ages containing single robot, multi-robot systems, and social (sociable) robots, the main objective...... of roboticists mostly focuses on how to make a robotic system function autonomously and further, socially. However, such approaches mostly emphasize behavioural autonomy, rather than energy autonomy which is the key factor for not only any living machine, but for life on the earth. Consequently, self......-sufficient energy is one of the challenges for not only single robot or multi-robot systems, but also social and sociable robots. This thesis is to deal with energy autonomy for multi-robot systems through energy sharing (trophallaxis) in which each robot is equipped with two capabilities: self-refueling energy...

  9. A frameless stereotaxic operating microscope for neurosurgery

    International Nuclear Information System (INIS)

    Friets, E.M.; Strohbehn, J.W.; Hatch, J.F.; Roberts, D.W.

    1989-01-01

    A new system, which we call the frameless stereotaxic operating microscope, is discussed. Its purpose is to display CT or other image data in the operating microscope in the correct scale, orientation, and position without the use of a stereotaxic frame. A nonimaging ultrasonic rangefinder allows the position of the operating microscope and the position of the patient to be determined. Discrete fiducial points on the patient's external anatomy are located in both image space and operating room space, linking the image data and the operating room. Physician-selected image information, e.g., tumor contours or guidance to predetermined targets, is projected through the optics of the operating microscope using a miniature cathode ray tube and a beam splitter. Projected images superpose the surgical field, reconstructed from image data to match the focal plane of the operating microscope. The algorithms on which the system is based are described, and the sources and effects of errors are discussed. The system's performance is simulated, providing an estimate of accuracy. Two phantoms are used to measure accuracy experimentally. Clinical results and observations are given

  10. A frameless stereotaxic operating microscope for neurosurgery.

    Science.gov (United States)

    Friets, E M; Strohbehn, J W; Hatch, J F; Roberts, D W

    1989-06-01

    A new system, which we call the frameless stereotaxic operating microscope, is discussed. Its purpose is to display CT or other image data in the operating microscope in the correct scale, orientation, and position without the use of a stereotaxic frame. A nonimaging ultrasonic rangefinder allows the position of the operating microscope and the position of the patient to be determined. Discrete fiducial points on the patient's external anatomy are located in both image space and operating room space, linking the image data and the operating room. Physician-selected image information, e.g., tumor contours or guidance to predetermined targets, is projected through the optics of the operating microscope using a miniature cathode ray tube and a beam splitter. Projected images superpose the surgical field, reconstructed from image data to match the focal plane of the operating microscope. The algorithms on which the system is based are described, and the sources and effects of errors are discussed. The system's performance is simulated, providing an estimate of accuracy. Two phantoms are used to measure accuracy experimentally. Clinical results and observations are given.

  11. A Simple Interface for 3D Position Estimation of a Mobile Robot with Single Camera.

    Science.gov (United States)

    Chao, Chun-Tang; Chung, Ming-Hsuan; Chiou, Juing-Shian; Wang, Chi-Jo

    2016-03-25

    In recent years, there has been an increase in the number of mobile robots controlled by a smart phone or tablet. This paper proposes a visual control interface for a mobile robot with a single camera to easily control the robot actions and estimate the 3D position of a target. In this proposal, the mobile robot employed an Arduino Yun as the core processor and was remote-controlled by a tablet with an Android operating system. In addition, the robot was fitted with a three-axis robotic arm for grasping. Both the real-time control signal and video transmission are transmitted via Wi-Fi. We show that with a properly calibrated camera and the proposed prototype procedures, the users can click on a desired position or object on the touchscreen and estimate its 3D coordinates in the real world by simple analytic geometry instead of a complicated algorithm. The results of the measurement verification demonstrates that this approach has great potential for mobile robots.

  12. A P300-based Brain-Computer Interface with Stimuli on Moving Objects: Four-Session Single-Trial and Triple-Trial Tests with a Game-Like Task Design

    Science.gov (United States)

    Ganin, Ilya P.; Shishkin, Sergei L.; Kaplan, Alexander Y.

    2013-01-01

    Brain-computer interfaces (BCIs) are tools for controlling computers and other devices without using muscular activity, employing user-controlled variations in signals recorded from the user’s brain. One of the most efficient noninvasive BCIs is based on the P300 wave of the brain’s response to stimuli and is therefore referred to as the P300 BCI. Many modifications of this BCI have been proposed to further improve the BCI’s characteristics or to better adapt the BCI to various applications. However, in the original P300 BCI and in all of its modifications, the spatial positions of stimuli were fixed relative to each other, which can impose constraints on designing applications controlled by this BCI. We designed and tested a P300 BCI with stimuli presented on objects that were freely moving on a screen at a speed of 5.4°/s. Healthy participants practiced a game-like task with this BCI in either single-trial or triple-trial mode within four sessions. At each step, the participants were required to select one of nine moving objects. The mean online accuracy of BCI-based selection was 81% in the triple-trial mode and 65% in the single-trial mode. A relatively high P300 amplitude was observed in response to targets in most participants. Self-rated interest in the task was high and stable over the four sessions (the medians in the 1st/4th sessions were 79/84% and 76/71% in the groups practicing in the single-trial and triple-trial modes, respectively). We conclude that the movement of stimulus positions relative to each other may not prevent the efficient use of the P300 BCI by people controlling their gaze, e.g., in robotic devices and in video games. PMID:24302977

  13. Operation analysis of a Chebyshev-Pantograph leg mechanism for a single DOF biped robot

    Science.gov (United States)

    Liang, Conghui; Ceccarelli, Marco; Takeda, Yukio

    2012-12-01

    In this paper, operation analysis of a Chebyshev-Pantograph leg mechanism is presented for a single degree of freedom (DOF) biped robot. The proposed leg mechanism is composed of a Chebyshev four-bar linkage and a pantograph mechanism. In contrast to general fully actuated anthropomorphic leg mechanisms, the proposed leg mechanism has peculiar features like compactness, low-cost, and easy-operation. Kinematic equations of the proposed leg mechanism are formulated for a computer oriented simulation. Simulation results show the operation performance of the proposed leg mechanism with suitable characteristics. A parametric study has been carried out to evaluate the operation performance as function of design parameters. A prototype of a single DOF biped robot equipped with two proposed leg mechanisms has been built at LARM (Laboratory of Robotics and Mechatronics). Experimental test shows practical feasible walking ability of the prototype, as well as drawbacks are discussed for the mechanical design.

  14. Construction of a frameless camera-based stereotactic neuronavigator.

    Science.gov (United States)

    Cornejo, A; Algorri, M E

    2004-01-01

    We built an infrared vision system to be used as the real time 3D motion sensor in a prototype low cost, high precision, frameless neuronavigator. The objective of the prototype is to develop accessible technology for increased availability of neuronavigation systems in research labs and small clinics and hospitals. We present our choice of technology including camera and IR emitter characteristics. We describe the methodology for setting up the 3D motion sensor, from the arrangement of the cameras and the IR emitters on surgical instruments, to triangulation equations from stereo camera pairs, high bandwidth computer communication with the cameras and real time image processing algorithms. We briefly cover the issues of camera calibration and characterization. Although our performance results do not yet fully meet the high precision, real time requirements of neuronavigation systems we describe the current improvements being made to the 3D motion sensor that will make it suitable for surgical applications.

  15. 1st Iberian Robotics Conference

    CERN Document Server

    Sanfeliu, Alberto; Ferre, Manuel; ROBOT2013; Advances in robotics

    2014-01-01

    This book contains the proceedings of the ROBOT 2013: FIRST IBERIAN ROBOTICS CONFERENCE and it can be said that included both state of the art and more practical presentations dealing with implementation problems, support technologies and future applications. A growing interest in Assistive Robotics, Agricultural Robotics, Field Robotics, Grasping and Dexterous Manipulation, Humanoid Robots, Intelligent Systems and Robotics, Marine Robotics, has been demonstrated by the very relevant number of contributions. Moreover, ROBOT2013 incorporates a special session on Legal and Ethical Aspects in Robotics that is becoming a topic of key relevance. This Conference was held in Madrid (28-29 November 2013), organised by the Sociedad Española para la Investigación y Desarrollo en Robótica (SEIDROB) and by the Centre for Automation and Robotics - CAR (Universidad Politécnica de Madrid (UPM) and Consejo Superior de Investigaciones Científicas (CSIC)), along with the co-operation of Grupo Temático de Robótica CEA-GT...

  16. PET/CT and contrast enhanced CT in single vs. two separate sessions: a cost analysis study.

    Science.gov (United States)

    Picchio, M; Mansueto, M; Crivellaro, C; Guerra, L; Marcelli, S; Arosio, M; Sironi, S; Gianolli, L; Grimaldi, A; Messa, C

    2012-06-01

    Aim of the study was to quantify the economic impact of PET/CT and contrast enhanced (c.e.) CT performed in a single session examination vs. stand-alone modalities in oncological patients. One-hundred-forty-five cancer patients referred to both PET/CT and c.e. CT, to either stage (N.=46) or re-stage (N.=99) the disease, were included. Seventy-two/145 performed both studies in a single session (innovative method) and 73/145 in two different sessions (traditional method). The cost-minimization analysis was performed by evaluating: 1) institutional costs, data obtained by hospital accountability (staff, medical materials, equipment maintenance and depreciation, departments utilities); 2) patients costs, data obtained by a specific survey provided to patients (travel, food, accommodation costs, productivity loss). Economic data analysis showed that the costs for innovative method was lower than those of traditional method, both for Institution (106 € less per test) and for patient (21 € less per patient). The loss of productivity for patient and caregivers resulted lower for the innovative method than the traditional method (3 work-hour less per person). PET/CT and c.e. CT performed in a single session is more cost-effective than stand-alone modalities, by reducing both Institutional and patients costs. These advantages are mainly due to lower Institutional cost (single procedure) and to lower cost related to travel and housing.

  17. Inter-rater reliability of kinesthetic measurements with the KINARM robotic exoskeleton.

    Science.gov (United States)

    Semrau, Jennifer A; Herter, Troy M; Scott, Stephen H; Dukelow, Sean P

    2017-05-22

    Kinesthesia (sense of limb movement) has been extremely difficult to measure objectively, especially in individuals who have survived a stroke. The development of valid and reliable measurements for proprioception is important to developing a better understanding of proprioceptive impairments after stroke and their impact on the ability to perform daily activities. We recently developed a robotic task to evaluate kinesthetic deficits after stroke and found that the majority (~60%) of stroke survivors exhibit significant deficits in kinesthesia within the first 10 days post-stroke. Here we aim to determine the inter-rater reliability of this robotic kinesthetic matching task. Twenty-five neurologically intact control subjects and 15 individuals with first-time stroke were evaluated on a robotic kinesthetic matching task (KIN). Subjects sat in a robotic exoskeleton with their arms supported against gravity. In the KIN task, the robot moved the subjects' stroke-affected arm at a preset speed, direction and distance. As soon as subjects felt the robot begin to move their affected arm, they matched the robot movement with the unaffected arm. Subjects were tested in two sessions on the KIN task: initial session and then a second session (within an average of 18.2 ± 13.8 h of the initial session for stroke subjects), which were supervised by different technicians. The task was performed both with and without the use of vision in both sessions. We evaluated intra-class correlations of spatial and temporal parameters derived from the KIN task to determine the reliability of the robotic task. We evaluated 8 spatial and temporal parameters that quantify kinesthetic behavior. We found that the parameters exhibited moderate to high intra-class correlations between the initial and retest conditions (Range, r-value = [0.53-0.97]). The robotic KIN task exhibited good inter-rater reliability. This validates the KIN task as a reliable, objective method for quantifying

  18. Social Robotics in Therapy of Apraxia of Speech

    Directory of Open Access Journals (Sweden)

    José Carlos Castillo

    2018-01-01

    Full Text Available Apraxia of speech is a motor speech disorder in which messages from the brain to the mouth are disrupted, resulting in an inability for moving lips or tongue to the right place to pronounce sounds correctly. Current therapies for this condition involve a therapist that in one-on-one sessions conducts the exercises. Our aim is to work in the line of robotic therapies in which a robot is able to perform partially or autonomously a therapy session, endowing a social robot with the ability of assisting therapists in apraxia of speech rehabilitation exercises. Therefore, we integrate computer vision and machine learning techniques to detect the mouth pose of the user and, on top of that, our social robot performs autonomously the different steps of the therapy using multimodal interaction.

  19. Which activities threaten independent living of elderly when becoming problematic: inspiration for meaningful service robot functionality.

    Science.gov (United States)

    Bedaf, Sandra; Gelderblom, Gert Jan; Syrdal, Dag Sverre; Lehmann, Hagen; Michel, Hervé; Hewson, David; Amirabdollahian, Farshid; Dautenhahn, Kerstin; de Witte, Luc

    2014-11-01

    In light of the increasing elderly population and the growing demand for home care, the potential of robot support is given increasing attention. In this paper, an inventory of activities was made that threaten independent living of elderly when becoming problematic. Results will guide the further development of an existing service robot, the Care-O-bot®. A systematic literature search of PubMed was performed, focused on the risk factors for institutionalization. Additionally, focus group sessions were conducted in the Netherlands, United Kingdom and France. In these focus group sessions, problematic activities threatening the independence of elderly people were discussed. Three separate target groups were included in the focus group sessions: (1) elderly persons (n = 41), (2) formal caregivers (n = 40) and (3) informal caregivers (n = 32). Activities within the International Classification of Functioning domains mobility, self-care, and interpersonal interaction and relationships were found to be the most problematic. A distinct set of daily activities was identified that may threaten independent living, but no single activity could be selected as the main activity causing a loss of independence as it is often a combination of problematic activities that is person-specific. Supporting the problematic activities need not involve a robotic solution.

  20. Remote Lab for Robotics Applications

    Directory of Open Access Journals (Sweden)

    Robinson Jiménez

    2018-01-01

    Full Text Available This article describes the development of a remote lab environment used to test and training sessions for robotics tasks. This environment is made up of the components and devices based on two robotic arms, a network link, Arduino card and Arduino shield for Ethernet, as well as an IP camera. The remote laboratory is implemented to perform remote control of the robotic arms with visual feedback by camera, of the robots actions, where, with a group of test users, it was possible to obtain performance ranges in tasks of telecontrol of up to 92%.

  1. 3rd International Asia Conference on Informatics in Control, Automation and Robotics

    CERN Document Server

    Informatics in Control, Automation and Robotics

    2012-01-01

    Session 2 includes 110 papers selected from 2011 3rd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2011), held on December 24-25, 2011, Shenzhen, China.   As we all know, the ever growing technology in robotics and automation will help build a better human society. This session will provide a unique opportunity for the academic and industrial communities to address new challenges, share solutions, and discuss research directions for the future. Robotics research emphasizes intelligence and adaptability to cope with unstructured environments. Automation research emphasizes efficiency, productivity, quality, and reliability, focusing on systems that operate autonomously. The main focus of this session is on the autonomous acquisition of semantic information in intelligent robots and systems, as well as the use of semantic knowledge to guide further acquisition of information.

  2. Social robots in advanced dementia

    Directory of Open Access Journals (Sweden)

    Meritxell eValentí Soler

    2015-09-01

    Full Text Available Aims: Testing the effect of the experimental robot-based therapeutic sessions for patients with dementia in: a controlled study of parallel groups of nursing home patients comparing the effects of therapy sessions utilizing a humanoid robot (NAO, an animal-shaped robot (PARO, or a trained dog (DOG, with conventional therapy (CONTROL on symptoms of dementia; and an experience for patients who attend a day care center, comparing symptom prevalence and severity before and after sessions utilizing NAO and PARO. Methods: In the nursing home, patients were randomly assigned by blocks, based on dementia severity, to one of the 3 therapeutic groups to compare: CONTROL, PARO and NAO (phase 1 and CONTROL, PARO and DOG (phase 2. In the day care center, all patients received therapy with NAO (phase 1 and PARO (phase 2. Therapy sessions were held 2 days/week for 3 months. Evaluation at baseline and follow-up was carried out by blind raters using: the Global Deterioration Scale (GDS, the Severe Mini Mental State Examination (sMMSE, the Mini Mental State Examination (MMSE, the Neuropsychiatric Inventory (NPI, the Apathy Scale for Institutionalized Patients with Dementia Nursing Home version (APADEM-NH, the Apathy Inventory (AI and the Quality of Life Scale (QUALID. Statistical analysis included descriptive statistics and non parametric tests performed by a blinded investigator. Results: In the nursing home, 101 patients (phase 1 and 110 patients (phase 2 were included. There were no significant differences at baseline. The relevant changes at follow-up were: (phase 1 patients in the robot groups showed an improvement in apathy; patients in NAO group showed a decline in cognition as measured by the MMSE scores, but not the sMMSE; the robot groups showed no significant changes between them; (phase 2 QUALID scores increased in the PARO group. In the day care center, 20 patients (phase 1 and 17 patients (phase 2 were included. The main findings were: (phase 1 imp

  3. A Simple Interface for 3D Position Estimation of a Mobile Robot with Single Camera

    Directory of Open Access Journals (Sweden)

    Chun-Tang Chao

    2016-03-01

    Full Text Available In recent years, there has been an increase in the number of mobile robots controlled by a smart phone or tablet. This paper proposes a visual control interface for a mobile robot with a single camera to easily control the robot actions and estimate the 3D position of a target. In this proposal, the mobile robot employed an Arduino Yun as the core processor and was remote-controlled by a tablet with an Android operating system. In addition, the robot was fitted with a three-axis robotic arm for grasping. Both the real-time control signal and video transmission are transmitted via Wi-Fi. We show that with a properly calibrated camera and the proposed prototype procedures, the users can click on a desired position or object on the touchscreen and estimate its 3D coordinates in the real world by simple analytic geometry instead of a complicated algorithm. The results of the measurement verification demonstrates that this approach has great potential for mobile robots.

  4. Surgery for bilateral large intracranial traumatic hematomas: evacuation in a single session.

    Science.gov (United States)

    Kompheak, Heng; Hwang, Sun-Chul; Kim, Dong-Sung; Shin, Dong-Sung; Kim, Bum-Tae

    2014-06-01

    Management guidelines for single intracranial hematomas have been established, but the optimal management of multiple hematomas has little known. We present bilateral traumatic supratentorial hematomas that each has enough volume to be evacuated and discuss how to operate effectively it in a single anesthesia. In total, 203 patients underwent evacuation and/or decompressive craniectomies for acute intracranial hematomas over 5 years. Among them, only eight cases (3.9%) underwent operations for bilateral intracranial hematomas in a single session. Injury mechanism, initial Glasgow Coma Scale score, types of intracranial lesions, surgical methods, and Glasgow outcome scale were evaluated. The most common injury mechanism was a fall (four cases). The types of intracranial lesions were epidural hematoma (EDH)/intracerebral hematoma (ICH) in five, EDH/EDH in one, EDH/subdural hematoma (SDH) in one, and ICH/SDH in one. All cases except one had an EDH. The EDH was addressed first in all cases. Then, the evacuation of the ICH was performed through a small craniotomy or burr hole. All patients except one survived. Bilateral intracranial hematomas that should be removed in a single-session operation are rare. Epidural hematomas almost always occur in these cases and should be removed first to prevent the hematoma from growing during the surgery. Then, the other hematoma, contralateral to the EDH, can be evacuated with a small craniotomy.

  5. Affective and Engagement Issues in the Conception and Assessment of a Robot-Assisted Psychomotor Therapy for Persons with Dementia

    Directory of Open Access Journals (Sweden)

    Natacha Rouaix

    2017-06-01

    Full Text Available The interest in robot-assisted therapies (RAT for dementia care has grown steadily in recent years. However, RAT using humanoid robots is still a novel practice for which the adhesion mechanisms, indications and benefits remain unclear. Also, little is known about how the robot's behavioral and affective style might promote engagement of persons with dementia (PwD in RAT. The present study sought to investigate the use of a humanoid robot in a psychomotor therapy for PwD. We examined the robot's potential to engage participants in the intervention and its effect on their emotional state. A brief psychomotor therapy program involving the robot as the therapist's assistant was created. For this purpose, a corpus of social and physical behaviors for the robot and a “control software” for customizing the program and operating the robot were also designed. Particular attention was given to components of the RAT that could promote participant's engagement (robot's interaction style, personalization of contents. In the pilot assessment of the intervention nine PwD (7 women and 2 men, M age = 86 y/o hospitalized in a geriatrics unit participated in four individual therapy sessions: one classic therapy (CT session (patient- therapist and three RAT sessions (patient-therapist-robot. Outcome criteria for the evaluation of the intervention included: participant's engagement, emotional state and well-being; satisfaction of the intervention, appreciation of the robot, and empathy-related behaviors in human-robot interaction (HRI. Results showed a high constructive engagement in both CT and RAT sessions. More positive emotional responses in participants were observed in RAT compared to CT. RAT sessions were better appreciated than CT sessions. The use of a social robot as a mediating tool appeared to promote the involvement of PwD in the therapeutic intervention increasing their immediate wellbeing and satisfaction.

  6. Impact of robotic general surgery course on participants' surgical practice.

    Science.gov (United States)

    Buchs, Nicolas C; Pugin, François; Volonté, Francesco; Hagen, Monika E; Morel, Philippe

    2013-06-01

    Courses, including lectures, live surgery, and hands-on session, are part of the recommended curriculum for robotic surgery. However, for general surgery, this approach is poorly reported. The study purpose was to evaluate the impact of robotic general surgery course on the practice of participants. Between 2007 and 2011, 101 participants attended the Geneva International Robotic Surgery Course, held at the University Hospital of Geneva, Switzerland. This 2-day course included theory lectures, dry lab, live surgery, and hands-on session on cadavers. After a mean of 30.1 months (range, 2-48), a retrospective review of the participants' surgical practice was performed using online research and surveys. Among the 101 participants, there was a majority of general (58.4 %) and colorectal surgeons (10.9 %). Other specialties included urologists (7.9 %), gynecologists (6.9 %), pediatric surgeons (2 %), surgical oncologists (1 %), engineers (6.9 %), and others (5.9 %). Data were fully recorded in 99 % of cases; 46 % of participants started to perform robotic procedures after the course, whereas only 6.9 % were already familiar with the system before the course. In addition, 53 % of the attendees worked at an institution where a robotic system was already available. All (100 %) of participants who started a robotic program after the course had an available robotic system at their institution. A course that includes lectures, live surgery, and hands-on session with cadavers is an effective educational method for spreading robotic skills. However, this is especially true for participants whose institution already has a robotic system available.

  7. A single alcohol drinking session is sufficient to enable subsequent aversion-resistant consumption in mice.

    Science.gov (United States)

    Lei, Kelly; Wegner, Scott A; Yu, Ji-Hwan; Simms, Jeffrey A; Hopf, F Woodward

    2016-09-01

    Addiction is mediated in large part by pathological motivation for rewarding, addictive substances, and alcohol-use disorders (AUDs) continue to extract a very high physical and economic toll on society. Compulsive alcohol drinking, where intake continues despite negative consequences, is considered a particular obstacle during treatment of AUDs. Aversion-resistant drives for alcohol have been modeled in rodents, where animals continue to consume even when alcohol is adulterated with the bitter tastant quinine, or is paired with another aversive consequence. Here, we describe a two-bottle choice paradigm where C57BL/6 mice first had 24-h access to 15% alcohol or water. Afterward, they drank quinine-free alcohol (alcohol-only) or alcohol with quinine (100 μM), in a limited daily access (LDA) two-bottle-choice paradigm (2 h/day, 5 days/week, starting 3 h into the dark cycle), and achieved nearly binge-level blood alcohol concentrations. Interestingly, a single, initial 24-h experience with alcohol-only enhanced subsequent quinine-resistant drinking. In contrast, mice that drank alcohol-quinine in the 24-h session showed significantly reduced alcohol-quinine intake and preference during the subsequent LDA sessions, relative to mice that drank alcohol-only in the initial 24-h session and alcohol-quinine in LDA sessions. Thus, mice could find the concentration of quinine we used aversive, but were able to disregard the quinine after a single alcohol-only drinking session. Finally, mice had low intake and preference for quinine in water, both before and after weeks of alcohol-drinking sessions, suggesting that quinine resistance was not a consequence of increased quinine preference after weeks of drinking of alcohol-quinine. Together, we demonstrate that a single alcohol-only session was sufficient to enable subsequent aversion-resistant consumption in C57BL/6 mice, which did not reflect changes in quinine taste palatability. Given the rapid development of quinine

  8. Single session email consultation for parents : An evaluation of its effect on empowerment

    NARCIS (Netherlands)

    prof.dr. Jo Hermanns; prof.dr. Ruben Fukkink; dr. Christa C.C. Nieuwboer

    2014-01-01

    This study evaluated the effect of single session email consultation on empowerment of parents. Practitioners in a control group (N = 19) received no training; practitioners in an experimental group (N = 21) were trained to use empowerment oriented techniques in online consultation. Parental

  9. Initial laboratory experience with a novel ultrasound probe for standard and single-port robotic kidney surgery: increasing console surgeon autonomy and minimizing instrument clashing.

    Science.gov (United States)

    Yakoubi, Rachid; Autorino, Riccardo; Laydner, Humberto; Guillotreau, Julien; White, Michael A; Hillyer, Shahab; Spana, Gregory; Khanna, Rakesh; Isaac, Wahib; Haber, Georges-Pascal; Stein, Robert J; Kaouk, Jihad H

    2012-06-01

    The aim of this study was to evaluate a novel ultrasound probe specifically developed for robotic surgery by determining its efficiency in identifying renal tumors. The study was carried out using the Da Vinci™ surgical system in one female pig. Renal tumor targets were created by percutaneous injection of a tumor mimic mixture. Single-port and standard robotic partial nephrectomy were performed. Intraoperative ultrasound was performed using both standard laparoscopic probe and the new ProART™ Robotic probe. Probe maneuverability and ease of handling for tumor localization were recorded. The standard laparoscopic probe was guided by the assistant. Significant clashing with robotic arms was noted during the single-port procedure. The novel robotic probe was easily introduced through the assistant trocar, and held by the console surgeon using the robotic Prograsp™ with no registered clashing in the external operative field. The average time for grasping the new robotic probe was less than 10 s. Once inserted and grasped, no limitation was found in terms of instrument clashing during the single-port procedure. This novel ultrasound probe developed for robotic surgery was noted to be user-friendly when performing porcine standard and especially single-port robotic partial nephrectomy. Copyright © 2011 John Wiley & Sons, Ltd.

  10. Robotic-assisted laparoendoscopic single-site surgery (R-LESS) in urology: an evidence-based analysis.

    Science.gov (United States)

    Barret, E; Sanchez-Salas, R; Ercolani, M; Forgues, A; Rozet, F; Galiano, M; Cathelineau, X

    2011-06-01

    The objective of this manuscript is to provide an evidence-based analysis of the current status and future perspectives of robotic laparoendoscopic single-site surgery (R-LESS). A PubMed search has been performed for all relevant urological literature regarding natural orifice transluminal endoscopic surgery (NOTES) and laparoendoscopic single-site surgery (LESS). All clinical and investigative reports for robotic LESS and NOTES procedures in the urological literature have been considered. A significant number of clinical urological procedures have been successfully completed utilizing R-LESS procedures. The available experience is limited to referral centers, where the case volume is sufficient to help overcome the challenges and learning curve of LESS surgery. The robotic interface remains the best fit for LESS procedures but its mode of use continues to evolve in attempts to improve surgical technique. We stand today at the dawn of R-LESS surgery, but this approach may well become the standard of care in the near future. Further technological development is needed to allow widespread adoption of the technique.

  11. Single-session endoscopic resection and focal radiofrequency ablation for short-segment Barrett's esophagus with early neoplasia.

    Science.gov (United States)

    Barret, Maximilien; Belghazi, Kamar; Weusten, Bas L A M; Bergman, Jacques J G H M; Pouw, Roos E

    2016-07-01

    The management of early neoplasia in Barrett's esophagus (BE) requires endoscopic resection of visible lesions, followed by radiofrequency ablation (RFA) of the remaining BE. We evaluated the safety and efficacy of combining endoscopic resection and focal RFA in a single endoscopic session in patients with early BE neoplasia. This was a retrospective analysis of patients with early BE neoplasia and a visible lesion undergoing combined endoscopic resection and focal RFA in a single session. Consecutive ablation procedures were performed every 8 to 12 weeks until complete endoscopic and histologic eradication of dysplasia and intestinal metaplasia were reached. Forty patients were enrolled, with a median C1M2 BE segment, a visible lesion with a median diameter of 15 mm, and invasive carcinoma in 68% of cases. Endoscopic resection was performed by using the multiband mucosectomy technique in 80% of cases, and the Barrx(90) catheter (Barrx Medical, Sunnyvale, Calif) was used for focal ablation. When an intention-to-treat analysis was used, both complete remission of all neoplasia and intestinal metaplasia were 95% after a median follow-up of 19 months. Stenoses occurred in 33% of cases and were successfully managed with a median number of 2 dilations. In 43% of patients, 1 single-session treatment resulted in complete histologic remission of intestinal metaplasia. Combining endoscopic resection and focal RFA in a single session appears to be effective. Less-aggressive RFA regimens could limit the adverse event rates. Copyright © 2016 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.

  12. Learning and Correcting Robot Trajectory Keypoints from a Single Demonstration

    DEFF Research Database (Denmark)

    Juan, Iñigo Iturrate San; Østergaard, Esben Hallundbæk; Rytter, Martin

    2017-01-01

    of a trajectory from a single demonstration. Additionally, by utilizing velocity information in the task space, the method is able to achieve a level of precision that is sufficient for industrial assembly tasks. Along with this, we present a user study that shows that our method enables non-expert robot users......Kinesthetic teaching provides an accessible way for non-experts to quickly and easily program a robot system by demonstration. A crucial aspect of this technique is to obtain an accurate approximation of the robot’s intended trajectory for the task, while filtering out spurious aspects...... of the demonstration. While several methods to this end have been proposed, they either rely on several demonstrations or on the user explicitly indicating relevant trajectory waypoints. We propose a method, based on the Douglas-Peucker line simplification algorithm that is able to extract the notable points...

  13. Hand robotics rehabilitation: feasibility and preliminary results of a robotic treatment in patients with hemiparesis.

    Science.gov (United States)

    Sale, Patrizio; Lombardi, Valentina; Franceschini, Marco

    2012-01-01

    Background. No strongly clinical evidence about the use of hand robot-assisted therapy in stroke patients was demonstrated. This preliminary observer study was aimed at evaluating the efficacy of intensive robot-assisted therapy in hand function recovery, in the early phase after a stroke onset. Methods. Seven acute ischemic stroke patients at their first-ever stroke were enrolled. Treatment was performed using Amadeo robotic system (Tyromotion GmbH Graz, Austria). Each participant received, in addition to inpatients standard rehabilitative treatment, 20 sessions of robotic treatment for 4 consecutive weeks (5 days/week). Each session lasted for 40 minutes. The exercises were carried out as follows: passive modality (5 minutes), passive/plus modality (5 minutes), assisted therapy (10 minutes), and balloon (10 minutes). The following impairment and functional evaluations, Fugl-Meyer Scale (FM), Medical Research Council Scale for Muscle Strength (hand flexor and extensor muscles) (MRC), Motricity Index (MI), and modified Ashworth Scale for wrist and hand muscles (AS), were performed at the beginning (T0), after 10 sessions (T1), and at the end of the treatment (T2). The strength hand flexion and extension performed by Robot were assessed at T0 and T2. The Barthel Index and COMP (performance and satisfaction subscale) were assessed at T0 and T2. Results. Clinical improvements were found in all patients. No dropouts were recorded during the treatment and all subjects fulfilled the protocol. Evidence of a significant improvement was demonstrated by the Friedman test for the MRC (P hand motor recovery in acute stroke patients. The simplicity of the treatment, the lack of side effects, and the first positive results in acute stroke patients support the recommendations to extend the clinical trial of this treatment, in association with physiotherapy and/or occupational therapy.

  14. A robotic wheelchair trainer: design overview and a feasibility study

    Science.gov (United States)

    2010-01-01

    Background Experiencing independent mobility is important for children with a severe movement disability, but learning to drive a powered wheelchair can be labor intensive, requiring hand-over-hand assistance from a skilled therapist. Methods To improve accessibility to training, we developed a robotic wheelchair trainer that steers itself along a course marked by a line on the floor using computer vision, haptically guiding the driver's hand in appropriate steering motions using a force feedback joystick, as the driver tries to catch a mobile robot in a game of "robot tag". This paper provides a detailed design description of the computer vision and control system. In addition, we present data from a pilot study in which we used the chair to teach children without motor impairment aged 4-9 (n = 22) to drive the wheelchair in a single training session, in order to verify that the wheelchair could enable learning by the non-impaired motor system, and to establish normative values of learning rates. Results and Discussion Training with haptic guidance from the robotic wheelchair trainer improved the steering ability of children without motor impairment significantly more than training without guidance. We also report the results of a case study with one 8-year-old child with a severe motor impairment due to cerebral palsy, who replicated the single-session training protocol that the non-disabled children participated in. This child also improved steering ability after training with guidance from the joystick by an amount even greater than the children without motor impairment. Conclusions The system not only provided a safe, fun context for automating driver's training, but also enhanced motor learning by the non-impaired motor system, presumably by demonstrating through intuitive movement and force of the joystick itself exemplary control to follow the course. The case study indicates that a child with a motor system impaired by CP can also gain a short-term benefit

  15. Dosimetric consequences of translational and rotational errors in frame-less image-guided radiosurgery

    Directory of Open Access Journals (Sweden)

    Guckenberger Matthias

    2012-04-01

    Full Text Available Abstract Background To investigate geometric and dosimetric accuracy of frame-less image-guided radiosurgery (IG-RS for brain metastases. Methods and materials Single fraction IG-RS was practiced in 72 patients with 98 brain metastases. Patient positioning and immobilization used either double- (n = 71 or single-layer (n = 27 thermoplastic masks. Pre-treatment set-up errors (n = 98 were evaluated with cone-beam CT (CBCT based image-guidance (IG and were corrected in six degrees of freedom without an action level. CBCT imaging after treatment measured intra-fractional errors (n = 64. Pre- and post-treatment errors were simulated in the treatment planning system and target coverage and dose conformity were evaluated. Three scenarios of 0 mm, 1 mm and 2 mm GTV-to-PTV (gross tumor volume, planning target volume safety margins (SM were simulated. Results Errors prior to IG were 3.9 mm ± 1.7 mm (3D vector and the maximum rotational error was 1.7° ± 0.8° on average. The post-treatment 3D error was 0.9 mm ± 0.6 mm. No differences between double- and single-layer masks were observed. Intra-fractional errors were significantly correlated with the total treatment time with 0.7mm±0.5mm and 1.2mm±0.7mm for treatment times ≤23 minutes and >23 minutes (p5% in 14% of the patients. A 1 mm safety margin fully compensated intra-fractional patient motion. Conclusions IG-RS with online correction of translational errors achieves high geometric and dosimetric accuracy. Intra-fractional errors decrease target coverage and conformity unless compensated with appropriate safety margins.

  16. Cognitive Coordination for Cooperative Multi-Robot Teamwork

    NARCIS (Netherlands)

    Wei, C.

    2015-01-01

    Multi-robot teams have potential advantages over a single robot. Robots in a team can serve different functionalities, so a team of robots can be more efficient, robust and reliable than a single robot. In this dissertation, we are in particular interested in human level intelligent multi-robot

  17. Frame-based and frameless stereotactic radiosurgery for intracranial and extracranial tumors

    International Nuclear Information System (INIS)

    Petrovich, Z.; Cheng Yu

    2003-01-01

    During the past 10 years stereotactic frame-based radiosurgery (SRS) emerged as an important treatment modality in the management of selected intracranial lesions. More recently, frameless SRS has extended the potential of ibis treatment to include lesions virtually in any site of the body. Many thousands of patients are being treated annually with frame-based SRS limited to the cranial cavity. A total of 180,222 patients were treated to December 2001 with gamma knife (GK) and, very likely, a similar number was treated with various linear accelerator based SRS systems. Frameless SRS has been performed uncommonly until cyber knife (CK) became available. Over 3,000 patients were treated with CK in the US and Japan. This included patients treated for extracranial lesions. Treatment results in patients treated with GK at University of Southern California (USC) will be presented. From 1994 to 2002, a total of 1,126 patients received GK at USC for various indications. Since metastatic tumor constituted the largest (42.4%) diagnostic category treated, the outcome in this group is specifically discussed. The overall median survival was 9.2 months. The median survival was 8.3, 9.0, 17 and 12 months, for melanoma, lung cancer, breast cancer and renal cell carcinoma, respectively. In multivariate analysis Karnofsky's performance status (70 vs. >70), status of systemic disease (inactive vs. active), tumor histology and total intracranial tumor volume were the only important factors predictive of survival, p=0.0001. Cause of death was found to be due to CNS problems in about 25% of patients with a diagnosis other than melanoma, while it was 42% in those with melanoma. GK SRS was given on an outpatient basis and was very well tolerated by the patients. Symptomatic focal radionecrosis requiring craniotomy for its removal was noted in <5% of patients. An excellent palliative benefit was obtained in nearly all patients. The treatment was compatible with a good quality of life

  18. Translational and rotational intra- and inter-fractional errors in patient and target position during a short course of frameless stereotactic body radiotherapy

    DEFF Research Database (Denmark)

    Josipovic, Mirjana; Persson, Gitte Fredberg; Logadottir, Ashildur

    2012-01-01

    Implementation of cone beam computed tomography (CBCT) in frameless stereotactic body radiotherapy (SBRT) of lung tumours enables setup correction based on tumour position. The aim of this study was to compare setup accuracy with daily soft tissue matching to bony anatomy matching and evaluate...

  19. A crossover pilot study evaluating the functional outcomes of two different types of robotic movement training in chronic stroke survivors using the arm exoskeleton BONES.

    Science.gov (United States)

    Milot, Marie-Hélène; Spencer, Steven J; Chan, Vicky; Allington, James P; Klein, Julius; Chou, Cathy; Bobrow, James E; Cramer, Steven C; Reinkensmeyer, David J

    2013-12-19

    To date, the limited degrees of freedom (DOF) of most robotic training devices hinders them from providing functional training following stroke. We developed a 6-DOF exoskeleton ("BONES") that allows movement of the upper limb to assist in rehabilitation. The objectives of this pilot study were to evaluate the impact of training with BONES on function of the affected upper limb, and to assess whether multijoint functional robotic training would translate into greater gains in arm function than single joint robotic training also conducted with BONES. Twenty subjects with mild to moderate chronic stroke participated in this crossover study. Each subject experienced multijoint functional training and single joint training three sessions per week, for four weeks, with the order of presentation randomized. The primary outcome measure was the change in Box and Block Test (BBT). The secondary outcome measures were the changes in Fugl-Meyer Arm Motor Scale (FMA), Wolf Motor Function Test (WMFT), Motor Activity Log (MAL), and quantitative measures of strength and speed of reaching. These measures were assessed at baseline, after each training period, and at a 3-month follow-up evaluation session. Training with the robotic exoskeleton resulted in significant improvements in the BBT, FMA, WMFT, MAL, shoulder and elbow strength, and reaching speed (p robotic training programs. However, for the BBT, WMFT and MAL, inequality of carryover effects were noted; subsequent analysis on the change in score between the baseline and first period of training again revealed no difference in the gains obtained between the types of training. Training with the 6 DOF arm exoskeleton improved motor function after chronic stroke, challenging the idea that robotic therapy is only useful for impairment reduction. The pilot results presented here also suggest that multijoint functional robotic training is not decisively superior to single joint robotic training. This challenges the idea that

  20. The anchor of the frameless intrauterine device does not migrate over time: an analysis in over 300 women

    Directory of Open Access Journals (Sweden)

    Wildemeersch D

    2014-12-01

    Full Text Available Dirk Wildemeersch,1 Ansgar Pett,2 Sohela Jandi,2 Kilian Nolte,3 Wolfgang Albrecht4 1Gynecological Outpatient Clinic and IUD Training Centre, Ghent, Belgium; 2Gynecological Outpatient Clinic, Berlin, Germany; 3Gynecological Outpatient Clinic, Uetze, Germany; 4Gynecological Outpatient Clinic, Feldkirchen, Austria Objective: To evaluate the correct position of the anchor at insertion and follow-up and assess if migration of the anchor occurs over time. Materials and methods: This was an insertion-related, prospective, postmarketing study in 309 women. Following insertion, women were followed up at 4–6 weeks, 6 months, and yearly thereafter. The position of the visualized anchor in the fundus of the uterus was evaluated using ultrasound by measuring its distance from the serosal surface of the uterus (SA-distance. Results: A total of 309 parous (n=115 and nulliparous (n=194 women were fitted with the frameless GyneFix 200 or the GyneFix 330 intrauterine device for contraception. The mean SA-distance in 306 parous and nulliparous women was 6.0 mm (range 2.0–24.0 mm at insertion in the parous group and 5.4 mm (range 1.3–11.0 mm in the nulliparous group. At the first follow-up in 281 women, the SA-distance was 6.0 mm (range 2.0–12.0 mm in the parous group and 5.5 mm (range 1.1–11.0 mm in the nulliparous group. The SA-distance was not significantly different. One patient had an exceptionally large SA-distance of 24 mm, probably due to insertion in the posterior wall. No follow-up could be done in this patient. In 77 women, the SA-distance was measured up to 42 months. The mean SA-distance at insertion in the parous group was 5.2 mm (range 3.0–8.5 mm and 4.8 mm (range 1.3–7.0 mm in the nulliparous group. At the last follow-up up to 36 months or longer, the SA-distance was 5.1 mm (range 3.0–8.5 mm in the parous group and 4.9 mm (range 1.3–7.0 mm in the nulliparous group. The SA-distance was not significantly different. The visualized

  1. MicroBioRobots for single cell manipulation

    Science.gov (United States)

    Sakar, Mahmut Selman

    One of the great challenges in nano and micro scale science and engineering is the independent manipulation of biological cells and small man-made objects with active sensing. For such biomedical applications as single cell manipulation, telemetry, and localized targeted delivery of chemicals, it is important to fabricate microstructures that can be powered and controlled without a tether in fluidic environments. These microstructures can be used to develop microrobots that have the potential to make existing therapeutic and diagnostic procedures less invasive. Actuation can be realized using various different organic and inorganic methods. Previous studies explored different forms of actuation and control with microorganisms. Bacteria, in particular, offer several advantages as controllable microactuators: they draw chemical energy directly from their environment, they are genetically modifiable, and they are scalable and configurable in the sense that any number of bacteria can be selectively patterned. Additionally, the study of bacteria inspires inorganic schemes of actuation and control. For these reasons, we chose to employ bacteria while controlling their motility using optical and electrical stimuli. In the first part of the thesis, we demonstrate a biointegrated approach by introducing MicroBioRobots (MBRs). MBRs are negative photosensitive epoxy (SU8) microfabricated structures with typical feature sizes ranging from 1-100 mum coated with a monolayer of the swarming Serratia marcescens . The adherent bacterial cells naturally coordinate to propel the microstructures in fluidic environments which we call Self-Actuation. First, we demonstrate the control of MBRs using self-actuation, DC electric fields and ultra-violet radiation and develop an experimentally-validated mathematical model for the MBRs. This model allows us to to steer the MBR to any position and orientation in a planar micro channel using visual feedback and an inverted microscope. Examples

  2. Single Session Email Consultation for Parents: An Evaluation of Its Effect on Empowerment

    Science.gov (United States)

    Nieuwboer, Christa C.; Fukkink, Ruben G.; Hermanns, Jo M. A.

    2015-01-01

    This study evaluated the effect of single session email consultation (SSEC) on empowerment of parents. Practitioners in a control group (n = 19) received no training and practitioners in an experimental group (n = 21) were trained to use empowerment-oriented techniques in online consultation. Parental empowerment was measured (n = 96) through a…

  3. Direct target NOTES: prospective applications for next generation robotic platforms.

    Science.gov (United States)

    Atallah, S; Hodges, A; Larach, S W

    2018-05-01

    A new era in surgical robotics has centered on alternative access to anatomic targets and next generation designs include flexible, single-port systems which follow circuitous rather than straight pathways. Such systems maintain a small footprint and could be utilized for specialized operations based on direct organ target natural orifice transluminal endoscopic surgery (NOTES), of which transanal total mesorectal excision (taTME) is an important derivative. During two sessions, four direct target NOTES operations were conducted on a cadaveric model using a flexible robotic system to demonstrate proof-of-concept of the application of a next generation robotic system to specific types of NOTES operations, all of which required removal of a direct target organ through natural orifice access. These four operations were (a) robotic taTME, (b) robotic transvaginal hysterectomy in conjunction with (c) robotic transvaginal salpingo-oophorectomy, and in an ex vivo model, (d) trans-cecal appendectomy. Feasibility was demonstrated in all cases using the Flex ® Robotic System with Colorectal Drive. During taTME, the platform excursion was 17 cm along a non-linear path; operative time was 57 min for the transanal portion of the dissection. Robotic transvaginal hysterectomy was successfully completed in 78 min with transvaginal extraction of the uterus, although laparoscopic assistance was required. Robotic transvaginal unilateral salpingo-oophorectomy with transvaginal extraction of the ovary and fallopian tube was performed without laparoscopic assistance in 13.5 min. In an ex vivo model, a robotic trans-cecal appendectomy was also successfully performed for the purpose of demonstrating proof-of-concept only; this was completed in 24 min. A flexible robotic system has the potential to access anatomy along circuitous paths, making it a suitable platform for direct target NOTES. The conceptual operations posed could be considered suitable for next generation robotics once

  4. The Making of a 3D-Printed, Cable-Driven, Single-Model, Lightweight Humanoid Robotic Hand

    Directory of Open Access Journals (Sweden)

    Li Tian

    2017-12-01

    Full Text Available Dexterity robotic hands can (Cummings, 1996 greatly enhance the functionality of humanoid robots, but the making of such hands with not only human-like appearance but also the capability of performing the natural movement of social robots is a challenging problem. The first challenge is to create the hand’s articulated structure and the second challenge is to actuate it to move like a human hand. A robotic hand for humanoid robot should look and behave human like. At the same time, it also needs to be light and cheap for widely used purposes. We start with studying the biomechanical features of a human hand and propose a simplified mechanical model of robotic hands, which can achieve the important local motions of the hand. Then, we use 3D modeling techniques to create a single interlocked hand model that integrates pin and ball joints to our hand model. Compared to other robotic hands, our design saves the time required for assembling and adjusting, which makes our robotic hand ready-to-use right after the 3D printing is completed. Finally, the actuation of the hand is realized by cables and motors. Based on this approach, we have designed a cost-effective, 3D printable, compact, and lightweight robotic hand. Our robotic hand weighs 150 g, has 15 joints, which are similar to a real human hand, and 6 Degree of Freedom (DOFs. It is actuated by only six small size actuators. The wrist connecting part is also integrated into the hand model and could be customized for different robots such as Nadine robot (Magnenat Thalmann et al., 2017. The compact servo bed can be hidden inside the Nadine robot’s sleeve and the whole robotic hand platform will not cause extra load to her arm as the total weight (150 g robotic hand and 162 g artificial skin is almost the same as her previous unarticulated robotic hand which is 348 g. The paper also shows our test results with and without silicon artificial hand skin, and on Nadine robot.

  5. All-in-one interictal presurgical imaging in patients with epilepsy: single-session EEG/PET/(f)MRI

    Energy Technology Data Exchange (ETDEWEB)

    Grouiller, Frederic; Delattre, Benedicte M.A.; Lazeyras, Francois; Ratib, Osman; Vargas, Maria I.; Garibotto, Valentina [Geneva University Hospital, Department of Radiology and Medical Informatics, Geneva 14 (Switzerland); Pittau, Francesca; Spinelli, Laurent; Seeck, Margitta; Vulliemoz, Serge [Geneva University Hospital, EEG and Epilepsy Unit, Department of Neurology, Geneva 14 (Switzerland); Heinzer, Susanne [Philips AG Healthcare, Zuerich (Switzerland); Iannotti, Giannina R. [Geneva University Hospital, Functional Brain Mapping Laboratory, Department of Fundamental Neurosciences, Geneva 14 (Switzerland)

    2015-04-17

    In patients with pharmacoresistant focal epilepsy, resection of the epileptic focus can lead to freedom from seizures or significant improvement in well-selected candidates. Localization of the epileptic focus with multimodal concordance is crucial for a good postoperative outcome. Beyond the detection of epileptogenic lesions on structural MRI and focal hypometabolism on FDG PET, EEG-based Electric Source Imaging (ESI) and simultaneous EEG and functional MRI (EEG-fMRI) are increasingly applied for mapping epileptic activity. We here report presurgical multimodal interictal imaging using a hybrid PET/MR scanner for single-session FDG PET, MRI, EEG-fMRI and ESI. This quadrimodal imaging procedure was performed in a single session in 12 patients using a high-density (256 electrodes) MR-compatible EEG system and a hybrid PET/MR scanner. EEG was used to exclude subclinical seizures during uptake of the PET tracer, to compute ESI on interictal epileptiform discharges and to guide fMRI analysis for mapping haemodynamic changes correlated with interictal epileptiform activity. The whole multimodal recording was performed in less than 2 hours with good patient comfort and data quality. Clinically contributory examinations with at least two modalities were obtained in nine patients and with all modalities in five patients. This single-session quadrimodal imaging procedure provided reliable and contributory interictal clinical data. This procedure avoids multiple scanning sessions and is associated with less radiation exposure than PET-CT. Moreover, it guarantees the same medication level and medical condition for all modalities. The procedure improves workflow and could reduce the duration and cost of presurgical epilepsy evaluations. (orig.)

  6. All-in-one interictal presurgical imaging in patients with epilepsy: single-session EEG/PET/(f)MRI

    International Nuclear Information System (INIS)

    Grouiller, Frederic; Delattre, Benedicte M.A.; Lazeyras, Francois; Ratib, Osman; Vargas, Maria I.; Garibotto, Valentina; Pittau, Francesca; Spinelli, Laurent; Seeck, Margitta; Vulliemoz, Serge; Heinzer, Susanne; Iannotti, Giannina R.

    2015-01-01

    In patients with pharmacoresistant focal epilepsy, resection of the epileptic focus can lead to freedom from seizures or significant improvement in well-selected candidates. Localization of the epileptic focus with multimodal concordance is crucial for a good postoperative outcome. Beyond the detection of epileptogenic lesions on structural MRI and focal hypometabolism on FDG PET, EEG-based Electric Source Imaging (ESI) and simultaneous EEG and functional MRI (EEG-fMRI) are increasingly applied for mapping epileptic activity. We here report presurgical multimodal interictal imaging using a hybrid PET/MR scanner for single-session FDG PET, MRI, EEG-fMRI and ESI. This quadrimodal imaging procedure was performed in a single session in 12 patients using a high-density (256 electrodes) MR-compatible EEG system and a hybrid PET/MR scanner. EEG was used to exclude subclinical seizures during uptake of the PET tracer, to compute ESI on interictal epileptiform discharges and to guide fMRI analysis for mapping haemodynamic changes correlated with interictal epileptiform activity. The whole multimodal recording was performed in less than 2 hours with good patient comfort and data quality. Clinically contributory examinations with at least two modalities were obtained in nine patients and with all modalities in five patients. This single-session quadrimodal imaging procedure provided reliable and contributory interictal clinical data. This procedure avoids multiple scanning sessions and is associated with less radiation exposure than PET-CT. Moreover, it guarantees the same medication level and medical condition for all modalities. The procedure improves workflow and could reduce the duration and cost of presurgical epilepsy evaluations. (orig.)

  7. Robotic surgery for rectal cancer: a single center experience of 100 consecutive cases.

    Science.gov (United States)

    Stănciulea, O; Eftimie, M; David, L; Tomulescu, V; Vasilescu, C; Popescu, I

    2013-01-01

    Minimally invasive techniques have revolutionized the field of general surgery over the few last decades. Despite its advantages, in complex procedures such as rectal surgery, laparoscopy has not achieved a high penetration rate because of its steep learning curve, its relatively high conversion rate and technical challenges. The aim of this study was to present a single center experience with robotic surgery for rectal cancer focusing mainly on early and mid-term postoperative outcome. A series of 100 consecutive patients who underwent robotic rectal surgery between January 2008 and June 2012 was analyzed retrospectively in terms of demographics, pathological data, surgical and oncological outcomes. Seventy-seven patients underwent robotic sphincter-saving resection, and 23 patients underwent robotic abdominoperineal resection. There were 4 conversions. The median operative time for sphincter-saving procedures was 180 min. The median time for robotic abdominoperineal resection was 160 min. The median distal resection margin of the operative specimen was 3 cm. The median number of retrieved lymph nodes was 14. The median hospital stay was 10 days. In-hospital mortality was nil. The overall morbidity was 30%. Four patients presented transitory postoperative urinary dysfunction. Severe erectile dysfunction was reported by 3 patients. The median length of follow-up was 24 months. The 3-year overall survival rate was 90%. Robotic surgery is advantageous for both surgeons (in that it facilitates dissection in a narrow pelvis) and patients (in that it affords a very good quality of life via the preservation of sexual and urinary function in the vast majority of patients and it has low morbidity and good midterm oncological outcomes). In rectal cancer surgery, the robotic approach is a promising alternative and is expected to overcome the low penetration rate of laparoscopy in this field. Celsius.

  8. Hand Robotics Rehabilitation: Feasibility and Preliminary Results of a Robotic Treatment in Patients with Hemiparesis

    Directory of Open Access Journals (Sweden)

    Patrizio Sale

    2012-01-01

    Full Text Available Background. No strongly clinical evidence about the use of hand robot-assisted therapy in stroke patients was demonstrated. This preliminary observer study was aimed at evaluating the efficacy of intensive robot-assisted therapy in hand function recovery, in the early phase after a stroke onset. Methods. Seven acute ischemic stroke patients at their first-ever stroke were enrolled. Treatment was performed using Amadeo robotic system (Tyromotion GmbH Graz, Austria. Each participant received, in addition to inpatients standard rehabilitative treatment, 20 sessions of robotic treatment for 4 consecutive weeks (5 days/week. Each session lasted for 40 minutes. The exercises were carried out as follows: passive modality (5 minutes, passive/plus modality (5 minutes, assisted therapy (10 minutes, and balloon (10 minutes. The following impairment and functional evaluations, Fugl-Meyer Scale (FM, Medical Research Council Scale for Muscle Strength (hand flexor and extensor muscles (MRC, Motricity Index (MI, and modified Ashworth Scale for wrist and hand muscles (AS, were performed at the beginning (T0, after 10 sessions (T1, and at the end of the treatment (T2. The strength hand flexion and extension performed by Robot were assessed at T0 and T2. The Barthel Index and COMP (performance and satisfaction subscale were assessed at T0 and T2. Results. Clinical improvements were found in all patients. No dropouts were recorded during the treatment and all subjects fulfilled the protocol. Evidence of a significant improvement was demonstrated by the Friedman test for the MRC (P<0.0123. Evidence of an improvement was demonstrated for AS, FM, and MI. Conclusions. This original rehabilitation treatment could contribute to increase the hand motor recovery in acute stroke patients. The simplicity of the treatment, the lack of side effects, and the first positive results in acute stroke patients support the recommendations to extend the clinical trial of this

  9. Robot-assisted posterior retroperitoneoscopic adrenalectomy using single-port access: technical feasibility and preliminary results.

    Science.gov (United States)

    Park, Jae Hyun; Kim, Soo Young; Lee, Cho-Rok; Park, Seulkee; Jeong, Jun Soo; Kang, Sang-Wook; Jeong, Jong Ju; Nam, Kee-Hyun; Chung, Woong Youn; Park, Cheong Soo

    2013-08-01

    Posterior retroperitoneoscopic adrenalectomy (PRA) has several benefits compared with transperitoneal adrenalectomy in that it is safe and has a short learning curve. In addition, it provides direct short access to the target organ, prevents irritation to the intraperitoneal space, and does not require retraction of adjacent organs.1 (-) 3 We have performed several cases of robot-assisted PRA using single-port access for small adrenal tumors. This multimedia article introduces the detailed methods and preliminary results of this procedure. Five patients underwent single-port robot-assisted PRA between March 2010 and June 2011 at our institution. During the procedure, patients were placed in a prone jackknife position with their hip joints bent at a right angle (Fig. 1). A 3 cm transverse skin incision was made just below the lowest tip of the 12th rib (Fig. 2), and the Glove port (Nelis, Kyung-gi, Korea) was placed through the skin incision while maintaining pneumoretroperitoneum (Fig. 3). CO2 was then insufflated to a pressure of 18 mm Hg to create an adequate working space. A 10 mm robotic camera with a 30-degree up view was placed at the center of the incision through the most cephalic portion of the Glove port. A Maryland dissector or Prograsp forceps (Intuitive Surgical, Inc., Sunnyvale, CA) was placed on the medial side of the incision, and Harmonic curved shears (Intuitive Surgical) were placed on the lateral side of the incision (Fig. 4). Using the Maryland dissector and the harmonic curved shears, the Gerota fascia is opened, perinephric fat is dissected, and the kidney upper pole is mobilized to expose the adrenal gland (Fig. 5). Gland dissection starts with lower margin detachment from the upper kidney pole in a lateral to medial direction (Fig. 6). After dissecting the adrenal gland from surrounding adipose tissue and medial isolation of the adrenal central vein, the vessel is ligated with a 5 mm hemolock clip (Fig. 7). Patient

  10. The Concept of a Single-sex Optional Discussion Session in Introductory Astronomy at a Publicly Funded University

    Science.gov (United States)

    Shawl, S.

    1996-12-01

    The concept of single-sex education for science and mathematics has recently received renewed discussion in both the popular and professional literature. So important is the topic within higher education that the Duke Journal of Gender Law and Policy sponsored a symposium called "Gender & The Higher Education Classroom: Maximizing the Learning Environment" in February 1996 (http://www.duke.edu/ jrd4/djgcnf96.htm). The concept is especially controversial in publicly supported educational institutions. The idea of offering an optional discussion session limited to a single sex in a university-level introductory astronomy course at a State-supported school was considered through discussions with a number of faculty and administrators, and through a questionnaire aimed at determining student attitudes toward the concept. The results of the student questionnaire will be presented. (While the questionnaire results will be seen to be in favor of such an optional discussion session, such sessions have not been offered.)

  11. Introduction to autonomous mobile robotics using Lego Mindstorms NXT

    Science.gov (United States)

    Akın, H. Levent; Meriçli, Çetin; Meriçli, Tekin

    2013-12-01

    Teaching the fundamentals of robotics to computer science undergraduates requires designing a well-balanced curriculum that is complemented with hands-on applications on a platform that allows rapid construction of complex robots, and implementation of sophisticated algorithms. This paper describes such an elective introductory course where the Lego Mindstorms NXT kits are used as the robot platform. The aims, scope and contents of the course are presented, and the design of the laboratory sessions as well as the term projects, which address several core problems of robotics and artificial intelligence simultaneously, are explained in detail.

  12. Effects of robotic-aided rehabilitation on recovery of upper extremity function in chronic stroke: a single case study.

    Science.gov (United States)

    Flinn, Nancy A; Smith, Jennifer L; Tripp, Christopher J; White, Matthew W

    2009-01-01

    The objective of the study was to examine the results of robotic therapy in a single client. A 48-year-old female client 15 months post-stroke, with right hemiparesis, received robotic therapy as an outpatient in a large Midwestern rehabilitation hospital. Robotic therapy was provided three times a week for 6 weeks. Robotic therapy consisted of goal-directed, robotic-aided reaching tasks to exercise the hemiparetic shoulder and elbow. No other therapeutic intervention for the affected upper extremity was provided during the study or 3 months follow-up period. The outcome measures included the Fugl-Meyer, graded Wolf motor function test (GWMFT), motor activity log, active range of motion and Canadian occupational performance measure. The participant made gains in active movement; performance; and satisfaction of functional tasks, GWMFT and functional use. Limitations involved in this study relate to the generalizability of the sample size, effect of medications, expense of robotic technologies and the impact of aphasia. Future research should incorporate functional use training along with robotic therapy.

  13. Single plus one port robotic radical prostatectomy (SPORP; Initial experience

    Directory of Open Access Journals (Sweden)

    Volkan Tugcu

    2017-10-01

    Full Text Available Objective: This article reports on patients with early stage prostate cancer treated with single plus one port robotic radical prostatectomy (SPORP. Materials and methods: Since January 2014, we performed SPORP in 8 patients with localized prostate cancer. Age of patients, clinical stage, operation time, intraoperative and postoperative complications, blood loss, histopathological evaluation, postoperative continence, serum level of PSA were evaluated. Results: Mean age of the 8 patients was 59.85 years. All operations were completed without conversion to standard robotic procedure or open surgery. No intra operative complications occurred. Mean operating time was 143 minutes; prostate excision 123 minutes and urethrovesical anastomosis 20 minutes. Mean blood loss was 45 ml. Preoperative Gleason scores were (3 + 4 in one patient and (3 + 3 in 7 patients. Postoperative Gleason scores were (3 + 4 in 2 patients, and (3 + 3 in 6 patients. All these 8 cases were in T1c clinical stage. Early postoperative complications were drain leakage (n = 1, atelectasis (n = 1, wound infection (n = 1 and fever (n = 1. There was no positive surgical margin. The serum level of PSA was less than 0.2 ng/ml and no other complications happened during the 4 to 12 months follow-up period. Postoperative continence and cosmetic results were excellent. Conclusions: It is relatively easy for urologists who are skilled in traditional laparoscopic and robotic surgeries to master SPORP. However long-term outcomes of this surgery need further investigations.

  14. A novel optimal coordinated control strategy for the updated robot system for single port surgery.

    Science.gov (United States)

    Bai, Weibang; Cao, Qixin; Leng, Chuntao; Cao, Yang; Fujie, Masakatsu G; Pan, Tiewen

    2017-09-01

    Research into robotic systems for single port surgery (SPS) has become widespread around the world in recent years. A new robot arm system for SPS was developed, but its positioning platform and other hardware components were not efficient. Special features of the developed surgical robot system make good teleoperation with safety and efficiency difficult. A robot arm is combined and used as new positioning platform, and the remote center motion is realized by a new method using active motion control. A new mapping strategy based on kinematics computation and a novel optimal coordinated control strategy based on real-time approaching to a defined anthropopathic criterion configuration that is referred to the customary ease state of human arms and especially the configuration of boxers' habitual preparation posture are developed. The hardware components, control architecture, control system, and mapping strategy of the robotic system has been updated. A novel optimal coordinated control strategy is proposed and tested. The new robot system can be more dexterous, intelligent, convenient and safer for preoperative positioning and intraoperative adjustment. The mapping strategy can achieve good following and representation for the slave manipulator arms. And the proposed novel control strategy can enable them to complete tasks with higher maneuverability, lower possibility of self-interference and singularity free while teleoperating. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Financial Impact of the Robotic Approach in Liver Surgery: A Comparative Study of Clinical Outcomes and Costs Between the Robotic and Open Technique in a Single Institution.

    Science.gov (United States)

    Daskalaki, Despoina; Gonzalez-Heredia, Raquel; Brown, Marc; Bianco, Francesco M; Tzvetanov, Ivo; Davis, Myriam; Kim, Jihun; Benedetti, Enrico; Giulianotti, Pier C

    2017-04-01

    One of the perceived major drawbacks of minimally invasive techniques has always been its cost. This is especially true for the robotic approach and is one of the main reasons that has prevented its wider acceptance among hospitals and surgeons. The aim of our study was to evaluate the clinical outcomes and economic impact of robotic and open liver surgery in a single institution. Sixty-eight robotic and 55 open hepatectomies were performed at our institution between January 1, 2009 and December 31, 2013. Demographics, perioperative data, and postoperative outcomes were collected and compared between the two groups. An independent company performed the financial analysis. The economic parameters comprised direct variable costs, direct fixed costs, and indirect costs. Mean estimated blood loss was significantly less in the robotic group (438 versus 727.8 mL; P = .038). Overall morbidity was significantly lower in the robotic group (22% versus 40%; P = .047). Clavien III/IV complications were also lower, with 4.4% in the robotic versus 16.3% in the open group (P = .043). The length of stay in the intensive care unit (ICU) was shorter for patients who underwent a robotic procedure (2.1 versus 3.3 days; P = .004). The average total cost, including readmissions, was $37,518 for robotic surgery and $41,948 for open technique. Robotic liver resections had less overall morbidity, ICU, and hospital stay. This translates into decreased average costs for robotic surgery. These procedures are financially comparable to open resections and do not represent a financial burden to the hospital.

  16. Multi-robot control interface

    Science.gov (United States)

    Bruemmer, David J [Idaho Falls, ID; Walton, Miles C [Idaho Falls, ID

    2011-12-06

    Methods and systems for controlling a plurality of robots through a single user interface include at least one robot display window for each of the plurality of robots with the at least one robot display window illustrating one or more conditions of a respective one of the plurality of robots. The user interface further includes at least one robot control window for each of the plurality of robots with the at least one robot control window configured to receive one or more commands for sending to the respective one of the plurality of robots. The user interface further includes a multi-robot common window comprised of information received from each of the plurality of robots.

  17. Dosimetric consequences of translational and rotational errors in frame-less image-guided radiosurgery

    International Nuclear Information System (INIS)

    Guckenberger, Matthias; Roesch, Johannes; Baier, Kurt; Sweeney, Reinhart A; Flentje, Michael

    2012-01-01

    To investigate geometric and dosimetric accuracy of frame-less image-guided radiosurgery (IG-RS) for brain metastases. Single fraction IG-RS was practiced in 72 patients with 98 brain metastases. Patient positioning and immobilization used either double- (n = 71) or single-layer (n = 27) thermoplastic masks. Pre-treatment set-up errors (n = 98) were evaluated with cone-beam CT (CBCT) based image-guidance (IG) and were corrected in six degrees of freedom without an action level. CBCT imaging after treatment measured intra-fractional errors (n = 64). Pre- and post-treatment errors were simulated in the treatment planning system and target coverage and dose conformity were evaluated. Three scenarios of 0 mm, 1 mm and 2 mm GTV-to-PTV (gross tumor volume, planning target volume) safety margins (SM) were simulated. Errors prior to IG were 3.9 mm ± 1.7 mm (3D vector) and the maximum rotational error was 1.7° ± 0.8° on average. The post-treatment 3D error was 0.9 mm ± 0.6 mm. No differences between double- and single-layer masks were observed. Intra-fractional errors were significantly correlated with the total treatment time with 0.7mm±0.5mm and 1.2mm±0.7mm for treatment times ≤23 minutes and >23 minutes (p<0.01), respectively. Simulation of RS without image-guidance reduced target coverage and conformity to 75% ± 19% and 60% ± 25% of planned values. Each 3D set-up error of 1 mm decreased target coverage and dose conformity by 6% and 10% on average, respectively, with a large inter-patient variability. Pre-treatment correction of translations only but not rotations did not affect target coverage and conformity. Post-treatment errors reduced target coverage by >5% in 14% of the patients. A 1 mm safety margin fully compensated intra-fractional patient motion. IG-RS with online correction of translational errors achieves high geometric and dosimetric accuracy. Intra-fractional errors decrease target coverage and conformity unless compensated with appropriate

  18. Single session of integrated "Silver Yoga" program improves cardiovascular parameters in senior citizens

    Directory of Open Access Journals (Sweden)

    Ananda Balayogi Bhavanani

    2015-06-01

    Conclusion: There is a healthy reduction in HR, BP and derived cardiovascular indices following a single yoga session in geriatric subjects. These changes may be attributed to enhanced harmony of cardiac autonomic function as a result of coordinated breath-body work and mind-body relaxation due to an integrated and #8220;Silver Yoga and #8221; program. [J Intercult Ethnopharmacol 2015; 4(2.000: 134-137

  19. Initial experience with robotic pancreatic surgery in Singapore: single institution experience with 30 consecutive cases.

    Science.gov (United States)

    Goh, Brian K P; Low, Tze-Yi; Lee, Ser-Yee; Chan, Chung-Yip; Chung, Alexander Y F; Ooi, London L P J

    2018-05-24

    Presently, the worldwide experience with robotic pancreatic surgery (RPS) is increasing although widespread adoption remains limited. In this study, we report our initial experience with RPS. This is a retrospective review of a single institution prospective database of 72 consecutive robotic hepatopancreatobiliary surgeries performed between 2013 and 2017. Of these, 30 patients who underwent RPS were included in this study of which 25 were performed by a single surgeon. The most common procedure was robotic distal pancreatectomy (RDP) which was performed in 20 patients. This included eight subtotal pancreatectomies, two extended pancreatecto-splenectomies (en bloc gastric resection) and 10 spleen-saving-RDP. Splenic preservation was successful in 10/11 attempted spleen-saving-RDP. Eight patients underwent pancreaticoduodenectomies (five hybrid with open reconstruction), one patient underwent a modified Puestow procedure and one enucleation of uncinate tumour. Four patients had extended resections including two RDP with gastric resection and two pancreaticoduodenectomies with vascular resection. There was one (3.3%) open conversion and seven (23.3%) major (>Grade II) morbidities. Overall, there were four (13.3%) clinically significant (Grade B) pancreatic fistulas of which three required percutaneous drainage. These occurred after three RDP and one robotic enucleation. There was one reoperation for port-site hernia and no 30-day/in-hospital mortalities. The median post-operative stay was 6.5 (range: 3-36) days and there were six (20%) 30-day readmissions. Our initial experience showed that RPS can be adopted safely with a low open conversion rate for a wide variety of procedures including pancreaticoduodenectomy. © 2018 Royal Australasian College of Surgeons.

  20. Mergeable nervous systems for robots.

    Science.gov (United States)

    Mathews, Nithin; Christensen, Anders Lyhne; O'Grady, Rehan; Mondada, Francesco; Dorigo, Marco

    2017-09-12

    Robots have the potential to display a higher degree of lifetime morphological adaptation than natural organisms. By adopting a modular approach, robots with different capabilities, shapes, and sizes could, in theory, construct and reconfigure themselves as required. However, current modular robots have only been able to display a limited range of hardwired behaviors because they rely solely on distributed control. Here, we present robots whose bodies and control systems can merge to form entirely new robots that retain full sensorimotor control. Our control paradigm enables robots to exhibit properties that go beyond those of any existing machine or of any biological organism: the robots we present can merge to form larger bodies with a single centralized controller, split into separate bodies with independent controllers, and self-heal by removing or replacing malfunctioning body parts. This work takes us closer to robots that can autonomously change their size, form and function.Robots that can self-assemble into different morphologies are desired to perform tasks that require different physical capabilities. Mathews et al. design robots whose bodies and control systems can merge and split to form new robots that retain full sensorimotor control and act as a single entity.

  1. Methodology to reduce 6D patient positional shifts into a 3D linear shift and its verification in frameless stereotactic radiotherapy

    Science.gov (United States)

    Sarkar, Biplab; Ray, Jyotirmoy; Ganesh, Tharmarnadar; Manikandan, Arjunan; Munshi, Anusheel; Rathinamuthu, Sasikumar; Kaur, Harpreet; Anbazhagan, Satheeshkumar; Giri, Upendra K.; Roy, Soumya; Jassal, Kanan; Kalyan Mohanti, Bidhu

    2018-04-01

    table position condition introduces a minimal spatial dose delivery error in the frameless stereotactic system, using a 6D motion enabled robotic couch. This formulation enables the reduction of 6D positional inaccuracies to 3D linear shifts, and hence allows the treatment of patients with frameless stereotactic radiosurgery by using only a 3D linear motion enabled couch.

  2. Single-session treatment of a major complication of dens invaginatus: a case report.

    Science.gov (United States)

    Caldari, Mauro; Monaco, Carlo; Ciocca, Leonardo; Scotti, Roberto

    2006-05-01

    Dens invaginatus is a dental malformation that may give rise to several complications. Caries of the invagination can severely weaken the whole tooth, making it susceptible to fracture. Subgingival fractures are major complications threatening tooth survival and usually require periodontal/orthodontic/prosthetic treatment if long-term viability is to be ensured. This article describes a case of single-session restoration of a fractured invaginated tooth by means of endodontic treatment followed by fragment reattachment.

  3. Single-session endoscopic resection and focal radiofrequency ablation for short-segment Barrett's esophagus with early neoplasia

    NARCIS (Netherlands)

    Barret, Maximilien; Belghazi, Kamar; Weusten, Bas L. A. M.; Bergman, Jacques J. G. H. M.; Pouw, Roos E.

    2016-01-01

    The management of early neoplasia in Barrett's esophagus (BE) requires endoscopic resection of visible lesions, followed by radiofrequency ablation (RFA) of the remaining BE. We evaluated the safety and efficacy of combining endoscopic resection and focal RFA in a single endoscopic session in

  4. Rapid improvement of depressive symptoms and cognition in an elderly patient with a single session of piano playing: a clinical treatment report.

    Science.gov (United States)

    Manalai, Gul; Manalai, Partam; Dutta, Raja; Fegan, Gerald; Scrofani, Philip

    2012-06-01

    Music has been used as a non-pharmacological modality in the treatment of different conditions since ancient times. It has received attention in modern medicine in recent decades, particularly in geriatric population. The effects of music on mood and cognition are well documented. The aim of the current case report is to highlight the benefits of musical activities in the geriatric population. We report a naturalistic treatment outcome in an elderly patient on a geriatric psychiatric unit related to a single session of piano playing. A rapid and sustained improvement in mood and cognition of an elderly patient was observed after a single session of playing piano. Notwithstanding the limitations of a single subject, uncontrolled case study, the effect was dramatic. Our findings support previous claims regarding music therapy including effects of a single session music-based therapeutic interventions, and we conclude that music therapy for geriatric patients with mood and cognitive deficits is worth further systematic investigation.

  5. Single Session Low Frequency Left Dorsolateral Prefrontal Transcranial Magnetic Stimulation Changes Neurometabolite Relationships in Healthy Humans

    Directory of Open Access Journals (Sweden)

    Nathaniel R. Bridges

    2018-03-01

    Full Text Available Background: Dorsolateral prefrontal cortex (DLPFC low frequency repetitive transcranial magnetic stimulation (LF-rTMS has shown promise as a treatment and investigative tool in the medical and research communities. Researchers have made significant progress elucidating DLPFC LF-rTMS effects—primarily in individuals with psychiatric disorders. However, more efforts investigating underlying molecular changes and establishing links to functional and behavioral outcomes in healthy humans are needed.Objective: We aimed to quantify neuromolecular changes and relate these to functional changes following a single session of DLPFC LF-rTMS in healthy participants.Methods: Eleven participants received sham-controlled neuronavigated 1 Hz rTMS to the region most activated by a 7-letter Sternberg working memory task (SWMT within the left DLPFC. We quantified SWMT performance, functional magnetic resonance activation and proton Magnetic resonance spectroscopy (MRS neurometabolite measure changes before and after stimulation.Results: A single LF-rTMS session was not sufficient to change DLPFC neurometabolite levels and these changes did not correlate with DLPFC activation changes. Real rTMS, however, significantly altered neurometabolite correlations (compared to sham rTMS, both with baseline levels and between the metabolites themselves. Additionally, real rTMS was associated with diminished reaction time (RT performance improvements and increased activation within the motor, somatosensory and lateral occipital cortices.Conclusion: These results show that a single session of LF-rTMS is sufficient to influence metabolite relationships and causes widespread activation in healthy humans. Investigating correlational relationships may provide insight into mechanisms underlying LF-rTMS.

  6. Assessing play-based activities, child talk, and single session outcome in family therapy with young children.

    Science.gov (United States)

    Willis, Amber B; Walters, Lynda H; Crane, D Russell

    2014-07-01

    This exploratory, observational study was designed to reveal descriptive information regarding therapists' actual practices with preschool- and school-aged children in a single session of family therapy and to investigate change mechanisms in family play therapy that have been proposed to make this approach effective. A purposive sample of 30 families receiving family therapy was recruited and video-taped during a family session where at least one child between the ages of 4 and 12 was present. Following the session, the therapist and parent(s) completed questionnaires while one of the children (aged 4-12) was interviewed. Session recordings were coded, minute-by-minute, for participant talk time, visual aids or props used, and therapy technique type (e.g., play-based/activity vs. talk-only techniques). Hierarchical regression and canonical correlational analyses revealed evidence supporting the theory that play-based techniques promote young children's participation, enhance the quality of the child-therapist relationship, and build positive emotional experiences in family therapy. © 2013 American Association for Marriage and Family Therapy.

  7. Palliation in esophageal cancer with a single session of intraluminal irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Jager, J.J.; Pannebakker, M.; Vos, J. de (Radiotherapeutic Institute Limburg, Heerlen (Netherlands)); Rijken, J. (De Wever Hospital, Heerlen (Netherlands). Department of Internal Medicine); Vismans, F.J.F.E. (University Hospital Maastricht (Netherlands). Department of Gastroenterology)

    1992-10-01

    From September 1987-December 1989, 36 patients with advanced esophageal cancer entered a study in order to determine the efficacy of palliation by a single session of intraluminal irradiation. A dose of 15 Gy was administered at 1 cm distance from the central axis of the applicator. In 22 of 32 patients alive at least 6 weeks after treatment dysphagia improved, in 14 this relief was complete. Re-obstruction occurred in 8 of the 36 patients. Intraluminal irradiation is easy to administer and safe, it forms a useful addition to the therapeutic possibilities for the palliation of esophageal cancer. (author). 12 refs., 2 figs., 1 tab.

  8. The effects of a single session of spinal manipulation on strength and cortical drive in athletes

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lykke; Niazi, Imran Khan; Holt, Kelly

    2018-01-01

    PURPOSE: The primary purpose of this study was to investigate whether a single session of spinal manipulation (SM) increases strength and cortical drive in the lower limb (soleus muscle) of elite Taekwondo athletes. METHODS: Soleus-evoked V-waves, H-reflex and maximum voluntary contraction (MVC) ...

  9. 24th International Conference on Robotics in Alpe-Adria-Danube Region

    CERN Document Server

    2016-01-01

    This volume includes the Proceedings of the 24th International Conference on Robotics in Alpe-Adria-Danube Region, RAAD 2015, which was held in Bucharest, Romania, on May 27-29, 2015. The Conference brought together academic and industry researchers in robotics from the 11 countries affiliated to the Alpe-Adria-Danube space: Austria, Croatia, Czech Republic, Germany, Greece, Hungary, Italy, Romania, Serbia, Slovakia and Slovenia, and their worldwide partners. According to its tradition, RAAD 2015 covered all important areas of research, development and innovation in robotics, including new trends such as: bio-inspired and cognitive robots, visual servoing of robot motion, human-robot interaction, and personal robots for ambient assisted living. The accepted papers have been grouped in nine sessions: Robot integration in industrial applications; Grasping analysis, dexterous grippers and component design; Advanced robot motion control; Robot vision and sensory control; Human-robot interaction and collaboration;...

  10. "Robovie, You'll Have to Go into the Closet Now": Children's Social and Moral Relationships with a Humanoid Robot

    Science.gov (United States)

    Kahn, Peter H., Jr.; Kanda, Takayuki; Ishiguro, Hiroshi; Freier, Nathan G.; Severson, Rachel L.; Gill, Brian T.; Ruckert, Jolina H.; Shen, Solace

    2012-01-01

    Children will increasingly come of age with personified robots and potentially form social and even moral relationships with them. What will such relationships look like? To address this question, 90 children (9-, 12-, and 15-year-olds) initially interacted with a humanoid robot, Robovie, in 15-min sessions. Each session ended when an experimenter…

  11. Robotic Motion Learning Framework to Promote Social Engagement

    Directory of Open Access Journals (Sweden)

    Rachael Burns

    2018-02-01

    Full Text Available Imitation is a powerful component of communication between people, and it poses an important implication in improving the quality of interaction in the field of human–robot interaction (HRI. This paper discusses a novel framework designed to improve human–robot interaction through robotic imitation of a participant’s gestures. In our experiment, a humanoid robotic agent socializes with and plays games with a participant. For the experimental group, the robot additionally imitates one of the participant’s novel gestures during a play session. We hypothesize that the robot’s use of imitation will increase the participant’s openness towards engaging with the robot. Experimental results from a user study of 12 subjects show that post-imitation, experimental subjects displayed a more positive emotional state, had higher instances of mood contagion towards the robot, and interpreted the robot to have a higher level of autonomy than their control group counterparts did. These results point to an increased participant interest in engagement fueled by personalized imitation during interaction.

  12. A cargo-sorting DNA robot.

    Science.gov (United States)

    Thubagere, Anupama J; Li, Wei; Johnson, Robert F; Chen, Zibo; Doroudi, Shayan; Lee, Yae Lim; Izatt, Gregory; Wittman, Sarah; Srinivas, Niranjan; Woods, Damien; Winfree, Erik; Qian, Lulu

    2017-09-15

    Two critical challenges in the design and synthesis of molecular robots are modularity and algorithm simplicity. We demonstrate three modular building blocks for a DNA robot that performs cargo sorting at the molecular level. A simple algorithm encoding recognition between cargos and their destinations allows for a simple robot design: a single-stranded DNA with one leg and two foot domains for walking, and one arm and one hand domain for picking up and dropping off cargos. The robot explores a two-dimensional testing ground on the surface of DNA origami, picks up multiple cargos of two types that are initially at unordered locations, and delivers them to specified destinations until all molecules are sorted into two distinct piles. The robot is designed to perform a random walk without any energy supply. Exploiting this feature, a single robot can repeatedly sort multiple cargos. Localization on DNA origami allows for distinct cargo-sorting tasks to take place simultaneously in one test tube or for multiple robots to collectively perform the same task. Copyright © 2017, American Association for the Advancement of Science.

  13. Single Session Web-Based Counselling: A Thematic Analysis of Content from the Perspective of the Client

    Science.gov (United States)

    Rodda, S. N.; Lubman, D. I.; Cheetham, A.; Dowling, N. A.; Jackson, A. C.

    2015-01-01

    Despite the exponential growth of non-appointment-based web counselling, there is limited information on what happens in a single session intervention. This exploratory study, involving a thematic analysis of 85 counselling transcripts of people seeking help for problem gambling, aimed to describe the presentation and content of online…

  14. Robotic surgery update.

    Science.gov (United States)

    Jacobsen, G; Elli, F; Horgan, S

    2004-08-01

    Minimally invasive surgical techniques have revolutionized the field of surgery. Telesurgical manipulators (robots) and new information technologies strive to improve upon currently available minimally invasive techniques and create new possibilities. A retrospective review of all robotic cases at a single academic medical center from August 2000 until November 2002 was conducted. A comprehensive literature evaluation on robotic surgical technology was also performed. Robotic technology is safely and effectively being applied at our institution. Robotic and information technologies have improved upon minimally invasive surgical techniques and created new opportunities not attainable in open surgery. Robotic technology offers many benefits over traditional minimal access techniques and has been proven safe and effective. Further research is needed to better define the optimal application of this technology. Credentialing and educational requirements also need to be delineated.

  15. Inducing self-selected human engagement in robotic locomotion training.

    Science.gov (United States)

    Collins, Steven H; Jackson, Rachel W

    2013-06-01

    Stroke leads to severe mobility impairments for millions of individuals each year. Functional outcomes can be improved through manual treadmill therapy, but high costs limit patient exposure and, thereby, outcomes. Robotic gait training could increase the viable duration and frequency of training sessions, but robotic approaches employed thus far have been less effective than manual therapy. These shortcomings may relate to subconscious energy-minimizing drives, which might cause patients to engage less actively in therapy when provided with corrective robotic assistance. We have devised a new method for gait rehabilitation that harnesses, rather than fights, least-effort tendencies. Therapeutic goals, such as increased use of the paretic limb, are made easier than the patient's nominal gait through selective assistance from a robotic platform. We performed a pilot test on a healthy subject (N = 1) in which altered self-selected stride length was induced using a tethered robotic ankle-foot orthosis. The subject first walked on a treadmill while wearing the orthosis with and without assistance at unaltered and voluntarily altered stride length. Voluntarily increasing stride length by 5% increased metabolic energy cost by 4%. Robotic assistance decreased energy cost at both unaltered and voluntarily increased stride lengths, by 6% and 8% respectively. We then performed a test in which the robotic system continually monitored stride length and provided more assistance if the subject's stride length approached a target increase. This adaptive assistance protocol caused the subject to slowly adjust their gait patterns towards the target, leading to a 4% increase in stride length. Metabolic energy consumption was simultaneously reduced by 5%. These results suggest that selective-assistance protocols based on targets relevant to rehabilitation might lead patients to self-select desirable gait patterns during robotic gait training sessions, possibly facilitating better

  16. Percutaneous Treatment of Simple Hepatic Cysts: The Long-Term Results of PAIR and Catheterization Techniques as Single-Session Procedures

    International Nuclear Information System (INIS)

    Akhan, Okan; Islim, Filiz; Balci, Sinan; Erbahceci, Aysun; Akpınar, Burcu; Ciftci, Turkmen; Akinci, Devrim

    2016-01-01

    PurposeThe purpose of our study is to evaluate results of percutaneous aspiration with alcohol sclerotherapy in symptomatic patients with simple hepatic cysts by employing single-session techniques either by a needle or a catheter.Materials and MethodsWe retrospectively included 39 simple hepatic cysts in 35 patients treated via percutaneous aspiration and single-session alcohol sclerotherapy between years 1993 and 2012. Indications were pain (n = 28) or ruling out cystic echinococcus (CE) disease (n = 7). 29 cysts in 26 patients were treated by needle technique (Group A) and ten cysts in nine patients were treated by single-session catheter technique (Group B). Patients were followed for 4–173 months (median: 38 months).ResultsAll patients were successfully treated. Before procedure, cyst volumes were 21–676 cc (median: 94 cc). Post-procedure cyst volumes at last follow-up were 0-40 cc (median: 1 cc). The mean decrease in cyst volume was 95.92 ± 2.86 % in all patients (95.96 ± 3.26 % in Group A and 95.80 ± 6.20 % in Group B). There was no statistically significant difference between the volume reduction rates of Group A and Group B. Only one patient, in Group B, developed a major complication, an abscess. Hospitalization period was 1 day for all patients.ConclusionsFor patients with symptomatic simple hepatic cysts smaller than 500 cc in volume by using puncture, aspiration, injection, and reaspiration (PAIR) technique with only needle, single-session alcohol sclerotherapy of 10 min is a safe and effective procedure with high success rate.

  17. Percutaneous Treatment of Simple Hepatic Cysts: The Long-Term Results of PAIR and Catheterization Techniques as Single-Session Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Akhan, Okan, E-mail: akhano@tr.net [Hacettepe University Faculty of Medicine, Department of Radiology (Turkey); Islim, Filiz, E-mail: fislim@yahoo.com [Istanbul Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Department of Radiology (Turkey); Balci, Sinan, E-mail: snnbalci@gmail.com [Hacettepe University Faculty of Medicine, Department of Radiology (Turkey); Erbahceci, Aysun, E-mail: aysunerbahceci@yahoo.com [Istanbul Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Department of Radiology (Turkey); Akpınar, Burcu, E-mail: burcu-akpinar@yahoo.com; Ciftci, Turkmen, E-mail: turkmenciftci@yahoo.com; Akinci, Devrim, E-mail: akincid@hotmail.com [Hacettepe University Faculty of Medicine, Department of Radiology (Turkey)

    2016-06-15

    PurposeThe purpose of our study is to evaluate results of percutaneous aspiration with alcohol sclerotherapy in symptomatic patients with simple hepatic cysts by employing single-session techniques either by a needle or a catheter.Materials and MethodsWe retrospectively included 39 simple hepatic cysts in 35 patients treated via percutaneous aspiration and single-session alcohol sclerotherapy between years 1993 and 2012. Indications were pain (n = 28) or ruling out cystic echinococcus (CE) disease (n = 7). 29 cysts in 26 patients were treated by needle technique (Group A) and ten cysts in nine patients were treated by single-session catheter technique (Group B). Patients were followed for 4–173 months (median: 38 months).ResultsAll patients were successfully treated. Before procedure, cyst volumes were 21–676 cc (median: 94 cc). Post-procedure cyst volumes at last follow-up were 0-40 cc (median: 1 cc). The mean decrease in cyst volume was 95.92 ± 2.86 % in all patients (95.96 ± 3.26 % in Group A and 95.80 ± 6.20 % in Group B). There was no statistically significant difference between the volume reduction rates of Group A and Group B. Only one patient, in Group B, developed a major complication, an abscess. Hospitalization period was 1 day for all patients.ConclusionsFor patients with symptomatic simple hepatic cysts smaller than 500 cc in volume by using puncture, aspiration, injection, and reaspiration (PAIR) technique with only needle, single-session alcohol sclerotherapy of 10 min is a safe and effective procedure with high success rate.

  18. Robotic radiosurgery. Treating tumors that move with respiration

    International Nuclear Information System (INIS)

    Urschel, Harold C. Jr.; Kresl, John J.; Luketich, James D.; Papiez, Lech; Timmerman, Robert D.; Schulz, Raymond A.

    2007-01-01

    Addresses in detail all aspects of the use of robotic radiosurgery to treat tumors of the lung, liver, and pancreas Includes full consideration of tumor tracking techniques, dosimetry, radiobiology, and fiducial placement strategies Written by leading experts Includes many high quality illustrations Stereotactic radiosurgery continues to evolve in ways that allow this powerful technology to reach and treat more tumors in more patients. This volume in the Robotic Radiosurgery series is devoted to theory and practice in the emerging field of stereotactic radiosurgery (also called stereotactic body radiation therapy) for extracranial tumors, particularly those that move as patients breathe. The book is divided into six sections. The first three sections address tumor motion due to respiration and tumor tracking techniques; dosimetry, radiobiology, and imaging; and fiducial placement systems. The fourth and fifth sections then discuss in depth the use of robotic radiosurgery to treat lung and abdominal tumors, respectively, and a final section explains emerging concepts and techniques. Within this framework, detailed information is provided on the technology and methodology for delivery of high doses of radiation to moving targets, radiobiological and radiological principles, and the challenges faced by clinicians performing extracranial stereotactic radiosurgery. Furthermore, there are thorough reviews of the general clinical literature on stereotactic radiation treatment of tumors of the lungs, liver, and pancreas, and the latest clinical data from clinicians conducting clinical studies using the CyberKnife registered Robotic Radiosurgery System. Special attention is given to the frameless robotic radiosurgery device known as the CyberKnife, the only image-guided radiosurgery system that utilizes intelligent robotics to track, detect, and correct for changes in tumor position during treatments. Tumors that move with respiration are treated with the CyberKnife using a

  19. Robotic radiosurgery. Treating tumors that move with respiration

    Energy Technology Data Exchange (ETDEWEB)

    Urschel, Harold C. Jr. [Baylor University Medical Center, Dallas, TX (United States). Chair of Cardiovascular and Thoracic Surgical Research, Education and Clinical Excellence; Kresl, John J. [Arizona Oncology Services at St. Joseph' s Hospital and Medical Center, Phoenix, AZ (United States). Dept. of Radiation Oncology; Luketich, James D. [University of Pittsburgh Medical Center PUH, Pittsburgh, PA (United States). The Heart, Lung and Esophageal Surgery Inst.; Papiez, Lech; Timmerman, Robert D. [University of Texas Southwestern Medical Center, Dallas, TX (United States). Dept. of Radiation Oncology; Schulz, Raymond A. (eds.)

    2007-07-01

    Addresses in detail all aspects of the use of robotic radiosurgery to treat tumors of the lung, liver, and pancreas Includes full consideration of tumor tracking techniques, dosimetry, radiobiology, and fiducial placement strategies Written by leading experts Includes many high quality illustrations Stereotactic radiosurgery continues to evolve in ways that allow this powerful technology to reach and treat more tumors in more patients. This volume in the Robotic Radiosurgery series is devoted to theory and practice in the emerging field of stereotactic radiosurgery (also called stereotactic body radiation therapy) for extracranial tumors, particularly those that move as patients breathe. The book is divided into six sections. The first three sections address tumor motion due to respiration and tumor tracking techniques; dosimetry, radiobiology, and imaging; and fiducial placement systems. The fourth and fifth sections then discuss in depth the use of robotic radiosurgery to treat lung and abdominal tumors, respectively, and a final section explains emerging concepts and techniques. Within this framework, detailed information is provided on the technology and methodology for delivery of high doses of radiation to moving targets, radiobiological and radiological principles, and the challenges faced by clinicians performing extracranial stereotactic radiosurgery. Furthermore, there are thorough reviews of the general clinical literature on stereotactic radiation treatment of tumors of the lungs, liver, and pancreas, and the latest clinical data from clinicians conducting clinical studies using the CyberKnife {sup registered} Robotic Radiosurgery System. Special attention is given to the frameless robotic radiosurgery device known as the CyberKnife, the only image-guided radiosurgery system that utilizes intelligent robotics to track, detect, and correct for changes in tumor position during treatments. Tumors that move with respiration are treated with the Cyber

  20. Scheduling a Single Mobile Robot Incorporated into Production Environment

    DEFF Research Database (Denmark)

    Dang, Vinh Quang; Nielsen, Izabela Ewa; Steger-Jensen, Kenn

    2013-01-01

    to the challenges of issues such as energy conservation and pollution preventions. Facing the central tension between manufacturing and environmental drivers is difficult, but critical to develop new technologies, particularly mobile robots, that can be incorporated into production to achieve holistic solutions....... This chapter deals with the problem of finding optimal operating sequence in a manufacturing cell of a mobile robot with manipulation arm that feeds materials to feeders. The “Bartender Concept” is discussed to show the cooperation between the mobile robot and industrial environment. The performance criterion...

  1. Client Perceptions of Helpfulness in Therapy: a Novel Video-Rating Methodology for Examining Process Variables at Brief Intervals During a Single Session.

    Science.gov (United States)

    Cocklin, Alexandra A; Mansell, Warren; Emsley, Richard; McEvoy, Phil; Preston, Chloe; Comiskey, Jody; Tai, Sara

    2017-11-01

    The value of clients' reports of their experiences in therapy is widely recognized, yet quantitative methodology has rarely been used to measure clients' self-reported perceptions of what is helpful over a single session. A video-rating method using was developed to gather data at brief intervals using process measures of client perceived experience and standardized measures of working alliance (Session Rating Scale; SRS). Data were collected over the course of a single video-recorded session of cognitive therapy (Method of Levels Therapy; Carey, 2006; Mansell et al., 2012). We examined the acceptability and feasibility of the methodology and tested the concurrent validity of the measure by utilizing theory-led constructs. Eighteen therapy sessions were video-recorded and clients each rated a 20-minute session of therapy at two-minute intervals using repeated measures. A multi-level analysis was used to test for correlations between perceived levels of helpfulness and client process variables. The design proved to be feasible. Concurrent validity was borne out through high correlations between constructs. A multi-level regression examined the independent contributions of client process variables to client perceived helpfulness. Client perceived control (b = 0.39, 95% CI .05 to 0.73), the ability to talk freely (b = 0.30, SE = 0.11, 95% CI .09 to 0.51) and therapist approach (b = 0.31, SE = 0.14, 95% CI .04 to 0.57) predicted client-rated helpfulness. We identify a feasible and acceptable method for studying continuous measures of helpfulness and their psychological correlates during a single therapy session.

  2. Study on the clinical application of pulsed DC magnetic technology for tracking of intraoperative head motion during frameless stereotaxy

    Directory of Open Access Journals (Sweden)

    Stendel Rüdiger

    2006-04-01

    Full Text Available Abstract Background Tracking of post-registration head motion is one of the major problems in frameless stereotaxy. Various attempts in detecting and compensating for this phenomenon rely on a fixed reference device rigidly attached to the patient's head. However, most of such reference tools are either based on an invasive fixation technique or have physical limitations which allow mobility of the head only in a restricted range of motion after completion of the registration procedure. Methods A new sensor-based reference tool, the so-called Dynamic Reference Frame (DRF which is designed to allow an unrestricted, 360° range of motion for the intraoperative use in pulsed DC magnetic navigation was tested in 40 patients. Different methods of non-invasive attachment dependent on the clinical need and type of procedure, as well as the resulting accuracies in the clinical application have been analyzed. Results Apart from conventional, completely rigid immobilization of the head (type A, four additional modes of head fixation and attachment of the DRF were distinguished on clinical grounds: type B1 = pin fixation plus oral DRF attachment; type B2 = pin fixation plus retroauricular DRF attachment; type C1 = free head positioning with oral DRF; and type C2 = free head positioning with retroauricular DRF. Mean fiducial registration errors (FRE were as follows: type A interventions = 1.51 mm, B1 = 1.56 mm, B2 = 1.54 mm, C1 = 1.73 mm, and C2 = 1.75 mm. The mean position errors determined at the end of the intervention as a measure of application accuracy were: 1.45 mm in type A interventions, 1.26 mm in type B1, 1.44 mm in type B2, 1.86 mm in type C1, and 1.68 mm in type C2. Conclusion Rigid head immobilization guarantees most reliable accuracy in various types of frameless stereotaxy. The use of an additional DRF, however, increases the application scope of frameless stereotaxy to include e.g. procedures in which rigid pin fixation of the cranium is

  3. Four-arm single docking full robotic surgery for low rectal cancer: technique standardization

    Directory of Open Access Journals (Sweden)

    José Reinan Ramos

    Full Text Available The authors present the four-arm single docking full robotic surgery to treat low rectal cancer. The eight main operative steps are: 1- patient positioning; 2- trocars set-up and robot docking; 3- sigmoid colon, left colon and splenic flexure mobilization (lateral-to-medial approach; 4-Inferior mesenteric artery and vein ligation (medial-to-lateral approach; 5- total mesorectum excision and preservation of hypogastric and pelvic autonomic nerves (sacral dissection, lateral dissection, pelvic dissection; 6- division of the rectum using an endo roticulator stapler for the laparoscopic performance of a double-stapled coloanal anastomosis (type I tumor; 7- intersphincteric resection, extraction of the specimen through the anus and lateral-to-end hand sewn coloanal anastomosis (type II tumor; 8- cylindric abdominoperineal resection, with transabdominal section of the levator muscles (type IV tumor. The techniques employed were safe and have presented low rates of complication and no mortality.

  4. Robot-Aided Neurorehabilitation: A Pediatric Robot for Ankle Rehabilitation.

    Science.gov (United States)

    Michmizos, Konstantinos P; Rossi, Stefano; Castelli, Enrico; Cappa, Paolo; Krebs, Hermano Igo

    2015-11-01

    This paper presents the pediAnklebot, an impedance-controlled low-friction, backdriveable robotic device developed at the Massachusetts Institute of Technology that trains the ankle of neurologically impaired children of ages 6-10 years old. The design attempts to overcome the known limitations of the lower extremity robotics and the unknown difficulties of what constitutes an appropriate therapeutic interaction with children. The robot's pilot clinical evaluation is on-going and it incorporates our recent findings on the ankle sensorimotor control in neurologically intact subjects, namely the speed-accuracy tradeoff, the deviation from an ideally smooth ankle trajectory, and the reaction time. We used these concepts to develop the kinematic and kinetic performance metrics that guided the ankle therapy in a similar fashion that we have done for our upper extremity devices. Here we report on the use of the device in at least nine training sessions for three neurologically impaired children. Results demonstrated a statistically significant improvement in the performance metrics assessing explicit and implicit motor learning. Based on these initial results, we are confident that the device will become an effective tool that harnesses plasticity to guide habilitation during childhood.

  5. Next-generation robotic surgery--from the aspect of surgical robots developed by industry.

    Science.gov (United States)

    Nakadate, Ryu; Arata, Jumpei; Hashizume, Makoto

    2015-02-01

    At present, much of the research conducted worldwide focuses on extending the ability of surgical robots. One approach is to extend robotic dexterity. For instance, accessibility and dexterity of the surgical instruments remains the largest issue for reduced port surgery such as single port surgery or natural orifice surgery. To solve this problem, a great deal of research is currently conducted in the field of robotics. Enhancing the surgeon's perception is an approach that uses advanced sensor technology. The real-time data acquired through the robotic system combined with the data stored in the robot (such as the robot's location) provide a major advantage. This paper aims at introducing state-of-the-art products and pre-market products in this technological advancement, namely the robotic challenge in extending dexterity and hopefully providing the path to robotic surgery in the near future.

  6. Session-RPE for quantifying the load of different youth basketball training sessions

    Directory of Open Access Journals (Sweden)

    C Lupo

    2016-12-01

    Full Text Available The aim of the study was to evaluate youth basketball training, verifying the reliability of the session-RPE method in relation to session duration (< and ≥ 80 minutes and workout typology (reduced and high warm-up, conditioning, technical, tactical, game portions within a single session categories. Six male youth basketball players (age, 16.5±0.5 years; height, 195.5±6.75 cm; body mass, 93.9±10.9 kg; and body mass index, 23.6±2.8 kg.m-2 were monitored (HR, type and duration of workouts during 15 (66 individual training sessions (80±26 minutes. Edwards’ HR method was used as a reference measure of internal training load (ITL; the CR-10 RPE scale was administered 30 minutes after the end of each session. The results obtained showed that all comparisons between different session durations and workout portions revealed effects in term of Edwards’ ITLs except for warm-up portions. Moderate to strong relationships between Edwards’ and session- RPE methods emerged for all sessions (r = .85, P < .001, player’s sessions (r range = .79 - .95, P < .001, session durations (< 80 minutes: r = .67, P < .001; ≥ 80 minutes: r = .75, P < .001, and workout portions (r range = .78 - .89, P range = .002 - < .001. The findings indicated that coaches of youth basketball players can successfully use session-RPE to monitor the ITL, regardless of session durations and workout portions.

  7. Robotic training and kinematic analysis of arm and hand after incomplete spinal cord injury: a case study.

    Science.gov (United States)

    Kadivar, Z; Sullivan, J L; Eng, D P; Pehlivan, A U; O'Malley, M K; Yozbatiran, N; Francisco, G E

    2011-01-01

    Regaining upper extremity function is the primary concern of persons with tetraplegia caused by spinal cord injury (SCI). Robotic rehabilitation has been inadequately tested and underutilized in rehabilitation of the upper extremity in the SCI population. Given the acceptance of robotic training in stroke rehabilitation and SCI gait training, coupled with recent evidence that the spinal cord, like the brain, demonstrates plasticity that can be catalyzed by repetitive movement training such as that available with robotic devices, it is probable that robotic upper-extremity training of persons with SCI could be clinically beneficial. The primary goal of this pilot study was to test the feasibility of using a novel robotic device for the upper extremity (RiceWrist) and to evaluate robotic rehabilitation using the RiceWrist in a tetraplegic person with incomplete SCI. A 24-year-old male with incomplete SCI participated in 10 sessions of robot-assisted therapy involving intensive upper limb training. The subject successfully completed all training sessions and showed improvements in movement smoothness, as well as in the hand function. Results from this study provide valuable information for further developments of robotic devices for upper limb rehabilitation in persons with SCI. © 2011 IEEE

  8. Marine Robots : Applications in Marine Archaeology

    Digital Repository Service at National Institute of Oceanography (India)

    Maurya, P.K.; Pascoal, A.; Gaur, A.

    . These robots can also guide divers to move to safe locations in case distress situations occur. However, humans are by nature curious and will never agree to have their eyes completely replaced by robot eyes. The article also explains how a single robot...

  9. Dynamic Modeling and Nonlinear Position Control of a Quadruped Robot with Theo Jansen Linkage Mechanisms and a Single Actuator

    Directory of Open Access Journals (Sweden)

    Shunsuke Nansai

    2015-01-01

    Full Text Available The Theo Jansen mechanism is gaining widespread popularity among the legged robotics community due to its scalable design, energy efficiency, low payload-to-machine-load ratio, bioinspired locomotion, and deterministic foot trajectory. In this paper, we perform for the first time the dynamic modeling and analysis on a four-legged robot driven by a single actuator and composed of Theo Jansen mechanisms. The projection method is applied to derive the equations of motion of this complex mechanical system and a position control strategy based on energy is proposed. Numerical simulations validate the efficacy of the designed controller, thus setting a theoretical basis for further investigations on Theo Jansen based quadruped robots.

  10. Effects of a single-session assertiveness music therapy role playing protocol for psychiatric inpatients.

    Science.gov (United States)

    Silverman, Michael J

    2011-01-01

    The purpose of this study was to implement and measure the effectiveness of a single-session assertiveness music therapy role playing protocol for psychiatric inpatients. Participants (N=133) were randomly assigned by group to one of three conditions: (a) Assertiveness Music Therapy, (b) No Music Assertiveness, or (c) Music No Assertiveness. Participants in both assertiveness conditions role played a number of different commonly occurring scenarios at an inpatient psychiatric facility and in the community. There were no significant between-group differences in posttest quality of life, locus of control, or other subscales. However, participants in both assertiveness conditions tended to have slightly higher internal locus of control and overall quality of life scores than participants in the music no assertiveness condition. Additionally, the assertiveness music therapy condition had higher attendance rates than the other conditions. A higher percentage of participants from both the assertiveness music therapy and music no assertiveness conditions indicated they thought their session was the most helpful/therapeutic group therapy session in which they had participated; this was not the case for the assertiveness no music condition. Future research is warranted to measure the effects of protocols that can help psychiatric patients generalize skills learned in treatment.

  11. Invariant ankle moment patterns when walking with and without a robotic ankle exoskeleton.

    Science.gov (United States)

    Kao, Pei-Chun; Lewis, Cara L; Ferris, Daniel P

    2010-01-19

    To guide development of robotic lower limb exoskeletons, it is necessary to understand how humans adapt to powered assistance. The purposes of this study were to quantify joint moments while healthy subjects adapted to a robotic ankle exoskeleton and to determine if the period of motor adaptation is dependent on the magnitude of robotic assistance. The pneumatically powered ankle exoskeleton provided plantar flexor torque controlled by the wearer's soleus electromyography (EMG). Eleven naïve individuals completed two 30-min sessions walking on a split-belt instrumented treadmill at 1.25m/s while wearing the ankle exoskeleton. After two sessions of practice, subjects reduced their soleus EMG activation by approximately 36% and walked with total ankle moment patterns similar to their unassisted gait (r(2)=0.98+/-0.02, THSD, p>0.05). They had substantially different ankle kinematic patterns compared to their unassisted gait (r(2)=0.79+/-0.12, THSD, probotic ankle exoskeleton (Gordon and Ferris, 2007). Our results strongly suggest that humans aim for similar joint moment patterns when walking with robotic assistance rather than similar kinematic patterns. In addition, greater robotic assistance provided during initial use results in a longer adaptation process than lesser robotic assistance. Copyright 2009 Elsevier Ltd. All rights reserved.

  12. Robots in the nuclear industry: conference report

    International Nuclear Information System (INIS)

    Kochan, Anna.

    1992-01-01

    Current robotic technology is severely challenged by the conditions which nuclear environments present. In such applications, reliability demands are stringent; the environment is highly unstructured; and the ionizing radiation field is extremely hazardous to equipment. But an international conference, held recently in Marseille, indicated clearly that there is no shortage of robotic solutions adapted to these special needs. Organized by the Institut International de Robotique et d'Intelligence Artificelle in Marseille, the conference focused on telerobotics in hostile environments, including sessions on Perception of Environment; Man/machine Interface; and Technologies and Components. (Author)

  13. Robot modelling; Control and applications with software

    Energy Technology Data Exchange (ETDEWEB)

    Ranky, P G; Ho, C Y

    1985-01-01

    This book provides a ''picture'' of robotics covering both the theoretical aspect of modeling as well as the practical and design aspects of: robot programming; robot tooling and automated hand changing; implementation planning; testing; and software design for robot systems. The authors present an introduction to robotics with a systems approach. They describe not only the tasks relating to a single robot (or arm) but also systems of robots working together on a product or several products.

  14. A single session of meditation reduces of physiological indices of anger in both experienced and novice meditators.

    Science.gov (United States)

    Fennell, Alexander B; Benau, Erik M; Atchley, Ruth Ann

    2016-02-01

    The goal of the present study was to explore how anger reduction via a single session of meditation might be measured using psychophysiological methodologies. To achieve this, 15 novice meditators (Experiment 1) and 12 practiced meditators (Experiment 2) completed autobiographical anger inductions prior to, and following, meditation training while respiration rate, heart rate, and blood pressure were measured. Participants also reported subjective anger via a visual analog scale. At both stages, the experienced meditators' physiological reaction to the anger induction reflected that of relaxation: slowed breathing and heart rate and decreased blood pressure. Naïve meditators exhibited physiological reactions that were consistent with anger during the pre-meditation stage, while after meditation training and a second anger induction they elicited physiological evidence of relaxation. The current results examining meditation training show that the naïve group's physiological measures mimicked those of the experienced group following a single session of meditation training. Copyright © 2016. Published by Elsevier Inc.

  15. The psychosocial effects of a companion robot: a randomized controlled trial.

    Science.gov (United States)

    Robinson, Hayley; Macdonald, Bruce; Kerse, Ngaire; Broadbent, Elizabeth

    2013-09-01

    To investigate the psychosocial effects of the companion robot, Paro, in a rest home/hospital setting in comparison to a control group. Randomized controlled trial. Residents were randomized to the robot intervention group or a control group that attended normal activities instead of Paro sessions. Sessions took place twice a week for an hour over 12 weeks. Over the trial period, observations were conducted of residents' social behavior when interacting as a group with the robot. As a comparison, observations were also conducted of all the residents during general activities when the resident dog was or was not present. A residential care facility in Auckland, New Zealand. Forty residents in hospital and rest home care. Residents completed a baseline measure assessing cognitive status, loneliness, depression, and quality of life. At follow-up, residents completed a questionnaire assessing loneliness, depression, and quality of life. During observations, behavior was noted and collated for instances of talking and stroking the dog/robot. In comparison with the control group, residents who interacted with the robot had significant decreases in loneliness over the period of the trial. Both the resident dog and the seal robot made an impact on the social environment in comparison to when neither was present. Residents talked to and touched the robot significantly more than the resident dog. A greater number of residents were involved in discussion about the robot in comparison with the resident dog and conversation about the robot occurred more. Paro is a positive addition to this environment and has benefits for older people in nursing home care. Paro may be able to address some of the unmet needs of older people that a resident animal may not, particularly relating to loneliness. Copyright © 2013 American Medical Directors Association, Inc. Published by Elsevier Inc. All rights reserved.

  16. An automatic registration method for frameless stereotaxy, image guided surgery, and enhanced reality visualization

    International Nuclear Information System (INIS)

    Grimson, W.E.L.; Lozano-Perez, T.; White, S.J.; Wells, W.M. III; Kikinis, R.

    1996-01-01

    There is a need for frameless guidance systems to help surgeons plan the exact location for incisions, to define the margins of tumors, and to precisely identify locations of neighboring critical structures. The authors have developed an automatic technique for registering clinical data, such as segmented magnetic resonance imaging (MRI) or computed tomography (CT) reconstructions, with any view of the patient on the operating table. They demonstrate on the specific example of neurosurgery. The method enables a visual mix of live video of the patient and the segmented three-dimensional (3-D) MRI or CT model. This supports enhanced reality techniques for planning and guiding neurosurgical procedures and allows them to interactively view extracranial or intracranial structures nonintrusively. Extensions of the method include image guided biopsies, focused therapeutic procedures, and clinical studies involving change detection over time sequences of images

  17. Does a single session of electroconvulsive therapy alter the neural response to emotional faces in depression? A randomised sham-controlled functional magnetic resonance imaging study

    DEFF Research Database (Denmark)

    Miskowiak, Kamilla W; Kessing, Lars V; Ott, Caroline V

    2017-01-01

    neurocognitive bias in major depressive disorder. Patients with major depressive disorder were randomised to one active ( n=15) or sham electroconvulsive therapy ( n=12). The following day they underwent whole-brain functional magnetic resonance imaging at 3T while viewing emotional faces and performed facial...... expression recognition and dot-probe tasks. A single electroconvulsive therapy session had no effect on amygdala response to emotional faces. Whole-brain analysis revealed no effects of electroconvulsive therapy versus sham therapy after family-wise error correction at the cluster level, using a cluster...... to faces after a single electroconvulsive therapy session, the observed trend changes after a single electroconvulsive therapy session point to an early shift in emotional processing that may contribute to antidepressant effects of electroconvulsive therapy....

  18. Single session of Nd:YAG laser intracanal irradiation neutralizes endotoxin in dental root dentin.

    Science.gov (United States)

    Archilla, José R F; Moreira, Maria S N A; Miyagi, Sueli P H; Bombana, Antônio C; Gutknecht, Norbert; Marques, Márcia M

    2012-11-01

    Endotoxins released in the dental root by Gram-negative microorganisms can be neutralized by calcium hydroxide, when this medication is applied inside the root canal for at least seven days. However, several clinical situations demand faster root canal decontamination. Thus, for faster endotoxin neutralization, endodontists are seeking additional treatments. The in vitro study tested whether or not intracanal Nd:YAG laser irradiation would be able to neutralize endotoxin within the human dental root canal in a single session. Twenty-four human teeth with one root were mounted between two chambers. After conventional endodontic treatment, root canals were contaminated with Escherichia coli endotoxin. Then they were irradiated or not (controls) in contact mode with an Nd:YAG laser (1.5 W, 15 Hz, 100 mJ and pulse fluency of 124  J/cm2). The endotoxin activity was measured using the limulus lysate technique and data were statistically compared (p≤0.05). The concentration of active endotoxin measured in the negative control group was significantly lower than that of the positive control group (p=0.04). The concentrations of endotoxin in both irradiated groups were significantly lower than that of the positive control group (p=0.027) and similar to that of negative control group (p=0.20). A single session of intracanal Nd:YAG laser irradiation is able to neutralize endotoxin in the dental root tissues.

  19. Single session of Nd:YAG laser intracanal irradiation neutralizes endotoxin in dental root dentin

    Science.gov (United States)

    Archilla, José R. F.; Moreira, Maria S. N. A.; Miyagi, Sueli P. H.; Bombana, Antônio C.; Gutknecht, Norbert; Marques, Márcia M.

    2012-11-01

    Endotoxins released in the dental root by Gram-negative microorganisms can be neutralized by calcium hydroxide, when this medication is applied inside the root canal for at least seven days. However, several clinical situations demand faster root canal decontamination. Thus, for faster endotoxin neutralization, endodontists are seeking additional treatments. The in vitro study tested whether or not intracanal Nd:YAG laser irradiation would be able to neutralize endotoxin within the human dental root canal in a single session. Twenty-four human teeth with one root were mounted between two chambers. After conventional endodontic treatment, root canals were contaminated with Escherichia coli endotoxin. Then they were irradiated or not (controls) in contact mode with an Nd:YAG laser (1.5 W, 15 Hz, 100 mJ and pulse fluency of 124 J/cm2). The endotoxin activity was measured using the limulus lysate technique and data were statistically compared (p≤0.05). The concentration of active endotoxin measured in the negative control group was significantly lower than that of the positive control group (p=0.04). The concentrations of endotoxin in both irradiated groups were significantly lower than that of the positive control group (p=0.027) and similar to that of negative control group (p=0.20). A single session of intracanal Nd:YAG laser irradiation is able to neutralize endotoxin in the dental root tissues.

  20. Innovations in robotic surgery.

    Science.gov (United States)

    Gettman, Matthew; Rivera, Marcelino

    2016-05-01

    Developments in robotic surgery have continued to advance care throughout the field of urology. The purpose of this review is to evaluate innovations in robotic surgery over the past 18 months. The release of the da Vinci Xi system heralded an improvement on the Si system with improved docking, the ability to further manipulate robotic arms without clashing, and an autofocus universal endoscope. Robotic simulation continues to evolve with improvements in simulation training design to include augmented reality in robotic surgical education. Robotic-assisted laparoendoscopic single-site surgery continues to evolve with improvements on technique that allow for tackling previously complex pathologic surgical anatomy including urologic oncology and reconstruction. Last, innovations of new surgical platforms with robotic systems to improve surgeon ergonomics and efficiency in ureteral and renal surgery are being applied in the clinical setting. Urologic surgery continues to be at the forefront of the revolution of robotic surgery with advancements in not only existing technology but also creation of entirely novel surgical systems.

  1. Added value of multiple versus single sessions of repetitive transcranial magnetic stimulation in predicting motor cortex stimulation efficacy for refractory neuropathic pain.

    Science.gov (United States)

    Pommier, Benjamin; Quesada, Charles; Fauchon, Camille; Nuti, Christophe; Vassal, François; Peyron, Roland

    2018-05-18

    OBJECTIVE Selection criteria for offering patients motor cortex stimulation (MCS) for refractory neuropathic pain are a critical topic of research. A single session of repetitive transcranial magnetic stimulation (rTMS) has been advocated for selecting MCS candidates, but it has a low negative predictive value. Here the authors investigated whether multiple rTMS sessions would more accurately predict MCS efficacy. METHODS Patients included in this longitudinal study could access MCS after at least four rTMS sessions performed 3-4 weeks apart. The positive (PPV) and negative (NPV) predictive values of the four rTMS sessions and the correlation between the analgesic effects of the two treatments were assessed. RESULTS Twelve MCS patients underwent an average of 15.9 rTMS sessions prior to surgery; nine of the patients were rTMS responders. Postoperative follow-up was 57.8 ± 15.6 months (mean ± standard deviation). Mean percentage of pain relief (%R) was 21% and 40% after the first and fourth rTMS sessions, respectively. The corresponding mean durations of pain relief were respectively 2.4 and 12.9 days. A cumulative effect of the rTMS sessions was observed on both %R and duration of pain relief (p < 0.01). The %R value obtained with MCS was 35% after 6 months and 43% at the last follow-up. Both the PPV and NPV of rTMS were 100% after the fourth rTMS session (p = 0.0045). A significant correlation was found between %R or duration of pain relief after the fourth rTMS session and %R at the last MCS follow-up (R 2 = 0.83, p = 0.0003). CONCLUSIONS Four rTMS sessions predicted MCS efficacy better than a single session in neuropathic pain patients. Taking into account the cumulative effects of rTMS, the authors found a high-level correlation between the analgesic effects of rTMS and MCS.

  2. Systems and Algorithms for Automated Collaborative Observation Using Networked Robotic Cameras

    Science.gov (United States)

    Xu, Yiliang

    2011-01-01

    The development of telerobotic systems has evolved from Single Operator Single Robot (SOSR) systems to Multiple Operator Multiple Robot (MOMR) systems. The relationship between human operators and robots follows the master-slave control architecture and the requests for controlling robot actuation are completely generated by human operators. …

  3. Preliminary experience with frameless stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Buatti, John M.; Bova, Francis J.; Friedman, William A.; Meeks, Sanford L.; Marcus, Robert B.; Mickle, J. Parker; Ellis, Thomas L.; Mendenhall, William M.

    1998-01-01

    Purpose: To report initial clinical experience with a novel high-precision stereotactic radiotherapy system. Methods and Materials: Sixty patients ranging in age from 2 to 82 years received a total of 1426 treatments with the University of Florida frameless stereotactic radiotherapy system. Of the total, 39 (65%) were treated with stereotactic radiotherapy (SRT) alone, and 21 (35%) received SRT as a component of radiotherapy. Pathologic diagnoses included meningiomas (15 patients), low-grade astrocytomas (11 patients), germinomas (9 patients), and craniopharyngiomas (5 patients). The technique was used as means of dose escalation in 11 patients (18%) with aggressive tumors. Treatment reproducibility was measured by comparing bite plate positioning registered by infrared light-emitting diodes (IRLEDs) with the stereotactic radiosurgery reference system, and with measurements from each treatment arc for the 1426 daily treatments (5808 positions). We chose 0.3 mm vector translation error and 0.3 deg. rotation about each axis as the maximum tolerated misalignment before treating each arc. Results: With a mean follow-up of 11 months, 3 patients had recurrence of malignant disease. Acute side effects were minimal. Of 11 patients with low grade astrocytomas, 4 (36%) had cerebral edema and increased enhancement on MR scans in the first year, and 2 required steroids. All had resolution and marked tumor involution on follow-up imaging. Bite plate reproducibility was as follows. Translational errors: anterior-posterior, 0.01 ± 0.10; lateral, 0.02 ± 0.07; axial, 0.01 ± 0.10. Rotational errors (degrees): anterior-posterior, 0.00 ± 0.03; lateral, 0.00 ± 0.06; axial, 0.01 ± 0.04. No patient treatment was delivered beyond the maximum tolerated misalignment. Daily treatment was delivered in approximately 15 min per patient. Conclusion: Our initial experience with stereotactic radiotherapy using the infrared camera guidance system was good. Patient selection and treatment

  4. Single-Grasp Object Classification and Feature Extraction with Simple Robot Hands and Tactile Sensors.

    Science.gov (United States)

    Spiers, Adam J; Liarokapis, Minas V; Calli, Berk; Dollar, Aaron M

    2016-01-01

    Classical robotic approaches to tactile object identification often involve rigid mechanical grippers, dense sensor arrays, and exploratory procedures (EPs). Though EPs are a natural method for humans to acquire object information, evidence also exists for meaningful tactile property inference from brief, non-exploratory motions (a 'haptic glance'). In this work, we implement tactile object identification and feature extraction techniques on data acquired during a single, unplanned grasp with a simple, underactuated robot hand equipped with inexpensive barometric pressure sensors. Our methodology utilizes two cooperating schemes based on an advanced machine learning technique (random forests) and parametric methods that estimate object properties. The available data is limited to actuator positions (one per two link finger) and force sensors values (eight per finger). The schemes are able to work both independently and collaboratively, depending on the task scenario. When collaborating, the results of each method contribute to the other, improving the overall result in a synergistic fashion. Unlike prior work, the proposed approach does not require object exploration, re-grasping, grasp-release, or force modulation and works for arbitrary object start positions and orientations. Due to these factors, the technique may be integrated into practical robotic grasping scenarios without adding time or manipulation overheads.

  5. Frameless image registration of X-ray CT and SPECT by volume matching

    International Nuclear Information System (INIS)

    Tanaka, Yuko; Kihara, Tomohiko; Yui, Nobuharu; Kinoshita, Fujimi; Kamimura, Yoshitsugu; Yamada, Yoshifumi.

    1998-01-01

    Image registration of functional (SPECT) and morphological (X-ray CT/MRI) images is studied in order to improve the accuracy and the quantity of the image diagnosis. We have developed a new frameless registration method of X-ray CT and SPECT image using transmission CT image acquired for absorption correction of SPECT images. This is the automated registration method and calculates the transformation matrix between the two coordinate systems of image data by the optimization method. This registration method is based on the similar physical property of X-ray CT and transmission CT image. The three-dimensional overlap of the bone region is used for image matching. We verified by a phantom test that it can provide a good result of within two millimeters error. We also evaluated visually the accuracy of the registration method by the application study of SPECT, X-ray CT, and transmission CT head images. This method can be carried out accurately without any frames. We expect this registration method becomes an efficient tool to improve image diagnosis and medical treatment. (author)

  6. Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS 1994), volume 1

    Science.gov (United States)

    Erickson, Jon D. (Editor)

    1994-01-01

    The AIAA/NASA Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS '94) was originally proposed because of the strong belief that America's problems of global economic competitiveness and job creation and preservation can partly be solved by the use of intelligent robotics, which are also required for human space exploration missions. Individual sessions addressed nuclear industry, agile manufacturing, security/building monitoring, on-orbit applications, vision and sensing technologies, situated control and low-level control, robotic systems architecture, environmental restoration and waste management, robotic remanufacturing, and healthcare applications.

  7. The development of an adaptive upper-limb stroke rehabilitation robotic system

    Science.gov (United States)

    2011-01-01

    Background Stroke is the primary cause of adult disability. To support this large population in recovery, robotic technologies are being developed to assist in the delivery of rehabilitation. This paper presents an automated system for a rehabilitation robotic device that guides stroke patients through an upper-limb reaching task. The system uses a decision theoretic model (a partially observable Markov decision process, or POMDP) as its primary engine for decision making. The POMDP allows the system to automatically modify exercise parameters to account for the specific needs and abilities of different individuals, and to use these parameters to take appropriate decisions about stroke rehabilitation exercises. Methods The performance of the system was evaluated by comparing the decisions made by the system with those of a human therapist. A single patient participant was paired up with a therapist participant for the duration of the study, for a total of six sessions. Each session was an hour long and occurred three times a week for two weeks. During each session, three steps were followed: (A) after the system made a decision, the therapist either agreed or disagreed with the decision made; (B) the researcher had the device execute the decision made by the therapist; (C) the patient then performed the reaching exercise. These parts were repeated in the order of A-B-C until the end of the session. Qualitative and quantitative question were asked at the end of each session and at the completion of the study for both participants. Results Overall, the therapist agreed with the system decisions approximately 65% of the time. In general, the therapist thought the system decisions were believable and could envision this system being used in both a clinical and home setting. The patient was satisfied with the system and would use this system as his/her primary method of rehabilitation. Conclusions The data collected in this study can only be used to provide insight into

  8. SU-F-T-576: Characterization of Two Dimensional Liquid Filled Detector Array(SRS 1000) in High Precision Cyberknife Robotic Radiosurgery System

    International Nuclear Information System (INIS)

    Muthukumaran, M; Manigandan, D; Murali, V; Chitra, S; Ganapathy, K; Vikraman, S

    2016-01-01

    Purpose: The aim of the study is to characterize a two dimensional liquid filled detector array SRS 1000 for routine QA in Cyberknife Robotic Radiosurgery system. Methods: SRS 1000 consists of 977 liquid filled ionization chambers and is designed to be used in small field SRS/SBRT techniques. The detector array has got two different spacial resolutions. Till field size of 5.5×5.5 cm the spacial resolution is 2.5mm (center to center) and after that till field size of 11 × 11 cm the spacial resolution is 5mm. The size of the detector is 2.3 × 2.3 0.5 mm with a volume of .003 cc. The CyberKnife Robotic Radiosurgery System is a frameless stereotactic radiosurgery system in which a LINAC is mounted on a robotic manipulator to deliver beams with a high sub millimeter accuracy. The SRS 1000’s MU linearity, stability, reproducibility in Cyberknife Robotic Radiosurgery system was measured and investigated. The output factors for fixed and IRIS collimators for all available collimators (5mm till 60 mm) was measured and compared with the measurement done with PTW pin-point ionization chamber. Results: The MU linearity was measured from 2 MU till 1000 MU for doserates in the range of 700cGy/min – 780 cGy/min and compared with the measurement done with pin point chamber The MU linearity was with in 3%. The detector arrays stability and reproducibility was excellent and was withinin 0.5% The measured output factors showed an agreement of better than 2% when compared with the measurements with pinpoint chamber for both fixed and IRIS collimators with all available field sizes. Conclusion: We have characterised PTW 1000 SRS as a precise and accurate measurement tool for routine QA of Cyberknife Robotic radiosurgery system.

  9. SU-F-T-576: Characterization of Two Dimensional Liquid Filled Detector Array(SRS 1000) in High Precision Cyberknife Robotic Radiosurgery System

    Energy Technology Data Exchange (ETDEWEB)

    Muthukumaran, M [Apollo Speciality Hospitals, Chennai, Tamil Nadu (India); Manigandan, D [Fortis Cancer Institute, Mohali, Punjab (India); Murali, V; Chitra, S; Ganapathy, K [Apollo Speciality Hospital, Chennai, Tamil Nadu (India); Vikraman, S [Jaypee Hospital – Radiation Onology, Noida, UTTAR PRADESH (India)

    2016-06-15

    Purpose: The aim of the study is to characterize a two dimensional liquid filled detector array SRS 1000 for routine QA in Cyberknife Robotic Radiosurgery system. Methods: SRS 1000 consists of 977 liquid filled ionization chambers and is designed to be used in small field SRS/SBRT techniques. The detector array has got two different spacial resolutions. Till field size of 5.5×5.5 cm the spacial resolution is 2.5mm (center to center) and after that till field size of 11 × 11 cm the spacial resolution is 5mm. The size of the detector is 2.3 × 2.3 0.5 mm with a volume of .003 cc. The CyberKnife Robotic Radiosurgery System is a frameless stereotactic radiosurgery system in which a LINAC is mounted on a robotic manipulator to deliver beams with a high sub millimeter accuracy. The SRS 1000’s MU linearity, stability, reproducibility in Cyberknife Robotic Radiosurgery system was measured and investigated. The output factors for fixed and IRIS collimators for all available collimators (5mm till 60 mm) was measured and compared with the measurement done with PTW pin-point ionization chamber. Results: The MU linearity was measured from 2 MU till 1000 MU for doserates in the range of 700cGy/min – 780 cGy/min and compared with the measurement done with pin point chamber The MU linearity was with in 3%. The detector arrays stability and reproducibility was excellent and was withinin 0.5% The measured output factors showed an agreement of better than 2% when compared with the measurements with pinpoint chamber for both fixed and IRIS collimators with all available field sizes. Conclusion: We have characterised PTW 1000 SRS as a precise and accurate measurement tool for routine QA of Cyberknife Robotic radiosurgery system.

  10. Hand function recovery in chronic stroke with HEXORR robotic training: A case series.

    Science.gov (United States)

    Godfrey, Sasha Blue; Schabowsky, Christopher N; Holley, Rahsaan J; Lum, Peter S

    2010-01-01

    After a stroke, many survivors have impaired motor function. Robotic rehabilitation techniques have emerged to provide a repetitive, activity-based therapy at potentially lower cost than conventional methods. Many patients exhibit intrinsic resistance to hand extension in the form of spasticity and/or hypertonia. We have developed a therapy program using the Hand Exoskeleton Rehabilitation Robot (HEXORR) that is capable of compensating for tone to assist patients in opening the paretic hand. The system can move the user's hand, assist movement, allow free movement, or restrict movement to allow static force production. These options combine with an interactive virtual reality game to enhance user motivation. Four chronic stroke subjects received 18 sessions of robot therapy as well as pre and post evaluation sessions. All subjects showed at least modest gains in active finger range of motion (ROM) measured in the robot, and all but one subject had gains in active thumb ROM. Most of these gains carried over to ROM gains outside of the robot. The clinical measures (Fugl-Meyer, Box-and-Blocks) showed clear improvements in two subjects and mixed results in two subjects. Overall, the robot therapy was well received by subjects and shows promising results. We conclude HEXORR therapy is best suited for patients with mild-moderate tone and at least minimal extension.

  11. Results of Combined, Single-Session Arthrocentesis and Dextrose Prolotherapy for Symptomatic Temporomandibular Joint Syndrome: A Case Series.

    Science.gov (United States)

    Cezairli, Burak; Sivrikaya, Efe Can; Omezli, Mehmet Melih; Ayranci, Ferhat; Seyhan Cezairli, Neslihan

    2017-10-01

    Arthrocentesis and prolotherapy are nonsurgical treatments for temporomandibular joint (TMJ) diseases. This study aimed to evaluate the treatment of hypermobility, pain, and displacement of the TMJ by consecutively performing arthrocentesis and prolotherapy in the same session. In this study, 10 adults with disc displacement and painful, hypermobile TMJ were selected. Arthrocentesis and prolotherapy were consecutively performed using a 30% dextrose solution that was simultaneously injected into five areas: posterior disc attachment, superior joint space, superior and inferior capsular attachments, and stylomandibular ligament. Paired t-test, McNemar test, and chi-square test were used to assess the maximum mouth opening, clicking sounds, pain, and subluxation of the TMJ. Patients with rheumatoid arthritis and parafunctional habits such as teeth clenching and grinding and biting of the cheeks or any other objects and those who had undergone surgery were excluded from this study. A total of 10 participants (36.20 ± 7.06 years old, 7 women and 3 men) received a single treatment session of combined arthrocentesis and prolotherapy at the same office visit. Subluxation frequency and pain significantly decreased after the first week of treatment (p < 0.05). Subluxation also decreased at the 3-month follow-up (p < 0.05). Clicking sound values did not significantly change at any of the follow-up time points. Maximum mouth opening values decreased at all follow-up time points compared to baseline (p < 0.05). A single session of combined arthrocentesis and prolotherapy to treat symptomatic TMJ safely and significantly improved the subluxation and pain after 1 week and subluxation after 3 months compared to baseline status. The maximum mouth opening significantly decreased at all follow-up time points. Future studies assessing multiple treatment sessions are warranted.

  12. Robot training of upper limb in multiple sclerosis: comparing protocols with or without manipulative task components.

    Science.gov (United States)

    Carpinella, Ilaria; Cattaneo, Davide; Bertoni, Rita; Ferrarin, Maurizio

    2012-05-01

    In this pilot study, we compared two protocols for robot-based rehabilitation of upper limb in multiple sclerosis (MS): a protocol involving reaching tasks (RT) requiring arm transport only and a protocol requiring both objects' reaching and manipulation (RMT). Twenty-two MS subjects were assigned to RT or RMT group. Both protocols consisted of eight sessions. During RT training, subjects moved the handle of a planar robotic manipulandum toward circular targets displayed on a screen. RMT protocol required patients to reach and manipulate real objects, by moving the robotic arm equipped with a handle which left the hand free for distal tasks. In both trainings, the robot generated resistive and perturbing forces. Subjects were evaluated with clinical and instrumental tests. The results confirmed that MS patients maintained the ability to adapt to the robot-generated forces and that the rate of motor learning increased across sessions. Robot-therapy significantly reduced arm tremor and improved arm kinematics and functional ability. Compared to RT, RMT protocol induced a significantly larger improvement in movements involving grasp (improvement in Grasp ARAT sub-score: RMT 77.4%, RT 29.5%, p=0.035) but not precision grip. Future studies are needed to evaluate if longer trainings and the use of robotic handles would significantly improve also fine manipulation.

  13. Future of robotic surgery in urology.

    Science.gov (United States)

    Rassweiler, Jens J; Autorino, Riccardo; Klein, Jan; Mottrie, Alex; Goezen, Ali Serdar; Stolzenburg, Jens-Uwe; Rha, Koon H; Schurr, Marc; Kaouk, Jihad; Patel, Vipul; Dasgupta, Prokar; Liatsikos, Evangelos

    2017-12-01

    To provide a comprehensive overview of the current status of the field of robotic systems for urological surgery and discuss future perspectives. A non-systematic literature review was performed using PubMed/Medline search electronic engines. Existing patents for robotic devices were researched using the Google search engine. Findings were also critically analysed taking into account the personal experience of the authors. The relevant patents for the first generation of the da Vinci platform will expire in 2019. New robotic systems are coming onto the stage. These can be classified according to type of console, arrangement of robotic arms, handles and instruments, and other specific features (haptic feedback, eye-tracking). The Telelap ALF-X robot uses an open console with eye-tracking, laparoscopy-like handles with haptic feedback, and arms mounted on separate carts; first clinical trials with this system were reported in 2016. The Medtronic robot provides an open console using three-dimensional high-definition video technology and three arms. The Avatera robot features a closed console with microscope-like oculars, four arms arranged on one cart, and 5-mm instruments with six degrees of freedom. The REVO-I consists of an open console and a four-arm arrangement on one cart; the first experiments with this system were published in 2016. Medicaroid uses a semi-open console and three robot arms attached to the operating table. Clinical trials of the SP 1098-platform using the da Vinci Xi for console-based single-port surgery were reported in 2015. The SPORT robot has been tested in animal experiments for single-port surgery. The SurgiBot represents a bedside solution for single-port surgery providing flexible tube-guided instruments. The Avicenna Roboflex has been developed for robotic flexible ureteroscopy, with promising early clinical results. Several console-based robots for laparoscopic multi- and single-port surgery are expected to come to market within the

  14. Automatic Specialization of Modular Robot Limbs

    Data.gov (United States)

    National Aeronautics and Space Administration — Modular robotic systems have the potential to be adapted to varying tasks using a single platform and enable customizable robots to be developed faster and more...

  15. Concept design of robotic modules for needlescopic surgery.

    Science.gov (United States)

    Sen, Shin; Harada, Kanako; Hewitt, Zackary; Susilo, Ekawahyu; Kobayashi, Etsuko; Sakuma, Ichiro

    2017-08-01

    Many minimally invasive surgical procedures and assisting robotic systems have been developed to further minimize the number and size of incisions in the body surface. This paper presents a new idea combining the advantages of modular robotic surgery, single incision laparoscopic surgery and needlescopic surgery. In the proposed concept, modules carrying therapeutic or diagnostic tools are inserted in the abdominal cavity from the navel as in single incision laparoscopic surgery and assembled to 3-mm needle shafts penetrating the abdominal wall. A three degree-of-freedom robotic module measuring 16 mm in diameter and 51 mm in length was designed and prototyped. The performance of the three connected robotic modules was evaluated. A new idea of modular robotic surgery was proposed, and demonstrated by prototyping a 3-DOF robotic module. The performance of the connected robotic modules was evaluated, and the challenges and future work were summarized.

  16. Towards Coordination and Control of Multi-robot Systems

    DEFF Research Database (Denmark)

    Quottrup, Michael Melholt

    This thesis focuses on control and coordination of mobile multi-robot systems (MRS). MRS can often deal with tasks that are difficult to be accomplished by a single robot. One of the challenges is the need to control, coordinate and synchronize the operation of several robots to perform some...... specified task. This calls for new strategies and methods which allow the desired system behavior to be specified in a formal and succinct way. Two different frameworks for the coordination and control of MRS have been investigated. Framework I - A network of robots is modeled as a network of multi...... a requirement specification in Computational Tree Logic (CTL) for a network of robots. The result is a set of motion plans for the robots which satisfy the specification. Framework II - A framework for controller synthesis for a single robot with respect to requirement specification in Linear-time Temporal...

  17. Robotic transthoracic esophagectomy.

    Science.gov (United States)

    Puntambekar, Shailesh; Kenawadekar, Rahul; Kumar, Sanjay; Joshi, Saurabh; Agarwal, Geetanjali; Reddy, Sunil; Mallik, Jainul

    2015-04-23

    We have initially published our experience with the robotic transthoracic esophagectomy in 32 patients from a single institute. The present paper is the extension of our experience with robotic system and to best of our knowledge this represents the largest series of robotic transthoracic esophagectomy worldwide. The objective of this study was to investigate the feasibility of the robotic transthoracic esophagectomy for esophageal cancer in a series of patients from a single institute. A retrospective review of medical records was conducted for 83 esophageal cancer patients who underwent robotic esophagectomy at our institute from December 2009 to December 2012. All patients underwent a thorough clinical examination and pre-operative investigations. All patients underwent robotic esophageal mobilization. En-bloc dissection with lymphadenectomy was performed in all cases with preservation of Azygous vein. Relevant data were gathered from medical records. The study population comprised of 50 men and 33 women with mean age of 59.18 years. The mean operative time was 204.94 mins (range 180 to 300). The mean blood loss was 86.75 ml (range 50 to 200). The mean number of lymph node yield was 18. 36 (range 13 to 24). None of the patient required conversion. The mean ICU stay and hospital stay was 1 day (range 1 to 3) and 10.37 days (range 10 to 13), respectively. A total of 16 (19.28%) complication were reported in these patents. Commonly reported complication included dysphagia, pleural effusion and anastomotic leak. No treatment related mortality was observed. After a median follow-up period of 10 months, 66 patients (79.52%) survived with disease free stage. We found robot-assisted thoracoscopic esophagectomy feasible in cases of esophageal cancer. The procedure allowed precise en-bloc dissection with lymphadenectomy in mediastinum with reduced operative time, blood loss and complications.

  18. Development of an in vivo visual robot system with a magnetic anchoring mechanism and a lens cleaning mechanism for laparoendoscopic single-site surgery (LESS).

    Science.gov (United States)

    Feng, Haibo; Dong, Dinghui; Ma, Tengfei; Zhuang, Jinlei; Fu, Yili; Lv, Yi; Li, Liyi

    2017-12-01

    Surgical robot systems which can significantly improve surgical procedures have been widely used in laparoendoscopic single-site surgery (LESS). For a relative complex surgical procedure, the development of an in vivo visual robot system for LESS can effectively improve the visualization for surgical robot systems. In this work, an in vivo visual robot system with a new mechanism for LESS was investigated. A finite element method (FEM) analysis was carried out to ensure the safety of the in vivo visual robot during the movement, which was the most important concern for surgical purposes. A master-slave control strategy was adopted, in which the control model was established by off-line experiments. The in vivo visual robot system was verified by using a phantom box. The experiment results show that the robot system can successfully realize the expected functionalities and meet the demands of LESS. The experiment results indicate that the in vivo visual robot with high manipulability has great potential in clinical application. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Atypical autonomic dysreflexia during robotic-assisted body weight supported treadmill training in an individual with motor incomplete spinal cord injury.

    Science.gov (United States)

    Geigle, Paula R; Frye, Sara Kate; Perreault, John; Scott, William H; Gorman, Peter H

    2013-03-01

    A 41-year-old man with a history of C6 American Spinal Injury Association (ASIA) Impairment Scale (AIS) C spinal cord injury (SCI), enrolled in an Institutional Review Board (IRB)-approved, robotic-assisted body weight-supported treadmill training (BWSTT), and aquatic exercise research protocol developed asymptomatic autonomic dysreflexia (AD) during training. Little information is available regarding the relationship of robotic-assisted BWSTT and AD. After successfully completing 36 sessions of aquatic exercise, he reported exertional fatigue during his 10th Lokomat intervention and exhibited asymptomatic or silent AD during this and the three subsequent BWSTT sessions. Standard facilitators of AD were assessed and no obvious irritant identified other than the actual physical exertion and positioning required during robotic-assisted BWSTT. Increased awareness of potential silent AD presenting during robotic assisted BWSTT training for individuals with motor incomplete SCI is required as in this case AD clinical signs were not concurrent with occurrence. Frequent vital sign assessment before, during, and at conclusion of each BWSTT session is strongly recommended.

  20. Error reporting from the da Vinci surgical system in robotic surgery: A Canadian multispecialty experience at a single academic centre.

    Science.gov (United States)

    Rajih, Emad; Tholomier, Côme; Cormier, Beatrice; Samouëlian, Vanessa; Warkus, Thomas; Liberman, Moishe; Widmer, Hugues; Lattouf, Jean-Baptiste; Alenizi, Abdullah M; Meskawi, Malek; Valdivieso, Roger; Hueber, Pierre-Alain; Karakewicz, Pierre I; El-Hakim, Assaad; Zorn, Kevin C

    2017-05-01

    The goal of the study is to evaluate and report on the third-generation da Vinci surgical (Si) system malfunctions. A total of 1228 robotic surgeries were performed between January 2012 and December 2015 at our academic centre. All cases were performed by using a single, dual console, four-arm, da Vinci Si robot system. The three specialties included urology, gynecology, and thoracic surgery. Studied outcomes included the robotic surgical error types, immediate consequences, and operative side effects. Error rate trend with time was also examined. Overall robotic malfunctions were documented on the da Vinci Si systems event log in 4.97% (61/1228) of the cases. The most common error was related to pressure sensors in the robotic arms indicating out of limit output. This recoverable fault was noted in 2.04% (25/1228) of cases. Other errors included unrecoverable electronic communication-related in 1.06% (13/1228) of cases, failed encoder error in 0.57% (7/1228), illuminator-related in 0.33% (4/1228), faulty switch in 0.24% (3/1228), battery-related failures in 0.24% (3/1228), and software/hardware error in 0.08% (1/1228) of cases. Surgical delay was reported only in one patient. No conversion to either open or laparoscopic occurred secondary to robotic malfunctions. In 2015, the incidence of robotic error rose to 1.71% (21/1228) from 0.81% (10/1228) in 2014. Robotic malfunction is not infrequent in the current era of robotic surgery in various surgical subspecialties, but rarely consequential. Their seldom occurrence does not seem to affect patient safety or surgical outcome.

  1. Rehabilitation robotics: pilot trial of a spatial extension for MIT-Manus

    Directory of Open Access Journals (Sweden)

    Krebs Hermano

    2004-10-01

    Full Text Available Abstract Background Previous results with the planar robot MIT-MANUS demonstrated positive benefits in trials with over 250 stroke patients. Consistent with motor learning, the positive effects did not generalize to other muscle groups or limb segments. Therefore we are designing a new class of robots to exercise other muscle groups or limb segments. This paper presents basic engineering aspects of a novel robotic module that extends our approach to anti-gravity movements out of the horizontal plane and a pilot study with 10 outpatients. Patients were trained during the initial six-weeks with the planar module (i.e., performance-based training limited to horizontal movements with gravity compensation. This training was followed by six-weeks of robotic therapy that focused on performing vertical arm movements against gravity. The 12-week protocol includes three one-hour robot therapy sessions per week (total 36 robot treatment sessions. Results Pilot study demonstrated that the protocol was safe and well tolerated with no patient presenting any adverse effect. Consistent with our past experience with persons with chronic strokes, there was a statistically significant reduction in tone measurement from admission to discharge of performance-based planar robot therapy and we have not observed increases in muscle tone or spasticity during the anti-gravity training protocol. Pilot results showed also a reduction in shoulder-elbow impairment following planar horizontal training. Furthermore, it suggested an additional reduction in shoulder-elbow impairment following the anti-gravity training. Conclusion Our clinical experiments have focused on a fundamental question of whether task specific robotic training influences brain recovery. To date several studies demonstrate that in mature and damaged nervous systems, nurture indeed has an effect on nature. The improved recovery is most pronounced in the trained limb segments. We have now embarked on

  2. Single-session percutaneous ethanol sclerotherapy in simple renal cysts in children: long-term follow-up

    Energy Technology Data Exchange (ETDEWEB)

    Akinci, Devrim; Gumus, Burcak; Ozkan, Orhan S.; Ozmen, Mustafa N.; Akhan, Okan [Hacettepe University School of Medicine, Department of Radiology, Ankara (Turkey)

    2005-02-01

    Simple renal cysts are rare in children and managed conservatively unless symptomatic. To demonstrate the efficacy and long-term results of single-session ethanol sclerotherapy in symptomatic simple renal cysts in children. Three simple renal cysts in three children (age 1, 5 and 16 years) were included in the study. Indications for treatment were flank pain (n=1), hypertension (n=1), and increasing cyst size and urinary tract infection (n=1). The mean follow-up period was 5.5 years (range 3-7 years). The procedures were performed with the guidance of US and fluoroscopy and under IV sedation. After the cystogram, 95% ethanol with a volume of 40% of the cyst volume (but not more than 100 ml) was used as the sclerosing agent. Two cysts disappeared completely, while the volume reduction was 99% for the third cyst at the end of the first year. CT demonstrated calcification of the cyst without an enhancing soft-tissue component in the third one 7 years after sclerotherapy. After the procedures, hypertension and pain resolved without any medication. There were no complications during the procedures or during follow-up. Cytological examination was unremarkable in all patients. Percutaneous treatment of symptomatic simple renal cysts in children with single-session ethanol sclerotherapy is a safe, effective and minimally invasive procedure. Calcification owing to sclerotherapy can be observed on follow-up. (orig.)

  3. Advantages of robotics in benign gynecologic surgery.

    Science.gov (United States)

    Truong, Mireille; Kim, Jin Hee; Scheib, Stacey; Patzkowsky, Kristin

    2016-08-01

    The purpose of this article is to review the literature and discuss the advantages of robotics in benign gynecologic surgery. Minimally invasive surgery has become the preferred route over abdominal surgery. The laparoscopic or robotic approach is recommended when vaginal surgery is not feasible. Thus far, robotic gynecologic surgery data have demonstrated feasibility, safety, and equivalent clinical outcomes in comparison with laparoscopy and better clinical outcomes compared with laparotomy. Robotics was developed to overcome challenges of laparoscopy and has led to technological advantages such as improved ergonomics, visualization with three-dimensional capabilities, dexterity and range of motion with instrument articulation, and tremor filtration. To date, applications of robotics in benign gynecology include hysterectomy, myomectomy, endometriosis surgery, sacrocolpopexy, adnexal surgery, tubal reanastomosis, and cerclage. Though further data are needed, robotics may provide additional benefits over other approaches in the obese patient population and in higher complexity cases. Challenges that arose in the earlier adoption stage such as the steep learning curve, costs, and operative times are becoming more optimized with greater experience, with implementation of robotics in high-volume centers and with improved training of surgeons and robotic teams. Robotic laparoendoscopic single-site surgery, albeit still in its infancy where technical advantages compared with laparoscopic single-site surgery are still unclear, may provide a cost-reducing option compared with multiport robotics. The cost may even approach that of laparoscopy while still conferring similar perioperative outcomes. Advances in robotic technology such as the single-site platform and telesurgery, have the potential to revolutionize the field of minimally invasive gynecologic surgery. Higher quality evidence is needed to determine the advantages and disadvantages of robotic surgery in benign

  4. Auditory Cortex tACS and tRNS for Tinnitus: Single versus Multiple Sessions

    Directory of Open Access Journals (Sweden)

    Laura Claes

    2014-01-01

    Full Text Available Tinnitus is the perception of a sound in the absence of an external acoustic source, which often exerts a significant impact on the quality of life. Currently there is evidence that neuroplastic changes in both neural pathways are involved in the generation and maintaining of tinnitus. Neuromodulation has been suggested to interfere with these neuroplastic alterations. In this study we aimed to compare the effect of two upcoming forms of transcranial electrical neuromodulation: alternating current stimulation (tACS and random noise stimulation (tRNS, both applied on the auditory cortex. A database with 228 patients with chronic tinnitus who underwent noninvasive neuromodulation was retrospectively analyzed. The results of this study show that a single session of tRNS induces a significant suppressive effect on tinnitus loudness and distress, in contrast to tACS. Multiple sessions of tRNS augment the suppressive effect on tinnitus loudness but have no effect on tinnitus distress. In conclusion this preliminary study shows a possibly beneficial effect of tRNS on tinnitus and can be a motivation for future randomized placebo-controlled clinical studies with auditory tRNS for tinnitus. Auditory alpha-modulated tACS does not seem to be contributing to the treatment of tinnitus.

  5. A Single RF Emitter-Based Indoor Navigation Method for Autonomous Service Robots.

    Science.gov (United States)

    Sherwin, Tyrone; Easte, Mikala; Chen, Andrew Tzer-Yeu; Wang, Kevin I-Kai; Dai, Wenbin

    2018-02-14

    Location-aware services are one of the key elements of modern intelligent applications. Numerous real-world applications such as factory automation, indoor delivery, and even search and rescue scenarios require autonomous robots to have the ability to navigate in an unknown environment and reach mobile targets with minimal or no prior infrastructure deployment. This research investigates and proposes a novel approach of dynamic target localisation using a single RF emitter, which will be used as the basis of allowing autonomous robots to navigate towards and reach a target. Through the use of multiple directional antennae, Received Signal Strength (RSS) is compared to determine the most probable direction of the targeted emitter, which is combined with the distance estimates to improve the localisation performance. The accuracy of the position estimate is further improved using a particle filter to mitigate the fluctuating nature of real-time RSS data. Based on the direction information, a motion control algorithm is proposed, using Simultaneous Localisation and Mapping (SLAM) and A* path planning to enable navigation through unknown complex environments. A number of navigation scenarios were developed in the context of factory automation applications to demonstrate and evaluate the functionality and performance of the proposed system.

  6. A Single RF Emitter-Based Indoor Navigation Method for Autonomous Service Robots

    Directory of Open Access Journals (Sweden)

    Tyrone Sherwin

    2018-02-01

    Full Text Available Location-aware services are one of the key elements of modern intelligent applications. Numerous real-world applications such as factory automation, indoor delivery, and even search and rescue scenarios require autonomous robots to have the ability to navigate in an unknown environment and reach mobile targets with minimal or no prior infrastructure deployment. This research investigates and proposes a novel approach of dynamic target localisation using a single RF emitter, which will be used as the basis of allowing autonomous robots to navigate towards and reach a target. Through the use of multiple directional antennae, Received Signal Strength (RSS is compared to determine the most probable direction of the targeted emitter, which is combined with the distance estimates to improve the localisation performance. The accuracy of the position estimate is further improved using a particle filter to mitigate the fluctuating nature of real-time RSS data. Based on the direction information, a motion control algorithm is proposed, using Simultaneous Localisation and Mapping (SLAM and A* path planning to enable navigation through unknown complex environments. A number of navigation scenarios were developed in the context of factory automation applications to demonstrate and evaluate the functionality and performance of the proposed system.

  7. The Effect of Transcranial Direct Current Stimulation (tDCS) Electrode Size and Current Intensity on Motor Cortical Excitability: Evidence From Single and Repeated Sessions.

    Science.gov (United States)

    Ho, Kerrie-Anne; Taylor, Janet L; Chew, Taariq; Gálvez, Verònica; Alonzo, Angelo; Bai, Siwei; Dokos, Socrates; Loo, Colleen K

    2016-01-01

    Current density is considered an important factor in determining the outcomes of tDCS, and is determined by the current intensity and electrode size. Previous studies examining the effect of these parameters on motor cortical excitability with small sample sizes reported mixed results. This study examined the effect of current intensity (1 mA, 2 mA) and electrode size (16 cm(2), 35 cm(2)) on motor cortical excitability over single and repeated tDCS sessions. Data from seven studies in 89 healthy participants were pooled for analysis. Single-session data were analyzed using mixed effects models and repeated-session data were analyzed using mixed design analyses of variance. Computational modeling was used to examine the electric field generated. The magnitude of increases in excitability after anodal tDCS was modest. For single-session tDCS, the 35 cm(2) electrodes produced greater increases in cortical excitability compared to the 16 cm(2) electrodes. There were no differences in the magnitude of cortical excitation produced by 1 mA and 2 mA tDCS. The repeated-sessions data also showed that there were greater increases in excitability with the 35 cm(2) electrodes. Further, repeated sessions of tDCS with the 35 cm(2) electrodes resulted in a cumulative increase in cortical excitability. Computational modeling predicted higher electric field at the motor hotspot for the 35 cm(2) electrodes. 2 mA tDCS does not necessarily produce larger effects than 1 mA tDCS in healthy participants. Careful consideration should be given to the exact positioning, size and orientation of tDCS electrodes relative to cortical regions. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Gathering asychronous mobile robots with inaccurate compasses

    OpenAIRE

    Souissi, Samia; Defago, Xavier; Yamashita, Masafumi

    2006-01-01

    This paper considers a system of asynchronous autonomous mobile robots that can move freely in a twodimensional plane with no agreement on a common coordinate system. Starting from any initial configuration, the robots are required to eventually gather at a single point, not fixed in advance (gathering problem). Prior work has shown that gathering oblivious (i.e., stateless) robots cannot be achieved deterministically without additional assumptions. In particular, if robots can detect multipl...

  9. Effect of Robot-Assisted Game Training on Upper Extremity Function in Stroke Patients

    Science.gov (United States)

    2017-01-01

    Objective To determine the effects of combining robot-assisted game training with conventional upper extremity rehabilitation training (RCT) on motor and daily functions in comparison with conventional upper extremity rehabilitation training (OCT) in stroke patients. Methods Subjects were eligible if they were able to perform the robot-assisted game training and were divided randomly into a RCT and an OCT group. The RCT group performed one daily session of 30 minutes of robot-assisted game training with a rehabilitation robot, plus one daily session of 30 minutes of conventional rehabilitation training, 5 days a week for 2 weeks. The OCT group performed two daily sessions of 30 minutes of conventional rehabilitation training. The effects of training were measured by a Manual Function Test (MFT), Manual Muscle Test (MMT), Korean version of the Modified Barthel Index (K-MBI) and a questionnaire about satisfaction with training. These measurements were taken before and after the 2-week training. Results Both groups contained 25 subjects. After training, both groups showed significant improvements in motor and daily functions measured by MFT, MMT, and K-MBI compared to the baseline. Both groups demonstrated similar training effects, except motor power of wrist flexion. Patients in the RCT group were more satisfied than those in the OCT group. Conclusion There were no significant differences in changes in most of the motor and daily functions between the two types of training. However, patients in the RCT group were more satisfied than those in the OCT group. Therefore, RCT could be a useful upper extremity rehabilitation training method. PMID:28971037

  10. Effect of Robot-Assisted Game Training on Upper Extremity Function in Stroke Patients.

    Science.gov (United States)

    Lee, Kyeong Woo; Kim, Sang Beom; Lee, Jong Hwa; Lee, Sook Joung; Kim, Jin Wan

    2017-08-01

    To determine the effects of combining robot-assisted game training with conventional upper extremity rehabilitation training (RCT) on motor and daily functions in comparison with conventional upper extremity rehabilitation training (OCT) in stroke patients. Subjects were eligible if they were able to perform the robot-assisted game training and were divided randomly into a RCT and an OCT group. The RCT group performed one daily session of 30 minutes of robot-assisted game training with a rehabilitation robot, plus one daily session of 30 minutes of conventional rehabilitation training, 5 days a week for 2 weeks. The OCT group performed two daily sessions of 30 minutes of conventional rehabilitation training. The effects of training were measured by a Manual Function Test (MFT), Manual Muscle Test (MMT), Korean version of the Modified Barthel Index (K-MBI) and a questionnaire about satisfaction with training. These measurements were taken before and after the 2-week training. Both groups contained 25 subjects. After training, both groups showed significant improvements in motor and daily functions measured by MFT, MMT, and K-MBI compared to the baseline. Both groups demonstrated similar training effects, except motor power of wrist flexion. Patients in the RCT group were more satisfied than those in the OCT group. There were no significant differences in changes in most of the motor and daily functions between the two types of training. However, patients in the RCT group were more satisfied than those in the OCT group. Therefore, RCT could be a useful upper extremity rehabilitation training method.

  11. Multiprocessor development for robot control

    International Nuclear Information System (INIS)

    Lee, Jong Min; Kim, Seung Ho; Hwang, Suk Yeoung; Sohn, Surg Won; Kim, Byung Soo; Kim, Chang Hoi; Lee, Yong Bum; Kim, Woong Ki

    1988-12-01

    The object of this project is to develop a multiprocessor system which is essential to robot technology. A multiprocessor system interconnecting many single board computer is much faster and flexible than a single processor. The developed multiprocessor will be used to control nuclear mobile robot, so a loosely coupled system is adopted as a robot controller. A total configuration of controller is divided into three main parts in related with its function. It is consisted of supervisory control part, functional control part, remote control part. The designed control system is to be expanded easily for further use with a modular architecture, so the functional independency within sub-systems can be obtained throughout the system structure. Electromagnetic interference affecting to the control system is minimized by using optical fiber as communication media between robot and control system. System performances is enhanced not only by using distributed architecture in hardware, but by adopting real-time, multi-tasking operating system in software. The iRMX86 OS is used and reconfigured for real-time, multi-tasking operation. RS-485 serial communication protocol is used between functional control part and remote control part. Since the developed multiprocessor control system is an essential and fundamental technology for artificial intelligent robot, the result of this project can be applied directly to nuclear mobile robot. (Author)

  12. Contrasting Web Robot and Human Behaviors with Network Models

    OpenAIRE

    Brown, Kyle; Doran, Derek

    2018-01-01

    The web graph is a commonly-used network representation of the hyperlink structure of a website. A network of similar structure to the web graph, which we call the session graph has properties that reflect the browsing habits of the agents in the web server logs. In this paper, we apply session graphs to compare the activity of humans against web robots or crawlers. Understanding these properties will enable us to improve models of HTTP traffic, which can be used to predict and generate reali...

  13. Long-term results of single-session percutaneous drainage and ethanol sclerotherapy in simple renal cysts

    Energy Technology Data Exchange (ETDEWEB)

    Akinci, Devrim [Department of Radiology, School of Medicine, Hacettepe University, Shhiye, Ankara TR-06100 (Turkey)]. E-mail: akincid@hotmail.com; Akhan, Okan [Department of Radiology, School of Medicine, Hacettepe University, Shhiye, Ankara TR-06100 (Turkey); Ozmen, Mustafa [Department of Radiology, School of Medicine, Hacettepe University, Shhiye, Ankara TR-06100 (Turkey); Gumus, Burcak [Department of Radiology, School of Medicine, Hacettepe University, Shhiye, Ankara TR-06100 (Turkey); Ozkan, Orhan [Department of Radiology, School of Medicine, Hacettepe University, Shhiye, Ankara TR-06100 (Turkey); Karcaaltincaba, Musturay [Department of Radiology, School of Medicine, Hacettepe University, Shhiye, Ankara TR-06100 (Turkey); Cil, Barbaros [Department of Radiology, School of Medicine, Hacettepe University, Shhiye, Ankara TR-06100 (Turkey); Haliloglu, Mithat [Department of Radiology, School of Medicine, Hacettepe University, Shhiye, Ankara TR-06100 (Turkey)

    2005-05-01

    Purpose: To demonstrate the efficacy and long-term results of the single-session ethanol sclerotherapy in simple renal cysts. Materials and methods: Ninety-eight cysts in 97 patients (range: 18-76 years; mean age, 54 years) were included in the study. Indications were determined as flank pain in 74, hydronephrosis in 12, hypertension in 8, patient reassurance due to increasing cyst size in three patients. Mean follow-up period was 24.4 months. Procedures were performed with the guidance of fluoroscopy and ultrasonography at all times using 5-7 Fr pigtail catheters. After the cystogram that was obtained in all cases, 95% ethanol with a volume of 30-40% of the cyst volume was used as a sclerosing agent on an outpatient basis. Maximum volume of the injected ethanol was 200 ml. Follow-up examinations were performed 1, 3, 6 and 12 months after the procedure and once every year thereafter. Results: Average cyst volume reduction was 93% at the end of the first year. The cysts disappeared completely in 17 (17.5%) patients. After the procedure, in 67 (90%) patients improvement in flank pain was noted. Sixty-one (82%) patients were free of pain and in 6 (8%) of them the pain decreased. Normotension was obtained in 7 (87.5%) of the 8 hypertensive patients and no hydronephrosis was detected in 10 (83.3%) of the 12 patients after the procedure. Second intervention was required in 2 (2%) patients due to recurrence of cysts and related symptoms. One (1%) patient had small retroperitoneal hematoma that resolved spontaneously and in another (1%) patient spontaneous hemorrhage was detected into the cyst 1 year after the procedure. No other complication was detected during the procedure and follow-up. Conclusion: Percutaneous treatment of simple renal cysts with single-session sclerotherapy is a safe, effective and minimally invasive procedure and can be used as an alternative to multiple-session sclerotherapy with comparable results. High volume, up to 200 ml ethanol can be used

  14. Long-term results of single-session percutaneous drainage and ethanol sclerotherapy in simple renal cysts

    International Nuclear Information System (INIS)

    Akinci, Devrim; Akhan, Okan; Ozmen, Mustafa; Gumus, Burcak; Ozkan, Orhan; Karcaaltincaba, Musturay; Cil, Barbaros; Haliloglu, Mithat

    2005-01-01

    Purpose: To demonstrate the efficacy and long-term results of the single-session ethanol sclerotherapy in simple renal cysts. Materials and methods: Ninety-eight cysts in 97 patients (range: 18-76 years; mean age, 54 years) were included in the study. Indications were determined as flank pain in 74, hydronephrosis in 12, hypertension in 8, patient reassurance due to increasing cyst size in three patients. Mean follow-up period was 24.4 months. Procedures were performed with the guidance of fluoroscopy and ultrasonography at all times using 5-7 Fr pigtail catheters. After the cystogram that was obtained in all cases, 95% ethanol with a volume of 30-40% of the cyst volume was used as a sclerosing agent on an outpatient basis. Maximum volume of the injected ethanol was 200 ml. Follow-up examinations were performed 1, 3, 6 and 12 months after the procedure and once every year thereafter. Results: Average cyst volume reduction was 93% at the end of the first year. The cysts disappeared completely in 17 (17.5%) patients. After the procedure, in 67 (90%) patients improvement in flank pain was noted. Sixty-one (82%) patients were free of pain and in 6 (8%) of them the pain decreased. Normotension was obtained in 7 (87.5%) of the 8 hypertensive patients and no hydronephrosis was detected in 10 (83.3%) of the 12 patients after the procedure. Second intervention was required in 2 (2%) patients due to recurrence of cysts and related symptoms. One (1%) patient had small retroperitoneal hematoma that resolved spontaneously and in another (1%) patient spontaneous hemorrhage was detected into the cyst 1 year after the procedure. No other complication was detected during the procedure and follow-up. Conclusion: Percutaneous treatment of simple renal cysts with single-session sclerotherapy is a safe, effective and minimally invasive procedure and can be used as an alternative to multiple-session sclerotherapy with comparable results. High volume, up to 200 ml ethanol can be used

  15. Validation of ergonomic instructions in robot-assisted surgery simulator training.

    Science.gov (United States)

    Van't Hullenaar, C D P; Mertens, A C; Ruurda, J P; Broeders, I A M J

    2018-05-01

    Training in robot-assisted surgery focusses mainly on technical skills and instrument use. Training in optimal ergonomics during robotic surgery is often lacking, while improved ergonomics can be one of the key advantages of robot-assisted surgery. Therefore, the aim of this study was to assess whether a brief explanation on ergonomics of the console can improve body posture and performance. A comparative study was performed with 26 surgical interns and residents using the da Vinci skills simulator (Intuitive Surgical, Sunnyvale, CA). The intervention group received a compact instruction on ergonomic settings and coaching on clutch usage, while the control group received standard instructions for usage of the system. Participants performed two sets of five exercises. Analysis was performed on ergonomic score (RULA) and performance scores provided by the simulator. Mental and physical load scores (NASA-TLX and LED score) were also registered. The intervention group performed better in the clutch-oriented exercises, displaying less unnecessary movement and smaller deviation from the neutral position of the hands. The intervention group also scored significantly better on the RULA ergonomic score in both the exercises. No differences in overall performance scores and subjective scores were detected. The benefits of a brief instruction on ergonomics for novices are clear in this study. A single session of coaching and instruction leads to better ergonomic scores. The control group showed often inadequate ergonomic scores. No significant differences were found regarding physical discomfort, mental task load and overall performance scores.

  16. Robotics in Colorectal Surgery

    Science.gov (United States)

    Weaver, Allison; Steele, Scott

    2016-01-01

    Over the past few decades, robotic surgery has developed from a futuristic dream to a real, widely used technology. Today, robotic platforms are used for a range of procedures and have added a new facet to the development and implementation of minimally invasive surgeries. The potential advantages are enormous, but the current progress is impeded by high costs and limited technology. However, recent advances in haptic feedback systems and single-port surgical techniques demonstrate a clear role for robotics and are likely to improve surgical outcomes. Although robotic surgeries have become the gold standard for a number of procedures, the research in colorectal surgery is not definitive and more work needs to be done to prove its safety and efficacy to both surgeons and patients. PMID:27746895

  17. Mentoring console improves collaboration and teaching in surgical robotics.

    Science.gov (United States)

    Hanly, Eric J; Miller, Brian E; Kumar, Rajesh; Hasser, Christopher J; Coste-Maniere, Eve; Talamini, Mark A; Aurora, Alexander A; Schenkman, Noah S; Marohn, Michael R

    2006-10-01

    One of the most significant limitations of surgical robots has been their inability to allow multiple surgeons and surgeons-in-training to engage in collaborative control of robotic surgical instruments. We report the initial experience with a novel two-headed da Vinci surgical robot that has two collaborative modes: the "swap" mode allows two surgeons to simultaneously operate and actively swap control of the robot's four arms, and the "nudge" mode allows them to share control of two of the robot's arms. The utility of the mentoring console operating in its two collaborative modes was evaluated through a combination of dry laboratory exercises and animal laboratory surgery. The results from surgeon-resident collaborative performance of complex three-handed surgical tasks were compared to results from single-surgeon and single-resident performance. Statistical significance was determined using Student's t-test. Collaborative surgeon-resident swap control reduced the time to completion of complex three-handed surgical tasks by 25% compared to single-surgeon operation of a four-armed da Vinci (P nudge mode was particularly useful for guiding a resident's hands during crucially precise steps of an operation (such as proper placement of stitches). The da Vinci mentoring console greatly facilitates surgeon collaboration during robotic surgery and improves the performance of complex surgical tasks. The mentoring console has the potential to improve resident participation in surgical robotics cases, enhance resident education in surgical training programs engaged in surgical robotics, and improve patient safety during robotic surgery.

  18. Robotics in rehabilitation: technology as destiny.

    Science.gov (United States)

    Stein, Joel

    2012-11-01

    Robotic aids for rehabilitation hold considerable promise but have not yet achieved widespread clinical adoption. Barriers to adoption include the limited data on efficacy, the single-purpose design of existing robots, financial considerations, and clinician lack of familiarity with this technology. Although the path forward to clinical adoption may be slow and have several false starts, the labor-saving aspect of robotic technology will ultimately ensure its adoption.

  19. COMPARING THE OUTCOME OF SINGLE VERSUS MULTIPLE SESSION LASER PHOTOABLATION OF FLAT NEOVASCULARIZATION IN ZONE 1 AGGRESSIVE POSTERIOR RETINOPATHY OF PREMATURITY: A Prospective Randomized Study.

    Science.gov (United States)

    Vinekar, Anand; Jayadev, Chaitra; Mangalesh, Shwetha; Kumar, Anupama Kiran; Bauer, Noel; Capone, Antonio; Trese, Michael; Shetty, Bhujang

    2015-10-01

    To compare single versus 2-session laser photoablation for flat neovascularization in cases with Zone 1 aggressive posterior retinopathy of prematurity. Twenty-nine Asian Indian infants with aggressive posterior retinopathy of prematurity were randomized; each eye received 1 of 2 methods (29 each in Group A or B) proposed by the PHOTO-ROP group. Group A underwent single session laser to the avascular retina underlying the flat neovascularization by direct laser over the fronds. Group B underwent laser in 2 sessions; first, laser was delivered to the avascular periphery up to the flat neovascularization and 7 days later to the avascular bed exposed by the retraction of the fronds. Outcome and complications between the two groups were compared. Mean birthweight and gestational ages were 1,276 g and 30.1 weeks, respectively. All eyes showed favorable outcome at a minimum 12-month follow-up. Hemorrhages after laser (41.4% vs. 17.2%, P Large hemorrhages (>1 disk diameter) seen in Group A took longer than 8 weeks to resolve and developed focal fibrosis. This study demonstrates that the two-staged laser procedure produces fewer and smaller hemorrhages and no fibrosis compared with a single session. Both methods have comparable favorable outcomes in Asian Indian infants.

  20. Acceptance and Attitudes Toward a Human-like Socially Assistive Robot by Older Adults.

    Science.gov (United States)

    Louie, Wing-Yue Geoffrey; McColl, Derek; Nejat, Goldie

    2014-01-01

    Recent studies have shown that cognitive and social interventions are crucial to the overall health of older adults including their psychological, cognitive, and physical well-being. However, due to the rapidly growing elderly population of the world, the resources and people to provide these interventions is lacking. Our work focuses on the use of social robotic technologies to provide person-centered cognitive interventions. In this article, we investigate the acceptance and attitudes of older adults toward the human-like expressive socially assistive robot Brian 2.1 in order to determine if the robot's human-like assistive and social characteristics would promote the use of the robot as a cognitive and social interaction tool to aid with activities of daily living. The results of a robot acceptance questionnaire administered during a robot demonstration session with a group of 46 elderly adults showed that the majority of the individuals had positive attitudes toward the socially assistive robot and its intended applications.

  1. Single High Intensity Focused Ultrasound Session as a Whole Gland Primary Treatment for Clinically Localized Prostate Cancer: 10-Year Outcomes

    Directory of Open Access Journals (Sweden)

    Ksenija Limani

    2014-01-01

    Full Text Available Objectives. To assess the treatment outcomes of a single session of whole gland high intensity focused ultrasound (HIFU for patients with localized prostate cancer (PCa. Methods. Response rates were defined using the Stuttgart and Phoenix criteria. Complications were graded according to the Clavien score. Results. At a median follow-up of 94months, 48 (44.4% and 50 (46.3% patients experienced biochemical recurrence for Phoenix and Stuttgart definition, respectively. The 5- and 10-year actuarial biochemical recurrence free survival rates were 57% and 40%, respectively. The 10-year overall survival rate, cancer specific survival rate, and metastasis free survival rate were 72%, 90%, and 70%, respectively. Preoperative high risk category, Gleason score, preoperative PSA, and postoperative nadir PSA were independent predictors of oncological failure. 24.5% of patients had self-resolving LUTS, 18.2% had urinary tract infection, and 18.2% had acute urinary retention. A grade 3b complication occurred in 27 patients. Pad-free continence rate was 87.9% and the erectile dysfunction rate was 30.8%. Conclusion. Single session HIFU can be alternative therapy for patients with low risk PCa. Patients with intermediate risk should be informed about the need of multiple sessions of HIFU and/or adjuvant treatments and HIFU performed very poorly in high risk patients.

  2. Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke.

    Science.gov (United States)

    Rong, Wei; Tong, Kai Yu; Hu, Xiao Ling; Ho, Sze Kit

    2015-03-01

    An electromyography-driven robot system integrated with neuromuscular electrical stimulation (NMES) was developed to investigate its effectiveness on post-stroke rehabilitation. The performance of this system in assisting finger flexion/extension with different assistance combinations was evaluated in five stroke subjects. Then, a pilot study with 20-sessions training was conducted to evaluate the training's effectiveness. The results showed that combined assistance from the NMES-robot could improve finger movement accuracy, encourage muscle activation of the finger muscles and suppress excessive muscular activities in the elbow joint. When assistances from both NMES and the robot were 50% of their maximum assistances, finger-tracking performance had the best results, with the lowest root mean square error, greater range of motion, higher voluntary muscle activations of the finger joints and lower muscle co-contraction in the finger and elbow joints. Upper limb function improved after the 20-session training, indicated by the increased clinical scores of Fugl-Meyer Assessment, Action Research Arm Test and Wolf Motor Function Test. Muscle co-contraction was reduced in the finger and elbow joints reflected by the Modified Ashworth Scale. The findings demonstrated that an electromyography-driven NMES-robot used for chronic stroke improved hand function and tracking performance. Further research is warranted to validate the method on a larger scale. Implications for Rehabilitation The hand robotics and neuromuscular electrical stimulation (NMES) techniques are still separate systems in current post-stroke hand rehabilitation. This is the first study to investigate the combined effects of the NMES and robot on hand rehabilitation. The finger tracking performance was improved with the combined assistance from the EMG-driven NMES-robot hand system. The assistance from the robot could improve the finger movement accuracy and the assistance from the NMES could reduce the

  3. Morphology Independent Learning in Modular Robots

    DEFF Research Database (Denmark)

    Christensen, David Johan; Bordignon, Mirko; Schultz, Ulrik Pagh

    2009-01-01

    speed its modules independently and in parallel adjust their behavior based on a single global reward signal. In simulation, we study the learning strategy’s performance on different robot configurations. On the physical platform, we perform learning experiments with ATRON robots learning to move as fast...

  4. Morphology Independent Learning in Modular Robots

    DEFF Research Database (Denmark)

    Christensen, David Johan; Bordignon, Mirko; Schultz, Ulrik Pagh

    2009-01-01

    speed its modules independently and in parallel adjust their behavior based on a single global reward signal. In simulation, we study the learning strategy?s performance on different robot con?gurations. On the physical platform, we perform learning experiments with ATRON robots learning to move as fast...

  5. Robustness inembedded software for autonomous robots

    NARCIS (Netherlands)

    Broenink, Johannes F.; Brodskiy, Y.; Dresscher, Douwe; Stramigioli, Stefano

    2014-01-01

    The European BRICS project aims to bring about a long-lasting change in robotics research and development in industry as well as in academia. It wants to change the current situation of non-interoperable, monolithic and single-sourcing robotic components into a situation that other domains have

  6. Privilege as a Social Determinant of Health in Medical Education: A Single Class Session Can Change Privilege Perspective.

    Science.gov (United States)

    Witten, Nash A K; Maskarinec, Gregory G

    2015-09-01

    Accredited medical schools are required to prepare students to recognize the social determinants of health, such as privilege, yet privilege education has been overlooked in medical school curricula. The purpose of this study is to determine whether a single class session on privilege, within a social justice elective offered to first and second year medical students, is sufficient to change the perspective of medical students concerning their own personal privilege. A pre-class survey, followed by a class session on privilege, and post-class survey were conducted. Thirteen of the 18 students enrolled in the elective completed the pre-class survey. Ten students completed the post-class survey, although only 9 completed both the pre- and post-class surveys. The demographic profile of the participants was 93% Asian and 7% White ethnicity, with 57% identifying as being culturally American. There was no significant difference between average male and female or between age groups' self-assessed privilege amounts. For all characteristics tested, except hair color, participants had an increased self-assessed privilege perspective following the class. Three participants had an overall positive difference in privilege perspective, three participants had an overall negative difference in privilege perspective, and three participants had only a minimal change in privilege perspective. The absolute total difference in privilege perspective was 25 units of change. The single class session on privilege was sufficient to change significantly the perspective of medical students on their own personal privilege; however, future studies with larger groups of medical students are needed to elucidate other findings suggested by this study.

  7. Impact of a single educational session on oral hygiene practices among children of a primary school of Meerut, India

    Directory of Open Access Journals (Sweden)

    Pawan Parashar

    2013-10-01

    Full Text Available Oral health promotion through schools is recommended by the World Health Organization (WHO for improving knowledge, attitude, and behavior related to oral health and for prevention and control of dental diseases among school children. In low resource settings, it is important to develop evidence for health education methods in oral health behavioral practices. The objectives of this study were to assess both the baseline awareness and practices regarding oral hygiene and the impact of a single education session on the change in oral health behavior. A school based, cross-sectional study on 112 primary school children was conducted after obtaining the consent of the school authorities and parents. A pretested, structured proforma was used for baseline awareness and behavior regarding oral health. A 30 min educational session was imparted and after 1 month, and the oral health practices were reassessed to find out the impact of the education session. Baseline survey revealed the following findings. Self-reported dental problems were found in 48.22% of the children in the last 6 months. When asked about the risk factors for dental problems, 28.57% mentioned eating sweets followed by improper brushing, whereas 40.17% were not aware about any risk factor for dental problems. It was found that 28.57% of the children did not brush their teeth regularly, whereas 35.71% used a tooth-brush for brushing their teeth. After the intervention, it was observed that there was a significant improvement in the proportion of children using a toothbrush for cleaning their teeth and of those who rinsed their mouth after meals. In conclusion, even a single education session was found to be effective in bringing about a change in the oral health behavior of primary school children.

  8. Technological advances in robotic-assisted laparoscopic surgery.

    Science.gov (United States)

    Tan, Gerald Y; Goel, Raj K; Kaouk, Jihad H; Tewari, Ashutosh K

    2009-05-01

    In this article, the authors describe the evolution of urologic robotic systems and the current state-of-the-art features and existing limitations of the da Vinci S HD System (Intuitive Surgical, Inc.). They then review promising innovations in scaling down the footprint of robotic platforms, the early experience with mobile miniaturized in vivo robots, advances in endoscopic navigation systems using augmented reality technologies and tracking devices, the emergence of technologies for robotic natural orifice transluminal endoscopic surgery and single-port surgery, advances in flexible robotics and haptics, the development of new virtual reality simulator training platforms compatible with the existing da Vinci system, and recent experiences with remote robotic surgery and telestration.

  9. Assistive/Socially Assistive Robotic Platform for Therapy and Recovery: Patient Perspectives

    Directory of Open Access Journals (Sweden)

    Matthew White

    2013-01-01

    Full Text Available Improving adherence to therapy is a critical component of advancing outcomes and reducing the cost of rehabilitation. A robotic platform was previously developed to explore how robotics could be applied to the social dimension of rehabilitation to improve adherence. This paper aims to report on feedback given by end users of the robotic platform as well as the practical applications that socially assistive robotics could have in the daily life activities of a patient. A group of 10 former and current patients interacted with the developed robotic platform during a simulated exercise session before taking an experience-based survey. A portion of these participants later provided verbal feedback as part of a focus group on the potential utility of such a platform. Identified applications included assistance with reaching exercise goals, managing to-do lists, and supporting participation in social and recreational activities. The study participants expressed that the personality characteristics of the robotic system should be adapted to individual preferences and that the assistance provided over time should align with the progress of their recovery. The results from this study are encouraging and will be useful for further development of socially assistive robotics.

  10. Combined robotic transanal total mesorectal excision (R-taTME) and single-site plus one-port (R-SSPO) technique for ultra-low rectal surgery-initial experience with a new operation approach.

    Science.gov (United States)

    Kuo, Li-Jen; Ngu, James Chi-Yong; Tong, Yiu-Shun; Chen, Chia-Che

    2017-02-01

    Robot-assisted rectal surgery is gaining popularity, and robotic single-site surgery is also being explored clinically. We report our initial experience with robotic transanal total mesorectal excision (R-taTME) and radical proctectomy using the robotic single-site plus one-port (R-SSPO) technique for low rectal surgery. Between July 2015 and March 2016, 15 consecutive patients with ultra-low rectal lesions underwent R-taTME followed by radical proctectomy using the R-SSPO technique by a single surgeon. The clinical and pathological results were retrospectively analyzed. The median operative time was 473 (range, 335-569) min, and the estimated blood loss was 33 (range, 30-50) mL. The median number of lymph nodes harvested was 12 (range, 8-18). The median distal resection margin was 1.4 (range, 0.4-3.5) cm, and all patients had clear circumferential resection margins. We encountered a left ureteric transection intraoperatively in one patient, and another patient required reoperation for postoperative adhesive intestinal obstruction. There was no 30-day mortality. R-taTME followed by radical proctectomy using the R-SSPO technique for patients with low rectal lesions is technically feasible and safe without compromising oncologic outcomes. However, there were considerable limitations and a steep learning curve using current robotic technology.

  11. The Impact of Single Session Intermittent Theta-Burst Stimulation over the Dorsolateral Prefrontal Cortex and Posterior Superior Temporal Sulcus on Adults with Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Hsing-Chang Ni

    2017-05-01

    Full Text Available Intermittent theta burst stimulation (iTBS, a patterned repetitive transcranial magnetic stimulation, was applied over the posterior superior temporal sulcus (pSTS or dorsolateral prefrontal cortex (DLPFC to explore its impact in adults with autism spectrum disorder (ASD. Among 25 adults with ASD, 19 (mean age: 20.8 years completed the randomized, sham-controlled, crossover trial. Every participant received iTBS over the bilateral DLPFC, bilateral pSTS and inion (as a sham control stimulation in a randomized order with a 1-week interval. Neuropsychological functions were assessed using the Conners' Continuous Performance Test (CCPT and the Wisconsin Card Sorting Test (WCST. Behavioral outcomes were measured using the Yale-Brown Obsessive Compulsive Scale (Y-BOCS and the Social Responsiveness Scale (SRS. In comparison to that in the sham stimulation, the reaction time in the CCPT significantly decreased following single DLPFC session (p = 0.04, effect size = 0.71 while there were no significant differences in the CCPT and WCST following single pSTS session. Besides, the results in behavioral outcomes were inconsistent and had discrepancy between reports of parents and patients. In conclusion, a single session of iTBS over the bilateral DLPFC may alter the neuropsychological function in adults with ASD. The impacts of multiple-sessions iTBS over the DLPFC or pSTS deserve further investigations.

  12. Advanced Technologies for Robotic Exploration Leading to Human Exploration: Results from the SpaceOps 2015 Workshop

    Science.gov (United States)

    Lupisella, Mark L.; Mueller, Thomas

    2016-01-01

    This paper will provide a summary and analysis of the SpaceOps 2015 Workshop all-day session on "Advanced Technologies for Robotic Exploration, Leading to Human Exploration", held at Fucino Space Center, Italy on June 12th, 2015. The session was primarily intended to explore how robotic missions and robotics technologies more generally can help lead to human exploration missions. The session included a wide range of presentations that were roughly grouped into (1) broader background, conceptual, and high-level operations concepts presentations such as the International Space Exploration Coordination Group Roadmap, followed by (2) more detailed narrower presentations such as rover autonomy and communications. The broader presentations helped to provide context and specific technical hooks, and helped lay a foundation for the narrower presentations on more specific challenges and technologies, as well as for the discussion that followed. The discussion that followed the presentations touched on key questions, themes, actions and potential international collaboration opportunities. Some of the themes that were touched on were (1) multi-agent systems, (2) decentralized command and control, (3) autonomy, (4) low-latency teleoperations, (5) science operations, (6) communications, (7) technology pull vs. technology push, and (8) the roles and challenges of operations in early human architecture and mission concept formulation. A number of potential action items resulted from the workshop session, including: (1) using CCSDS as a further collaboration mechanism for human mission operations, (2) making further contact with subject matter experts, (3) initiating informal collaborative efforts to allow for rapid and efficient implementation, and (4) exploring how SpaceOps can support collaboration and information exchange with human exploration efforts. This paper will summarize the session and provide an overview of the above subjects as they emerged from the SpaceOps 2015

  13. Selection of rendezvous points for multi-robot exploration in dynamic environments

    NARCIS (Netherlands)

    de Hoog, J.; Cameron, S.; Visser, A.; Visser, U.; Asadi, S.; Laue, T.; Mayer, N.M.

    2010-01-01

    For many robotics applications (such as robotic search and rescue), information about the environment must be gathered by a team of robots and returned to a single, specific location. Coordination of robots and sharing of information is vital, and when environments have severe communication

  14. Analysis of reaching movements of upper arm in robot assisted exercises. Kinematic assessment of robot assisted upper arm reaching single-joint movements.

    Science.gov (United States)

    Iuppariello, Luigi; D'Addio, Giovanni; Romano, Maria; Bifulco, Paolo; Lanzillo, Bernardo; Pappone, Nicola; Cesarelli, Mario

    2016-01-01

    Robot-mediated therapy (RMT) has been a very dynamic area of research in recent years. Robotics devices are in fact capable to quantify the performances of a rehabilitation task in treatments of several disorders of the arm and the shoulder of various central and peripheral etiology. Different systems for robot-aided neuro-rehabilitation are available for upper limb rehabilitation but the biomechanical parameters proposed until today, to evaluate the quality of the movement, are related to the specific robot used and to the type of exercise performed. Besides, none study indicated a standardized quantitative evaluation of robot assisted upper arm reaching movements, so the RMT is still far to be considered a standardised tool. In this paper a quantitative kinematic assessment of robot assisted upper arm reaching movements, considering also the effect of gravity on the quality of the movements, is proposed. We studied a group of 10 healthy subjects and results indicate that our advised protocol can be useful for characterising normal pattern in reaching movements.

  15. Experiments on co-operating robot arms

    International Nuclear Information System (INIS)

    Arthaya, B.; De Schutter, J.

    1994-01-01

    When two robots manipulate a common object or perform a single task together, a closed-kinematic chain is formed. If both robots are controlled under position control only, at a certain phase during the manipulation, the interaction forces may become unacceptably high. The interaction forces are caused by the kinematic as well as the dynamic errors in the robot position controller. In order to avoid this problem, a synchronized motion between both robots has to be generated, not only by controlling the position (velocity) of the two end-effectors, but also by controlling the interaction forces between them. In order to generate a synchronized motion, the first robot controller continuously modifies the task frame velocity corresponding to the velocity of the other robot. This implies that the velocity of the other robot is used as feed-forward information in order to anticipate its motion. This approach results in a better tracking behaviour

  16. Self-adaptive robot training of stroke survivors for continuous tracking movements

    Directory of Open Access Journals (Sweden)

    Morasso Pietro

    2010-03-01

    Full Text Available Abstract Background Although robot therapy is progressively becoming an accepted method of treatment for stroke survivors, few studies have investigated how to adapt the robot/subject interaction forces in an automatic way. The paper is a feasibility study of a novel self-adaptive robot controller to be applied with continuous tracking movements. Methods The haptic robot Braccio di Ferro is used, in relation with a tracking task. The proposed control architecture is based on three main modules: 1 a force field generator that combines a non linear attractive field and a viscous field; 2 a performance evaluation module; 3 an adaptive controller. The first module operates in a continuous time fashion; the other two modules operate in an intermittent way and are triggered at the end of the current block of trials. The controller progressively decreases the gain of the force field, within a session, but operates in a non monotonic way between sessions: it remembers the minimum gain achieved in a session and propagates it to the next one, which starts with a block whose gain is greater than the previous one. The initial assistance gains are chosen according to a minimal assistance strategy. The scheme can also be applied with closed eyes in order to enhance the role of proprioception in learning and control. Results The preliminary results with a small group of patients (10 chronic hemiplegic subjects show that the scheme is robust and promotes a statistically significant improvement in performance indicators as well as a recalibration of the visual and proprioceptive channels. The results confirm that the minimally assistive, self-adaptive strategy is well tolerated by severely impaired subjects and is beneficial also for less severe patients. Conclusions The experiments provide detailed information about the stability and robustness of the adaptive controller of robot assistance that could be quite relevant for the design of future large scale

  17. Hand Passive Mobilization Performed with Robotic Assistance: Acute Effects on Upper Limb Perfusion and Spasticity in Stroke Survivors

    Directory of Open Access Journals (Sweden)

    Massimiliano Gobbo

    2017-01-01

    Full Text Available This single arm pre-post study aimed at evaluating the acute effects induced by a single session of robot-assisted passive hand mobilization on local perfusion and upper limb (UL function in poststroke hemiparetic participants. Twenty-three patients with subacute or chronic stroke received 20 min passive mobilization of the paretic hand with robotic assistance. Near-infrared spectroscopy (NIRS was used to detect changes in forearm tissue perfusion. Muscle tone of the paretic UL was assessed by the Modified Ashworth Scale (MAS. Symptoms concerning UL heaviness, joint stiffness, and pain were evaluated as secondary outcomes by self-reporting. Significant (p=0.014 improvements were found in forearm perfusion when all fingers were mobilized simultaneously. After the intervention, MAS scores decreased globally, being the changes statistically significant for the wrist (from 1.6±1.0 to 1.1±1.0; p=0.001 and fingers (from 1.2±1.1 to 0.7±0.9; p=0.004. Subjects reported decreased UL heaviness and stiffness after treatment, especially for the hand, as well as diminished pain when present. This study supports novel evidence that hand robotic assistance promotes local UL circulation changes, may help in the management of spasticity, and acutely alleviates reported symptoms of heaviness, stiffness, and pain in subjects with poststroke hemiparesis. This opens new scenarios for the implications in everyday clinical practice. Clinical Trial Registration Number is NCT03243123.

  18. Hand Passive Mobilization Performed with Robotic Assistance: Acute Effects on Upper Limb Perfusion and Spasticity in Stroke Survivors.

    Science.gov (United States)

    Gobbo, Massimiliano; Gaffurini, Paolo; Vacchi, Laura; Lazzarini, Sara; Villafane, Jorge; Orizio, Claudio; Negrini, Stefano; Bissolotti, Luciano

    2017-01-01

    This single arm pre-post study aimed at evaluating the acute effects induced by a single session of robot-assisted passive hand mobilization on local perfusion and upper limb (UL) function in poststroke hemiparetic participants. Twenty-three patients with subacute or chronic stroke received 20 min passive mobilization of the paretic hand with robotic assistance. Near-infrared spectroscopy (NIRS) was used to detect changes in forearm tissue perfusion. Muscle tone of the paretic UL was assessed by the Modified Ashworth Scale (MAS). Symptoms concerning UL heaviness, joint stiffness, and pain were evaluated as secondary outcomes by self-reporting. Significant ( p = 0.014) improvements were found in forearm perfusion when all fingers were mobilized simultaneously. After the intervention, MAS scores decreased globally, being the changes statistically significant for the wrist (from 1.6 ± 1.0 to 1.1 ± 1.0; p = 0.001) and fingers (from 1.2 ± 1.1 to 0.7 ± 0.9; p = 0.004). Subjects reported decreased UL heaviness and stiffness after treatment, especially for the hand, as well as diminished pain when present. This study supports novel evidence that hand robotic assistance promotes local UL circulation changes, may help in the management of spasticity, and acutely alleviates reported symptoms of heaviness, stiffness, and pain in subjects with poststroke hemiparesis. This opens new scenarios for the implications in everyday clinical practice. Clinical Trial Registration Number is NCT03243123.

  19. DEVELOPMENT OF GENETIC ALGORITHM-BASED METHODOLOGY FOR SCHEDULING OF MOBILE ROBOTS

    DEFF Research Database (Denmark)

    Dang, Vinh Quang

    problem is to minimize the total traveling time of the single mobile robot and thereby increase its availability. For the second scheduling problem, a fleet of mobile robots is considered together with a set of machines to carry out different types of tasks, e.g. pre-assembly or quality inspection. Some...... problem and finding optimal solutions for each one. However, the formulated mathematical models could only be applicable to small-scale problems in practice due to the significant increase of computation time as the problem size grows. Note that making schedules of mobile robots is part of real-time....... For the first scheduling problem, a single mobile robot is considered to collect and transport container of parts and empty them into machine feeders where needed. A limit on carrying capacity of the single mobile robot and hard time windows of part-feeding tasks are considered. The objective of the first...

  20. Medical Robotic and Telesurgical Simulation and Education Research

    Science.gov (United States)

    2015-09-01

    consideration would be the loss of revenue from physicians, nurses , and other medical professionals during training sessions. Supplies...occurs in postponing or rescheduling an operation because the robot is no longer operable. Inexperienced surgeons can also damage the surgical...and nursing in addition to physician training may decrease these times and costs. Upper Limit There are upper limits to the improvements that can

  1. International Advanced Robotics Programme. First workshop on manipulators, sensors and steps towards mobility

    International Nuclear Information System (INIS)

    Martin, T.

    1987-09-01

    This Workshop was held within the framework of the international collaboration in the area of advanced robotics, formerly initiated by the Economic Summit, called the International Advanced Robotics Programme (IARP). It was hosted by the Nuclear Research Center Karlsruhe on May 11-13, 1987. Ninety scientists of eight countries presented and discussed 32 R+D projects. The Proceedings contain full papers of most contributions (and summaries of the remaining ones) and summary reports on all of the eight sessions. The material presented reflects well the present endeavor to integrate advanced robotics and teleoperation techniques for difficult applications in harsh, demanding or dangerous conditions or environment. (orig.) [de

  2. [Laparoscopic colorectal surgery - SILS, robots, and NOTES.

    NARCIS (Netherlands)

    D'Hoore, André; Wolthuis, Albert M.; Mizrahi, Hagar; Parker, Mike; Bemelman, Willem A.; Wara, Pål

    2011-01-01

    Single incision laparoscopic surgery resection of colon is feasible, but so far evidence of benefit compared to standard laparoscopic technique is lacking. In addition to robot-controlled camera, there is only one robot system on the market capable of performing laparoscopic surgery. The da Vinci

  3. Video-based peer feedback through social networking for robotic surgery simulation: a multicenter randomized controlled trial.

    Science.gov (United States)

    Carter, Stacey C; Chiang, Alexander; Shah, Galaxy; Kwan, Lorna; Montgomery, Jeffrey S; Karam, Amer; Tarnay, Christopher; Guru, Khurshid A; Hu, Jim C

    2015-05-01

    To examine the feasibility and outcomes of video-based peer feedback through social networking to facilitate robotic surgical skill acquisition. The acquisition of surgical skills may be challenging for novel techniques and/or those with prolonged learning curves. Randomized controlled trial involving 41 resident physicians performing the Tubes (Da Vinci Intuitive Surgical, Sunnyvale, CA) simulator exercise with versus without peer feedback of video-recorded performance through a social networking Web page. Data collected included simulator exercise score, time to completion, and comfort and satisfaction with robotic surgery simulation. There were no baseline differences between the intervention group (n = 20) and controls (n = 21). The intervention group showed improvement in mean scores from session 1 to sessions 2 and 3 (60.7 vs 75.5, P feedback subjects were more comfortable with robotic surgery than controls (90% vs 62%, P = 0.021) and expressed greater satisfaction with the learning experience (100% vs 67%, P = 0.014). Of the intervention subjects, 85% found that peer feedback was useful and 100% found it effective. Video-based peer feedback through social networking appears to be an effective paradigm for surgical education and accelerates the robotic surgery learning curve during simulation.

  4. Multi-Robot, Multi-Target Particle Swarm Optimization Search in Noisy Wireless Environments

    Energy Technology Data Exchange (ETDEWEB)

    Kurt Derr; Milos Manic

    2009-05-01

    Multiple small robots (swarms) can work together using Particle Swarm Optimization (PSO) to perform tasks that are difficult or impossible for a single robot to accomplish. The problem considered in this paper is exploration of an unknown environment with the goal of finding a target(s) at an unknown location(s) using multiple small mobile robots. This work demonstrates the use of a distributed PSO algorithm with a novel adaptive RSS weighting factor to guide robots for locating target(s) in high risk environments. The approach was developed and analyzed on multiple robot single and multiple target search. The approach was further enhanced by the multi-robot-multi-target search in noisy environments. The experimental results demonstrated how the availability of radio frequency signal can significantly affect robot search time to reach a target.

  5. Mobile app for human-interaction with sitter robots

    Science.gov (United States)

    Das, Sumit Kumar; Sahu, Ankita; Popa, Dan O.

    2017-05-01

    Human environments are often unstructured and unpredictable, thus making the autonomous operation of robots in such environments is very difficult. Despite many remaining challenges in perception, learning, and manipulation, more and more studies involving assistive robots have been carried out in recent years. In hospital environments, and in particular in patient rooms, there are well-established practices with respect to the type of furniture, patient services, and schedule of interventions. As a result, adding a robot into semi-structured hospital environments is an easier problem to tackle, with results that could have positive benefits to the quality of patient care and the help that robots can offer to nursing staff. When working in a healthcare facility, robots need to interact with patients and nurses through Human-Machine Interfaces (HMIs) that are intuitive to use, they should maintain awareness of surroundings, and offer safety guarantees for humans. While fully autonomous operation for robots is not yet technically feasible, direct teleoperation control of the robot would also be extremely cumbersome, as it requires expert user skills, and levels of concentration not available to many patients. Therefore, in our current study we present a traded control scheme, in which the robot and human both perform expert tasks. The human-robot communication and control scheme is realized through a mobile tablet app that can be customized for robot sitters in hospital environments. The role of the mobile app is to augment the verbal commands given to a robot through natural speech, camera and other native interfaces, while providing failure mode recovery options for users. Our app can access video feed and sensor data from robots, assist the user with decision making during pick and place operations, monitor the user health over time, and provides conversational dialogue during sitting sessions. In this paper, we present the software and hardware framework that

  6. Efficacy of single versus three sessions of high rate repetitive transcranial magnetic stimulation in chronic migraine and tension-type headache.

    Science.gov (United States)

    Kalita, Jayantee; Laskar, Sanghamitra; Bhoi, Sanjeev Kumar; Misra, Usha Kant

    2016-11-01

    We report the efficacy of three versus single session of 10 Hz repetitive transcranial magnetic stimulation (rTMS) in chronic migraine (CM) and chronic tension-type headache (CTTH). Ninety-eight patients with CM or CTTH were included and their headache frequency, severity, functional disability and number of abortive medications were noted. Fifty-two patients were randomly assigned to group I (three true sessions) and 46 to group II (one true and two sham rTMS sessions) treatment. 10 Hz rTMS comprising 600 pulses was delivered in 412.4 s on the left frontal cortex. Outcomes were noted at 1, 2 and 3 months. The primary outcome was 50 % reduction in headache frequency, and secondary outcomes were improvement in severity, functional disability, abortive drugs and side effects. The baseline headache characteristics were similar between the two groups. Follow up at different time points revealed significant improvement in headache frequency, severity, functional disability and number of abortive drugs compared to baseline in both group I and group II patients, although these parameters were not different between the two groups. In group I, 31 (79.4 %) had reduction of headache frequency and 29 (74.4 %) converted to episodic headache. In group II, these were 24 (64.8 %) and 22 (59.2 %), respectively. In chronic migraine, the severity of headache at 2 months reduced in group I compared to group II (62.5 vs 35.3 %; P = 0.01). Both single and three sessions of 10 Hz rTMS were found to be equally effective in CM and CTTH, and resulted in conversion of chronic to episodic headache in 67.1 % patients.

  7. A dental solution to the reproducible frameless stereotactic problem in fractionated radiosurgery

    International Nuclear Information System (INIS)

    Wasserman, Richard M.; Andres, Eric; Sibata, Claudio; Acharya, Raj; Shin, K.H.

    1996-01-01

    Purpose/Objective: Stereotactic radiosurgery forms an important component of many brain tumor protocols. Patient treatment may be improved when doses are delivered in a fractionated manner over a series of days. Current radiosurgical practices prevent such treatments due to the inaccuracy associated with repeatedly registering pre-treatment imaging scans with the patient's physical location over a discrete series of sessions. We propose a new system for pseudo-frameless stereotactic radio-surgery in which the traditional halo frame system is replaced by a series of dental brackets attached to the upper teeth of each patient. Each bracket may then be fit with sets of fiducial markers which can be localized in the imaging and physical spaces. Patient immobilization will be performed via a custom fit face mask. By decoupling head localization and head immobilization tasks, highly accurate and reproducible fractionated treatment plans may be delivered during a series of treatment sessions. Materials and Methods An experimental custom phantom system was developed in order to evaluate the efficacy of our approach. A rigid head phantom which may be displaced with three rotational degrees of freedom was constructed and fitted with prototype dental brackets. A high contrast CT imaging fixture was then attached to each bracket. The true position of the fixed dental brackets was calculated by direct measurement prior to imaging. Angular encoders were employed to measure the rotational degrees of freedom of the phantom. Multiple imaging scans over a series of series of days were obtained at the Roswell Park Cancer Institute. The high contrast imaging fixtures were removed and replaced prior to each scan in order to best simulate clinical conditions. The origin of each bracket was calculated using analysis software developed at our institution. In order to localize the bracket coordinates in physical space, a specialized probe was constructed with a tip that can interlock with

  8. Intra-session and inter-session variability of nitric oxide pulmonary diffusing capacity in adults with cystic fibrosis.

    Science.gov (United States)

    Radtke, Thomas; Benden, Christian; Maggi-Beba, Marion; Kriemler, Susi; van der Lee, Ivo; Dressel, Holger

    2017-12-01

    We evaluated the intra-session and inter-session variability of the diffusing capacity of nitric oxide (DLNO), carbon monoxide (DLCO), alveolar-capillary membrane diffusing capacity for carbon monoxide (DMCO) and pulmonary capillary blood volume (Vc) in patients with cystic fibrosis (CF). Patients performed single-breath diffusing capacity measurements during all of 3 consecutive study visits. Precision of gas diffusing parameters was quantified by within-subject standard deviation (SD ws ) and coefficient of variation (CV). Intra-session and inter-session reproducibility was determined by SD ws *2.77. 15 clinically stable patients were included. The intra-session precision of gas diffusing parameters improved over the study visits. The inter-session SD ws for DLNO, DLCO, DMCO, and Vc was 4.8, 1.3, 2.4, and 4.3, respectively. Reproducibility was 13.3, 3.8, 6.7 and 12.0mLmin -1 mmHg -1 ; CV was 4.4, 4.7, 4.4 and 5.8%, respectively. The intra-session variability of DLNO, DLCO, DMCO and Vc improves with breath-hold maneuver training in test-naïve patients with CF, indicating a learning effect. Inter-session reproducibility data are lower than those previously reported in healthy subjects. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Step-to-step spatiotemporal variables and ground reaction forces of intra-individual fastest sprinting in a single session.

    Science.gov (United States)

    Nagahara, Ryu; Mizutani, Mirai; Matsuo, Akifumi; Kanehisa, Hiroaki; Fukunaga, Tetsuo

    2018-06-01

    We aimed to investigate the step-to-step spatiotemporal variables and ground reaction forces during the acceleration phase for characterising intra-individual fastest sprinting within a single session. Step-to-step spatiotemporal variables and ground reaction forces produced by 15 male athletes were measured over a 50-m distance during repeated (three to five) 60-m sprints using a long force platform system. Differences in measured variables between the fastest and slowest trials were examined at each step until the 22nd step using a magnitude-based inferences approach. There were possibly-most likely higher running speed and step frequency (2nd to 22nd steps) and shorter support time (all steps) in the fastest trial than in the slowest trial. Moreover, for the fastest trial there were likely-very likely greater mean propulsive force during the initial four steps and possibly-very likely larger mean net anterior-posterior force until the 17th step. The current results demonstrate that better sprinting performance within a single session is probably achieved by 1) a high step frequency (except the initial step) with short support time at all steps, 2) exerting a greater mean propulsive force during initial acceleration, and 3) producing a greater mean net anterior-posterior force during initial and middle acceleration.

  10. Effects of Robot Assisted Gait Training in Progressive Supranuclear Palsy (PSP: a preliminary report.

    Directory of Open Access Journals (Sweden)

    Patrizio eSale

    2014-04-01

    Full Text Available Background and Purpose: Progressive supranuclear palsy (PSP is a rare neurodegenerative disease clinically characterized by prominent axial extrapyramidal motor symptoms with frequent falls. Over the last years the introduction of robotic technologies to recover lower limb function has been greatly employed in the rehabilitative practice. This observational trial is aimed at investigating the feasibility, the effectiveness and the efficacy of end-effector robot training in people with PSP.Method: Pilot observational trial.Participants: Five cognitively intact participants with PSP and gait disorders.Interventions: Patients were submitted to a rehabilitative program of robot-assisted walking sessions for 45 minutes, 5 times a week for 4 weeks.Main outcome measures: The spatiotemporal parameters at the beginning (T0 and at the end of treatment (T1 were recorded by a gait analysis laboratory.Results: Robot training was feasible, acceptable and safe and all participants completed the prescribed training sessions. All patients showed an improvement in the gait index (Mean velocity, Cadence, Step length and Step width (T0 versus T1.Conclusions: Robot training is a feasible and safe form of rehabilitation for cognitively intact people with PSP. This innovative approach can contribute to improve lower limb motor recovery. The focus on gait recovery is another quality that makes this research important for clinical practice. On the whole, the simplicity of treatment, the lack of side effects and the positive results in the patients support the recommendation to extend the trials of this treatment. Further investigation regarding the effectiveness of robot training in time is necessary.Trial registration: ClinicalTrials.gov NCT01668407.

  11. Morphology Independent Learning in Modular Robots

    DEFF Research Database (Denmark)

    Christensen, David Johan; Bordignon, Mirko; Schultz, Ulrik Pagh

    2009-01-01

    Hand-coding locomotion controllers for modular robots is difficult due to their polymorphic nature. Instead, we propose to use a simple and distributed reinforcement learning strategy. ATRON modules with identical controllers can be assembled in any configuration. To optimize the robot’s locomotion...... speed its modules independently and in parallel adjust their behavior based on a single global reward signal. In simulation, we study the learning strategy’s performance on different robot configurations. On the physical platform, we perform learning experiments with ATRON robots learning to move as fast...

  12. Flocking and rendezvous in distributed robotics

    CERN Document Server

    Francis, Bruce A

    2016-01-01

    This brief describes the coordinated control of groups of robots using only sensory input – and no direct external commands. Furthermore, each robot employs the same local strategy, i.e., there are no leaders, and the text also deals with decentralized control, allowing for cases in which no single robot can sense all the others. One can get intuition for the problem from the natural world, for example, flocking birds. How do they achieve and maintain their flying formation? Recognizing their importance as the most basic coordination tasks for mobile robot networks, the brief details flocking and rendezvous. They are shown to be physical illustrations of emergent behaviors with global consensus arising from local interactions. The authors extend the consideration of these fundamental ideas to describe their operation in flying robots and prompt readers to pursue further research in the field.  Flocking and Rendezvous in Distributed Robotics will provide graduate students a firm grounding in the subject, w...

  13. Pilot Evaluation of the Feasibility and Acceptability of StressOFF Strategies: A Single-Session School-Based Stress Management Program for Adolescents

    Science.gov (United States)

    Shapiro, Amy J.; Heath, Nancy L.; Carsley, Dana

    2016-01-01

    The present study reports the pilot evaluation of the feasibility and acceptability of StressOFF Strategies, a "single-session" (45 min) adolescent-targeted, school-based psychoeducational program, which introduces cognitive behavioral techniques and mindfulness-based techniques. Five hundred and sixty-five Grade 9 students (57% female;…

  14. Kinematics effectively delineate accomplished users of endovascular robotics with a physical training model.

    Science.gov (United States)

    Duran, Cassidy; Estrada, Sean; O'Malley, Marcia; Lumsden, Alan B; Bismuth, Jean

    2015-02-01

    Endovascular robotics systems, now approved for clinical use in the United States and Europe, are seeing rapid growth in interest. Determining who has sufficient expertise for safe and effective clinical use remains elusive. Our aim was to analyze performance on a robotic platform to determine what defines an expert user. During three sessions, 21 subjects with a range of endovascular expertise and endovascular robotic experience (novices 20 hours) performed four tasks on a training model. All participants completed a 2-hour training session on the robot by a certified instructor. Completion times, global rating scores, and motion metrics were collected to assess performance. Electromagnetic tracking was used to capture and to analyze catheter tip motion. Motion analysis was based on derivations of speed and position including spectral arc length and total number of submovements (inversely proportional to proficiency of motion) and duration of submovements (directly proportional to proficiency). Ninety-eight percent of competent subjects successfully completed the tasks within the given time, whereas 91% of noncompetent subjects were successful. There was no significant difference in completion times between competent and noncompetent users except for the posterior branch (151 s:105 s; P = .01). The competent users had more efficient motion as evidenced by statistically significant differences in the metrics of motion analysis. Users with >20 hours of experience performed significantly better than those newer to the system, independent of prior endovascular experience. This study demonstrates that motion-based metrics can differentiate novice from trained users of flexible robotics systems for basic endovascular tasks. Efficiency of catheter movement, consistency of performance, and learning curves may help identify users who are sufficiently trained for safe clinical use of the system. This work will help identify the learning curve and specific movements that

  15. Transformers: Shape-Changing Space Systems Built with Robotic Textiles

    Science.gov (United States)

    Stoica, Adrian

    2013-01-01

    Prior approaches to transformer-like robots had only very limited success. They suffer from lack of reliability, ability to integrate large surfaces, and very modest change in overall shape. Robots can now be built from two-dimensional (2D) layers of robotic fabric. These transformers, a new kind of robotic space system, are dramatically different from current systems in at least two ways. First, the entire transformer is built from a single, thin sheet; a flexible layer of a robotic fabric (ro-fabric); or robotic textile (ro-textile). Second, the ro-textile layer is foldable to small volume and self-unfolding to adapt shape and function to mission phases.

  16. Can a single session of motor imagery promote motor learning of locomotion in older adults? A randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Nicholson VP

    2018-04-01

    Full Text Available Vaughan P Nicholson,1 Justin WL Keogh,2–4 Nancy L Low Choy1 1School of Physiotherapy, Australian Catholic University, Brisbane, QLD, Australia; 2Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia; 3Human Potential Centre, AUT University, Auckland, New Zealand; 4Cluster for Health Improvement, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sunshine Coast, QLD, Australia Purpose: To investigate the influence of a single session of locomotor-based motor imagery training on motor learning and physical performance. Patients and methods: Thirty independent adults aged >65 years took part in the randomized controlled trial. The study was conducted within an exercise science laboratory. Participants were randomly divided into three groups following baseline locomotor testing: motor imagery training, physical training, and control groups. The motor imagery training group completed 20 imagined repetitions of a locomotor task, the physical training group completed 20 physical repetitions of a locomotor task, and the control group spent 25 minutes playing mentally stimulating games on an iPad. Imagined and physical performance times were measured for each training repetition. Gait speed (preferred and fast, timed-up-and-go, gait variability and the time to complete an obstacle course were completed before and after the single training session. Results: Motor learning occurred in both the motor imagery training and physical training groups. Motor imagery training led to refinements in motor planning resulting in imagined movements better matching the physically performed movement at the end of training. Motor imagery and physical training also promoted improvements in some locomotion outcomes as demonstrated by medium to large effect size improvements after training for fast gait speed and timed-up-and-go. There were no training effects on gait variability. Conclusion: A single session

  17. Robot training for hand motor recovery in subacute stroke patients: A randomized controlled trial.

    Science.gov (United States)

    Orihuela-Espina, Felipe; Roldán, Giovana Femat; Sánchez-Villavicencio, Israel; Palafox, Lorena; Leder, Ronald; Sucar, Luis Enrique; Hernández-Franco, Jorge

    2016-01-01

    Evidence of superiority of robot training for the hand over classical therapies in stroke patients remains controversial. During the subacute stage, hand training is likely to be the most useful. To establish whether robot active assisted therapies provides any additional motor recovery for the hand when administered during the subacute stage (robot based therapies for hand recovery will show significant differences at subacute stages. A randomized clinical trial. A between subjects randomized controlled trial was carried out on subacute stroke patients (n = 17) comparing robot active assisted therapy (RT) with a classical occupational therapy (OT). Both groups received 40 sessions ensuring at least 300 repetitions per session. Treatment duration was (mean ± std) 2.18 ± 1.25 months for the control group and 2.44 ± 0.88 months for the study group. The primary outcome was motor dexterity changes assessed with the Fugl-Meyer (FMA) and the Motricity Index (MI). Both groups (OT: n = 8; RT: n = 9) exhibited significant improvements over time (Non-parametric Cliff's delta-within effect sizes: dwOT-FMA = 0.5, dwOT-MI = 0.5, dwRT-FMA = 1, dwRT-MI = 1). Regarding differences between the therapies; the Fugl-Meyer score indicated a significant advantage for the hand training with the robot (FMA hand: WRS: W = 8, p hand prehension for RT with respect to OT but failed to reach significance (MI prehension: W = 17.5, p = 0.080). No harm occurred. Robotic therapies may be useful during the subacute stages of stroke - both endpoints (FM hand and MI prehension) showed the expected trend with bigger effect size for the robotic intervention. Additional benefit of the robotic therapy over the control therapy was only significant when the difference was measured with FM, demanding further investigation with larger samples. Implications of this study are important for decision making during therapy administration and resource allocation. Copyright © 2016 Hanley

  18. Position Control of the Single Spherical Wheel Mobile Robot by Using the Fuzzy Sliding Mode Controller

    OpenAIRE

    Hamed Navabi; Soroush Sadeghnejad; Sepehr Ramezani; Jacky Baltes

    2017-01-01

    A spherical wheel robot or Ballbot—a robot that balances on an actuated spherical ball—is a new and recent type of robot in the popular area of mobile robotics. This paper focuses on the modeling and control of such a robot. We apply the Lagrangian method to derive the governing dynamic equations of the system. We also describe a novel Fuzzy Sliding Mode Controller (FSMC) implemented to control a spherical wheel mobile robot. The nonlinear nature of the equations makes the controller nontrivi...

  19. Single-Session CT-Guided Percutaneous Microwave Ablation of Bilateral Adrenal Gland Hyperplasia Due to Ectopic ACTH Syndrome

    International Nuclear Information System (INIS)

    Sarma, Asha; Shyn, Paul B.; Vivian, Mark A.; Ng, Ju-Mei; Tuncali, Kemal; Lorch, Jorchen H.; Zaheer, Sarah N.; Gordon, Michael S.; Silverman, Stuart G.

    2015-01-01

    Bilateral adrenalectomy is currently the only available treatment for adrenocorticotropic hormone (ACTH)-dependent Cushing’s syndrome (ectopic ACTH syndrome) that is refractory to pharmacologic therapy. We describe two patients with refractory ectopic ACTH syndrome who were treated with CT-guided percutaneous microwave ablation of both hyperplastic adrenal glands in a single session: One was not a surgical candidate, and the other had undergone unsuccessful surgery. Following the procedure, both patients achieved substantial decreases in serum cortisol, symptomatic improvement, and decreased anti-hypertensive medication requirements

  20. Single-Session CT-Guided Percutaneous Microwave Ablation of Bilateral Adrenal Gland Hyperplasia Due to Ectopic ACTH Syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Sarma, Asha, E-mail: ashasarma@gmail.com; Shyn, Paul B., E-mail: pshyn@partners.org [Brigham and Women’s Hospital, Department of Radiology (United States); Vivian, Mark A. [University of Manitoba, Department of Radiology (Canada); Ng, Ju-Mei [Brigham and Women’s Hospital, Department of Anesthesiology (United States); Tuncali, Kemal [Brigham and Women’s Hospital, Department of Radiology (United States); Lorch, Jorchen H. [Dana Farber Cancer Institute, Department of Medicine (United States); Zaheer, Sarah N.; Gordon, Michael S. [Brigham and Women’s Hospital, Department of Endocrinology (United States); Silverman, Stuart G. [Brigham and Women’s Hospital, Department of Radiology (United States)

    2015-10-15

    Bilateral adrenalectomy is currently the only available treatment for adrenocorticotropic hormone (ACTH)-dependent Cushing’s syndrome (ectopic ACTH syndrome) that is refractory to pharmacologic therapy. We describe two patients with refractory ectopic ACTH syndrome who were treated with CT-guided percutaneous microwave ablation of both hyperplastic adrenal glands in a single session: One was not a surgical candidate, and the other had undergone unsuccessful surgery. Following the procedure, both patients achieved substantial decreases in serum cortisol, symptomatic improvement, and decreased anti-hypertensive medication requirements.

  1. Telemanipulation of cooperative robots: a case of study

    Science.gov (United States)

    Pliego-Jiménez, Javier; Arteaga-Pérez, Marco

    2018-06-01

    This article addresses the problem of dexterous robotic grasping by means of a telemanipulation system composed of a single master and two slave robot manipulators. The slave robots are analysed as a cooperative system where it is assumed that the robots can push but not pull the object. In order to achieve a stable rigid grasp, a centralised adaptive position-force control algorithm for the slave robots is proposed. On the other hand, a linear velocity observer for the master robot is developed to avoid numerical differentiation. A set of experiments with different human operators were carried out to show the good performance and capabilities of the proposed control-observer algorithm. In addition, the dynamic model and closed-loop dynamics of the telemanipulation is presented.

  2. Intersections and Unions of Session Types

    Directory of Open Access Journals (Sweden)

    Coşku Acay

    2017-02-01

    Full Text Available Prior work has extended the deep, logical connection between the linear sequent calculus and session-typed message-passing concurrent computation with equi-recursive types and a natural notion of subtyping. In this paper, we extend this further by intersection and union types in order to express multiple behavioral properties of processes in a single type. We prove session fidelity and absence of deadlock and illustrate the expressive power of our system with some simple examples. We observe that we can represent internal and external choice by intersection and union, respectively, which was previously suggested by Padovani for a different language of session types motivated by operational rather than logical concerns.

  3. Laws on Robots, Laws by Robots, Laws in Robots : Regulating Robot Behaviour by Design

    NARCIS (Netherlands)

    Leenes, R.E.; Lucivero, F.

    2015-01-01

    Speculation about robot morality is almost as old as the concept of a robot itself. Asimov’s three laws of robotics provide an early and well-discussed example of moral rules robots should observe. Despite the widespread influence of the three laws of robotics and their role in shaping visions of

  4. Preliminary experience with frameless stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Buatti, John M.; Bova, Frank J.; Friedman, William A.; Meeks, Sanford L.; Ellis, Thomas L.; Marcus, Robert B.; Zuofeng, Li; Mendenhall, William M.

    1997-01-01

    Purpose/Objective: To report our initial clinical experience using a novel high-precision frameless stereotactic radiotherapy system in 50 patients who have received 1271 treatments. Materials and Methods: Fifty patients ranging in age from 2 to 72 yr were treated with fractionated stereotactic radiotherapy. Thirty-two were treated with stereotactic radiotherapy alone, and 18 had stereotactic radiotherapy interdigitated as a boost in addition to standard irradiation. Pathologies treated included meningioma (13), low grade astrocytoma (10), germinoma (9), craniopharyngioma (4), schwannoma (2), and pituitary adenoma (2). Two additional patients had miscellaneous benign neoplasms and 8 patients had the technique used as a dose escalation strategy for malignant lesions including chordoma, primitive neuroectodermal tumor, sarcoma, and anaplastic oligoastrocytoma. Treatment reproducibility was initially gauged by comparing the bite plate position using infrared light emitting diodes (irleds) with the stereotactic radiosurgery reference system. This test of accuracy consisted of 10 bite plate repositionings for each patient and 100 readings of each of the 6 irleds on the bite plate at each new position. Each of the 1271 patient treatments was monitored for continuous digital position, and a reading was made before treating each arc of radiation. We chose 0.3 mm translation and 0.3 degrees rotation as the maximum tolerated misalignment before treating each arc. Results: With a mean follow-up of 9 mo, no patient had a marginal or distal failure. One patient with a malignant glioma had central disease progression. Acute side effects were minimal. In 3 of 9 low grade astrocytomas, a marked increase in imaging enhancement and edema occurred in the first year after treatment that resolved with steroids. The initial test of accuracy revealed bite plate reproducibility as follows. Translational errors (mm): Anterior-posterior, 0.06 ± 0.06; lateral, 0.03 ± 0.05; axial, 0.07 ± 0

  5. Optical assembly of bio-hybrid micro-robots.

    Science.gov (United States)

    Barroso, Álvaro; Landwerth, Shirin; Woerdemann, Mike; Alpmann, Christina; Buscher, Tim; Becker, Maike; Studer, Armido; Denz, Cornelia

    2015-04-01

    The combination of micro synthetic structures with bacterial flagella motors represents an actual trend for the construction of self-propelled micro-robots. The development of methods for fabrication of these bacteria-based robots is a first crucial step towards the realization of functional miniature and autonomous moving robots. We present a novel scheme based on optical trapping to fabricate living micro-robots. By using holographic optical tweezers that allow three-dimensional manipulation in real time, we are able to arrange the building blocks that constitute the micro-robot in a defined way. We demonstrate exemplarily that our method enables the controlled assembly of living micro-robots consisting of a rod-shaped prokaryotic bacterium and a single elongated zeolite L crystal, which are used as model of the biological and abiotic components, respectively. We present different proof-of-principle approaches for the site-selective attachment of the bacteria on the particle surface. The propulsion of the optically assembled micro-robot demonstrates the potential of the proposed method as a powerful strategy for the fabrication of bio-hybrid micro-robots.

  6. Review of emerging surgical robotic technology.

    Science.gov (United States)

    Peters, Brian S; Armijo, Priscila R; Krause, Crystal; Choudhury, Songita A; Oleynikov, Dmitry

    2018-04-01

    The use of laparoscopic and robotic procedures has increased in general surgery. Minimally invasive robotic surgery has made tremendous progress in a relatively short period of time, realizing improvements for both the patient and surgeon. This has led to an increase in the use and development of robotic devices and platforms for general surgery. The purpose of this review is to explore current and emerging surgical robotic technologies in a growing and dynamic environment of research and development. This review explores medical and surgical robotic endoscopic surgery and peripheral technologies currently available or in development. The devices discussed here are specific to general surgery, including laparoscopy, colonoscopy, esophagogastroduodenoscopy, and thoracoscopy. Benefits and limitations of each technology were identified and applicable future directions were described. A number of FDA-approved devices and platforms for robotic surgery were reviewed, including the da Vinci Surgical System, Sensei X Robotic Catheter System, FreeHand 1.2, invendoscopy E200 system, Flex® Robotic System, Senhance, ARES, the Single-Port Instrument Delivery Extended Research (SPIDER), and the NeoGuide Colonoscope. Additionally, platforms were reviewed which have not yet obtained FDA approval including MiroSurge, ViaCath System, SPORT™ Surgical System, SurgiBot, Versius Robotic System, Master and Slave Transluminal Endoscopic Robot, Verb Surgical, Miniature In Vivo Robot, and the Einstein Surgical Robot. The use and demand for robotic medical and surgical platforms is increasing and new technologies are continually being developed. New technologies are increasingly implemented to improve on the capabilities of previously established systems. Future studies are needed to further evaluate the strengths and weaknesses of each robotic surgical device and platform in the operating suite.

  7. A Recipe for Soft Fluidic Elastomer Robots.

    Science.gov (United States)

    Marchese, Andrew D; Katzschmann, Robert K; Rus, Daniela

    2015-03-01

    This work provides approaches to designing and fabricating soft fluidic elastomer robots. That is, three viable actuator morphologies composed entirely from soft silicone rubber are explored, and these morphologies are differentiated by their internal channel structure, namely, ribbed, cylindrical, and pleated. Additionally, three distinct casting-based fabrication processes are explored: lamination-based casting, retractable-pin-based casting, and lost-wax-based casting. Furthermore, two ways of fabricating a multiple DOF robot are explored: casting the complete robot as a whole and casting single degree of freedom (DOF) segments with subsequent concatenation. We experimentally validate each soft actuator morphology and fabrication process by creating multiple physical soft robot prototypes.

  8. Animal Robot Assisted-therapy for Rehabilitation of Patient with Post-Stroke Depression

    Science.gov (United States)

    Zikril Zulkifli, Winal; Shamsuddin, Syamimi; Hwee, Lim Thiam

    2017-06-01

    Recently, the utilization of therapeutic animal robots has expanded. This research aims to explore robotics application for mental healthcare in Malaysia through human-robot interaction (HRI). PARO, the robotic seal PARO was developed to give psychological effects on humans. Major Depressive Disorder (MDD) is a common but severe mood disorder. This study focuses on the interaction protocol between PARO and patients with MDD. Initially, twelve rehabilitation patients gave subjective evaluation on their first interaction with PARO. Next, therapeutic interaction environment was set-up with PARO in it to act as an augmentation strategy with other psychological interventions for post-stroke depression. Patient was exposed to PARO for 20 minutes. The results of behavioural analysis complemented with information from HRI survey question. The analysis also observed that the individual interactors engaged with the robot in diverse ways based on their needs Results show positive reaction toward the acceptance of an animal robot. Next, therapeutic interaction is set-up for PARO to contribute as an augmentation strategy with other psychological interventions for post-stroke depression. The outcome is to reduce the stress level among patients through facilitated therapy session with PARO

  9. The Effects of Upper-Limb Training Assisted with an Electromyography-Driven Neuromuscular Electrical Stimulation Robotic Hand on Chronic Stroke

    Directory of Open Access Journals (Sweden)

    Chingyi Nam

    2017-12-01

    Full Text Available BackgroundImpaired hand dexterity is a major disability of the upper limb after stroke. An electromyography (EMG-driven neuromuscular electrical stimulation (NMES robotic hand was designed previously, whereas its rehabilitation effects were not investigated.ObjectivesThis study aims to investigate the rehabilitation effectiveness of the EMG-driven NMES-robotic hand-assisted upper-limb training on persons with chronic stroke.MethodA clinical trial with single-group design was conducted on chronic stroke participants (n = 15 who received 20 sessions of EMG-driven NMES-robotic hand-assisted upper-limb training. The training effects were evaluated by pretraining, posttraining, and 3-month follow-up assessments with the clinical scores of the Fugl-Meyer Assessment (FMA, the Action Research Arm Test (ARAT, the Wolf Motor Function Test, the Motor Functional Independence Measure, and the Modified Ashworth Scale (MAS. Improvements in the muscle coordination across the sessions were investigated by EMG parameters, including EMG activation level and Co-contraction Indexes (CIs of the target muscles in the upper limb.ResultsSignificant improvements in the FMA shoulder/elbow and wrist/hand scores (P < 0.05, the ARAT (P < 0.05, and in the MAS (P < 0.05 were observed after the training and sustained 3 months later. The EMG parameters indicated a significant decrease of the muscle activation level in flexor digitorum (FD and biceps brachii (P < 0.05, as well as a significant reduction of CIs in the muscle pairs of FD and triceps brachii and biceps brachii and triceps brachii (P < 0.05.ConclusionThe upper-limb training integrated with the assistance from the EMG-driven NMES-robotic hand is effective for the improvements of the voluntary motor functions and the muscle coordination in the proximal and distal joints. Furthermore, the motor improvement after the training could be maintained till 3 months later.Trial registration

  10. The Effects of Upper-Limb Training Assisted with an Electromyography-Driven Neuromuscular Electrical Stimulation Robotic Hand on Chronic Stroke.

    Science.gov (United States)

    Nam, Chingyi; Rong, Wei; Li, Waiming; Xie, Yunong; Hu, Xiaoling; Zheng, Yongping

    2017-01-01

    Impaired hand dexterity is a major disability of the upper limb after stroke. An electromyography (EMG)-driven neuromuscular electrical stimulation (NMES) robotic hand was designed previously, whereas its rehabilitation effects were not investigated. This study aims to investigate the rehabilitation effectiveness of the EMG-driven NMES-robotic hand-assisted upper-limb training on persons with chronic stroke. A clinical trial with single-group design was conducted on chronic stroke participants ( n  = 15) who received 20 sessions of EMG-driven NMES-robotic hand-assisted upper-limb training. The training effects were evaluated by pretraining, posttraining, and 3-month follow-up assessments with the clinical scores of the Fugl-Meyer Assessment (FMA), the Action Research Arm Test (ARAT), the Wolf Motor Function Test, the Motor Functional Independence Measure, and the Modified Ashworth Scale (MAS). Improvements in the muscle coordination across the sessions were investigated by EMG parameters, including EMG activation level and Co-contraction Indexes (CIs) of the target muscles in the upper limb. Significant improvements in the FMA shoulder/elbow and wrist/hand scores ( P  < 0.05), the ARAT ( P  < 0.05), and in the MAS ( P  < 0.05) were observed after the training and sustained 3 months later. The EMG parameters indicated a significant decrease of the muscle activation level in flexor digitorum (FD) and biceps brachii ( P  < 0.05), as well as a significant reduction of CIs in the muscle pairs of FD and triceps brachii and biceps brachii and triceps brachii ( P  < 0.05). The upper-limb training integrated with the assistance from the EMG-driven NMES-robotic hand is effective for the improvements of the voluntary motor functions and the muscle coordination in the proximal and distal joints. Furthermore, the motor improvement after the training could be maintained till 3 months later. ClinicalTrials.gov. NCT02117089; date of registration: April

  11. Individual finger synchronized robot-assisted hand rehabilitation in subacute to chronic stroke: a prospective randomized clinical trial of efficacy.

    Science.gov (United States)

    Hwang, Chang Ho; Seong, Jin Wan; Son, Dae-Sik

    2012-08-01

    To evaluate individual finger synchronized robot-assisted hand rehabilitation in stroke patients. Prospective parallel group randomized controlled clinical trial. The study recruited patients who were ≥18 years old, more than three months post stroke, showed limited index finger movement and had weakened and impaired hand function. Patients with severe sensory loss, spasticity, apraxia, aphasia, disabling hand disease, impaired consciousness or depression were excluded. Patients received either four weeks (20 sessions) of active robot-assisted intervention (the FTI (full-term intervention) group, 9 patients) or two weeks (10 sessions) of early passive therapy followed by two weeks (10 sessions) of active robot-assisted intervention (the HTI (half-term intervention) group, 8 patients). Patients underwent arm function assessments prior to therapy (baseline), and at 2, 4 and 8 weeks after starting therapy. Compared to baseline, both the FTI and HTI groups showed improved results for the Jebsen Taylor test, the wrist and hand subportion of the Fugl-Meyer arm motor scale, active movement of the 2nd metacarpophalangeal joint, grasping, and pinching power (P vs. 46.4 ± 37.4) and wrist and hand subportion of the Fugl-Meyer arm motor scale (4.3 ± 1.9 vs. 3.4 ± 2.5) after eight weeks. A four-week rehabilitation using a novel robot that provides individual finger synchronization resulted in a dose-dependent improvement in hand function in subacute to chronic stroke patients.

  12. R and D on robots for nuclear power plants in 'advanced robot technology' project

    International Nuclear Information System (INIS)

    Ando, Hiroaki

    1987-01-01

    The project aims at developing a safe man-robot system of high mobility and workability, highly adaptable to the working environment, and readily and reliably remote-controlled. The plan is to develop 'multi-purpose robots' that can do monitoring, inspection and light work quickly and correctly in areas where access of humans is difficult (e.g. hot spots and the inner space of the primary containment vessel), and 'robots used exclusively for valves, pumps, and other equipment, multi-functional to be used only for specific purposes'. This can be expected to be completed on the basis of results in research and development for the multi-purpose robots. R and D on the total system means manufacturing an optimum system with sufficient functions and performance required for the robot by combining existing technologies most adequately on the basis of the results of research and development on the project. After conceptual drawing and conceptual design, the system will be manufactured and demonstration tests will be completed by fiscal 1987 or 1988. This report describes the total image of the robots concerning the shape, locomotion, manipulation, perception, communication, control management, reliability and environmental durability, and then outlines the research and development activities regarding locomotion, manipulator, tectile sensor, actuator, single-eye three-dimensional measurement, visual data processing, optical spacial transmission, failure repair controller, functional reduction, robot health care and radiation resistance. (Nogami, K.)

  13. A Comparative Study of Single-Port Laparoscopic Surgery Versus Robotic-Assisted Laparoscopic Surgery for Rectal Cancer

    DEFF Research Database (Denmark)

    Levic, Katarina; Donatsky, Anders Meller; Bulut, Orhan

    2015-01-01

    INTRODUCTION: Conventional laparoscopic surgery is the treatment of choice for many abdominal procedures. To further reduce surgical trauma, new minimal invasive procedures such as single-port laparoscopic surgery (SPLS) and robotic assisted laparoscopic surgery (RALS) have emerged. The aim...... in either of the groups. There was no difference in median follow-up time between groups (P = .58). CONCLUSION: Both SPLS and RALS may have a role in rectal surgery. The short-term oncological outcomes were similar, although RALS harvested more lymph nodes than the SPLS procedure. However, SPLS seems...

  14. Powered robotic exoskeletons in post-stroke rehabilitation of gait: a scoping review.

    Science.gov (United States)

    Louie, Dennis R; Eng, Janice J

    2016-06-08

    Powered robotic exoskeletons are a potential intervention for gait rehabilitation in stroke to enable repetitive walking practice to maximize neural recovery. As this is a relatively new technology for stroke, a scoping review can help guide current research and propose recommendations for advancing the research development. The aim of this scoping review was to map the current literature surrounding the use of robotic exoskeletons for gait rehabilitation in adults post-stroke. Five databases (Pubmed, OVID MEDLINE, CINAHL, Embase, Cochrane Central Register of Clinical Trials) were searched for articles from inception to October 2015. Reference lists of included articles were reviewed to identify additional studies. Articles were included if they utilized a robotic exoskeleton as a gait training intervention for adult stroke survivors and reported walking outcome measures. Of 441 records identified, 11 studies, all published within the last five years, involving 216 participants met the inclusion criteria. The study designs ranged from pre-post clinical studies (n = 7) to controlled trials (n = 4); five of the studies utilized a robotic exoskeleton device unilaterally, while six used a bilateral design. Participants ranged from sub-acute (6 months) stroke. Training periods ranged from single-session to 8-week interventions. Main walking outcome measures were gait speed, Timed Up and Go, 6-min Walk Test, and the Functional Ambulation Category. Meaningful improvement with exoskeleton-based gait training was more apparent in sub-acute stroke compared to chronic stroke. Two of the four controlled trials showed no greater improvement in any walking outcomes compared to a control group in chronic stroke. In conclusion, clinical trials demonstrate that powered robotic exoskeletons can be used safely as a gait training intervention for stroke. Preliminary findings suggest that exoskeletal gait training is equivalent to traditional therapy for chronic stroke

  15. Robots Conquering the Homeland of the Vikings

    DEFF Research Database (Denmark)

    Agger Nielsen, Jeppe; Sigh, Anne; Andersen, Kim Normann

    The movement of robots from the production line to the service sector provides a protein solution to innovate and transform public service delivery. However, although robots increasingly are adopted in public service delivery (e.g., in healthcare and eldercare) as an alternative to traditional...... labor intensive services, little is known about their impact on organizations work processes, and how key stakeholders react toward robots. On this backdrop, this single case study investigates implementation and use of robot vacuum cleaners in Danish eldercare at the local government level. Using...... an extended version of the technological frame concept, this paper illustrates how technologist, managers, frontline staff and clients have different perceptions towards robot vacuum cleaning. The technologist and managers praise the new innovation for facilitating savings on the current accounts. By contrast...

  16. Cultural Robotics: The Culture of Robotics and Robotics in Culture

    Directory of Open Access Journals (Sweden)

    Hooman Samani

    2013-12-01

    Full Text Available In this paper, we have investigated the concept of “Cultural Robotics” with regard to the evolution of social into cultural robots in the 21st Century. By defining the concept of culture, the potential development of a culture between humans and robots is explored. Based on the cultural values of the robotics developers, and the learning ability of current robots, cultural attributes in this regard are in the process of being formed, which would define the new concept of cultural robotics. According to the importance of the embodiment of robots in the sense of presence, the influence of robots in communication culture is anticipated. The sustainability of robotics culture based on diversity for cultural communities for various acceptance modalities is explored in order to anticipate the creation of different attributes of culture between robots and humans in the future.

  17. Friendly network robotics; Friendly network robotics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This paper summarizes the research results on the friendly network robotics in fiscal 1996. This research assumes an android robot as an ultimate robot and the future robot system utilizing computer network technology. The robot aiming at human daily work activities in factories or under extreme environments is required to work under usual human work environments. The human robot with similar size, shape and functions to human being is desirable. Such robot having a head with two eyes, two ears and mouth can hold a conversation with human being, can walk with two legs by autonomous adaptive control, and has a behavior intelligence. Remote operation of such robot is also possible through high-speed computer network. As a key technology to use this robot under coexistence with human being, establishment of human coexistent robotics was studied. As network based robotics, use of robots connected with computer networks was also studied. In addition, the R-cube (R{sup 3}) plan (realtime remote control robot technology) was proposed. 82 refs., 86 figs., 12 tabs.

  18. Analysis of the use of a robot to improve social skills in children with autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Carlos Torturella Valadão

    Full Text Available Abstract Introduction Autism Spectrum Disorder is a set of developmental disorders that imply in poor social skills, lack of interest in activities and interaction with people. Treatments rely on teaching social skills and in such therapies robotics may offer aid. This work is a pilot study, which aims to show the development and usage of a ludic mobile robot for stimulating social skills in ASD children. Methods A mobile robot with a special costume and a monitor to display multimedia contents was designed to interact with ASD children. A mediator controls the robot’s movements in a room prepared for interactive sessions. Sessions are recorded to assess the following social skills: eye gazing, touching the robot and imitating the mediator. The interaction is evaluated using the Goal Attainment Scale and Likert scale. Ten children were evaluated (50% with ASD, using as inclusion criteria children with age 7-8, without use of medication, and without tendency to aggression or stereotyped movements. Results It was observed that the ASD group touched the robot about twice more in average than the control group (CG. They also looked away and imitated the mediator in a quite similar way as the CG, and showed extra social skills (verbal and non-verbal communication. These results are considered an advance in terms of improvement of social skills in ASD children. Conclusions Our studies indicate that the robot stimulated social skills in 4/5 of the ASD children, which shows that its concepts are useful to improve socialization and quality of life.

  19. Robot vision for nuclear advanced robot

    International Nuclear Information System (INIS)

    Nakayama, Ryoichi; Okano, Hideharu; Kuno, Yoshinori; Miyazawa, Tatsuo; Shimada, Hideo; Okada, Satoshi; Kawamura, Astuo

    1991-01-01

    This paper describes Robot Vision and Operation System for Nuclear Advanced Robot. This Robot Vision consists of robot position detection, obstacle detection and object recognition. With these vision techniques, a mobile robot can make a path and move autonomously along the planned path. The authors implemented the above robot vision system on the 'Advanced Robot for Nuclear Power Plant' and tested in an environment mocked up as nuclear power plant facilities. Since the operation system for this robot consists of operator's console and a large stereo monitor, this system can be easily operated by one person. Experimental tests were made using the Advanced Robot (nuclear robot). Results indicate that the proposed operation system is very useful, and can be operate by only person. (author)

  20. International Conference on Intelligent Robots and Systems - IROS 2011

    CERN Document Server

    Rosen, Jacob; Redundancy in Robot Manipulators and Multi-Robot Systems

    2013-01-01

    The trend in the evolution of robotic systems is that the number of degrees of freedom increases. This is visible both in robot manipulator design and in the shift of focus from single to multi-robot systems. Following the principles of evolution in nature, one may infer that adding degrees of freedom to robot systems design is beneficial. However, since nature did not select snake-like bodies for all creatures, it is reasonable to expect the presence of a certain selection pressure on the number of degrees of freedom. Thus, understanding costs and benefits of multiple degrees of freedom, especially those that create redundancy, is a fundamental problem in the field of robotics. This volume is mostly based on the works presented at the workshop on Redundancy in Robot Manipulators and Multi-Robot Systems at the IEEE/RSJ International Conference on Intelligent Robots and Systems - IROS 2011. The workshopwas envisioned as a dialog between researchers from two separate, but obviously relatedfields of robotics: on...

  1. Value-based assessment of robotic pancreas and liver surgery.

    Science.gov (United States)

    Patti, James C; Ore, Ana Sofia; Barrows, Courtney; Velanovich, Vic; Moser, A James

    2017-08-01

    Current healthcare economic evaluations are based only on the perspective of a single stakeholder to the healthcare delivery process. A true value-based decision incorporates all of the outcomes that could be impacted by a single episode of surgical care. We define the value proposition for robotic surgery using a stakeholder model incorporating the interests of all groups participating in the provision of healthcare services: patients, surgeons, hospitals and payers. One of the developing and expanding fields that could benefit the most from a complete value-based analysis is robotic hepatopancreaticobiliary (HPB) surgery. While initial robot purchasing costs are high, the benefits over laparoscopic surgery are considerable. Performing a literature search we found a total of 18 economic evaluations for robotic HPB surgery. We found a lack of evaluations that were carried out from a perspective that incorporates all of the impacts of a single episode of surgical care and that included a comprehensive hospital cost assessment. For distal pancreatectomies, the two most thorough examinations came to conflicting results regarding total cost savings compared to laparoscopic approaches. The most thorough pancreaticoduodenectomy evaluation found non-significant savings for total hospital costs. Robotic hepatectomies showed no cost savings over laparoscopic and only modest savings over open techniques. Lastly, robotic cholecystectomies were found to be more expensive than the gold-standard laparoscopic approach. Existing cost accounting data associated with robotic HPB surgery is incomplete and unlikely to reflect the state of this field in the future. Current data combines the learning curves for new surgical procedures being undertaken by HPB surgeons with costs derived from a market dominated by a single supplier of robotic instruments. As a result, the value proposition for stakeholders in this process cannot be defined. In order to solve this problem, future studies

  2. Measuring Engagement in Robot-Assisted Autism Therapy: A Cross-Cultural Study

    Directory of Open Access Journals (Sweden)

    Ognjen Rudovic

    2017-07-01

    Full Text Available During occupational therapy for children with autism, it is often necessary to elicit and maintain engagement for the children to benefit from the session. Recently, social robots have been used for this; however, existing robots lack the ability to autonomously recognize the children’s level of engagement, which is necessary when choosing an optimal interaction strategy. Progress in automated engagement reading has been impeded in part due to a lack of studies on child-robot engagement in autism therapy. While it is well known that there are large individual differences in autism, little is known about how these vary across cultures. To this end, we analyzed the engagement of children (age 3–13 from two different cultural backgrounds: Asia (Japan, n = 17 and Eastern Europe (Serbia, n = 19. The children participated in a 25 min therapy session during which we studied the relationship between the children’s behavioral engagement (task-driven and different facets of affective engagement (valence and arousal. Although our results indicate that there are statistically significant differences in engagement displays in the two groups, it is difficult to make any causal claims about these differences due to the large variation in age and behavioral severity of the children in the study. However, our exploratory analysis reveals important associations between target engagement and perceived levels of valence and arousal, indicating that these can be used as a proxy for the children’s engagement during the therapy. We provide suggestions on how this can be leveraged to optimize social robots for autism therapy, while taking into account cultural differences.

  3. One-single physical exercise session after object recognition learning promotes memory persistence through hippocampal noradrenergic mechanisms.

    Science.gov (United States)

    da Silva de Vargas, Liane; Neves, Ben-Hur Souto das; Roehrs, Rafael; Izquierdo, Iván; Mello-Carpes, Pâmela

    2017-06-30

    Previously we showed the involvement of the hippocampal noradrenergic system in the consolidation and persistence of object recognition (OR) memory. Here we show that one-single physical exercise session performed immediately after learning promotes OR memory persistence and increases norepinephrine levels in the hippocampus. Additionally, effects of exercise on memory are avoided by an intra-hippocampal beta-adrenergic antagonist infusion. Taken together, these results suggest that exercise effects on memory can be related to noradrenergic mechanisms and acute physical exercise can be a non-pharmacological intervention to assist memory consolidation and persistence, with few or no side effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. New technologies in robotic surgery: the Korean experience.

    Science.gov (United States)

    Tuliao, Patrick H; Kim, Sang W; Rha, Koon H

    2014-01-01

    The development of the robotic systems has made surgery an increasingly technology-driven field. Since the introduction of the first robotic platform in 2005, surgical practice in South Korea has also been caught up in the global robotic revolution. Consequently, a market focused on improving the robotic systems was created and Korea has emerged as one of its frontrunners. This article reviews the Korean experience in developing various robotic technologies and then Korea's most recent contributions to the development of new technologies in robotic surgery. The goal of new technologies in the field of robotic surgery has been to improve on the current platforms by eliminating their disadvantages. The pressing goal is to develop a platform that is less bulky, more ergonomic, and capable of providing force feedback to the surgeon. In Korea, the Lapabot and two new robotic systems for single-port laparoscopic surgery are the most recent advances that have been reported. Robotic surgery is rapidly evolving and Korea has stayed in the forefront of its development. These new advancements in technology will eventually produce better robotic platforms that will greatly improve the manner in which surgical care is delivered.

  5. Dynamic Modelling Of A SCARA Robot

    Science.gov (United States)

    Turiel, J. Perez; Calleja, R. Grossi; Diez, V. Gutierrez

    1987-10-01

    This paper describes a method for modelling industrial robots that considers dynamic approach to manipulation systems motion generation, obtaining the complete dynamic model for the mechanic part of the robot and taking into account the dynamic effect of actuators acting at the joints. For a four degree of freedom SCARA robot we obtain the dynamic model for the basic (minimal) configuration, that is, the three degrees of freedom that allow us to place the robot end effector in a desired point, using the Lagrange Method to obtain the dynamic equations in matrix form. The manipulator is considered to be a set of rigid bodies inter-connected by joints in the form of simple kinematic pairs. Then, the state space model is obtained for the actuators that move the robot joints, uniting the models of the single actuators, that is, two DC permanent magnet servomotors and an electrohydraulic actuator. Finally, using a computer simulation program written in FORTRAN language, we can compute the matrices of the complete model.

  6. The universal robot

    Science.gov (United States)

    Moravec, Hans

    1993-12-01

    Our artifacts are getting smarter, and a loose parallel with the evolution of animal intelligence suggests one future course for them. Computerless industrial machinery exhibits the behavioral flexibility of single-celled organisms. Today's best computer-controlled robots are like the simpler invertebrates. A thousand-fold increase in computer power in the next decade should make possible machines with reptile-like sensory and motor competence. Properly configured, such robots could do in the physical world what personal computers now do in the world of data - act on our behalf as literal-minded slaves. Growing computer power over the next half-century will allow this reptile stage to be surpassed, in stages producing robots that learn like mammals, model their world like primates, and eventually reason like humans. Depending on your point of view, humanity will then have produced a worthy successor, or transcended some of its inherited limitations and so transformed itself into something quite new.

  7. Xanthine oxidase activity is associated with risk factors for cardiovascular disease and inflammatory and oxidative status markers in metabolic syndrome: effects of a single exercise session.

    Science.gov (United States)

    Feoli, Ana Maria Pandolfo; Macagnan, Fabrício Edler; Piovesan, Carla Haas; Bodanese, Luiz Carlos; Siqueira, Ionara Rodrigues

    2014-01-01

    The main goal of the present study was to investigate the xanthine oxidase (XO) activity in metabolic syndrome in subjects submitted to a single exercise session. We also investigated parameters of oxidative and inflammatory status. A case-control study (9 healthy and 8 MS volunteers) was performed to measure XO, superoxide dismutase (SOD), glutathione peroxidase activities, lipid peroxidation, high-sensitivity C-reactive protein (hsCRP) content, glucose levels, and lipid profile. Body mass indices, abdominal circumference, systolic and diastolic blood pressure, and TG levels were also determined. The exercise session consisted of 3 minutes of stretching, 3 minutes of warm-up, 30 minutes at a constant dynamic workload at a moderate intensity, and 3 minutes at a low speed. The blood samples were collected before and 15 minutes after the exercise session. Serum XO activity was higher in MS group compared to control group. SOD activity was lower in MS subjects. XO activity was correlated with SOD, abdominal circumference, body mass indices, and hsCRP. The single exercise session reduced the SOD activity in the control group. Our data support the association between oxidative stress and risk factors for cardiovascular diseases and suggest XO is present in the pathogenesis of metabolic syndrome.

  8. Xanthine Oxidase Activity Is Associated with Risk Factors for Cardiovascular Disease and Inflammatory and Oxidative Status Markers in Metabolic Syndrome: Effects of a Single Exercise Session

    Directory of Open Access Journals (Sweden)

    Ana Maria Pandolfo Feoli

    2014-01-01

    Full Text Available Objective. The main goal of the present study was to investigate the xanthine oxidase (XO activity in metabolic syndrome in subjects submitted to a single exercise session. We also investigated parameters of oxidative and inflammatory status. Materials/Methods. A case-control study (9 healthy and 8 MS volunteers was performed to measure XO, superoxide dismutase (SOD, glutathione peroxidase activities, lipid peroxidation, high-sensitivity C-reactive protein (hsCRP content, glucose levels, and lipid profile. Body mass indices, abdominal circumference, systolic and diastolic blood pressure, and TG levels were also determined. The exercise session consisted of 3 minutes of stretching, 3 minutes of warm-up, 30 minutes at a constant dynamic workload at a moderate intensity, and 3 minutes at a low speed. The blood samples were collected before and 15 minutes after the exercise session. Results. Serum XO activity was higher in MS group compared to control group. SOD activity was lower in MS subjects. XO activity was correlated with SOD, abdominal circumference, body mass indices, and hsCRP. The single exercise session reduced the SOD activity in the control group. Conclusions. Our data support the association between oxidative stress and risk factors for cardiovascular diseases and suggest XO is present in the pathogenesis of metabolic syndrome.

  9. Nested Reconfigurable Robots: Theory, Design, and Realization

    Directory of Open Access Journals (Sweden)

    Ning Tan

    2015-07-01

    Full Text Available Rather than the conventional classification method, we propose to divide modular and reconfigurable robots into intra-, inter-, and nested reconfigurations. We suggest designing the robot with nested reconfigurability, which utilizes individual robots with intra-reconfigurability capable of combining with other homogeneous/heterogeneous robots (inter-reconfigurability. The objective of this approach is to generate more complex morphologies for performing specific tasks that are far from the capabilities of a single module or to respond to programmable assembly requirements. In this paper, we discuss the theory, concept, and initial mechanical design of Hinged-Tetro, a self-reconfigurable module conceived for the study of nested reconfiguration. Hinged-Tetro is a mobile robot that uses the principle of hinged dissection of polyominoes to transform itself into any of the seven one-sided tetrominoes in a straightforward way. The robot can also combine with other modules for shaping complex structures or giving rise to a robot with new capabilities. Finally, the validation experiments verify the nested reconfigurability of Hinged-Tetro. Extensive tests and analyses of intra-reconfiguration are provided in terms of energy and time consumptions. Experiments using two robots validate the inter-reconfigur ability of the proposed module.

  10. A Single Session of rTMS Enhances Small-Worldness in Writer’s Cramp: Evidence from Simultaneous EEG-fMRI Multi-Modal Brain Graph

    Directory of Open Access Journals (Sweden)

    Rose D. Bharath

    2017-09-01

    Full Text Available Background and Purpose: Repetitive transcranial magnetic stimulation (rTMS induces widespread changes in brain connectivity. As the network topology differences induced by a single session of rTMS are less known we undertook this study to ascertain whether the network alterations had a small-world morphology using multi-modal graph theory analysis of simultaneous EEG-fMRI.Method: Simultaneous EEG-fMRI was acquired in duplicate before (R1 and after (R2 a single session of rTMS in 14 patients with Writer’s Cramp (WC. Whole brain neuronal and hemodynamic network connectivity were explored using the graph theory measures and clustering coefficient, path length and small-world index were calculated for EEG and resting state fMRI (rsfMRI. Multi-modal graph theory analysis was used to evaluate the correlation of EEG and fMRI clustering coefficients.Result: A single session of rTMS was found to increase the clustering coefficient and small-worldness significantly in both EEG and fMRI (p < 0.05. Multi-modal graph theory analysis revealed significant modulations in the fronto-parietal regions immediately after rTMS. The rsfMRI revealed additional modulations in several deep brain regions including cerebellum, insula and medial frontal lobe.Conclusion: Multi-modal graph theory analysis of simultaneous EEG-fMRI can supplement motor physiology methods in understanding the neurobiology of rTMS in vivo. Coinciding evidence from EEG and rsfMRI reports small-world morphology for the acute phase network hyper-connectivity indicating changes ensuing low-frequency rTMS is probably not “noise”.

  11. A robotics platform for automated batch fabrication of high density, microfluidics-based DNA microarrays, with applications to single cell, multiplex assays of secreted proteins

    Science.gov (United States)

    Ahmad, Habib; Sutherland, Alex; Shin, Young Shik; Hwang, Kiwook; Qin, Lidong; Krom, Russell-John; Heath, James R.

    2011-09-01

    Microfluidics flow-patterning has been utilized for the construction of chip-scale miniaturized DNA and protein barcode arrays. Such arrays have been used for specific clinical and fundamental investigations in which many proteins are assayed from single cells or other small sample sizes. However, flow-patterned arrays are hand-prepared, and so are impractical for broad applications. We describe an integrated robotics/microfluidics platform for the automated preparation of such arrays, and we apply it to the batch fabrication of up to eighteen chips of flow-patterned DNA barcodes. The resulting substrates are comparable in quality with hand-made arrays and exhibit excellent substrate-to-substrate consistency. We demonstrate the utility and reproducibility of robotics-patterned barcodes by utilizing two flow-patterned chips for highly parallel assays of a panel of secreted proteins from single macrophage cells.

  12. A robotics platform for automated batch fabrication of high density, microfluidics-based DNA microarrays, with applications to single cell, multiplex assays of secreted proteins.

    Science.gov (United States)

    Ahmad, Habib; Sutherland, Alex; Shin, Young Shik; Hwang, Kiwook; Qin, Lidong; Krom, Russell-John; Heath, James R

    2011-09-01

    Microfluidics flow-patterning has been utilized for the construction of chip-scale miniaturized DNA and protein barcode arrays. Such arrays have been used for specific clinical and fundamental investigations in which many proteins are assayed from single cells or other small sample sizes. However, flow-patterned arrays are hand-prepared, and so are impractical for broad applications. We describe an integrated robotics/microfluidics platform for the automated preparation of such arrays, and we apply it to the batch fabrication of up to eighteen chips of flow-patterned DNA barcodes. The resulting substrates are comparable in quality with hand-made arrays and exhibit excellent substrate-to-substrate consistency. We demonstrate the utility and reproducibility of robotics-patterned barcodes by utilizing two flow-patterned chips for highly parallel assays of a panel of secreted proteins from single macrophage cells. © 2011 American Institute of Physics

  13. Does a single session of electroconvulsive therapy alter the neural response to emotional faces in depression? A randomised sham-controlled functional magnetic resonance imaging study.

    Science.gov (United States)

    Miskowiak, Kamilla W; Kessing, Lars V; Ott, Caroline V; Macoveanu, Julian; Harmer, Catherine J; Jørgensen, Anders; Revsbech, Rasmus; Jensen, Hans M; Paulson, Olaf B; Siebner, Hartwig R; Jørgensen, Martin B

    2017-09-01

    Negative neurocognitive bias is a core feature of major depressive disorder that is reversed by pharmacological and psychological treatments. This double-blind functional magnetic resonance imaging study investigated for the first time whether electroconvulsive therapy modulates negative neurocognitive bias in major depressive disorder. Patients with major depressive disorder were randomised to one active ( n=15) or sham electroconvulsive therapy ( n=12). The following day they underwent whole-brain functional magnetic resonance imaging at 3T while viewing emotional faces and performed facial expression recognition and dot-probe tasks. A single electroconvulsive therapy session had no effect on amygdala response to emotional faces. Whole-brain analysis revealed no effects of electroconvulsive therapy versus sham therapy after family-wise error correction at the cluster level, using a cluster-forming threshold of Z>3.1 ( p2.3; pelectroconvulsive therapy-induced changes in parahippocampal and superior frontal responses to fearful versus happy faces as well as in fear-specific functional connectivity between amygdala and occipito-temporal regions. Across all patients, greater fear-specific amygdala - occipital coupling correlated with lower fear vigilance. Despite no statistically significant shift in neural response to faces after a single electroconvulsive therapy session, the observed trend changes after a single electroconvulsive therapy session point to an early shift in emotional processing that may contribute to antidepressant effects of electroconvulsive therapy.

  14. Position Control of the Single Spherical Wheel Mobile Robot by Using the Fuzzy Sliding Mode Controller

    Directory of Open Access Journals (Sweden)

    Hamed Navabi

    2017-01-01

    Full Text Available A spherical wheel robot or Ballbot—a robot that balances on an actuated spherical ball—is a new and recent type of robot in the popular area of mobile robotics. This paper focuses on the modeling and control of such a robot. We apply the Lagrangian method to derive the governing dynamic equations of the system. We also describe a novel Fuzzy Sliding Mode Controller (FSMC implemented to control a spherical wheel mobile robot. The nonlinear nature of the equations makes the controller nontrivial. We compare the performance of four different fuzzy controllers: (a regulation with one signal, (b regulation and position control with one signal, (c regulation and position control with two signals, and (d FSMC for regulation and position control with two signals. The system is evaluated in a realistic simulation and the robot parameters are chosen based on a LEGO platform, so the designed controllers have the ability to be implemented on real hardware.

  15. Technique of Robotic-assisted Total Proctocolectomy with Lymphadenectomy and Ileal Pouch-Anal Anastomosis for Transverse Colitic Cancer of Ulcerative Colitis, Using the Single Cart Position.

    Science.gov (United States)

    Hanai, Tsunekazu; Maeda, Koutarou; Masumori, Koji; Katsuno, Hidetoshi; Matsuoka, Hiroshi

    2015-11-01

    Robotic surgery offers advantages for operating in a narrow space such as inside the pelvis. We report on the technique of robotic-assisted laparoscopic total proctocolectomy with lymphadenectomy and ileal pouch-anal anastomosis for ulcerative colitis with transverse colitic cancer, using the single cart position. A 46-year-old female patient was diagnosed with colitic cancer of the transverse colon during the surveillance of ulcerative colitis. Six port sites were used. Mobilization of the left-sided colon through to the rectum and mobilization of the transverse colon with lymphadenectomy around the middle colic artery were performed using the robotic surgical system. After rectal mobilization was conducted near the anus, the right side of the colon was mobilized and the ileum resected laparoscopically. Thereafter, a mucosectomy of the proctorectum was carried out through a trans-anal approach, and a hand-sewn J-pouch was performed. Finally, a diverting ileostomy was constructed through the right lower abdomen. The operative time was 460 minutes, including the console time of 361 minutes. The amount of blood loss was 76 g. The patient was discharged on postoperative day nine. Pathological results demonstrated that the depth of the lesion was T3, and the positive lymph node was 1 of 115 retrieved lymph nodes. There were no complications or mortality. Robotic-assisted total proctocolectomy and lymphadenectomy with ileal pouch-anal anastomosis for transverse colitic cancer of ulcerative colitis was performed safely using the single cart position.

  16. Two-legged walking robot prescribed motion on a rough cylinder

    Science.gov (United States)

    Golubev, Yury; Melkumova, Elena

    2018-05-01

    The motion of a walking robot with n legs, that ensure the desired motion of the robot body, is described using general dynamics theoretical framework. When each of the robot legs contacts the surface in a single foothold, the momentum and angular momentum theorems yield a system of six differential equations that form a complete description of the robot motion. In the case of two-leg robot (n = 2) the problem of the existence of the solution can be reduced to a system of algebraic inequalities. Using numerical analysis, the classification of footholds positions for different values of the friction coefficient is obtained.

  17. Robot-assisted tubal reanastomosis: Initial experience in a single institution

    Directory of Open Access Journals (Sweden)

    Ahmet Göçmen

    2013-03-01

    Conclusion: Robot-assisted TLR is safe and feasible. This procedure may facilitate minimally invasive treatment for patients who want to regain their fertility without the aid of artificial reproductive techniques.

  18. Robotics

    Science.gov (United States)

    Popov, E. P.; Iurevich, E. I.

    The history and the current status of robotics are reviewed, as are the design, operation, and principal applications of industrial robots. Attention is given to programmable robots, robots with adaptive control and elements of artificial intelligence, and remotely controlled robots. The applications of robots discussed include mechanical engineering, cargo handling during transportation and storage, mining, and metallurgy. The future prospects of robotics are briefly outlined.

  19. Feasibility and acceptance of a robotic surgery ergonomic training program.

    Science.gov (United States)

    Franasiak, Jason; Craven, Renatta; Mosaly, Prithima; Gehrig, Paola A

    2014-01-01

    Assessment of ergonomic strain during robotic surgery indicates there is a need for intervention. However, limited data exist detailing the feasibility and acceptance of ergonomic training (ET) for robotic surgeons. This prospective, observational pilot study evaluates the implementation of an evidence-based ET module. A two-part survey was conducted. The first survey assessed robotic strain using the Nordic Musculoskeletal Questionnaire (NMQ). Participants were given the option to participate in either an online or an in-person ET session. The ET was derived from Occupational Safety and Health Administration guidelines and developed by a human factors engineer experienced with health care ergonomics. After ET, a follow-up survey including the NMQ and an assessment of the ET were completed. The survey was sent to 67 robotic surgeons. Forty-two (62.7%) responded, including 18 residents, 8 fellows, and 16 attending physicians. Forty-five percent experienced strain resulting from performing robotic surgery and 26.3% reported persistent strain. Only 16.6% of surgeons reported prior ET in robotic surgery. Thirty-five (78%) surgeons elected to have in-person ET, which was successfully arranged for 32 surgeons (91.4%). Thirty-seven surgeons (88.1%) completed the follow-up survey. All surgeons participating in the in-person ET found it helpful and felt formal ET should be standard, 88% changed their practice as a result of the training, and 74% of those reporting strain noticed a decrease after their ET. Thus, at a high-volume robotics center, evidence-based ET was easily implemented, well-received, changed some surgeons' practice, and decreased self-reported strain related to robotic surgery.

  20. Outcome of bilateral ureteroscopic retrieval of stones in a single session

    Directory of Open Access Journals (Sweden)

    Majid Mushtaque

    2012-01-01

    Conclusion: Bilateral same-session ureteroscopy is a safe and effective procedure in the management of bilateral ureteral stones. The results are comparable to unilateral or staged bilateral procedures.

  1. Lymphocyte Redox Imbalance and Reduced Proliferation after a Single Session of High Intensity Interval Exercise.

    Science.gov (United States)

    Tossige-Gomes, Rosalina; Costa, Karine Beatriz; Ottone, Vinícius de Oliveira; Magalhães, Flávio de Castro; Amorim, Fabiano Trigueiro; Rocha-Vieira, Etel

    2016-01-01

    This study investigated whether an acute session of high-intensity interval training (HIIT) is sufficient to alter lymphocyte function and redox status. Sixteen young healthy men underwent a HIIT session on a cycloergometer, consisting of eight bouts of 1 min at 90-100% of peak power, with 75 seconds of active recovery at 30 W between bouts. Venous blood was collected before, immediately after, and 30 minutes after the HIIT session. In response to Staphylococcus aureus superantigen B (SEB) stimulation, lymphocyte proliferation decreased and the IL-2 concentration increased after the HIIT session. However, the HIIT session had no effect on lymphocyte proliferation or IL-2 response to phytohemagglutinin stimulation. The HIIT session also induced lymphocyte redox imbalance, characterized by an increase in the concentration of thiobarbituric acid reactive substances and a decrease in the activity of the antioxidant enzyme catalase. Lymphocyte viability was not affected by the HIIT session. The frequencies of CD25+ and CD69+ T helper and B lymphocytes in response to superantigen stimulation were lower after exercise, suggesting that superantigen-induced lymphocyte activation was reduced by HIIT. However, HIIT also led to a reduction in the frequency of CD4+ and CD19+ cells, so the frequencies of CD25+ and CD69+ cells within the CD4 and CD19 cell populations were not affected by HIIT. These data indicate that the reduced lymphocyte proliferation observed after HIIT is not due to reduced early lymphocyte activation by superantigen. Our findings show that an acute HIIT session promotes lymphocyte redox imbalance and reduces lymphocyte proliferation in response to superantigenic, but not to mitogenic stimulation. This observation cannot be explained by alteration of the early lymphocyte activation response to superantigen. The manner in which lymphocyte function modulation by an acute HIIT session can affect individual immunity and susceptibility to infection is important

  2. Robot 2015 : Second Iberian Robotics Conference : Advances in Robotics

    CERN Document Server

    Moreira, António; Lima, Pedro; Montano, Luis; Muñoz-Martinez, Victor

    2016-01-01

    This book contains a selection of papers accepted for presentation and discussion at ROBOT 2015: Second Iberian Robotics Conference, held in Lisbon, Portugal, November 19th-21th, 2015. ROBOT 2015 is part of a series of conferences that are a joint organization of SPR – “Sociedade Portuguesa de Robótica/ Portuguese Society for Robotics”, SEIDROB – Sociedad Española para la Investigación y Desarrollo de la Robótica/ Spanish Society for Research and Development in Robotics and CEA-GTRob – Grupo Temático de Robótica/ Robotics Thematic Group. The conference organization had also the collaboration of several universities and research institutes, including: University of Minho, University of Porto, University of Lisbon, Polytechnic Institute of Porto, University of Aveiro, University of Zaragoza, University of Malaga, LIACC, INESC-TEC and LARSyS. Robot 2015 was focussed on the Robotics scientific and technological activities in the Iberian Peninsula, although open to research and delegates from other...

  3. Robotic nephroureterectomy: a simplified approach requiring no patient repositioning or robot redocking.

    Science.gov (United States)

    Zargar, Homayoun; Krishnan, Jayram; Autorino, Riccardo; Akca, Oktay; Brandao, Luis Felipe; Laydner, Humberto; Samarasekera, Dinesh; Ko, Oliver; Haber, Georges-Pascal; Kaouk, Jihad H; Stein, Robert J

    2014-10-01

    Robotic technology is increasingly adopted in urologic surgery and a variety of techniques has been described for minimally invasive treatment of upper tract urothelial cancer (UTUC). To describe a simplified surgical technique of robot-assisted nephroureterectomy (RANU) and to report our single-center surgical outcomes. Patients with history of UTUC treated with this modality between April 2010 and August 2013 were included in the analysis. Institutional review board approval was obtained. Informed consent was signed by all patients. A simplified single-step RANU not requiring repositioning or robot redocking. Lymph node dissection was performed selectively. Descriptive analysis of patients' characteristics, perioperative outcomes, histopathology, and short-term follow-up data was performed. The analysis included 31 patients (mean age: 72.4±10.6 yr; mean body mass index: 26.6±5.1kg/m(2)). Twenty-six of 30 tumors (86%) were high grade. Mean tumor size was 3.1±1.8cm. Of the 31 patients, 13 (42%) had pT3 stage disease. One periureteric positive margin was noted in a patient with bulky T3 disease. The mean number of lymph nodes removed was 9.4 (standard deviation: 5.6; range: 3-21). Two of 14 patients (14%) had positive lymph nodes on final histology. No patients required a blood transfusion. Six patients experienced complications postoperatively, with only one being a high grade (Clavien 3b) complication. Median hospital stay was 5 d. Within the follow-up period, seven patients experienced bladder recurrences and four patients developed metastatic disease. Our RANU technique eliminates the need for patient repositioning or robot redocking. This technique can be safely reproduced, with surgical outcomes comparable to other established techniques. We describe a surgical technique using the da Vinci robot for a minimally invasive treatment of patients presenting with upper tract urothelial cancer. This technique can be safely implemented with good surgical outcomes

  4. Robot Formations Using Only Local Sensing and Control

    DEFF Research Database (Denmark)

    Fredslund, Jakob; Matarić, Maja J

    2001-01-01

    , behaviorbased algorithm that solves the problem for N robots each equipped with sonar, laser, camera, and a radio link for communicating with other robots. The method uses the idea of keeping a single friend at a desired angle (by panning the camera and keeping the friend centered in the image), and only......We study the problem of achieving global behavior in a group of robots using only local sensing and interaction, in the context of formations, where the goal is to have N mobile robots establish and maintain some predetermined geometric shape. We have devised a simple, general, robust, localized...... communicating heartbeat messages. We also developed a general analytical method for evaluating formations and applied it to our algorithm. We validate our algorithm both in simulation and with physical robots....

  5. Use of GPS TEC Maps for Calibrating Single Band VLBI Sessions

    Science.gov (United States)

    Gordon, David

    2010-01-01

    GPS TEC ionosphere maps were first applied to a series of K and Q band VLBA astrometry sessions to try to eliminate a declination bias in estimated source positions. Their usage has been expanded to calibrate X-band only VLBI observations as well. At K-band, approx.60% of the declination bias appears to be removed with the application of GPS ionosphere calibrations. At X-band however, it appears that up to 90% or more of the declination bias is removed, with a corresponding increase in RA and declination uncertainties of approx.0.5 mas. GPS ionosphere calibrations may be very useful for improving the estimated positions of the X-only and S-only sources in the VCS and RDV sessions.

  6. Feasibility and outcomes of combined transcatheter aortic valve replacement with other structural heart interventions in a single session: a matched cohort study

    Science.gov (United States)

    Khattab, Ahmed A; Gloekler, Steffen; Sprecher, Beate; Shakir, Samera; Guerios, Ênio; Stortecky, Stefan; O'Sullivan, Crochan J; Nietlispach, Fabian; Moschovitis, Aris; Pilgrim, Thomas; Buellesfeld, Lutz; Wenaweser, Peter; Windecker, Stephan; Meier, Bernhard

    2014-01-01

    Background Concurrent cardiac diseases are frequent among elderly patients and invite simultaneous treatment to ensure an overall favourable patient outcome. Aim To investigate the feasibility of combined single-session percutaneous cardiac interventions in the era of transcatheter aortic valve implantation (TAVI). Methods This prospective, case–control study included 10 consecutive patients treated with TAVI, left atrial appendage occlusion and percutaneous coronary interventions. Some in addition had patent foramen ovale or atrial septal defect closure in the same session. The patients were matched in a 1:10 manner with TAVI-only cases treated within the same time period at the same institution regarding their baseline factors. The outcome was validated according to the Valve Academic Research Consortium (VARC) criteria. Results Procedural time (126±42 vs 83±40 min, p=0.0016), radiation time (34±8 vs 22±12 min, p=0.0001) and contrast dye (397±89 vs 250±105 mL, p<0.0001) were higher in the combined intervention group than in the TAVI-only group. Despite these drawbacks, no difference in the VARC endpoints was evident during the in-hospital period and after 30 days (VARC combined safety endpoint 32% for TAVI only and 20% for combined intervention, p=1.0). Conclusions Transcatheter treatment of combined cardiac diseases is feasible even in a single session in a high-volume centre with experienced operators. PMID:25332781

  7. Increased reward in ankle robotics training enhances motor control and cortical efficiency in stroke.

    Science.gov (United States)

    Goodman, Ronald N; Rietschel, Jeremy C; Roy, Anindo; Jung, Brian C; Diaz, Jason; Macko, Richard F; Forrester, Larry W

    2014-01-01

    Robotics is rapidly emerging as a viable approach to enhance motor recovery after disabling stroke. Current principles of cognitive motor learning recognize a positive relationship between reward and motor learning. Yet no prior studies have established explicitly whether reward improves the rate or efficacy of robotics-assisted rehabilitation or produces neurophysiologic adaptations associated with motor learning. We conducted a 3 wk, 9-session clinical pilot with 10 people with chronic hemiparetic stroke, randomly assigned to train with an impedance-controlled ankle robot (anklebot) under either high reward (HR) or low reward conditions. The 1 h training sessions entailed playing a seated video game by moving the paretic ankle to hit moving onscreen targets with the anklebot only providing assistance as needed. Assessments included paretic ankle motor control, learning curves, electroencephalograpy (EEG) coherence and spectral power during unassisted trials, and gait function. While both groups exhibited changes in EEG, the HR group had faster learning curves (p = 0.05), smoother movements (p

  8. Influence of multiple antenatal counselling sessions on modern contraceptive uptake in Nigeria.

    Science.gov (United States)

    Adanikin, Abiodun I; Onwudiegwu, Uche; Loto, Olabisi M

    2013-10-01

    To determine the influence of multiple contraceptive counselling sessions during antenatal care on use of modern postpartum contraception. A total of 216 eligible pregnant women were randomised into antenatal and postnatal counselling groups. The 'Antenatal group' received one-to-one antenatal contraceptive counselling on several occasions while the 'Postnatal group' received a single one-to-one contraceptive counselling session at the sixth week postnatal check, as is routinely practised. All participants were contacted six months postpartum by telephone or personal visit, and questioned about their contraceptive use, if any. More women who had multiple antenatal contraceptive counselling sessions used modern contraceptive methods than those who had a single postnatal counselling session (57% vs. 35%; p = 0.002). There was also a significantly more frequent use of contraception among previously undecided patients in the Antenatal group (p = 0.014). Multiple antenatal contraceptive counselling sessions improve the use of modern postpartum contraception.

  9. Cultural Robotics: The Culture of Robotics and Robotics in Culture

    OpenAIRE

    Hooman Samani; Elham Saadatian; Natalie Pang; Doros Polydorou; Owen Noel Newton Fernando; Ryohei Nakatsu; Jeffrey Tzu Kwan Valino Koh

    2013-01-01

    In this paper, we have investigated the concept of “Cultural Robotics” with regard to the evolution of social into cultural robots in the 21st Century. By defining the concept of culture, the potential development of a culture between humans and robots is explored. Based on the cultural values of the robotics developers, and the learning ability of current robots, cultural attributes in this regard are in the process of being formed, which would define the new concept of cultural robotics. Ac...

  10. MOTION PLANNING OF MULTIPLE MOBILE ROBOTS COOPERATIVELY TRANSPORTING A COMMON OBJECT

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Many applications above the capability of a single robot need the cooperation of multiple mobile robots, but effective cooperation is hard to achieve. In this paper, a master-slave method is proposed to control the motions of multiple mobile robots that cooperatively transport a common object from a start point to a goal point. A noholonomic kinematic model to constrain the motions of multiple mobile robots is built in order to achieve cooperative motions of them, and a "Dynamic Coordinator" strategy is used to deal with the collision-avoidance of the master robot and slave robot individually. Simulation results show the robustness and effectiveness of the method.

  11. An integrated gait rehabilitation training based on Functional Electrical Stimulation cycling and overground robotic exoskeleton in complete spinal cord injury patients: Preliminary results.

    Science.gov (United States)

    Mazzoleni, S; Battini, E; Rustici, A; Stampacchia, G

    2017-07-01

    The aim of this study is to investigate the effects of an integrated gait rehabilitation training based on Functional Electrical Stimulation (FES)-cycling and overground robotic exoskeleton in a group of seven complete spinal cord injury patients on spasticity and patient-robot interaction. They underwent a robot-assisted rehabilitation training based on two phases: n=20 sessions of FES-cycling followed by n= 20 sessions of robot-assisted gait training based on an overground robotic exoskeleton. The following clinical outcome measures were used: Modified Ashworth Scale (MAS), Numerical Rating Scale (NRS) on spasticity, Penn Spasm Frequency Scale (PSFS), Spinal Cord Independence Measure Scale (SCIM), NRS on pain and International Spinal Cord Injury Pain Data Set (ISCI). Clinical outcome measures were assessed before (T0) after (T1) the FES-cycling training and after (T2) the powered overground gait training. The ability to walk when using exoskeleton was assessed by means of 10 Meter Walk Test (10MWT), 6 Minute Walk Test (6MWT), Timed Up and Go test (TUG), standing time, walking time and number of steps. Statistically significant changes were found on the MAS score, NRS-spasticity, 6MWT, TUG, standing time and number of steps. The preliminary results of this study show that an integrated gait rehabilitation training based on FES-cycling and overground robotic exoskeleton in complete SCI patients can provide a significant reduction of spasticity and improvements in terms of patient-robot interaction.

  12. Robot Actors, Robot Dramaturgies

    DEFF Research Database (Denmark)

    Jochum, Elizabeth

    This paper considers the use of tele-operated robots in live performance. Robots and performance have long been linked, from the working androids and automata staged in popular exhibitions during the nineteenth century and the robots featured at Cybernetic Serendipity (1968) and the World Expo...

  13. 10th FSR (Field and Service Robotics)

    CERN Document Server

    Barfoot, Timothy

    2016-01-01

    This book contains the proceedings of the 10th FSR, (Field and Service Robotics) which is the leading single-track conference on applications of robotics in challenging environments. The 10th FSR was held in Toronto, Canada from 23-26 June 2015. The book contains 42 full-length, peer-reviewed papers organized into a variety of topics: Aquatic, Vision, Planetary, Aerial, Underground, and Systems. The goal of the book and the conference is to report and encourage the development and experimental evaluation of field and service robots, and to generate a vibrant exchange and discussion in the community. Field robots are non-factory robots, typically mobile, that operate in complex and dynamic environments: on the ground (Earth or other planets), under the ground, underwater, in the air or in space. Service robots are those that work closely with humans to help them with their lives. The first FSR was held in Canberra, Australia, in 1997. Since that first meeting, FSR has been held roughly every two years, cycling...

  14. Stair Climbing in a Quadruped Robot

    OpenAIRE

    Shen-Chiang Chen; Chih-Chung Ko; Cheng-Hsin Li; Pei-Chun Lin

    2012-01-01

    This paper reports the algorithm of trajectory planning and the strategy of four-leg coordination for quasi-static stair climbing in a quadruped robot. This development is based on the geometrical interactions between robot legs and the stair, starting from single-leg analysis, followed by two-leg collaboration, and then four-leg coordination. In addition, a brief study on the robot’s locomotion stability is also included. Finally, simulation and experimental testing were executed to evaluate...

  15. Closing session

    International Nuclear Information System (INIS)

    2014-01-01

    This part makes a summary of the different sessions and discussions of the workshop in a series of slide presentations: Summary of Opening Session; Summary of Session 1: Analysis of External Hazard Potential; Summary of session 2: Specific features of analysis and modeling of particular natural external hazards; Summary of session-3: Practices and research efforts on natural external events PSA; Summary of session 4: Modeling of NPP response to natural external events in PSA; Summary of session 5: Seismic Risk Analysis; Summary of session 6: Use of external events PSA with the focus on regulatory body role; Facilitated discussion 1 summary: Where do we stand in the analysis of external events?; Summary Facilitated Discussion 2: Findings and Good Practices for External Events Analysis

  16. Early Stroke Rehabilitation of the Upper Limb Assisted with an Electromyography-Driven Neuromuscular Electrical Stimulation-Robotic Arm

    Directory of Open Access Journals (Sweden)

    Qiuyang Qian

    2017-09-01

    Full Text Available BackgroundEffective poststroke motor rehabilitation depends on repeated limb practice with voluntary efforts. An electromyography (EMG-driven neuromuscular electrical stimulation (NMES-robot arm was designed for the multi-joint physical training on the elbow, the wrist, and the fingers.ObjectivesTo investigate the training effects of the device-assisted approach on subacute stroke patients and to compare the effects with those achieved by the traditional physical treatments.MethodThis study was a pilot randomized controlled trial with a 3-month follow-up. Subacute stroke participants were randomly assigned into two groups, and then received 20-session upper limb training with the EMG-driven NMES-robotic arm (NMES-robot group, n = 14 or the time-matched traditional therapy (the control, n = 10. For the evaluation of the training effects, clinical assessments including Fugl-Meyer Assessment (FMA, Modified Ashworth Score (MAS, Action Research Arm Test (ARAT, and Function Independence Measurement (FIM were conducted before, after the rehabilitation training, and 3 months later. Session-by-session EMG parameters in the NMES-robot group, including normalized co-contraction Indexes (CI and EMG activation level of target muscles, were used to monitor the progress in muscular coordination patterns.ResultsSignificant improvements were obtained in FMA (full score and shoulder/elbow, ARAT, and FIM [P < 0.001, effect sizes (EFs > 0.279] for both groups. Significant improvement in FMA wrist/hand was only observed in the NMES-robot group (P < 0.001, EFs = 0.435 after the treatments. Significant reduction in MAS wrist was observed in the NMES-robot group after the training (P < 0.05, EFs = 0.145 and the effects were maintained for 3 months. MAS scores in the control group were elevated following training (P < 0.05, EFs > 0.24, and remained at an elevated level when assessed 3 months later. The EMG parameters

  17. Less is more: latent learning is maximized by shorter training sessions in auditory perceptual learning.

    Science.gov (United States)

    Molloy, Katharine; Moore, David R; Sohoglu, Ediz; Amitay, Sygal

    2012-01-01

    The time course and outcome of perceptual learning can be affected by the length and distribution of practice, but the training regimen parameters that govern these effects have received little systematic study in the auditory domain. We asked whether there was a minimum requirement on the number of trials within a training session for learning to occur, whether there was a maximum limit beyond which additional trials became ineffective, and whether multiple training sessions provided benefit over a single session. We investigated the efficacy of different regimens that varied in the distribution of practice across training sessions and in the overall amount of practice received on a frequency discrimination task. While learning was relatively robust to variations in regimen, the group with the shortest training sessions (∼8 min) had significantly faster learning in early stages of training than groups with longer sessions. In later stages, the group with the longest training sessions (>1 hr) showed slower learning than the other groups, suggesting overtraining. Between-session improvements were inversely correlated with performance; they were largest at the start of training and reduced as training progressed. In a second experiment we found no additional longer-term improvement in performance, retention, or transfer of learning for a group that trained over 4 sessions (∼4 hr in total) relative to a group that trained for a single session (∼1 hr). However, the mechanisms of learning differed; the single-session group continued to improve in the days following cessation of training, whereas the multi-session group showed no further improvement once training had ceased. Shorter training sessions were advantageous because they allowed for more latent, between-session and post-training learning to emerge. These findings suggest that efficient regimens should use short training sessions, and optimized spacing between sessions.

  18. Frameless Stereotactic Radiosurgery for Treatment of Multiple Sclerosis-Related Trigeminal Neuralgia.

    Science.gov (United States)

    Conti, Alfredo; Pontoriero, Antonio; Iatì, Giuseppe; Esposito, Felice; Siniscalchi, Enrico Nastro; Crimi, Salvatore; Vinci, Sergio; Brogna, Anna; De Ponte, Francesco; Germanò, Antonino; Pergolizzi, Stefano; Tomasello, Francesco

    2017-07-01

    Trigeminal neuralgia (TN) affects 7% of patients with multiple sclerosis (MS). In such patients, TN is difficult to manage either pharmacologically and surgically. Radiosurgical rhizotomy is an effective treatment option. The nonisocentric geometry of radiation beams of CyberKnife introduces new concepts in the treatment of TN. Its efficacy for MS-related TN has not yet been demonstrated. Twenty-seven patients with refractory TN and MS were treated. A nonisocentric beams distribution was chosen; the maximal target dose was 72.5 Gy. The maximal dose to the brainstem was <12 Gy. Effects on pain, medications, sensory disturbance, rate, and time of pain recurrence were analyzed. Median follow-up was 37 (18-72) months. Barrow Neurological Institute pain scale score I-III was achieved in 23/27 patients (85%) within 45 days. Prescription isodose line (80%) accounting for a dose of 58 Gy incorporated an average of 4.85 mm (4-6 mm) of the nerve and mean nerve volume of 26.4 mm 3 (range 20-38 mm 3 ). Seven out of 27 patients (26%) had mild, not bothersome, facial numbness (Barrow Neurological Institute numbness score II). The rate of pain control decreased progressively after the first year, and only 44% of patients retained pain control 4 years later. Frameless radiosurgery can be effectively used to perform retrogasserian rhizotomy. Pain relief was satisfactory and, with our dose/volume constraints, no sensory complications were recorded. Nonetheless, long-term pain control was possible in less than half of the patients. This is a limitation that CyberKnife radiosurgery shares with other techniques in MS patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Magnetic fish-robot based on multi-motion control of a flexible magnetic actuator.

    Science.gov (United States)

    Kim, Sung Hoon; Shin, Kyoosik; Hashi, Shuichiro; Ishiyama, Kazushi

    2012-09-01

    This paper presents a biologically inspired fish-robot driven by a single flexible magnetic actuator with a rotating magnetic field in a three-axis Helmholtz coil. Generally, magnetic fish-robots are powered by alternating and gradient magnetic fields, which provide a single motion such as bending the fish-robot's fins. On the other hand, a flexible magnetic actuator driven by an external rotating magnetic field can create several gaits such as the bending vibration, the twisting vibration, and their combination. Most magnetic fish-like micro-robots do not have pectoral fins on the side and are simply propelled by the tail fin. The proposed robot can swim and perform a variety of maneuvers with the addition of pectoral fins and control of the magnetic torque direction. In this paper, we find that the robot's dynamic actuation correlates with the magnetic actuator and the rotating magnetic field. The proposed robot is also equipped with new features, such as a total of six degrees of freedom, a new control method that stabilizes posture, three-dimensional swimming, a new velocity control, and new turning abilities.

  20. Magnetic fish-robot based on multi-motion control of a flexible magnetic actuator

    International Nuclear Information System (INIS)

    Kim, Sung Hoon; Hashi, Shuichiro; Ishiyama, Kazushi; Shin, Kyoosik

    2012-01-01

    This paper presents a biologically inspired fish-robot driven by a single flexible magnetic actuator with a rotating magnetic field in a three-axis Helmholtz coil. Generally, magnetic fish-robots are powered by alternating and gradient magnetic fields, which provide a single motion such as bending the fish-robot's fins. On the other hand, a flexible magnetic actuator driven by an external rotating magnetic field can create several gaits such as the bending vibration, the twisting vibration, and their combination. Most magnetic fish-like micro-robots do not have pectoral fins on the side and are simply propelled by the tail fin. The proposed robot can swim and perform a variety of maneuvers with the addition of pectoral fins and control of the magnetic torque direction. In this paper, we find that the robot's dynamic actuation correlates with the magnetic actuator and the rotating magnetic field. The proposed robot is also equipped with new features, such as a total of six degrees of freedom, a new control method that stabilizes posture, three-dimensional swimming, a new velocity control, and new turning abilities. (paper)

  1. Inter- and Intrafraction Patient Positioning Uncertainties for Intracranial Radiotherapy: A Study of Four Frameless, Thermoplastic Mask-Based Immobilization Strategies Using Daily Cone-Beam CT

    International Nuclear Information System (INIS)

    Tryggestad, Erik; Christian, Matthew; Ford, Eric; Kut, Carmen; Le Yi; Sanguineti, Giuseppe; Song, Danny Y.; Kleinberg, Lawrence

    2011-01-01

    Purpose: To determine whether frameless thermoplastic mask-based immobilization is adequate for image-guided cranial radiosurgery. Methods and Materials: Cone-beam CT localization data from patients with intracranial tumors were studied using daily pre- and posttreatment scans. The systems studied were (1) Type-S IMRT (head only) mask (Civco) with head cushion; (2) Uni-Frame mask (Civco) with head cushion, coupled with a BlueBag body immobilizer (Medical Intelligence); (3) Type-S head and shoulder mask with head and shoulder cushion (Civco); (4) same as previous, coupled with a mouthpiece. The comparative metrics were translational shift magnitude and average rotation angle; systematic inter-, random inter-, and random intrafraction positioning error was computed. For strategies 1-4, respectively, the analysis for interfraction variability included data from 20, 9, 81, and 11 patients, whereas that for intrafraction variability included a subset of 7, 9, 16, and 8 patients. The results were compared for statistical significance using an analysis of variance test. Results: Immobilization system 4 provided the best overall accuracy and stability. The mean interfraction translational shifts (± SD) were 2.3 (± 1.4), 2.2 (± 1.1), 2.7 (± 1.5), and 2.1 (± 1.0) mm whereas intrafraction motion was 1.1 (± 1.2), 1.1 (± 1.1), 0.7 (± 0.9), and 0.7 (± 0.8) mm for devices 1-4, respectively. No significant correlation between intrafraction motion and treatment time was evident, although intrafraction motion was not purely random. Conclusions: We find that all frameless thermoplastic mask systems studied are viable solutions for image-guided intracranial radiosurgery. With daily pretreatment corrections, symmetric PTV margins of 1 mm would likely be adequate if ideal radiation planning and targeting systems were available.

  2. Inter- and intrafraction patient positioning uncertainties for intracranial radiotherapy: a study of four frameless, thermoplastic mask-based immobilization strategies using daily cone-beam CT.

    Science.gov (United States)

    Tryggestad, Erik; Christian, Matthew; Ford, Eric; Kut, Carmen; Le, Yi; Sanguineti, Giuseppe; Song, Danny Y; Kleinberg, Lawrence

    2011-05-01

    To determine whether frameless thermoplastic mask-based immobilization is adequate for image-guided cranial radiosurgery. Cone-beam CT localization data from patients with intracranial tumors were studied using daily pre- and posttreatment scans. The systems studied were (1) Type-S IMRT (head only) mask (Civco) with head cushion; (2) Uni-Frame mask (Civco) with head cushion, coupled with a BlueBag body immobilizer (Medical Intelligence); (3) Type-S head and shoulder mask with head and shoulder cushion (Civco); (4) same as previous, coupled with a mouthpiece. The comparative metrics were translational shift magnitude and average rotation angle; systematic inter-, random inter-, and random intrafraction positioning error was computed. For strategies 1-4, respectively, the analysis for interfraction variability included data from 20, 9, 81, and 11 patients, whereas that for intrafraction variability included a subset of 7, 9, 16, and 8 patients. The results were compared for statistical significance using an analysis of variance test. Immobilization system 4 provided the best overall accuracy and stability. The mean interfraction translational shifts (± SD) were 2.3 (± 1.4), 2.2 (± 1.1), 2.7 (± 1.5), and 2.1 (± 1.0) mm whereas intrafraction motion was 1.1 (± 1.2), 1.1 (± 1.1), 0.7 (± 0.9), and 0.7 (± 0.8) mm for devices 1-4, respectively. No significant correlation between intrafraction motion and treatment time was evident, although intrafraction motion was not purely random. We find that all frameless thermoplastic mask systems studied are viable solutions for image-guided intracranial radiosurgery. With daily pretreatment corrections, symmetric PTV margins of 1 mm would likely be adequate if ideal radiation planning and targeting systems were available. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Single-Session Transcranial Direct Current Stimulation Temporarily Improves Symptoms, Mood, and Self-Regulatory Control in Bulimia Nervosa: A Randomised Controlled Trial.

    Science.gov (United States)

    Kekic, Maria; McClelland, Jessica; Bartholdy, Savani; Boysen, Elena; Musiat, Peter; Dalton, Bethan; Tiza, Meyzi; David, Anthony S; Campbell, Iain C; Schmidt, Ulrike

    2017-01-01

    Evidence suggests that pathological eating behaviours in bulimia nervosa (BN) are underpinned by alterations in reward processing and self-regulatory control, and by functional changes in neurocircuitry encompassing the dorsolateral prefrontal cortex (DLPFC). Manipulation of this region with transcranial direct current stimulation (tDCS) may therefore alleviate symptoms of the disorder. This double-blind sham-controlled proof-of-principle trial investigated the effects of bilateral tDCS over the DLPFC in adults with BN. Thirty-nine participants (two males) received three sessions of tDCS in a randomised and counterbalanced order: anode right/cathode left (AR/CL), anode left/cathode right (AL/CR), and sham. A battery of psychological/neurocognitive measures was completed before and after each session and the frequency of bulimic behaviours during the following 24-hours was recorded. AR/CL tDCS reduced eating disorder cognitions (indexed by the Mizes Eating Disorder Cognitions Questionnaire-Revised) when compared to AL/CR and sham tDCS. Both active conditions suppressed the self-reported urge to binge-eat and increased self-regulatory control during a temporal discounting task. Compared to sham stimulation, mood (assessed with the Profile of Mood States) improved after AR/CL but not AL/CR tDCS. Lastly, the three tDCS sessions had comparable effects on the wanting/liking of food and on bulimic behaviours during the 24 hours post-stimulation. These data suggest that single-session tDCS transiently improves symptoms of BN. They also help to elucidate possible mechanisms of action and highlight the importance of selecting the optimal electrode montage. Multi-session trials are needed to determine whether tDCS has potential for development as a treatment for adult BN.

  4. Is Ethics of Robotics about Robots? Philosophy of Robotics Beyond Realism and Individualilsm.

    NARCIS (Netherlands)

    Coeckelbergh, Mark

    2011-01-01

    If we are doing ethics of robotics, what exactly is the object of our inquiry? This paper challenges 'individualist' robot ontology and 'individualist' social philosophy of robots. It is argued that ethics of robotics should not study and evaluate robotics exclusively in terms of individual

  5. Small-scale soft-bodied robot with multimodal locomotion

    Science.gov (United States)

    Hu, Wenqi; Lum, Guo Zhan; Mastrangeli, Massimo; Sitti, Metin

    2018-02-01

    Untethered small-scale (from several millimetres down to a few micrometres in all dimensions) robots that can non-invasively access confined, enclosed spaces may enable applications in microfactories such as the construction of tissue scaffolds by robotic assembly, in bioengineering such as single-cell manipulation and biosensing, and in healthcare such as targeted drug delivery and minimally invasive surgery. Existing small-scale robots, however, have very limited mobility because they are unable to negotiate obstacles and changes in texture or material in unstructured environments. Of these small-scale robots, soft robots have greater potential to realize high mobility via multimodal locomotion, because such machines have higher degrees of freedom than their rigid counterparts. Here we demonstrate magneto-elastic soft millimetre-scale robots that can swim inside and on the surface of liquids, climb liquid menisci, roll and walk on solid surfaces, jump over obstacles, and crawl within narrow tunnels. These robots can transit reversibly between different liquid and solid terrains, as well as switch between locomotive modes. They can additionally execute pick-and-place and cargo-release tasks. We also present theoretical models to explain how the robots move. Like the large-scale robots that can be used to study locomotion, these soft small-scale robots could be used to study soft-bodied locomotion produced by small organisms.

  6. SU-E-T-536: LINAC-Based Single Isocenter Frameless SRT for Brain Metastases

    International Nuclear Information System (INIS)

    Liu, B; Zhang, L; Rigor, N; Kim, J

    2015-01-01

    Purpose: Single-isocenter Stereotactic Radiotherapy of multiple brain metastases with Varian 21 IX LINAC, using Aktina Pinpoint system for patient setup. Methods: In 2014, five single-isocenter RapidArc SRT plans were delivered to five patients with 2 to 8 brain metastases using Varian 21 IX. Aktina Pinpoint system was used for setup and 2mm PTV margin were used. CBCT was acquired before and after the beam delivery. The prescription is 2100 cGy in 3 fractions. Eclipse planning system was used for treatment planning. Depending on the number of metastases and their locations, 1 to 5 coplanar or non coplanar arcs were used. Typically, 2 or 3 arcs are used. IMRT QAs were performed by comparing an A1SL ion chamber point dose measurement in solid water phantom to point dose of the plan; also, based on EPID measurement, 3D spatial dose was calculated using DosimetryCheck software package from MathResolutions Inc. The EPID system has an active area of 40cm by 30cm with 1024 by 768 photodiodes, which corresponds to a resolution of 0.4mm by 0.4mm pixel dimension. Results: for all the plans, at least 95% PTV coverage was achieved for full prescription dose, with plan normalization > 75%. RTOG conformity indices are less than 1.1 and Paddick gradient indices are less than 4.5. The distance from prescription IDL to 50% IDL increases as the number of metastases increases, and it ranges from 0.6mm to 0.8mm. Treatment time varies from 10mins to 30mins, depending on the number of arcs and if the arcs are coplanar. IMRT QA shows that the ion chamber measurement agree with the eclipse calculation within 3%, and 95% of the points passed Gamma, using 3% dose difference and 3mm DTA Conclusion: High quality single isocenter RapidArc SRT plan can be optimized and accurately delivered using Eclipse and Varian 21IX

  7. Modeling and Control of Collaborative Robot System using Haptic Feedback

    Directory of Open Access Journals (Sweden)

    Vivekananda Shanmuganatha

    2017-08-01

    Full Text Available When two robot systems can share understanding using any agreed knowledge, within the constraints of the system’s communication protocol, the approach may lead to a common improvement. This has persuaded numerous new research inquiries in human-robot collaboration. We have built up a framework prepared to do independent following and performing table-best protest object manipulation with humans and we have actualized two different activity models to trigger robot activities. The idea here is to explore collaborative systems and to build up a plan for them to work in a collaborative environment which has many benefits to a single more complex system. In the paper, two robots that cooperate among themselves are constructed. The participation linking the two robotic arms, the torque required and parameters are analyzed. Thus the purpose of this paper is to demonstrate a modular robot system which can serve as a base on aspects of robotics in collaborative robots using haptics.

  8. Home-based tele-assisted robotic rehabilitation of joint impairments in children with cerebral palsy.

    Science.gov (United States)

    Chen, Kai; Ren, Yupeng; Gaebler-Spira, Deborah; Zhang, Li-Qun

    2014-01-01

    A portable rehabilitation robot incorporating intelligent stretching, robot-guided voluntary movement training with motivating games and tele-rehabilitation was developed to provide convenient and cost-effective rehabilitation to children with cerebral palsy (CP) and extend rehabilitation care beyond hospital. Clinicians interact with the patients remotely for periodic evaluations and updated guidance. The tele-assisted stretching and active movement training was done over 6-week 18 sessions on the impaired ankle of 23 children with CP in their home setting. Treatment effectiveness was evaluated using biomechanical measures and clinical outcome measures. After the tele-assisted home robotic rehabilitation intervention, there were significant increases in the ankle passive and active range of motion, muscle strength, a decrease in spasticity, and increases in balance and selective control assessment of lower-extremity.

  9. Exploratorium: Robots.

    Science.gov (United States)

    Brand, Judith, Ed.

    2002-01-01

    This issue of Exploratorium Magazine focuses on the topic robotics. It explains how to make a vibrating robotic bug and features articles on robots. Contents include: (1) "Where Robot Mice and Robot Men Run Round in Robot Towns" (Ray Bradbury); (2) "Robots at Work" (Jake Widman); (3) "Make a Vibrating Robotic Bug" (Modesto Tamez); (4) "The Robot…

  10. Comparison of Perioperative Outcomes of Total Laparoscopic and Robotically Assisted Hysterectomy for Benign Pathology during Introduction of a Robotic Program

    Directory of Open Access Journals (Sweden)

    Gokhan Sami Kilic

    2011-01-01

    Full Text Available Study Objective. Prospectively compare outcomes of robotically assisted and laparoscopic hysterectomy in the process of implementing a new robotic program. Design. Prospectively comparative observational nonrandomized study. Design Classification. II-1. Setting. Tertiary caregiver university hospital. Patients. Data collected consecutively 24 months, 34 patients underwent laparoscopic hysterectomy, 25 patients underwent robotic hysterectomy, and 11 patients underwent vaginal hysterectomy at our institution. Interventions. Outcomes of robotically assisted, laparoscopic, and vaginal complex hysterectomies performed by a single surgeon for noncancerous indications. Measurements and Main Results. Operative times were 208.3±59.01 minutes for laparoscopic, 286.2±82.87 minutes for robotic, and 163.5±61.89 minutes for vaginal (<.0001. Estimated blood loss for patients undergoing laparoscopic surgery was 242.7±211.37 cc, 137.4±107.50 cc for robotic surgery, and 243.2±127.52 cc for vaginal surgery (=0.05. The mean length of stay ranged from 1.8 to 2.3 days for the 3 methods. Association was significant for uterine weight (=0.0043 among surgery methods. Conclusion. Robotically assisted hysterectomy is feasible with low morbidity, a shorter hospital stay, and less blood loss. This suggests that robotic assistance facilitates a minimally invasive approach for patients with larger uterine size even during implementing a new robotic program.

  11. Robotic Liver Resection: A Case-Matched Comparison.

    Science.gov (United States)

    Kingham, T Peter; Leung, Universe; Kuk, Deborah; Gönen, Mithat; D'Angelica, Michael I; Allen, Peter J; DeMatteo, Ronald P; Laudone, Vincent P; Jarnagin, William R; Fong, Yuman

    2016-06-01

    In recent years, increasingly sophisticated tools have allowed for more complex robotic surgery. Robotic hepatectomy, however, is still in its infancy. Our goals were to examine the adoption of robotic hepatectomy and to compare outcomes between open and robotic liver resections. The robotic hepatectomy experience of 64 patients was compared to a modern case-matched series of 64 open hepatectomy patients at the same center. Matching was according to benign/malignant diagnosis and number of segments resected. Patient data were obtained retrospectively. The main outcomes and measures were operative time, estimated blood loss, conversion rate (robotic to open), Pringle maneuver use, single non-anatomic wedge resection rate, resection margin size, complication rates (infectious, hepatic, pulmonary, cardiac), hospital stay length, ICU stay length, readmission rate, and 90-day mortality rate. Sixty-four robotic hepatectomies were performed in 2010-2014. Forty-one percent were segmental and 34 % were wedge resections. There was a 6 % conversion rate, a 3 % 90-day mortality rate, and an 11 % morbidity rate. Compared to 64 matched patients who underwent open hepatectomy (2004-2012), there was a shorter median OR time (p = 0.02), lower median estimated blood loss (p optimization of outcomes and prospective examination of the economic cost of each approach.

  12. Stereotactic Irradiation of the Postoperative Resection Cavity for Brain Metastasis: A Frameless Linear Accelerator-Based Case Series and Review of the Technique

    International Nuclear Information System (INIS)

    Kelly, Paul J.; Lin Yijie Brittany; Yu, Alvin Y.; Alexander, Brian M.; Hacker, Fred; Marcus, Karen J.; Weiss, Stephanie E.

    2012-01-01

    Purpose: Whole-brain radiation therapy (WBRT) is the standard of care after resection of a brain metastasis. However, concern regarding possible neurocognitive effects and the lack of survival benefit with this approach has led to the use of stereotactic radiosurgery (SRS) to the resection cavity in place of WBRT. We report our initial experience using an image-guided linear accelerator-based frameless stereotactic system and review the technical issues in applying this technique. Methods and Materials: We retrospectively reviewed the setup accuracy, treatment outcome, and patterns of failure of the first 18 consecutive cases treated at Brigham and Women’s Hospital. The target volume was the resection cavity without a margin excluding the surgical track. Results: The median number of brain metastases per patient was 1 (range, 1–3). The median planning target volume was 3.49 mL. The median prescribed dose was 18 Gy (range, 15–18 Gy) with normalization ranging from 68% to 85%. In all cases, 99% of the planning target volume was covered by the prescribed dose. The median conformity index was 1.6 (range, 1.41–1.92). The SRS was delivered with submillimeter accuracy. At a median follow-up of 12.7 months, local control was achieved in 16/18 cavities treated. True local recurrence occurred in 2 patients. No marginal failures occurred. Distant recurrence occurred in 6/17 patients. Median time to any failure was 7.4 months. No Grade 3 or higher toxicity was recorded. A long interval between initial cancer diagnosis and the development of brain metastasis was the only factor that trended toward a significant association with the absence of recurrence (local or distant) (log-rank p = 0.097). Conclusions: Frameless stereotactic irradiation of the resection cavity after surgery for a brain metastasis is a safe and accurate technique that offers durable local control and defers the use of WBRT in select patients. This technique should be tested in larger prospective

  13. Stereotactic Irradiation of the Postoperative Resection Cavity for Brain Metastasis: A Frameless Linear Accelerator-Based Case Series and Review of the Technique

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Paul J., E-mail: pkelly@lroc.harvard.edu [Department of Radiation Oncology, Dana-Farber/Brigham and Women' s Cancer Center, Boston, MA (United States); Lin Yijie Brittany; Yu, Alvin Y. [Harvard Medical School, Boston, MA (United States); Alexander, Brian M.; Hacker, Fred; Marcus, Karen J.; Weiss, Stephanie E. [Department of Radiation Oncology, Dana-Farber/Brigham and Women' s Cancer Center, Boston, MA (United States)

    2012-01-01

    Purpose: Whole-brain radiation therapy (WBRT) is the standard of care after resection of a brain metastasis. However, concern regarding possible neurocognitive effects and the lack of survival benefit with this approach has led to the use of stereotactic radiosurgery (SRS) to the resection cavity in place of WBRT. We report our initial experience using an image-guided linear accelerator-based frameless stereotactic system and review the technical issues in applying this technique. Methods and Materials: We retrospectively reviewed the setup accuracy, treatment outcome, and patterns of failure of the first 18 consecutive cases treated at Brigham and Women's Hospital. The target volume was the resection cavity without a margin excluding the surgical track. Results: The median number of brain metastases per patient was 1 (range, 1-3). The median planning target volume was 3.49 mL. The median prescribed dose was 18 Gy (range, 15-18 Gy) with normalization ranging from 68% to 85%. In all cases, 99% of the planning target volume was covered by the prescribed dose. The median conformity index was 1.6 (range, 1.41-1.92). The SRS was delivered with submillimeter accuracy. At a median follow-up of 12.7 months, local control was achieved in 16/18 cavities treated. True local recurrence occurred in 2 patients. No marginal failures occurred. Distant recurrence occurred in 6/17 patients. Median time to any failure was 7.4 months. No Grade 3 or higher toxicity was recorded. A long interval between initial cancer diagnosis and the development of brain metastasis was the only factor that trended toward a significant association with the absence of recurrence (local or distant) (log-rank p = 0.097). Conclusions: Frameless stereotactic irradiation of the resection cavity after surgery for a brain metastasis is a safe and accurate technique that offers durable local control and defers the use of WBRT in select patients. This technique should be tested in larger prospective studies.

  14. Translational and rotational intra- and inter-fractional errors in patient and target position during a short course of frameless stereotactic body radiotherapy

    International Nuclear Information System (INIS)

    Josipovic, Mirjana; Fredberg Persson, Gitte; Logadottir, Aashildur; Smulders, Bob; Westmann, Gunnar; Bangsgaard, Jens Peter

    2012-01-01

    Background. Implementation of cone beam computed tomography (CBCT) in frameless stereotactic body radiotherapy (SBRT) of lung tumours enables setup correction based on tumour position. The aim of this study was to compare setup accuracy with daily soft tissue matching to bony anatomy matching and evaluate intra- and inter-fractional translational and rotational errors in patient and target positions. Material and methods. Fifteen consecutive SBRT patients were included in the study. Vacuum cushions were used for immobilisation. SBRT plans were based on midventilation phase of four-dimensional (4D)-CT or three-dimensional (3D)-CT from PET/CT. Margins of 5 mm in the transversal plane and 10 mm in the cranio-caudal (CC) direction were applied. SBRT was delivered in three fractions within a week. At each fraction, CBCT was performed before and after the treatment. Setup accuracy comparison between soft tissue matching and bony anatomy matching was evaluated on pretreatment CBCTs. From differences in pre- and post-treatment CBCTs, we evaluated the extent of translational and rotational intra-fractional changes in patient position, tumour position and tumour baseline shift. All image registration was rigid with six degrees of freedom. Results. The median 3D difference between patient position based on bony anatomy matching and soft tissue matching was 3.0 mm (0-8.3 mm). The median 3D intra-fractional change in patient position was 1.4 mm (0-12.2 mm) and 2.2 mm (0-13.2 mm) in tumour position. The median 3D intra-fractional baseline shift was 2.2 mm (0-4.7 mm). With correction of translational errors, the remaining systematic and random errors were approximately 1deg. Conclusion. Soft tissue tumour matching improved precision of treatment delivery in frameless SBRT of lung tumours compared to image guidance using bone matching. The intra-fractional displacement of the target position was affected by both translational and rotational changes in tumour baseline position

  15. micROS: a morphable, intelligent and collective robot operating system.

    Science.gov (United States)

    Yang, Xuejun; Dai, Huadong; Yi, Xiaodong; Wang, Yanzhen; Yang, Shaowu; Zhang, Bo; Wang, Zhiyuan; Zhou, Yun; Peng, Xuefeng

    2016-01-01

    Robots are developing in much the same way that personal computers did 40 years ago, and robot operating system is the critical basis. Current robot software is mainly designed for individual robots. We present in this paper the design of micROS, a morphable, intelligent and collective robot operating system for future collective and collaborative robots. We first present the architecture of micROS, including the distributed architecture for collective robot system as a whole and the layered architecture for every single node. We then present the design of autonomous behavior management based on the observe-orient-decide-act cognitive behavior model and the design of collective intelligence including collective perception, collective cognition, collective game and collective dynamics. We also give the design of morphable resource management, which first categorizes robot resources into physical, information, cognitive and social domains, and then achieve morphability based on self-adaptive software technology. We finally deploy micROS on NuBot football robots and achieve significant improvement in real-time performance.

  16. Retention of fundamental surgical skills learned in robot-assisted surgery.

    Science.gov (United States)

    Suh, Irene H; Mukherjee, Mukul; Shah, Bhavin C; Oleynikov, Dmitry; Siu, Ka-Chun

    2012-12-01

    Evaluation of the learning curve for robotic surgery has shown reduced errors and decreased task completion and training times compared with regular laparoscopic surgery. However, most training evaluations of robotic surgery have only addressed short-term retention after the completion of training. Our goal was to investigate the amount of surgical skills retained after 3 months of training with the da Vinci™ Surgical System. Seven medical students without any surgical experience were recruited. Participants were trained with a 4-day training program of robotic surgical skills and underwent a series of retention tests at 1 day, 1 week, 1 month, and 3 months post-training. Data analysis included time to task completion, speed, distance traveled, and movement curvature by the instrument tip. Performance of the participants was graded using the modified Objective Structured Assessment of Technical Skills (OSATS) for robotic surgery. Participants filled out a survey after each training session by answering a set of questions. Time to task completion and the movement curvature was decreased from pre- to post-training and the performance was retained at all the corresponding retention periods: 1 day, 1 week, 1 month, and 3 months. The modified OSATS showed improvement from pre-test to post-test and this improvement was maintained during all the retention periods. Participants increased in self-confidence and mastery in performing robotic surgical tasks after training. Our novel comprehensive training program improved robot-assisted surgical performance and learning. All trainees retained their fundamental surgical skills for 3 months after receiving the training program.

  17. Real-Time Motion Planning and Safe Navigation in Dynamic Multi-Robot Environments

    National Research Council Canada - National Science Library

    Bruce, James R

    2006-01-01

    .... While motion planning has been used for high level robot navigation, or limited to semi-static or single-robot domains, it has often been dismissed for the real-time low-level control of agents due...

  18. Robotics

    International Nuclear Information System (INIS)

    Scheide, A.W.

    1983-01-01

    This article reviews some of the technical areas and history associated with robotics, provides information relative to the formation of a Robotics Industry Committee within the Industry Applications Society (IAS), and describes how all activities relating to robotics will be coordinated within the IEEE. Industrial robots are being used for material handling, processes such as coating and arc welding, and some mechanical and electronics assembly. An industrial robot is defined as a programmable, multifunctional manipulator designed to move material, parts, tools, or specialized devices through variable programmed motions for a variety of tasks. The initial focus of the Robotics Industry Committee will be on the application of robotics systems to the various industries that are represented within the IAS

  19. Multiprocessor development for robot control

    International Nuclear Information System (INIS)

    Lee, Jong Min; Kim, Byung Soo; Kim, Chang Hoi; Hwang, Suk Yong; Sohn, Surg Won; Yoon, Tae Seob; Lee, Yong Bum; Kim, Woong Ki

    1988-02-01

    A mutiprocessor system that is essential to A.I. (Artificial Intelligence) robot control was developed. A.I. robot control needs very complex real time control. The multiprocessor system interconnecting many SBC's (Single Board Computer) is much faster and accurater than using only one SBC. Various multiprocessor systems and their applications were compared and discussed. The multiprocessor architecture system is specially designed to be used in nuclear environments. The main functions are job distribution, multitasking, and intelligent remote control by SDLC protocol using optical fiber. The system can be applied to position control for locomotion and manipulation, data fusion system, and image processing. (Author)

  20. Using Elite Athletes to Promote Drug Abstinence: Evaluation of a Single-Session School-Based Drug Use Prevention Program Delivered by Junior Hockey Players

    Science.gov (United States)

    Wong, Jennifer

    2016-01-01

    School-based substance use prevention programs are a common method to approaching drug use in youths. Project SOS is a single-session drug prevention program developed by police officers and delivered by elite junior hockey players to students in grades 6 and 7. The current study evaluates the effects of Project SOS at achieving its objectives of…

  1. Soft Ultrathin Electronics Innervated Adaptive Fully Soft Robots.

    Science.gov (United States)

    Wang, Chengjun; Sim, Kyoseung; Chen, Jin; Kim, Hojin; Rao, Zhoulyu; Li, Yuhang; Chen, Weiqiu; Song, Jizhou; Verduzco, Rafael; Yu, Cunjiang

    2018-03-01

    Soft robots outperform the conventional hard robots on significantly enhanced safety, adaptability, and complex motions. The development of fully soft robots, especially fully from smart soft materials to mimic soft animals, is still nascent. In addition, to date, existing soft robots cannot adapt themselves to the surrounding environment, i.e., sensing and adaptive motion or response, like animals. Here, compliant ultrathin sensing and actuating electronics innervated fully soft robots that can sense the environment and perform soft bodied crawling adaptively, mimicking an inchworm, are reported. The soft robots are constructed with actuators of open-mesh shaped ultrathin deformable heaters, sensors of single-crystal Si optoelectronic photodetectors, and thermally responsive artificial muscle of carbon-black-doped liquid-crystal elastomer (LCE-CB) nanocomposite. The results demonstrate that adaptive crawling locomotion can be realized through the conjugation of sensing and actuation, where the sensors sense the environment and actuators respond correspondingly to control the locomotion autonomously through regulating the deformation of LCE-CB bimorphs and the locomotion of the robots. The strategy of innervating soft sensing and actuating electronics with artificial muscles paves the way for the development of smart autonomous soft robots. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Mapping Robots to Therapy and Educational Objectives for Children with Autism Spectrum Disorder

    Science.gov (United States)

    Huijnen, Claire A. G. J.; Lexis, Monique A. S.; Jansens, Rianne; de Witte, Luc P.

    2016-01-01

    The aim of this study was to increase knowledge on therapy and educational objectives professionals work on with children with autism spectrum disorder (ASD) and to identify corresponding state of the art robots. Focus group sessions (n = 9) with ASD professionals (n = 53) from nine organisations were carried out to create an objectives overview,…

  3. Practical considerations of linear accelerator-based frameless extracranial radiosurgery for treatment of occipital neuralgia for nonsurgical candidates.

    Science.gov (United States)

    Denton, Travis R; Shields, Lisa B E; Howe, Jonathan N; Shanks, Todd S; Spalding, Aaron C

    2017-07-01

    Occipital neuralgia generally responds to medical or invasive procedures. Repeated invasive procedures generate increasing complications and are often contraindicated. Stereotactic radiosurgery (SRS) has not been reported as a treatment option largely due to the extracranial nature of the target as opposed to the similar, more established trigeminal neuralgia. A dedicated phantom study was conducted to determine the optimum imaging studies, fusion matrices, and treatment planning parameters to target the C2 dorsal root ganglion which forms the occipital nerve. The conditions created from the phantom were applied to a patient with medically and surgically refractory occipital neuralgia. A dose of 80 Gy in one fraction was prescribed to the C2 occipital dorsal root ganglion. The phantom study resulted in a treatment achieved with an average translational magnitude of correction of 1.35 mm with an acceptable tolerance of 0.5 mm and an average rotational magnitude of correction of 0.4° with an acceptable tolerance of 1.0°. For the patient, the spinal cord was 12.0 mm at its closest distance to the isocenter and received a maximum dose of 3.36 Gy, a dose to 0.35 cc of 1.84 Gy, and a dose to 1.2 cc of 0.79 Gy. The brain maximum dose was 2.20 Gy. Treatment time was 59 min for 18, 323 MUs. Imaging was performed prior to each arc delivery resulting in 21 imaging sessions. The average deviation magnitude requiring a positional or rotational correction was 0.96 ± 0.25 mm, 0.8 ± 0.41°, whereas the average deviation magnitude deemed within tolerance was 0.41 ± 0.12 mm, 0.57 ± 0.28°. Dedicated quality assurance of the treatment planning and delivery is necessary for safe and accurate SRS to the cervical spine dorsal root ganglion. With additional prospective study, linear accelerator-based frameless radiosurgery can provide an accurate, noninvasive alternative for treating occipital neuralgia where an invasive procedure is contraindicated. © 2017

  4. Kinematic evaluation of mobile robotic platforms for overground gait neurorehabilitation

    Science.gov (United States)

    Alias, N. Akmal; Huq, M. Saiful; Ibrahim, B. S. K. K.; Omar, Rosli

    2017-09-01

    Gait assistive devices offer a great solution to the walking re-education which reduce patients theoretical limit by aiding the anatomical joints to be in line with the rehabilitation session. Overground gait training, which is differs significantly from body-weight supported treadmill training in many aspects, essentially consists of a mobile robotic base to support the subject securely (usually with overhead harness) while its motion and orientation is controlled seamlessly to facilitate subjects free movement. In this study, efforts have been made for evaluation of both holonomic and nonholonomic drives, the outcome of which may constitute the primarily results to the effective approach in designing a robotic platform for the mobile rehabilitation robot. The sets of kinematic equations are derived using typical geometries of two different drives. The results indicate that omnidirectional mecanum wheel platform is capable for more sophisticated discipline. Although the differential drive platform happens to be more simple and easy to construct, but it is less desirable as it has limited number of motions applicable to the system. The omnidirectional robot consisting of mecanum wheels, which is classified as holonomic is potentially the best solution in terms of its capability to move in arbitrary direction without concerning the changing of wheel's direction.

  5. Noninvasive Electroencephalogram Based Control of a Robotic Arm for Reach and Grasp Tasks

    Science.gov (United States)

    Meng, Jianjun; Zhang, Shuying; Bekyo, Angeliki; Olsoe, Jaron; Baxter, Bryan; He, Bin

    2016-01-01

    Brain-computer interface (BCI) technologies aim to provide a bridge between the human brain and external devices. Prior research using non-invasive BCI to control virtual objects, such as computer cursors and virtual helicopters, and real-world objects, such as wheelchairs and quadcopters, has demonstrated the promise of BCI technologies. However, controlling a robotic arm to complete reach-and-grasp tasks efficiently using non-invasive BCI has yet to be shown. In this study, we found that a group of 13 human subjects could willingly modulate brain activity to control a robotic arm with high accuracy for performing tasks requiring multiple degrees of freedom by combination of two sequential low dimensional controls. Subjects were able to effectively control reaching of the robotic arm through modulation of their brain rhythms within the span of only a few training sessions and maintained the ability to control the robotic arm over multiple months. Our results demonstrate the viability of human operation of prosthetic limbs using non-invasive BCI technology. PMID:27966546

  6. Fine finger motor skill training with exoskeleton robotic hand in chronic stroke: stroke rehabilitation.

    Science.gov (United States)

    Ockenfeld, Corinna; Tong, Raymond K Y; Susanto, Evan A; Ho, Sze-Kit; Hu, Xiao-ling

    2013-06-01

    Background and Purpose. Stroke survivors often show a limited recovery in the hand function to perform delicate motions, such as full hand grasping, finger pinching and individual finger movement. The purpose of this study is to describe the implementation of an exoskeleton robotic hand together with fine finger motor skill training on 2 chronic stroke patients. Case Descriptions. Two post-stroke patients participated in a 20-session training program by integrating 10 minutes physical therapy, 20 minutes robotic hand training and 15 minutes functional training tasks with delicate objects(card, pen and coin). These two patients (A and B) had cerebrovascular accident at 6 months and 11 months respectively when enrolled in this study. Outcomes. The results showed that both patients had improvements in Fugl-Meyer assessment (FM), Action Research Arm Test (ARAT). Patients had better isolation of the individual finger flexion and extension based on the reduced muscle co-contraction from the electromyographic(EMG) signals and finger extension force after 20 sessions of training. Discussion. This preliminary study showed that by focusing on the fine finger motor skills together with the exoskeleton robotic hand, it could improve the motor recovery of the upper extremity in the fingers and hand function, which were showed in the ARAT. Future randomized controlled trials are needed to evaluate the clinical effectiveness.

  7. Single-Session Transcranial Direct Current Stimulation Temporarily Improves Symptoms, Mood, and Self-Regulatory Control in Bulimia Nervosa: A Randomised Controlled Trial.

    Directory of Open Access Journals (Sweden)

    Maria Kekic

    Full Text Available Evidence suggests that pathological eating behaviours in bulimia nervosa (BN are underpinned by alterations in reward processing and self-regulatory control, and by functional changes in neurocircuitry encompassing the dorsolateral prefrontal cortex (DLPFC. Manipulation of this region with transcranial direct current stimulation (tDCS may therefore alleviate symptoms of the disorder.This double-blind sham-controlled proof-of-principle trial investigated the effects of bilateral tDCS over the DLPFC in adults with BN.Thirty-nine participants (two males received three sessions of tDCS in a randomised and counterbalanced order: anode right/cathode left (AR/CL, anode left/cathode right (AL/CR, and sham. A battery of psychological/neurocognitive measures was completed before and after each session and the frequency of bulimic behaviours during the following 24-hours was recorded.AR/CL tDCS reduced eating disorder cognitions (indexed by the Mizes Eating Disorder Cognitions Questionnaire-Revised when compared to AL/CR and sham tDCS. Both active conditions suppressed the self-reported urge to binge-eat and increased self-regulatory control during a temporal discounting task. Compared to sham stimulation, mood (assessed with the Profile of Mood States improved after AR/CL but not AL/CR tDCS. Lastly, the three tDCS sessions had comparable effects on the wanting/liking of food and on bulimic behaviours during the 24 hours post-stimulation.These data suggest that single-session tDCS transiently improves symptoms of BN. They also help to elucidate possible mechanisms of action and highlight the importance of selecting the optimal electrode montage. Multi-session trials are needed to determine whether tDCS has potential for development as a treatment for adult BN.

  8. Multi-objective Mobile Robot Scheduling Problem with Dynamic Time Windows

    DEFF Research Database (Denmark)

    Dang, Vinh Quang; Nielsen, Izabela Ewa; Steger-Jensen, Kenn

    2012-01-01

    This paper deals with the problem of scheduling feeding tasks of a single mobile robot which has capability of supplying parts to feeders on pro-duction lines. The performance criterion is to minimize the total traveling time of the robot and the total tardiness of the feeding tasks being scheduled...

  9. Integrated Control Strategies Supporting Autonomous Functionalities in Mobile Robots

    Directory of Open Access Journals (Sweden)

    Brandon Sights

    2006-10-01

    Full Text Available High-level intelligence allows a mobile robot to create and interpret complex world models, but without a precise control system, the accuracy of the world model and the robot's ability to interact with its surroundings are greatly diminished. This problem is amplified when the environment is hostile, such as in a battlefield situation where an error in movement or a slow response may lead to destruction of the robot. As the presence of robots on the battlefield continues to escalate and the trend toward relieving the human of the low-level control burden advances, the ability to combine the functionalities of several critical control systems on a single platform becomes imperative.

  10. Advantages of Task-Specific Multi-Objective Optimisation in Evolutionary Robotics.

    Science.gov (United States)

    Trianni, Vito; López-Ibáñez, Manuel

    2015-01-01

    The application of multi-objective optimisation to evolutionary robotics is receiving increasing attention. A survey of the literature reveals the different possibilities it offers to improve the automatic design of efficient and adaptive robotic systems, and points to the successful demonstrations available for both task-specific and task-agnostic approaches (i.e., with or without reference to the specific design problem to be tackled). However, the advantages of multi-objective approaches over single-objective ones have not been clearly spelled out and experimentally demonstrated. This paper fills this gap for task-specific approaches: starting from well-known results in multi-objective optimisation, we discuss how to tackle commonly recognised problems in evolutionary robotics. In particular, we show that multi-objective optimisation (i) allows evolving a more varied set of behaviours by exploring multiple trade-offs of the objectives to optimise, (ii) supports the evolution of the desired behaviour through the introduction of objectives as proxies, (iii) avoids the premature convergence to local optima possibly introduced by multi-component fitness functions, and (iv) solves the bootstrap problem exploiting ancillary objectives to guide evolution in the early phases. We present an experimental demonstration of these benefits in three different case studies: maze navigation in a single robot domain, flocking in a swarm robotics context, and a strictly collaborative task in collective robotics.

  11. Advantages of Task-Specific Multi-Objective Optimisation in Evolutionary Robotics.

    Directory of Open Access Journals (Sweden)

    Vito Trianni

    Full Text Available The application of multi-objective optimisation to evolutionary robotics is receiving increasing attention. A survey of the literature reveals the different possibilities it offers to improve the automatic design of efficient and adaptive robotic systems, and points to the successful demonstrations available for both task-specific and task-agnostic approaches (i.e., with or without reference to the specific design problem to be tackled. However, the advantages of multi-objective approaches over single-objective ones have not been clearly spelled out and experimentally demonstrated. This paper fills this gap for task-specific approaches: starting from well-known results in multi-objective optimisation, we discuss how to tackle commonly recognised problems in evolutionary robotics. In particular, we show that multi-objective optimisation (i allows evolving a more varied set of behaviours by exploring multiple trade-offs of the objectives to optimise, (ii supports the evolution of the desired behaviour through the introduction of objectives as proxies, (iii avoids the premature convergence to local optima possibly introduced by multi-component fitness functions, and (iv solves the bootstrap problem exploiting ancillary objectives to guide evolution in the early phases. We present an experimental demonstration of these benefits in three different case studies: maze navigation in a single robot domain, flocking in a swarm robotics context, and a strictly collaborative task in collective robotics.

  12. Kinematic Analysis of Continuum Robot Consisted of Driven Flexible Rods

    Directory of Open Access Journals (Sweden)

    Yingzhong Tian

    2016-01-01

    Full Text Available This paper presents the kinematic analysis of a continuum bionic robot with three flexible actuation rods. Since the motion of the end-effector is actuated by the deformation of the rods, the robot structure is with high elasticity and good compliance and the kinematic analysis of the robot requires special treatment. We propose a kinematic model based on the geometry with constant curvature. The analysis consists of two independent mappings: a general mapping for the kinematics of all robots and a specific mapping for this kind of robots. Both of those mappings are developed for the single section and for the multisections. We aim at providing a guide for kinematic analysis of the similar manipulators through this paper.

  13. Towards Versatile Robots Through Open Heterogeneous Modular Robots

    DEFF Research Database (Denmark)

    Lyder, Andreas

    arises, a new robot can be assembled rapidly from the existing modules, in contrast to conventional robots, which require a time consuming and expensive development process. In this thesis we define a modular robot to be a robot consisting of dynamically reconfigurable modules. The goal of this thesis......Robots are important tools in our everyday life. Both in industry and at the consumer level they serve the purpose of increasing our scope and extending our capabilities. Modular robots take the next step, allowing us to easily create and build various robots from a set of modules. If a problem...... is to increase the versatility and practical usability of modular robots by introducing new conceptual designs. Until now modular robots have been based on a pre-specified set of modules, and thus, their functionality is limited. We propose an open heterogeneous design concept, which allows a modular robot...

  14. The Organization of Behavior Over Time: Insights from Mid-Session Reversal

    OpenAIRE

    Rayburn-Reeves, Rebecca M.; Cook, Robert G.

    2016-01-01

    What are the mechanisms by which behavior is organized sequentially over time? The recently developed mid-session reversal (MSR) task offers new insights into this fundamental question. The typical MSR task is arranged to have a single reversed discrimination occurring in a consistent location within each session and across sessions. In this task, we examine the relevance of time, reinforcement, and other factors as the switching cue in the sequential modulation of control in MSR. New analyse...

  15. Does a single gait training session performed either overground or on a treadmill induce specific short-term effects on gait parameters in patients with hemiparesis? A randomized controlled study.

    Science.gov (United States)

    Bonnyaud, Céline; Pradon, Didier; Zory, Raphael; Bensmail, Djamel; Vuillerme, Nicolas; Roche, Nicolas

    2013-01-01

    Gait training for patients with hemiparesis is carried out independently overground or on a treadmill. Several studies have shown differences in hemiparetic gait parameters during overground versus treadmill walking. However, few studies have compared the effects of these 2 gait training conditions on gait parameters, and no study has compared the short-term effects of these techniques on all biomechanical gait parameters. To determine whether a gait training session performed overground or on a treadmill induces specific short-term effects on biomechanical gait parameters in patients with hemiparesis. Twenty-six subjects with hemiparesis were randomly assigned to a single session of either overground or treadmill gait training. The short-term effects on spatiotemporal, kinematic, and kinetic gait parameters were assessed using gait analysis before and immediately after the training and after a 20-minute rest. Speed, cadence, percentage of single support phase, peak knee extension, peak propulsion, and braking on the paretic side were significantly increased after the gait training session. However, there were no specific changes dependent on the type of gait training performed (overground or on a treadmill). A gait training session performed by subjects with hemiparesis overground or on a treadmill did not induce specific short-term effects on biomechanical gait parameters. The increase in gait velocity that followed a gait training session seemed to reflect specific modifications of the paretic lower limb and adaptation of the nonparetic lower limb.

  16. Robots in Elderly Care

    Directory of Open Access Journals (Sweden)

    Alessandro Vercelli

    2018-03-01

    Full Text Available Low birth rate and the long life expectancy represent an explosive mixture, resulting in the rapid aging of population. The costs of healthcare in the grey society are increasing dramatically, and soon there will be not enough resources and people for care. This context requires conceptually new elderly care solutions progressively reducing the percentages of the human-based care. Research on robot-based solutions for elderly care and active ageing aims to answer these needs. From a general perspective, robotics has the power to completely reshape the landscape of healthcare both in its structure and its operation. In fact, the long-term sustainability of healthcare systems could be addressed by automation powered by digital health technologies, such as artificial intelligence, 3D-printing or robotics. The latter could take over monotonous work from healthcare workers, which would allow them to focus more on patients and to have lesser workload. Robots might be used in elder care with several different aims. (i Robots may act as caregivers, i.e. assist the elderly, (ii they can provide remainders and instructions for activities of daily life and safety, and/or assist their carers in daily tasks; (iii they can help monitor their behaviour and health; and (iv provide companionship, including entertainment and hobbies, reminiscence and social contact. The use of Robots with human subjects/patients raise several sensitive questions. First of all, robots may represent information hubs, and can collect an incredible amount of data about the subjects and their environment. In fact, they record habits such as sleeping, exercising, third persons entering in the house, appointments. Communications may be continuously recorded. Moreover, by connecting with medical devices, they can store medical data. On one hand, this represents a very powerful tool to collect information about the single subject (precision medicine, about disease (thus eventually finding

  17. EMBEDDED CONTROL SYSTEM FOR MOBILE ROBOTS WITH DIFFERENTIAL DRIVE

    Directory of Open Access Journals (Sweden)

    Michal KOPČÍK

    2017-09-01

    Full Text Available This article deals with design and implementation of control system for mobile robots with differential drive using embedded system. This designed embedded system consists of single control board featuring ARM based microcontroller which control the peripherals in real time and perform all low-level motion control. Designed embedded system can be easily expanded with additional sensors, actuators or control units to enhance applicability of mobile robot. Designed embedded system also features build-in communication module, which can be used for data for data acquisition and control of the mobile robot. Control board was implemented on two different types of mobile robots with differential drive, one of which was wheeled and other was tracked. These mobile robots serve as testing platform for Fault Detection and Isolation using hardware and analytical redundancy using Multisensor Data Fusion based on Kalman filters.

  18. Simulation tools for robotics research and assessment

    Science.gov (United States)

    Fields, MaryAnne; Brewer, Ralph; Edge, Harris L.; Pusey, Jason L.; Weller, Ed; Patel, Dilip G.; DiBerardino, Charles A.

    2016-05-01

    The Robotics Collaborative Technology Alliance (RCTA) program focuses on four overlapping technology areas: Perception, Intelligence, Human-Robot Interaction (HRI), and Dexterous Manipulation and Unique Mobility (DMUM). In addition, the RCTA program has a requirement to assess progress of this research in standalone as well as integrated form. Since the research is evolving and the robotic platforms with unique mobility and dexterous manipulation are in the early development stage and very expensive, an alternate approach is needed for efficient assessment. Simulation of robotic systems, platforms, sensors, and algorithms, is an attractive alternative to expensive field-based testing. Simulation can provide insight during development and debugging unavailable by many other means. This paper explores the maturity of robotic simulation systems for applications to real-world problems in robotic systems research. Open source (such as Gazebo and Moby), commercial (Simulink, Actin, LMS), government (ANVEL/VANE), and the RCTA-developed RIVET simulation environments are examined with respect to their application in the robotic research domains of Perception, Intelligence, HRI, and DMUM. Tradeoffs for applications to representative problems from each domain are presented, along with known deficiencies and disadvantages. In particular, no single robotic simulation environment adequately covers the needs of the robotic researcher in all of the domains. Simulation for DMUM poses unique constraints on the development of physics-based computational models of the robot, the environment and objects within the environment, and the interactions between them. Most current robot simulations focus on quasi-static systems, but dynamic robotic motion places an increased emphasis on the accuracy of the computational models. In order to understand the interaction of dynamic multi-body systems, such as limbed robots, with the environment, it may be necessary to build component

  19. Improvement of the operation of wheels mobile robot TRASMAR2; Mejora del funcionamiento del robot movil de ruedas TRASMAR2

    Energy Technology Data Exchange (ETDEWEB)

    Guerra C, D. A.; Tovar M, R. [Instituto Tecnologico de San Luis Potosi, Av. Tecnologico s/n, Col. UPA Soledad de Graciano Sanchez, 78437 San Luis Potosi (Mexico); Gonzalez M, J. L.; Segovia de los Rios, A., E-mail: deniwar@gmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    In the Instituto Nacional de Investigaciones Nucleares (ININ), personnel have been working in the development of wheels mobile robots for the surveillance and supervision of contaminated areas, and for the radioactive material transport. One of these achievements is the wheels mobile robot denominated TRASMAR2, which is sought that works in the tele operated form using net technologies, in particular, using a Web page by means of the client-servant technology. For this, diverse circuits and control programs have been development with the purpose that the robot carries out the movements that are required, being considered the use of sensors to avoid collisions. The different programs have been implemented in different micro controllers, and although the robot was working, is necessary to optimize and to concentrate these programs on a single micro controller. In this work are presented the analysis of the previously implemented programs, as the realized changes, including new programs required to improve the robot operation. As complement, was development and implemented an alternative proposal of the robot's tele operation by means of a Web page using Lab view, which is described in the work. With this proposal tele operate the robot was achieved, although its application is evaluating due to the resources that is consumes. (author)

  20. Hybrid System Design for the Coordination of Multi-Modal Aerial Robots

    DEFF Research Database (Denmark)

    Koo, T. John; Quottrup, Michael Melholt; Clifton, C. A.

    2006-01-01

    In this paper we provide a framework for the coordination of a network of heterogeneous aerial robots by using temporal logic to formulate mission speci¯cations for the network of robots. The full dynamics of the aerial robots are considered, and multiple controllers that can cope with various......¯ed. These robots are coordinated by communicating through a single occupancy table. By using the model checker Uppaal, a discrete plan that satis¯es a given temporal logic formula, speci¯ed in CTL, is generated for the robot to execute. Finally, the discrete plan for each robot is re¯ned into a discrete control...... constraints are designed to ensure that desired reachability properties can be preserved by properly switching among the controllers. A timed automaton is then constructed for preserving the temporal properties of a given robot. For di®erent types of robots, unique temporal properties can be speci...

  1. Socially intelligent robots: dimensions of human-robot interaction.

    Science.gov (United States)

    Dautenhahn, Kerstin

    2007-04-29

    Social intelligence in robots has a quite recent history in artificial intelligence and robotics. However, it has become increasingly apparent that social and interactive skills are necessary requirements in many application areas and contexts where robots need to interact and collaborate with other robots or humans. Research on human-robot interaction (HRI) poses many challenges regarding the nature of interactivity and 'social behaviour' in robot and humans. The first part of this paper addresses dimensions of HRI, discussing requirements on social skills for robots and introducing the conceptual space of HRI studies. In order to illustrate these concepts, two examples of HRI research are presented. First, research is surveyed which investigates the development of a cognitive robot companion. The aim of this work is to develop social rules for robot behaviour (a 'robotiquette') that is comfortable and acceptable to humans. Second, robots are discussed as possible educational or therapeutic toys for children with autism. The concept of interactive emergence in human-child interactions is highlighted. Different types of play among children are discussed in the light of their potential investigation in human-robot experiments. The paper concludes by examining different paradigms regarding 'social relationships' of robots and people interacting with them.

  2. An EMG-Controlled Robotic Hand Exoskeleton for Bilateral Rehabilitation.

    Science.gov (United States)

    Leonardis, Daniele; Barsotti, Michele; Loconsole, Claudio; Solazzi, Massimiliano; Troncossi, Marco; Mazzotti, Claudio; Castelli, Vincenzo Parenti; Procopio, Caterina; Lamola, Giuseppe; Chisari, Carmelo; Bergamasco, Massimo; Frisoli, Antonio

    2015-01-01

    This paper presents a novel electromyography (EMG)-driven hand exoskeleton for bilateral rehabilitation of grasping in stroke. The developed hand exoskeleton was designed with two distinctive features: (a) kinematics with intrinsic adaptability to patient's hand size, and (b) free-palm and free-fingertip design, preserving the residual sensory perceptual capability of touch during assistance in grasping of real objects. In the envisaged bilateral training strategy, the patient's non paretic hand acted as guidance for the paretic hand in grasping tasks. Grasping force exerted by the non paretic hand was estimated in real-time from EMG signals, and then replicated as robotic assistance for the paretic hand by means of the hand-exoskeleton. Estimation of the grasping force through EMG allowed to perform rehabilitation exercises with any, non sensorized, graspable objects. This paper presents the system design, development, and experimental evaluation. Experiments were performed within a group of six healthy subjects and two chronic stroke patients, executing robotic-assisted grasping tasks. Results related to performance in estimation and modulation of the robotic assistance, and to the outcomes of the pilot rehabilitation sessions with stroke patients, positively support validity of the proposed approach for application in stroke rehabilitation.

  3. First 101 Robotic General Surgery Cases in a Community Hospital

    Science.gov (United States)

    Robertson, Jarrod C.; Alrajhi, Sharifah

    2016-01-01

    Background and Objectives: The general surgeon's robotic learning curve may improve if the experience is classified into categories based on the complexity of the procedures in a small community hospital. The intraoperative time should decrease and the incidence of complications should be comparable to conventional laparoscopy. The learning curve of a single robotic general surgeon in a small community hospital using the da Vinci S platform was analyzed. Methods: Measured parameters were operative time, console time, conversion rates, complications, surgical site infections (SSIs), surgical site occurrences (SSOs), length of stay, and patient demographics. Results: Between March 2014 and August 2015, 101 robotic general surgery cases were performed by a single surgeon in a 266-bed community hospital, including laparoscopic cholecystectomies, inguinal hernia repairs; ventral, incisional, and umbilical hernia repairs; and colorectal, foregut, bariatric, and miscellaneous procedures. Ninety-nine of the cases were completed robotically. Seven patients were readmitted within 30 days. There were 8 complications (7.92%). There were no mortalities and all complications were resolved with good outcomes. The mean operative time was 233.0 minutes. The mean console operative time was 117.6 minutes. Conclusion: A robotic general surgery program can be safely implemented in a small community hospital with extensive training of the surgical team through basic robotic skills courses as well as supplemental educational experiences. Although the use of the robotic platform in general surgery could be limited to complex procedures such as foregut and colorectal surgery, it can also be safely used in a large variety of operations with results similar to those of conventional laparoscopy. PMID:27667913

  4. An EMG-driven exoskeleton hand robotic training device on chronic stroke subjects: task training system for stroke rehabilitation.

    Science.gov (United States)

    Ho, N S K; Tong, K Y; Hu, X L; Fung, K L; Wei, X J; Rong, W; Susanto, E A

    2011-01-01

    An exoskeleton hand robotic training device is specially designed for persons after stroke to provide training on their impaired hand by using an exoskeleton robotic hand which is actively driven by their own muscle signals. It detects the stroke person's intention using his/her surface electromyography (EMG) signals from the hemiplegic side and assists in hand opening or hand closing functional tasks. The robotic system is made up of an embedded controller and a robotic hand module which can be adjusted to fit for different finger length. Eight chronic stroke subjects had been recruited to evaluate the effects of this device. The preliminary results showed significant improvement in hand functions (ARAT) and upper limb functions (FMA) after 20 sessions of robot-assisted hand functions task training. With the use of this light and portable robotic device, stroke patients can now practice more easily for the opening and closing of their hands at their own will, and handle functional daily living tasks at ease. A video is included together with this paper to give a demonstration of the hand robotic system on chronic stroke subjects and it will be presented in the conference. © 2011 IEEE

  5. Basic life support knowledge, self-reported skills and fears in Danish high school students and effect of a single 45-min training session run by junior doctors; a prospective cohort study

    DEFF Research Database (Denmark)

    Aaberg, Anne Marie Roust; Larsen, Caroline Emilie Brenner; Rasmussen, Bodil Steen

    2014-01-01

    BACKGROUND: Early recognition and immediate bystander cardiopulmonary resuscitation are critical determinants of survival after out-of-hospital cardiac arrest (OHCA). Our aim was to evaluate current knowledge on basic life support (BLS) in Danish high school students and benefits of a single...... training session run by junior doctors. METHODS: Six-hundred-fifty-one students were included. They underwent one 45-minute BLS training session including theoretical aspects and hands-on training with mannequins. The students completed a baseline questionnaire before the training session and a follow...... areas of BLS is poor among high school students. One hands-on training session run by junior doctors seems to be efficient to empower the students to be first responders to OHCA....

  6. Detection of the Single-Session Complete Ablation Rate by Contrast-Enhanced Ultrasound during Ultrasound-Guided Laser Ablation for Benign Thyroid Nodules: A Prospective Study

    Directory of Open Access Journals (Sweden)

    Shuhua Ma

    2016-01-01

    Full Text Available This study aimed to investigate the single-session complete ablation rate of ultrasound-guided percutaneous laser ablation (LA for benign thyroid nodules. LA was performed in 90 patients with 118 benign thyroid nodules. Contrast-enhanced ultrasound (CEUS was used to evaluate complete nodule ablation one day after ablation. Thyroid nodule volumes, thyroid functions, clinical symptoms and complications were evaluated 1, 3, 6, 12, and 18 months after ablation. Results showed that all benign thyroid nodules successfully underwent LA. The single-session complete ablation rates for nodules with maximum diameters ≤2 cm, 2-3 cm and ≥3 cm were 93.4%, 70.3% and 61.1%, respectively. All nodule volumes significantly decreased than that one day after ablation (P0.05. Three patients had obvious pain during ablation; one (1.1% had recurrent laryngeal nerve injury, but the voice returned to normal within 6 months after treatment. Thus, ultrasound-guided LA can effectively inactivate benign thyroid nodules. LA is a potentially viable minimally invasive treatment that offers good cosmetic effects.

  7. Robot engineering

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Seul

    2006-02-15

    This book deals with robot engineering, giving descriptions of robot's history, current tendency of robot field, work and characteristic of industrial robot, essential merit and vector, application of matrix, analysis of basic vector, expression of Denavit-Hartenberg, robot kinematics such as forward kinematics, inverse kinematics, cases of MATLAB program, and motion kinematics, robot kinetics like moment of inertia, centrifugal force and coriolis power, and Euler-Lagrangian equation course plan, SIMULINK position control of robots.

  8. Robot engineering

    International Nuclear Information System (INIS)

    Jung, Seul

    2006-02-01

    This book deals with robot engineering, giving descriptions of robot's history, current tendency of robot field, work and characteristic of industrial robot, essential merit and vector, application of matrix, analysis of basic vector, expression of Denavit-Hartenberg, robot kinematics such as forward kinematics, inverse kinematics, cases of MATLAB program, and motion kinematics, robot kinetics like moment of inertia, centrifugal force and coriolis power, and Euler-Lagrangian equation course plan, SIMULINK position control of robots.

  9. Bimanual elbow robotic orthoses: preliminary investigations on an impairment force feedback rehabilitation method

    Directory of Open Access Journals (Sweden)

    Gil eHerrnstadt

    2015-03-01

    Full Text Available Modern rehabilitation practices have begun integrating robots, recognizing their significant role in recovery. New and alternative stroke rehabilitation treatments are essential to enhance efficacy and mitigate associated health costs. Today’s robotic interventions can play a significant role in advancing rehabilitation. In addition, robots have an inherent ability to perform tasks accurately and reliably and are typically well suited to measure and quantify performance.Most rehabilitation strategies predominantly target activation of the paretic arm. However, bimanual upper limb rehabilitation research suggests potential in enhancing functional recovery. Moreover studies suggest limb coordination and synchronization can improve treatment efficacy.In this preliminary study, we aimed to investigate and validate our user-driven bimanual system in a reduced intensity rehab practice. A Bimanual Wearable Robotic Device (BWRD with a Master-Slave configuration for the elbow joint was developed to carry out the investigation. The BWRD incorporates position and force sensors for which respective control loops are implemented, and offers varying modes of operation ranging from passive to active training. The proposed system enables the perception of the movements, as well as the forces applied by the hemiparetic arm, with the non-hemiparetic arm. Eight participants with chronic unilateral stroke were recruited to participate in a total of three one-hour sessions per participant, delivered in a week. Participants underwent pre and post training functional assessments along with proprioceptive measures. The post assessment was performed at the end of the last training session.The protocol was designed to engage the user in an assortment of static and dynamic arm matching and opposing tasks. The training incorporates force feedback movements, force feedback positioning, and force matching tasks with same and opposite direction movements. We are able to

  10. Calibration of Robot Reference Frames for Enhanced Robot Positioning Accuracy

    OpenAIRE

    Cheng, Frank Shaopeng

    2008-01-01

    This chapter discussed the importance and methods of conducting robot workcell calibration for enhancing the accuracy of the robot TCP positions in industrial robot applications. It shows that the robot frame transformations define the robot geometric parameters such as joint position variables, link dimensions, and joint offsets in an industrial robot system. The D-H representation allows the robot designer to model the robot motion geometry with the four standard D-H parameters. The robot k...

  11. Hormonal, Metabolic and Cardiorespiratory Responses of Young and Adult Athletes to a Single Session of High Intensity Cycle Exercise

    OpenAIRE

    Engel, Florian; Härtel, Sascha; Wagner, Matthias Oliver; Strahler, Jana; Bös, Klaus; Sperlich, Billy

    2014-01-01

    This study aimed to determine the effects of a single High Intensity Interval Training (HIIT) session on salivary cortisol (SC) levels, physiological responses and performance in trained boys and men. Twenty-three boys (11.5±0.8 years) and 25 men (29.7±4.6 years) performed HIIT (four consecutive Wingate Anaerobic Tests). SC in boys and men increased after HIIT from 5.55±3.3 nmol/l to 15.13±9.7 nmol/l (+173%) and from 7.07±4.7 nmol/l to 19.19±12.7 nmol/l (+171%), respectively (p

  12. A Single Session of Attentional Bias Modification Reduces Alcohol Craving and Implicit Measures of Alcohol Bias in Young Adult Drinkers.

    Science.gov (United States)

    Luehring-Jones, Peter; Louis, Courtney; Dennis-Tiwary, Tracy A; Erblich, Joel

    2017-12-01

    Attentional bias modification (ABM) techniques for reducing problematic alcohol consumption hold promise as highly accessible and cost-effective treatment approaches. A growing body of literature has examined ABM as a potentially efficacious intervention for reducing drinking and drinking-related cognitions in alcohol-dependent individuals as well as those at-risk of developing problem drinking habits. This study tested the effectiveness of a single session of visual probe-based ABM training in a cohort of 60 non-treatment-seeking young adult drinkers, with a focus on examining mechanisms underlying training efficacy. Participants were randomly assigned to a single session of active ABM training or a sham training condition in a laboratory setting. Measures of implicit drinking-related cognitions (alcohol Stroop and an Implicit Association Task) and attentional bias (AB; alcohol visual probe) were administered, and subjective alcohol craving was reported in response to in vivo alcohol cues. Results showed that active ABM training, relative to sham, resulted in significant differences in measures of implicit alcohol-related cognition, alcohol-related AB, and self-reports of alcohol craving. Mediation analysis showed that reductions in craving were fully mediated by ABM-related reductions in alcohol-Stroop interference scores, suggesting a previously undocumented relationship between the 2 measures. Results document the efficacy of brief ABM to reduce both implicit and explicit processes related to drinking, and highlight the potential intervention-relevance of alcohol-related implicit cognitions in social drinkers. Copyright © 2017 by the Research Society on Alcoholism.

  13. Medical Robotic and Telesurgical Simulation and Education Research

    Science.gov (United States)

    2014-09-01

    clutching than the actual robot. The 3D image is generated by a single computer monitor with polarized glasses , which generates a visual scene with...were women with an average age of 43. On average, participants had 15 years in practice and 3 years of robotic experience. Seventy-six percent were...constructed with a “ ceiling ” that prevents users from achieving a high overall score without attaining high scores across multiple metrics. Currently, there

  14. Modified bug-1 algorithm based strategy for obstacle avoidance in multi robot system

    Directory of Open Access Journals (Sweden)

    Kandathil Jom J.

    2018-01-01

    Full Text Available One of the primary ability of an intelligent mobile robot system is obstacle avoidance. BUG algorithms are classic examples of the algorithms used for achieving obstacle avoidance. Unlike many other planning algorithms based on global knowledge, BUG algorithms assume only local knowledge of the environment and a global goal. Among the variations of the BUG algorithms that prevail, BUG-0, BUG-1 and BUG-2 are the more prominent versions. The exhaustive search algorithm present in BUG-1 makes it more reliable and safer for practical applications. Overall, this provides a more predictable and dependable performance. Hence, the essential focus in this paper is on implementing the BUG-1 algorithm across a group of robots to move them from a start location to a target location. The results are compared with the results from BUG-1 algorithm implemented on a single robot. The strategy developed in this work reduces the time involved in moving the robots from starting location to the target location. Further, the paper shows that the total distance covered by each robot in a multi robot-system is always lesser than or equal to that travelled by a single robot executing the same problem.

  15. Usability testing of a mobile robotic system for in-home telerehabilitation.

    Science.gov (United States)

    Boissy, Patrick; Brière, Simon; Corriveau, Hélène; Grant, Andrew; Lauria, Michel; Michaud, François

    2011-01-01

    Mobile robots designed to enhance telepresence in the support of telehealth services are being considered for numerous applications. TELEROBOT is a teleoperated mobile robotic platform equipped with videoconferencingcapabilities and designed to be used in a home environment to. In this study, learnability of the system's teleoperation interface and controls was evaluated with ten rehabilitation professionals during four training sessions in a laboratory environment and in an unknown home environment while performing the execution of a standardized evaluation protocol typically used in home care. Results show that the novice teleoperators' performances on two of the four metrics used (number of command and total time) improved significantly across training sessions (ANOVAS, phome environment during navigation tasks (r=0,77 and 0,60). With only 4 hours of training, rehabilitation professionals were able learn to teleoperate successfully TELEROBOT. However teleoperation performances remained significantly less efficient then those of an expert. Under the home task condition (navigating the home environment from one point to the other as fast as possible) this translated to completion time between 350 seconds (best performance) and 850 seconds (worse performance). Improvements in other usability aspects of the system will be needed to meet the requirements of in-home telerehabilitation.

  16. Brain-Computer Interface-based robotic end effector system for wrist and hand rehabilitation: results of a three-armed randomized controlled trial for chronic stroke

    Directory of Open Access Journals (Sweden)

    Kai Keng eAng

    2014-07-01

    Full Text Available The objective of this study was to investigate the efficacy of an Electroencephalography (EEG-based Motor Imagery (MI Brain-Computer Interface (BCI coupled with a Haptic Knob (HK robot for arm rehabilitation in stroke patients. In this three-arm, single-blind, randomized controlled trial; 21 chronic hemiplegic stroke patients (Fugl-Meyer Motor Assessment (FMMA score 10-50, recruited after pre-screening for MI BCI ability, were randomly allocated to BCI-HK, HK or Standard Arm Therapy (SAT groups. All groups received 18 sessions of intervention over 6 weeks, 3 sessions per week, 90 minutes per session. The BCI-HK group received 1 hour of BCI coupled with HK intervention, and the HK group received 1 hour of HK intervention per session. Both BCI-HK and HK groups received 120 trials of robot-assisted hand grasping and knob manipulation followed by 30 minutes of therapist-assisted arm mobilization. The SAT group received 1.5 hours of therapist-assisted arm mobilization and forearm pronation-supination movements incorporating wrist control and grasp-release functions. In all, 14 males, 7 females, mean age 54.2 years, mean stroke duration 385.1 days, with baseline FMMA score 27.0 were recruited. The primary outcome measure was upper-extremity FMMA scores measured mid-intervention at week 3, end-intervention at week 6, and follow-up at weeks 12 and 24. Seven, 8 and 7 subjects underwent BCI-HK, HK and SAT interventions respectively. FMMA score improved in all groups, but no intergroup differences were found at any time points. Significantly larger motor gains were observed in the BCI-HK group compared to the SAT group at weeks 3, 12 and 24, but motor gains in the HK group did not differ from the SAT group at any time point. In conclusion, BCI-HK is effective, safe, and may have the potential for enhancing motor recovery in chronic stroke when combined with therapist-assisted arm mobilization.

  17. Brain-computer interface-based robotic end effector system for wrist and hand rehabilitation: results of a three-armed randomized controlled trial for chronic stroke.

    Science.gov (United States)

    Ang, Kai Keng; Guan, Cuntai; Phua, Kok Soon; Wang, Chuanchu; Zhou, Longjiang; Tang, Ka Yin; Ephraim Joseph, Gopal J; Kuah, Christopher Wee Keong; Chua, Karen Sui Geok

    2014-01-01

    The objective of this study was to investigate the efficacy of an Electroencephalography (EEG)-based Motor Imagery (MI) Brain-Computer Interface (BCI) coupled with a Haptic Knob (HK) robot for arm rehabilitation in stroke patients. In this three-arm, single-blind, randomized controlled trial; 21 chronic hemiplegic stroke patients (Fugl-Meyer Motor Assessment (FMMA) score 10-50), recruited after pre-screening for MI BCI ability, were randomly allocated to BCI-HK, HK or Standard Arm Therapy (SAT) groups. All groups received 18 sessions of intervention over 6 weeks, 3 sessions per week, 90 min per session. The BCI-HK group received 1 h of BCI coupled with HK intervention, and the HK group received 1 h of HK intervention per session. Both BCI-HK and HK groups received 120 trials of robot-assisted hand grasping and knob manipulation followed by 30 min of therapist-assisted arm mobilization. The SAT group received 1.5 h of therapist-assisted arm mobilization and forearm pronation-supination movements incorporating wrist control and grasp-release functions. In all, 14 males, 7 females, mean age 54.2 years, mean stroke duration 385.1 days, with baseline FMMA score 27.0 were recruited. The primary outcome measure was upper extremity FMMA scores measured mid-intervention at week 3, end-intervention at week 6, and follow-up at weeks 12 and 24. Seven, 8 and 7 subjects underwent BCI-HK, HK and SAT interventions respectively. FMMA score improved in all groups, but no intergroup differences were found at any time points. Significantly larger motor gains were observed in the BCI-HK group compared to the SAT group at weeks 3, 12, and 24, but motor gains in the HK group did not differ from the SAT group at any time point. In conclusion, BCI-HK is effective, safe, and may have the potential for enhancing motor recovery in chronic stroke when combined with therapist-assisted arm mobilization.

  18. Robot-assisted vitreoretinal surgery: current perspectives.

    Science.gov (United States)

    Roizenblatt, Marina; Edwards, Thomas L; Gehlbach, Peter L

    2018-01-01

    Vitreoretinal microsurgery is among the most technically challenging of the minimally invasive surgical techniques. Exceptional precision is required to operate on micron scale targets presented by the retina while also maneuvering in a tightly constrained and fragile workspace. These challenges are compounded by inherent limitations of the unassisted human hand with regard to dexterity, tremor and precision in positioning instruments. The limited human ability to visually resolve targets on the single-digit micron scale is a further limitation. The inherent attributes of robotic approaches therefore, provide logical, strategic and promising solutions to the numerous challenges associated with retinal microsurgery. Robotic retinal surgery is a rapidly emerging technology that has witnessed an exponential growth in capabilities and applications over the last decade. There is now a worldwide movement toward evaluating robotic systems in an expanding number of clinical applications. Coincident with this expanding application is growth in the number of laboratories committed to "robotic medicine". Recent technological advances in conventional retina surgery have also led to tremendous progress in the surgeon's capabilities, enhanced outcomes, a reduction of patient discomfort, limited hospitalization and improved safety. The emergence of robotic technology into this rapidly advancing domain is expected to further enhance important aspects of the retinal surgery experience for the patients, surgeons and society.

  19. Empowerment As Replacement for the Three Laws of Robotics

    Directory of Open Access Journals (Sweden)

    Christoph Salge

    2017-06-01

    Full Text Available The greater ubiquity of robots creates a need for generic guidelines for robot behavior. We focus less on how a robot can technically achieve a predefined goal and more on what a robot should do in the first place. Particularly, we are interested in the question how a heuristic should look like, which motivates the robot’s behavior in interaction with human agents. We make a concrete, operational proposal as to how the information-theoretic concept of empowerment can be used as a generic heuristic to quantify concepts, such as self-preservation, protection of the human partner, and responding to human actions. While elsewhere we studied involved single-agent scenarios in detail, here, we present proof-of-principle scenarios demonstrating how empowerment interpreted in light of these perspectives allows one to specify core concepts with a similar aim as Asimov’s Three Laws of Robotics in an operational way. Importantly, this route does not depend on having to establish an explicit verbalized understanding of human language and conventions in the robots. Also, it incorporates the ability to take into account a rich variety of different situations and types of robotic embodiment.

  20. Adaptive training algorithm for robot-assisted upper-arm rehabilitation, applicable to individualised and therapeutic human-robot interaction.

    Science.gov (United States)

    Chemuturi, Radhika; Amirabdollahian, Farshid; Dautenhahn, Kerstin

    2013-09-28

    influence of the gravity on the direction of the movement. The GENTLE/A system was able to adapt so that the duration required to execute point-to-point movement was according to the leading or lagging performance of the user with respect to the robot. This adaptability could be useful in the clinical settings when stroke subjects interact with the system and could also serve as an assessment parameter across various interaction sessions. As the system adapts to user input, and as the task becomes easier through practice, the robot would auto-tune for more demanding and challenging interactions. The improvement in performance of the participants in an embedded environment when compared to a virtual environment also shows promise for clinical applicability, to be tested in due time. Studying the physiology of upper arm to understand the muscle groups involved, and their influence on various movements executed during this study forms a key part of our future work.

  1. Evolutionary online behaviour learning and adaptation in real robots.

    Science.gov (United States)

    Silva, Fernando; Correia, Luís; Christensen, Anders Lyhne

    2017-07-01

    Online evolution of behavioural control on real robots is an open-ended approach to autonomous learning and adaptation: robots have the potential to automatically learn new tasks and to adapt to changes in environmental conditions, or to failures in sensors and/or actuators. However, studies have so far almost exclusively been carried out in simulation because evolution in real hardware has required several days or weeks to produce capable robots. In this article, we successfully evolve neural network-based controllers in real robotic hardware to solve two single-robot tasks and one collective robotics task. Controllers are evolved either from random solutions or from solutions pre-evolved in simulation. In all cases, capable solutions are found in a timely manner (1 h or less). Results show that more accurate simulations may lead to higher-performing controllers, and that completing the optimization process in real robots is meaningful, even if solutions found in simulation differ from solutions in reality. We furthermore demonstrate for the first time the adaptive capabilities of online evolution in real robotic hardware, including robots able to overcome faults injected in the motors of multiple units simultaneously, and to modify their behaviour in response to changes in the task requirements. We conclude by assessing the contribution of each algorithmic component on the performance of the underlying evolutionary algorithm.

  2. Robotic inspection technology-process an toolbox

    Energy Technology Data Exchange (ETDEWEB)

    Hermes, Markus [ROSEN Group (United States). R and D Dept.

    2005-07-01

    Pipeline deterioration grows progressively with ultimate aging of pipeline systems (on-plot and cross country). This includes both, very localized corrosion as well as increasing failure probability due to fatigue cracking. Limiting regular inspecting activities to the 'scrapable' part of the pipelines only, will ultimately result into a pipeline system with questionable integrity. The confidence level in the integrity of these systems will drop below acceptance levels. Inspection of presently un-inspectable sections of the pipeline system becomes a must. This paper provides information on ROSEN's progress on the 'robotic inspection technology' project. The robotic inspection concept developed by ROSEN is based on a modular toolbox principle. This is mandatory. A universal 'all purpose' robot would not be reliable and efficient in resolving the postulated inspection task. A preparatory Quality Function Deployment (QFD) analysis is performed prior to the decision about the adequate robotic solution. This enhances the serviceability and efficiency of the provided technology. The word 'robotic' can be understood in its full meaning of Recognition - Strategy - Motion - Control. Cooperation of different individual systems with an established communication, e.g. utilizing Bluetooth technology, support the robustness of the ROSEN robotic inspection approach. Beside the navigation strategy, the inspection strategy is also part of the QFD process. Multiple inspection technologies combined on a single carrier or distributed across interacting container must be selected with a clear vision of the particular goal. (author)

  3. A multimodal interface for real-time soldier-robot teaming

    Science.gov (United States)

    Barber, Daniel J.; Howard, Thomas M.; Walter, Matthew R.

    2016-05-01

    Recent research and advances in robotics have led to the development of novel platforms leveraging new sensing capabilities for semantic navigation. As these systems becoming increasingly more robust, they support highly complex commands beyond direct teleoperation and waypoint finding facilitating a transition away from robots as tools to robots as teammates. Supporting future Soldier-Robot teaming requires communication capabilities on par with human-human teams for successful integration of robots. Therefore, as robots increase in functionality, it is equally important that the interface between the Soldier and robot advances as well. Multimodal communication (MMC) enables human-robot teaming through redundancy and levels of communications more robust than single mode interaction. Commercial-off-the-shelf (COTS) technologies released in recent years for smart-phones and gaming provide tools for the creation of portable interfaces incorporating MMC through the use of speech, gestures, and visual displays. However, for multimodal interfaces to be successfully used in the military domain, they must be able to classify speech, gestures, and process natural language in real-time with high accuracy. For the present study, a prototype multimodal interface supporting real-time interactions with an autonomous robot was developed. This device integrated COTS Automated Speech Recognition (ASR), a custom gesture recognition glove, and natural language understanding on a tablet. This paper presents performance results (e.g. response times, accuracy) of the integrated device when commanding an autonomous robot to perform reconnaissance and surveillance activities in an unknown outdoor environment.

  4. Design, Modeling and Control of a Biped Line-Walking Robot

    Directory of Open Access Journals (Sweden)

    Ludan Wang

    2010-12-01

    Full Text Available The subject of this paper is the design and analysis of a biped line walking robot for inspection of power transmission lines. With a novel mechanism the centroid of the robot can be concentrated on the axis of hip joint to minimize the drive torque of the hip joint. The mechanical structure of the robot is discussed, as well as forward kinematics. Dynamic model is established in this paper to analyze the inverse kinematics for motion planning. The line-walking cycle of the line-walking robot is composed of a single-support phase and a double-support phase. Locomotion of the line-walking robot is discussed in details and the obstacle-navigation process is planed according to the structure of power transmission line. To fulfill the demands of line-walking, a control system and trajectories generation method are designed for the prototype of the line-walking robot. The feasibility of this concept is then confirmed by performing experiments with a simulated line environment.

  5. Generic robot architecture

    Science.gov (United States)

    Bruemmer, David J [Idaho Falls, ID; Few, Douglas A [Idaho Falls, ID

    2010-09-21

    The present invention provides methods, computer readable media, and apparatuses for a generic robot architecture providing a framework that is easily portable to a variety of robot platforms and is configured to provide hardware abstractions, abstractions for generic robot attributes, environment abstractions, and robot behaviors. The generic robot architecture includes a hardware abstraction level and a robot abstraction level. The hardware abstraction level is configured for developing hardware abstractions that define, monitor, and control hardware modules available on a robot platform. The robot abstraction level is configured for defining robot attributes and provides a software framework for building robot behaviors from the robot attributes. Each of the robot attributes includes hardware information from at least one hardware abstraction. In addition, each robot attribute is configured to substantially isolate the robot behaviors from the at least one hardware abstraction.

  6. Molecular Robots Obeying Asimov's Three Laws of Robotics.

    Science.gov (United States)

    Kaminka, Gal A; Spokoini-Stern, Rachel; Amir, Yaniv; Agmon, Noa; Bachelet, Ido

    2017-01-01

    Asimov's three laws of robotics, which were shaped in the literary work of Isaac Asimov (1920-1992) and others, define a crucial code of behavior that fictional autonomous robots must obey as a condition for their integration into human society. While, general implementation of these laws in robots is widely considered impractical, limited-scope versions have been demonstrated and have proven useful in spurring scientific debate on aspects of safety and autonomy in robots and intelligent systems. In this work, we use Asimov's laws to examine these notions in molecular robots fabricated from DNA origami. We successfully programmed these robots to obey, by means of interactions between individual robots in a large population, an appropriately scoped variant of Asimov's laws, and even emulate the key scenario from Asimov's story "Runaround," in which a fictional robot gets into trouble despite adhering to the laws. Our findings show that abstract, complex notions can be encoded and implemented at the molecular scale, when we understand robots on this scale on the basis of their interactions.

  7. Colias: An Autonomous Micro Robot for Swarm Robotic Applications

    Directory of Open Access Journals (Sweden)

    Farshad Arvin

    2014-07-01

    Full Text Available Robotic swarms that take inspiration from nature are becoming a fascinating topic for multi-robot researchers. The aim is to control a large number of simple robots in order to solve common complex tasks. Due to the hardware complexities and cost of robot platforms, current research in swarm robotics is mostly performed by simulation software. The simulation of large numbers of these robots in robotic swarm applications is extremely complex and often inaccurate due to the poor modelling of external conditions. In this paper, we present the design of a low-cost, open-platform, autonomous micro-robot (Colias for robotic swarm applications. Colias employs a circular platform with a diameter of 4 cm. It has a maximum speed of 35 cm/s which enables it to be used in swarm scenarios very quickly over large arenas. Long-range infrared modules with an adjustable output power allow the robot to communicate with its direct neighbours at a range of 0.5 cm to 2 m. Colias has been designed as a complete platform with supporting software development tools for robotics education and research. It has been tested in both individual and swarm scenarios, and the observed results demonstrate its feasibility for use as a micro-sized mobile robot and as a low-cost platform for robot swarm applications.

  8. Evaluating a Pre-Session Homework Exercise in a Standalone Information Literacy Class

    Science.gov (United States)

    Goetz, Joseph E.; Barber, Catherine R.

    2015-01-01

    In this study, researchers evaluate a homework exercise assigned before a standalone information literacy session. Students in a Master of Education program completed a worksheet using the ERIC database thesaurus. The researchers conducted pre- and posttests within a single library session to assess student learning, using a control group for…

  9. Robotics in Colorectal Surgery [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Allison Weaver

    2016-09-01

    Full Text Available Over the past few decades, robotic surgery has developed from a futuristic dream to a real, widely used technology. Today, robotic platforms are used for a range of procedures and have added a new facet to the development and implementation of minimally invasive surgeries. The potential advantages are enormous, but the current progress is impeded by high costs and limited technology. However, recent advances in haptic feedback systems and single-port surgical techniques demonstrate a clear role for robotics and are likely to improve surgical outcomes. Although robotic surgeries have become the gold standard for a number of procedures, the research in colorectal surgery is not definitive and more work needs to be done to prove its safety and efficacy to both surgeons and patients.

  10. Control of free-flying space robot manipulator systems

    Science.gov (United States)

    Cannon, Robert H., Jr.

    1989-01-01

    Control techniques for self-contained, autonomous free-flying space robots are being tested and developed. Free-flying space robots are envisioned as a key element of any successful long term presence in space. These robots must be capable of performing the assembly, maintenance, and inspection, and repair tasks that currently require astronaut extra-vehicular activity (EVA). Use of robots will provide economic savings as well as improved astronaut safety by reducing and in many cases, eliminating the need for human EVA. The focus of the work is to develop and carry out a set of research projects using laboratory models of satellite robots. These devices use air-cushion-vehicle (ACV) technology to simulate in two dimensions the drag-free, zero-g conditions of space. Current work is divided into six major projects or research areas. Fixed-base cooperative manipulation work represents our initial entry into multiple arm cooperation and high-level control with a sophisticated user interface. The floating-base cooperative manipulation project strives to transfer some of the technologies developed in the fixed-base work onto a floating base. The global control and navigation experiment seeks to demonstrate simultaneous control of the robot manipulators and the robot base position so that tasks can be accomplished while the base is undergoing a controlled motion. The multiple-vehicle cooperation project's goal is to demonstrate multiple free-floating robots working in teams to carry out tasks too difficult or complex for a single robot to perform. The Location Enhancement Arm Push-off (LEAP) activity's goal is to provide a viable alternative to expendable gas thrusters for vehicle propulsion wherein the robot uses its manipulators to throw itself from place to place. Because the successful execution of the LEAP technique requires an accurate model of the robot and payload mass properties, it was deemed an attractive testbed for adaptive control technology.

  11. Tenth workshop on the algorithmic foundations of robotics (WAFR)

    CERN Document Server

    Lozano-Perez, Tomas; Roy, Nicholas; Rus, Daniela; Algorithmic foundations of robotics X

    2013-01-01

    Algorithms are a fundamental component of robotic systems. Robot algorithms process inputs from sensors that provide noisy and partial data, build geometric and physical models of the world, plan high-and low-level actions at different time horizons, and execute these actions on actuators with limited precision. The design and analysis of robot algorithms raise a unique combination of questions from many elds, including control theory, computational geometry and topology, geometrical and physical modeling, reasoning under uncertainty, probabilistic algorithms, game theory, and theoretical computer science. The Workshop on Algorithmic Foundations of Robotics (WAFR) is a single-track meeting of leading researchers in the eld of robot algorithms. Since its inception in 1994, WAFR has been held every other year, and has provided one of the premiere venues for the publication of some of the eld's most important and lasting contributions. This books contains the proceedings of the tenth WAFR, held on June 13{15 201...

  12. 8th International Conference on Field and Service Robotics

    CERN Document Server

    Tadokoro, Satoshi

    2014-01-01

    FSR, the International Conference on Field and Service Robotics, is the leading single track conference of robotics for field and service applications. This book presents the results of FSR2012, the eighth conference of Field and Service Robotics, which was originally planned for 2011 with the venue of Matsushima in Tohoku region of Japan. However, on March 11, 2011, a magnitude M9.0 earthquake occurred off the Pacific coast of Tohoku, and a large-scale disaster was caused by the Tsunami which resulted, therefore the conference was postponed by one year to July, 2012. In fact, this earthquake raised issues concerning the contribution of field and service robotics technology to emergency scenarios. A number of precious lessons were learned from operation of robots in the resulting, very real and challenging, disaster environments. Up-to-date study on disaster response, relief and recovery was then featured in the conference. This book offers 43 papers on a broad range of topics including: Disaster Response, Se...

  13. Multiple-Robot Systems for USAR: Key Design Attributes and Deployment Issues

    Directory of Open Access Journals (Sweden)

    Choon Yue Wong

    2011-03-01

    Full Text Available The interaction between humans and robots is undergoing an evolution. Progress in this evolution means that humans are close to robustly deploying multiple robots. Urban search and rescue (USAR can benefit greatly from such capability. The review shows that with state of the art artificial intelligence, robots can work autonomously but still require human supervision. It also shows that multiple robot deployment (MRD is more economical, shortens mission durations, adds reliability as well as addresses missions impossible with one robot and payload constraints. By combining robot autonomy and human supervision, the benefits of MRD can be applied to USAR while at the same time minimizing human exposure to danger. This is achieved with a single-human multiple-robot system (SHMRS. However, designers of the SHMRS must consider key attributes such as the size, composition and organizational structure of the robot collective. Variations in these attributes also induce fluctuations in issues within SHMRS deployment such as robot communication and computational load as well as human cognitive workload and situation awareness (SA. Research is essential to determine how the attributes can be manipulated to mitigate these issues while meeting the requirements of the USAR mission.

  14. Multiple-Robot Systems for USAR: Key Design Attributes and Deployment Issues

    Directory of Open Access Journals (Sweden)

    Choon Yue Wong

    2011-03-01

    Full Text Available The interaction between humans and robots is undergoing an evolution. Progress in this evolution means that humans are close to robustly deploying multiple robots. Urban search and rescue (USAR can benefit greatly from such capability. The review shows that with state of the art artificial intelligence, robots can work autonomously but still require human supervision. It also shows that multiple robot deployment (MRD is more economical, shortens mission durations, adds reliability as well as addresses missions impossible with one robot and payload constraints. By combining robot autonomy and human supervision, the benefits of MRD can be applied to USAR while at the same time minimizing human exposure to danger. This is achieved with a single-human multiple-robot system (SHMRS. However, designers of the SHMRS must consider key attributes such as the size, composition and organizational structure of the robot collective. Variations in these attributes also induce fluctuations in issues within SHMRS deployment such as robot communication and computational load as well as human cognitive workload and situation awareness (SA.Research is essential to determine how the attributes can be manipulated to mitigate these issues while meeting the requirements of the USAR mission.

  15. Monocular Vision-Based Robot Localization and Target Tracking

    Directory of Open Access Journals (Sweden)

    Bing-Fei Wu

    2011-01-01

    Full Text Available This paper presents a vision-based technology for localizing targets in 3D environment. It is achieved by the combination of different types of sensors including optical wheel encoders, an electrical compass, and visual observations with a single camera. Based on the robot motion model and image sequences, extended Kalman filter is applied to estimate target locations and the robot pose simultaneously. The proposed localization system is applicable in practice because it is not necessary to have the initializing setting regarding starting the system from artificial landmarks of known size. The technique is especially suitable for navigation and target tracing for an indoor robot and has a high potential extension to surveillance and monitoring for Unmanned Aerial Vehicles with aerial odometry sensors. The experimental results present “cm” level accuracy of the localization of the targets in indoor environment under a high-speed robot movement.

  16. Micro intelligence robot

    International Nuclear Information System (INIS)

    Jeon, Yon Ho

    1991-07-01

    This book gives descriptions of micro robot about conception of robots and micro robot, match rules of conference of micro robots, search methods of mazes, and future and prospect of robots. It also explains making and design of 8 beat robot like making technique, software, sensor board circuit, and stepping motor catalog, speedy 3, Mr. Black and Mr. White, making and design of 16 beat robot, such as micro robot artist, Jerry 2 and magic art of shortening distances algorithm of robot simulation.

  17. Paralysis following stereotactic spinal irradiation in pigs suggests a tolerance constraint for single-session irradiation of the spinal nerve

    International Nuclear Information System (INIS)

    Medin, Paul M.; Foster, Ryan D.; Kogel, Albert J. van der; Meyer, Jeffrey; Sayre, James W.; Huang, Hao; Öz, Orhan K.

    2013-01-01

    Background and purpose: Paralysis observed during a study of vertebral bone tolerance to single-session irradiation led to further study of the dose-related incidence of motor peripheral neuropathy. Materials and methods: During a bone tolerance study, cervical spinal nerves of 15 minipigs received bilateral irradiation to levels C5–C8 distributed into three dose groups with mean maximum spinal nerve doses of 16.9 ± 0.3 Gy (n = 5), 18.7 ± 0.5 Gy (n = 5), and 24.3 ± 0.8 Gy (n = 5). Changes developing in the gait of the group of pigs receiving a mean maximum dose of 24.3 Gy after 10–15 weeks led to the irradiation of two additional animals. They received mean maximum dose of 24.9 ± 0.2 Gy (n = 2), targeted to the left spinal nerves of C5–C8. The followup period was one year. Histologic sections from spinal cords and available spinal nerves were evaluated. MR imaging was performed on pigs in the 24.9 Gy group. Results: No pig that received a maximum spinal nerve point dose ⩽19.0 Gy experienced a change in gait while all pigs that received ⩾24.1 Gy experienced paralysis. Extensive degeneration and fibrosis were observed in irradiated spinal nerves of the 24.9 Gy animals. All spinal cord sections were normal. Irradiated spinal nerve regions showed increased thickness and hypointensity on MR imaging. Conclusion: The single-session tolerance dose of the cervical spinal nerves lies between 19.0 and 24.1 Gy for this model

  18. A Genetic Algorithm-based Heuristic for Part-Feeding Mobile Robot Scheduling Problem

    DEFF Research Database (Denmark)

    Dang, Vinh Quang; Nielsen, Izabela Ewa; Bocewicz, Grzegorz

    2012-01-01

    This present study deals with the problem of sequencing feeding tasks of a single mobile robot with manipulation arm which is able to provide parts or components for feeders of machines in a manufacturing cell. The mobile robot has to be scheduled in order to keep machines within the cell producing...... products without any shortage of parts. A method based on the characteristics of feeders and inspired by the (s, Q) inventory system, is thus applied to define time windows for feeding tasks of the robot. The performance criterion is to minimize total traveling time of the robot in a given planning horizon...

  19. Robot-Assisted Laparoendoscopic Single-Site Partial Nephrectomy With the Novel Da Vinci Single-Site Platform: Initial Experience

    Science.gov (United States)

    Komninos, Christos; Tuliao, Patrick; Kim, Dae Keun; Choi, Young Deuk; Chung, Byung Ha

    2014-01-01

    Purpose To report our initial clinical cases of robotic laparoendoscopic single-site (R-LESS) partial nephrectomy (PN) performed with the use of the novel Da Vinci R-LESS platform. Materials and Methods Three patients underwent R-LESS PN from November 2013 through February 2014. Perioperative and postoperative outcomes were collected and intraoperative difficulties were noted. Results Operative time and estimated blood loss volume ranged between 100 and 110 minutes and between 50 and 500 mL, respectively. None of the patients was transfused. All cases were completed with the off-clamp technique, whereas one case required conversion to the conventional (multiport) approach because of difficulty in creating the appropriate scope for safe tumor resection. No major postoperative complications occurred, and all tumors were resected in safe margins. Length of hospital stay ranged between 3 and 7 days. The lack of EndoWrist movements, the external collisions, and the bed assistant's limited working space were noticed to be the main drawbacks of this surgical method. Conclusions Our initial experience with R-LESS PN with the novel Da Vinci platform shows that even though the procedure is feasible, it should be applied in only appropriately selected patients. However, further improvement is needed to overcome the existing limitations. PMID:24955221

  20. Session-RPE for quantifying the load of different youth basketball training sessions.

    Science.gov (United States)

    Lupo, C; Tessitore, A; Gasperi, L; Gomez, Mar

    2017-03-01

    The aim of the study was to evaluate youth basketball training, verifying the reliability of the session-RPE method in relation to session duration (session) categories. Six male youth basketball players (age, 16.5±0.5 years; height, 195.5±6.75 cm; body mass, 93.9±10.9 kg; and body mass index, 23.6±2.8 kg.m -2 ) were monitored (HR, type and duration of workouts) during 15 (66 individual) training sessions (80±26 minutes). Edwards' HR method was used as a reference measure of internal training load (ITL); the CR-10 RPE scale was administered 30 minutes after the end of each session. The results obtained showed that all comparisons between different session durations and workout portions revealed effects in term of Edwards' ITLs except for warm-up portions. Moderate to strong relationships between Edwards' and session- RPE methods emerged for all sessions (r = .85, P sessions (r range = .79 - .95, P session durations (session-RPE to monitor the ITL, regardless of session durations and workout portions.

  1. tDCS and Robotics on Upper Limb Stroke Rehabilitation: Effect Modification by Stroke Duration and Type of Stroke.

    Science.gov (United States)

    Straudi, Sofia; Fregni, Felipe; Martinuzzi, Carlotta; Pavarelli, Claudia; Salvioli, Stefano; Basaglia, Nino

    2016-01-01

    Objective. The aim of this exploratory pilot study is to test the effects of bilateral tDCS combined with upper extremity robot-assisted therapy (RAT) on stroke survivors. Methods. We enrolled 23 subjects who were allocated to 2 groups: RAT + real tDCS and RAT + sham-tDCS. Each patient underwent 10 sessions (5 sessions/week) over two weeks. Outcome measures were collected before and after treatment: (i) Fugl-Meyer Assessment-Upper Extremity (FMA-UE), (ii) Box and Block Test (BBT), and (iii) Motor Activity Log (MAL). Results. Both groups reported a significant improvement in FMA-UE score after treatment (p robotics on motor function. Patients with chronic and subcortical stroke benefited more from the treatments than patients with acute and cortical stroke, who presented very small changes. Conclusion. The additional use of bilateral tDCS to RAT seems to have a significant beneficial effect depending on the duration and type of stroke. These results should be verified by additional confirmatory studies.

  2. Compensation for positioning error of industrial robot for flexible vision measuring system

    Science.gov (United States)

    Guo, Lei; Liang, Yajun; Song, Jincheng; Sun, Zengyu; Zhu, Jigui

    2013-01-01

    Positioning error of robot is a main factor of accuracy of flexible coordinate measuring system which consists of universal industrial robot and visual sensor. Present compensation methods for positioning error based on kinematic model of robot have a significant limitation that it isn't effective in the whole measuring space. A new compensation method for positioning error of robot based on vision measuring technique is presented. One approach is setting global control points in measured field and attaching an orientation camera to vision sensor. Then global control points are measured by orientation camera to calculate the transformation relation from the current position of sensor system to global coordinate system and positioning error of robot is compensated. Another approach is setting control points on vision sensor and two large field cameras behind the sensor. Then the three dimensional coordinates of control points are measured and the pose and position of sensor is calculated real-timely. Experiment result shows the RMS of spatial positioning is 3.422mm by single camera and 0.031mm by dual cameras. Conclusion is arithmetic of single camera method needs to be improved for higher accuracy and accuracy of dual cameras method is applicable.

  3. Modelling of industrial robot in LabView Robotics

    Science.gov (United States)

    Banas, W.; Cwikła, G.; Foit, K.; Gwiazda, A.; Monica, Z.; Sekala, A.

    2017-08-01

    Currently can find many models of industrial systems including robots. These models differ from each other not only by the accuracy representation parameters, but the representation range. For example, CAD models describe the geometry of the robot and some even designate a mass parameters as mass, center of gravity, moment of inertia, etc. These models are used in the design of robotic lines and sockets. Also systems for off-line programming use these models and many of them can be exported to CAD. It is important to note that models for off-line programming describe not only the geometry but contain the information necessary to create a program for the robot. Exports from CAD to off-line programming system requires additional information. These models are used for static determination of reachability points, and testing collision. It’s enough to generate a program for the robot, and even check the interaction of elements of the production line, or robotic cell. Mathematical models allow robots to study the properties of kinematic and dynamic of robot movement. In these models the geometry is not so important, so are used only selected parameters such as the length of the robot arm, the center of gravity, moment of inertia. These parameters are introduced into the equations of motion of the robot and motion parameters are determined.

  4. Biomass feeds vegetarian robot; Biomassa voedt vegetarische robot

    Energy Technology Data Exchange (ETDEWEB)

    Van den Brandt, M. [Office for Science and Technology, Embassy of the Kingdom of the Netherlands, Washington (United States)

    2009-09-15

    This brief article addresses the EATR robot (Energetically Autonomous Tactical Robot) that was developed by Cyclone Power and uses biomass as primary source of energy for propulsion. [Dutch] Een kort artikel over de door Cyclone Power ontwikkelde EATR-robot (Energetically Autonomous Tactical Robot) die voor de voortdrijving biomassa gebruikt als primaire energiebron.

  5. Robot Futures

    DEFF Research Database (Denmark)

    Christoffersen, Anja; Grindsted Nielsen, Sally; Jochum, Elizabeth Ann

    Robots are increasingly used in health care settings, e.g., as homecare assistants and personal companions. One challenge for personal robots in the home is acceptance. We describe an innovative approach to influencing the acceptance of care robots using theatrical performance. Live performance...... is a useful testbed for developing and evaluating what makes robots expressive; it is also a useful platform for designing robot behaviors and dialogue that result in believable characters. Therefore theatre is a valuable testbed for studying human-robot interaction (HRI). We investigate how audiences...... perceive social robots interacting with humans in a future care scenario through a scripted performance. We discuss our methods and initial findings, and outline future work....

  6. Soft Robotics Week

    CERN Document Server

    Rossiter, Jonathan; Iida, Fumiya; Cianchetti, Matteo; Margheri, Laura

    2017-01-01

    This book offers a comprehensive, timely snapshot of current research, technologies and applications of soft robotics. The different chapters, written by international experts across multiple fields of soft robotics, cover innovative systems and technologies for soft robot legged locomotion, soft robot manipulation, underwater soft robotics, biomimetic soft robotic platforms, plant-inspired soft robots, flying soft robots, soft robotics in surgery, as well as methods for their modeling and control. Based on the results of the second edition of the Soft Robotics Week, held on April 25 – 30, 2016, in Livorno, Italy, the book reports on the major research lines and novel technologies presented and discussed during the event.

  7. Towards Versatile Robots Through Open Heterogeneous Modular Robots

    OpenAIRE

    Lyder, Andreas

    2010-01-01

    Robots are important tools in our everyday life. Both in industry and at the consumer level they serve the purpose of increasing our scope and extending our capabilities. Modular robots take the next step, allowing us to easily create and build various robots from a set of modules. If a problem arises, a new robot can be assembled rapidly from the existing modules, in contrast to conventional robots, which require a time consuming and expensive development process. In this thesis we define a ...

  8. Robotic architectures

    CSIR Research Space (South Africa)

    Mtshali, M

    2010-01-01

    Full Text Available In the development of mobile robotic systems, a robotic architecture plays a crucial role in interconnecting all the sub-systems and controlling the system. The design of robotic architectures for mobile autonomous robots is a challenging...

  9. Skinware 2.0: A real-time middleware for robot skin

    Directory of Open Access Journals (Sweden)

    S. Youssefi

    2015-12-01

    Full Text Available Robot skins have emerged recently as products of research from various institutes worldwide. Each robot skin is designed with different applications in mind. As a result, they differ in many aspects from transduction technology and structure to communication protocols and timing requirements. These differences create a barrier for researchers interested in developing tactile processing algorithms for robots using the sense of touch; supporting multiple robot skin technologies is non-trivial and committing to a single technology is not as useful, especially as the field is still in its infancy. The Skinware middleware has been created to mitigate these issues by providing abstractions and real-time acquisition mechanisms. This article describes the second revision of Skinware, discussing the differences with respect to the first version.

  10. Quantitative Review Finds No Evidence of Cognitive Effects in Healthy Populations From Single-session Transcranial Direct Current Stimulation (tDCS).

    Science.gov (United States)

    Horvath, Jared Cooney; Forte, Jason D; Carter, Olivia

    2015-01-01

    Over the last 15-years, transcranial direct current stimulation (tDCS), a relatively novel form of neuromodulation, has seen a surge of popularity in both clinical and academic settings. Despite numerous claims suggesting that a single session of tDCS can modulate cognition in healthy adult populations (especially working memory and language production), the paradigms utilized and results reported in the literature are extremely variable. To address this, we conduct the largest quantitative review of the cognitive data to date. Single-session tDCS data in healthy adults (18-50) from every cognitive outcome measure reported by at least two different research groups in the literature was collected. Outcome measures were divided into 4 broad categories: executive function, language, memory, and miscellaneous. To account for the paradigmatic variability in the literature, we undertook a three-tier analysis system; each with less-stringent inclusion criteria than the prior. Standard mean difference values with 95% CIs were generated for included studies and pooled for each analysis. Of the 59 analyses conducted, tDCS was found to not have a significant effect on any - regardless of inclusion laxity. This includes no effect on any working memory outcome or language production task. Our quantitative review does not support the idea that tDCS generates a reliable effect on cognition in healthy adults. Reasons for and limitations of this finding are discussed. This work raises important questions regarding the efficacy of tDCS, state-dependency effects, and future directions for this tool in cognitive research. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Construction and Evaluation of an Ultra Low Latency Frameless Renderer for VR.

    Science.gov (United States)

    Friston, Sebastian; Steed, Anthony; Tilbury, Simon; Gaydadjiev, Georgi

    2016-04-01

    Latency - the delay between a user's action and the response to this action - is known to be detrimental to virtual reality. Latency is typically considered to be a discrete value characterising a delay, constant in time and space - but this characterisation is incomplete. Latency changes across the display during scan-out, and how it does so is dependent on the rendering approach used. In this study, we present an ultra-low latency real-time ray-casting renderer for virtual reality, implemented on an FPGA. Our renderer has a latency of ~1 ms from 'tracker to pixel'. Its frameless nature means that the region of the display with the lowest latency immediately follows the scan-beam. This is in contrast to frame-based systems such as those using typical GPUs, for which the latency increases as scan-out proceeds. Using a series of high and low speed videos of our system in use, we confirm its latency of ~1 ms. We examine how the renderer performs when driving a traditional sequential scan-out display on a readily available HMO, the Oculus Rift OK2. We contrast this with an equivalent apparatus built using a GPU. Using captured human head motion and a set of image quality measures, we assess the ability of these systems to faithfully recreate the stimuli of an ideal virtual reality system - one with a zero latency tracker, renderer and display running at 1 kHz. Finally, we examine the results of these quality measures, and how each rendering approach is affected by velocity of movement and display persistence. We find that our system, with a lower average latency, can more faithfully draw what the ideal virtual reality system would. Further, we find that with low display persistence, the sensitivity to velocity of both systems is lowered, but that it is much lower for ours.

  12. Study Of Robotic Replacement Of Equipment Modules

    Science.gov (United States)

    Backes, Paul G.; Tso, Kam S.

    1992-01-01

    Report discusses issues pertaining to control of single-arm robotic manipulator to remove and install interchangeable equipment modules. Presents preliminary control strategy intended to guide development of control algorithms, along with analyses of problems arising in implementing strategy.

  13. Soft Robotics.

    Science.gov (United States)

    Whitesides, George M

    2018-04-09

    This description of "soft robotics" is not intended to be a conventional review, in the sense of a comprehensive technical summary of a developing field. Rather, its objective is to describe soft robotics as a new field-one that offers opportunities to chemists and materials scientists who like to make "things" and to work with macroscopic objects that move and exert force. It will give one (personal) view of what soft actuators and robots are, and how this class of soft devices fits into the more highly developed field of conventional "hard" robotics. It will also suggest how and why soft robotics is more than simply a minor technical "tweak" on hard robotics and propose a unique role for chemistry, and materials science, in this field. Soft robotics is, at its core, intellectually and technologically different from hard robotics, both because it has different objectives and uses and because it relies on the properties of materials to assume many of the roles played by sensors, actuators, and controllers in hard robotics. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Feasibility and safety of early lower limb robot-assisted training in sub-acute stroke patients: a pilot study.

    Science.gov (United States)

    Gandolfi, Marialuisa; Geroin, Christian; Tomelleri, Christopher; Maddalena, Isacco; Kirilova Dimitrova, Eleonora; Picelli, Alessandro; Smania, Nicola; Waldner, Andreas

    2017-12-01

    So far, the development of robotic devices for the early lower limb mobilization in the sub-acute phase after stroke has received limited attention. To explore the feasibility of a newly robotic-stationary gait training in sub-acute stroke patients. To report the training effects on lower limb function and muscle activation. A pilot study. Rehabilitation ward. Two sub-acute stroke inpatients and ten age-matched healthy controls were enrolled. Healthy controls served as normative data. Patients underwent 10 robot-assisted training sessions (20 minutes, 5 days/week) in alternating stepping movements (500 repetitions/session) on a hospital bed in addition to conventional rehabilitation. Feasibility outcome measures were compliance, physiotherapist time, and responses to self-report questionnaires. Efficacy outcomes were bilateral lower limb muscle activation pattern as measured by surface electromyography (sEMG), Motricity Index (MI), Medical Research Council (MRC) grade, and Ashworth Scale (AS) scores before and after training. No adverse events occurred. No significant differences in sEMG activity between patients and healthy controls were observed. Post-training improvement in MI and MRC scores, but no significant changes in AS scores, were recorded. Post-treatment sEMG analysis of muscle activation patterns showed a significant delay in rectus femoris offset (P=0.02) and prolonged duration of biceps femoris (P=0.04) compared to pretreatment. The robot-assisted training with our device was feasible and safe. It induced physiological muscle activations pattern in both stroke patients and healthy controls. Full-scale studies are needed to explore its potential role in post-stroke recovery. This robotic device may enrich early rehabilitation in subacute stroke patients by inducing physiological muscle activation patterns. Future studies are warranted to evaluate its effects on promoting restorative mechanisms involved in lower limb recovery after stroke.

  15. Studying different tasks of implicit learning across multiple test sessions conducted on the web

    Directory of Open Access Journals (Sweden)

    Werner eSævland

    2016-06-01

    Full Text Available Implicit learning is usually studied through individual performance on a single task, with the most common tasks being Serial Reaction Time task (SRT; Nissen and Bullemer, 1987, Dynamic System Control task (DSC; (Berry and Broadbent, 1984 and artificial Grammar Learning task (AGL; (Reber, 1967. Few attempts have been made to compare performance across different implicit learning tasks within the same experiment. The current experiment was designed study the relationship between performance on the DSC Sugar factory task (Berry and Broadbent, 1984 and the Alternating Serial Reaction Time task (ASRT; (Howard and Howard, 1997. We also addressed another limitation to traditional implicit learning experiments, namely that implicit learning is usually studied in laboratory settings over a restricted time span lasting for less than an hour (Berry and Broadbent, 1984; Nissen and Bullemer, 1987; Reber, 1967. In everyday situations, implicit learning is assumed to involve a gradual accumulation of knowledge across several learning episodes over a larger time span (Norman and Price, 2012. One way to increase the ecological validity of implicit learning experiments could be to present the learning material repeatedly across shorter experimental sessions (Howard and Howard, 1997; Cleeremans and McClelland, 1991. This can most easily be done by using a web-based setup that participants can access from home. We therefore created an online web-based system for measuring implicit learning that could be administered in either single or multiple sessions. Participants (n = 66 were assigned to either a single-session or a multi-session condition. Learning and the degree of conscious awareness of the learned regularities was compared across condition (single vs. multiple sessions and tasks (DSC vs. ASRT. Results showed that learning on the two tasks was not related. However, participants in the multiple sessions condition did show greater improvements in reaction

  16. Post-Session Authentication

    DEFF Research Database (Denmark)

    Ahmed, Naveed; Jensen, Christian D.

    2012-01-01

    Entity authentication provides confidence in the claimed identity of a peer entity, but the manner in which this goal is achieved results in different types of authentication. An important factor in this regard is the order between authentication and the execution of the associated session....... In this paper, we consider the case of post-session authentication, where parties authenticate each other at the end of their interactive session. This use of authentication is different from session-less authentication (e.g., in RFID) and pre-session authentication (e.g., for access control.) Post......-session authentication, although a new term, is not a new concept; it is the basis of at least a few practical schemes. We, for the first time, systematically study it and present the underlying authentication model. Further, we show that an important class of problems is solvable using post-session authentication...

  17. Computer Aided Design of a Low-Cost Painting Robot

    Directory of Open Access Journals (Sweden)

    SYEDA MARIA KHATOON ZAIDI

    2017-10-01

    Full Text Available The application of robots or robotic systems for painting parts is becoming increasingly conventional; to improve reliability, productivity, consistency and to decrease waste. However, in Pakistan only highend Industries are able to afford the luxury of a robotic system for various purposes. In this study we propose an economical Painting Robot that a small-scale industry can install in their plant with ease. The importance of this robot is that being cost effective, it can easily be replaced in small manufacturing industries and therefore, eliminate health problems occurring to the individual in charge of painting parts on an everyday basis. To achieve this aim, the robot is made with local parts with only few exceptions, to cut costs; and the programming language is kept at a mediocre level. Image processing is used to establish object recognition and it can be programmed to paint various simple geometries. The robot is placed on a conveyer belt to maximize productivity. A four DoF (Degree of Freedom arm increases the working envelope and accessibility of painting different shaped parts with ease. This robot is capable of painting up, front, back, left and right sides of the part with a single colour. Initially CAD (Computer Aided Design models of the robot were developed which were analyzed, modified and improved to withstand loading condition and perform its task efficiently. After design selection, appropriate motors and materials were selected and the robot was developed. Throughout the development phase, minor problems and errors were fixed accordingly as they arose. Lastly the robot was integrated with the computer and image processing for autonomous control. The final results demonstrated that the robot is economical and reduces paint wastage.

  18. Computer aided design of a low-cost painting robot

    International Nuclear Information System (INIS)

    Zaidi, S.M.; Janejo, F.; Mujtaba, S.B.

    2017-01-01

    The application of robots or robotic systems for painting parts is becoming increasingly conventional; to improve reliability, productivity, consistency and to decrease waste. However, in Pakistan only highend Industries are able to afford the luxury of a robotic system for various purposes. In this study we propose an economical Painting Robot that a small-scale industry can install in their plant with ease. The importance of this robot is that being cost effective, it can easily be replaced in small manufacturing industries and therefore, eliminate health problems occurring to the individual in charge of painting parts on an everyday basis. To achieve this aim, the robot is made with local parts with only few exceptions, to cut costs; and the programming language is kept at a mediocre level. Image processing is used to establish object recognition and it can be programmed to paint various simple geometries. The robot is placed on a conveyer belt to maximize productivity. A four DoF (Degree of Freedom) arm increases the working envelope and accessibility of painting different shaped parts with ease. This robot is capable of painting up, front, back, left and right sides of the part with a single colour. Initially CAD (Computer Aided Design) models of the robot were developed which were analyzed, modified and improved to withstand loading condition and perform its task efficiently. After design selection, appropriate motors and materials were selected and the robot was developed. Throughout the development phase, minor problems and errors were fixed accordingly as they arose. Lastly the robot was integrated with the computer and image processing for autonomous control. The final results demonstrated that the robot is economical and reduces paint wastage. (author)

  19. Integration of advanced teleoperation technologies for control of space robots

    Science.gov (United States)

    Stagnaro, Michael J.

    1993-01-01

    Teleoperated robots require one or more humans to control actuators, mechanisms, and other robot equipment given feedback from onboard sensors. To accomplish this task, the human or humans require some form of control station. Desirable features of such a control station include operation by a single human, comfort, and natural human interfaces (visual, audio, motion, tactile, etc.). These interfaces should work to maximize performance of the human/robot system by streamlining the link between human brain and robot equipment. This paper describes development of a control station testbed with the characteristics described above. Initially, this testbed will be used to control two teleoperated robots. Features of the robots include anthropomorphic mechanisms, slaving to the testbed, and delivery of sensory feedback to the testbed. The testbed will make use of technologies such as helmet mounted displays, voice recognition, and exoskeleton masters. It will allow tor integration and testing of emerging telepresence technologies along with techniques for coping with control link time delays. Systems developed from this testbed could be applied to ground control of space based robots. During man-tended operations, the Space Station Freedom may benefit from ground control of IVA or EVA robots with science or maintenance tasks. Planetary exploration may also find advanced teleoperation systems to be very useful.

  20. SU-F-J-126: Influence of Six Dimensional Motions in Frameless Stereotactic Dosimetry Incorporating Rotational Shifts as Equivalent Translational Shifts: A Feasibility Study for Elekta-BrainLAB Stereotactic System

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, B [Fortis Memorial Research Institute, Gurgaon (India); GLA University, Mathura, UP (India); Manikandan, A [NRI medical college, Gunbtur, Andra pradesh (India); Jassal, K; Ganesh, T [King Fahad Specialist Hospital, New Delhi (India); Munshi, A; Mohanti, B [Fortis Memorial Research Institute, Gurgaon, Haryana (India); Pradhan, A [GLA University, Mathura, UP (India)

    2016-06-15

    Purpose: Six dimensional positional shifts (translational and rotational) determined by a volumetric imaging system were mathematically combined and incorporated as simple translational shifts and the resultant impact on dose characteristics was studied. Methods: Thirty patients who underwent either single fraction (12 Gy) or five fractions (5 Gy per fraction) stereotactic treatments were included in this study. They were immobilized using a double layered thermoplastic mask from BrainLAB. Isocenter matching was done using infrared marker of ExacTrac. An initial cone beam CT (CBCT) gave positional shifts in 6-dimensions that were applied through 6-D motion enabled couch. A verification CBCT was done following corrections before treatment. These 6-D positional shifts determined at each imaging session from the first CBCT were mathematically combined to give three simple translational shifts. Doses were recalculated in the patient matrix with these positional errors present by moving the whole image dataset. Doses were also recalculated after second CBCT with only residual errors present. PTV dose statistics were compared. Results: For the approved plans V100%(PTV), V100%(GTV), D95%(PTV), D95%(GTV), D1%(PTV) and D1%(GTV) were 96.2±3.0%, 98.2±1.4%, 102%±1.7%, 103±1.2%, 107.9±8.9% and 109.3±7.5% of prescription dose respectively. With the positional errors present (after 1st CBCT) the corresponding values were 86.7±4.9%, 91.3±2.9%, 89.6±4.2%, 95.9±3.7%, 108.3±9.9% and 108.6±4.5%. Post-correction (after 2nd CBCT) with only residual errors present, values were 94.5±5.7%, 97.3±2.9%, 99.3%±3.2%, 102%±2.1%, 107.6±8.5% and 109.0±7.6% respectively. Significant and nominal OAR dose variation was observed between pre- and post-table corrections. Conclusion: Positional errors significantly affect PTV dose statistics. They need to be corrected before delivery of stereotactic treatments although the magnitude of dose changes can vary from patient

  1. Exploiting Child-Robot Aesthetic Interaction for a Social Robot

    OpenAIRE

    Lee, Jae-Joon; Kim, Dae-Won; Kang, Bo-Yeong

    2012-01-01

    A social robot interacts and communicates with humans by using the embodied knowledge gained from interactions with its social environment. In recent years, emotion has emerged as a popular concept for designing social robots. Several studies on social robots reported an increase in robot sociability through emotional imitative interactions between the robot and humans. In this paper conventional emotional interactions are extended by exploiting the aesthetic theories that the sociability of ...

  2. Evaluating a Pre-session Exercise in a Standalone Information Literacy Class

    Directory of Open Access Journals (Sweden)

    Joseph E. Goetz

    2015-12-01

    Full Text Available In this study, researchers evaluate a homework exercise assigned before a standalone information literacy session. Students in a Master of Education program completed a worksheet using the ERIC database thesaurus. The researchers conducted pre- and posttests within a single library session to assess student learning, using a control group for comparison. The treatment group did not demonstrate better thesaurus skills than students who had regular library instruction alone, but results pointed the way to targeted improvements of pre-session learning materials. This approach could inform other information literacy homework applications such as flipping the classroom.

  3. Gesture-Based Robot Control with Variable Autonomy from the JPL Biosleeve

    Science.gov (United States)

    Wolf, Michael T.; Assad, Christopher; Vernacchia, Matthew T.; Fromm, Joshua; Jethani, Henna L.

    2013-01-01

    This paper presents a new gesture-based human interface for natural robot control. Detailed activity of the user's hand and arm is acquired via a novel device, called the BioSleeve, which packages dry-contact surface electromyography (EMG) and an inertial measurement unit (IMU) into a sleeve worn on the forearm. The BioSleeve's accompanying algorithms can reliably decode as many as sixteen discrete hand gestures and estimate the continuous orientation of the forearm. These gestures and positions are mapped to robot commands that, to varying degrees, integrate with the robot's perception of its environment and its ability to complete tasks autonomously. This flexible approach enables, for example, supervisory point-to-goal commands, virtual joystick for guarded teleoperation, and high degree of freedom mimicked manipulation, all from a single device. The BioSleeve is meant for portable field use; unlike other gesture recognition systems, use of the BioSleeve for robot control is invariant to lighting conditions, occlusions, and the human-robot spatial relationship and does not encumber the user's hands. The BioSleeve control approach has been implemented on three robot types, and we present proof-of-principle demonstrations with mobile ground robots, manipulation robots, and prosthetic hands.

  4. Evolutionary robotics

    Indian Academy of Sciences (India)

    In evolutionary robotics, a suitable robot control system is developed automatically through evolution due to the interactions between the robot and its environment. It is a complicated task, as the robot and the environment constitute a highly dynamical system. Several methods have been tried by various investigators to ...

  5. Robot-assisted training of the kinesthetic sense: enhancing proprioception after stroke.

    Science.gov (United States)

    De Santis, Dalia; Zenzeri, Jacopo; Casadio, Maura; Masia, Lorenzo; Riva, Assunta; Morasso, Pietro; Squeri, Valentina

    2014-01-01

    Proprioception has a crucial role in promoting or hindering motor learning. In particular, an intact position sense strongly correlates with the chances of recovery after stroke. A great majority of neurological patients present both motor dysfunctions and impairments in kinesthesia, but traditional robot and virtual reality training techniques focus either in recovering motor functions or in assessing proprioceptive deficits. An open challenge is to implement effective and reliable tests and training protocols for proprioception that go beyond the mere position sense evaluation and exploit the intrinsic bidirectionality of the kinesthetic sense, which refers to both sense of position and sense of movement. Modulated haptic interaction has a leading role in promoting sensorimotor integration, and it is a natural way to enhance volitional effort. Therefore, we designed a preliminary clinical study to test a new proprioception-based motor training technique for augmenting kinesthetic awareness via haptic feedback. The feedback was provided by a robotic manipulandum and the test involved seven chronic hemiparetic subjects over 3 weeks. The protocol included evaluation sessions that consisted of a psychometric estimate of the subject's kinesthetic sensation, and training sessions, in which the subject executed planar reaching movements in the absence of vision and under a minimally assistive haptic guidance made by sequences of graded force pulses. The bidirectional haptic interaction between the subject and the robot was optimally adapted to each participant in order to achieve a uniform task difficulty over the workspace. All the subjects consistently improved in the perceptual scores as a consequence of training. Moreover, they could minimize the level of haptic guidance in time. Results suggest that the proposed method is effective in enhancing kinesthetic acuity, but the level of impairment may affect the ability of subjects to retain their improvement in time.

  6. Robot-assisted training of the kinesthetic sense: enhancing proprioception after stroke

    Directory of Open Access Journals (Sweden)

    Dalia eDe Santis

    2015-01-01

    Full Text Available Proprioception has a crucial role in promoting or hindering motor learning. In particular, an intact position sense strongly correlates with the chances of recovery after stroke. A great majority of neurological patients present both motor dysfunctions and impairments in kinesthesia, but traditional robot and virtual reality training techniques focus either in recovering motor functions or in assessing proprioceptive deficits. An open challenge is to implement effective and reliable tests and training protocols for proprioception that go beyond the mere position sense evaluation and exploit the intrinsic bidirectionality of the kinesthetic sense, which refers to both sense of position and sense of movement. Modulated haptic interaction has a leading role in promoting sensorimotor integration and it is a natural way to enhance volitional effort. Therefore, we designed a preliminary clinical study to test a new proprioception-based motor training technique for augmenting kinesthetic awareness via haptic feedback. The feedback was provided by a robotic manipulandum and the test involved 7 chronic hemiparetic subjects over three weeks. The protocol included evaluation sessions, that consisted of a psychometric estimate of the subject’s kinesthetic sensation, and training sessions, in which the subject executed planar reaching movements in the absence of vision and under a minimally assistive haptic guidance made by sequences of graded force pulses. The bidirectional haptic interaction between the subject and the robot was optimally adapted to each participant in order to achieve a uniform task difficulty over the workspace. All the subjects consistently improved in the perceptual scores as a consequence of training. Moreover, they could minimize the level of haptic guidance in time. Results suggest that the proposed method is effective in enhancing kinesthetic acuity, but the level of impairment may affect the ability of subjects to retain their

  7. A single hydrotherapy session increases range of motion and stride length in Labrador retrievers diagnosed with elbow dysplasia.

    Science.gov (United States)

    Preston, T; Wills, A P

    2018-04-01

    Canine elbow dysplasia is a debilitating condition of unknown aetiology and is a common cause of forelimb lameness in dogs. Canine hydrotherapy is a therapeutic approach rapidly increasing in popularity for the treatment of a range of musculoskeletal pathologies. In this study, kinematic analysis was used to assess the effect of a customised hydrotherapy session on the range of motion, stride length and stride frequency of healthy Labrador retrievers (n=6) and Labrador retrievers diagnosed with bilateral elbow dysplasia (n=6). Reflective kinematic markers were attached to bony anatomical landmarks and dogs were recorded walking at their preferred speed on a treadmill before and 10min after a single hydrotherapy session. Range of motion, stride length and stride frequency were calculated for both forelimbs. Data were analysed via a robust mixed ANOVA to assess the effect of hydrotherapy on the kinematic parameters of both groups. Range of motion was greater in the healthy dogs at baseline (PHydrotherapy increased the range of motion of the forelimbs of both groups (PHydrotherapy stride length (Phydrotherapy only in the left limb (Phydrotherapy as a therapeutic tool for the rehabilitation and treatment of Labradors with elbow dysplasia. Furthermore, results indicate that hydrotherapy might improve the gait and movement of healthy dogs. However, whether these results are transient or sustained remains undetermined. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. A Spherical Aerial Terrestrial Robot

    Science.gov (United States)

    Dudley, Christopher J.

    This thesis focuses on the design of a novel, ultra-lightweight spherical aerial terrestrial robot (ATR). The ATR has the ability to fly through the air or roll on the ground, for applications that include search and rescue, mapping, surveillance, environmental sensing, and entertainment. The design centers around a micro-quadcopter encased in a lightweight spherical exoskeleton that can rotate about the quadcopter. The spherical exoskeleton offers agile ground locomotion while maintaining characteristics of a basic aerial robot in flying mode. A model of the system dynamics for both modes of locomotion is presented and utilized in simulations to generate potential trajectories for aerial and terrestrial locomotion. Details of the quadcopter and exoskeleton design and fabrication are discussed, including the robot's turning characteristic over ground and the spring-steel exoskeleton with carbon fiber axle. The capabilities of the ATR are experimentally tested and are in good agreement with model-simulated performance. An energy analysis is presented to validate the overall efficiency of the robot in both modes of locomotion. Experimentally-supported estimates show that the ATR can roll along the ground for over 12 minutes and cover the distance of 1.7 km, or it can fly for 4.82 minutes and travel 469 m, on a single 350 mAh battery. Compared to a traditional flying-only robot, the ATR traveling over the same distance in rolling mode is 2.63-times more efficient, and in flying mode the system is only 39 percent less efficient. Experimental results also demonstrate the ATR's transition from rolling to flying mode.

  9. Interactive Exploration Robots: Human-Robotic Collaboration and Interactions

    Science.gov (United States)

    Fong, Terry

    2017-01-01

    For decades, NASA has employed different operational approaches for human and robotic missions. Human spaceflight missions to the Moon and in low Earth orbit have relied upon near-continuous communication with minimal time delays. During these missions, astronauts and mission control communicate interactively to perform tasks and resolve problems in real-time. In contrast, deep-space robotic missions are designed for operations in the presence of significant communication delay - from tens of minutes to hours. Consequently, robotic missions typically employ meticulously scripted and validated command sequences that are intermittently uplinked to the robot for independent execution over long periods. Over the next few years, however, we will see increasing use of robots that blend these two operational approaches. These interactive exploration robots will be remotely operated by humans on Earth or from a spacecraft. These robots will be used to support astronauts on the International Space Station (ISS), to conduct new missions to the Moon, and potentially to enable remote exploration of planetary surfaces in real-time. In this talk, I will discuss the technical challenges associated with building and operating robots in this manner, along with lessons learned from research conducted with the ISS and in the field.

  10. Visualization of Robotic Sensor Data with Augmented Reality

    OpenAIRE

    Thorstensen, Mathias Ciarlo

    2017-01-01

    To understand a robot's intent and behavior, a robot engineer must analyze data at the input and output, but also at all intermediary steps. This might require looking at a specific subset of the system, or a single data node in isolation. A range of different data formats can be used in the systems, and require visualization in different mediums; some are text based, and best visualized in a terminal, while other types must be presented graphically, in 2D or 3D. This often makes understandin...

  11. Invariant hip moment pattern while walking with a robotic hip exoskeleton.

    Science.gov (United States)

    Lewis, Cara L; Ferris, Daniel P

    2011-03-15

    Robotic lower limb exoskeletons hold significant potential for gait assistance and rehabilitation; however, we have a limited understanding of how people adapt to walking with robotic devices. The purpose of this study was to test the hypothesis that people reduce net muscle moments about their joints when robotic assistance is provided. This reduction in muscle moment results in a total joint moment (muscle plus exoskeleton) that is the same as the moment without the robotic assistance despite potential differences in joint angles. To test this hypothesis, eight healthy subjects trained with the robotic hip exoskeleton while walking on a force-measuring treadmill. The exoskeleton provided hip flexion assistance from approximately 33% to 53% of the gait cycle. We calculated the root mean squared difference (RMSD) between the average of data from the last 15 min of the powered condition and the unpowered condition. After completing three 30-min training sessions, the hip exoskeleton provided 27% of the total peak hip flexion moment during gait. Despite this substantial contribution from the exoskeleton, subjects walked with a total hip moment pattern (muscle plus exoskeleton) that was almost identical and more similar to the unpowered condition than the hip angle pattern (hip moment RMSD 0.027, angle RMSD 0.134, p<0.001). The angle and moment RMSD were not different for the knee and ankle joints. These findings support the concept that people adopt walking patterns with similar joint moment patterns despite differences in hip joint angles for a given walking speed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. ROBOT LITERACY AN APPROACH FOR SHARING SOCIETY WITH INTELLIGENT ROBOTS

    Directory of Open Access Journals (Sweden)

    Hidetsugu Suto

    2013-12-01

    Full Text Available A novel concept of media education called “robot literacy” is proposed. Here, robot literacy refers to the means of forming an appropriate relationship with intelligent robots. It can be considered a kind of media literacy. People who were born after the Internet age can be considered “digital natives” who have new morals and values and behave differently than previous generations in Internet societies. This can cause various problems among different generations. Thus, the necessity of media literacy education is increasing. Internet technologies, as well as robotics technologies are growing rapidly, and people who are born after the “home robot age,” whom the author calls “robot natives,” will be expected to have a certain degree of “robot literacy.” In this paper, the concept of robot literacy is defined and an approach to robot literacy education is discussed.

  13. Robotic buildings(s)

    NARCIS (Netherlands)

    Bier, H.H.

    2014-01-01

    Technological and conceptual advances in fields such as artificial intelligence, robotics, and material science have enabled robotic building to be in the last decade prototypically implemented. In this context, robotic building implies both physically built robotic environments and robotically

  14. A randomised controlled trial of three or one breathing technique training sessions for breathlessness in people with malignant lung disease.

    Science.gov (United States)

    Johnson, Miriam J; Kanaan, Mona; Richardson, Gerry; Nabb, Samantha; Torgerson, David; English, Anne; Barton, Rachael; Booth, Sara

    2015-09-07

    About 90 % of patients with intra-thoracic malignancy experience breathlessness. Breathing training is helpful, but it is unknown whether repeated sessions are needed. The present study aims to test whether three sessions are better than one for breathlessness in this population. This is a multi-centre randomised controlled non-blinded parallel arm trial. Participants were allocated to three sessions or single (1:2 ratio) using central computer-generated block randomisation by an independent Trials Unit and stratified for centre. The setting was respiratory, oncology or palliative care clinics at eight UK centres. Inclusion criteria were people with intrathoracic cancer and refractory breathlessness, expected prognosis ≥3 months, and no prior experience of breathing training. The trial intervention was a complex breathlessness intervention (breathing training, anxiety management, relaxation, pacing, and prioritisation) delivered over three hour-long sessions at weekly intervals, or during a single hour-long session. The main primary outcome was worst breathlessness over the previous 24 hours ('worst'), by numerical rating scale (0 = none; 10 = worst imaginable). Our primary analysis was area under the curve (AUC) 'worst' from baseline to 4 weeks. All analyses were by intention to treat. Between April 2011 and October 2013, 156 consenting participants were randomised (52 three; 104 single). Overall, the 'worst' score reduced from 6.81 (SD, 1.89) to 5.84 (2.39). Primary analysis [n = 124 (79 %)], showed no between-arm difference in the AUC: three sessions 22.86 (7.12) vs single session 22.58 (7.10); P value = 0.83); mean difference 0.2, 95 % CIs (-2.31 to 2.97). Complete case analysis showed a non-significant reduction in QALYs with three sessions (mean difference -0.006, 95 % CIs -0.018 to 0.006). Sensitivity analyses found similar results. The probability of the single session being cost-effective (threshold value of £20,000 per QALY) was over 80 %. There was no

  15. HexaMob—A Hybrid Modular Robotic Design for Implementing Biomimetic Structures

    Directory of Open Access Journals (Sweden)

    Sasanka Sankhar Reddy CH.

    2017-10-01

    Full Text Available Modular robots are capable of forming primitive shapes such as lattice and chain structures with the additional flexibility of distributed sensing. The biomimetic structures developed using such modular units provides ease of replacement and reconfiguration in co-ordinated structures, transportation etc. in real life scenarios. Though the research in the employment of modular robotic units in formation of biological organisms is in the nascent stage, modular robotic units are already capable of forming such sophisticated structures. The modular robotic designs proposed so far in modular robotics research vary significantly in external structures, sensor-actuator mechanisms interfaces for docking and undocking, techniques for providing mobility, coordinated structures, locomotions etc. and each robotic design attempted to address various challenges faced in the domain of modular robotics by employing different strategies. This paper presents a novel modular wheeled robotic design - HexaMob facilitating four degrees of freedom (2 degrees for mobility and 2 degrees for structural reconfiguration on a single module with minimal usage of sensor-actuator assemblies. The crucial features of modular robotics such as back-driving restriction, docking, and navigation are addressed in the process of HexaMob design. The proposed docking mechanism is enabled using vision sensor, enhancing the capabilities in docking as well as navigation in co-ordinated structures such as humanoid robots.

  16. Developing stereo image based robot control system

    Energy Technology Data Exchange (ETDEWEB)

    Suprijadi,; Pambudi, I. R.; Woran, M.; Naa, C. F; Srigutomo, W. [Department of Physics, FMIPA, InstitutTeknologi Bandung Jl. Ganesha No. 10. Bandung 40132, Indonesia supri@fi.itb.ac.id (Indonesia)

    2015-04-16

    Application of image processing is developed in various field and purposes. In the last decade, image based system increase rapidly with the increasing of hardware and microprocessor performance. Many fields of science and technology were used this methods especially in medicine and instrumentation. New technique on stereovision to give a 3-dimension image or movie is very interesting, but not many applications in control system. Stereo image has pixel disparity information that is not existed in single image. In this research, we proposed a new method in wheel robot control system using stereovision. The result shows robot automatically moves based on stereovision captures.

  17. 98th LHCC meeting Agenda OPEN Session and CLOSED Session

    CERN Document Server

    CERN. Geneva

    2009-01-01

    OPEN Session on Wednesday, 8 July at 9h00-11h00 in Main Auditorium, Live webcast, followed by CLOSED Session, Conference room 160-1-009 11h20-17h00. CLOSED Session continued on Thursday, 9 July at 9h00-12h30

  18. Cloud Robotics Platforms

    Directory of Open Access Journals (Sweden)

    Busra Koken

    2015-01-01

    Full Text Available Cloud robotics is a rapidly evolving field that allows robots to offload computation-intensive and storage-intensive jobs into the cloud. Robots are limited in terms of computational capacity, memory and storage. Cloud provides unlimited computation power, memory, storage and especially collaboration opportunity. Cloud-enabled robots are divided into two categories as standalone and networked robots. This article surveys cloud robotic platforms, standalone and networked robotic works such as grasping, simultaneous localization and mapping (SLAM and monitoring.

  19. Distributed Robotics Education

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Pagliarini, Luigi

    2011-01-01

    Distributed robotics takes many forms, for instance, multirobots, modular robots, and self-reconfigurable robots. The understanding and development of such advanced robotic systems demand extensive knowledge in engineering and computer science. In this paper, we describe the concept of a distribu......Distributed robotics takes many forms, for instance, multirobots, modular robots, and self-reconfigurable robots. The understanding and development of such advanced robotic systems demand extensive knowledge in engineering and computer science. In this paper, we describe the concept...... to be changed, related to multirobot control and human-robot interaction control from virtual to physical representation. The proposed system is valuable for bringing a vast number of issues into education – such as parallel programming, distribution, communication protocols, master dependency, connectivity...

  20. A General Algorithm for Robot Formations Using Local Sensing and Minimal Communication

    DEFF Research Database (Denmark)

    Fredslund, Jakob; Matarić, Maja J

    2002-01-01

    the friend in the sensor's field of view. We also present a general analytical measure for evaluating formations and apply it to the position data from both simulation and physical robot experiments. We used two lasers to track the physical robots to obtain ground truth validation data....... simulation exper- iments, and 40+ experiments with four physical robots, showing the viability of our approach. The key idea is that each robot keeps a single friend at a desired angle , using some appropriate sensor. By panning the sensor by degrees, the goal for all formations be- comes simply to center......We study the problem of achieving global behavior in a group of distributed robots using only local sensing and minimal communication, in the context of formations. The goal is to have mobile robots establish and maintain some predetermined geo- metric shape. We report results from extensive...

  1. Robot Mechanisms

    CERN Document Server

    Lenarcic, Jadran; Stanišić, Michael M

    2013-01-01

    This book provides a comprehensive introduction to the area of robot mechanisms, primarily considering industrial manipulators and humanoid arms. The book is intended for both teaching and self-study. Emphasis is given to the fundamentals of kinematic analysis and the design of robot mechanisms. The coverage of topics is untypical. The focus is on robot kinematics. The book creates a balance between theoretical and practical aspects in the development and application of robot mechanisms, and includes the latest achievements and trends in robot science and technology.

  2. Robots de servicio

    Directory of Open Access Journals (Sweden)

    Rafael Aracil

    2008-04-01

    Full Text Available Resumen: El término Robots de Servicio apareció a finales de los años 80 como una necesidad de desarrollar máquinas y sistemas capaces de trabajar en entornos diferentes a los fabriles. Los Robots de Servicio tenían que poder trabajar en entornos noestructurados, en condiciones ambientales cambiantes y con una estrecha interacción con los humanos. En 1995 fue creado por la IEEE Robotics and Automation Society, el Technical Committee on Service Robots, y este comité definió en el año 2000 las áreas de aplicación de los Robots de Servicios, que se pueden dividir en dos grandes grupos: 1 sectores productivos no manufactureros tales como edificación, agricultura, naval, minería, medicina, etc. y 2 sectores de servicios propiamente dichos: asistencia personal, limpieza, vigilancia, educación, entretenimiento, etc. En este trabajo se hace una breve revisión de los principales conceptos y aplicaciones de los robots de servicio. Palabras clave: Robots de servicio, robots autónomos, robots de exteriores, robots de educación y entretenimiento, robots caminantes y escaladores, robots humanoides

  3. Filigree Robotics

    DEFF Research Database (Denmark)

    Tamke, Martin; Evers, Henrik Leander; Clausen Nørgaard, Esben

    2016-01-01

    Filigree Robotics experiments with the combination of traditional ceramic craft with robotic fabrication in order to generate a new narrative of fine three-dimensional ceramic ornament for architecture.......Filigree Robotics experiments with the combination of traditional ceramic craft with robotic fabrication in order to generate a new narrative of fine three-dimensional ceramic ornament for architecture....

  4. Hydraulic bilateral construction robot; Yuatsushiki bilateral kensetsu robot

    Energy Technology Data Exchange (ETDEWEB)

    Maehata, K.; Mori, N. [Kayaba Industry Co. Ltd., Tokyo (Japan)

    1999-05-15

    Concerning a hydraulic bilateral construction robot, its system constitution, structures and functions of important components, and the results of some tests are explained, and the researches conducted at Gifu University are described. The construction robot in this report is a servo controlled system of a version developed from the mini-shovel now available in the market. It is equipped, in addition to an electrohydraulic servo control system, with various sensors for detecting the robot attitude, vibration, and load state, and with a camera for visualizing the surrounding landscape. It is also provided with a bilateral joy stick which is a remote control actuator capable of working sensation feedback and with a rocking unit that creates robot movements of rolling, pitching, and heaving. The construction robot discussed here, with output increased and response faster thanks to the employment of a hydraulic driving system for the aim of building a robot system superior in performance to the conventional model designed primarily for heavy duty, proves after tests to be a highly sophisticated remotely controlled robot control system. (NEDO)

  5. Robotics education

    International Nuclear Information System (INIS)

    Benton, O.

    1984-01-01

    Robotics education courses are rapidly spreading throughout the nation's colleges and universities. Engineering schools are offering robotics courses as part of their mechanical or manufacturing engineering degree program. Two year colleges are developing an Associate Degree in robotics. In addition to regular courses, colleges are offering seminars in robotics and related fields. These seminars draw excellent participation at costs running up to $200 per day for each participant. The last one drew 275 people from Texas to Virginia. Seminars are also offered by trade associations, private consulting firms, and robot vendors. IBM, for example, has the Robotic Assembly Institute in Boca Raton and charges about $1,000 per week for course. This is basically for owners of IBM robots. Education (and training) can be as short as one day or as long as two years. Here is the educational pattern that is developing now

  6. Assist-as-Needed Control of a Robotic Orthosis Actuated by Pneumatic Artificial Muscle for Gait Rehabilitation

    Directory of Open Access Journals (Sweden)

    Quy-Thinh Dao

    2018-03-01

    Full Text Available Rehabilitation robots are designed to help patients improve their recovery from injury by supporting them to perform repetitive and systematic training sessions. These robots are not only able to guide the subjects’ lower-limb to a designate trajectory, but also estimate their disability and adapt the compliance accordingly. In this research, a new control strategy for a high compliant lower-limb rehabilitation orthosis system named AIRGAIT is developed. The AIRGAIT orthosis is powered by pneumatic artificial muscle actuators. The trajectory tracking controller based on a modified computed torque control which employs a fractional derivative is proposed for the tracking purpose. In addition, a new method is proposed for compliance control of the robotic orthosis which results in the successful implementation of the assist-as-needed training strategy. Finally, various subject-based experiments are carried out to verify the effectiveness of the developed control system.

  7. A small biomimetic quadruped robot driven by multistacked dielectric elastomer actuators

    Science.gov (United States)

    Nguyen, Canh Toan; Phung, Hoa; Dat Nguyen, Tien; Lee, Choonghan; Kim, Uikyum; Lee, Donghyouk; Moon, Hyungpil; Koo, Jachoon; Nam, Jae-do; Ryeol Choi, Hyouk

    2014-06-01

    A kind of dielectric elastomer (DE) material, called ‘synthetic elastomer’, has been developed based on acrylonitrile butadiene rubber (NBR) to be used as a dielectric elastomer actuator (DEA). By stacking single layers of synthetic elastomer, a linear actuator, called a multistacked actuator, is produced, and used by mechatronic and robotic systems to generate linear motion. In this paper, we demonstrate the application of the multistacked dielectric elastomer actuator in a biomimetic legged robot. A miniature robot driven by a biomimetic actuation system with four 2-DOF (two-degree-of-freedom) legged mechanisms is realized. Based on the experimental results, we evaluate the performance of the proposed robot and validate the feasibility of the multistacked actuator in a locomotion system as a replacement for conventional actuators.

  8. A small biomimetic quadruped robot driven by multistacked dielectric elastomer actuators

    International Nuclear Information System (INIS)

    Nguyen, Canh Toan; Phung, Hoa; Nguyen, Tien Dat; Lee, Choonghan; Kim, Uikyum; Lee, Donghyouk; Moon, Hyungpil; Koo, Jachoon; Choi, Hyouk Ryeol; Nam, Jae-do

    2014-01-01

    A kind of dielectric elastomer (DE) material, called ‘synthetic elastomer’, has been developed based on acrylonitrile butadiene rubber (NBR) to be used as a dielectric elastomer actuator (DEA). By stacking single layers of synthetic elastomer, a linear actuator, called a multistacked actuator, is produced, and used by mechatronic and robotic systems to generate linear motion. In this paper, we demonstrate the application of the multistacked dielectric elastomer actuator in a biomimetic legged robot. A miniature robot driven by a biomimetic actuation system with four 2-DOF (two-degree-of-freedom) legged mechanisms is realized. Based on the experimental results, we evaluate the performance of the proposed robot and validate the feasibility of the multistacked actuator in a locomotion system as a replacement for conventional actuators. (paper)

  9. The Organization of Behavior Over Time: Insights from Mid-Session Reversal.

    Science.gov (United States)

    Rayburn-Reeves, Rebecca M; Cook, Robert G

    2016-01-01

    What are the mechanisms by which behavior is organized sequentially over time? The recently developed mid-session reversal (MSR) task offers new insights into this fundamental question. The typical MSR task is arranged to have a single reversed discrimination occurring in a consistent location within each session and across sessions. In this task, we examine the relevance of time, reinforcement, and other factors as the switching cue in the sequential modulation of control in MSR. New analyses also highlight some of the potential mechanisms underlying this serially organized behavior. MSR provides new evidence and we offer some ideas about how cues interact to compete for the control of behavior within and across sessions. We suggest that MSR is an excellent preparation for studying the competition among psychological states and their resolution toward action.

  10. Automated processing of forensic casework samples using robotic workstations equipped with nondisposable tips: contamination prevention.

    Science.gov (United States)

    Frégeau, Chantal J; Lett, C Marc; Elliott, Jim; Yensen, Craig; Fourney, Ron M

    2008-05-01

    An automated process has been developed for the analysis of forensic casework samples using TECAN Genesis RSP 150/8 or Freedom EVO liquid handling workstations equipped exclusively with nondisposable tips. Robot tip cleaning routines have been incorporated strategically within the DNA extraction process as well as at the end of each session. Alternative options were examined for cleaning the tips and different strategies were employed to verify cross-contamination. A 2% sodium hypochlorite wash (1/5th dilution of the 10.8% commercial bleach stock) proved to be the best overall approach for preventing cross-contamination of samples processed using our automated protocol. The bleach wash steps do not adversely impact the short tandem repeat (STR) profiles developed from DNA extracted robotically and allow for major cost savings through the implementation of fixed tips. We have demonstrated that robotic workstations equipped with fixed pipette tips can be used with confidence with properly designed tip washing routines to process casework samples using an adapted magnetic bead extraction protocol.

  11. Robot Aesthetics

    DEFF Research Database (Denmark)

    Jochum, Elizabeth Ann; Putnam, Lance Jonathan

    This paper considers art-based research practice in robotics through a discussion of our course and relevant research projects in autonomous art. The undergraduate course integrates basic concepts of computer science, robotic art, live performance and aesthetic theory. Through practice...... in robotics research (such as aesthetics, culture and perception), we believe robot aesthetics is an important area for research in contemporary aesthetics....

  12. Robots: l'embarras de richesses [:survey of robots available

    International Nuclear Information System (INIS)

    Meieran, H.; Brittain, K.; Sturkey, R.

    1989-01-01

    A survey of robots available for use in the nuclear industry is presented. Two new categories of mobile robots have been introduced since the last survey (April 1987): pipe crawlers and underwater robots. The number of robots available has risen to double what it was two years ago and four times what it was in 1986. (U.K.)

  13. Modeling of welded bead profile for rapid prototyping by robotic MAG welding

    Institute of Scientific and Technical Information of China (English)

    CAO Yong; ZHU Sheng; WANG Tao; WANG Wanglong

    2009-01-01

    As a deposition technology, robotic metal active gas(MAG) welding has shown new promise for rapid prototyping (RP) of metallic parts. During the process of metal forming using robotic MAG welding, sectional profile of single-pass welded bead is critical to formed accuracy and quality of metal pans. In this paper, the experiments of single-pass welded bead for rapid prototyping using robotic MAG welding were carried out. The effect of some edge detectors on the cross-sectional edge of welded bead was discussed and curve fitting was applied using leat square fitting. Consequently, the mathematical model of welded bead profile was developed. The experimental results show that good shape could be obtained under suitable welding parameters. Canny operawr is suitable to edge detection of welded bead profile, and the mathematical model of welded bead profile developed is approximately parabola.

  14. Effectiveness of a single-session early psychological intervention for children after road traffic accidents: a randomised controlled trial

    Directory of Open Access Journals (Sweden)

    Meuli Martin

    2010-02-01

    Full Text Available Abstract Background Road traffic accidents (RTAs are the leading health threat to children in Europe, resulting in 355 000 injuries annually. Because children can suffer significant and long-term mental health problems following RTAs, there is considerable interest in the development of early psychological interventions. To date, the research in this field is scarce, and currently no evidence-based recommendations can be made. Methods To evaluate the effectiveness of a single-session early psychological intervention, 99 children age 7-16 were randomly assigned to an intervention or control group. The manualised intervention was provided to the child and at least one parent around 10 days after the child's involvement in an RTA. It included reconstruction of the accident using drawings and accident-related toys, and psychoeducation. All of the children were interviewed at 10 days, 2 months and 6 months after the accident. Parents filled in questionnaires. Standardised instruments were used to assess acute stress disorder (ASD, posttraumatic stress disorder (PTSD, depressive symptoms and behavioural problems. Results The children of the two study groups showed no significant differences concerning posttraumatic symptoms and other outcome variables at 2 or at 6 months. Interestingly, analyses showed a significant intervention × age-group effect, indicating that for preadolescent children the intervention was effective in decreasing depressive symptoms and behavioural problems. Conclusions This study is the first to show a beneficial effect of a single-session early psychological intervention after RTA in preadolescent children. Therefore, an age-specific approach in an early stage after RTAs may be a promising way for further research. Younger children can benefit from the intervention evaluated here. However, these results have to be interpreted with caution, because of small subgroup sizes. Future studies are needed to examine specific

  15. Miniature surgical robots in the era of NOTES and LESS: dream or reality?

    Science.gov (United States)

    Zygomalas, Apollon; Kehagias, Ioannis; Giokas, Konstantinos; Koutsouris, Dimitrios

    2015-02-01

    Laparoscopy is an established method for the treatment of numerous surgical conditions. Natural orifice transluminal endoscopic surgery (NOTES) is a novel surgical technique that uses the natural orifices of the human body as entrances to the abdominal cavity. An alternative concept of minimally invasive approach to the abdominal cavity is to insert all the laparoscopic instruments through ports using a single small incision on the abdominal wall. A suggested name for this technique is laparoendoscopic single-site surgery (LESS). Considering the technical difficulties in NOTES and LESS and the progress in informatics and robotics, the use of robots seems ideal. The aim of this study is to investigate if there is at present, a realistic possibility of using miniature robots in NOTES or LESS in daily clinical practice. An up-to-date review on in vivo surgical miniature robots is made. A Web-based research of the English literature up to March 2013 using PubMed, Scopus, and Google Scholar as search engines was performed. The development of in vivo miniature robots for use in NOTES or LESS is a reality with great advancements, potential advantages, and possible application in minimally invasive surgery in the future. However, true totally NOTES or LESS procedures on humans using miniature robots either solely or as assistance, remain a dream at present. © The Author(s) 2014.

  16. Robots Social Embodiment in Autonomous Mobile Robotics

    Directory of Open Access Journals (Sweden)

    Brian Duffy

    2008-11-01

    Full Text Available This work aims at demonstrating the inherent advantages of embracing a strong notion of social embodiment in designing a real-world robot control architecture with explicit ?intelligent? social behaviour between a collective of robots. It develops the current thinking on embodiment beyond the physical by demonstrating the importance of social embodiment. A social framework develops the fundamental social attributes found when more than one robot co-inhabit a physical space. The social metaphors of identity, character, stereotypes and roles are presented and implemented within a real-world social robot paradigm in order to facilitate the realisation of explicit social goals.

  17. Robotic intelligence kernel

    Science.gov (United States)

    Bruemmer, David J [Idaho Falls, ID

    2009-11-17

    A robot platform includes perceptors, locomotors, and a system controller. The system controller executes a robot intelligence kernel (RIK) that includes a multi-level architecture and a dynamic autonomy structure. The multi-level architecture includes a robot behavior level for defining robot behaviors, that incorporate robot attributes and a cognitive level for defining conduct modules that blend an adaptive interaction between predefined decision functions and the robot behaviors. The dynamic autonomy structure is configured for modifying a transaction capacity between an operator intervention and a robot initiative and may include multiple levels with at least a teleoperation mode configured to maximize the operator intervention and minimize the robot initiative and an autonomous mode configured to minimize the operator intervention and maximize the robot initiative. Within the RIK at least the cognitive level includes the dynamic autonomy structure.

  18. Percutaneous radiofrequency ablation (RFA) or robotic radiosurgery (RRS) for salvage treatment of colorectal liver metastases

    Energy Technology Data Exchange (ETDEWEB)

    Stintzing, Sebastian; Hendrich, Saskia; Heinemann, Volker [Dept. of Medical Oncology and Comprehensive Cancer Center, Klinikum Grosshadern, LMU, Munich (Germany)], E-mail: sebastian.stintzing@med.uni-muenchen.de; Grothe, Alexander; Trumm, Christoph G. [Dept. of Clinical Radiology, Univ. Hospital Grosshadern, LMU Munich, Munich (Germany); Hoffmann, Ralf-Thorsten [Dept. and Policlinics of Diagnostic Radiology, Universitaetsklinikum Carl Gustav Carus Dresden (Germany); Rentsch, Markus [Dept. of Surgery, Univ. Hospital Grosshadern, LMU Munich, Munich (Germany); Fuerweger, Christoph; Muacevic, Alexander [European Cyberknife Center Munich, Munich (Germany)

    2013-06-15

    Background. Stereotactic radiation therapy is an evolving modality to treat otherwise unresectable liver metastases. In this analysis, two local therapies: 1) single session robotic radiosurgery (RRS) and 2) percutaneous radiofrequency ablation (RFA) were compared in a total of 60 heavily pretreated colorectal cancer patients. Methods. Thirty patients with a total of 35 colorectal liver metastases not qualifying for surgery that were treated in curative intent with RRS were prospectively followed. To compare efficacy of both treatment modalities, patients treated with RFA during the same period of time were matched according to number and size of the treated lesions. Local tumor control, local disease free survival (DFS), and freedom from distant recurrence (FFDR) were analyzed for effi cacy. Treatment-related side effects were recorded for comparison. Results. The median diameter of the treated lesions was 33 mm (7-53 mm). Baseline characteristics did not differ significantly between the groups. One- and two-year local control rates showed no signifi cant difference but favored RRS (85% vs. 65% and 80% vs. 61%, respectively). A signifi cantly longer local DFS of patients treated with RRS compared to RFA (34.4 months vs. 6.0 months; p 0.001) was found. Both, median FFDR (11.4 months for RRS vs. 7.1 months for RFA p=0.25) and the recurrence rate (67% for RRS and 63% for RFA, p>0.99) were comparable. Conclusion. Single session RRS is a safe and effective method to treat colorectal liver metastases. In this analysis, a trend towards longer DFS was seen in patients treated with RRS when compared to RFA.

  19. Percutaneous radiofrequency ablation (RFA) or robotic radiosurgery (RRS) for salvage treatment of colorectal liver metastases

    International Nuclear Information System (INIS)

    Stintzing, Sebastian; Hendrich, Saskia; Heinemann, Volker; Grothe, Alexander; Trumm, Christoph G.; Hoffmann, Ralf-Thorsten; Rentsch, Markus; Fuerweger, Christoph; Muacevic, Alexander

    2013-01-01

    Background. Stereotactic radiation therapy is an evolving modality to treat otherwise unresectable liver metastases. In this analysis, two local therapies: 1) single session robotic radiosurgery (RRS) and 2) percutaneous radiofrequency ablation (RFA) were compared in a total of 60 heavily pretreated colorectal cancer patients. Methods. Thirty patients with a total of 35 colorectal liver metastases not qualifying for surgery that were treated in curative intent with RRS were prospectively followed. To compare efficacy of both treatment modalities, patients treated with RFA during the same period of time were matched according to number and size of the treated lesions. Local tumor control, local disease free survival (DFS), and freedom from distant recurrence (FFDR) were analyzed for effi cacy. Treatment-related side effects were recorded for comparison. Results. The median diameter of the treated lesions was 33 mm (7-53 mm). Baseline characteristics did not differ significantly between the groups. One- and two-year local control rates showed no signifi cant difference but favored RRS (85% vs. 65% and 80% vs. 61%, respectively). A signifi cantly longer local DFS of patients treated with RRS compared to RFA (34.4 months vs. 6.0 months; p 0.001) was found. Both, median FFDR (11.4 months for RRS vs. 7.1 months for RFA p=0.25) and the recurrence rate (67% for RRS and 63% for RFA, p>0.99) were comparable. Conclusion. Single session RRS is a safe and effective method to treat colorectal liver metastases. In this analysis, a trend towards longer DFS was seen in patients treated with RRS when compared to RFA

  20. Investigating Astromaterials Curation Applications for Dexterous Robotic Arms

    Science.gov (United States)

    Snead, C. J.; Jang, J. H.; Cowden, T. R.; McCubbin, F. M.

    2018-01-01

    The Astromaterials Acquisition and Curation office at NASA Johnson Space Center is currently investigating tools and methods that will enable the curation of future astromaterials collections. Size and temperature constraints for astromaterials to be collected by current and future proposed missions will require the development of new robotic sample and tool handling capabilities. NASA Curation has investigated the application of robot arms in the past, and robotic 3-axis micromanipulators are currently in use for small particle curation in the Stardust and Cosmic Dust laboratories. While 3-axis micromanipulators have been extremely successful for activities involving the transfer of isolated particles in the 5-20 micron range (e.g. from microscope slide to epoxy bullet tip, beryllium SEM disk), their limited ranges of motion and lack of yaw, pitch, and roll degrees of freedom restrict their utility in other applications. For instance, curators removing particles from cosmic dust collectors by hand often employ scooping and rotating motions to successfully free trapped particles from the silicone oil coatings. Similar scooping and rotating motions are also employed when isolating a specific particle of interest from an aliquot of crushed meteorite. While cosmic dust curators have been remarkably successful with these kinds of particle manipulations using handheld tools, operator fatigue limits the number of particles that can be removed during a given extraction session. The challenges for curation of small particles will be exacerbated by mission requirements that samples be processed in N2 sample cabinets (i.e. gloveboxes). We have been investigating the use of compact robot arms to facilitate sample handling within gloveboxes. Six-axis robot arms potentially have applications beyond small particle manipulation. For instance, future sample return missions may involve biologically sensitive astromaterials that can be easily compromised by physical interaction with

  1. Virtual spring damper method for nonholonomic robotic swarm self-organization and leader following

    Science.gov (United States)

    Wiech, Jakub; Eremeyev, Victor A.; Giorgio, Ivan

    2018-04-01

    In this paper, we demonstrate a method for self-organization and leader following of nonholonomic robotic swarm based on spring damper mesh. By self-organization of swarm robots we mean the emergence of order in a swarm as the result of interactions among the single robots. In other words the self-organization of swarm robots mimics some natural behavior of social animals like ants among others. The dynamics of two-wheel robot is derived, and a relation between virtual forces and robot control inputs is defined in order to establish stable swarm formation. Two cases of swarm control are analyzed. In the first case the swarm cohesion is achieved by virtual spring damper mesh connecting nearest neighboring robots without designated leader. In the second case we introduce a swarm leader interacting with nearest and second neighbors allowing the swarm to follow the leader. The paper ends with numeric simulation for performance evaluation of the proposed control method.

  2. Improvement of the operation of wheels mobile robot TRASMAR2

    International Nuclear Information System (INIS)

    Guerra C, D. A.; Tovar M, R.; Gonzalez M, J. L.; Segovia de los Rios, A.

    2013-10-01

    In the Instituto Nacional de Investigaciones Nucleares (ININ), personnel have been working in the development of wheels mobile robots for the surveillance and supervision of contaminated areas, and for the radioactive material transport. One of these achievements is the wheels mobile robot denominated TRASMAR2, which is sought that works in the tele operated form using net technologies, in particular, using a Web page by means of the client-servant technology. For this, diverse circuits and control programs have been development with the purpose that the robot carries out the movements that are required, being considered the use of sensors to avoid collisions. The different programs have been implemented in different micro controllers, and although the robot was working, is necessary to optimize and to concentrate these programs on a single micro controller. In this work are presented the analysis of the previously implemented programs, as the realized changes, including new programs required to improve the robot operation. As complement, was development and implemented an alternative proposal of the robot's tele operation by means of a Web page using Lab view, which is described in the work. With this proposal tele operate the robot was achieved, although its application is evaluating due to the resources that is consumes. (author)

  3. An Intelligent Robot Programing

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Yong

    2012-01-15

    This book introduces an intelligent robot programing with background of the begging, introduction of VPL, and SPL, building of environment for robot platform, starting of robot programing, design of simulation environment, robot autonomy drive control programing, simulation graphic. Such as SPL graphic programing graphical image and graphical shapes, and graphical method application, application of procedure for robot control, robot multiprogramming, robot bumper sensor programing, robot LRF sencor programing and robot color sensor programing.

  4. An Intelligent Robot Programing

    International Nuclear Information System (INIS)

    Hong, Seong Yong

    2012-01-01

    This book introduces an intelligent robot programing with background of the begging, introduction of VPL, and SPL, building of environment for robot platform, starting of robot programing, design of simulation environment, robot autonomy drive control programing, simulation graphic. Such as SPL graphic programing graphical image and graphical shapes, and graphical method application, application of procedure for robot control, robot multiprogramming, robot bumper sensor programing, robot LRF sencor programing and robot color sensor programing.

  5. Neuro-robotics from brain machine interfaces to rehabilitation robotics

    CERN Document Server

    Artemiadis

    2014-01-01

    Neuro-robotics is one of the most multidisciplinary fields of the last decades, fusing information and knowledge from neuroscience, engineering and computer science. This book focuses on the results from the strategic alliance between Neuroscience and Robotics that help the scientific community to better understand the brain as well as design robotic devices and algorithms for interfacing humans and robots. The first part of the book introduces the idea of neuro-robotics, by presenting state-of-the-art bio-inspired devices. The second part of the book focuses on human-machine interfaces for pe

  6. Does robotic gait training improve balance in Parkinson's disease? A randomized controlled trial.

    Science.gov (United States)

    Picelli, Alessandro; Melotti, Camilla; Origano, Francesca; Waldner, Andreas; Gimigliano, Raffaele; Smania, Nicola

    2012-09-01

    Treadmill training (with or without robotic assistance) has been reported to improve balance skills in patients with Parkinson's disease (PD). However, its effectiveness on postural instability has been evaluated mainly in patients with mild to moderate PD (Hoehn & Yahr stage ≤3). Patients with more severe disease may benefit from robot-assisted gait training performed by the Gait-Trainer GT1, as a harness supports them with their feet placed on motor-driven footplates. The aim of this study was to determine whether robot-assisted gait training could have a positive influence on postural stability in patients with PD at Hoehn & Yahr stage 3-4. Thirty-four patients with PD at Hoehn & Yahr stage 3-4 were randomly assigned into two groups. All patients received twelve, 40-min treatment sessions, three days/week, for four consecutive weeks. The Robotic Training group (n = 17) underwent robot-assisted gait training, while the Physical Therapy group (n = 17) underwent a training program not specifically aimed at improving postural stability. Patients were evaluated before, immediately after and 1-month post-treatment. Primary outcomes were: Berg Balance scale; Nutt's rating. A significant improvement was found after treatment on the Berg Balance Scale and the Nutt's rating in favor of the Robotic Training group (Berg: 43.44 ± 2.73; Nutt: 1.38 ± 0.50) compared to the Physical Therapy group (Berg: 37.27 ± 5.68; Nutt: 2.07 ± 0.59). All improvements were maintained at the 1-month follow-up evaluation. Robot-assisted gait training may improve postural instability in patients with PD at Hoehn & Yahr stage 3-4. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Cloud Robotics Model

    OpenAIRE

    Mester, Gyula

    2015-01-01

    Cloud Robotics was born from the merger of service robotics and cloud technologies. It allows robots to benefit from the powerful computational, storage, and communications resources of modern data centres. Cloud robotics allows robots to take advantage of the rapid increase in data transfer rates to offload tasks without hard real time requirements. Cloud Robotics has rapidly gained momentum with initiatives by companies such as Google, Willow Garage and Gostai as well as more than a dozen a...

  8. Space Robotics Challenge

    Data.gov (United States)

    National Aeronautics and Space Administration — The Space Robotics Challenge seeks to infuse robot autonomy from the best and brightest research groups in the robotics community into NASA robots for future...

  9. Three dimensional measurement of dose distributions produced by a robot-mounted linac using magnetic resonance imaging of bang polymer gel dosimeters

    International Nuclear Information System (INIS)

    Wong, S.P.; Garwood, D.P.; Clarke, G.D.; McColl, R.W.; Maryanski, M.J.; Gore, J.C.

    1996-01-01

    Purpose/Objective: A novel image-guided robotic radiosurgical system, capable of irradiating 102 non-coplanar nodes in 3 π geometry, produces complex dose distributions which are difficult or impractical to measure with conventional dosimetry instrumentation. The recently developed BANG polymer gel dosimetry system provides accurate, high resolution and three dimensional dose distributions data and is ideally suited for the task described above. In this study, the polymer gels were used for imaging the dose distributions produced by this extremely flexible radiosurgical system. Materials and Methods: The dosimeter materials consist of 2-liter BANG polymer gels in spherical, clear glass flasks, closed with ground glass stoppers, with glass rods extending to the center of the gel that serve as a target for the frameless robotic radiosurgery. A compact 6 MV x-band linac (285 lbs) is mounted and maneuvered by a 6 degree-of-freedom robotic arm. The gels were irradiated using a 25 mm circular insert. A total of 10 Gy was delivered at isocenter at a dose rate of 300 cGy/min using all of the available 102 nodes. The gels were then imaged by MRI(GE Signa) at 1.5 T, using a series of Hahn spin echoes of TR = 3s, TE = 20,100,200,400 ms. Transverse relaxation rate (R 2 ) maps were constructed from those multiple images, using the non-linear least-squares Lavenberg-Marquardt algorithm and a data analysis and display program 'DoseMap' which was written using the scientific computational program MATLAB. R 2 maps were converted to dose maps using an R 2 -to-dose calibration curve. Dose maps and isodose curves were then compared with corresponding data from the treatment planning computer software. Results: The dose dependence of the NMR transverse relaxation rate, R 2 , is reproducible (less than 2 % variation) and is linear up to about 10 Gy, with a slope of 0.25 s -1 Gy -1 at 1.5 Tesla. Isodose curves in three orthogonal (axial, sagittal and coronal) planes show excellent

  10. Are Sex Robots as Bad as Killing Robots

    OpenAIRE

    Richardson, Kathleen

    2016-01-01

    In 2015 the Campaign Against Sex Robots was launched to draw attention to the technological production of new kinds of objects: sex robots of women and children. The campaign was launched shortly after the Future of Life Institute published an online petition: “Autonomous Weapons: An Open Letter From AI and Robotics Researchers” which was signed by leading luminaries in the field of AI and Robotics. In response to the Campaign, an academic at Oxford University opened an ethics thread “Are sex...

  11. A New Cancer Radiotherapy System Using Multi Robotic Manipulators

    International Nuclear Information System (INIS)

    Kim, Seung Ho; Lee, Nam Ho; Lee, Byung Chul; Jeung, Kyung Min; Lee, Seong Uk; Bae, Yeong Geol; Na, Hyun Seok

    2013-01-01

    The CyberKnife system is state-of-the-art cancer treatment equipment that combines an image tracking technique, artificial intelligence software, robot technology, accelerator technology, and treatment simulation technology. The current CyberKnife System has significant shortcomings. The biggest problem is that it takes a longer time to treat a tumor. A long treatment time gives stress to patients. Furthermore it makes the patients uncomfortable with radiation and thus it is difficult to measure the exact radiation dose rate to the tumor in the processing. Linear accelerators for radiation treatment are dependent on imports, and demand high maintenance cost. This also makes the treatment cost higher and prevents the popularization of radiation. To solve the disadvantages of the existing CyberKnife, a radiation treatment robot system applied to several articulated robots is suggested. Essential element techniques for new radiotherapy robot system are investigated and some problems of similar existing systems are analyzed. This paper presents a general configuration of a new radiation robot treatment system including with a quantitative goal of the requirement techniques. This paper described a new radiotherapy robot system to track the tumor using multiple articulated robots in real time. The existing CyberKnife system using a single robot arm has disadvantages of a long radiotherapy time, high medical fee, and inaccurate measurement of the radiotherapy dose. So a new radiotherapy robot system for tumors has been proposed to solve the above problems of conventional CyberKnife systems. Necessary technologies to configure new the radiotherapy robot system have been identified. Quantitative targets of each technology have been established. Multiple robot arms are adopted to decrease the radiotherapy time. The results of this research are provided as a requisite technology for a domestic radiotherapy system and are expected to be the foundation of new technology. The

  12. A New Cancer Radiotherapy System Using Multi Robotic Manipulators

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Ho; Lee, Nam Ho; Lee, Byung Chul; Jeung, Kyung Min; Lee, Seong Uk; Bae, Yeong Geol; Na, Hyun Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    The CyberKnife system is state-of-the-art cancer treatment equipment that combines an image tracking technique, artificial intelligence software, robot technology, accelerator technology, and treatment simulation technology. The current CyberKnife System has significant shortcomings. The biggest problem is that it takes a longer time to treat a tumor. A long treatment time gives stress to patients. Furthermore it makes the patients uncomfortable with radiation and thus it is difficult to measure the exact radiation dose rate to the tumor in the processing. Linear accelerators for radiation treatment are dependent on imports, and demand high maintenance cost. This also makes the treatment cost higher and prevents the popularization of radiation. To solve the disadvantages of the existing CyberKnife, a radiation treatment robot system applied to several articulated robots is suggested. Essential element techniques for new radiotherapy robot system are investigated and some problems of similar existing systems are analyzed. This paper presents a general configuration of a new radiation robot treatment system including with a quantitative goal of the requirement techniques. This paper described a new radiotherapy robot system to track the tumor using multiple articulated robots in real time. The existing CyberKnife system using a single robot arm has disadvantages of a long radiotherapy time, high medical fee, and inaccurate measurement of the radiotherapy dose. So a new radiotherapy robot system for tumors has been proposed to solve the above problems of conventional CyberKnife systems. Necessary technologies to configure new the radiotherapy robot system have been identified. Quantitative targets of each technology have been established. Multiple robot arms are adopted to decrease the radiotherapy time. The results of this research are provided as a requisite technology for a domestic radiotherapy system and are expected to be the foundation of new technology. The

  13. Port positioning and docking for single-stage totally robotic dissection for rectal cancer surgery with the Si and Xi Da Vinci Surgical System.

    Science.gov (United States)

    Toh, James Wei Tatt; Kim, Seon-Hahn

    2017-11-04

    We have previously reported our technique of single-docking totally robotic dissection for rectal cancer surgery using the Da Vinci ® Si Surgical System in 2009. However, we have since optimised our port placement for the Si system and have developed a novel configuration of port placement and docking for the Da Vinci ® Xi Surgical System. We have performed over 700 cases using this technique with the Si system and have used our Xi technique since 2016 for totally robotic dissection for rectal cancer. We have kept the configuration of port placements for both the Xi and Si system as similar as possible, with the priorities to avoid arm collisions as well as to provide a workable port configuration of two left-handed instruments and one right-handed instrument. To date, there have had no major complications or arm collisions related to this technique of docking, port positioning and instrument placement.

  14. Distal pancreatectomy and splenectomy: a robotic or LESS approach.

    Science.gov (United States)

    Ryan, Carrie E; Ross, Sharona B; Sukharamwala, Prashant B; Sadowitz, Benjamin D; Wood, Thomas W; Rosemurgy, Alexander S

    2015-01-01

    The role and application of robotic surgery are debated, particularly given the expansion of laparoscopy, especially laparoendoscopic single-site (LESS) surgery. This cohort study was undertaken to delineate differences in outcomes between LESS and robotic distal pancreatectomy and splenectomy. With Institutional Review Board approval, patients undergoing LESS or robotic distal pancreatectomy and splenectomy from September 1, 2012, through December 31, 2014, were prospectively observed, and data were collected. The results are expressed as the median, with the mean ± SD. Thirty-four patients underwent a minimally invasive distal pancreatectomy and splenectomy: 18 with robotic and 16 with LESS surgery. The patients were similar in sex, age, and body mass index. Conversions to open surgery and estimated blood loss were similar. There were two intraoperative complications in the group that underwent the robotic approach. Time spent in the operating room was significantly longer with the robot (297 vs 254 minutes, P = .03), although operative duration (i.e., incision to closure) was not longer (225 vs 190 minutes; P = .15). Of the operations studied, 79% were undertaken for neoplastic processes. Tumor size was 3.5 cm for both approaches; R0 resections were achieved in all patients. Length of stay was similar in the two study groups (5 vs 4 days). There was one 30-day readmission after robotic surgery. Patient outcomes are similar with LESS or robotic distal pancreatectomy and splenectomy. Robotic operations require more time in the operating room. Both are safe and efficacious minimally invasive operations that follow similar oncologic principles for similar tumors, and both should be in the surgeon's armamentarium for distal pancreatectomy and splenectomy.

  15. Disposable Fluidic Actuators for Miniature In-Vivo Surgical Robotics.

    Science.gov (United States)

    Pourghodrat, Abolfazl; Nelson, Carl A

    2017-03-01

    Fusion of robotics and minimally invasive surgery (MIS) has created new opportunities to develop diagnostic and therapeutic tools. Surgical robotics is advancing from externally actuated systems to miniature in-vivo robotics. However, with miniaturization of electric-motor-driven surgical robots, there comes a trade-off between the size of the robot and its capability. Slow actuation, low load capacity, sterilization difficulties, leaking electricity and transferring produced heat to tissues, and high cost are among the key limitations of the use of electric motors in in-vivo applications. Fluid power in the form of hydraulics or pneumatics has a long history in driving many industrial devices and could be exploited to circumvent these limitations. High power density and good compatibility with the in-vivo environment are the key advantages of fluid power over electric motors when it comes to in-vivo applications. However, fabrication of hydraulic/pneumatic actuators within the desired size and pressure range required for in-vivo surgical robotic applications poses new challenges. Sealing these types of miniature actuators at operating pressures requires obtaining very fine surface finishes which is difficult and costly. The research described here presents design, fabrication, and testing of a hydraulic/pneumatic double-acting cylinder, a limited-motion vane motor, and a balloon-actuated laparoscopic grasper. These actuators are small, seal-less, easy to fabricate, disposable, and inexpensive, thus ideal for single-use in-vivo applications. To demonstrate the ability of these actuators to drive robotic joints, they were modified and integrated in a robotic arm. The design and testing of this surgical robotic arm are presented to validate the concept of fluid-power actuators for in-vivo applications.

  16. Robotic Assistance for Training Finger Movement Using a Hebbian Model: A Randomized Controlled Trial.

    Science.gov (United States)

    Rowe, Justin B; Chan, Vicky; Ingemanson, Morgan L; Cramer, Steven C; Wolbrecht, Eric T; Reinkensmeyer, David J

    2017-08-01

    Robots that physically assist movement are increasingly used in rehabilitation therapy after stroke, yet some studies suggest robotic assistance discourages effort and reduces motor learning. To determine the therapeutic effects of high and low levels of robotic assistance during finger training. We designed a protocol that varied the amount of robotic assistance while controlling the number, amplitude, and exerted effort of training movements. Participants (n = 30) with a chronic stroke and moderate hemiparesis (average Box and Blocks Test 32 ± 18 and upper extremity Fugl-Meyer score 46 ± 12) actively moved their index and middle fingers to targets to play a musical game similar to GuitarHero 3 h/wk for 3 weeks. The participants were randomized to receive high assistance (causing 82% success at hitting targets) or low assistance (55% success). Participants performed ~8000 movements during 9 training sessions. Both groups improved significantly at the 1-month follow-up on functional and impairment-based motor outcomes, on depression scores, and on self-efficacy of hand function, with no difference between groups in the primary endpoint (change in Box and Blocks). High assistance boosted motivation, as well as secondary motor outcomes (Fugl-Meyer and Lateral Pinch Strength)-particularly for individuals with more severe finger motor deficits. Individuals with impaired finger proprioception at baseline benefited less from the training. Robot-assisted training can promote key psychological outcomes known to modulate motor learning and retention. Furthermore, the therapeutic effectiveness of robotic assistance appears to derive at least in part from proprioceptive stimulation, consistent with a Hebbian plasticity model.

  17. Robotics

    Energy Technology Data Exchange (ETDEWEB)

    Lorino, P; Altwegg, J M

    1985-05-01

    This article, which is aimed at the general reader, examines latest developments in, and the role of, modern robotics. The 7 main sections are sub-divided into 27 papers presented by 30 authors. The sections are as follows: 1) The role of robotics, 2) Robotics in the business world and what it can offer, 3) Study and development, 4) Utilisation, 5) Wages, 6) Conditions for success, and 7) Technological dynamics.

  18. One-Session Treatment of Specific Phobias: A Detailed Description and Review of Treatment Efficacy

    Science.gov (United States)

    Zlomke, Kimberly; Davis, Thompson E., III

    2008-01-01

    One-Session Treatment (OST) is a form of massed exposure therapy for the treatment of specific phobias. OST combines exposure, participant modeling, cognitive challenges, and reinforcement in a single session, maximized to three hours. Clients are gradually exposed to steps of their fear hierarchy using therapist-directed behavioral experiments.…

  19. Physiological effects of a single chest physiotherapy session in mechanically ventilated and extubated preterm neonates.

    Science.gov (United States)

    Mehta, Y; Shetye, J; Nanavati, R; Mehta, A

    2016-01-01

    To assess the changes on various physiological cardio-respiratory parameters with a single chest physiotherapy session in mechanically ventilated and extubated preterm neonates with respiratory distress syndrome. This is a prospective observational study in a neonatal intensive care unit setting. Sixty preterm neonates with respiratory distress syndrome, thirty mechanically ventilated and thirty extubated preterm neonates requiring chest physiotherapy were enrolled in the study. Parameters like heart rate (HR), respiratory rate (RR), Silverman Anderson score (SA score in extubated), oxygen saturation (SpO2) and auscultation findings were noted just before, immediately after chest physiotherapy but before suctioning, immediately after suctioning and after 5 minutes of the session. The mean age of neonates was 9.55±5.86 days and mean birth weight was 1550±511.5 g. As there was no significant difference in the change in parameters on intergroup comparison, further analysis was done considering two groups together (n = 60) except for SA score. As SA score was measured only in extubated neonates. HR did not change significantly during chest physiotherapy compared to the baseline but significantly decreased after 15 minutes (p = 0.01). RR and SA score significantly increased after suctioning (p = 0.014) but reduced after 15 minutes (p = physiotherapy (p = physiotherapy may help facilitate the overall well-being of a fragile preterm neonate. Lung auscultation finding suggests that after suctioning, there was a significant reduction in crepitation (p = 0.0000) but significant increase in crepitation after 15 minutes (p = physiotherapy. Chest physiotherapy is safe in preterm neonates. Suctioning causes significant cardio-respiratory parameter changes, but within normal physiological range. Thus, chest physiotherapy should be performed with continuous monitoring only when indicated and not as a routine procedure. More research is needed

  20. FPGA for Robotic Applications: from Android/Humanoid Robots to Artificial Men

    Directory of Open Access Journals (Sweden)

    Tole Sutikno

    2011-12-01

    Full Text Available Researches on home robots have been increasing enormously. There has always existed a continuous research effort on problems of anthropomorphic robots which is now called humanoid robots. Currently, robotics has evolved to the point that different branches have reached a remarkable level of maturity, that neural network and fuzzy logic are the main artificial intelligence as intelligent control on the robotics. Despite all this progress, while aiming at accomplishing work-tasks originally charged only to humans, robotic science has perhaps quite naturally turned into the attempt to create artificial men. It is true that artificial men or android humanoid robots open certainly very broad prospects. This “robot” may be viewed as a personal helper, and it will be called a home-robot, or personal robot. This is main reason why the two special sections are issued in the TELKOMNIKA sequentially.

  1. Teaching Joint-Level Robot Programming with a New Robotics Software Tool

    Directory of Open Access Journals (Sweden)

    Fernando Gonzalez

    2017-12-01

    Full Text Available With the rising popularity of robotics in our modern world there is an increase in the number of engineering programs that offer the basic Introduction to Robotics course. This common introductory robotics course generally covers the fundamental theory of robotics including robot kinematics, dynamics, differential movements, trajectory planning and basic computer vision algorithms commonly used in the field of robotics. Joint programming, the task of writing a program that directly controls the robot’s joint motors, is an activity that involves robot kinematics, dynamics, and trajectory planning. In this paper, we introduce a new educational robotics tool developed for teaching joint programming. The tool allows the student to write a program in a modified C language that controls the movement of the arm by controlling the velocity of each joint motor. This is a very important activity in the robotics course and leads the student to gain knowledge of how to build a robotic arm controller. Sample assignments are presented for different levels of difficulty.

  2. Session-RPE for quantifying load of different youth taekwondo training sessions.

    Science.gov (United States)

    Lupo, Corrado; Capranica, Laura; Cortis, Cristina; Guidotti, Flavia; Bianco, Antonino; Tessitore, Antonio

    2017-03-01

    The session rating of perceived exertion (session-RPE) proved to be a valuable method to quantify the internal training load (ITL) in taekwondo. However, no study validated this method in youth taekwondo athletes performing different training sessions. Thus this study aimed at evaluating the reliability of the session-RPE to monitor the ITL of prepubescent taekwondo athletes during pre-competitive (PC) and competitive (C) training sessions. Five female (age: 12.0±0.7 y; height: 1.54±0.08 m; body mass: 48.8±7.3 kg) and four male (age: 12.0±0.8 yrs; height: 1.55±0.07 m; body mass: 47.3±5.3 kg) taekwondo athletes were monitored during 100 individual sessions (PC: N.=33; C: N.=67). The Edwards' HR method was used as reference measure of ITL; the CR-10 RPE scale was administered at 1- and 30-minutes from the end of each session. No difference for gender emerged. The ITLs of C (Edwards: 228±40 arbitrary units, AU) resulted higher than that of PC (192±26 AU; P=0.04). Although all training typologies and data collections achieved significant correlations between Edwards' and session-RPE methods, a large relationship (r =0.71, Psessions evaluated at 30 minutes of the recovery phases. Findings support coaches of prepubescent taekwondo athletes to successfully use session-RPE to monitor the ITL of different training typologies. However, PC training evaluated at 30 minutes of the recovery phase represents the best condition for a highly reliable ITL perception.

  3. Robot ZORA in rehabilitation and special education for children with severe physical disabilities: a pilot study.

    Science.gov (United States)

    van den Heuvel, Renée J F; Lexis, Monique A S; de Witte, Luc P

    2017-12-01

    The aim of this study was to explore the potential of ZORA robot-based interventions in rehabilitation and special education for children with severe physical disabilities. A two-centre explorative pilot study was carried out over a 2.5-month period involving children with severe physical disabilities with a developmental age ranging from 2 to 8 years. Children participated in six sessions with the ZORA robot in individual or in group sessions. Qualitative and quantitative methods were used to collect data on aspects of feasibility, usability, barriers and facilitators for the child as well as for the therapist and to obtain an indication of the effects on playfulness and the achievement of goals. In total, 17 children and seven professionals participated in the study. The results of this study show a positive contribution of ZORA in achieving therapy and educational goals. Moreover, sessions with ZORA were indicated as playful. Three main domains were indicated to be the most promising for the application of ZORA: movement skills, communication skills and cognitive skills. Furthermore, ZORA can contribute towards eliciting motivation, concentration, taking initiative and improving attention span of the children. On the basis of the results of the study, it can be concluded that ZORA has potential in therapy and education for children with severe physical disabilities. More research is needed to gain insight into how ZORA can be applied best in rehabilitation and special education.

  4. Assessing treatment integrity in cognitive-behavioral therapy: comparing session segments with entire sessions.

    Science.gov (United States)

    Weck, Florian; Grikscheit, Florian; Höfling, Volkmar; Stangier, Ulrich

    2014-07-01

    The evaluation of treatment integrity (therapist adherence and competence) is a necessary condition to ensure the internal and external validity of psychotherapy research. However, the evaluation process is associated with high costs, because therapy sessions must be rated by experienced clinicians. It is debatable whether rating session segments is an adequate alternative to rating entire sessions. Four judges evaluated treatment integrity (i.e., therapist adherence and competence) in 84 randomly selected videotapes of cognitive-behavioral therapy for major depressive disorder, social anxiety disorder, and hypochondriasis (from three different treatment outcome studies). In each case, two judges provided ratings based on entire therapy sessions and two on session segments only (i.e., the middle third of the entire sessions). Interrater reliability of adherence and competence evaluations proved satisfactory for ratings based on segments and the level of reliability did not differ from ratings based on entire sessions. Ratings of treatment integrity that were based on entire sessions and session segments were strongly correlated (r=.62 for adherence and r=.73 for competence). The relationship between treatment integrity and outcome was comparable for ratings based on session segments and those based on entire sessions. However, significant relationships between therapist competence and therapy outcome were only found in the treatment of social anxiety disorder. Ratings based on segments proved to be adequate for the evaluation of treatment integrity. The findings demonstrate that session segments are an adequate and cost-effective alternative to entire sessions for the evaluation of therapist adherence and competence. Copyright © 2014. Published by Elsevier Ltd.

  5. Intelligent, self-contained robotic hand

    Science.gov (United States)

    Krutik, Vitaliy; Doo, Burt; Townsend, William T.; Hauptman, Traveler; Crowell, Adam; Zenowich, Brian; Lawson, John

    2007-01-30

    A robotic device has a base and at least one finger having at least two links that are connected in series on rotary joints with at least two degrees of freedom. A brushless motor and an associated controller are located at each joint to produce a rotational movement of a link. Wires for electrical power and communication serially connect the controllers in a distributed control network. A network operating controller coordinates the operation of the network, including power distribution. At least one, but more typically two to five, wires interconnect all the controllers through one or more joints. Motor sensors and external world sensors monitor operating parameters of the robotic hand. The electrical signal output of the sensors can be input anywhere on the distributed control network. V-grooves on the robotic hand locate objects precisely and assist in gripping. The hand is sealed, immersible and has electrical connections through the rotary joints for anodizing in a single dunk without masking. In various forms, this intelligent, self-contained, dexterous hand, or combinations of such hands, can perform a wide variety of object gripping and manipulating tasks, as well as locomotion and combinations of locomotion and gripping.

  6. Modular ankle robotics training in early subacute stroke: a randomized controlled pilot study.

    Science.gov (United States)

    Forrester, Larry W; Roy, Anindo; Krywonis, Amanda; Kehs, Glenn; Krebs, Hermano Igo; Macko, Richard F

    2014-09-01

    BACKGROUND. Modular lower extremity robotics may offer a valuable avenue for restoring neuromotor control after hemiparetic stroke. Prior studies show that visually guided and visually evoked practice with an ankle robot (anklebot) improves paretic ankle motor control that translates into improved overground walking. To assess the feasibility and efficacy of daily anklebot training during early subacute hospitalization poststroke. Thirty-four inpatients from a stroke unit were randomly assigned to anklebot (n = 18) or passive manual stretching (n = 16) treatments. All suffered a first stroke with residual hemiparesis (ankle manual muscle test grade 1/5 to 4/5), and at least trace muscle activation in plantar- or dorsiflexion. Anklebot training employed an "assist-as-needed" approach during >200 volitional targeted paretic ankle movements, with difficulty adjusted to active range of motion and success rate. Stretching included >200 daily mobilizations in these same ranges. All sessions lasted 1 hour and assessments were not blinded. Both groups walked faster at discharge; however, the robot group improved more in percentage change of temporal symmetry (P = .032) and also of step length symmetry (P = .038), with longer nonparetic step lengths in the robot (133%) versus stretching (31%) groups. Paretic ankle control improved in the robot group, with increased peak (P ≤ .001) and mean (P ≤ .01) angular speeds, and increased movement smoothness (P ≤ .01). There were no adverse events. Though limited by small sample size and restricted entry criteria, our findings suggest that modular lower extremity robotics during early subacute hospitalization is well tolerated and improves ankle motor control and gait patterning. © The Author(s) 2014.

  7. Timing of Multimodal Robot Behaviors during Human-Robot Collaboration

    DEFF Research Database (Denmark)

    Jensen, Lars Christian; Fischer, Kerstin; Suvei, Stefan-Daniel

    2017-01-01

    In this paper, we address issues of timing between robot behaviors in multimodal human-robot interaction. In particular, we study what effects sequential order and simultaneity of robot arm and body movement and verbal behavior have on the fluency of interactions. In a study with the Care-O-bot, ...... output plays a special role because participants carry their expectations from human verbal interaction into the interactions with robots....

  8. Precision in robotic rectal surgery using the da Vinci Xi system and integrated table motion, a technical note.

    Science.gov (United States)

    Panteleimonitis, Sofoklis; Harper, Mick; Hall, Stuart; Figueiredo, Nuno; Qureshi, Tahseen; Parvaiz, Amjad

    2017-09-15

    Robotic rectal surgery is becoming increasingly more popular among colorectal surgeons. However, time spent on robotic platform docking, arm clashing and undocking of the platform during the procedure are factors that surgeons often find cumbersome and time consuming. The newest surgical platform, the da Vinci Xi, coupled with integrated table motion can help to overcome these problems. This technical note aims to describe a standardised operative technique of single docking robotic rectal surgery using the da Vinci Xi system and integrated table motion. A stepwise approach of the da Vinci docking process and surgical technique is described accompanied by an intra-operative video that demonstrates this technique. We also present data collected from a prospectively maintained database. 33 consecutive rectal cancer patients (24 male, 9 female) received robotic rectal surgery with the da Vinci Xi during the preparation of this technical note. 29 (88%) patients had anterior resections, and four (12%) had abdominoperineal excisions. There were no conversions, no anastomotic leaks and no mortality. Median operation time was 331 (249-372) min, blood loss 20 (20-45) mls and length of stay 6.5 (4-8) days. 30-day readmission rate and re-operation rates were 3% (n = 1). This standardised technique of single docking robotic rectal surgery with the da Vinci Xi is safe, feasible and reproducible. The technological advances of the new robotic system facilitate the totally robotic single docking approach.

  9. Effects of a Single Session of High Intensity Interval Treadmill Training on Corticomotor Excitability following Stroke: Implications for Therapy

    Directory of Open Access Journals (Sweden)

    Sangeetha Madhavan

    2016-01-01

    Full Text Available Objective. High intensity interval treadmill training (HIITT has been gaining popularity for gait rehabilitation after stroke. In this study, we examined the changes in excitability of the lower limb motor cortical representation (M1 in chronic stroke survivors following a single session of HIITT. We also determined whether exercise-induced changes in excitability could be modulated by transcranial direct current stimulation (tDCS enhanced with a paretic ankle skill acquisition task. Methods. Eleven individuals with chronic stroke participated in two 40-minute treadmill-training sessions: HIITT alone and HITT preceded by anodal tDCS enhanced with a skill acquisition task (e-tDCS+HIITT. Transcranial magnetic stimulation (TMS was used to assess corticomotor excitability of paretic and nonparetic tibialis anterior (TA muscles. Results. HIIT alone reduced paretic TA M1 excitability in 7 of 11 participants by ≥ 10%. e-tDCS+HIITT increased paretic TA M1 excitability and decreased nonparetic TA M1 excitability. Conclusions. HIITT suppresses corticomotor excitability in some people with chronic stroke. When HIITT is preceded by tDCS in combination with a skill acquisition task, the asymmetry of between-hemisphere corticomotor excitability is reduced. Significance. This study provides preliminary data indicating that the cardiovascular benefits of HIITT may be achieved without suppressing motor excitability in some stroke survivors.

  10. Effects of prolonged exercise versus multiple short exercise sessions on risk for metabolic syndrome and the atherogenic index in middle-aged obese women: a randomised controlled trial.

    Science.gov (United States)

    Chung, JinWook; Kim, KwangJun; Hong, Jeeyoung; Kong, Hyoun-Joong

    2017-08-22

    Many people, although they may recognise the positive effects of exercise, do not exercise regularly owing to lack of time. This study aimed to investigate the effects of prolonged single-session exercise and multiple short sessions of exercise on the risk of metabolic syndrome and the atherogenic index in middle-aged obese women. Thirty-six participants were divided into the single-session group, multiple-session group, and control group. The single-session group engaged in one session of treadmill exercise for 30 min a day; the multiple-session group had three sessions of 10 min a day. Both groups exercised 3 days/week for 12 weeks. The control group did not perform any exercise. The single-session group showed decreases in weight (0.97 kg [95% C.I. = 0.09-1.83], p exercise is superior to multiple short sessions for improving the risk of metabolic syndrome and the atherogenic index in middle-aged obese women. However, multiple short sessions can be recommended as an alternative to prolonged exercise when the goal is to decrease blood glucose or waist circumference.

  11. Predicting efficacy of robot-aided rehabilitation in chronic stroke patients using an MRI-compatible robotic device.

    Science.gov (United States)

    Sergi, Fabrizio; Krebs, Hermano Igo; Groissier, Benjamin; Rykman, Avrielle; Guglielmelli, Eugenio; Volpe, Bruce T; Schaechter, Judith D

    2011-01-01

    We are investigating the neural correlates of motor recovery promoted by robot-mediated therapy in chronic stroke. This pilot study asked whether efficacy of robot-aided motor rehabilitation in chronic stroke could be predicted by a change in functional connectivity within the sensorimotor network in response to a bout of motor rehabilitation. To address this question, two stroke patients participated in a functional connectivity MRI study pre and post a 12-week robot-aided motor rehabilitation program. Functional connectivity was evaluated during three consecutive scans before the rehabilitation program: resting-state; point-to-point reaching movements executed by the paretic upper extremity (UE) using a newly developed MRI-compatible sensorized passive manipulandum; resting-state. A single resting-state scan was conducted after the rehabilitation program. Before the program, UE movement reduced functional connectivity between the ipsilesional and contralesional primary motor cortex. Reduced interhemispheric functional connectivity persisted during the second resting-state scan relative to the first and during the resting-state scan after the rehabilitation program. Greater reduction in interhemispheric functional connectivity during the resting-state was associated with greater gains in UE motor function induced by the 12-week robotic therapy program. These findings suggest that greater reduction in interhemispheric functional connectivity in response to a bout of motor rehabilitation may predict greater efficacy of the full rehabilitation program.

  12. From Catastrophizing to Recovery: a pilot study of a single-session treatment for pain catastrophizing

    Directory of Open Access Journals (Sweden)

    Darnall BD

    2014-04-01

    Full Text Available Beth D Darnall, John A Sturgeon, Ming-Chih Kao, Jennifer M Hah, Sean C MackeyDivision of Pain Medicine, Stanford Systems Neuroscience and Pain Laboratory, Stanford University School of Medicine, Palo Alto, CA, USABackground: Pain catastrophizing (PC – a pattern of negative cognitive-emotional responses to real or anticipated pain – maintains chronic pain and undermines medical treatments. Standard PC treatment involves multiple sessions of cognitive behavioral therapy. To provide efficient treatment, we developed a single-session, 2-hour class that solely treats PC entitled “From Catastrophizing to Recovery”[FCR].Objectives: To determine 1 feasibility of FCR; 2 participant ratings for acceptability, understandability, satisfaction, and likelihood to use the information learned; and 3 preliminary efficacy of FCR for reducing PC.Design and methods: Uncontrolled prospective pilot trial with a retrospective chart and database review component. Seventy-six patients receiving care at an outpatient pain clinic (the Stanford Pain Management Center attended the class as free treatment and 70 attendees completed and returned an anonymous survey immediately post-class. The Pain Catastrophizing Scale (PCS was administered at class check-in (baseline and at 2, and 4 weeks post-treatment. Within subjects repeated measures analysis of variance (ANOVA with Student's t-test contrasts were used to compare scores across time points.Results: All attendees who completed a baseline PCS were included as study participants (N=57; F=82%; mean age =50.2 years; PCS was completed by 46 participants at week 2 and 35 participants at week 4. Participants had significantly reduced PC at both time points (P<0001 and large effect sizes were found (Cohen's d=0.85 and d=1.15.Conclusion: Preliminary data suggest that FCR is an acceptable and effective treatment for PC. Larger, controlled studies of longer duration are needed to determine durability of response, factors

  13. Autonomy in robots and other agents.

    Science.gov (United States)

    Smithers, T

    1997-06-01

    The word "autonomous" has become widely used in artificial intelligence, robotics, and, more recently, artificial life and is typically used to qualify types of systems, agents, or robots: we see terms like "autonomous systems," "autonomous agents," and "autonomous robots." Its use in these fields is, however, both weak, with no distinctions being made that are not better and more precisely made with other existing terms, and varied, with no single underlying concept being involved. This ill-disciplined usage contrasts strongly with the use of the same term in other fields such as biology, philosophy, ethics, law, and human rights, for example. In all these quite different areas the concept of autonomy is essentially the same, though the language used and the aspects and issues of concern, of course, differ. In all these cases the underlying notion is one of self-law making and the closely related concept of self-identity. In this paper I argue that the loose and varied use of the term autonomous in artificial intelligence, robotics, and artificial life has effectively robbed these fields of an important concept. A concept essentially the same as we find it in biology, philosophy, ethics, and law, and one that is needed to distinguish a particular kind of agent or robot from those developed and built so far. I suggest that robots and other agents will have to be autonomous, i.e., self-law making, not just self-regulating, if they are to be able effectively to deal with the kinds of environments in which we live and work: environments which have significant large scale spatial and temporal invariant structure, but which also have large amounts of local spatial and temporal dynamic variation and unpredictability, and which lead to the frequent occurrence of previously unexperienced situations for the agents that interact with them.

  14. Robotics Potential Fields

    Directory of Open Access Journals (Sweden)

    Jordi Lucero

    2009-01-01

    Full Text Available This problem was to calculate the path a robot would take to navigate an obstacle field and get to its goal. Three obstacles were given as negative potential fields which the robot avoided, and a goal was given a positive potential field that attracted the robot. The robot decided each step based on its distance, angle, and influence from every object. After each step, the robot recalculated and determined its next step until it reached its goal. The robot's calculations and steps were simulated with Microsoft Excel.

  15. Perioperative risk assessment in robotic general surgery: lessons learned from 884 cases at a single institution.

    Science.gov (United States)

    Buchs, Nicolas C; Addeo, Pietro; Bianco, Francesco M; Gorodner, Veronica; Ayloo, Subhashini M; Elli, Enrique F; Oberholzer, José; Benedetti, Enrico; Giulianotti, Pier C

    2012-08-01

    To assess factors associated with morbidity and mortality following the use of robotics in general surgery. Case series. University of Illinois at Chicago. Eight hundred eighty-four consecutive patients who underwent a robotic procedure in our institution between April 2007 and July 2010. Perioperative morbidity and mortality. During the study period, 884 patients underwent a robotic procedure. The conversion rate was 2%, the mortality rate was 0.5%, and the overall postoperative morbidity rate was 16.7%. The reoperation rate was 2.4%. Mean length of stay was 4.5 days (range, 0.2-113 days). In univariate analysis, several factors were associated with increased morbidity and included either patient-related (cardiovascular and renal comorbidities, American Society of Anesthesiologists score ≥ 3, body mass index [calculated as weight in kilograms divided by height in meters squared] surgery, malignant disease, body mass index of less than 30, hypertension, and transfusion were factors significantly associated with a higher risk for complications. American Society of Anesthesiologists score of 3 or greater, age 70 years or older, cardiovascular comorbidity, and blood loss of 500 mL or more were also associated with increased risk for mortality. Use of the robotic approach for general surgery can be achieved safely with low morbidity and mortality. Several risk factors have been identified as independent causes for higher morbidity and mortality. These can be used to identify patients at risk before and during the surgery and, in the future, to develop a scoring system for the use of robotic general surgery

  16. Learning probabilistic features for robotic navigation using laser sensors.

    Directory of Open Access Journals (Sweden)

    Fidel Aznar

    Full Text Available SLAM is a popular task used by robots and autonomous vehicles to build a map of an unknown environment and, at the same time, to determine their location within the map. This paper describes a SLAM-based, probabilistic robotic system able to learn the essential features of different parts of its environment. Some previous SLAM implementations had computational complexities ranging from O(Nlog(N to O(N(2, where N is the number of map features. Unlike these methods, our approach reduces the computational complexity to O(N by using a model to fuse the information from the sensors after applying the Bayesian paradigm. Once the training process is completed, the robot identifies and locates those areas that potentially match the sections that have been previously learned. After the training, the robot navigates and extracts a three-dimensional map of the environment using a single laser sensor. Thus, it perceives different sections of its world. In addition, in order to make our system able to be used in a low-cost robot, low-complexity algorithms that can be easily implemented on embedded processors or microcontrollers are used.

  17. Learning probabilistic features for robotic navigation using laser sensors.

    Science.gov (United States)

    Aznar, Fidel; Pujol, Francisco A; Pujol, Mar; Rizo, Ramón; Pujol, María-José

    2014-01-01

    SLAM is a popular task used by robots and autonomous vehicles to build a map of an unknown environment and, at the same time, to determine their location within the map. This paper describes a SLAM-based, probabilistic robotic system able to learn the essential features of different parts of its environment. Some previous SLAM implementations had computational complexities ranging from O(Nlog(N)) to O(N(2)), where N is the number of map features. Unlike these methods, our approach reduces the computational complexity to O(N) by using a model to fuse the information from the sensors after applying the Bayesian paradigm. Once the training process is completed, the robot identifies and locates those areas that potentially match the sections that have been previously learned. After the training, the robot navigates and extracts a three-dimensional map of the environment using a single laser sensor. Thus, it perceives different sections of its world. In addition, in order to make our system able to be used in a low-cost robot, low-complexity algorithms that can be easily implemented on embedded processors or microcontrollers are used.

  18. The Effects of Rhythm and Robotic Interventions on the Imitation/Praxis, Interpersonal Synchrony, and Motor Performance of Children with Autism Spectrum Disorder (ASD): A Pilot Randomized Controlled Trial

    Science.gov (United States)

    Srinivasan, Sudha M.; Kaur, Maninderjit; Park, Isabel K.; Gifford, Timothy D.; Marsh, Kerry L.; Bhat, Anjana N.

    2015-01-01

    We assessed the effects of three interventions, rhythm, robotic, and standard-of-care, on the imitation/praxis, interpersonal synchrony, and overall motor performance of 36 children with Autism Spectrum Disorder (ASD) between 5 and 12 years of age. Children were matched on age, level of functioning, and services received, prior to random assignment to one of the three groups. Training was provided for 8 weeks with 4 sessions provided each week. We assessed generalized changes in motor skills from the pretest to the posttest using a standardized test of motor performance, the Bruininks-Oseretsky Test of Motor Proficiency, 2nd edition (BOT-2). We also assessed training-specific changes in imitation/praxis and interpersonal synchrony during an early and a late session. Consistent with the training activities practiced, the rhythm and robot groups improved on the body coordination composite of the BOT-2, whereas the comparison group improved on the fine manual control composite of the BOT-2. All three groups demonstrated improvements in imitation/praxis. The rhythm and robot groups also showed improved interpersonal synchrony performance from the early to the late session. Overall, socially embedded movement-based contexts are valuable in promoting imitation/praxis, interpersonal synchrony, and motor performance and should be included within the standard-of-care treatment for children with ASD. PMID:26793394

  19. The Effects of Rhythm and Robotic Interventions on the Imitation/Praxis, Interpersonal Synchrony, and Motor Performance of Children with Autism Spectrum Disorder (ASD: A Pilot Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Sudha M. Srinivasan

    2015-01-01

    Full Text Available We assessed the effects of three interventions, rhythm, robotic, and standard-of-care, on the imitation/praxis, interpersonal synchrony, and overall motor performance of 36 children with Autism Spectrum Disorder (ASD between 5 and 12 years of age. Children were matched on age, level of functioning, and services received, prior to random assignment to one of the three groups. Training was provided for 8 weeks with 4 sessions provided each week. We assessed generalized changes in motor skills from the pretest to the posttest using a standardized test of motor performance, the Bruininks-Oseretsky Test of Motor Proficiency, 2nd edition (BOT-2. We also assessed training-specific changes in imitation/praxis and interpersonal synchrony during an early and a late session. Consistent with the training activities practiced, the rhythm and robot groups improved on the body coordination composite of the BOT-2, whereas the comparison group improved on the fine manual control composite of the BOT-2. All three groups demonstrated improvements in imitation/praxis. The rhythm and robot groups also showed improved interpersonal synchrony performance from the early to the late session. Overall, socially embedded movement-based contexts are valuable in promoting imitation/praxis, interpersonal synchrony, and motor performance and should be included within the standard-of-care treatment for children with ASD.

  20. Automated Simultaneous Local Ties with GNSS and Robot Tacheometer

    Science.gov (United States)

    Kallio, Ulla; Lösler, Michael; Bergstrand, Sten; Haas, Rüdiger; Eschelbach, Cornelia

    2016-12-01

    We have used GPS-based local-tie measurements simultaneously with geo-VLBI observations since 2008 during every geodetic VLBI session at Metsähovi. This system uses gimbal-mounted GNSS antennas that are mounted on the reflector of the Metsähovi 14-m radio telescope. A similar system was installed in 2013 at the Onsala 20-m radio telescope and has been used for a large number of VLBI sessions, including, e.g., the 15-day-long CONT14 campaign. In order to verify the results of the two systems, we performed a dedicated measurement campaign in the framework of the SIB60 project, involving both Metsähovi and Onsala. During this campaign the local ties at the two stations were measured simultaneously during two VLBI sessions in August and September 2015 where both stations participated. The robot tacheometer monitoring system HEIMDALL was used for the automated classical monitoring of the telescopes at both stations. Moreover, additional local terrestrial measurements were performed several times to derive the full IVS-IGS local ties at both sites. The kinematic GPS measurements at the two stations were analyzed with two independently developed analysis programs. We present here the preparations of the campaign, the measurement process, and preliminary results.