WorldWideScience

Sample records for fractured formations

  1. Fracturing formations in wells

    Energy Technology Data Exchange (ETDEWEB)

    Daroza, R A

    1964-05-15

    This well stimulation method comprises introducing through the well bore a low-penetrating, dilatant fluid, and subjecting the fluid to sufficient pressure to produce fractures in the formation. The fluid is permitted to remain in contact with the formation so as to become diluted by the formation fluids, and thereby lose its properties of dilatancy. Also, a penetrating fluid, containing a propping agent suspended therein, in introduced into contact with the fractures at a pressure substantially reduced with respect to that pressure which would have been required, prior to the fracturing operation performed using the low-penetrating dilatant fluid. The propping agent is deposited within the fractures, and thereafter, fluid production is resumed from the fractured formation. (2 claims)

  2. Fracturing of subterranean formations

    Energy Technology Data Exchange (ETDEWEB)

    Kiel, O.M.; Kidwell, A.L.

    1968-03-19

    This method of propping fractured formations results in high conductivities. In the method, certain naturally occurring crystals are used as propping agents. Suitable crystals include garnet, corundum, zircon, rutile, high-temperature quartz, and other minerals which have Moh's hardness values of about 6 or greater and weather out as individual crystals of about 40 mesh or larger. These are said to result in permeabilities significantly higher than those obtained with ordinary quartz sand, metallic shot, glass beads, plastic particles, walnut hulls, or similar materials. (10 claims)

  3. Process for fracturing underground formations

    Energy Technology Data Exchange (ETDEWEB)

    Kiel, O M

    1974-01-25

    This invention concerns a process for fracturing underground formations and has as one object the mixing of viscous compositions. Through a borehole, a fluid is injected into the formation. This fluid contains a complex prepared by the reaction of an aliphatic quaternary ammonium compound with a water-soluble compound chosen from monosaccharides, disaccharides, trisaccharides, polysaccharides, and synthetic hydroxylated polymers with long chains. These complexes are formed at temperatures between 20/sup 0/ and 205/sup 0/C. The process also includes production of formation fluid into the borehole.

  4. Formation fracturing by energy waves

    Energy Technology Data Exchange (ETDEWEB)

    Brandon, C W

    1966-11-28

    A method described for recovering oil from an oil strata penetrated by a well bore includes a step of applying fluid pressure to the interior of the well bore across the face of the stratum, and alternately varying the applied fluid pressure, first above and then below the reservoir pressure. This is in order to fracture and break up the face of the strata from internal pressure exerted on the strata. The pressure is affected using liquefied gas at low pressure across the formation.

  5. Explosively fracturing a productive oil and gas formation

    Energy Technology Data Exchange (ETDEWEB)

    Brandon, C W

    1966-06-23

    In this method of fracturing an oil- or gas-producing strata, a portion of the formation adjacent to, but separated from, the producing strata is fractured. Explosives are then introduced into the fracture in this portion of the formation and thereafter detonated to fracture the productive strata. Also claimed are a method of variably controlling the extent and force of the explosives used, and a method of increasing oil and gas production from a productive strata.

  6. Arrangement for formation perforating and fracturing

    Energy Technology Data Exchange (ETDEWEB)

    Belyaev, B M; Vitsenii, E M; Zheltov, Yu P; Nikolaev, S I

    1962-03-06

    An arrangement for perforating and hydraulic fracturing, to be lowered on a wire line, consists of a chamber with a shaped charge, a head and a nozzle. This arrangement enables carrying out, simultaneously, the operations of perforating and fracturing. The device may be equipped with separate sections with shaped charges and a powder chamber in which powder charges are placed, designed to be ignited in sequence by slow- acting electric igniters. For controlling the gas pressure and strengthening the arrangement in the zone of perforation, the device is equipped with rubber seals which release the ring elements under pressure of explosive gas. Between the walls of the casing and the rubber seals is an annular space through the gas escapes.

  7. Scale dependency of fractional flow dimension in a fractured formation

    Directory of Open Access Journals (Sweden)

    Y.-C. Chang

    2011-07-01

    Full Text Available The flow dimensions of fractured media were usually predefined before the determination of the hydraulic parameters from the analysis of field data in the past. However, it would be improper to make assumption about the flow geometry of fractured media before site characterization because the hydraulic structures and flow paths are complex in the fractured media. An appropriate way to investigate the hydrodynamic behavior of a fracture system is to determine the flow dimension and aquifer parameters simultaneously. The objective of this study is to analyze a set of field data obtained from four observation wells during an 11-day hydraulic test at Chingshui geothermal field (CGF in Taiwan in determining the hydrogeologic properties of the fractured formation. Based on the generalized radial flow (GRF model and the optimization scheme, simulated annealing, an approach is therefore developed for the data analyses. The GRF model allows the flow dimension to be integer or fractional. We found that the fractional flow dimension of CGF increases near linearly with the distance between the pumping well and observation well, i.e. the flow dimension of CGF exhibits scale-dependent phenomenon. This study provides insights into interpretation of fracture flow at CGF and gives a reference for characterizing the hydrogeologic properties of fractured media.

  8. Formation evaluation of fractured basement, Cambay Basin, India

    International Nuclear Information System (INIS)

    Gupta, Saurabh Datta; Farooqui, M Y; Chatterjee, Rima

    2012-01-01

    Unconventional reservoirs such as fractured basalts, shale gas and tight sand are currently playing an important role in producing a significant amount of hydrocarbon. The Deccan Trap basaltic rocks form the basement of the Cambay Basin, India, and hold commercially producible hydrocarbon. In this study two wells drilled through fractured basalts are chosen for evaluating the lithology, porosity and oil saturation of the reservoir sections. Well logs, such as gamma ray, high resolution resistivity, litho density, compensated neutron and elemental capture spectroscopy, have been used in cross-plotting techniques for lithology and mineral identification. Formation micro imagery log data have been analysed to quantify the fractures and porosity in the fractured reservoirs for a well in the south Ahmedabad block of the Cambay Basin. The results of the analysis of two wells are presented and discussed and they are found to be in good agreement with geological and production data. (paper)

  9. Hydraulic Fracture Growth in a Layered Formation based on Fracturing Experiments and Discrete Element Modeling

    Science.gov (United States)

    Yushi, Zou; Xinfang, Ma; Tong, Zhou; Ning, Li; Ming, Chen; Sihai, Li; Yinuo, Zhang; Han, Li

    2017-09-01

    Hydraulic fracture (HF) height containment tends to occur in layered formations, and it significantly influences the entire HF geometry or the stimulated reservoir volume. This study aims to explore the influence of preexisting bedding planes (BPs) on the HF height growth in layered formations. Laboratory fracturing experiments were performed to confirm the occurrence of HF height containment in natural shale that contains multiple weak and high-permeability BPs under triaxial stresses. Numerical simulations were then conducted to further illustrate the manner in which vertical stress, BP permeability, BP density(or spacing), pump rate, and fluid viscosity control HF height growth using a 3D discrete element method-based fracturing model. In this model, the rock matrix was considered transversely isotropic and multiple BPs can be explicitly represented. Experimental and numerical results show that the vertically growing HF tends to be limited by multi-high-permeability BPs, even under higher vertical stress. When the vertically growing HF intersects with the multi-high-permeability BPs, the injection pressure will be sharply reduced. If a low pumping rate or a low-viscosity fluid is used, the excess fracturing fluid leak-off into the BPs obviously decreases the rate of pressure build up, which will then limit the growth of HF. Otherwise, a higher pumping rate and/or a higher viscosity will reduce the leak-off time and fluid volume, but increase the injection pressure to drive the HF to grow and to penetrate through the BPs.

  10. The Influence of Fractures on Radionuclide Transport in Granite Formations

    International Nuclear Information System (INIS)

    Guarracino, Luis; Quintana, Fernando; Bevilacqua, Arturo

    2003-01-01

    Simulation of radionuclide transport in fractured hard rocks is of interest to many research areas like geological disposal of high-level nuclear wastes.The objective of this study is to present a numerical simulation of water flow and radionuclide transport near a hypothetical repository in deep geological formations.The water flow is assumed to obey the highly nonlinear Richards' equation, which is approximated using a finite element method for the spatial discretization combined with a third order accurate Crank-Nicholson scheme in time.A Picard iteration scheme is used to treat the non-linear terms of the equation.Contaminant transport is described by the advection-diffusion-reaction equation, assuming linear adsorption and first order decay.This equation is solved using a Sub Grid Scale algorithm.Illustrative examples showing the influence of fractures in the contaminant process for different radioisotopes are presented

  11. Roles of Chondrocytes in Endochondral Bone Formation and Fracture Repair

    Science.gov (United States)

    Hinton, R.J.; Jing, Y.; Jing, J.; Feng, J.Q.

    2016-01-01

    The formation of the mandibular condylar cartilage (MCC) and its subchondral bone is an important but understudied topic in dental research. The current concept regarding endochondral bone formation postulates that most hypertrophic chondrocytes undergo programmed cell death prior to bone formation. Under this paradigm, the MCC and its underlying bone are thought to result from 2 closely linked but separate processes: chondrogenesis and osteogenesis. However, recent investigations using cell lineage tracing techniques have demonstrated that many, perhaps the majority, of bone cells are derived via direct transformation from chondrocytes. In this review, the authors will briefly discuss the history of this idea and describe recent studies that clearly demonstrate that the direct transformation of chondrocytes into bone cells is common in both long bone and mandibular condyle development and during bone fracture repair. The authors will also provide new evidence of a distinct difference in ossification orientation in the condylar ramus (1 ossification center) versus long bone ossification formation (2 ossification centers). Based on our recent findings and those of other laboratories, we propose a new model that contrasts the mode of bone formation in much of the mandibular ramus (chondrocyte-derived) with intramembranous bone formation of the mandibular body (non-chondrocyte-derived). PMID:27664203

  12. Experimental study upon the effect of irradiation on callus formation of fracture. Observation of vascular alteration and callus formation

    Energy Technology Data Exchange (ETDEWEB)

    Saigusa, F [Nippon Dental Coll., Tokyo

    1981-02-01

    Irradiation effects on callus formation after bone fracture were studied in rats with fractured right lower extremity. Follow-up study was continued for 112 days since 3000 rad was irradiated to the fractured site 3 days after bone fracture. Callus formation was noted in both of the outer and inner part (bone marrow) of the diaphysis before 14 days after bone fracture, but it was slow and sparse compared with that of non-irradiated group. Callus formation tended to disappear gradually from the outside of the diaphysis after 28 days after bone fracture. Strong disturbance was found in the surrounding vascular system at this time. Inside of the diaphysis, callus formation was restricted the end of the fracture, where lamellar calluses fused together. Changes in vascular system remained until 56 days after bone fracture. Vascular distribution was most dense 28 days after bone fracture. In many of the calluses which have established fusion, findings suggested excessive calcification in the trabeculae. Vascular distribution at this time was sparse, vascular formation was markedly suppressed in the bone marrow, and very little vascular formation was found in the fractured edges of the bone.

  13. Possible origin, nature, extent and tectomic position of joints and fracture in salt formations

    International Nuclear Information System (INIS)

    Weiss, H.M.

    1984-01-01

    The evaluation of about 500 bibliographic references for the safe ultimate storage in salt leds to the following results: fractures in rock salt and potash salt are formed in all types of storage, fractures are less numerous in a vertical storage than in a horizontal storage, nevertheless fissures are found in salt fomations containing liquids or gas undergoing rock pressures, fractures can be created during salt formation. Datation of formations by geologic methods and K-Ar method are considered. Deep formations (about 300m) are liquid and gas-tight, if homogenous and non perturbated. In all German permian formations are found indications of brine accumulation along fractures and tectonic zones

  14. Heavy crude production from shallow formations: long horizontal wells versus horizontal fractures

    Energy Technology Data Exchange (ETDEWEB)

    Valko, P.; Economides, M. J. [Texas A and M Univ., TX (United States)

    1998-12-31

    The feasibility of producing heavy oil from shallow formations using either horizontal wells or short horizontal wells fractured horizontally is demonstrated. The problem of optimum proppant placement is solved in two steps. In step one, the finite productivity performance is considered in general terms showing that the performance is a function of two dimensionless parameters. Following derivation of optimum conditions, the solution is applied to the horizontal fracture consideration. The limiting factor is that to create an effective finite conductivity fracture, the dimensionless fracture conductivity must be on the order of unity, a fracture that is difficult to realize in higher permeability formations. The best candidates for the suggested configuration are shallow or moderate formations, or formations otherwise proven to accept horizontal fractures, and formations with low permeability/viscosity ratio. 7 refs., 2 tabs., 10 figs., 2 appendices.

  15. Experimental study upon the effect of irradiation on callus formation of fracture

    International Nuclear Information System (INIS)

    Saigusa, Fujio

    1981-01-01

    Irradiation effects on callus formation after bone fracture were studied in rats with fractured right lower extremity. Follow-up study was continued for 112 days since 3000 rad was irradiated to the fractured site 3 days after bone fracture. Callus formation was noted in both of the outer and inner part (bone marrow) of the diaphysis before 14 days after bone fracture, but it was slow and sparse compared with that of non-irradiated group. Callus formation tended to disappear gradually from the outside of the diaphysis after 28 days after bone fracture. Strong disturbance was found in the surrounding vascular system at this time. Inside of the diaphysis, callus formation was restricted the end of the fracture, where lamellar calluses fused together. Changes in vascular system remained until 56 days after bone fracture. Vascular distribution was most dense 28 days after bone fracture. In many of the calluses which have established fusion, findings suggested excessive calcification in the trabeculae. Vascular distribution at this time was sparse, vascular formation was markedly suppressed in the bone marrow, and very little vascular formation was found in the fractured edges of the bone. (Ueda, J.)

  16. A Laboratory Study of the Effects of Interbeds on Hydraulic Fracture Propagation in Shale Formation

    Directory of Open Access Journals (Sweden)

    Zhiheng Zhao

    2016-07-01

    Full Text Available To investigate how the characteristics of interbeds affect hydraulic fracture propagation in the continental shale formation, a series of 300 mm × 300 mm × 300 mm concrete blocks with varying interbeds, based on outcrop observation and core measurement of Chang 7-2 shale formation, were prepared to conduct the hydraulic fracturing experiments. The results reveal that the breakdown pressure increases with the rise of thickness and strength of interbeds under the same in-situ field stress and injection rate. In addition, for the model blocks with thick and high strength interbeds, the hydraulic fracture has difficulty crossing the interbeds and is prone to divert along the bedding faces, and the fracturing effectiveness is not good. However, for the model blocks with thin and low strength interbeds, more long branches are generated along the main fracture, which is beneficial to the formation of the fracture network. What is more, combining the macroscopic descriptions with microscopic observations, the blocks with thinner and lower strength interbeds tend to generate more micro-fractures, and the width of the fractures is relatively larger on the main fracture planes. Based on the experiments, it is indicated that the propagation of hydraulic fractures is strongly influenced by the characteristics of interbeds, and the results are instructive to the understanding and evaluation of the fracability in the continental shale formation.

  17. Effect of hydro mechanical coupling on natural fracture network formation in sedimentary basins

    Science.gov (United States)

    Ouraga, Zady; Guy, Nicolas; Pouya, Amade

    2018-05-01

    In sedimentary basin context, numerous phenomena, depending on the geological time span, can result in natural fracture network formation. In this paper, fracture network and dynamic fracture spacing triggered by significant sedimentation rate are studied considering mode I fracture propagation using a coupled hydro-mechanical numerical methods. The focus is put on synthetic geological structure under a constant sedimentation rate on its top. This model contains vertical fracture network initially closed and homogeneously distributed. The fractures are modelled with cohesive zone model undergoing damage and the flow is described by Poiseuille's law. The effect of the behaviour of the rock is studied and the analysis leads to a pattern of fracture network and fracture spacing in the geological layer.

  18. Effect of biofilm formation, and biocorrosion on denture base fractures.

    Science.gov (United States)

    Sahin, Cem; Ergin, Alper; Ayyildiz, Simel; Cosgun, Erdal; Uzun, Gulay

    2013-05-01

    The aim of this study was to investigate the destructive effects of biofilm formation and/or biocorrosive activity of 6 different oral microorganisms. Three different heat polymerized acrylic resins (Ivocap Plus, Lucitone 550, QC 20) were used to prepare three different types of samples. Type "A" samples with "V" type notch was used to measure the fracture strength, "B" type to evaluate the surfaces with scanning electron microscopy and "C" type for quantitative biofilm assay. Development and calculation of biofilm covered surfaces on denture base materials were accomplished by SEM and quantitative biofilm assay. According to normality assumptions ANOVA or Kruskal-Wallis was selected for statistical analysis (α=0.05). Significant differences were obtained among the adhesion potential of 6 different microorganisms and there were significant differences among their adhesion onto 3 different denture base materials. Compared to the control groups after contamination with the microorganisms, the three point bending test values of denture base materials decreased significantly (P.05). All the tested microorganisms had destructive effect over the structure and composition of the denture base materials.

  19. Crack formation and fracture energy of normal and high strength ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. The crack path through composite materials such as concrete depends on the mechanical interaction of inclusions with the cement-based matrix. Fracture energy depends on the deviations of a real crack from an idealized crack plane. Fracture energy and strain softening of normal, high strength, and self- ...

  20. Method for detecting fractures in formations surroundingearth boreholes

    International Nuclear Information System (INIS)

    Fertl, W.H.

    1979-01-01

    A well is first logged with gamma ray detection system to provide a base log. Fluid containing salt of potassium, uranium or thorium is then injected into the well opposite the interval of interest. When the well head pressure is increased, some of the injected fluid will move into the fracture or other highly permeable localized zones. The gamma ray detection system is then run again one or more times through the well to provide a log which is compared with the base log. The fracture is detected by localized drastically higher readings observed on the repeat run of the gamma ray detection logging system

  1. Clastic patterned ground in Lomonosov crater, Mars: examining fracture controlled formation mechanisms

    Science.gov (United States)

    Barrett, Alexander M.; Balme, Matthew R.; Patel, Manish R.; Hagermann, Axel

    2017-10-01

    The area surrounding Lomonosov crater on Mars has a high density of seemingly organised boulder patterns. These form seemingly sorted polygons and stripes within kilometre scale blockfields, patches of boulder strewn ground which are common across the Martian high latitudes. Several hypotheses have been suggested to explain the formation of clastic patterned ground on Mars. It has been proposed that these structures could have formed through freeze-thaw sorting, or conversely by the interaction of boulders with underlying fracture polygons. In this investigation a series of sites were examined to evaluate whether boulder patterns appear to be controlled by the distribution of underlying fractures and test the fracture control hypotheses for their formation. It was decided to focus on this suite of mechanisms as they are characterised by a clear morphological relationship, namely the presence of an underlying fracture network which can easily be evaluated over a large area. It was found that in the majority of examples at these sites did not exhibit fracture control. Although fractures were present at many sites there were very few sites where the fracture network appeared to be controlling the boulder distribution. In general these were not the sites with the best examples of organization, suggesting that the fracture control mechanisms are not the dominant geomorphic process organising the boulders in this area.

  2. Experimental Analysis of Hydraulic Fracture Growth and Acoustic Emission Response in a Layered Formation

    Science.gov (United States)

    Ning, Li; Shicheng, Zhang; Yushi, Zou; Xinfang, Ma; Shan, Wu; Yinuo, Zhang

    2018-04-01

    Microseismic/acoustic emission (AE) monitoring is an essential technology for understanding hydraulic fracture (HF) geometry and stimulated reservoir volume (SRV) during hydraulic fracturing in unconventional reservoirs. To investigate HF growth mechanisms and features of induced microseismic/AE events in a layered formation, laboratory fracturing experiments were performed on shale specimens (30 cm × 30 cm × 30 cm) with multiple bedding planes (BPs) under triaxial stresses. AE monitoring was used to reveal the spatial distribution and hypocenter mechanisms of AE events induced by rock failure. Computerized tomography scanning was used to observe the internal fracture geometry. Experimental results showed that the various HF geometries could be obviously distinguished based on injection pressure curves and AE responses. Fracture complexity was notably increased when vertically growing HFs connected with and opened more BPs. The formation of a complex fracture network was generally indicated by frequent fluctuations in injection pressure curves, intense AE activity, and three-dimensionally distributed AE events. Investigations of the hypocenter mechanisms revealed that shear failure/event dominated in shale specimens. Shear and tensile events were induced in hydraulically connected regions, and shear events also occurred around BPs that were not hydraulically connected. This led to an overestimation of HF height and SRV in layered formations based on the AE location results. The results also showed that variable injection rate and using plugging agent were conducive in promoting HF to penetrate through the weak and high-permeability BPs, thereby increasing the fracture height.

  3. Fractured-aquifer hydrogeology from geophysical logs; the passaic formation, New Jersey

    Science.gov (United States)

    Morin, R.H.; Carleton, G.B.; Poirier, S.

    1997-01-01

    The Passaic Formation consists of gradational sequences of mudstone, siltstone, and sandstone, and is a principal aquifer in central New Jersey. Ground-water flow is primarily controlled by fractures interspersed throughout these sedimentary rocks and characterizing these fractures in terms of type, orientation, spatial distribution, frequency, and transmissivity is fundamental towards understanding local fluid-transport processes. To obtain this information, a comprehensive suite of geophysical logs was collected in 10 wells roughly 46 m in depth and located within a .05 km2 area in Hopewell Township, New Jersey. A seemingly complex, heterogeneous network of fractures identified with an acoustic televiewer was statistically reduced to two principal subsets corresponding to two distinct fracture types: (1) bedding-plane partings and (2) high-angle fractures. Bedding-plane partings are the most numerous and have an average strike of N84??W and dip of 20??N. The high-angle fractures are oriented subparallel to these features, with an average strike of N79??E and dip of 71??S, making the two fracture types roughly orthogonal. Their intersections form linear features that also retain this approximately east-west strike. Inspection of fluid temperature and conductance logs in conjunction with flowmeter measurements obtained during pumping allows the transmissive fractures to be distinguished from the general fracture population. These results show that, within the resolution capabilities of the logging tools, approximately 51 (or 18 percent) of the 280 total fractures are water producing. The bedding-plane partings exhibit transmissivities that average roughly 5 m2/day and that generally diminish in magnitude and frequency with depth. The high-angle fractures have average transmissivities that are about half those of the bedding-plane partings and show no apparent dependence upon depth. The geophysical logging results allow us to infer a distinct hydrogeologic structure

  4. An overview of hydraulic fracturing and other formation stimulation technologies for shale gas production

    OpenAIRE

    GANDOSSI Luca

    2013-01-01

    The technology of hydraulic fracturing for hydrocarbon well stimulation is not new, but only fairly recently has become a very common and widespread technique, especially in North America, due to technological advances that have allowed extracting natural gas from so-called unconventional reservoirs (tight sands, coal beds and shale formations). The conjunction of techniques such as directional drilling, high volume fracturing, micro-seismic monitoring, etc. with the development of multi-well...

  5. An overview of hydraulic fracturing and other formation stimulation technologies for shale gas production - Update 2015

    OpenAIRE

    GANDOSSI Luca; VON ESTORFF Ulrik

    2015-01-01

    The technology of hydraulic fracturing for hydrocarbon well stimulation is not new, but only fairly recently has become a very common and widespread technique, especially in North America, due to technological advances that have allowed extracting natural gas from so-called unconventional reservoirs (tight sands, coal beds and shale formations). The conjunction of techniques such as directional drilling, high volume fracturing, micro-seismic monitoring, etc. with the development of multi-well...

  6. Callus formation in bone fractures combined with brain injury in rat

    Directory of Open Access Journals (Sweden)

    Yu-Ping Chen

    2017-01-01

    Full Text Available Objective: The objective of this study was to determine the speed of bony union and the serum levels of biomarkers in the setting of bone fractures combined with brain injury. Materials and Methods: In this study, Sprague–Dawley rats were randomized into four groups: sham, brain injury, bone fracture, and bone fracture plus brain injury groups. The serum levels of biochemical markers, namely, nerve growth factor (NGF, Wnt-3a, Dickkopf-related protein-1, receptor-activator of NF-κB ligand, and adrenocorticotropic hormone (ACTH, were measured on the days 1, 3, 7, and 14 following injury. Bony union was evaluated using radiographs every week for 6 weeks. Results: Compared with the brain injury group and bone fracture group, the radiographs of the bone fracture plus brain injury group revealed enhanced callus formations in week 2. From week 3, the callus formation did not differ significantly among the groups. The serum levels of the biomarkers varied at different time points. The serum levels of NGF on days 1 and 3, Wnt-3a on days 3 and 14, and ACTH on days 1, 3, and 7 were significantly higher in the bone fracture plus brain injury group than in the bone fracture group. Conclusions: Brain injury increases callus formation in simultaneous bone fracture. Considering the time point, early NGF, Wnt-3a, and ACTH elevation might be associated with early callus formation enhancement. The results indicate that these brain injury-induced biomarkers might play crucial role in accelerating bone healing.

  7. Biomimetic strategies for fracture repair: engineering the cell microenvironment for directed tissue formation

    OpenAIRE

    Vas, Wollis J.; Shah, Mittal; Al Hosni, Rawiya; Owen, Helen C.; Roberts, Scott J.

    2017-01-01

    Complications resulting from impaired fracture healing have major clinical implications on fracture management strategies. Novel concepts taken from developmental biology have driven research strategies towards the elaboration of regenerative approaches that can truly harness the complex cellular events involved in tissue formation and repair. Advances in polymer technology and a better understanding of naturally derived scaffolds have given rise to novel biomaterials with an increasing abili...

  8. Seismic fracture detection of shale gas reservoir in Longmaxi formation, Sichuan Basin, China

    Science.gov (United States)

    Lu, Yujia; Cao, Junxing; Jiang, Xudong

    2017-11-01

    In the shale reservoirs, fractures play an important role, which not only provide space for the oil and gas, but also offer favorable petroleum migration channel. Therefore, it is of great significance to study the fractures characteristics in shale reservoirs for the exploration and development of shale gas. In this paper, four analysis technologies involving coherence, curvature attribute, structural stress field simulation and pre-stack P-wave azimuthal anisotropy have been applied to predict the fractures distribution in the Longmaxi formation, Silurian, southeast of Sichuan Basin, China. By using the coherence and curvature attribute, we got the spatial distribution characteristics of fractures in the study area. Structural stress field simulation can help us obtain distribution characteristics of structural fractures. And using the azimuth P-wave fracture detection technology, we got the characteristics about the fracture orientation and density of this region. Application results show that there are NW and NE fractures in the study block, which is basically consistent with the result of log interpretation. The results also provide reliable geological basis for shale gas sweet spots prediction.

  9. Non-darcy flow behavior mean high-flux injection wells in porous and fractured formations

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yu-Shu

    2003-04-25

    This paper presents a study of non-Darcy fluid flow through porous and fractured rock, which may occur near wells during high-flux injection of waste fluids into underground formations. Both numerical and analytical models are used in this study. General non-Darcy flow is described using the Forchheimer equation, implemented in a three-dimensional, multiphase flow reservoir simulator. The non-Darcy flow through a fractured reservoir is handled using a general dual continuum approach, covering commonly used conceptual models, such as double porosity, dual permeability, explicit fracture, etc. Under single-phase flow conditions, an approximate analytical solution, as an extension of the Warren-Root solution, is discussed. The objectives of this study are (1) to obtain insights into the effect of non-Darcy flow on transient pressure behavior through porous and fractured reservoirs and (2) to provide type curves for well test analyses of non-Darcy flow wells. The type curves generated include various types of drawdown, injection, and buildup tests with non-Darcy flow occurring in porous and fractured reservoirs. In addition, non-Darcy flow into partially penetrating wells is also considered. The transient-pressure type curves for flow in fractured reservoirs are based on the double-porosity model. Type curves provided in this work for non-Darcy flow in porous and fractured reservoirs will find their applications in well test interpretation using a type-curve matching technique.

  10. An integrated structural and geochemical study of fracture aperture growth in the Campito Formation of eastern California

    Science.gov (United States)

    Doungkaew, N.; Eichhubl, P.

    2015-12-01

    Processes of fracture formation control flow of fluid in the subsurface and the mechanical properties of the brittle crust. Understanding of fundamental fracture growth mechanisms is essential for understanding fracture formation and cementation in chemically reactive systems with implications for seismic and aseismic fault and fracture processes, migration of hydrocarbons, long-term CO2 storage, and geothermal energy production. A recent study on crack-seal veins in deeply buried sandstone of east Texas provided evidence for non-linear fracture growth, which is indicated by non-elliptical kinematic fracture aperture profiles. We hypothesize that similar non-linear fracture growth also occurs in other geologic settings, including under higher temperature where solution-precipitation reactions are kinetically favored. To test this hypothesis, we investigate processes of fracture growth in quartzitic sandstone of the Campito Formation, eastern California, by combining field structural observations, thin section petrography, and fluid inclusion microthermometry. Fracture aperture profile measurements of cemented opening-mode fractures show both elliptical and non-elliptical kinematic aperture profiles. In general, fractures that contain fibrous crack-seal cement have elliptical aperture profiles. Fractures filled with blocky cement have linear aperture profiles. Elliptical fracture aperture profiles are consistent with linear-elastic or plastic fracture mechanics. Linear aperture profiles may reflect aperture growth controlled by solution-precipitation creep, with the aperture distribution controlled by solution-precipitation kinetics. We hypothesize that synkinematic crack-seal cement preserves the elliptical aperture profiles of elastic fracture opening increments. Blocky cement, on the other hand, may form postkinematically relative to fracture opening, with fracture opening accommodated by continuous solution-precipitation creep.

  11. Magma fracturing and degassing associated with obsidian formation: The explosive–effusive transition

    Science.gov (United States)

    Cabrera, Agustin; Weinberg, Roberto; Wright, Heather M.

    2015-01-01

    This paper explores the role of melt fracturing in degassing rhyolitic volcanic systems. The Monte Pilato-Rocche Rosse eruptions in Italy evolved from explosive to effusive in style, and H2O content in quenched glasses changed over time from relatively H2O-rich (~ 0.90 wt.%) to H2O-poor dense obsidian (~ 0.10–0.20 wt.%). In addition, healed fractures have been recorded in all different eruptive materials, from the glass of early-erupted tube pumice and rinds of breadcrusted obsidian pyroclasts, to the glass of late-erupted dense obsidian pyroclasts, and throughout the final effusive Rocche Rosse lava flow. These rocks show multiple fault sets, some with crenulated fault planes indicating resumption of viscous flow after faulting, complex obsidian breccias with evidence for post-brecciation folding and stretching, and centimetre- to metre-thick tuffisite preserved in pyroclasts and lava, representing collapsed foam due to fracturing of vesicle walls. These microstructural observations indicate that multiple fracturing and healing events occurred during both explosive and effusive eruptions. H2O content in glass decreases by as much as 0.14 wt.% towards healed fractures/faults and decreases in stretched obsidian breccias towards regions of intense brecciation. A drop in pressure and/or increase in temperature along fractures caused diffusive H2O migration through melt towards fracture surfaces. Repetitive and pervasive fracturing and healing thereby create conditions for diffusive H2O loss into fractures and subsequent escape through permeable paths. This type of progressive magma degassing provides a potential mechanism to explain the formation of dense obsidian and the evolution from explosive to effusive eruption style.

  12. Parameters controlling fracturing distribution: example of an Upper Jurassic marly-calcareous formation (eastern Paris Basin)

    International Nuclear Information System (INIS)

    Andre, G.; Rebours, H.; Wileveau, Y.; Proudhon, B.

    2006-01-01

    Study of fractures along a 490-m vertical section of marl/limestone alternations in the Upper Jurassic (Meuse/Haute-Marne underground research laboratory-eastern Paris Basin) reveals their organization and the different states of palaeo-stress. Type and extension of tectonic structures seem to be controlled principally by lithology and secondary by depth. Also, it appears deviations of Alpine palaeo-stresses between Kimmeridgian and Oxfordian formations. These deviations are related to the presence of marl/limestone contacts. The vertical evolution of current horizontal maximum stress shows a similar behaviour, with deviations at the walls of Callovo-Oxfordian argilites. These results allow us to point out and to discuss the impact of lithology, rheology and depth on fracturing occurrence and distribution. Furthermore, this study suggests the role of Callovo-Oxfordian as a barrier for fracture development between the limestones of Dogger and Oxfordian formations. (authors)

  13. Intramedullary Mg2Ag nails augment callus formation during fracture healing in mice.

    Science.gov (United States)

    Jähn, Katharina; Saito, Hiroaki; Taipaleenmäki, Hanna; Gasser, Andreas; Hort, Norbert; Feyerabend, Frank; Schlüter, Hartmut; Rueger, Johannes M; Lehmann, Wolfgang; Willumeit-Römer, Regine; Hesse, Eric

    2016-05-01

    Intramedullary stabilization is frequently used to treat long bone fractures. Implants usually remain unless complications arise. Since implant removal can become technically very challenging with the potential to cause further tissue damage, biodegradable materials are emerging as alternative options. Magnesium (Mg)-based biodegradable implants have a controllable degradation rate and good tissue compatibility, which makes them attractive for musculoskeletal research. Here we report for the first time the implantation of intramedullary nails made of an Mg alloy containing 2% silver (Mg2Ag) into intact and fractured femora of mice. Prior in vitro analyses revealed an inhibitory effect of Mg2Ag degradation products on osteoclast differentiation and function with no impair of osteoblast function. In vivo, Mg2Ag implants degraded under non-fracture and fracture conditions within 210days and 133days, respectively. During fracture repair, osteoblast function and subsequent bone formation were enhanced, while osteoclast activity and bone resorption were decreased, leading to an augmented callus formation. We observed a widening of the femoral shaft under steady state and regenerating conditions, which was at least in part due to an uncoupled bone remodeling. However, Mg2Ag implants did not cause any systemic adverse effects. These data suggest that Mg2Ag implants might be promising for intramedullary fixation of long bone fractures, a novel concept that has to be further investigated in future studies. Biodegradable implants are promising alternatives to standard steel or titanium implants to avoid implant removal after fracture healing. We therefore developed an intramedullary nail using a novel biodegradable magnesium-silver-alloy (Mg2Ag) and investigated the in vitro and in vivo effects of the implants on bone remodeling under steady state and fracture healing conditions in mice. Our results demonstrate that intramedullary Mg2Ag nails degrade in vivo over time without

  14. Major factors controlling fracture development in the Middle Permian Lucaogou Formation tight oil reservoir, Junggar Basin, NW China

    Science.gov (United States)

    Zhang, Chen; Zhu, Deyu; Luo, Qun; Liu, Luofu; Liu, Dongdong; Yan, Lin; Zhang, Yunzhao

    2017-09-01

    Natural fractures in seven wells from the Middle Permian Lucaogou Formation in the Junggar Basin were evaluated in light of regional structural evolution, tight reservoir geochemistry (including TOC and mineral composition), carbon and oxygen isotopes of calcite-filled fractures, and acoustic emission (AE). Factors controlling the development of natural fractures were analyzed using qualitative and/or semi-quantitative techniques, with results showing that tectonic factors are the primary control on fracture development in the Middle Permian Lucaogou Formation of the Junggar Basin. Analyses of calcite, dolomite, and TOC show positive correlations with the number of fractures, while deltaic lithofacies appear to be the most favorable for fracture development. Mineral content was found to be a major control on tectonic fracture development, while TOC content and sedimentary facies mainly control bedding fractures. Carbon and oxygen isotopes vary greatly in calcite-filled fractures (δ13C ranges from 0.87‰ to 7.98‰, while δ18O ranges from -12.63‰ to -5.65‰), indicating that fracture development increases with intensified tectonic activity or enhanced diagenetic alteration. By analyzing the cross-cutting relationships of fractures in core, as well as four Kaiser Effect points in the acoustic emission curve, we observed four stages of tectonic fracture development. First-stage fractures are extensional, and were generated in the late Triassic, with calcite fracture fills formed between 36.51 °C and 56.89 °C. Second-stage fractures are shear fractures caused by extrusion stress from the southwest to the northeast, generated by the rapid uplift of the Tianshan in the Middle and Late Jurassic; calcite fracture fills formed between 62.91 °C and 69.88 °C. Third-stage fractures are NNW-trending shear fractures that resulted from north-south extrusion and thrusting in a foreland depression along the front of the Early Cretaceous Bogda Mountains. Calcite fracture

  15. MRT letter: Contrast-enhanced computed tomographic imaging of soft callus formation in fracture healing.

    Science.gov (United States)

    Hayward, Lauren Nicole Miller; de Bakker, Chantal Marie-Jeanne; Lusic, Hrvoje; Gerstenfeld, Louis Charles; Grinstaff, Mark W; Morgan, Elise Feng-I

    2012-01-01

    Formation of a cartilaginous soft callus at the site of a bone fracture is a pivotal stage in the healing process. Noninvasive, or even nondestructive, imaging of soft callus formation can be an important tool in experimental and pre-clinical studies of fracture repair. However, the low X-ray attenuation of cartilage renders the soft callus nearly invisible in radiographs. This study utilized a recently developed, cationic, iodinated contrast agent in conjunction with micro-computed tomography to identify cartilage in fracture calluses in the femora of C57BL/6J and C3H/HeJ mice. Fracture calluses were scanned before and after incubation in the contrast agent. The set of pre-incubation images was registered against and then subtracted from the set of post-incubation images, resulting in a three-dimensional map of the locations of cartilage in the callus, as labeled by the contrast agent. This map was then compared to histology from a previous study. The results showed that the locations where the contrast agent collected in relatively high concentrations were similar to those of the cartilage. The contrast agent also identified a significant difference between the two strains of mice in the percentage of the callus occupied by cartilage, indicating that this method of contrast-enhanced computed tomography may be an effective technique for nondestructive, early evaluation of fracture healing. Copyright © 2011 Wiley Periodicals, Inc.

  16. Locked plating of distal femur fractures leads to inconsistent and asymmetric callus formation.

    Science.gov (United States)

    Lujan, Trevor J; Henderson, Chris E; Madey, Steven M; Fitzpatrick, Dan C; Marsh, J Lawrence; Bottlang, Michael

    2010-03-01

    Locked plating constructs may be too stiff to reliably promote secondary bone healing. This study used a novel imaging technique to quantify periosteal callus formation of distal femur fractures stabilized with locking plates. It investigated the effects of cortex-to-plate distance, bridging span, and implant material on periosteal callus formation. Retrospective cohort study. One Level I and one Level II trauma center. Sixty-four consecutive patients with distal femur fractures (AO types 32A, 33A-C) stabilized with periarticular locking plates. Osteosynthesis using indirect reduction and bridge plating with periarticular locking plates. Periosteal callus size on lateral and anteroposterior radiographs. Callus size varied from 0 to 650 mm2. Deficient callus (20 mm2 or less) formed in 52%, 47%, and 37% of fractures at 6, 12, and 24 weeks postsurgery, respectively. Callus formation was asymmetric, whereby the medial cortex had on average 64% more callus (P=0.001) than the anterior or posterior cortices. A longer bridge span correlated minimally with an increased callus size at Week 6 (P=0.02), but no correlation was found at Weeks 12 and 24 postsurgery. Compared with stainless steel plates, titanium plates had 76%, 71%, and 56% more callus at Week 6 (P=0.04), Week 12 (P=0.03), and Week 24 (P=0.09), respectively. Stabilization of distal femur fractures with periarticular locking plates can cause inconsistent and asymmetric formation of periosteal callus. A larger bridge span only minimally improves callus formation. The more flexible titanium plates enhanced callus formation compared with stainless steel plates.

  17. Numerical Modeling of Methane Leakage from a Faulty Natural Gas Well into Fractured Tight Formations.

    Science.gov (United States)

    Moortgat, Joachim; Schwartz, Franklin W; Darrah, Thomas H

    2018-03-01

    Horizontal drilling and hydraulic fracturing have enabled hydrocarbon recovery from unconventional reservoirs, but led to natural gas contamination of shallow groundwaters. We describe and apply numerical models of gas-phase migration associated with leaking natural gas wells. Three leakage scenarios are simulated: (1) high-pressure natural gas pulse released into a fractured aquifer; (2) continuous slow leakage into a tilted fractured formation; and (3) continuous slow leakage into an unfractured aquifer with fluvial channels, to facilitate a generalized evaluation of natural gas transport from faulty natural gas wells. High-pressure pulses of gas leakage into sparsely fractured media are needed to produce the extensive and rapid lateral spreading of free gas previously observed in field studies. Transport in fractures explains how methane can travel vastly different distances and directions laterally away from a leaking well, which leads to variable levels of methane contamination in nearby groundwater wells. Lower rates of methane leakage (≤1 Mcf/day) produce shorter length scales of gas transport than determined by the high-pressure scenario or field studies, unless aquifers have low vertical permeabilities (≤1 millidarcy) and fractures and bedding planes have sufficient tilt (∼10°) to allow a lateral buoyancy component. Similarly, in fractured rock aquifers or where permeability is controlled by channelized fluvial deposits, lateral flow is not sufficiently developed to explain fast-developing gas contamination (0-3 months) or large length scales (∼1 km) documented in field studies. Thus, current efforts to evaluate the frequency, mechanism, and impacts of natural gas leakage from faulty natural gas wells likely underestimate contributions from small-volume, low-pressure leakage events. © 2018, National Ground Water Association.

  18. An interbubble fracture mechanism of blister formation on helium-irradiated metals

    International Nuclear Information System (INIS)

    Evans, J.H.

    1977-01-01

    This paper describes a new model of surface blister formation in which a blister is nucleated by the interbubble fracture of highly overpressurized helium bubbles. As in other gas-driven models, the internal release of helium then provides the driving force for blister lid deformation. The high pressures required for the suggested mode of fracture are a result of the difficulty, experienced by the bubbles in acquiring vacancies. By considering the bubble growth mechanisms, the critical conditions for interbubble fracture are shown to depend on the helium dose and energy, the bubble size, and their depth in the irradiated material. These parameters and other aspects of blister formation are discussed on the basis of the proposed model. One important result concerns the position of the fracture plane; because of the usual displacement of damage and helium peaks relative to depth, this plane can lie well beyond the helium peak. Thus, the disagreement inherent in previous gas models between helium range and measured blister lid thickness values can be resolved without recourse to lateral stress arguments. (Auth.)

  19. Wormholes propagation for fractured-vuggy formation: Laboratory tests, numerical simulation and field application

    Directory of Open Access Journals (Sweden)

    Fei Liu

    2017-12-01

    Full Text Available The propagation of wormhole is vital important for matrix acidizing and acid fracturing in carbonate reservoirs. While the formation of acid dissolved wormhole is derived from heterogeneous physical and chemical transportations and reactions. Alveolate dissolved pores, krast caves, and natural fissures are the major reservoir spaces for the Sinian dolomite formation in the Anyue gas field of the Sichuan Basin. There were four categories of formation, which are matrix dominated, inter-breccia dissolved pore dominated, dissolved pore and cave dominated, and fissure and cave dominated, based on the development intensity and connectedness of caves and fissures. The caves and fissures make the wormhole formation and propagation particularly complicated. Firstly, the 3-D topological structure of dissolved pores, vugs, fissures and throats inside cores is quantitatively scanned by CT imaging technology for its feature of vivid and damage-free. Secondly, 3-D patterns of wormhole are obtained with CT scanning after core flooding by acid. Additionally, the pore-throat network model is reconstructed with digital cores technology. Then, the size and ratio of pore and throat before and after core flooding by acid is analyzed and the absolute permeability of pore scale flow is numerically simulated to understand the fundamental influence of pores and vugs distribution and connectedness on wormhole propagation. Lastly, the wormhole pattern gained by CT scanning and simulating with two-scale model is compared. Meanwhile, the corrected two-scale model is utilized to simulate the wormhole propagation for matrix acidizing and acid fracturing of Sinian fractured-vuggy dolomite in Anyue gas field, Sichuan Basin. The optimized injection rate and volume were in agreement with the characteristic matrix acidizing operating curve, which indicates that the two-scale model was suitable for matrix acidizing optimization design of such formations. In addition, the simulated

  20. Taste enhancement in food gels: Effect of fracture properties on oral breakdown, bolus formation and sweetness intensity

    NARCIS (Netherlands)

    Mosca, A.C.; Velde, van de F.; Bult, J.H.F.; Boekel, van M.A.J.S.; Stieger, M.A.

    2015-01-01

    This study investigates the effects of fracture strain and fracture stress on oral breakdown, bolus formation and sweetness intensity of semi-solid food gels containing sucrose heterogeneously distributed in layers. The sweetness intensity of gels was mainly affected by the total surface area of gel

  1. Spall formation in solution mined storage caverns based on a creep and fracture analysis

    International Nuclear Information System (INIS)

    Munson, Darrell E.

    2000-01-01

    Because of limited direct observation, understanding of the interior conditions of the massive storage caverns constructed in Gulf Coast salt domes is realizable only through predictions of salt response. Determination of the potential for formation of salt spans, leading to eventual salt falls, is based on salt creep and fracture using the Multimechanism-Deformation Coupled Fracture (MCDF) model. This is a continuum model for creep, coupled to continuum damage evolution. The model has been successfully tested against underground results of damage around several test rooms at the Waste Isolation Pilot Plant (WIPP). Model simulations, here, evaluate observations made in the Strategic Petroleum Reserve (SPR) storage caverns, namely, the accumulation of material on cavern floors and evidence of salt falls. A simulation of a smooth cavern wall indicates damage is maximum at the surface but diminishes monotonically into the salt, which suggests the source of salt accumulation is surface sluffing. If a protuberance occurs on the wall, fracture damage can form beneath the protuberance, which will eventually cause fracture, and lead to a salt fall

  2. Mathematical and computational analyses of cracking formation fracture morphology and its evolution in engineering materials and structures

    CERN Document Server

    Sumi, Yoichi

    2014-01-01

    This book is about the pattern formation and the evolution of crack propagation in engineering materials and structures, bridging mathematical analyses of cracks based on singular integral equations, to computational simulation of engineering design. The first two parts of this book focus on elasticity and fracture and provide the basis for discussions on fracture morphology and its numerical simulation, which may lead to a simulation-based fracture control in engineering structures. Several design concepts are discussed for the prevention of fatigue and fracture in engineering structures, including safe-life design, fail-safe design, damage tolerant design. After starting with basic elasticity and fracture theories in parts one and two, this book focuses on the fracture morphology that develops due to the propagation of brittle cracks or fatigue cracks.   In part three, the mathematical analysis of a curved crack is precisely described, based on the perturbation method. The stability theory of interactive ...

  3. Brittle fracture in viscoelastic materials as a pattern-formation process

    Science.gov (United States)

    Fleck, M.; Pilipenko, D.; Spatschek, R.; Brener, E. A.

    2011-04-01

    A continuum model of crack propagation in brittle viscoelastic materials is presented and discussed. Thereby, the phenomenon of fracture is understood as an elastically induced nonequilibrium interfacial pattern formation process. In this spirit, a full description of a propagating crack provides the determination of the entire time dependent shape of the crack surface, which is assumed to be extended over a finite and self-consistently selected length scale. The mechanism of crack propagation, that is, the motion of the crack surface, is then determined through linear nonequilibrium transport equations. Here we consider two different mechanisms, a first-order phase transformation and surface diffusion. We give scaling arguments showing that steady-state solutions with a self-consistently selected propagation velocity and crack shape can exist provided that elastodynamic or viscoelastic effects are taken into account, whereas static elasticity alone is not sufficient. In this respect, inertial effects as well as viscous damping are identified to be sufficient crack tip selection mechanisms. Exploring the arising description of brittle fracture numerically, we study steady-state crack propagation in the viscoelastic and inertia limit as well as in an intermediate regime, where both effects are important. The arising free boundary problems are solved by phase field methods and a sharp interface approach using a multipole expansion technique. Different types of loading, mode I, mode III fracture, as well as mixtures of them, are discussed.

  4. Mechanisms of defect complex formation and environmental-assisted fracture behavior of iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, B.R.; Muratov, L.S.; Kang, B.S.J.; Li, K.Z. [West Virginia Univ., Morgantown, WV (United States)

    1997-12-01

    Iron aluminide has excellent corrosion resistance in high-temperature oxidizing-sulfidizing environments; however, there are problems at room and medium temperature with hydrogen embrittlement as related to exposure to moisture. In this research, a coordinated computational modeling/experimental study of mechanisms related to environmental-assisted fracture behavior of selected iron aluminides is being undertaken. The modeling and the experimental work will connect at the level of coordinated understanding of the mechanisms for hydrogen penetration and for loss of strength and susceptibility to fracture. The focus of the modeling component at this point is on the challenging question of accurately predicting the iron vacancy formation energy in Fe{sub 3}A{ell} and the subsequent tendency, if present, for vacancy clustering. The authors have successfully performed, on an ab initio basis, the first calculation of the vacancy formation energy in Fe{sub 3}A{ell}. These calculations include lattice relaxation effects which are quite large. This has significant implications for vacancy clustering effects with consequences to be explored for hydrogen diffusion. The experimental work at this stage has focused on the relationship of the choice and concentration of additives to the improvement of resistance to hydrogen embrittlement and hence to the fracture behavior. For this reason, comparative crack growth tests of FA-186, FA-187, and FA-189 iron aluminides (all with basic composition of Fe-28A{ell}-5Cr, at % with micro-alloying additives of Zr, C or B) under, air, oxygen, or water environment have been performed. These tests showed that the alloys are susceptible to room temperature hydrogen embrittlement in both B2 and DO{sub 3} conditions. Test results indicated that FA-187, and FA-189 are intrinsically more brittle than FA-186.

  5. Formation of Particulate Matter from the Oxidation of Evaporated Wastewater from Hydraulic Fracturing Activity

    Science.gov (United States)

    Hildebrandt Ruiz, L.; Bean, J. K.; Bilotto, A.

    2017-12-01

    The use of hydraulic fracturing for production of petroleum and natural gas has increased dramatically in the last decade, but the environmental impacts of this technology remain unclear. Experiments were conducted to quantify airborne emissions from twelve samples of hydraulic fracturing flowback wastewater collected in the Permian Basin, as well as the photochemical processing of these emissions leading to the formation of particulate matter. The concentration of total volatile carbon (TVC, hydrocarbons evaporating at room temperature) averaged 29 milligrams of carbon per liter (mgC/L) and the TVC evaporation rate averaged 1357 mgC/L-m2-min. After photochemical oxidation under high NOx conditions the amount of organic particulate matter formed per milliliter of wastewater evaporated averaged 24 micrograms (µg); the amount of ammonium nitrate formed averaged 262 µg. In the state of Texas, the potential formation of PM from evaporated flowback wastewater is similar to the estimated PM emissions from diesel engines used in oil rigs, emphasizing the need to quantify wastewater evaporation and atmospheric processing of these emissions.

  6. Length-scale and strain rate-dependent mechanism of defect formation and fracture in carbon nanotubes under tensile loading

    Energy Technology Data Exchange (ETDEWEB)

    Javvaji, Brahmanandam [Indian Institute of Science, Department of Aerospace Engineering (India); Raha, S. [Indian Institute of Science, Department of Computational and Data Sciences (India); Mahapatra, D. Roy, E-mail: droymahapatra@aero.iisc.ernet.in [Indian Institute of Science, Department of Aerospace Engineering (India)

    2017-02-15

    Electromagnetic and thermo-mechanical forces play a major role in nanotube-based materials and devices. Under high-energy electron transport or high current densities, carbon nanotubes fail via sequential fracture. The failure sequence is governed by certain length scale and flow of current. We report a unified phenomenological model derived from molecular dynamic simulation data, which successfully captures the important physics of the complex failure process. Length-scale and strain rate-dependent defect nucleation, growth, and fracture in single-walled carbon nanotubes with diameters in the range of 0.47 to 2.03 nm and length which is about 6.17 to 26.45 nm are simulated. Nanotubes with long length and small diameter show brittle fracture, while those with short length and large diameter show transition from ductile to brittle fracture. In short nanotubes with small diameters, we observe several structural transitions like Stone-Wales defect initiation, its propagation to larger void nucleation, formation of multiple chains of atoms, conversion to monatomic chain of atoms, and finally complete fracture of the carbon nanotube. Hybridization state of carbon-carbon bonds near the end cap evolves, leading to the formation of monatomic chain in short nanotubes with small diameter. Transition from ductile to brittle fracture is also observed when strain rate exceeds a critical value. A generalized analytical model of failure is established, which correlates the defect energy during the formation of atomic chain with aspect ratio of the nanotube and strain rate. Variation in the mechanical properties such as elastic modulus, tensile strength, and fracture strain with the size and strain rate shows important implications in mitigating force fields and ways to enhance the life of electronic devices and nanomaterial conversion via fracture in manufacturing.

  7. Hydrogeloogic characterization of fractured rock formations: A guide for groundwater remediators

    International Nuclear Information System (INIS)

    Cohen, A.J.B.

    1995-10-01

    A field site was developed in the foothills of the Sierra Nevada, California to develop and test a multi-disciplinary approach to the characterization of ground water flow and transport in fractured rocks. Nine boreholes were drilled into the granitic bedrock, and a wide variety of new and traditional subsurface characterization tools were implemented. The hydrogeologic structure and properties of the field site were deduced by integrating results from the various geologic, geophysical, hydrologic, and other investigative methods. The findings of this work are synthesized into this report, which is structured in a guidebook format. The applications of the new and traditional technologies, suggestions on how best to use, integrate, and analyze field data, and comparisons of the shortcoming and benefits of the different methods are presented

  8. Hydrogeloogic characterization of fractured rock formations: A guide for groundwater remediators

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, A.J.B.

    1995-10-01

    A field site was developed in the foothills of the Sierra Nevada, California to develop and test a multi-disciplinary approach to the characterization of ground water flow and transport in fractured rocks. Nine boreholes were drilled into the granitic bedrock, and a wide variety of new and traditional subsurface characterization tools were implemented. The hydrogeologic structure and properties of the field site were deduced by integrating results from the various geologic, geophysical, hydrologic, and other investigative methods. The findings of this work are synthesized into this report, which is structured in a guidebook format. The applications of the new and traditional technologies, suggestions on how best to use, integrate, and analyze field data, and comparisons of the shortcoming and benefits of the different methods are presented.

  9. Geology of the host formation for the new hydraulic fracturing facility at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Haase, C.S.; Stow, S.H.; Zucker, C.L.; University of Tennessee, Knoxville)

    1985-01-01

    Liquid low-level radioactive wastes are disposed of at Oak Ridge National Laboratory (ORNL) by the hydrofracture process. Wastes are mixed with cement and other additives to form a slurry that is injected into a low permeability shale at 300-m depth. Important properties for a host shale formation at a hydrofracture facility include: (1) predictable fracture behavior; (2) hydrologic isolation; and (3) favorable mineralogy and geochemistry to retard radionuclide migration and enhance grout stability. The stratigraphy, petrology, diagenesis, structural geology, and hydrology of the Pumpkin Valley Shale host formation at the ORNL site are summarized and discussed in light of these three properties. Empirical data from hydrofracture operations at ORNL over the past 25 years suggest that many aspects of the Pumpkin Valley Shale make it favorable for use as a host. This observation agrees with analysis of several aspects of the Pumpkin Valley Shale geology at the ORNL site. Although presently available data suggest that the permeability of the Pumpkin Valley Shale is low and that it should provide sufficient hydrologic isolation, more data are needed to properly evaluate this aspect of host formation performance

  10. Numerical Simulation of a Non-volcanic Hydrothermal System Caused by Formation of a High Permeability Fracture Zone

    Science.gov (United States)

    Oka, Daisuke; Ehara, Sachio; Fujimitsu, Yasuhiro

    2010-05-01

    Because in the Japanese islands the earth crust activity is very active, a disposal stratum for high-level radioactive waste produced by reprocessing the spent nuclear fuel from nuclear power plants will be selected in the tectonically stable areas in which the waste can be disposed underground safely for a long term and there is no influence of earthquakes, seismic activities, volcanic activities, upheaval, sedimentation, erosion, climate and global sea level change and so on, which causes the risk of the inflow of the groundwater to destroy the disposal site or the outflow to the ground surface. However, even if the disposal stratum in such condition will be chosen, in case that a new high permeability fracture zone is formed by the earthquake, and a new hydrothermal system may be formed for a long term (thousands or millions years) and the system may affect the disposal site. Therefore, we have to understand the feature of the non-volcanic hydrothermal system through the high permeability fracture zone. We estimated such influence by using HYDROTHERM Ver2.2 (Hayba & Ingebritsen, 1994), which is a three-dimensional numerical reservoir simulator. The model field is the northwestern part of Kego Fault, which was formed by a series of earthquakes called "the 2005 Fukuoka Prefecture Western Offshore Earthquakes" (the main shock of Mjma 7.0 on 20 March 2005) in Kyushu, Japan. The results of the numerical simulations show the development of a low temperature hydrothermal system as a new fracture zone is formed, in case that there is no volcanic heat source. The results of the simulations up to 100,000 years after formation of the fracture zone show that the higher heat flow and the wider and more permeable fracture zone accelerate the development of the hydrothermal system in the fracture zone. As a result of calculation of up to10 million years, we clarified the evolutional process of the non-volcanic hydrothermal system through the high permeability fracture zone. At

  11. Formation of shatter cones by symmetric fracture bifurcation: Phenomenological modeling and validation

    Science.gov (United States)

    Kenkmann, Thomas; Hergarten, Stefan; Kuhn, Thomas; Wilk, Jakob

    2016-08-01

    Several models of shatter cone formation require a heterogeneity at the cone apex of high impedance mismatch to the surrounding bulk rock. This heterogeneity is the source of spherically expanding waves that interact with the planar shock front or the following release wave. While these models are capable of explaining the overall conical shape of shatter cones, they are not capable of explaining the subcone structure and the diverging and branching striations that characterize the surface of shatter cones and lead to the so-called horse-tailing effect. Here, we use the hierarchical arrangement of subcone ridges of shatter cone surfaces as key for understanding their formation. Tracing a single subcone ridge from its apex downward reveals that each ridge branches after some distance into two symmetrically equivalent subcone ridges. This pattern is repeated to form new branches. We propose that subcone ridges represent convex-curved fracture surfaces and their intersection corresponds to the bifurcation axis. The characteristic diverging striations are interpreted as the intersection lineations delimiting each subcone. Multiple symmetric crack branching is the result of rapid fracture propagation that may approach the Raleigh wave speed. We present a phenomenological model that fully constructs the shatter cone geometry to any order. The overall cone geometry including apex angle of the enveloping cone and the degree of concavity (horse-tailing) is largely governed by the convexity of the subcone ridges. Straight cones of various apical angles, constant slope, and constant bifurcation angles form if the subcone convexity is low (30°). Increasing subcone convexity leads to a stronger horse-tailing effect and the bifurcation angles increase with increasing distance from the enveloping cone apex. The model predicts possible triples of enveloping cone angle, bifurcation angle, and subcone angle. Measurements of these quantities on four shatter cones from different

  12. Ground-based hyperspectral imaging and terrestrial laser scanning for fracture characterization in the Mississippian Boone Formation

    Science.gov (United States)

    Sun, Lei; Khan, Shuhab D.; Sarmiento, Sergio; Lakshmikantha, M. R.; Zhou, Huawei

    2017-12-01

    Petroleum geoscientists have been using cores and well logs to study source rocks and reservoirs, however, the inherent discontinuous nature of these data cannot account for horizontal heterogeneities. Modern exploitation requires better understanding of important source rocks and reservoirs at outcrop scale. Remote sensing of outcrops is becoming a first order tool for reservoir analog studies including horizontal heterogeneities. This work used ground-based hyperspectral imaging, terrestrial laser scanning (TLS), and high-resolution photography to study a roadcut of the Boone Formation at Bella Vista, northwest Arkansas, and developed an outcrop model for reservoir analog analyses. The petroliferous Boone Formation consists of fossiliferous limestones interbedded with chert of early Mississippian age. We used remote sensing techniques to identify rock types and to collect 3D geometrical data. Mixture tuned matched filtering classification of hyperspectral data show that the outcrop is mostly limestones with interbedded chert nodules. 1315 fractures were classified according to their strata-bounding relationships, among these, larger fractures are dominantly striking in ENE - WSW directions. Fracture extraction data show that chert holds more fractures than limestones, and both vertical and horizontal heterogeneities exist in chert nodule distribution. Utilizing ground-based remote sensing, we have assembled a virtual outcrop model to extract mineral composition as well as fracture data from the model. We inferred anisotropy in vertical fracture permeability based on the dominancy of fracture orientations, the preferential distribution of fractures and distribution of chert nodules. These data are beneficial in reservoir analogs to study rock mechanics and fluid flow, and to improve well performances.

  13. Role of geomechanically grown fractures on dispersive transport in heterogeneous geological formations

    KAUST Repository

    Nick, H. M.

    2011-11-04

    A second order in space accurate implicit scheme for time-dependent advection-dispersion equations and a discrete fracture propagation model are employed to model solute transport in porous media. We study the impact of the fractures on mass transport and dispersion. To model flow and transport, pressure and transport equations are integrated using a finite-element, node-centered finite-volume approach. Fracture geometries are incrementally developed from a random distributions of material flaws using an adoptive geomechanical finite-element model that also produces fracture aperture distributions. This quasistatic propagation assumes a linear elastic rock matrix, and crack propagation is governed by a subcritical crack growth failure criterion. Fracture propagation, intersection, and closure are handled geometrically. The flow and transport simulations are separately conducted for a range of fracture densities that are generated by the geomechanical finite-element model. These computations show that the most influential parameters for solute transport in fractured porous media are as follows: fracture density and fracture-matrix flux ratio that is influenced by matrix permeability. Using an equivalent fracture aperture size, computed on the basis of equivalent permeability of the system, we also obtain an acceptable prediction of the macrodispersion of poorly interconnected fracture networks. The results hold for fractures at relatively low density. © 2011 American Physical Society.

  14. Role of geomechanically grown fractures on dispersive transport in heterogeneous geological formations

    KAUST Repository

    Nick, H. M.; Paluszny, A.; Blunt, M. J.; Matthai, S. K.

    2011-01-01

    A second order in space accurate implicit scheme for time-dependent advection-dispersion equations and a discrete fracture propagation model are employed to model solute transport in porous media. We study the impact of the fractures on mass transport and dispersion. To model flow and transport, pressure and transport equations are integrated using a finite-element, node-centered finite-volume approach. Fracture geometries are incrementally developed from a random distributions of material flaws using an adoptive geomechanical finite-element model that also produces fracture aperture distributions. This quasistatic propagation assumes a linear elastic rock matrix, and crack propagation is governed by a subcritical crack growth failure criterion. Fracture propagation, intersection, and closure are handled geometrically. The flow and transport simulations are separately conducted for a range of fracture densities that are generated by the geomechanical finite-element model. These computations show that the most influential parameters for solute transport in fractured porous media are as follows: fracture density and fracture-matrix flux ratio that is influenced by matrix permeability. Using an equivalent fracture aperture size, computed on the basis of equivalent permeability of the system, we also obtain an acceptable prediction of the macrodispersion of poorly interconnected fracture networks. The results hold for fractures at relatively low density. © 2011 American Physical Society.

  15. Estimating Hydraulic Conductivities in a Fractured Shale Formation from Pressure Pulse Testing and 3d Modeling

    Science.gov (United States)

    Courbet, C.; DICK, P.; Lefevre, M.; Wittebroodt, C.; Matray, J.; Barnichon, J.

    2013-12-01

    In the framework of its research on the deep disposal of radioactive waste in shale formations, the French Institute for Radiological Protection and Nuclear Safety (IRSN) has developed a large array of in situ programs concerning the confining properties of shales in their underground research laboratory at Tournemire (SW France). One of its aims is to evaluate the occurrence and processes controlling radionuclide migration through the host rock, from the disposal system to the biosphere. Past research programs carried out at Tournemire covered mechanical, hydro-mechanical and physico-chemical properties of the Tournemire shale as well as water chemistry and long-term behaviour of the host rock. Studies show that fluid circulations in the undisturbed matrix are very slow (hydraulic conductivity of 10-14 to 10-15 m.s-1). However, recent work related to the occurrence of small scale fractures and clay-rich fault gouges indicate that fluid circulations may have been significantly modified in the vicinity of such features. To assess the transport properties associated with such faults, IRSN designed a series of in situ and laboratory experiments to evaluate the contribution of both diffusive and advective process on water and solute flux through a clay-rich fault zone (fault core and damaged zone) and in an undisturbed shale formation. As part of these studies, Modular Mini-Packer System (MMPS) hydraulic testing was conducted in multiple boreholes to characterize hydraulic conductivities within the formation. Pressure data collected during the hydraulic tests were analyzed using the nSIGHTS (n-dimensional Statistical Inverse Graphical Hydraulic Test Simulator) code to estimate hydraulic conductivity and formation pressures of the tested intervals. Preliminary results indicate hydraulic conductivities of 5.10-12 m.s-1 in the fault core and damaged zone and 10-14 m.s-1 in the adjacent undisturbed shale. Furthermore, when compared with neutron porosity data from borehole

  16. Self-sealing of fractures in argillaceous formations - Evidence, mechanisms and implications for performance assesment (an NEA Clay Club project)

    International Nuclear Information System (INIS)

    Bock, H.; Dehandschutter, B.; Martin, C.D.; Mazurek, M.; Haller, A. de; Skoczylas, F.; Davy, C.

    2010-01-01

    Document available in extended abstract form only. After some earlier attempts dating back to the year 1999, the Self-Sealing Project of the Clay Club of the NEA/OECD was re-launched in 2007 and recently completed with the publication of NEA monograph No. 6184 (Bock et al., 2010). The project aimed at providing an overview and synthesis of the current understanding of, and conceptual approaches to, the processes that lead to self-sealing of natural and man-induced fractures in argillaceous formations at typical repository depths. The term 'self-sealing' relates to a phenomenon that fractured argillaceous formations tend to become, with the passage of time, less conductive to groundwater and finally hydraulically insignificant. It directly addresses the long-term functionality of the host rock as a migration barrier to radio-nuclides and it is often considered as one of the decisive factors favouring the choice of argillaceous formations as host rocks for deep disposals. In its outcome the project has significantly consolidated the evidence on self-sealing in argillaceous formations. It reconfirmed that self-sealing is a common phenomenon in a wide variety of argillaceous formations which are currently considered in context with deep geological repositories; from plastic clays (Boom Clay in the HADES URF) to moderately indurated clays (Opalinus Clay at Mont Terri and Callovo- Oxfordian argillites at the Meuse-Haute Marne URL). One of the most compelling evidence stems from the fact that self-sealing is observed over a large spread of scales in terms of length and time: At the millimetre to metre scale in laboratory testing, at the repository scale (10 m to 100 m range) in URL field tests and at the kilometre scale in geologic and geotechnical analogues such as traffic tunnels and hydrocarbon reservoirs. Over geological time scales, it is, for example, evidenced in the existence of hydraulically and geochemically inactive geological faults, in the existence

  17. Numerical modeling of the effects of roughness on flow and eddy formation in fractures

    Directory of Open Access Journals (Sweden)

    Scott Briggs

    2017-02-01

    Full Text Available The effect of roughness on flow in fractures was investigated using lattice Boltzmann method (LBM. Simulations were conducted for both statistically generated hypothetical fractures and a natural dolomite fracture. The effect of increasing roughness on effective hydraulic aperture, Izbash and Forchheimer parameters with increasing Reynolds number (Re ranging from 0.01 to 500 was examined. The growth of complex flow features, such as eddies arising near the fracture surface, was directly associated with changes in surface roughness. Rapid eddy growth above Re values of 1, followed by less rapid growth at higher Re values, suggested a three-zone nonlinear model for flow in rough fractures. This three-zone model, relating effective hydraulic conductivity to Re, was also found to be appropriate for the simulation of water flow in the natural dolomite fracture. Increasing fracture roughness led to greater eddy volumes and lower effective hydraulic conductivities for the same Re values.

  18. The Role of Ultrasound Imaging of Callus Formation in the Treatment of Long Bone Fractures in Children

    International Nuclear Information System (INIS)

    Wawrzyk, Magdalena; Sokal, Jan; Andrzejewska, Ewa; Przewratil, Przemysław

    2015-01-01

    In the process of diagnosis and treatment of fractures, an X-ray study is typically performed. In modern medicine very important is the development of new diagnostic methods without adverse effects on the body. One of such techniques is ultrasound imaging. It has a high value in imaging most areas of the body, including the musculoskeletal system. Reports on the use of ultrasound in the evaluation of the callus are rare and this could be a method equivalent to or even better than standard radiographs. The aim of the study was to analyze the correlation of ultrasound with radiographs in imaging of callus formation after fractures of long bones in children and to analyze the correlation of vascular resistance index (RI) and the degree of vascularization of the callus with a subjective radiological assessment of the bone union quality. The prospective study was planned to qualify 50 children treated for long bones fractures of the arm, forearm, thigh and lower leg. Ultrasound diagnosis was carried out using a Philips iU22 camera equipped with a linear probe with 17-5-MHz resolution and MSK Superficial program. During ultrasound examination measurements of the callus were performed. Using the Power Doppler callus vascularity was visualized and vascular resistance index (RI) was measured. The same measurements were made within the corresponding area of the healthy limb. The results obtained by ultrasound were compared with radiograph measurements and with the subjective assessment of the callus quality. Preliminary results were developed on a group of 24 patients, where 28 fractured bones and 28 corresponding healthy bones were examined. Fifteen boys and 9 girls participated in the study. The average age at injury was, respectively, 11 and 9 years. In both groups fractures without displacement were the most frequent. A similar frequency was observed in fractures requiring reposition and subperiosteal fractures. In contrast, fractures with a slight displacement of the

  19. The Role of Ultrasound Imaging of Callus Formation in the Treatment of Long Bone Fractures in Children.

    Science.gov (United States)

    Wawrzyk, Magdalena; Sokal, Jan; Andrzejewska, Ewa; Przewratil, Przemysław

    2015-01-01

    In the process of diagnosis and treatment of fractures, an X-ray study is typically performed. In modern medicine very important is the development of new diagnostic methods without adverse effects on the body. One of such techniques is ultrasound imaging. It has a high value in imaging most areas of the body, including the musculoskeletal system. Reports on the use of ultrasound in the evaluation of the callus are rare and this could be a method equivalent to or even better than standard radiographs. The aim of the study was to analyze the correlation of ultrasound with radiographs in imaging of callus formation after fractures of long bones in children and to analyze the correlation of vascular resistance index (RI) and the degree of vascularization of the callus with a subjective radiological assessment of the bone union quality. The prospective study was planned to qualify 50 children treated for long bones fractures of the arm, forearm, thigh and lower leg. Ultrasound diagnosis was carried out using a Philips iU22 camera equipped with a linear probe with 17-5-MHz resolution and MSK Superficial program. During ultrasound examination measurements of the callus were performed. Using the Power Doppler callus vascularity was visualized and vascular resistance index (RI) was measured. The same measurements were made within the corresponding area of the healthy limb. The results obtained by ultrasound were compared with radiograph measurements and with the subjective assessment of the callus quality. Preliminary results were developed on a group of 24 patients, where 28 fractured bones and 28 corresponding healthy bones were examined. Fifteen boys and 9 girls participated in the study. The average age at injury was, respectively, 11 and 9 years. In both groups fractures without displacement were the most frequent. A similar frequency was observed in fractures requiring reposition and subperiosteal fractures. In contrast, fractures with a slight displacement of the

  20. CSA-90 Promotes Bone Formation and Mitigates Methicillin-resistant Staphylococcus aureus Infection in a Rat Open Fracture Model.

    Science.gov (United States)

    Mills, Rebecca; Cheng, Tegan L; Mikulec, Kathy; Peacock, Lauren; Isaacs, David; Genberg, Carl; Savage, Paul B; Little, David G; Schindeler, Aaron

    2018-06-01

    Infection of open fractures remains a significant cause of morbidity and mortality to patients worldwide. Early administration of prophylactic antibiotics is known to improve outcomes; however, increasing concern regarding antimicrobial resistance makes finding new compounds for use in such cases a pressing area for further research. CSA-90, a synthetic peptidomimetic compound, has previously demonstrated promising antimicrobial action against Staphylococcus aureus in rat open fractures. However, its efficacy against antibiotic-resistant microorganisms, its potential as a therapeutic agent in addition to its prophylactic effects, and its proosteogenic properties all require further investigation. (1) Does prophylactic treatment with CSA-90 reduce infection rates in a rat open fracture model inoculated with S aureus, methicillin-resistant S aureus (MRSA), and methicillin-resistant Staphylococcus epidermidis (MRSE) as measured by survival, radiographic union, and deep tissue swab cultures? (2) Does CSA-90 reduce infection rates when administered later in the management of an open fracture as measured by survival, radiographic union, and deep tissue swab cultures? (3) Does CSA-90 demonstrate a synergistic proosteogenic effect with bone morphogenetic protein 2 (BMP-2) in a noninfected rat ectopic bone formation assay as assessed by micro-CT bone volume measurement? (4) Can CSA-90 elute and retain its antimicrobial efficacy in vitro when delivered using clinically relevant agents measured using a Kirby-Bauer disc diffusion assay? All in vivo studies were approved by the local animal ethics committee. In the open fracture studies, 12-week-old male Wistar rats underwent open midshaft femoral fractures stabilized with a 1.1-mm Kirschner wire and 10 µg BMP-2 ± 500 µg CSA-90 was applied to the fracture site using a collagen sponge along with 1 x 10 colony-forming units of bacteria (S aureus/MRSA/MRSE; n = 10 per group). In the delayed treatment study, débridement and

  1. Role of geomechanically grown fractures on dispersive transport in heterogeneous geological formations

    NARCIS (Netherlands)

    Nick, H.M.; Paluszny, A.; Blunt, M.J.; Matthai, S.K.

    2011-01-01

    A second order in space accurate implicit scheme for time-dependent advection-dispersion equations and a discrete fracture propagation model are employed to model solute transport in porous media.We study the impact of the fractures on mass transport and dispersion. To model flowand transport,

  2. Self-sealing of Fractures in Argillaceous Formations in the Context of Geological Disposal of Radioactive Waste

    International Nuclear Information System (INIS)

    2010-01-01

    Disposal of high-level radioactive waste and spent nuclear fuel in engineered facilities, or repositories, located deep underground in suitable geological formations is being developed worldwide as the reference solution to protect humans and the environment both now and in the future. Assessing the long-term safety of geological disposal requires developing a comprehensive understanding of the geological environment. The transport pathways are key to this understanding. Of particular interest are fractures in the host rock, which may be either naturally occurring or induced, for example, during the construction of engineered portions of a repository. Such fractures could provide pathways for migration of contaminants. In argillaceous (clay) formations, there is evidence that, over time, fractures can become less conductive and eventually hydraulically insignificant. This process is commonly termed 'self-sealing'. The capacity for self-sealing relates directly to the function of clay host rocks as migration barriers and, consequently, to the safety of deep repositories in those geological settings. This report - conducted under the auspices of the NEA Clay Club - reviews the evidence and mechanisms for self-sealing properties of clays and evaluates their relevance to geological disposal. Results from laboratory tests, field investigations and geological analogues are considered. The evidence shows that, for many types of argillaceous formations, the understanding of self-sealing has progressed to a level that could justify its inclusion in performance assessments for geological repositories. (authors)

  3. Fracture hydrology relevant to radionuclide transport. Field work in a granite formation in Cornwall

    International Nuclear Information System (INIS)

    Bourke, P.J.; Hodgkinson, D.P.; Durrance, E.M.; Heath, M.J.

    1985-01-01

    Separation, orientation, apertures and intersections of water-bearing fractures are the variables which control water flow and affect radionuclide transport through fractured rocks. The need is discussed for information on the distribution of these variables in statistical treatments of flow and transport, because of the inadequacy of permeability and porosity data in continuum treatments. Satisfactory methods of measuring distributions of separation, orientation and apetures have been developed and data for Cornish granite are presented. An estimate of the average distance between fracture intersections is made

  4. Strontium isotopes test long-term zonal isolation of injected and Marcellus formation water after hydraulic fracturing.

    Science.gov (United States)

    Kohl, Courtney A Kolesar; Capo, Rosemary C; Stewart, Brian W; Wall, Andrew J; Schroeder, Karl T; Hammack, Richard W; Guthrie, George D

    2014-08-19

    One concern regarding unconventional hydrocarbon production from organic-rich shale is that hydraulic fracture stimulation could create pathways that allow injected fluids and deep brines from the target formation or adjacent units to migrate upward into shallow drinking water aquifers. This study presents Sr isotope and geochemical data from a well-constrained site in Greene County, Pennsylvania, in which samples were collected before and after hydraulic fracturing of the Middle Devonian Marcellus Shale. Results spanning a 15-month period indicated no significant migration of Marcellus-derived fluids into Upper Devonian/Lower Mississippian units located 900-1200 m above the lateral Marcellus boreholes or into groundwater sampled at a spring near the site. Monitoring the Sr isotope ratio of water from legacy oil and gas wells or drinking water wells can provide a sensitive early warning of upward brine migration for many years after well stimulation.

  5. Crack-jump mechanism of microvein formation and its implications for stress cyclicity during extension fracturing

    Science.gov (United States)

    Caputo, Riccardo; Hancock, Paul L.

    1998-11-01

    It is well accepted and documented that faulting is produced by the cyclic behaviour of a stress field. Some extension fractures, such as veins characterised by the crack-seal mechanism, have also been presumed to result from repeated stress cycles. In the present note, some commonly observed field phenomena and relationships such as hackle marks and vein and joint spacing, are employed to argue that a stress field can also display cyclic behaviour during extensional fracturing. Indeed, the requirement of critical stress conditions for the occurrence of extensional failure events does not accord with the presence of contemporaneously open nearby parallel fractures. Therefore, because after each fracture event there is stress release within the surrounding volume of rock, high density sets of parallel extensional fractures also strongly support the idea that rocks undergo stress cyclicity during jointing and veining. A comparison with seismological data from earthquakes with dipole mechanical solutions, confirms that this process presently occurs at depth in the Earth crust. Furthermore, in order to explain dense sets of hair-like closely spaced microveins, a crack-jump mechanism is introduced here as an alternative to the crack-seal mechanism. We also propose that as a consequence of medium-scale stress cyclicity during brittle deformation, the re-fracturing of a rock mass occurs in either one or the other of these two possible ways depending on the ratio between the elastic parameters of the sealing material and those of the host rock. The crack-jump mechanism occurs when the former is stronger.

  6. Microseismic signatures of hydraulic fracture growth in sediment formations: Observations and modeling

    Czech Academy of Sciences Publication Activity Database

    Fischer, Tomáš; Hainzl, S.; Eisner, L.; Shapiro, S. A.; Le Calvez, J. H.

    2008-01-01

    Roč. 113, č. B2 (2008), B02307/1-B02307/12 ISSN 0148-0227 Grant - others:EC(XE) MTKI-CT-2004-517242 Institutional research plan: CEZ:AV0Z30120515 Keywords : microseismic data * hydraulic fracture simulation * Texas Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 3.147, year: 2008

  7. Formation and prevention of fractures in sol-gel-derived thin films

    NARCIS (Netherlands)

    Kappert, Emiel; Pavlenko, Denys; Malzbender, J.; Nijmeijer, Arian; Benes, Nieck Edwin; Tsai, Peichun Amy

    2015-01-01

    Sol–gel-derived thin films play an important role as the functional coatings for various applications that require crack-free films to fully function. However, the fast drying process of a standard sol–gel coating often induces mechanical stresses, which may fracture the thin films. An experimental

  8. Outcropping analogs and multiscale fracture patterns in the Jandaíra formation

    NARCIS (Netherlands)

    Bertotti, G.; Bezerra, F.H.; Bisdom, K.; Cazarin, C.; Reijmer, J.

    2013-01-01

    Outcropping analogs can provide key information on the 3D organization of fracture networks affecting carbonate reservoirs. Such information, however, needs to be integrated in a consistent work flow which includes i) 3D geometric model of the reservoir architecture, ii) mechanic modeling to

  9. Hydraulic fracturing to enhance geothermal energy recovery in deep and tight formations. Modell approach in petrothermy research project OPTIRISS

    Energy Technology Data Exchange (ETDEWEB)

    Rafiee, M.M.; Schmitz, S.; Barsch, M. [DBI - Gastechnologisches Institut gGmbH, Freiberg (Germany)

    2013-08-01

    In Germany numerous projects were successfully conducted in developments of geothermal energy which applied so far mostly for the hydrothermal deposit type. In Thuringia and Saxony there are currently project developments of geothermal resource taking into account for deep, tight formations in petrothermy and Enhanced geothermal system, (EGS). One of the potential tasks in generating these petrothermal producers and in the design of the underground power plant appears to be hydraulic fracturing with multi frac method. This is to create the heat exchanger surfaces in the rock and ensure maximum volumetric flow through it. Therefore it is very important for a sustainable heat production. However the promise of its adequate conductivity in the deep formation is one of the dominant contests in geothermal energy industry. In a multi frac method, two wells (normally horizontal wellbores at different depths) are drilled in direction of minimum horizontal stress of the formation rock. By multiple frac operation in separate sections, flow paths are generated between the wells through which it is possible to extract the heat from the rock. The numerical simulation of hydraulic fracture propagation processes in the rock is mainly from the research in the area of oil and gas industry. These techniques are mainly used for very low permeable formations in petroleum engineering (e.g. Shale gas). The development is at the beginning for EGS (e.g. granites). In this work single and multi fracking propagation processes in a synthetic example of deep hard formation are investigated. The numerical simulation is carried out to design and characterize frac processes and frac dimensions. Sensitivities to various rock parameters and different process designs are examined and optimum criteria are concluded. This shows that the minimum stress profile has the most effective role and should be modelled properly. The analysis indicates the optimum fracture length and height for adequate thermal

  10. GPU-Based Computation of Formation Pressure for Multistage Hydraulically Fractured Horizontal Wells in Tight Oil and Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Rongwang Yin

    2018-01-01

    Full Text Available A mathematical model for multistage hydraulically fractured horizontal wells (MFHWs in tight oil and gas reservoirs was derived by considering the variations in the permeability and porosity of tight oil and gas reservoirs that depend on formation pressure and mixed fluid properties and introducing the pseudo-pressure; analytical solutions were presented using the Newman superposition principle. The CPU-GPU asynchronous computing model was designed based on the CUDA platform, and the analytic solution was decomposed into infinite summation and integral forms for parallel computation. Implementation of this algorithm on an Intel i5 4590 CPU and NVIDIA GT 730 GPU demonstrates that computation speed increased by almost 80 times, which meets the requirement for real-time calculation of the formation pressure of MFHWs.

  11. Microstructure Formation and Fracturing Characteristics of Grey Cast Iron Repaired Using Laser

    Science.gov (United States)

    Liu, Dan; Shi, Yongjun

    2014-01-01

    The repairing technology based on laser rapid fusion is becoming an important tool for fixing grey cast iron equipment efficiently. A laser repairing protocol was developed using Fe-based alloy powders as material. The microstructure and fracturing feature of the repaired zone (RZ) were analyzed. The results showed that regionally organized RZ with good density and reliable metallurgical bond can be achieved by laser repairing. At the bottom of RZ, dendrites existed in similar direction and extended to the secondary RZ, making the grains grow extensively with inheritance with isometric grains closer to the surface substrate. The strength of the grey cast iron base material was maintained by laser repairing. The base material and RZ were combined with robust strength and fracture resistance. The prevention and deflection of cracking process were analyzed using a cracking process model and showed that the overall crack toughness of the materials increased. PMID:25032230

  12. On the formation and nature of quasi-cleavage fracture surfaces in hydrogen embrittled steels

    Energy Technology Data Exchange (ETDEWEB)

    Martin, May L.; Fenske, Jamey A.; Liu, Grace S.; Sofronis, Petros [University of Illinois, Dept. of Materials Science and Engineering, 1304 W. Green St., Urbana, IL 61801 (United States); Robertson, Ian M., E-mail: ianr@illinois.edu [University of Illinois, Dept. of Materials Science and Engineering, 1304 W. Green St., Urbana, IL 61801 (United States)

    2011-02-15

    Quasi-cleavage, a common feature of hydrogen-induced fracture surfaces, is generally taken as being cleavage-like but not along a known cleavage plane. Despite the frequency with which this surface is observed, the relationship to the underlying microstructure remains unknown. Through a combination of topographical reconstruction of secondary electron microscope fractographs and a transmission electron microscopy study of the microstructure from site-specific locations, it will be shown that the features on quasi-cleavage surfaces are ridges that can be correlated with sub-surface intense and highly localized deformation bands. It will be demonstrated that the fracture surface arises from the growth and coalescence of voids that initiate at and extend along slip band intersections. This mechanism and process is fully consistent with hydrogen enhancing and localizing plastic processes.

  13. Overexpression of BMP3 in the developing skeleton alters endochondral bone formation resulting in spontaneous rib fractures.

    Science.gov (United States)

    Gamer, Laura W; Cox, Karen; Carlo, Joelle M; Rosen, Vicki

    2009-09-01

    Bone morphogenetic protein-3 (BMP) has been identified as a negative regulator in the skeleton as mice lacking BMP3 have increased bone mass. To further understand how BMP3 mediates bone formation, we created transgenic mice overexpressing BMP3 using the type I collagen promoter. BMP3 transgenic mice displayed spontaneous rib fractures that were first detected at E17.0. The fractures were due to defects in differentiation of the periosteum and late hypertrophic chondrocytes resulting in thinner cortical bone with decreased mineralization. As BMP3 modulates BMP and activin signaling through ActRIIB, we examined the ribs of ActRIIB receptor knockout mice and found they had defects in late chondrogenesis and mineralization similar to BMP3 transgenic mice. These data suggest that BMP3 exerts its effects in the skeleton by altering signaling through ActRIIB in chondrocytes and the periosteum, and this results in defects in bone collar formation and late hypertrophic chondrocyte maturation leading to decreased mineralization and less bone. 2009 Wiley-Liss, Inc.

  14. Bilateral cataract formation via acute spontaneous fracture of the lens following treatment of hyperglycemic hyperosmolar syndrome

    Directory of Open Access Journals (Sweden)

    Yevgeniy V. Sychev

    2017-09-01

    Conclusions and importance: Acute transient cataracts that develop during correction of hyperglycemic hyperosmolar syndrome are thought to result from osmotic lens swelling. In this case report, internal fracture of the lens was produced by mechanical forces generated in the process of lens swelling occurring as a consequence of initial hyperglycemia and its subsequent correction. This case represents a rare ocular complication of hyperglycemia correction, and provides new evidence that mechanical forces can be part of diabetic cataractogenesis.

  15. Equilibrium modeling of the formation of zeolites in fractures at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Chipera, S.J.; Bish, D.L.; Carlos, B.A.

    1993-01-01

    Yucca Mountain, in southern Nevada, is currently being investigated to determine its suitability to host the first US high-level nuclear waste repository. One of the reasons that Yucca Mountain was chosen for study is the presence of thick sequences of zeolite-rich horizons. In as much as fractures may serve as potential pathways for aqueous transport, the minerals that line fractures are of particular interest. Zeolites are common in fractures at Yucca Mountain and consist mainly of clinoptilolite/heulandite and mordenite although sporadic occurrences of chabazite, erionite, phillipsite, and stellrite have been identified using X-ray powder diffraction. To understand better the conditions under which the observed zeolite species were formed, thermodynamic data were estimated and calculations of log a((K + ) 2 /Ca ++ ) versus log a((Na + ) 2 /Ca ++ ) were conducted at various temperatures and silica activities. Using present-day Yucca Mountain water chemistries as a lower constraint on silica activity, clinoptilolite/heulandite and mordenite are still the zeolite species that would form under present conditions

  16. Inhibition of GSK-3β Rescues the Impairments in Bone Formation and Mechanical Properties Associated with Fracture Healing in Osteoblast Selective Connexin 43 Deficient Mice

    Science.gov (United States)

    Loiselle, Alayna E.; Lloyd, Shane A. J.; Paul, Emmanuel M.; Lewis, Gregory S.; Donahue, Henry J.

    2013-01-01

    Connexin 43 (Cx43) is the most abundant gap junction protein in bone and is required for osteoblastic differentiation and bone homeostasis. During fracture healing, Cx43 is abundantly expressed in osteoblasts and osteocytes, while Cx43 deficiency impairs bone formation and healing. In the present study we selectively deleted Cx43 in the osteoblastic lineage from immature osteoblasts through osteocytes and tested the hypothesis that Cx43 deficiency results in delayed osteoblastic differentiation and impaired restoration of biomechanical properties due to attenuated β-catenin expression relative to wild type littermates. Here we show that Cx43 deficiency results in alterations in the mineralization and remodeling phases of healing. In Cx43 deficient fractures the mineralization phase is marked by delayed expression of osteogenic genes. Additionally, the decrease in the RankL/ Opg ratio, osteoclast number and osteoclast size suggest decreased osteoclast bone resorption and remodeling. These changes in healing result in functional deficits as shown by a decrease in ultimate torque at failure. Consistent with these impairments in healing, β-catenin expression is attenuated in Cx43 deficient fractures at 14 and 21 days, while Sclerostin (Sost) expression, a negative regulator of bone formation is increased in Cx43cKO fractures at 21 days, as is GSK-3β, a key component of the β-catenin proteasomal degradation complex. Furthermore, we show that alterations in healing in Cx43 deficient fractures can be rescued by inhibiting GSK-3β activity using Lithium Chloride (LiCl). Treatment of Cx43 deficient mice with LiCl restores both normal bone formation and mechanical properties relative to LiCl treated WT fractures. This study suggests that Cx43 is a potential therapeutic target to enhance fracture healing and identifies a previously unknown role for Cx43 in regulating β-catenin expression and thus bone formation during fracture repair. PMID:24260576

  17. Parameters controlling fracturing distribution: example of an Upper Jurassic marly-calcareous formation (eastern Paris Basin); Parametres controlant la distribution de la fracturation: exemple dans une serie marno-calcaire du Jurassique superieur (Est du bassin de Paris)

    Energy Technology Data Exchange (ETDEWEB)

    Andre, G.; Rebours, H.; Wileveau, Y. [Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA), Laboratoire de recherche souterrain de Meuse/Haute-Marne, 55 - Bure (France); Proudhon, B. [GEO.TER, 34 - Clapiers (France)

    2006-10-15

    Study of fractures along a 490-m vertical section of marl/limestone alternations in the Upper Jurassic (Meuse/Haute-Marne underground research laboratory-eastern Paris Basin) reveals their organization and the different states of palaeo-stress. Type and extension of tectonic structures seem to be controlled principally by lithology and secondary by depth. Also, it appears deviations of Alpine palaeo-stresses between Kimmeridgian and Oxfordian formations. These deviations are related to the presence of marl/limestone contacts. The vertical evolution of current horizontal maximum stress shows a similar behaviour, with deviations at the walls of Callovo-Oxfordian argilites. These results allow us to point out and to discuss the impact of lithology, rheology and depth on fracturing occurrence and distribution. Furthermore, this study suggests the role of Callovo-Oxfordian as a barrier for fracture development between the limestones of Dogger and Oxfordian formations. (authors)

  18. Modelling the formation of sheeting joints with FRACOD2D (FRActure propagation CODe)

    International Nuclear Information System (INIS)

    Lanaro, Flavio; Amemiya, Kiyoshi; Yamada, Atsuo

    2008-01-01

    This contribution shows an application of the newly developed gravity acceleration function in the BEM-DDM code FRACOD 2D . The influence of the model geometry, material parameters and boundary stresses on the initiation and propagation of sheeting joints due to rebound by removal of the overburden is studied. The models seem to capture the pattern of sheeting joints and the depth of their occurrence. The influence of the sheeting joints on the stress distributions in the rock mass also seem to be realistic and in agreement with field observations. The results indicate that the stresses measured in-situ at several sites in crystalline rock might exhibit the same features as the numerical results by FRACOD 2D . For example, the horizontal stress is found to be rather high at the surface of the models as it was observed in Forsmark, Sweden. Moreover, stresses where sheeting joints are developing are so severe to justify damage and fracturing of the intact rock observed in terms of fracture frequency and laboratory sample damage close to the surface at the Shobasama and MIU Construction Site, Mizunami, Japan. (author)

  19. Kinematics of tectonic fracture development during regional folding in sandstones of the Kamlial Formation, Khushalgarh, northern Pakistan

    International Nuclear Information System (INIS)

    Sayab, M.

    2005-01-01

    Systematic relationships between the fracture orientation and fold geometry in sedimentary rocks have been used to explain the development of synfolding fractures. Based on field observations at the Khushalgarh syncline, located east of the Kohat Plateau, we proposed that the orientation of fractures was influenced dominantly by two tectonic fracture sets, that is, the NE-SW and NW-SE. The NE-SW fracture set dominantly formed as mode 1 (tensile), where as, the NW-SE fracture set developed as mode 11 (shear) conjugate fractures. The NE-SW trending fractures follow the axis of the syncline, whereas, the NW-SE fracture about crosscuts the fold axis. Most of the NE-SW fractures abut against the NW-SW fracture set. Based on the orientation and crosscutting relationship, their modes in response to stress, we conclude that the NE-SW trending fractures formed early than those of NW-SE fracture set. Though, both the fracture sets are formed during the folding, we suggest that they were not formed at the same time. Their crosscutting relationship suggests that they developed sequentially rather than synchronously. Our interpretations support the laboratory-based models where only one fracture orientation (or set of fractures with one orientation) form in response to single stress. However, as the stress distribution in folded strata changes over time new fractures of distinct orientations can form during or late in the folding history. We conclude that the sandstone units underwent bedding-parallel extension during folding, where bedding is stretched to accommodate extension. Parallel to the fold axis orientation. Bending of the limbs is a likely mechanism for the development of observed NE-SW trending fractures during folding, whereas the NW-SE fractures developed late in the folded history. (author)

  20. Quantifying opening-mode fracture spatial organization in horizontal wellbore image logs, core and outcrop: Application to Upper Cretaceous Frontier Formation tight gas sandstones, USA

    Science.gov (United States)

    Li, J. Z.; Laubach, S. E.; Gale, J. F. W.; Marrett, R. A.

    2018-03-01

    The Upper Cretaceous Frontier Formation is a naturally fractured gas-producing sandstone in Wyoming. Regionally, random and statistically more clustered than random patterns exist in the same upper to lower shoreface depositional facies. East-west- and north-south-striking regional fractures sampled using image logs and cores from three horizontal wells exhibit clustered patterns, whereas data collected from east-west-striking fractures in outcrop have patterns that are indistinguishable from random. Image log data analyzed with the correlation count method shows clusters ∼35 m wide and spaced ∼50 to 90 m apart as well as clusters up to 12 m wide with periodic inter-cluster spacings. A hierarchy of cluster sizes exists; organization within clusters is likely fractal. These rocks have markedly different structural and burial histories, so regional differences in degree of clustering are unsurprising. Clustered patterns correspond to fractures having core quartz deposition contemporaneous with fracture opening, circumstances that some models suggest might affect spacing patterns by interfering with fracture growth. Our results show that quantifying and identifying patterns as statistically more or less clustered than random delineates differences in fracture patterns that are not otherwise apparent but that may influence gas and water production, and therefore may be economically important.

  1. The Process of Hydraulic Fracturing

    Science.gov (United States)

    Hydraulic fracturing, know as fracking or hydrofracking, produces fractures in a rock formation by pumping fluids (water, proppant, and chemical additives) at high pressure down a wellbore. These fractures stimulate the flow of natural gas or oil.

  2. Effect of Random Natural Fractures on Hydraulic Fracture Propagation Geometry in Fractured Carbonate Rocks

    Science.gov (United States)

    Liu, Zhiyuan; Wang, Shijie; Zhao, Haiyang; Wang, Lei; Li, Wei; Geng, Yudi; Tao, Shan; Zhang, Guangqing; Chen, Mian

    2018-02-01

    Natural fractures have a significant influence on the propagation geometry of hydraulic fractures in fractured reservoirs. True triaxial volumetric fracturing experiments, in which random natural fractures are created by placing cement blocks of different dimensions in a cuboid mold and filling the mold with additional cement to create the final test specimen, were used to study the factors that influence the hydraulic fracture propagation geometry. These factors include the presence of natural fractures around the wellbore, the dimension and volumetric density of random natural fractures and the horizontal differential stress. The results show that volumetric fractures preferentially formed when natural fractures occurred around the wellbore, the natural fractures are medium to long and have a volumetric density of 6-9%, and the stress difference is less than 11 MPa. The volumetric fracture geometries are mainly major multi-branch fractures with fracture networks or major multi-branch fractures (2-4 fractures). The angles between the major fractures and the maximum horizontal in situ stress are 30°-45°, and fracture networks are located at the intersections of major multi-branch fractures. Short natural fractures rarely led to the formation of fracture networks. Thus, the interaction between hydraulic fractures and short natural fractures has little engineering significance. The conclusions are important for field applications and for gaining a deeper understanding of the formation process of volumetric fractures.

  3. Fracturing and fluid-flow during post-rift subsidence in carbonates of the Jandaíra Formation, Potiguar Basin, NE Brazil

    NARCIS (Netherlands)

    Bertotti, Giovanni; de Graaf, Stefan; Bisdom, Kevin; Oskam, Brigit; B. Vonhof, Hubert; H. R. Bezerra, Francisco; J. G. Reijmer, John; L. Cazarin, Caroline

    2017-01-01

    Pervasive fracture networks are common in many reservoir-scale carbonate bodies even in the absence of large deformation and exert a major impact on their mechanical and flow behaviour. The Upper Cretaceous Jandaíra Formation is a few hundred meters thick succession of shallow water carbonates

  4. Mechanical stimulation enhanced estrogen receptor expression and callus formation in diaphyseal long bone fracture healing in ovariectomy-induced osteoporotic rats.

    Science.gov (United States)

    Chow, S K H; Leung, K S; Qin, J; Guo, A; Sun, M; Qin, L; Cheung, W H

    2016-10-01

    Estrogen receptor (ER) in ovariectomy-induced osteoporotic fracture was reported to exhibit delayed expression. Mechanical stimulation enhanced ER-α expression in osteoporotic fracture callus at the tissue level. ER was also found to be required for the effectiveness of vibrational mechanical stimulation treatment in osteoporotic fracture healing. Estrogen receptor(ER) is involved in mechanical signal transduction in bone metabolism. Its expression was reported to be delayed in osteoporotic fracture healing. The purpose of this study was to investigate the roles played by ER during osteoporotic fracture healing enhanced with mechanical stimulation. Ovariectomy-induced osteoporotic SD rats that received closed femoral fractures were divided into five groups, (i) SHAM, (ii) SHAM-VT, (iii) OVX, (iv) OVX-VT, and (v) OVX-VT-ICI, where VT stands for whole-body vibration treatment and ICI for ER antagonization by ICI 182,780. Callus formation and gene expression were assessed at 2, 4, and 8 weeks postfracture. In vitro osteoblastic differentiation, mineralization, and ER-α expression were assessed. The delayed ER expression was found to be enhanced by vibration treatment. Callus formation enhancement was shown by callus morphometry and micro-CT analysis. Enhancement effects by vibration were partially abolished when ER was modulated by ICI 182,780, in terms of callus formation capacity at 2-4 weeks and ER gene and protein expression at all time points. In vitro, ER expression in osteoblasts was not enhanced by VT treatment, but osteoblastic differentiation and mineralization were enhanced under estrogen-deprived condition. When osteoblastic cells were modulated by ICI 182,780, enhancement effects of VT were eliminated. Vibration was able to enhance ER expression in ovariectomy-induced osteoporotic fracture healing. ER was essential in mechanical signal transduction and enhancement in callus formation effects during osteoporotic fracture healing enhanced by vibration

  5. Quantitative prediction of fractures using the finite element method: A case study of the lower Silurian Longmaxi Formation in northern Guizhou, South China

    Science.gov (United States)

    Liu, Jingshou; Ding, Wenlong; Yang, Haimeng; Jiu, Kai; Wang, Zhe; Li, Ang

    2018-04-01

    Natural fractures have long been considered important factors in the production of gas from shale reservoirs because they can connect pore spaces and enlarge transport channels, thereby influencing the migration, accumulation and preservation of shale gas. Industrial-level shale gas production has been initiated in the lower Silurian Longmaxi Formation in northern Guizhou, South China. However, it is important to quantitatively predict the distribution of natural fractures in the lower Silurian shale reservoirs to locate additional 'sweet spots' in northern Guizhou. In this study, data obtained from outcrops, cores, thin sections, field-emission scanning electron microscope (FE-SEM) images and X-ray diffraction (XRD) were used to determine the developmental characteristics and controlling factors of these fractures. Correlation analysis indicated that the mechanical parameters of the Longmaxi shale are mainly related to the total organic carbon (TOC), quartz, clay, calcite and dolomite contents. The spatial variations in the mechanical parameters of the Longmaxi shale were determined based on the spatial variations in the TOC and mineral contents. Then, a heterogeneous geomechanical model of the study area was established based on interpretations of the fault systems derived from seismic data and acoustic emission (AE) experiments performed on samples of the relevant rocks. The paleotectonic stress fields during the Yanshanian period were obtained using the finite element method (FEM). Finally, a fracture density calculation model was established to analyze the quantitative development of fractures, and the effects of faults and mechanical parameters on the development of fractures were determined. The results suggest that the main developmental period of tectonic fractures in the Longmaxi Formation was the Early Yanshanian period. During this time, the horizontal principal stress conditions were dominated by a SE-NW-trending (135-315°) compressional stress field

  6. Model of mechanical representation of the formation of natural fractures inside a petroleum reservoir; Modele de representation mecanique de la formation des fractures naturelles d'un reservoir petrolier

    Energy Technology Data Exchange (ETDEWEB)

    Picard, D.

    2005-09-15

    The optimisation of the oil production requires a better characterisation of naturally fractured reservoirs. We consider and analyse two spatial distributions. One with systematic joints is arranged in an homogeneous way; joint spacing is linked to individual bedding thickness with propagation frequently interrupted by stratigraphic interfaces (single layer jointing). The second, so-called fracture swarms, consists in fractures clustering, where stratigraphic interfaces seem to play a minor role. The analysis is based on the singularity theory and matched asymptotic expansions method with a fine scale for local perturbations and a global one for general trends. We examine the conditions of fracture propagation that are determined herein using simultaneously two fracture criteria an energy and a stress condition. We consider two modes of loading. Usually, the joint (crack opening mode) and fracture swarm growths are explained by a first order phenomenon involving effective traction orthogonal to fracture plane. Although commonly used, this hypothesis seems unrealistic in many circumstances and may conflict with geological observations. Then, we try to describe fracture growth as a second order phenomena resulting from crack parallel compression. As far as propagation across layer interfaces is concerned, the effect of loading and geometry has been summarised in maps of fracture mechanisms, describing areas of 'step-over', 'straight through propagation' and 'crack arrest'. Fracture criteria, relative size of heterogeneities, contrast of mechanical properties between bed and layer are parameters of the problem. For fracture swarms, we present a discussion bringing out what is reasonable as a loading to justify their morphology. In particular, horizontal effective tension is unable to explain neighbouring joints. Simultaneous propagation of parallel near cracks is explained by finite width cracks growing under the influence of vertical

  7. Numerical Analysis of the Source of Excessive Na+ and Cl Species in Flowback Water From Hydraulically Fractured Shale Formations

    Energy Technology Data Exchange (ETDEWEB)

    Seales, Maxian B.; Dilmore, Robert; Ertekin, Turgay; Wang, John Yilin

    2016-10-01

    Fracture fluid comprises fresh water, proppant, and a small percentage of other additives, which support the hydraulic fracturing process. Excluding situations in which flowback water is recycled and reused, total dissolve solids in fracture fluid is limited to the fluid additives, such as potassium chloride (1-7 weight percent KCL), which is used as a clay stabilizer to minimize clay swelling, and clay particle migration. However, the composition of recovered fluid, especially as it relates to the total dissolve solids (TDS), is always substantially different than the injected fracture fluid. The ability to predict flowback water volume and composition is useful when planning for the management or reuse of this aqueous byproduct stream. In this work, an ion transport and halite dissolution model was coupled with a fully implicit, dual porosity, numerical simulator, to study the source of the excess solutes in flowback water, and to predict the concentration of both Na+ and Cl- species seen in recovered water. The results showed that mixing alone, between the injected fracture fluid and concentrated in situ formation brine, could not account for the substantial rise in TDS seen in flowback water. Instead, the results proved that halite dissolution is a major contributor to the change in TDS seen in fracture fluid during injection and recovery. Halite dissolution can account for as much as 81% of Cl- and 86.5% of Na+ species seen in 90-day flowback water; mixing, between the injected fracture fluid and in situ concentrated brine, accounts for approximately 19% Cl- and 13% Na+.

  8. Process comparison for fracture-induced formation of surface structures on polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yueh-Ying [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Yang, Fuqian [Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506 (United States); Chen, Chia-Chieh [Institute of Nuclear Energy Research, Longtan, Taoyuan 32546, Taiwan (China); Lee, Sanboh, E-mail: sblee@mx.nthu.edu.tw [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2014-01-01

    Using three different splitting approaches such as point-load splitting, tension-splitting and peeling–splitting, different surface ripples were produced on poly(methyl methacrylate) (PMMA)-based polymer films. Independent of the splitting approaches, the spatial wavelength of the surface structures is a linear function of the film thickness with the approximately same differential ratio of the spatial wavelength to the film thickness. The apparent surface residual stress was calculated from the thickness dependence of the spatial frequency, and the magnitude of the apparent surface stress increased with the increase of the film thickness. After exposing the aged PMMA-based photoresist at liquid state to gamma-irradiation, the effects of aging and the gamma-irradiation were investigated on the splitting-induced formation of surface structures. For the peeling–splitting process, the differential ratio of the spatial wavelength to the film thickness for the aged samples is larger than that for non-aged samples. The point-load splitting could not produce any surface pattern on the gamma-irradiated films. None of the splitting approaches could form surface structures for polymer films exposed to irradiation of high dose. Both the spatial wavelength and the apparent surface stress increased with the film thickness for the irradiated polymer films. - Highlights: • Using splitting processes, surface ripples were formed on polymer films. • The surface ripples were induced by compressively apparent surface stress. • The spatial wavelength of the ripples is a linear function of the film thickness. • The spatial wavelength of the ripples is affected by gamma-ray irradiation. • The spatial wavelength of the ripples is affected by aging.

  9. Fracture Mechanics

    International Nuclear Information System (INIS)

    Jang, Dong Il; Jeong, Gyeong Seop; Han, Min Gu

    1992-08-01

    This book introduces basic theory and analytical solution of fracture mechanics, linear fracture mechanics, non-linear fracture mechanics, dynamic fracture mechanics, environmental fracture and fatigue fracture, application on design fracture mechanics, application on analysis of structural safety, engineering approach method on fracture mechanics, stochastic fracture mechanics, numerical analysis code and fracture toughness test and fracture toughness data. It gives descriptions of fracture mechanics to theory and analysis from application of engineering.

  10. Insights into the subsurface transport of As(V) and Se(VI) in produced water from hydraulic fracturing using soil samples from Qingshankou Formation, Songliao Basin, China.

    OpenAIRE

    Chen, SS; Sun, Y; Tsang, DC; Graham, NJ; Ok, YS; Feng, Y; Li, XD

    2017-01-01

    Produced water is a type of wastewater generated from hydraulic fracturing, which may pose a risk to the environment and humans due to its high ionic strength and the presence of elevated concentrations of metals/metalloids that exceed maximum contamination levels. The mobilization of As(V) and Se(VI) in produced water and selected soils from Qingshankou Formation in the Songliao Basin in China were investigated using column experiments and synthetic produced water whose quality was represent...

  11. Low-magnitude high-frequency vibration enhances gene expression related to callus formation, mineralization and remodeling during osteoporotic fracture healing in rats.

    Science.gov (United States)

    Chung, Shu-Lu; Leung, Kwok-Sui; Cheung, Wing-Hoi

    2014-12-01

    Low magnitude high frequency vibration (LMHFV) has been shown to improve anabolic and osteogenic responses in osteoporotic intact bones and during osteoporotic fracture healing; however, the molecular response of LMHFV during osteoporotic fracture healing has not been investigated. It was hypothesized that LMHFV could enhance osteoporotic fracture healing by regulating the expression of genes related to chondrogenesis (Col-2), osteogenesis (Col-1) and remodeling (receptor activator for nuclear factor- κ B ligand (RANKL) and osteoproteger (OPG)). In this study, the effects of LMHFV on both osteoporotic and normal bone fracture healing were assessed by endpoint gene expressions, weekly radiographs, and histomorphometry at weeks 2, 4 and 8 post-treatment. LMHFV enhanced osteoporotic fracture healing by up-regulating the expression of chondrogenesis-, osteogenesis- and remodeling-related genes (Col-2 at week 4 (p=0.008), Col-1 at week 2 and 8 (p<0.001 and p=0.008) and RANKL/OPG at week 8 (p=0.045)). Osteoporotic bone had a higher response to LMHFV than normal bone and showed significantly better results as reflected by increased expression of Col-2 and Col-1 at week 2 (p<0.001 for all), larger callus width at week 2 (p=0.001), callus area at week 1 and 5(p<0.05 for all) and greater relative area of osseous tissue (p=0.002) at week 8. This study helps to understand how LMHFV regulates gene expression of callus formation, mineralization and remodeling during osteoporotic fracture healing. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  12. Fracture Blisters

    Directory of Open Access Journals (Sweden)

    Uebbing, Claire M

    2011-02-01

    Full Text Available Fracture blisters are a relatively uncommon complication of fractures in locations of the body, such as the ankle, wrist elbow and foot, where skin adheres tightly to bone with little subcutaneous fat cushioning. The blister that results resembles that of a second degree burn.These blisters significantly alter treatment, making it difficult to splint or cast and often overlying ideal surgical incision sites. Review of the literature reveals no consensus on management; however, most authors agree on early treatment prior to blister formation or delay until blister resolution before attempting surgical correction or stabilization. [West J Emerg Med. 2011;12(1;131-133.

  13. Reactive transport and mass balance modeling of the Stimson sedimentary formation and altered fracture zones constrain diagenetic conditions at Gale crater, Mars

    Science.gov (United States)

    Hausrath, E. M.; Ming, D. W.; Peretyazhko, T. S.; Rampe, E. B.

    2018-06-01

    On a planet as cold and dry as present-day Mars, evidence of multiple aqueous episodes offers an intriguing view into very different past environments. Fluvial, lacustrine, and eolian depositional environments are being investigated by the Mars Science Laboratory Curiosity in Gale crater, Mars. Geochemical and mineralogical observations of these sedimentary rocks suggest diagenetic processes affected the sediments. Here, we analyze diagenesis of the Stimson formation eolian parent material, which caused loss of olivine and formation of magnetite. Additional, later alteration in fracture zones resulted in preferential dissolution of pyroxene and precipitation of secondary amorphous silica and Ca sulfate. The ability to compare the unaltered parent material with the reacted material allows constraints to be placed on the characteristics of the altering solutions. In this work we use a combination of a mass balance approach calculating the fraction of a mobile element lost or gained, τ, with fundamental geochemical kinetics and thermodynamics in the reactive transport code CrunchFlow to examine the characteristics of multiple stages of aqueous alteration at Gale crater, Mars. Our model results indicate that early diagenesis of the Stimson sedimentary formation is consistent with leaching of an eolian deposit by a near-neutral solution, and that formation of the altered fracture zones is consistent with a very acidic, high sulfate solution containing Ca, P and Si. These results indicate a range of past aqueous conditions occurring at Gale crater, Mars, with important implications for past martian climate and environments.

  14. Microstructural characterization, formation mechanism and fracture behavior of the needle δ phase in Fe–Ni–Cr type superalloys with high Nb content

    Energy Technology Data Exchange (ETDEWEB)

    Ning, Yongquan, E-mail: luckyning@nwpu.edu.cn [School of Materials Science & Engineering, Northwestern Polytechnical University, Xi' an 710072 (China); Huang, Shibo [Anshan Iron & Steel Group Corporation Bayuquan Subsidiary Company, Bayuquan 115007 (China); Fu, M.W. [Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); Dong, Jie [Inspection & Research Institute of Boiler & Pressure Vessel of Jiangxi Province, Nanchang 330029 (China)

    2015-11-15

    Microstructural characterization, formation mechanism and fracture behavior of the needle δ phase in Fe–Ni–Cr type superalloys with high Nb content (GH4169, equivalent to Inconel 718) have been quantitatively investigated in this research. The typical microstructures of δ phases with the stick, mixed and needle shapes obviously present in Inconel 718 after the isothermal upsetting at the temperature of 980–1060 °C with the initial strain rate of 10{sup −3}–10{sup −1} s{sup −1}. It is found that the shape of the δ phase has a great effect on the mechanical properties of the alloy, viz., the stick δ phase behaves good plasticity and the needle δ phase has good strength. In addition, the needle δ phase can be used to control the grain size as it can prevent grain growth. The combined effect of the localized necking and microvoid coalescence leads to the final ductile fracture of the GH4169 components with the needle δ phase. Both dislocation motion and atom diffusion are the root-cause for the needle δ phase to be firstly separated at grain boundary and then at sub-boundary. The formation mechanism of the needle δ phase is the new finding in this research. Furthermore, it is the primary mechanism for controlling the needle δ phase in Fe–Ni–Cr type superalloys with high Nb content. - Highlights: • Shape of the δ phase takes great effect on mechanical property. • Needle δ phase plays a great role to prevent grain growth. • Needle δ phase can enhance the fracture strength. • Microstructure mechanism of the needle δ phase has been investigated. • Fracture behavior of the needle δ phase has been studied.

  15. The use of additive ceramic hollow spheres on cement slurry to prevent lost circulation in formation `X' having low pressure fracture

    Science.gov (United States)

    Rita, Novia; Mursyidah, Syahindra, Michael

    2018-03-01

    When drilling, if the hydrostatic pressure is higher than formation pressure (fracture pressure) it will cause lost circulation during cementing process. To solve this problem, hydrostatic pressure of slurry can be decreased by lowering the slurry density by using some additives. Ceramic Hollow Spheres (CHS) is lightweight additive. This additive comes with low specific gravity so it can lowered the slurry density. When the low-density slurry used in cementing process, it can prevent low circulation and fractured formation caused by cement itself. Class G cement is used in this experiment with the standard density of this slurry is 15.8 ppg. With the addition of CHS, slurry density lowered to 12.5 ppg. CHS not only used to lower the slurry density, it also used to make the same properties with the standard slurry even the density has been lowered. Both thickening time and compressive strength have not change if the CHS added to the slurry. With addition of CHS, thickening time at 70 Bc reached in 03 hours 12 minutes. For the compressive strength, 2000 psi reached in 07 hours 07 minutes. Addition of CHS can save more time in cementing process of X formation.

  16. Model of T-Type Fracture in Coal Fracturing and Analysis of Influence Factors of Fracture Morphology

    Directory of Open Access Journals (Sweden)

    Yuwei Li

    2018-05-01

    Full Text Available Special T-type fractures can be formed when coal is hydraulically fractured and there is currently no relevant theoretical model to calculate and describe them. This paper first establishes the height calculation model of vertical fractures in multi-layered formations and deduces the stress intensity factor (SIF at the upper and lower sides of the fracture in the process of vertical fracture extension. Combined with the fracture tip stress analysis method of fracture mechanics theory, the horizontal bedding is taken into account for tensile and shear failure, and the critical mechanical conditions for the formation of horizontal fracture in coal are obtained. Finally, the model of T-type fracture in coal fracturing is established, and it is verified by fracturing simulation experiments. The model calculation result shows that the increase of vertical fracture height facilitates the increase of horizontal fracture length. The fracture toughness of coal has a significant influence on the length of horizontal fracture and there is a threshold. When the fracture toughness is less than the threshold, the length of horizontal fracture remains unchanged, otherwise, the length of horizontal fracture increases rapidly with the increase of fracture toughness. When the shear strength of the interface between the coalbed and the interlayer increases, the length of the horizontal fracture of the T-type fracture rapidly decreases.

  17. Imaging and histopathological evaluation of a cystlike formation in subchondral insufficiency fracture of the femoral head: A case report and literature review.

    Science.gov (United States)

    Fukui, Kiyokazu; Kaneuji, Ayumi; Fukushima, Mana; Matsumoto, Tadami

    2014-01-01

    In the majority of subchondral insufficiency fractures (SIFs) of the femoral head, T1-weighted magnetic resonance imaging shows an irregular, serpiginous, low-intensity band that is convex to the articular surface. We report a case of a cystlike formation in SIF of the femoral head in an elderly woman. A 71-year-old woman reported right hip pain without any history of antecedent trauma. The initial radiograph showed a slight narrowing of the joint space in the right hip. The patient was treated with conservative therapy for 2 months. Radiographs obtained 3 months after the onset of pain showed non-progressive joint-space narrowing. T1-weighted magnetic resonance images obtained 2 months after pain onset revealed a round, cystlike, low-intensity area just beneath the articular cartilage. The patient underwent total hip arthroplasty. Histopathological examination showed fracture callus and granulation tissue in the subchondral area, surrounded by vascular-rich granulation tissue and fibrous tissue, which corresponded to the round, low-intensity band observed on the T1-weighted image. This case was a rare SIF of the femoral head which had a cystlike formation with a low signal intensity on T1-weighted images and a very high signal intensity on STIR sequences in the superolateral portion of the femoral head, surrounded by a pattern of edema in the bone marrow. To our knowledge, no similar cases were cited in the literature. It is important for surgeons to keep in mind that sometimes SIFs of the femoral head can appear as a round cystlike formation. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Environmental concerns and regulatory initiatives related to hydraulic fracturing in shale gas formations: potential implications for North American gas supply

    Energy Technology Data Exchange (ETDEWEB)

    Sumi, Lisa [Earthworks (Canada)

    2010-09-15

    Shale gas resources have been referred to as a game changer for North America and it is expected that shale gas will account for over 30% of the natural gas production in North America by 2020. However, the development of this resource has raised several concerns, notably in terms of water use and contamination; more stringent regulations could be implemented in the coming years. The aim of this paper is to present the effect that more stringent regulations would have on gas development in the Marcellus shale, which accounts for 20% of North American shale gas production. Information on hydraulic fracturing and its environmental impacts is provided herein, along with information on the regulatory initiatives underway in the Marcellus shale region. This paper pointed out that novel regulations relating to shale gas development could significantly reduce the growth in shale gas production.

  19. Thermal effects on fluid flow and hydraulic fracturing from wellbores and cavities in low-permeability formations

    Energy Technology Data Exchange (ETDEWEB)

    Yarlong Wang [Petro-Geotech Inc., Calgary, AB (Canada); Papamichos, Euripides [IKU Petroleum Research, Trondheim (Norway)

    1999-07-01

    The coupled heat-fluid-stress problem of circular wellbore or spherical cavity subjected to a constant temperature change and a constant fluid flow rate is considered. Transient analytical solutions for temperature, pore pressure and stress are developed by coupling conductive heat transfer with Darcy fluid flow in a poroelastic medium. They are applicable to lower permeability porous media suitable for liquid-waste disposal and also simulating reservoir for enhanced oil recovery, where conduction dominates the heat transfer process. A full range of solutions is presented showing separately the effects of temperature and fluid flow on pore pressure and stress development. It is shown that injection of warm fluid can be used to restrict fracture development around wellbores and cavities and generally to optimise a fluid injection operation. Both the limitations of the solutions and the convective flow effect are addressed. (Author)

  20. Pressure and pressure derivative analysis for vertical gas and oil wells in stress sensitive homogeneous and naturally fractured formations without type-curve matching

    International Nuclear Information System (INIS)

    Escobar, Freddy Humberto; Cantillo, Jose Humberto; Montealegre M, Matilde

    2007-01-01

    Currently, rock mechanics plays an important role in the oil industry. Effects of reservoir subsidence, compaction and dilation are being taken into account in modern reservoir management of complex systems. On the other hand, pressure well tests run in stress sensitive formations ought to be interpreted with non conventional techniques. During the last three decades, several studies relating transient pressure analysis for characterization of stress sensitive reservoirs have been introduced in the literature. Some of them deal with type curves and/or automated history matching. However, due to the nature of the problem, it does not exist a definitive study focused on the adequate characterization of reservoirs which permeability changes as fluid withdrawal advances; in this paper, the permeability modulus concept introduced by Pedroso (1986) is token as the starting basis. A great number of type curves were generated to study the behavior of the above mentioned formations under stress influence. It was found that permeability modulus, therefore permeability changes, can be correlated with the slope of the pressure derivative trend during the radial flow regime when the reservoir suffers compaction. It is also worth to mention that the time of which the minimum characteristic point of a naturally fractured formation (or the inflection point of o semi-log plot) found on the pressure derivative plot is practically the same for formations without stress influence. This contributes to the extension of the TDS technique, Tiab (1993), so a new methodology to characterize this kind of reservoirs is proposed here. This was verified by the solution of synthetic problems

  1. Evidence of stratabound liquefaction in the formation of fractured topographic margins, cone chains and pit catenas along the Martian Dichotomy Boundary and in Isidis Planitia, Mars.

    Science.gov (United States)

    Gallagher, C.; Balme, M. R.

    2012-04-01

    role in at least one mode of catena formation [2]. As well as presenting the morphological evidence for a genetic association between TPT and pit catenas, we present corroborative evidence that fluvial channel networks on Mars have in places increased in complexity through the linking of pits arranged in linear to arcuate arrays, culminating in a pseudo-branching channel network. Such systems do not occur at topographic margins and did not disintegrate into stepped crustal blocks. However, the scale of these channels and the volumes of liquid intermittently impounded in craters along these channel systems indicate that pit chains are associated with significant excess groundwater production leading to channelized flow, including catastrophic discharges when crater-impounded lakes along-flow were breached. Are the MDB and Isidis cone chains exhumed pit catenas and are the pits the surface expression of more deep-seated conduits? Do pit catenas indicate excess pore-water production, sufficient to link individual pits and dissect crustal blocks? Together, do these assemblages reflect the degradation of the MDB and Isidis margins and the subsequent stripping of adjacent low-lying plains? The crucial observations presented in this research (cone chains lying between crustal blocks, together with the morphometric similarities) are consistent with the interpretation of the cones and catenas having a common origin. Consequently, we hypothesise that the translated, back-rotated, tilted and capsized disposition of en echelon blocks is very reminiscent of the morphology produced during lateral spreading [3] associated with stratabound liquefaction below a low-gradient, rigid, insensitive surface. Significantly, such liquefaction events cause extensive, arcuate ground fractures along with the discharge of sediment-laden groundwater from the liquefiable substratum to the surface through pipes and conical boils confined within inter-block fractures. These conduits and their

  2. Fracture corridors as seal-bypass systems in siliciclastic reservoir-cap rock successions: Field-based insights from the Jurassic Entrada Formation (SE Utah, USA)

    NARCIS (Netherlands)

    Ogata, Kei; Senger, Kim; Braathen, Alvar; Tveranger, Jan

    2014-01-01

    Closely spaced, sub-parallel fracture networks contained within localized tabular zones that are fracture corridors may compromise top seal integrity and form pathways for vertical fluid flow between reservoirs at different stratigraphic levels. This geometry is exemplified by fracture corridors

  3. Insights into the subsurface transport of As(V) and Se(VI) in produced water from hydraulic fracturing using soil samples from Qingshankou Formation, Songliao Basin, China.

    Science.gov (United States)

    Chen, Season S; Sun, Yuqing; Tsang, Daniel C W; Graham, Nigel J D; Ok, Yong Sik; Feng, Yujie; Li, Xiang-Dong

    2017-04-01

    Produced water is a type of wastewater generated from hydraulic fracturing, which may pose a risk to the environment and humans due to its high ionic strength and the presence of elevated concentrations of metals/metalloids that exceed maximum contamination levels. The mobilization of As(V) and Se(VI) in produced water and selected soils from Qingshankou Formation in the Songliao Basin in China were investigated using column experiments and synthetic produced water whose quality was representative of waters arising at different times after well creation. Temporal effects of produced water on metal/metalloid transport and sorption/desorption were investigated by using HYDRUS-1D transport modelling. Rapid breakthrough and long tailings of As(V) and Se(VI) transport were observed in Day 1 and Day 14 solutions, but were reduced in Day 90 solution probably due to the elevated ionic strength. The influence of produced water on the hydrogeological conditions (i.e., change between equilibrium and non-equilibrium transport) was evidenced by the change of tracer breakthrough curves before and after the leaching of produced water. This possibly resulted from the sorption of polyacrylamide (PAM (-CH 2 CHCONH 2 -) n ) onto soil surfaces, through its use as a friction reducer in fracturing solutions. The sorption was found to be reversible in this study. Minimal amounts of sorbed As(V) were desorbed whereas the majority of sorbed Se(VI) was readily leached out, to an extent which varied with the composition of the produced water. These results showed that the mobilization of As(V) and Se(VI) in soil largely depended on the solution pH and ionic strength. Understanding the differences in metal/metalloid transport in produced water is important for proper risk management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Hip Fracture

    Science.gov (United States)

    ... hip fractures in people of all ages. In older adults, a hip fracture is most often a result of a fall from a standing height. In people with very weak bones, a hip fracture can occur simply by standing on the leg and twisting. Risk factors The rate of hip fractures increases substantially with ...

  5. Dating fractures in infants

    Energy Technology Data Exchange (ETDEWEB)

    Halliday, K.E., E-mail: kath.halliday@nuh.nhs.uk [Department of Radiology, Nottingham University Hospitals, Queen' s Medical Centre, Nottingham (United Kingdom); Broderick, N J; Somers, J M [Department of Radiology, Nottingham University Hospitals, Queen' s Medical Centre, Nottingham (United Kingdom); Hawkes, R [Department of Radiology, Paul O' Gorman Building, Bristol (United Kingdom)

    2011-11-15

    Aim: To document the timing of the appearance of the radiological features of fracture healing in a group of infants in which the date of injury was known and to assess the degree of interobserver agreement. Materials and methods: Three paediatric radiologists independently assessed 161 images of 37 long bone fractures in 31 patients aged 0-44 months. The following features were assessed: soft-tissue swelling, subperiosteal new bone formation (SPNBF), definition of fracture line, presence or absence of callus, whether callus was well or ill defined, and the presence of endosteal callus. Results: Agreement between observers was only moderate for all discriminators except SPNBF. SPNBF was invariably seen after 11 days but was uncommon before this time even in the very young. In one case SPNBF was seen at 4 days. Conclusion: With the exception of SPNBF, the criteria relied on to date fractures are either not reproducible or are poor discriminators of fracture age.

  6. Dating fractures in infants

    International Nuclear Information System (INIS)

    Halliday, K.E.; Broderick, N.J.; Somers, J.M.; Hawkes, R.

    2011-01-01

    Aim: To document the timing of the appearance of the radiological features of fracture healing in a group of infants in which the date of injury was known and to assess the degree of interobserver agreement. Materials and methods: Three paediatric radiologists independently assessed 161 images of 37 long bone fractures in 31 patients aged 0-44 months. The following features were assessed: soft-tissue swelling, subperiosteal new bone formation (SPNBF), definition of fracture line, presence or absence of callus, whether callus was well or ill defined, and the presence of endosteal callus. Results: Agreement between observers was only moderate for all discriminators except SPNBF. SPNBF was invariably seen after 11 days but was uncommon before this time even in the very young. In one case SPNBF was seen at 4 days. Conclusion: With the exception of SPNBF, the criteria relied on to date fractures are either not reproducible or are poor discriminators of fracture age.

  7. Ontology of fractures

    Science.gov (United States)

    Zhong, Jian; Aydina, Atilla; McGuinness, Deborah L.

    2009-03-01

    Fractures are fundamental structures in the Earth's crust and they can impact many societal and industrial activities including oil and gas exploration and production, aquifer management, CO 2 sequestration, waste isolation, the stabilization of engineering structures, and assessing natural hazards (earthquakes, volcanoes, and landslides). Therefore, an ontology which organizes the concepts of fractures could help facilitate a sound education within, and communication among, the highly diverse professional and academic community interested in the problems cited above. We developed a process-based ontology that makes explicit specifications about fractures, their properties, and the deformation mechanisms which lead to their formation and evolution. Our ontology emphasizes the relationships among concepts such as the factors that influence the mechanism(s) responsible for the formation and evolution of specific fracture types. Our ontology is a valuable resource with a potential to applications in a number of fields utilizing recent advances in Information Technology, specifically for digital data and information in computers, grids, and Web services.

  8. La fracturation et les bandes de déformation dans la région d’El Kohol (Atlas saharien central, Algérie: analyse fractale, lois d’échelles et modèle de réseaux de fractures discrètes

    Directory of Open Access Journals (Sweden)

    Zazoun, R. S.

    2015-12-01

    Full Text Available The aim of this paper is focused on the study of natural fractures and deformation bands in El Kohol structure, located in the Djebel Amour in the Central Saharan Atlas, Algeria. The field observations and measurements were performed through two localities on the forelimb and two others on the backlimb of the structure. The outcrop study has shown the existence of five fracture sets and three deformation bands sets. The spacing and length distribution models of the different fractures sets obey to a power law. The mechanical layer thickness analysis for the whole formations shows the existence of twelve mechanical units with a stratabound control. The deformation bands show an increasing in their numbers, and a decreasing in their spacing when they approach the major faults. The fractal analysis of faults and fractures, as well as the deformation bands show a fractal character of 2D dimension. A good correlation coefficients is obtained from the comparison between the density and the intensity parameters (Pxy calculated from the discrete fracture network (DFN modelling, and those from the outcrops. The model developed is discussed related to deformation events recognized in the area.[fr] Ce travail porte sur l’étude de la fracturation naturelle et les bandes de déformation dans la structure plicative d’El Kohol, du le Djebel Amour, dans l’Atlas saharien central. Les observations et les mesures ont été effectuées à travers deux stations sur le flanc court ou avant de la structure, et deux stations sur le flanc long ou arrière. L’étude a montré l’existence de cinq familles de fractures et de trois familles de bandes de déformation. Les modèles de distribution des espacements et des longueurs des différentes familles de fractures obéit à une loi de type puissance. L’analyse mécanostratigraphique montre une subdivision des formations étudiées en douze unités mécaniques. Les bandes de déformation montrent une

  9. Ballistic fractures: indirect fracture to bone.

    Science.gov (United States)

    Dougherty, Paul J; Sherman, Don; Dau, Nathan; Bir, Cynthia

    2011-11-01

    Two mechanisms of injury, the temporary cavity and the sonic wave, have been proposed to produce indirect fractures as a projectile passes nearby in tissue. The purpose of this study is to evaluate the temporal relationship of pressure waves using strain gauge technology and high-speed video to elucidate whether the sonic wave, the temporary cavity, or both are responsible for the formation of indirect fractures. Twenty-eight fresh frozen cadaveric diaphyseal tibia (2) and femurs (26) were implanted into ordnance gelatin blocks. Shots were fired using 9- and 5.56-mm bullets traversing through the gelatin only, passing close to the edge of the bone, but not touching, to produce an indirect fracture. High-speed video of the impact event was collected at 20,000 frames/s. Acquisition of the strain data were synchronized with the video at 20,000 Hz. The exact time of fracture was determined by analyzing and comparing the strain gauge output and video. Twenty-eight shots were fired, 2 with 9-mm bullets and 26 with 5.56-mm bullets. Eight indirect fractures that occurred were of a simple (oblique or wedge) pattern. Comparison of the average distance of the projectile from the bone was 9.68 mm (range, 3-20 mm) for fractured specimens and 15.15 mm (range, 7-28 mm) for nonfractured specimens (Student's t test, p = 0.036). In this study, indirect fractures were produced after passage of the projectile. Thus, the temporary cavity, not the sonic wave, was responsible for the indirect fractures.

  10. Rib Fractures

    Science.gov (United States)

    ... Video) Achilles Tendon Tear Additional Content Medical News Rib Fractures By Thomas G. Weiser, MD, MPH, Associate Professor, ... Tamponade Hemothorax Injury to the Aorta Pulmonary Contusion Rib Fractures Tension Pneumothorax Traumatic Pneumothorax (See also Introduction to ...

  11. Root fractures

    DEFF Research Database (Denmark)

    Andreasen, Jens Ove; Christensen, Søren Steno Ahrensburg; Tsilingaridis, Georgios

    2012-01-01

    The purpose of this study was to analyze tooth loss after root fractures and to assess the influence of the type of healing and the location of the root fracture. Furthermore, the actual cause of tooth loss was analyzed....

  12. Stress Fractures

    Science.gov (United States)

    Stress fractures Overview Stress fractures are tiny cracks in a bone. They're caused by repetitive force, often from overuse — such as repeatedly jumping up and down or running long distances. Stress fractures can also arise from normal use of ...

  13. Pubic insufficiency fracture: MRI findings

    International Nuclear Information System (INIS)

    Min, Tae Kyu; Lee, Yeon Soo; Park, Jeong Mi; Kim, Jee Young; Chung, Hong Jun; Lee, Eun Hee; Lee, Eun Ja; Kang, So Won; Han Tae Il

    2000-01-01

    To evaluate the characteristic MRI findings of pubic insufficiency fracture. In nine cases of pubic insufficiency fracture, the findings of plain radiography (n=9), MRI (n=9), and bone scintigraphy (n=8) were reviewed. We retrospectively analyzed, with regard to fracture site, the destructive pattern revealed by plain radiography, and uptake by other pelvic bones, as demonstrated by RI bone scanning. The MR findings evaluated were the fracture gap and its signal intensity, the site and signal intensity of the soft tissue mass, and other pelvic bone fractures. Plain radiography revealed osteolysis and sclerosis of pubic bone in eight of nine cases (89%), and parasymphyseal fractures in seven (78%). RI indicated uptake by the sacrum in six cases (66%), and by the ilium in three (33%). MR findings of fracture gap (seven cases, 78%) were hypo to isointensity on T1WI, hyper intensity on T2WI and the absence of contrast enhancement. Soft tissue masses were found in seven cases (78%); in four of these the location was parasymphyseal, and in three, surrounding muscle was involved. Hypo to isointensity was revealed by T1WI, hyperintensity by T2WI, and there was peripheral enhancement. Other associated pelvic bone fractures involved the sacrum in seven cases and the ilium in four. The characteristic MR findings of pubic insufficiency fracture were parasymphyseal location, fracture gap, peripherally enhanced soft tissue mass formation, and fractures of other pelvic bones, namely the sacrum and ilium

  14. Acetabular Fracture

    Directory of Open Access Journals (Sweden)

    Chad Correa

    2017-09-01

    Full Text Available History of present illness: A 77-year-old female presented to her primary care physician (PCP with right hip pain after a mechanical fall. She did not lose consciousness or have any other traumatic injuries. She was unable to ambulate post-fall, so X-rays were ordered by her PCP. Her X-rays were concerning for a right acetabular fracture (see purple arrows, so the patient was referred to the emergency department where a computed tomography (CT scan was ordered. Significant findings: The non-contrast CT images show a minimally displaced comminuted fracture of the right acetabulum involving the acetabular roof, medial and anterior walls (red arrows, with associated obturator muscle hematoma (blue oval. Discussion: Acetabular fractures are quite rare. There are 37 pelvic fractures per 100,000 people in the United States annually, and only 10% of these involve the acetabulum. They occur more frequently in the elderly totaling an estimated 4,000 per year. High-energy trauma is the primary cause of acetabular fractures in younger individuals and these fractures are commonly associated with other fractures and pelvic ring disruptions. Fractures secondary to moderate or minimal trauma are increasingly of concern in patients of advanced age.1 Classification of acetabular fractures can be challenging. However, the approach can be simplified by remembering the three basic types of acetabular fractures (column, transverse, and wall and their corresponding radiologic views. First, column fractures should be evaluated with coronally oriented CT images. This type of fracture demonstrates a coronal fracture line running caudad to craniad, essentially breaking the acetabulum into two halves: a front half and a back half. Secondly, transverse fractures should be evaluated by sagittally oriented CT images. By definition, a transverse fracture separates the acetabulum into superior and inferior halves with the fracture line extending from anterior to posterior

  15. Mandible Fractures.

    Science.gov (United States)

    Pickrell, Brent B; Serebrakian, Arman T; Maricevich, Renata S

    2017-05-01

    Mandible fractures account for a significant portion of maxillofacial injuries and the evaluation, diagnosis, and management of these fractures remain challenging despite improved imaging technology and fixation techniques. Understanding appropriate surgical management can prevent complications such as malocclusion, pain, and revision procedures. Depending on the type and location of the fractures, various open and closed surgical reduction techniques can be utilized. In this article, the authors review the diagnostic evaluation, treatment options, and common complications of mandible fractures. Special considerations are described for pediatric and atrophic mandibles.

  16. Hydraulic fracture propagation modeling and data-based fracture identification

    Science.gov (United States)

    Zhou, Jing

    parameters used in the reservoir flow simulator have large uncertainty. Those biased and uncertain parameters will result in misleading oil and gas recovery predictions. The Ensemble Kalman Filter is used to estimate and update both the state variables (pressure and saturations) and uncertain reservoir parameters (permeability). In order to directly incorporate spatial information such as fracture location and formation heterogeneity into the algorithm, a new covariance matrix method is proposed. This new method has been applied to a simplified single-phase reservoir and a complex black oil reservoir with complex structures to prove its capability in calibrating the reservoir parameters.

  17. Facial Fractures.

    Science.gov (United States)

    Ghosh, Rajarshi; Gopalkrishnan, Kulandaswamy

    2018-06-01

    The aim of this study is to retrospectively analyze the incidence of facial fractures along with age, gender predilection, etiology, commonest site, associated dental injuries, and any complications of patients operated in Craniofacial Unit of SDM College of Dental Sciences and Hospital. This retrospective study was conducted at the Department of OMFS, SDM College of Dental Sciences, Dharwad from January 2003 to December 2013. Data were recorded for the cause of injury, age and gender distribution, frequency and type of injury, localization and frequency of soft tissue injuries, dentoalveolar trauma, facial bone fractures, complications, concomitant injuries, and different treatment protocols.All the data were analyzed using statistical analysis that is chi-squared test. A total of 1146 patients reported at our unit with facial fractures during these 10 years. Males accounted for a higher frequency of facial fractures (88.8%). Mandible was the commonest bone to be fractured among all the facial bones (71.2%). Maxillary central incisors were the most common teeth to be injured (33.8%) and avulsion was the most common type of injury (44.6%). Commonest postoperative complication was plate infection (11%) leading to plate removal. Other injuries associated with facial fractures were rib fractures, head injuries, upper and lower limb fractures, etc., among these rib fractures were seen most frequently (21.6%). This study was performed to compare the different etiologic factors leading to diverse facial fracture patterns. By statistical analysis of this record the authors come to know about the relationship of facial fractures with gender, age, associated comorbidities, etc.

  18. Fracture sacrum.

    Directory of Open Access Journals (Sweden)

    Dogra A

    1995-04-01

    Full Text Available An extremely rare case of combined transverse and vertical fracture of sacrum with neurological deficit is reported here with a six month follow-up. The patient also had an L1 compression fracture. The patient has recovered significantly with conservative management.

  19. Fracture Mechanics

    CERN Document Server

    Zehnder, Alan T

    2012-01-01

    Fracture mechanics is a vast and growing field. This book develops the basic elements needed for both fracture research and engineering practice. The emphasis is on continuum mechanics models for energy flows and crack-tip stress- and deformation fields in elastic and elastic-plastic materials. In addition to a brief discussion of computational fracture methods, the text includes practical sections on fracture criteria, fracture toughness testing, and methods for measuring stress intensity factors and energy release rates. Class-tested at Cornell, this book is designed for students, researchers and practitioners interested in understanding and contributing to a diverse and vital field of knowledge. Alan Zehnder joined the faculty at Cornell University in 1988. Since then he has served in a number of leadership roles including Chair of the Department of Theoretical and Applied Mechanics, and Director of the Sibley School of Mechanical and Aerospace Engineering.  He teaches applied mechanics and his research t...

  20. Upfront predictions of hydraulic fracturing and gas production in underexplored shale gas basins: Example of the posidonia shale formation in the Netherlands

    NARCIS (Netherlands)

    TerHeege, J.H.; Zijp, M.; DeBruin, G.; Buijze, L.

    2014-01-01

    Upfront predictions of hydraulic fracturing and gas production of potential shale gas targets in Europe are important as often large potential resources are deduced without detailed knowledge on the potential for successful stimulation. Such predictions are challenging as they need to be based on

  1. Sweet spots for hydraulic fracturing oil or gas production in underexplored shales using key performance indicators: Example of the Posidonia Shale formation in the Netherlands

    NARCIS (Netherlands)

    Heege, J.H. ter; Zijp, M.H.A.A.; Nelkamp, S.

    2015-01-01

    While extensive data and experiences are available for hydraulic fracturing and hydrocarbon production from shales in the U.S.A., such a record is lacking in many underexplored shale basins worldwide. As limited data is usually available in these basins, analysis of shale prospectivity and

  2. 煤层开采底板突水通道形成的断裂力学机制探讨%Discussion on fracture mechanics mechanism for formation of mining induced floor water inrush channel

    Institute of Scientific and Technical Information of China (English)

    申建军; 刘伟韬

    2016-01-01

    针对华北型煤田采动变形破坏底板突水通道的形成机制问题,划分了4种底板隔水层岩体结构类型;分析了采动效应特征,研究了压剪破坏和拉张破坏两种岩体结构破坏形式;探讨了底板突水通道形成的断裂力学机制。结果表明:对于裂隙型底板岩体结构而言,底板突水说明隔水层中潜在突水通道转化为突水通道,即裂隙已经扩展贯通到采空区临空面;岩体结构变化是引起渗透率变化的根本原因,也是岩体丧失隔水性能的根本原因;应力集中区裂纹扩展属于压剪状态下的I型裂纹扩展,而卸荷区裂纹扩展属于拉剪状态下I-II型复合裂纹扩展。%Aiming at the water inrush channel formation mechanism in coal seam floor with mining-induced deformation and failure in North China, the floor water-resisting layer was divided into four types. The characteristics and effects of mining were analyzed, and two kinds of failure forms including shear failure and tensile failure were studied. Crack propagation angle and fracture criterion were obtained by the maximum circumferential tensile stress theory. The mechanism of fracture mechanics for channel formation of floor water bursting was discussed. The results show that: for fractured network type of floor water-resisting layer, floor water bursting indicates that the potential channel had changed to water inrush channel, which the crack has extended into the mined-out area. The changes of water-resisting layer permeability are caused by the changes of rock mass structure, which is also the primary cause of water-resisting property loss. The crack propagation belongs to I type fracture under compression-shear state in stress concentration zone, while that belongs to I-II type fracture under tension-shear state in unloading zone.

  3. Cleavage and creep fracture of rock salt

    International Nuclear Information System (INIS)

    Chan, K.S.; Munson, D.E.; Bodner, S.R.

    1996-01-01

    The dominant failure mechanism in rock salt at ambient temperature is either cleavage or creep fracture. Since the transition of creep fracture to cleavage in a compressive stress field is not well understood, failure of rock salt by cleavage and creep fracture is analyzed in this paper to elucidate the effect of stress state on the competition between these two fracture mechanisms. For cleavage fracture, a shear crack is assumed to cause the formation and growth of a symmetric pair of wing cracks in a predominantly compressive stress field. The conditions for wing-crack instability are derived and presented as the cleavage fracture boundary in the fracture mechanism map. Using an existing creep fracture model, stress conditions for the onset of creep fracture and isochronous failure curves of specified times-to-rupture are calculated and incorporated into the fracture mechanism map. The regimes of dominance by cleavage and creep fracture are established and compared with experimental data. The result indicates that unstable propagation of cleavage cracks occurs only in the presence of tensile stress. The onset of creep fracture is promoted by a tensile stress, but can be totally suppressed by a high confining pressure. Transition of creep fracture to cleavage occurs when critical conditions of stress difference and tensile stress for crack instability are exceeded

  4. Fracture mechanics

    CERN Document Server

    Perez, Nestor

    2017-01-01

    The second edition of this textbook includes a refined presentation of concepts in each chapter, additional examples; new problems and sections, such as conformal mapping and mechanical behavior of wood; while retaining all the features of the original book. The material included in this book is based upon the development of analytical and numerical procedures pertinent to particular fields of linear elastic fracture mechanics (LEFM) and plastic fracture mechanics (PFM), including mixed-mode-loading interaction. The mathematical approach undertaken herein is coupled with a brief review of several fracture theories available in cited references, along with many color images and figures. Dynamic fracture mechanics is included through the field of fatigue and Charpy impact testing. Explains computational and engineering approaches for solving crack-related problems using straightforward mathematics that facilitate comprehension of the physical meaning of crack growth processes; Expands computational understandin...

  5. Fracture analysis

    International Nuclear Information System (INIS)

    Ueng, Tzoushin; Towse, D.

    1991-01-01

    Fractures are not only the weak planes of a rock mass, but also the easy passages for the fluid flow. Their spacing, orientation, and aperture will affect the deformability, strength, heat transmittal, and fluid transporting properties of the rock mass. To understand the thermomechanical and hydrological behaviors of the rock surrounding the heater emplacement borehole, the location, orientation, and aperture of the fractures of the rock mass should be known. Borehole television and borescope surveys were performed to map the location, orientation, and aperture of the fractures intersecting the boreholes drilled in the Prototype Engineered Barrier System Field Tests (PEBSFT) at G-Tunnel. Core logging was also performed during drilling. However, because the core was not oriented and the depth of the fracture cannot be accurately determined, the results of the core logging were only used as reference and will not be discussed here

  6. Facial Fractures.

    Science.gov (United States)

    Ricketts, Sophie; Gill, Hameet S; Fialkov, Jeffery A; Matic, Damir B; Antonyshyn, Oleh M

    2016-02-01

    After reading this article, the participant should be able to: 1. Demonstrate an understanding of some of the changes in aspects of facial fracture management. 2. Assess a patient presenting with facial fractures. 3. Understand indications and timing of surgery. 4. Recognize exposures of the craniomaxillofacial skeleton. 5. Identify methods for repair of typical facial fracture patterns. 6. Discuss the common complications seen with facial fractures. Restoration of the facial skeleton and associated soft tissues after trauma involves accurate clinical and radiologic assessment to effectively plan a management approach for these injuries. When surgical intervention is necessary, timing, exposure, sequencing, and execution of repair are all integral to achieving the best long-term outcomes for these patients.

  7. Pisiform fractures

    International Nuclear Information System (INIS)

    Fleege, M.A.; Jebson, P.J.; Renfrew, D.L.; El-Khoury, G.Y.; Steyers, C.M. Jr.

    1991-01-01

    Fractures of the pisiform are often missed due to improper radiographic evaluation and a tendency to focus on other, more obvious injuries. Delayed diagnosis may result in disabling sequelae. A high index of clinical suspicion and appropriate radiographic examination will establish the correct diagnosis. Ten patients with pisiform fracture are presented. The anatomy, mechanism of injury, clinical presentation, radiographic features, and evaluation of this injury are discussed. (orig.)

  8. Stress fractures

    International Nuclear Information System (INIS)

    Berquist, T.H.; Cooper, K.L.; Pritchard, D.J.

    1985-01-01

    The diagnosis of a stress fracture should be considered in patients presented with pain after a change in activity, especially if the activity is strenuous and the pain is in the lower extremities. Since evidence of the stress fracture may not be apparent for weeks on routine radiographs, proper use of other imaging techniques will allow an earlier diagnosis. Prompt diagnosis is especially important in the femur, where displacement may occur

  9. Scaphoid Fracture

    Directory of Open Access Journals (Sweden)

    Esther Kim, BS

    2018-04-01

    Full Text Available History of present illness: A 25-year-old, right-handed male presented to the emergency department with left wrist pain after falling from a skateboard onto an outstretched hand two-weeks prior. He otherwise had no additional concerns, including no complaints of weakness or loss of sensation. On physical exam, there was tenderness to palpation within the anatomical snuff box. The neurovascular exam was intact. Plain films of the left wrist and hand were obtained. Significant findings: The anteroposterior (AP plain film of this patient demonstrates a full thickness fracture through the middle third of the scaphoid (red arrow, with some apparent displacement (yellow lines and subtle angulation of the fracture fragments (blue line. Discussion: The scaphoid bone is the most commonly fractured carpal bone accounting for 70%-80% of carpal fractures.1 Classically, it is sustained following a fall onto an outstretched hand (FOOSH. Patients should be evaluated for tenderness with palpation over the anatomical snuffbox, which has a sensitivity of 100% and specificity of 40%.2 Plain films are the initial diagnostic modality of choice and have a sensitivity of 70%, but are commonly falsely negative in the first two to six weeks of injury (false negative of 20%.3 The Mayo classification organizes scaphoid fractures as involving the proximal, mid, and distal portions of the scaphoid bone with mid-fractures being the most common.3 The proximal scaphoid is highly susceptible to vascular compromise because it depends on retrograde blood flow from the radial artery. Therefore, disruption can lead to serious sequelae including osteonecrosis, arthrosis, and functional impairment. Thus, a low threshold should be maintained for neurovascular evaluation and surgical referral. Patients with non-displaced scaphoid fractures should be placed in a thumb spica splint.3 Patients with even suspected scaphoid fractures should be placed in a thumb spica splint and re

  10. Acidization of shales with calcite cemented fractures

    Science.gov (United States)

    Kwiatkowski, Kamil; Szymczak, Piotr; Jarosiński, Marek

    2017-04-01

    Investigation of cores drilled from shale formations reveals a relatively large number of calcite-cemented fractures. Usually such fractures are reactivated during fracking and can contribute considerably to the permeability of the resulting fracture network. However, calcite coating on their surfaces effectively excludes them from production. Dissolution of the calcite cement by acidic fluids is investigated numerically with focus on the evolution of fracture morphology. Available surface area, breakthrough time, and reactant penetration length are calculated. Natural fractures in cores from Pomeranian shale formation (northern Poland) were analyzed and classified. Representative fractures are relatively thin (0.1 mm), flat and completely sealed with calcite. Next, the morphology evolution of reactivated natural fractures treated with low-pH fluids has been simulated numerically under various operating conditions. Depth-averaged equations for fracture flow and reactant transport has been solved by finite-difference method coupled with sparse-matrix solver. Transport-limited dissolution has been considered, which corresponds to the treatment with strong acids, such as HCl. Calcite coating in reactivated natural fractures dissolves in a highly non-homogeneous manner - a positive feedback between fluid transport and calcite dissolution leads to the spontaneous formation of wormhole-like patterns, in which most of the flow is focused. The wormholes carry reactive fluids deeper inside the system, which dramatically increases the range of the treatment. Non-uniformity of the dissolution patterns provides a way of retaining the fracture permeability even in the absence of the proppant, since the less dissolved regions will act as supports to keep more dissolved regions open. Evolution of fracture morphology is shown to depend strongly on the thickness of calcite layer - the thicker the coating the more pronounced wormholes are observed. However the interaction between

  11. Passive bookshelf faulting driven by gravitational spreading as the cause of the tiger-stripe-fracture formation and development in the South Polar Terrain of Enceladus

    Science.gov (United States)

    Yin, A.; Pappalardo, R. T.

    2013-12-01

    Detailed photogeologic mapping of the tiger-stripe fractures in the South Polar Terrain (SPT) of Enceladus indicates that these structures are left-slip faults and terminate at hook-shaped fold-thrust zones and/or Y-shaped horsetail splay-fault zones. The semi-square-shaped tectonic domain that hosts the tiger-stripe faults is bounded by right-slip and left-slip faults on the north and south edges and fold-thrust and extensional zones on the western and eastern edges. We explain the above observations by a passive bookshelf-faulting model in which individual tiger-stripe faults are bounded by deformable wall rocks accommodating distributed deformation. Based on topographic data, we suggest that gravitational spreading had caused the SPT to spread unevenly from west to east. This process was accommodated by right-slip and left-slip faulting on the north and south sides and thrusting and extension along the eastern and southern margins of the tiger-stripe tectonic domain. The uneven spreading, expressed by a gradual northward increase in the number of extensional faults and thrusts/folds along the western and eastern margins, was accommodated by distributed right-slip simple shear across the whole tiger-stripe tectonic domain. This mode of deformation in turn resulted in the development of a passive bookshelf-fault system characterized by left-slip faulting on individual tiger-stripe fractures.

  12. Trochanteric fractures

    International Nuclear Information System (INIS)

    Herrlin, K.; Stroemberg, T.; Lidgren, L.; Walloee, A.; Pettersson, H.; Lund Univ.

    1988-01-01

    Four hundred and thirty trochanteric factures operated upon with McLaughlin, Ender or Richard's osteosynthesis were divided into 6 different types based on their radiographic appearance before and immediately after reposition with special reference to the medial cortical support. A significant correlation was found between the fracture type and subsequent mechanical complications where types 1 and 2 gave less, and types 4 and 5 more complications. A comparison of the various osteosyntheses showed that Richard's had significantly fewer complications than either the Ender or McLaughlin types. For Richard's osteosynthesis alone no correlation to fracture type could be made because of the small number of complications in this group. (orig.)

  13. Enhancing in situ bioremediation with pneumatic fracturing

    International Nuclear Information System (INIS)

    Anderson, D.B.; Peyton, B.M.; Liskowitz, J.L.; Fitzgerald, C.; Schuring, J.R.

    1994-04-01

    A major technical obstacle affecting the application of in situ bioremediation is the effective distribution of nutrients to the subsurface media. Pneumatic fracturing can increase the permeability of subsurface formations through the injection of high pressure air to create horizontal fracture planes, thus enhancing macro-scale mass-transfer processes. Pneumatic fracturing technology was demonstrated at two field sites at Tinker Air Force Base, Oklahoma City, Oklahoma. Tests were performed to increase the permeability for more effective bioventing, and evaluated the potential to increase permeability and recovery of free product in low permeability soils consisting of fine grain silts, clays, and sedimentary rock. Pneumatic fracturing significantly improved formation permeability by enhancing secondary permeability and by promoting removal of excess soil moisture from the unsaturated zone. Postfracture airflows were 500% to 1,700% higher than prefracture airflows for specific fractured intervals in the formation. This corresponds to an average prefracturing permeability of 0.017 Darcy, increasing to an average of 0.32 Darcy after fracturing. Pneumatic fracturing also increased free-product recovery rates of number 2 fuel from an average of 587 L (155 gal) per month before fracturing to 1,647 L (435 gal) per month after fracturing

  14. Tracer transport in fractured rocks

    International Nuclear Information System (INIS)

    Tsang, C.F.; Tsang, Y.W.; Hale, F.V.

    1988-07-01

    Recent interest in the safety of toxic waste underground disposal and nuclear waste geologic repositories has motivated many studies of tracer transport in fractured media. Fractures occur in most geologic formations and introduce a high degree of heterogeneity. Within each fracture, the aperture is not constant in value but strongly varying. Thus for such media, tracer tends to flow through preferred flowpaths or channels within the fractures. Along each of these channels, the aperture is also strongly varying. A detailed analysis is carried out on a 2D single fracture with variable apertures and the flow through channels is demonstrated. The channels defined this way are not rigidly set pathways for tracer transport, but are the preferred flow paths in the sense of stream-tubes in the potential theory. It is shown that such variable-aperture channels can be characterized by an aperture probability distribution function, and not by the exact deterministic geometric locations. We also demonstrate that the 2D tracer transport in a fracture can be calculated by a model of a system of 1D channels characterized by this distribution function only. Due to the channeling character of tracer transport in fractured rock, random point measurements of tracer breakthrough curves may give results with a wide spread in value due to statistical fluctuations. The present paper suggests that such a wide spread can probably be greatly reduced by making line/areal (or multiple) measurements covering a few spatial correlation lengths. 13 refs., 11 figs., 1 tab

  15. Elbow Fractures

    Science.gov (United States)

    ... is also an important factor when treating elbow fractures. Casts are used more frequently in children, as their risk of developing elbow stiffness is small; however, in an adult, elbow stiffness is much more likely. Rehabilitation directed by your doctor is often used to ...

  16. Wrist Fractures

    Science.gov (United States)

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is a Hand Surgeon? What is a Hand Therapist? Media Find a Hand Surgeon Home Anatomy Wrist Fractures Email to a friend * required fields ...

  17. Shoulder Fractures

    Science.gov (United States)

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is a Hand Surgeon? What is a Hand Therapist? Media Find a Hand Surgeon Home Anatomy Shoulder Fractures Email to a friend * required fields ...

  18. Massive hydraulic fracturing gas stimulation project

    International Nuclear Information System (INIS)

    Appledorn, C.R.; Mann, R.L.

    1977-01-01

    The Rio Blanco Massive Hydraulic Fracturing Project was fielded in 1974 as a joint Industry/ERDA demonstration to test the relative formations that were stimulated by the Rio Blanco Nuclear fracturing experiment. The project is a companion effort to and a continuation of the preceding nuclear stimulation project, which took place in May 1973. 8 figures

  19. Simulation of complex fracture networks influenced by natural fractures in shale gas reservoir

    Directory of Open Access Journals (Sweden)

    Zhao Jinzhou

    2014-10-01

    Full Text Available When hydraulic fractures intersect with natural fractures, the geometry and complexity of a fracture network are determined by the initiation and propagation pattern which is affected by a number of factors. Based on the fracture mechanics, the criterion for initiation and propagation of a fracture was introduced to analyze the tendency of a propagating angle and factors affecting propagating pressure. On this basis, a mathematic model with a complex fracture network was established to investigate how the fracture network form changes with different parameters, including rock mechanics, in-situ stress distribution, fracture properties, and frac treatment parameters. The solving process of this model was accelerated by classifying the calculation nodes on the extending direction of the fracture by equal pressure gradients, and solving the geometrical parameters prior to the iteration fitting flow distribution. With the initiation and propagation criterion as the bases for the propagation of branch fractures, this method decreased the iteration times through eliminating the fitting of the fracture length in conventional 3D fracture simulation. The simulation results indicated that the formation with abundant natural fractures and smaller in-situ stress difference is sufficient conditions for fracture network development. If the pressure in the hydraulic fractures can be kept at a high level by temporary sealing or diversion, the branch fractures will propagate further with minor curvature radius, thus enlarging the reservoir stimulation area. The simulated shape of fracture network can be well matched with the field microseismic mapping in data point range and distribution density, validating the accuracy of this model.

  20. Stress fractures and bone pain

    International Nuclear Information System (INIS)

    Groshar, D.; Even-Sapir, E.; Lam, M.; Israel, O.; Front, D.

    1984-01-01

    Stress fractures result from an unusual repetitive physical activity causing absorption of bone in excess of repair and bone formation. This leads to the weakening of the bone and subsequently to a fracture. It is a benign condition that if recognized in time does not need any treatment besides rest. However, if diagnosis is not made and physical activity continues it may result in severe injury to the bone and a frank fracture may result. Pain is the typical clinical feature and bone scintigraphy, being more sensitive than radiography, is done to establish early diagnosis. The presence of asymptomatic sites of abnormal bone uptake typical of stress fracture in which pain appeared only about 2 weeks after scintigraphy, drew the authors' attention to the question of how close is the relationship between stress fractures and bone pain. Sixty-four military recruits diagnosed as suffering from stress fracture were investigated in order to correlate sites with abnormal uptake of Tc-99m MDP on bone scintigraphy with sites of local pain. In 37 (58%) subjects multiple sites of abnormal uptake were recognised. Of 123 sites of abnormal uptake, 31 (25%) were asymptomatic. In three patients bone pain appeared at the site of the abnormal uptake two weeks after scintigraphy. Bone scintigraphy appears to be more sensitive than bone pain in the diagnosis of stress fractures. The osteoblastic activity which manifests itself by abnormal uptake appears in some cases earlier than the pain caused by the fracture. Present findings may suggest that under certain circumstances, in a population prone to stress fracture, bone scan should be considered as a screening method

  1. Bimalleolar ankle fracture with proximal fibular fracture

    NARCIS (Netherlands)

    Colenbrander, R. J.; Struijs, P. A. A.; Ultee, J. M.

    2005-01-01

    A 56-year-old female patient suffered a bimalleolar ankle fracture with an additional proximal fibular fracture. This is an unusual fracture type, seldom reported in literature. It was operatively treated by open reduction and internal fixation of the lateral malleolar fracture. The proximal fibular

  2. SIGN HIP CONSTRUCT: ACHIEVING HIP FRACTURE FIXATION ...

    African Journals Online (AJOL)

    Outcome measures: Radiographic union, callus formation, infection, fracture angulation, weight bearing status. Results:A ... Africa, and Latin America due to the aging population and the ... ridge to expose the lateral aspect of the femur. The.

  3. Investigation on the Productivity Behaviour in Deformable Heterogeneous Fractured Reservoirs

    DEFF Research Database (Denmark)

    Kadeethum, Teeratorn; Salimzadeh, Saeed; Nick, Hamid

    reasons for this reduction. Discrete fracture and matrix (DFM) modelling is selected in this investigation because of its ability to represent fracture behaviours more realistically. Moreover, it has become a preferential method for modelling flow in fractured formations for the past decade (Bisdom et al...

  4. Laboratory tests of hydraulic fracturing and swell healing

    DEFF Research Database (Denmark)

    Thunbo, Christensen Claes; Foged, Christensen Helle; Foged, Niels

    1998-01-01

    New laboratory test set-ups and test procedures are described - for testing the formation of hydraulically induced fractures as well as the potential for subsequent fracture closurefrom the relase of a swelling potential. The main purpose with the tests is to provide information on fracturing str...

  5. Evidence for Ongoing Modeling-Based Bone Formation in Human Femoral Head Trabeculae via Forming Minimodeling Structures: A Study in Patients with Fractures and Arthritis.

    Science.gov (United States)

    Sano, Hiroshige; Kondo, Naoki; Shimakura, Taketoshi; Fujisawa, Junichi; Kijima, Yasufumi; Kanai, Tomotake; Poole, Kenneth E S; Yamamoto, Noriaki; Takahashi, Hideaki E; Endo, Naoto

    2018-01-01

    Bone modeling is a biological process of bone formation that adapts bone size and shape to mechanical loads, especially during childhood and adolescence. Bone modeling in cortical bone can be easily detected using sequential radiographic images, while its assessment in trabecular bone is challenging. Here, we performed histomorphometric analysis in 21 bone specimens from biopsies collected during hip arthroplasty, and we proposed the criteria for histologically identifying an active modeling-based bone formation, which we call a "forming minimodeling structure" (FMiS). Evidence of FMiSs was found in 9 of 20 specimens (45%). In histomorphometric analysis, bone volume was significant higher in specimens displaying FMiSs compared with the specimens without these structures (BV/TV, 31.7 ± 10.2 vs. 23.1 ± 3.9%; p  modeling-based bone formation on trabecular bone surfaces occurs even during adulthood. As FMiSs can represent histological evidence of modeling-based bone formation, understanding of this physiology in relation to bone homeostasis is crucial.

  6. Fracture mechanics

    International Nuclear Information System (INIS)

    Miannay, D.P.

    1995-01-01

    This book entitle ''Fracture Mechanics'', the first one of the monograph ''Materiologie'' is geared to design engineers, material engineers, non destructive inspectors and safety experts. This book covers fracture mechanics in isotropic homogeneous continuum. Only the monotonic static loading is considered. This book intended to be a reference with the current state of the art gives the fundamental of the issues under concern and avoids the developments too complicated or not yet mastered for not making reading cumbersome. The subject matter is organized as going from an easy to a more complicated level and thus follows the chronological evolution in the field. Similarly the microscopic scale is considered before the macroscopic scale, the physical understanding of phenomena linked to the experimental observation of the material preceded the understanding of the macroscopic behaviour of structures. In this latter field the relatively recent contribution of finite element computations with some analogy with the experimental observation is determining. However more sensitive analysis is not skipped

  7. Modeling Flow in Naturally Fractured Reservoirs : Effect of Fracture Aperture Distribution on Critical Sub-Network for Flow

    NARCIS (Netherlands)

    Gong, J.; Rossen, W.R.

    2014-01-01

    Fracture network connectivity and aperture (or conductivity) distribution are two crucial features controlling the flow behavior of fractured formations. The effect of connectivity on flow properties is well documented. We focus here on the influence of fracture aperture distribution. We model a

  8. Leakage losses from a hydraulic fracture and fracture propagation

    International Nuclear Information System (INIS)

    Johnson, R.E.; Gustafson, C.W.

    1988-01-01

    The fluid mechanics of viscous fluid injection into a fracture embedded in a permeable rock formation is studied. Coupling between flow in the fracture and flow in the rock is retained. The analysis is based on a perturbation scheme that assumes the depth of penetration of the fluid into the rock is small compared to the characteristic length w 3 0 /k, where w 0 is the characteristic crack width and k is the permeability. This restriction, however, is shown to be minor. The spatial dependence of the leakage rate per unit length from the fracture is found to be linear, decreasing from the well bore to the fracture tip where it vanishes. The magnitude of the leakage rate per unit length is found to decay in time as t -1 /sup // 3 if the injection rate at the well bore is constant, and as t -1 /sup // 2 if the well bore pressure is held constant. The results cast considerable doubt on the validity of Carter's well-known leakage formula (Drilling Prod. Prac. API 1957, 261) derived from a one-dimensional theory. Using the simple fracture propagation model made popular by Carter, the present work also predicts that the fracture grows at a rate proportional to t 1 /sup // 3 for a fixed well bore injection rate and a rate proportional to t 1 /sup // 4 for a fixed well bore pressure

  9. Editorial: Spatial arrangement of faults and opening-mode fractures

    Science.gov (United States)

    Laubach, Stephen E.; Lamarche, Juliette; Gauthier, Bertand D. M.; Dunne, William M.

    2018-03-01

    This issue of the Journal of Structural Geology titled Spatial arrangement of faults and opening-mode fractures explores a fundamental characteristic of fault and fracture arrays. The pattern of fault and opening-mode fracture positions in space defines structural heterogeneity and anisotropy in a rock volume, governs how faults and fractures affect fluid flow, and impacts our understanding of the initiation, propagation and interactions during the formation of fracture patterns. This special issue highlights recent progress with respect to characterizing and understanding the spatial arrangements of fault and fracture patterns, providing examples over a wide range of scales and structural settings.

  10. Addresing environmental challenges to shale gas and hydraulic fracturing

    Energy Technology Data Exchange (ETDEWEB)

    Vadillo Fernandez, L.; Rodriguez Gomez, V.; Fernadez Naranjo, F.J.

    2016-07-01

    This article reviews the main issues of unconventional gas extracted by hydraulic fracturing techniques. Topics such as technology, fracturing stages, flowback characterization and alternatives of disposal and reuse, water consumption, physicochemical features of the geological formations, development of the fractures performed by hydraulic fracturing, well flow decline, land use and occupation and induced seismicity are presented, as well as the scientific debate: the potential steps of methane gas and groundwater contamination. (Author)

  11. Interaction between Hydraulic Fracturing Process and Pre-existing Natural Fractures

    NARCIS (Netherlands)

    Meng, C.

    2010-01-01

    Hydraulic fracturing is employed as a stimulation treatment by the oil and gas industry to enhance the hydro-carbon recoveries. The rationale is that by creating fractures from the wellbore into the surrounding formations, the conductivity between the well and reservoir is significantly increased

  12. Hip fracture - discharge

    Science.gov (United States)

    ... neck fracture repair - discharge; Trochanteric fracture repair - discharge; Hip pinning surgery - discharge ... in the hospital for surgery to repair a hip fracture, a break in the upper part of ...

  13. Fluid transport in reaction induced fractures

    Science.gov (United States)

    Ulven, Ole Ivar; Sun, WaiChing; Malthe-Sørenssen, Anders

    2015-04-01

    The process of fracture formation due to a volume increasing chemical reaction has been studied in a variety of different settings, e.g. weathering of dolerites by Røyne et al. te{royne}, serpentinization and carbonation of peridotite by Rudge et al. te{rudge} and replacement reactions in silica-poor igneous rocks by Jamtveit et al. te{jamtveit}. It is generally assumed that fracture formation will increase the net permeability of the rock, and thus increase the reactant transport rate and subsequently the total rate of material conversion, as summarised by Kelemen et al. te{kelemen}. Ulven et al. te{ulven_1} have shown that for fluid-mediated processes the ratio between chemical reaction rate and fluid transport rate in bulk rock controls the fracture pattern formed, and Ulven et al. te{ulven_2} have shown that instantaneous fluid transport in fractures lead to a significant increase in the total rate of the volume expanding process. However, instantaneous fluid transport in fractures is clearly an overestimate, and achievable fluid transport rates in fractures have apparently not been studied in any detail. Fractures cutting through an entire domain might experience relatively fast advective reactant transport, whereas dead-end fractures will be limited to diffusion of reactants in the fluid, internal fluid mixing in the fracture or capillary flow into newly formed fractures. Understanding the feedback process between fracture formation and permeability changes is essential in assessing industrial scale CO2 sequestration in ultramafic rock, but little is seemingly known about how large the permeability change will be in reaction-induced fracturing. In this work, we study the feedback between fracture formation during volume expansion and fluid transport in different fracture settings. We combine a discrete element model (DEM) describing a volume expanding process and the related fracture formation with different models that describe the fluid transport in the

  14. Proximal femoral fractures.

    Science.gov (United States)

    Webb, Lawrence X

    2002-01-01

    Fractures of the proximal femur include fractures of the head, neck, intertrochanteric, and subtrochanteric regions. Head fractures commonly accompany dislocations. Neck fractures and intertrochanteric fractures occur with greatest frequency in elderly patients with a low bone mineral density and are produced by low-energy mechanisms. Subtrochanteric fractures occur in a predominantly strong cortical osseous region which is exposed to large compressive stresses. Implants used to address these fractures must be able to accommodate significant loads while the fractures consolidate. Complications secondary to these injuries produce significant morbidity and include infection, nonunion, malunion, decubitus ulcers, fat emboli, deep venous thrombosis, pulmonary embolus, pneumonia, myocardial infarction, stroke, and death.

  15. Is human fracture hematoma inherently angiogenic?

    LENUS (Irish Health Repository)

    Street, J

    2012-02-03

    This study attempts to explain the cellular events characterizing the changes seen in the medullary callus adjacent to the interfragmentary hematoma during the early stages of fracture healing. It also shows that human fracture hematoma contains the angiogenic cytokine vascular endothelial growth factor and has the inherent capability to induce angiogenesis and thus promote revascularization during bone repair. Patients undergoing emergency surgery for isolated bony injury were studied. Raised circulating levels of vascular endothelial growth factor were seen in all injured patients, whereas the fracture hematoma contained significantly higher levels of vascular endothelial growth factor than did plasma from these injured patients. However, incubation of endothelial cells in fracture hematoma supernatant significantly inhibited the in vitro angiogenic parameters of endothelial cell proliferation and microtubule formation. These phenomena are dependent on a local biochemical milieu that does not support cytokinesis. The hematoma potassium concentration is cytotoxic to endothelial cells and osteoblasts. Subcutaneous transplantation of the fracture hematoma into a murine wound model resulted in new blood vessel formation after hematoma resorption. This angiogenic effect is mediated by the significant concentrations of vascular endothelial growth factor found in the hematoma. This study identifies an angiogenic cytokine involved in human fracture healing and shows that fracture hematoma is inherently angiogenic. The differences between the in vitro and in vivo findings may explain the phenomenon of interfragmentary hematoma organization and resorption that precedes fracture revascularization.

  16. Hydraulic fracturing of rock-fill dam

    Directory of Open Access Journals (Sweden)

    Jun-Jie WANG

    2016-02-01

    Full Text Available The condition in which hydraulic fracturing in core of earth-rock fill dam maybe induced, the mechanism by which the reason of hydraulic fracturing canbe explained, and the failure criterion by which the occurrence of hydraulicfracturing can be determined, were investigated. The condition dependson material properties such as, cracks in the core and low permeability ofcore soil, and “water wedging” action in cracks. An unsaturated core soiland fast impounding are the prerequisites for the formation of “waterwedging” action. The mechanism of hydraulic fracturing can be explainedby fracture mechanics. The crack propagation induced by water pressuremay follow any of mode I, mode II and mixed mode I-II. Based on testingresults of a core soil, a new criterion for hydraulic fracturing was suggested,from which mechanisms of hydraulic fracturing in the core of rock-fill damwere discussed. The results indicated that factors such as angle betweencrack surface and direction of principal stress, local stress state at thecrack, and fracture toughness KIC of core soil may largely affect theinduction of hydraulic fracturing and the mode of the propagation of thecrack.The condition in which hydraulic fracturing in core of earth-rock fill dam maybe induced, the mechanism by which the reason of hydraulic fracturing canbe explained, and the failure criterion by which the occurrence of hydraulicfracturing can be determined, were investigated. The condition dependson material properties such as, cracks in the core and low permeability ofcore soil, and “water wedging” action in cracks. An unsaturated core soiland fast impounding are the prerequisites for the formation of “waterwedging” action. The mechanism of hydraulic fracturing can be explainedby fracture mechanics. The crack propagation induced by water pressuremay follow any of mode I, mode II and mixed mode I-II. Based on testingresults of a core soil, a new criterion for hydraulic fracturing

  17. Discrete fracture modelling for the Stripa tracer validation experiment predictions

    International Nuclear Information System (INIS)

    Dershowitz, W.; Wallmann, P.

    1992-02-01

    Groundwater flow and transport through three-dimensional networks of discrete fractures was modeled to predict the recovery of tracer from tracer injection experiments conducted during phase 3 of the Stripa site characterization and validation protect. Predictions were made on the basis of an updated version of the site scale discrete fracture conceptual model used for flow predictions and preliminary transport modelling. In this model, individual fractures were treated as stochastic features described by probability distributions of geometric and hydrologic properties. Fractures were divided into three populations: Fractures in fracture zones near the drift, non-fracture zone fractures within 31 m of the drift, and fractures in fracture zones over 31 meters from the drift axis. Fractures outside fracture zones are not modelled beyond 31 meters from the drift axis. Transport predictions were produced using the FracMan discrete fracture modelling package for each of five tracer experiments. Output was produced in the seven formats specified by the Stripa task force on fracture flow modelling. (au)

  18. FRACTURED PETROLEUM RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Abbas Firoozabadi

    1999-06-11

    The four chapters that are described in this report cover a variety of subjects that not only give insight into the understanding of multiphase flow in fractured porous media, but they provide also major contribution towards the understanding of flow processes with in-situ phase formation. In the following, a summary of all the chapters will be provided. Chapter I addresses issues related to water injection in water-wet fractured porous media. There are two parts in this chapter. Part I covers extensive set of measurements for water injection in water-wet fractured porous media. Both single matrix block and multiple matrix blocks tests are covered. There are two major findings from these experiments: (1) co-current imbibition can be more efficient than counter-current imbibition due to lower residual oil saturation and higher oil mobility, and (2) tight fractured porous media can be more efficient than a permeable porous media when subjected to water injection. These findings are directly related to the type of tests one can perform in the laboratory and to decide on the fate of water injection in fractured reservoirs. Part II of Chapter I presents modeling of water injection in water-wet fractured media by modifying the Buckley-Leverett Theory. A major element of the new model is the multiplication of the transfer flux by the fractured saturation with a power of 1/2. This simple model can account for both co-current and counter-current imbibition and computationally it is very efficient. It can be orders of magnitude faster than a conventional dual-porosity model. Part II also presents the results of water injection tests in very tight rocks of some 0.01 md permeability. Oil recovery from water imbibition tests from such at tight rock can be as high as 25 percent. Chapter II discusses solution gas-drive for cold production from heavy-oil reservoirs. The impetus for this work is the study of new gas phase formation from in-situ process which can be significantly

  19. Interpretation and significance of reverse chevron-shaped markings on fracture surfaces of API X100 pipeline steels

    International Nuclear Information System (INIS)

    Sowards, Jeffrey W.; McCowan, Chris N.; Drexler, Elizabeth S.

    2012-01-01

    Highlights: ► We investigated fractures of X100 steel linepine produced during fracture mechanics testing. ► Fractures exhibited a unique chevron pattern that points in the direction of crack propagation. ► A qualitative model is proposed to explain the fracture pattern formation. ► Findings indicate that careful interpretation of ductile material fractures is necessary. - Abstract: Fracture surfaces of X100 pipeline steels were examined with optical and electron microscopy after crack tip opening angle fracture testing. Some fracture surfaces exhibited chevron-shaped fracture patterns that are markedly different from classic chevron fracture. The chevron-shaped markings on the X100 fracture surfaces point in the direction of crack growth, rather than towards the location of fracture initiation, as observed in classic cases of chevron fracture. Existing models, predicting formation of chevron fracture patterns, do not explain the fracture behavior observed for X100 steel. A mechanism is proposed where reverse chevron-shaped patterns are developed due to the shape of the crack front itself. The chevron shape forms as a result of crack tunneling, and the overall pattern is developed on the fracture surface due to intermittent crack growth, resulting in alternating regions (bands) of fast fracture and slower, more ductile fracture. The contrast between these bands of alternating fracture defines the chevron. Care should be taken during interpretation of intermittent chevron markings on fractures of ductile materials, as they may point away from rather than towards the origin of fracture.

  20. Hydraulic Fracturing

    Science.gov (United States)

    EPA works with states and other key stakeholders, through sound scientific research and regulation; to help ensure that natural gas extraction from shale formations, also called fracking or hydrofracking, does not harm public health and the environment.

  1. Fracture propagation in gas pipelines - relevance to submarine lines

    Energy Technology Data Exchange (ETDEWEB)

    Fearnehough, G D [British Gas Corp., Newcastle upon Tyne. Engineering Research Station

    1976-09-01

    This paper reviews the factors which control fracture propagation in pipes and suggests how they are influenced by submarine environments. If fracture arrest capability is required then these factors should be considered in terms of the design philosophy and the maximum tolerable length of fracture which can be repaired. The paper shows that brittle fracture characteristics of submarine pipelines are probably similar to land based lines and fracture arrest can only be guaranteed by appropriate material toughness specification. Resistance to ductile fracture propagation in submarine lines is enhanced by lower design stresses, thicker pipe, concrete coating and the effect of hydrostatic head on gas dynamics. However, additional factors due to submarine design can be deleterious viz: uncertainty about backfill integrity and a tendency of thicker steels to low fracture resistance arising from 'separation' formation. Attention is drawn to problems which may arise with transportation of gases rich in hydrocarbons and the use of mechanical methods of fracture arrest.

  2. Traumatic subchondral fracture of the femoral head in a healed trochanteric fracture.

    Science.gov (United States)

    Lee, Sang Yang; Niikura, Takahiro; Iwakura, Takashi; Kurosaka, Masahiro

    2014-07-11

    An 82-year-old woman sustained a trochanteric fracture of the left femur after a fall. Fracture fixation was performed using proximal femoral nail antirotation (PFNA) II, and she was able to walk with a T-cane after 3 months. Eleven months following the operation, the patient presented with left hip pain after a fall. Radiographs showed a subchondral collapse of the femoral head located above the blade tip. The authors removed the PFNA-II and subsequently performed cemented bipolar hemiarthroplasty. Histological evaluation of the femoral head showed osteoporosis with no evidence of osteonecrosis. Repair tissue, granulation tissue and callus formation were seen at the collapsed subchondral area. Based on these findings, a traumatic subchondral fracture of the femoral head in a healed trochanteric fracture was diagnosed. A traumatic subchondral fracture of the femoral head may need to be considered as a possible diagnosis after internal fixation of the trochanteric fracture. 2014 BMJ Publishing Group Ltd.

  3. Fluid driven fracture mechanics in highly anisotropic shale: a laboratory study with application to hydraulic fracturing

    Science.gov (United States)

    Gehne, Stephan; Benson, Philip; Koor, Nick; Enfield, Mark

    2017-04-01

    The finding of considerable volumes of hydrocarbon resources within tight sedimentary rock formations in the UK led to focused attention on the fundamental fracture properties of low permeability rock types and hydraulic fracturing. Despite much research in these fields, there remains a scarcity of available experimental data concerning the fracture mechanics of fluid driven fracturing and the fracture properties of anisotropic, low permeability rock types. In this study, hydraulic fracturing is simulated in a controlled laboratory environment to track fracture nucleation (location) and propagation (velocity) in space and time and assess how environmental factors and rock properties influence the fracture process and the developing fracture network. Here we report data on employing fluid overpressure to generate a permeable network of micro tensile fractures in a highly anisotropic shale ( 50% P-wave velocity anisotropy). Experiments are carried out in a triaxial deformation apparatus using cylindrical samples. The bedding planes are orientated either parallel or normal to the major principal stress direction (σ1). A newly developed technique, using a steel guide arrangement to direct pressurised fluid into a sealed section of an axially drilled conduit, allows the pore fluid to contact the rock directly and to initiate tensile fractures from the pre-defined zone inside the sample. Acoustic Emission location is used to record and map the nucleation and development of the micro-fracture network. Indirect tensile strength measurements at atmospheric pressure show a high tensile strength anisotropy ( 60%) of the shale. Depending on the relative bedding orientation within the stress field, we find that fluid induced fractures in the sample propagate in two of the three principal fracture orientations: Divider and Short-Transverse. The fracture progresses parallel to the bedding plane (Short-Transverse orientation) if the bedding plane is aligned (parallel) with the

  4. Traumatic thoracolumbar spine fractures

    NARCIS (Netherlands)

    J. Siebenga (Jan)

    2013-01-01

    textabstractTraumatic spinal fractures have the lowest functional outcomes and the lowest rates of return to work after injury of all major organ systems.1 This thesis will cover traumatic thoracolumbar spine fractures and not osteoporotic spine fractures because of the difference in fracture

  5. Fractures in multiple sclerosis

    DEFF Research Database (Denmark)

    Stenager, E; Jensen, K

    1991-01-01

    In a cross-sectional study of 299 MS patients 22 have had fractures and of these 17 after onset of MS. The fractures most frequently involved the femoral neck and trochanter (41%). Three patients had had more than one fracture. Only 1 patient had osteoporosis. The percentage of fractures increase...

  6. Surrogate-based optimization of hydraulic fracturing in pre-existing fracture networks

    Science.gov (United States)

    Chen, Mingjie; Sun, Yunwei; Fu, Pengcheng; Carrigan, Charles R.; Lu, Zhiming; Tong, Charles H.; Buscheck, Thomas A.

    2013-08-01

    Hydraulic fracturing has been used widely to stimulate production of oil, natural gas, and geothermal energy in formations with low natural permeability. Numerical optimization of fracture stimulation often requires a large number of evaluations of objective functions and constraints from forward hydraulic fracturing models, which are computationally expensive and even prohibitive in some situations. Moreover, there are a variety of uncertainties associated with the pre-existing fracture distributions and rock mechanical properties, which affect the optimized decisions for hydraulic fracturing. In this study, a surrogate-based approach is developed for efficient optimization of hydraulic fracturing well design in the presence of natural-system uncertainties. The fractal dimension is derived from the simulated fracturing network as the objective for maximizing energy recovery sweep efficiency. The surrogate model, which is constructed using training data from high-fidelity fracturing models for mapping the relationship between uncertain input parameters and the fractal dimension, provides fast approximation of the objective functions and constraints. A suite of surrogate models constructed using different fitting methods is evaluated and validated for fast predictions. Global sensitivity analysis is conducted to gain insights into the impact of the input variables on the output of interest, and further used for parameter screening. The high efficiency of the surrogate-based approach is demonstrated for three optimization scenarios with different and uncertain ambient conditions. Our results suggest the critical importance of considering uncertain pre-existing fracture networks in optimization studies of hydraulic fracturing.

  7. Assessment of fracture risk

    International Nuclear Information System (INIS)

    Kanis, John A.; Johansson, Helena; Oden, Anders; McCloskey, Eugene V.

    2009-01-01

    Fractures are a common complication of osteoporosis. Although osteoporosis is defined by bone mineral density at the femoral neck, other sites and validated techniques can be used for fracture prediction. Several clinical risk factors contribute to fracture risk independently of BMD. These include age, prior fragility fracture, smoking, excess alcohol, family history of hip fracture, rheumatoid arthritis and the use of oral glucocorticoids. These risk factors in conjunction with BMD can be integrated to provide estimates of fracture probability using the FRAX tool. Fracture probability rather than BMD alone can be used to fashion strategies for the assessment and treatment of osteoporosis.

  8. Laboratory testing on infiltration in single synthetic fractures

    Science.gov (United States)

    Cherubini, Claudia; Pastore, Nicola; Li, Jiawei; Giasi, Concetta I.; Li, Ling

    2017-04-01

    An understanding of infiltration phenomena in unsaturated rock fractures is extremely important in many branches of engineering for numerous reasons. Sectors such as the oil, gas and water industries are regularly interacting with water seepage through rock fractures, yet the understanding of the mechanics and behaviour associated with this sort of flow is still incomplete. An apparatus has been set up to test infiltration in single synthetic fractures in both dry and wet conditions. To simulate the two fracture planes, concrete fractures have been moulded from 3D printed fractures with varying geometrical configurations, in order to analyse the influence of aperture and roughness on infiltration. Water flows through the single fractures by means of a hydraulic system composed by an upstream and a downstream reservoir, the latter being subdivided into five equal sections in order to measure the flow rate in each part to detect zones of preferential flow. The fractures have been set at various angles of inclination to investigate the effect of this parameter on infiltration dynamics. The results obtained identified that altering certain fracture parameters and conditions produces relevant effects on the infiltration process through the fractures. The main variables influencing the formation of preferential flow are: the inclination angle of the fracture, the saturation level of the fracture and the mismatch wavelength of the fracture.

  9. Disposal of waste by hydraulic fracturing

    International Nuclear Information System (INIS)

    Tamura, T.; Weeren, H.

    1984-01-01

    Liquid radioactive waste solutions at the Oak Ridge National Laboratory (ORNL) have been disposed of for nearly 20 years by preparing a slurry, injecting it into bedding plane fractures formed in low-permeability shale, and allowing the slurry to set into a solid. Three major considerations are required for this method: a rock formation that forms horizontal or bedding plane fractures and is highly impermeable, a plant facility that can develop sufficient hydraulic pressure to fracture the rock and to inject the slurry, and a slurry that can be pumped into the fracture and that will set, preferably, into a low-leaching solid. The requirements and desirable conditions of the formation, the process and facility as used for radioactive waste disposal, and the mix formulation and slurry properties that were required for injection and solidification are described. The intent of this paper is to stimulate interest in this technique for possible application to nonnuclear wastes

  10. Semi-analytical treatment of fracture/matrix flow in a dual-porosity simulator for unsaturated fractured rock masses

    International Nuclear Information System (INIS)

    Zimmerman, R.W.; Bodvarsson, G.S.

    1992-04-01

    A semi-analytical dual-porosity simulator for unsaturated flow in fractured rock masses has been developed. Fluid flow between the fracture network and the matrix blocks is described by analytical expressions that have been derived from approximate solutions to the imbibition equation. These expressions have been programmed into the unsaturated flow simulator, TOUGH, as a source/sink term. Flow processes are then simulated using only fracture elements in the computational grid. The modified code is used to simulate flow along single fractures, and infiltration into pervasively fractured formations

  11. Spatial arrangement of faults and opening-mode fractures

    Science.gov (United States)

    Laubach, S. E.; Lamarche, J.; Gauthier, B. D. M.; Dunne, W. M.; Sanderson, David J.

    2018-03-01

    Spatial arrangement is a fundamental characteristic of fracture arrays. The pattern of fault and opening-mode fracture positions in space defines structural heterogeneity and anisotropy in a rock volume, governs how faults and fractures affect fluid flow, and impacts our understanding of the initiation, propagation and interactions during the formation of fracture patterns. This special issue highlights recent progress with respect to characterizing and understanding the spatial arrangements of fault and fracture patterns, providing examples over a wide range of scales and structural settings. Five papers describe new methods and improvements of existing techniques to quantify spatial arrangement. One study unravels the time evolution of opening-mode fracture spatial arrangement, which are data needed to compare natural patterns with progressive fracture growth in kinematic and mechanical models. Three papers investigate the role of evolving diagenesis in localizing fractures by mechanical stratigraphy and nine discuss opening-mode fracture spatial arrangement. Two papers show the relevance of complex cluster patterns to unconventional reservoirs through examples of fractures in tight gas sandstone horizontal wells, and a study of fracture arrangement in shale. Four papers demonstrate the roles of folds in fracture localization and the development spatial patterns. One paper models along-fault friction and fluid pressure and their effects on fault-related fracture arrangement. Contributions address deformation band patterns in carbonate rocks and fault size and arrangement above a detachment fault. Three papers describe fault and fracture arrangements in basement terrains, and three document fracture patterns in shale. This collection of papers points toward improvement in field methods, continuing improvements in computer-based data analysis and creation of synthetic fracture patterns, and opportunities for further understanding fault and fracture attributes in

  12. Hydraulic fracturing in granite under geothermal conditions

    Science.gov (United States)

    Solberg, P.; Lockner, D.; Byerlee, J.D.

    1980-01-01

    The experimental hydraulic fracturing of granite under geothermal conditions produces tensile fracture at rapid fluid injection rates and shear fracture at slow injection rates and elevated differential stress levels. A sudden burst of acoustic emission activity accompanies tensile fracture formation whereas the acoustic emission rate increases exponentially prior to shear fracture. Temperature does not significantly affect the failure mechanism, and the experimental results have not demonstrated the occurrence of thermal fracturing. A critical result of these experiments is that fluid injection at intermediate rates and elevated differential stress levels increases permeability by more than an order of magnitude without producing macroscopic fractures, and low-level acoustic emission activity occurs simultaneously near the borehole and propagates outward into the specimen with time. Permeability measurements conducted at atmospheric pressure both before and after these experiments show that increased permeability is produced by permanent structural changes in the rock. Although results of this study have not demonstrated the occurrence of thermal fracturing, they suggest that fluid injection at certain rates in situ may markedly increase local permeability. This could prove critical to increasing the efficiency of heat exchange for geothermal energy extraction from hot dry rock. ?? 1980.

  13. Paratrooper's ankle fracture: posterior malleolar fracture.

    Science.gov (United States)

    Young, Ki Won; Kim, Jin-su; Cho, Jae Ho; Kim, Hyung Seuk; Cho, Hun Ki; Lee, Kyung Tai

    2015-03-01

    We assessed the frequency and types of ankle fractures that frequently occur during parachute landings of special operation unit personnel and analyzed the causes. Fifty-six members of the special force brigade of the military who had sustained ankle fractures during parachute landings between January 2005 and April 2010 were retrospectively analyzed. The injury sites and fracture sites were identified and the fracture types were categorized by the Lauge-Hansen and Weber classifications. Follow-up surveys were performed with respect to the American Orthopedic Foot and Ankle Society ankle-hindfoot score, patient satisfaction, and return to preinjury activity. The patients were all males with a mean age of 23.6 years. There were 28 right and 28 left ankle fractures. Twenty-two patients had simple fractures and 34 patients had comminuted fractures. The average number of injury and fractures sites per person was 2.07 (116 injuries including a syndesmosis injury and a deltoid injury) and 1.75 (98 fracture sites), respectively. Twenty-three cases (41.07%) were accompanied by posterior malleolar fractures. Fifty-five patients underwent surgery; of these, 30 had plate internal fixations. Weber type A, B, and C fractures were found in 4, 38, and 14 cases, respectively. Based on the Lauge-Hansen classification, supination-external rotation injuries were found in 20 cases, supination-adduction injuries in 22 cases, pronation-external rotation injuries in 11 cases, tibiofibular fractures in 2 cases, and simple medial malleolar fractures in 2 cases. The mean follow-up period was 23.8 months, and the average follow-up American Orthopedic Foot and Ankle Society ankle-hindfoot score was 85.42. Forty-five patients (80.36%) reported excellent or good satisfaction with the outcome. Posterior malleolar fractures occurred in 41.07% of ankle fractures sustained in parachute landings. Because most of the ankle fractures in parachute injuries were compound fractures, most cases had to

  14. Physical simulation study on the hydraulic fracture propagation of coalbed methane well

    Science.gov (United States)

    Wu, Caifang; Zhang, Xiaoyang; Wang, Meng; Zhou, Longgang; Jiang, Wei

    2018-03-01

    As the most widely used technique to modify reservoirs in the exploitation of unconventional natural gas, hydraulic fracturing could effectively raise the production of CBM wells. To study the propagation rules of hydraulic fractures, analyze the fracture morphology, and obtain the controlling factors, a physical simulation experiment was conducted with a tri-axial hydraulic fracturing test system. In this experiment, the fracturing sample - including the roof, the floor, and the surrounding rock - was prepared from coal and similar materials, and the whole fracturing process was monitored by an acoustic emission instrument. The results demonstrated that the number of hydraulic fractures in coal is considerably higher than that observed in other parts, and the fracture morphology was complex. Vertical fractures were interwoven with horizontal fractures, forming a connected network. With the injection of fracturing fluid, a new hydraulic fracture was produced and it extended along the preexisting fractures. The fracture propagation was a discontinuous, dynamic process. Furthermore, in-situ stress plays a key role in fracture propagation, causing the fractures to extend in a direction perpendicular to the minimum principal stress. To a certain extent, the different mechanical properties of the coal and the other components inhibited the vertical propagation of hydraulic fractures. Nonetheless, the vertical stress and the interfacial property are the major factors to influence the formation of the "T" shaped and "工" shaped fractures.

  15. Laboratory investigation of shale rock to identify fracture propagation in vertical direction to bedding

    Science.gov (United States)

    Peng, Tan; Yan, Jin; Bing, Hou; Yingcao, Zhou; Ruxin, Zhang; Zhi, Chang; Meng, Fan

    2018-06-01

    Affected by beddings and natural fractures, fracture geometry in the vertical plane is complex in shale formation, which differs from a simple fracture in homogeneous sandstone reservoirs. However, the propagation mechanism of a hydraulic fracture in the vertical plane has not been well understood. In this paper, a true tri-axial pressure machine was deployed for shale horizontal well fracturing simulation experiments of shale outcrops. The effects of multiple factors on hydraulic fracture vertical propagation were studied. The results revealed that hydraulic fracture initiation and propagation displayed four basic patterns in the vertical plane of laminated shale formation. A hydraulic fracture would cross the beddings under the high vertical stress difference between a vertical stress and horizontal minimum stress of 12 MPa, while a hydraulic fracture propagates along the beddings under a low vertical stress difference of 3 MPa. Four kinds of fracture geometry, including a single main fracture, a nonplanar fracture, a complex fracture, and a complex fracture network, were observed due to the combined effects of flow rate and viscosity. Due to the influence of binding strength (or cementing strength) on the fracture communication effects between a hydraulic fracture and the beddings, the opening region of the beddings takes the shape of an ellipse.

  16. Fracture mechanical materials characterisation

    International Nuclear Information System (INIS)

    Wallin, K.; Planman, T.; Nevalainen, M.

    1998-01-01

    The experimental fracture mechanics development has been focused on the determination of reliable lower-bound fracture toughness estimates from small and miniature specimens, in particular considering the statistical aspects and loading rate effects of fracture mechanical material properties. Additionally, materials aspects in fracture assessment of surface cracks, with emphasis on the transferability of fracture toughness data to structures with surface flaws have been investigated. Further a modified crack-arrest fracture toughness test method, to increase the effectiveness of testing, has been developed. (orig.)

  17. Advanced hydraulic fracturing methods to create in situ reactive barriers

    International Nuclear Information System (INIS)

    Murdoch, L.

    1997-01-01

    This article describes the use of hydraulic fracturing to increase permeability in geologic formations where in-situ remedial action of contaminant plumes will be performed. Several in-situ treatment strategies are discussed including the use of hydraulic fracturing to create in situ redox zones for treatment of organics and inorganics. Hydraulic fracturing methods offer a mechanism for the in-situ treatment of gently dipping layers of reactive compounds. Specialized methods using real-time monitoring and a high-energy jet during fracturing allow the form of the fracture to be influenced, such as creation of assymmetric fractures beneath potential sources (i.e. tanks, pits, buildings) that should not be penetrated by boring. Some examples of field applications of this technique such as creating fractures filled with zero-valent iron to reductively dechlorinate halogenated hydrocarbons, and the use of granular activated carbon to adsorb compounds are discussed

  18. Fractures (Broken Bones): First Aid

    Science.gov (United States)

    First aid Fractures (broken bones) Fractures (broken bones): First aid By Mayo Clinic Staff A fracture is a ... 10, 2018 Original article: http://www.mayoclinic.org/first-aid/first-aid-fractures/basics/ART-20056641 . Mayo Clinic ...

  19. Fire passage on geomorphic fractures in Cerrado: effect on vegetation

    OpenAIRE

    Otacílio Antunes Santana; José Marcelo Imaña Encinas; Flávio Luiz de Souza Silveira

    2017-01-01

    Geomorphic fracture is a natural geologic formation that sometimes forms a deep fissure in the rock with the establishment of soil and vegetation. The objective of this work was to analyze vegetation within geomorphic fractures under the effect of wildfire passage. The biometric variables evaluated before and after fire passage were: diameter, height, leaf area index, timber volume, grass biomass, number of trees and shrubs and of species. Results (in fractures) were compared to adjacent area...

  20. Microscopic Characterization of Tensile and Shear Fracturing in Progressive Failure in Marble

    Science.gov (United States)

    Cheng, Yi; Wong, Louis Ngai Yuen

    2018-01-01

    Compression-induced tensile and shear fractures were reported to be the two fundamental fracture types in rock fracturing tests. This study investigates such tensile and shear fracturing process in marble specimens containing two different flaw configurations. Observations first reveal that the development of a tensile fracture is distinct from shear fracture with respect to their nucleation, propagation, and eventual formation in macroscale. Second, transgranular cracks and grain-scale spallings become increasingly abundant in shear fractures as loading increases, which is almost not observed in tensile fractures. Third, one or some dominant extensional microcracks are commonly observed in the center of tensile fractures, while such development of microcracks is almost absent in shear fractures. Microcracks are generally of a length comparable to grain size and distribute uniformly within the damage zone of the shear fracture. Fourth, the width of densely damaged zone in the shear fracture is nearly 10 times of that in the tensile fracture. Quantitative measurement on microcrack density suggests that (1) microcrack density in tensile and shear fractures display distinct characteristics with increasing loading, (2) transgranular crack density in the shear fracture decreases logarithmically with the distance away from the shear fracture center, and (3) whatever the fracture type, the anisotropy can only be observed for transgranular cracks with a large density, which partially explains why microcrack anisotropy usually tends to be unobvious until approaching peak stress in specimens undergoing brittle failure. Microcracking characteristics observed in this work likely shed light to some phenomena and conclusions generalized in seismological studies.

  1. Fracture toughness correlations

    International Nuclear Information System (INIS)

    Wallin, Kim

    1986-09-01

    In this study existing fracture parameter correlations are reviewed. Their applicability and reliability are discussed in detail. A new K IC -CVN-correlation, based on a theoretical brittle fracture model, is presented

  2. Rib fracture - aftercare

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000539.htm Rib fracture - aftercare To use the sharing features on this page, please enable JavaScript. A rib fracture is a crack or break in one or ...

  3. Sprains, Strains and Fractures

    Science.gov (United States)

    ... fractures. Many fractures and sprains occur during sports. Football players are particularly vulnerable to foot and ankle ... feet and ankles and take a complete medical history. He or she will also order tests, including ...

  4. Infant skull fracture (image)

    Science.gov (United States)

    Skull fractures may occur with head injuries. Although the skull is both tough and resilient and provides excellent ... or blow can result in fracture of the skull and may be accompanied by injury to the ...

  5. Ankle fracture - aftercare

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000548.htm Ankle fracture - aftercare To use the sharing features on this page, please enable JavaScript. An ankle fracture is a break in 1 or more ankle ...

  6. A Thermoelastic Hydraulic Fracture Design Tool for Geothermal Reservoir Development

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad Ghassemi

    2003-06-30

    Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Thus, knowledge of conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fracture are created in the reservoir using hydraulic fracturing. At times, the practice aims to create a number of parallel fractures connecting a pair of wells. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have set out to develop advanced thermo-mechanical models for design of artificial fractures and rock fracture research in geothermal reservoirs. These models consider the significant hydraulic and thermo-mechanical processes and their interaction with the in-situ stress state. Wellbore failure and fracture initiation is studied using a model that fully couples poro-mechanical and thermo-mechanical effects. The fracture propagation model is based on a complex variable and regular displacement discontinuity formulations. In the complex variable approach the displacement discontinuities are

  7. Atraumatic First Rib Fracture

    OpenAIRE

    Koray Aydogdu

    2014-01-01

    Rib fractures are usually seen after a trauma, while atraumatic spontaneous rib fractures are quite rare. A first rib fracture identified in our 17 years old female patient who had not a history of trauma except lifting a heavy weight was examined in details in terms of the potential complications and followed-up for a long time. We presented our experience on this case with atraumatic first rib fracture that has different views for the etiology in light of the literature.

  8. Radiographic features of teriparatide-induced healing of femoral fractures

    Directory of Open Access Journals (Sweden)

    Youngwoo Kim

    2015-12-01

    Full Text Available Teriparatide is a drug that is used to increase bone remodeling, formation, and density for the treatment of osteoporosis. We present three cases of patients with a femoral insufficiency fracture. The patients were administered teripatatide in an attempt to treat severe osteoporosis and to enhance fracture healing. We found several radiographic features around the femoral fractures during the healing period. 1 Callus formation was found at a very early stage in the treatment. Teriparatide substantially increased the unusually abundant callus formation around the fracture site at 2 weeks. Moreover, this callus formation continued for 8 weeks and led to healing of the fracture. 2 Abundant callus formation was found circumferentially around the cortex with a ‘cloud-like’ appearance. 3 Remodeling of the teriparatide-induced callus formation was found to be part of the normal fracture healing process. After 1 year, normal remodeling was observed on plain radiographs. These findings indicate that teriparatide can be used as an adjuvant therapy in the management of femoral insufficiency fractures.

  9. Comparison in bone turnover markers during early healing of femoral neck fracture and trochanteric fracture in elderly patients

    Directory of Open Access Journals (Sweden)

    Shota Ikegami

    2009-10-01

    Full Text Available Healing of fractures is different for each bone and bone turnover markers may reflect the fracture healing process. The purpose of this study was to determine the characteristic changes in bone turnover markers during the fracture healing process. The subjects were consecutive patients with femoral neck or trochanteric fracture who underwent surgery and achieved bone union. There were a total of 39 patients, including 33 women and 6 men. There were 18 patients (16 women and 2 men with femoral neck fracture and 21 patients (17 women and 4 men with trochanteric fracture. Serum bone-specific alkaline phosphatase (BAP was measured as a bone formation marker. Urine and serum levels of N-terminal telopeptide of type I collagen (NTX, as well as urine levels of C-terminal telopeptide of type I collagen (CTX and deoxypyridinoline (DPD, were measured as markers of bone resorption. All bone turnover markers showed similar changes in patients with either type of fracture, but significantly higher levels of both bone formation and resorption markers were observed in trochanteric fracture patients than in neck fracture patients. BAP showed similar levels at one week after surgery and then increased. Bone resorption markers were increased after surgery in patients with either fracture. The markers reached their peak values at three weeks (BAP and urinary NTX, five weeks (serum NTX and DPD, and 2-3 weeks (CTX after surgery. The increase in bone turnover markers after hip fracture surgery and the subsequent decrease may reflect increased bone formation and remodeling during the healing process. Both fractures had a similar bone turnover marker profile, but the extent of the changes differed between femoral neck and trochanteric fractures.

  10. Comparison in bone turnover markers during early healing of femoral neck fracture and trochanteric fracture in elderly patients.

    Science.gov (United States)

    Ikegami, Shota; Kamimura, Mikio; Nakagawa, Hiroyuki; Takahara, Kenji; Hashidate, Hiroyuki; Uchiyama, Shigeharu; Kato, Hiroyuki

    2009-10-10

    Healing of fractures is different for each bone and bone turnover markers may reflect the fracture healing process. The purpose of this study was to determine the characteristic changes in bone turnover markers during the fracture healing process. The subjects were consecutive patients with femoral neck or trochanteric fracture who underwent surgery and achieved bone union. There were a total of 39 patients, including 33 women and 6 men. There were 18 patients (16 women and 2 men) with femoral neck fracture and 21 patients (17 women and 4 men) with trochanteric fracture. Serum bone-specific alkaline phosphatase (BAP) was measured as a bone formation marker. Urine and serum levels of N-terminal telopeptide of type I collagen (NTX), as well as urine levels of C-terminal telopeptide of type I collagen (CTX) and deoxypyridinoline (DPD), were measured as markers of bone resorption. All bone turnover markers showed similar changes in patients with either type of fracture, but significantly higher levels of both bone formation and resorption markers were observed in trochanteric fracture patients than in neck fracture patients. BAP showed similar levels at one week after surgery and then increased. Bone resorption markers were increased after surgery in patients with either fracture. The markers reached their peak values at three weeks (BAP and urinary NTX), five weeks (serum NTX and DPD), and 2-3 weeks (CTX) after surgery. The increase in bone turnover markers after hip fracture surgery and the subsequent decrease may reflect increased bone formation and remodeling during the healing process. Both fractures had a similar bone turnover marker profile, but the extent of the changes differed between femoral neck and trochanteric fractures.

  11. Metatarsal stress fractures - aftercare

    Science.gov (United States)

    ... Metatarsal stress fracture. In: Safran MR, Zachazewski J, Stone DA, eds. Instructions for Sports Medicine Patients . 2nd ed. Elsevier Saunders; 2012:648-652. Smith MS. Metatarsal fractures. In: Eiff PM, Hatch R, eds. Fracture Management for Primary Care . 3rd ed. ...

  12. Relationships between fractures

    Science.gov (United States)

    Peacock, D. C. P.; Sanderson, D. J.; Rotevatn, A.

    2018-01-01

    Fracture systems comprise many fractures that may be grouped into sets based on their orientation, type and relative age. The fractures are often arranged in a network that involves fracture branches that interact with one another. Interacting fractures are termed geometrically coupled when they share an intersection line and/or kinematically coupled when the displacements, stresses and strains of one fracture influences those of the other. Fracture interactions are characterised in terms of the following. 1) Fracture type: for example, whether they have opening (e.g., joints, veins, dykes), closing (stylolites, compaction bands), shearing (e.g., faults, deformation bands) or mixed-mode displacements. 2) Geometry (e.g., relative orientations) and topology (the arrangement of the fractures, including their connectivity). 3) Chronology: the relative ages of the fractures. 4) Kinematics: the displacement distributions of the interacting fractures. It is also suggested that interaction can be characterised in terms of mechanics, e.g., the effects of the interaction on the stress field. It is insufficient to describe only the components of a fracture network, with fuller understanding coming from determining the interactions between the different components of the network.

  13. Obesity and fracture risk

    OpenAIRE

    Gonnelli, Stefano; Caffarelli, Carla; Nuti, Ranuccio

    2014-01-01

    Obesity and osteoporosis are two common diseases with an increasing prevalence and a high impact on morbidity and mortality. Obese women have always been considered protected against osteoporosis and osteoporotic fractures. However, several recent studies have challenged the widespread belief that obesity is protective against fracture and have suggested that obesity is a risk factor for certain fractures.

  14. Imaging of insufficiency fractures

    Energy Technology Data Exchange (ETDEWEB)

    Krestan, Christian [Department of Radiology, Medical University of Vienna, Vienna General Hospital, Waehringerstr. 18-20, 1090 Vienna (Austria)], E-mail: christian.krestan@meduniwien.ac.at; Hojreh, Azadeh [Department of Radiology, Medical University of Vienna, Vienna General Hospital, Waehringerstr. 18-20, 1090 Vienna (Austria)

    2009-09-15

    This review focuses on the occurrence, imaging and differential diagnosis of insufficiency fractures. Prevalence, the most common sites of insufficiency fractures and their clinical implications are discussed. Insufficiency fractures occur with normal stress exerted on weakened bone. Postmenopausal osteoporosis is the most common cause of insufficiency fractures. Other conditions which affect bone turnover include osteomalacia, hyperparathyroidism, chronic renal failure and high-dose glucocorticoid therapy. It is a challenge for the radiologist to detect and diagnose insufficiency fractures, and to differentiate them from other bone lesions. Radiographs are still the most widely used imaging method for identification of insufficiency fractures, but sensitivity is limited, depending on the location of the fractures. Magnetic resonance imaging (MRI) is a very sensitive tool to visualize bone marrow abnormalities associated with insufficiency fractures. Thin section, multi-detector computed tomography (MDCT) depicts subtle fracture lines allowing direct visualization of cortical and trabecular bone. Bone scintigraphy still plays a role in detecting fractures, with good sensitivity but limited specificity. The most important differential diagnosis is underlying malignant disease leading to pathologic fractures. Bone densitometry and clinical history may also be helpful in confirming the diagnosis of insufficiency fractures.

  15. Preexisting lesions associated with complete diaphyseal fractures of the third metacarpal bone in 12 Thoroughbred racehorses.

    Science.gov (United States)

    Gray, Sarah N; Spriet, Mathieu; Garcia, Tanya C; Uzal, Francisco A; Stover, Susan M

    2017-07-01

    We characterized features of complete diaphyseal fractures of third metacarpal bones in Thoroughbred racehorses. Given that stress fractures are known to occur in the third metacarpal bone, an additional aim was to determine if complete fractures are associated with signs of a preexisting incomplete stress fracture. Bilateral metacarpi from 12 Thoroughbred racehorses euthanized because of complete unilateral metacarpal diaphyseal fracture were examined visually and radiographically. Open, comminuted, transverse or short oblique fractures occurred in the middle of the diaphysis or supracondylar region. Periosteal surface discoloration and bone callus formation contiguous with the fracture line were present in fractured bones. All contralateral intact metacarpi had gross anatomic lesions, and 10 had radiographic abnormalities similar to those observed on fractured metacarpi. Catastrophic metacarpal fractures occurred in racehorses with bilateral evidence of preexisting bone injury.

  16. Reaming and the healing of fractures | Umebese | Nigerian Journal ...

    African Journals Online (AJOL)

    OBJECTIVE: We quantified fracture healing response in the intramedullary nailed fractures of femur. PATIENTS AND METHOD: By a simple method of measuring size and mass of callus formation radiologically in 30 patients who had undergone open retrograde intramedullary Kuntscher nailing. We then compared the ...

  17. Fracture healing using degradable magnesium fixation plates and screws.

    Science.gov (United States)

    Chaya, Amy; Yoshizawa, Sayuri; Verdelis, Kostas; Noorani, Sabrina; Costello, Bernard J; Sfeir, Charles

    2015-02-01

    Internal bone fixation devices made with permanent metals are associated with numerous long-term complications and may require removal. We hypothesized that fixation devices made with degradable magnesium alloys could provide an ideal combination of strength and degradation, facilitating fracture fixation and healing while eliminating the need for implant removal surgery. Fixation plates and screws were machined from 99.9% pure magnesium and compared with titanium devices in a rabbit ulnar fracture model. Magnesium device degradation and the effect on fracture healing and bone formation were assessed after 4 weeks. Fracture healing with magnesium device fixation was compared with that of titanium devices using qualitative histologic analysis and quantitative histomorphometry. Micro-computed tomography showed device degradation after 4 weeks in vivo. In addition, 2-dimensional micro-computed tomography slices and histologic staining showed that magnesium degradation did not inhibit fracture healing or bone formation. Histomorphology showed no difference in bone-bridging fractures fixed with magnesium and titanium devices. Interestingly, abundant new bone was formed around magnesium devices, suggesting a connection between magnesium degradation and bone formation. Our results show potential for magnesium fixation devices in a loaded fracture environment. Furthermore, these results suggest that magnesium fixation devices may enhance fracture healing by encouraging localized new bone formation. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  18. Role of MRI in hip fractures, including stress fractures, occult fractures, avulsion fractures

    International Nuclear Information System (INIS)

    Nachtrab, O.; Cassar-Pullicino, V.N.; Lalam, R.; Tins, B.; Tyrrell, P.N.M.; Singh, J.

    2012-01-01

    MR imaging plays a vital role in the diagnosis and management of hip fractures in all age groups, in a large spectrum of patient groups spanning the elderly and sporting population. It allows a confident exclusion of fracture, differentiation of bony from soft tissue injury and an early confident detection of fractures. There is a spectrum of MR findings which in part is dictated by the type and cause of the fracture which the radiologist needs to be familiar with. Judicious but prompt utilisation of MR in patients with suspected hip fractures has a positive therapeutic impact with healthcare cost benefits as well as social care benefits.

  19. Estimation of Fracture Porosity in an Unsaturated Fractured Welded Tuff Using Gas Tracer Testing

    Energy Technology Data Exchange (ETDEWEB)

    B.M. Freifeild

    2001-10-18

    Kinematic fracture porosity is an important hydrologic transport parameter for predicting the potential of rapid contaminant migration through fractured rock. The transport velocity of a solute moving within a fracture network is inversely related to the fracture porosity. Since fracture porosity is often one or two orders of magnitude smaller than matrix porosity, and fracture permeability is often orders of magnitude greater than matrix permeability, solutes may travel significantly faster in the fracture network than in the surrounding matrix. This dissertation introduces a new methodology for conducting gas tracer tests using a field portable mass spectrometer along with analytical tools for estimating fracture porosity using the measured tracer concentration breakthrough curves. Field experiments were conducted at Yucca Mountain, Nevada, consisting of air-permeability transient testing and gas-tracer-transport tests. The experiments were conducted from boreholes drilled within an underground tunnel as part of an investigation of rock mass hydrological behavior. Air-permeability pressure transients, recorded during constant mass flux injections, have been analyzed using a numerical inversion procedure to identify fracture permeability and porosity. Dipole gas tracer tests have also been conducted from the same boreholes used for air-permeability testing. Mass breakthrough data has been analyzed using a random walk particle-tracking model, with a dispersivity that is a function of the advective velocity. The estimated fracture porosity using the tracer test and air-injection test data ranges from .001 to .015. These values are an order of magnitude greater than the values estimated by others using hydraulically estimated fracture apertures. The estimates of porosity made using air-permeability test data are shown to be highly sensitive to formation heterogeneity. Uncertainty analyses performed on the gas tracer test results show high confidence in the parameter

  20. Estimation of fracture porosity in an unsaturated fractured welded tuff using gas tracer testing

    Energy Technology Data Exchange (ETDEWEB)

    Freifeld, Barry Mark [Univ. of California, Berkeley, CA (United States)

    2001-12-01

    Kinematic fracture porosity is an important hydrologic transport parameter for predicting the potential of rapid contaminant migration through fractured rock. The transport velocity of a solute moving within a fracture network is inversely related to the fracture porosity. Since fracture porosity is often one or two orders of magnitude smaller than matrix porosity, and fracture permeability is often orders of magnitude greater than matrix permeability, solutes may travel significantly faster in the fracture network than in the surrounding matrix. This dissertation introduces a new methodology for conducting gas tracer tests using a field portable mass spectrometer along with analytical tools for estimating fracture porosity using the measured tracer concentration breakthrough curves. Field experiments were conducted at Yucca Mountain, Nevada, consisting of air-permeability transient testing and gas-tracer-transport tests. The experiments were conducted from boreholes drilled within an underground tunnel as part of an investigation of rock mass hydrological behavior. Air-permeability pressure transients, recorded during constant mass flux injections, have been analyzed using a numerical inversion procedure to identify fracture permeability and porosity. Dipole gas tracer tests have also been conducted from the same boreholes used for air-permeability testing. Mass breakthrough data has been analyzed using a random walk particle-tracking model, with a dispersivity that is a function of the advective velocity. The estimated fracture porosity using the tracer test and air-injection test data ranges from .001 to .015. These values are an order of magnitude greater than the values estimated by others using hydraulically estimated fracture apertures. The estimates of porosity made using air-permeability test data are shown to be highly sensitive to formation heterogeneity. Uncertainty analyses performed on the gas tracer test results show high confidence in the parameter

  1. Estimation of Fracture Porosity in an Unsaturated Fractured Welded Tuff Using Gas Tracer Testing

    International Nuclear Information System (INIS)

    B.M. Freifeild

    2001-01-01

    Kinematic fracture porosity is an important hydrologic transport parameter for predicting the potential of rapid contaminant migration through fractured rock. The transport velocity of a solute moving within a fracture network is inversely related to the fracture porosity. Since fracture porosity is often one or two orders of magnitude smaller than matrix porosity, and fracture permeability is often orders of magnitude greater than matrix permeability, solutes may travel significantly faster in the fracture network than in the surrounding matrix. This dissertation introduces a new methodology for conducting gas tracer tests using a field portable mass spectrometer along with analytical tools for estimating fracture porosity using the measured tracer concentration breakthrough curves. Field experiments were conducted at Yucca Mountain, Nevada, consisting of air-permeability transient testing and gas-tracer-transport tests. The experiments were conducted from boreholes drilled within an underground tunnel as part of an investigation of rock mass hydrological behavior. Air-permeability pressure transients, recorded during constant mass flux injections, have been analyzed using a numerical inversion procedure to identify fracture permeability and porosity. Dipole gas tracer tests have also been conducted from the same boreholes used for air-permeability testing. Mass breakthrough data has been analyzed using a random walk particle-tracking model, with a dispersivity that is a function of the advective velocity. The estimated fracture porosity using the tracer test and air-injection test data ranges from .001 to .015. These values are an order of magnitude greater than the values estimated by others using hydraulically estimated fracture apertures. The estimates of porosity made using air-permeability test data are shown to be highly sensitive to formation heterogeneity. Uncertainty analyses performed on the gas tracer test results show high confidence in the parameter

  2. Numerical research of two-phase flow in fractured-porous media based on discrete fracture fetwork model

    Science.gov (United States)

    Pyatkov, A. A.; Kosyakov, V. P.; Rodionov, S. P.; Botalov, A. Y.

    2018-03-01

    In this work was the study of the processes of isothermal and non-isothermal flow of high viscosity oil in a fractured-porous reservoir. The numerical experiment was done using our own reservoir simulator with the possibility of modeling of fluid motion in conditions of non-isothermal processes and long fractures in the formation.

  3. Multiphase flow models for hydraulic fracturing technology

    Science.gov (United States)

    Osiptsov, Andrei A.

    2017-10-01

    The technology of hydraulic fracturing of a hydrocarbon-bearing formation is based on pumping a fluid with particles into a well to create fractures in porous medium. After the end of pumping, the fractures filled with closely packed proppant particles create highly conductive channels for hydrocarbon flow from far-field reservoir to the well to surface. The design of the hydraulic fracturing treatment is carried out with a simulator. Those simulators are based on mathematical models, which need to be accurate and close to physical reality. The entire process of fracture placement and flowback/cleanup can be conventionally split into the following four stages: (i) quasi-steady state effectively single-phase suspension flow down the wellbore, (ii) particle transport in an open vertical fracture, (iii) displacement of fracturing fluid by hydrocarbons from the closed fracture filled with a random close pack of proppant particles, and, finally, (iv) highly transient gas-liquid flow in a well during cleanup. The stage (i) is relatively well described by the existing hydralics models, while the models for the other three stages of the process need revisiting and considerable improvement, which was the focus of the author’s research presented in this review paper. For stage (ii), we consider the derivation of a multi-fluid model for suspension flow in a narrow vertical hydraulic fracture at moderate Re on the scale of fracture height and length and also the migration of particles across the flow on the scale of fracture width. At the stage of fracture cleanaup (iii), a novel multi-continua model for suspension filtration is developed. To provide closure relationships for permeability of proppant packings to be used in this model, a 3D direct numerical simulation of single phase flow is carried out using the lattice-Boltzmann method. For wellbore cleanup (iv), we present a combined 1D model for highly-transient gas-liquid flow based on the combination of multi-fluid and

  4. Orbital fractures: a review

    Directory of Open Access Journals (Sweden)

    Jeffrey M Joseph

    2011-01-01

    Full Text Available Jeffrey M Joseph, Ioannis P GlavasDivision of Ophthalmic Plastic and Reconstructive Surgery, Department of Ophthalmology, School of Medicine, New York University, New York, NY, USA; Manhattan Eye, Ear, and Throat Hospital, New York, NY, USAAbstract: This review of orbital fractures has three goals: 1 to understand the clinically relevant orbital anatomy with regard to periorbital trauma and orbital fractures, 2 to explain how to assess and examine a patient after periorbital trauma, and 3 to understand the medical and surgical management of orbital fractures. The article aims to summarize the evaluation and management of commonly encountered orbital fractures from the ophthalmologic perspective and to provide an overview for all practicing ophthalmologists and ophthalmologists in training.Keywords: orbit, trauma, fracture, orbital floor, medial wall, zygomatic, zygomatic complex, zmc fracture, zygomaticomaxillary complex fractures 

  5. Mechanics of Hydraulic Fractures

    Science.gov (United States)

    Detournay, Emmanuel

    2016-01-01

    Hydraulic fractures represent a particular class of tensile fractures that propagate in solid media under pre-existing compressive stresses as a result of internal pressurization by an injected viscous fluid. The main application of engineered hydraulic fractures is the stimulation of oil and gas wells to increase production. Several physical processes affect the propagation of these fractures, including the flow of viscous fluid, creation of solid surfaces, and leak-off of fracturing fluid. The interplay and the competition between these processes lead to multiple length scales and timescales in the system, which reveal the shifting influence of the far-field stress, viscous dissipation, fracture energy, and leak-off as the fracture propagates.

  6. Fracture in Soft Materials

    DEFF Research Database (Denmark)

    Hassager, Ole

    Fracture is a phenomenon that is generally associated with solids. A key element in fracture theory is the so-called weakest link idea that fracture initiates from the largest pre-existing material imperfection. However, recent work has demonstrated that fracture can also happen in liquids, where...... surface tension will act to suppress such imperfections. Therefore, the weakest link idea does not seem immediately applicable to fracture in liquids. This presentation will review fracture in liquids and argue that fracture in soft liquids is a material property independent of pre-existing imperfections....... The following questions then emerge: What is the material description needed to predict crack initiation, crack speed and crack shape in soft materials and liquids....

  7. High revision rate but good healing capacity of atypical femoral fractures. A comparison with common shaft fractures.

    Science.gov (United States)

    Schilcher, Jörg

    2015-12-01

    Healing of complete, atypical femoral fractures is thought to be impaired, but the evidence is weak and appears to be based on the delayed healing observed in patients with incomplete atypical fractures. Time until fracture healing is difficult to assess, therefore we compared the reoperation rates between women with complete atypical femoral fractures and common femoral shaft fractures. We searched the orthopaedic surgical registry in Östergötland County for patients with subtrochanteric and femoral shaft fractures (ICD-10 diagnosis codes S72.2, S72.3 and M84.3F) between January 1st 2007 and December 31st 2013. Out of 895 patients with surgically treated femoral shaft fractures, 511 were women 50 years of age or older. Among these we identified 24 women with atypical femoral shaft fractures, and 71 with common shaft fractures. Reoperations were performed in 6 and 5 patients, respectively, odds ratio 4.4 (95% CI 1.2 to 16.1). However, 5 reoperations in the atypical fracture group could not be ascribed to poor healing. In 3 patients the reoperation was due to a new fracture proximal to a standard intramedullary nail. In 2 patients the distal locking screws were removed due to callus formation that was deemed incomplete 5 months post-operatively. The one patient with poor healing showed faint callus formation at 5 months when the fracture was dynamised and callus remained sparse at 11 months. Among patients with common shaft fractures, 2 reoperations were performed to remove loose screws, 2 because of peri-implant fractures and 1 reoperation due to infection. Reoperation rates in patients with complete atypical femoral fractures are higher than in patients with common shaft fractures. The main reason for failure was peri-implant fragility fractures which might be prevented with the use of cephalomedullary nails at the index surgery. Fracture healing however, seems generally good. A watchful waiting approach is advocated in patients with fractures that appear to

  8. FRACTURES OF THE RIBS AND THE DIAPHRAGMATIC RUPTURE WITH A FORMATION OF THE TRANSDIAPHRAGMATIC INTERCOSTAL HERNIA AS A RESULT OF SEVERE COUGHING (CLINICAL OBSERVATION WITH A REVIEW OF THE LITERATURE

    Directory of Open Access Journals (Sweden)

    S. N. Danielyan

    2014-01-01

    Full Text Available ABSTRACT. Severe coughing might lead to development of a number of complications, including the diaphragmatic rupture and the ribs fractures. The report contains two similar rare clinical cases: male patients aged 48 and 74 years with transdiaphragmatic intercostal thoracic wall hernia after the rupture of the left half of the diaphragm and ribs fractures as a result of violent coughing. Both patients had a late diagnosis of injuries. Surgical therapy was performed via thoracotomy access using a mesh implant. histological study of the rib in the damaged area in one case detected fibrous osteodysplasia. The review of literature on this rare type of injury was analyzed. 

  9. Identification Method of Mud Shale Fractures Base on Wavelet Transform

    Science.gov (United States)

    Xia, Weixu; Lai, Fuqiang; Luo, Han

    2018-01-01

    In recent years, inspired by seismic analysis technology, a new method for analysing mud shale fractures oil and gas reservoirs by logging properties has emerged. By extracting the high frequency attribute of the wavelet transform in the logging attribute, the formation information hidden in the logging signal is extracted, identified the fractures that are not recognized by conventional logging and in the identified fracture segment to show the “cycle jump”, “high value”, “spike” and other response effect is more obvious. Finally formed a complete wavelet denoising method and wavelet high frequency identification fracture method.

  10. Pathological fracture in non-ossifying fibroma with histological features simulating aneurysmal bone cyst

    International Nuclear Information System (INIS)

    Hoeffel, C.; Mainard, L.; Hoeffel, J.C.; Panuel, M.; Plenat, F.

    1999-01-01

    A 12-year-old-girl presented with a fracture of an osteolytic lesion of the distal radius. A 7-year-old girl presented with a fracture of an osteolytic lesion of the femoral shaft. In both cases it was a non-ossifying fibroma with fracture misdiagnosed at pathology as aneurysmal bone cyst. Fractures through non-ossifying fibromas may alter the histological pattern of the initial lesion in two ways: firstly, by the presence of blood pigments due to the fracture, and secondly, by formation of new bone. Radiological-pathological correlation is essential to avoid histological errors after pathological fracture in a non-ossifying fibroma. (orig.)

  11. Thermal shale fracturing simulation using the Cohesive Zone Method (CZM)

    KAUST Repository

    Enayatpour, Saeid; van Oort, Eric; Patzek, Tadeusz

    2018-01-01

    Extensive research has been conducted over the past two decades to improve hydraulic fracturing methods used for hydrocarbon recovery from tight reservoir rocks such as shales. Our focus in this paper is on thermal fracturing of such tight rocks to enhance hydraulic fracturing efficiency. Thermal fracturing is effective in generating small fractures in the near-wellbore zone - or in the vicinity of natural or induced fractures - that may act as initiation points for larger fractures. Previous analytical and numerical results indicate that thermal fracturing in tight rock significantly enhances rock permeability, thereby enhancing hydrocarbon recovery. Here, we present a more powerful way of simulating the initiation and propagation of thermally induced fractures in tight formations using the Cohesive Zone Method (CZM). The advantages of CZM are: 1) CZM simulation is fast compared to similar models which are based on the spring-mass particle method or Discrete Element Method (DEM); 2) unlike DEM, rock material complexities such as scale-dependent failure behavior can be incorporated in a CZM simulation; 3) CZM is capable of predicting the extent of fracture propagation in rock, which is more difficult to determine in a classic finite element approach. We demonstrate that CZM delivers results for the challenging fracture propagation problem of similar accuracy to the eXtended Finite Element Method (XFEM) while reducing complexity and computational effort. Simulation results for thermal fracturing in the near-wellbore zone show the effect of stress anisotropy in fracture propagation in the direction of the maximum horizontal stress. It is shown that CZM can be used to readily obtain the extent and the pattern of induced thermal fractures.

  12. Characterization of reservoir fractures using conventional geophysical logging

    Directory of Open Access Journals (Sweden)

    Paitoon Laongsakul

    2011-04-01

    Full Text Available In hydrocarbon exploration fractures play an important role as possible pathways for the hydrocarbon flow and bythis enhancing the overall formation’s permeability. Advanced logging methods for fracture analysis, like the boreholeacoustic televiewer and Formation Microscanner (FMS are available, but these are additional and expensive tools. However,open and with water or hydrocarbon filled fractures are also sensitive to electrical and other conventional logging methods.For this study conventional logging data (electric, seismic, etc were available plus additional fracture information from FMS.Taking into account the borehole environment the results show that the micro-spherically focused log indicates fractures byshowing low resistivity spikes opposite open fractures, and high resistivity spikes opposite sealed ones. Compressional andshear wave velocities are reduced when passing trough the fracture zone, which are assumed to be more or less perpendicularto borehole axis. The photoelectric absorption curve exhibit a very sharp peak in front of a fracture filled with bariteloaded mud cake. The density log shows low density spikes that are not seen by the neutron log, usually where fractures,large vugs, or caverns exist. Borehole breakouts can cause a similar effect on the logging response than fractures, but fracturesare often present when this occurs. The fracture index calculation by using threshold and input weight was calculatedand there was in general a good agreement with the fracture data from FMS especially in fracture zones, which mainlycontribute to the hydraulic system of the reservoir. Finally, the overall results from this study using one well are promising,however further research in the combination of different tools for fracture identification is recommended as well as the useof core for further validation.

  13. Thermal shale fracturing simulation using the Cohesive Zone Method (CZM)

    KAUST Repository

    Enayatpour, Saeid

    2018-05-17

    Extensive research has been conducted over the past two decades to improve hydraulic fracturing methods used for hydrocarbon recovery from tight reservoir rocks such as shales. Our focus in this paper is on thermal fracturing of such tight rocks to enhance hydraulic fracturing efficiency. Thermal fracturing is effective in generating small fractures in the near-wellbore zone - or in the vicinity of natural or induced fractures - that may act as initiation points for larger fractures. Previous analytical and numerical results indicate that thermal fracturing in tight rock significantly enhances rock permeability, thereby enhancing hydrocarbon recovery. Here, we present a more powerful way of simulating the initiation and propagation of thermally induced fractures in tight formations using the Cohesive Zone Method (CZM). The advantages of CZM are: 1) CZM simulation is fast compared to similar models which are based on the spring-mass particle method or Discrete Element Method (DEM); 2) unlike DEM, rock material complexities such as scale-dependent failure behavior can be incorporated in a CZM simulation; 3) CZM is capable of predicting the extent of fracture propagation in rock, which is more difficult to determine in a classic finite element approach. We demonstrate that CZM delivers results for the challenging fracture propagation problem of similar accuracy to the eXtended Finite Element Method (XFEM) while reducing complexity and computational effort. Simulation results for thermal fracturing in the near-wellbore zone show the effect of stress anisotropy in fracture propagation in the direction of the maximum horizontal stress. It is shown that CZM can be used to readily obtain the extent and the pattern of induced thermal fractures.

  14. Disclosure of hydraulic fracturing fluid chemical additives: analysis of regulations.

    Science.gov (United States)

    Maule, Alexis L; Makey, Colleen M; Benson, Eugene B; Burrows, Isaac J; Scammell, Madeleine K

    2013-01-01

    Hydraulic fracturing is used to extract natural gas from shale formations. The process involves injecting into the ground fracturing fluids that contain thousands of gallons of chemical additives. Companies are not mandated by federal regulations to disclose the identities or quantities of chemicals used during hydraulic fracturing operations on private or public lands. States have begun to regulate hydraulic fracturing fluids by mandating chemical disclosure. These laws have shortcomings including nondisclosure of proprietary or "trade secret" mixtures, insufficient penalties for reporting inaccurate or incomplete information, and timelines that allow for after-the-fact reporting. These limitations leave lawmakers, regulators, public safety officers, and the public uninformed and ill-prepared to anticipate and respond to possible environmental and human health hazards associated with hydraulic fracturing fluids. We explore hydraulic fracturing exemptions from federal regulations, as well as current and future efforts to mandate chemical disclosure at the federal and state level.

  15. CURBSIDE CONSULTATION IN FRACTURE MANAGEMENT: 49 CLINICAL QUESTIONS

    Directory of Open Access Journals (Sweden)

    Walter W. Virkus

    2008-12-01

    Full Text Available DESCRIPTION: A user-friendly, unique resource for the treatment of fractures designed in a casual questions and answers format which provides basic knowledge, current information and evidence based expert advices enhanced by images and diagrams and supported by ref-erences.PURPOSE: Designing this book the editor has aimed to prepare not only a source of current knowledge and opin-ions by experienced authors in fracture management for decision making in daily practice but also a brief refer-ence and useful educational resource in orthopedic trauma surgery.FEATURES: Three Sections are composed of 49 sub-jects in a form of the answers of frequently asked ques-tions richly illustrated by images and diagrams and in-cluding references at the end of each subject.The Section I is “UPPER EXTREMITIES” including: Neck fracture; Humerus shaft fracture; Management of radial nerve palsy associated with humeral fracture; Clavicle fractures; Elbow fractures in children; Fasciot-omy technic of the forearm; Distal radius fracture; Indica-tions of radial head replacement, Femur and humeral shaft fractures; Treatment of posterolateral elbow dislocation; The Section II is “LOWER EXTREMITIES” including : Femur fractures; Pelvic fractures; Life threatening pelvic fractures; Decision for surgical treatment in pelvic frac-tures; Treatment of anterior fracture of femoral head and hip joint incongruity; Management of a displaced femoral neck fracture in young patient in ER; Elder patients with displaced femoral head fracture; Patella and tibial plateau fractures; Criteria for compartment syndromes in the tibia; Tricks in nailing proximal and distal tibial fractures; Surgical management of distal tibia spiral fracture in middle aged women; Pilon fracture; Management of syn-desmotic screws in adult patient; The management of minimally displaced posterior malleol in three malleolar fractures; Postoperative management of bimalleolar frac-tures; Management of minimally

  16. On the theory of transport of fluids in fractured media for the safety analysis of a nuclear waste repository

    International Nuclear Information System (INIS)

    Mukhopadhyay, N.C.

    1983-01-01

    A systematic theory is developed of the role of fractures in the transport of radionuclides by groundwater through fractured rocks from the nuclear waste repository to be built in deep geologic formations to the biosphere. Fractures are grouped into four ''irreducible'' types: joints, nodes, shear zones, and fracture zones, and their geometrical and sorption characteristics, having bearings on radionuclide transport, are expressed in mathematical terms. The question of radioactivity retention in various fracture types is then carefully studied using idealized geometries to mimic natural forms. Fundamental transport equations are derived for the fracture-pore complex, taking into consideration the special physical characteristics of fractures and the effects of sorption therein

  17. Hydromechanical modeling of clay rock including fracture damage

    Science.gov (United States)

    Asahina, D.; Houseworth, J. E.; Birkholzer, J. T.

    2012-12-01

    Argillaceous rock typically acts as a flow barrier, but under certain conditions significant and potentially conductive fractures may be present. Fracture formation is well-known to occur in the vicinity of underground excavations in a region known as the excavation disturbed zone. Such problems are of particular importance for low-permeability, mechanically weak rock such as clays and shales because fractures can be relatively transient as a result of fracture self-sealing processes. Perhaps not as well appreciated is the fact that natural fractures can form in argillaceous rock as a result of hydraulic overpressure caused by phenomena such as disequlibrium compaction, changes in tectonic stress, and mineral dehydration. Overpressure conditions can cause hydraulic fracturing if the fluid pressure leads to tensile effective stresses that exceed the tensile strength of the material. Quantitative modeling of this type of process requires coupling between hydrogeologic processes and geomechanical processes including fracture initiation and propagation. Here we present a computational method for three-dimensional, hydromechanical coupled processes including fracture damage. Fractures are represented as discrete features in a fracture network that interact with a porous rock matrix. Fracture configurations are mapped onto an unstructured, three-dimensonal, Voronoi grid, which is based on a random set of spatial points. Discrete fracture networks (DFN) are represented by the connections of the edges of a Voronoi cells. This methodology has the advantage that fractures can be more easily introduced in response to coupled hydro-mechanical processes and generally eliminates several potential issues associated with the geometry of DFN and numerical gridding. A geomechanical and fracture-damage model is developed here using the Rigid-Body-Spring-Network (RBSN) numerical method. The hydrogelogic and geomechanical models share the same geometrical information from a 3D Voronoi

  18. Structural-Diagenetic Controls on Fracture Opening in Tight Gas Sandstone Reservoirs, Alberta Foothills

    Science.gov (United States)

    Ukar, Estibalitz; Eichhubl, Peter; Fall, Andras; Hooker, John

    2013-04-01

    In tight gas reservoirs, understanding the characteristics, orientation and distribution of natural open fractures, and how these relate to the structural and stratigraphic setting are important for exploration and production. Outcrops provide the opportunity to sample fracture characteristics that would otherwise be unknown due to the limitations of sampling by cores and well logs. However, fractures in exhumed outcrops may not be representative of fractures in the reservoir because of differences in burial and exhumation history. Appropriate outcrop analogs of producing reservoirs with comparable geologic history, structural setting, fracture networks, and diagenetic attributes are desirable but rare. The Jurassic to Lower Cretaceous Nikanassin Formation from the Alberta Foothills produces gas at commercial rates where it contains a network of open fractures. Fractures from outcrops have the same diagenetic attributes as those observed in cores fractures relative to fold cores, hinges and limbs, 2) compare the distribution and attributes of fractures in outcrop vs. core samples, 3) estimate the timing of fracture formation relative to the evolution of the fold-and-thrust belt, and 4) estimate the degradation of fracture porosity due to postkinematic cementation. Cathodoluminescence images of cemented fractures in both outcrop and core samples reveal several generations of quartz and ankerite cement that is synkinematic and postkinematic relative to fracture opening. Crack-seal textures in synkinematic quartz are ubiquitous, and well-developed cement bridges abundant. Fracture porosity may be preserved in fractures wider than ~100 microns. 1-D scanlines in outcrop and core samples indicate fractures are most abundant within small parasitic folds within larger, tight, mesoscopic folds. Fracture intensity is lower away from parasitic folds; intensity progressively decreases from the faulted cores of mesoscopic folds to their forelimbs, with lowest intensities within

  19. Atraumatic First Rib Fracture

    Directory of Open Access Journals (Sweden)

    Koray Aydogdu

    2014-12-01

    Full Text Available Rib fractures are usually seen after a trauma, while atraumatic spontaneous rib fractures are quite rare. A first rib fracture identified in our 17 years old female patient who had not a history of trauma except lifting a heavy weight was examined in details in terms of the potential complications and followed-up for a long time. We presented our experience on this case with atraumatic first rib fracture that has different views for the etiology in light of the literature.

  20. Fracture mechanics safety approaches

    International Nuclear Information System (INIS)

    Roos, E.; Schuler, X.; Eisele, U.

    2004-01-01

    Component integrity assessments require the knowledge of reliable fracture toughness parameters characterising the initiation of the failure process in the whole relevant temperature range. From a large number of fracture mechanics tests a statistically based procedure was derived allowing to quantify the initiation of fracture toughness as a function of temperature as a closed function as well as the temperature dependence of the cleavage instability parameters. Alternatively to the direct experimental determination one also can use a correlation between fracture toughness and notch impact energy. (orig.)

  1. Scaphoid fractures in children

    Directory of Open Access Journals (Sweden)

    Gajdobranski Đorđe

    2014-01-01

    Full Text Available Introduction. Scaphoid fractures are rare in childhood. Diagnosis is very difficult to establish because carpal bones are not fully ossified. In suspected cases comparative or delayed radiography is used, as well as computerized tomography, magnetic resonance imaging, ultrasound and bone scintigraphy. Majority of scaphoid fractures are treated conservatively with good results. In case of delayed fracture healing various types of treatment are available. Objective. To determine the mechanism of injury, clinical healing process, types and outcome of treatment of scaphoid fractures in children. Methods. We retrospectively analyzed patients with traumatic closed fracture of the scaphoid bone over a ten-year period (2002-2011. The outcome of the treatment of “acute” scaphoid fracture was evaluated using the Mayo Wrist Score. Results. There were in total 34 patients, of mean age 13.8 years, with traumatic closed fracture of the scaphoid bone, whose bone growth was not finished yet. Most common injury mechanism was fall on outstretched arm - 76% of patients. During the examined period 31 children with “acute” fracture underwent conservative treatment, with average immobilization period of 51 days. Six patients were lost to follow-up. In the remaining 25 patients, after completed rehabilitation, functional results determined by the Mayo Wrist Score were excellent. Conclusion. Conservative therapy of “acute” scaphoid fractures is an acceptable treatment option for pediatric patients with excellent functional results.

  2. Pathological fractures in children

    Science.gov (United States)

    De Mattos, C. B. R.; Binitie, O.; Dormans, J. P.

    2012-01-01

    Pathological fractures in children can occur as a result of a variety of conditions, ranging from metabolic diseases and infection to tumours. Fractures through benign and malignant bone tumours should be recognised and managed appropriately by the treating orthopaedic surgeon. The most common benign bone tumours that cause pathological fractures in children are unicameral bone cysts, aneurysmal bone cysts, non-ossifying fibromas and fibrous dysplasia. Although pathological fractures through a primary bone malignancy are rare, these should be recognised quickly in order to achieve better outcomes. A thorough history, physical examination and review of plain radiographs are crucial to determine the cause and guide treatment. In most benign cases the fracture will heal and the lesion can be addressed at the time of the fracture, or after the fracture is healed. A step-wise and multidisciplinary approach is necessary in caring for paediatric patients with malignancies. Pathological fractures do not have to be treated by amputation; these fractures can heal and limb salvage can be performed when indicated. PMID:23610658

  3. Fracture of the styloid process associated with the mandible fracture

    Directory of Open Access Journals (Sweden)

    K N Dubey

    2013-01-01

    Full Text Available Fracture of the styloid process (SP of temporal bone is an uncommon injuries. Fracture of the SP can be associated with the facial injuries including mandible fracture. However, injury to the SP may be concealed and missed diagnosis may lead to the improper or various unnecessary treatments. A rare case of SP fracture associated with the ipsilateral mandibular fracture and also the diagnostic and management considerations of the SP fracture are discussed.

  4. The Influence of Hydraulic Fracturing on Carbon Storage Performance

    Science.gov (United States)

    Fu, Pengcheng; Settgast, Randolph R.; Hao, Yue; Morris, Joseph P.; Ryerson, Frederick J.

    2017-12-01

    Conventional principles of the design and operation of geologic carbon storage (GCS) require injecting CO2 below the caprock fracturing pressure to ensure the integrity of the storage complex. In nonideal storage reservoirs with relatively low permeability, pressure buildup can lead to hydraulic fracturing of the reservoir and caprock. While the GCS community has generally viewed hydraulic fractures as a key risk to storage integrity, a carefully designed stimulation treatment under appropriate geologic conditions could provide improved injectivity while maintaining overall seal integrity. A vertically contained hydraulic fracture, either in the reservoir rock or extending a limited height into the caprock, provides an effective means to access reservoir volume far from the injection well. Employing a fully coupled numerical model of hydraulic fracturing, solid deformation, and matrix fluid flow, we study the enabling conditions, processes, and mechanisms of hydraulic fracturing during CO2 injection. A hydraulic fracture's pressure-limiting behavior dictates that the near-well fluid pressure is only slightly higher than the fracturing pressure of the rock and is insensitive to injection rate and mechanical properties of the formation. Although a fracture contained solely within the reservoir rock with no caprock penetration, would be an ideal scenario, poroelastic principles dictate that sustaining such a fracture could lead to continuously increasing pressure until the caprock fractures. We also investigate the propagation pattern and injection pressure responses of a hydraulic fracture propagating in a caprock subjected to heterogeneous in situ stress. The results have important implications for the use of hydraulic fracturing as a tool for managing storage performance.

  5. [Trochanteric femoral fractures].

    Science.gov (United States)

    Douša, P; Čech, O; Weissinger, M; Džupa, V

    2013-01-01

    At the present time proximal femoral fractures account for 30% of all fractures referred to hospitals for treatment. Our population is ageing, the proportion of patients with post-menopausal or senile osteoporosis is increasing and therefore the number of proximal femoral fractures requiring urgent treatment is growing too. In the age category of 50 years and older, the incidence of these fractures has increased exponentially. Our department serves as a trauma centre for half of Prague and part of the Central Bohemia Region with a population of 1 150 000. Prague in particular has a high number of elderly citizens. Our experience is based on extensive clinical data obtained from the Register of Proximal Femoral Fractures established in 1997. During 14 years, 4280 patients, 3112 women and 1168 men, were admitted to our department for treatment of proximal femoral fractures. All patients were followed up until healing or development of complications. In the group under study, 82% were patients older than 70 years; 72% of those requiring surgery were in their seventies and eighties. Men were significantly younger than women (pfractures were 2.3-times more frequent in women than in men. In the category under 60 years, men significantly outnumbered women (pfractures were, on the average, eight years older than the patients with intertrochanteric fractures, which is a significant difference (pTrochanteric fractures accounted for 54.7% and femoral neck fractures for 45.3% of all fractures. The inter-annual increase was 5.9%, with more trochanteric than femoral neck fractures. There was a non-significant decrease in intertrochanteric (AO 31-A3) fractures. On the other hand, the number of pertrochanteric (AO 31-A1+2) fractures increased significantly (pfractures were treated with a proximal femoral nail; a short nail was used in 1260 and a long nail in 134 of them. A dynamic hip screw (DHS) was employed to treat 947 fractures. Distinguishing between pertrochanteric (21-A1

  6. Hydraulic Fracturing and Production Optimization in Eagle Ford Shale Using Coupled Geomechanics and Fluid Flow Model

    Science.gov (United States)

    Suppachoknirun, Theerapat; Tutuncu, Azra N.

    2017-12-01

    With increasing production from shale gas and tight oil reservoirs, horizontal drilling and multistage hydraulic fracturing processes have become a routine procedure in unconventional field development efforts. Natural fractures play a critical role in hydraulic fracture growth, subsequently affecting stimulated reservoir volume and the production efficiency. Moreover, the existing fractures can also contribute to the pressure-dependent fluid leak-off during the operations. Hence, a reliable identification of the discrete fracture network covering the zone of interest prior to the hydraulic fracturing design needs to be incorporated into the hydraulic fracturing and reservoir simulations for realistic representation of the in situ reservoir conditions. In this research study, an integrated 3-D fracture and fluid flow model have been developed using a new approach to simulate the fluid flow and deliver reliable production forecasting in naturally fractured and hydraulically stimulated tight reservoirs. The model was created with three key modules. A complex 3-D discrete fracture network model introduces realistic natural fracture geometry with the associated fractured reservoir characteristics. A hydraulic fracturing model is created utilizing the discrete fracture network for simulation of the hydraulic fracture and flow in the complex discrete fracture network. Finally, a reservoir model with the production grid system is used allowing the user to efficiently perform the fluid flow simulation in tight formations with complex fracture networks. The complex discrete natural fracture model, the integrated discrete fracture model for the hydraulic fracturing, the fluid flow model, and the input dataset have been validated against microseismic fracture mapping and commingled production data obtained from a well pad with three horizontal production wells located in the Eagle Ford oil window in south Texas. Two other fracturing geometries were also evaluated to optimize

  7. Hand fracture - aftercare

    Science.gov (United States)

    ... an orthopedic surgeon if: Your metacarpal bones are broken and shifted out of place Your fingers do not line up correctly Your fracture nearly went through the skin Your fracture went through the skin Your pain is severe or becoming worse Self-care at Home You may have pain and swelling for 1 ...

  8. TIBIAL SHAFT FRACTURES.

    Science.gov (United States)

    Kojima, Kodi Edson; Ferreira, Ramon Venzon

    2011-01-01

    The long-bone fractures occur most frequently in the tibial shaft. Adequate treatment of such fractures avoids consolidation failure, skewed consolidation and reoperation. To classify these fractures, the AO/OTA classification method is still used, but it is worthwhile getting to know the Ellis classification method, which also includes assessment of soft-tissue injuries. There is often an association with compartmental syndrome, and early diagnosis can be achieved through evaluating clinical parameters and constant clinical monitoring. Once the diagnosis has been made, fasciotomy should be performed. It is always difficult to assess consolidation, but the RUST method may help in this. Radiography is assessed in two projections, and points are scored for the presence of the fracture line and a visible bone callus. Today, the dogma of six hours for cleaning the exposed fracture is under discussion. It is considered that an early start to intravenous antibiotic therapy and the lesion severity are very important. The question of early or late closure of the lesion in an exposed fracture has gone through several phases: sometimes early closure has been indicated and sometimes late closure. Currently, whenever possible, early closure of the lesion is recommended, since this diminishes the risk of infection. Milling of the canal when the intramedullary nail is introduced is still a controversial subject. Despite strong personal positions in favor of milling, studies have shown that there may be some advantage in relation to closed fractures, but not in exposed fractures.

  9. Physeal Fractures in Foals.

    Science.gov (United States)

    Levine, David G; Aitken, Maia R

    2017-08-01

    Physeal fractures are common musculoskeletal injuries in foals and should be included as a differential diagnosis for the lame or nonweightbearing foal. Careful evaluation of the patient, including precise radiographic assessment, is paramount in determining the options for treatment. Prognosis mostly depends on the patient's age, weight, and fracture location and configuration. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Implications of heterogeneous fracture distribution on reservoir quality; an analogue from the Torridon Group sandstone, Moine Thrust Belt, NW Scotland

    Science.gov (United States)

    Watkins, Hannah; Healy, David; Bond, Clare E.; Butler, Robert W. H.

    2018-03-01

    Understanding fracture network variation is fundamental in characterising fractured reservoirs. Simple relationships between fractures, stress and strain are commonly assumed in fold-thrust structures, inferring relatively homogeneous fracture patterns. In reality fractures are more complex, commonly appearing as heterogeneous networks at outcrop. We use the Achnashellach Culmination (NW Scotland) as an outcrop analogue to a folded tight sandstone reservoir in a thrust belt. We present fracture data is collected from four fold-thrust structures to determine how fracture connectivity, orientation, permeability anisotropy and fill vary at different structural positions. We use a 3D model of the field area, constructed using field observations and bedding data, and geomechanically restored using Move software, to determine how factors such as fold curvature and strain influence fracture variation. Fracture patterns in the Torridon Group are consistent and predictable in high strain forelimbs, however in low strain backlimbs fracture patterns are inconsistent. Heterogeneities in fracture connectivity and orientation in low strain regions do not correspond to fluctuations in strain or fold curvature. We infer that where strain is low, other factors such as lithology have a greater control on fracture formation. Despite unpredictable fracture attributes in low strain regions, fractured reservoir quality would be highest here because fractures in high strain forelimbs are infilled with quartz. Heterogeneities in fracture attribute data on fold backlimbs mean that fractured reservoir quality and reservoir potential is difficult to predict.

  11. Numerical Investigation into the Effect of Natural Fracture Density on Hydraulic Fracture Network Propagation

    Directory of Open Access Journals (Sweden)

    Zhaohui Chong

    2017-07-01

    Full Text Available Hydraulic fracturing is an important method to enhance permeability in oil and gas exploitation projects and weaken hard roofs of coal seams to reduce dynamic disasters, for example, rock burst. It is necessary to fully understand the mechanism of the initiation, propagation, and coalescence of hydraulic fracture network (HFN caused by fluid flow in rock formations. In this study, a coupled hydro-mechanical model was built based on synthetic rock mass (SRM method to investigate the effects of natural fracture (NF density on HFN propagation. Firstly, the geometrical structures of NF obtained from borehole images at the field scale were applied to the model. Secondly, the micro-parameters of the proposed model were validated against the interaction between NF and hydraulic fracture (HF in physical experiments. Finally, a series of numerical simulations were performed to study the mechanism of HFN propagation. In addition, confining pressure ratio (CPR and injection rate were also taken into consideration. The results suggested that the increase of NF density drives the growth of stimulated reservoir volume (SRV, concentration area of injection pressure (CAIP, and the number of cracks caused by NF. The number of tensile cracks caused by rock matrix decrease gradually with the increase of NF density, and the number of shear cracks caused by rock matrix are almost immune to the change of NF density. The propagation orientation of HFN and the breakdown pressure in rock formations are mainly controlled by CPR. Different injection rates would result in a relatively big difference in the gradient of injection pressure, but this difference would be gradually narrowed with the increase of NF density. Natural fracture density is the key factor that influences the percentages of different crack types in HFN, regardless of the value of CPR and injection rate. The proposed model may help predict HFN propagation and optimize fracturing treatment designs in

  12. Feasibility study on application of volume acid fracturing technology to tight gas carbonate reservoir development

    Directory of Open Access Journals (Sweden)

    Nianyin Li

    2015-09-01

    Full Text Available How to effectively develop tight-gas carbonate reservoir and achieve high recovery is always a problem for the oil and gas industry. To solve this problem, domestic petroleum engineers use the combination of the successful experiences of North American shale gas pools development by stimulated reservoir volume (SRV fracturing with the research achievements of Chinese tight gas development by acid fracturing to propose volume acid fracturing technology for fractured tight-gas carbonate reservoir, which has achieved a good stimulation effect in the pilot tests. To determine what reservoir conditions are suitable to carry out volume acid fracturing, this paper firstly introduces volume acid fracturing technology by giving the stimulation mechanism and technical ideas, and initially analyzes the feasibility by the comparison of reservoir characteristics of shale gas with tight-gas carbonate. Then, this paper analyzes the validity and limitation of the volume acid fracturing technology via the analyses of control conditions for volume acid fracturing in reservoir fracturing performance, natural fracture, horizontal principal stress difference, orientation of in-situ stress and natural fracture, and gives the solution for the limitation. The study results show that the volume acid fracturing process can be used to greatly improve the flow environment of tight-gas carbonate reservoir and increase production; the incremental or stimulation response is closely related with reservoir fracturing performance, the degree of development of natural fracture, the small intersection angle between hydraulic fracture and natural fracture, the large horizontal principal stress difference is easy to form a narrow fracture zone, and it is disadvantageous to create fracture network, but the degradable fiber diversion technology may largely weaken the disadvantage. The practices indicate that the application of volume acid fracturing process to the tight-gas carbonate

  13. Treatment of midfacial fractures

    International Nuclear Information System (INIS)

    Schubert, J.

    2007-01-01

    Fractures of the midface constitute half of all traumas involving facial bones. Computed tomography is very useful in primary diagnosis. Isolated fractures of the nasal bone and lateral midfacial structures may be diagnosed sufficiently by conventional X-rays. An exact description of the fracture lines along the midfacial buttresses is essential for treatment planning. For good aesthetics and function these have to be reconstructed accurately, which can be checked with X-rays. The treatment of midfacial fractures has been revolutionized over the last two decades. A stable three-dimensional reconstruction of the facial shape is now possible and the duration of treatment has shortened remarkably. The frequently occurring isolated fractures in the lateral part of the midface may be treated easily and effectively by semisurgical methods such as the Gillies procedure or hook-repositioning. (orig.)

  14. Tibial Plateau Fractures

    DEFF Research Database (Denmark)

    Elsøe, Rasmus

    This PhD thesis reported an incidence of tibial plateau fractures of 10.3/100,000/year in a complete Danish regional population. The results reported that patients treated for a lateral tibial plateau fracture with bone tamp reduction and percutaneous screw fixation achieved a satisfactory level...... with only the subgroup Sport significantly below the age matched reference population. The thesis reports a level of health related quality of life (Eq5d) and disability (KOOS) significantly below established reference populations for patients with bicondylar tibial plateau fracture treated with a ring...... fixator, both during treatment and at 19 months following injury. In general, the thesis demonstrates that the treatment of tibial plateau fractures are challenging and that some disabilities following these fractures must be expected. Moreover, the need for further research in the area, both with regard...

  15. Experimental Investigation of Crack Extension Patterns in Hydraulic Fracturing with Shale, Sandstone and Granite Cores

    Directory of Open Access Journals (Sweden)

    Jianming He

    2016-12-01

    Full Text Available Hydraulic fracturing is an important method of reservoir stimulation in the exploitation of geothermal resources, and conventional and unconventional oil and gas resources. In this article, hydraulic fracturing experiments with shale, sandstone cores (from southern Sichuan Basin, and granite cores (from Inner Mongolia were conducted to investigate the different hydraulic fracture extension patterns in these three reservoir rocks. The different reactions between reservoir lithology and pump pressure can be reflected by the pump pressure monitoring curves of hydraulic fracture experiments. An X-ray computer tomography (CT scanner was employed to obtain the spatial distribution of hydraulic fractures in fractured shale, sandstone, and granite cores. From the microscopic and macroscopic observation of hydraulic fractures, different extension patterns of the hydraulic fracture can be analyzed. In fractured sandstone, symmetrical hydraulic fracture morphology could be formed, while some micro cracks were also induced near the injection hole. Although the macroscopic cracks in fractured granite cores are barely observed by naked eye, the results of X-ray CT scanning obviously show the morphology of hydraulic fractures. It is indicated that the typical bedding planes well developed in shale formation play an important role in the propagation of hydraulic fractures in shale cores. The results also demonstrated that heterogeneity influenced the pathway of the hydraulic fracture in granite cores.

  16. An evaluation of fracture toughness of bituminous coal

    International Nuclear Information System (INIS)

    Pathan, A.G.

    2005-01-01

    The role of fracture mechanics in the design of rock structures is vitally important. However, because of the complexities of rock structures and lack of understanding of the fundamentals of the failure mechanism, it has become customary to use the engineering properties approach in the design of stable rock structures. Recently considerable attention has been given and attempts are being made to apply the fracture mechanics approach to the design of safe mining structures. In mining engineering the fracture mechanics may be applied to calculate the formation of fracture zones around mine opening, thus estimating support requirements and formulating guide lines for the selection of mine roadway support system. The research work presented here is concerned with the evaluation of fracture toughness of coal under laboratory conditions. Diametral compression test method is used to determine the fracture toughness parameter of coal in the opening model failure. The effect of crack length and dimensionless crack length on the fracture toughness was studied also. A laboratory investigation of fracture toughness of coal in tensile mode failure has led to the conclusion that fracture toughness could be treated as a material property. (author)

  17. Modelling Laccoliths: Fluid-Driven Fracturing in the Lab

    Science.gov (United States)

    Ball, T. V.; Neufeld, J. A.

    2017-12-01

    Current modelling of the formation of laccoliths neglects the necessity to fracture rock layers for propagation to occur [1]. In magmatic intrusions at depth the idea of fracture toughness is used to characterise fracturing, however an analogue for near surface intrusions has yet to be explored [2]. We propose an analytical model for laccolith emplacement that accounts for the energy required to fracture at the tip of an intrusion. For realistic physical parameters we find that a lag region exists between the fluid magma front and the crack tip where large negative pressures in the tip cause volatiles to exsolve from the magma. Crucially, the dynamics of this tip region controls the spreading due to the competition between viscous forces and fracture energy. We conduct a series of complementary experiments to investigate fluid-driven fracturing of adhered layers and confirm the existence of two regimes: viscosity dominant spreading, controlled by the pressure in the lag region, and fracture energy dominant spreading, controlled by the energy required to fracture layers. Our experiments provide the first observations, and evolution, of a vapour tip. These experiments and our simplified model provide insight into the key physical processes in near surface magmatic intrusions with applications to fluid-driven fracturing more generally. Michaut J. Geophys. Res. 116(B5), B05205. Bunger & Cruden J. Geophys. Res. 116(B2), B02203.

  18. Usefulness of MR imaging in pathologic fracture of long bone

    International Nuclear Information System (INIS)

    Lim, Hyo Soon; Park, Jin Gyoon; Song, Jae Min; Chung, Tae Woong; Yoon, Woong; Kang, Heoung Kyun

    2002-01-01

    The purpose of this study was to evaluate the usefulness of MR imaging of pathologic fractures of the long bones. In 18 patients aged between four and 75 (mean, 25.8) years with histologically confirmed pathologic fractures of the long bones, plain radiographs and MR images were retrospectively analyzed. The former were examined with regard to location and type of fracture, and the presence or absence of underlying disease causing fracture; and the latter in terms of underlying disease, extraosseous mass formation, and soft tissue change. The long bones involved were the femur in nine patients, the humerus in six, and the tibia in three. Underlying diseases were metastatic tumor (n=6), benign bone tumor (n=5), primary malignant bone tumor (n=4), osteomyelitis (n=2), and eosinophilic granuloma (n=1). Plain radiographs showed the fracture site as the metaphysis in ten cases, the disphysis in five, and the metadisphysis in one. Fractures were either transverse (n=10), oblique (n=3), spiral (n=1), vertical (n=1), or telescopic (n=1). In two cases, the fracture line was not visible. MR images revealed underlying diseases in all cases. Two benign bone tumors took the form of a cystic mass, hematoma was seen in three cases. Where pathologic fracture of a long bone had occurred, or a pathologic fracture in which the findings of plain radiography were equivocal, MR imaging was useful for evaluating the pattern and extent of an underlying lesion

  19. Computed tomograms of blowout fracture

    International Nuclear Information System (INIS)

    Ito, Haruhide; Hayashi, Minoru; Shoin, Katsuo; Hwang, Wen-Zern; Yamamoto, Shinjiro; Yonemura, Taizo.

    1985-01-01

    We studied 18 cases of orbital fractures, excluding optic canal fracture. There were 11 cases of pure blowout fracture and 3 of the impure type. The other 4 cases were orbital fractures without blowout fracture. The cardinal syndromes were diplopia, enophthalmos, and sensory disturbances of the trigeminal nerve in the pure type of blowout fracture. Many cases of the impure type of blowout fracture or of orbital fracture showed black eyes or a swelling of the eyelids which masked enophthalmos. Axial and coronal CT scans demonstrated: 1) the orbital fracture, 2) the degree of enophthalmos, 3) intraorbital soft tissue, such as incarcerated or prolapsed ocular muscles, 4) intraorbital hemorrhage, 5) the anatomical relation of the orbital fracture to the lacrimal canal, the trochlea, and the trigeminal nerve, and 6) the lesions of the paranasal sinus and the intracranial cavity. CT scans play an important role in determining what surgical procedures might best be employed. Pure blowout fractures were classified by CT scans into these four types: 1) incarcerating linear fracture, 2) trapdoor fracture, 3) punched-out fracture, and 4) broad fracture. Cases with severe head injury should be examined to see whether or not blowout fracture is present. If the patients are to hope to return to society, a blowout fracture should be treated as soon as possible. (author)

  20. Computed tomograms of blowout fracture

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Haruhide; Hayashi, Minoru; Shoin, Katsuo; Hwang, Wen-Zern; Yamamoto, Shinjiro; Yonemura, Taizo

    1985-02-01

    We studied 18 cases of orbital fractures, excluding optic canal fracture. There were 11 cases of pure blowout fracture and 3 of the impure type. The other 4 cases were orbital fractures without blowout fracture. The cardinal syndromes were diplopia, enophthalmos, and sensory disturbances of the trigeminal nerve in the pure type of blowout fracture. Many cases of the impure type of blowout fracture or of orbital fracture showed black eyes or a swelling of the eyelids which masked enophthalmos. Axial and coronal CT scans demonstrated: 1) the orbital fracture, 2) the degree of enophthalmos, 3) intraorbital soft tissue, such as incarcerated or prolapsed ocular muscles, 4) intraorbital hemorrhage, 5) the anatomical relation of the orbital fracture to the lacrimal canal, the trochlea, and the trigeminal nerve, and 6) the lesions of the paranasal sinus and the intracranial cavity. CT scans play an important role in determining what surgical procedures might best be employed. Pure blowout fractures were classified by CT scans into these four types: 1) incarcerating linear fracture, 2) trapdoor fracture, 3) punched-out fracture, and 4) broad fracture. Cases with severe head injury should be examined to see whether or not blowout fracture is present. If the patients are to hope to return to society, a blowout fracture should be treated as soon as possible. (author).

  1. Rock Springs Site 12 hydraulic/explosive true in situ oil shale fracturing experiment

    Energy Technology Data Exchange (ETDEWEB)

    Parrish, R.L.; Boade, R.R.; Stevens, A.L.; Long, A. Jr.; Turner, T.F.

    1980-06-01

    The experiment plan involved the creation and characterization of three horizontal hydraulic fractures, followed by the insertion and simultaneous detonation of slurry explosive in the two lower fractures. Core analyses, wellbore logging, and airflow and /sup 85/Kr tracer tests were used for site characterization and assessment of the hydraulic and explosive fracturing. Tiltmeters, wellhead pressure and flow gages, and in-formation pressure, flow and crack-opening sensors were used to monitor hydrofracture creation and explosive insertion. Explosive detonation diagnostic data were taken with stress and time-of-arrival gages and surface and in-formation accelerometers. The post-fracturing assessments indicated that: (1) hydrofracture creation and explosive insertion and detonation were accomplished essentially as planned; (2) induced fractures were randomly distributed through the shale with no extensively fractured regions or dislocation of shale; and (3) enhancement of permeability was limited to enlargement of the explosive-filled fractures.

  2. Radiological diagnosis of fractures

    International Nuclear Information System (INIS)

    Finlay, D.B.L.; Allen, M.J.

    1984-01-01

    This book is about radiology of fractures. While it contains sections of clinical features it is not intended that readers should rely entirely upon these for the diagnosis and management of the injured patient. As in the diagnosis and treatment of all medical problems, fracture management must be carried out in a logical step-by-step fashion - namely, history, examination, investigation, differential diagnosis, diagnosis and then treatment. Each section deals with a specific anatomical area and begins with line drawings of the normal radiographs demonstrating the anatomy. Accessory views that may be requested, and the indications for these, are included. Any radiological pitfalls for the area in general are then described. The fractures in adults are then examined in turn, their radiological features described, and any pitfalls in their diagnosis discussed. A brief note of important clinical findings is included. A brief mention is made of pediatric fractures which are of significance and their differences to the adult pattern indicated. Although fractures can be classified into types with different characteristics, in life every fracture is individual. Fractures by and large follow common patterns, but many have variations

  3. Spontaneous rib fractures.

    Science.gov (United States)

    Katrancioglu, Ozgur; Akkas, Yucel; Arslan, Sulhattin; Sahin, Ekber

    2015-07-01

    Other than trauma, rib fracture can occur spontaneously due to a severe cough or sneeze. In this study, patients with spontaneous rib fractures were analyzed according to age, sex, underlying pathology, treatment, and complications. Twelve patients who presented between February 2009 and February 2011 with spontaneous rib fracture were reviewed retrospectively. The patients' data were evaluated according to anamnesis, physical examination, and chest radiographs. The ages of the patients ranged from 34 to 77 years (mean 55.91 ± 12.20 years), and 7 (58.4%) were male. All patients had severe cough and chest pain. The fractures were most frequently between 4th and 9th ribs; multiple rib fractures were detected in 5 (41.7%) patients. Eight (66.7%) patients had chronic obstructive pulmonary disease, 2 (16.7%) had bronchial asthma, and 2 (16.7%) had osteoporosis. Bone densitometry revealed a high risk of bone fracture in all patients. Patients with chronic obstructive pulmonary disease or bronchial asthma had been treated with high-dose steroids for over a year. Spontaneous rib fracture due to severe cough may occur in patients with osteoporosis, chronic obstructive pulmonary disease, or bronchial asthma, receiving long-term steroid therapy. If these patients have severe chest pain, chest radiography should be performed to check for bone lesions. © The Author(s) 2015.

  4. Why ductile fracture mechanics

    International Nuclear Information System (INIS)

    Ritchie, R.O.

    1983-01-01

    Until recently, the engineering application of fracture mechanics has been specific to a description of macroscopic fracture behavior in components and structural parts which remain nominally elastic under loading. While this approach, termed linear elastic fracture mechanics, has been found to be invaluable for the continuum analysis of crack growth in brittle and high strength materials, it is clearly inappropriate for characterizing failure in lower strength ductile alloys where extensive inelastic deformation precedes and accompanies crack initiation and subsequent propagation. Accordingly, much effort has been devoted in recent years toward the development of nonlinear or ductile fracture mechanics methodology to characterize fracture behavior under elastic/plastic conditions; an effort which has been principally motivated by problems in nuclear industry. In this paper, the concepts of ductile (elastic/plastic) fracture mechanics are introduced and applied to the problem of both stationary and nonstationary cracks. Specifically, the limitations inherent in this approach are defined, together with a description of the microstructural considerations and applications relevant to the failure of ductile materials by fracture, fatigue, and creep

  5. Orbital wall fractures

    International Nuclear Information System (INIS)

    Iinuma, Toshitaka; Ishio, Ken-ichirou; Yoshinami, Hiroyoshi; Kuriyama, Jun-ichi; Hirota, Yoshiharu.

    1993-01-01

    A total of 59 cases of mild facial fractures (simple orbital wall fractures, 34 cases, other facial fractures, 25 cases) with the clinical suspects of orbital wall fractures were evaluated both by conventional views (Waters' and Caldwell views) and coronal CT scans. Conventional views were obtained, as an average, after 4 days and CT after 7 days of injuries. Both the medial wall and the floor were evaluated at two sites, i.e., anterior and posterior. The ethmoid-maxillary plate was also included in the study. The degree of fractures was classified as, no fractures, fractures of discontinuity, dislocation and fragmentation. The coronal CT images in bone window condition was used as reference and the findings were compared between conventional views and CT. The correct diagnosis was obtained as follows: orbital floor (anterior, 78%, posterior, 73%), medial orbital wall (anterior, 72%, posterior, 72%) and ethmoid-maxillary plate (64%). The false positive diagnosis was as follows: orbital floor (anterior only, 13%), medial orbital wall (anterior only, 7%) and ethmoid-maxillary plate (11%). The false negative diagnosis was as follows: orbital floor (anterior, 9%, posterior, 10%), medial orbital wall (anterior, 21%, posterior, 28%) and ethmoid-maxillary plate (21%). The results were compared with those of others in the past. (author)

  6. Numerical simulation and fracture identification of dual laterolog in organic shale

    Science.gov (United States)

    Maojin, Tan; Peng, Wang; Qiong, Liu

    2012-09-01

    Fracture is one of important spaces in shale oil and shale gas reservoirs, and fractures identification and evaluation are an important part in organic shale interpretation. According to the fractured shale gas reservoir, a physical model is set up to study the dual laterolog logging responses. First, based on the principle of dual laterolog, three-dimensional finite element method (FEM) is used to simulate the dual laterolog responses in various formation models with different fractures widths, different fracture numbers, different fractures inclination angle. All the results are extremely important for the fracture identification and evaluation in shale reservoirs. Appointing to different base rock resistivity models, the fracture models are constructed respectively through a number of numerical simulation, and the fracture porosity can be calculated by solving the corresponding formulas. A case study about organic shale formation is analyst and discussed, and the fracture porosity is calculated from dual laterolog. The fracture evaluation results are also be validated right by Full borehole Micro-resistivity Imaging (FMI). So, in case of the absence of borehole resistivity imaging log, the dual laterolog resistivity can be used to estimate the fracture development.

  7. Chance Fracture Secondary to a Healed Kyphotic Compression Osteoporotic Fracture

    Directory of Open Access Journals (Sweden)

    Teh KK

    2009-11-01

    Full Text Available Chance fracture is an unstable vertebral fracture, which usually results from a high velocity injury. An elderly lady with a previously healed osteoporotic fracture of the T12 and L1 vertebra which resulted in a severe kyphotic deformity subsequently sustained a Chance fracture of the adjacent L2 vertebrae after a minor fall. The previously fracture left her with a deformity which resulted in significant sagittal imbalance therefore predisposing her to this fracture. This case highlights the importance of aggressive treatment of osteoporotic fractures in order to prevent significant sagittal imbalance from resultant (i.e. kyphotic deformity.

  8. Fracture-dissociation of ceramic liner.

    Science.gov (United States)

    Hwang, Sung Kwan; Oh, Jin-Rok; Her, Man Seung; Shim, Young Jun; Cho, Tae Yeun; Kwon, Sung Min

    2008-08-01

    The use of BIOLOX delta ceramic (CeramTec AG, Plochingen, Germany) has been increasing. This ceramic prevents cracking by restraining the phase transformation due to the insertion of nano-sized, yttria-stabilized tetragonal zirconia into the alumina matrix. This restrains the progress of cracking through the formation of platelet-like crystal or whiskers due to the addition of an oxide additive. We observed a case of BIOLOX delta ceramic liner (CeramTec AG) rim fracture 4 months postoperatively. Radiographs showed that the ceramic liner was subluxated from the acetabular cup. Scratches on the acetabular cup and femoral neck were seen, and the fracture was visible on the rim of the liner. Under electron microscope, metal particle coatings from the ceramic liner were identified. The ceramic liner, fracture fragments, and adjacent tissues were removed and replaced with a ceramic liner and femoral head of the same size and design. We believe the mechanism of the fracture-dissociation of the ceramic liner in this case is similar to a case of separation of the ceramic liner from the polyethylene shell in a sandwich-type ceramic-ceramic joint. To prevent ceramic liner fracture-dissociation, the diameter of the femoral neck needs to be decreased in a new design, while the diameter of the femoral head needs to be increased to ensure an increase in range of motion.

  9. The Influence of Fracturing Fluids on Fracturing Processes: A Comparison Between Water, Oil and SC-CO2

    Science.gov (United States)

    Wang, Jiehao; Elsworth, Derek; Wu, Yu; Liu, Jishan; Zhu, Wancheng; Liu, Yu

    2018-01-01

    Conventional water-based fracturing treatments may not work well for many shale gas reservoirs. This is due to the fact that shale gas formations are much more sensitive to water because of the significant capillary effects and the potentially high contents of swelling clay, each of which may result in the impairment of productivity. As an alternative to water-based fluids, gaseous stimulants not only avoid this potential impairment in productivity, but also conserve water as a resource and may sequester greenhouse gases underground. However, experimental observations have shown that different fracturing fluids yield variations in the induced fracture. During the hydraulic fracturing process, fracturing fluids will penetrate into the borehole wall, and the evolution of the fracture(s) then results from the coupled phenomena of fluid flow, solid deformation and damage. To represent this, coupled models of rock damage mechanics and fluid flow for both slightly compressible fluids and CO2 are presented. We investigate the fracturing processes driven by pressurization of three kinds of fluids: water, viscous oil and supercritical CO2. Simulation results indicate that SC-CO2-based fracturing indeed has a lower breakdown pressure, as observed in experiments, and may develop fractures with greater complexity than those developed with water-based and oil-based fracturing. We explore the relation between the breakdown pressure to both the dynamic viscosity and the interfacial tension of the fracturing fluids. Modeling demonstrates an increase in the breakdown pressure with an increase both in the dynamic viscosity and in the interfacial tension, consistent with experimental observations.

  10. A Rare Nasal Bone Fracture: Anterior Nasal Spine Fracture

    Directory of Open Access Journals (Sweden)

    Egemen Kucuk

    2014-04-01

    Full Text Available Anterior nasal spine fractures are a quite rare type of nasal bone fractures. Associated cervical spine injuries are more dangerous than the nasal bone fracture. A case of the anterior nasal spine fracture, in a 18-year-old male was presented. Fracture of the anterior nasal spine, should be considered in the differential diagnosis of the midface injuries and also accompanying cervical spine injury should not be ignored.

  11. Spontaneous fracture in bovine fluorosis: microradiographic aspects. A case report

    International Nuclear Information System (INIS)

    Nyssen-Behets, C.; Dhem, A.; Vandersmissen, A.; Ansay, M.

    1988-01-01

    Bilateral exostosis of the 5th rib was observed in a 6-year-old fluorotic cow. Besides a radiological hyperostotic aspect, microradiographic analysis showed signs of bone destruction as well as exuberant subperiosteal and endosteal bone formation. From these observations, it may be concluded that fluoride lead not only to a spontaneous fracture of the rib but also to an exaggerated callus formation

  12. Fracture characteristics in Japanese rock

    International Nuclear Information System (INIS)

    Ijiri, Yuji; Sawada, Atsushi; Akahori, Kuniaki

    1999-11-01

    It is crucial for the performance assessment of geosphere to evaluate the characteristics of fractures that can be dominant radionuclide migration pathways from a repository to biosphere. This report summarizes the characteristics of fractures obtained from broad literature surveys and the fields surveys at the Kamaishi mine in northern Japan and at outcrops and galleries throughout the country. The characteristics of fractures described in this report are fracture orientation, fracture shape, fracture frequency, fracture distribution in space, transmissivity of fracture, fracture aperture, fracture fillings, alteration halo along fracture, flow-wetted surface area in fracture, and the correlation among these characteristics. Since granitic rock is considered the archetype fractured media, a large amount of fracture data is available in literature. In addition, granitic rock has been treated as a potential host rock in many overseas programs, and has JNC performed a number of field observations and experiments in granodiorite at the Kamaishi mine. Therefore, the characteristics of fractures in granitic rock are qualitatively and quantitatively clarified to some extent in this report, while the characteristics of fractures in another rock types are not clarified. (author)

  13. Aspects of modern fracture statistics

    International Nuclear Information System (INIS)

    Tradinik, W.; Pabst, R.F.; Kromp, K.

    1981-01-01

    This contribution begins with introductory general remarks about fracture statistics. Then the fundamentals of the distribution of fracture probability are described. In the following part the application of the Weibull Statistics is justified. In the fourth chapter the microstructure of the material is considered in connection with calculations made in order to determine the fracture probability or risk of fracture. (RW) [de

  14. Fracture Phenomena in Amorphous Selenium

    DEFF Research Database (Denmark)

    Lindegaard-Andersen, Asger; Dahle, Birgit

    1966-01-01

    Fracture surfaces of amorphous selenium broken in flexure at room temperature have been studied. The fracture velocity was found to vary in different regions of the fracture surface. Peculiar features were observed in a transition zone between fast and slower fracture. In this zone cleavage steps...

  15. A New Method for Fracturing Wells Reservoir Evaluation in Fractured Gas Reservoir

    Directory of Open Access Journals (Sweden)

    Jianchun Guo

    2014-01-01

    Full Text Available Natural fracture is a geological phenomenon widely distributed in tight formation, and fractured gas reservoir stimulation effect mainly depends on the communication of natural fractures. Therefore it is necessary to carry out the evaluation of this reservoir and to find out the optimal natural fractures development wells. By analyzing the interactions and nonlinear relationships of the parameters, it establishes three-level index system of reservoir evaluation and proposes a new method for gas well reservoir evaluation model in fractured gas reservoir on the basis of fuzzy logic theory and multilevel gray correlation. For this method, the Gaussian membership functions to quantify the degree of every factor in the decision-making system and the multilevel gray relation to determine the weight of each parameter on stimulation effect. Finally through fuzzy arithmetic operator between multilevel weights and fuzzy evaluation matrix, score, rank, the reservoir quality, and predicted production will be gotten. Result of this new method shows that the evaluation of the production coincidence rate reaches 80%, which provides a new way for fractured gas reservoir evaluation.

  16. Vertebral Compression Fractures

    Science.gov (United States)

    ... and monitored to avoid putting pressure on the ribs that can cause new fractures. Surgical Procedures • When there is severe incapacitating pain • When healing is delayed or when bone fragments ...

  17. Paediatric talus fracture.

    LENUS (Irish Health Repository)

    Byrne, Ann-Maria

    2012-01-01

    Paediatric talus fractures are rare injuries resulting from axial loading of the talus against the anterior tibia with the foot in dorsiflexion. Skeletally immature bone is less brittle, with higher elastic resistance than adult bone, thus the paediatric talus can sustain higher forces before fractures occur. However, displaced paediatric talus fractures and those associated with high-energy trauma have been associated with complications including avascular necrosis, arthrosis, delayed union, neurapraxia and the need for revision surgery. The authors present the rare case of a talar neck fracture in a skeletally immature young girl, initially missed on radiological review. However, clinical suspicion on the part of the emergency physician, repeat examination and further radiographic imaging revealed this rare paediatric injury.

  18. Elevated temperature fracture mechanics

    International Nuclear Information System (INIS)

    Tomkins, B.

    1979-01-01

    The application of fracture mechanics concepts to cracks at elevated temperatures is examined. Particular consideration is given to the characterisation of crack tip stress-strain fields and parameters controlling crack extension under static and cyclic loads. (author)

  19. Stress fractures in athletes

    International Nuclear Information System (INIS)

    Kirschberger, R.; Henning, A.; Graff, K.H.

    1984-01-01

    The early exclusion of the presence of a stress fracture may be decisive for the success of an athlete. Scintigraphy with a bone-seeking radiopharmaceutical is suitable for the early detection of stress lesions. Of 30 athletes, fractures were demonstrated in 17 whereas in 6 they were excluded. We found most fractures in the tarsal bones such as os naviculare pedis, ossa cuneiformia and talus. The type of sport engaged in appears to be an important factor in determining the location of the fracture. Scintiphotos were taken in several views using region of interest techniques and two phase-scintigraphy. This method is considered to be useful for localization and follow-up of skeletal stress lesions as well as for differential diagnosis. (orig.) [de

  20. Stress fractures in athletes

    Energy Technology Data Exchange (ETDEWEB)

    Kirschberger, R; Henning, A; Graff, K H

    1984-12-01

    The early exclusion of the presence of a stress fracture may be decisive for the success of an athlete. Scintigraphy with a bone-seeking radiopharmaceutical is suitable for the early detection of stress lesions. Of 30 athletes, fractures were demonstrated in 17 whereas in 6 they were excluded. We found most fractures in the tarsal bones such as os naviculare pedis, ossa cuneiformia and talus. The type of sport engaged in appears to be an important factor in determining the location of the fracture. Scintiphotos were taken in several views using region of interest techniques and two phase-scintigraphy. This method is considered to be useful for localization and follow-up of skeletal stress lesions as well as for differential diagnosis.

  1. Fatigue and insufficiency fractures

    International Nuclear Information System (INIS)

    Lodwick, G.S.; Rosenthal, D.I.; Kattapuram, S.V.; Hudson, T.M.

    1987-01-01

    The incidence of stress fracture is increasing. In our younger society this is due largely to a preocupation with physical conditioning, but in our elderly population it is due to improved recognition and better methods of detection and diagnosis. Stress fracture of the elderly is an insufficiency fracture which occurs in the spine, the pelvis, the sacrum and other bones afflicted with disorders which cause osteopenia. Stress fracture is frequently misdiagnosed as a malignant lesion of bone resulting in biopsy. Scintiscanning provides the greatest frequency of detection, while computed tomography often provides the definitive diagnosis. With increased interest and experience a better insight into the disease has been achieved, and what was once thought of as a simple manifestation of mechanical stress is now known to be an orderly, complex pattern of physiological changes in bone which conform to a model by Frost. The diffuse nature of these changes can be recognized by scintigraphy, radiography and magnetic resonance imaging. 27 refs.; 8 figs

  2. Osteoporotic fractures in older adults

    OpenAIRE

    Colón-Emeric, Cathleen S.; Saag, Kenneth G.

    2006-01-01

    Osteoporotic fractures are emerging as a major public health problem in the aging population. Fractures result in increased morbidity, mortality and health expenditures. This article reviews current evidence for the management of common issues following osteoporotic fractures in older adults including: (1) thromboembolism prevention; (2) delirium prevention; (3) pain management; (4) rehabilitation; (5) assessing the cause of fracture; and (6) prevention of subsequent fractures. Areas for prac...

  3. Classical fracture mechanics methods

    International Nuclear Information System (INIS)

    Schwalbe, K.H.; Heerens, J.; Landes, J.D.

    2007-01-01

    Comprehensive Structural Integrity is a reference work which covers all activities involved in the assurance of structural integrity. It provides engineers and scientists with an unparalleled depth of knowledge in the disciplines involved. The new online Volume 11 is dedicated to the mechanical characteristics of materials. This paper contains the chapter 11.02 of this volume and is structured as follows: Test techniques; Analysis; Fracture behavior; Fracture toughness tests for nonmetals

  4. [Periprosthetic knee fractures].

    Science.gov (United States)

    Mittlmeier, T; Beck, M; Bosch, U; Wichelhaus, A

    2016-01-01

    The cumulative incidence of periprosthetic fractures around the knee is increasing further because of an extended indication for knee replacement, previous revision arthroplasty, rising life expectancy and comorbidities. The relevance of local parameters such as malalignment, osseous defects, neighbouring implants, aseptic loosening and low-grade infections may sometimes be hidden behind the manifestation of a traumatic fracture. A differentiated diagnostic approach before the treatment of a periprosthetic fracture is of paramount importance, while the physician in-charge should also have particular expertise in fracture treatment and in advanced techniques of revision endoprosthetics. The following work gives an overview of this topic. Valid classifications are available for categorising periprosthetic fractures of the femur, the tibia and the patella respectively, which are helpful for the selection of treatment. With the wide-ranging modern treatment portfolio bearing in mind the substantial rate of complications and the heterogeneous functional outcome, the adequate analysis of fracture aetiology and the corresponding transformation into an individualised treatment concept offer the chance of an acceptable functional restoration of the patient at early full weight-bearing and prolonged implant survival. The management of complications is crucial to the final outcome.

  5. A Fracture Decoupling Experiment

    Science.gov (United States)

    Stroujkova, A. F.; Bonner, J. L.; Leidig, M.; Ferris, A. N.; Kim, W.; Carnevale, M.; Rath, T.; Lewkowicz, J.

    2012-12-01

    Multiple observations made at the Semipalatinsk Test Site suggest that conducting nuclear tests in the fracture zones left by previous explosions results in decreased seismic amplitudes for the second nuclear tests (or "repeat shots"). Decreased seismic amplitudes reduce both the probability of detection and the seismically estimated yield of a "repeat shot". In order to define the physical mechanism responsible for the amplitude reduction and to quantify the degree of the amplitude reduction in fractured rocks, Weston Geophysical Corp., in collaboration with Columbia University's Lamont Doherty Earth Observatory, conducted a multi-phase Fracture Decoupling Experiment (FDE) in central New Hampshire. The FDE involved conducting explosions of various yields in the damage/fracture zones of previously detonated explosions. In order to quantify rock damage after the blasts we performed well logging and seismic cross-hole tomography studies of the source region. Significant seismic velocity reduction was observed around the source regions after the initial explosions. Seismic waves produced by the explosions were recorded at near-source and local seismic networks, as well as several regional stations throughout northern New England. Our analysis confirms frequency dependent seismic amplitude reduction for the repeat shots compared to the explosions in un-fractured rocks. The amplitude reduction is caused by pore closing and/or by frictional losses within the fractured media.

  6. FRACTURING FLUID CHARACTERIZATION FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Subhash Shah

    2000-08-01

    Hydraulic fracturing technology has been successfully applied for well stimulation of low and high permeability reservoirs for numerous years. Treatment optimization and improved economics have always been the key to the success and it is more so when the reservoirs under consideration are marginal. Fluids are widely used for the stimulation of wells. The Fracturing Fluid Characterization Facility (FFCF) has been established to provide the accurate prediction of the behavior of complex fracturing fluids under downhole conditions. The primary focus of the facility is to provide valuable insight into the various mechanisms that govern the flow of fracturing fluids and slurries through hydraulically created fractures. During the time between September 30, 1992, and March 31, 2000, the research efforts were devoted to the areas of fluid rheology, proppant transport, proppant flowback, dynamic fluid loss, perforation pressure losses, and frictional pressure losses. In this regard, a unique above-the-ground fracture simulator was designed and constructed at the FFCF, labeled ''The High Pressure Simulator'' (HPS). The FFCF is now available to industry for characterizing and understanding the behavior of complex fluid systems. To better reflect and encompass the broad spectrum of the petroleum industry, the FFCF now operates under a new name of ''The Well Construction Technology Center'' (WCTC). This report documents the summary of the activities performed during 1992-2000 at the FFCF.

  7. Fracture properties of hydrogenated amorphous silicon carbide thin films

    International Nuclear Information System (INIS)

    Matsuda, Y.; King, S.W.; Bielefeld, J.; Xu, J.; Dauskardt, R.H.

    2012-01-01

    The cohesive fracture properties of hydrogenated amorphous silicon carbide (a-SiC:H) thin films in moist environments are reported. Films with stoichiometric compositions (C/Si ≈ 1) exhibited a decreasing cohesive fracture energy with decreasing film density similar to other silica-based hybrid organic–inorganic films. However, lower density a-SiC:H films with non-stoichiometric compositions (C/Si ≈ 5) exhibited much higher cohesive fracture energy than the films with higher density stoichiometric compositions. One of the non-stoichiometric films exhibited fracture energy (∼9.5 J m −2 ) greater than that of dense silica glasses. The increased fracture energy was due to crack-tip plasticity, as demonstrated by significant pileup formation during nanoindentation and a fracture energy dependence on film thickness. The a-SiC:H films also exhibited a very low sensitivity to moisture-assisted cracking compared with other silica-based hybrid films. A new atomistic fracture model is presented to describe the observed moisture-assisted cracking in terms of the limited Si-O-Si suboxide bond formation that occurs in the films.

  8. Numerical modeling of shear stimulation in naturally fractured geothermal reservoirs

    OpenAIRE

    Ucar, Eren

    2018-01-01

    Shear-dilation-based hydraulic stimulations are conducted to create enhanced geothermal systems (EGS) from low permeable geothermal reservoirs, which are initially not amenable to energy production. Reservoir stimulations are done by injecting low-pressurized fluid into the naturally fractured formations. The injection aims to activate critically stressed fractures by decreasing frictional strength and ultimately cause a shear failure. The shear failure leads to a permanent ...

  9. Buoyancy flow in fractures intersecting a nuclear waste repository

    International Nuclear Information System (INIS)

    Wang, J.S.Y.; Tsang, C.F.

    1980-07-01

    The thermally induced buoyancy flow in fractured rocks around a nuclear waste repository is of major concern in the evaluation of the regional, long-term impact of nuclear waste disposal in geological formation. In this study, buoyancy flow and the development of convective cells are calculated in vertical fractures passing through or positioned near a repository. Interaction between buoyancy flow and regional hydraulic gradient is studied as a function of time, and the interference of intersecting fractures with each other is also discussed

  10. Interwell tracer analyses of a hydraulically fractured granitic geothermal reservoir

    International Nuclear Information System (INIS)

    Tester, J.W.; Potter, R.M.; Bivins, R.L.

    1979-01-01

    Field experiments using fluorescent dye and radioactive tracers (Br 82 and I 131 ) have been employed to characterize a hot, low-matrix permeability, hydraulically-fractured granitic reservoir at depths of 2440 to 2960 m (8000 to 9700 ft). Tracer profiles and residence time distributions have been used to delineate changes in the fracture system, particularly in diagnosing pathological flow patterns and in identifying new injection and production zones. The effectiveness of one- and two-dimensional theoretical dispersion models utilizing single and multiple porous, fractured zones with velocity and formation dependent effects are discussed with respect to actual field data

  11. Fractures on curved surfaces: A classic problem solved

    Science.gov (United States)

    Balcerak, Ernie

    2011-11-01

    Sheeting joints—large fractures parallel to a curved rock surface—are common in many locations on Earth, such as the iconic Half Dome in Yosemite National Park in California. Explaining how these fractures form has been a classic unsolved problem in geology. Martel solved the problem by reformulating the static equilibrium equations in a curvilinear reference frame. His analysis shows that compression along a curved surface can induce tension perpendicular to the surface, which can cause subsurface cracks to open. He found that the curvature of a rock surface plays a key role in the formation of fractures.

  12. Brittle-fracture potential of irradiated Zircaloy-2 pressure tubes

    Science.gov (United States)

    Huang, F. H.

    1993-12-01

    Neutron irradiation can degrade the fracture toughness of Zircaloy-2 and may cause highly irradiated reactor components of this material to fail in a brittle manner. The effects of radiation embrittlement on the structural integrity of N Reactor pressure tubes are studied by performing KIc and JIc fracture toughness testing on samples cut from the Zircaloy-2 tubes periodically removed from the reactor. A fluence of 6 × 10 25n/ m2 ( E > 1 MeV) reduced the fracture toughness of the material by 40 to 50%. The fracture toughness values appear to saturate at 260°C with fluences above 3 × 10 25n/ m2 ( E > 1 MeV), but continue to decline with increasing fluence at temperatures below 177°C. Present and previous results obtained from irradiated pressure tubes indicate that the brittle-fracture potential of Zircaloy-2 increases with decreasing temperature and increasing fluence. Fractographic examinations of the fracture surfaces of irradiated samples reveal that circumferential hydride formation significantly influenced fracture morphology by providing sites for easy crack nucleation and leaving deep cracks. However, the deep cracks created at the hydride platelets in specimens containing less than 220 ppm hydrogen are not believed to be the major cause of degradation in postirradiation fracture toughness.

  13. The successful use of transverse hydraulic fractures from horizontal wellbores

    Energy Technology Data Exchange (ETDEWEB)

    Crosby, D. G.; Yang, Z.; Rahman, S. S. [New South Wales Univ., NSW (Australia)

    1998-12-31

    Since a significant proportion of the world`s recoverable hydrocarbon resources exist in reservoirs possessing permeabilities of less than one milli-Darcy (mD), some form of permeability enhancement or stimulation is necessary if the hydrocarbons are to be exploited economically. Multi-stage, transversely fractured horizontal wellbores are shown to have the potential to greatly increase production from low permeability formations. To overcome the problems caused by near-wellbore tortuosity, common to wells with multiple fracturing from the same perforated interval, a criterion was devised which predicts the wellbore pressures to initiate secondary multiple transverse hydraulic fractures in close proximity to primary fractures. The criterion, confirmed by laboratory experiments, demonstrates that transversely fractured horizontal wellbores have limited capacities to resist the initiation of multiple fractures from adjacent perforations. This characteristic can be used in designing hydraulic fracture treatments to establish injection pressure limits or threshold pressures, above which additional multiple fractures will initiate and propagate from the wellbore. 23 refs., 1 tab., 10 figs.

  14. Imaging techniques for the assessment of fracture repair.

    Science.gov (United States)

    Augat, P; Morgan, E F; Lujan, T J; MacGillivray, T J; Cheung, W H

    2014-06-01

    Imaging of a healing fracture provides a non-invasive and often instructive reproduction of the fracture repair progress and the healing status of bone. However, the interpretation of this reproduction is often qualitative and provides only an indirect and surrogate measure of the mechanical stability of the healing fracture. Refinements of the available imaging techniques have been suggested to more accurately determine the healing status of bone. Plain radiographs provide the ability to determine the degree of bridging of the fracture gap and to quantify the amount of periosteal callus formation. Absorptiometric measures including dual X-ray absorptiometry and computed tomography provide quantitative information on the amount and the density of newly formed bone around the site of the fracture. To include the effect of spatial distribution of newly formed bone, finite element models of healing fracture can be employed to estimate its load bearing capacity. Ultrasound technology not only avoids radiation doses to the patients but also provides the ability to additionally measure vascularity in the surrounding soft tissue of the fracture and in the fracture itself. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Fracture Modes and Identification of Fault Zones in Wenchuan Earthquake Fault Scientific Drilling Boreholes

    Science.gov (United States)

    Deng, C.; Pan, H.; Zhao, P.; Qin, R.; Peng, L.

    2017-12-01

    After suffering from the disaster of Wenchuan earthquake on May 12th, 2008, scientists are eager to figure out the structure of formation, the geodynamic processes of faults and the mechanism of earthquake in Wenchuan by drilling five holes into the Yingxiu-Beichuan fault zone and Anxian-Guanxian fault zone. Fractures identification and in-situ stress determination can provide abundant information for formation evaluation and earthquake study. This study describe all the fracture modes in the five boreholes on the basis of cores and image logs, and summarize the response characteristics of fractures in conventional logs. The results indicate that the WFSD boreholes encounter enormous fractures, including natural fractures and induced fractures, and high dip-angle conductive fractures are the most common fractures. The maximum horizontal stress trends along the borehole are deduced as NWW-SEE according to orientations of borehole breakouts and drilling-induced fractures, which is nearly parallel to the strikes of the younger natural fracture sets. Minor positive deviations of AC (acoustic log) and negative deviation of DEN (density log) demonstrate their responses to fracture, followed by CNL (neutron log), resistivity logs and GR (gamma ray log) at different extent of intensity. Besides, considering the fact that the reliable methods for identifying fracture zone, like seismic, core recovery and image logs, can often be hampered by their high cost and limited application, this study propose a method by using conventional logs, which are low-cost and available in even old wells. We employ wavelet decomposition to extract the high frequency information of conventional logs and reconstruction a new log in special format of enhance fracture responses and eliminate nonfracture influence. Results reveal that the new log shows obvious deviations in fault zones, which confirm the potential of conventional logs in fracture zone identification.

  16. Fractures of the Jaw and Midface

    Science.gov (United States)

    ... switch to the Professional version Home Injuries and Poisoning Facial Injuries Fractures of the Jaw and Midface Symptoms Diagnosis Treatment Treatment of mandible fractures Treatment of maxillary fractures ...

  17. Retrospective evaluation and dating of non-accidental rib fractures in infants

    International Nuclear Information System (INIS)

    Sanchez, T.R.; Nguyen, H.; Palacios, W.; Doherty, M.; Coulter, K.

    2013-01-01

    Aim: To describe the sequential appearance of healing rib fractures on initial and follow-up radiographs using published guidelines in approximating the age of rib fractures in infants with the aim of establishing a more objective method of dating rib fractures by measuring the thickness of the callous formation. Materials and methods: This was a retrospective analysis of initial and follow-up digital skeletal surveys of infants less than 12 months of age performed between January 2008 and January 2012 at the University of California Davis Children's Hospital. Six radiological features of rib fractures evaluating the appearance of the callous formation (C stage) and fracture line (F stage) were assessed. Patients with osteogenesis imperfecta, known vitamin D deficiency, and skeletal or metabolic dysplasia were not included in the study. Thereafter, callous thickness was measured and recorded for each stage. Results: Sixteen infants (age range 1–11 months, seven males and nine females) with 23 rib fractures were analysed. The thickness of the callous formation follows a predictable pattern advancing one stage after a 2-week follow-up with progressive callous thickening starting from stage 2, peaks at around stage 4, and then tapers and remodels until it almost disappears when the fracture is healed at stage 6. Conclusion: It appears that rib fractures in infants follow a predictable pattern of healing. Measuring the thickness of the callous formation is a more objective way of guiding the radiologist in estimating the age of the fracture

  18. Radiological classification of mandibular fractures

    International Nuclear Information System (INIS)

    Mihailova, H.

    2009-01-01

    Mandibular fractures present the biggest part (up to 97%) of the facial bone fractures. Method of choice for diagnosing of mandibular fractures is conventional radiography. The aim of the issue is to present an unified radiological classification of mandibular fractures for the clinical practice. This classification includes only those clinical symptoms of mandibular fracture which could be radiologically objectified: exact anatomical localization (F1-F6), teeth in fracture line (Ta,Tb), grade of dislocation (D I, D II), occlusal disturbances (O(+), O(-)). Radiological symptoms expressed by letter and number symbols are systematized in a formula - FTDO of mandibular fractures similar to TNM formula for tumours. FTDO formula expresses radiological diagnose of each mandibular fracture but it doesn't include neither the site (left or right) of the fracture, nor the kind and number of fractures. In order to express topography and number of fractures the radiological formula is transformed into a decimal fraction. The symbols (FTD) of right mandible fracture are written in the numerator and those of the left site - in the denominator. For double and multiple fractures between the symbols for each fracture we put '+'. Symbols for occlusal disturbances are put down opposite, the fractional line. So topographo-anatomical formula (FTD/FTD)xO is formed. In this way the whole radiological information for unilateral, bilateral, single or multiple fractures of the mandible is expressed. The information in the radiological topography anatomic formula, resp. from the unified topography-anatomic classification ensures a quick and exact X-ray diagnose of mandibular fracture. In this way contributes to get better, make easier and faster X-ray diagnostic process concerning mandibular fractures. And all these is a precondition for prevention of retardation of the diagnosis mandibular fracture. (author)

  19. A Multiscale Time-Splitting Discrete Fracture Model of Nanoparticles Transport in Fractured Porous Media

    KAUST Repository

    El-Amin, Mohamed F.; Kou, Jisheng; Sun, Shuyu

    2017-01-01

    Recently, applications of nanoparticles have been considered in many branches of petroleum engineering, especially, enhanced oil recovery. The current paper is devoted to investigate the problem of nanoparticles transport in fractured porous media, numerically. We employed the discrete-fracture model (DFM) to represent the flow and transport in the fractured formations. The system of the governing equations consists of the mass conservation law, Darcy's law, nanoparticles concentration in water, deposited nanoparticles concentration on the pore-wall, and entrapped nanoparticles concentration in the pore-throat. The variation of porosity and permeability due to the nanoparticles deposition/entrapment on/in the pores is also considered. We employ the multiscale time-splitting strategy to control different time-step sizes for different physics, such as pressure and concentration. The cell-centered finite difference (CCFD) method is used for the spatial discretization. Numerical examples are provided to demonstrate the efficiency of the proposed multiscale time splitting approach.

  20. A Multiscale Time-Splitting Discrete Fracture Model of Nanoparticles Transport in Fractured Porous Media

    KAUST Repository

    El-Amin, Mohamed F.

    2017-06-06

    Recently, applications of nanoparticles have been considered in many branches of petroleum engineering, especially, enhanced oil recovery. The current paper is devoted to investigate the problem of nanoparticles transport in fractured porous media, numerically. We employed the discrete-fracture model (DFM) to represent the flow and transport in the fractured formations. The system of the governing equations consists of the mass conservation law, Darcy\\'s law, nanoparticles concentration in water, deposited nanoparticles concentration on the pore-wall, and entrapped nanoparticles concentration in the pore-throat. The variation of porosity and permeability due to the nanoparticles deposition/entrapment on/in the pores is also considered. We employ the multiscale time-splitting strategy to control different time-step sizes for different physics, such as pressure and concentration. The cell-centered finite difference (CCFD) method is used for the spatial discretization. Numerical examples are provided to demonstrate the efficiency of the proposed multiscale time splitting approach.

  1. Computer model for ductile fracture

    International Nuclear Information System (INIS)

    Moran, B.; Reaugh, J. E.

    1979-01-01

    A computer model is described for predicting ductile fracture initiation and propagation. The computer fracture model is calibrated by simple and notched round-bar tension tests and a precracked compact tension test. The model is used to predict fracture initiation and propagation in a Charpy specimen and compare the results with experiments. The calibrated model provides a correlation between Charpy V-notch (CVN) fracture energy and any measure of fracture toughness, such as J/sub Ic/. A second simpler empirical correlation was obtained using the energy to initiate fracture in the Charpy specimen rather than total energy CVN, and compared the results with the empirical correlation of Rolfe and Novak

  2. Polymer liquids fracture like solids

    DEFF Research Database (Denmark)

    Huang, Qian; Hassager, Ole

    2017-01-01

    While fracture in brittle solids has been studied for centuries until today, there are few studies on fracture in polymer liquids. Recent developments in experimental techniques, especially the combination of controlled filament stretching rheometry and high speed imaging, have opened new windows...... into the detailed study of fracture processes for polymer liquids. High speed imaging shows that polymer liquids fracture like solids with initiation and propagation of an edge fracture. However, remarkable features such as highly reproducible critical stress, independent appearance of multiple fractures...

  3. Management of penile fractures

    International Nuclear Information System (INIS)

    Ghilan, Abdulelah M. M.; Al-Asbahi, Waleed A.; Alwan, Mohammed A.; Al-Khanbashi, Omar M.; Ghafour, Mohammed A.

    2008-01-01

    Objective was to present our experience with surgical and conservative management of penile fracture. This prospective study was carried out in the Urology and Nephrology Center, at Al-Thawra General and Teaching Hospital, Sana'a, Yemen from June 2003 to September 2007 and included 30 patients presenting with penile fracture. Diagnosis was made clinically in all our patients. Six patients with simple fracture were treated conservatively while 24 patients with more severe injuries were operated upon. Patient's age ranged from 24-52 years (mean 31.3 years) 46.7% of patients were under the age of 30 years and 56.7% were unmarried. Hard manipulation of the erect penis for example during masturbation was the most frequent mechanism of fracture in 53.3% of patients. Solitary tear was found in 22 patients and bilateral corporal tears associated with urethral injury were found in 2 patients. Corporal tears were saturated with synthetic absorbable sutures and urethral injury was repaired primarily. All operated patients described full erection with straight penis except 3 of the 8 patients who were managed by direct longitudinal incision, in whom mild curvature during erection was observed. The conservatively treated patients described satisfactory penile straightness and erection. The optimal functional and cosmetic results are achieved following immediate surgical repair of penis fracture. Good results can also be obtained in some selected patients with conservative management. (author)

  4. Stress fractures in athletes

    International Nuclear Information System (INIS)

    Steingruber, I.E.; Wolf, C.; Gruber, H.; Czermak, B.V.; Mallouhi, A.; Jaschke, W.; Gabriel, M.

    2002-01-01

    Stress fractures may pose a diagnostic dilemma for radiologists since they are sometimes difficult to demonstrate on plain films and may simulate a tumour. They were first described in military personnel and professional athletes. Recently, there is an increasing incidence in the general population due to increasing sportive activities. Stress fractures occur most often in the lower extremities, especially in the tibia, the tarsal bone, the metatarsal bone, the femur and the fibula. In the upper extremities, they are commonly found in the humerus, the radius and the ulna. Some fractures of the lower extremities appear to be specific for particular sports, for example, fractures of the tibia affect mostly distance runners. Whereas stress fractures of the upper extremities are generally associated with upper limb-dominated sports. A correct diagnosis requires a careful clinical evaluation. The initial plain radiography may be normal. Further radiological evaluation could be performed by means of computerised tomography, magnetic resonance imaging and bone scanning. The latter two techniques are especially helpful for establishing a correct initial diagnosis. (orig.) [de

  5. ADVANCED FRACTURING TECHNOLOGY FOR TIGHT GAS: AN EAST TEXAS FIELD DEMONSTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Mukul M. Sharma

    2005-03-01

    The primary objective of this research was to improve completion and fracturing practices in gas reservoirs in marginal plays in the continental United States. The Bossier Play in East Texas, a very active tight gas play, was chosen as the site to develop and test the new strategies for completion and fracturing. Figure 1 provides a general location map for the Dowdy Ranch Field, where the wells involved in this study are located. The Bossier and other tight gas formations in the continental Unites States are marginal plays in that they become uneconomical at gas prices below $2.00 MCF. It was, therefore, imperative that completion and fracturing practices be optimized so that these gas wells remain economically attractive. The economic viability of this play is strongly dependent on the cost and effectiveness of the hydraulic fracturing used in its well completions. Water-fracs consisting of proppant pumped with un-gelled fluid is the type of stimulation used in many low permeability reservoirs in East Texas and throughout the United States. The use of low viscosity Newtonian fluids allows the creation of long narrow fractures in the reservoir, without the excessive height growth that is often seen with cross-linked fluids. These low viscosity fluids have poor proppant transport properties. Pressure transient tests run on several wells that have been water-fractured indicate a long effective fracture length with very low fracture conductivity even when large amounts of proppant are placed in the formation. A modification to the water-frac stimulation design was needed to transport proppant farther out into the fracture. This requires suspending the proppant until the fracture closes without generating excessive fracture height. A review of fracture diagnostic data collected from various wells in different areas (for conventional gel and water-fracs) suggests that effective propped lengths for the fracture treatments are sometimes significantly shorter than those

  6. Application of Fracture Distribution Prediction Model in Xihu Depression of East China Sea

    Science.gov (United States)

    Yan, Weifeng; Duan, Feifei; Zhang, Le; Li, Ming

    2018-02-01

    There are different responses on each of logging data with the changes of formation characteristics and outliers caused by the existence of fractures. For this reason, the development of fractures in formation can be characterized by the fine analysis of logging curves. The well logs such as resistivity, sonic transit time, density, neutron porosity and gamma ray, which are classified as conventional well logs, are more sensitive to formation fractures. In view of traditional fracture prediction model, using the simple weighted average of different logging data to calculate the comprehensive fracture index, are more susceptible to subjective factors and exist a large deviation, a statistical method is introduced accordingly. Combining with responses of conventional logging data on the development of formation fracture, a prediction model based on membership function is established, and its essence is to analyse logging data with fuzzy mathematics theory. The fracture prediction results in a well formation in NX block of Xihu depression through two models are compared with that of imaging logging, which shows that the accuracy of fracture prediction model based on membership function is better than that of traditional model. Furthermore, the prediction results are highly consistent with imaging logs and can reflect the development of cracks much better. It can provide a reference for engineering practice.

  7. Exposure to Secondhand Smoke Impairs Fracture Healing in Rats.

    Science.gov (United States)

    Santiago, Hildemberg A R; Zamarioli, Ariane; Sousa Neto, Manoel D; Volpon, Jose B

    2017-03-01

    Nonsmokers may be affected by environmental tobacco smoke (secondhand smoke), but the effects of such exposure on fracture healing have not been well studied. To explore the possible effects of passive inhalation of tobacco smoke on the healing of a diaphyseal fracture in femurs of rats. We hypothesized that secondhand exposure to tobacco smoke adversely affects fracture healing. A mid-diaphyseal fracture was created in the femur of 41 female Wistar rats and fixed with an intramedullary metallic pin; 14 rats were excluded (nine for inadequate fractures and five for K wire extrusion). Tobacco exposure was provided by a smoking machine on a daily basis of four cigarettes a day. Each cigarette yielded 10 mg tar and 0.8 mg nicotine, and was puffed by alternating injections of fresh air for 30 seconds and smoke air for 15 seconds. The smoke exposure was previously adjusted to provide serum levels of cotinine similar to human secondhand tobacco exposure. Cotinine is a predominant catabolite of nicotine that is used as a biological biomarker for exposure to tobacco smoke. In one group (n = 11), the animals were intermittently exposed to tobacco smoke before sustaining the fracture but not afterward. In another group (n = 7), the exposure occurred before and after the fracture. The control group (n = 9) was sham-exposed before and after the fracture. We evaluated the specimens 28 days after bone fracture. The callus quality was measured by dual-energy x-ray absorptiometry (bone mineral density [BMD], bone mineral content [BMC], and callus area), μCT (callus volume and woven bone fraction), and mechanical bending (maximum force and stiffness). Tobacco exposure resulted in delayed bone callus formation, which is represented by decreased BMD (Control: 0.302 ± 0.008 g/cm 2 vs Preexposed: 0.199 ± 0.008 g/cm 2 and Pre- and Postexposed: 0.146 ± 0.009 g/cm 2 ; mean difference = 0.103 g/cm 2 , 95% CI, 0.094-0.112 g/cm 2 and mean difference = 0.156 g/cm 2 , 95% CI, 0.147-0.167 g

  8. Bifurcating Particle Swarms in Smooth-Walled Fractures

    Science.gov (United States)

    Pyrak-Nolte, L. J.; Sun, H.

    2010-12-01

    Particle swarms can occur naturally or from industrial processes where small liquid drops containing thousands to millions of micron-size to colloidal-size particles are released over time from seepage or leaks into fractured rock. The behavior of these particle swarms as they fall under gravity are affected by particle interactions as well as interactions with the walls of the fractures. In this paper, we present experimental results on the effect of fractures on the cohesiveness of the swarm and the formation of bifurcation structures as they fall under gravity and interact with the fracture walls. A transparent cubic sample (100 mm x 100 mm x 100 mm) containing a synthetic fracture with uniform aperture distributions was optically imaged to quantify the effect of confinement within fractures on particle swarm formation, swarm velocity, and swarm geometry. A fracture with a uniform aperture distribution was fabricated from two polished rectangular prisms of acrylic. A series of experiments were performed to determine how swarm movement and geometry are affected as the walls of the fracture are brought closer together from 50 mm to 1 mm. During the experiments, the fracture was fully saturated with water. We created the swarms using two different particle sizes in dilute suspension (~ 1.0% by mass). The particles were 3 micron diameter fluorescent polymer beads and 25 micron diameter soda-lime glass beads. Experiments were performed using swarms that ranged in size from 5 µl to 60 µl. The swarm behavior was imaged using an optical fluorescent imaging system composed of a CCD camera illuminated by a 100 mW diode-pumped doubled YAG laser. As a swarm falls in an open-tank of water, it forms a torroidal shape that is stable as long as no ambient or background currents exist in the water tank. When a swarm is released into a fracture with an aperture less than 5 mm, the swarm forms the torroidal shape but it is distorted because of the presence of the walls. The

  9. Transstyloid, transscaphoid, transcapitate fracture: a variant of scaphocapitate fractures.

    LENUS (Irish Health Repository)

    Burke, Neil G

    2014-01-01

    Transstyloid, transscaphoid, transcapitate fractures are uncommon. We report the case of a 28-year-old man who sustained this fracture following direct trauma. The patient was successfully treated by open reduction internal fixation of the scaphoid and proximal capitate fragment, with a good clinical outcome at 1-year follow-up. This pattern is a new variant of scaphocapitate fracture as involves a fracture of the radial styloid as well.

  10. Impact of Oxidative Dissolution on Black Shale Fracturing: Implication for Shale Fracturing Treatment Design

    Science.gov (United States)

    You, L.; Chen, Q.; Kang, Y.; Cheng, Q.; Sheng, J.

    2017-12-01

    play an important role in improving hydraulic fracturing of shale formation by reducing the energy requirements for crack growth. However, additional work is needed to the selection of highly-effective, economical, and environmentally friendly oxidants.

  11. DEM Particle Fracture Model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Boning [Univ. of Colorado, Boulder, CO (United States); Herbold, Eric B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Homel, Michael A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Regueiro, Richard A. [Univ. of Colorado, Boulder, CO (United States)

    2015-12-01

    An adaptive particle fracture model in poly-ellipsoidal Discrete Element Method is developed. The poly-ellipsoidal particle will break into several sub-poly-ellipsoids by Hoek-Brown fracture criterion based on continuum stress and the maximum tensile stress in contacts. Also Weibull theory is introduced to consider the statistics and size effects on particle strength. Finally, high strain-rate split Hopkinson pressure bar experiment of silica sand is simulated using this newly developed model. Comparisons with experiments show that our particle fracture model can capture the mechanical behavior of this experiment very well, both in stress-strain response and particle size redistribution. The effects of density and packings o the samples are also studied in numerical examples.

  12. INVESTIGATION OF EFFICIENCY IMPROVEMENTS DURING CO2 INJECTION IN HYDRAULICALLY AND NATURALLY FRACTURED RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    David S. Schechter

    2005-04-27

    This report describes the work performed during the fourth year of the project, ''Investigating of Efficiency Improvements during CO{sub 2} Injection in Hydraulically and Naturally Fractured Reservoirs.'' The objective of this project is to perform unique laboratory experiments with artificially fractured cores (AFCs) and X-ray CT scanner to examine the physical mechanisms of bypassing in hydraulically fractured reservoirs (HFR) and naturally fractured reservoirs (NFR) that eventually result in more efficient CO{sub 2} flooding in heterogeneous or fracture-dominated reservoirs. In Chapter 1, we worked with DOE-RMOTC to investigate fracture properties in the Tensleep Formation at Teapot Dome Naval Reserve as part of their CO{sub 2} sequestration project. In Chapter 2, we continue our investigation to determine the primary oil recovery mechanism in a short vertically fractured core. Finally in Chapter 3, we report our numerical modeling efforts to develop compositional simulator with irregular grid blocks.

  13. Rio Blanco massive hydraulic fracture: project definition

    International Nuclear Information System (INIS)

    1976-01-01

    A recent Federal Power Commission feasibility study assessed the possibility of economically producing gas from three Rocky Mountain basins. These basins have potentially productive horizons 2,000 to 4,000 feet thick containing an estimated total of 600 trillion cubic feet of gas in place. However, the producing sands are of such low permeability and heterogeneity that conventional methods have failed to develop these basins economically. The Natural Gas Technology Task Force, responsible for preparing the referenced feasibility study, determined that, if effective well stimulation methods for these basins can be developed, it might be possible to recover 40 to 50 percent of the gas in place. The Task Force pointed out two possible underground fracturing methods: Nuclear explosive fracturing, and massive hydraulic fracturing. They argued that once technical viability has been demonstrated, and with adequate economic incentives, there should be no reason why one or even both of these approaches could not be employed, thus making a major contribution toward correcting the energy deficiency of the Nation. A joint Government-industry demonstration program has been proposed to test the relative effectiveness of massive hydraulic fracturing of the same formation and producing horizons that were stimulated by the Rio Blanco nuclear project

  14. Endogenous PTH deficiency impairs fracture healing and impedes the fracture-healing efficacy of exogenous PTH(1-34.

    Directory of Open Access Journals (Sweden)

    Yongxin Ren

    Full Text Available Although the capacity of exogenous PTH1-34 to enhance the rate of bone repair is well established in animal models, our understanding of the mechanism(s whereby PTH induces an anabolic response during skeletal repair remains limited. Furthermore it is unknown whether endogenous PTH is required for fracture healing and how the absence of endogenous PTH would influence the fracture-healing capacity of exogenous PTH.Closed mid-diaphyseal femur fractures were created and stabilized with an intramedullary pin in 8-week-old wild-type and Pth null (Pth(-/- mice. Mice received daily injections of vehicle or of PTH1-34 (80 µg/kg for 1-4 weeks post-fracture, and callus tissue properties were analyzed at 1, 2 and 4 weeks post-fracture. Cartilaginous callus areas were reduced at 1 week post-fracture, but were increased at 2 weeks post-fracture in vehicle-treated and PTH-treated Pth(-/- mice compared to vehicle-treated and PTH-treated wild-type mice respectively. The mineralized callus areas, bony callus areas, osteoblast number and activity, osteoclast number and surface in callus tissues were all reduced in vehicle-treated and PTH-treated Pth(-/- mice compared to vehicle-treated and PTH-treated wild-type mice, but were increased in PTH-treated wild-type and Pth(-/- mice compared to vehicle-treated wild-type and Pth(-/- mice.Absence of endogenous PTH1-84 impedes bone fracture healing. Exogenous PTH1-34 can act in the absence of endogenous PTH but callus formation, including accelerated endochondral bone formation and callus remodeling as well as mechanical strength of the bone are greater when endogenous PTH is present. Results of this study suggest a complementary role for endogenous PTH1-84 and exogenous PTH1-34 in accelerating fracture healing.

  15. Endogenous PTH deficiency impairs fracture healing and impedes the fracture-healing efficacy of exogenous PTH(1-34).

    Science.gov (United States)

    Ren, Yongxin; Liu, Bo; Feng, Yuxu; Shu, Lei; Cao, Xiaojian; Karaplis, Andrew; Goltzman, David; Miao, Dengshun

    2011-01-01

    Although the capacity of exogenous PTH1-34 to enhance the rate of bone repair is well established in animal models, our understanding of the mechanism(s) whereby PTH induces an anabolic response during skeletal repair remains limited. Furthermore it is unknown whether endogenous PTH is required for fracture healing and how the absence of endogenous PTH would influence the fracture-healing capacity of exogenous PTH. Closed mid-diaphyseal femur fractures were created and stabilized with an intramedullary pin in 8-week-old wild-type and Pth null (Pth(-/-)) mice. Mice received daily injections of vehicle or of PTH1-34 (80 µg/kg) for 1-4 weeks post-fracture, and callus tissue properties were analyzed at 1, 2 and 4 weeks post-fracture. Cartilaginous callus areas were reduced at 1 week post-fracture, but were increased at 2 weeks post-fracture in vehicle-treated and PTH-treated Pth(-/-) mice compared to vehicle-treated and PTH-treated wild-type mice respectively. The mineralized callus areas, bony callus areas, osteoblast number and activity, osteoclast number and surface in callus tissues were all reduced in vehicle-treated and PTH-treated Pth(-/-) mice compared to vehicle-treated and PTH-treated wild-type mice, but were increased in PTH-treated wild-type and Pth(-/-) mice compared to vehicle-treated wild-type and Pth(-/-) mice. Absence of endogenous PTH1-84 impedes bone fracture healing. Exogenous PTH1-34 can act in the absence of endogenous PTH but callus formation, including accelerated endochondral bone formation and callus remodeling as well as mechanical strength of the bone are greater when endogenous PTH is present. Results of this study suggest a complementary role for endogenous PTH1-84 and exogenous PTH1-34 in accelerating fracture healing.

  16. [Distal clavicle fracture].

    Science.gov (United States)

    Seppel, G; Lenich, A; Imhoff, A B

    2014-06-01

    Reposition and fixation of unstable distal clavicle fractures with a low profile locking plate (Acumed, Hempshire, UK) in conjunction with a button/suture augmentation cerclage (DogBone/FibreTape, Arthrex, Naples, FL, USA). Unstable fractures of the distal clavicle (Jäger and Breitner IIA) in adults. Unstable fractures of the distal clavicle (Jäger and Breitner IV) in children. Distal clavicle fractures (Jäger and Breitner I, IIB or III) with marked dislocation, injury of nerves and vessels, or high functional demand. Patients in poor general condition. Fractures of the distal clavicle (Jäger and Breitner I, IIB or III) without marked dislocation or vertical instability. Local soft-tissue infection. Combination procedure: Initially the lateral part of the clavicle is exposed by a 4 cm skin incision. After reduction of the fracture, stabilization is performed with a low profile locking distal clavicle plate. Using a special guiding device, a transclavicular-transcoracoidal hole is drilled under arthroscopic view. Additional vertical stabilization is arthroscopically achieved by shuttling the DogBone/FibreTape cerclage from the lateral portal cranially through the clavicular plate. The two ends of the FibreTape cerclage are brought cranially via adjacent holes of the locking plate while the DogBone button is placed under the coracoid process. Thus, plate bridging is achieved. Finally reduction is performed and the cerclage is secured by surgical knotting. Use of an arm sling for 6 weeks. Due to the fact that the described technique is a relatively new procedure, long-term results are lacking. In the short term, patients postoperatively report high subjective satisfaction without persistent pain.

  17. Foal Fractures: Osteochondral Fragmentation, Proximal Sesamoid Bone Fractures/Sesamoiditis, and Distal Phalanx Fractures.

    Science.gov (United States)

    Reesink, Heidi L

    2017-08-01

    Foals are susceptible to many of the same types of fractures as adult horses, often secondary to external sources of trauma. In addition, some types of fractures are specific to foals and occur routinely in horses under 1 year of age. These foal-specific fractures may be due to the unique musculoskeletal properties of the developing animal and may present with distinct clinical signs. Treatment plans and prognoses are tailored specifically to young animals. Common fractures not affecting the long bones in foals are discussed in this article, including osteochondral fragmentation, proximal sesamoid bone fractures/sesamoiditis, and distal phalanx fractures. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Three-Dimensional Modeling of Fracture Clusters in Geothermal Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Ghassemi, Ahmad [Univ. of Oklahoma, Norman, OK (United States)

    2017-08-11

    The objective of this is to develop a 3-D numerical model for simulating mode I, II, and III (tensile, shear, and out-of-plane) propagation of multiple fractures and fracture clusters to accurately predict geothermal reservoir stimulation using the virtual multi-dimensional internal bond (VMIB). Effective development of enhanced geothermal systems can significantly benefit from improved modeling of hydraulic fracturing. In geothermal reservoirs, where the temperature can reach or exceed 350oC, thermal and poro-mechanical processes play an important role in fracture initiation and propagation. In this project hydraulic fracturing of hot subsurface rock mass will be numerically modeled by extending the virtual multiple internal bond theory and implementing it in a finite element code, WARP3D, a three-dimensional finite element code for solid mechanics. The new constitutive model along with the poro-thermoelastic computational algorithms will allow modeling the initiation and propagation of clusters of fractures, and extension of pre-existing fractures. The work will enable the industry to realistically model stimulation of geothermal reservoirs. The project addresses the Geothermal Technologies Office objective of accurately predicting geothermal reservoir stimulation (GTO technology priority item). The project goal will be attained by: (i) development of the VMIB method for application to 3D analysis of fracture clusters; (ii) development of poro- and thermoelastic material sub-routines for use in 3D finite element code WARP3D; (iii) implementation of VMIB and the new material routines in WARP3D to enable simulation of clusters of fractures while accounting for the effects of the pore pressure, thermal stress and inelastic deformation; (iv) simulation of 3D fracture propagation and coalescence and formation of clusters, and comparison with laboratory compression tests; and (v) application of the model to interpretation of injection experiments (planned by our

  19. Fractured Petroleum Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Firoozabadi, Dr. Abbas

    2000-01-18

    In this report the results of experiments of water injection in fractured porous media comprising a number of water-wet matrix blocks are reported for the first time. The blocks experience an advancing fracture-water level (FWL). Immersion-type experiments are performed for comparison; the dominant recovery mechanism changed from co-current to counter-current imbibition when the boundary conditions changed from advancing FWL to immersion-type. Single block experiments of co-current and counter-current imbibition was performed and co-current imbibition leads to more efficient recovery was found.

  20. Elastic plastic fracture mechanics

    International Nuclear Information System (INIS)

    Simpson, L.A.

    1978-07-01

    The application of linear elastic fracture mechanics (LEFM) to crack stability in brittle structures is now well understood and widely applied. However, in many structural materials, crack propagation is accompanied by considerable crack-tip plasticity which invalidates the use of LEFM. Thus, present day research in fracture mechanics is aimed at developing parameters for predicting crack propagation under elastic-plastic conditions. These include critical crack-opening-displacement methods, the J integral and R-curve techniques. This report provides an introduction to these concepts and gives some examples of their applications. (author)

  1. Thrombospondin-2 Influences the Proportion of Cartilage and Bone During Fracture Healing

    OpenAIRE

    Taylor, Douglas K; Meganck, Jeffrey A; Terkhorn, Shawn; Rajani, Rajiv; Naik, Amish; O'Keefe, Regis J; Goldstein, Steven A; Hankenson, Kurt D

    2009-01-01

    Thrombospondin-2 (TSP2) is a matricellular protein with increased expression during growth and regeneration. TSP2-null mice show accelerated dermal wound healing and enhanced bone formation. We hypothesized that bone regeneration would be enhanced in the absence of TSP2. Closed, semistabilized transverse fractures were created in the tibias of wildtype (WT) and TSP2-null mice. The fractures were examined 5, 10, and 20 days after fracture using ?CT, histology, immunohistochemistry, quantitativ...

  2. Dynamic fracture characterization of material

    International Nuclear Information System (INIS)

    Kobayashi, A.S.; Emery, A.F.; Liaw, B.M.

    1981-01-01

    The influences of a wide range of material properties, i.e. of A533B steel, a silicon nitride ceramic and a Homalite-100 photoelastic polymer, as well as the influences of the specimen sizes on the dynamic fracture response of fracture specimens are presented in this paper. The results of a numerical study show that the dynamic fracture responses of these fracture specimens of proportional dimensions were indistinguishable provided the normalized dynamic fracture toughness versus normalized crack velocity relations of the three materials coincide. The limited results suggest that should the normalized dynamic fracture toughness versus normalized crack velocity relations between prototype and model materials coincide, then dynamic fracture experiments on scaled models can be used to infer the dynamic fracture response of the prototype. (orig./HP)

  3. Fracture surfaces of granular pastes.

    Science.gov (United States)

    Mohamed Abdelhaye, Y O; Chaouche, M; Van Damme, H

    2013-11-01

    Granular pastes are dense dispersions of non-colloidal grains in a simple or a complex fluid. Typical examples are the coating, gluing or sealing mortars used in building applications. We study the cohesive rupture of thick mortar layers in a simple pulling test where the paste is initially confined between two flat surfaces. After hardening, the morphology of the fracture surfaces was investigated, using either the box counting method to analyze fracture profiles perpendicular to the mean fracture plane, or the slit-island method to analyze the islands obtained by cutting the fracture surfaces at different heights, parallel to the mean fracture plane. The fracture surfaces were shown to exhibit scaling properties over several decades. However, contrary to what has been observed in the brittle or ductile fracture of solid materials, the islands were shown to be mass fractals. This was related to the extensive plastic flow involved in the fracture process.

  4. Flexible fixation and fracture healing

    DEFF Research Database (Denmark)

    Schmal, Hagen; Strohm, Peter C; Jaeger, Martin

    2011-01-01

    , noncomminuted fractures. External fixation uses external bars for stabilization, whereas internal fixation is realized by subcutaneous placement of locking plates. Both of these "biologic" osteosynthesis methods allow a minimally invasive approach and do not compromise fracture hematoma and periosteal blood...

  5. Gene Therapy for Fracture Repair

    National Research Council Canada - National Science Library

    Lau, William

    2005-01-01

    .... We have identified a murine leukemia virus (MLV) vector that provides robust transgene expression in fracture tissues, and applied it to the rat femur fracture model to express therapeutic transgenes...

  6. Interpreting Fracture Patterns in Sandstones Interbedded with Ductile Strata at the Salt Valley Anticline, Arches National Park, Utah; TOPICAL

    International Nuclear Information System (INIS)

    LORENZ, JOHN C.; COOPER, SCOTT P.

    2001-01-01

    Sandstones that overlie or that are interbedded with evaporitic or other ductile strata commonly contain numerous localized domains of fractures, each covering an area of a few square miles. Fractures within the Entrada Sandstone at the Salt Valley Anticline are associated with salt mobility within the underlying Paradox Formation. The fracture relationships observed at Salt Valley (along with examples from Paleozoic strata at the southern edge of the Holbrook basin in northeastern Arizona, and sandstones of the Frontier Formation along the western edge of the Green River basin in southwestern Wyoming), show that although each fracture domain may contain consistently oriented fractures, the orientations and patterns of the fractures vary considerably from domain to domain. Most of the fracture patterns in the brittle sandstones are related to local stresses created by subtle, irregular flexures resulting from mobility of the associated, interbedded ductile strata (halite or shale). Sequential episodes of evaporite dissolution and/or mobility in different directions can result in multiple, superimposed fracture sets in the associated sandstones. Multiple sets of superimposed fractures create reservoir-quality fracture interconnectivity within restricted localities of a formation. However, it is difficult to predict the orientations and characteristics of this type of fracturing in the subsurface. This is primarily because the orientations and characteristics of these fractures typically have little relationship to the regional tectonic stresses that might be used to predict fracture characteristics prior to drilling. Nevertheless, the high probability of numerous, intersecting fractures in such settings attests to the importance of determining fracture orientations in these types of fractured reservoirs

  7. Mass transport in fracture media: impact of the random function model assumed for fractures conductivity

    International Nuclear Information System (INIS)

    Capilla, J. E.; Rodrigo, J.; Gomez Hernandez, J. J.

    2003-01-01

    Characterizing the uncertainty of flow and mass transport models requires the definition of stochastic models to describe hydrodynamic parameters. Porosity and hydraulic conductivity (K) are two of these parameters that exhibit a high degree of spatial variability. K is usually the parameter whose variability influence to a more extended degree solutes movement. In fracture media, it is critical to properly characterize K in the most altered zones where flow and solutes migration tends to be concentrated. However, K measurements use to be scarce and sparse. This fact calls to consider stochastic models that allow quantifying the uncertainty of flow and mass transport predictions. This paper presents a convective transport problem solved in a 3D block of fractured crystalline rock. the case study is defined based on data from a real geological formation. As the scarcity of K data in fractures does not allow supporting classical multi Gaussian assumptions for K in fractures, the non multi Gaussian hypothesis has been explored, comparing mass transport results for alternative Gaussian and non-Gaussian assumptions. The latter hypothesis allows reproducing high spatial connectivity for extreme values of K. This feature is present in nature, might lead to reproduce faster solute pathways, and therefore should be modeled in order to obtain reasonably safe prediction of contaminants migration in a geological formation. The results obtained for the two alternative hypotheses show a remarkable impact of the K random function model in solutes movement. (Author) 9 refs

  8. Correlation of Hip Fracture with Other Fracture Types: Toward a Rational Composite Hip Fracture Endpoint

    Science.gov (United States)

    Colón-Emeric, Cathleen; Pieper, Carl F.; Grubber, Janet; Van Scoyoc, Lynn; Schnell, Merritt L; Van Houtven, Courtney Harold; Pearson, Megan; Lafleur, Joanne; Lyles, Kenneth W.; Adler, Robert A.

    2016-01-01

    Purpose With ethical requirements to the enrollment of lower risk subjects, osteoporosis trials are underpowered to detect reduction in hip fractures. Different skeletal sites have different levels of fracture risk and response to treatment. We sought to identify fracture sites which cluster with hip fracture at higher than expected frequency; if these sites respond to treatment similarly, then a composite fracture endpoint could provide a better estimate of hip fracture reduction. Methods Cohort study using Veterans Affairs and Medicare administrative data. Male Veterans (n=5,036,536) aged 50-99 years receiving VA primary care between1999-2009 were included. Fractures were ascertained using ICD9 and CPT codes and classified by skeletal site. Pearson correlation coefficients, logistic regression and kappa statistics, were used to describe the correlation between each fracture type and hip fracture within individuals, without regards to the timing of the events. Results 595,579 (11.8%) men suffered 1 or more fractures and 179,597 (3.6%) suffered 2 or more fractures during the time under study. Of those with one or more fractures, rib was the most common site (29%), followed by spine (22%), hip (21%) and femur (20%). The fracture types most highly correlated with hip fracture were pelvic/acetabular (Pearson correlation coefficient 0.25, p<0.0001), femur (0.15, p<0.0001), and shoulder (0.11, p<0.0001). Conclusions Pelvic, acetabular, femur, and shoulder fractures cluster with hip fractures within individuals at greater than expected frequency. If we observe similar treatment risk reductions within that cluster, subsequent trials could consider use of a composite endpoint to better estimate hip fracture risk. PMID:26151123

  9. Statistics and thermodynamics of fracture

    Science.gov (United States)

    Chudnovsky, A.

    1984-01-01

    A probabilistic model of the fracture processes unifying the phenomenological study of long term strength of materials, fracture mechanics and statistical approaches to fracture is briefly outlined. The general framework of irreversible thermodynamics is employed to model the deterministic side of the failure phenomenon. The stochastic calculus is used to account for thg failure mechanisms controlled by chance; particularly, the random roughness of fracture surfaces.

  10. Complications in ankle fracture surgery

    OpenAIRE

    Ovaska, Mikko

    2015-01-01

    Mikko Ovaska. Complications in Ankle Fracture Surgery. Helsinki Bone and Joint Research Group, Department of Orthopaedic Surgery and Traumatology, Faculty of Medicine, University of Helsinki, Finland. Helsinki 2014. Ankle fractures are among the most frequently encountered surgically treated fractures. The operative treatment of this fracture may be associated with several complications. The most frequently encountered complications are related wound healing, and deep infection may have d...

  11. Management of osteoporotic vertebral fractures

    OpenAIRE

    Dionyssiotis, Yannis

    2010-01-01

    Yannis DionyssiotisRhodes General Hospital, Rhodes, GreeceAbstract: Osteoporotic vertebral fractures are associated with considerable reduction of quality of life, morbidity, and mortality. The management of patients with vertebral fractures should include treatment for osteoporosis and measures to reduce pain and improve mobility. This article provides information for management and rehabilitation of vertebral fractures based on clinical experience and literature.Keywords: vertebral fracture...

  12. Osteoporotic Hip and Spine Fractures

    OpenAIRE

    Cannada, Lisa K.; Hill, Brian W.

    2014-01-01

    Hip and spine fractures represent just a portion of the burden of osteoporosis; however, these fractures require treatment and often represent a major change in lifestyle for the patient and their family. The orthopedic surgeon plays a crucial role, not only in the treatment of these injuries but also providing guidance in prevention of future osteoporotic fractures. This review provides a brief epidemiology of the fractures, details the surgical techniques, and outlines the current treatment...

  13. Some probabilistic aspects of fracture

    International Nuclear Information System (INIS)

    Thomas, J.M.

    1982-01-01

    Some probabilistic aspects of fracture in structural and mechanical components are examined. The principles of fracture mechanics, material quality and inspection uncertainty are formulated into a conceptual and analytical framework for prediction of failure probability. The role of probabilistic fracture mechanics in a more global context of risk and optimization of decisions is illustrated. An example, where Monte Carlo simulation was used to implement a probabilistic fracture mechanics analysis, is discussed. (orig.)

  14. Fracture Risk Assessment in Chronic Kidney Disease, Prospective Testing Under Real World Environments (FRACTURE: a prospective study

    Directory of Open Access Journals (Sweden)

    West Sarah L

    2010-08-01

    Full Text Available Abstract Background Chronic kidney disease (CKD is associated with an increased risk of fracture. Decreased bone mass and disruption of microarchitecture occur early in the course of CKD and worsens with the progressive decline in renal function so that at the time of initiation of dialysis at least 50% of patients have had a fracture. Despite the excess fracture risk, and the associated increases in morbidity and mortality, little is known about the factors that are associated with an increase in fracture risk. Our study aims to identify prognostic factors for bone loss and fractures in patients with stages 3 to 5 CKD. Methods This prospective study aims to enroll two hundred and sixty men and women with stages 3 to 5 CKD. Subjects will be followed for 24 months and we will examine the ability of: 1 bone mineral density by dual x-ray absorptiometry at the spine, hip, and radius; 2 volumetric bone density by high resolution peripheral quantitated computed tomography at the radius and tibia; 3 serum markers of bone turnover; 4 bone formation rate by bone biopsy; and 5 muscle strength and balance to predict spine and non-spine fractures, identified by self-report and/or vertebral morphometry. All measurements will be obtained at baseline, at 12 and at 24 months with the exception of bone biopsy, which will be measured once at 12 months. Subjects will be contacted every 4 months to determine if there have been incident fractures or falls. Discussion This study is one of the first that aims to identify risk factors for fracture in early stage CKD patients. Ultimately, by identifying risk factors for fracture and targeting treatments in this group-before the initiation of renal replacement therapy - we will reduce the burden of disease due to fractures among patients with CKD.

  15. Design of experimental system for supercritical CO2 fracturing under confining pressure conditions

    Science.gov (United States)

    Wang, H.; Lu, Q.; Li, X.; Yang, B.; Zheng, Y.; Shi, L.; Shi, X.

    2018-03-01

    Supercritical CO2 has the characteristics of low viscosity, high diffusion and zero surface tension, and it is considered as a new fluid for non-polluting and non-aqueous fracturing which can be used for shale gas development. Fracturing refers to a method of utilizing the high-pressure fluid to generate fractures in the rock formation so as to improve the oil and gas flow conditions and increase the oil and gas production. In this article, a new type of experimental system for supercritical CO2 fracturing under confining pressure conditions is designed, which is based on characteristics of supercritical CO2, shale reservoir and down-hole environment. The experimental system consists of three sub-systems, including supercritical CO2 generation system, supercritical CO2 fracturing system and data analysis system. It can be used to simulate supercritical CO2 fracturing under geo-stress conditions, thus to study the rock initiation pressure, the formation of the rock fractures, fractured surface morphology and so on. The experimental system has successfully carried out a series of supercritical CO2 fracturing experiments. The experimental results confirm the feasibility of the experimental system and the high efficiency of supercritical CO2 in fracturing tight rocks.

  16. Hydrologic behavior of fracture networks

    International Nuclear Information System (INIS)

    Long, J.C.S.; Endo, H.K.; Karasaki, K.; Pyrak, L.; MacLean, P.; Witherspoon, P.A.

    1985-01-01

    This paper reviews recent research on the nature of flow and transport in discontinuous fracture networks. The hydrologic behavior of these networks has been examined using two- and three-dimensional numerical models. The numerical models represent random realizations of fracture networks based on statistical field measurements of fracture geometry and equivalent hydraulic aperture. The authors have compared the flux and mechanical transported behavior of these networks to the behavior of equivalent continua. In this way they were able to determine whether a given fracture network could be modeled as an equivalent porous media in both flux and advective transport studies. They have examined departures from porous media behavior both as a function of interconnectivity and heterogeneity. Parameter studies have revealed behavior patterns such as: given a fracture frequency that can be measured in the field, porous media like behavior and the magnitude of permeability are both enhanced if the fractures are longer and the standard deviation of fracture permeabilities is smaller. The behavior of well tests in fractured networks has been modeled and compared to a new analytical well test solution which accounts for the early time dominance of the fractures intersecting the well. Finally, a three-dimensional fracture flow model has been constructed which assumes fractures are randomly located discs. This model has been constructed which assumes fractures are randomly located discs. This model uses a semi-analytical solution for flow such that it is relatively easy to use the model as a tool for stochastic analysis. 13 references, 12 figures

  17. CT evaluation of acetabular fractures

    Energy Technology Data Exchange (ETDEWEB)

    Piazza, P; Girelli, G; Coran, F; Lutman, M

    1986-01-01

    The paper deals with sixteen cases of acetabular fractures studied with CT. After a short description of the normal CT findings, the different kind of fractures are reported. The usefulness of CT examination in evaluating acetabular fractures and their complications is confirmed both in conservative treatment and surgical approach.

  18. Fracture of the occipital condyle

    International Nuclear Information System (INIS)

    Wessels, L.S.

    1990-01-01

    The term fracture of the occipital condyle is a misnomer and and usually represents an extensive fracture of the posterior fossa skull base extending onto the squamous portion of the occipital bone and even further forward. These fractures should be suspected when the lower cranial nerves are affected after severe cranial trauma. Conservative management appears to be indicated. 2 figs., 5 refs

  19. Understanding hydraulic fracturing: a multi-scale problem

    Science.gov (United States)

    Hyman, J. D.; Jiménez-Martínez, J.; Viswanathan, H. S.; Carey, J. W.; Porter, M. L.; Rougier, E.; Karra, S.; Kang, Q.; Frash, L.; Chen, L.; Lei, Z.; O’Malley, D.; Makedonska, N.

    2016-01-01

    Despite the impact that hydraulic fracturing has had on the energy sector, the physical mechanisms that control its efficiency and environmental impacts remain poorly understood in part because the length scales involved range from nanometres to kilometres. We characterize flow and transport in shale formations across and between these scales using integrated computational, theoretical and experimental efforts/methods. At the field scale, we use discrete fracture network modelling to simulate production of a hydraulically fractured well from a fracture network that is based on the site characterization of a shale gas reservoir. At the core scale, we use triaxial fracture experiments and a finite-discrete element model to study dynamic fracture/crack propagation in low permeability shale. We use lattice Boltzmann pore-scale simulations and microfluidic experiments in both synthetic and shale rock micromodels to study pore-scale flow and transport phenomena, including multi-phase flow and fluids mixing. A mechanistic description and integration of these multiple scales is required for accurate predictions of production and the eventual optimization of hydrocarbon extraction from unconventional reservoirs. Finally, we discuss the potential of CO2 as an alternative working fluid, both in fracturing and re-stimulating activities, beyond its environmental advantages. This article is part of the themed issue ‘Energy and the subsurface’. PMID:27597789

  20. Fracture Sealing in Shales: Geological and Geochemical Factors

    International Nuclear Information System (INIS)

    Cathelineau, Michel

    2001-01-01

    The so-called self-sealing processes can be re-examined at the light of geological and geochemical consideration about the past history of the rocks. The concept of 'self sealing' needs to consider the formation and the sealing of fractures, especially three main stages: (i) the initiation of the fracture (development of micro-cracks initiated from previous heterogeneities up to fracturing), ii) the fracturing processes which occur generally at depth in presence of a fluid phase, iii) the healing or sealing of the fractures which corresponds basically to two main processes: a restoration of the initial permeability of the rock block by reducing the transmissivity of the discontinuity down to values equivalent to that of the homogeneous medium before fracturing, or the sealing of the open discontinuity by precipitation of newly formed minerals. In the latter case, the evolution of the open fracture is driven by re-arrangement of particles or precipitation of newly formed material, either by dissolution/crystallisation processes or by crystallisation from the percolating fluids (advective processes). Such processes are governed by chemical processes, especially the rate of precipitation of minerals which depends of the degree of saturation with respect to the mineral, and the kinetics of precipitation. (author)

  1. Analysis of compressive fracture in rock using statistical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Blair, S.C.

    1994-12-01

    Fracture of rock in compression is analyzed using a field-theory model, and the processes of crack coalescence and fracture formation and the effect of grain-scale heterogeneities on macroscopic behavior of rock are studied. The model is based on observations of fracture in laboratory compression tests, and incorporates assumptions developed using fracture mechanics analysis of rock fracture. The model represents grains as discrete sites, and uses superposition of continuum and crack-interaction stresses to create cracks at these sites. The sites are also used to introduce local heterogeneity. Clusters of cracked sites can be analyzed using percolation theory. Stress-strain curves for simulated uniaxial tests were analyzed by studying the location of cracked sites, and partitioning of strain energy for selected intervals. Results show that the model implicitly predicts both development of shear-type fracture surfaces and a strength-vs-size relation that are similar to those observed for real rocks. Results of a parameter-sensitivity analysis indicate that heterogeneity in the local stresses, attributed to the shape and loading of individual grains, has a first-order effect on strength, and that increasing local stress heterogeneity lowers compressive strength following an inverse power law. Peak strength decreased with increasing lattice size and decreasing mean site strength, and was independent of site-strength distribution. A model for rock fracture based on a nearest-neighbor algorithm for stress redistribution is also presented and used to simulate laboratory compression tests, with promising results.

  2. Experimental determination of sorption in fractured flow systems

    Science.gov (United States)

    Zimmerman, Mitchell D.; Bennett, Philip C.; Sharp, John M.; Choi, Wan-Joo

    2002-09-01

    Fracture "skins" are alteration zones on fracture surfaces created by a variety of biological, chemical, and physical processes. Skins increase surface area, where sorption occurs, compared to the unaltered rock matrix. This study examines the sorption of organic solutes on altered fracture surfaces in an experimental fracture-flow apparatus. Fracture skins containing abundant metal oxides, clays, and organic material from the Breathitt Formation (Kentucky, USA) were collected in a manner such that skin surface integrity was maintained. The samples were reassembled in the lab in a flow-through apparatus that simulated ˜2.7 m of a linear fracture "conduit." A dual-tracer injection scheme was utilized with the sorbing or reactive tracer compared to a non-reactive tracer (chloride) injected simultaneously. Sorption was assessed from the ratio of the first temporal moments of the breakthrough curves and from the loss of reactive tracer mass and evaluated as a function of flow velocity and solute type. The breakthrough curves suggest dual-flow regimes in the fracture with both sorbing and non-sorbing flow fields. Significant sorption occurs for the reactive components, and sorption increased with decreasing flow rate and decreasing compound solubility. Based on moment analysis, however, there was little retardation of the center of solute mass. These data suggest that non-equilibrium sorption processes dominate and that slow desorption and boundary layer diffusion cause extensive tailing in the breakthrough curves.

  3. Effects of salmon calcitonin on fracture healing in ovariectomized rats

    International Nuclear Information System (INIS)

    Li, Xiaolin; Zeng, Bingfang; Luo, Xinle; Yu, Nansheng

    2007-01-01

    Objective was to explore the effects of salmon calcitonin on the healing process of osteoporotic fractures in ovariectomized rats. We performed this study in the First Affiliated Hospital of Guangzhaou Medical College, Guangzhaou, China during the period March 2002 to December 2004. We used 120 female adult Wistar rats in this experiment, among which 90 underwent ovariectomy (OVX) and the other 30 had shamoperation. All rats had their left tibias fractured 3 months later. The 90 OVX rats were randomly divided into 3 groups with 30 in each, while the 30 shamoperated rats served as control group. After the fracture rats had subcutaneous injection of normal saline, salmon calcitonin and estrogen, respectively. X-ray film, histological examination, bone mineral density (BMD) measurement and biomechanics testing were carried out to evaluate the fracture healing. Compared with OVX rats treated normal saline, the rats with salmon calcitonin had significantly higher BMD values in the left tibia, higher max torque, shear stress of the left tibia 8 weeks after fracture (p<0.05), and presented with stronger callus formation, shorter fracture healing time and faster normalization of microstructure of bone trabeculae. Salmon calcitonin can, not only increase in osteoporotic bone biomechanical properties and improve the process of fractured osteoporotic bone. (author)

  4. Fire passage on geomorphic fractures in Cerrado: effect on vegetation

    Directory of Open Access Journals (Sweden)

    Otacílio Antunes Santana

    2017-01-01

    Full Text Available Geomorphic fracture is a natural geologic formation that sometimes forms a deep fissure in the rock with the establishment of soil and vegetation. The objective of this work was to analyze vegetation within geomorphic fractures under the effect of wildfire passage. The biometric variables evaluated before and after fire passage were: diameter, height, leaf area index, timber volume, grass biomass, number of trees and shrubs and of species. Results (in fractures were compared to adjacent areas (control. The effect of wildfire passage on vegetation within geomorphic fractures was not significant because fire followed plant biomass bed and when it met the fracture (wetter, it changed from soil surface to canopy surface (jump fire effect, affecting without significance the number of plants or species; so, fracture could be plants refuge against fire passage. We could infer in our experimental model that quality of plant biomass bed could be more significant than quantity, and microclimate variability recruits plants to the refuge (geomorphic fracture.

  5. Pediatric maxillary fractures.

    Science.gov (United States)

    Yu, Jack; Dinsmore, Robert; Mar, Philip; Bhatt, Kirit

    2011-07-01

    Pediatric craniofacial structures differ from those of adults in many ways. Because of these differences, management of pediatric craniofacial fractures is not the same as those in adults. The most important differences that have clinical relevance are the mechanical properties, craniofacial anatomy, healing capacity, and dental morphology. This article will review these key differences and the management of pediatric maxillary fractures. From the mechanical properties' perspective, pediatric bones are much more resilient than adult bones; as such, they undergo plastic deformation and ductile failure. From the gross anatomic perspective, the relative proportion of the cranial to facial structures is much larger for the pediatric patients and the sinuses are not yet developed. The differences related to dentition and dental development are more conical crowns, larger interdental spaces, and presence of permanent tooth buds in the pediatric population. The fracture pattern, as a result of all the above, does not follow the classic Le Fort types. The maxillomandibular fixation may require circum-mandibular wires, drop wires, or Ivy loops. Interfragmentary ligatures using absorbable sutures play a much greater role in these patients. The use of plates and screws should take into consideration the future development with respect to growth centers and the location of the permanent tooth buds. Pediatric maxillary fractures are not common, require different treatments, and enjoy better long-term outcomes.

  6. Fracture Mechanics of Concrete

    DEFF Research Database (Denmark)

    Ulfkjær, Jens Peder

    Chapter 1 Chapter l contains the introduction to this thesis. The scope of the thesis is partly to investigate different numerical and analytical models based on fracture mechanical ideas, which are able to predict size effects, and partly to perform an experimental investigation on high-strength......Chapter 1 Chapter l contains the introduction to this thesis. The scope of the thesis is partly to investigate different numerical and analytical models based on fracture mechanical ideas, which are able to predict size effects, and partly to perform an experimental investigation on high......-strength concrete. Chapter 2 A description of the factors which influence the strength and cracking of concrete and high strength concrete is made. Then basic linear fracture mechanics is outlined followed by a description and evaluation of the models used to describe concrete fracture in tension. The chapter ends...... and the goveming equations are explicit and simple. These properties of the model make it a very powerful tool, which is applicable for the designing engineer. The method is also extended to reinforced concrete, where the results look very promising. The large experimental investigation on high-strength concrete...

  7. Fracture mechanics and microstructures

    International Nuclear Information System (INIS)

    Gee, M.G.; Morrell, R.

    1986-01-01

    The influence of microstructure on defects in ceramics, and the consequences of their presence for the application of fracture mechanics theories are reviewed. The complexities of microstructures, especially the multiphase nature, the crystallographic anisotropy and the resultant anisotropic physical properties, and the variation of microstructure and surface finish from point to point in real components, all lead to considerable uncertainties in the actual performance of any particular component. It is concluded that although the concepts of fracture mechanics have been and will continue to be most useful for the qualitative explanation of fracture phenomena, the usefulness as a predictive tool with respect to most existing types of material is limited by the interrelation between material microstructure and mechanical properties. At present, the only method of eliminating components with unsatisfactory mechanical properties is to proof-test them, despite the fact that proof-testing itself is limited in ability to cope with changes to the component in service. The aim of the manufacturer must be to improve quality and consistency within individual components, from component to component, and from batch to batch. The aim of the fracture specialist must be to study longer-term properties to improve the accuracy of behaviour predictions with a stronger data base. Materials development needs to concentrate on obtaining defect-free materials that can be translated into more-reliable products, using our present understanding of the influence of microstructure on strength and toughness

  8. Fractal description of fractures

    International Nuclear Information System (INIS)

    Lung, C.W.

    1991-06-01

    Recent studies on the fractal description of fractures are reviewed. Some problems on this subject are discussed. It seems hopeful to use the fractal dimension as a parameter for quantitative fractography and to apply fractal structures to the development of high toughness materials. (author). 28 refs, 7 figs

  9. Fracture Mechanics of Concrete

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    the international workshop on concrete fracture, organised by A Carpinteri, at Torino ... The next question is how to bring the size effect into codes of practice on the ... analysis of the recent collapse of the World Trade Center in New York by Z P ...

  10. Oblique Axis Body Fracture

    DEFF Research Database (Denmark)

    Takai, Hirokazu; Konstantinidis, Lukas; Schmal, Hagen

    2016-01-01

    type" fracture pattern. The first patient was treated conservatively with cervical spine immobilization in a semirigid collar. However, gross displacement was noted at the 6-week follow-up visit. The second patient was therefore treated operatively by C1-C3/4 posterior fusion and the course...... for this injury and suggest early operative stabilization....

  11. Proximal femoral fractures

    DEFF Research Database (Denmark)

    Palm, Henrik; Teixidor, Jordi

    2015-01-01

    searched the homepages of the national heath authorities and national orthopedic societies in West Europe and found 11 national or regional (in case of no national) guidelines including any type of proximal femoral fracture surgery. RESULTS: Pathway consensus is outspread (internal fixation for un...

  12. Fracture mechanics and parapsychology

    Science.gov (United States)

    Cherepanov, G. P.

    2010-08-01

    The problem of postcritical deformation of materials beyond the ultimate strength is considered a division of fracture mechanics. A simple example is used to show the relationship between this problem and parapsychology, which studies phenomena and processes where the causality principle fails. It is shown that the concept of postcritical deformation leads to problems with no solution

  13. Metatarsal fracture (acute) - aftercare

    Science.gov (United States)

    ... of your 5th metatarsal bone closest to the ankle is called a Jones fracture. This area of the bone has low blood ... Swelling, pain, numbness, or tingling in your leg, ankle, or foot that becomes worse Your leg or foot turns purple Fever

  14. The Fate of Colloidal Swarms in Fractures

    Science.gov (United States)

    Pyrak-Nolte, L. J.; Olander, M. K.

    2009-12-01

    In the next 10-20 years, nano- and micro-sensor engineering will advance to the stage where sensor swarms could be deployed in the subsurface to probe rock formations and the fluids contained in them. Sensor swarms are groups of nano- or micro- sensors that are maintained as a coherent group to enable either sensor-to-sensor communication and/or coherent transmission of information as a group. The ability to maintain a swarm of sensors depends on the complexity of the flow paths in the rock, on the size and shape of the sensors and on the chemical interaction among the sensors, fluids, and rock surfaces. In this study, we investigate the effect of fracture aperture and fluid currents on the formation, evolution and break-up of colloidal swarms under gravity. Transparent cubic samples (100 mm x 100 mm x 100 mm) containing synthetic fractures with uniform and non-uniform aperture distributions were used to quantify the effect of aperture on swarm formation, swarm velocity, and swarm geometry using optical imaging. A fracture with a uniform aperture distribution was fabricated from two polished rectangular prisms of acrylic. A fracture with a non-uniform aperture distribution was created with a polished rectangular acrylic prism and an acrylic replica of an induced fracture surface from a carbonate rock. A series of experiments were performed to determine how swarm movement and geometry are affected as the walls of the fracture are brought closer together from 50 mm to 1 mm. During the experiments, the fracture was fully saturated with water. We created the swarms using two different particle sizes in dilute suspension (~ 1.0% by mass) . The particles were 3 micron diameter fluorescent polymer beads and 25 micron diameter soda-lime glass beads. The swarm behavior was imaged using an optical fluorescent imaging system composed of a CCD camera illuminated by a 100 mW diode-pumped doubled YAG laser. A swam was created when approximately 0.01 g drop of the suspension was

  15. Flow characteristics through a single fracture of artificial fracture system

    International Nuclear Information System (INIS)

    Park, Byoung Yoon; Bae, Dae Seok; Kim, Chun Soo; Kim, Kyung Su; Koh, Young Kwon; Jeon, Seok Won

    2001-04-01

    Fracture flow in rock masses is one of the most important issues in petroleum engineering, geology, and hydrogeology. Especially, in case of the HLW disposal, groundwater flow in fractures is an important factor in the performance assessment of the repository because the radionuclides move along the flowing groundwater through fractures. Recently, the characterization of fractures and the modeling of fluid flow in fractures are studied by a great number of researchers. Among those studies, the hydraulic behavior in a single fracture is one of the basic issues for understanding of fracture flow in rockmass. In this study, a fluid flow test in the single fracture made of transparent epoxy replica was carried out to obtain the practical exponent values proposed from the Cubic law and to estimate the flow rates through a single fracture. Not only the relationship between flow rates and the geometry of fracture was studied, but also the various statistical parameters of fracture geometry were compared to the effective transmissivity data obtained from computer simulation.

  16. Distinguishing stress fractures from pathologic fractures: a multimodality approach

    International Nuclear Information System (INIS)

    Fayad, Laura M.; Kamel, Ihab R.; Kawamoto, Satomi; Bluemke, David A.; Fishman, Elliot K.; Frassica, Frank J.

    2005-01-01

    Whereas stress fractures occur in normal or metabolically weakened bones, pathologic fractures occur at the site of a bone tumor. Unfortunately, stress fractures may share imaging features with pathologic fractures on plain radiography, and therefore other modalities are commonly utilized to distinguish these entities. Additional cross-sectional imaging with CT or MRI as well as scintigraphy and PET scanning is often performed for further evaluation. For the detailed assessment of a fracture site, CT offers a high-resolution view of the bone cortex and periosteum which aids the diagnosis of a pathologic fracture. The character of underlying bone marrow patterns of destruction can also be ascertained along with evidence of a soft tissue mass. MRI, however, is a more sensitive technique for the detection of underlying bone marrow lesions at a fracture site. In addition, the surrounding soft tissues, including possible involvement of adjacent muscle, can be well evaluated with MRI. While bone scintigraphy and FDG-PET are not specific, they offer a whole-body screen for metastases in the case of a suspected malignant pathologic fracture. In this review, we present select examples of fractures that underscore imaging features that help distinguish stress fractures from pathologic fractures, since accurate differentiation of these entities is paramount. (orig.)

  17. Mixing induced reactive transport in fractured crystalline rocks

    International Nuclear Information System (INIS)

    Martinez-Landa, Lurdes; Carrera, Jesus; Dentz, Marco; Fernàndez-Garcia, Daniel; Nardí, Albert; Saaltink, Maarten W.

    2012-01-01

    In this paper the solute retention properties of crystalline fractured rocks due to mixing-induced geochemical reactions are studied. While fractured media exhibit paths of fast flow and transport and thus short residence times for conservative solutes, at the same time they promote mixing and dilution due to strong heterogeneity, which leads to sharp concentration contrasts. Enhanced mixing and dilution have a double effect that favors crystalline fractured media as a possible host medium for nuclear waste disposal. Firstly, peak radionuclide concentrations are attenuated and, secondly, mixing-induced precipitation reactions are enhanced significantly, which leads to radionuclide immobilization. An integrated framework is presented for the effective modeling of these flow, transport and reaction phenomena, and the interaction between them. In a simple case study, the enhanced dilution and precipitation potential of fractured crystalline rocks are systematically studied and quantified and contrasted it to retention and attenuation in an equivalent homogeneous formation.

  18. CAPILLARY BARRIERS IN UNSATURATED FRACTURED ROCKS OF YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    Wu, Y.S.; Zhang, W.; Pan, L.; Hinds, J.; Bodvarsson, G.

    2000-01-01

    This work presents modeling studies investigating the effects of capillary barriers on fluid-flow and tracer-transport processes in the unsaturated zone of Yucca Mountain, Nevada, a potential site for storing high-level radioactive waste. These studies are designed to identify factors controlling the formation of capillary barriers and to estimate their effects on the extent of possible large-scale lateral flow in unsaturated fracture rocks. The modeling approach is based on a continuum formulation of coupled multiphase fluid and tracer transport through fractured porous rock. Flow processes in fractured porous rock are described using a dual-continuum concept. In addition, approximate analytical solutions are developed and used for assessing capillary-barrier effects in fractured rocks. This study indicates that under the current hydrogeologic conceptualization of Yucca Mountain, strong capillary-barrier effects exist for significantly diverting moisture flow

  19. Mechanical and mechanobiological influences on bone fracture repair : identifying important cellular characteristics

    NARCIS (Netherlands)

    Isaksson, H.E.

    2007-01-01

    Fracture repair is a complex and multifactorial process, which involves a well-programmed series of cellular and molecular events that result in a combination of intramembranous and endochondral bone formation. The vast majority of fractures is treated successfully. They heal through ‘secondary

  20. Physical fracture properties (fracture surfaces as information sources; crackgrowth and fracture mechanisms; exemples of cracks)

    International Nuclear Information System (INIS)

    Meny, Lucienne.

    1979-06-01

    Fracture surfaces are considered as a useful source of informations: an introduction to fractography is presented; the fracture surface may be observed through X ray microanalysis, and other physical methods such as Auger electron spectroscopy or secundary ion emission. The mechanisms of macroscopic and microscopic crackgrowth and fracture are described, in the case of unstable fracture (cleavage, ductile with shear, intergranular brittleness) and of progressive crack propagation (creep, fatigue). Exemples of cracks are presented in the last chapter [fr

  1. Cough-induced rib fractures.

    Science.gov (United States)

    Hanak, Viktor; Hartman, Thomas E; Ryu, Jay H

    2005-07-01

    To define the demographic, clinical, and radiological features of patients with cough-induced rib fractures and to assess potential risk factors. For this retrospective, single-center study, we identified all cases of cough-induced rib fractures diagnosed at the Mayo Clinic in Rochester, Minn, over a 9-year period between January 1, 1996, and January 31, 2005. Bone densitometry data from patients' medical records were analyzed, and T scores were used to classify patients into bone density categories. The mean +/- SD age of the 54 study patients at presentation was 55+/-17 years, and 42 patients (78%) were female. Patients presented with chest wall pain after onset of cough. Rib fracture was associated with chronic cough (> or =3 weeks' duration) in 85% of patients. Rib fractures were documented by chest radiography, rib radiography, computed tomography, or bone scan. Chest radiography had been performed in 52 patients and revealed rib fracture in 30 (58%). There were 112 fractured ribs in 54 patients. One half of patients had more than one fractured rib. Right-sided rib fractures alone were present in 17 patients (26 fractured ribs), left-sided in 23 patients (35 fractured ribs), and bilateral in 14 patients (51 fractured ribs). The most commonly fractured rib on both sides was rib 6. The fractures were most common at the lateral aspect of the rib cage. Bone densitometry was done in 26 patients and revealed osteopenia or osteoporosis in 17 (65%). Cough-induced rib fractures occur primarily in women with chronic cough. Middle ribs along the lateral aspect of the rib cage are affected most commonly. Although reduced bone density is likely a risk factor, cough-induced rib fractures can occur in the presence of normal bone density.

  2. Sealing of rock fractures

    International Nuclear Information System (INIS)

    Pusch, R.; Erlstroem, M.; Boergesson, L.

    1985-12-01

    The major water-bearing fractures in granite usually from fairly regular sets but the extension and degree of connectivity is varying. This means that only a few fractures that are interconnected with the deposition holes and larger water-bearing structures in a HLW repository are expected and if they can be identified and cut off through sealing it would be possible to improve the isolation of waste packages very effectively. Nature's own fracture sealing mechanisms may be simulated and a survey of the involved processes actually suggests a number of possible filling methods and substances. Most of them require high temperature and pressure and correspondingly sophisticated techniques, but some are of potential interest for immediate application with rather moderate effort. Such a technique is to fill the fractures with clayey substances which stay flexible and low-permeable provided that they remain physically and chemically intact. It is demonstrated in the report that effective grouting requires a very low viscosity and shear strength of the substance and this can be achieved by mechanical agitation as demonstrated in this report. Thus, by superimposing static pressure and shear waves induced by percussion hammering at a suitable frequency, clays and fine-grained silts as well as cement can be driven into fractures with an average aperture as small as 0.1 mm. Experiments were made in the laboratory using concrete and steel plates, and a field pilot test was also conducted under realistic conditions on site in Stripa. They all demonstrated the practicality of the 'dynamic injection technique' and that the fluid condition of the grouts yielded complete filling of the injected space to a considerable distance from the injection point. The field test indicated a good sealing ability as well as a surprisingly high resistance to erosion and piping. (author)

  3. Topological Characterization of Fractured Coal

    Science.gov (United States)

    Jing, Yu; Armstrong, Ryan T.; Ramandi, Hamed L.; Mostaghimi, Peyman

    2017-12-01

    Coal transport properties are highly dependent on the underlying fractured network, known as cleats, which are characterized by geometrical and topological properties. X-ray microcomputed tomography (micro-CT) has been widely applied to obtain 3-D digital representations of the cleat network. However, segmentation of 3-D data is often problematic due to image noise, which will result in inaccurate estimation of coal properties (e.g., porosity and specific surface area). To circumvent this issue, a discrete fracture network (DFN) model is proposed. We develop a characterization framework to determine if the developed DFN models can preserve the topological properties of the coal cleat network found in micro-CT data. We compute the Euler characteristic, fractal dimension, and percolation quantities to analyze the topology locally and globally and compare the results between micro-CT data (before denoising), filtered micro-CT data (after denoising), and the DFN model. We find that micro-CT data with noise have extensive connectivity while filtered micro-CT data and DFN models have similar topology both globally and locally. It is concluded that the topology of the DFN models are closer to that of the realistic cleat network that do not have segmentation-induced pores. In addition, micro-CT imaging always struggles with the trade-off between sample size and resolution, while the presented DFN models are not restricted by imaging resolution and thus can be constructed with extended domain size. Overall, the presented DFN model is a reliable alternative with realistic cleat topology, extended domain size and favorable data format for direct numerical simulations.

  4. Hydraulic Fracturing and the Environment

    Science.gov (United States)

    Ayatollahy Tafti, T.; Aminzadeh, F.; Jafarpour, B.; de Barros, F.

    2013-12-01

    In this presentation, we highlight two key environmental concerns of hydraulic fracturing (HF), namely induced seismicity and groundwater contamination (GC). We examine the induced seismicity (IS) associated with different subsurface fluid injection and production (SFIP) operations and the key operational parameters of SFIP impacting it. In addition we review the key potential sources for possible water contamination. Both in the case of IS and GC we propose modeling and data analysis methods to quantify the risk factors to be used for monitoring and risk reduction. SFIP include presents a risk in hydraulic fracturing, waste water injection, enhanced oil recovery as well as geothermal energy operations. Although a recent report (NRC 2012) documents that HF is not responsible for most of the induced seismicities, we primarily focus on HF here. We look into vaious operational parameters such as volume and rate of water injection, the direction of the well versus the natural fracture network, the depth of the target and the local stress field and fault system, as well as other geological features. The latter would determine the potential for triggering tectonic related events by small induced seismicity events. We provide the building blocks for IS risk assessment and monitoring. The system we propose will involve adequate layers of complexity based on mapped seismic attributes as well as results from ANN and probabilistic predictive modeling workflows. This leads to a set of guidelines which further defines 'safe operating conditions' and 'safe operating zones' which will be a valuable reference for future SFIP operations. We also illustrate how HF can lead to groundwater aquifer contamination. The source of aquifer contamination can be the hydrocarbon gas or the chemicals used in the injected liquid in the formation. We explore possible pathways of contamination within and discuss the likelihood of contamination from each source. Many of the chemical compounds used

  5. Social inequality and hip fracture

    DEFF Research Database (Denmark)

    Harvey, N. C.; Hansen, L.; Judge, A.

    2015-01-01

    Social inequality appears to be increasing in many countries. We explored whether risk of hip fracture was associated with markers of inequality and whether these relationships changed with time, using data from Danish Health Registries. Methods: All patients 60 years or older with a primary hip...... fracture (ICD10: S720, S721, S722 and S729) were identified from 1 January 1995 to 31 December 2011. Hip fracture patients were matched 1:1 on age, gender and year of fracture to a non-hip fracture control. An individual's education attainment was defined as basic, secondary or higher, and their income...

  6. Seismic characterization of fracture properties

    International Nuclear Information System (INIS)

    Myer, L.R.; Hopkins, D.; Cook, N.G.W.; Pyrak-Nolte, L.J.

    1990-01-01

    The purpose of this paper is to show that there is a relationship, both empirical and theoretical, between the measured seismic response, the mechanical stiffness (also referred to as specific stiffness) of fractures and their hydraulic conductivity. Laboratory measurements of the mechanical stiffness, hydraulic conductivity and seismic properties of natural fractures are summarized. A theoretical model for the amplitude and group time delay for compressional and shear waves transmitted across a single fracture is presented. Predictions based on this model are compared with laboratory measurements. Finally, the results for a single fracture are extended to multiple parallel fractures. 13 refs., 6 figs

  7. Fracture Propagation and Permeability Change under Poro-thermoelastic Loads & Silica Reactivity in Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad Ghassemi

    2009-10-01

    Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Therefore, knowledge of the conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fractures are created in the reservoir using hydraulic fracturing. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result, it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have developed advanced poro-thermo-chemo-mechanical fracture models for rock fracture research in support of EGS design. The fracture propagation models are based on a regular displacement discontinuity formulation. The fracture propagation studies include modeling interaction of induced fractures. In addition to the fracture propagation studies, two-dimensional solution algorithms have been developed and used to estimate the impact of pro-thermo-chemical processes on fracture permeability and reservoir pressure. Fracture permeability variation is studied using a coupled thermo-chemical model with quartz reaction kinetics. The model is applied to study quartz precipitation

  8. Challenges in Microseismic Monitoring of Hydrualic Fracturing

    Science.gov (United States)

    Venkataraman, A.; Li, R.

    2011-12-01

    To enhance well productivity, hydraulic fractures are stimulated by injecting fluid and/or gas with proppant into the rock matrix. This results in stress perturbations that induce fractures in the formation releasing minor amounts of seismic energy as microseismic events. Microseismicity can be recorded by properly positioned geophones and is one of the indirect methods that allow us to determine the actual volume of rock that was impacted during and after hydraulic fracturing. Specifically, microseismic data is acquired during hydro-fracture treatments to validate and assist completions, assist in placing wells in the formation, identify frac barriers, and to illuminate faults and potential fault re-activation. In the industry, microseismic data is acquired using geophones deployed in borehole and/or surface arrays. Borehole arrays are more traditional and have been used for nearly 20 years. Event location using borehole data is fairly robust, but azimuth and aperture are limited. Moreover, having dedicated boreholes can be expensive. The newer method of acquiring data is the use of geophones deployed on the surface or in shallow boreholes. Since microseismic events are very small (-4 to -0.5), surface records have weak P and S arrivals that are buried in the noise and traditional event location methods which use arrival time picks cannot be used. Migration based approaches which rely on the power of stacking waveforms is the common approach. However, poor signal-to-noise data and polarity in seismic waves generated by micro-earthquakes can result in uncertainty in event location. In this paper, we will discuss the pros and cons of both arrays, the status of the technology, its limitations and challenges. Specifically, we will focus on applications where industry-academic collaborations could lead to step changes in our understanding of the controls on microseismicity.

  9. Development of Chelating Agent-Based Polymeric Gel System for Hydraulic Fracturing

    Directory of Open Access Journals (Sweden)

    Muhammad Shahzad Kamal

    2018-06-01

    Full Text Available Hydraulic Fracturing is considered to be one of the most important stimulation methods. Hydraulic Fracturing is carried out by inducing fractures in the formation to create conductive pathways for the flow of hydrocarbon. The pathways are kept open either by using proppant or by etching the fracture surface using acids. A typical fracturing fluid usually consists of a gelling agent (polymers, cross-linkers, buffers, clay stabilizers, gel stabilizers, biocide, surfactants, and breakers mixed with fresh water. The numerous additives are used to prevent damage resulting from such operations, or better yet, enhancing it beyond just the aim of a fracturing operation. This study introduces a new smart fracturing fluid system that can be either used for proppant fracturing (high pH or acid fracturing (low pH operations in sandstone formations. The fluid system consists of glutamic acid diacetic acid (GLDA that can replace several additives, such as cross-linker, breaker, biocide, and clay stabilizer. GLDA is also a surface-active fluid that will reduce the interfacial tension eliminating the water-blockage effect. GLDA is compatible and stable with sea water, which is advantageous over the typical fracturing fluid. It is also stable in high temperature reservoirs (up to 300 °F and it is also environmentally friendly and readily biodegradable. The new fracturing fluid formulation can withstand up to 300 °F of formation temperature and is stable for about 6 h under high shearing rates (511 s−1. The new fracturing fluid formulation breaks on its own and the delay time or the breaking time can be controlled with the concentrations of the constituents of the fluid (GLDA or polymer. Coreflooding experiments were conducted using Scioto and Berea sandstone cores to evaluate the effectiveness of the developed fluid. The flooding experiments were in reasonable conformance with the rheological properties of the developed fluid regarding the thickening and

  10. Simulation of Anisotropic Rock Damage for Geologic Fracturing

    Science.gov (United States)

    Busetti, S.; Xu, H.; Arson, C. F.

    2014-12-01

    A continuum damage model for differential stress-induced anisotropic crack formation and stiffness degradation is used to study geologic fracturing in rocks. The finite element-based model solves for deformation in the quasi-linear elastic domain and determines the six component damage tensor at each deformation increment. The model permits an isotropic or anisotropic intact or pre-damaged reference state, and the elasticity tensor evolves depending on the stress path. The damage variable, similar to Oda's fabric tensor, grows when the surface energy dissipated by three-dimensional opened cracks exceeds a threshold defined at the appropriate scale of the representative elementary volume (REV). At the laboratory or wellbore scale (1000m) scales the damaged REV reflects early natural fracturing (background or tectonic fracturing) or shear strain localization (fault process zone, fault-tip damage, etc.). The numerical model was recently benchmarked against triaxial stress-strain data from laboratory rock mechanics tests. However, the utility of the model to predict geologic fabric such as natural fracturing in hydrocarbon reservoirs was not fully explored. To test the ability of the model to predict geological fracturing, finite element simulations (Abaqus) of common geologic scenarios with known fracture patterns (borehole pressurization, folding, faulting) are simulated and the modeled damage tensor is compared against physical fracture observations. Simulated damage anisotropy is similar to that derived using fractured rock-mass upscaling techniques for pre-determined fracture patterns. This suggests that if model parameters are constrained with local data (e.g., lab, wellbore, or reservoir domain), forward modeling could be used to predict mechanical fabric at the relevant REV scale. This reference fabric also can be used as the starting material property to pre-condition subsequent deformation or fluid flow. Continuing efforts are to expand the present damage

  11. Tuning Fractures With Dynamic Data

    Science.gov (United States)

    Yao, Mengbi; Chang, Haibin; Li, Xiang; Zhang, Dongxiao

    2018-02-01

    Flow in fractured porous media is crucial for production of oil/gas reservoirs and exploitation of geothermal energy. Flow behaviors in such media are mainly dictated by the distribution of fractures. Measuring and inferring the distribution of fractures is subject to large uncertainty, which, in turn, leads to great uncertainty in the prediction of flow behaviors. Inverse modeling with dynamic data may assist to constrain fracture distributions, thus reducing the uncertainty of flow prediction. However, inverse modeling for flow in fractured reservoirs is challenging, owing to the discrete and non-Gaussian distribution of fractures, as well as strong nonlinearity in the relationship between flow responses and model parameters. In this work, building upon a series of recent advances, an inverse modeling approach is proposed to efficiently update the flow model to match the dynamic data while retaining geological realism in the distribution of fractures. In the approach, the Hough-transform method is employed to parameterize non-Gaussian fracture fields with continuous parameter fields, thus rendering desirable properties required by many inverse modeling methods. In addition, a recently developed forward simulation method, the embedded discrete fracture method (EDFM), is utilized to model the fractures. The EDFM maintains computational efficiency while preserving the ability to capture the geometrical details of fractures because the matrix is discretized as structured grid, while the fractures being handled as planes are inserted into the matrix grids. The combination of Hough representation of fractures with the EDFM makes it possible to tune the fractures (through updating their existence, location, orientation, length, and other properties) without requiring either unstructured grids or regridding during updating. Such a treatment is amenable to numerous inverse modeling approaches, such as the iterative inverse modeling method employed in this study, which is

  12. Study on interaction between induced and natural fractures by extended finite element method

    Science.gov (United States)

    Xu, DanDan; Liu, ZhanLi; Zhuang, Zhuo; Zeng, QingLei; Wang, Tao

    2017-02-01

    Fracking is one of the kernel technologies in the remarkable shale gas revolution. The extended finite element method is used in this paper to numerically investigate the interaction between hydraulic and natural fractures, which is an important issue of the enigmatic fracture network formation in fracking. The criteria which control the opening of natural fracture and crossing of hydraulic fracture are tentatively presented. Influence factors on the interaction process are systematically analyzed, which include the approach angle, anisotropy of in-situ stress and fluid pressure profile.

  13. FRACTURE SHAFT HUMERUS: INTERLOCKING

    Directory of Open Access Journals (Sweden)

    Deepak Kaladagi

    2014-12-01

    Full Text Available BACKGROUND: The incidence of humeral fracture has significantly increased during the present years due to the population growth and road traffic, domestic, industrial, automobile accidents & disasters like tsunami, earthquakes, head-on collisions, polytrauma etc. In order to achieve a stable fixation followed by early mobilization, numerous surgical implants have been devised. PURPOSE: The purpose of this study is to analyze the results of intramedullary fixation of proximal 2/3rd humeral shaft fractures using an unreamed interlocking intramedullary nail. INTRODUCTION: In 40 skeletally matured patients with fracture shaft of humerus admitted in our hospital, we used unreamed antegrade interlocking nails. MATERIAL: We carried out a prospective analysis of 40 patients randomly selected between 2001 to 2014 who were operated at JNMC Belgaum, MMC Mysore & Navodaya Medical College, Raichur. All cases were either RTAs, Domestic, Industrial, automobile accidents & also other modes of injury. METHOD: Routine investigations with pre-anaesthetic check-up & good quality X-rays of both sides of humerus was taken. Time of surgery ranged from 5-10 days from the time of admission. Only upper 1/3rd & middle 1/3rd humeral shaft fractures were included in the study. In all the cases antegrade locked unreamed humeral nails were inserted under C-arm. Patient was placed in supine position & the shoulder was kept elevated by placing a sandbag under the scapula. In all patients incision taken from tip of acromion to 3cm over deltoid longitudinally. Postoperatively sling applied with wrist & shoulder movements started after 24 hours. All the patients ranged between the age of 21-50 years. RESULTS: Total 40 patients were operated. Maximum fracture site were in the middle third- 76%, 14% upper 1/3rd. All 40 patients achieved union. The average time of union was 8-10 weeks. All patients regained full range of movements except in few cases, where there was shoulder

  14. Pelvic and acetabular fractures

    International Nuclear Information System (INIS)

    Mears, D.C.; Rubash, H.E.

    1986-01-01

    This treatise focuses primarily on the clinical aspects of diagnosis and treatments of pelvic and acetabular fractures. However, considerable attention is also paid to the radiographic diagnosis of trauma and postoperative effects. The book begins with a succinct review of pelvic and acetabular anatomy and pelvic biomechanics. It continues with a radiographic classification of pelvic injury, which will represent the major source of the book's interest for radiologists. The remainder of the book is concerned with clinical management of pelvic and acetabular trauma, including preoperative planning, surgical approaches, techniques of reduction, internal fixation, eternal fixation, post-operative care, and late problems. Even throughout this later portion of the book there are extensive illustrations, including plain radiographs, computed tomographic (CT) scans, reconstructed three-dimensional CT scans, and schematic diagrams of diverse pelvic and acetabular fractures and the elementary surgical techniques for their repair

  15. Fracture and Healing of Rock Salt Related to Salt Caverns

    International Nuclear Information System (INIS)

    Chan, K.S.; Fossum, A.F.; Munson, D.E.

    1999-01-01

    In recent years, serious investigations of potential extension of the useful life of older caverns or of the use of abandoned caverns for waste disposal have been of interest to the technical community. All of the potential applications depend upon understanding the reamer in which older caverns and sealing systems can fail. Such an understanding will require a more detailed knowledge of the fracture of salt than has been necessary to date. Fortunately, the knowledge of the fracture and healing of salt has made significant advances in the last decade, and is in a position to yield meaningful insights to older cavern behavior. In particular, micromechanical mechanisms of fracture and the concept of a fracture mechanism map have been essential guides, as has the utilization of continuum damage mechanics. The Multimechanism Deformation Coupled Fracture (MDCF) model, which is summarized extensively in this work was developed specifically to treat both the creep and fracture of salt, and was later extended to incorporate the fracture healing process known to occur in rock salt. Fracture in salt is based on the formation and evolution of microfractures, which may take the form of wing tip cracks, either in the body or the boundary of the grain. This type of crack deforms under shear to produce a strain, and furthermore, the opening of the wing cracks produce volume strain or dilatancy. In the presence of a confining pressure, microcrack formation may be suppressed, as is often the case for triaxial compression tests or natural underground stress situations. However, if the confining pressure is insufficient to suppress fracture, then the fractures will evolve with time to give the characteristic tertiary creep response. Two first order kinetics processes, closure of cracks and healing of cracks, control the healing process. Significantly, volume strain produced by microfractures may lead to changes in the permeability of the salt, which can become a major concern in

  16. Compressional acoustics in a borehole. Measurement of fracture permeability

    International Nuclear Information System (INIS)

    Samaden, G.

    1987-04-01

    The detection of open fracturation of reservoirs or underground formations is very important for hydrogeology, geothermal energy and underground waste storage. The refracted compressional P wave only is studied because being faster there is less noise from interferences detection is relatively simple and easy for computer programming. 12 refs [fr

  17. Double segmental tibial fractures - an unusual fracture pattern

    Directory of Open Access Journals (Sweden)

    Bali Kamal

    2012-02-01

    Full Text Available 【Abstract】A case of a 50-year-old pedestrian who was hit by a bike and suffered fractures of both bones of his right leg was presented. Complete clinical and radiographic assessment showed double segmental fractures of the tibia and multisegmental fractures of the fibula. Review of the literature revealed that this fracture pattern was unique and only a single case was reported so far. Moreover, we discussed the possible mechanisms which can lead to such an injury. We also discussed the management of segmental tibial fracture and the difficulties encountered with them. This case was managed by modern osteosynthesis tech- nique with a pleasing outcome. Key words: Fracture, bone; Tibia; Fibula; Nails

  18. Locking compression plate osteosynthesis of complicated mandibular fractures in six horses.

    Science.gov (United States)

    Kuemmerle, J M; Kummer, M; Auer, J A; Nitzl, D; Fürst, A E

    2009-01-01

    Complicated mandibular fractures were recognised in one foal, one pony and four horses. The foal was two months old while the adult animals ranged in age from 12 to 24 years. Three horses had a unilateral horizontal ramus fracture. Two fractures were open and one was closed. Comminution was present in one of these patients while the other two horses had marked displacement of the fragments. Two suffered from comminuted fractures of the horizontal and vertical ramus of the mandible. One of these patients had open and infected fractures. One foal had a bilateral horizontal ramus fracture with marked periosteal 'new bone' formation and malalignement which required corrective osteotomy. Each horse underwent locking compression plate (LCP) osteosynthesis consisting of open fracture reduction and application of one to three 4.5/5.0 mm LCP at the ventral, lateral or caudal aspect of the mandible under fluoroscopic control. Two 3.5 mm LCP were used in the foal. Plate fixation was supported by application of a cerclage wire construct between the incisor and premolar teeth in most patients. Complete fracture healing, with an excellent functional and cosmetic outcome, was achieved in all of the patients. Complications encountered included seroma formation, screw and wire breakage, as well as implant and apical tooth root infections. The LCP was removed after fracture healing had occurred in four patients.

  19. Orientation dependent fracture behavior of nanotwinned copper

    Energy Technology Data Exchange (ETDEWEB)

    Kobler, Aaron, E-mail: aaron.kobler@kit.edu; Hahn, Horst, E-mail: ahodge@usc.edu, E-mail: horst.hahn@kit.edu, E-mail: christian.kuebel@kit.edu [Technische Universität Darmstadt (TUD), KIT-TUD Joint Research Laboratory Nanomaterials, 64287 Darmstadt (Germany); Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Hodge, Andrea M., E-mail: ahodge@usc.edu, E-mail: horst.hahn@kit.edu, E-mail: christian.kuebel@kit.edu [University of Southern California (USC), Department of Aerospace and Mechanical Engineering, Los Angeles, California 90089-1453 (United States); Kübel, Christian, E-mail: ahodge@usc.edu, E-mail: horst.hahn@kit.edu, E-mail: christian.kuebel@kit.edu [Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2015-06-29

    Columnar grown nanotwinned Cu was tensile tested in-situ inside the TEM in combination with automated crystal orientation mapping scanning transmission electron microscopy to investigate the active deformation mechanisms present in this material. Two tensile directions were applied, one parallel to the twin boundaries and the other perpendicular to the twin boundaries. In case of tensile testing perpendicular to the twin boundaries, the material deformed by detwinning and the formation of new grains, whereas in the parallel case, no new grains were formed and the fracture happened along the twin boundaries and a boundary that has formed during the deformation.

  20. Orientation dependent fracture behavior of nanotwinned copper

    International Nuclear Information System (INIS)

    Kobler, Aaron; Hahn, Horst; Hodge, Andrea M.; Kübel, Christian

    2015-01-01

    Columnar grown nanotwinned Cu was tensile tested in-situ inside the TEM in combination with automated crystal orientation mapping scanning transmission electron microscopy to investigate the active deformation mechanisms present in this material. Two tensile directions were applied, one parallel to the twin boundaries and the other perpendicular to the twin boundaries. In case of tensile testing perpendicular to the twin boundaries, the material deformed by detwinning and the formation of new grains, whereas in the parallel case, no new grains were formed and the fracture happened along the twin boundaries and a boundary that has formed during the deformation

  1. Innovations in the management of hip fractures.

    Science.gov (United States)

    Teasdall, Robert D; Webb, Lawrence X

    2003-08-01

    Hip fractures include fractures of the head, neck, intertrochanteric, and subtrochanteric regions. Head fractures commonly accompany dislocations. Neck fractures and intertrochanteric fractures occur with greatest frequency in elderly patients with a low bone mineral density and are produced by low-energy mechanisms. Subtrochanteric fractures occur in a predominantly strong cortical osseous region that is exposed to large compressive stresses. Implants used to address these fractures must accommodate significant loads while the fractures consolidate. Complications secondary to hip fractures produce significant morbidity and include infection, nonunion, malunion, decubitus ulcers, fat emboli, deep venous thrombosis, pulmonary embolus, pneumonia, myocardial infarction, stroke, and death.

  2. Patellar Sleeve Fracture With Ossification of the Patellar Tendon.

    Science.gov (United States)

    Damrow, Derek S; Van Valin, Scott E

    2017-03-01

    Patellar sleeve fractures make up greater than 50% of all patellar fractures. They are essentially only seen in the pediatric population because of the thick periosteum and the distal patellar pole apophysis in this group. These fractures can lead to complications if not treated appropriately and in a timely fashion. Complications of missed or untreated patellar sleeve fractures include patella alta, anterior knee pain, and quadriceps atrophy. These can all result in severe limitations in activity. The authors describe a case of a 16-year-old boy who sustained a patellar sleeve fracture 3 years prior to presentation. On presentation, he had patella alta, diminished strength, 5° of extensor lag, and radiographs that revealed bone formation along the patellar tendon. Despite this, he was able to maintain a high level of activity. This case report explores how the patient could have maintained a high level of activity despite having a patellar sleeve fracture. Also, because of the delayed presentation, the patella was ossified and the quadriceps was retracted, which led to a novel approach to reconstructing his distal extensor mechanism. This approach included a V-Y advancement of the quadriceps tendon and patellar tendon reconstruction using the patient's hamstring tendon (semitendinosus). This technique, combined with physical therapy postoperatively, resulted in his return to varsity high school soccer. To the best of the authors' knowledge, this technique has not been reported for this rare condition. [Orthopedics. 2017; 40(2):e357-e359.]. Copyright 2016, SLACK Incorporated.

  3. Fracture surface energy of the Punchbowl fault, San Andreas system.

    Science.gov (United States)

    Chester, Judith S; Chester, Frederick M; Kronenberg, Andreas K

    2005-09-01

    Fracture energy is a form of latent heat required to create an earthquake rupture surface and is related to parameters governing rupture propagation and processes of slip weakening. Fracture energy has been estimated from seismological and experimental rock deformation data, yet its magnitude, mechanisms of rupture surface formation and processes leading to slip weakening are not well defined. Here we quantify structural observations of the Punchbowl fault, a large-displacement exhumed fault in the San Andreas fault system, and show that the energy required to create the fracture surface area in the fault is about 300 times greater than seismological estimates would predict for a single large earthquake. If fracture energy is attributed entirely to the production of fracture surfaces, then all of the fracture surface area in the Punchbowl fault could have been produced by earthquake displacements totalling <1 km. But this would only account for a small fraction of the total energy budget, and therefore additional processes probably contributed to slip weakening during earthquake rupture.

  4. Migration of Water Pulse Through Fractured Porous Media

    International Nuclear Information System (INIS)

    Finsterle, S.; Fabryka-Martin, J. T.; Wang, J. S. Y.

    2001-01-01

    Contaminant transport from waste-disposal sites is strongly affected by the presence of fractures and the degree of fracture-matrix interaction. Characterization of potential contaminant plumes at such sites is difficult, both experimentally and numerically. Simulations of water flow through fractured rock were performed to examine the penetration depth of a large pulse of water entering such a system. Construction water traced with lithium bromide was released during the excavation of a tunnel at Yucca Mountain, Nevada, which is located in an unsaturated fractured tuff formation. Modeling of construction-water migration is qualitatively compared with bromide-to-chloride (Br/CI) ratio data for pore-water salts extracted from drillcores. The influences of local heterogeneities in the fracture network and variations in hydrogeologic parameters were examined by sensitivity analyses and Monte Carlo simulations. The simulation results are qualitatively consistent with the observed Br/CI signals, although these data may only indicate a minimum penetration depth, and water may have migrated further through the fracture network

  5. Fracture healing: direct magnification versus conventional radiography

    International Nuclear Information System (INIS)

    Link, T.M.; Kessler, T.; Lange, T.; Overbeck, J.; Fiebich, M.; Peters, P.E.

    1994-01-01

    The aim of the study was to evaluate the potential of magnification radiography in diagnosing fracture healing and assessing its complications. Seventy-three patients with fractures or who had undergone osteotomy were radiographed with both conventional (non-magnified) and magnification (5-fold) techniques. Since 10 patients were radiographed twice and 1 three times, 83 radiographs using each technique were obtained. All radiographs were analysed and the findings correlated with the patients' follow-up studies. The microfocal X-ray unit used for magnification radiography had a focal spot size of 20-130 μm. As an imaging system, digital luminescence radiography was employed with magnification, while normal film-screen systems were used with conventional radiography. Magnification radiography proved superior to conventional radiography in 47% of cases: endosteal and periosteal callus formations were seen earlier and better in 26 cases, and osseous union could be evaluated with greater certainty in 33 cases. In 49% of cases magnification radiography was equal and in 4% inferior to conventional radiography. Additionally an ''inter-observer analysis'' was carried out. Anatomical and pathological structures were classified into one of four grades. Results were significantly (P < 0.01) better using magnification radiography. We conclude that the magnification technique is a good method for monitoring fracture healing in its early stages. (orig.)

  6. Seismic signatures of the Lodgepole fractured reservoir in Utah-Wyoming overthrust belt

    Energy Technology Data Exchange (ETDEWEB)

    Parra, J.; Collier, H.; Angstman, B.

    1997-08-01

    In low porosity, low permeability zones, natural fractures are the primary source of permeability which affect both production and injection of fluids. The open fractures do not contribute much to porosity, but they provide an increased drainage network to any porosity. An important approach to characterizing the fracture orientation and fracture permeability of reservoir formations is one based upon the effects of such conditions on the propagation of acoustic and seismic waves in the rock. We present the feasibility of using seismic measurement techniques to map the fracture zones between wells spaced 2400 ft at depths of about 1000 ft. For this purpose we constructed computer models (which include azimuthal anisotropy) using Lodgepole reservoir parameters to predict seismic signatures recorded at the borehole scale, crosswell scale, and 3 D seismic scale. We have integrated well logs with existing 2D surfaces seismic to produce petrophysical and geological cross sections to determine the reservoir parameters and geometry for the computer models. In particular, the model responses are used to evaluate if surface seismic and crosswell seismic measurements can capture the anisotropy due to vertical fractures. Preliminary results suggested that seismic waves transmitted between two wells will propagate in carbonate fracture reservoirs, and the signal can be received above the noise level at the distance of 2400 ft. In addition, the large velocities contrast between the main fracture zone and the underlying unfractured Boundary Ridge Member, suggested that borehole reflection imaging may be appropriate to map and fracture zone thickness variation and fracture distributions in the reservoir.

  7. Integrating 3D seismic curvature and curvature gradient attributes for fracture characterization: Methodologies and interpretational implications

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Dengliang

    2013-03-01

    In 3D seismic interpretation, curvature is a popular attribute that depicts the geometry of seismic reflectors and has been widely used to detect faults in the subsurface; however, it provides only part of the solutions to subsurface structure analysis. This study extends the curvature algorithm to a new curvature gradient algorithm, and integrates both algorithms for fracture detection using a 3D seismic test data set over Teapot Dome (Wyoming). In fractured reservoirs at Teapot Dome known to be formed by tectonic folding and faulting, curvature helps define the crestal portion of the reservoirs that is associated with strong seismic amplitude and high oil productivity. In contrast, curvature gradient helps better define the regional northwest-trending and the cross-regional northeast-trending lineaments that are associated with weak seismic amplitude and low oil productivity. In concert with previous reports from image logs, cores, and outcrops, the current study based on an integrated seismic curvature and curvature gradient analysis suggests that curvature might help define areas of enhanced potential to form tensile fractures, whereas curvature gradient might help define zones of enhanced potential to develop shear fractures. In certain fractured reservoirs such as at Teapot Dome where faulting and fault-related folding contribute dominantly to the formation and evolution of fractures, curvature and curvature gradient attributes can be potentially applied to differentiate fracture mode, to predict fracture intensity and orientation, to detect fracture volume and connectivity, and to model fracture networks.

  8. An electron microscopy appraisal of tensile fracture in metallic glasses

    International Nuclear Information System (INIS)

    Matthews, D.T.A.; Ocelik, V.; Bronsveld, P.M.; De Hosson, J.Th.M.

    2008-01-01

    Three glass-forming alloy compositions were chosen for ribbon production and subsequent electron microscopy studies. In situ tensile testing with transmission electron microscopy (TEM), followed by ex situ TEM and ex situ scanning electron microscopy (SEM), allowed the deformation processes in tensile fracture of metallic glasses to be analysed. In situ shear band propagation was found to be jump-like, with the jump sites correlating with the formation of secondary shear bands. The effect of structural relaxation by in situ heating is also discussed. Nanocrystallization near the fracture surface was observed; however, no crystallization was also reported in the same sample and the reasons for this are discussed. Both the TEM and the SEM observations confirmed the presence of a liquid-like layer on or near the fracture surface of the ribbons. The formation of a liquid-like layer was characterized by the vein geometries and vein densities on the fracture surfaces and its dependence on shear displacement, δ, is discussed. A simple model is adapted to relate the temperature rise during shear banding to the glass transition and melting temperatures and this is used to explain the variety of fracture surfaces which are developed for macroscopically identical tensile testing of metallic glasses together with features which exhibit local melting

  9. Characterisation of fracture network and groundwater preferential ...

    African Journals Online (AJOL)

    Characterisation of fractured rocks and evaluation of fracture connectivity are essential for the study of subsurface flow and transport in fractured rock aquifers. In this study, we use a new method to present fracture networks and analyse the connectivity of the fractures, based on the technique of randomly-generated ...

  10. On size effects in fracture

    International Nuclear Information System (INIS)

    Sinclair, G.B.

    1985-01-01

    This paper discusses the dependence of fracture stress on size. This conclusion is based on classical energy arguments. For an in-plane scaled specimen pair, the larger the specimen the smaller the fracture stress. In contrast the same theory gives a different dependence for out-of-plane specimen and the dependence involves plane stress, strain, fracture stresses and Poisson's ratio. The objective of this paper is to examine how well these predictions are actually complied with

  11. Overview of Mandibular Condyle Fracture

    OpenAIRE

    Park, Su-Seong; Lee, Keun-Cheol; Kim, Seok-Kwun

    2012-01-01

    The mandibular condyle is a region that plays a key role in the opening and closing of the mouth, and because fracture causes functional and aesthetic problems such as facial asymmetry, it is very important to perform accurate reduction. Traditionally, there has been disagreement on how to manage fracture of the mandibular condyle. This review explores the misunderstanding of mandibular condyle fracture treatment and modern-day treatment strategies.

  12. Overview of Mandibular Condyle Fracture

    Directory of Open Access Journals (Sweden)

    Su-Seong Park

    2012-07-01

    Full Text Available The mandibular condyle is a region that plays a key role in the opening and closing of the mouth, and because fracture causes functional and aesthetic problems such as facial asymmetry, it is very important to perform accurate reduction. Traditionally, there has been disagreement on how to manage fracture of the mandibular condyle. This review explores the misunderstanding of mandibular condyle fracture treatment and modern-day treatment strategies.

  13. Overview of Mandibular Condyle Fracture

    Directory of Open Access Journals (Sweden)

    Su-Seong Park

    2012-07-01

    Full Text Available The mandibular condyle is a region that plays a key role in the opening and closing ofthe mouth, and because fracture causes functional and aesthetic problems such as facialasymmetry, it is very important to perform accurate reduction. Traditionally, there has beendisagreement on how to manage fracture of the mandibular condyle. This review exploresthe misunderstanding of mandibular condyle fracture treatment and modern-day treatmentstrategies.

  14. Golfer's fracture of the ribs

    International Nuclear Information System (INIS)

    Lim, J. H.

    1980-01-01

    Golfer's fracture is stress fracture of the posterior portion of left 3, 4, 5, 6 or 7th ribs of golfer's, usually beginners,and it is considered due to exposure to unaccustomed severe exercise of this fascinating sport. Healing is usually uneventful, but possible complication may occur, because symptom is mild and golfers continue the exercise with physical therapy such as massage. Author report 4 cases of golfer's fracture, including 1 case complicated by platelike at electasis of lung.

  15. Golfer's fracture of the ribs

    Energy Technology Data Exchange (ETDEWEB)

    Lim, J H [Seoul District Armed Forces General Hospital, Seoul (Korea, Republic of)

    1980-06-15

    Golfer's fracture is stress fracture of the posterior portion of left 3, 4, 5, 6 or 7th ribs of golfer's, usually beginners,and it is considered due to exposure to unaccustomed severe exercise of this fascinating sport. Healing is usually uneventful, but possible complication may occur, because symptom is mild and golfers continue the exercise with physical therapy such as massage. Author report 4 cases of golfer's fracture, including 1 case complicated by platelike at electasis of lung.

  16. Torsion fracture of carbon nanocoils

    Science.gov (United States)

    Yonemura, Taiichiro; Suda, Yoshiyuki; Tanoue, Hideto; Takikawa, Hirofumi; Ue, Hitoshi; Shimizu, Kazuki; Umeda, Yoshito

    2012-10-01

    We fix a carbon nanocoil (CNC) on a substrate in a focused ion beam instrument and then fracture the CNC with a tensile load. Using the CNC spring index, we estimate the maximum to average stress ratio on the fractured surface to range from 1.3 to 1.7, indicating stress concentration on the coil wire inner edge. Scanning electron microscopy confirms a hollow region on the inner edge of all fractured surfaces.

  17. Proceedings of the 20th meeting of the working group on fracture mechanisms

    International Nuclear Information System (INIS)

    1988-01-01

    This volume contains 41 contributions presented at the 20th meeting of the working group on fracture mechanisms. The contributions dealt with the following topics: 1.) mechanical and test fundamentals of crack initiating corrosion processes; 2.) crack formation in water and seawater; 3.) crack formation in the process industry; 4.) hydrogen-induced crack formation; 5.) stress and crack corrosion of rustproof cast alloys; 6.) corrosion-induced crack formation at high temperatures; 7.) experimental and numerical studies on fracture behaviour. 30 contributions were separately integrated in the data base 'ENERGY'. (MM) [de

  18. Clavicular fractures: Classification, diagnosis, therapy

    International Nuclear Information System (INIS)

    Schunk, K.; Strunk, H.; Schild, H.; Lohr, S.

    1988-01-01

    Clavicular fracture is one of the most frequent skeletal lesions. In most cases the median third of the clavicula is affected (this is due to the peculiar biomechanical structure). Accompanying lesions and complications of clavicular fractures are rare. A total of 13 X-ray diagnostic techniques are described of clavicular fractures. X-ray film should, as a matter of principle, always be taken in two planes. Definitely the major part of clavicular fractures are treated conservatively (rucsac dressing), whereas surgery is reserved for few and strictly defined indications. (orig.) [de

  19. [Intramedullary stabilisation of clavicula fractures].

    Science.gov (United States)

    Prokop, A; Schiffer, G; Jubel, A; Chmielnicki, M

    2013-10-01

    With an incidence of 64/100,000, clavicular shaft fractures are one of the most common fractures. Intramedullary fixation with Prevot nails was initially reported in the late 1990s. This procedure offers minimally invasive stabilization of the fracture, thus enabling immediate mobilization and rapid loading capacity. Using a case study, the positioning and procedure are demonstrated on video. The intramedullary implant accommodates the varying tension loading of the clavicle. This treatment is ideal for clavicular fractures with 2-3 fragments. Compared to patients treated conservatively, operated patients achieve more rapid and improved mobility. Employment disability is shorter, and malunion occurs less frequently. Georg Thieme Verlag KG Stuttgart · New York.

  20. Clavicular fractures: Classification, diagnosis, therapy

    Energy Technology Data Exchange (ETDEWEB)

    Schunk, K.; Strunk, H.; Schild, H.; Lohr, S.

    1988-09-01

    Clavicular fracture is one of the most frequent skeletal lesions. In most cases the median third of the clavicula is affected (this is due to the peculiar biomechanical structure). Accompanying lesions and complications of clavicular fractures are rare. A total of 13 X-ray diagnostic techniques are described of clavicular fractures. X-ray film should, as a matter of principle, always be taken in two planes. Definitely the major part of clavicular fractures are treated conservatively (rucsac dressing), whereas surgery is reserved for few and strictly defined indications.

  1. Management of civilian ballistic fractures.

    Science.gov (United States)

    Seng, V S; Masquelet, A C

    2013-12-01

    The management of ballistic fractures, which are open fractures, has often been studied in wartime and has benefited from the principles of military surgery with debridement and lavage, and the use of external fixation for bone stabilization. In civilian practice, bone stabilization of these fractures is different and is not performed by external fixation. Fifteen civilian ballistic fractures, Gustilo II or IIIa, two associated with nerve damage and none with vascular damage, were reviewed. After debridement and lavage, ten internal fixations and five conservative treatments were used. No superficial or deep surgical site infection was noted. Fourteen of the 15 fractures (93%) healed without reoperation. Eleven of the 15 patients (73%) regained normal function. Ballistic fractures have a bad reputation due to their many complications, including infections. In civilian practice, the use of internal fixation is not responsible for excessive morbidity, provided debridement and lavage are performed. Civilian ballistic fractures, when they are caused by low-velocity firearms, differ from military ballistic fractures. Although the principle of surgical debridement and lavage remains the same, bone stabilization is different and is similar to conventional open fractures. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  2. Rehabilitation after falls and fractures.

    Science.gov (United States)

    Dionyssiotis, Y; Dontas, I A; Economopoulos, D; Lyritis, G P

    2008-01-01

    Falls are one of the most common geriatric problems threatening the independence of older persons. Elderly patients tend to fall more often and have a greater tendency to fracture their bones. Fractures occur particularly in osteoporotic people due to increased bone fragility, resulting in considerable reduction of quality of life, morbidity, and mortality. This article provides information for the rehabilitation of osteoporotic fractures pertaining to the rehabilitation of the fractured patient, based on personal experience and literature. It also outlines a suggested effective and efficient clinical strategy approach for preventing falls in individual patients.

  3. A newborn with multiple fractures

    International Nuclear Information System (INIS)

    Kantorova, E.; Kratky, L.; Nevsimal, I.; Marik, K.; Kozlowski, K.

    2008-01-01

    Sometimes newborns with multiple fractures are diagnosed as osteogenesis imperfecta in spite of absence of radiographic findings supporting this diagnosis. A newborn with multiple fractures was diagnosed as osteogenesis imperfecta. Analysis of the structure of the long bones, pattern of fractures and poorly developed muscles suggested the diagnosis of fetal akinesia deformation syndrome. This was confirmed by pregnancy history and clinical findings. Multiple fractures in a newborn may present with diagnostic radiographic features as in osteogenesis imperfecta, or as in lethal gracile bone dysplasias or achondrogenesis type IA. If those features are absent, other diseases should be considered. Radiographs should be compared with pregnancy history and clinical findings in the newborn. (authors)

  4. Hydraulic properties of fracture networks

    International Nuclear Information System (INIS)

    Dreuzy, J.R. de

    1999-12-01

    Fractured medium are studied in the general framework of oil and water supply and more recently for the underground storage of high level nuclear wastes. As fractures are generally far more permeable than the embedding medium, flow is highly channeled in a complex network of fractures. The complexity of the network comes from the broad distributions of fracture length and permeability at the fracture scale and appears through the increase of the equivalent permeability at the network scale. The goal of this thesis is to develop models of fracture networks consistent with both local-scale and global-scale observations. Bidimensional models of fracture networks display a wide variety of flow structures ranging from the sole permeable fracture to the equivalent homogeneous medium. The type of the relevant structure depends not only on the density and the length and aperture distributions but also on the observation scale. In several models, a crossover scale separates complex structures highly channeled from more distributed and homogeneous-like flow patterns at larger scales. These models, built on local characteristics and validated by global properties, have been settled in steady state. They have also been compared to natural well test data obtained in Ploemeur (Morbihan) in transient state. The good agreement between models and data reinforces the relevance of the models. Once validated and calibrated, the models are used to estimate the global tendencies of the main flow properties and the risk associated with the relative lack of data on natural fractures media. (author)

  5. Influence of fracture geometry on bone healing under locking plate fixations: A comparison between oblique and transverse tibial fractures.

    Science.gov (United States)

    Miramini, Saeed; Zhang, Lihai; Richardson, Martin; Mendis, Priyan; Ebeling, Peter R

    2016-10-01

    Mechano-regulation plays a crucial role in bone healing and involves complex cellular events. In this study, we investigate the change of mechanical microenvironment of stem cells within early fracture callus as a result of the change of fracture obliquity, gap size and fixation configuration using mechanical testing in conjunction with computational modelling. The research outcomes show that angle of obliquity (θ) has significant effects on interfragmentary movement (IFM) which influences mechanical microenvironment of the callus cells. Axial IFM at near cortex of fracture decreases with θ, while shear IFM significantly increases with θ. While a large θ can increase shear IFM by four-fold compared to transverse fracture, it also result in the tension-stress effect at near cortex of fracture callus. In addition, mechanical stimuli for cell differentiation within the callus are found to be strongly negatively correlated to angle of obliquity and gap size. It is also shown that a relatively flexible fixation could enhance callus formation in presence of a large gap but could lead to excessive callus strain and interstitial fluid flow when a small transverse fracture gap is present. In conclusion, there appears to be an optimal fixation configuration for a given angle of obliquity and gap size. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  6. Solute transport in fractured rock - applications to radionuclide waste repositories

    International Nuclear Information System (INIS)

    Neretnieks, I.

    1990-12-01

    Flow and solute transport in fractured rocks has been intensively studied in the last decade. The increased interest is mainly due to the plans in many countries to site repositories for high level nuclear waste in deep geologic formations. All investigated crystalline rocks have been found to be fractured and most of the water flows in the fractures and fracture zones. The water transports dissolved species and radionuclides. It is thus of interest to be able to understand and to do predictive modelling of the flowrate of water, the flowpaths and the residence times of the water and of the nuclides. The dissolved species including the nuclides will interact with the surrounding rock in different ways and will in many cases be strongly retarded relative to the water velocity. Ionic species may be ion exchanged or sorbed in the mineral surfaces. Charges and neutral species may diffuse into the stagnant waters in the rock matrix and thus be withdrawn from the mobile water. These effects will be strongly dependent on how much rock surface is in contact with the flowing water. It has been found in a set of field experiments and by other observations that not all fractures conduct water. Furthermore it is found that conductive fractures only conduct the water in a small part of the fracture in what is called channels or preferential flowpaths. This report summarizes the present concepts of water flow and solute transport in fractured rocks. The data needs for predictive modelling are discussed and both field and laboratory measurement which have been used to obtain data are described. Several large scale field experiments which have been specially designed to study flow and tracer transport in crystalline rocks are described. In many of the field experients new techniques have been developed and used. (81 refs.) (author)

  7. Fracture network growth for prediction of fracture characteristics and connectivity in tight reservoir rocks

    NARCIS (Netherlands)

    Barnhoorn, A.; Cox, S.F.

    2012-01-01

    Fracturing experiments on very low-porosity dolomite rocks shows a difference in growth of fracture networks by stress-driven fracturing and fluid-driven fracturing. Stress-driven fracture growth, in the absence of fluid pressure, initially forms fractures randomly throughout the rocks followed by

  8. Hyperplastic callus formation in osteogenesis imperfecta. A case report

    International Nuclear Information System (INIS)

    Burchardt, A.J.; Wagner, A.A.; Basse, P.

    1994-01-01

    We report a case of bilateral hyperplastic callus formation as a complication of fracture in a patient with osteogenesis imperfecta. The clinical and radiographic findings and the differential diagnosis are discussed. (orig.)

  9. Hyperplastic callus formation in osteogenesis imperfecta. A case report

    Energy Technology Data Exchange (ETDEWEB)

    Burchardt, A.J. (Depts. of Radiology and Pediatric Orthopedic Surgery, Rigshospitalet, Copenhagen Univ. (Denmark)); Wagner, A.A. (Depts. of Radiology and Pediatric Orthopedic Surgery, Rigshospitalet, Copenhagen Univ. (Denmark)); Basse, P. (Depts. of Radiology and Pediatric Orthopedic Surgery, Rigshospitalet, Copenhagen Univ. (Denmark))

    1994-09-01

    We report a case of bilateral hyperplastic callus formation as a complication of fracture in a patient with osteogenesis imperfecta. The clinical and radiographic findings and the differential diagnosis are discussed. (orig.).

  10. Instability in dynamic fracture

    Science.gov (United States)

    Fineberg, J.; Marder, M.

    1999-05-01

    The fracture of brittle amorphous materials is an especially challenging problem, because the way a large object shatters is intimately tied to details of cohesion at microscopic scales. This subject has been plagued by conceptual puzzles, and to make matters worse, experiments seemed to contradict the most firmly established theories. In this review, we will show that the theory and experiments fit within a coherent picture where dynamic instabilities of a crack tip play a crucial role. To accomplish this task, we first summarize the central results of linear elastic dynamic fracture mechanics, an elegant and powerful description of crack motion from the continuum perspective. We point out that this theory is unable to make predictions without additional input, information that must come either from experiment, or from other types of theories. We then proceed to discuss some of the most important experimental observations, and the methods that were used to obtain the them. Once the flux of energy to a crack tip passes a critical value, the crack becomes unstable, and it propagates in increasingly complicated ways. As a result, the crack cannot travel as quickly as theory had supposed, fracture surfaces become rough, it begins to branch and radiate sound, and the energy cost for crack motion increases considerably. All these phenomena are perfectly consistent with the continuum theory, but are not described by it. Therefore, we close the review with an account of theoretical and numerical work that attempts to explain the instabilities. Currently, the experimental understanding of crack tip instabilities in brittle amorphous materials is fairly detailed. We also have a detailed theoretical understanding of crack tip instabilities in crystals, reproducing qualitatively many features of the experiments, while numerical work is beginning to make the missing connections between experiment and theory.

  11. Fatigue and fracture: Overview

    Science.gov (United States)

    Halford, G. R.

    1984-01-01

    A brief overview of the status of the fatigue and fracture programs is given. The programs involve the development of appropriate analytic material behavior models for cyclic stress-strain-temperature-time/cyclic crack initiation, and cyclic crack propagation. The underlying thrust of these programs is the development and verification of workable engineering methods for the calculation, in advance of service, of the local cyclic stress-strain response at the critical life governing location in hot section compounds, and the resultant crack initiation and crack growth lifetimes.

  12. Femoral shaft fractures

    International Nuclear Information System (INIS)

    Bender, C.E.; Campbell, D.C. II

    1985-01-01

    The femur is the longest, largest, and strongest bone in the body. Because of its length, width, and role as primary weight-bearing bone, it must tolerate the extremes of axial loading and angulatory stresses. Massive musculature envelopes the femur. This masculature provides abundant blood supply to the bone, which also allows great potential for healing. Thus, the most significant problem relating to femoral shaft fractures is not healing, but restoration of bone length and alignment so that the femoral shaft will tolerate the functional stresses demanded of it

  13. Characterisation of hydraulically-active fractures in a fractured ...

    African Journals Online (AJOL)

    ... in the initial stage of a site investigation to select the optimal site location or to evaluate the hydrogeological properties of fractures in underground exploration studies, such as those related geothermal reservoir evaluation and radioactive waste disposal. Keywords: self-potential method, hydraulically-conductive fractures, ...

  14. Quantifying Discrete Fracture Network Connectivity in Hydraulic Fracturing Stimulation

    Science.gov (United States)

    Urbancic, T.; Ardakani, E. P.; Baig, A.

    2017-12-01

    Hydraulic fracture stimulations generally result in microseismicity that is associated with the activation or extension of pre-existing microfractures and discontinuities. Microseismic events acquired under 3D downhole sensor coverage provide accurate event locations outlining hydraulic fracture growth. Combined with source characteristics, these events provide a high quality input for seismic moment tensor inversion and eventually constructing the representative discrete fracture network (DFN). In this study, we investigate the strain and stress state, identified fracture orientation, and DFN connectivity and performance for example stages in a multistage perf and plug completion in a North American shale play. We use topology, the familiar concept in many areas of structural geology, to further describe the relationships between the activated fractures and their effectiveness in enhancing permeability. We explore how local perturbations of stress state lead to the activation of different fractures sets and how that effects the DFN interaction and complexity. In particular, we observe that a more heterogeneous stress state shows a higher percentage of sub-horizontal fractures or bedding plane slips. Based on topology, the fractures are evenly distributed from the injection point, with decreasing numbers of connections by distance. The dimensionless measure of connection per branch and connection per line are used for quantifying the DFN connectivity. In order to connect the concept of connectivity back to productive volume and stimulation efficiency, the connectivity is compared with the character of deformation in the reservoir as deduced from the collective behavior of microseismicity using robustly determined source parameters.

  15. Ankle fractures have features of an osteoporotic fracture.

    Science.gov (United States)

    Lee, K M; Chung, C Y; Kwon, S S; Won, S H; Lee, S Y; Chung, M K; Park, M S

    2013-11-01

    We report the bone attenuation of ankle joint measured on computed tomography (CT) and the cause of injury in patients with ankle fractures. The results showed age- and gender-dependent low bone attenuation and low-energy trauma in elderly females, which suggest the osteoporotic features of ankle fractures. This study was performed to investigate the osteoporotic features of ankle fracture in terms of bone attenuation and cause of injury. One hundred ninety-four patients (mean age 51.0 years, standard deviation 15.8 years; 98 males and 96 females) with ankle fracture were included. All patients underwent CT examination, and causes of injury (high/low-energy trauma) were recorded. Mean bone attenuations of the talus, medial malleolus, lateral malleolus, and distal tibial metaphysis were measured on CT images. Patients were divided into younger age (fractures than the younger age group. With increasing age, bone attenuations tended to decrease and the difference of bone attenuation between the genders tended to increase in the talus, medial malleolus, lateral malleolus, and distal tibial metaphysis. Ankle fracture had features of osteoporotic fracture that is characterized by age- and gender-dependent low bone attenuation. Ankle fracture should not be excluded from the clinical and research interest as well as from the benefit of osteoporosis management.

  16. Basic principles of fracture treatment in children.

    Science.gov (United States)

    Ömeroğlu, Hakan

    2018-04-01

    This review aims to summarize the basic treatment principles of fractures according to their types and general management principles of special conditions including physeal fractures, multiple fractures, open fractures, and pathologic fractures in children. Definition of the fracture is needed for better understanding the injury mechanism, planning a proper treatment strategy, and estimating the prognosis. As the healing process is less complicated, remodeling capacity is higher and non-union is rare, the fractures in children are commonly treated by non-surgical methods. Surgical treatment is preferred in children with multiple injuries, in open fractures, in some pathologic fractures, in fractures with coexisting vascular injuries, in fractures which have a history of failed initial conservative treatment and in fractures in which the conservative treatment has no/little value such as femur neck fractures, some physeal fractures, displaced extension and flexion type humerus supracondylar fractures, displaced humerus lateral condyle fractures, femur, tibia and forearm shaft fractures in older children and adolescents and unstable pelvis and acetabulum fractures. Most of the fractures in children can successfully be treated by non-surgical methods.

  17. Inter- and intra-agglomerate fracture in nanocrystalline nickel.

    Science.gov (United States)

    Shan, Zhiwei; Knapp, J A; Follstaedt, D M; Stach, E A; Wiezorek, J M K; Mao, S X

    2008-03-14

    In situ tensile straining transmission electron microscopy tests have been carried out on nanocrystalline Ni. Grain agglomerates (GAs) were found to form very frequently and rapidly ahead of an advancing crack with sizes much larger than the initial average grain size. High-resolution electron microscopy indicated that the GAs most probably consist of nanograins separated by low-angle grain boundaries. Furthermore, both inter- and intra-GA fractures were observed. The observations suggest that these newly formed GAs may play an important role in the formation of the dimpled fracture surfaces of nanocrystalline materials.

  18. Electron-beam-induced fracture of Kevlar single fibers

    International Nuclear Information System (INIS)

    Dickinson, J.T.; Jensen, L.C.; Klakken, M.L.

    1986-01-01

    We examine the unique situation involving the exposure of polymers to both electron bombardment and mechanical stress. Under certain conditions, crack formation, crack growth, and fracture can occur due to this combination of stimuli. These studies relate to the performance of a number of materials under hostile environments such as space, plasma, and propulsion systems. In this paper we present our initial measurements on the response of single Kevlar fibers loaded in tension to bombardment by 3-keV electrons. We present evidence that the resulting electron-beam-induced fracture is due to bond breaking

  19. Swelling and fracturing of borides under neutron irradiation

    International Nuclear Information System (INIS)

    Krainy, A.G.; Ogorodnikov, V.V.; Grinik, E.U.; Chirko, L.I.; Shinakov, A.A.

    1994-01-01

    The neutron irradiation of high temperature borides, which are included in boron-containing reactor materials, results in high internal stresses, leading to considerable swelling and micro- and macro-fracturing. Experimental results over a large range of temperature and fluences, show a change of damage mechanism for borides within 400-530 C: the macro-cracking with formation of annular and radial cracks is observed below this temperature zone. The accumulation of micro-fractures and the process of gas swelling take place at irradiation temperatures above 530 C. The effect of the high internal stresses is compared to external pressure. 12 refs., 4 figs

  20. Hydrologic behavior of fracture networks

    International Nuclear Information System (INIS)

    Long, J.C.S.; Endo, H.K.; Karasaki, K.; Pyrak, L.; MacLean, P.; Witherspoon, P.A.

    1984-10-01

    This paper reviews recent research on the nature of flow and transport in discontinuous fracture networks. The hydrologic behavior of these networks has been examined using two- and three-dimensional numerical models. The numerical models represent random realizations of fracture networks based on statistical field measurements of fracture geometry and equivalent hydraulic aperture. We have compared the flux and mechanical transport behavior of these networks to the behavior of equivalent continua. In this way we are able to determine whether a given fracture network can be modeled as an equivalent porous media in both flux and advective transport studies. We have examined departures from porous media behavior both as a function of interconnectivity and heterogeneity. Parameter studies have revealed behavior patterns such as: given a fracture frequency that can be measured in the field, porous media like behavior and the magnitude of permeability are both enhanced if the fractures are longer and the standard deviation of fracture permeabilities is smaller. Transport studies have shown that the ratio between flux and velocity is not necessarily constant when the direction of flow is changed in systems which do behave like a porous media for flux. Thus the conditions under which porous media analysis can be used in transport studies are more restrictive than the condition for flux studies. We have examined systems which do not behave like porous media and have shown how the in situ behavior varies as a function of scale of observation. The behavior of well tests in fractured networks has been modeled and compared to a new analytical well test solution which accounts for the early time dominance of the fractures intersecting the well. Finally, a three-dimensional fracture flow model has been constructed which assumes fractures are randomly located discs. 13 references, 12 figures

  1. Mandibular ramus fractures: a rarity.

    Science.gov (United States)

    Kale, Tejraj Pundalik; Kotrashetti, S M; Louis, Archana; Lingaraj, J B; Sarvesh, B U

    2013-01-01

    To determine the incidence of mandibular ramus fractures in KLE's PK Hospital and to analyze the outcome of open reduction and internal fixation of these fractures. Using a retrospective study design, records of all trauma patients who reported to the Department of Oral and Maxillofacial Surgery, KLE's PK Hospital Belgaum, between the years January 2006 to October 2011 was obtained from the medical records office. The data variables that were analyzed were the name, age, sex, cause of injury, pretreatment occlusion, treatment given, period of MMF and post-treatment occlusion. Total number of mandibular fracture cases was 298. Ramus fractures were 10 in number which accounted for 3.3% of fractures. The age range of these 10 patients was seen to be between 20 to 80 years with the average age being 35.6 years. Of these 10 patients, 9 were male and 1 was female and 7 patients were treated by open reduction and internal fixation and the remaining 3 by closed reduction. The average period of MMF was 3 days for the patients who underwent open reduction and internal fixation. There was improvement in occlusion in all 10 patients post-treatment and there was no complication reported in any of the cases. Ramus fractures accounted for 3.3% of all mandibular fractures. Open reduction and internal fixation of ramus fractures ensures adequate functional and anatomic reduction. This study makes an attempt to throw a light on the increasing incidence of ramus fractures and a successful management of these fractures by open reduction and internal fixation. How to cite this article: Kale TP, Kotrashetti SM, Louis A, Lingaraj JB, Sarvesh BU. Mandibular Ramus Fractures: A Rarity. J Contemp Dent Pract 2013;14(1):39-42. Source of support: Nil Conflict of interest: None declared.

  2. GUNSHOT FRACTURES OF TIBIA AND FEMUR - EXCELLENT ...

    African Journals Online (AJOL)

    2011-10-10

    Oct 10, 2011 ... fractures due to gunshot injury grafted with reamed bone marrow and immobilised with Surgical ... open fractures, which pose a challenging problem .... Table 2. Gustillo-Anderson Classification of fractures and infection.

  3. Image diagnosis of nasal bone fracture

    International Nuclear Information System (INIS)

    Hirota, Yoshiharu; Shimizu, Yayoi; Iinuma, Toshitaka.

    1988-01-01

    Twenty cases of nasal bone fractures were evaluated as to the types of fractures based upon HRCT findings. Conventional X-Ray films for nasal bones were analyzed and compared with HRCT findings. Nasal bone fractures were classified into lateral and frontal fractures. HRCT images were evaluated in three planes including upper, middle and lower portions of the nasal bone. Fractures favored males of teens. Lateral fracture gave rise to the fractures of the nasal bone opposite to the external force, loosening of the ipsilateral nasomaxillary sutures and fractures of the frontal process of the maxilla. Conventional X-Ray films were reevaluated after HRCT evaluation and indications of nasal bone fractures were determined. In addition to the discontinuity of the nasal dorsum, fracture lines parallel to and beneath the nasal dorsum and indistinct fracture lines along the nasomaxillary sutures are the indication of nasal bone fractures by conventional X-Ray films. (author)

  4. Heating tar sands formations while controlling pressure

    Science.gov (United States)

    Stegemeier, George Leo [Houston, TX; Beer, Gary Lee [Houston, TX; Zhang, Etuan [Houston, TX

    2010-01-12

    Methods for treating a tar sands formation are described herein. Methods may include heating at least a section of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. A pressure in the majority of the section may be maintained below a fracture pressure of the formation. The pressure in the majority of the section may be reduced to a selected pressure after the average temperature reaches a temperature that is above 240.degree. C. and is at or below pyrolysis temperatures of hydrocarbons in the section. At least some hydrocarbon fluids may be produced from the formation.

  5. Associations of early premenopausal fractures with subsequent fractures vary by sites and mechanisms of fractures.

    Science.gov (United States)

    Honkanen, R; Tuppurainen, M; Kroger, H; Alhava, E; Puntila, E

    1997-04-01

    In a retrospective population-based study we assessed whether and how self-reported former fractures sustained at the ages of 20-34 are associated with subsequent fractures sustained at the ages of 35-57. The 12,162 women who responded to fracture questions of the baseline postal enquiry (in 1989) of the Kuopio Osteoporosis Study, Finland formed the study population. They reported 589 former and 2092 subsequent fractures. The hazard ratio (HR), with 95% confidence interval (CI), of a subsequent fracture was 1.9 (1.6-2.3) in women with the history of a former fracture compared with women without such a history. A former low-energy wrist fracture was related to subsequent low-energy wrist [HR = 3.7 (2.0-6.8)] and high-energy nonwrist [HR = 2.4 (1.3-4.4)] fractures, whereas former high-energy nonwrist fractures were related only to subsequent high-energy nonwrist [HR = 2.8 (1.9-4.1)] but not to low-energy wrist [HR = 0.7 (0.3-1.8)] fractures. The analysis of bone mineral density (BMD) data of a subsample of premenopausal women who underwent dual x-ray absorptiometry (DXA) during 1989-91 revealed that those with a wrist fracture due to a fall on the same level at the age of 20-34 recorded 6.5% lower spinal (P = 0.140) and 10.5% lower femoral (P = 0.026) BMD than nonfractured women, whereas the corresponding differences for women with a former nonwrist fracture due to high-energy trauma were -1.8% (P = 0.721) and -2.4% (P = 0. 616), respectively. Our results suggest that an early premenopausal, low-energy wrist fracture is an indicator of low peak BMD which predisposes to subsequent fractures in general, whereas early high-energy fractures are mainly indicators of other and more specific extraskeletal factors which mainly predispose to same types of subsequent fractures only.

  6. On the theory of transport in fractured media for the safety analysis of a nuclear waste repository

    International Nuclear Information System (INIS)

    Mukhopadhyay, N.C.

    1982-10-01

    This paper aims at developing a systematic theory of the role of fractures in the transport of radionuclides in the fractured rocks by groundwater, from the nuclear waste repository to be built in the deep geological formations, to the biosphere. Fractures are grouped into four 'irreducible' types: joints, nodes, shear zones and fracture zones, and their physical characteristics, having bearings on radionuclide transport, are expressed in mathematical terms. The question of radioactivity retention is then carefully studied for various fracture types, using idealized geometries to mimic natural forms. Fundamental transport equations are derived for the fracture-pore complex, taking into consideration the special physical characteristics of fractures and the effects of sorption therein

  7. External fixation of tibial pilon fractures and fracture healing.

    Science.gov (United States)

    Ristiniemi, Jukka

    2007-06-01

    Distal tibial fractures are rare and difficult to treat because the bones are subcutaneous. External fixation is commonly used, but the method often results in delayed union. The aim of the present study was to find out the factors that affect fracture union in tibial pilon fractures. For this purpose, prospective data collection of tibial pilon fractures was carried out in 1998-2004, resulting in 159 fractures, of which 83 were treated with external fixation. Additionally, 23 open tibial fractures with significant > 3 cm bone defect that were treated with a staged method in 2000-2004 were retrospectively evaluated. The specific questions to be answered were: What are the risk factors for delayed union associated with two-ring hybrid external fixation? Does human recombinant BMP-7 accelerate healing? What is the role of temporary ankle-spanning external fixation? What is the healing potential of distal tibial bone loss treated with a staged method using antibiotic beads and subsequent autogenous cancellous grafting compared to other locations of the tibia? The following risk factors for delayed healing after external fixation were identified: post-reduction fracture gap of >3 mm and fixation of the associated fibula fracture. Fracture displacement could be better controlled with initial temporary external fixation than with early definitive fixation, but it had no significant effect on healing time, functional outcome or complication rate. Osteoinduction with rhBMP-7 was found to accelerate fracture healing and to shorten the sick leave. A staged method using antibiotic beads and subsequent autogenous cancellous grafting proved to be effective in the treatment of tibial bone loss. Healing potential of the bone loss in distal tibia was at least equally good as in other locations of the tibia.

  8. Design and Implementation of Energized Fracture Treatment in Tight Gas Sands

    Energy Technology Data Exchange (ETDEWEB)

    Mukul Sharma; Kyle Friehauf

    2009-12-31

    Hydraulic fracturing is essential for producing gas and oil at an economic rate from low permeability sands. Most fracturing treatments use water and polymers with a gelling agent as a fracturing fluid. The water is held in the small pore spaces by capillary pressure and is not recovered when drawdown pressures are low. The un-recovered water leaves a water saturated zone around the fracture face that stops the flow of gas into the fracture. This is a particularly acute problem in low permeability formations where capillary pressures are high. Depletion (lower reservoir pressures) causes a limitation on the drawdown pressure that can be applied. A hydraulic fracturing process can be energized by the addition of a compressible, sometimes soluble, gas phase into the treatment fluid. When the well is produced, the energized fluid expands and gas comes out of solution. Energizing the fluid creates high gas saturation in the invaded zone, thereby facilitating gas flowback. A new compositional hydraulic fracturing model has been created (EFRAC). This is the first model to include changes in composition, temperature, and phase behavior of the fluid inside the fracture. An equation of state is used to evaluate the phase behavior of the fluid. These compositional effects are coupled with the fluid rheology, proppant transport, and mechanics of fracture growth to create a general model for fracture creation when energized fluids are used. In addition to the fracture propagation model, we have also introduced another new model for hydraulically fractured well productivity. This is the first and only model that takes into account both finite fracture conductivity and damage in the invaded zone in a simple analytical way. EFRAC was successfully used to simulate several fracture treatments in a gas field in South Texas. Based on production estimates, energized fluids may be required when drawdown pressures are smaller than the capillary forces in the formation. For this field

  9. Rock fracture processes in chemically reactive environments

    Science.gov (United States)

    Eichhubl, P.

    2015-12-01

    Rock fracture is traditionally viewed as a brittle process involving damage nucleation and growth in a zone ahead of a larger fracture, resulting in fracture propagation once a threshold loading stress is exceeded. It is now increasingly recognized that coupled chemical-mechanical processes influence fracture growth in wide range of subsurface conditions that include igneous, metamorphic, and geothermal systems, and diagenetically reactive sedimentary systems with possible applications to hydrocarbon extraction and CO2 sequestration. Fracture processes aided or driven by chemical change can affect the onset of fracture, fracture shape and branching characteristics, and fracture network geometry, thus influencing mechanical strength and flow properties of rock systems. We are investigating two fundamental modes of chemical-mechanical interactions associated with fracture growth: 1. Fracture propagation may be aided by chemical dissolution or hydration reactions at the fracture tip allowing fracture propagation under subcritical stress loading conditions. We are evaluating effects of environmental conditions on critical (fracture toughness KIc) and subcritical (subcritical index) fracture properties using double torsion fracture mechanics tests on shale and sandstone. Depending on rock composition, the presence of reactive aqueous fluids can increase or decrease KIc and/or subcritical index. 2. Fracture may be concurrent with distributed dissolution-precipitation reactions in the hostrock beyond the immediate vicinity of the fracture tip. Reconstructing the fracture opening history recorded in crack-seal fracture cement of deeply buried sandstone we find that fracture length growth and fracture opening can be decoupled, with a phase of initial length growth followed by a phase of dominant fracture opening. This suggests that mechanical crack-tip failure processes, possibly aided by chemical crack-tip weakening, and distributed solution-precipitation creep in the

  10. Pediatric mandibular fractures.

    Science.gov (United States)

    Schweinfurth, J M; Koltai, P J

    1998-01-01

    Over the last 20 years, a revolution in the management of facial fractures has taken place. Refinements in biocompatible materials of great delicacy and strength along with advances in our understanding of biomechanics of the face, have rendered complex injuries consistently amenable to accurate 3-dimensional reconstruction. Furthermore, with the availability of education in the techniques of internal rigid fixation, these advanced techniques have become routine practice in adults. However, the suitability of rigid internal fixation for children remains controversial. There are many concerns about the effect of implanted hardware in the mandible of a growing child. In addition, some evidence suggests that the elevation of functional matrix off of bone may result in alterations in development. The goal is to restore the underlying bony architecture to its pre-injury position in a stable fashion, with a minimal of aesthetic and functional impairment. However, in children the treatment of bony injuries is most easily accomplished by techniques that may adversely effect craniofacial development. While it is not entirely possible to resolve this dilemma, there exists an extensive body of experimental and clinical information on the appropriate management of pediatric mandibular fractures which can be used to formulate a rational treatment plan for most cases. This paper presents an overview of the contemporary understanding and application of these treatment principles.

  11. Hydraulic fracturing proppants

    Directory of Open Access Journals (Sweden)

    V. P. P. de Campos

    Full Text Available Abstract Hydrocarbon reservoirs can be classified as unconventional or conventional depending on the oil and gas extraction difficulty, such as the need for high-cost technology and techniques. The hydrocarbon extraction from bituminous shale, commonly known as shale gas/oil, is performed by using the hydraulic fracturing technique in unconventional reservoirs where 95% water, 0.5% of additives and 4.5% of proppants are used. Environmental problems related to hydraulic fracturing technique and better performance/development of proppants are the current challenge faced by companies, researchers, regulatory agencies, environmentalists, governments and society. Shale gas is expected to increase USA fuel production, which triggers the development of new proppants and technologies of exploration. This paper presents a review of the definition of proppants, their types, characteristics and situation in the world market and information about manufacturers. The production of nanoscale materials such as anticorrosive and intelligent proppants besides proppants with carbon nanotubes is already carried out on a scale of tonnes per year in Belgium, Germany and Asia countries.

  12. Fracture induced electromagnetic radiation

    International Nuclear Information System (INIS)

    Frid, V; Rabinovitch, A; Bahat, D

    2003-01-01

    In our laboratory, we combine accurate electromagnetic radiation (EMR) measurements during fracture of rocks (carbonate and igneous) and transparent materials (glass, PMMA and glass ceramics) with careful fractographic methods. A critical analysis of experimental observations, accumulated here during the last decade together with supporting material from the works of other authors are used in this study to demonstrate the failure of all current models to explain the properties of EMR arising from fracture. The basic elements of a new model are proposed. These are (a) the EMR amplitude increases as long as the crack continues to grow, since new atomic bonds are severed and their contribution is added to the EMR. As a result, the atoms on both sides of the bonds are moved to 'non-equilibrium' positions relative to their steady state ones and begin to oscillate collectively in a manner similar to Debye model bulk oscillations - 'surface vibrational optical waves'; (b) when the crack halts, the waves and the EMR pulse amplitude decay by relaxation. These basic elements are already enough to describe the characteristics of the experimentally obtained isolated individual EMR pulses. These characteristics include the shape of the EMR pulse envelope, and the frequency, time duration and rise - fall time of the pulse

  13. Fracture induced electromagnetic radiation

    Energy Technology Data Exchange (ETDEWEB)

    Frid, V [Geological and Environmental Sciences Department, Deichmann Rock Mechanics Laboratory of the Negev, Ben Gurion University of the Negev, Beer Sheva (Israel); Rabinovitch, A [Physics Department, Deichmann Rock Mechanics Laboratory of the Negev, Ben Gurion University of the Negev, Beer Sheva (Israel); Bahat, D [Geological and Environmental Sciences Department, Deichmann Rock Mechanics Laboratory of the Negev, Ben Gurion University of the Negev, Beer Sheva (Israel)

    2003-07-07

    In our laboratory, we combine accurate electromagnetic radiation (EMR) measurements during fracture of rocks (carbonate and igneous) and transparent materials (glass, PMMA and glass ceramics) with careful fractographic methods. A critical analysis of experimental observations, accumulated here during the last decade together with supporting material from the works of other authors are used in this study to demonstrate the failure of all current models to explain the properties of EMR arising from fracture. The basic elements of a new model are proposed. These are (a) the EMR amplitude increases as long as the crack continues to grow, since new atomic bonds are severed and their contribution is added to the EMR. As a result, the atoms on both sides of the bonds are moved to 'non-equilibrium' positions relative to their steady state ones and begin to oscillate collectively in a manner similar to Debye model bulk oscillations - 'surface vibrational optical waves'; (b) when the crack halts, the waves and the EMR pulse amplitude decay by relaxation. These basic elements are already enough to describe the characteristics of the experimentally obtained isolated individual EMR pulses. These characteristics include the shape of the EMR pulse envelope, and the frequency, time duration and rise - fall time of the pulse.

  14. Osteoporosis, Fractures, and Diabetes

    Directory of Open Access Journals (Sweden)

    Peter Jackuliak

    2014-01-01

    Full Text Available It is well established that osteoporosis and diabetes are prevalent diseases with significant associated morbidity and mortality. Patients with diabetes mellitus have an increased risk of bone fractures. In type 1 diabetes, the risk is increased by ∼6 times and is due to low bone mass. Despite increased bone mineral density (BMD, in patients with type 2 diabetes the risk is increased (which is about twice the risk in the general population due to the inferior quality of bone. Bone fragility in type 2 diabetes, which is not reflected by bone mineral density, depends on bone quality deterioration rather than bone mass reduction. Thus, surrogate markers and examination methods are needed to replace the insensitivity of BMD in assessing fracture risks of T2DM patients. One of these methods can be trabecular bone score. The aim of the paper is to present the present state of scientific knowledge about the osteoporosis risk in diabetic patient. The review also discusses the possibility of problematic using the study conclusions in real clinical practice.

  15. A Numerical Study of Factors Affecting Fracture-Fluid Cleanup and Produced Gas/Water in Marcellus Shale: Part II

    Energy Technology Data Exchange (ETDEWEB)

    Seales, Maxian B.; Dilmore, Robert; Ertekin, Turgay; Wang, John Yilin

    2017-04-01

    Horizontal wells combined with successful multi-stage hydraulic fracture treatments are currently the most established method for effectively stimulating and enabling economic development of gas bearing organic-rich shale formations. Fracture cleanup in the Stimulated Reservoir Volume (SRV) is critical to stimulation effectiveness and long-term well performance. However, fluid cleanup is often hampered by formation damage, and post-fracture well performance frequently falls below expectations. A systematic study of the factors that hinder fracture fluid cleanup in shale formations can help optimize fracture treatments and better quantify long term volumes of produced water and gas. Fracture fluid cleanup is a complex process influenced by multi-phase flow through porous media (relative permeability hysteresis, capillary pressure etc.), reservoir rock and fluid properties, fracture fluid properties, proppant placement, fracture treatment parameters, and subsequent flowback and field operations. Changing SRV and fracture conductivity as production progresses further adds to the complexity of this problem. Numerical simulation is the best, and most practical approach to investigate such a complicated blend of mechanisms, parameters, their interactions, and subsequent impact on fracture fluid cleanup and well deliverability. In this paper, a 3-dimensional, 2-phase, dual-porosity model was used to investigate the impact of multiphase flow, proppant crushing, proppant diagenesis, shut-in time, reservoir rock compaction, gas slippage, and gas desorption on fracture fluid cleanup, and well performance in Marcellus shale. The research findings have shed light on the factors that substantially constrains efficient fracture fluid cleanup in gas shales, and provided guidelines for improved fracture treatment designs and water management.

  16. Interpreting Fracture Patterns in Sandstones Interbedded with Ductile Strata at the Salt Valley Anticline, Arches National Park, Utah

    OpenAIRE

    Lorenz, John C.; Cooper, Scott P.

    2001-01-01

    Sandstones that overlie or that are interbedded with evaporitic or other ductile strata commonly contain numerous localized domains of fractures, each covering an area of a few square miles. Fractures within the Entrada Sandstone at the Salt Valley Anticline are associated with salt mobility within the underlying Paradox Formation. The fracture relationships observed at Salt Valley (along with examples from Paleozoic strata at the southern edge of the Holbrook basin in northeastern Arizona, a...

  17. Cough-induced rib fractures.

    Science.gov (United States)

    Sano, Atsushi; Tashiro, Ken; Fukuda, Tsutomu

    2015-10-01

    Occasionally, patients who complain of chest pain after the onset of coughing are diagnosed with rib fractures. We investigated the characteristics of cough-induced rib fractures. Between April 2008 and December 2013, 17 patients were referred to our hospital with chest pain after the onset of coughing. Rib radiography was performed, focusing on the location of the chest pain. When the patient had other signs and symptoms such as fever or persistent cough, computed tomography of the chest was carried out. We analyzed the data retrospectively. Rib fractures were found in 14 of the 17 patients. The age of the patients ranged from 14 to 86 years (median 39.5 years). Ten patients were female and 4 were male. Three patients had chronic lung disease. There was a single rib fracture in 9 patients, and 5 had two or more fractures. The middle and lower ribs were the most commonly involved; the 10th rib was fractured most frequently. Cough-induced rib fractures occur in every age group regardless of the presence or absence of underlying disease. Since rib fractures often occur in the lower and middle ribs, rib radiography is useful for diagnosis. © The Author(s) 2015.

  18. Mechanical properties of fracture zones

    International Nuclear Information System (INIS)

    Leijon, B.

    1993-05-01

    Available data on mechanical characteristics of fracture zones are compiled and discussed. The aim is to improve the basis for adequate representation of fracture zones in geomechanical models. The sources of data researched are primarily borehole investigations and case studies in rock engineering, involving observations of fracture zones subjected to artificial load change. Boreholes only yield local information about the components of fracture zones, i.e. intact rock, fractures and various low-strength materials. Difficulties are therefore encountered in evaluating morphological and mechanical properties of fracture zones from borehole data. Although often thought of as macroscopically planar features, available field data consistently show that fracture zones are characterized by geometrical irregularities such as thickness variations, surface undulation and jogs. These irregularities prevail on all scales. As a result, fracture zones are on all scales characterized by large, in-plane variation of strength- and deformational properties. This has important mechanical consequences in terms of non-uniform stress transfer and complex mechanisms of shear deformation. Field evidence for these findings, in particular results from the underground research laboratory in Canada and from studies of induced fault slip in deep mines, is summarized and discussed. 79 refs

  19. Diplopia and Orbital Wall Fractures

    NARCIS (Netherlands)

    Boffano, P.; Roccia, F.; Gallesio, C.; Karagozoglu, K.H.; Forouzanfar, T.

    2014-01-01

    Diplopia is a symptom that is frequently associated with orbital wall fractures. The aim of this article was to present the incidence and patterns of diplopia after orbital wall blow-out fractures in 2 European centers, Turin and Amsterdam, and to identify any correlation between this symptom and

  20. Diplopia and orbital wall fractures

    NARCIS (Netherlands)

    Boffano, P.; Roccia, F.; Gallesio, C.; Karagozoglu, K.H.; Forouzanfar, T.

    2014-01-01

    Diplopia is a symptom that is frequently associated with orbital wall fractures. The aim of this article was to present the incidence and patterns of diplopia after orbital wall blow-out fractures in 2 European centers, Turin and Amsterdam, and to identify any correlation between this symptom and

  1. Mathematical modelling of fracture hydrology

    International Nuclear Information System (INIS)

    Herbert, A.W.; Hodgkinson, D.P.; Lever, D.A.; Robinson, P.C.; Rae, J.

    1985-06-01

    This report summarises the work performed between January 1983 and December 1984 for the CEC/DOE contract 'Mathematical Modelling of Fracture Hydrology', under the following headings: 1) Statistical fracture network modelling, 2) Continuum models of flow and transport, 3) Simplified models, 4) Analysis of laboratory experiments and 5) Analysis of field experiments. (author)

  2. Ankle Fractures: The Operative Outcome

    Directory of Open Access Journals (Sweden)

    Ahmad Hafiz Z

    2011-03-01

    Full Text Available Ankle fractures are commonly seen in orthopaedic practice. This retrospective study of patients with ankle fractures who underwent surgical treatment in our institution from January 2000 to December 2003 was undertaken to analyze the common causes and patterns of ankle fractures; and the functional outcome of operative treatment for these fractures. Eighty patients were identified and reviewed. There were 65 male (81.3% and 15 female patients (18.7% with age ranging from 13 to 71 years old (mean, 32.3y. Common causes of ankle fractures were trauma (especially motor vehicle accidents, sports injuries and the osteoporotic bones in the elderly. Weber C (64.0% was the most common pattern of fracture at presentation. The most common operative treatment for ankle fractures was open reduction and internal fixation (73 patients, 91.2%. Excellent and good outcomes were achieved in 93.8% of cases when measured using the Olerud and Molander scoring system for foot and ankle. In conclusion, operative treatment for ankle fractures restores sufficient stability and allowed mobility of the ankle joint.

  3. Isolated Transverse Sacrum Fracture: A Case Report

    Directory of Open Access Journals (Sweden)

    Cemil Kavalci

    2011-01-01

    Full Text Available Sacral fracture commonly results from high-energy trauma. Most insufficiency fractures of the sacrum are seen in women after the age of 70. Fractures of the sacrum are rare and generally combined with a concomitant pelvic fracture. Transverse sacral fractures are even less frequent which constitute only 3–5% of all sacral fractures. This type of fractures provide a diagnostic challenge. We report a unique case of isolated transverse fracture of sacrum in a young man sustained low-energy trauma. The patient presented to our emergency department after several hours of injury, and diagnosed by clinical features and roentgenogram findings.

  4. Fracture mechanisms and fracture control in composite structures

    Science.gov (United States)

    Kim, Wone-Chul

    Four basic failure modes--delamination, delamination buckling of composite sandwich panels, first-ply failure in cross-ply laminates, and compression failure--are analyzed using linear elastic fracture mechanics (LEFM) and the J-integral method. Structural failures, including those at the micromechanical level, are investigated with the aid of the models developed, and the critical strains for crack propagation for each mode are obtained. In the structural fracture analyses area, the fracture control schemes for delamination in a composite rib stiffener and delamination buckling in composite sandwich panels subjected to in-plane compression are determined. The critical fracture strains were predicted with the aid of LEFM for delamination and the J-integral method for delamination buckling. The use of toughened matrix systems has been recommended for improved damage tolerant design for delamination crack propagation. An experimental study was conducted to determine the onset of delamination buckling in composite sandwich panel containing flaws. The critical fracture loads computed using the proposed theoretical model and a numerical computational scheme closely followed the experimental measurements made on sandwich panel specimens of graphite/epoxy faceskins and aluminum honeycomb core with varying faceskin thicknesses and core sizes. Micromechanical models of fracture in composites are explored to predict transverse cracking of cross-ply laminates and compression fracture of unidirectional composites. A modified shear lag model which takes into account the important role of interlaminar shear zones between the 0 degree and 90 degree piles in cross-ply laminate is proposed and criteria for transverse cracking have been developed. For compressive failure of unidirectional composites, pre-existing defects play an important role. Using anisotropic elasticity, the stress state around a defect under a remotely applied compressive load is obtained. The experimentally

  5. Re-injection feasibility study of fracturing flow-back fluid in shale gas mining

    Science.gov (United States)

    Kang, Dingyu; Xue, Chen; Chen, Xinjian; Du, Jiajia; Shi, Shengwei; Qu, Chengtun; Yu, Tao

    2018-02-01

    Fracturing flow-back fluid in shale gas mining is usually treated by re-injecting into formation. After treatment, the fracturing flow-back fluid is injected back into the formation. In order to ensure that it will not cause too much damage to the bottom layer, feasibility evaluations of re-injection of two kinds of fracturing fluid with different salinity were researched. The experimental research of the compatibility of mixed water samples based on the static simulation method was conducted. Through the analysis of ion concentration, the amount of scale buildup and clay swelling rate, the feasibility of re-injection of different fracturing fluid were studied. The result shows that the swelling of the clay expansion rate of treated fracturing fluid is lower than the mixed water of treated fracturing fluid and the distilled water, indicating that in terms of clay expansion rate, the treated fracturing flow-back fluid is better than that of water injection after re-injection. In the compatibility test, the maximum amount of fouling in the Yangzhou oilfield is 12mg/L, and the maximum value of calcium loss rate is 1.47%, indicating that the compatibility is good. For the fracturing fluid with high salinity in the Yanchang oilfield, the maximum amount of scaling is 72mg/L, and the maximum calcium loss rate is 3.50%, indicating that the compatibility is better.

  6. Introduction to numerical modeling of thermohydrologic flow in fractured rock masses

    International Nuclear Information System (INIS)

    Wang, J.S.Y.

    1980-01-01

    More attention is being given to the possibility of nuclear waste isolation in hard rock formations. The waste will generate heat which raises the temperature of the surrounding fractured rock masses and induces buoyancy flow and pressure change in the fluid. These effects introduce the potential hazard of radionuclides being carried to the biosphere, and affect the structure of a repository by stress changes in the rock formation. The thermohydrological and thermomechanical responses are determined by the fractures as well as the intact rock blocks. The capability of modeling fractured rock masses is essential to site characterization and repository evaluation. The fractures can be modeled either as a discrete system, taking into account the detailed fracture distributions, or as a continuum representing the spatial average of the fractures. A numerical model is characterized by the governing equations, the numerical methods, the computer codes, the validations, and the applications. These elements of the thermohydrological models are discussed. Along with the general review, some of the considerations in modeling fractures are also discussed. Some remarks on the research needs in modeling fractured rock mass conclude the paper

  7. Radiographic evaluation of maxillofacial fractures

    International Nuclear Information System (INIS)

    Litwan, M.; Fliegel, C.

    1986-01-01

    The course and configuration of typical maxillofacial fractures (type Le Fort I-III) and lateral maxillary fractures including the zygomatic arch were reconstructed in detail by application of barium paste on a bony skull and radiogrpahs in standard projections were performed and evaluated. It was obvious from the resulting radiographs that for most maxillofacial fractures a half axial or Water's view was most helpful. Lateral views only give additional information when there is a considerable degree of dislocation of fragments. Comparison with a prediatric skull of 8 years of age demonstrated that fractures of the zygomatic arch in this age group cannot be demonstrated by the typical submento-vertical view, but are shown on a Towne projection. The radiographic appearance of important maxillofacial fractures is demonstrated. The necessity of further studies in cases where reconstructive surgery appears necessary is discussed and CT rather then conventional tomography is advocated. (orig.) [de

  8. Collagen turnover after tibial fractures

    DEFF Research Database (Denmark)

    Joerring, S; Krogsgaard, M; Wilbek, H

    1994-01-01

    Collagen turnover after tibial fractures was examined in 16 patients with fracture of the tibial diaphysis and in 8 patients with fracture in the tibial condyle area by measuring sequential changes in serological markers of turnover of types I and III collagen for up to 26 weeks after fracture....... The markers were the carboxy-terminal extension peptide of type I procollagen (PICP), the amino-terminal extension peptide of type III procollagen (PIIINP), and the pyridinoline cross-linked carboxy-terminal telopeptide of type I collagen (ICTP). The latter is a new serum marker of degradation of type I...... collagen. A group comparison showed characteristic sequential changes in the turnover of types I and III collagen in fractures of the tibial diaphysis and tibial condyles. The turnover of type III collagen reached a maximum after 2 weeks in both groups. The synthesis of type I collagen reached a maximum...

  9. Computer simulation of ductile fracture

    International Nuclear Information System (INIS)

    Wilkins, M.L.; Streit, R.D.

    1979-01-01

    Finite difference computer simulation programs are capable of very accurate solutions to problems in plasticity with large deformations and rotation. This opens the possibility of developing models of ductile fracture by correlating experiments with equivalent computer simulations. Selected experiments were done to emphasize different aspects of the model. A difficult problem is the establishment of a fracture-size effect. This paper is a study of the strain field around notched tensile specimens of aluminum 6061-T651. A series of geometrically scaled specimens are tested to fracture. The scaled experiments are conducted for different notch radius-to-diameter ratios. The strains at fracture are determined from computer simulations. An estimate is made of the fracture-size effect

  10. Pathogenesis of osteoporotic hip fractures.

    Science.gov (United States)

    McClung, Michael R

    2003-01-01

    Osteoporosis is characterized late in the course of the disease by an increased risk of fracture, particularly in the elderly. It occurs in both sexes, affecting approximately 8 million women and 2 million men aged > or = 50 years (1). While low bone density is a predictor of fractures, it is not the only determinant of fracture risk. Other factors include advanced age, altered bone quality, a personal or family history of falls, frailty, poor eyesight, debilitating diseases, and high bone turnover. A diet with sufficient calcium and vitamin D is important to minimize bone loss and, along with regular exercise, to maintain muscle strength. Bisphosphonates have been shown to reduce the risk of hip fracture. For elderly patients, the use of hip protectors may be used as a treatment of last resort. Regardless of the age of the patient, individual patient risk factors must be considered to target appropriate treatment and prevent fracture.

  11. Acoustic Monitoring of Gravity-Driven Controls on CaCO3 Precipitates in a Fracture

    Science.gov (United States)

    Xu, Z.; Sheets, J.; Zhang, L.; Kim, D.; Kneafsey, T. J.; Cole, D. R.; Jun, Y. S.; Pyrak-Nolte, L. J.

    2017-12-01

    Sealing fractures by mineral precipitation is an important process for improving caprock integrity in subsurface reservoirs. In this study, the ability to monitor precipitate distribution in fractures with buoyant fluids was examined. Fractures with uniform aperture distributions of 0.5, 1.0 and 2.0 mm were created from acrylic plates to enable direct imaging of precipitate formation over time. CaCO3 precipitation was induced in a fracture from invasion of 1M CaCl2 and 0.3M Na2CO3 solutions. During chemical invasion, a fracture plane was oriented either parallel or perpendicular to gravity. Acoustic (P) wave transmission ( 1 MHz) and optical imaging were used to monitor the sample prior to, during and after fluid injection. Complementary X-ray computed tomography was performed throughout the experiments on vertical fractures and post injection for the horizontal fractures. Precipitate particle sizes during formation were determined using SAXS and WAXS. In both horizontal and vertical fractures, the density contrast between the two solutions affected the spatial distribution of precipitation. In vertical fractures, the denser CaCl2 solution almost completely displaced the NaCO3 solution, causing strong localization of precipitates. However, in the horizontal fractures, flow stratification occurred in the 2 mm aperture fractures, with the less dense Na2CO3 flowing over the CaCl2 solution, resulting in a more even distribution of precipitates cross the fracture plane. P-wave amplitudes increased up to 8% and the arrival time decreased with precipitate accumulation in the horizontal fracture. This is consistent with a three-layered approach as the seismic impedance inside the fracture increases. The initial contact between the two was observed as a decrease in the P-wave amplitude. As precipitates accumulated, the amplitude recovered and increased, with greater increases observed along the mixing flow path. Fractures in the subsurface may seal differently depending on

  12. Effects of " vitex agnus castus" extract and magnesium supplementation, alone and in combination, on osteogenic and angiogenic factors and fracture healing in women with long bone fracture

    OpenAIRE

    Mohammad Hassan Eftekhari; Zahra Hassanzadeh Rostami; Mohammad Jafar Emami; Hamid Reza Tabatabaee

    2014-01-01

    Background: The purpose of this study was to investigate the effects of the combination of vitex agnus castus extract, as a source of phytoestrogens, plus magnesium supplementation on osteogenic and angiogenic factors and callus formation in women with long bone fracture. Material and Methods: In a double-blind randomized placebo controlled trial, 64 women with long bone fracture, 20-45 years old, were randomly allocated to receive 1) one Agnugol tablet (4 mg dried fruit extract of vitex agnu...

  13. Revisiting fracture gradient: Comments on “A new approaching method to estimate fracture gradient by correcting Matthew–Kelly and Eaton's stress ratio”

    KAUST Repository

    Hakiki, Farizal

    2017-07-25

    A study performed by Marbun et al. [1] claimed that “A new methodology to predict fracture pressure from former calculations, Matthew–Kelly and Eaton are proposed.” Also, Marbun et al.\\'s paper stated that “A new value of Poisson\\'s and a stress ratio of the formation were generated and the accuracy of fracture gradient was improved.” We found those all statements are incorrect and some misleading concepts are revealed. An attempt to expose the method of fracture gradient determination from industry practice also appears to solidify that our arguments are acceptable to against improper Marbun et al.\\'s claims.

  14. Experimental study on healing process of rat mandibular bone fracture examined by radiological procedures

    International Nuclear Information System (INIS)

    Iuchi, Yukio; Furumoto, Keiichi

    1994-01-01

    The healing process of rat mandibular fractures was stereoscopically observed daily, using plain roentgenography in the lateral-oblique and tooth axis directions and bone scintigraphy using 99m-Tc-methylene diphosphoric acid (Tc-99m-MDP). The findings were compared with microradiograms of regional polished specimens. X-ray findings included the following. Up to 3 days after bone fracture, the fracture mesiodistally showed distinct radiolucency, with sharp and irregular fracture stump. Radiopacity of the fracture site gradually increased 7 days or later, and bone trabecular formation by callus and stump bridging started to occur at 14 days. Findings similar to those in the control group were observed 49 days or later. The inside was difficult to differentiate, irrespective of the observation time. Bone scans in the mesiodistal and buccolingual planes revealed tracer uptake in the areas of mandibular and soft tissue damage one day after bone fracture. Tracer uptake began to be seen in the fracture site 3 days later, and became marked at 14 days. Then Tc-99m DMP began to be localized and returned to the findings similar to those at 49 days. Bone scanning tended to show wider areas earlier than roentgenography. Microradiographic mesiodistal examination revealed distinct radiopacy of the fracture line for 3 days after bone fracture. Seven days later, bone resorption cavity occurred in the cortical bone around the fracture stump, along with neogenesis of callus. Neogenesis and calcification began to occur gradually, and 14 days later, the fracture osteoremodeling of the internal bone trabeculae was observed. Bone trabecular formation within the bone, however, occurred later. (N.K.)

  15. Relative Permeability of Fractured Rock

    Energy Technology Data Exchange (ETDEWEB)

    Mark D. Habana

    2002-06-30

    Contemporary understanding of multiphase flow through fractures is limited. Different studies using synthetic fractures and various fluids have yielded different relative permeability-saturation relations. This study aimed to extend the understanding of multiphase flow by conducting nitrogen-water relative permeability experiments on a naturally-fractured rock from The Geysers geothermal field. The steady-state approach was used. However, steady state was achieved only at the endpoint saturations. Several difficulties were encountered that are attributed to phase interference and changes in fracture aperture and surface roughness, along with fracture propagation/initiation. Absolute permeabilities were determined using nitrogen and water. The permeability values obtained change with the number of load cycles. Determining the absolute permeability of a core is especially important in a fractured rock. The rock may change as asperities are destroyed and fractures propagate or st rain harden as the net stresses vary. Pressure spikes occurred in water a solute permeability experiments. Conceptual models of an elastic fracture network can explain the pressure spike behavior. At the endpoint saturations the water relative permeabilities obtained are much less than the nitrogen gas relative permeabilities. Saturations were determined by weighing and by resistivity calculations. The resistivity-saturation relationship developed for the core gave saturation values that differ by 5% from the value determined by weighing. Further work is required to complete the relative permeability curve. The steady-state experimental approach encountered difficulties due to phase interference and fracture change. Steady state may not be reached until an impractical length of time. Thus, unsteady-state methods should be pursued. In unsteady-state experiments the challenge will be in quantifying rock fracture change in addition to fluid flow changes.

  16. Fracture behavior of human molars.

    Science.gov (United States)

    Keown, Amanda J; Lee, James J-W; Bush, Mark B

    2012-12-01

    Despite the durability of human teeth, which are able to withstand repeated loading while maintaining form and function, they are still susceptible to fracture. We focus here on longitudinal fracture in molar teeth-channel-like cracks that run along the enamel sidewall of the tooth between the gum line (cemento-enamel junction-CEJ) and the occlusal surface. Such fractures can often be painful and necessitate costly restorative work. The following study describes fracture experiments made on molar teeth of humans in which the molars are placed under axial compressive load using a hard indenting plate in order to induce longitudinal cracks in the enamel. Observed damage modes include fractures originating in the occlusal region ('radial-median cracks') and fractures emanating from the margin of the enamel in the region of the CEJ ('margin cracks'), as well as 'spalling' of enamel (the linking of longitudinal cracks). The loading conditions that govern fracture behavior in enamel are reported and observations made of the evolution of fracture as the load is increased. Relatively low loads were required to induce observable crack initiation-approximately 100 N for radial-median cracks and 200 N for margin cracks-both of which are less than the reported maximum biting force on a single molar tooth of several hundred Newtons. Unstable crack growth was observed to take place soon after and occurred at loads lower than those calculated by the current fracture models. Multiple cracks were observed on a single cusp, their interactions influencing crack growth behavior. The majority of the teeth tested in this study were noted to exhibit margin cracks prior to compression testing, which were apparently formed during the functional lifetime of the tooth. Such teeth were still able to withstand additional loading prior to catastrophic fracture, highlighting the remarkable damage containment capabilities of the natural tooth structure.

  17. Safety Characterization of the Technological Development Plant at Hontomín. Risk Structures: 1. Faults and Fractures

    International Nuclear Information System (INIS)

    Recreo, F.; Hurtado, A.; Eguilior, S.

    2015-01-01

    The safe storage of CO2 requires ensuring seal integrity during the time the CO2 will remain in a supercritical state before dissolving as an aqueous phase, CO2-aq. Geological structures such as faults and fractures that affect storage and seal formations can play an important role in the behaviour of the CO2 plume depending on whether the fracture acts as a barrier to the movement of CO2 or as a preferent conduit. As a consequence, a CO2 geological storage affected by faults or fractures represents a higher degree of uncertainty and its complexity will also be greater for the estimation of the dynamic properties of the flow of CO2 than a not fractured reservoir, increasing uncertainties in assessing both performance and safety In this report an analysis is made on the role that faults and fractures can play on the storage formation flow conditions and on the effects on the behaviour of injected CO2, considering different types of fractures in relation to the fracture inclination angle with the plume flow direction and the fracture conductivity, and presents a simplified model of fracture behaviour in a CO2 storage formation which could be mplemented in the safety assessment probabilistic model that CIUDEN is developing in the framework of the ALM/10/017 project. Finally, an application at the Hontomín site is tested based on the current available geological and geophysical information

  18. STRESS FRACTURE OF THE ULNA IN A BREAK-DANCER

    Directory of Open Access Journals (Sweden)

    Yu-Hsu Chen

    2008-12-01

    Full Text Available Break dancing is a popular activity in teenagers and is associated with severe trauma to bones and tissues. We report the first known case of a break dancer with an ulnar stress fracture. Such injuries occur in a variety of sports due to substantial stress on the ulna and repetitive excessive rotation of the forearm. In this study we describe a patient who experienced an ulnar stress fracture during break dancing training. The diagnosis was established by history and physical examination. Initial radiographic findings were negative. However, radiographs taken 3 months after initial presented revealed callus formation over the ulnar shaft. This suggested that readjustment is required in break dancing training protocols. It is important to increase awareness of this injury among physicians to expedite the diagnosis and to prevent the possibility of conversion to an overt fracture in the future

  19. Mortality Following Periprosthetic Proximal Femoral Fractures Versus Native Hip Fractures.

    Science.gov (United States)

    Boylan, Matthew R; Riesgo, Aldo M; Paulino, Carl B; Slover, James D; Zuckerman, Joseph D; Egol, Kenneth A

    2018-04-04

    The number of periprosthetic proximal femoral fractures is expected to increase with the increasing prevalence of hip arthroplasties. While native hip fractures have a well-known association with mortality, there are currently limited data on this outcome among the subset of patients with periprosthetic proximal femoral fractures. Using the New York Statewide Planning and Research Cooperative System, we identified patients from 60 to 99 years old who were admitted to a hospital in the state with a periprosthetic proximal femoral fracture (n = 1,655) or a native hip (femoral neck or intertrochanteric) fracture (n = 97,231) between 2006 and 2014. Within the periprosthetic fracture cohort, the indication for the existing implant was not available in the data set. We used mixed-effects regression models to compare mortality at 1 and 6 months and 1 year for periprosthetic compared with native hip fractures. The risk of mortality for patients who sustained a periprosthetic proximal femoral fracture was no different from that for patients who sustained a native hip fracture at 1 month after injury (3.2% versus 4.6%; odds ratio [OR], 0.90; 95% confidence interval [CI], 0.68 to 1.19; p = 0.446), but was lower at 6 months (3.8% versus 6.5%; OR, 0.74; 95% CI, 0.57 to 0.95; p = 0.020) and 1 year (9.7% versus 15.9%; OR, 0.71; 95% CI, 0.60 to 0.85; p accounting for age and comorbidities. Prognostic Level III. See Instructions for Authors for a complete description of levels of evidence.

  20. Evolution of a fracture network in an elastic medium with internal fluid generation and expulsion

    Science.gov (United States)

    Kobchenko, Maya; Hafver, Andreas; Jettestuen, Espen; Renard, François; Galland, Olivier; Jamtveit, Bjørn; Meakin, Paul; Dysthe, Dag Kristian

    2014-11-01

    A simple and reproducible analog experiment was used to simulate fracture formation in a low-permeability elastic solid during internal fluid/gas production, with the objective of developing a better understanding of the mechanisms that control the dynamics of fracturing, fracture opening and closing, and fluid transport. In the experiment, nucleation, propagation, and coalescence of fractures within an elastic gelatin matrix, confined in a Hele-Shaw cell, occurred due to CO2 production via fermentation of sugar, and it was monitored by optical means. We first quantified how a fracture network develops, and then how intermittent fluid transport is controlled by the dynamics of opening and closing of fractures. The gas escape dynamics exhibited three characteristic behaviors: (1) Quasiperiodic release of gas with a characteristic frequency that depends on the gas production rate but not on the system size. (2) A 1 /f power spectrum for the fluctuations in the total open fracture area over an intermediate range of frequencies (f ), which we attribute to collective effects caused by interaction between fractures in the drainage network. (3) A 1 /f2 power spectrum was observed at high frequencies, which can be explained by the characteristic behavior of single fractures.

  1. Productivity Analysis of Volume Fractured Vertical Well Model in Tight Oil Reservoirs

    Directory of Open Access Journals (Sweden)

    Jiahang Wang

    2017-01-01

    Full Text Available This paper presents a semianalytical model to simulate the productivity of a volume fractured vertical well in tight oil reservoirs. In the proposed model, the reservoir is a composite system which contains two regions. The inner region is described as formation with finite conductivity hydraulic fracture network and the flow in fracture is assumed to be linear, while the outer region is simulated by the classical Warren-Root model where radial flow is applied. The transient rate is calculated, and flow patterns and characteristic flowing periods caused by volume fractured vertical well are analyzed. Combining the calculated results with actual production data at the decline stage shows a good fitting performance. Finally, the effects of some sensitive parameters on the type curves are also analyzed extensively. The results demonstrate that the effect of fracture length is more obvious than that of fracture conductivity on improving production in tight oil reservoirs. When the length and conductivity of main fracture are constant, the contribution of stimulated reservoir volume (SRV to the cumulative oil production is not obvious. When the SRV is constant, the length of fracture should also be increased so as to improve the fracture penetration and well production.

  2. Mineral Precipitation in Fractures: Multiscale Imaging and Geochemical Modeling

    Science.gov (United States)

    Hajirezaie, S.; Peters, C. A.; Swift, A.; Sheets, J. M.; Cole, D. R.; Crandall, D.; Cheshire, M.; Stack, A. G.; Anovitz, L. M.

    2017-12-01

    For subsurface energy technologies such as geologic carbon sequestration, fractures are potential pathways for fluid migration from target formations. Highly permeable fractures may become sealed by mineral precipitation. In this study, we examined shale specimens with existing cemented fractures as natural analogues, using an array of imaging methods to characterize mineralogy and porosity at several spatial scales. In addition, we used reactive transport modeling to investigate geochemical conditions that can lead to extensive mineral precipitation and to simulate the impacts on fracture hydraulic properties. The naturally-cemented fractured rock specimens were from the Upper Wolfcamp formation in Texas, at 10,000 ft depth. The specimens were scanned using x-ray computed tomography (xCT) at resolution of 13 microns. The xCT images revealed an original fracture aperture of 1.9 mm filled with several distinct mineral phases and vuggy void regions, and the mineral phase volumes and surface areas were quantified and mapped in 3D. Specimens were thin-sectioned and examined at micron- and submicron-scales using petrographic microscopy (PM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and small angle X-ray scattering (SAXS). Collectively these methods revealed crystals of dolomite as large as 900 microns in length overlain with a heterogeneous mixture of carbonate minerals including calcite, dolomite, and Fe-rich dolomite, interspersed at spatial scales as small as 5 microns. In addition, secondary precipitation of SiO2 was found to fill some of the void space. This multiscale imaging was used to inform the reactive transport modeling employed to examine the conditions that can cause the observed mineral precipitation in fractures at a larger scale. Two brines containing solutions that when mixed would lead to precipitation of various carbonate minerals were simulated as injectants into a fracture domain. In particular, the competing

  3. Experimental insights into geochemical changes in hydraulically fractured Marcellus Shale

    International Nuclear Information System (INIS)

    Marcon, Virginia; Joseph, Craig; Carter, Kimberly E.; Hedges, Sheila W.; Lopano, Christina L.; Guthrie, George D.; Hakala, J. Alexandra

    2017-01-01

    Hydraulic fracturing applied to organic-rich shales has significantly increased the recoverable volume of methane available for U.S. energy consumption. Fluid-shale reactions in the reservoir may affect long-term reservoir productivity and waste management needs through changes to fracture mineral composition and produced fluid chemical composition. We performed laboratory experiments with Marcellus Shale and lab-generated hydraulic fracturing fluid at elevated pressures and temperatures to evaluate mineral reactions and the release of trace elements into solution. Results from the experiment containing fracturing chemicals show evidence for clay and carbonate dissolution, secondary clay and anhydrite precipitation, and early-stage (24–48 h) fluid enrichment of certain elements followed by depletion in later stages (i.e. Al, Cd, Co, Cr, Cu, Ni, Sc, Zn). Other elements such as As, Fe, Mn, Sr, and Y increased in concentration and remained elevated throughout the duration of the experiment with fracturing fluid. Geochemical modeling of experimental fluid data indicates primary clay dissolution, and secondary formation of smectites and barite, after reaction with fracturing fluid. Changes in aqueous organic composition were observed, indicating organic additives may be chemically transformed or sequestered by the formation after hydraulic fracturing. The NaCl concentrations in our fluids are similar to measured concentrations in Marcellus Shale produced waters, showing that these experiments are representative of reservoir fluid chemistries and can provide insight on geochemical reactions that occur in the field. These results can be applied towards evaluating the evolution of hydraulically-fractured reservoirs, and towards understanding geochemical processes that control the composition of produced water from unconventional shales. - Highlights: • Metal concentrations could be at their peak in produced waters recovered 24–48 after fracturing. • Carbonate

  4. A Rare Entity: Bilateral First Rib Fractures Accompanying Bilateral Scapular Fractures

    Directory of Open Access Journals (Sweden)

    Gultekin Gulbahar

    2015-01-01

    Full Text Available First rib fractures are scarce due to their well-protected anatomic locations. Bilateral first rib fractures accompanying bilateral scapular fractures are very rare, although they may be together with scapular and clavicular fractures. According to our knowledge, no case of bilateral first rib fractures accompanying bilateral scapular fractures has been reported, so we herein discussed the diagnosis, treatment, and complications of bone fractures due to thoracic trauma in bias of this rare entity.

  5. A Rare Entity: Bilateral First Rib Fractures Accompanying Bilateral Scapular Fractures

    OpenAIRE

    Gulbahar, Gultekin; Kaplan, Tevfik; Turker, Hasan Bozkurt; Gundogdu, Ahmet Gokhan; Han, Serdar

    2015-01-01

    First rib fractures are scarce due to their well-protected anatomic locations. Bilateral first rib fractures accompanying bilateral scapular fractures are very rare, although they may be together with scapular and clavicular fractures. According to our knowledge, no case of bilateral first rib fractures accompanying bilateral scapular fractures has been reported, so we herein discussed the diagnosis, treatment, and complications of bone fractures due to thoracic trauma in bias of this rare en...

  6. A Rare Entity: Bilateral First Rib Fractures Accompanying Bilateral Scapular Fractures.

    Science.gov (United States)

    Gulbahar, Gultekin; Kaplan, Tevfik; Turker, Hasan Bozkurt; Gundogdu, Ahmet Gokhan; Han, Serdar

    2015-01-01

    First rib fractures are scarce due to their well-protected anatomic locations. Bilateral first rib fractures accompanying bilateral scapular fractures are very rare, although they may be together with scapular and clavicular fractures. According to our knowledge, no case of bilateral first rib fractures accompanying bilateral scapular fractures has been reported, so we herein discussed the diagnosis, treatment, and complications of bone fractures due to thoracic trauma in bias of this rare entity.

  7. Stellar formation

    CERN Document Server

    Reddish, V C

    1978-01-01

    Stellar Formation brings together knowledge about the formation of stars. In seeking to determine the conditions necessary for star formation, this book examines questions such as how, where, and why stars form, and at what rate and with what properties. This text also considers whether the formation of a star is an accident or an integral part of the physical properties of matter. This book consists of 13 chapters divided into two sections and begins with an overview of theories that explain star formation as well as the state of knowledge of star formation in comparison to stellar structure

  8. SEEPAGE INTO DRIFTS IN UNSATRUATED FRACTURED ROCK AT YUCCA MOUNTAIN

    International Nuclear Information System (INIS)

    JENS BIRHOLZER; GUOMIN LI; CHIN-FU TSANG; YVONNE TSANG

    1998-01-01

    An important issue for the long-term performance of underground nuclear waste repositories is the rate of seepage into the waste emplacement drifts. A prediction of the future seepage rate is particularly complicated for the potential repository site at Yucca Mountain, Nevada, as it is located in thick, partially saturated, fractured tuff formations. The long-term situation in the drifts several thousand years after waste emplacement will be characterized by a relative humidity level close to or equal to 100%. as the drifts will be sealed and unventilated, and the waste packages will have cooled. The underground tunnels will then act as capillary barriers for the unsaturated flow, ideally diverting water around them, if the capillary forces are stronger than gravity and viscous forces. Seepage into the drifts will only be possible if the hydraulic pressure in the rock close to the drift walls increases to positive values; i.e., the flow field becomes locally saturated. In the present work, we have developed and applied a methodology to study the potential rate of seepage into underground cavities embedded in a variably saturated, heterogeneous fractured rock formation. The fractured rock mass is represented as a stochastic continuum where the fracture permeabilities vary by several orders of magnitude. Three different realizations of random fracture permeability fields are generated, with the random permeability structure based on extensive fracture mapping, borehole video analysis, and in-situ air permeability testing. A 3-D numerical model is used to simulate the heterogeneous steady-state flow field around the drift, with the drift geometry explicitly represented within the numerical discretization grid. A variety of flow scenarios are considered assuming present-day and future climate conditions at Yucca Mountain. The numerical study is complemented by theoretical evaluations of the drift seepage problem, using stochastic perturbation theory to develop a better

  9. [Diagnosis and treatment of rib fracture during spontaneous vaginal delivery].

    Science.gov (United States)

    Jovanović, Nebojša; Ristovska, Nataša; Bogdanović, Zorica; Petronijević, Miloš; Opalić, Jasna; Plećaš, Darko

    2013-01-01

    Progress of labor in multiparous women usually is not accompanied with risk of any kind of birth trauma. We report a very rare case of rib fracture in a neonate during vaginal delivery in the 39/40 week of gestation. The expulsion started spontaneously without any manipulation from the obstetrician. Live male newborn was delivered 4650 g. in weight, 55 cm long, with head circumference of 39 cm, Apgar score 9. The child was immediately examined by the neonatologist. Crepitations were palpable over the left hemithorax, and auscultatory on the left side inspiratory cracks. Finding was suspicious for rib fracture on the left side posteriorly and brachial plexus palsy, while other findings were normal. X-ray finding was inconclusive, but suspicious for fracture of the 4th, 5th, and 6th left rib posteriorly, without dislocation of bone fragments. There were no signs of pneumothorax. Dorsal position of the newborn was considered sufficient, accompanied with analgetics. X-ray was scheduled in a week because formation of the calus would be the only objective sign of previous rib fracture. On the control X-ray fracture lines were clearly visible on the 3rd, 4th, 5th 6th and 7th rib posteriorly, without dislocation of bone fragments with initial calus formation. The child was discharged from hospital in good condition after two weeks, for further outpatient care. With timely diagnostics of this very rare intrapartal fracture, adequate treatment, dorsal position and close control of clinical condition of the newborn, serious and potentially life threatening complications can be avoided.

  10. Diagnosis and treatment of rib fracture during spontaneous vaginal delivery

    Directory of Open Access Journals (Sweden)

    Jovanović Nebojša

    2013-01-01

    Full Text Available Introduction. Progress of labor in multiparous women usually is not accompanied with risk of any kind of birth trauma. Case Outline. We report a very rare case of rib fracture in a neonate during vaginal delivery in the 39/40 week of gestation. The expulsion started spontaneously without any manipulation from the obstetrician. Live male newborn was delivered 4650 g. in weight, 55 cm long, with head circumference of 39 cm, Apgar score 9. The child was immediately examined by the neonatologist. Crepitations were palpable over the left hemithorax, and auscultatory on the left side inspiratory cracks. Finding was suspicious for rib fracture on the left side posteriorly and brachial plexus palsy, while other findings were normal. X­ray finding was inconclusive, but suspicious for fracture of the 4th, 5th, and 6th left rib posteriorly, without dislocation of bone fragments. There were no signs of pneumothorax. Dorsal position of the newborn was considered sufficient, accompanied with analgetics. X­ray was scheduled in a week because formation of the calus would be the only objective sign of previous rib fracture. On the control X­ray fracture lines were clearly visible on the 3rd, 4th, 5th, 6th and 7th rib posteriorly, without dislocation of bone fragments with initial calus formation. The child was discharged from hospital in good condition after two weeks, for further outpatient care. Conclusion. With timely diagnostics of this very rare intrapartal fracture, adequate treatment, dorsal position and close control of clinical condition of the newborn, serious and potentially life threatening complications can be avoided.

  11. Probabilistic fracture finite elements

    Science.gov (United States)

    Liu, W. K.; Belytschko, T.; Lua, Y. J.

    1991-05-01

    The Probabilistic Fracture Mechanics (PFM) is a promising method for estimating the fatigue life and inspection cycles for mechanical and structural components. The Probability Finite Element Method (PFEM), which is based on second moment analysis, has proved to be a promising, practical approach to handle problems with uncertainties. As the PFEM provides a powerful computational tool to determine first and second moment of random parameters, the second moment reliability method can be easily combined with PFEM to obtain measures of the reliability of the structural system. The method is also being applied to fatigue crack growth. Uncertainties in the material properties of advanced materials such as polycrystalline alloys, ceramics, and composites are commonly observed from experimental tests. This is mainly attributed to intrinsic microcracks, which are randomly distributed as a result of the applied load and the residual stress.

  12. Fracture flow code

    International Nuclear Information System (INIS)

    Dershowitz, W; Herbert, A.; Long, J.

    1989-03-01

    The hydrology of the SCV site will be modelled utilizing discrete fracture flow models. These models are complex, and can not be fully cerified by comparison to analytical solutions. The best approach for verification of these codes is therefore cross-verification between different codes. This is complicated by the variation in assumptions and solution techniques utilized in different codes. Cross-verification procedures are defined which allow comparison of the codes developed by Harwell Laboratory, Lawrence Berkeley Laboratory, and Golder Associates Inc. Six cross-verification datasets are defined for deterministic and stochastic verification of geometric and flow features of the codes. Additional datasets for verification of transport features will be documented in a future report. (13 figs., 7 tabs., 10 refs.) (authors)

  13. The hydraulic properties of fracture zones and tracer tests with non-reactive elements in Studsvik

    International Nuclear Information System (INIS)

    Klockars, C.-E.; Persson, O.; Landstroem, O.

    1982-04-01

    Tracer technique was applied in a rock formation within the Studsvik Energiteknik area in order to study hydrodynamic properties of discrete fracture zones between boreholes. The two hole method was applied in these studies; a nonreactive tracer is injected in one hole into a fracture zone which is in hydraulic contact with a central pump hole (observation hole). Hydraulic tests and TV inspection were carried out in the fracture zones. Chemical composition of the groundwater was determined. In summary, the following hydraulic properties were found for the fracture zones between the boreholes B1N-B6N and B5N-B6N respectively, under the prevailing conditions: 1) The fracture zones studied consists of a number of transport pathways with different mean transit times, varying from 100 to 1200 hours. 2) The fracture zone between boreholes B1N and B6N has a mean hydraulic conductivity of 6-7 x 10 -5 m/s and the fracture zone between boreholes B5N and B6N, 2 x 10 -4 m/s. 3) The kinematic porosity of the fracture zones studied, calculated as the ratio between the hydraulic conductivity of the rock mass and that of the fracture zone, is 2 x 10 -3 and 5 x 10 -3 , respectively. 4) The roughness factor β, which expresses the ratio between measured and theoretically calculated (plane-parallel) fracture conductivity for the fracture zones studied, is approximately 0.04 and 0.06, respectively. 5) Dispersivity for the flow channels within the fracture zones is of the order of 0.3-0.8 m. 6) The groundwater encountered is a nearly neutral, probably reducing, Na-Ca-HCO 3 water. The results of the tracer tests reveal the following: I-131 is a suitable nonreactive tracer for the test area. A test with simultaneous injection of I-131 and T (tritium) gave comparable breakthrough curves. (Author)

  14. On the possibility of magnetic nano-markers use for hydraulic fracturing in shale gas mining

    Science.gov (United States)

    Zawadzki, Jaroslaw; Bogacki, Jan

    2016-04-01

    Recently shale gas production became essential for the global economy, thanks to fast advances in shale fracturing technology. Shale gas extraction can be achieved by drilling techniques coupled with hydraulic fracturing. Further increasing of shale gas production is possible by improving the efficiency of hydraulic fracturing and assessing the spatial distribution of fractures in shale deposits. The latter can be achieved by adding magnetic markers to fracturing fluid or directly to proppant, which keeps the fracture pathways open. After that, the range of hydraulic fracturing can be assessed by measurement of vertical and horizontal component of earth's magnetic field before and after fracturing. The difference in these components caused by the presence of magnetic marker particles may allow to delineate spatial distribution of fractures. Due to the fact, that subterranean geological formations may contain minerals with significant magnetic properties, it is important to provide to the markers excellent magnetic properties which should be also, independent of harsh chemical and geological conditions. On the other hand it is of great significance to produce magnetic markers at an affordable price because of the large quantities of fracturing fluids or proppants used during shale fracturing. Examining the properties of nano-materials, it was found, that they possess clearly superior magnetic properties, as compared to the same structure but having a larger particle size. It should be then possible, to use lower amount of magnetic marker, to obtain the same effect. Although a research on properties of new magnetic nano-materials is very intensive, cheap magnetic nano-materials are not yet produced on a scale appropriate for shale gas mining. In this work we overview, in detail, geological, technological and economic aspects of using magnetic nano-markers in shale gas mining. Acknowledgment This work was supported by the NCBiR under Grant "Electromagnetic method to

  15. Short incomplete sagittal fractures of the proximal phalanx in ten horses not used for racing.

    Science.gov (United States)

    Kuemmerle, Jan M; Auer, Jörg A; Rademacher, Nathalie; Lischer, Christoph J; Bettschart-Wolfensberger, Regula; Fürst, Anton E

    2008-02-01

    To describe short incomplete sagittal fractures of the proximal phalanx (type Ia P1 fractures) in horses not used for racing and report outcome. Retrospective study. Horses (n=10) with type Ia P1 fractures. Retrieved data of horses with type Ia P1 fractures were signalment, history and results of orthopedic examination. Radiographs were re-evaluated for position and length of the fracture line, presence of osteoarthritis or subchondral cystic lesions (SCL), periosteal new bone formation and subchondral sclerosis. Conservative treatment (n=4) included box confinement for 2 months followed by 1 month of hand walking. Surgical therapy (n=6) consisted of internal fixation by screws inserted in lag fashion in 5 horses. Concurrent SCL were debrided by curettage via a transcortical drilling approach. In 1 horse, only SCL curettage but not internal fixation was performed. Outcome was assessed on a clinical and radiographic follow-up examination in all horses. Mean follow-up time was 27 months (median, 13.5 months; range, 9 months to 9 years). All horses treated with internal fixation were sound at follow-up and had radiographic fracture healing. Of the 4 horses managed conservatively, 3 remained lame and only 1 horse had radiographic evidence of fracture healing. Catastrophic fracture propagation occurred in 2 horses not treated by internal fixation, 20 and 30 months after diagnosis, respectively. Horses with a type Ia P1 fracture treated surgically had a better outcome than those managed conservatively and lack of fracture healing seemingly increases the risk of later catastrophic fracture. Surgical repair of type Ia P1 fractures should be considered to optimize healing and return to athletic use.

  16. Arsenic evolution in fractured bedrock wells in central Maine, USA

    Science.gov (United States)

    Yang, Q.; Zheng, Y.; Culbertson, C.; Schalk, C.; Nielsen, M. G.; Marvinney, R.

    2010-12-01

    Elevated arsenic concentration in fractured bedrock wells has emerged as an important and challenging health problem, especially in rural areas without public water supply and mandatory monitoring of private wells. This has posed risks of skin, bladder, prostate diseases and cancers to private well users. In central Maine, including the study site, 31% of bedrock wells in meta-sedimentary formations have been reported of elevated arsenic concentrations of > 10 µg/L. Geophysical logging and fracture specific water sampling in high arsenic wells have been conducted to understand how water flowing through the aquifers enters the boreholes and how arsenic evolves in the fracture bedrock wells. Two domestic wells in Manchester, Maine, located 50 meter apart with 38 µg/L and 73 µg/L of arsenic in unfiltered water, were investigated to characterize fractures by geophysical logging and to determine flow rates by pumping test. Water samples, representing the bore hole and the fractures, were collected and analyzed for arsenic under ambient and pumping conditions. Transmissivity of the fractures was estimated at 0.23-10.6 m2/day. Water with high dissolved arsenic was supplied primarily by high yielding fractures near the bottom of the borehole. Dissolved arsenic concentrations in borehole water increased as fracture water with high arsenic was replacing borehole water with initially low dissolved arsenic in response to pumping. The precipitation of iron particulates enriched in arsenic was common during and after pumping. Laboratory experiment on well water samples over a period of 16 days suggested that in the borehole arsenic was mainly settled with iron enriched particles, likely amorphous ferric oxyhydroxides, with possibly minor adsorption on the iron minerals. Another bedrock well in Litchfield, Maine, with 478 µg/L of arsenic in the unfiltered well water, is being investigated to quantify and reconstruct of the groundwater flow under ambient and pumping conditions

  17. Implications of Earth analogs to Martian sulfate-filled Fractures

    Science.gov (United States)

    Holt, R. M.; Powers, D. W.

    2017-12-01

    Sulfate-filled fractures in fine-grained sediments on Mars are interpreted to be the result of fluid movement during deep burial. Fractures in the Dewey Lake (aka Quartermaster) Formation of southeastern New Mexico and west Texas are filled with gypsum that is at least partially synsedimentary. Sulfate in the Dewey Lake takes two principal forms: gypsum cement and gypsum (mainly fibrous) that fills fractures ranging from horizontal to vertical. Apertures are mainly mm-scale, though some are > 1 cm. The gypsum is antitaxial, fibrous, commonly approximately perpendicular to the wall rock, and displays suture lines and relics of the wall rock. Direct evidence of synsedimentary, near-surface origin includes gypsum intraclasts, intraclasts that include smaller intraclasts that contain gypsum clasts, intraclasts of gypsum with suture lines, gypsum concentrated in small desiccation cracks, and intraclasts that include fibrous gypsum-filled fractures that terminate at the eroded clast boundary. Dewey Lake fracture fillings suggest that their Martian analogs may also have originated in the shallow subsurface, shortly following the deposition of Martian sediments, in the presence of shallow aquifers.

  18. Thrombotic thrombocytopenic purpura presenting with pathologic fracture: a case report.

    Science.gov (United States)

    Berber, Ilhami; Erkurt, Mehmet Ali; Kuku, Irfan; Kaya, Emin; Unlu, Serkan; Ertem, Kadir; Nizam, Ilknur

    2014-08-01

    Thrombotic thrombocytopenic purpura is an acute syndrome with abnormalities in multiple organ systems, which becomes manifest with microangiopathic hemolytic anemia and thrombocytopenia. The hereditary or acquired deficiency of ADAMTS-13 activity leads to an excess of high molecular weight von Willebrand factor multimers in plasma, leading to platelet aggregation and diffuse intravascular thrombus formation, resulting in thrombotic thrombocytopenic purpura. Thrombotic lesions occurring in TTP leads to ischemia and convulsion. Depending on the properties of the bony tissue, fractures are divided into three groups as traumatic, pathological, and stress fractures. A pathologic fracture is a broken bone caused by disease leading to weakness of the bone. This process is most commonly due to osteoporosis, but may also be due to other pathologies such as cancer, infections, inherited bone disorders, or a bone cyst. We herein report a case with a pathologic fracture due to convulsion secondary to thrombotic thrombocytopenic pupura. Thrombotic lesions occurring in TTP may lead to ischemia and convulsion, as in our patient and pathological fractures presented in our case report may occur as a result of severe muscle contractions associated with convulsive activity. Thrombotic thrombocytopenic pupura is a disease that involves many organ systems and thus may have a very wide spectrum of clinical presentations. Copyright © 2014. Published by Elsevier Ltd.

  19. Possible factors for ankle fractures

    Directory of Open Access Journals (Sweden)

    Tabaković Dejan

    2010-01-01

    Full Text Available Background/Aim. Classification of ankle fractures is commonly used for selecting an appropriate treatment and prognosing an outcome of definite management. One of the most used classifications is the Danis-Weber classification. To the best of our knowledge, in the available literature, there are no parameters affecting specific types of ankle fractures according to the Danis-Weber classification. The aim of this study was to analyze the correlation of the following parameters: age, body weight, body mass index (BMI, height, osteoporosis, osteopenia and physical exercises with specific types of ankle fractures using the Danis-Weber classification. Methods. A total of 85 patients grouped by the Danis-Weber classification fracture types were analyzed and the significance of certain parameters for specific types of ankle fractures was established. Results. The proportion of females was significantly higher (p < 0.001 with a significantly higher age (59.9 years, SD ± 14.2 in relation to males (45.1 years, SD ± 12.8 (p < 0.0001. Type A fracture was most frequent in the younger patients (34.2 years, SD ± 8.6, and those with increased physical exercises (p = 0.020. In type B fracture, the risk factor was osteoporosis (p = 0.0180, while in type C fracture, body weight (p = 0.017 and osteoporosis (p = 0.004 were significant parameters. Conclusion. Statistical analysis using the Danis-Weber classification reveals that there are certain parameters suggesting significant risk factors for specific types of ankle fractures.

  20. Galaxy formation

    International Nuclear Information System (INIS)

    Silk, J.; Di Cintio, A.; Dvorkin, I.

    2014-01-01

    Galaxy formation is at the forefront of observation and theory in cosmology. An improved understanding is essential for improving our knowledge both of the cosmological parameters, of the contents of the universe, and of our origins. In these lectures intended for graduate students, galaxy formation theory is reviewed and confronted with recent observational issues. In lecture 1, the following topics are presented: star formation considerations, including IMF, star formation efficiency and star formation rate, the origin of the galaxy luminosity function, and feedback in dwarf galaxies. In lecture 2, we describe formation of disks and massive spheroids, including the growth of supermassive black holes, negative feedback in spheroids, the AGN-star formation connection, star formation rates at high redshift and the baryon fraction in galaxies.

  1. Characterisation of hydraulically-active fractures in a fractured ...

    African Journals Online (AJOL)

    2015-01-07

    Jan 7, 2015 ... injection and recovery tests were conducted for verification of the ... Keywords: self-potential method, hydraulically-conductive fractures, constant pressure injection and recovery ...... porous media 1: theory of the zeta potential.

  2. Fracture Union in Closed Interlocking Nail in Humeral Shaft Fractures

    Directory of Open Access Journals (Sweden)

    Ramji Lal Sahu

    2015-01-01

    Conclusions: The results of the present study indicates that in the presence of proper indications, reamed antegrade intramedullary interlocked nailing appears to be a method of choice for internal fixation of osteoporotic and pathologic fractures.

  3. Computed tomography of stress fracture

    International Nuclear Information System (INIS)

    Murcia, M.; Brennan, R.E.; Edeiken, J.

    1982-01-01

    An athletic young female developed gradual onset of pain in the right leg. Plain radiographs demonstrated solid periosteal reaction in the tibia compatible with stress fracture. She stopped sport activites but her pain continued. Follow-up radiographs of the tibia revealed changes suspicious for osteoid osteoma. Computed tomography (CT) scan demonstrated periosteal reaction, but in addition, lucent fracture lines in the tibial cortex were evident. CT obviated the need for more invasive diagnostic procedures in this patient. In selected cases CT may be useful to confirm the diagnosis of stress fracture when plain radiographic or routine tomographic studies are not diagnostic. (orig.)

  4. Sternal fractures and their management

    Directory of Open Access Journals (Sweden)

    Al-achraf Khoriati

    2013-01-01

    Full Text Available Sternal fractures are predominantly associated with deceleration injuries and blunt anterior chest trauma. Sternal trauma must be carefully evaluated by monitoring of vital parameters and it is of paramount importance that concomitant injuries are excluded. Nevertheless, routine admission of patients with isolated sternal fractures for observation is still common in today′s practice, which is often unnecessary. This article aims to describe the prognosis, the recommended assessment and management of patients with sternal fractures, to help clinicians make an evidence-based judgment regarding the need for hospitalization.

  5. Stress Fractures of the Foot.

    Science.gov (United States)

    Hossain, Munier; Clutton, Juliet; Ridgewell, Mark; Lyons, Kathleen; Perera, Anthony

    2015-10-01

    Stress fractures of the foot and ankle may be more common among athletes than previously reported. A low threshold for investigation is warranted and further imaging may be appropriate if initial radiographs remain inconclusive. Most of these fractures can be treated conservatively with a period of non-weight-bearing mobilization followed by gradual return to activity. Early surgery augmented by bone graft may allow athletes to return to sports earlier. Risk of delayed union, nonunion, and recurrent fracture is high. Many of the patients may also have risk factors for injury that should be modified for a successful outcome. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Elastic fracture in driven media

    International Nuclear Information System (INIS)

    Lung Chiwei; Wang Shenggang; Long Qiyi

    1999-08-01

    Fracture as one of the mechanical properties of materials is structurally dependent. Defects, defect assemblies, grain boundaries and sub-boundaries materials, modify the local stress intensity factors intensively. Brittle fracture prefers to confine to the grain boundary where the specific surface energy is lower than that in the grain. Again, transgranular cracking may occur on the crystal cleavage plane or planes where the local toughness is lowered by dislocation interaction and motion. This paper shows the complexity of the fractal dimension or roughness index of fractured surfaces in materials with metallographic structures or in inhomogeneous media. (author)

  7. Occupational therapy and Colles' fractures.

    Science.gov (United States)

    Christensen, O M; Kunov, A; Hansen, F F; Christiansen, T C; Krasheninnikoff, M

    2001-01-01

    In this randomized trial, we enrolled 30 patients treated for a distal radius Colles' type fracture. The fractures were reduced if necessary and fixed in a below-elbow plaster cast for 5 weeks. One group consisting of 14 patients received instructions for shoulder; elbow and finger exercise and the other group consisting of 16 patients had occupational therapy. At 5 weeks, 3 and 9 months we measured the functional scores. There were no statistically significant differences between the groups at any time. It seems that for non-surgically treated patients with a distal radius fracture only instructions are necessary.

  8. Fractures of the proximal humerus

    DEFF Research Database (Denmark)

    Brorson, Stig

    2013-01-01

    Fractures of the proximal humerus have been diagnosed and managed since the earliest known surgical texts. For more than four millennia the preferred treatment was forceful traction, closed reduction, and immobilization with linen soaked in combinations of oil, honey, alum, wine, or cerate......, classification of proximal humeral fractures remains a challenge for the conduct, reporting, and interpretation of clinical trials. The evidence for the benefits of surgery in complex fractures of the proximal humerus is weak. In three systematic reviews I studied the outcome after locking plate osteosynthesis...

  9. Computed tomography of stress fracture

    International Nuclear Information System (INIS)

    Murcia, M.; Brennan, R.E.; Edeiken, J.

    1982-01-01

    An athletic young female developed gradual onset of pain in the right leg. Plain radiographs demonstrated solid periosteal reaction in the tibia compatible with stress fracture. She stopped sport activites but her pain continued. Follow-up radiographs of the tibia revealed changes suspicious for osteoid osteoma. Computed tomography (CT) scan demonstrated periosteal reaction, but in addition, lucent fracture lines in the tibial cortex were evident. CT obviated the need for more invasive diagnostic procedures in this patient. In selected cases CT may be useful to confirm the diagnosis of stress fracture when plain radiographic or routine tomographic studies are not diagnostic

  10. Insufficiency fracture after radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Dong Ryul; Huh, Seung Jae [Dept.of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2014-12-15

    Insufficiency fracture occurs when normal or physiological stress applied to weakened bone with demineralization and decreased elastic resistance. Recently, many studies reported the development of IF after radiation therapy (RT) in gynecological cancer, prostate cancer, anal cancer and rectal cancer. The RT-induced insufficiency fracture is a common complication during the follow-up using modern imaging studies. The clinical suspicion and knowledge the characteristic imaging patterns of insufficiency fracture is essential to differentiate it from metastatic bone lesions, because it sometimes cause severe pain, and it may be confused with bone metastasis.

  11. Contemporary management of subtrochanteric fractures.

    Science.gov (United States)

    Joglekar, Siddharth B; Lindvall, Eric M; Martirosian, Armen

    2015-01-01

    Cephalomedullary interlocking nails that allow for trochanteric entry and minimally invasive fixation have revolutionized the contemporary management of subtrochanteric fractures with improved union rates and decreased incidence of fixation failure. The most successful alternative to intramedullary fixation remains the angled blade plate. Despite biomechanical superiority of contemporary intramedullary implants to previous intramedullary devices, the importance of achieving and maintaining satisfactory fracture reduction prior to and during hardware insertion cannot be overemphasized. In comminuted and more challenging fractures, additional techniques, such as limited open reduction with clamps and/or cables, can allow for canal restoration and more anatomic reductions prior to and/or during nail insertion. Published by Elsevier Inc.

  12. Hydro-mechanical coupled simulation of hydraulic fracturing using the eXtended Finite Element Method (XFEM)

    Science.gov (United States)

    Youn, Dong Joon

    This thesis presents the development and validation of an advanced hydro-mechanical coupled finite element program analyzing hydraulic fracture propagation within unconventional hydrocarbon formations under various conditions. The realistic modeling of hydraulic fracturing is necessarily required to improve the understanding and efficiency of the stimulation technique. Such modeling remains highly challenging, however, due to factors including the complexity of fracture propagation mechanisms, the coupled behavior of fracture displacement and fluid pressure, the interactions between pre-existing natural and initiated hydraulic fractures and the formation heterogeneity of the target reservoir. In this research, an eXtended Finite Element Method (XFEM) scheme is developed allowing for representation of single or multiple fracture propagations without any need for re-meshing. Also, the coupled flows through the fracture are considered in the program to account for their influence on stresses and deformations along the hydraulic fracture. In this research, a sequential coupling scheme is applied to estimate fracture aperture and fluid pressure with the XFEM. Later, the coupled XFEM program is used to estimate wellbore bottomhole pressure during fracture propagation, and the pressure variations are analyzed to determine the geometry and performance of the hydraulic fracturing as pressure leak-off test. Finally, material heterogeneity is included into the XFEM program to check the effect of random formation property distributions to the hydraulic fracture geometry. Random field theory is used to create the random realization of the material heterogeneity with the consideration of mean, standard deviation, and property correlation length. These analyses lead to probabilistic information on the response of unconventional reservoirs and offer a more scientific approach regarding risk management for the unconventional reservoir stimulation. The new stochastic approach

  13. Healing patterns of clavicular birth injuries as a guide to fracture dating in cases of possible infant abuse

    International Nuclear Information System (INIS)

    Walters, Michele M.; Forbes, Peter W.; Buonomo, Carlo; Kleinman, Paul K.

    2014-01-01

    Dating fractures is critical in cases of suspected infant abuse. There are little scientific data to guide radiologists, and dating is generally based on personal experience and conventional wisdom. Since birth-related clavicular fractures are not immobilized and their age is known, we propose that an assessment of these injuries may serve as a guide for dating inflicted fractures in young infants, acknowledging that patterns observed in the clavicle may not be entirely generalizable to other bones injured in the setting of abuse. One hundred thirty-one radiographs of presumed birth-related clavicular fractures in infants between 0 and 3 months of age were reviewed by two pediatric radiologists with 30 and 15 years' experience. Readers were asked to evaluate images based on several parameters of fracture healing, with a focus on subperiosteal new bone formation (SPNBF) and callus formation. SPNBF and callus were each evaluated with regard to presence, thickness and character. Responses were correlated with known fracture ages. SPNBF was rarely seen in fractures less than 7 days old and was most often present by 10 days. Callus formation was rarely seen in fractures less than 9 days old and was most often present by 15 days. SPNBF thickness increased with fracture age and the character of SPNBF evolved from single-layered to solid/multilayered. Callus thickness decreased with fracture age and callus matrix evolved from soft to intermediate to hard in character. There is an evolution in clavicular fracture healing in young infants that follows a predictable pattern. These findings afford the prospect that predictable patterns of infant clavicular fracture healing can provide an evidence base that may be applicable in cases of suspected infant abuse. (orig.)

  14. Low polymer hydraulic fracturing applications in Reconcavo basin wells can reduce cost and improve conductivity

    International Nuclear Information System (INIS)

    Suzart, Joao Walter Pereira; Araujo, Paulo Fernando de

    2000-01-01

    Gels used for hydraulic-fracturing treatments generally contain high concentrations of polymer. The polymer helps the fracturing fluid achieve the level of viscosity necessary for transporting proppant through the rock matrix. However, high-polymer gels leave greater amounts of residue in the formation and can therefore cause formation damage. This paper describes how low polymer (L P) gels can be used for hydraulic-fracturing operations to reduce job costs and increase conductivity by reducing formation damage while maintaining the characteristics of a high-polymer gel. The L P fluid system has a low p H and contains an appropriate breaker concentration. Operators have achieved positive results with this system, which allows them to measure robust gel breaks and reduces the necessity for well cleaning. Consequently, formation damage can be significantly reduced. (author)

  15. Atypical fractures on long term bisphosphonates therapy.

    LENUS (Irish Health Repository)

    Hussein, W

    2011-01-01

    Bisphosphonates reduce fractures risk in patients with osteoporosis. A new pattern of fractures is now being noted in patients on prolonged bisphosphonate therapy. We report a case of an atypical femoral fracture with preceding pain and highlight the characteristics of these fractures.

  16. Test plan: Hydraulic fracturing and hydrologic tests in Marker Beds 139 and 140

    International Nuclear Information System (INIS)

    Wawersik, W.R.; Beauheim, R.L.

    1991-03-01

    Combined hydraulic fracturing and hydrological measurements in this test plan are designed to evaluate the potential influence of fracture formation in anhydrite Marker Beds 139 and 140 on gas pressure in and gas flow from the disposal rooms in the Waste Isolation Pilot Plant with time. The tests have the further purpose of providing comparisons of permeabilities of anhydrite interbeds in an undisturbed (virgin) state and after fracture development and/or opening and dilation of preexisting partially healed fractures. Three sets of combined hydraulic fracturing and hydrological measurements are planned. A set of trial measurements is expected to last four to six weeks. The duration of each subsequent experiment is anticipated to be six to eight weeks

  17. Coupled Fracture and Flow in Shale in Hydraulic Fracturing

    Science.gov (United States)

    Carey, J. W.; Mori, H.; Viswanathan, H.

    2014-12-01

    Production of hydrocarbon from shale requires creation and maintenance of fracture permeability in an otherwise impermeable shale matrix. In this study, we use a combination of triaxial coreflood experiments and x-ray tomography characterization to investigate the fracture-permeability behavior of Utica shale at in situ reservoir conditions (25-50 oC and 35-120 bars). Initially impermeable shale core was placed between flat anvils (compression) or between split anvils (pure shear) and loaded until failure in the triaxial device. Permeability was monitored continuously during this process. Significant deformation (>1%) was required to generate a transmissive fracture system. Permeability generally peaked at the point of a distinct failure event and then dropped by a factor of 2-6 when the system returned to hydrostatic failure. Permeability was very small in compression experiments (fashion as pressure increased. We also observed that permeability decreased with increasing fluid flow rate indicating that flow did not follow Darcy's Law, possibly due to non-laminar flow conditions, and conformed to Forscheimer's law. The coupled deformation and flow behavior of Utica shale, particularly the large deformation required to initiate flow, indicates the probable importance of activation of existing fractures in hydraulic fracturing and that these fractures can have adequate permeability for the production of hydrocarbon.

  18. Transverse posterior element fractures associated with torsion

    International Nuclear Information System (INIS)

    Abel, M.S.

    1989-01-01

    Six examples of a previously undescribed class of transverse vertebral element fractures are presented. These fractures differ from Chance and Smith fractures and their variants in the following respects: (1) the etiology is torsion and not flexion; (2) there is neither distraction of posterior ring fragments nor posterior ligament tears; (3) in contrast to Chance and Smith fractures, extension of the fracture into the vertebral body is absent or minimal; (4) the transverse process of the lumbar vertebra is avulsed at its base with a vertical fracture, not split horizontally. These fractures occur in cervical, lumbar, and sacral vertebrae in normal or compromised areas of the spine. (orig.)

  19. Routine functional assessment for hip fracture patients

    DEFF Research Database (Denmark)

    Pedersen, Tonny J; Lauritsen, Jens M

    2016-01-01

    Background and purpose - Pre-fracture functional level has been shown to be a consistent predictor of rehabilitation outcomes in older hip fracture patients. We validated 4 overall pre-fracture functional level assessment instruments in patients aged 65 or more, used the prediction of outcome at 4...... months post-fracture, and assessed cutoff values for decision making in treatment and rehabilitation. Patients and methods - 165 consecutive patients with acute primary hip fracture were prospectively included in the study. Pre-fracture Barthel-20, Barthel-100, cumulated ambulation score, and new...... investigation of usage for guidance of clinical and rehabilitation decisions concerning hip fracture patients is warranted....

  20. Field and numerical descriptions of fracture geometries and terminations in chalk containing chert layers and inclusions; implications for groundwater flow in Danish chalk aquifers

    Science.gov (United States)

    Seyum, S.

    2017-12-01

    This study is a description of the fracture distribution in laterally discontinuous chalk and chert layers, with an investigation on how fracture lengths and apertures vary as a function of applied stresses, material properties, and interface properties. Natural fractures intersect laterally extensive, discontinuous, chalk-chert material interfaces in 62 million-year old to 72 million-year old Chalk Group formations exposed at Stevns Klint, Denmark. Approximately one-third of Denmark's fresh water use is from chalk and limestone regional aquifers of the Chalk Group formations, where rock permeability is dominantly a function of open fracture connectivities. Fractured, centimeter- to decimeter-thick chert layers and inclusions (101 GPa elastic stiffness) are interlayered with fractured, meter-thick chalk layers (100 GPa elastic stiffness). Fractures are observed to terminate against and cross chalk-chert interfaces, affecting the vertical flow of water and pollutants between aquifers. The discontinuous and variably thin nature of chert layers at Stevns Klint effectively merges adjacent fracture-confining layers of chalk along discrete position intervals, resulting in lateral variability of fracture spacing. Finite element numerical models are designed to describe fracture interactions with stiff, chert inclusions of various shapes, thicknesses, widths, orientations, and interface friction and fracture toughness values. The models are two-dimensional with isotropic, continuous material in plane strain and uniformly applied remote principal stresses. These characteristics are chosen based on interpretations of the petrophysics of chalk and chert, the burial history of the rock, and the scale of investigation near fracture tips relative to grain sizes. The result are value ranges for relative stiffness contrasts, applied stresses, and material interface conditions that would cause fractures to cross, terminate at, or form along chalk-chert interfaces, with emphasis on

  1. Development of the T+M coupled flow–geomechanical simulator to describe fracture propagation and coupled flow–thermal–geomechanical processes in tight/shale gas systems

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jihoon; Moridis, George J.

    2013-10-01

    We developed a hydraulic fracturing simulator by coupling a flow simulator to a geomechanics code, namely T+M simulator. Modeling of the vertical fracture development involves continuous updating of the boundary conditions and of the data connectivity, based on the finite element method for geomechanics. The T+M simulator can model the initial fracture development during the hydraulic fracturing operations, after which the domain description changes from single continuum to double or multiple continua in order to rigorously model both flow and geomechanics for fracture-rock matrix systems. The T+H simulator provides two-way coupling between fluid-heat flow and geomechanics, accounting for thermoporomechanics, treats nonlinear permeability and geomechanical moduli explicitly, and dynamically tracks changes in the fracture(s) and in the pore volume. We also fully accounts for leak-off in all directions during hydraulic fracturing. We first validate the T+M simulator, matching numerical solutions with the analytical solutions for poromechanical effects, static fractures, and fracture propagations. Then, from numerical simulation of various cases of the planar fracture propagation, shear failure can limit the vertical fracture propagation of tensile failure, because of leak-off into the reservoirs. Slow injection causes more leak-off, compared with fast injection, when the same amount of fluid is injected. Changes in initial total stress and contributions of shear effective stress to tensile failure can also affect formation of the fractured areas, and the geomechanical responses are still well-posed.

  2. Fractures of the growing mandible.

    Science.gov (United States)

    Kushner, George M; Tiwana, Paul S

    2009-03-01

    Oral and maxillofacial surgeons must constantly weigh the risks of surgical intervention for pediatric mandible fractures against the wonderful healing capacity of children. The majority of pediatric mandibular fractures can be managed with closed techniques using short periods of maxillomandibular fixation or training elastics alone. Generally, the use of plate- and screw-type internal fixation is reserved for difficult fractures. This article details general and special considerations for this surgery including: craniofacial growth & development, surgical anatomy, epidemiology evaluation, various fractures, the role rigid internal fixation and the Risdon cable in pediatric maxillofacial trauma. It concludes with suggestions concerning long-term follow-up care in light of the mobility, insurance obstacles, and family dynamics facing the patient population.

  3. The treatment of subtrochanteric fractures

    Directory of Open Access Journals (Sweden)

    Vučetić Čedomir S.

    2011-01-01

    Full Text Available Subtrochanteric fractures of the femur have a special place because of a significant number of complications following treatment. Powerful loading forces asymmetrically acting to this bone segment, as well as poor vascularization interfere with bone union. There are basically two current approaches in the fixation of subtrochanteric fractures; the first involves a plate with a compression screw and another one is intramedullary (IM nail, with two options: centromedullary (standard interlocking femoral nail and cephalomedullary femoral nail with two modifications, reconstructive and trochanteric. All IM nails may be used by open technique or closed minimal invasive method. IM nailing is favoured in view of a shorter operative time, shorter hospitalisation and complications. Indirect fracture reduction and knowledge of biology of bone fracture may result in full success without any bone graft.

  4. Computed tomography of pelvic fractures

    Energy Technology Data Exchange (ETDEWEB)

    Kimoto, Makoto; Hashimoto, Keiji; Hiraki, Yoshio

    1984-12-01

    Plain x-ray and computed tomographic (CT) findings were compared in 7 patients with pelvic fractures (2 males and 5 females) aged between 35 and 50 year. Plain x-rays had a higher sensitivity than CT in detecting fractures of the ischiatic and pubic ramuses, and deviation of bone fragments. CT was superior to plain x-rays near the acetabulum and in detecting deviation of bone fragments. Although there were no differences between the two modalities in detecting fractures of the wing of ilium, CT was more useful than plain x-rays in visualizing deviation of bone fragments. CT clearly visualized not only fractures but also injuries of the soft tissues, such as pelvic viscera and muscles, and the presence of hematoma. CT seems to be a useful method for observing the condition and process of pelvic injuries and for deciding treatment protocols.

  5. Penis Fracture: Is It Possible?

    Science.gov (United States)

    ... intercourse, but can also occur due to aggressive masturbation or taqaandan, a cultural practice in which the ... article: http://www.mayoclinic.org/healthy-lifestyle/sexual-health/expert-answers/penis-fracture/faq-20058154 . Mayo Clinic ...

  6. Edge Fracture in Complex Fluids.

    Science.gov (United States)

    Hemingway, Ewan J; Kusumaatmaja, Halim; Fielding, Suzanne M

    2017-07-14

    We study theoretically the edge fracture instability in sheared complex fluids, by means of linear stability analysis and direct nonlinear simulations. We derive an exact analytical expression for the onset of edge fracture in terms of the shear-rate derivative of the fluid's second normal stress difference, the shear-rate derivative of the shear stress, the jump in shear stress across the interface between the fluid and the outside medium (usually air), the surface tension of that interface, and the rheometer gap size. We provide a full mechanistic understanding of the edge fracture instability, carefully validated against our simulations. These findings, which are robust with respect to choice of rheological constitutive model, also suggest a possible route to mitigating edge fracture, potentially allowing experimentalists to achieve and accurately measure flows stronger than hitherto possible.

  7. Prediction of Fracture Behavior in Rock and Rock-like Materials Using Discrete Element Models

    Science.gov (United States)

    Katsaga, T.; Young, P.

    2009-05-01

    The study of fracture initiation and propagation in heterogeneous materials such as rock and rock-like materials are of principal interest in the field of rock mechanics and rock engineering. It is crucial to study and investigate failure prediction and safety measures in civil and mining structures. Our work offers a practical approach to predict fracture behaviour using discrete element models. In this approach, the microstructures of materials are presented through the combination of clusters of bonded particles with different inter-cluster particle and bond properties, and intra-cluster bond properties. The geometry of clusters is transferred from information available from thin sections, computed tomography (CT) images and other visual presentation of the modeled material using customized AutoCAD built-in dialog- based Visual Basic Application. Exact microstructures of the tested sample, including fractures, faults, inclusions and void spaces can be duplicated in the discrete element models. Although the microstructural fabrics of rocks and rock-like structures may have different scale, fracture formation and propagation through these materials are alike and will follow similar mechanics. Synthetic material provides an excellent condition for validating the modelling approaches, as fracture behaviours are known with the well-defined composite's properties. Calibration of the macro-properties of matrix material and inclusions (aggregates), were followed with the overall mechanical material responses calibration by adjusting the interfacial properties. The discrete element model predicted similar fracture propagation features and path as that of the real sample material. The path of the fractures and matrix-inclusion interaction was compared using computed tomography images. Initiation and fracture formation in the model and real material were compared using Acoustic Emission data. Analysing the temporal and spatial evolution of AE events, collected during the

  8. New C2 synchondrosal fracture classification system

    Energy Technology Data Exchange (ETDEWEB)

    Rusin, Jerome A.; Ruess, Lynne [Department of Radiology, Nationwide Children' s Hospital, Columbus, OH (United States); The Ohio State University College of Medicine and Public Health, Columbus, OH (United States); Daulton, Robert S. [Department of Radiology, Nationwide Children' s Hospital, Columbus, OH (United States)

    2015-06-15

    Excessive cervical flexion-extension accompanying mild to severe impact injuries can lead to C2 synchondrosal fractures in young children. To characterize and classify C2 synchondrosal fracture patterns. We retrospectively reviewed imaging and medical records of children who were treated for cervical spine fractures at our institution between 1995 and 2014. We reviewed all fractures involving the five central C2 synchondroses with regard to patient demographics, mechanism of injury, fracture pattern, associated fractures and other injuries, treatment plans and outcome. Fourteen children had fractures involving the central C2 synchondroses. There were nine boys and five girls, all younger than 6 years. We found four distinct fracture patterns. Eleven complete fractures were further divided into four subtypes (a, b, c and d) based on degree of anterior displacement of the odontoid segment and presence of distraction. Nine of these 11 children had fractures through both odontoneural synchondroses and the odontocentral synchondrosis; one had fractures involving both neurocentral synchondroses and the odontoneural synchondrosis; one had fractures through bilateral odontoneural and bilateral neurocentral synchondroses. Three children had incomplete fractures, defined as a fracture through a single odontoneural synchondrosis with or without partial extension into either the odontocentral or the adjacent neurocentral synchondroses. All complete fractures were displaced or angulated. Four had associated spinal cord injury, including two contusions (subtype c fractures) and two fatal transections (subtype d fractures). Most children were treated with primary halo stabilization. Subtype c fractures required surgical fixation. We describe four patterns of central C2 synchondrosal fractures, including two unique patterns that have not been reported. We propose a classification system to distinguish these fractures and aid in treatment planning. (orig.)

  9. Rehabilitation in osteoporotic vertebral fractures

    OpenAIRE

    Pratelli, Elisa; Cinotti, Irene; Pasquetti, Pietro

    2010-01-01

    Vertebral fractures occur particularly in osteoporotic patients due to an increased bone fragility. Vertebral fractures influence the quality of life, mobility and mortality. Preventive training exercises and proprioception reeducation can be utilised for improving posture, balance and level of daily function and for decreasing pain. Quality of life is improved even beyond the active training period. This mini review provides information based on the literature for the rehabilitation of osteo...

  10. Occupational therapy and Colles' fractures

    OpenAIRE

    Christensen, O.M.; Kunov, A.; Hansen, F.F.; Christiansen, T.C.; Krasheninnikoff, M.

    2000-01-01

    In this randomized trial, we enrolled 30 patients treated for a distal radius Colles' type fracture. The fractures were reduced if necessary and fixed in a below-elbow plaster cast for 5 weeks. One group consisting of 14 patients received instructions for shoulder; elbow and finger exercise and the other group consisting of 16 patients had occupational therapy. At 5 weeks, 3 and 9 months we measured the functional scores. There were no statistically significant differences between the groups ...

  11. Seismic characteristics of tensile fracture growth induced by hydraulic fracturing

    Science.gov (United States)

    Eaton, D. W. S.; Van der Baan, M.; Boroumand, N.

    2014-12-01

    Hydraulic fracturing is a process of injecting high-pressure slurry into a rockmass to enhance its permeability. Variants of this process are used for unconventional oil and gas development, engineered geothermal systems and block-cave mining; similar processes occur within volcanic systems. Opening of hydraulic fractures is well documented by mineback trials and tiltmeter monitoring and is a physical requirement to accommodate the volume of injected fluid. Numerous microseismic monitoring investigations acquired in the audio-frequency band are interpreted to show a prevalence of shear-dominated failure mechanisms surrounding the tensile fracture. Moreover, the radiated seismic energy in the audio-frequency band appears to be a miniscule fraction (<< 1%) of the net injected energy, i.e., the integral of the product of fluid pressure and injection rate. We use a simple penny-shaped crack model as a predictive framework to describe seismic characteristics of tensile opening during hydraulic fracturing. This model provides a useful scaling relation that links seismic moment to effective fluid pressure within the crack. Based on downhole recordings corrected for attenuation, a significant fraction of observed microseismic events are characterized by S/P amplitude ratio < 5. Despite the relatively small aperture of the monitoring arrays, which precludes both full moment-tensor analysis and definitive identification of nodal planes or axes, this ratio provides a strong indication that observed microseismic source mechanisms have a component of tensile failure. In addition, we find some instances of periodic spectral notches that can be explained by an opening/closing failure mechanism, in which fracture propagation outpaces fluid velocity within the crack. Finally, aseismic growth of tensile fractures may be indicative of a scenario in which injected energy is consumed to create new fracture surfaces. Taken together, our observations and modeling provide evidence that

  12. Expression of various growth factors for cell proliferation and cytodifferentiation during fracture repair of bone

    Directory of Open Access Journals (Sweden)

    M Fukuda

    2009-12-01

    Full Text Available We examined immunohistochemically the fracture repair process in rat tibial bone using antibodies to PCNA, BMP2, TGF-b 1,-2,-3, TGF-b R1,- R2, bFGF, bFGFR, PDGF, VEGF, and S-100. The peak level of cell proliferation as revealed by PCNA labelling appeared first in primitive mesenchymal cells and inflammatory cells at the fracture edges and neighboring periosteum at 2-days after fracture, followed by the peaks of periosteal primitive fibroblasts and chondroblasts, which appeared at fracture edges at 3- and 4-days after fracture, respectively. BMP2 was weakly positive in primitive mesenchymal cells, osteoblasts and chondroblasts. At 3-days post-fracture, periosteal osteoblasts produced osteoid tissue and callus with marrow spaces lined by osteoblasts and osteoclasts, and all primitive mesenchymal cells and osteoblasts were positive for TGF-b 1,-2,-3, and TGF-b R1,-R2. They were also positive for vascular growth factors bFGF, FGFR and PDGF, but negative for VEGF, and the peak of PCNA labelling of vascular endothelial cells in the marrow space was delayed to 4-days after fracture. Chondroblasts at fracture edges produced hypertrophic chondrocytes at 5-days after fracture and they were positive for TGF-b 1,-2,-3, and TGF-b R1,-R2. Primitive chondroblasts were positive for vascular growth factors VEGF as well as bFGF, FGFR, and the peak of PCNA labelling of vascular endothelial cells in the cartilage was at 5-days after fracture. Hypertrophic chondrocytes were also positive for these growth factors but negative for bFGF and bFGFR. S-100 protein-induced calcification was only positive on chondroblasts and hypertrophic chondrocytes. At 7-days after fracture, bone began to be formed from the cartilage at fracture edges, by a process similar to bone formation in the growth plate. Enchondral ossification established a bridge between both fracture edges and periosteal membranous ossification encompassed the fracture site like a sheath at 14- day after

  13. Avulsion fractures of the scapula

    International Nuclear Information System (INIS)

    Heyse-Moore, G.H.; Stoker, D.J.

    1982-01-01

    Fractures of the scapula due to direct violence are relatively common. Wilber and Evans [18] reported 40 scapular fractures and reviewed the literature. All those injured has received direct trauma to the shoulder and they were able to divide their cases into two groups, based on anatomical location and functional results. Scapular fractures due to avulsion of the muscular attachments are uncommon and, as reports of these injuries in the literature are usually confined to single cases, no classification has been established which takes account of the anatomical sites at which these fractures occur and the mechanism of injury involved. In this paper the more common sites of avulsion injury of the scapula are described and illustrated by case reports. In several of these the skeletal injury resulted from muscle contraction against a resisted force on the upper limb during the course of an accident. This mechanism has been implicated in fractures of the coracoid and acromion, but is shown in this paper to contribute to other avulsion fractures. (orig.)

  14. Dimensional threshold for fracture linkage and hooking

    Science.gov (United States)

    Lamarche, Juliette; Chabani, Arezki; Gauthier, Bertrand D. M.

    2018-03-01

    Fracture connectivity in rocks depends on spatial properties of the pattern including length, abundance and orientation. When fractures form a single-strike set, they hardly cross-cut each other and the connectivity is limited. Linkage probability increases with increasing fracture abundance and length as small fractures connect to each other to form longer ones. A process for parallel fracture linkage is the "hooking", where two converging fracture tips mutually deviate and then converge to connect due to the interaction of their crack-tip stresses. Quantifying the processes and conditions for fracture linkage in single-strike fracture sets is crucial to better predicting fluid flow in Naturally Fractured Reservoirs. For 1734 fractures in Permian shales of the Lodève Basin, SE France, we measured geometrical parameters in 2D, characterizing three stages of the hooking process: underlapping, overlapping and linkage. We deciphered the threshold values, shape ratios and limiting conditions to switch from one stage to another one. The hook set up depends on the spacing (S) and fracture length (Lh) with the relation S ≈ 0.15 Lh. Once the hooking is initiated, with the fracture deviation length (L) L ≈ 0.4 Lh, the fractures reaches the linkage stage only when the spacing is reduced to S ≈ 0.02 Lh and the convergence (C) is < 0.1 L. These conditions apply to multi-scale fractures with a shape ratio L/S = 10 and for fracture curvature of 10°-20°.

  15. Effect of rock rheology on fluid leak- off during hydraulic fracturing

    Science.gov (United States)

    Yarushina, V. M.; Bercovici, D.; Oristaglio, M. L.

    2012-04-01

    In this communication, we evaluate the effect of rock rheology on fluid leak­off during hydraulic fracturing of reservoirs. Fluid leak-off in hydraulic fracturing is often nonlinear. The simple linear model developed by Carter (1957) for flow of fracturing fluid into a reservoir has three different regions in the fractured zone: a filter cake on the fracture face, formed by solid additives from the fracturing fluid; a filtrate zone affected by invasion of the fracturing fluid; and a reservoir zone with the original formation fluid. The width of each zone, as well as its permeability and pressure drop, is assumed to remain constant. Physical intuition suggests some straightforward corrections to this classical theory to take into account the pressure dependence of permeability, the compressibility or non-Newtonian rheology of fracturing fluid, and the radial (versus linear) geometry of fluid leak­off from the borehole. All of these refinements, however, still assume that the reservoir rock adjacent to the fracture face is non­deformable. Although the effect of poroelastic stress changes on leak-off is usually thought to be negligible, at the very high fluid pressures used in hydraulic fracturing, where the stresses exceed the rock strength, elastic rheology may not be the best choice. For example, calculations show that perfectly elastic rock formations do not undergo the degree of compaction typically seen in sedimentary basins. Therefore, pseudo-elastic or elastoplastic models are used to fit observed porosity profiles with depth. Starting from balance equations for mass and momentum for fluid and rock, we derive a hydraulic flow equation coupled with a porosity equation describing rock compaction. The result resembles a pressure diffusion equation with the total compressibility being a sum of fluid, rock and pore-space compressibilities. With linear elastic rheology, the bulk formation compressibility is dominated by fluid compressibility. But the possibility

  16. Permeability evolution due to dissolution of natural shale fractures reactivated by fracking

    Science.gov (United States)

    Kwiatkowski, Kamil; Kwiatkowski, Tomasz; Szymczak, Piotr

    2015-04-01

    Investigation of cores drilled from gas-bearing shale formations reveals a relatively large number of calcite-cemented fractures. During fracking, some of these fractures will be reactivated [1-2] and may become important flow paths in the resulting fracture system. In this communication, we investigate numerically the effect of low-pH reactive fluid on such fractures. The low-pH fluids can either be pumped during the initial fracking stage (as suggested e.g. by Grieser et al., [3]) or injected later, as part of enhanced gas recovery (EGR) processes. In particular, it has been suggested that CO2 injection can be considered as a method of EGR [4], which is attractive as it can potentially be combined with simultaneous CO2 sequestration. However, when mixed with brine, CO2 becomes acidic and thus can be a dissolving agent for the carbonate cement in the fractures. The dissolution of the cement leads to the enhancement of permeability and interconnectivity of the fracture network and, as a result, increases the overall capacity of the reservoir. Importantly, we show that the dissolution of such fractures proceeds in a highly non-homogeneous manner - a positive feedback between fluid transport and mineral dissolution leads to the spontaneous formation of pronounced flow channels, frequently referred to as "wormholes". The wormholes carry the chemically active fluid deeper inside the system, which dramatically speeds up the overall permeability increase. If the low-pH fluids are used during fracking, then the non-uniform dissolution becomes important for retaining the fracture permeability, even in the absence of the proppant. Whereas a uniformly etched fracture will close tightly under the overburden once the fluid pressure is removed, the nonuniform etching will tend to maintain the permeability since the less dissolved regions will act as supports to keep more dissolved regions open. [1] Gale, J. F., Reed, R. M., Holder, J. (2007). Natural fractures in the Barnett

  17. Detection of lunar floor-fractured craters using machine learning methods

    Science.gov (United States)

    Thorey, C.

    2015-10-01

    About 200 Floor Fractured Craters (FFCs) have been identified by Schultz (1976) on the Moon, mainly around the lunar maria. These craters are a class of impact craters that are distinguished by having radi-ally and concentric floor-fractured networks and ab-normally shallow floors. In some cases, the uplift of the crater floor can be as large as 50% of the initial crater depth. These impact craters are interpreted to have undergone endogenous deformations after their formation.

  18. Bone Scan in Detection of Biological Activity in Nonhypertrophic Fracture Nonunion

    OpenAIRE

    Gandhi, Sunny J.; Rabadiya, Bhavdeep

    2017-01-01

    Biological activity of the fracture site is very important factor in treatment planning of fracture nonunion. If no biological activity is detected, then an autologous bone graft can be supplemented or osteogenic supplementations, such as bone morphogenetic protein is given. If biological activity is present, then secure fixation is sufficient to achieve bony union. Biological activity of nonunions is usually assessed by conventional radiographs. The presence of callus formation is usually as...

  19. Micromechanical of fracture initiation for an AISI 4140 loaded in the I mode at low temperature

    International Nuclear Information System (INIS)

    Darwish, F.A.I.

    1984-01-01

    The variation of fracture morphology with the notch sharpness for an AISI 4140 steel tested at liquid nitrogen temperature in different micro-structural states is presented. The appearance in some cases of a shear lip along the root of rounded notches is presented and discussed in terms of the sequence of local events leading to microcrack formation. The dependence of the steel toughness on the fracture morphology is also presented and discussed. (Author) [pt

  20. Proceedings of the workshop on numerical modeling of thermohydrological flow in fractured rock masses

    International Nuclear Information System (INIS)

    1980-09-01

    Nineteen papers were presented at the workshop on modeling thermohydrologic flow in fractured masses. This workshop was a result of the interest currently being given to the isolation of nuclear wastes in geologic formations. Included in these proceedings are eighteen of the presentations, one abstract and summaries of the panel discussions. The papers are listed under the following categories: introduction; overviews; fracture modelings; repository studies; geothermal models; and recent developments. Eighteen of the papers have been abstracted and indexed