WorldWideScience

Sample records for fractured bedrock aquifer

  1. The influence of bedrock hydrogeology on catchment-scale nitrate fate and transport in fractured aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Orr, Alison [Arup, 50 Ringsend Road, Dublin 4 (Ireland); School of Planning, Architecture and Civil Engineering, Queen' s University Belfast (United Kingdom); Nitsche, Janka [RPS, West Pier Business Campus, Dun Laoghaire, Co. Dublin (Ireland); School of Planning, Architecture and Civil Engineering, Queen' s University Belfast (United Kingdom); Archbold, Marie [School of Planning, Architecture and Civil Engineering, Queen' s University Belfast (United Kingdom); Environmental Protection Agency, Richview, Clonskeagh Road, Dublin 14 (Ireland); Deakin, Jenny [Environmental Protection Agency, Richview, Clonskeagh Road, Dublin 14 (Ireland); Department of Civil, Structural and Environmental Engineering, Trinity College Dublin (Ireland); Ofterdinger, Ulrich; Flynn, Raymond [School of Planning, Architecture and Civil Engineering, Queen' s University Belfast (United Kingdom)

    2016-11-01

    Characterising catchment scale biogeochemical processes controlling nitrate fate in groundwater constitutes a fundamental consideration when applying programmes of measures to reduce risks posed by diffuse agricultural pollutants to water quality. Combining hydrochemical analyses with nitrate isotopic data and physical hydrogeological measurements permitted characterisation of biogeochemical processes influencing nitrogen fate and transport in the groundwater in two fractured bedrock aquifers with contrasting hydrogeology but comparable nutrient loads. Hydrochemical and isotopic analyses of groundwater samples collected from moderately fractured, diffusely karstified limestone indicated nitrification controlled dissolved nitrogen fate and delivery to aquatic receptors. By contrast nitrate concentrations in groundwater were considerably lower in a low transmissivity highly lithified sandstone and pyrite-bearing shale unit with patchy subsoil cover. Geophysical and hydrochemical investigations showed shallower intervals contained hydraulically active fractures where denitrification was reflected through lower nitrogen levels and an isotopic enrichment ratio of 1.7 between δ{sup 15}N and δ{sup 18}O. Study findings highlight the influence of bedrock hydrogeological conditions on aqueous nitrogen mobility. Investigation results demonstrate that bedrock conditions need to be considered when implementing catchment management plans to reduce the impact of agricultural practices on the quality of groundwater and baseflow in receiving rivers. Nitrate isotopic signatures in the groundwater of a freely draining catchment underlain by a karstified aquifer and a poorly draining aquifer with a low transmissivity aquifer. - Graphical abstract: Contrasting nitrate isotope signatures of groundwater in a free draining catchment underlain by a karstified aquifer and a poorly drained catchment underlain by a low transmissivity aquifer. - Highlights: • Comparison of N fate and

  2. Ultramafic-derived arsenic in a fractured bedrock aquifer

    International Nuclear Information System (INIS)

    Ryan, Peter C.; Kim, Jonathan; Wall, Andrew J.; Moen, Jonathan C.; Corenthal, Lilly G.; Chow, Daniel R.; Sullivan, Colleen M.; Bright, Kevin S.

    2011-01-01

    Highlights: → Arsenic is elevated in groundwater from a fractured bedrock aquifer system in northern Vermont, USA. → The arsenic source is serpentinized ultramafic rock. → Antigorite, magnetite (MgCO 3 ) and magnetite (Fe 3 O 4 ) appear to be the main mineralogical hosts of arsenic in the ultramafic rock. → Arsenic appears to be introduced to the ultramafic rock when As-bearing fluids are driven out of sediments during subduction. → The occurrence of serpentinized ultramafic rocks in many orogenic belts suggests that similar arsenic anomalies may occur in geologically-similar terranes globally. - Abstract: In the fractured bedrock aquifer of northern Vermont, USA, As concentrations in groundwater range from 3 ) with lesser amounts in magnetite (Fe 3 O 4 ). Hydrochemistry of monitoring wells drilled into fractured ultramafic rock in a groundwater recharge area with no anthropogenic As source reveals above background As (2-9 μg/L) and an Mg-HCO 3 hydrochemical signature that reflects dissolution of antigorite and magnesite, confirming that As in groundwater can be derived from ultramafic rock dissolution. Arsenic mobility in groundwater affected by ultramafic rock dissolution may be enhanced by alkaline pH values and relatively high HCO 3 - concentrations.

  3. Denitrification and dilution along fracture flowpaths influence the recovery of a bedrock aquifer from nitrate contamination

    International Nuclear Information System (INIS)

    Kim, Jonathan J.; Comstock, Jeff; Ryan, Peter; Heindel, Craig; Koenigsberger, Stephan

    2016-01-01

    In 2000, elevated nitrate concentrations ranging from 12 to 34 mg/L NO_3−N were discovered in groundwater from numerous domestic bedrock wells adjacent to a large dairy farm in central Vermont. Long-term plots and contours of nitrate vs. time for bedrock wells showed “little/no”, “moderate”, and “large” change patterns that were spatially separable. The metasedimentary bedrock aquifer is strongly anisotropic and groundwater flow is controlled by fractures, bedding/foliation, and basins and ridges in the bedrock surface. Integration of the nitrate concentration vs. time data and the physical and chemical aquifer characterization suggest two nitrate sources: a point source emanating from a waste ravine and a non-point source that encompasses the surrounding fields. Once removed, the point source of NO_3 (manure deposited in a ravine) was exhausted and NO_3 dropped from 34 mg/L to 10 mg/L. Our multidisciplinary methods of aquifer characterization are applicable to groundwater contamination in any complexly-deformed and metamorphosed bedrock aquifer. - Highlights: • Bedrock wells contaminated with nitrates at a dairy farm in Vermont, U.S.A. • Nitrate concentration vs. time patterns for wells were spatially separable. • Multidisciplinary aquifer characterization used physical and chemical methods. • Denitrification dominant over dilution along fracture flowpaths • Conceptual model shows exhaustion of a nitrate point-source over 12 years.

  4. The influence of bedrock hydrogeology on catchment-scale nitrate fate and transport in fractured aquifers.

    Science.gov (United States)

    Orr, Alison; Nitsche, Janka; Archbold, Marie; Deakin, Jenny; Ofterdinger, Ulrich; Flynn, Raymond

    2016-11-01

    Characterising catchment scale biogeochemical processes controlling nitrate fate in groundwater constitutes a fundamental consideration when applying programmes of measures to reduce risks posed by diffuse agricultural pollutants to water quality. Combining hydrochemical analyses with nitrate isotopic data and physical hydrogeological measurements permitted characterisation of biogeochemical processes influencing nitrogen fate and transport in the groundwater in two fractured bedrock aquifers with contrasting hydrogeology but comparable nutrient loads. Hydrochemical and isotopic analyses of groundwater samples collected from moderately fractured, diffusely karstified limestone indicated nitrification controlled dissolved nitrogen fate and delivery to aquatic receptors. By contrast nitrate concentrations in groundwater were considerably lower in a low transmissivity highly lithified sandstone and pyrite-bearing shale unit with patchy subsoil cover. Geophysical and hydrochemical investigations showed shallower intervals contained hydraulically active fractures where denitrification was reflected through lower nitrogen levels and an isotopic enrichment ratio of 1.7 between δ(15)N and δ(18)O. Study findings highlight the influence of bedrock hydrogeological conditions on aqueous nitrogen mobility. Investigation results demonstrate that bedrock conditions need to be considered when implementing catchment management plans to reduce the impact of agricultural practices on the quality of groundwater and baseflow in receiving rivers. Nitrate isotopic signatures in the groundwater of a freely draining catchment underlain by a karstified aquifer and a poorly draining aquifer with a low transmissivity aquifer. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Ultramafic-derived arsenic in a fractured bedrock aquifer

    Science.gov (United States)

    Ryan, P.C.; Kim, J.; Wall, A.J.; Moen, J.C.; Corenthal, L.G.; Chow, D.R.; Sullivan, C.M.; Bright, K.S.

    2011-01-01

    In the fractured bedrock aquifer of northern Vermont, USA, As concentrations in groundwater range from chemical extraction, X-ray diffraction (XRD) and stoichiometric analysis indicates that the majority of the As is located in antigorite and magnesite (MgCO3) with lesser amounts in magnetite (Fe3O4). Hydrochemistry of monitoring wells drilled into fractured ultramafic rock in a groundwater recharge area with no anthropogenic As source reveals above background As (2-9??g/L) and an Mg-HCO3 hydrochemical signature that reflects dissolution of antigorite and magnesite, confirming that As in groundwater can be derived from ultramafic rock dissolution. Arsenic mobility in groundwater affected by ultramafic rock dissolution may be enhanced by alkaline pH values and relatively high HCO3- concentrations. ?? 2011 Elsevier Ltd.

  6. Denitrification and dilution along fracture flowpaths influence the recovery of a bedrock aquifer from nitrate contamination

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jonathan J., E-mail: jon.kim@vermont.gov [Vermont Geological Survey, 1 National Life Drive, Main 2, Montpelier, VT 05620 (United States); Comstock, Jeff [Vermont Agency of Agriculture, 116 State Street, Montpelier, VT 05620 (United States); Ryan, Peter [Dept. of Geology, Middlebury College, Middlebury, VT 05753 (United States); Heindel, Craig [Waite-Heindel Environmental Management, 7 Kilburn Street, Suite 301, Burlington, VT 05401 (United States); Koenigsberger, Stephan [Dept. of Geology, Middlebury College, Middlebury, VT 05753 (United States)

    2016-11-01

    In 2000, elevated nitrate concentrations ranging from 12 to 34 mg/L NO{sub 3}−N were discovered in groundwater from numerous domestic bedrock wells adjacent to a large dairy farm in central Vermont. Long-term plots and contours of nitrate vs. time for bedrock wells showed “little/no”, “moderate”, and “large” change patterns that were spatially separable. The metasedimentary bedrock aquifer is strongly anisotropic and groundwater flow is controlled by fractures, bedding/foliation, and basins and ridges in the bedrock surface. Integration of the nitrate concentration vs. time data and the physical and chemical aquifer characterization suggest two nitrate sources: a point source emanating from a waste ravine and a non-point source that encompasses the surrounding fields. Once removed, the point source of NO{sub 3} (manure deposited in a ravine) was exhausted and NO{sub 3} dropped from 34 mg/L to < 10 mg/L after ~ 10 years; however, persistence of NO{sub 3} in the 3 to 8 mg/L range (background) reflects the long term flux of nitrates from nutrients applied to the farm fields surrounding the ravine over the years predating and including this study. Inferred groundwater flow rates from the waste ravine to either moderate change wells in basin 2 or to the shallow bedrock zone beneath the large change wells are 0.05 m/day, well within published bedrock aquifer flow rates. Enrichment of {sup 15}N and {sup 18}O in nitrate is consistent with lithotrophic denitrification of NO{sub 3} in the presence of dissolved Mn and Fe. Once the ravine point-source was removed, denitrification and dilution collectively were responsible for the down-gradient decrease of nitrate in this bedrock aquifer. Denitrification was most influential when NO{sub 3}−N was > 10 mg/L. Our multidisciplinary methods of aquifer characterization are applicable to groundwater contamination in any complexly-deformed and metamorphosed bedrock aquifer. - Highlights: • Bedrock wells contaminated

  7. Blast fracturing of bedrock to enhance recovery of contaminated groundwater

    International Nuclear Information System (INIS)

    Holzman, L.R.; Harvey, E.M.; McKee, R.C.E.; Katsabanis, T.

    1992-01-01

    Petroleum hydrocarbons releasd from a pipeline at a site in southern Ontario had contaminated a fractured dolostone bedrock aquifer. To remediate the site, contaminated groundwater was pumped from the downgradient edge of the hydrocarbon plume and injected into an upgradient area after treatment. Contaminant flow pathways in the fractured bedrock aquifer were found to be complex and erratic. It was anticipated that contaminated groundwater could escape the influence of a line of closely spaced recovery wells. In order to capture the migrating contaminants effectively, improve communication between recovery wells, and optimize pumping efficiencies, a rubble zone was created by drilling and blasting the rock. Using 140 blastholes, the bedrock was fractured to a depth of 4 m over a distance of 200 m. Similarly, an additional 80 blastholes were used to blast fracture 100 m of bedrock to a depth of 4 m in the recharge area to enhance injection of treated water to the aquifer. Various blasthole spacings and explosive loadings and patterns were tested to fracture the rock effectively while minimizing the impact on the nearby pipeline and neighboring residences. Vibrations were carefully monitored using several seismographs. Pump tests conducted before and after the blast indicated the hydraulic connection between the naturally occurring fractures had greatly improved. Monitoring conducted after startup of the pump-treat-and-inject system has confirmed the fracturing provides effective capture and injection of the groundwater. 3 refs., 3 figs., 1 tab

  8. Detections of MTBE in surficial and bedrock aquifers in New England

    International Nuclear Information System (INIS)

    Grady, S.J.

    1995-01-01

    The gasoline additive methyl tert-butyl ether (MTBE) was detected in 24% of water samples collected from surficial and bedrock aquifers in areas of New England. MTBE was the most frequently detected volatile organic compound among the 60 volatile chemicals analyzed and was present in 33 of 133 wells sampled from July 1993 through September 1995. The median MTBE concentration measured in ground-water samples was 0.45 microgram per liter and concentrations ranged from 0.2 to 5.8 microgram per liter. The network of wells sampled for MTBE consisted of 103 monitoring wells screened in surficial sand-and-gravel aquifers and 30 domestic-supply wells in fractured crystalline bedrock aquifers. Seventy-seven percent of all MTBE detections were from 26 shallow monitoring wells screened in surficial aquifers. MTBE was detected in42% of monitoring wells in urban areas. In agricultural areas, MTBE was detected i 8% (2 of 24) of wells and was not detected in undeveloped areas. Sixty-two percent of the MTBE detections in surficial aquifers were from wells within 0.25 mile of gasoline stations or underground gasoline storage tanks; all but one of these wells were in Connecticut and Massachusetts, where reformulated gasoline is used. MTBE was detected in 23% of deep domestic-supply wells that tapped fractured bedrock aquifers. MTBE was detected in bedrock wells only in Connecticut and Massachusetts; land use near the wells was suburban to rural, and none of the sampled bedrock wells were within 0.25 mile of a gasoline station

  9. Hydrogeology - AQUIFER_SYSTEMS_BEDROCK_IDNR_IN: Bedrock Aquifer Systems of Indiana (Indiana Department of Natural Resources, 1:500,000, Polygon Shapefile)

    Data.gov (United States)

    NSGIC State | GIS Inventory — AQUIFER_SYSTEMS_BEDROCK_IDNR_IN is a polygon shapefile that shows bedrock aquifer systems of the State of Indiana. The source scale of the map depicting the aquifers...

  10. Trench infiltration for managed aquifer recharge to permeable bedrock

    Science.gov (United States)

    Heilweil, V.M.; Watt, D.E.

    2011-01-01

    Managed aquifer recharge to permeable bedrock is increasingly being utilized to enhance resources and maintain sustainable groundwater development practices. One such target is the Navajo Sandstone, an extensive regional aquifer located throughout the Colorado Plateau of the western United States. Spreading-basin and bank-filtration projects along the sandstone outcrop's western edge in southwestern Utah have recently been implemented to meet growth-related water demands. This paper reports on a new cost-effective surface-infiltration technique utilizing trenches for enhancing managed aquifer recharge to permeable bedrock. A 48-day infiltration trench experiment on outcropping Navajo Sandstone was conducted to evaluate this alternative surface-spreading artificial recharge method. Final infiltration rates through the bottom of the trench were about 0.5 m/day. These infiltration rates were an order of magnitude higher than rates from a previous surface-spreading experiment at the same site. The higher rates were likely caused by a combination of factors including the removal of lower permeability soil and surficial caliche deposits, access to open vertical sandstone fractures, a reduction in physical clogging associated with silt and biofilm layers, minimizing viscosity effects by maintaining isothermal conditions, minimizing chemical clogging caused by carbonate mineral precipitation associated with algal photosynthesis, and diminished gas clogging associated with trapped air and biogenic gases. This pilot study illustrates the viability of trench infiltration for enhancing surface spreading of managed aquifer recharge to permeable bedrock. ?? 2010.

  11. Quantifying Groundwater Availability in Fractured Rock Aquifers of Northern Ugandan Refugee Settlements

    Science.gov (United States)

    Frederiks, R.; Lowry, C.; Mutiibwa, R.; Moisy, S.; Thapa, L.; Oriba, J.

    2017-12-01

    In the past two years, Uganda has witnessed an influx of nearly one million refugees who have settled in the sparsely populated northwestern region of the country. This rapid population growth has created high demand for clean water resources. Water supply has been unable to keep pace with demand because the fractured rock aquifers underlying the region often produce low yielding wells. To facilitate management of groundwater resources, it is necessary to quantify the spatial distribution of groundwater. In fractured rock aquifers, there is significant spatial variability in water storage because fractures must be both connected and abundant for water to be extracted in usable quantities. Two conceptual models were evaluated to determine the groundwater storage mechanism in the fractured crystalline bedrock aquifers of northwestern Uganda where by permeability is controlled by faulting, which opens up fractures in the bedrock, or weathering, which occurs when water dissolves components of rock. In order to test these two conceptual models, geologic well logs and available hydrologic data were collected and evaluated using geostatistical and numerical groundwater models. The geostatistical analysis focused on identifying spatially distributed patterns of high and low water yield. The conceptual models were evaluated numerically using four inverse groundwater MODFLOW models based on head and estimated flux targets. The models were based on: (1) the mapped bedrock units using an equivalent porous media approach (2) bedrock units with the addition of known fault zones (3) bedrock units with predicted units of deep weathering based on surface slopes, and (4) bedrock units with discrete faults and simulated weathered zones. Predicting permeable zones is vital for water well drilling in much of East Africa and South America where there is an abundance of both fractured rock and tectonic activity. Given that the population of these developing regions is growing, the demand

  12. Multi-isotope (carbon and chlorine) analysis for fingerprinting and site characterization at a fractured bedrock aquifer contaminated by chlorinated ethenes

    Energy Technology Data Exchange (ETDEWEB)

    Palau, Jordi, E-mail: jordi.palau@unine.ch [Departament de Cristal.lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona, Martí i Franquès, s/n 08028 Barcelona (Spain); Marchesi, Massimo [Departament de Cristal.lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona, Martí i Franquès, s/n 08028 Barcelona (Spain); Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Chambon, Julie C.C. [Department of Environmental Engineering, Technical University of Denmark, 2800 Lyngby (Denmark); Aravena, Ramon [Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Canals, Àngels [Departament de Cristal.lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona, Martí i Franquès, s/n 08028 Barcelona (Spain); Binning, Philip J.; Bjerg, Poul L. [Department of Environmental Engineering, Technical University of Denmark, 2800 Lyngby (Denmark); Otero, Neus; Soler, Albert [Departament de Cristal.lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona, Martí i Franquès, s/n 08028 Barcelona (Spain)

    2014-03-01

    The use of compound specific multi-isotope approach (C and Cl) in the characterization of a chlorinated ethenes contaminated fractured aquifer allows the identification of several sources and contaminant plumes, as well as the occurrence of biodegradation and mixing processes. The study site is located in Spain with contamination resulting in groundwater concentrations of up to 50 mg/L of trichloroethene (TCE), the most abundant chlorinated ethene, and 7 mg/L of tetrachloroethene (PCE). The potential sources of contamination including abandoned barrels, an underground tank, and a disposal lagoon, showed a wide range in δ{sup 13}C values from − 15.6 to − 40.5‰ for TCE and from − 18.5 to − 32.4‰ for PCE, allowing the use of isotope fingerprinting for tracing of the origin and migration of these contaminants in the aquifer. In contrast, there is no difference between the δ{sup 37}Cl values for TCE in the contaminant sources, ranging from + 0.53 to + 0.66‰. Variations of δ{sup 37}Cl and δ{sup 13}C in the different contaminant plumes were used to investigate the role of biodegradation in groundwater. Moreover, the isotopic data were incorporated into a reactive transport model for determination of whether the isotope pattern observed downstream from the tank's source could be explained by the simultaneous effect of mixing and biodegradation. The results demonstrate that a multi-isotope approach is a valuable tool for characterization of complex sites such as fractured bedrock aquifer contaminated by multiple sources, providing important information which can be used by consultants and site managers to prioritize and design more successful remediation strategies. - Highlights: • Origin and fate of CAHs in groundwater by means of multi CSIA ({sup 13}C,{sup 35}Cl) survey • Innovative/new approach tested in a fractured bedrock site • Differentiation of distinct CAH sources • Biodegradation and source mixing recognition in the aquifer.

  13. Multi-isotope (carbon and chlorine) analysis for fingerprinting and site characterization at a fractured bedrock aquifer contaminated by chlorinated ethenes

    International Nuclear Information System (INIS)

    Palau, Jordi; Marchesi, Massimo; Chambon, Julie C.C.; Aravena, Ramon; Canals, Àngels; Binning, Philip J.; Bjerg, Poul L.; Otero, Neus; Soler, Albert

    2014-01-01

    The use of compound specific multi-isotope approach (C and Cl) in the characterization of a chlorinated ethenes contaminated fractured aquifer allows the identification of several sources and contaminant plumes, as well as the occurrence of biodegradation and mixing processes. The study site is located in Spain with contamination resulting in groundwater concentrations of up to 50 mg/L of trichloroethene (TCE), the most abundant chlorinated ethene, and 7 mg/L of tetrachloroethene (PCE). The potential sources of contamination including abandoned barrels, an underground tank, and a disposal lagoon, showed a wide range in δ 13 C values from − 15.6 to − 40.5‰ for TCE and from − 18.5 to − 32.4‰ for PCE, allowing the use of isotope fingerprinting for tracing of the origin and migration of these contaminants in the aquifer. In contrast, there is no difference between the δ 37 Cl values for TCE in the contaminant sources, ranging from + 0.53 to + 0.66‰. Variations of δ 37 Cl and δ 13 C in the different contaminant plumes were used to investigate the role of biodegradation in groundwater. Moreover, the isotopic data were incorporated into a reactive transport model for determination of whether the isotope pattern observed downstream from the tank's source could be explained by the simultaneous effect of mixing and biodegradation. The results demonstrate that a multi-isotope approach is a valuable tool for characterization of complex sites such as fractured bedrock aquifer contaminated by multiple sources, providing important information which can be used by consultants and site managers to prioritize and design more successful remediation strategies. - Highlights: • Origin and fate of CAHs in groundwater by means of multi CSIA ( 13 C, 35 Cl) survey • Innovative/new approach tested in a fractured bedrock site • Differentiation of distinct CAH sources • Biodegradation and source mixing recognition in the aquifer

  14. Arsenic evolution in fractured bedrock wells in central Maine, USA

    Science.gov (United States)

    Yang, Q.; Zheng, Y.; Culbertson, C.; Schalk, C.; Nielsen, M. G.; Marvinney, R.

    2010-12-01

    Elevated arsenic concentration in fractured bedrock wells has emerged as an important and challenging health problem, especially in rural areas without public water supply and mandatory monitoring of private wells. This has posed risks of skin, bladder, prostate diseases and cancers to private well users. In central Maine, including the study site, 31% of bedrock wells in meta-sedimentary formations have been reported of elevated arsenic concentrations of > 10 µg/L. Geophysical logging and fracture specific water sampling in high arsenic wells have been conducted to understand how water flowing through the aquifers enters the boreholes and how arsenic evolves in the fracture bedrock wells. Two domestic wells in Manchester, Maine, located 50 meter apart with 38 µg/L and 73 µg/L of arsenic in unfiltered water, were investigated to characterize fractures by geophysical logging and to determine flow rates by pumping test. Water samples, representing the bore hole and the fractures, were collected and analyzed for arsenic under ambient and pumping conditions. Transmissivity of the fractures was estimated at 0.23-10.6 m2/day. Water with high dissolved arsenic was supplied primarily by high yielding fractures near the bottom of the borehole. Dissolved arsenic concentrations in borehole water increased as fracture water with high arsenic was replacing borehole water with initially low dissolved arsenic in response to pumping. The precipitation of iron particulates enriched in arsenic was common during and after pumping. Laboratory experiment on well water samples over a period of 16 days suggested that in the borehole arsenic was mainly settled with iron enriched particles, likely amorphous ferric oxyhydroxides, with possibly minor adsorption on the iron minerals. Another bedrock well in Litchfield, Maine, with 478 µg/L of arsenic in the unfiltered well water, is being investigated to quantify and reconstruct of the groundwater flow under ambient and pumping conditions

  15. Impacts of groundwater metal loads from bedrock fractures on water quality of a mountain stream.

    Science.gov (United States)

    Caruso, Brian S; Dawson, Helen E

    2009-06-01

    Acid mine drainage and metal loads from hardrock mines to surface waters is a significant problem in the western USA and many parts of the world. Mines often occur in mountain environments with fractured bedrock aquifers that serve as pathways for metals transport to streams. This study evaluates impacts from current and potential future groundwater metal (Cd, Cu, and Zn) loads from fractures underlying the Gilt Edge Mine, South Dakota, on concentrations in Strawberry Creek using existing flow and water quality data and simple mixing/dilution mass balance models. Results showed that metal loads from bedrock fractures to the creek currently contribute water quality is achieved upstream in Strawberry Creek, fracture metal loads would be water quality standards exceedances once groundwater with elevated metals concentrations in the aquifer matrix migrates to the fractures and discharges to the stream. Potential future metal loads from an upstream fracture would contribute a small proportion of the total load relative to current loads in the stream. Cd has the highest stream concentrations relative to standards. Even if all stream water was treated to remove 90% of the Cd, the standard would still not be achieved. At a fracture farther downstream, the Cd standard can only be met if the upstream water is treated achieving a 90% reduction in Cd concentrations and the median stream flow is maintained.

  16. How Well Does Fracture Set Characterization Reduce Uncertainty in Capture Zone Size for Wells Situated in Sedimentary Bedrock Aquifers?

    Science.gov (United States)

    West, A. C.; Novakowski, K. S.

    2005-12-01

    Regional groundwater flow models are rife with uncertainty. The three-dimensional flux vector fields must generally be inferred using inverse modelling from sparse measurements of hydraulic head, from measurements of hydraulic parameters at a scale that is miniscule in comparison to that of the domain, and from none to a very few measurements of recharge or discharge rate. Despite the inherent uncertainty in these models they are routinely used to delineate steady-state or time-of-travel capture zones for the purpose of wellhead protection. The latter are defined as the volume of the aquifer within which released particles will arrive at the well within the specified time and their delineation requires the additional step of dividing the magnitudes of the flux vectors by the assumed porosity to arrive at the ``average linear groundwater velocity'' vector field. Since the porosity is usually assumed constant over the domain one could be forgiven for thinking that the uncertainty introduced at this step is minor in comparison to the flow model calibration step. We consider this question when the porosity in question is fracture porosity in flat-lying sedimentary bedrock. We also consider whether or not the diffusive uptake of solute into the rock matrix which lies between the source and the production well reduces or enhances the uncertainty. To evaluate the uncertainty an aquifer cross section is conceptualized as an array of horizontal, randomly-spaced, parallel-plate fractures of random aperture, with adjacent horizontal fractures connected by vertical fractures again of random spacing and aperture. The source is assumed to be a continuous concentration (i.e. a dirichlet boundary condition) representing a leaking tank or a DNAPL pool, and the receptor is a fully pentrating well located in the down-gradient direction. In this context the time-of-travel capture zone is defined as the separation distance required such that the source does not contaminate the well

  17. Fingerprinting TCE in a bedrock aquifer using compound-specific isotope analysis.

    Science.gov (United States)

    Lojkasek-Lima, Paulo; Aravena, Ramon; Parker, Beth L; Cherry, John A

    2012-01-01

    A dual isotope approach based on compound-specific isotope analysis (CSIA) of carbon (C) and chlorine (Cl) was used to identify sources of persistent trichloroethylene (TCE) that caused the shut-down in 1994 of a municipal well in an extensive fractured dolostone aquifer beneath Guelph, Ontario. Several nearby industrial properties have known subsurface TCE contamination; however, only one has created a comprehensive monitoring network in the bedrock. The impacted municipal well and many monitoring wells were sampled for volatile organic compounds (VOCs), inorganic parameters, and CSIA. A wide range in isotope values was observed at the study site. The TCE varies between -35.6‰ and -21.8‰ and from 1.6‰ to 3.2‰ for δ(13) C and δ(37) Cl, respectively. In case of cis-1,2-dichloroethene, the isotope values range between -36.3‰ and -18.9‰ and from 2.4‰ to 4.7‰ for δ(13) C and δ(37) Cl, respectively. The dual isotope approach represented by a plot of δ(13) C vs. δ(37) Cl shows the municipal well samples grouped in a domain clearly separate from all other samples from the property with the comprehensive well network. The CSIA results collected under non-pumping and short-term pumping conditions thus indicate that this particular property, which has been studied intensively for several years, is not a substantial contributor of the TCE presently in the municipal well under non-pumping conditions. This case study demonstrates that CSIA signatures would have been useful much earlier in the quest to examine sources of the TCE in the municipal well if bedrock monitoring wells had been located at several depths beneath each of the potential TCE-contributing properties. Moreover, the CSIA results show that microbial reductive dechlorination of TCE occurs in some parts of the bedrock aquifer. At this site, the use of CSIA for C and Cl in combination with analyses of VOC and redox parameters proved to be important due to the complexity introduced by

  18. Characterising Bedrock Aquifer Systems in Korea Using Paired Water-Level Monitoring Data

    Directory of Open Access Journals (Sweden)

    Jae Min Lee

    2017-06-01

    Full Text Available This study focused on characterising aquifer systems based on water-level changes observed systematically at 159 paired groundwater monitoring wells throughout Korea. Using spectral analysis, principal component analysis (PCA, and cross-correlation analysis with linear regression, aquifer conditions were identified from the comparison of water-level changes in shallow alluvial and deep bedrock monitoring wells. The spectral analysis could identify the aquifer conditions (i.e., unconfined, semi-confined and confined of 58.5% of bedrock wells and 42.8% of alluvial wells: 93 and 68 wells out of 159 wells, respectively. Even among the bedrock wells, 50 wells (53.7% exhibited characteristics of the unconfined condition, implying significant vulnerability of the aquifer to contaminants from the land surface and shallow depths. It appears to be better approach for deep bedrock aquifers than shallow alluvial aquifers. However, significant portions of the water-level changes remained unclear for categorising aquifer conditions due to disturbances in data continuity. For different aquifer conditions, PCA could show typical pattern and factor scores of principal components. Principal component 1 due to wet-and-dry seasonal changes and water-level response time was dominant covering about 55% of total variances of each aquifer conditions, implying the usefulness of supplementary method of aquifer characterisation. Cross-correlation and time-lag analysis in the water-level responses to precipitations clearly show how the water levels in shallow and deep wells correspond in time scale. No significant differences in time-lags was found between shallow and deep wells. However, clear time-lags were found to be increasing from unconfined to confined conditions: from 1.47 to 2.75 days and from 1.78 to 2.75 days for both shallow alluvial and deep bedrock wells, respectively. In combination of various statistical methods, three types of water-level fluctuation

  19. Flow and sorption controls of groundwater arsenic in individual boreholes from bedrock aquifers in central Maine, USA

    Science.gov (United States)

    Yang, Qiang; Culbertson, Charles W.; Nielsen, Martha G.; Schalk, Charles W.; Johnson, Carole D.; Marvinney, Robert G.; Stute, Martin; Zheng, Yan

    2014-01-01

    To understand the hydrogeochemical processes regulating well water arsenic (As) evolution in fractured bedrock aquifers, three domestic wells with [As] up to 478 μg/L are investigated in central Maine. Geophysical logging reveals that fractures near the borehole bottom contribute 70-100% of flow. Borehole and fracture water samples from various depths show significant proportions of As (up to 69%) and Fe (93-99%) in particulates (>0.45 μm). These particulates and those settled after a 16-day batch experiment contain 560-13,000 g/kg of As and 14-35% weight/weight of Fe. As/Fe ratios (2.5-20 mmol/mol) and As partitioning ratios (adsorbed/dissolved [As], 20,000-100,000 L/kg) suggest that As is sorbed onto amorphous hydrous ferric oxides. Newly drilled cores also show enrichment of As (up to 1300 mg/kg) sorbed onto secondary iron minerals on the fracture surfaces. Pumping at high flow rates induces large decreases in particulate As and Fe, a moderate increase in dissolved [As] and As(III)/As ratio, while little change in major ion chemistry. The δD and δ18O are similar for the borehole and fracture waters, suggesting a same source of recharge from atmospheric precipitation. Results support a conceptual model invoking flow and sorption controls on groundwater [As] in fractured bedrock aquifers whereby oxygen infiltration promotes the oxidation of As-bearing sulfides at shallower depths in the oxic portion of the flow path releasing As and Fe; followed by Fe oxidation to form Fe oxyhydroxide particulates, which are transported in fractures and sorb As along the flow path until intercepted by boreholes. In the anoxic portions of the flow path, reductive dissolution of As-sorbed iron particulates could re-mobilize As. For exposure assessment, we recommend sampling of groundwater without filtration to obtain total As concentration in groundwater.

  20. Detecting a Defective Casing Seal at the Top of a Bedrock Aquifer.

    Science.gov (United States)

    Richard, Sandra K; Chesnaux, Romain; Rouleau, Alain

    2016-03-01

    An improperly sealed casing can produce a direct hydraulic connection between two or more originally isolated aquifers with important consequences regarding groundwater quantity and quality. A recent study by Richard et al. (2014) investigated a monitoring well installed in a fractured rock aquifer with a defective casing seal at the soil-bedrock interface. A hydraulic short circuit was detected that produced some leakage between the rock and the overlying deposits. A falling-head permeability test performed in this well showed that the usual method of data interpretation is not valid in this particular case due to the presence of a piezometric error. This error is the direct result of the preferential flow originating from the hydraulic short circuit and the subsequent re-equilibration of the piezometric levels of both aquifers in the vicinity of the inlet and the outlet of the defective seal. Numerical simulations of groundwater circulation around the well support the observed impact of the hydraulic short circuit on the results of the falling-head permeability test. These observations demonstrate that a properly designed falling-head permeability test may be useful in the detection of defective casing seals. © 2015, National Ground Water Association.

  1. Flow and sorption controls of groundwater arsenic in individual boreholes from bedrock aquifers in central Maine, USA

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Qiang [Lamont-Doherty Earth Observatory of Columbia University, 61 Route 9 W, Palisades, NY 10964 (United States); School of Earth and Environmental Sciences, Queens College and Graduate Center, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367 (United States); Culbertson, Charles W.; Nielsen, Martha G.; Schalk, Charles W. [U.S. Geological Survey, Maine Water Science Center, 196 Whitten Road, Augusta, ME 04330 (United States); Johnson, Carole D. [U.S. Geological Survey, Branch of Geophysics, 11 Sherman Place, Unit 5015, University of Connecticut, Storrs, CT 06269 (United States); Marvinney, Robert G. [Maine Geological Survey, 93 State House Station, Augusta, ME 04333 (United States); Stute, Martin [Lamont-Doherty Earth Observatory of Columbia University, 61 Route 9 W, Palisades, NY 10964 (United States); Zheng, Yan, E-mail: yan.zheng@qc.cuny.edu [Lamont-Doherty Earth Observatory of Columbia University, 61 Route 9 W, Palisades, NY 10964 (United States); School of Earth and Environmental Sciences, Queens College and Graduate Center, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367 (United States)

    2015-02-01

    To understand the hydrogeochemical processes regulating well water arsenic (As) evolution in fractured bedrock aquifers, three domestic wells with [As] up to 478 μg/L are investigated in central Maine. Geophysical logging reveals that fractures near the borehole bottom contribute 70–100% of flow. Borehole and fracture water samples from various depths show significant proportions of As (up to 69%) and Fe (93–99%) in particulates (> 0.45 μm). These particulates and those settled after a 16-day batch experiment contain 560–13,000 mg/kg of As and 14–35% weight/weight of Fe. As/Fe ratios (2.5–20 mmol/mol) and As partitioning ratios (adsorbed/dissolved [As], 20,000–100,000 L/kg) suggest that As is sorbed onto amorphous hydrous ferric oxides. Newly drilled cores also show enrichment of As (up to 1300 mg/kg) sorbed onto secondary iron minerals on the fracture surfaces. Pumping at high flow rates induces large decreases in particulate As and Fe, a moderate increase in dissolved [As] and As(III)/As ratio, while little change in major ion chemistry. The δD and δ{sup 18}O are similar for the borehole and fracture waters, suggesting a same source of recharge from atmospheric precipitation. Results support a conceptual model invoking flow and sorption controls on groundwater [As] in fractured bedrock aquifers whereby oxygen infiltration promotes the oxidation of As-bearing sulfides at shallower depths in the oxic portion of the flow path releasing As and Fe; followed by Fe oxidation to form Fe oxyhydroxide particulates, which are transported in fractures and sorb As along the flow path until intercepted by boreholes. In the anoxic portions of the flow path, reductive dissolution of As-sorbed iron particulates could re-mobilize As. For exposure assessment, we recommend sampling of groundwater without filtration to obtain total As concentration in groundwater. - Highlights: • Most Fe and some As exist as particulates in the tested borehole and fracture water.

  2. Flow and sorption controls of groundwater arsenic in individual boreholes from bedrock aquifers in central Maine, USA.

    Science.gov (United States)

    Yang, Qiang; Culbertson, Charles W; Nielsen, Martha G; Schalk, Charles W; Johnson, Carole D; Marvinney, Robert G; Stute, Martin; Zheng, Yan

    2015-02-01

    To understand the hydrogeochemical processes regulating well water arsenic (As) evolution in fractured bedrock aquifers, three domestic wells with [As] up to 478 μg/L are investigated in central Maine. Geophysical logging reveals that fractures near the borehole bottom contribute 70-100% of flow. Borehole and fracture water samples from various depths show significant proportions of As (up to 69%) and Fe (93-99%) in particulates (>0.45 μm). These particulates and those settled after a 16-day batch experiment contain 560-13,000 mg/kg of As and 14-35% weight/weight of Fe. As/Fe ratios (2.5-20 mmol/mol) and As partitioning ratios (adsorbed/dissolved [As], 20,000-100,000 L/kg) suggest that As is sorbed onto amorphous hydrous ferric oxides. Newly drilled cores also show enrichment of As (up to 1300 mg/kg) sorbed onto secondary iron minerals on the fracture surfaces. Pumping at high flow rates induces large decreases in particulate As and Fe, a moderate increase in dissolved [As] and As(III)/As ratio, while little change in major ion chemistry. The δD and δ(18)O are similar for the borehole and fracture waters, suggesting a same source of recharge from atmospheric precipitation. Results support a conceptual model invoking flow and sorption controls on groundwater [As] in fractured bedrock aquifers whereby oxygen infiltration promotes the oxidation of As-bearing sulfides at shallower depths in the oxic portion of the flow path releasing As and Fe; followed by Fe oxidation to form Fe oxyhydroxide particulates, which are transported in fractures and sorb As along the flow path until intercepted by boreholes. In the anoxic portions of the flow path, reductive dissolution of As-sorbed iron particulates could re-mobilize As. For exposure assessment, we recommend sampling of groundwater without filtration to obtain total As concentration in groundwater. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Water resources of Rockland County, New York, 2005-07, with emphasis on the Newark Basin Bedrock Aquifer

    Science.gov (United States)

    Heisig, Paul M.

    2011-01-01

    Concerns over the state of water resources in Rockland County, NY, prompted an assessment of current (2005-07) conditions. The investigation included a review of all water resources but centered on the Newark basin aquifer, a fractured-bedrock aquifer over which nearly 300,000 people reside. Most concern has been focused on this aquifer because of (1) high summer pumping rates, with occasional entrained-air problems and an unexplained water-level decline at a monitoring well, (2) annual withdrawals that have approached or even exceeded previous estimates of aquifer recharge, and (3) numerous contamination problems that have caused temporary or long-term shutdown of production wells. Public water supply in Rockland County uses three sources of water in roughly equal parts: (1) the Newark basin sedimentary bedrock aquifer, (2) alluvial aquifers along the Ramapo and Mahwah Rivers, and (3) surface waters from Lake DeForest Reservoir and a smaller, new reservoir supply in the Highlands part of the county. Water withdrawals from the alluvial aquifer in the Ramapo River valley and the Lake DeForest Reservoir are subject to water-supply application permits that stipulate minimum flows that must be maintained downstream into New Jersey. There is a need, therefore, at a minimum, to prevent any loss of the bedrock-aquifer resource--to maintain it in terms of both sustainable use and water-quality protection. The framework of the Newark basin bedrock aquifer included characterization of (1) the structure and fracture occurrence associated with the Newark basin strata, (2) the texture and thickness of overlying glacial and alluvial deposits, (3) the presence of the Palisades sill and associated basaltic units on or within the Newark basin strata, and (4) the streams that drain the aquifer system. The greatest concern regarding sustainability of groundwater resources is the aquifer response to the seasonal increase in pumping rates from May through October (an average increase

  4. lithologic characterisation of the basement aquifers of awe and ...

    African Journals Online (AJOL)

    Global Journal

    resistivity exceeded 3000 ohm-m, then the bedrock is fresh and prospect for water is low (Olayinka and. Olorunfemi, 1992; Olorunfemi and Olorunniwo, 1990). Groundwater zones are found in the weathered and fractured zones in basement areas. In Ibarapa area of SW, Nigeria the associated fractured bedrock aquifers.

  5. Characterizing Hydraulic Properties and Ground-Water Chemistry in Fractured-Rock Aquifers: A User's Manual for the Multifunction Bedrock-Aquifer Transportable Testing Tool (BAT3)

    Science.gov (United States)

    Shapiro, Allen M.

    2007-01-01

    A borehole testing apparatus has been designed to isolate discrete intervals of a bedrock borehole and conduct hydraulic tests or collect water samples for geochemical analyses. This borehole testing apparatus, referred to as the Multifunction Bedrock-Aquifer Transportable Testing Tool (BAT3), includes two borehole packers, which when inflated can form a pressure-tight seal against smooth borehole walls; a pump apparatus to withdraw water from between the two packers; a fluid-injection apparatus to inject water between the two packers; pressure transducers to monitor fluid pressure between the two packers, as well as above and below the packers; flowmeters to monitor rates of fluid withdrawal or fluid injection; and data-acquisition equipment to record and store digital records from the pressure transducers and flowmeters. The generic design of this apparatus was originally discussed in United States Patent Number 6,761,062 (Shapiro, 2004). The prototype of the apparatus discussed in this report is designed for boreholes that are approximately 6 inches in diameter and can be used to depths of approximately 300 feet below land surface. The apparatus is designed to fit in five hard plastic boxes that can be shipped by overnight freight car-riers. The equipment can be assembled rapidly once it is removed from the shipping boxes, and the length of the test interval (the distance between the two packers) can be adjusted to account for different borehole conditions without reconfiguring the downhole components. The downhole components of the Multifunction BAT3 can be lowered in a borehole using steel pipe or a cable; a truck mounted winch or a winch and tripod can be used for this purpose. The equipment used to raise and lower the downhole components of the Multifunction BAT3 must be supplied on site, along with electrical power, a compressor or cylinders of compressed gas to inflate the packers and operate downhole valves, and the proper length of tubing to connect the

  6. Preliminary Bedrock Geologic Map of the Old Lyme Quadrangle, New London and Middlesex Counties, Connecticut

    Science.gov (United States)

    Walsh, Gregory J.; Scott, Robert B.; Aleinikoff, John N.; Armstrong, Thomas R.

    2006-01-01

    This report presents a preliminary map of the bedrock geology of the Old Lyme quadrangle, New London and Middlesex Counties, Connecticut. The map depicts contacts of bedrock geologic units, faults, outcrops, and structural geologic information. The map was published as part of a study of fractured bedrock aquifers and regional tectonics.

  7. Bedrock geology and hydrostratigraphy of the Edwards and Trinity aquifers within the Driftwood and Wimberley 7.5-minute quadrangles, Hays and Comal Counties, Texas

    Science.gov (United States)

    Clark, Allan K.; Morris, Robert R.

    2017-11-16

    The Edwards and Trinity aquifers are major sources of water in south-central Texas and are both classified as major aquifers by the State of Texas. The population in Hays and Comal Counties is rapidly growing, increasing demands on the area’s water resources. To help effectively manage the water resources in the area, refined maps and descriptions of the geologic structures and hydrostratigraphic units of the aquifers are needed. This report presents the detailed 1:24,000-scale bedrock hydrostratigraphic map as well as names and descriptions of the geologic and hydrostratigraphic units of the Driftwood and Wimberley 7.5-minute quadrangles in Hays and Comal Counties, Tex.Hydrostratigraphically, the rocks exposed in the study area represent a section of the upper confining unit to the Edwards aquifer, the Edwards aquifer, the upper zone of the Trinity aquifer, and the middle zone of the Trinity aquifer. In the study area, the Edwards aquifer is composed of the Georgetown Formation and the rocks forming the Edwards Group. The Trinity aquifer is composed of the rocks forming the Trinity Group. The Edwards and Trinity aquifers are karstic with high secondary porosity along bedding and fractures. The Del Rio Clay is a confining unit above the Edwards aquifer and does not supply appreciable amounts of water to wells in the study area.The hydrologic connection between the Edwards and Trinity aquifers and the various hydrostratigraphic units is complex because the aquifer system is a combination of the original Cretaceous depositional environment, bioturbation, primary and secondary porosity, diagenesis, and fracturing of the area from Miocene faulting. All of these factors have resulted in development of modified porosity, permeability, and transmissivity within and between the aquifers. Faulting produced highly fractured areas which allowed for rapid infiltration of water and subsequently formed solutionally enhanced fractures, bedding planes, channels, and caves that

  8. Nitrate distribution and potential attenuation mechanisms of a municipal water supply bedrock aquifer

    International Nuclear Information System (INIS)

    Opazo, Tomás; Aravena, Ramón; Parker, Beth

    2016-01-01

    The Silurian bedrock aquifer constitutes a major aquifer system for groundwater supply across the Ontario province in Canada. The application of natural and industrial fertilizers near urban centers has led to groundwater NO_3"−-N concentrations that sometimes have exceeded the drinking water limit, posing a threat to the usage of groundwater for the human consumption. Therefore, there is a growing interest and concern about how nitrate is being leached, transported and potentially attenuated in bedrock aquifers. This study assesses the local distribution of groundwater NO_3"− in the up-gradient area of two historically impacted municipal wells, called Carter Wells, in the City of Guelph, Canada, in order to evaluate the potential nitrate attenuation mechanisms, using both groundwater geochemical and isotopic analysis ("3H, δ"1"5N-NO_3, δ"1"8O-NO_3, δ"1"8O-SO_4, δ"3"4S-SO_4) and a detailed vertical hydrogeological and geochemical bedrock characterization. The results indicate that probably the main source of nitrate to the Carter Wells is the up-gradient Arkell Research Station (ARS), an agricultural research facility where manure has been historically applied. The overburden and bedrock groundwater with high NO_3 concentrations at the ARS exhibits a manure-related δ"1"5N and δ"1"8O signature, isotopically similar to the high nitrate in the down-gradient groundwater from domestic wells and from the Carter Wells. The nitrate spatial distribution appears to be influenced and controlled by the geology, in which more permeable rock is found in the Guelph Formation which in turn is related to most of the high NO_3"− groundwater. The presence of an underlying low permeability Eramosa Formation favors the development of oxygen-depleted conditions, a key factor for the occurrence of denitrification. Groundwater with low NO_3"−-N concentrations associated with more oxygen-limited conditions and coincident with high SO_4"2"− concentrations are related to more

  9. The role of bedrock groundwater in rainfall-runoff response at hillslope and catchment scales

    Science.gov (United States)

    Gabrielli, C. P.; McDonnell, J. J.; Jarvis, W. T.

    2012-07-01

    SummaryBedrock groundwater dynamics in headwater catchments are poorly understood and poorly characterized. Direct hydrometric measurements have been limited due to the logistical challenges associated with drilling through hard rock in steep, remote and often roadless terrain. We used a new portable bedrock drilling system to explore bedrock groundwater dynamics aimed at quantifying bedrock groundwater contributions to hillslope flow and catchment runoff. We present results from the Maimai M8 research catchment in New Zealand and Watershed 10 (WS10) at the H.J. Andrews Experimental Forest in Oregon, USA. Analysis of bedrock groundwater at Maimai, through a range of flow conditions, revealed that the bedrock water table remained below the soil-bedrock interface, indicating that the bedrock aquifer has minimal direct contributions to event-based hillslope runoff. However, the bedrock water table did respond significantly to storm events indicating that there is a direct connection between hillslope processes and the underlying bedrock aquifer. WS10 groundwater dynamics were dominated by fracture flow. A highly fractured and transmissive zone within the upper one meter of bedrock conducted rapid lateral subsurface stormflow and lateral discharge. The interaction of subsurface stormflow with bedrock storage directly influenced the measured hillslope response, solute transport and computed mean residence time. This research reveals bedrock groundwater to be an extremely dynamic component of the hillslope hydrological system and our comparative analysis illustrates the potential range of hydrological and geological controls on runoff generation in headwater catchments.

  10. Spatial pattern of groundwater arsenic occurrence and association with bedrock geology in greater augusta, maine

    Science.gov (United States)

    Yang, Q.; Jung, H.B.; Culbertson, C.W.; Marvinney, R.G.; Loiselle, M.C.; Locke, D.B.; Cheek, H.; Thibodeau, H.; Zheng, Yen

    2009-01-01

    In New England, groundwater arsenic occurrence has been linked to bedrock geology on regional scales. To ascertain and quantify this linkage at intermediate (100-101 km) scales, 790 groundwater samples from fractured bedrock aquifers in the greater Augusta, Maine area are analyzed, and 31% of the sampled wells have arsenic concentrations >10 ??g/L. The probability of [As] exceeding 10 ??g/L mapped by indicator kriging is highest in Silurian pelite-sandstone and pelite-limestone units (???40%). This probability differs significantly (p bedrock map. Thus, bedrock geology is associated with arsenic occurrence in fractured bedrock aquifers of the study area at intermediate scales relevant to water resources planning. The arsenic exceedance rate for each rock unit is considered robust because low, medium, and high arsenic occurrences in four cluster areas (3-20 km2) with a low sampling density of 1-6 wells per km2 are comparable to those with a greater density of 5-42 wells per km2. About 12,000 people (21% of the population) in the greater Augusta area (???1135 km2) are at risk of exposure to >10 ??g/L arsenic in groundwater. ?? 2009 American Chemical Society.

  11. Localizing Fracture Hydromechanical Response using Fiber Optic Distributed Acoustic Sensing in a Fractured Bedock Aquifer

    Science.gov (United States)

    Ciervo, C.; Becker, M.; Cole, M. C.; Coleman, T.; Mondanos, M.

    2017-12-01

    Measuring fracture mechanical behavior in response to changes in fluid pressure is critical for understanding flow through petroleum reservoirs, predicting hydrothermal responses in geothermal fields, and monitoring geologic carbon sequestration injection. Distributed acoustic sensing (DAS) is new, but commercially available fiber optic technology that offers a novel approach to characterize fractured bedrock systems. DAS was originally designed to measure the amplitude, frequency, and phase of an acoustic wave, and is therefore capable of detecting strains at exceedingly small scales. Though normally used to measure frequencies in the Hz to kHz range, we adapted DAS to measure fracture displacements in response to periodic hydraulic pulses in the mHz frequency range. A field experiment was conducted in a fractured bedrock aquifer to test the ability of DAS to measure fracture mechanical response to oscillatory well tests. Fiber optic cable was deployed in a well, and coupled to the borehole wall using a flexible impermeable liner designed with an air coupled transducer to measure fluid pressure at the target fracture zone. Two types of cable were tested, a loose tube and tight buffered, to determine the effects of cable construction. Both strain and pressure were measured across the known fracture zone hydraulically connected to a well 30 m away. The companion well was subjected to alternating pumping and injection with periods between 2 and 18 minutes. Raw DAS data were collected as strain rate measured every 0.25 m along the fiber with a gauge length of 10 m, at a sampling rate of 1 kHz. Strain rate was converted to strain by integrating with respect to time. DAS measured periodic strains of less than 1 nm/m in response to periodic injection and pumping at the companion well. Strain was observed by DAS only at the depth of the hydraulically connected fracture zone. Thus, the magnitude and response of the strain could be both localized with depth and measured

  12. Onset of density-driven instabilities in fractured aquifers

    Science.gov (United States)

    Jafari Raad, Seyed Mostafa; Hassanzadeh, Hassan

    2018-04-01

    Linear stability analysis is conducted to study the onset of density-driven convection involved in solubility trapping of C O2 in fractured aquifers. The effect of physical properties of a fracture network on the stability of a diffusive boundary layer in a saturated fractured porous media is investigated using the dual porosity concept. Linear stability analysis results show that both fracture interporosity flow and fracture storativity play an important role in the stability behavior of the system. It is shown that a diffusive boundary layer under the gravity field in fractured porous media with lower fracture storativity and/or higher fracture interporosity flow coefficient is more stable. We present scaling relations for the onset of convective instability in fractured aquifers with single and variable matrix block size distribution. These findings improve our understanding of density-driven flow in fractured aquifers and are important in the estimation of potential storage capacity, risk assessment, and storage site characterization and screening.

  13. Estimating Poromechanical and Hydraulic Properties of Fractured Media Aquifers Using a Model of the Aquifer at Ploemeur France: Broad Applications and Future Uses

    Science.gov (United States)

    Wilson, M. W.; Burbey, T. J.

    2017-12-01

    Aquifers in fractured crystalline bedrock are located over half of the earth's surface and are vital civil and economic resources particularly in places where ample, safe surface water is not available. With fractured media aquifers providing large percentages of water for municipal, industrial, and agricultural use in many regions of the world. Distinguishing sustainable quantities of extraction is of paramount importance to the continuing viability of these important resources and the communities they serve. The fractured and faulted crystalline-rock aquifer system supporting the community of Ploemeur France has been providing one million cubic meters of water annually, resulting in a modest long-term drawdown of about 15m. To understand the sources and mechanisms of recharge that support this aquifer system, a three-dimensional ABAQUS model was developed using known geologic, water-level and geodetic (tiltmeters and GPS) data to simulate the natural aquifer system that is dominated by a permeable sub-vertical fault and an intersecting semi-horizontal contact zone. The model is used to constrain the poromechanical properties of the fault and contact zones relative to the host crystalline rocks and overlying saprolite by taking advantage of the tilt and seasonal GPS responses caused by municipal pumping along with water-level data for the area. A chief goal in this modeling effort is to assess the sources of recharge to this aquifer system that is atypically productive for a crystalline-rock setting. Preliminary results suggest that the source of water supplying this community is a combination of rapid localized recharge through the saprolite and fault zone and recharge along the contact zone, both from the north (older water) and where it is exposed to the south (younger water). The modeling effort also shows the importance of combining GPS and surface tiltmeter data with water-level measurements for constraining the properties of this complex aquifer system and

  14. Modelling of Radionuclide Transport by Groundwater Motion in Fractured Bedrock for Performance Assessment Purposes

    International Nuclear Information System (INIS)

    Woerman, Anders; Shulan Xu

    2003-10-01

    Field data of physical properties in heterogeneous crystalline bedrock, like fracture zones, fracture connectivity, matrix porosity and fracture aperture, is associated with uncertainty that can have a significant impact on the analysis of solute transport in fractured rock. The purpose of this study is to develop a performance assessment (PA) model for analyses of radionuclide transport in the geosphere, in which the model takes into account both the effect of heterogeneities of hydrological and geochemical rock properties. By using a travel time description of radionuclide transport in rock fractures, we decompose the transport problem into a one-dimensional mass transfer problem along a distribution of transport pathways and a multi-dimensional flow problem in the fractured bedrock. The hydraulic/flow problem is solved based on a statistical discrete-fracture model (DFM) that represents the network of fractures around the repository and in the surrounding geosphere. A Monte Carlo technique reflects the fact that the representation of the fracture network is uncertain. If the flow residence time PDF exhibits multiple peaks or in another way shows a more erratic hydraulic response on the network scale, the three-dimensional travel time approach is superior to a one-dimensional transport modeling. Examples taken from SITE 94, a study performed by the Swedish Nuclear Power Inspectorate, showed that such cases can be found in safety assessments based on site data. The solute transport is formulated based on partial, differential equations and perturbations (random spatial variability in bedrock properties) are introduced in the coefficients to reflect an uncertainty of the exact appearance of the bedrock associated with the discrete data collection. The combined approach for water flow and solute transport, thereby, recognises an uncertainty in our knowledge in both 1) bedrock properties along individual pathways and 2) the distribution of pathways. Solutions to the

  15. Spatial Pattern of Groundwater Arsenic Occurrence and Association with Bedrock Geology in Greater Augusta, Maine, USA

    Science.gov (United States)

    Yang, Qiang; Jung, Hun Bok; Culbertson, Charles W.; Marvinney, Robert G.; Loiselle, Marc C.; Locke, Daniel B.; Cheek, Heidi; Thibodeau, Hilary; Zheng, Yan

    2009-01-01

    In New England, groundwater arsenic occurrence has been linked to bedrock geology on regional scales. To ascertain and quantify this linkage at intermediate (100-101 km) scales, 790 groundwater samples from fractured bedrock aquifers in the greater Augusta, Maine area are analyzed. 31% of the sampled wells have arsenic >10 μg/L. The probability of [As] exceeding 10 μg/L mapped by indicator kriging is highest in Silurian pelite-sandstone and pelite-limestone units (~40%). This probability differs significantly (pbedrock map. Thus, bedrock geology is associated with arsenic occurrence in fractured bedrock aquifers of the study area at intermediate scales relevant to water resources planning. The arsenic exceedance rate for each rock unit is considered robust because low, medium and high arsenic occurrences in 4 cluster areas (3-20 km2) with a low sampling density of 1-6 wells per km2 are comparable to those with a greater density of 5-42 wells per km2. About 12,000 people (21% of the population) in the greater Augusta area (~1135 km2) are at risk of exposure to >10 μg/L arsenic in groundwater. PMID:19475939

  16. Fluctuations in groundwater levels related to regional and local withdrawals in the fractured-bedrock groundwater system in northern Wake County, North Carolina, March 2008-February 2009

    Science.gov (United States)

    Chapman, Melinda J.; Almanaseer, Naser; McClenney, Bryce; Hinton, Natalie

    2011-01-01

    A study of dewatering of the fractured-bedrock aquifer in a localized area of east-central North Carolina was conducted from March 2008 through February 2009 to gain an understanding of why some privately owned wells and monitoring wells were intermittently dry. Although the study itself was localized in nature, the resulting water-resources data and information produced from the study will help enable resource managers to make sound water-supply and water-use decisions in similar crystalline-rock aquifer setting in parts of the Piedmont and Blue Ridge Physiographic Provinces. In June 2005, homeowners in a subdivision of approximately 11 homes on lots approximately 1 to 2 acres in size in an unincorporated area of Wake County, North Carolina, reported extremely low water pressure and temporarily dry wells during a brief period. This area of the State, which is in the Piedmont Physiographic Province, is undergoing rapid growth and development. Similar well conditions were reported again in July 2007. In an effort to evaluate aquifer conditions in the area of intermittent water loss, a study was begun in March 2008 to measure and monitor water levels and groundwater use. During the study period from March 2008 through February 2009, regular dewatering of the fractured-bedrock aquifer was documented with water levels in many wells ranging between 100 and 200 feet below land surface. Prior to this period, water levels from the 1980s through the late 1990s were reported to range from 15 to 50 feet below land surface. The study area includes three community wells and more than 30 private wells within a 2,000-foot radius of the dewatered private wells. Although groundwater levels were low, recovery was observed during periods of heavy rainfall, most likely a result of decreased withdrawals owing to less demand for irrigation purposes. Similar areal patterns of low groundwater levels were delineated during nine water-level measurement periods from March 2008 through

  17. Anisotropic modelling of the electrical conductivity of fractured bedrock

    International Nuclear Information System (INIS)

    Flykt, M.J.; Sihvola, A.H.; Eloranta, E.H.

    1995-01-01

    The electromagnetic characterization of fractured bedrock is of importance when studying the final disposal of nuclear waste. The different types of discontinuities at all scales in rocks can be viewed as an inhomogeneity. In some cases there are reasons to assume the influence of the discontinuities on electrical conductivity is anisotropic in character. The effort has been made to use electromagnetic mixing rules in the definition of an equivalent homogeneous anisotropic conductivity tensor for such fractured rock mass. (author) (16 refs., 6 figs.)

  18. Hydrochemistry of the Mahomet Bedrock Valley Aquifer, East-Central Illinois: indicators of recharge and ground-water flow

    Science.gov (United States)

    Panno, S.V.; Hackley, Keith C.; Cartwright, K.; Liu, Chao-Li

    1994-01-01

    A conceptual model of the ground-water flow and recharge to the Mahomet Bedrock Valley Aquifer (MVA), east-central Illinois, was developed using major ion chemistry and isotope geochemistry. The MVA is a 'basal' fill in the east-west trending buried bedrock valley composed of clean, permeable sand and gravel to thicknesses of up to 61 m. It is covered by a thick sequence of glacial till containing thinner bodies of interbedded sand and gravel. Ground water from the MVA was found to be characterized by clearly defined geochemical regions with three distinct ground-water types. A fourth ground-water type was found at the confluence of the MVA and the Mackinaw Bedrock Valley Aquifer (MAK) to the west. Ground water in the Onarga Valley, a northeastern tributary of the MVA, is of two types, a mixed cation-SO42- type and a mixed cation-HCO3- type. The ground water is enriched in Na+, Ca2+, Mg2+, and SO42- which appears to be the result of an upward hydraulic gradient and interaction of deeper ground water with oxidized pyritic coals and shale. We suggest that recharge to the Onarga Valley and overlying aquifers is 100% from bedrock (leakage) and lateral flow from the MVA to the south. The central MVA (south of the Onarga Valley) is composed of relatively dilute ground water of a mixed cation-HCO3- type, with low total dissolved solids, and very low concentrations of Cl- and SO42-. Stratigraphic relationships of overlying aquifers and ground-water chemistry of these and the MVA suggest recharge to this region of the MVA (predominantly in Champaign County) is relatively rapid and primarily from the surface. Midway along the westerly flow path of the MVA (western MVA), ground water is a mixed cation-HCO3- type with relatively high Cl-, where Cl- increases abruptly by one to ??? two orders of magnitude. Data suggest that the increase in Cl- is the result of leakage of saline ground water from bedrock into the MVA. Mass-balance calculations indicate that approximately 9.5% of

  19. Employing Eigenvalue Ratios to Generate Prior Fracture-like Features for Stochastic Hydrogeophysical Characterization of a Fractured Aquifer System

    Science.gov (United States)

    Brewster, J.; Oware, E. K.

    2017-12-01

    Groundwater hosted in fractured rocks constitutes almost 65% of the principal aquifers in the US. The exploitation and contaminant management of fractured aquifers require fracture flow and transport modeling, which in turn requires a detailed understanding of the structure of the aquifer. The widely used equivalent porous medium approach to modeling fractured aquifer systems is inadequate to accurately predict fracture transport processes due to the averaging of the sharp lithological contrast between the matrix and the fractures. The potential of geophysical imaging (GI) to estimate spatially continuous subsurface profiles in a minimally invasive fashion is well proven. Conventional deterministic GI strategies, however, produce geologically unrealistic, smoothed-out results due to commonly enforced smoothing constraints. Stochastic GI of fractured aquifers is becoming increasing appealing due to its ability to recover realistic fracture features while providing multiple likely realizations that enable uncertainty assessment. Generating prior spatial features consistent with the expected target structures is crucial in stochastic imaging. We propose to utilize eigenvalue ratios to resolve the elongated fracture features expected in a fractured aquifer system. Eigenvalues capture the major and minor directions of variability in a region, which can be employed to evaluate shape descriptors, such as eccentricity (elongation) and orientation of features in the region. Eccentricity ranges from zero to one, representing a circularly sharped to a line feature, respectively. Here, we apply eigenvalue ratios to define a joint objective parameter consisting of eccentricity (shape) and direction terms to guide the generation of prior fracture-like features in some predefined principal directions for stochastic GI. Preliminary unconditional, synthetic experiments reveal the potential of the algorithm to simulate prior fracture-like features. We illustrate the strategy with a

  20. Forsmark Bedrock mapping. Stage 1 (2002) - Outcrop data including fracture data

    International Nuclear Information System (INIS)

    Stephens, M.B.; Bergman, T.; Andersson, J.; Hermansson, T.; Wahlgren, C.H.; Albrecht, L.; Mikko, H.

    2003-02-01

    Infra-red aerial photographs over the study area, taken at a height of 2700 m, were interpreted in order to locate either the position of outcrops where the bedrock is exposed at the Earth's surface or sites where the bedrock lies beneath a thin (< 50 cm) cover of Quaternary deposits. These data were critical for the planning and execution of the field activities. It was aimed to map all the outcrops in the mainland part of the study area during stage 1 of the project. These data will be integrated with both bedrock analytical data and the interpretations obtained from the study of airborne geophysical data in order to produce a bedrock map over the study area. In order to gain some information on the regional variation in the frequency and orientation of fractures over the candidate area, a documentation of the position and strike and dip of fractures longer than 100 cm was carried out at 44 outcrops. This work will also help in the selection of outcrops where detailed fracture analysis will be carried out during a later stage of the site investigation programme. Field work associated with stage 1 of the project initiated in the candidate area during June 2002. Field activities then continued in the coastal area to the northeast, in the area north of 6700000 N to the northwest of the candidate area and in the inland area to the southwest. Field activities ceased during September 2002. Both descriptive and numerical data from the 1054 observation points have been included in an outcrop database. Primarily on account of the complexity of the outcrops visited and, as a consequence, the longer time required for the field activities, a large part of the area south of road 76 was not mapped during 2002

  1. Forsmark Bedrock mapping. Stage 1 (2002) - Outcrop data including fracture data

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, M.B.; Bergman, T.; Andersson, J.; Hermansson, T.; Wahlgren, C.H.; Albrecht, L.; Mikko, H. [Geological Survey of Sweden, Uppsala (Sweden)

    2003-02-01

    Infra-red aerial photographs over the study area, taken at a height of 2700 m, were interpreted in order to locate either the position of outcrops where the bedrock is exposed at the Earth's surface or sites where the bedrock lies beneath a thin (< 50 cm) cover of Quaternary deposits. These data were critical for the planning and execution of the field activities. It was aimed to map all the outcrops in the mainland part of the study area during stage 1 of the project. These data will be integrated with both bedrock analytical data and the interpretations obtained from the study of airborne geophysical data in order to produce a bedrock map over the study area. In order to gain some information on the regional variation in the frequency and orientation of fractures over the candidate area, a documentation of the position and strike and dip of fractures longer than 100 cm was carried out at 44 outcrops. This work will also help in the selection of outcrops where detailed fracture analysis will be carried out during a later stage of the site investigation programme. Field work associated with stage 1 of the project initiated in the candidate area during June 2002. Field activities then continued in the coastal area to the northeast, in the area north of 6700000 N to the northwest of the candidate area and in the inland area to the southwest. Field activities ceased during September 2002. Both descriptive and numerical data from the 1054 observation points have been included in an outcrop database. Primarily on account of the complexity of the outcrops visited and, as a consequence, the longer time required for the field activities, a large part of the area south of road 76 was not mapped during 2002.

  2. An integrated geophysical and hydraulic investigation to characterize a fractured-rock aquifer, Norwalk, Connecticut

    Science.gov (United States)

    Lane, J.W.; Williams, J.H.; Johnson, C.D.; Savino, D.M.; Haeni, F.P.

    2002-01-01

    The U.S. Geological Survey conducted an integrated geophysical and hydraulic investigation at the Norden Systems, Inc. site in Norwalk, Connecticut, where chlorinated solvents have contaminated a fractured-rock aquifer. Borehole, borehole-to-borehole, surface-geophysical, and hydraulic methods were used to characterize the site bedrock lithology and structure, fractures, and transmissive zone hydraulic properties. The geophysical and hydraulic methods included conventional logs, borehole imagery, borehole radar, flowmeter under ambient and stressed hydraulic conditions, and azimuthal square-array direct-current resistivity soundings. Integrated interpretation of geophysical logs at borehole and borehole-to-borehole scales indicates that the bedrock foliation strikes northwest and dips northeast, and strikes north-northeast to northeast and dips both southeast and northwest. Although steeply dipping fractures that cross-cut foliation are observed, most fractures are parallel or sub-parallel to foliation. Steeply dipping reflectors observed in the radar reflection data from three boreholes near the main building delineate a north-northeast trending feature interpreted as a fracture zone. Results of radar tomography conducted close to a suspected contaminant source area indicate that a zone of low electromagnetic (EM) velocity and high EM attenuation is present above 50 ft in depth - the region containing the highest density of fractures. Flowmeter logging was used to estimate hydraulic properties in the boreholes. Thirty-three transmissive fracture zones were identified in 11 of the boreholes. The vertical separation between transmissive zones typically is 10 to 20 ft. Open-hole and discrete-zone transmissivity was estimated from heat-pulse flowmeter data acquired under ambient and stressed conditions. The open-hole transmissivity ranges from 2 to 86 ft2/d. The estimated transmissivity of individual transmissive zones ranges from 0.4 to 68 ft2/d. Drawdown monitoring

  3. Estimations of durability of fracture mineral buffers in the Olkiluoto bedrock

    International Nuclear Information System (INIS)

    Luukkonen, A.

    2006-12-01

    This study attempts to make scenarios for the geochemical effects that the underground excavations in the Olkiluoto bedrock have on naturally occurring fracture mineral buffers. The excavations of underground research facilities and final repository galleries probably cause steep hydraulic gradients in some bedrock fractures. These gradients likely draw surficial waters within the fracture network and activate weathering processes deeper in rock fractures than in the natural undisturbed conditions. The present studies concentrate on the meteoric infiltration in a single rock fracture, and on the selected set of minerals believed to be significant buffers against pH/redox variations in groundwater. The modelling considers the possibility that the infiltrating meteoric water is soil water rich in dissolved inorganic carbon. Calcite, pyrite, quartz, amorphous silica, cordierite, hornblende, albite, K-feldspar, kaolinite, and illite are taken into account as reacting minerals. Simulations are done by varying the flow rate of water from 1 L/h to 100 L/h. The effects of mineral reactions onto porosity and permeability values are monitored as well. In the present study, however, the changes in physical properties of the fracture channel do not affect the flow rate of water. Furthermore, calculations also describe how cation exchange affects the studied fracture channel system. The simulations coupling the hydraulic flow and water-rock interaction were done with TOUGHREACT V1.0 code and with the EQ3/6-database implemented in the code. In part, the simulations were evaluation of the code capabilities, and verification of results to earlier PHREEQC-2 simulation results. The calculation results confirm the assumption that principal buffer against pH changes is calcite. All silicate reactions, with considered reactive surface areas, are by comparison of marginal importance. The only redox buffer in the calculations is pyrite, and consequently significant amounts of oxygen runs

  4. Assessing the velocity of the groundwater flow in bedrock fractures

    International Nuclear Information System (INIS)

    Taivassalo, V.; Poteri, A.

    1994-10-01

    Teollisuuden Voima Oy (TVO) is studying the crystalline bedrock in Finland for the final disposal of the spent nuclear fuel from its two reactors in Olkiluoto. Preliminary site investigations for five areas were carried out during 1987-1992. One part of the investigation programme was three-dimensional groundwater flow modelling. The numerical site-specific flow simulations were based on the concept of an equivalent porous continuum. The results include hydraulic head distributions, average groundwater flow rate routes. In this study, a novel approach was developed to evaluate the velocities of the water particles flowing in the fractured bedrock. (17 refs., 15 figs., 5 tabs.)

  5. Hydraulic conductivities of fractures and matrix in Slovenian carbonate aquifers

    Directory of Open Access Journals (Sweden)

    Timotej Verbovšek

    2008-12-01

    Full Text Available Hydraulic conductivities and specific storage coefficients of fractures and matrix in Slovenian carbonate aquifers were determined by Barker’s method for pumping test analysis, based on fractional flow dimension. Values are presented for limestones and mainly for dolomites, and additionally for separate aquifers, divided by age andlithology in several groups. Data was obtained from hydrogeological reports for 397 water wells, and among these, 79 pumping tests were reinterpreted. Hydraulic conductivities of fractures are higher than the hydraulic conductivities of matrix, and the differences are highly statistically significant. Likewise, differences are significant for specific storage, and the values of these coefficients are higher in the matrix. Values of all coefficients vary in separate aquifers, and the differences can be explained by diagenetic effects, crystal size, degree of fracturing, andcarbonate purity. Comparison of the methods, used in the reports, and the Barker’s method (being more suitable for karstic and fractured aquifers, shows that the latter fits real data better.

  6. Ground source energy in crystalline bedrock - increased energy extraction by using hydraulic fracturing in boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Ramstad, Randi Kalstad

    2004-11-01

    The use of improved equipment and methodology can result in considerable reductions in the drilling costs for medium- to large sized ground source heat pump system in crystalline bedrock. The main point has been to use special techniques within hydraulic fracturing to create a larger heat exchange area in the bedrock, and thus a greater energy extraction per borehole. The energy extraction is based on circulating groundwater. Stimulation with hydraulic fracturing is a well known technique in order to improve borehole yields for drinking water-, oil-, and geothermal purposes. A procedure for injection of propping agents in selected borehole sections, and custom-made equipment for hydraulic fracturing in crystalline bedrock, a double packer, have been developed in this study. The propping agents are likely to ensure a permanent improvement of the hydraulic conductivity in a long-run perspective. In addition to a pre-test, a comprehensive test programme has been performed at each of the two pilot plants at Bryn and at the former property of Energiselskapet Asker og Baerum (EAB) in Baerum municipality outside Oslo, Norway. A total of 125 stimulations with hydraulic fracturing using water-only and hydraulic fracturing with injection of sand have been performed in 9 boreholes. Test pumping and geophysical logging (temperature, electrical conductivity, gamma radiation, optical televiewer and flow measurements) have been carried out in order to document the effect of the hydraulic fracturing. The pilot plants at Bryn and EAB, where the ground source heat pump systems are based on circulating groundwater, have demonstrated the short-period energy extraction, limitations and opportunities of the concept for hydraulic fracturing and increased energy extraction in different geological and hydrogeological areas. The bedrock at Bryn and EAB is characterized as a low-metamorphic sandstone and a nodular limestone, respectively. At Bryn, the five boreholes were organised with a

  7. Hydrogeologic characterization of a fractured granitic rock aquifer, Raymond, California

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Andrew J.B. [Univ. of California, Berkeley, CA (United States)

    1993-10-01

    The hydrogeologic properties of a shallow, fractured granitic rock aquifer in the foothills of the Sierra Nevada, California were investigated via the analysis of borehole geophysical logs and pumping tests. The drawdowns produced during these tests are not indicative of any simple conceptual aquifer model, and borehole logs show that the granite is intensely fractured. These observations are suggestive of a complex fracture-flow geometry which is extremely difficult to decipher. However, through the measurement of orientations of individual subsurface fractures from acoustic televiewer logs, and correlation between particular fractures and electrical resistivity and thermal-pulse flowmeter logs, it was found that the aquifer is, in general, comprised of two subhorizontal and nearly parallel zones of unloading fractures. Downhole flowmeter measurements taken in several wells provide further evidence for the inferred dual-layer structure of the aquifer, as well as yield quantitative measures of the contribution of flow from each zone. Analysis of drawdowns in pumped wells reveals that there are zones of relatively high transmissivity immediately around them. It was found that these properties, as well as a nearby zone of lower transmissivity, can account for their observed drawdowns. A numerical model was constructed to test whether these major heterogeneities could also account for the drawdowns in observation wells. This stepwise analysis of both the geophysical and hydrological data resulted in the formulation of a conceptual model of the aquifer which is consistent with observations, and which can account for its behavior when subjected to pumping.

  8. Fractured Epikarst Bedrock as Water Source for Woody Plants in Savanna

    Science.gov (United States)

    Schwinning, S.; Goodsheller, K. R.; Schwartz, B. F.

    2010-12-01

    Study of the soil-vegetation-atmosphere system has been overwhelmingly dominated by systems with deep soils, yet large portions of the world are characterized by shallow soils underlain by fractured bedrock. In these systems, fractured bedrock may provide significant water storage, but we know little about the function of fractured bedrock as a water source for plants. In this study we examined the water use of three co-dominant tree species on the eastern rim of the karstic Edwards Plateau where the soil is extremely rocky, only 20 -30 cm thick, and overlies a well-developed epikarst. We used Granier sap flow sensors to estimate changes in sapflow velocity with the onset of summer drought. Simultaneously, we measured precipitation inputs and drip rates in a shallow cave below the field site. Precipitation, stem and drip water were also periodically sampled for stable isotope analysis to match stem water with potential source waters. The year of the study, 2009, was characterized by extreme drought conditions developing during summer. Sap flow rates began to decline in mid-May for all three species, but there were distinct species differences in the development of water stress: live oak (Quercus fusiformis) was the first to show significant loss of transpiration, reaching minimal sap flow values by early June. Cedar elm (Ulmus crassifolia) reached minimal sap flow values by early July, while Ashe juniper’s (Juniperus ashei) loss of transpiration was very gradual, continuing to decline until early August. The isotope ratios of hydrogen and oxygen in water were not significantly different between species, suggesting that root development and water uptake was similarly constrained for the three species. In summer, all stem water isotope ratios were enriched relative to precipitation, while all drip waters coincided with the local meteoric water line. This suggests that tree water sources were relatively shallow and water draining out of the root zone did not have a

  9. Semi-analytical solutions for flow to a well in an unconfined-fractured aquifer system

    Science.gov (United States)

    Sedghi, Mohammad M.; Samani, Nozar

    2015-09-01

    Semi-analytical solutions of flow to a well in an unconfined single porosity aquifer underlain by a fractured double porosity aquifer, both of infinite radial extent, are obtained. The upper aquifer is pumped at a constant rate from a pumping well of infinitesimal radius. The solutions are obtained via Laplace and Hankel transforms and are then numerically inverted to time domain solutions using the de Hoog et al. algorithm and Gaussian quadrature. The results are presented in the form of dimensionless type curves. The solution takes into account the effects of pumping well partial penetration, water table with instantaneous drainage, leakage with storage in the lower aquifer into the upper aquifer, and storativity and hydraulic conductivity of both fractures and matrix blocks. Both spheres and slab-shaped matrix blocks are considered. The effects of the underlying fractured aquifer hydraulic parameters on the dimensionless drawdown produced by the pumping well in the overlying unconfined aquifer are examined. The presented solution can be used to estimate hydraulic parameters of the unconfined and the underlying fractured aquifer by type curve matching techniques or with automated optimization algorithms. Errors arising from ignoring the underlying fractured aquifer in the drawdown distribution in the unconfined aquifer are also investigated.

  10. Conceptual and analytical modeling of fracture zone aquifers in hard rock. Implications of pumping tests in the Pohjukansalo well field, east-central Finland

    International Nuclear Information System (INIS)

    Leveinen, J.

    2001-01-01

    Fracture zones with an interconnected network of open fractures can conduct significant groundwater flow and as in the case of the Pohjukansalo well field in Leppaevirta, can yield sufficiently for small-scale municipal water supply. Glaciofluvial deposits comprising major aquifers commonly overlay fracture zones that can contribute to the water balance directly or indirectly by providing hydraulic interconnections between different formations. Fracture zones and fractures can also transport contaminants in a poorly predictable way. Consequently, hydrogeological research of fracture zones is important for the management and protection of soil aquifers in Finland. Hydraulic properties of aquifers are estimated in situ by well test analyses based on analytical models. Most analytical models rely on the concepts of radial flow and horizontal slab aquifer. In Paper 1, pump test responses of fracture zones in the Pohjukansalo well field were characterised based on alternative analytical models developed for channelled flow cases. In Paper 2, the tests were analysed based on the generalised radial flow (GRF) model and a concept of a fracture network possessing fractional flow dimension due to limited connectivity compared to ideal 2- or 3- dimensional systems. The analysis provides estimates of hydraulic properties in terms of parameters that do not have concrete meaning when the flow dimension of the aquifer has fractional values. Concrete estimates of hydraulic parameters were produced by making simplified assumptions and by using the composite model developed in Paper 3. In addition to estimates of hydraulic parameters, analysis of hydraulic tests provides qualitative information that is useful when the hydraulic connections in the fracture system are not well known. However, attention should be paid to the frequency of drawdown measurements-particularly for the application of derivative curves. In groundwater studies, analytical models have been also used to estimate

  11. Estimation of the groundwater resources of the bedrock aquifers at the Kettle Moraine Springs State Fish Hatchery, Sheboygan County, Wisconsin

    Science.gov (United States)

    Dunning, Charles; Feinstein, Daniel T.; Buchwald, Cheryl A.; Hunt, Randall J.; Haserodt, Megan J.

    2017-10-12

    Groundwater resources information was needed to understand regional aquifer systems and water available to wells and springs for rearing important Lake Michigan fish species at the Kettle Moraine Springs State Fish Hatchery in Sheboygan County, Wisconsin. As a basis for estimating the groundwater resources available, an existing groundwater-flow model was refined, and new groundwater-flow models were developed for the Kettle Moraine Springs State Fish Hatchery area using the U.S. Geological Survey (USGS) finite-difference code MODFLOW. This report describes the origin and construction of these groundwater-flow models and their use in testing conceptual models and simulating the hydrogeologic system.The study area is in the Eastern Ridges and Lowlands geographical province of Wisconsin, and the hatchery property is situated on the southeastern edge of the Kettle Moraine, a north-south trending topographic high of glacial origin. The bedrock units underlying the study area consist of Cambrian, Ordovician, and Silurian units of carbonate and siliciclastic lithology. In the Sheboygan County area, the sedimentary bedrock sequence reaches a thickness of as much as about 1,600 feet (ft).Two aquifer systems are present at the Kettle Moraine Springs State Fish Hatchery. A shallow system is made up of Silurian bedrock, consisting chiefly of dolomite, overlain by unconsolidated Quaternary-age glacial deposits. The glacial deposits of this aquifer system are the typical source of water to local springs, including the springs that have historically supplied the hatchery. The shallow aquifer system, therefore, consists of the unconsolidated glacial aquifer and the underlying bedrock Silurian aquifer. Most residential wells in the area draw from the Silurian aquifer. A deeper confined aquifer system is made up of Cambrian- and Ordovician-age bedrock units including sandstone formations. Because of its depth, very few wells are completed in the Cambrian-Ordovician aquifer system

  12. Groundwater in crystalline bedrock

    International Nuclear Information System (INIS)

    Palmqvist, K.

    1990-06-01

    The aim of this project was to make detailed descriptions of the geological conditions and the different kinds of leakage in some tunnels in Sweden, to be able to describe the presence of ground water in crystalline bedrock. The studies were carried out in TBM tunnels as well as in conventionally drilled and blasted tunnels. Thanks to this, it has been possible to compare the pattern and appearance of ground water leakage in TBM tunnels and in blasted tunnels. On the basis of some experiments in a TBM tunnel, it has been confirmed that a detailed mapping of leakage gives a good picture of the flow paths and their aquiferous qualities in the bedrock. The same picture is found to apply even in cautious blasted tunnels. It is shown that the ground water flow paths in crystalline bedrock are usually restricted to small channels along only small parts of the fractures. This is also true for fracture zones. It has also been found that the number of flow paths generally increases with the degree of tectonisation, up to a given point. With further tectonisation the bedrock is more or less crushed which, along with mineral alteration, leaves only a little space left for the formation of water channels. The largest individual flow paths are usually found in fracture zones. The total amount of ground water leakage per m tunnel is also greater in fracture zones than in the bedrock between the fracture zones. In mapping visible leakage, five classes have been distinguished according to size. Where possible, the individual leak inflow has been measured during the mapping process. The quantification of the leakage classes made in different tunnels are compared, and some quantification standards suggested. A comparison of leakage in different rock types, tectonic zones, fractures etc is also presented. (author)

  13. Geoelectrical characterisation of basement aquifers: the case of Iberekodo, southwestern Nigeria

    Science.gov (United States)

    Aizebeokhai, Ahzegbobor P.; Oyeyemi, Kehinde D.

    2018-03-01

    Basement aquifers, which occur within the weathered and fractured zones of crystalline bedrocks, are important groundwater resources in tropical and subtropical regions. The development of basement aquifers is complex owing to their high spatial variability. Geophysical techniques are used to obtain information about the hydrologic characteristics of the weathered and fractured zones of the crystalline basement rocks, which relates to the occurrence of groundwater in the zones. The spatial distributions of these hydrologic characteristics are then used to map the spatial variability of the basement aquifers. Thus, knowledge of the spatial variability of basement aquifers is useful in siting wells and boreholes for optimal and perennial yield. Geoelectrical resistivity is one of the most widely used geophysical methods for assessing the spatial variability of the weathered and fractured zones in groundwater exploration efforts in basement complex terrains. The presented study focuses on combining vertical electrical sounding with two-dimensional (2D) geoelectrical resistivity imaging to characterise the weathered and fractured zones in a crystalline basement complex terrain in southwestern Nigeria. The basement aquifer was delineated, and the nature, extent and spatial variability of the delineated basement aquifer were assessed based on the spatial variability of the weathered and fractured zones. The study shows that a multiple-gradient array for 2D resistivity imaging is sensitive to vertical and near-surface stratigraphic features, which have hydrological implications. The integration of resistivity sounding with 2D geoelectrical resistivity imaging is efficient and enhances near-surface characterisation in basement complex terrain.

  14. Mineralogical sources of groundwater fluoride in Archaen bedrock/regolith aquifers: Mass balances from southern India and north-central Sri Lanka

    Directory of Open Access Journals (Sweden)

    B.M. Hallett

    2015-09-01

    New hydrological insights for the region: An estimate of weathering duration for the in situ regolith in Andhra Pradesh, 250–380 Ka, is close to a previous estimate for southern India. Partial or total destruction of the primary F-bearing bedrock minerals and consistent depletion of F in the remnant minerals result in a much reduced total F content in the regolith. Leaching experiments and field relationships, however, indicate a greater potential for F mobilisation to groundwater from the regolith than the bedrock. Schemes for managed aquifer recharge should beware the risk of mobilising additional F to groundwater.

  15. Ogallala Bedrock Data Enhancement

    Data.gov (United States)

    Kansas Data Access and Support Center — This data set provides an enhanced estimate of the bedrock elevation of the Ogallala Aquifer in Kansas based on lithologic logs from a variety of sources. The data...

  16. Semi-analytical solution of flow to a well in an unconfined-fractured aquifer system separated by an aquitard

    Science.gov (United States)

    Sedghi, Mohammad M.; Samani, Nozar; Barry, D. A.

    2018-04-01

    Semi-analytical solutions are presented for flow to a well in an extensive homogeneous and anisotropic unconfined-fractured aquifer system separated by an aquitard. The pumping well is of infinitesimal radius and screened in either the overlying unconfined aquifer or the underlying fractured aquifer. An existing linearization method was used to determine the watertable drainage. The solution was obtained via Laplace and Hankel transforms, with results calculated by numerical inversion. The main findings are presented in the form of non-dimensional drawdown-time curves, as well as scaled sensitivity-dimensionless time curves. The new solution permits determination of the influence of fractures, matrix blocks and watertable drainage parameters on the aquifer drawdown. The effect of the aquitard on the drawdown response of the overlying unconfined aquifer and the underlying fractured aquifer was also explored. The results permit estimation of the unconfined and fractured aquifer hydraulic parameters via type-curve matching or coupling of the solution with a parameter estimation code. The solution can also be used to determine aquifer hydraulic properties from an optimal pumping test set up and duration.

  17. Effects of simplifying fracture network representation on inert chemical migration in fracture-controlled aquifers

    Science.gov (United States)

    Wellman, Tristan; Shapiro, Allen M.; Hill, Mary C.

    2009-01-01

    While it is widely recognized that highly permeable 'large-scale' fractures dominate chemical migration in many fractured aquifers, recent studies suggest that the pervasive 'small-scale' fracturing once considered of less significance can be equally important for characterizing the spatial extent and residence time associated with transport processes. A detailed examination of chemical migration through fracture-controlled aquifers is used to advance this conceptual understanding. The influence of fracture structure is evaluated by quantifying the effects to transport caused by a systematic removal of fractures from three-dimensional discrete fracture models whose attributes are derived from geologic and hydrologic conditions at multiple field sites. Results indicate that the effects to transport caused by network simplification are sensitive to the fracture network characteristics, degree of network simplification, and plume travel distance, but primarily in an indirect sense since correlation to individual attributes is limited. Transport processes can be 'enhanced' or 'restricted' from network simplification meaning that the elimination of fractures may increase or decrease mass migration, mean travel time, dispersion, and tailing of the concentration plume. The results demonstrate why, for instance, chemical migration may not follow the classic advection-dispersion equation where dispersion approximates the effect of the ignored geologic structure as a strictly additive process to the mean flow. The analyses further reveal that the prediction error caused by fracture network simplification is reduced by at least 50% using the median estimate from an ensemble of simplified fracture network models, and that the error from network simplification is at least 70% less than the stochastic variability from multiple realizations. Copyright 2009 by the American Geophysical Union.

  18. Bedrock stability in southeastern Sweden. Evidence from fracturing in the ordovician limestones of northern Oeland

    International Nuclear Information System (INIS)

    Milnes, A.G.; Gee, D.G.

    1992-09-01

    The stability of the bedrock in SE Sweden with regard to radioactive waste disposal has recently been the subject of some controversy. In order to better assess the age and significance of fracturing in the Precambrian basement at the site of the Aespoe Hard Rock Laboratory (HRL), near Oskarshamn, a detailed analysis of fracturing in the lower Ordovician limestones exposed along the west coast of the neighbouring island of Oeland has been carried out. The limestones form continuously exposed shore platforms, in segments up to 30 m broad and several kilometres long. These, and numerous quarries, provide ideal objects for quantitative analysis (ground and air photo mapping, scanline logging), and unique opportunities for investigating the amount of movement on the fractures, because of well-developed bedding and abundant rod-shaped fossils on the bedding surfaces. The fracture patterns are dominated by two sets of subvertical fractures, a NW trending closely spaced and strongly orientated set and a NNE-ENE trending widely spaced and variably orientated set. Only about 10% of the fractures in both sets show lateral fossil displacement, with maximum movement of 5 cm, and only 3% of the fractures show vertical displacement of bedding (maximum 8 cm). All in all, the lower Ordovician limestones along the exposed shoreline have suffered remarkably little deformation since deposition, i.e. over the last 500 million years. Appreciable bedrock instability, if it occurred, must have been concentrated offshore, or in the unexposed segments of the coastline, where some weak indications of slight movement (changes of a few metres in stratigraphic level) have been observed. Among other recommendations for further work, geophysical investigations to test these indications are suggested. (54 refs.)

  19. Multi-scale nitrate transport in a sandstone aquifer system under intensive agriculture

    Science.gov (United States)

    Paradis, Daniel; Ballard, Jean-Marc; Lefebvre, René; Savard, Martine M.

    2018-03-01

    Nitrate transport in heterogeneous bedrock aquifers is influenced by mechanisms that operate at different spatial and temporal scales. To understand these mechanisms in a fractured sandstone aquifer with high porosity, a groundwater-flow and nitrate transport model—reproducing multiple hydraulic and chemical targets—was developed to explain the actual nitrate contamination observed in groundwater and surface water in a study area on Prince Edward Island, Canada. Simulations show that nitrate is leached to the aquifer year-round, with 61% coming from untransformed and transformed organic sources originating from fertilizers and manure. This nitrate reaches the more permeable shallow aquifer through fractures in weathered sandstone that represent only 1% of the total porosity (17%). Some of the nitrate reaches the underlying aquifer, which is less active in terms of groundwater flow, but most of it is drained to the main river. The river-water quality is controlled by the nitrate input from the shallow aquifer. Groundwater in the underlying aquifer, which has long residence times, is also largely influenced by the diffusion of nitrate in the porous sandstone matrix. Consequently, following a change of fertilizer application practices, water quality in domestic wells and the river would change rapidly due to the level of nitrate found in fractures, but a lag time of up to 20 years would be necessary to reach a steady level due to diffusion. This demonstrates the importance of understanding nitrate transport mechanisms when designing effective agricultural and water management plans to improve water quality.

  20. Hydraulic Parameter Generation Technique Using a Discrete Fracture Network with Bedrock Heterogeneity in Korea

    Directory of Open Access Journals (Sweden)

    Jae-Yeol Cheong

    2017-12-01

    Full Text Available In instances of damage to engineered barriers containing nuclear waste material, surrounding bedrock is a natural barrier that retards radionuclide movement by way of adsorption and delay due to groundwater flow through highly tortuous fractured rock pathways. At the Gyeongju nuclear waste disposal site, groundwater mainly flows through granitic and sedimentary rock fractures. Therefore, to understand the nuclide migration path, it is necessary to understand discrete fracture networks based on heterogeneous fracture orientations, densities, and size characteristics. In this study, detailed heterogeneous fracture distribution, including the density and orientation of the fractures, was considered for a region that has undergone long periods of change from various geological activities at and around the Gyeongju site. A site-scale discrete fracture network (DFN model was constructed taking into account: (i regional fracture heterogeneity constrained by a multiple linear regression analysis of fracture intensity on faults and electrical resistivity; and (ii the connectivity of conductive fractures having fracture hydraulic parameters, using transient flow simulation. Geometric and hydraulic heterogeneity of the DFN was upscaled into equivalent porous media for flow and transport simulation for a large-scale model.

  1. Characterization of DNAPL Source Zone Arcgitecture in Clay Till and Limestone Bedrock by Integrated Site Investigations with Innovative and Current Techniques

    DEFF Research Database (Denmark)

    Broholm, Mette Martina; Janniche, Gry Sander; Fjordbøge, Annika Sidelmann

    facility for perchloroethene (PCE) and trichloroethene (TCE) at the Naverland site near Copenhagen, Denmark, has resulted in PCE and TCE DNAPL impacts to a fractured clay till and an underlying fractured limestone aquifer/bedrock. A range of innovative and current site investigative tools for direct...... with discrete subsampling for quantitative analysis, SudanIV hydrophobic colour test, colour spray test, PID and geologic descriptions; NAPL and FACT FLUTe exposure and discrete FACT subsampling and analysis; liquid sampling from boreholes; and a radon and PCE/TCE soil gas survey. Investigations...

  2. Occurrence, frequency, and significance of cavities in fractured-rock aquifers near Oak Ridge National Laboratory, Tennessee

    International Nuclear Information System (INIS)

    Moore, G.K.

    1988-01-01

    Virtually all wells drilled into bedrock intercept a water-bearing fracture, but cavities occur only in areas underlaid by limy rocks. Multiple cavities are common in wells in the Conasauga and Knox Groups but are rare in the Rome Formation and the Chickamauga Group. The geometric mean height (vertical dimension) of the cavities is 0.59 m, the geometric mean depth is 14 m, the average lateral spatial frequency is 0.16, and the average vertical spatial frequency is 0.019. Differences in cavity parameter values are caused partly by geologic factors such as lithology, bed thickness, and spatial fracture frequency. However, hydrologic factors such as percolation rate, recharge amount, aquifer storage capacity, and differences between lateral and vertical permeability may also be important. Tracer tests show that groundwater velocity in some cavities is in the range 20-300 m/d, and relatively rapid flow rates occur near springs. In contrast, wells that intercept cavities have about the same range in hydraulic conductivity as wells in regolith and fractured rock. The hydraulic conductivity data indicate a flow rate of less than 1.0 m/d. This difference cannot be adequately explained, but rapid groundwater movement may be much more common above the water table than below. Rapid groundwater flows below the water table might be rare except near springs in the Knox Group. 10 refs., 3 figs., 4 tabs

  3. Modeling contaminant plumes in fractured limestone aquifers

    DEFF Research Database (Denmark)

    Mosthaf, Klaus; Brauns, Bentje; Fjordbøge, Annika Sidelmann

    Determining the fate and transport of contaminant plumes from contaminated sites in limestone aquifers is important because they are a major drinking water resource. This is challenging because they are often heavily fractured and contain chert layers and nodules, resulting in a complex transport...... model. The paper concludes with recommendations on how to identify and employ suitable models to advance the conceptual understanding and as decision support tools for risk assessment and the planning of remedial actions....... behavior. Improved conceptual models are needed for this type of site. Here conceptual models are developed by combining numerical models with field data. Several types of fracture flow and transport models are available for the modeling of contaminant transport in fractured media. These include...... the established approaches of the equivalent porous medium, discrete fracture and dual continuum models. However, these modeling concepts are not well tested for contaminant plume migration in limestone geologies. Our goal was to develop and evaluate approaches for modeling the transport of dissolved contaminant...

  4. The typology of Irish hard-rock aquifers based on an integrated hydrogeological and geophysical approach

    Science.gov (United States)

    Comte, Jean-Christophe; Cassidy, Rachel; Nitsche, Janka; Ofterdinger, Ulrich; Pilatova, Katarina; Flynn, Raymond

    2012-12-01

    Groundwater flow in hard-rock aquifers is strongly controlled by the characteristics and distribution of structural heterogeneity. A methodology for catchment-scale characterisation is presented, based on the integration of complementary, multi-scale hydrogeological, geophysical and geological approaches. This was applied to three contrasting catchments underlain by metamorphic rocks in the northern parts of Ireland (Republic of Ireland and Northern Ireland, UK). Cross-validated surface and borehole geophysical investigations confirm the discontinuous overburden, lithological compartmentalisation of the bedrock and important spatial variations of the weathered bedrock profiles at macro-scale. Fracture analysis suggests that the recent (Alpine) tectonic fabric exerts strong control on the internal aquifer structure at meso-scale, which is likely to impact on the anisotropy of aquifer properties. The combination of the interpretation of depth-specific hydraulic-test data with the structural information provided by geophysical tests allows characterisation of the hydrodynamic properties of the identified aquifer units. Regionally, the distribution of hydraulic conductivities can be described by inverse power laws specific to the aquifer litho-type. Observed groundwater flow directions reflect this multi-scale structure. The proposed integrated approach applies widely available investigative tools to identify key dominant structures controlling groundwater flow, characterising the aquifer type for each catchment and resolving the spatial distribution of relevant aquifer units and associated hydrodynamic parameters.

  5. Contamination in fractured-rock aquifers: Research at the former Naval Air Warfare Center, West Trenton, New Jersey

    Science.gov (United States)

    Goode, Daniel J.; Tiedeman, Claire; Lacombe, Pierre J.; Imbrigiotta, Thomas E.; Shapiro, Allen M.; Chapelle, Francis H.

    2007-01-01

    The U.S. Geological Survey and cooperators are studying chlorinated solvents in a fractured sedimentary rock aquifer underlying the former Naval Air Warfare Center (NAWC), West Trenton, New Jersey. Fractured-rock aquifers are common in many parts of the United States and are highly susceptible to contamination, particularly at industrial sites. Compared to 'unconsolidated' aquifers, there can be much more uncertainty about the direction and rate of contaminant migration and about the processes and factors that control chemical and microbial transformations of contaminants. Research at the NAWC is improving understanding of the transport and fate of chlorinated solvents in fractured-rock aquifers and will compare the effectiveness of different strategies for contaminant remediation.

  6. Electrical resistivity dynamics beneath a fractured sedimentary bedrock riverbed in response to temperature and groundwater–surface water exchange

    Directory of Open Access Journals (Sweden)

    C. M. Steelman

    2017-06-01

    Full Text Available Bedrock rivers occur where surface water flows along an exposed rock surface. Fractured sedimentary bedrock can exhibit variable groundwater residence times, anisotropic flow paths, and heterogeneity, along with diffusive exchange between fractures and rock matrix. These properties of the rock will affect thermal transients in the riverbed and groundwater–surface water exchange. In this study, surface electrical methods were used as a non-invasive technique to assess the scale and temporal variability of riverbed temperature and groundwater–surface water interaction beneath a sedimentary bedrock riverbed. Conditions were monitored at a semi-daily to semi-weekly interval over a full annual period that included a seasonal freeze–thaw cycle. Surface electromagnetic induction (EMI and electrical resistivity tomography (ERT methods captured conditions beneath the riverbed along a pool–riffle sequence of the Eramosa River in Canada. Geophysical datasets were accompanied by continuous measurements of aqueous specific conductance, temperature, and river stage. Time-lapse vertical temperature trolling within a lined borehole adjacent to the river revealed active groundwater flow zones along fracture networks within the upper 10 m of rock. EMI measurements collected during cooler high-flow and warmer low-flow periods identified a spatiotemporal riverbed response that was largely dependent upon riverbed morphology and seasonal groundwater temperature. Time-lapse ERT profiles across the pool and riffle sequence identified seasonal transients within the upper 2 and 3 m of rock, respectively, with spatial variations controlled by riverbed morphology (pool versus riffle and dominant surficial rock properties (competent versus weathered rock rubble surface. While the pool and riffle both exhibited a dynamic resistivity through seasonal cooling and warming cycles, conditions beneath the pool were more variable, largely due to the formation of river

  7. Surface self-potential patterns related to transmissive fracture trends during a water injection test

    Science.gov (United States)

    DesRoches, A. J.; Butler, K. E.; MacQuarrie, K. TB

    2018-03-01

    Variations in self-potential (SP) signals were recorded over an electrode array during a constant head injection test in a fractured bedrock aquifer. Water was injected into a 2.2 m interval isolated between two inflatable packers at 44 m depth in a vertical well. Negative SP responses were recorded on surface corresponding to the start of the injection period with strongest magnitudes recorded in electrodes nearest the well. SP response decreased in magnitude at electrodes further from the well. Deflation of the packer system resulted in a strong reversal in the SP signal. Anomalous SP patterns observed at surface at steady state were found to be aligned with dominant fracture strike orientations found within the test interval. Numerical modelling of fluid and current flow within a simplified fracture network showed that azimuthal patterns in SP are mainly controlled by transmissive fracture orientations. The strongest SP gradients occur parallel to hydraulic gradients associated with water flowing out of the transmissive fractures into the tighter matrix and other less permeable cross-cutting fractures. Sensitivity studies indicate that increasing fracture frequency near the well increases the SP magnitude and enhances the SP anomaly parallel to the transmissive set. Decreasing the length of the transmissive fractures leads to more fluid flow into the matrix and into cross-cutting fractures proximal to the well, resulting in a more circular and higher magnitude SP anomaly. Results from the field experiment and modelling provide evidence that surface-based SP monitoring during constant head injection tests has the ability to identify groundwater flow pathways within a fractured bedrock aquifer.

  8. Characterisation of Fractures and Fracture Zones in a Carbonate Aquifer Using Electrical Resistivity Tomography and Pricking Probe Methodes

    Science.gov (United States)

    Szalai, Sandor; Kovacs, Attila; Kuslits, Lukács; Facsko, Gabor; Gribovszki, Katalin; Kalmar, Janos; Szarka, Laszlo

    2018-04-01

    Position, width and fragmentation level of fracture zones and position, significance and characteristic distance of fractures were aimed to determine in a carbonate aquifer. These are fundamental parameters, e.g. in hydrogeological modelling of aquifers, due to their role in subsurface water movements. The description of small scale fracture systems is however a challenging task. In the test area (Kádárta, Bakony Mts, Hungary), two methods proved to be applicable to get reasonable information about the fractures: Electrical Resistivity Tomography (ERT) and Pricking-Probe (PriP). PriP is a simple mechanical tool which has been successfully applied in archaeological investigations. ERT results demonstrated its applicability in this small scale fracture study. PriP proved to be a good verification tool both for fracture zone mapping and detecting fractures, but in certain areas, it produced different results than the ERT. The applicability of this method has therefore to be tested yet, although its problems most probably origin from human activity which reorganises the near-surface debris distribution. In the test site, both methods displayed fracture zones including a very characteristic one and a number of individual fractures and determined their characteristic distance and significance. Both methods prove to be able to produce hydrogeologically important parameters even individually, but their simultaneous application is recommended to decrease the possible discrepancies.

  9. Bedrock aquifers of eastern San Juan County, Utah

    Science.gov (United States)

    Avery, Charles

    1986-01-01

    This study is one of a series of studies appraising the waterbearing properties of the Navajo Sandstone and associated formations in southern Utah.  The study area is about 4,600 square miles, extending from the Utah-Arizona State line northward to the San Juan-Grand County line and westward from the Utah-Colorado State line to the longitude of about 109°50'.Some of the water-yielding formations are grouped into aquifer systems. The C aquifer is comprised of the DeChelly Sandstone Member of the Cutler Formation.  The P aquifer is comprised of the Cedar Mesa Member of the Cutler Formation and the undifferentiated Cutler Formation. The N aquifer is comprised of the sedimentary section that includes the Wingate Sandstone, Kayenta Formation, Navajo Sandstone, Carmel Formation, and Entrada sandstone.  The M aquifer is comprised of the Bluff Sandstone Member and other sandstone units of the Morrison Formation.  The D aquifer is comprised of the Burro Canyon Formation and Dakota Sandstone.  Discharge from the ground-water reservoir to the San Juan River between gaging stations at Four Corners and Mexican Hat is about 66 cubic feet per second.The N aquifer is the main aquifer in the study area. Recharge by infiltration of precipitation is estimated to be 25,000 acre-feet per year.  A major ground-water divide exists under the broad area east of Monticello.  The thickness of the N aquifer, where the sedimentary section is fully preserved and saturated, generally is 750 to 1,250 feet.   Hydraulic conductivity values obtained from aquifer tests range from 0.02 to 0.34 foot per day.  The total volume of water in transient storage is about 11 million acre-feet. Well discharge somewhat exceeded 2,340 acre-feet during 1981.  Discharge to the San Juan River from the N aquifer is estimated to be 6.9 cubic feet per second. Water quality ranges from a calcium bicarbonate to sodium chloride type water

  10. Evaluation of modeling approaches to simulate contaminant transport in a fractured limestone aquifer

    DEFF Research Database (Denmark)

    Mosthaf, Klaus; Fjordbøge, Annika Sidelmann; Broholm, Mette Martina

    in fractured limestone aquifers. The model comparison is conducted for a contaminated site in Denmark, where a plume of dissolved PCE has migrated through a fractured limestone aquifer. Field data includes information on spill history, distribution of the contaminant (multilevel sampling), geology...... and hydrogeology. To describe the geology and fracture system, data from borehole logs and cores was combined with an analysis of heterogeneities and fractures from a nearby excavation and pump test data. We present how field data is integrated into the different model concepts. A challenge in the use of field...... and remediation strategies. Each model is compared with field data, considering both model fit and model suitability. Results show a considerable difference between the approaches, and that it is important to select the right one for the actual modeling purpose. The comparison with data showed how much...

  11. Bedrock model of the Romuvaara area

    International Nuclear Information System (INIS)

    Saksa, P.; Paananen, M.; Paulamaeki, S.; Anttila, P.; Pitkaenen, P.; Front, K.; Vaittinen, T.

    1992-05-01

    Site for the final disposal of the spent nuclear fuel investigations implemented in accordance with the research programme drawn up by Teollisuuden Voima Oy were carried out at Romuvaara, Kuhmo, in 1987 - 1991. Model of the site were compiled and used for describing the rock types, fractures, fracturing structures and geohydrological conditions, the main emphasis being on the examination of the bedrock fracturing and related hydraulic conductivity. Three-dimensional models were used for the classification of the various properties of the bedrock structures. The descriptive models were gathered together in a computerized system to facilitate illustration and strage. The rock types at Romuvaara are gneiss, mica gneiss, leucotonalite gneiss, amphibolite, granodiorite and metadiabase. The structural model for fracturing at the site contains 19 zones described in terms of a number of properties. The fracturing observed at Romuvaara ranges from local occurences of dence fracturing to significant, altered fracture zones. The structural model includes deduced values for hydraulic conductivity, deduced points of flow in the boreholes and measured hydraulic heads.Various classifications were used for assessment of hydraulic conductivity in the zones and solid bedrock, and in both cases conductivity was found to diminish with depth. Measured hydraulic heads were mostly found to support structural interpretation. The results were used for estimation of a three-dimensional hydraulic head distribution. Results from pumping tests carried out in the significant flow zone support the geometric interpretation

  12. Vertically-Integrated Dual-Continuum Models for CO2 Injection in Fractured Aquifers

    Science.gov (United States)

    Tao, Y.; Guo, B.; Bandilla, K.; Celia, M. A.

    2017-12-01

    Injection of CO2 into a saline aquifer leads to a two-phase flow system, with supercritical CO2 and brine being the two fluid phases. Various modeling approaches, including fully three-dimensional (3D) models and vertical-equilibrium (VE) models, have been used to study the system. Almost all of that work has focused on unfractured formations. 3D models solve the governing equations in three dimensions and are applicable to generic geological formations. VE models assume rapid and complete buoyant segregation of the two fluid phases, resulting in vertical pressure equilibrium and allowing integration of the governing equations in the vertical dimension. This reduction in dimensionality makes VE models computationally more efficient, but the associated assumptions restrict the applicability of VE model to formations with moderate to high permeability. In this presentation, we extend the VE and 3D models for CO2 injection in fractured aquifers. This is done in the context of dual-continuum modeling, where the fractured formation is modeled as an overlap of two continuous domains, one representing the fractures and the other representing the rock matrix. Both domains are treated as porous media continua and can be modeled by either a VE or a 3D formulation. The transfer of fluid mass between rock matrix and fractures is represented by a mass transfer function connecting the two domains. We have developed a computational model that combines the VE and 3D models, where we use the VE model in the fractures, which typically have high permeability, and the 3D model in the less permeable rock matrix. A new mass transfer function is derived, which couples the VE and 3D models. The coupled VE-3D model can simulate CO2 injection and migration in fractured aquifers. Results from this model compare well with a full-3D model in which both the fractures and rock matrix are modeled with 3D models, with the hybrid VE-3D model having significantly reduced computational cost. In

  13. The suitability of Finnish bedrock to the final disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Vuorela, P.; Hakkarainen, V.

    1982-12-01

    A regional investigation of the suitability of Finnish bedrock to the final disposal of high-level radioactive waste is described. International geological criteria are applied to Finnish bedrock conditions. The main bedrock units are classified into different areas as concerning to recommendations for further site selection investigations. The Pre-Cambrian crystalline rocks are generally of tight and strong composition and a major problem from the standpoint of waste disposal is fracturing. On the other hand, fractures are quite unevenly distributed in Finland and the bedrock seems to consist of stabile blocks surrounded by fracture zones. Crustal movements between the different bedrock blocks are in Finland at most only tenths of millimeters a year, and the movements are concentrated in the fracture zones. The fracture pattern also controls the hydrogeological system of the bedrock as the main groundwater flow occurs along the fractures. The fracturing thus has an influence on the stability as well as the hydrogeological conditions of the bedrock. The regional recommendations for further site selection studies are based on geological criteria, such as fracturing, seismisity and economic resources. Other criteria, such as topography and erosion, are less significant in comparison. A number of different criteria are likely to prove significant later in more detailed local site investigation studies. The most favorable regions for more detailed investigations contain the granitic rocks of Central Finland and some of them are also to be found in northern and eastern parts of the country. Almost none of the main bedrock units can be classified as completely unsuitable for site selection investigations. Massifs large enough for the final disposal of high-level radioactive waste can be found through detailed surveys in most parts of Finland because of the heterogeneity of the bedrock

  14. Bedrock geology of snyderville basin: Structural geology techniques applied to understanding the hydrogeology of a rapidly developing region, Summit County, Utah

    Science.gov (United States)

    Keighley, K.E.; Yonkee, W.A.; Ashland, F.X.; Evans, J.P.

    1997-01-01

    The availability of ground water is a problem for many communities throughout the west. As these communities continue to experience growth, the initial allocation of ground water supplies proves inadequate and may force restrictions on existing, and future, development plans. Much of this new growth relies on ground water supplies extracted from fractured bedrock aquifers. An example of a community faced with this problem is western Summit County, near Park City, Utah, This area has experienced significant water shortages coupled with a 50% growth rate in the past 10-15 years. Recent housing development rests directly on complexly deformed Triassic to Jurassic sedimentary rocks in the hanging wall of the Mount Raymond-Absaroka thrust system. The primary fractured bedrock aquifers are the Nugget Sandstone, and limestones in the Thaynes and Twin Creek Formations. Ground water production and management strategies can be improved if the geometry of the structures and the flow properties of the fractured and folded bedrock can be established. We characterize the structures that may influence ground water flow at two sites: the Pinebrook and Summit Park subdivisions, which demonstrate abrupt changes (less than 1 mi/1.6 km) within the hydrogeologic systems. Geologic mapping at scales of 1:4500 (Pinebrook) and 1:9600 (Summit Park), scanline fracture mapping at the outcrop scale, geologic cross sections, water well data, and structural analysis, provides a clearer picture of the hydrogeologic setting of the aquifers in this region, and has been used to successfully site wells. In the Pinebrook area, the dominate map-scale structures of the area is the Twomile Canyon anticline, a faulted box-like to conical anticline. Widely variable bedding orientations suggest that the fold is segmented and is non-cylindrical and conical on the western limb with a fold axis that plunges to the northwest and also to the southeast, and forms a box-type fold between the middle and eastern

  15. Shallow Aquifer Vulnerability From Subsurface Fluid Injection at a Proposed Shale Gas Hydraulic Fracturing Site

    Science.gov (United States)

    Wilson, M. P.; Worrall, F.; Davies, R. J.; Hart, A.

    2017-11-01

    Groundwater flow resulting from a proposed hydraulic fracturing (fracking) operation was numerically modeled using 91 scenarios. Scenarios were chosen to be a combination of hydrogeological factors that a priori would control the long-term migration of fracking fluids to the shallow subsurface. These factors were induced fracture extent, cross-basin groundwater flow, deep low hydraulic conductivity strata, deep high hydraulic conductivity strata, fault hydraulic conductivity, and overpressure. The study considered the Bowland Basin, northwest England, with fracking of the Bowland Shale at ˜2,000 m depth and the shallow aquifer being the Sherwood Sandstone at ˜300-500 m depth. Of the 91 scenarios, 73 scenarios resulted in tracked particles not reaching the shallow aquifer within 10,000 years and 18 resulted in travel times less than 10,000 years. Four factors proved to have a statistically significant impact on reducing travel time to the aquifer: increased induced fracture extent, absence of deep high hydraulic conductivity strata, relatively low fault hydraulic conductivity, and magnitude of overpressure. Modeling suggests that high hydraulic conductivity formations can be more effective barriers to vertical flow than low hydraulic conductivity formations. Furthermore, low hydraulic conductivity faults can result in subsurface pressure compartmentalization, reducing horizontal groundwater flow, and encouraging vertical fluid migration. The modeled worst-case scenario, using unlikely geology and induced fracture lengths, maximum values for strata hydraulic conductivity and with conservative tracer behavior had a particle travel time of 130 years to the base of the shallow aquifer. This study has identified hydrogeological factors which lead to aquifer vulnerability from shale exploitation.

  16. Fractured-aquifer hydrogeology from geophysical logs; the passaic formation, New Jersey

    Science.gov (United States)

    Morin, R.H.; Carleton, G.B.; Poirier, S.

    1997-01-01

    The Passaic Formation consists of gradational sequences of mudstone, siltstone, and sandstone, and is a principal aquifer in central New Jersey. Ground-water flow is primarily controlled by fractures interspersed throughout these sedimentary rocks and characterizing these fractures in terms of type, orientation, spatial distribution, frequency, and transmissivity is fundamental towards understanding local fluid-transport processes. To obtain this information, a comprehensive suite of geophysical logs was collected in 10 wells roughly 46 m in depth and located within a .05 km2 area in Hopewell Township, New Jersey. A seemingly complex, heterogeneous network of fractures identified with an acoustic televiewer was statistically reduced to two principal subsets corresponding to two distinct fracture types: (1) bedding-plane partings and (2) high-angle fractures. Bedding-plane partings are the most numerous and have an average strike of N84??W and dip of 20??N. The high-angle fractures are oriented subparallel to these features, with an average strike of N79??E and dip of 71??S, making the two fracture types roughly orthogonal. Their intersections form linear features that also retain this approximately east-west strike. Inspection of fluid temperature and conductance logs in conjunction with flowmeter measurements obtained during pumping allows the transmissive fractures to be distinguished from the general fracture population. These results show that, within the resolution capabilities of the logging tools, approximately 51 (or 18 percent) of the 280 total fractures are water producing. The bedding-plane partings exhibit transmissivities that average roughly 5 m2/day and that generally diminish in magnitude and frequency with depth. The high-angle fractures have average transmissivities that are about half those of the bedding-plane partings and show no apparent dependence upon depth. The geophysical logging results allow us to infer a distinct hydrogeologic structure

  17. Significance and estimations of lifetime of natural fracture mineral buffers in the Olkiluoto bedrock

    International Nuclear Information System (INIS)

    Luukkonen, A.; Pitkaenen, P.; Partamies, S.

    2004-03-01

    This study attempts to make scenarios what geochemical effects the future underground excavations in the Olkiluoto bedrock have on naturally occurring fracture mineral buffers. The excavations of underground research facilities, and final repository galleries will cause steep hydraulic gradients in the bedrock fractures. These gradients likely draw surficial waters within the fracture network and activate weathering processes deeper in rock fractures than in the natural undisturbed conditions. The studies are concentrated on the meteoric and seawater infiltration in the rock fractures, and on the selected minerals considered significant buffers against pH/redox variations in groundwater. Two approaches to calculate the scenarios are utilised. The equilibrium geochemical calculations consider variety of problems including several surficial water compositions, mixing cases between surficial water types, and couple buffer mineral assemblages. These equilibrium calculations indicate that meteoric water by far presents the most potential hazard for the Olkiluoto fracture minerals. In the calculated cases, seawater and the contamination of meteoric water with seawater during the water infiltration usually improved the performance of mineral buffers compared to the pure meteoric water cases. Of the Olkiluoto fracture minerals, calcite and pyrite turn out to be the most important buffer minerals against dissolved O 2 and low pH in groundwater. The kinetic geochemical approach concentrated on two meteoric water cases infiltrating into a narrow fracture channel. Calculations consider the possibilities that the infiltrating meteoric water is dissolved carbon containing soil water or almost 'distilled' rain water. Pyrite and calcite are taken into account as the buffering minerals. Several simulations are done by varying the recharge water compositions and the flow rates of water. It turns out that as long as volumetric flow rates within the 500-metre-channel considered are in

  18. Evaluation of permeable fractures in rock aquifers

    Science.gov (United States)

    Bok Lee, Hang

    2015-04-01

    In this study, the practical usefulness and fundamental applicability of a self-potential (SP) method for identifying the permeable fractures were evaluated by a comparison of SP methods with other geophysical logging methods and hydraulic tests. At a 10 m-shallow borehole in the study site, the candidates of permeable fractures crossing the borehole were first determined by conventional geophysical methods such as an acoustic borehole televiwer, temperature, electrical conductivity and gamma-gamma loggings, which was compared to the analysis by the SP method. Constant pressure injection and recovery tests were conducted for verification of the hydraulic properties of the fractures identified by various logging methods. The acoustic borehole televiwer and gamma-gamma loggings detected the open space or weathering zone within the borehole, but they cannot prove the possibility of a groundwater flow through the detected fractures. The temperature and electrical conductivity loggings had limitations to detect the fractured zones where groundwater in the borehole flows out to the surrounding rock aquifers. Comparison of results from different methods showed that there is a best correlation between the distribution of hydraulic conductivity and the variation of the SP signals, and the SP logging can estimate accurately the hydraulic activity as well as the location of permeable fractures. Based on the results, the SP method is recommended for determining the hydraulically-active fractures rather than other conventional geophysical loggings. This self-potential method can be effectively applied in the initial stage of a site investigation which selects the optimal location and evaluates the hydrogeological property of fractures in target sites for the underground structure including the geothermal reservoir and radioactive waste disposal.

  19. Quality of groundwater in the Denver Basin aquifer system, Colorado, 2003-5

    Science.gov (United States)

    Musgrove, MaryLynn; Beck, Jennifer A.; Paschke, Suzanne; Bauch, Nancy J.; Mashburn, Shana L.

    2014-01-01

    Groundwater resources from alluvial and bedrock aquifers of the Denver Basin are critical for municipal, domestic, and agricultural uses in Colorado along the eastern front of the Rocky Mountains. Rapid and widespread urban development, primarily along the western boundary of the Denver Basin, has approximately doubled the population since about 1970, and much of the population depends on groundwater for water supply. As part of the National Water-Quality Assessment Program, the U.S. Geological Survey conducted groundwater-quality studies during 2003–5 in the Denver Basin aquifer system to characterize water quality of shallow groundwater at the water table and of the bedrock aquifers, which are important drinking-water resources. For the Denver Basin, water-quality constituents of concern for human health or because they might otherwise limit use of water include total dissolved solids, fluoride, sulfate, nitrate, iron, manganese, selenium, radon, uranium, arsenic, pesticides, and volatile organic compounds. For the water-table studies, two monitoring-well networks were installed and sampled beneath agricultural (31 wells) and urban (29 wells) land uses at or just below the water table in either alluvial material or near-surface bedrock. For the bedrock-aquifer studies, domestic- and municipal-supply wells completed in the bedrock aquifers were sampled. The bedrock aquifers, stratigraphically from youngest (shallowest) to oldest (deepest), are the Dawson, Denver, Arapahoe, and Laramie-Fox Hills aquifers. The extensive dataset collected from wells completed in the bedrock aquifers (79 samples) provides the opportunity to evaluate factors and processes affecting water quality and to establish a baseline that can be used to characterize future changes in groundwater quality. Groundwater samples were analyzed for inorganic, organic, isotopic, and age-dating constituents and tracers. This report discusses spatial and statistical distributions of chemical constituents

  20. Semianalytical Solutions for Transport in Aquifer and Fractured Clay Matrix System

    Science.gov (United States)

    A three-dimensional mathematical model that describes transport of contaminant in a horizontal aquifer with simultaneous diffusion into a fractured clay formation is proposed. A group of analytical solutions is derived based on specific initial and boundary conditions as well as ...

  1. Evaluation of Different Modeling Approaches to Simulate Contaminant Transport in a Fractured Limestone Aquifer

    Science.gov (United States)

    Mosthaf, K.; Rosenberg, L.; Balbarini, N.; Broholm, M. M.; Bjerg, P. L.; Binning, P. J.

    2014-12-01

    It is important to understand the fate and transport of contaminants in limestone aquifers because they are a major drinking water resource. This is challenging because they are highly heterogeneous; with micro-porous grains, flint inclusions, and being heavily fractured. Several modeling approaches have been developed to describe contaminant transport in fractured media, such as the discrete fracture (with various fracture geometries), equivalent porous media (with and without anisotropy), and dual porosity models. However, these modeling concepts are not well tested for limestone geologies. Given available field data and model purpose, this paper therefore aims to develop, examine and compare modeling approaches for transport of contaminants in fractured limestone aquifers. The model comparison was conducted for a contaminated site in Denmark, where a plume of a dissolved contaminant (PCE) has migrated through a fractured limestone aquifer. Multilevel monitoring wells have been installed at the site and available data includes information on spill history, extent of contamination, geology and hydrogeology. To describe the geology and fracture network, data from borehole logs was combined with an analysis of heterogeneities and fractures from a nearby excavation (analog site). Methods for translating the geological information and fracture mapping into each of the model concepts were examined. Each model was compared with available field data, considering both model fit and measures of model suitability. An analysis of model parameter identifiability and sensitivity is presented. Results show that there is considerable difference between modeling approaches, and that it is important to identify the right one for the actual scale and model purpose. A challenge in the use of field data is the determination of relevant hydraulic properties and interpretation of aqueous and solid phase contaminant concentration sampling data. Traditional water sampling has a bias

  2. Effects of bedrock fractures on radionuclide transport near a vertical deposition hole for spent nuclear fuel

    International Nuclear Information System (INIS)

    Pulkkanen, V.-M.; Nordman, H.

    2011-12-01

    Effects of bedrock fractures on radionuclide transport near a vertical deposition hole for spent nuclear fuel are studied computationally. The studied fractures are both natural and excavation damage fractures. The emphasis is on the detailed modelling of geometry in 3D in contrast to the traditional radionuclide transport studies that often concentrate on chain decays, sorption, and precipitation at the expense of the geometry. The built computer model is used to assess the significance of components near a deposition hole for radionuclide transport and to estimate the quality of previously used modelling techniques. The results show nearly exponential decrease of radionuclide mass in the bentonite buffer when the release route is a thin natural fracture. The results also imply that size is the most important property of the tunnel section for radionuclide transport. In addition, the results demonstrate that the boundary layer theory can be used to approximate the release of radionuclides with certain accuracy and that a thin fracture in rock can be modelled, at least to a certain limit, by using a fracture with wider aperture but with same flow rate as the thin fracture. (orig.)

  3. Hydrogeological impact of fault zones on a fractured carbonate aquifer, Semmering (Austria)

    Science.gov (United States)

    Mayaud, Cyril; Winkler, Gerfried; Reichl, Peter

    2015-04-01

    Fault zones are the result of tectonic processes and are geometrical features frequently encountered in carbonate aquifer systems. They can hamper the fluid migration (hydrogeological barriers), propagate the movement of fluid (draining conduits) or be a combination of both processes. Numerical modelling of fractured carbonate aquifer systems is strongly bound on the knowledge of a profound conceptual model including geological and tectonic settings such as fault zones. In further consequence, numerical models can be used to evaluate the conceptual model and its introduced approximations. The study was conducted in a fractured carbonate aquifer built up by permomesozoic dolo/limestones of the Semmering-Wechsel complex in the Eastern Alps (Austria). The aquifer has an assumed thickness of about 200 m and dips to the north. It is covered by a thin quartzite layer and a very low permeable layer of quartz-phyllite having a thickness of up to several hundred meters. The carbonate layer crops out only in the southern part of the investigation area, where it receives autogenic recharge. The geological complexity affects some uncertainties related to the extent of the model area, which was determined to be about 15 km². Three vertical fault zones cross the area approximately in a N-S direction. The test site includes an infrastructural pilot tunnel gallery of 4.3 km length with two pumping stations, respectively active since August 1997 and June 1998. The total pumping rate is about 90 l/s and the drawdown data were analysed analytically, providing a hydraulic conductivity of about 5E-05 m/s for the carbonate layer. About 120 m drawdown between the initial situation and situation with pumping is reported by piezometers. This led to the drying up of one spring located at the southern border of the carbonates. A continuum approach using MODFLOW-2005 was applied to reproduce numerically the observed aquifer behaviour and investigate the impact of the three fault zones. First

  4. Delineating spring recharge areas in a fractured sandstone aquifer (Luxembourg) based on pesticide mass balance

    Science.gov (United States)

    Farlin, J.; Drouet, L.; Gallé, T.; Pittois, D.; Bayerle, M.; Braun, C.; Maloszewski, P.; Vanderborght, J.; Elsner, M.; Kies, A.

    2013-06-01

    A simple method to delineate the recharge areas of a series of springs draining a fractured aquifer is presented. Instead of solving the flow and transport equations, the delineation is reformulated as a mass balance problem assigning arable land in proportion to the pesticide mass discharged annually in a spring at minimum total transport cost. The approach was applied to the Luxembourg Sandstone, a fractured-rock aquifer supplying half of the drinking water for Luxembourg, using the herbicide atrazine. Predictions of the recharge areas were most robust in situations of strong competition by neighbouring springs while the catchment boundaries for isolated springs were extremely sensitive to the parameter controlling flow direction. Validation using a different pesticide showed the best agreement with the simplest model used, whereas using historical crop-rotation data and spatially distributed soil-leaching data did not improve predictions. The whole approach presents the advantage of integrating objectively information on land use and pesticide concentration in spring water into the delineation of groundwater recharge zones in a fractured-rock aquifer.

  5. Cross-hole fracture connectivity assessed using hydraulic responses during liner installations in crystalline bedrock boreholes

    Science.gov (United States)

    Persaud, Elisha; Levison, Jana; Pehme, Peeter; Novakowski, Kentner; Parker, Beth

    2018-01-01

    In order to continually improve the current understanding of flow and transport in crystalline bedrock environments, developing and improving fracture system characterization techniques is an important area of study. The presented research examines the installation of flexible, impermeable FLUTe™ liners as a means for assessing cross-hole fracture connectivity. FLUTe™ liners are used to generate a new style of hydraulic pulse, with pressure response monitored in a nearby network of open boreholes drilled in gneissic rock of the Canadian Shield in eastern Ontario, Canada. Borehole liners were installed in six existing 10-15 cm diameter boreholes located 10-35 m apart and drilled to depths ranging between 25-45 m. Liner installation tests were completed consecutively with the number of observation wells available for each test ranging between one and six. The collected pressure response data have been analyzed to identify significant groundwater flow paths between source and observation boreholes as well as to estimate inter-well transmissivity and storativity using a conventional type-curve analysis. While the applied solution relies on a number of general assumptions, it has been found that reasonable comparison can be made to previously completed pulse interference and pumping tests. Results of this research indicate areas where method refinement is necessary, but, nonetheless, highlight the potential for use in crystalline bedrock environments. This method may provide value to future site characterization efforts given that it is complementary to, and can be used in conjunction with, other currently employed borehole liner applications, such as the removal of cross-connection at contaminated sites and the assessment of discrete fracture distributions when boreholes are sealed, recreating natural hydraulic gradient conditions.

  6. Hydrochemical processes in a shallow coal seam gas aquifer and its overlying stream–alluvial system: implications for recharge and inter-aquifer connectivity

    International Nuclear Information System (INIS)

    Duvert, Clément; Raiber, Matthias; Owen, Daniel D.R.; Cendón, Dioni I.; Batiot-Guilhe, Christelle; Cox, Malcolm E.

    2015-01-01

    Highlights: • Major ions and isotopes used to study inter-aquifer mixing in a shallow CSG setting. • Considerable heterogeneity in the water composition of the coal-bearing aquifer. • Rapid recharge of the coal-bearing aquifer through highly fractured igneous rocks. • Potential mixing between the coal-bearing aquifer and downstream alluvial aquifer. • Need to consider the seasonal influences on inter-aquifer mixing in CSG settings. - Abstract: In areas of potential coal seam gas (CSG) development, understanding interactions between coal-bearing strata and adjacent aquifers and streams is of highest importance, particularly where CSG formations occur at shallow depth. This study tests a combination of hydrochemical and isotopic tracers to investigate the transient nature of hydrochemical processes, inter-aquifer mixing and recharge in a catchment where the coal-bearing aquifer is in direct contact with the alluvial aquifer and surface drainage network. A strong connection was observed between the main stream and underlying alluvium, marked by a similar evolution from fresh Ca–Mg–HCO 3 waters in the headwaters towards brackish Ca–Na–Cl composition near the outlet of the catchment, driven by evaporation and transpiration. In the coal-bearing aquifer, by contrast, considerable site-to-site variations were observed, although waters generally had a Na–HCO 3 –Cl facies and high residual alkalinity values. Increased salinity was controlled by several coexisting processes, including transpiration by plants, mineral weathering and possibly degradation of coal organic matter. Longer residence times and relatively enriched carbon isotopic signatures of the downstream alluvial waters were suggestive of potential interactions with the shallow coal-bearing aquifer. The examination of temporal variations in deuterium excess enabled detection of rapid recharge of the coal-bearing aquifer through highly fractured igneous rocks, particularly at the catchment

  7. Characterization of fractures and flow zones in a contaminated crystalline-rock aquifer in the Tylerville section of Haddam, Connecticut

    Science.gov (United States)

    Johnson, Carole D.; Kiel, Kristal F.; Joesten, Peter K.; Pappas, Katherine L.

    2016-10-04

    The U.S. Geological Survey, in cooperation with the Connecticut Department of Energy and Environmental Protection, investigated the characteristics of the bedrock aquifer in the Tylerville section of Haddam, Connecticut, from June to August 2014. As part of this investigation, geophysical logs were collected from six water-supply wells and were analyzed to (1) identify well construction, (2) determine the rock type and orientation of the foliation and layering of the rock, (3) characterize the depth and orientation of fractures, (4) evaluate fluid properties of the water in the well, and (5) determine the relative transmissivity and head of discrete fractures or fracture zones. The logs included the following: caliper, electromagnetic induction, gamma, acoustic and (or) optical televiewer, heat-pulse flowmeter under ambient and pumped conditions, hydraulic head data, fluid electrical conductivity and temperature under postpumping conditions, and borehole-radar reflection collected in single-hole mode. In a seventh borehole, a former water-supply well, only caliper, fluid electrical conductivty, and temperature logs were collected, because of a constriction in the borehole.This report includes a description of the methods used to collect and process the borehole geophysical data, the description of the data collected in each of the wells, and a comparison of the results collected in all of the wells. The data are presented in plots of the borehole geophysical logs, tables, and figures. Collectively these data provide valuable characterizations that can be used to improve or inform site conceptual models of groundwater flow in the study area.

  8. Relations among water levels, specific conductance, and depths of bedrock fractures in four road-salt-contaminated wells in Maine, 2007–9

    Science.gov (United States)

    Schalk, Charles W.; Stasulis, Nicholas W.

    2012-01-01

    Data on groundwater-level, specific conductance (a surrogate for chloride), and temperature were collected continuously from 2007 through 2009 at four bedrock wells known to be affected by road salts in an effort to determine the effects of road salting and fractures in bedrock that intersect the well at a depth below the casing on the presence of chloride in groundwater. Dissolved-oxygen data collected periodically also were used to make inferences about the interaction of fractures and groundwater flow. Borehole geophysical tools were used to determine the depths of fractures in each well that were actively contributing flow to the well, under both static and pumped conditions; sample- and measurement-depths were selected to correspond to the depths of these active fractures. Samples of water from the wells, collected at depths corresponding to active bedrock fractures, were analyzed for chloride concentration and specific conductance; from these analyses, a linear relation between chloride concentration and specific conductance was established, and continuous and periodic measurements of specific conductance were assumed to represent chloride concentration of the well water at the depth of measurement. To varying degrees, specific conductance increased in at least two of the wells during winter and spring thaws; the shallowest well, which also was closest to the road receiving salt treatment during the winter, exhibited the largest changes in specific conductance during thaws. Recharge events during summer months, long after application of road salt had ceased for the year, also produced increases in specific conductance in some of the wells, indicating that chloride which had accumulated or sequestered in the overburden was transported to the wells throughout the year. Geophysical data and periodic profiles of water quality along the length of each well’s borehole indicated that the greatest changes in water quality were associated with active fractures; in

  9. Hydrophysical logging: A new wellbore technology for hydrogeologic and contaminant characterization of aquifers

    International Nuclear Information System (INIS)

    Pedler, W.H.; Williams, L.L.; Head, C.L.

    1992-01-01

    In the continuing search for improved groundwater characterization technologies, a new wellbore fluid logging method has recently been developed to provide accurate and cost effective hydrogeologic and contaminant characterization of bedrock aquifers. This new technique, termed hydrophysical logging, provides critical information for contaminated site characterization and water supply studies and, in addition, offers advantages compared to existing industry standards for aquifer characterization. Hydrophysical logging is based on measuring induced electrical conductivity changes in the fluid column of a wellbore by employing advanced downhole water quality instrumentation specifically developed for the dynamic borehole environment. Hydrophysical logging contemporaneously identifies the locations of water bearing intervals, the interval-specific inflow rate during pumping, and in-situ hydrochemistry of the formation waters associated with each producing interval. In addition, by employing a discrete point downhole fluid sampler during hydrophysical logging, this technique provides evaluation of contaminant concentrations and migration of contaminants vertically within the borehole. Recently, hydrophysical logging was applied in a deep bedrock wellbore at an industrial site in New Hampshire contaminated with dense nonaqueous phase liquids (DNAPLs). The results of the hydrophysical logging, conducted as part of a hydrogeologic site investigation and feasibility study, facilitated investigation of the site by providing information which indicated that the contamination had not penetrated into deeper bedrock fractures at concentrations of concern. This information was used to focus the pending Remedial Action Plan and to provide a more cost-effective remedial design

  10. Bedrock Model of the Syyry area

    International Nuclear Information System (INIS)

    Saksa, P.; Kuivamaeki, A.; Kurimo, M.; Paananen, M.; Anttila, P.; Front, K.; Pitkaenen, P.; Hassinen, P.; Ylinen, A.

    1993-09-01

    Preliminary site investigations implemented in accordance with the research programme drawn up by Teollisuuden Voima Oy (TVO) were carried out at Syyry (in Finland) in 1987-1992. Models of the site were compiled and used for describing the rock types, fracturing, fracture structures and geohydrological conditions, the main emphasis being on the examination of the bedrock fracturing and related hydraulic conductivity. Three-dimensional models were used for the classification of the various properties of the bedrock structures. The descriptive models were gathered into a computer system to facilitate illustration and storage. The main rock type at Syyry is tonalite. A mica gneiss formation SE of the investigation site dips towards the NW and delimits the tonalite as far as the central part of the investigation site. The miga gneiss has a heterogeneous composition and includes intermediate layers consisting of quartz feldspar schist and amphibolite. There are mafic formations in the vicinity of the investigation site. The intrusive rocks have been deformed during three plastic and three mainly brittle deformation stages. (47 refs., 61 figs.)

  11. Water quality requirements for sustaining aquifer storage and recovery operations in a low permeability fractured rock aquifer.

    Science.gov (United States)

    Page, Declan; Miotliński, Konrad; Dillon, Peter; Taylor, Russel; Wakelin, Steve; Levett, Kerry; Barry, Karen; Pavelic, Paul

    2011-10-01

    A changing climate and increasing urbanisation has driven interest in the use of aquifer storage and recovery (ASR) schemes as an environmental management tool to supplement conventional water resources. This study focuses on ASR with stormwater in a low permeability fractured rock aquifer and the selection of water treatment methods to prevent well clogging. In this study two different injection and recovery phases were trialed. In the first phase ~1380 m(3) of potable water was injected and recovered over four cycles. In the second phase ~3300 m(3) of treated stormwater was injected and ~2410 m(3) were subsequently recovered over three cycles. Due to the success of the potable water injection cycles, its water quality was used to set pre-treatment targets for harvested urban stormwater of ≤ 0.6 NTU turbidity, ≤ 1.7 mg/L dissolved organic carbon and ≤ 0.2 mg/L biodegradable dissolved organic carbon. A range of potential ASR pre-treatment options were subsequently evaluated resulting in the adoption of an ultrafiltration/granular activated carbon system to remove suspended solids and nutrients which cause physical and biological clogging. ASR cycle testing with potable water and treated stormwater demonstrated that urban stormwater containing variable turbidity (mean 5.5 NTU) and organic carbon (mean 8.3 mg/L) concentrations before treatment could be injected into a low transmissivity fractured rock aquifer and recovered for irrigation supplies. A small decline in permeability of the formation in the vicinity of the injection well was apparent even with high quality water that met turbidity and DOC but could not consistently achieve the BDOC criteria. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Faulting in unconsolidated sediments and bedrock east of Toronto - phase 1

    International Nuclear Information System (INIS)

    Rogojina, C.; Mohajer, A.A.; Eyles, N.

    1995-10-01

    Increasing concern with the potential earthquake hazard in southern Ontario has focused attention on neotectonic structures affecting bedrock. Within the boundaries of the metropolitan Toronto area (632 km 2 ), about 2500 fracture orientations have been measured in more than 70 bedrock outcrops. An east-northeast systematic fracture set constitute the most commonly-oriented fundamental fracture system in the study area. The east-northeast systematic fracture set may be the product of the current compressive stress field combined with regional uplift, but this should be confirmed by further field investigation. Anomalous fracture patterns were identified at the periphery of Metropolitan Toronto, specifically along the West Humber and Rouge rivers. Four post-glacial pop-ups were identified within Metro Toronto. Careful mapping and description of these pop-ups show a possible relationship with the contemporary principal stresses in the area and the local fracture pattern. (author). 41 refs., 8 figs

  13. Summary of three dimensional pump testing of a fractured rock aquifer in the western Siberian Basin

    International Nuclear Information System (INIS)

    Nichols, R.L.; Looney, B.B.; Eddy-Dilek, C.A.; Drozhko, E.G.; Glalolenko, Y.V.; Mokrov, Y.G.; Ivanov, I.A.; Glagolev, A.V.; Vasil'kova, N.A.

    1996-01-01

    A group of scientists from the Savannah River Technology Center and Russia successfully completed a 17 day field investigation of a fractured rock aquifer at the MAYAK PA nuclear production facility in Russia. The test site is located in the western Siberian Basin near the floodplain of the Mishelyak river. The fractured rock aquifer is composed of orphyrites, tuff, tuffbreccia and lava and is overlain by 0.5--12 meters of elluvial and alluvial sediments. A network of 3 uncased wells (176, 1/96, and 2/96) was used to conduct the tests. Wells 176 and 2/96 were used as observation wells and the centrally located well 1/96 was used as the pumping well. Six packers were installed and inflated in each of the observation wells at a depth of up to 85 meters. The use of 6 packers in each well resulted in isolating 7 zones for monitoring. The packers were inflated to different pressures to accommodate the increasing hydrostatic pressure. A straddle packer assembly was installed in the pumping well to allow testing of each of the individual zones isolated in the observation wells. A constant rate pumping test was run on each of the 7 zones. The results of the pumping tests are included in Appendix A. The test provided new information about the nature of the fractured rock aquifers in the vicinity of the Mishelyak river and will be key information in understanding the behavior of contaminants originating from process wastes discharged to Lake Karachi. Results from the tests will be analyzed to determine the hydraulic properties of different zones within the fractured rock aquifer and to determine the most cost effective clean-up approach for the site

  14. Shallow bedrock limits groundwater seepage-based headwater climate refugia

    Science.gov (United States)

    Briggs, Martin A.; Lane, John W.; Snyder, Craig D.; White, Eric A.; Johnson, Zachary; Nelms, David L.; Hitt, Nathaniel P.

    2018-01-01

    Groundwater/surface-water exchanges in streams are inexorably linked to adjacent aquifer dynamics. As surface-water temperatures continue to increase with climate warming, refugia created by groundwater connectivity is expected to enable cold water fish species to survive. The shallow alluvial aquifers that source groundwater seepage to headwater streams, however, may also be sensitive to seasonal and long-term air temperature dynamics. Depth to bedrock can directly influence shallow aquifer flow and thermal sensitivity, but is typically ill-defined along the stream corridor in steep mountain catchments. We employ rapid, cost-effective passive seismic measurements to evaluate the variable thickness of the shallow colluvial and alluvial aquifer sediments along a headwater stream supporting cold water-dependent brook trout (Salvelinus fontinalis) in Shenandoah National Park, VA, USA. Using a mean depth to bedrock of 2.6 m, numerical models predicted strong sensitivity of shallow aquifer temperature to the downward propagation of surface heat. The annual temperature dynamics (annual signal amplitude attenuation and phase shift) of potential seepage sourced from the shallow modeled aquifer were compared to several years of paired observed stream and air temperature records. Annual stream water temperature patterns were found to lag local air temperature by ∼8–19 d along the stream corridor, indicating that thermal exchange between the stream and shallow groundwater is spatially variable. Locations with greater annual signal phase lag were also associated with locally increased amplitude attenuation, further suggestion of year-round buffering of channel water temperature by groundwater seepage. Numerical models of shallow groundwater temperature that incorporate regional expected climate warming trends indicate that the summer cooling capacity of this groundwater seepage will be reduced over time, and lower-elevation stream sections may no longer serve as larger

  15. Groundwater vulnerability mapping in Guadalajara aquifers system (Western Mexico)

    Science.gov (United States)

    Rizo-Decelis, L. David; Marín, Ana I.; Andreo, Bartolomé

    2016-04-01

    Groundwater vulnerability mapping is a practical tool to implement strategies for land-use planning and sustainable socioeconomic development coherent with groundwater protection. The objective of vulnerability mapping is to identify the most vulnerable zones of catchment areas and to provide criteria for protecting the groundwater used for drinking water supply. The delineation of protection zones in fractured aquifers is a challenging task due to the heterogeneity and anisotropy of hydraulic conductivities, which makes difficult prediction of groundwater flow organization and flow velocities. Different methods of intrinsic groundwater vulnerability mapping were applied in the Atemajac-Toluquilla groundwater body, an aquifers system that covers around 1300 km2. The aquifer supplies the 30% of urban water resources of the metropolitan area of Guadalajara (Mexico), where over 4.6 million people reside. Study area is located in a complex neotectonic active volcanic region in the Santiago River Basin (Western Mexico), which influences the aquifer system underneath the city. Previous works have defined the flow dynamics and identified the origin of recharge. In addition, the mixture of fresh groundwater with hydrothermal and polluted waters have been estimated. Two main aquifers compose the multilayer system. The upper aquifer is unconfined and consists of sediments and pyroclastic materials. Recharge of this aquifer comes from rainwater and ascending vertical fluids from the lower aquifer. The lower aquifer consists of fractured basalts of Pliocene age. Formerly, the main water source has been the upper unit, which is a porous and unconsolidated unit, which acts as a semi-isotropic aquifer. Intense groundwater usage has resulted in lowering the water table in the upper aquifer. Therefore, the current groundwater extraction is carried out from the deeper aquifer and underlying bedrock units, where fracture flow predominates. Pollution indicators have been reported in

  16. Groundwater Dynamics in Fossil Fractured Carbonate Aquifers in Eastern Arabian Peninsula

    Science.gov (United States)

    Farag, A. Z. A.; Heggy, E.; Helal, M.; Thirunavukkarasu, D.; Scabbia, G.; Palmer, E. M.

    2017-12-01

    The Eastern Arabian Peninsula, notably the Qatar Peninsula, represents one of the highest natural groundwater discharge areas for the Arabian platform fossil aquifer system. Groundwater flow dynamics in these aquifers trace the paleoclimatic conditions that have prevailed the Arabian Peninsula during the Quaternary. In such settings, connections between aquifers strongly affect the flow dynamics, water quality and availability as well as karst formation and landscape evolution. Geological structures such as folds, faults and fractures are central to aquifer connectivity, yet their role on groundwater flow is poorly understood. Herein, we performed a detailed mapping of exposed and buried structural features in Qatar using Landsat, Sentinel and ALOS-PalSAR scenes, correlated with field and laboratory measurements to understand their role in aquifer connectivity and groundwater dynamics. Our results suggest that E-W oriented fold-related faults act as vertical conduits along which artesian upward leakages from the deep aquifers (e.g. Aruma and Umm er Radhuma) take place into the shallower aquifers (e.g. Rus and Dammam). Evidence includes: (1) the high potentiometric surfaces of deep aquifers (6 to 25 m amsl) compare to the shallower aquifers (2-3 m amsl for the same region); (2) anomalous elevation of groundwater levels and steeper hydraulic gradients in densely faulted regions; (3) mixed isotopic composition in shallow aquifers (δ18O: -5 to -2 ‰, δ2H: -40 to -10 ‰) between reported deep fossil waters (δ18O: -6.3 ‰, δ2H: -55 ‰) and modern meteoric waters (weighted average: δ18O: -0.6 ‰, δ2H: 4 ‰); (4) abundant meso-crystalline fibrous gypsum veins along fault zones in the Dammam Formation (up to 28 m amsl) in southern Qatar where the anhydritic member of the Rus Formation predominates the subsurface leading to gypsum oversaturation of groundwater. The similarity of crystal morphology (platy crystals under SEM), mineralogical compositions from XRD

  17. Virus occurrence in private and public wells in a fractured dolostone aquifer in Canada

    Science.gov (United States)

    Groundwater samples collected during eight months from 22 wells completed in a regional fractured dolostone aquifer in the Guelph region of southern Ontario, Canada were analyzed for viruses and Campylobacter jejuni. Only 8% of the 118 samples exhibited viruses at extremely low concentrations; but ...

  18. Movements and instability in the Swedish bedrock

    International Nuclear Information System (INIS)

    Moerner, N.A.

    1977-01-01

    The report gives a geological evaluation of the Swedish bedrock and its movements during the last 20,000 years, which may serve as a base for further evaluations of the possibilities of storing nuclear waste in the bedrock. The Swedish bedrock is by no means stable. Like all other bedrocks it is unstable. The Swedish bedrock has an old and rich tectono-geodynamic inheritance. Irregularities in the uplift in the form of shoreline bends and isobase irregularities have been established with ancient shorelines and geodetic data. They are in general all related to major faultlines and bedrock seams. Bouldery end moraines and bouldery ground in general register paleopseismic activity -(these areas must hence be excluded as alternatives for storage of nuclear waste in the bedrock). The next ice age, is either on its way or it will, under the most favorable circumstances, have begun 20,000years from now (AP). At the next ice age, all the seismic and neotectonic effects from the deglaciation period will be repeated. During an ice age. Nuclear waste cannot bestored in the bedrock. If one succed in finding a Precambrain bedrock unit within an area of smooth uplift, absence of recent earthquakes, the bedrock surface of which shows few fractures and no faultlines, and where the surroundings exhibit normal moraine features and normal till composition, this area must still be evaluated with respect to that which will happen and may happen in connection with the next ice age and in connection with the cyclic gravitational changes in the present linear uplift. (author)

  19. Prospecting fractured rock aquifers using radon soil gases method; Analise de radonio no solo para prospeccao de agua em aquiferos fraturados

    Energy Technology Data Exchange (ETDEWEB)

    Stefano, Paulo Henrique Prado; Roisenberg, Ari, E-mail: paulohenriquestefano@hotmail.com, E-mail: ari.roisenberg@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil); Gallas, Jose Domingos Faraco, E-mail: jgallas@usp.br [Universidade de Sao Paulo (USP), SP (Brazil); Rocha, Zildete, E-mail: zildete@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-11-01

    Groundwater prospecting in fractured aquifers depends on the detection of tectonic lineaments, which may be difficult in urban areas. A survey was carried out using radon soil gases concentrations in four localities in the region of Granite Santana and Viamao Granite, Porto Alegre, Rio Grande do Sul, in order to test the method for water prospecting in fractured aquifers. The radon data have been compared with electrical resistivity survey executed using dipole-dipole arrangement. At four studied areas, an interesting correlation was noted between the two methods. At regions of low resistivity, positive radon anomalies were found in fracture zones, reaching values up to 7 times the background of the region, starting from a concentration value of 2500 Bq/m{sup 3} in a non-fractured zones to 22187 Bq /m{sup 3} in the fractured zones. (author)

  20. Bedrock model of the Veitsivaara area

    International Nuclear Information System (INIS)

    Saksa, P.; Kuivamaeki, A.; Kurimo, M.; Anttila, P.; Front, K.; Pitkaenen, P.; Korkealaakso, J.; Vaittinen, T.

    1993-07-01

    Site investigations were carried out at Veitsivaara, in 1987-1991 in accordance with an investigation programme for radioactive waste disposal drawn up by Teollisuuden Voima Oy (TVO). The site was modelled in terms of rock types, fracturing, fracture structures and geophysical conditions, the main focus of examination was on fracturing and associated hydraulic conductivity. The various properties of the bedrock structures were classified by means a three-dimensional model. The descriptions of the models were stored in a computer system for illustration purposes. The rock types at Veitsivaara are tonalite gneiss, Tuliniemet potassium granite, amphipolite, granite porphyry and metadiabase, the last two of which occur in dykes

  1. Modeling ground water flow and radioactive transport in a fractured aquifer

    International Nuclear Information System (INIS)

    Pohll, G.; Hassan, A.E.; Chapman, J.B.; Papelis, C.; Andricevic, R.

    1999-01-01

    Three-dimensional numerical modeling is used to characterize ground water flow and contaminant transport at the Shoal nuclear test site in north-central Nevada. The fractured rock aquifer at the site is modeled using an equivalent porous medium approach. Field data are used to characterize the fracture system into classes: large, medium, and no/small fracture zones. Hydraulic conductivities are assigned based on discrete interval measurements. Contaminants from the Shoal test are assumed to all be located within the cavity. Several challenging issues are addressed in this study. Radionuclides are apportioned between surface deposits and volume deposits in nuclear melt glass, based on their volatility and previous observations. Surface-deposited radionuclides are released hydraulically after equilibration of the cavity with the surrounding ground water system, and as a function of ground water flow through the higher-porosity cavity into the low-porosity surrounding aquifer. Processes that are modeled include the release functions, retardation, radioactive decay, prompt injection, and in growth of daughter products. Prompt injection of radionuclides away from the cavity is found to increase the arrival of mass at the control plane but is not found to significantly impact calculated concentrations due to increased spreading. Behavior of the other radionuclides is affected by the slow chemical release and retardation behavior. The transport calculations are sensitive to many flow and transport parameters. Most important are the heterogeneity of the flow field and effective porosity. The effect of porosity in radioactive decay is crucial and has not been adequately addressed in the literature. For reactive solutes, retardation and the glass dissolution rate are also critical

  2. Comparison of different modeling approaches to simulate contaminant transport in a fractured limestone aquifer

    DEFF Research Database (Denmark)

    Mosthaf, Klaus; Rosenberg, L.; Balbarini, Nicola

    . Given available field data and model purpose, this paper therefore aims to develop, examine and compare modeling approaches for transport of contaminants in fractured limestone aquifers. The model comparison was conducted for a contaminated site in Denmark, where a plume of a dissolved contaminant (PCE...... was combined with an analysis of heterogeneities and fractures from a nearby excavation (analog site). Methods for translating the geological information and fracture mapping into each of the model concepts were examined. Each model was compared with available field data, considering both model fit...... of field data is the determination of relevant hydraulic properties and interpretation of aqueous and solid phase contaminant concentration sampling data. Traditional water sampling has a bias towards fracture sampling, however concentrations in the limestone matrix are needed for assessing contaminant...

  3. Bedrock Hydrogeology-Site investigation SFR

    International Nuclear Information System (INIS)

    Oehman, Johan; Bockgaard, Niclas; Follin, Sven

    2012-06-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) has conducted site investigations for a planned extension of the existing final repository for short-lived radioactive waste (SFR). This report presents an integrated analysis and interpretation of the historic data from the existing SFR (1980 - 1986), as well as, from the recent investigations for the planned extension of SFR (2008 - 2009). The primary objective is to establish a conceptual hydrogeological model of the bedrock for safety assessment and design analyses. Analyses and interpretations of all (old and new) hydraulic data are analysed with regard to the recently developed geological deformation zone model of the SFR model domain (Curtis et al. 2011). The methodology used by Curtis et al. (2011) has focussed on magnetic anomalies and deformation zone intercepts with ground surface greater than 300 m. In the hydrogeological modelling, however, it has been considered important to also explore the occurrence and characteristics of shallow horizontal to sub-horizontal structures (sheet joints) inside the SFR model domain. Such structures are of considerable importance for the hydrogeology in the uppermost c. 150 m of bedrock in SDM-Site Forsmark; hence the term Shallow Bedrock Aquifer was used to emphasise their hydraulic significance. In this study, the acronym SBA-structure is used for horizontal structures identified in the hydrogeological modelling. In addition to the predominantly steeply dipping geological deformation zones, eight so-called SBA-structures are modelled deterministically in the hydrogeological model. The SBA-structures are envisaged as hydraulically heterogeneous and composed of clusters of minor gently dipping to horizontal fractures rather than extensive single features. A type of structures that is partly included in the definition of the SBA-structures is the Unresolved Possible Deformations Zone (Unresolved PDZ) intercepts identified by Curtis et al. (2011). The Unresolved

  4. Bedrock Hydrogeology - Site investigation SFR

    Energy Technology Data Exchange (ETDEWEB)

    Oehman, Johan [Geosigma AB, Stockholm (Sweden); Bockgaard, Niclas [Golder Assoes AB, Stockholm (Sweden); Follin, Sven [SF GeoLogic AB, Taeby (Sweden)

    2012-06-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) has conducted site investigations for a planned extension of the existing final repository for short-lived radioactive waste (SFR). This report presents an integrated analysis and interpretation of the historic data from the existing SFR (1980 - 1986), as well as, from the recent investigations for the planned extension of SFR (2008 - 2009). The primary objective is to establish a conceptual hydrogeological model of the bedrock for safety assessment and design analyses. Analyses and interpretations of all (old and new) hydraulic data are analysed with regard to the recently developed geological deformation zone model of the SFR model domain (Curtis et al. 2011). The methodology used by Curtis et al. (2011) has focussed on magnetic anomalies and deformation zone intercepts with ground surface greater than 300 m. In the hydrogeological modelling, however, it has been considered important to also explore the occurrence and characteristics of shallow horizontal to sub-horizontal structures (sheet joints) inside the SFR model domain. Such structures are of considerable importance for the hydrogeology in the uppermost c. 150 m of bedrock in SDM-Site Forsmark; hence the term Shallow Bedrock Aquifer was used to emphasise their hydraulic significance. In this study, the acronym SBA-structure is used for horizontal structures identified in the hydrogeological modelling. In addition to the predominantly steeply dipping geological deformation zones, eight so-called SBA-structures are modelled deterministically in the hydrogeological model. The SBA-structures are envisaged as hydraulically heterogeneous and composed of clusters of minor gently dipping to horizontal fractures rather than extensive single features. A type of structures that is partly included in the definition of the SBA-structures is the Unresolved Possible Deformations Zone (Unresolved PDZ) intercepts identified by Curtis et al. (2011). The Unresolved

  5. The keystone species of Precambrian deep bedrock biosphere belong to Burkholderiales and Clostridiales

    OpenAIRE

    L. Purkamo; M. Bomberg; R. Kietäväinen; H. Salavirta; M. Nyyssönen; M. Nuppunen-Puputti; L. Ahonen; I. Kukkonen; M. Itävaara

    2015-01-01

    The bacterial and archaeal community composition and the possible carbon assimilation processes and energy sources of microbial communities in oligotrophic, deep, crystalline bedrock fractures is yet to be resolved. In this study, intrinsic microbial communities from six fracture zones from 180–2300 m depths in Outokumpu bedrock were characterized using high-throughput amplicon sequencing and metagenomic prediction. Comamonadaceae-, ...

  6. Groundwater management in coastal zones and on islands in crystalline bedrock areas of Sweden

    Science.gov (United States)

    Banzhaf, Stefan; Ekström, Linda Louise; Ljungkvist, Andreas; Granberg, Maria; Merisalu, Johanna; Pokorny, Sebastian; Barthel, Roland

    2017-04-01

    Groundwater problems in coastal regions are usually not associated with the sparsely populated shores of water-rich Scandinavia. However, the combination of geology and the specific conditions of water usage create challenges even there. Along the Swedish coast, much of the groundwater occurs in fractured bedrock or in relatively small, shallow, and isolated quaternary sedimentary formations. Those aquifers cannot provide water to larger permanent settlements and are thus neither useful for the public water supply nor have previously received much attention from water authorities or researchers. However, of the 450,000 private wells in Sweden, many are located in coastal areas or on islands, creating pressure on groundwater resources in summer months as periods with low or no natural groundwater recharge. In view of the increasing water demand, as well as the awareness of environmental impacts and climate change, Swedish municipalities now recognize groundwater usage in coastal areas is a major concern. Here, we present the results of an investigation on the "Koster" archipelago which forms a microcosm of coastal zone groundwater problems in Sweden. Koster's geology is dominated by fractured, crystalline bedrock with occasional shallow quaternary deposits in between. With around 300 permanent residents, and up to 6,000 summer guests in peak holiday season, the existing water supply based on 800 private wells is at its limit. Water availability forms an obstacle to future development and the current mode of operation is unsustainable. Therefore, the municipality must decide how to secure future water supply which involves complex legal problems, as well as social, cultural, economic, hydrogeological, and environmental questions. As there are no observation wells on the islands, we used approximately 220 of the 800 wells (65% dug and shallow, 35% drilled and up to 120m deep) for our monitoring. Additionally, water samples were collected by property owners on four

  7. Bedrock model of the Olkiluoto area

    International Nuclear Information System (INIS)

    Saksa, P.; Paananen, M.; Paulamaeki, S.; Anttila, P.; Front, K.; Pitkaenen, P.; Hassinen, P.; Ylinen, A.

    1993-07-01

    Site investigations were carried out at Olkiluoto (in Finland) in 1987-1992 in accordance with an investigation programme drawn up by Teollisuuden Voima Oy (TVO). The site was modelled in terms of rock types, fracturing, fracture structures and geohydrological conditions, the main focus of examination was on fracturing and associated hydraulic conductivity. The various properties of the bedrock structures were classified by means of a three-dimensional model. The descriptions of the models were gathered in a computer system for illustration and storage purposes. The rock types at Olkiluoto are migmatite, which may be divided into mica gneiss and veined gneiss, and also tonalite and coarse-grained migmatite granite (pegmatite). (64 refs., 65 figs.)

  8. Occurrence of geogenic contaminants in private wells from a crystalline bedrock aquifer in western Quebec, Canada: Geochemical sources and health risks

    Science.gov (United States)

    Bondu, Raphaël; Cloutier, Vincent; Rosa, Eric

    2018-04-01

    Nineteen private wells were investigated in order to evaluate the groundwater quality and the issues associated with well water use in a fractured metasedimentary aquifer of the Canadian Shield, in western Quebec (Canada). Groundwater sampling and analysis reveal that the quality of well water is both a potential aesthetic and health concern for the residents. Aesthetic problems are mainly related to the high levels of hardness and dissolved iron and manganese. Potential health risks are associated with the occurrence of brackish groundwater, high manganese concentrations, and arsenic concentrations exceeding the Canadian guideline value of 10 μg/l. Brackish groundwater is suspected to be derived from the mixing of fresh groundwaters with deep calcium-sodium-chloride brines of the Canadian Shield. The occurrences of iron, manganese and arsenic, primarily derived from the natural weathering of bedrock, are highly dependent on the geochemical conditions in groundwater, particularly the redox potential. Arsenic occurs mainly as arsenite (As(III)) and is thought to be released by the dissolution of iron and manganese oxyhydroxides under reducing conditions. Information obtained from well owners indicates that most households use ion exchange water softeners to minimize aesthetic problems of excessive hardness and dissolved iron and manganese concentrations. Homeowners generally take protective measures to reduce their exposure to arsenic when they are aware of the contamination. The exposure to arsenic and manganese may pose health risks for residents that do not take protective measures. The quality of well water is of paramount importance for human health in rural areas. Information on the contaminant sources and individual mitigation measures is essential to assess the health risks associated with groundwater consumption and to ensure the protection of public health.

  9. Measurements of hydraulic conductivity in deep bedrock at Palmottu, Outokumpu, Pori and Ylivieska

    International Nuclear Information System (INIS)

    Ahonen, L.

    1992-01-01

    Hydraulic conductivity of the bedrock was studied using a double packer equipment fitting the small-diameter drillholes (46 mm). Test method was a slug test, in which the pressure of the test section is reduced by removing water from a tube connected to the test section and, subsequently, monitoring the recovery of the original pressure. In the work, methods of interpretation suitable for the test method are examined, and compared by means of graphical simulations. Their relevance in the case of measurements in fractured crystalline bedrock are discussed. In the method of Hvorslev, the recovery rate is assumed to be directly proportional to residual drawdown and to the hydraulic conductivity of the test section and, consequently, the effect of specific storage is neglected. In other methods of interpretations (e.g. 'Cooper'- method), assuming radial flow from porous aquifer, specific storage is taken into consideration. Different methods of interpretation lead to dissimilar theoretical responses on recovery vs. time graphics. Skin-effect and outer boundary effects also have an influence on the shape of recovery curve. There is no major differences in K-values obtained by different methods of interpretation. The study sites represent different lithological environments, comprising migmatitic gneisses with granitic interlayers (Palmottu); a complex association of serpentine, black schist, quartzite, dolomite and scram (Outokumpu); arkosic sandstone (Pori); and mafic/ultramafic intrusion (Ylivieska)

  10. Final report for the IAEA urban aquifers RCA : determining the effects of storm water infiltration on groundwater quality in an urban fractured rock aquifer, Auckland, New Zealand

    International Nuclear Information System (INIS)

    Rosen, M.R.; Hong, Y.S.; Sheppard, D.; Roberts, K.; Viljevac, Z.; Smaill, A.; Reeves, R.R.

    2000-01-01

    Disposal of storm water in the Mt Eden-Mt Albert area of Auckland, New Zealand, is via ''soak holes'' drilled directly into the top of the fractured basalt. These soak holes receive storm water and sediment runoff from city streets throughout Mt Eden. Although this method of disposal has been used for at least 60 years, its sustainability with respect to groundwater quality has not been addressed. This study aimed to determine the impact of soakage on the chemical and isotopic composition of the groundwater. In addition, sediments captured by the soak holes were analysed to determine their effectiveness at trapping contaminants. Groundwater samples were collected between August 1998 and August 1999. Three sampling trips were carried out after rainfall events in October 1998, April 1999 and August 1999. Samples were analysed for major and trace components, including nutrients, dissolved and total heavy metals (As, Cr, Cu, Zn, Pb, Cd, and Ni), polynuclear aromatic hydrocarbons (PAHs), chlorofluorocarbons (CFCs) and stable and radiogenic isotopes. Cores of sediment collected in the soak holes were analysed for major components, total and leachable heavy metals, and PAHs to determine the ability of the sediments to adsorp contaminants. In summary, the Mt Eden aquifer system shows the effect of storm water infiltration rapidly after a rainfall event in some parts of the aquifer. Water quality has been effected in some areas, but in general the water quality is quite good considering the quantity of storm water discharge that has occurred in the area for the past 60 years. The relatively high quality of the water in the wells monitored may be attributed to the ability of the accumulated sediment in the soak holes and the aquifer fractures to trap contaminants. Further research is needed to determine if continued use of the groundwater system as a conduit for storm water infiltration will lead to clogging of the fractures in the aquifer and/or transport of particulates

  11. Microbiology of transitional groundwater of the porous overburden and underlying fractured bedrock aquifers in Olkiluoto 2004, Finland

    International Nuclear Information System (INIS)

    Pedersen, K.

    2006-07-01

    The subsurface biosphere on Earth appears to be far more expansive and metabolically and phylogenetically complex than previously thought. A diverse suite of subsurface environments have been reported to support microbial ecosystems, extending from a few meters below the surface to several hundred meters. The discovery of a deep biosphere will have several important effects on underground repositories for radioactive wastes. The main potential effects of microorganisms in the context of a KBS-3 type repository for spent fuel in the bedrock of Olkiluoto are: Oxygen reduction and maintenance of anoxic and reduced conditions; Bio-immobilisation and bio-mobilisation of radionuclides, and the effects from microbial metabolism on radionuclide mobility; Sulphate reduction to sulphide and the potential for copper sulphide corrosion. The first main objective of this study was to characterize the geochemistry, biomass and microbial diversity of shallow subsurface groundwater at Olkiluoto, from 4.0 m down to 24.5 m. This objective also permitted the determination of whether or not there is any transition in the shallow depths at Olkiluoto to microbial conditions associated with the deep subsurface. The second main objective was to continue the study of biomass and microbial metabolic diversity in deep groundwater of Olkiluoto to a maximal depth of 525 m, using cultivation methods similar to those applied to the shallow groundwater. This was the first investigation that covered both shallow and deep groundwater microbiology. The analysis of microbiology is very important for proper understanding of the evolution of geochemical processes in and around the underground research facility ONKALO being constructed at Olkiluoto by Posiva since autumn 2004, as well as for the planned KBS-3 type spent fuel repository at Olkiluoto. There are several conclusions and hypotheses with respect to the microbiology that are of great importance for ONKALO and for the spent fuel repository. The

  12. Groundwater Waves in a Coastal Fractured Aquifer of the Third Phase Qinshan Nuclear Power Engineering Field

    Institute of Scientific and Technical Information of China (English)

    ZHOU Nian-qing; TANG Yi-qun; TANG He-ping

    2005-01-01

    Tidal fluctuations of Hangzhou Bay produce progressive pressure waves in adjacent field fractured aquifers, as the pressure waves propagate, groundwater levels and hydraulic gradients continuously fluctuate. The effect of tidal fluctuations on groundwater flow can be determined using the mean hydraulic gradient that can be calculated by comparing mean ground and surface water elevations. Tidal fluctuation is shown to affect the piezometer readings taken in a nearshore fractured aquifer around the nuclear power engineering field. Continuous monitoring of a network of seven piezometers provided relations between the tidal cycle and the piezometer readings. The relations can be expressed in times of a time and amplitude scaling factor. The time lag and the tidal effi ciency factor and wavelength are calculated using these parameters. It provides significant scientific basis to prevent tide and groundwater for the nuclear power engineering construction and safety run of nuclear power station in the future.

  13. Active Microbial Communities Inhabit Sulphate-Methane Interphase in Deep Bedrock Fracture Fluids in Olkiluoto, Finland

    Directory of Open Access Journals (Sweden)

    Malin Bomberg

    2015-01-01

    Full Text Available Active microbial communities of deep crystalline bedrock fracture water were investigated from seven different boreholes in Olkiluoto (Western Finland using bacterial and archaeal 16S rRNA, dsrB, and mcrA gene transcript targeted 454 pyrosequencing. Over a depth range of 296–798 m below ground surface the microbial communities changed according to depth, salinity gradient, and sulphate and methane concentrations. The highest bacterial diversity was observed in the sulphate-methane mixing zone (SMMZ at 250–350 m depth, whereas archaeal diversity was highest in the lowest boundaries of the SMMZ. Sulphide-oxidizing ε-proteobacteria (Sulfurimonas sp. dominated in the SMMZ and γ-proteobacteria (Pseudomonas spp. below the SMMZ. The active archaeal communities consisted mostly of ANME-2D and Thermoplasmatales groups, although Methermicoccaceae, Methanobacteriaceae, and Thermoplasmatales (SAGMEG, TMG were more common at 415–559 m depth. Typical indicator microorganisms for sulphate-methane transition zones in marine sediments, such as ANME-1 archaea, α-, β- and δ-proteobacteria, JS1, Actinomycetes, Planctomycetes, Chloroflexi, and MBGB Crenarchaeota were detected at specific depths. DsrB genes were most numerous and most actively transcribed in the SMMZ while the mcrA gene concentration was highest in the deep methane rich groundwater. Our results demonstrate that active and highly diverse but sparse and stratified microbial communities inhabit the Fennoscandian deep bedrock ecosystems.

  14. Applicability of reflection seismic measurements in detailed characterization of crystalline bedrock

    International Nuclear Information System (INIS)

    Sireni, S.

    2011-03-01

    Posiva carried out a seismic survey in the access tunnel of the underground research facility ONKALO in 2009. The survey contributes the detailed characterization of the bedrock in the final disposal of spent nuclear fuel. The aim of this work was to examine the geophysical and geological properties of the chosen tunnel intersections to clarify the important characteristics for reflection generation, and evaluate applicability of this survey for characterization of crystalline bedrock. The seismic result consists of 24 projected amplitude images in 12 different angles. The size of an image is 260*300 m. The amount of digitized reflectors is over 100 and all of them could not be included in this work. The study was limited to 14 intersections that were considered important: brittle fault intersections, tunnel-crosscutting fractures, or lithological contacts. Presence of a brittle fault zone or a tunnel-crosscutting fracture limits the suitable bedrock volume for depositing the nuclear fuel canisters, and wide lithological contacts are a common source of reflection. The seismic data was compared to the existing geological, hydrogeological and geophysical data got from the pilot holes and the tunnel. The most important characteristics were fractures: orientation, fillings, and thickness of the fillings, alteration and water leakage. Geophysically interesting was density, seismic velocities and their products: acoustic impedance and synthetic seismograms. Calculated acoustic impedances showed some differences between cases, but they did not indicate the presence of a reflector. The most common cause of reflector was undulating slickensided, highly altered, tunnel-crosscutting fracture that had thick fracture-fillings and water present. Water was included five times in interpreted reflectors. Also few reflectors were connected to varying mineralogy. Few problematic cases occurred, where a geological feature and a reflection did not correlate, and three of the cases with

  15. Behavior of rare earth elements in fractured aquifers: an application to geological disposal criteria for radioactive waste

    International Nuclear Information System (INIS)

    Lee, Seung Gu; Kim, Yong Je; Lee, Kil Yong; Kim, Kun Han

    2003-01-01

    An understanding of the geochemistry of potential host rocks is very important in the site evaluation for construction of an underground geologic repository for radioactive waste. Because of similar valence and ionic radii and high similarity in electronic structure with trivalent actinides (such as Am 3+ and Cm 3+ ), the rare earth elements (REEs) have been used to predict the behavior of actinide-series elements in solution (Runde et al., 1992). For Am and Cm, which occur only in the trivalent states in most waste-disposal repository environments, the analogy with the REEs is particularly relevant. In order to discuss the behavior of REEs in geological media and to deduce the behavior of actinides in geological environments based on the REE abundance, and to provide an useful tool in deciding an optimum geological condition for radioactive disposal, we estimated the REE abundance from various kinds of fractured rock type. In fractured granitic aquifer, chondrite-normalized REE pattern show Eu positive anomaly due to fracture-filling calcite precipitation. However, in fractured meta-basaltic and volcanic tuffaceous aquifer, REE pattern do not show the change of Eu anomaly due to fracture-filling calcite precipitation. Eu shows very similar properties such as cohesive energy, ionic radii with coordination number compared to Am. Therefore, if we consider the Eu behavior in fractured rocks and the similar physical/chemical properties of Eu and Am, together, our results strongly suggest that Eu is a very useful analogue for predicting the behavior of Am in geological environment

  16. Flow channeling in a single fracture as a two-dimensional strongly heterogeneous permeable medium

    International Nuclear Information System (INIS)

    Tsang, Y.W.; Tsang, C.F.

    1990-01-01

    Recent interest in the evaluation of contaminant transport in bedrock aquifers and in the performance assessment of geologic nuclear waste repositories has motivated many studies of fluid flow and tracer transport in fractured rocks. Until recently, numerical modeling of fluid flow in the fractured medium commonly makes the assumption that each fracture may be idealized as a pair of parallel plates separated by a constant distance which represents the aperture of the fracture. More recent theoretical work has taken into account that the aperture in a real rock fracture in fact takes on a range of values. Evidence that flow in fractures tends to coalesce in preferred paths has been found in the field. Current studies of flow channeling in a fracture as a result of the variable apertures may also be applicable to flow and transport in a strongly heterogenous porous medium. This report includes the methodology used to study the flow channelling and tracer transport in a single fracture consisting of variable apertures. Relevant parameters that control flow channeling are then identified and the relationship of results to the general problem of flow in a heterogenous porous medium are discussed

  17. REE and Y in groundwater in the upper 1.2 km of Proterozoic granitoids (Eastern Sweden) - Assessing the role of composition and origin of groundwaters, geochemistry of fractures, and organic/inorganic aqueous complexation

    Science.gov (United States)

    Mathurin, Frédéric A.; Åström, Mats E.; Drake, Henrik; Maskenskaya, Olga M.; Kalinowski, Birgitta E.

    2014-11-01

    Yttrium and rare earth elements (YREEs) are studied in groundwater in the shallow regolith aquifer and the fracture networks of the upper 1.2 km of Paleoproterozoic granitoids in boreal Europe (Laxemar and Forsmark areas, Sweden). The study includes groundwater sampled via a total of 34 shallow boreholes reaching the bottom of the regolith aquifer, and 72 deep boreholes with equipment designed for retrieval of representative groundwater at controlled depths in the fractured bedrock. The groundwater composition differs substantially between regolith and fracture groundwater and between areas, which affects the dissolved YREE features, including concentrations and NASC normalized patterns. In the fresh groundwater in the regolith aquifers, highest YREE concentrations occur (10th and 90th percentile; Laxemar: 4.4-82 μg L-1; Forsmark: 1.9-19 μg L-1), especially in the slightly acidic groundwater (pH: 6.3-7.2 - Laxemar), where the normalized YREE patterns are slightly enriched in light REEs (LaNASC/YNASC: 1.1-2.4). In the recharge areas, where redox potentials of the regolith groundwater is more moderate, negative Ce anomaly (Laxemar: 0.37-0.45; Forsmark: 0.15-0.92) and positive Y anomaly (mainly in Forsmark: 1.0-1.7) are systematically more pronounced than in discharge areas. The significant correlations between the YREE features and dissolved organic carbon, minor elements, and somewhat pH suggest a strong control of humic substances (HSs) together with Al rich colloids and redox sensitive Fe-Mn hydrous precipitates on the dissolved YREE pools. In the bedrock fractures, the groundwater is circumneutral to slightly basic and displays YREE concentrations that are at least one order of magnitude lower than the regolith groundwater, and commonly below detection limit in the deep brackish and saline groundwater, with some exceptions such as La and Y. At intermediate depth (>50 m), where groundwater of meteoric origin percolates, the LaNASC/YNASC values moderately to

  18. Final disposal of spent nuclear fuel in Finnish bedrock - Romuvaara site report

    Energy Technology Data Exchange (ETDEWEB)

    Anttila, P. [Fortum Engineering Oy (Finland); Ahokas, H. [Fintact Oy (Finland); Front, K. [VTT Communities and Infrastructure, Espoo (Finland)] [and others

    1999-06-01

    Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Haestholmen in Loviisa, Kivetty in Aeaenekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Romuvaara. The bedrock of Romuvaara belongs to the Archean basement complex, whose oldest parts date back over 2800 million years. The bedrock consists mainly of migmatitic banded gneisses (tonalite, leucotonalite and mica gneiss), which are cut by granodiorite and metadiabase dykes. The rocks, excluding the metadiabase, have undergone a polyphase Archaean deformation. Altogether 31 bedrock structures (R-structures) have been modelled at the investigation site, most of them representing steeply dipping fracture zones. The rock mass between the fracture zones represents what is termed `intact rock`, which is typically hard, unweathered and sparsely fractured. The R-structures are generally hydraulically more conductive than the intact rock and their mean transmissivity is 1.6 x 10{sup -7} m{sup 2}/s. The corresponding mean of the hydraulic conductivity values for the intact rock measured using a 2 m packer interval is 8 x 10{sup -12} m/s, if a lognormal distribution for all measured values is assumed. A clear decrease in hydraulic conductivity with depth has been found, for both the R-structures and the intact rock. In addition, the hydraulically conductive fractures seem to be more frequent and their transmissivities higher in the uppermost 100 - 200 m of the bedrock than at greater depths. The groundwater of Romuvaara is classified as fresh water and the Total Dissolved Solids (TDS) and chloride contents increase with depth. The chemically

  19. Final disposal of spent nuclear fuel in Finnish bedrock - Romuvaara site report

    International Nuclear Information System (INIS)

    Anttila, P.; Ahokas, H.; Front, K.

    1999-06-01

    Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Haestholmen in Loviisa, Kivetty in Aeaenekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Romuvaara. The bedrock of Romuvaara belongs to the Archean basement complex, whose oldest parts date back over 2800 million years. The bedrock consists mainly of migmatitic banded gneisses (tonalite, leucotonalite and mica gneiss), which are cut by granodiorite and metadiabase dykes. The rocks, excluding the metadiabase, have undergone a polyphase Archaean deformation. Altogether 31 bedrock structures (R-structures) have been modelled at the investigation site, most of them representing steeply dipping fracture zones. The rock mass between the fracture zones represents what is termed 'intact rock', which is typically hard, unweathered and sparsely fractured. The R-structures are generally hydraulically more conductive than the intact rock and their mean transmissivity is 1.6 x 10 -7 m 2 /s. The corresponding mean of the hydraulic conductivity values for the intact rock measured using a 2 m packer interval is 8 x 10 -12 m/s, if a lognormal distribution for all measured values is assumed. A clear decrease in hydraulic conductivity with depth has been found, for both the R-structures and the intact rock. In addition, the hydraulically conductive fractures seem to be more frequent and their transmissivities higher in the uppermost 100 - 200 m of the bedrock than at greater depths. The groundwater of Romuvaara is classified as fresh water and the Total Dissolved Solids (TDS) and chloride contents increase with depth. The chemically most evolved

  20. Bedrock model of the Kivetty area

    International Nuclear Information System (INIS)

    Saksa, P.; Paulamaeki, S.; Paananen, M.; Anttila, P.; Front, K.; Pitkaenen, P.; Korkealaakso, J.; Okko, O.

    1993-07-01

    Preliminary site investigations were carried out at Kivetty (in Finland), in 1987-1992 in accordance with the investigation programme drawn up by Teollisuuden Voima Oy (TVO). The site was modelled in terms of rock type, fracturing, fracture structures and geohydrological conditions, with the main emphasis being placed on fracturing and associated hydraulic conductivity. The various properties of the bedrock structures were classified in relation to a three-dimensional model. The descriptions of the models were stored in a computer system for the purpose of illustration. The principal rock types encountered at the Kivetty site are porphyritic granodiorite and porphyritic granite, in addition to which even-grained granite and granodiorite, gabbro, and small felsic and mafic veins occur. The rocks have undergone two distinct phases of deformation. (41 refs., 50 figs.)

  1. Preliminary hydrogeologic assessment of a ground-water contamination area in Wolcott, Connecticut

    Science.gov (United States)

    Stone, J.R.; Casey, G.D.; Mondazzi, R.A.; Frick, T.W.

    1997-01-01

    Contamination of ground water by volatile organic compounds and inorganic constituents has been identified at a number of industrial sites in the Town of Wolcott, Connecticut. Contamination is also present at a municipal landfill in the City of Waterbury that is upgradient from the industrial sites in the local ground-water-flow system. The study area, which lies in the Western Highlands of Connecticut, is in the Mad River Valley, a tributary to the Naugatuck River. Geohydrologic units (aquifer materials) include unconsolidated glacial sediments (surficial materials) and fractured crystalline (metamorphic) bedrock. Surficial materials include glacial till, coarse-grained andfine-grained glacial stratified deposits, and postglacial floodplain alluvium and swamp deposits. The ground-water-flow system in the surficial aquifer is complex because the hydraulic properties of the surficial materials are highly variable. In the bedrock aquifer, ground water moves exclusively through fractures. Hydrologic characteristics of the crystalline bedrock-degree of confinement, hydraulic conductivity, storativity, and porosity-are poorly defined in the study area. Further study is needed to adequately assess ground-water flow and contaminant migration under current or past hydrologic conditions. All known water-supply wells in the study area obtain water from the bedrock aquifer. Twenty households in a hillside residential area on Tosun Road currently obtain drinking water from private wells tapping the bedrock aquifer. The extent of contamination in the bedrock aquifer and the potential for future contamination from known sources of contamination in the surficial aquifer is of concern to regulatory agencies. Previous investigations have identified ground-water contamination by volatile organic compounds at the Nutmeg Valley Road site area. Contamination has been associated with on-site disposal of heavy metals, chlorinated and non-chlorinated volatile organic compounds, and

  2. The relationship between hydrogeologic properties and sedimentary facies: an example from Pennsylvanian bedrock aquifers, southwestern Indiana

    International Nuclear Information System (INIS)

    Fisher, A.T.; Barnhill, M.; Revenaugh, J.

    1998-01-01

    The relationship between the hydrogeologic properties and sedimentary facies of shallow Pennsylvanian bedrock aquifers was examined using detailed sedimentologic descriptions, aquifer (slug) tests, and gamma ray logs. The main goal of the study was to determine if it was possible to reliably estimate near-well hydraulic conductivities using core descriptions and logging data at a complex field site, based on assignment of consistent conductivity indicators to individual facies. Lithologic information was gathered from three sources: core descriptions, simplified lithologic columns derived from the core descriptions, and drillers' logs. Gamma ray data were collected with a conventional logging instrument. Slug tests were conducted in all wells containing screened zones entirely within the Pennsylvanian facies of interest. Simplified subsets of sedimentologic facies were assembled for classification of subsurface geology, and all rocks within the screened intervals of test wells were assigned to individual facies based on visual descriptions. Slug tests were conducted to determine the bulk hydraulic conductivity (a spatial average within the screened interval) in the immediate vicinity of the wells, with measured values varying from 10 -4 m/s to 10 -8 m/s. Gamma ray logs from these wells revealed variations in raw counts above about 1.5 orders of magnitude. Data were combined using simple linear and nonlinear inverse techniques to derive relations between sedimentologic facies, gamma ray signals, and bulk hydraulic conductivities. The analyses suggest that facies data alone, even those derived from detailed core descriptions, are insufficient for estimating hydraulic conductivity in this setting to better than an order of magnitude. The addition of gamma ray data improved the estimates, as did selective filtering of several extreme values from the full data set. Better estimates might be obtained through more careful field measurements and reduction of

  3. Interactions between deep bedrock aquifers and surface water in function of recharge and topography: a numerical study

    Science.gov (United States)

    Goderniaux, P.; Davy, P.; Le Borgne, T.; Bresciani, E.; Jimenez-Martinez, J.

    2011-12-01

    In crystalline rock regions, such as Brittany (France), important reserves of groundwater into deep fractured aquifers are increasingly used and provide high quality water compared to shallow aquifers which can be subject to agricultural contamination. However, recharge processes of these deep aquifers and interactions with surface water are not yet fully understood. In some areas, intensive pumping is carried out without guarantee of the resource quantity and quality. Understanding these processes is crucial for sustainable management of the resource. In this study, we study how deep groundwater fluxes, pathways, ages, and river-aquifer interactions vary according to recharge. We assume that water flowing from the ground surface is distributed between shallow more permeable layers and deep layers. This repartition mostly depends on recharge rates. With high recharge, groundwater levels are high and subsurface streamlines are relatively short between recharge areas and existing draining rivers, which constitutes a very dense network. Therefore, most of the groundwater fluxes occur through the more permeable shallow layers. With low recharge, groundwater levels are lower, and river and shallow permeable levels are partly disconnected from each other. This induces a general increase of the groundwater streamlines length from the recharge areas to more sporadic discharge areas, and more fluxes occur through the deep layers. Recharge conditions and river-aquifer interactions have changed over the last thousands of years, due to change in precipitation, temperatures, existence of permafrost, etc. They have strongly influenced deep groundwater fluxes and can explain current groundwater age and flux distribution. To study these interactions, a regional-scale finite difference flow model was implemented. The model covers an area of 1400 km 2 , a depth of 1 km, and the topography is characteristic of Brittany. As rivers are mainly fed by groundwater drainage, seepages faces

  4. Tracing coastal and estuarine groundwater discharge sources in a complex faulted and fractured karst aquifer system

    Science.gov (United States)

    Lagomasino, D.; Price, R. M.

    2013-05-01

    Groundwater discharge can be an important input of water, nutrients and other constituents to coastal wetlands and adjacent marine areas, particularly in karst regions with little to no surface water flow. A combination of natural processes (e.g., sea-level rise and climate change) and anthropogenic pressures (e.g., urban growth and development) can alter the subterranean water flow to the coastline. For water management practices and environmental preservation to be better suited for the natural and human environment, a better understanding is needed of the hydrogeologic connectivity between the areas of fresh groundwater recharge and the coastal zone. The Yucatan peninsula has a unique tectonic and geologic history consisting of a Cretaceous impact crater, Miocene and Eocene tectonic plate movements, and multiple sea-level stands. These events have shaped many complex geologic formations and structures. The Sian Káan Biosphere Reserve (SKBR), a UNESCO World Heritage Site located along the Atlantic Ocean, overlaps two distinct hydrogeologic regions: the evaporate region to the south and south west, and the Holbox Fracture Zone to the north. These two regions create a complex network of layered, perched and fractured aquifers and an extensive groundwater cave network. The two regions are distinguished by bedrock mineralogical differences that can be used to trace shallow subsurface water from interior portions of the peninsula to the Bahia de la Ascension in the SKBR. The objective of this research was to use naturally occurring geochemical tracers (eg., Cl-, SO42-, HCO3-, K+, Mg2+, Na+, Ca2+ and stable isotopes of oxygen and hydrogen) to decipher the sources of groundwater flow through the coastal wetlands of the SKBR and into the Bahia de la Ascension. Surface water and groundwater samples were collected during two field campaigns in 2010 and 2012 within the coastal and estuarine waters of the SKBR. Additional water samples were collected at select cenotes along

  5. Final disposal of spent nuclear fuel in Finnish bedrock - Kivetty site report

    International Nuclear Information System (INIS)

    Anttila, P.; Ahokas, H.; Front, K.

    1999-06-01

    Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Haestholmen in Loviisa, Kivetty in Aeaenekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Kivetty. The bedrock of Kivetty belongs to the large Svecofennian granitoid complex of central Finland, about 1880 million years in age. The most common rock type is porphyritic granodiorite, which is cut by younger medium-grained granodiorite and porphyritic or even-grained granite. Minor bodies of gabbro, older than the porphyritic granodiorite, are also present. The granitoids show evidence of two deformation phases. Altogether 29 bedrock 'structures' (R-structures) have been modelled at the investigation site, most of them representing steeply dipping fracture zones. The rock mass between the fracture zones represents what is termed 'intact rock', which is typically hard, unweathered and sparsely fractured. The R-structures are generally hydraulically more conductive than the intact rock and their mean transmissivity is 1.3-10 -6 m 2 /s. The corresponding mean of the hydraulic conductivity values for the intact rock, measured using a 2 m packer interval is 4*10 -11 m 2 /s, if a lognormal distribution for all measured values is assumed. A clear decrease in hydraulic conductivity with depth has been found for the intact rock, and there seems to be a parallel decrease in the transmissivity of structures. In addition, the hydraulically conductive fractures seem to be more frequent and their transmissivities higher in the uppermost 100 - 200 m of the bedrock than at greater depths. The groundwater of Kivetty is classified as fresh water and

  6. Contribution to the characterization of 222-radon concentrations variability in water to the understanding of an aquifer behaviour in fractured medium: example of the Ploemeur site, Morbihan

    International Nuclear Information System (INIS)

    Le Druillennec, Th.

    2007-06-01

    Heterogeneous fractured aquifers which developed in crystalline rocks, such as schist or granite, supply 20% of tap water production of Brittany. These fractured media present a large range of permeability. In these aquifers, fluid flow and transport of elements dissolved in water are strongly related on the geometry of the fractured network. Increasing the knowledge of the hydrogeological behaviour of the aquifer is fundamental for the management and the protection of the groundwater resources. Radon-222 is a radioactive noble gas produced from radium-226 further to the radioactive decay of uranium-238; it occurs naturally in ground waters and derives primarily from U-rich rocks and minerals that have been in contact with water. Radon-222 concentrations in waters are liable to provide significant and relevant information on both the geometry of a fracture network and the flow distribution. Furthermore, radon may also be used as a tracer in the aquifer of water exchanges between zones of variable permeability. Three main results were obtained in this study: 1. An accurate characterisation of the radon concentrations in water was carried out in the Ploemeur aquifer (Brittany, France). These results highlight the variability in the spatial and vertical distributions of 222 Rn activity in groundwater together with a wide range of concentrations extending from 0 to 1 500 Bq.L -1 . 2. The influence of fracture aperture on radon content in groundwater has been demonstrated with the modelling of radon concentration. Indeed, the satisfactory results obtained with a simple crack model highlight that the geometry of the fracture network controls the radon activity in groundwater. 3. Thus, the results of pumping tests performed in the boreholes improved our understanding of the system. After the pumping test, an increase of the radon content in groundwater occurred and evidenced a contribution of a radon-rich water to supply the flow rate that seems to come from the low

  7. Methane Occurrence in a Drinking Water Aquifer Before and During Natural Gas Production from the Marcellus Shale

    Science.gov (United States)

    Saiers, J. E.; Barth-Naftilan, E.

    2017-12-01

    More than 4,000 thousand wells have punctured aquifers of Pennsylvania's northern tier to siphon natural gas from the underlying Marcellus Shale. As drilling and hydraulic fracturing ramped up a decade ago, homeowner reports of well water contamination by methane and other contaminants began to emerge. Although made infrequently compared to the number of gas wells drilled, these reports were troubling and motivated our two-year, prospective study of groundwater quality within the Marcellus Shale Play. We installed multi-level sampling wells within a bedrock aquifer of a 25 km2 area that was targeted for shale gas development. These wells were sampled on a monthly basis before, during, and after seven shale gas wells were drilled, hydraulically fractured, and placed into production. The groundwater samples, together with surface water samples collected from nearby streams, were analyzed for hydrocarbons, trace metals, major ions, and the isotopic compositions of methane, ethane, water, strontium, and dissolved inorganic carbon. With regard to methane in particular, concentrations ranged from under 0.1 to over 60 mg/L, generally increased with aquifer depth, and, at some sites, exhibited considerable temporal variability. The isotopic composition of methane and hydrocarbon ratios also spanned a large range, suggesting that methane origins are diverse and, notably, shift on the time scale of this study. We will present inferences on factors governing methane occurrence across our study area by interpreting time-series data on methane concentrations and isotopic composition in context of local hydrologic variation, companion measurements of groundwater chemistry, and the known timing of key stages of natural gas extraction.

  8. Conceptual model of fractured aquifer of Uranium Deposit in Caetité, Bahia: implications for groundwater flow

    International Nuclear Information System (INIS)

    Silva, Liliane Ferreira da

    2015-01-01

    The studied area is represented by the uraniferous district of Lagoa Real, located in the center-south of Bahia State, Brazil. The region is set in a semiarid climate context, with hot and dry weather parameters, with hydric deficit along all months of the year and high aridity index. Rural population is affected on drought periods since small agriculture and animal rearing are the main economic activities which are vulnerable in dry seasons. Groundwater represents the main supply source considering that most surface water sources are temporary and only exhibit flow in rainy periods. The main aquifer system present on the region is fractured, and the presence of groundwater flow occurs through the discontinuities of the rock considering that the rock mass corresponds to the set formed by the rock matrix and all its discontinuities (fractures, foliations, discordance, etc). In this sense, the main purpose of this Master Dissertation was to develop a conceptual model for the aquifer system, through the geotechnical characterization of discontinuities, once these structures allow the secondary porosity of the medium. Hydrochemical data hand out as complement for physical characterization for the behavioral interpretation of the aquifer. The aquifer system is unconfined, however, presents points of stagnation of flow forming compartments without communication with the surrounding areas. According to the International Society of Rock Mechanics ISRM method, which consist on qualitative and quantitative characterization of discontinuities of rock mass scanlines were constructed, systematically, describing, the following structure parameters: attitude, spacing, persistence, openness, infilling and roughness. From the results analysis it could be concluded that the aquifer system is composed of three discontinuities sets: one set which dips to NE, second set dipping to SW-W-NW and the last set sub-horizontal. The first and second sets are responsible for the aquifer

  9. A Generic analytical solution for modelling pumping tests in wells intersecting fractures

    Science.gov (United States)

    Dewandel, Benoît; Lanini, Sandra; Lachassagne, Patrick; Maréchal, Jean-Christophe

    2018-04-01

    The behaviour of transient flow due to pumping in fractured rocks has been studied for at least the past 80 years. Analytical solutions were proposed for solving the issue of a well intersecting and pumping from one vertical, horizontal or inclined fracture in homogeneous aquifers, but their domain of application-even if covering various fracture geometries-was restricted to isotropic or anisotropic aquifers, whose potential boundaries had to be parallel or orthogonal to the fracture direction. The issue thus remains unsolved for many field cases. For example, a well intersecting and pumping a fracture in a multilayer or a dual-porosity aquifer, where intersected fractures are not necessarily parallel or orthogonal to aquifer boundaries, where several fractures with various orientations intersect the well, or the effect of pumping not only in fractures, but also in the aquifer through the screened interval of the well. Using a mathematical demonstration, we show that integrating the well-known Theis analytical solution (Theis, 1935) along the fracture axis is identical to the equally well-known analytical solution of Gringarten et al. (1974) for a uniform-flux fracture fully penetrating a homogeneous aquifer. This result implies that any existing line- or point-source solution can be used for implementing one or more discrete fractures that are intersected by the well. Several theoretical examples are presented and discussed: a single vertical fracture in a dual-porosity aquifer or in a multi-layer system (with a partially intersecting fracture); one and two inclined fractures in a leaky-aquifer system with pumping either only from the fracture(s), or also from the aquifer between fracture(s) in the screened interval of the well. For the cases with several pumping sources, analytical solutions of flowrate contribution from each individual source (fractures and well) are presented, and the drawdown behaviour according to the length of the pumped screened interval of

  10. Additional borehole geophysical logging at Waste Area Grouping 1 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-07-01

    This technical memorandum describes the borehole geophysical logging performed at selected coreholes at Waste Area Grouping 1 between March and November 1991 in support of the remedial investigation. The primary objectives of the borehole geophysical logging program were to (1) identify fractured bedrock zones and identify those fractured bedrock zones participating in active groundwater flow, (2) correlate the fractured intervals with the regional stratigraphy described, and (3) further characterize local bedrock geology and hydrogeology and gain insight about the bedrock aquifer flow system. A secondary objective was to provide stratigraphic correlations with existing logs for coreholes CH001 through CH005. Fractured bedrock zones and active or open fractures were identified in all coreholes logged. The fracture identification and analysis process was intended to distinguish between open or active fractures participating in active groundwater flow and closed or inactive fractures that are partially or completely filled (such as with calcite mineralization) and do not support groundwater circulation. Most of the fractures identified are bedding plane. Fracture occurrence varies with the different units of the Chickamauga Group; the greatest density of fractures and active fractures occurs in the upper 150 ft of stratum cored. Fractures actively contributing to groundwater flow were also identified, and direction of fluid movement within fractures was identified for those coreholes with flowmeter data

  11. Analyzing heterogeneous hydrological processes within soil mantle and shallow bedrock in a granitic foothill

    Science.gov (United States)

    Yamakawa, Y.; Kosugi, K.; Mizuyama, T.; Kinoshita, A.

    2011-12-01

    In mountainous watersheds, groundwater flowing contributes significantly to runoff generation and plays an important role in the occurrence of landslides. Understanding the hydrological processes within not only the soil mantle but also bedrock is essential for modeling runoff generation and predicting landslides, but it is limited by the physical difficulties of observations. In this study, we conducted intensive in-situ investigations including hydrometric observations using dense borehole well network drilled within soil mantle (central Japan. Groundwater levels in soil mantle showed large spatial and temporal variations in response to rainfall; time lag of peaks between right and left banks in the watershed and localized existences of confined groundwater aquifers. The groundwater movement within soil mantle could be significantly affected by soil mantle structure, i.e., water retention characteristics of soil and soil thickness distributions, as well as groundwater flowing within bedrock. Moreover, the groundwater movement within bedrock also varied considerably with location, which could be controlled by structural condition such as weathering of the bedrock and existence of faults.

  12. Iowa Bedrock Geology

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The bedrock geologic map portrays the current interpretation of the distribution of various bedrock stratigraphic units present at the bedrock surface. The bedrock...

  13. Comparison of single and dual continuum representations of faults and fractures for simulating groundwater flow and solute transport in the Meuse/Haute-Marne aquifer system

    International Nuclear Information System (INIS)

    McLaren, R.; Sudicky, E.; Therrien, R.; Benabderrahmane, H.

    2010-01-01

    Document available in extended abstract form only. The Paris Basin system covers approximately 200 000 km 2 and consists of 27 aquiferous and semipermeable (aquitard) hydrogeological units of Trias to Quaternary age that are intersected by 80 regional faults. The Meuse/Haute-Marne site is located in the eastern part of the Paris Basin and covers approximately 250 km 2 . Within the sector, the Callovo-Oxfordian clay formation is a potential host for the French high and intermediate level and long lived radioactive waste. It is located at a mean depth of 500 m and has a minimum thickness of 130 m and very low hydraulic conductivity, on the order of 10-14 m/s. The Callovo-Oxfordian is confined between the overlying Oxfordian aquifer and the underlying Dogger aquifer. Both the Oxfordian and Dogger are limestone aquifers characterized locally by macro-pores, regional faults that oriented along the N40 deg. E direction (the Gondrecourt and Joinville faults) and the N150 deg. E direction (the Marne and Poissons faults), as well as diffuse fracture zones located south west of the Meuse/Haute-Marne Repository site. To support site investigation of the Meuse/Haute-Marne underground repository, a single continuum multi-scale hydrogeological model of the Paris Basin and the Meuse/Haute-Marne sector has been developed. The model represents 27 hydrogeological units at the scale of the Paris Basin, and it is refined at the scale of the sector to represent 27 different layers that range in age from the Trias to the Portlandian. The model has been calibrated to observed hydraulic heads by varying the hydraulic conductivity of the individual layers, using a single continuum approach. To investigate the impact of treating the two confining layers for the clay formation, the Oxfordian and Dogger aquifers, as single continua with equivalent hydraulic properties for the combined fracture and matrix system, additional simulations have been conducted with either a dual continuum or

  14. Transient Fluid Flow Modeling in Fractured Aquifer of Sechahoon Iron Mine Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Mojtaba Darabi

    2016-06-01

    Full Text Available Considering the fact that a large volume of iron reserve in the Sechahoon Iron Mine in Yazd Province has located under the water table, it is necessary to conduct a comprehensive study on water flow within the pit and its surroundings. The conceptual model of the aquifer was created using surface and underground geological information compared with water table data of the area of interest. In the data preparation stages, in order to create the numerical model, Logan and Lufran tests were studied to determine the hydrodynamic coefficients of the layers, precipitation and evaporation were investigated, and fractures and faults of the region, as a medium for flow channels in the hard formation, were also studied. The model was created in a transient state between 2000 and 2014. To validate its results, the water table was measured 4 times in the last 4 months of 2014. Considering the complexities in the heterogeneous fractured aquifer of the study area, numerical modeling results for the basin in a transient state present 90 percent correlation with field studies. Having investigated the water balance in the region, the boundary condition of the model was determined as the input water from the eastern south and the runoff water in the western north of the region. Since the general trend of faults in the area is north-south, variation in the water table is slight on north-south and intense on the east-west direction. On the other hand, due to the fact that the maximum flow is along the faults and fractures, the water table contour lines in different locations over the region are closed.

  15. Techniques for Source Zone and Plume Characterization of Tetrachloroethene in Fractured Limestone Aquifers

    DEFF Research Database (Denmark)

    Fjordbøge, Annika Sidelmann; Mosthaf, Klaus; Janniche, Gry S.

    Characterization of chlorinated solvents in fractured limestone aquifers is essential for proper development of site specific conceptual models and subsequent risk assessment and remediation. High resolution characterization is challenged by the difficulties involved in collection of intact core...... an improved conceptual understanding of contaminant transport. At both sites limestone cores were collected with significant core losses. The discrete quantification of chlorinated solvents in the retrieved limestone cores was compared to different FLUTe technologies at the DNAPL site and passive and active...... distribution compared to the data obtained by quantification of chlorinated solvents in the limestone cores....

  16. Isotopic Evidence for Microbial Activity in Crystalline Bedrock Fractures - a Case Study from Olkiluoto, SW Finland

    Science.gov (United States)

    Sahlstedt, E. K.; Karhu, J.; Pitkänen, P.

    2015-12-01

    Changes in the geochemical environment in crystalline bedrock fractures were investigated using the stable isotopes of C, O and S in fracture filling minerals as tracers. Of special interest were the possible changes which may occur in the subsurface at low temperatures. Especially, the influence of microbial activity was recognized as a catalyst for inducing changes in the geochemical environment. The study site is the Olkiluoto island located on the western coast of Finland, planned to host a geological repository for nuclear waste. Fracture surfaces were investigated to recognize the latest mineralizations at the site. These fillings were comprised of thin plates or small euhedral crystals of calcite and pyrite. The carbon and sulfur isotope compositions of calcite and pyrite were measured from bulk material by conventional IRMS, and in situ by secondary ion mass spectrometry. A notable feature of the late-stage fillings was high variabilities in the δ13C values of calcite and the δ34S values of pyrite, which ranged from -53.8 ‰ to +31.6 ‰ and from -50.4 ‰ to +77.7 ‰, respectively. Based on the isotopic compositions of the fillings, several features in the past hydrogeochemical environment could be recognized. The isotopic composition of the fracture fillings indicate an environment which was stratified with respect to depth. Characteristic features include bacterial sulfate reduction (BSR) occurring at depths 50 m. It appears that methanic conditions were replaced by sulfate reduction at depths >50 m likely due to infiltration of SO42--rich brackish waters. Sulfate reducing bacteria used mainly surface derived organic carbon as electron donors. Some indication of minor methanotrophic activity was recognized in anomalously low δ13C values of calcite, down to -53.8 ‰, at the depth range of 34-54 m. This methanotrophic activity may have been related to bacteria using CH4 as an electron donor in BSR.

  17. AQUIFER IN AJAOKUTA, SOUTHWESTERN NIGERIA

    African Journals Online (AJOL)

    2005-03-08

    Mar 8, 2005 ... To establish the feasibility of water supply in a basement complex area ofAjaokuta, Southwestern Nigeria, pumping test results were used to investigate the storage properties and groundwater potential of the aquifer. The aquifer system consists of weathered and weathered/fractured zone of decomposed ...

  18. Geophysical and hydrogeological characterisation of the impacts of on-site wastewater treatment discharge to groundwater in a poorly productive bedrock aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Donohue, Shane [School of Planning, Architecture and Civil Engineering, Queen' s University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland (United Kingdom); McCarthy, Valerie; Rafferty, Patrick [Department of Applied Sciences, Dundalk Institute of Technology, Dublin Road, Dundalk (Ireland); Orr, Alison; Flynn, Raymond [School of Planning, Architecture and Civil Engineering, Queen' s University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland (United Kingdom)

    2015-08-01

    Contaminants discharging from on-site wastewater treatment systems (OSWTSs) can impact groundwater quality, threatening human health and surface water ecosystems. Risk of negative impacts becomes elevated in areas of extreme vulnerability with high water tables, where thin unsaturated intervals limit vadose zone attenuation. A combined geophysical/hydrogeological investigation into the effects of an OSWTS, located over a poorly productive aquifer (PPA) with thin subsoil cover, aimed to characterise effluent impacts on groundwater. Groundwater, sampled from piezometers down-gradient of the OSWTS percolation area displayed spatially erratic, yet temporally consistent, contaminant distributions. Electrical resistivity tomography identified an area of gross groundwater contamination close to the percolation area and, when combined with seismic refraction and water quality data, indicated that infiltrating effluent reaching the water table discharged to a deeper more permeable zone of weathered shale resting on more competent bedrock. Subsurface structure, defined by geophysics, indicated that elevated chemical and microbiological contaminant levels encountered in groundwater samples collected from piezometers, down-gradient of sampling points with lower contaminant levels, corresponded to those locations where piezometers were screened close to the weathered shale/competent rock interface; those immediately up-gradient were too shallow to intercept this interval, and thus the more impacted zone of the contaminant plume. Intermittent occurrence of faecal indicator bacteria more than 100 m down gradient of the percolation area suggested relatively short travel times. Study findings highlight the utility of geophysics as part of multidisciplinary investigations for OSWTS contaminant plume characterisation, while also demonstrating the capacity of effluent discharging to PPAs to impact groundwater quality at distance. Comparable geophysical responses observed in similar

  19. Geophysical and hydrogeological characterisation of the impacts of on-site wastewater treatment discharge to groundwater in a poorly productive bedrock aquifer

    International Nuclear Information System (INIS)

    Donohue, Shane; McCarthy, Valerie; Rafferty, Patrick; Orr, Alison; Flynn, Raymond

    2015-01-01

    Contaminants discharging from on-site wastewater treatment systems (OSWTSs) can impact groundwater quality, threatening human health and surface water ecosystems. Risk of negative impacts becomes elevated in areas of extreme vulnerability with high water tables, where thin unsaturated intervals limit vadose zone attenuation. A combined geophysical/hydrogeological investigation into the effects of an OSWTS, located over a poorly productive aquifer (PPA) with thin subsoil cover, aimed to characterise effluent impacts on groundwater. Groundwater, sampled from piezometers down-gradient of the OSWTS percolation area displayed spatially erratic, yet temporally consistent, contaminant distributions. Electrical resistivity tomography identified an area of gross groundwater contamination close to the percolation area and, when combined with seismic refraction and water quality data, indicated that infiltrating effluent reaching the water table discharged to a deeper more permeable zone of weathered shale resting on more competent bedrock. Subsurface structure, defined by geophysics, indicated that elevated chemical and microbiological contaminant levels encountered in groundwater samples collected from piezometers, down-gradient of sampling points with lower contaminant levels, corresponded to those locations where piezometers were screened close to the weathered shale/competent rock interface; those immediately up-gradient were too shallow to intercept this interval, and thus the more impacted zone of the contaminant plume. Intermittent occurrence of faecal indicator bacteria more than 100 m down gradient of the percolation area suggested relatively short travel times. Study findings highlight the utility of geophysics as part of multidisciplinary investigations for OSWTS contaminant plume characterisation, while also demonstrating the capacity of effluent discharging to PPAs to impact groundwater quality at distance. Comparable geophysical responses observed in similar

  20. Final disposal of spent nuclear fuel in Finnish bedrock - Kivetty site report

    Energy Technology Data Exchange (ETDEWEB)

    Anttila, P. [Fortum Engineering Oy, Vantaa (Finland); Ahokas, H.; Front, K. [Fintact Oy (Finland)] [and others

    1999-06-01

    Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Haestholmen in Loviisa, Kivetty in Aeaenekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Kivetty. The bedrock of Kivetty belongs to the large Svecofennian granitoid complex of central Finland, about 1880 million years in age. The most common rock type is porphyritic granodiorite, which is cut by younger medium-grained granodiorite and porphyritic or even-grained granite. Minor bodies of gabbro, older than the porphyritic granodiorite, are also present. The granitoids show evidence of two deformation phases. Altogether 29 bedrock 'structures' (R-structures) have been modelled at the investigation site, most of them representing steeply dipping fracture zones. The rock mass between the fracture zones represents what is termed 'intact rock', which is typically hard, unweathered and sparsely fractured. The R-structures are generally hydraulically more conductive than the intact rock and their mean transmissivity is 1.3-10{sup -6} m{sup 2}/s. The corresponding mean of the hydraulic conductivity values for the intact rock, measured using a 2 m packer interval is 4*10{sup -11} m{sup 2}/s, if a lognormal distribution for all measured values is assumed. A clear decrease in hydraulic conductivity with depth has been found for the intact rock, and there seems to be a parallel decrease in the transmissivity of structures. In addition, the hydraulically conductive fractures seem to be more frequent and their transmissivities higher in the uppermost 100 - 200 m of the bedrock than at greater depths. The groundwater of

  1. Temperature logging of groundwater in bedrock wells for geothermal gradient characterization in New Hampshire, 2012

    Science.gov (United States)

    Degnan, James; Barker, Gregory; Olson, Neil; Wilder, Leland

    2012-01-01

    The U.S. Geological Survey, in cooperation with the New Hampshire Geological Survey, measured the fluid temperature of groundwater in deep bedrock wells in the State of New Hampshire in order to characterize geothermal gradients in bedrock. All wells selected for the study had low water yields, which correspond to low groundwater flow from fractures. This reduced the potential for flow-induced temperature changes that would mask the natural geothermal gradient in the bedrock. All the wells included in this study were privately owned, and permission to use the wells was obtained from homeowners before logging.

  2. Discrete Fracture Network Modeling and Simulation of Subsurface Transport for the Topopah Springs and Lava Flow Aquifers at Pahute Mesa, FY 15 Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Makedonska, Nataliia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kwicklis, Edward Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Birdsell, Kay Hanson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Harrod, Jeremy Ashcraft [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Karra, Satish [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-18

    This progress report for fiscal year 2015 (FY15) describes the development of discrete fracture network (DFN) models for Pahute Mesa. DFN models will be used to upscale parameters for simulations of subsurface flow and transport in fractured media in Pahute Mesa. The research focuses on modeling of groundwater flow and contaminant transport using DFNs generated according to fracture characteristics observed in the Topopah Spring Aquifer (TSA) and the Lava Flow Aquifer (LFA). This work will improve the representation of radionuclide transport processes in large-scale, regulatory-focused models with a view to reduce pessimistic bounding approximations and provide more realistic contaminant boundary calculations that can be used to describe the future extent of contaminated groundwater. Our goal is to refine a modeling approach that can translate parameters to larger-scale models that account for local-scale flow and transport processes, which tend to attenuate migration.

  3. Hydrogeologic framework of fractured sedimentary rock, Newark Basin, New Jersey

    Science.gov (United States)

    Lacombe, Pierre J.; Burton, William C.

    2010-01-01

    The hydrogeologic framework of fractured sedimentary bedrock at the former Naval Air Warfare Center (NAWC), Trenton, New Jersey, a trichloroethylene (TCE)-contaminated site in the Newark Basin, is developed using an understanding of the geologic history of the strata, gamma-ray logs, and rock cores. NAWC is the newest field research site established as part of the U.S. Geological Survey Toxic Substances Hydrology Program, Department of Defense (DoD) Strategic Environmental Research and Development Program, and DoD Environmental Security Technology Certification Program to investigate contaminant remediation in fractured rock. Sedimentary bedrock at the NAWC research site comprises the Skunk Hollow, Byram, and Ewing Creek Members of the Lockatong Formation and Raven Rock Member of the Stockton Formation. Muds of the Lockatong Formation that were deposited in Van Houten cycles during the Triassic have lithified to form the bedrock that is typical of much of the Newark Basin. Four lithotypes formed from the sediments include black, carbon-rich laminated mudstone, dark-gray laminated mudstone, light-gray massive mudstone, and red massive mudstone. Diagenesis, tectonic compression, off-loading, and weathering have altered the rocks to give some strata greater hydraulic conductivity than other strata. Each stratum in the Lockatong Formation is 0.3 to 8 m thick, strikes N65 degrees E, and dips 25 degrees to 70 degrees NW. The black, carbon-rich laminated mudstone tends to fracture easily, has a relatively high hydraulic conductivity and is associated with high natural gamma-ray count rates. The dark-gray laminated mudstone is less fractured and has a lower hydraulic conductivity than the black carbon-rich laminated mudstone. The light-gray and the red massive mudstones are highly indurated and tend to have the least fractures and a low hydraulic conductivity. The differences in gamma-ray count rates for different mudstones allow gamma-ray logs to be used to correlate and

  4. Characterizing flow pathways in a sandstone aquifer: Tectonic vs sedimentary heterogeneities

    Science.gov (United States)

    Medici, G.; West, L. J.; Mountney, N. P.

    2016-11-01

    Sandstone aquifers are commonly assumed to represent porous media characterized by a permeable matrix. However, such aquifers may be heavy fractured when rock properties and timing of deformation favour brittle failure and crack opening. In many aquifer types, fractures associated with faults, bedding planes and stratabound joints represent preferential pathways for fluids and contaminants. In this paper, well test and outcrop-scale studies reveal how strongly lithified siliciclastic rocks may be entirely dominated by fracture flow at shallow depths (≤ 180 m), similar to limestone and crystalline aquifers. However, sedimentary heterogeneities can primarily control fluid flow where fracture apertures are reduced by overburden pressures or mineral infills at greater depths. The Triassic St Bees Sandstone Formation (UK) of the East Irish Sea Basin represents an optimum example for study of the influence of both sedimentary and tectonic aquifer heterogeneities in a strongly lithified sandstone aquifer-type. This fluvial sedimentary succession accumulated in rapidly subsiding basins, which typically favours preservation of complete depositional cycles including fine grained layers (mudstone and silty sandstone) interbedded in sandstone fluvial channels. Additionally, vertical joints in the St Bees Sandstone Formation form a pervasive stratabound system whereby joints terminate at bedding discontinuities. Additionally, normal faults are present through the succession showing particular development of open-fractures. Here, the shallow aquifer (depth ≤ 180 m) was characterized using hydro-geophysics. Fluid temperature, conductivity and flow-velocity logs record inflows and outflows from normal faults, as well as from pervasive bed-parallel fractures. Quantitative flow logging analyses in boreholes that cut fault planes indicate that zones of fault-related open fractures characterize 50% of water flow. The remaining flow component is dominated by bed-parallel fractures

  5. Reliable yields of public water-supply wells in the fractured-rock aquifers of central Maryland, USA

    Science.gov (United States)

    Hammond, Patrick A.

    2018-02-01

    Most studies of fractured-rock aquifers are about analytical models used for evaluating aquifer tests or numerical methods for describing groundwater flow, but there have been few investigations on how to estimate the reliable long-term drought yields of individual hard-rock wells. During the drought period of 1998 to 2002, many municipal water suppliers in the Piedmont/Blue Ridge areas of central Maryland (USA) had to institute water restrictions due to declining well yields. Previous estimates of the yields of those wells were commonly based on extrapolating drawdowns, measured during short-term single-well hydraulic pumping tests, to the first primary water-bearing fracture in a well. The extrapolations were often made from pseudo-equilibrium phases, frequently resulting in substantially over-estimated well yields. The methods developed in the present study to predict yields consist of extrapolating drawdown data from infinite acting radial flow periods or by fitting type curves of other conceptual models to the data, using diagnostic plots, inverse analysis and derivative analysis. Available drawdowns were determined by the positions of transition zones in crystalline rocks or thin-bedded consolidated sandstone/limestone layers (reservoir rocks). Aquifer dewatering effects were detected by type-curve matching of step-test data or by breaks in the drawdown curves constructed from hydraulic tests. Operational data were then used to confirm the predicted yields and compared to regional groundwater levels to determine seasonal variations in well yields. Such well yield estimates are needed by hydrogeologists and water engineers for the engineering design of water systems, but should be verified by the collection of long-term monitoring data.

  6. Importance of the study on recharge for the evaluation of potential impact of uranium mining on fractured aquifers. Case study: URA/INB (Caetite, Bahia, Brazil)

    International Nuclear Information System (INIS)

    Silva, Liliane Ferreira da; Matos, Evando Carele de

    2007-01-01

    The domain of the crystalline rocks, that predominant at the brazilian semiarid, presents fractured type aquifers systems, and their spatial distribution is done in very heterogeneous way, since the underground water depends upon the underground geological characteristics and the climate conditions. So, it is very important to study the geologic structure of the area, observing the depth and distribution of the fractures and failure, their relationship with the topography and with water wells productivity, and it is possible to obtain information explaining the fact that frequently producer and dry wells are placed near to each other, and where are positioned the fractures in the space and how they are connected to each other. Those data will be used in the near future to predict also the fluid mobility, through the use of transport numerical models. In the present study case, the fractured aquifer represents the main water source for the mine industrial complex and for the rural community near the enterprise as well. In this case, the study presents the description of the fractures obtained on tubular wells, relating with topography and physic-chemical parameters of the water. (author)

  7. Hydrogeologic framework, arsenic distribution, and groundwater geochemistry of the glacial-sediment aquifer at the Auburn Road landfill superfund site, Londonderry, New Hampshire

    Science.gov (United States)

    Degnan, James R.; Harte, Philip T.

    2013-01-01

    were present had low electrical resistivity, low dissolved oxygen, and high concentrations of arsenic. Low-resistivity zones in the underlying bedrock were associated with fractures that also may contain leachate. Although surveying the fractured bedrock was not a specific objective of this study, the results suggest that such a survey would help to determine if leachate and associated concentrations of arsenic are migrating downward into the fractured-bedrock-aquifer system. An uncalibrated, one-dimensional, reactive-transport model was used to assess several conditions that affect arsenic mobility. The results indicate that reductive dissolution and desorption from glacial sediments control dissolved arsenic concentrations. Parameter sensitivity analysis was used to identify key data that are needed in order to accurately assess the time required for arsenic concentrations to fall to levels below the maximum contaminant level at the site. Quantifying this time will require accurate characterization of carbon, sediment-surface sorption sites, and groundwater fluxes at the site.

  8. Aquifer characteristics and groundwater recharge pattern in a typical ...

    African Journals Online (AJOL)

    EJIRO

    method in the delineation of bedrock structures, depth to possible aquifer units and to ... makes for susceptibility to surface contaminants; and (iii) ... regional tectonic setting which are critical to identifying favourable ... Data acquisition and processing. Thirty four ... The VES analysis shows a minimum of three and a maximum ...

  9. Field and numerical descriptions of fracture geometries and terminations in chalk containing chert layers and inclusions; implications for groundwater flow in Danish chalk aquifers

    Science.gov (United States)

    Seyum, S.

    2017-12-01

    This study is a description of the fracture distribution in laterally discontinuous chalk and chert layers, with an investigation on how fracture lengths and apertures vary as a function of applied stresses, material properties, and interface properties. Natural fractures intersect laterally extensive, discontinuous, chalk-chert material interfaces in 62 million-year old to 72 million-year old Chalk Group formations exposed at Stevns Klint, Denmark. Approximately one-third of Denmark's fresh water use is from chalk and limestone regional aquifers of the Chalk Group formations, where rock permeability is dominantly a function of open fracture connectivities. Fractured, centimeter- to decimeter-thick chert layers and inclusions (101 GPa elastic stiffness) are interlayered with fractured, meter-thick chalk layers (100 GPa elastic stiffness). Fractures are observed to terminate against and cross chalk-chert interfaces, affecting the vertical flow of water and pollutants between aquifers. The discontinuous and variably thin nature of chert layers at Stevns Klint effectively merges adjacent fracture-confining layers of chalk along discrete position intervals, resulting in lateral variability of fracture spacing. Finite element numerical models are designed to describe fracture interactions with stiff, chert inclusions of various shapes, thicknesses, widths, orientations, and interface friction and fracture toughness values. The models are two-dimensional with isotropic, continuous material in plane strain and uniformly applied remote principal stresses. These characteristics are chosen based on interpretations of the petrophysics of chalk and chert, the burial history of the rock, and the scale of investigation near fracture tips relative to grain sizes. The result are value ranges for relative stiffness contrasts, applied stresses, and material interface conditions that would cause fractures to cross, terminate at, or form along chalk-chert interfaces, with emphasis on

  10. Laboratory Experiments to Evaluate Diffusion of 14C into Nevada Test Site Carbonate Aquifer Matrix

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Hershey; William Howcroft; Paul W. Reimus

    2003-03-01

    Determination of groundwater flow velocities at the Nevada Test Site is important since groundwater is the principal transport medium of underground radionuclides. However, 14C-based groundwater velocities in the carbonate aquifers of the Nevada Test Site are several orders of magnitude slower than velocities derived from the Underground Test Area regional numerical model. This discrepancy has been attributed to the loss or retardation of 14C from groundwater into the surrounding aquifer matrix making 14C-based groundwater ages appear much older. Laboratory experiments were used to investigate the retardation of 14C in the carbonate aquifers at the Nevada Test Site. Three sets of experiments were conducted evaluating the diffusion of 14C into the carbonate aquifer matrix, adsorption and/or isotopic exchange onto the pore surfaces of the carbonate matrix, and adsorption and/or isotopic exchange onto the fracture surfaces of the carbonate aquifer. Experimental results a nd published aquifer matrix and fracture porosities from the Lower Carbonate Aquifer were applied to a 14C retardation model. The model produced an extremely wide range of retardation factors because of the wide range of published aquifer matrix and fracture porosities (over three orders of magnitude). Large retardation factors suggest that groundwater with very little measured 14C activity may actually be very young if matrix porosity is large relative to the fracture porosity. Groundwater samples collected from highly fractured aquifers with large effective fracture porosities may have relatively small correction factors, while samples from aquifers with a few widely spaced fractures may have very large correction factors. These retardation factors were then used to calculate groundwater velocities from a proposed flow path at the Nevada Test Site. The upper end of the range of 14C correction factors estimated groundwater velocities that appear to be at least an order of magnitude too high compared

  11. Geophysical borehole logging in selected areas in the Greater Accra plains and the Densu river basin

    International Nuclear Information System (INIS)

    Amartey, E. A.

    2009-06-01

    Geophysical borehole logging was complemented by Vertical Electrical Sounding (VES) method to study fractured bedrock aquifer systems on the compounds of Ghana Atomic Energy Commission (GAEC), Water Research Institute (WRI) in the Accra Plains and the Hydrometric Station of the Department of Geology, University of Ghana at Buokrom in the Densu River Basin. Single-point resistance, resistivity and natural gamma logging in a total of nine boreholes were conducted to identify and characterize the various aquifers in the study areas. Results obtained from the single-point resistance and resistivity logs showed clearly the characteristics of water-bearing fracture zones in the various rock formations. The gamma logs obtained for each area were correlated to form hydrostratigraphic units to establish potential zones of high water-bearing fractures. VES modeled curves shows hydrogeological units of the geological formation which compares well with features obtained on the logs. The investigation identified fractured zone thicknesses of <1 m to 2 m at GAEC area, <1 m to 9 m at WRI area and <1 m to 10 m thicknesses at the Buokrom area. The fractured bedrock aquifers identified have been characterized based on their thicknesses as follows. Five minor (thickness < 5 m), two medium (thickness 5 m to 14 m) and three major (thickness ⩾15 m) fractures were identified at the GAEC area. At the WRI area three minor and five medium fractures were identified. Also four minor and five medium fractures were identified for the Buokrom area boreholes. (au)

  12. Final disposal of spent nuclear fuel in Finnish bedrock. Haestholmen site report

    Energy Technology Data Exchange (ETDEWEB)

    Anttila, P. [Fortum Engineering Oy, Vantaa (Finland); Ahokas, H. [Fintact Oy, Helsinki (Finland); Front, K. [VTT Communities and Infrastructure, Espoo (Finland)

    1999-06-01

    Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Haestholmen in Loviisa, Kivetty in Aeaenekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Haestholmen. The Haestholmen area is located within the anorogenic Wiborg rapakivi granite batholith, about 1630 million years in age, representing one of the youngest rock formations in Finland. Wiborgite, pyterlite, porphyritic rapakivi granite and even-grained rapakivi granite are the rock types present. 25 bedrock structures have been modelled at the site. Most of them are steeply-dipping fracture zones trending NW-SE and NE-SW, but several sub-horizontal zones, mainly dipping to the N-NE and the SW, are also present. The rock mass between the fracture zones represents what is termed `intact rock`, which is typically hard, unweathered and sparsely fractured. The bedrock structures are generally hydraulically more conductive than the intact rock and their mean transmissivity is 8 x 10{sup -6} m{sup 2}/s or 1.3 x 10{sup -6} m{sup 2}/s, depending on how structures are defined. The corresponding mean of the hydraulic conductivity values measured for the intact rock using a 2 m packer interval is 1 x 10{sup -12} m/s, if a lognormal distribution for all measured values is assumed. A clear decrease in hydraulic conductivity with depth has been found in the intact rock. In addition, the hydraulically conductive fractures seem to be more frequent and their transmissivities higher in the uppermost 100-200 m of the bedrock than at greater depths. The groundwater chemistry reflects the post-glacial history of the island of Haestholmen, which rose

  13. Final disposal of spent nuclear fuel in Finnish bedrock. Haestholmen site report

    International Nuclear Information System (INIS)

    Anttila, P.; Ahokas, H.; Front, K.

    1999-06-01

    Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Haestholmen in Loviisa, Kivetty in Aeaenekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Haestholmen. The Haestholmen area is located within the anorogenic Wiborg rapakivi granite batholith, about 1630 million years in age, representing one of the youngest rock formations in Finland. Wiborgite, pyterlite, porphyritic rapakivi granite and even-grained rapakivi granite are the rock types present. 25 bedrock structures have been modelled at the site. Most of them are steeply-dipping fracture zones trending NW-SE and NE-SW, but several sub-horizontal zones, mainly dipping to the N-NE and the SW, are also present. The rock mass between the fracture zones represents what is termed 'intact rock', which is typically hard, unweathered and sparsely fractured. The bedrock structures are generally hydraulically more conductive than the intact rock and their mean transmissivity is 8 x 10 -6 m 2 /s or 1.3 x 10 -6 m 2 /s, depending on how structures are defined. The corresponding mean of the hydraulic conductivity values measured for the intact rock using a 2 m packer interval is 1 x 10 -12 m/s, if a lognormal distribution for all measured values is assumed. A clear decrease in hydraulic conductivity with depth has been found in the intact rock. In addition, the hydraulically conductive fractures seem to be more frequent and their transmissivities higher in the uppermost 100-200 m of the bedrock than at greater depths. The groundwater chemistry reflects the post-glacial history of the island of Haestholmen, which rose from the Baltic Sea some

  14. Modeling of airborne electromagnetic anomalies related to fractured bedrock and overburden

    International Nuclear Information System (INIS)

    Peltoniemi, M.; Baers, R.; Vaeisaenen, M.

    1993-08-01

    Responses of a multifrequency, multicoil airborne electromagnetic (AEM) system were modeled using numerical techniques. Special emphasis was given to poor, three-dimensional electrical conductors embedded both in the bedrock and in the overburden. The results cover vertical coaxial and horizontal coplanar configurations and three frequencies: 888 Hz, 7837 Hz and 51250 Hz. The models studied are signal conductors in free space, and single or multiple conductors embedded in a host rock of high but finite resistivity (5000 Wm) and overlain by a layer of overburden with finite resistivity and thickness. Two different types of computer software were used in the modelling: the free-space PLATE code, and the EM3D set of codes. Modeling results are given both as profiles and as charasteristic diagrams for the various coil configuration - conductor-model combinations. On the basis of the modeling results, limits of detectability for poor conductors have been determined. The study is a part of the preliminary site investigations for the radioactive waste disposal in Finnish bedrock

  15. Numerical modeling of thermal conductive heating in fractured bedrock.

    Science.gov (United States)

    Baston, Daniel P; Falta, Ronald W; Kueper, Bernard H

    2010-01-01

    Numerical modeling was employed to study the performance of thermal conductive heating (TCH) in fractured shale under a variety of hydrogeological conditions. Model results show that groundwater flow in fractures does not significantly affect the minimum treatment zone temperature, except near the beginning of heating or when groundwater influx is high. However, fracture and rock matrix properties can significantly influence the time necessary to remove all liquid water (i.e., reach superheated steam conditions) in the treatment area. Low matrix permeability, high matrix porosity, and wide fracture spacing can contribute to boiling point elevation in the rock matrix. Consequently, knowledge of these properties is important for the estimation of treatment times. Because of the variability in boiling point throughout a fractured rock treatment zone and the absence of a well-defined constant temperature boiling plateau in the rock matrix, it may be difficult to monitor the progress of thermal treatment using temperature measurements alone. Copyright © 2010 The Author(s). Journal compilation © 2010 National Ground Water Association.

  16. Heterogeneous redox conditions, arsenic mobility, and groundwater flow in a fractured-rock aquifer near a waste repository site in New Hampshire, USA

    Science.gov (United States)

    Anthropogenic sources of carbon from landfill or waste leachate can promote reductive dissolution of in situ arsenic (As) and enhance the mobility of As in groundwater. Groundwater from residential-supply wells in a fractured crystalline-rock aquifer adjacent to a Superfund site ...

  17. The Contraption and Engineering Implementation of Linked Fracture of Shoal Suture in the Bedrock

    OpenAIRE

    Korošec, Ludvik; Kralj, Lojze

    2015-01-01

    The characteristics of overburden strata structural features of typical shallow seam with thin bedrock in Shandong mining area is: there is only one key stratum which controls the overburden strata movement (main roof), when the thickness of bedrock is smaller (generally less than 50-60 m) and the key stratum located under the fissure zone or inside the caving zone through the analysis combined geological data Shandong mining area with the experience in mining practice for a long time. Strata...

  18. Microstructure, porosity and mineralogy around fractures in Olkiluoto bedrock

    International Nuclear Information System (INIS)

    Kuva, J.; Kelokaski, M.; Ikonen, J.; Siitari-Kauppi, M.; Lindberg, A.; Aaltonen, I.

    2012-01-01

    3D distributions of minerals and porosities were determined for samples that included waterconducting fractures. The analysis of these samples was performed using conventional petrography methods, electron microscopy, C-14-PMMA porosity analysis and X-ray tomography. While X-ray tomography proved to be a very useful method when determining the inner structure of the samples, combining tomography results with those obtained by other methods turned out to be difficult without very careful sample preparation design. It seems that the properties of rock around a water-conducting fracture depend on so many uncorrelated factors that no clear pattern emerged even for rock samples with a given type of fracture. We can conclude, however, that a combination of different analysis methods can be useful and used to infer novel structural information about alteration zones adjacent to fracture surfaces. (orig.)

  19. Microstructure, porosity and mineralogy around fractures in Olkiluoto bedrock

    Energy Technology Data Exchange (ETDEWEB)

    Kuva, J. (ed.); Myllys, M.; Timonen, J. [Jyvaeskylae Univ. (Finland); Kelokaski, M.; Ikonen, J.; Siitari-Kauppi, M. [Helsinki Univ. (Finland); Lindberg, A. [Geological Survey of Finland, Espoo (Finland); Aaltonen, I.

    2012-01-15

    3D distributions of minerals and porosities were determined for samples that included waterconducting fractures. The analysis of these samples was performed using conventional petrography methods, electron microscopy, C-14-PMMA porosity analysis and X-ray tomography. While X-ray tomography proved to be a very useful method when determining the inner structure of the samples, combining tomography results with those obtained by other methods turned out to be difficult without very careful sample preparation design. It seems that the properties of rock around a water-conducting fracture depend on so many uncorrelated factors that no clear pattern emerged even for rock samples with a given type of fracture. We can conclude, however, that a combination of different analysis methods can be useful and used to infer novel structural information about alteration zones adjacent to fracture surfaces. (orig.)

  20. Electrophilic acid gas-reactive fluid, proppant, and process for enhanced fracturing and recovery of energy producing materials

    Science.gov (United States)

    Fernandez, Carlos A.; Heldebrant, David J.; Bonneville, Alain; Jung, Hun Bok; Carroll, Kenneth C.

    2018-01-23

    An electrophilic acid gas-reactive fracturing fluid, proppant, and process are detailed. The fluid expands in volume to provide rapid and controlled increases in pressure that enhances fracturing in subterranean bedrock for recovery of energy-producing materials. The proppant stabilizes fracture openings in the bedrock to enhance recovery of energy-producing materials.

  1. Mapping Inherited Fractures in the Critical Zone Using Seismic Anisotropy From Circular Surveys

    Science.gov (United States)

    Novitsky, Christopher G.; Holbrook, W. Steven; Carr, Bradley J.; Pasquet, Sylvain; Okaya, David; Flinchum, Brady A.

    2018-04-01

    Weathering and hydrological processes in Earth's shallow subsurface are influenced by inherited bedrock structures, such as bedding planes, faults, joints, and fractures. However, these structures are difficult to observe in soil-mantled landscapes. Steeply dipping structures with a dominant orientation are detectable by seismic anisotropy, with fast wave speeds along the strike of structures. We measured shallow ( 2-4 m) seismic anisotropy using "circle shots," geophones deployed in a circle around a central shot point, in a weathered granite terrain in the Laramie Range of Wyoming. The inferred remnant fracture orientations agree with brittle fracture orientations measured at tens of meters depth in boreholes, demonstrating that bedrock fractures persist through the weathering process into the shallow critical zone. Seismic anisotropy positively correlates with saprolite thickness, suggesting that inherited bedrock fractures may control saprolite thickness by providing preferential pathways for corrosive meteoric waters to access the deep critical zone.

  2. Matrix Pore Water in Low Permeable Crystalline Bedrock: An Archive for the Palaeohydrogeological Evolution of the Olkiluoto Investigation Site

    Energy Technology Data Exchange (ETDEWEB)

    Eichinger, F. [Hydroisotop GmbH, Schweitenkirchen (Germany); Waber, H. N. [Rock-Water Interaction, Institute of Geological Sciences, University of Bern, Bern (Switzerland); Smellie, J. A.T. [Conterra AB, Stockholm (Sweden)

    2013-07-15

    Matrix pore water in the connected inter- and intragranular pore space of low permeable crystalline bedrock interacts with flowing fracture groundwater predominately by diffusion. Based on the slow exchange between the two water reservoirs, matrix pore water acts as an archive of past changes in fracture groundwater compositions and thus of the palaeohydrological history of a site. Matrix pore water of crystalline bedrock from the olkiluoto investigation site (SW Finland) was characterised using the stable water isotopes ({delta}{sup 18}O, {delta}{sup 2}H), combined with the concentrations of dissolved chloride and bromide as natural tracers. The comparison of tracer concentrations in pore water and present day fracture groundwater suggest for the pore water the presence of old, dilute meteoric water components that infiltrated into the fractures during various warm climate stages. These different meteoric components can be discerned based on the diffusion distance between the two reservoirs and brought into context with the palaeohydrological evolution of the site. (author)

  3. Borehole environmental tracers for evaluating net infiltration and recharge through desert bedrock

    Science.gov (United States)

    Heilweil, V.M.; Solomon, D.K.; Gardner, P.M.

    2006-01-01

    Permeable bedrock aquifers in arid regions are being increasingly developed as water supplies, yet little is generally known about recharge processes and spatial and temporal variability. Environmental tracers from boreholes were used in this study to investigate net infiltration and recharge to the fractured Navajo Sandstone aquifer. Vadose zone tracer profiles at the Sand Hollow study site in southwestern Utah look similar to those of desert soils at other sites, indicating the predominance of matrix flow. However, recharge rates are generally higher in the Navajo Sandstone than in unconsolidated soils in similar climates because the sandstone matrix allows water movement but not root penetration. Water enters the vadose zone either as direct infiltration of precipitation through exposed sandstone and sandy soils or as focused infiltration of runoff. Net infiltration and recharge exhibit extreme spatial variability. High-recharge borehole sites generally have large amounts of vadose zone tritium, low chloride concentrations, and small vadose zone oxygen-18 evaporative shifts. Annual net-infiltration and recharge rates at different locations range from about 1 to 60 mm as determined using vadose zone tritium, 0 to 15 mm using vadose zone chloride, and 3 to 60 mm using groundwater chloride. Environmental tracers indicate a cyclical net-infiltration and recharge pattern, with higher rates earlier in the Holocene and lower rates during the late Holocene, and a return to higher rates during recent decades associated with anomalously high precipitation during the latter part of the 20th century. The slightly enriched stable isotopic composition of modern groundwater indicates this recent increase in precipitation may be caused by a stronger summer monsoon or winter southern Pacific El Nin??o storm track. ?? Soil Science Society of America.

  4. A New Method to Infer Advancement of Saline Front in Coastal Groundwater Systems by 3D: The Case of Bari (Southern Italy Fractured Aquifer

    Directory of Open Access Journals (Sweden)

    Costantino Masciopinto

    2016-02-01

    Full Text Available A new method to study 3D saline front advancement in coastal fractured aquifers has been presented. Field groundwater salinity was measured in boreholes of the Bari (Southern Italy coastal aquifer with depth below water table. Then, the Ghyben-Herzberg freshwater/saltwater (50% sharp interface and saline front position were determined by model simulations of the freshwater flow in groundwater. Afterward, the best-fit procedure between groundwater salinity measurements, at assigned water depth of 1.0 m in boreholes, and distances of each borehole from the modelled freshwater/saltwater saline front was used to convert each position (x, y in groundwater to the water salinity concentration at depth of 1.0 m. Moreover, a second best-fit procedure was applied to the salinity measurements in boreholes with depth z. These results provided a grid file (x, y, z, salinity suitable for plotting the actual Bari aquifer salinity by 3D maps. Subsequently, in order to assess effects of pumping on the saltwater-freshwater transition zone in the coastal aquifer, the Navier-Stokes (N-S equations were applied to study transient density-driven flow and salt mass transport into freshwater of a single fracture. The rate of seawater/freshwater interface advancement given by the N-S solution was used to define the progression of saline front in Bari groundwater, starting from the actual salinity 3D map. The impact of pumping of 335 L·s−1 during the transition period of 112.8 days was easily highlighted on 3D salinity maps of Bari aquifer.

  5. Multi-isotope (carbon and chlorine) analysis for fingerprinting and site characterization at a fractured bedrock aquifer contaminated by chlorinated ethenes

    DEFF Research Database (Denmark)

    Palau, Jordi; Marchesi, Massimo; Chambon, Julie Claire Claudia

    2014-01-01

    is located in Spain with contamination resulting in groundwater concentrations of up to 50 mg/L of trichloroethene (TCE), the most abundant chlorinated ethene, and 7 mg/L of tetrachloroethene (PCE). The potential sources of contamination including abandoned barrels, an underground tank, and a disposal lagoon......, showed a wide range in δ13C values from − 15.6 to − 40.5‰ for TCE and from − 18.5 to − 32.4‰ for PCE, allowing the use of isotope fingerprinting for tracing of the origin and migration of these contaminants in the aquifer. In contrast, there is no difference between the δ37Cl values for TCE...

  6. VTT test borehole for bedrock investigations

    International Nuclear Information System (INIS)

    Okko, O.; Hassinen, P.; Front, K.

    1994-02-01

    A borehole of depth 150 m and diameter 56 mm has been drilled in the area adjacent to the premises of the Technical Research Centre of Finland (VTT) at Otaniemi, Espoo, for the purposes of calibrating geophysical measurements devices. This report presents the test results obtained so far and illustrates the processing of these, in which the various measurements are plotted as curves and combinations of curves. The interpretations provided so far consists of analyses of lithological variations, bedrock fracturing, the nature and occurrence of fracture zones and groundwater flow patterns. Samples were taken from those parts of the core shown by the borehole measurements to be homogenous and thin sections made from these for mineralogical determinations. The rock mechanical and petrophysical properties of the same points were examined. The core is in the possession of VTT, and the hole itself is available to outsiders for the calibration and testing of borehole measurement equipment. (orig.). (21 refs., 13 figs., 5 tabs.)

  7. Final disposal of spent nuclear fuel in Finnish bedrock. Olkiluoto site report

    Energy Technology Data Exchange (ETDEWEB)

    Anttila, P. [Fortum Engineering Oy, Vantaa (Finland); Ahokas, H. [Fintact Oy, Helsinki (Finland); Front, K. [VTT Communication and Infrastructure, Espoo (Finland)] [and others

    1999-06-01

    Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Haestholmen in Loviisa, Kivetty in Aeaenekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Olkiluoto. The bedrock of the Olkiluoto site consists of Svecofennian metasediments and platonic rocks, 1800-1900 million years in age. Migmatitic mica gneiss is the most abundant rock type, and is intruded by foliated tonalites and granodiorites and massive coarse-grained granites and pegmatites. Five successive plastic deformation phases have been defined. In total, 30 bedrock structures (R-structures) have been modelled at the site. Most of these represent steeply dipping fracture zones, but several sub-horizontal zones, gently dipping to the SE, have also been identified. The rock mass between the fracture zones represents what is termed `intact rock`, which is typically hard, unweathered and sparsely fractured. The R-structures are generally hydraulically more conductive than the intact rock and their mean transmissivity is 3 x 10{sup -7} m{sup 2}/s. The corresponding mean of the hydraulic conductivity values for the intact rock measured using a 2 m packer interval, is 8 x 10{sup -13} m/s, if a lognormal distribution for all measured values is assumed. A clear decrease in hydraulic conductivity with depth has been found for the intact rock, and there seems to be a parallel decrease in the transmissivity of structures. In addition, the hydraulically conductive fractures seem to be more frequent and their transmissivities higher in the uppermost 100 - 200 m of the bedrock than at greater depths. The groundwater chemistry reflects the

  8. Final disposal of spent nuclear fuel in Finnish bedrock. Olkiluoto site report

    International Nuclear Information System (INIS)

    Anttila, P.; Ahokas, H.; Front, K.

    1999-06-01

    Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Haestholmen in Loviisa, Kivetty in Aeaenekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Olkiluoto. The bedrock of the Olkiluoto site consists of Svecofennian metasediments and platonic rocks, 1800-1900 million years in age. Migmatitic mica gneiss is the most abundant rock type, and is intruded by foliated tonalites and granodiorites and massive coarse-grained granites and pegmatites. Five successive plastic deformation phases have been defined. In total, 30 bedrock structures (R-structures) have been modelled at the site. Most of these represent steeply dipping fracture zones, but several sub-horizontal zones, gently dipping to the SE, have also been identified. The rock mass between the fracture zones represents what is termed 'intact rock', which is typically hard, unweathered and sparsely fractured. The R-structures are generally hydraulically more conductive than the intact rock and their mean transmissivity is 3 x 10 -7 m 2 /s. The corresponding mean of the hydraulic conductivity values for the intact rock measured using a 2 m packer interval, is 8 x 10 -13 m/s, if a lognormal distribution for all measured values is assumed. A clear decrease in hydraulic conductivity with depth has been found for the intact rock, and there seems to be a parallel decrease in the transmissivity of structures. In addition, the hydraulically conductive fractures seem to be more frequent and their transmissivities higher in the uppermost 100 - 200 m of the bedrock than at greater depths. The groundwater chemistry reflects the postglacial

  9. Evaluation of Rehabilitation Efficiency of Clogged wells drilled in fractured bedrock and alluvium

    Science.gov (United States)

    Lee, C.; Hamm, S.; Lee, J.; Ok, S.; Han, S.; Choo, C.; Kim, M.

    2011-12-01

    In Korea, more than one million of groundwater wells have been developed since 1990s. However, the groundwater wells have not been properly managed. Moreover, the importance of well maintenance and well rehabilitation has not been well recognized. In this circumstance, groundwater wells are usually terminated in 20-year operation due to well clogging, groundwater pollution, land use change, etc. which are originated from physical, chemical, biological, and artificial changes of and around the wells. The clogged state of the wells with diminished amount down to 80-85% can be ameliorated by various rehabilitation techniques as increasing discharge amount as well as extending the durability of the wells. In European countries and the USA, rehabilitation techniques of the clogged wells have been developed with understanding the cause and prevention of well bore clogging since 1990s. In recent years, the Korean Ministry of Environment (KME) recognized the importance of well rehabilitation. Under the support of the KME, this study evaluated the efficieny of rehabilitation using air surging, high-pressure water injection, brush & air surging, and explosive charge methods as applying to seven wells installed in fractured granite of Mt. Geumjeong and one well drilled in alluvial deposit of the Jeungsan-Ri area, Gyeongnam Province in the southeastern part of Korea. Hydraulic conductivity was estimated by using slug and pumping tests before and after well rehabilitation in order to assess physical, chemical, and biological changes of the wells. Hydraulic conductivity and pumping capacity of fractured bedrock are closely related to fracture characteristics such as fracture aperture, frequency, length, orientation, dip angle, interconnectivity, plane features, and filling materials. The evolution of clogging and filling of materials on and around the well makes decrease hydraulic conductivity and pumping capacity of the well. In this study, in addition of hydraulic conductivity

  10. Groundwater vulnerability mapping of Qatar aquifers

    Science.gov (United States)

    Baalousha, Husam Musa

    2016-12-01

    Qatar is one of the most arid countries in the world with limited water resources. With little rainfall and no surface water, groundwater is the only natural source of fresh water in the country. Whilst the country relies mainly on desalination of seawater to secure water supply, groundwater has extensively been used for irrigation over the last three decades, which caused adverse environmental impact. Vulnerability assessment is a widely used tool for groundwater protection and land-use management. Aquifers in Qatar are carbonate with lots of fractures, depressions and cavities. Karst aquifers are generally more vulnerable to contamination than other aquifers as any anthropogenic-sourced contaminant, especially above a highly fractured zone, can infiltrate quickly into the aquifer and spread over a wide area. The vulnerability assessment method presented in this study is based on two approaches: DRASTIC and EPIK, within the framework of Geographical Information System (GIS). Results of this study show that DRASTIC vulnerability method suits Qatar hydrogeological settings more than EPIK. The produced vulnerability map using DRASTIC shows coastal and karst areas have the highest vulnerability class. The southern part of the country is located in the low vulnerability class due to occurrence of shale formation within aquifer media, which averts downward movement of contaminants.

  11. Karst in Wadi Bani Khalid, Oman

    Science.gov (United States)

    Abdelaziz, Ramadan

    2017-04-01

    There are several important in Oman. The main aquifer is surficial aquifer and fractured rocks. In fact, the geology of Oman is complex whichmake the hydraulic continuity of bedrock is limited and formaing localized aquifers. caves in Oman are varying types and length, size and geographic formations. Many caves and valleys founded in Oman. Wadi Bani Khalid hosts complex network of fractured rock. Karst in Wadi Bani Kalid made upof Limestone(Calcium, which is dissolve in water.A rain water pass through the rock it is erode the rock and form caves. The cave located in Miqil. The karst was formed in Calcium Carbonate rocks.

  12. Structural control on the deep hydrogeological and geothermal aquifers related to the fractured Campanian-Miocene reservoirs of north-eastern Tunisia foreland constrained by subsurface data

    Science.gov (United States)

    Khomsi, Sami; Echihi, Oussema; Slimani, Naji

    2012-03-01

    A set of different data including high resolution seismic sections, petroleum wire-logging well data, borehole piezometry, structural cross-sections and outcrop analysis allowed us to characterise the tectonic framework, and its relationships with the deep aquifers seated in Cretaceous-Miocene deep reservoirs. The structural framework, based on major structures, controls the occurrence of deep aquifers and sub-basin aquifer distributions. Five structural domains can be defined, having different morphostructural characteristics. The northernmost domain lying on the north-south axis and Zaghouan thrust system is a domain of recharge by underflow of the different subsurface reservoirs and aquifers from outcrops of highly fractured reservoirs. On the other hand, the morphostructural configuration controls the piezometry of underground flows in the Plio-Quaternary unconfined aquifer. In the subsurface the Late Cretaceous-Miocene reservoirs are widespread with high thicknesses in many places and high porosities and connectivities especially along major fault corridors and on the crestal parts of major anticlines. Among all reservoirs, the Oligo-Miocene, detritic series are widespread and present high cumulative thicknesses. Subsurface and fieldwork outline the occurrence of 10 fractured sandy reservoirs for these series with packages having high hydrodynamic and petrophysical characteristics. These series show low salinities (maximum 5 g/l) in the northern part of the study area and will constitute an important source of drinkable water for the next generations. A regional structural cross-section is presented, compiled from all the different data sets, allowing us to define the major characteristics of the hydrogeological-hydrogeothermal sub-basins. Eight hydrogeological provinces are defined from north-west to south-east. A major thermal anomaly is clearly identified in the south-eastern part of the study area in Sfax-Sidi Il Itayem. This anomaly is possibly related to

  13. Shallow reflection seismic soundings in bedrock at Lavia

    International Nuclear Information System (INIS)

    Okko, Olli

    1988-03-01

    The well-studied granitic block at Lavia was one of the test sites of a shallow seismic development project. A portable digital seismograph and high frequency geophones were rented fro the field period. A sledge hamme and a drop weight were tested as wave sources. The sounding was carried out on outcropped area in order to record high frequency reflections from known subhorizontal fracture zones as shallow as 30 m. Large amplitude surface waves hide most of the shallow reflections, recognizable only on few traces in the data. The data processing carried out did not reveal the geometry of these reflectors. Events arriving after the ground roll were analyzed in 2-folded CDP-sections. The continuous reflective horizons in them correspond to lithological changes and fracture zones located deeper than 200 m in the bedrock

  14. Biogenic processes in crystalline bedrock fractures indicated by carbon isotope signatures of secondary calcite

    International Nuclear Information System (INIS)

    Sahlstedt, Elina; Karhu, Juha A.; Pitkänen, Petteri; Whitehouse, Martin

    2016-01-01

    Variation in 13 C/ 12 C-isotope ratios of fracture filling calcite was analyzed in situ to investigate carbon sources and cycling in fractured bedrock. The study was conducted by separating sections of fracture fillings, and analyzing the 13 C/ 12 C-ratios with secondary ion mass spectrometry (SIMS). Specifically, the study was aimed at fillings where previously published sulfur isotope data indicated the occurrence of bacterial sulfate reduction. The results showed that the δ 13 C values of calcite were highly variable, ranging from −53.8‰ to +31.6‰ (VPDB). The analysis also showed high variations within single fillings of up to 39‰. The analyzed calcite fillings were mostly associated with two calcite groups, of which Group 3 represents possible Paleozoic fluid circulation, based on comparison with similar dated coatings within the Baltic Shield and the succeeding Group 1–2 fillings represent late-stage, low temperature mineralization and are possibly late Paleozoic to Quaternary in age. Both generations were associated with pyrite with δ 34 S values indicative of bacterial sulfate reduction. The δ 13 C values of calcite, however, were indicative of geochemical environments which were distinct for these generations. The δ 13 C values of Group 3 calcite varied from −22.1‰ to +11‰, with a distinct peak at −16‰ to −12‰. Furthermore, there were no observable depth dependent trends in the δ 13 C values of Group 3 calcite. The δ 13 C values of Group 3 calcite were indicative of organic matter degradation and methanogenesis. In contrast to the Group 3 fillings, the δ 13 C values of Group 1–2 calcite were highly variable, ranging from −53.8‰ to +31.6‰ and they showed systematic variation with depth. The near surface environment of <30 m (bsl) was characterized by δ 13 C values indicative of degradation of surface derived organic matter, with δ 13 C values ranging from −30.3‰ to −5.5‰. The intermediate depth of

  15. Analysis of fracturing in the basalts of the Serra Geral Aquifer and the potential regional recharge of the Guarani Aquifer System; Analise de fraturas dos basaltos do Aquifero Serra Geral e o potencial de recarga regional do Sistema Aquifero Guarani

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, A. J.; Assis Negri, F. de; Azevedo Sobrino, J. M.; Varnier, C.

    2012-11-01

    The Geological Institute, belonging to the Ministry for the Environment of the State of Sao Paulo, is currently undertaking regional research into vertical groundwater flow through the basalts in the Serra Geral Aquifer (ASG), which influences recharge of the sandstones in the underlying Guarani Aquifer System (SAG) and therefore the quantity of groundwater available and its susceptibility to pollution. The study area corresponds to the outcropping region of the ASG, an area of the state of Sao Paulo that contains important urban centres. The methods used included: (1) field work, focused on characterizing the vertical tectonic structures and the stresses responsible for their origin; and (2) an analysis of the structural data collected, aimed at identifying brittle tectonic events and their influence on groundwater flow. Distinguishing between cooling and tectonic fractures is a relevant aspect of the field work as only the tectonic events are capable of cutting across the vesicular beds, which otherwise form a barrier against vertical flow and block any connection between the aquifers. Three tectonic strike-slip events have been identified, each having generated hybrid tectonic fractures, which, because they involve extension as well as shearing, potentially favour flow. Diagnostic features suggest the occurrence in the south-western zone of the study area of preferential flow along fractures in the direction N70-80W and N60-80E, and secondary ones trending N20W and N20E; in the northeastern zone there is flow along secondary fractures in the direction N15W and N5-10E and in the central zone N40-65W. (Author)

  16. Environmental tracers as indicators of groundwater flow and evolution in a fractured rock aquifer, Clare Valley, South Australia

    International Nuclear Information System (INIS)

    Love, A.J.; Cook, P.G.; Herczeg, A.L.; Simmons, C.T.

    1999-01-01

    Environmental tracers, chemistry and hydraulic data have been used to develop a conceptual model for groundwater flow in a fractured rock aquifer, at Clare, South Australia. In the upper 36 m there is relatively high horizontal flow, closely spaced fractures and large apertures. Below 36 m, horizontal flow rates are less and apertures become smaller. A sub horizontal fracture at 36 m separates the upper system from flow systems below. There is minimum vertical connection of groundwater above and below 36 m as indicated by low hydraulic conductivity and a steep 14 C concentration gradient. The observed linear trends in chemistry and isotope data are a result of mixing between old saline water and relatively younger fresh water. Greater mixing has occurred in the upper 36 m, with the amount of mixing diminishing with depth. We propose that this mixing is a recent process that has been triggered as a result of increased recharge to the system since the clearing of native vegetation approximately 100 years ago. Increased recharge of lower salinity water has resulted in the establishment of concentration gradients between the matrix and the fractures. This has resulted in diffusion of relatively immobile water in the matrix into relatively fast moving water in the fractures. Greater flushing has occurred in the upper 36 m due greater fracture density and larger apertures and higher horizontal flow rates. (author)

  17. Groundwater sources and geochemical processes in a crystalline fault aquifer

    Science.gov (United States)

    Roques, Clément; Aquilina, Luc; Bour, Olivier; Maréchal, Jean-Christophe; Dewandel, Benoît; Pauwels, Hélène; Labasque, Thierry; Vergnaud-Ayraud, Virginie; Hochreutener, Rebecca

    2014-11-01

    The origin of water flowing in faults and fractures at great depth is poorly known in crystalline media. This paper describes a field study designed to characterize the geochemical compartmentalization of a deep aquifer system constituted by a graben structure where a permeable fault zone was identified. Analyses of the major chemical elements, trace elements, dissolved gases and stable water isotopes reveal the origin of dissolved components for each permeable domain and provide information on various water sources involved during different seasonal regimes. The geochemical response induced by performing a pumping test in the fault-zone is examined, in order to quantify mixing processes and contribution of different permeable domains to the flow. Reactive processes enhanced by the pumped fluxes are also identified and discussed. The fault zone presents different geochemical responses related to changes in hydraulic regime. They are interpreted as different water sources related to various permeable structures within the aquifer. During the low water regime, results suggest mixing of recent water with a clear contribution of older water of inter-glacial origin (recharge temperature around 7 °C), suggesting the involvement of water trapped in a local low-permeability matrix domain or the contribution of large scale circulation loops. During the high water level period, due to inversion of the hydraulic gradient between the major permeable fault zone and its surrounding domains, modern water predominantly flows down to the deep bedrock and ensures recharge at a local scale within the graben. Pumping in a permeable fault zone induces hydraulic connections with storage-reservoirs. The overlaid regolith domain ensures part of the flow rate for long term pumping (around 20% in the present case). During late-time pumping, orthogonal fluxes coming from the fractured domains surrounding the major fault zone are dominant. Storage in the connected fracture network within the

  18. Hydrological controls on transient aquifer storage in a karst watershed

    Science.gov (United States)

    Spellman, P.; Martin, J.; Gulley, J. D.

    2017-12-01

    While surface storage of floodwaters is well-known to attenuate flood peaks, transient storage of floodwaters in aquifers is a less recognized mechanism of flood peak attenuation. The hydraulic gradient from aquifer to river controls the magnitude of transient aquifer storage and is ultimately a function of aquifer hydraulic conductivity, and effective porosity. Because bedrock and granular aquifers tend to have lower hydraulic conductivities and porosities, their ability to attenuate flood peaks is generally small. In karst aquifers, however, extensive cave systems create high hydraulic conductivities and porosities that create low antecedent hydraulic gradients between aquifers and rivers. Cave springs can reverse flow during high discharges in rivers, temporarily storing floodwaters in the aquifer thus reducing the magnitude of flood discharge downstream. To date however, very few studies have quantified the magnitude or controls of transient aquifer storage in karst watersheds. We therefore investigate controls on transient aquifer storage by using 10 years of river and groundwater data from the Suwannee River Basin, which flows over the karstic upper Floridan aquifer in north-central Florida. We use multiple linear regression to compare the effects of three hydrological controls on the magnitude of transient aquifer storage: antecedent stage, recharge and slope of hydrograph rise. We show the dominant control on transient aquifer storage is antecedent stage, whereby lower stages result in greater magnitudes of transient aquifer storage. Our results suggest that measures of groundwater levels prior to an event can be useful in determining whether transient aquifer storage will occur and may provide a useful metric for improving predictions of flood magnitudes.

  19. Hydrogeology of the Owego-Apalachin Elementary School Geothermal Fields, Tioga County, New York

    Science.gov (United States)

    Williams, John H.; Kappel, William M.

    2015-12-22

    The hydrogeology of the Owego-Apalachin Elementary School geothermal fields, which penetrate saline water and methane in fractured upper Devonian age bedrock in the Owego Creek valley, south-central New York, was characterized through the analysis of drilling and geophysical logs, water-level monitoring data, and specific-depth water samples. Hydrogeologic insights gained during the study proved beneficial for the design of the geothermal drilling program and protection of the overlying aquifer during construction, and may be useful for the development of future geothermal fields and other energy-related activities, such as drilling for oil and natural gas in similar fractured-bedrock settings.

  20. Aquifer recharging in South Carolina: radiocarbon in environmental hydrogeology

    International Nuclear Information System (INIS)

    Stone, P.A.; Knox, R.L.; Mathews, T.D.

    1985-01-01

    Radiocarbon activities of dissolved inorganic carbon (and tritium activities where infiltration rates are rapid and aquifers shallow) provide relatively unambiguous and inexpensive evidence for identification of significant recharge areas. Such evidence is for the actual occurrence of modern recharge in the aquifer and thus is less inferential than stratigraphic or potentiometric evidence. These underutilized isotopic techniques are neither arcane nor complex and have been more-or-less standardized by earlier researchers. In South Carolina, isotopic evidence has been used from both calcareous and siliceous sedimentary aquifers and fractured crystalline rock aquifers. The Tertiary limestone aquifer is shown not to be principally recharged in its subcrop area, unlike conditions assumed for many other sedimentary aquifers in southeastern United States, and instead receives considerable lateral recharge from interfingering updip Tertiary sand aquifers in the middle coastal plain. Induced recharging at Hilton Head Island is mixing ancient relict water and modern recharge water. Recharging to deeper portions of the Cretaceous Middendorf basal sand aquifer occurs at least as far coastward as the middle coastal plain, near sampling sites that stratigraphically appear to be confined. Pronounced mineralization of water in fractured rocks cannot be considered as evidence of ancient or relict ground water that is isolated from modern contaminants, some of these waters contain considerable radiocarbon and hydrogen-bomb tritium

  1. Geothermal Exploration in Hot Springs, Montana

    Energy Technology Data Exchange (ETDEWEB)

    Toby McIntosh, Jackola Engineering

    2012-09-26

    The project involves drilling deeper in the Camp Aqua well dri lled in June 1982 as part of an effort to develop an ethanol plant. The purpose of the current drill ing effort is to determine if water at or above 165°F exists for the use in low temperature resource power generation. Previous geothermal resource study efforts in and around Hot Springs , MT and the Camp Aqua area (NE of Hot Springs) have been conducted through the years. A confined gravel aquifer exists in deep alluvium overlain by approximately 250 of si lt and c lay deposits from Glacial Lake Missoula. This gravel aquifer overlies a deeper bedrock aquifer. In the Camp Aqua area several wel l s exist in the gravel aquifer which receives hot water f rom bedrock fractures beneath the area. Prior to this exploration, one known well in the Camp Aqua area penetrated into the bedrock without success in intersecting fractures transporting hot geothermal water. The exploration associated with this project adds to the physical knowledge database of the Camp Aqua area. The dri l l ing effort provides additional subsurface information that can be used to gain a better understanding of the bedrock formation that i s leaking hot geothermal water into an otherwise cold water aquifer. The exi s t ing well used for the explorat ion is located within the center of the hottest water within the gravel aquifer. This lent i t sel f as a logical and economical location to continue the exploration within the existing well. Faced with budget constraints due to unanticipated costs, changing dril l ing techniques stretched the limited project resources to maximize the overa l l well depth which f e l l short of original project goals. The project goal of finding 165°F or hotter water was not achieved; however the project provides additional information and understanding of the Camp Aqua area that could prove valuable in future exploration efforts

  2. Geophysical logging of bedrock wells for geothermal gradient characterization in New Hampshire, 2013

    Science.gov (United States)

    Degnan, James R.; Barker, Gregory; Olson, Neil; Wilder, Leland

    2014-01-01

    The U.S. Geological Survey, in cooperation with the New Hampshire Geological Survey, measured the fluid temperature of groundwater and other geophysical properties in 10 bedrock wells in the State of New Hampshire in order to characterize geothermal gradients in bedrock. The wells selected for the study were deep (five ranging from 375 to 900 feet and five deeper than 900 feet) and 6 had low water yields, which correspond to low groundwater flow from fractures. This combination of depth and low water yield reduced the potential for flow-induced temperature changes that would mask the natural geothermal gradient in the bedrock. All the wells included in this study are privately owned, and permission to use the wells was obtained from landowners before geophysical logs were acquired for this study. National Institute of Standards and Technology thermistor readings were used to adjust the factory calibrated geophysical log data. A geometric correction to the gradient measurements was also necessary due to borehole deviation from vertical.

  3. Qualification of some compounds for tracing waterflows in coastal bedrock: A preliminary study

    International Nuclear Information System (INIS)

    Bjoernstad, H.E.; Eriksen, D.Oe.; Gaut, S.; Storaa, G.

    1999-01-01

    At Holmedal, Western Norway, the Geological Survey of Norway runs a test area with nine drilled wells. The site is mainly used for testing hydrodynamical models of ground water flow in fractured bedrock. During a test of communications between the wells we were offered an opportunity to test and qualify compounds to be used as tracers in such environment

  4. Lithological and structural bedrock model of the Haestholmen study site, Loviisa, SE Finland

    Energy Technology Data Exchange (ETDEWEB)

    Front, K.; Paulamaeki, S.; Ahokas, H.; Anttila, P

    1999-10-01

    The Haestholmen study site is located within the anorogenic Wiborg rapakivi granite batholith, 1640 1630 Ma in age. The bedrock consists of various rapakivi granites, which can be divided into three groups or lithological units: (1) wiborgite and pyterlite, (2) porphyritic rapakivi granite, and (3) even-grained or weakly porphyritic rapakivi granite, pyterlite being the dominant rock type. The evengrained and weakly porphyritic rapakivi granite has been interpreted to form a younger intrusive unit with a thickness of ca. 500 m, dipping approx. 20 deg to the NNW-NNE. Surface fractures form a distinct orthogonal system, with three perpendicular fracture directions: fractures dipping steeply (dip >75 deg) to the NE-SW and NW-SE plus subhorizontal (dip <30 deg) fractures. The fracturing in the outcrops is sparse,the average fracture frequency being 0.6 fractures/m. The majority of the fractures in the drill cores are horizontal or very gently dipping and there is no difference in fracture orientations in regard to rock type or depth. Core samples are usually slightly fractured (1 - 3 fractures/m), even-grained rapakivi granites being in places abundantly fractured (3 10 fractures/m. The broken sections in Haestholmen core samples represent about 4.6 % of the total length of the samples. Calcite, dolomite, Fe- hydroxides and clay minerals (illite, montmorillonite and kaolinite) form the most typical fracture mineral phases throughout the drill cores. Core discing is locally seen as repeated fracture-like subparallel cracks in core with spacing of about some millimetres to tens of millimetres. The structural model contains 27 structures (denoted by the term R+number), more than half of which have been verified by direct observations from boreholes or from the VLJ repository. The remaining structures are mainly based on the geophysical interpretation, and have been classified as probable or possible fracture zones. In addition, local structures with uncertain orientation

  5. Characterisation of fracture network and groundwater preferential ...

    African Journals Online (AJOL)

    Characterisation of fractured rocks and evaluation of fracture connectivity are essential for the study of subsurface flow and transport in fractured rock aquifers. In this study, we use a new method to present fracture networks and analyse the connectivity of the fractures, based on the technique of randomly-generated ...

  6. Modeling early in situ wetting of a compacted bentonite buffer installed in low permeable crystalline bedrock

    Science.gov (United States)

    Dessirier, B.; Frampton, A.; Fransson, À.; Jarsjö, J.

    2016-08-01

    The repository concept for geological disposal of spent nuclear fuel in Sweden and Finland is planned to be constructed in sparsely fractured crystalline bedrock and with an engineered bentonite buffer to embed the waste canisters. An important stage in such a deep repository is the postclosure phase following the deposition and the backfilling operations when the initially unsaturated buffer material gets hydrated by the groundwater delivered by the natural bedrock. We use numerical simulations to interpret observations on buffer wetting gathered during an in situ campaign, the Bentonite Rock Interaction Experiment, in which unsaturated bentonite columns were introduced into deposition holes in the floor of a 417 m deep tunnel at the Äspö Hard Rock Laboratory in Sweden. Our objectives are to assess the performance of state-of-the-art flow models in reproducing the buffer wetting process and to investigate to which extent dependable predictions of buffer wetting times and saturation patterns can be made based on information collected prior to buffer insertion. This would be important for preventing insertion into unsuitable bedrock environments. Field data and modeling results indicate the development of a de-saturated zone in the rock and show that in most cases, the presence or absence of fractures and flow heterogeneity are more important factors for correct wetting predictions than the total inflow. For instance, for an equal open-hole inflow value, homogeneous inflow yields much more rapid buffer wetting than cases where fractures are represented explicitly thus creating heterogeneous inflow distributions.

  7. Hydrogeology and simulation of ground-water flow in the Silurian-Devonian aquifer system, Johnson County, Iowa

    Science.gov (United States)

    Tucci, Patrick; McKay, Robert M.

    2006-01-01

    Bedrock of Silurian and Devonian age (termed the “Silurian-Devonian aquifer system”) is the primary source of ground water for Johnson County in east-central Iowa. Population growth within municipal and suburban areas of the county has resulted in increased amounts of water withdrawn from this aquifer and water-level declines in some areas. A 3-year study of the hydrogeology of the Silurian-Devonian aquifer system in Johnson County was undertaken to provide a quantitative assessment of ground water resources and to construct a ground-water flow model that can be used by local governmental agencies as a management tool.

  8. Pressure grouting of fractured basalt flows

    International Nuclear Information System (INIS)

    Shaw, P.; Weidner, J.; Phillips, S.; Alexander, J.

    1996-04-01

    This report describes a field trial of pressure grouting in basalt and the results of subsequent coring and permeability measurement activities. The objective was to show that the hydraulic conductivity of fractured basalt bedrock can be significantly reduced by pressure injection of cementitious materials. The effectiveness of the pressure grout procedure was evaluated by measuring the change in the hydraulic conductivity of the bedrock. The extent of grout penetration was established by analyzing postgrout injection drilling chips for the presence of a tracer in the grout and also by examining cores of the treated basalt. Downhole radar mapping was used to establish major lava flow patterns and follow water movement during a surface infiltration test. A site called Box Canyon, which is located northwest of the INEL, was chosen for this study due to the similarity of this surface outcrop geology to that of the underlying bedrock fracture system found at the Radioactive Waste Management Complex. This study showed that hydraulic conductivity of basalt can be reduced through pressure grouting of cementitious material

  9. Pressure grouting of fractured basalt flows

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, P.; Weidner, J.; Phillips, S.; Alexander, J.

    1996-04-01

    This report describes a field trial of pressure grouting in basalt and the results of subsequent coring and permeability measurement activities. The objective was to show that the hydraulic conductivity of fractured basalt bedrock can be significantly reduced by pressure injection of cementitious materials. The effectiveness of the pressure grout procedure was evaluated by measuring the change in the hydraulic conductivity of the bedrock. The extent of grout penetration was established by analyzing postgrout injection drilling chips for the presence of a tracer in the grout and also by examining cores of the treated basalt. Downhole radar mapping was used to establish major lava flow patterns and follow water movement during a surface infiltration test. A site called Box Canyon, which is located northwest of the INEL, was chosen for this study due to the similarity of this surface outcrop geology to that of the underlying bedrock fracture system found at the Radioactive Waste Management Complex. This study showed that hydraulic conductivity of basalt can be reduced through pressure grouting of cementitious material.

  10. on GAGD EOR in Naturally Fractured Reservoirs

    Directory of Open Access Journals (Sweden)

    Misagh Delalat

    2013-01-01

    Full Text Available The gas-assisted gravity drainage (GAGD process is designed and practiced based on gravity drainage idea and uses the advantage of density difference between injected CO2 and reservoir oil. In this work, one of Iran western oilfields was selected as a case study and a sector model was simulated based on its rock and fluid properties. The pressure of CO2 gas injection was close to the MMP of the oil, which was measured 1740 psia. Both homogeneous and heterogeneous types of fractures were simulated by creating maps of permeability and porosity. The results showed that homogeneous fractures had the highest value of efficiency, namely 40%; however, in heterogeneous fractures, the efficiency depended on the value of fracture density and the maximum efficiency was around 37%. Also, the effect of injection rate on two different intensities of fracture was studied and the results demonstrated that the model having higher fracture intensity had less limitation in increasing the CO2 injection rate; furthermore, its BHP did not increase intensively at higher injection rates either. In addition, three different types of water influxes were inspected on GAGD performance to simulate active, partial, and weak aquifer. The results showed that strong aquifer had a reverse effect on the influence of GAGD and almost completely disabled the gravity drainage mechanism. Finally, we inventively used a method to weaken the aquifer strength, and thus the gravity drainage revived and efficiency started to increase as if there was no aquifer.

  11. Abiotic controls of emergent macrophyte density in a bedrock channel - The Cahaba River, AL (USA)

    Science.gov (United States)

    Vaughn, Ryan S.; Davis, Lisa

    2015-10-01

    Research examining bedrock channels is growing. Despite this, biotic-abiotic interactions remain a topic mostly addressed in alluvial systems. This research identified hydrogeomorphic factors operating at the patch-scale (100-102 m) in bedrock shoals of the Cahaba River (AL) that help determine the distribution of the emergent aquatic macrophyte, Justicia americana. Macrophyte patch density (number of stems/m2) and percent bedrock void surface area (rock surface area/m2 occupied by joints, fractures, and potholes) were measured (n = 24 within two bedrock shoals) using stem counts and underwater photography, respectively. One-dimensional hydrologic modeling (HEC-RAS 4.1.0) was completed for a section within a shoal to examine velocity and channel depth as controlling variables for macrophyte patch density. Results from binary logistic regression analysis identified depth and velocity as good predictors of the presence or absence of Justicia americana within shoal structures (depth p = 0.001, velocity p = 0.007), which is a similar finding to previous research conducted in alluvial systems. Correlation analysis between bedrock surface void area and stem density demonstrated a statistically significant positive correlation (r = 0.665, p = 0.01), elucidating a link between abiotic-biotic processes that may well be unique to bedrock channels. These results suggest that the amount of void space present in bedrock surfaces, in addition to localized depth and velocity, helps control macrophyte patch density in bedrock shoal complexes. The utility of geomorphology in explaining patch-scale habitat heterogeneity in this study highlights geomorphology's potential to help understand macrophyte habitat heterogeneity at the reach scale, while also demonstrating its promise for mapping and understanding habitat heterogeneity at the system scale.

  12. Bedrock geologic map of the Nashua South quadrangle, Hillsborough County, New Hampshire, and Middlesex County, Massachusetts

    Science.gov (United States)

    Walsh, Gregory J.; Jahns, Richard H.; Aleinikoff, John N.

    2013-01-01

    The bedrock geology of the 7.5-minute Nashua South quadrangle consists primarily of deformed Silurian metasedimentary rocks of the Berwick Formation. The metasedimentary rocks are intruded by a Late Silurian to Early Devonian diorite-gabbro suite, Devonian rocks of the Ayer Granodiorite, Devonian granitic rocks of the New Hampshire Plutonic Suite including pegmatite and the Chelmsford Granite, and Jurassic diabase dikes. The bedrock geology was mapped to study the tectonic history of the area and to provide a framework for ongoing hydrogeologic characterization of the fractured bedrock of Massachusetts and New Hampshire. This report presents mapping by G.J. Walsh and R.H. Jahns and zircon U-Pb geochronology by J.N. Aleinikoff. The complete report consists of a map, text pamphlet, and GIS database. The map and text pamphlet are only available as downloadable files (see frame at right). The GIS database is available for download in ESRITM shapefile and Google EarthTM formats, and includes contacts of bedrock geologic units, faults, outcrops, structural geologic information, photographs, and a three-dimensional model.

  13. A reconnaissance spatial and temporal assessment of methane and inorganic constituents in groundwater in bedrock aquifers, Pike County, Pennsylvania, 2012-13

    Science.gov (United States)

    Senior, Lisa A.

    2014-01-01

    Pike County in northeastern Pennsylvania is underlain by the Devonian-age Marcellus Shale and other shales, formations that have potential for natural gas development. During 2012–13, the U.S. Geological Survey in cooperation with the Pike County Conservation District conducted a reconnaissance study to assess baseline shallow groundwater quality in bedrock aquifers prior to possible shale-gas development in the county. For the spatial component of the assessment, 20 wells were sampled in summer 2012 to provide data on the occurrence of methane and other aspects of existing groundwater quality throughout the county, including concentrations of inorganic constituents commonly present at low levels in shallow, fresh groundwater but elevated in brines. For the temporal component of the assessment, 4 of the 20 wells sampled in summer 2012 were sampled monthly from July 2012 through June 2013 to provide data on seasonal variability in groundwater quality. All water samples were analyzed for major ions, nutrients, selected inorganic trace constituents (including metals and other elements), stable isotopes of water, radon-222, gross alpha- and gross beta-particle activity, dissolved gases (methane, ethane, and ethene), and, if possible, isotopic composition of methane. Additional analyses for boron and strontium isotopes, age-dating of water, and radium-226 were done on water samples collected from six wells in June 2013.

  14. Geophysical characterization of the role of fault and fracture systems for recharging groundwater aquifers from surface water of Lake Nasser

    Directory of Open Access Journals (Sweden)

    Khamis Mansour

    2018-06-01

    Full Text Available The role of the fracture system is important for enhancing the recharge or discharge of fluids in the subsurface reservoir. The Lake Nasser is consider one of the largest artificial lakes all over the world and contains huge bulk of storage water. In this study, the influence of fracture zones on subsurface fluid flow in groundwater reservoirs is investigated using geophysical techniques including seismicity, geoelectric and gravity data. These data have been utilized for exploring structural structure in south west Lake Nasser, and subsurface discontinuities (joints or faults notwithstanding its related fracture systems. Seismicity investigation gave us the comprehension of the dynamic geological structure sets and proposing the main recharging paths for the Nubian aquifer from Lake Nasser surface water. Processing and modelling of aerogravity data show that the greater thickness of sedimentary cover (700 m is located eastward and northward while basement outcrops occur at Umm Shaghir and Al Asr areas. Sixty-nine vertical electrical soundings (VES’s were used to delineate the subsurface geoelectric layers along eight profiles that help to realize the subsurface geological structure behind the hydrogeological conditions of the studied area. Keywords: Fracture system, Seismicity, Groundwater reservoir, Gravity, VES

  15. Combined interpretation of radar, hydraulic, and tracer data from a fractured-rock aquifer near Mirror Lake, New Hampshire, USA

    Science.gov (United States)

    Day-Lewis, F. D.; Lane, J.W.; Gorelick, S.M.

    2006-01-01

    An integrated interpretation of field experimental cross-hole radar, tracer, and hydraulic data demonstrates the value of combining time-lapse geophysical monitoring with conventional hydrologic measurements for improved characterization of a fractured-rock aquifer. Time-lapse difference-attenuation radar tomography was conducted during saline tracer experiments at the US Geological Survey Fractured Rock Hydrology Research Site near Mirror Lake, Grafton County, New Hampshire, USA. The presence of electrically conductive saline tracer effectively illuminates permeable fractures or pathways for geophysical imaging. The geophysical results guide the construction of three-dimensional numerical models of ground-water flow and solute transport. In an effort to explore alternative explanations for the tracer and tomographic data, a suite of conceptual models involving heterogeneous hydraulic conductivity fields and rate-limited mass transfer are considered. Calibration data include tracer concentrations, the arrival time of peak concentration at the outlet, and steady-state hydraulic head. Results from the coupled inversion procedure suggest that much of the tracer mass migrated outside the three tomographic image planes, and that solute is likely transported by two pathways through the system. This work provides basic and site-specific insights into the control of permeability heterogeneity on ground-water flow and solute transport in fractured rock. ?? Springer-Verlag 2004.

  16. Specification of matrix cleanup goals in fractured porous media.

    Science.gov (United States)

    Rodríguez, David J; Kueper, Bernard H

    2013-01-01

    Semianalytical transient solutions have been developed to evaluate what level of fractured porous media (e.g., bedrock or clay) matrix cleanup must be achieved in order to achieve compliance of fracture pore water concentrations within a specified time at specified locations of interest. The developed mathematical solutions account for forward and backward diffusion in a fractured porous medium where the initial condition comprises a spatially uniform, nonzero matrix concentration throughout the domain. Illustrative simulations incorporating the properties of mudstone fractured bedrock demonstrate that the time required to reach a desired fracture pore water concentration is a function of the distance between the point of compliance and the upgradient face of the domain where clean groundwater is inflowing. Shorter distances correspond to reduced times required to reach compliance, implying that shorter treatment zones will respond more favorably to remediation than longer treatment zones in which back-diffusion dominates the fracture pore water response. For a specified matrix cleanup goal, compliance of fracture pore water concentrations will be reached sooner for decreased fracture spacing, increased fracture aperture, higher matrix fraction organic carbon, lower matrix porosity, shorter aqueous phase decay half-life, and a higher hydraulic gradient. The parameters dominating the response of the system can be measured using standard field and laboratory techniques. © 2012, The Author(s). Ground Water © 2012, National Ground Water Association.

  17. Potential yields of wells in unconsolidated aquifers in upstate New York-- Adirondack sheet

    Science.gov (United States)

    Bugliosi, Edward F.; Trudell, Ruth A.; Casey, George D.

    1988-01-01

    This map shows the location and potential well yield from unconsolidated aquifers in the Adirondack region at a 1:250,000 scale. It also delineates segments of aquifers that are heavily used by community water systems and designated by the New York State Department of Environmental Conservation as ' Primary Water Supply ' aquifers and cites published reports that give detailed information on each area. Most aquifers were deposited in low-lying areas such as valleys or plains during deglaciation of the region. Thick, permeable, well-sorted sand and gravel deposits generally yield large quantities of water, greater than 100 gal/min. Thin sand, sand and gravel deposits, or thicker gravel units have a large content of silt and fine sand, yield moderate amounts of water, 10 to 100 gal/min. Wells dug in till and those drilled in bedrock commonly yield less than 10 gal/min. (USGS)

  18. No. 6 fuel oil bioremediation in fractured bedrock

    International Nuclear Information System (INIS)

    Kovacs, A.L.; Landsman, M.C.

    1995-01-01

    No. 6 fuel oil was released from underground storage vessels that were installed in 1968 at a prominent university in Washington, DC. Initial remedial efforts consisted of excavating contaminated soil and saprolite to bedrock. Bioremediation and free-product recovery were chosen as the most feasible alternatives to the remediation of residual impacts. A biolechate field consisting of a gravel bed covered by plastic sheeting with oxygen and nutrient distribution piping was constructed in the excavated pit. The leachate field was reconstructed following installation of anew tank field to serve as a permanent structure. The long-term in situ microbial degradation portion of the project was developed to reduce total petroleum hydrocarbon (TPH) levels in both the groundwater and the impact zone. A biotreatability bench study has shown a viable microbial population in the subsurface that may be adapted to degrade No. 6 fuel oil. A 1-month-long pilot study, consisting of full-scale nutrient augmentation and air sparging, was implemented. Results from air and water monitoring indicate that stimulation of microbial activity in the vadose and saturated zones is occurring. The bench-scale and field pilot studies indicate a reasonable chance for project success

  19. Resistivity method contribution in determining of fault zone and hydro-geophysical characteristics of carbonate aquifer, eastern desert, Egypt

    Science.gov (United States)

    Ammar, A. I.; Kamal, K. A.

    2018-03-01

    Determination of fault zone and hydro-geophysical characteristics of the fractured aquifers are complicated, because their fractures are controlled by different factors. Therefore, 60 VESs were carried out as well as 17 productive wells for determining the locations of the fault zones and the characteristics of the carbonate aquifer at the eastern desert, Egypt. The general curve type of the recorded rock units was QKH. These curves were used in delineating the zones of faults according to the application of the new assumptions. The main aquifer was included at end of the K-curve type and front of the H-curve type. The subsurface layers classified into seven different geoelectric layers. The fractured shaly limestone and fractured limestone layers were the main aquifer and their resistivity changed from low to medium (11-93 Ω m). The hydro-geophysical properties of this aquifer such as the areas of very high, high, and intermediate fracture densities of high groundwater accumulations, salinity, shale content, porosity distribution, and recharging and flowing of groundwater were determined. The statistical analysis appeared that depending of aquifer resistivity on the water salinities (T.D.S.) and water resistivities add to the fracture density and shale content. The T.D.S. increasing were controlled by Na+, Cl-, Ca2+, Mg2+, and then (SO4)2-, respectively. The porosity was calculated and its average value was 19%. The hydrochemical analysis of groundwater appeared that its type was brackish and the arrangements of cation concentrations were Na+ > Ca2+ > Mg2+ > K+ and anion concentrations were Cl- > (SO4)2- > HCO3 - > CO3 -. The groundwater was characterized by sodium-bicarbonate and sodium-sulfate genetic water types and meteoric in origin. Hence, it can use the DC-resistivity method in delineating the fault zone and determining the hydro-geophysical characteristics of the fractured aquifer with taking into account the quality of measurements and interpretation.

  20. Flow in bedrock canyons.

    Science.gov (United States)

    Venditti, Jeremy G; Rennie, Colin D; Bomhof, James; Bradley, Ryan W; Little, Malcolm; Church, Michael

    2014-09-25

    Bedrock erosion in rivers sets the pace of landscape evolution, influences the evolution of orogens and determines the size, shape and relief of mountains. A variety of models link fluid flow and sediment transport processes to bedrock incision in canyons. The model components that represent sediment transport processes are increasingly well developed. In contrast, the model components being used to represent fluid flow are largely untested because there are no observations of the flow structure in bedrock canyons. Here we present a 524-kilometre, continuous centreline, acoustic Doppler current profiler survey of the Fraser Canyon in western Canada, which includes 42 individual bedrock canyons. Our observations of three-dimensional flow structure reveal that, as water enters the canyons, a high-velocity core follows the bed surface, causing a velocity inversion (high velocities near the bed and low velocities at the surface). The plunging water then upwells along the canyon walls, resulting in counter-rotating, along-stream coherent flow structures that diverge near the bed. The resulting flow structure promotes deep scour in the bedrock channel floor and undercutting of the canyon walls. This provides a mechanism for channel widening and ensures that the base of the walls is swept clear of the debris that is often deposited there, keeping the walls nearly vertical. These observations reveal that the flow structure in bedrock canyons is more complex than assumed in the models presently used. Fluid flow models that capture the essence of the three-dimensional flow field, using simple phenomenological rules that are computationally tractable, are required to capture the dynamic coupling between flow, bedrock erosion and solid-Earth dynamics.

  1. Aquifer Chemistry and Transport Processes in the Zone of Contribution to a Public-Supply Well in Woodbury, Connecticut, 2002-06

    Science.gov (United States)

    Brown, Craig J.; Starn, J. Jeffrey; Stollenwerk, Kenneth G.; Mondazzi, Remo A.; Trombley, Thomas J.

    2009-01-01

    A glacial aquifer system in Woodbury, Connecticut, was studied to identify factors that affect the groundwater quality in the zone of contribution to a community public-supply well. Water samples were collected during 2002-06 from the public-supply well and from 35 monitoring wells in glacial stratified deposits, glacial till, and fractured bedrock. The glacial aquifer is vulnerable to contamination from a variety of sources due to the short groundwater residence times and the urban land use in the contributing recharge area to the public-supply well. The distribution and concentrations of pH, major and trace elements, stable isotope ratios, recharge temperatures, dissolved organic carbon (DOC), and volatile organic compounds (VOCs), and the oxidation-reduction (redox) conditions, were used to identify recharge source areas, aquifer source material, anthropogenic sources, chemical processes, and groundwater-flow paths from recharge areas to the public-supply well, PSW-1. The major chemical sources to groundwater and the tracers or conditions used to identify them and their processes throughout the aquifer system include (1) bedrock and glacial stratified deposits and till, characterized by high pH and concentrations of sulfate (SO42-), bicarbonate, uranium (U), radon-222, and arsenic (As) relative to those of other wells, reducing redox conditions, enriched delta sulfur-34 (d34S) and delta carbon-13 (d13C) values, depleted delta oxygen-18 (d18O) and delta deuterium (dD) values, calcite near saturation, low recharge temperatures, and groundwater ages of more than about 9 years; (2) natural organic matter, either in sediments or in an upgradient riparian zone, characterized by high concentrations of DOC or manganese (Mn), low concentrations of dissolved oxygen (DO) and nitrate (NO3-), enriched d34S values, and depleted d18O and dD values; (3) road salt (halite), characterized by high concentrations of sodium (Na), chloride (Cl-), and calcium (Ca), and indicative

  2. Propagation characteristics of bedrock waves traveling from pre-Tertiary basement to engineering bedrock

    Science.gov (United States)

    Kinoshita, S.

    2007-11-01

    This study uses borehole array recordings to measure the propagation characteristics of bedrock waves traveling from pre-Tertiary basement (seismic bedrock) to engineering bedrock with an S-wave velocity of approximately 0.5-0.8 km/s. To avoid the destructive interference of surface-reflected down-going waves and incidence waves in seismic and engineering bedrock, borehole data recorded at sufficient depth levels are used in this study. This is the most important aspect of the fundamental basis of this study. The propagation characteristics, i.e., the transfer function, of bedrock motions for S-waves are well represented by a Butterworth-type low-pass filter model with a high corner frequency in excess of 15 Hz and a low decay rate of -3 power of frequency. The use of such a filter model is based on the concise representation of the transfer function from an engineering viewpoint. Simple one-dimensional ray theory with a plane wave approximation explains the characteristics of the model filter at low frequencies of less than approximately 5 Hz; however, one-dimensional ray theory with a plane wave approximation at high frequencies in excess of 5 Hz requires the unusual frequency characteristics of Q_S-1(f), which increases with increasing frequency, to explain the frequency characteristics of the model filter. These facts imply that the filter gain can be determined using the impedance ratio of seismic bedrock to engineering bedrock and the attenuation characteristics of the intervening media at low frequencies less than 5 Hz. However, the cutoff frequency and decay rate of the filter must be determined from observational data.

  3. Lithological and structural bedrock model of the Haestholmen study site, Loviisa, SE Finland

    International Nuclear Information System (INIS)

    Front, K.; Paulamaeki, S.; Ahokas, H.; Anttila, P.

    1999-10-01

    The Haestholmen study site is located within the anorogenic Wiborg rapakivi granite batholith, 1640 1630 Ma in age. The bedrock consists of various rapakivi granites, which can be divided into three groups or lithological units: (1) wiborgite and pyterlite, (2) porphyritic rapakivi granite, and (3) even-grained or weakly porphyritic rapakivi granite, pyterlite being the dominant rock type. The evengrained and weakly porphyritic rapakivi granite has been interpreted to form a younger intrusive unit with a thickness of ca. 500 m, dipping approx. 20 deg to the NNW-NNE. Surface fractures form a distinct orthogonal system, with three perpendicular fracture directions: fractures dipping steeply (dip >75 deg) to the NE-SW and NW-SE plus subhorizontal (dip -3 m 2 /s to 1*10 -7 m 2 /s, the average being 1-10 -5 m 2 /s. (orig.)

  4. Assessment of ground water quality in a fractured aquifer under continue wastewater injection

    International Nuclear Information System (INIS)

    Carrieri, C.; Masciopinto, C.

    2000-01-01

    Experimental studies have been carried out in a fractured coastal aquifer of the Salento Region (Nardo' (Le) Italy), subject since 1991 to injection of 12000 m 3 /d of treated municipal wastewater in a natural sink. The analytical parameters of ground water sampled in monitoring wells, have been compared before and after the injection started. The mound of water table (1.5 m), the reduction of seawater extent of 2 km and the spreading of pollutants injected were evaluated by means of mathematical model results. After ten years operation, the volume of the available resource for agricultural and drinking use has been increased, without notable decrease of the pre existent ground water quality. Moreover for preserving such resource from pollution, the mathematical model allowed the standards of wastewater quality for recharge to be identified. Around the sink, a restricted area was also defined with prohibition of withdrawals, to avoid infection and other risks on human health [it

  5. Contribution to the characterization of 222-radon concentrations variability in water to the understanding of an aquifer behaviour in fractured medium: example of the Ploemeur site, Morbihan; Apport de la caracterisation de la variabilite des concentrations en radon-222 dans l'eau a la comprehension du fonctionnement d'un aquifere en milieu fracture de socle: exemple du site de Ploemeur, Morbihan

    Energy Technology Data Exchange (ETDEWEB)

    Le Druillennec, Th

    2007-06-15

    Heterogeneous fractured aquifers which developed in crystalline rocks, such as schist or granite, supply 20% of tap water production of Brittany. These fractured media present a large range of permeability. In these aquifers, fluid flow and transport of elements dissolved in water are strongly related on the geometry of the fractured network. Increasing the knowledge of the hydrogeological behaviour of the aquifer is fundamental for the management and the protection of the groundwater resources. Radon-222 is a radioactive noble gas produced from radium-226 further to the radioactive decay of uranium-238; it occurs naturally in ground waters and derives primarily from U-rich rocks and minerals that have been in contact with water. Radon-222 concentrations in waters are liable to provide significant and relevant information on both the geometry of a fracture network and the flow distribution. Furthermore, radon may also be used as a tracer in the aquifer of water exchanges between zones of variable permeability. Three main results were obtained in this study: 1. An accurate characterisation of the radon concentrations in water was carried out in the Ploemeur aquifer (Brittany, France). These results highlight the variability in the spatial and vertical distributions of {sup 222}Rn activity in groundwater together with a wide range of concentrations extending from 0 to 1 500 Bq.L{sup -1}. 2. The influence of fracture aperture on radon content in groundwater has been demonstrated with the modelling of radon concentration. Indeed, the satisfactory results obtained with a simple crack model highlight that the geometry of the fracture network controls the radon activity in groundwater. 3. Thus, the results of pumping tests performed in the boreholes improved our understanding of the system. After the pumping test, an increase of the radon content in groundwater occurred and evidenced a contribution of a radon-rich water to supply the flow rate that seems to come from the

  6. Hydrogeology of the Potsdam Sandstone in northern New York

    Science.gov (United States)

    Williams, John H.; Reynolds, Richard J.; Franzi, David A.; Romanowicz, Edwin A.; Paillet, Frederick L.

    2010-01-01

    The Potsdam Sandstone of Cambrian age forms a transboundary aquifer that extends across northern New York and into southern Quebec. The Potsdam Sandstone is a gently dipping sequence of arkose, subarkose, and orthoquartzite that unconformably overlies Precambrian metamorphic bedrock. The Potsdam irregularly grades upward over a thickness of 450 m from a heterogeneous feldspathic and argillaceous rock to a homogeneous, quartz-rich and matrix-poor rock. The hydrogeological framework of the Potsdam Sandstone was investigated through an analysis of records from 1,500 wells and geophysical logs from 40 wells, and through compilation of GIS coverages of bedrock and surficial geology, examination of bedrock cores, and construction of hydrogeological sections. The upper several metres of the sandstone typically is weathered and fractured and, where saturated, readily transmits groundwater. Bedding-related fractures in the sandstone commonly form sub-horizontal flow zones of relatively high transmissivity. The vertical distribution of sub-horizontal flow zones is variable; spacings of less than 10 m are common. Transmissivity of individual flow zones may be more than 100 m2/d but typically is less than 10 m2/d. High angle fractures, including joints and faults, locally provide vertical hydraulic connection between flow zones. Hydraulic head gradients in the aquifer commonly are downward; a laterally extensive series of sub-horizontal flow zones serve as drains for the groundwater flow system. Vertical hydraulic head differences between shallow and deep flow zones range from 1 m to more than 20 m. The maximum head differences are in recharge areas upgradient from the area where the Chateauguay and Chazy Rivers, and their tributaries, have cut into till and bedrock. Till overlies the sandstone in much of the study area; its thickness is generally greatest in the western part, where it may exceed 50 m. A discontinuous belt of bedrock pavements stripped of glacial drift extends

  7. Permafrost delineation for remediation planning : Fort Wainwright, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Astley, B. [Cold Regions Research and Engineering Laboratory, Anchorage, AK (United States); Snyder, C. [YEC Inc., Valley Cottage, NJ (United States); Delaney, A. [Cold Regions Research and Engineering Laboratory, Fairbanks, AK (United States); Arcone, S.; Lawson, D. [Cold Regions Research and Engineering Laboratory, Hanover, NH (United States)

    2003-07-01

    In the summer of 1999, geophysical and hydrogeological surveys were conducted at the Birch Hill Tank Farm and Truck Fill Stand in Fort Wainwright, Alaska to assess the distribution of benzene, 1,2-dichloroethane, and 1,2-dibromoethane. The Birch Hill site consists of a silt, sand and gravel fluvial deposit that overlies bedrock. Permafrost occurs discontinuously throughout the alluvium and underlying bedrock, resulting in a complex aquifer distribution. The bedrock beneath the Tank Farm is highly fractured and faulted with a weathered horizon that is 30 meters thick. The goal of this study was to map the discontinuous permafrost and aquifers in the alluvial deposits and weathered bedrock zone for the purpose of delineating bedrock depth and structural features that influence ground water flow. Several methods were used to define subsurface conditions, including borehole logs, DC resistivity, and ground-penetrating radar. A 3-D hydrogeologic model was used to develop a ground water flow model used to determine contaminant migration pathways and rates. The permafrost configuration was found to be the most important boundary condition in this model. 7 refs., 1 tab., 5 figs.

  8. Comparison of dialysis membrane diffusion samplers and two purging methods in bedrock wells

    Science.gov (United States)

    Imbrigiotta, T.E.; Ehlke, T.A.; Lacombe, P.J.; Dale, J.M.; ,

    2002-01-01

    Collection of ground-water samples from bedrock wells using low-flow purging techniques is problematic because of the random spacing, variable hydraulic conductivity, and variable contamination of contributing fractures in each well's open interval. To test alternatives to this purging method, a field comparison of three ground-water-sampling techniques was conducted on wells in fractured bedrock at a site contaminated primarily with volatile organic compounds. Constituent concentrations in samples collected with a diffusion sampler constructed from dialysis membrane material were compared to those in samples collected from the same wells with a standard low-flow purging technique and a hybrid (high-flow/low-flow) purging technique. Concentrations of trichloroethene, cis-1,2-dichloroethene, vinyl chloride, calcium, chloride, and alkalinity agreed well among samples collected with all three techniques in 9 of the 10 wells tested. Iron concentrations varied more than those of the other parameters, but their pattern of variation was not consistent. Overall, the results of nonparametric analysis of variance testing on the nine wells sampled twice showed no statistically significant difference at the 95-percent confidence level among the concentrations of volatile organic compounds or inorganic constituents recovered by use of any of the three sampling techniques.

  9. Potential yields of wells in unconsolidated aquifers in upstate New York--Hudson-Mohawk sheet

    Science.gov (United States)

    Bugliosi, Edward F.; Trudell, Ruth A.; Casey, George D.

    1988-01-01

    This map shows the location and potential well yields of unconsolidated aquifers in the Hudson-Mohawk region at a scale of 1:250,000. It also delineates segments of aquifers that are heavily used by community water systems and designated by the New York State Department of Environmental Conservation as ' Primary Water Supply ' aquifers, and cites published reports that give detailed information on each area. Most aquifers were deposited in low-lying areas such as valleys or plains during deglaciations of the region. Thick, permeable, well-sorted sand and gravel deposits generally yield large quantities of water, greater than 100 gal/min. Thin sand, sand and gravel deposits, or thicker gravel units that have a large content of silt and fine sand, yield moderate amounts of water, 10 to 100 gal/min. Wells dug in till and those drilled in bedrock commonly yield less than 10 gal/min. (USGS)

  10. Potential yields of wells in unconsolidated aquifers in upstate New York--lower Hudson sheet

    Science.gov (United States)

    Bugliosi, Edward F.; Trudell, Ruth A.

    1988-01-01

    This map shows the location and potential well yields from unconsolidated aquifers in the lower-Hudson region at a 1:250 ,000 scale. It also delineates segments of aquifers that are heavily used by community water systems and designated by the New York State Department of Environmental Conservation as ' Primary water supply ' aquifers and cites published reports that give detailed information on each area. Most aquifers were deposited in low-lying areas such as valleys or plains during deglaciation of the region. Thick, permeable, well-sorted sand and gravel deposits generally yield large quantities of water, more than 100 gal/min. Thin sand, sand and gravel deposits, or thicker gravel units that have a large content of silt and fine sand, yield moderate amounts of water, 10 to 100 gal/min. Wells dug in till and those drilled in bedrock commonly yield less than 10 gal/min. (USGS)

  11. Groundwater flow and sorption processes in fractured rocks (I)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won Young; Woo, Nam Chul; Yum, Byoung Woo; Choi, Young Sub; Chae, Byoung Kon; Kim, Jung Yul; Kim, Yoo Sung; Hyun, Hye Ja; Lee, Kil Yong; Lee, Seung Gu; Youn, Youn Yul; Choon, Sang Ki [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1996-12-01

    This study is objected to characterize groundwater flow and sorption processes of the contaminants (ground-water solutes) along the fractured crystalline rocks in Korea. Considering that crystalline rock mass is an essential condition for using underground space cannot be overemphasized the significance of the characterizing fractured crystalline rocks. the behavior of the groundwater contaminants is studied in related to the subsurface structure, and eventually a quantitative technique will be developed to evaluate the impacts of the contaminants on the subsurface environments. The study has been carried at the Samkwang mine area in the Chung-Nam Province. The site has Pre-Cambrian crystalline gneiss as a bedrock and the groundwater flow system through the bedrock fractures seemed to be understandable with the study on the subsurface geologic structure through the mining tunnels. Borehole tests included core logging, televiewer logging, constant pressure fixed interval length tests and tracer tests. The results is summarized as follows; 1) To determine the hydraulic parameters of the fractured rock, the transient flow analysis produce better results than the steady - state flow analysis. 2) Based on the relationship between fracture distribution and transmissivities measured, the shallow part of the system could be considered as a porous and continuous medium due to the well developed fractures and weathering. However, the deeper part shows flow characteristics of the fracture dominant system, satisfying the assumptions of the Cubic law. 3) Transmissivities from the FIL test were averaged to be 6.12 x 10{sup -7}{sub m}{sup 2}{sub /s}. 4) Tracer tests result indicates groundwater flow in the study area is controlled by the connection, extension and geometry of fractures in the bedrock. 5) Hydraulic conductivity of the tracer-test interval was in maximum of 7.2 x 10{sup -6}{sub m/sec}, and the effective porosity of 1.8 %. 6) Composition of the groundwater varies

  12. Hydrogeology of Valley-Fill Aquifers and Adjacent Areas in Eastern Chemung County, New York

    Science.gov (United States)

    Heisig, Paul M.

    2015-10-19

    The extent, hydrogeologic framework, and potential well yields of valley-fill aquifers within a 151-square-mile area of eastern Chemung County, New York, were investigated, and the upland distribution of till thickness over bedrock was characterized. The hydrogeologic framework of these valleyfill aquifers was interpreted from multiple sources of surficial and subsurface data and an interpretation of the origin of the glacial deposits, particularly during retreat of glacial ice from the region. Potential yields of screened wells are based on the hydrogeologic framework interpretation and existing well-yield data, most of which are from wells finished with open-ended well casing.

  13. Potential yields of wells in unconsolidated aquifers in upstate New York-- Niagara sheet

    Science.gov (United States)

    Miller, Todd S.

    1988-01-01

    This map depicts the locations and potential well yields of unconsolidated aquifers in western New York at a scale of 1:250 ,000. It also delineates segments of aquifers that are used for public water supplies and designated by the New York State Department of Environmental Conservation as ' Primary Water Supply Aquifers. ' The map also lists published reports that give detailed information on each area. Most aquifers were deposited in low areas, such as valleys and plains, during deglaciation of the region. Thick, permeable, well-sorted sand and gravel units yield large quantities of water - more than 100 gal/min - to properly constructed wells. Thin sand units and sand and gravel units and thicker gravel units that have a large content of silt and fine sand yield moderate amounts of water, 10 to 100 gal/min. Dug wells that tap till or lacustrine deposits yield less than 5 gal/min. Well yields from bedrock are not indicated. (USGS)

  14. Bedrock Hydrogeology-Groundwater flow modelling. Site investigation SFR

    International Nuclear Information System (INIS)

    Oehman, Johan; Follin, Sven; Oden, Magnus

    2013-05-01

    The hydrogeological model developed for the SFR extension project (PSU) consists of 40 geologically modelled deformation zones (DZ) and 8 sub-horizontal structural-hydraulic features, called SBAstructures, not defined in the geological model. However, some of the SBA-structures coincide with what is defined as unresolved possible deformation zones (Unresolved PDZ) in the geological modelling. In addition, the hydrogeological model consists of a stochastic discrete fracture network (DFN) model intended for the less fractured rock mass volumes (fracture domains) between the zones and the SBA-structures, and a stochastic fracture model intended to handle remaining Unresolved PDZs in the geological modelling not modelled as SBA-structures in the hydrogeological modelling. The four structural components of the bedrock in the hydrogeological model, i.e. DZ, SBA, Unresolved PDZ and DFN, are assigned hydraulic properties in the hydrogeological model based on the transmissivities interpreted from single-hole hydraulic tests. The main objective of the present work is to present the characteristics of the hydrogeological model with regard to the needs of the forthcoming safety assessment SR-PSU. In concrete words, simulated data are compared with measured data, i.e. hydraulic heads in boreholes and tunnel inflow to the existing repository (SFR). The calculations suggest that the available data for flow model calibration cannot be used to motivate a substantial adjustment of the initial hydraulic parameterisation (assignment of hydraulic properties) of the hydrogeological model. It is suggested that uncertainties in the hydrogeological model are studied in the safety assessment SR-PSU by means of a large number of calculation cases. These should address hydraulic heterogeneity of deterministic structures (DZ and SBA) and realisations of stochastic fractures/fracture networks (Unresolved PDZ and DFN) within the entire SFR Regional model domain

  15. Bedrock Hydrogeology - Groundwater flow modelling. Site investigation SFR

    Energy Technology Data Exchange (ETDEWEB)

    Oehman, Johan [Geosigma AB, Uppsala (Sweden); Follin, Sven [SF GeoLogic AB, Taeby (Sweden); Oden, Magnus [SKB, Stockholm (Sweden)

    2013-05-15

    The hydrogeological model developed for the SFR extension project (PSU) consists of 40 geologically modelled deformation zones (DZ) and 8 sub-horizontal structural-hydraulic features, called SBAstructures, not defined in the geological model. However, some of the SBA-structures coincide with what is defined as unresolved possible deformation zones (Unresolved PDZ) in the geological modelling. In addition, the hydrogeological model consists of a stochastic discrete fracture network (DFN) model intended for the less fractured rock mass volumes (fracture domains) between the zones and the SBA-structures, and a stochastic fracture model intended to handle remaining Unresolved PDZs in the geological modelling not modelled as SBA-structures in the hydrogeological modelling. The four structural components of the bedrock in the hydrogeological model, i.e. DZ, SBA, Unresolved PDZ and DFN, are assigned hydraulic properties in the hydrogeological model based on the transmissivities interpreted from single-hole hydraulic tests. The main objective of the present work is to present the characteristics of the hydrogeological model with regard to the needs of the forthcoming safety assessment SR-PSU. In concrete words, simulated data are compared with measured data, i.e. hydraulic heads in boreholes and tunnel inflow to the existing repository (SFR). The calculations suggest that the available data for flow model calibration cannot be used to motivate a substantial adjustment of the initial hydraulic parameterisation (assignment of hydraulic properties) of the hydrogeological model. It is suggested that uncertainties in the hydrogeological model are studied in the safety assessment SR-PSU by means of a large number of calculation cases. These should address hydraulic heterogeneity of deterministic structures (DZ and SBA) and realisations of stochastic fractures/fracture networks (Unresolved PDZ and DFN) within the entire SFR Regional model domain.

  16. Physically based probability criterion for exceeding radionuclide concentration limits in heterogeneous bedrock

    International Nuclear Information System (INIS)

    Worman, A.; Xu, S.; Dverstorp, B.

    2004-01-01

    A significant problem in a risk analysis of the repository for high-level nuclear waste is to estimate the barrier effect of the geosphere. The significant spatial variability of the rock properties implies that migrating RNs encounter a distribution of bedrock properties and mass-transfer mechanisms in different proportions along the transport paths. For practical reasons, we will never be able to know exactly this distribution of properties by performing a reasonable amount of measurements in a site investigation. On the contrary, recent experimental studies reveal that crystalline bedrock can possess a marked heterogeneity of various physical and geochemical properties that potentially may have a certain impact on the transport of RNs in fractured bedrock. Also current field investigation techniques provide only fragmentary information of the properties of the geosphere. This is a basic motivation for treating flows of water and solute elements in groundwaters by means of stochastic continuum models. The stochastic analysis is based on the idea that we know only certain point values of the property fields and use this information to estimate intermediate values. The probabilistic properties of the stochastic analysis are suitable input variables for risk analyses of the relevant sequence of extreme events for which empirical observations are rare or non-existing. The purpose of this paper is to outline the implications of the stochastic approach for estimating probabilities that certain concentration limits are exceeded at discharge points from. the bedrock in case of a leakage from the waste repository. The analysis is restricted to the water flow and solute transport in the bedrock alone without consideration of the full sequence of events in a full risk analysis and the Bayesian statistics involved in such conditioned (and cross-correlated) event series. The focus is on the implication for the risk analysis of the auto-covariance structure in bedrock

  17. Water resources in the Blackstone River basin, Massachusetts

    Science.gov (United States)

    Walker, Eugene H.; Krejmas, Bruce E.

    1983-01-01

    The Blackstone River heads in brooks 6 miles northwest of Worcester and drains about 330 square miles of central Massachusetts before crossing into Rhode Island at Woonsocket. The primary source of the Worcester water supply is reservoirs, but for the remaining 23 communities in the basin, the primary source is wells. Bedrock consists of granitic and metamorphic rocks. Till mantles the uplands and extends beneath stratified drift in the valleys. Stratified glacial drift, consisting of clay, silt, and fine sand deposited in lakes and coarse-textured sand and gravel deposited by streams, is found in lowlands and valleys. The bedrock aquifer is capable of sustaining rural domestic supplies throughout the Blackstone River basin. Bedrock wells yield an average of 10 gallons per minute, but some wells, especially those in lowlands where bedrock probably contains more fractures and receives more recharge than in the upland areas, yield as much as 100 gallons per minute. Glacial sand and gravel is the principal aquifer. It is capable of sustaining municipal supplies. Average daily pumpage from this aquifer in the Blackstone River basin was 10.4 million gallons per day in 1978. The median yield of large-diameter wells in the aquifer is 325 gallons per minute. The range of yields from these wells is 45 to 3,300 gallons per minute. The median specific capacity is about 30 gallons per minute per foot of drawdown.

  18. Bedrock Canyons Carved by the Largest Known Floods on Earth and Mars

    Science.gov (United States)

    Lamb, M. P.; Lapôtre, M. G. A.; Larsen, I. J.; Williams, R. M. E.

    2017-12-01

    The surface of Earth is a dynamic and permeable interface where the rocky crust is sculpted by ice, wind and water resulting in spectacular mountain ranges, vast depositional basins and environments that support life. These landforms and deposits contain a rich, yet incomplete, record of Earth history that we are just beginning to understand. Some of the most dramatic landforms are the huge bedrock canyons carved by catastrophic floods. On Mars, similar bedrock canyons, known as Outflow Channels, are the most important indicators of large volumes of surface water in the past. Despite their importance and now decades of observations of canyon morphology, we lack a basic understanding of how the canyons formed, which limits our ability to reconstruct flood discharge, duration and water volume. In this presentation I will summarize recent work - using mechanistic numerical models and field observations - that suggests that bedrock canyons carved by megafloods rapidly evolve to a size and shape such that boundary shear stresses just exceed that required to entrain fractured blocks of rock. The threshold shear stress constraint allows for quantitative reconstruction of the largest known floods on Earth and Mars, and implies far smaller discharges than previous methods that assume flood waters fully filled the canyons to high water marks.

  19. Hydrogeology and water quality of the Nanticoke Creek stratified-drift aquifer, near Endicott, New York

    Science.gov (United States)

    Kreitinger, Elizabeth A.; Kappel, William M.

    2014-01-01

    The Village of Endicott, New York, is seeking an alternate source of public drinking water with the potential to supplement their current supply, which requires treatment due to legacy contamination. The southerly-draining Nanticoke Creek valley, located north of the village, was identified as a potential water source and the local stratified-drift (valley fill) aquifer was investigated to determine its hydrogeologic and water-quality characteristics. Nanticoke Creek and its aquifer extend from the hamlet of Glen Aubrey, N.Y., to the village of Endicott, a distance of about 15 miles, where it joins the Susquehanna River and its aquifer. The glacial sediments that comprise the stratified-drift aquifer vary in thickness and are generally underlain by glacial till over Devonian-aged shale and siltstone. Groundwater is more plentiful in the northern part of the aquifer where sand and gravel deposits are generally more permeable than in the southern part of the aquifer where less-permeable unconsolidated deposits are found. Generally there is enough groundwater to supply most homeowner wells and in some cases, supply small public-water systems such as schools, mobile-home parks, and small commercial/industrial facilities. The aquifer is recharged by precipitation, runoff, and tributary streams. Most tributary streams flowing across alluvial deposits lose water to the aquifer as they flow off of their bedrock-lined channels and into the more permeable alluvial deposits at the edges of the valley. The quality of both surface water and groundwater is generally good. Some water wells do have water-quality issues related to natural constituents (manganese and iron) and several homeowners noted either the smell and (or) taste of hydrogen sulfide in their drinking water. Dissolved methane concentrations from five drinking-water wells were well below the potentially explosive value of 28 milligrams per liter. Samples from surface and groundwater met nearly all State and Federal

  20. Use of sinkhole and specific capacity distributions to assess vertical gradients in a karst aquifer

    Science.gov (United States)

    McCoy, K.J.; Kozar, M.D.

    2008-01-01

    The carbonate-rock aquifer in the Great Valley, West Virginia, USA, was evaluated using a database of 687 sinkholes and 350 specific capacity tests to assess structural, lithologic, and topographic influences on the groundwater flow system. The enhanced permeability of the aquifer is characterized in part by the many sinkholes, springs, and solutionally enlarged fractures throughout the valley. Yet, vertical components of subsurface flow in this highly heterogeneous aquifer are currently not well understood. To address this problem, this study examines the apparent relation between geologic features of the aquifer and two spatial indices of enhanced permeability attributed to aquifer karstification: (1) the distribution of sinkholes and (2) the occurrence of wells with relatively high specific capacity. Statistical results indicate that sinkholes (funnel and collapse) occur primarily along cleavage and bedding planes parallel to subparallel to strike where lateral or downward vertical gradients are highest. Conversely, high specific capacity values are common along prominent joints perpendicular or oblique to strike. The similarity of the latter distribution to that of springs suggests these fractures are areas of upward-convergent flow. These differences between sinkhole and high specific capacity distributions suggest vertical flow components are primarily controlled by the orientation of geologic structure and associated subsurface fracturing. ?? 2007 Springer-Verlag.

  1. Geologic Maps and Cross Sections of the Tuba City Open Dump Site and Vicinity, With Implications for the Occurrence and Flow of Ground Water

    Science.gov (United States)

    Otton, James K.; Johnson, Ray H.; Horton, Robert J.

    2008-01-01

    This report is designed to make available to interested parties geologic and limited hydrologic and geochemical information about the Tuba City Open Dump (TCOD) site. This information has been gathered during studies of the site from January to September 2008. Mapping by the authors and construction of cross sections show that a section of gently northeast-dipping Jurassic sedimentary rocks underlies the TCOD and vicinity. Low mesas in the area are capped by variably cemented gravels and siliceous limestones. Surficial sediments are composed of eolian sand and fluvially reworked eolian sand that overlie bedrock underneath the TCOD. Nearby Pasture Canyon is underlain by fluvial and floodplain sediment consisting of sand and silt. Shallow ground water of the water-table aquifer at the TCOD moves westward through the surficial sediment and the underlying weathered bedrock to Pasture Canyon then southward along the canyon. A fracture zone extends up the wash that passes just to the north of the TCOD and brings deeper ground water of the N-aquifer to the water-table aquifer. Bedrock consists of the Jurassic Navajo Sandstone composed of thick sections of eolian crossbedded sandstone with lesser laterally discontinuous layers of silty sandstone, siltstone, and limestone. Below the Navajo Sandstone is a section informally known as the Kayenta Formation-Navajo Sandstone transition zone. It is composed of calcareous sandstone, silty sandstone, siltstone, and limestone beds that intertongue with crossbedded sandstone. The finer grained rocks in both major bedrock units form aquitards that limit downward movement of ground water. The water-table aquifer is perched on these aquitards, which locally occurs beneath the two open dumps that form the TCOD site. A monocline occupies the position of Pasture Canyon west of the TCOD. Fractures likely related to the monocline are exposed in several localities. Deep ground waters consist of dilute calcium-bicarbonate waters low in all

  2. Ground-water levels in aquifers used for residential supply, Campton Township, Kane County, Illinois

    Science.gov (United States)

    Kay, Robert T.; Kraske, Kurt A.

    1996-01-01

    The U.S. Geological Survey, in cooperation with the Campton Township Board of Trustees, measured water levels in the aquifers used for residential supply in Campton Township, Kane County, Illinois. Aquifers used for residential supply are the shallow and deep aquifers in the glacial drift, composed of unconsolidated sand and gravels; the Alexandrian-Maquoketa aquifer, composed of dolomite and shale of the Alexandrian Series and the Maquoketa Group; the Galena-Platteville aquifer, composed of dolomite of the Platteville and Galena Groups; and the Ancell aquifer, composed of sandstones of the Glenwood Formation and the St. Peter Sanstone. Water-level altitudes in the shallow drift aquifers generally follow surface topography. Analysis of water-level data does not clearly indicate overutilization of these aquifers. Water-level altitudes in the deep drift aquifers decrease from west to east. Comparison of historical depth to water measurements with current (1995) measurements indicates large decreases in water levels in some areas. The deep drift aquifers may be overutilized at these locations. Water-level altitudes in the Alexandrian-Maquoketa aquifer generally decrease from west to east. The potentiometric surface of the aquifer follows the bedrock-surface topography in some locations. Localized low water-level altitudes and large decreases in water levels indicate the Alexandrian-Maquoketa aquifer is overutilized in several areas. Water-level altitudes in the wells finished in the Galena- Platteville aquifer vary by more than 300 feet. Large decreases in water levels in wells finished in the Galena-Platteville aquifer indicate the Galena-Platteville and Alexandrian-Maquoketa aquifers are overutilized in the northern part of the township. Water-level altitudes in the wells finished in the Ancell aquifer are also highly variable. There is no indication that the Ancell aquifer is overutilized.

  3. Straddle-packer aquifer test analyses of the Snake River Plain aquifer at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Johnson, G.S.; Frederick, D.B.

    1997-01-01

    The State of Idaho INEL Oversight Program, with the University of Idaho, Idaho State University, Boise State University, and the Idaho Geologic Survey, used a straddle-packer system to investigate vertical variations in characteristics of the Snake River Plain aquifer at the Idaho National Engineering Laboratory in southeast Idaho. Sixteen single-well aquifer tests were conducted on.isolated intervals in three observation wells. Each of these wells has approximately 200 feet of open borehole below the water table, penetrating the E through G and I basalt flow groups and interbedded sediments of the Snake River Plain aquifer. The success of the aquifer tests was limited by the inability to induce measurable drawdown in several zones. Time-drawdown data from aquifer tests were matched to type curves for 8 of the 16 zones tested. A single aquifer test at the water table exhibited greater curvature than those at depth. The increased degree of curvature suggests an unconfined response and resulted in an estimate of specific yield of 0.03. Aquifer tests below the water table generally yielded time-drawdown graphs with a rapid initial response followed by constant drawdown throughout the duration of the tests; up to several hours in length. The rapid initial response implies that the aquifer responds as a confined system during brief pumping periods. The nearly constant drawdown suggests a secondary source of water, probably vertical flow from overlying and underlying aquifer layers. Three analytical models were applied for comparison to the conceptual model and to provide estimates of aquifer properties. This, Hantush-Jacob leaky aquifer, and the Moench double-porosity fractured rock models were fit to time-drawdown data. The leaky aquifer type curves of Hantush and Jacob generally provided the best match to observed drawdown. A specific capacity regression equation was also used to estimate hydraulic conductivity

  4. Using enteric pathogens to assess sources of fecal contamination in the Silurian Dolomite Aquifer: Preliminary results

    Science.gov (United States)

    Muldoon, Maureen A; Borchardt, Mark A.; Spencer, Susan K.; Hunt, Randall J.; Owens, David

    2018-01-01

    The fractured Silurian dolomite aquifer is an important, but vulnerable, source of drinking water in northeast Wisconsin (Sherrill in Geology and ground water in Door County, Wisconsin, with emphasis on contamination potential in the Silurian dolomite, 1978; Bradbury and Muldoon in Hydrogeology and groundwater monitoring of fractured dolomite in the Upper Door Priority Watershed, Door County, Wisconsin, 1992; Muldoon and Bradbury in Assessing seasonal variations in recharge and water quality in the Silurian aquifer in areas with thicker soil cover. p 45, 2010). Areas underlain by the Silurian dolomite aquifer are extremely vulnerable to groundwater contamination from various land-use activities, especially the disposal of human wastewater and dairy manure. Currently there is no consensus as to which source of wastewater generates the greater impact to the aquifer.

  5. Database for Hydraulically Conductive Fractures. Update 2010

    International Nuclear Information System (INIS)

    Tammisto, E.; Palmen, J.

    2011-02-01

    Posiva flow logging (PFL) with 0.5 m test interval and made in 10 cm steps can be used for exact depth determination of hydraulically conductive fractures. Together with drillhole wall images and fracture data from core logging PFL provides possibilities to detect single conductive fractures. In this report, the results of PFL are combined to the fracture data in drillholes OL-KR49 .. OL-KR53, OL-KR50B, OL-KR52B and OLKR53B and pilot holes ONK-PH11 - ONK-PH13. The results are used mainly in development of hydroDFN- models. The conductive fractures were first recognised from the PFL data and digital drillhole images and then the fractures from the core logging corresponding to the ones picked from the digital drillhole images were identified. The conductive fractures were recognised from the images primarily based on openness of fractures or a visible flow in the image. In most of the cases of measured flow, no tails of flow were seen in the image. In these cases, the conductive fractures were recognised from the image based on openness of fractures and a matching depth. According to the results the hydraulically conductive fractures/zones can be distinguished from the drillhole wall images in most cases. An important phase in the work is to calibrate the depth of the image and the flow logging with the sample length. The hydraulic conductivity is clearly higher in the upper part of the bedrock in the depth range 0-150 m below sea level than deeper in the bedrock. The frequency of hydraulically conductive fractures detected in flow logging (T > 10 -10 -10 -9 m 2 /s) in depth range 0-150 m varies from 0.07 to 0.84 fractures/meter of sample length. Deeper in the rock the conductive fractures are less frequent, but occur often in groups of few fractures. In drillholes OL-KR49 .. OL-KR53, OL-KR50B, OL-KR52B and OL-KR53B about 8.5 % of all fractures and 4.4 % of the conductive fractures are within HZ-structures. (orig.)

  6. Natural spatial and temporal variations in groundwater chemistry in fractured, sedimentary rocks: scale and implications for solute transport

    International Nuclear Information System (INIS)

    Hoven, Stephen J. van der; Kip Solomon, D.; Moline, Gerilynn R.

    2005-01-01

    Natural tracers (major ions, δ 18 O, and O 2 ) were monitored to evaluate groundwater flow and transport to a depth of 20 m below the surface in fractured sedimentary (primarily shale and limestone) rocks. Large temporal variations in these tracers were noted in the soil zone and the saprolite, and are driven primarily by individual storm events. During nonstorm periods, an upward flow brings water with high TDS, constant δ 18 O, and low dissolved O 2 to the water table. During storm events, low TDS, variable δ 18 O, and high dissolved O 2 water recharges through the unsaturated zone. These oscillating signals are rapidly transmitted along fracture pathways in the saprolite, with changes occurring on spatial scales of several meters and on a time scale of hours. The variations decreased markedly below the boundary between the saprolite and less weathered bedrock. Variations in the bedrock units occurred on time scales of days and spatial scales of at least 20 m. The oscillations of chemical conditions in the shallow groundwater are hypothesized to have significant implications for solute transport. Solutes and colloids that adsorb onto aquifer solids can be released into solution by decreases in ionic strength and pH. The decreases in ionic strength also cause thermodynamic undersaturation of the groundwater with respect to some mineral species and may result in mineral dissolution. Redox conditions are also changing and may result in mineral dissolution/precipitation. The net result of these chemical variations is episodic transport of a wide range of dissolved solutes or suspended particles, a phenomenon rarely considered in contaminant transport studies

  7. Mapping Fractures in KAERI Underground Research Tunnel using Ground Penetrating Radar

    Science.gov (United States)

    Baek, Seung-Ho; Kim, Seung-Sep; Kwon, Jang-Soon

    2016-04-01

    The proportion of nuclear power in the Republic of Korea occupies about 40 percent of the entire electricity production. Processing or disposing nuclear wastes, however, remains one of biggest social issues. Although low- and intermediate-level nuclear wastes are stored temporarily inside nuclear power plants, these temporary storages can last only up to 2020. Among various proposed methods for nuclear waste disposal, a long-term storage using geologic disposal facilities appears to be most highly feasible. Geological disposal of nuclear wastes requires a nuclear waste repository situated deep within a stable geologic environment. However, the presence of small-scale fractures in bedrocks can cause serious damage to durability of such disposal facilities because fractures can become efficient pathways for underground waters and radioactive wastes. Thus, it is important to find and characterize multi-scale fractures in bedrocks hosting geologic disposal facilities. In this study, we aim to map small-scale fractures inside the KAERI Underground Research Tunnel (KURT) using ground penetrating radar (GPR). The KURT is situated in the Korea Atomic Energy Research Institute (KAERI). The survey target is a section of wall cut by a diamond grinder, which preserves diverse geologic features such as dykes. We conducted grid surveys on the wall using 500 MHz and 1000 MHz pulseEKKO PRO sensors. The observed GPR signals in both frequencies show strong reflections, which are consistent to form sloping planes. We interpret such planar features as fractures present in the wall. Such fractures were also mapped visually during the development of the KURT. We confirmed their continuity into the wall from the 3D GPR images. In addition, the spatial distribution and connectivity of these fractures are identified from 3D subsurface images. Thus, we can utilize GPR to detect multi-scale fractures in bedrocks, during and after developing underground disposal facilities. This study was

  8. Environmental isotopic study of the Korama aquifers, south of Zinder (Niger)

    International Nuclear Information System (INIS)

    Zakara, Z.; Karbo, A.; Aranyossy, J.F.

    1993-01-01

    A first environmental isotope study has been carried out on the ''Korama'' aquifers located in the southern part of the city of Zinder (Niger). Preliminary interpretation confirms that most of the aquifers are presently recharged by direct infiltration of rainwater. Structural fractures seem to play an important role in the water circulation allowing vertical drainage of oldest water coming from deeper aquifers and facilitating the recharge by surface water in the prheatic zone. It does not appear any difference between the so-called ''superficial Korama'' and the ''Deep Korama'' aquifers on the basis of the isotopic compositions. (author). 11 refs, 7 figs, 2 tabs

  9. Internal fracture heterogeneity in discrete fracture network modelling: Effect of correlation length and textures with connected and disconnected permeability field

    Science.gov (United States)

    Frampton, A.; Hyman, J.; Zou, L.

    2017-12-01

    Analysing flow and transport in sparsely fractured media is important for understanding how crystalline bedrock environments function as barriers to transport of contaminants, with important applications towards subsurface repositories for storage of spent nuclear fuel. Crystalline bedrocks are particularly favourable due to their geological stability, low advective flow and strong hydrogeochemical retention properties, which can delay transport of radionuclides, allowing decay to limit release to the biosphere. There are however many challenges involved in quantifying and modelling subsurface flow and transport in fractured media, largely due to geological complexity and heterogeneity, where the interplay between advective and dispersive flow strongly impacts both inert and reactive transport. A key to modelling transport in a Lagrangian framework involves quantifying pathway travel times and the hydrodynamic control of retention, and both these quantities strongly depend on heterogeneity of the fracture network at different scales. In this contribution, we present recent analysis of flow and transport considering fracture networks with single-fracture heterogeneity described by different multivariate normal distributions. A coherent triad of fields with identical correlation length and variance are created but which greatly differ in structure, corresponding to textures with well-connected low, medium and high permeability structures. Through numerical modelling of multiple scales in a stochastic setting we quantify the relative impact of texture type and correlation length against network topological measures, and identify key thresholds for cases where flow dispersion is controlled by single-fracture heterogeneity versus network-scale heterogeneity. This is achieved by using a recently developed novel numerical discrete fracture network model. Furthermore, we highlight enhanced flow channelling for cases where correlation structure continues across

  10. Evaluation of mechanisms that might control transport of wastewater contaminants in bedrock multi-aquifer systems

    Science.gov (United States)

    Ongoing research has identified infectious human enteric viruses in the Madison, Wisconsin, public supply wells that draw water from a deep, confined sandstone aquifer. These viruses most likely originate from leaking sanitary sewers and are a potential human health risk. Due to a relatively short (...

  11. Geohydrology of the Unconsolidated Valley-Fill Aquifer in the Meads Creek Valley, Schuyler and Steuben Counties, New York

    Science.gov (United States)

    Miller, Todd S.; Bugliosi, Edward F.; Reddy, James E.

    2008-01-01

    percent was from losing reaches of tributaries, 38 percent was unchanneled flow from hillsides that slope toward the valley (this estimate includes runoff and shallow ground-water inflow from till and bedrock), and the remaining 2 percent was from deep ground-water inflow from till and bedrock to the sides and bottom of the aquifer. Nearly all (94 percent) of the water discharged from the aquifer is equivalent to the streamflow gain in Meads Creek; the remaining 6 percent discharges as deep outflow to unconsolidated deposits in the Cohocton River valley. Several characteristics of the Meads Creek valley may contribute to flooding in the downstream area: (1) the southward decrease in the ground-water gradient impedes the ability of the aquifer to transmit water southward and can cause water levels to rise, (2) a high water table, typically only 5 to 10 feet below land surface, results in little storage capacity to absorb water from large storms, (3) a downstream narrowing of the valley impedes the southward flow of ground water and can cause water levels to rapidly rise during periods of prolonged or heavy precipitation, and (4) the upland slopes (till-covered bedrock) produce rapid runoff that recharges the aquifer. The combined effect of these conditions limits the ability of the aquifer to transmit sudden, large increases in recharge from precipitation and thereby provides a high potential for flooding in the southern third of the valley.

  12. Exploring deep potential aquifer in water scarce crystalline rocks

    Indian Academy of Sciences (India)

    out to explore deep groundwater potential zone in a water scarce granitic area. As existing field condi- ... Decision support tool developed in granitic ter- .... cially in terms of fracture system, the aquifer char- acteristics ... Methodologies used.

  13. Development methodologies evaluation of the charge and vulnerability of the Aquifer Guarani System in Argentina and Uruguay

    International Nuclear Information System (INIS)

    Rodriguez, L.; Gomez, A.; Oleaga, A.

    2007-01-01

    The study area is located in the Uruguayan/Brazilian border near the cities of Rivera (Uruguay) and Santa Ana do Livramento (Brasil) and their surroundings. The area is characterized by the presence of fractured basalts of the Arapey or Serra Geral Formation and sandstones of the Tacuarembo-Rivera (Botucatu) Formation that form up the Guarani Aquifer System (GAS). The general objectives of the project were to adapt and apply methodologies to estimate the recharge to the fractured aquifer and to estimate the fraction of that recharge that eventually reaches the GAS in the study area. The development of new methodologies for the vulnerability assessment of the Serra Geral Formation was also sought. Piezo metric data, geological and structural analyses and hydrogeochemical studies were used to construct the conceptual model of the system behavior. Then, a numerical model was implemented to validate the conceptual model, reproduce the current system behavior, and estimate the recharge to the sandstones (either from the overlying basalts or from rainfall). The model would indicate a downward flow, i.e., recharge from the fractured basalt to the shallow aquifer, and from it to the deep aquifer, which matches the hypothesis of this research. As for the vulnerability of the GAS below the fractured zone, and reminding that there would be recharge from the basalt, adapted methodologies from flat-land scenarios were proposed, integrating the degree of fracturing of the volcanic rocks and the thickness of the unsaturated zone

  14. A Novel Analytical Solution for Estimating Aquifer Properties and Predicting Stream Depletion Rates by Pumping from a Horizontally Anisotropic Aquifer

    Science.gov (United States)

    Huang, Y.; Zhan, H.; Knappett, P.

    2017-12-01

    Past studies modeling stream-aquifer interactions commonly account for vertical anisotropy, but rarely address horizontal anisotropy, which does exist in certain geological settings. Horizontal anisotropy is impacted by sediment deposition rates, orientation of sediment particles and orientations of fractures etc. We hypothesize that horizontal anisotropy controls the volume of recharge a pumped aquifer captures from the river. To test this hypothesis, a new mathematical model was developed to describe the distribution of drawdown from stream-bank pumping with a well screened across a horizontally anisotropic, confined aquifer, laterally bounded by a river. This new model was used to determine four aquifer parameters including the magnitude and directions of major and minor principal transmissivities and storativity based on the observed drawdown-time curves within a minimum of three non-collinear observation wells. By comparing the aquifer parameters values estimated from drawdown data generated known values, the discrepancies of the major and minor transmissivities, horizontal anisotropy ratio, storativity and the direction of major transmissivity were 13.1, 8.8, 4, 0 and managers to exploit groundwater resource reasonably while protecting stream ecosystem.

  15. Hydrogeological and quantitative groundwater assessment of the Basaltic Aquifer, Northern Harrat Rahat, Saudi Arabia

    International Nuclear Information System (INIS)

    Al-Shaibani, A.; Abokhodair, Abdulwahab A.; Lloyd, J.W.; Al-Ahmari, A.

    2007-01-01

    The Northern Harrat Rahat consists of 300m basalt lavas covering some 2000 km2 to the south-east of Al-Madinah in western Saudi Arabia. Like many basalt sequences, the Rahat basalts form an important aquifer and groundwater resource. The aquifer has a saturated thickness of up to 60m and made up of the weathered upper part of underlying basement, pre-basalt sands and gravels and the fractured basalts. Since 1992, groundwater has been abstracted from the aquifer as part of the Al-Madinah water supply. To assess the potential of the aquifer an assessment has been made based on pumping tests of 70 wells. The hydraulic parameters have been shown to be highly variable typical of the fractured domain. The aquifer contains good-quality water in storage, but receives limited recharge. Groundwater temperature anomalies indicate remnant volcanic activity locally. A numerical groundwater model has been constructed, which has been calibrated using limited groundwater head measurements, but with good abstraction records. Prediction of groundwater heads and the examination of several abstraction scenarios indicate that the aquifer can continue to support part of the Al-Madinah demand for the next several years, if certain well distributions are adopted. The predictions also show that the aquifer can only support the total demand of the city for a few days as a contingency resource. (author)

  16. Mechanisms of recharge in a fractured porous rock aquifer in a semi-arid region

    Science.gov (United States)

    Manna, Ferdinando; Walton, Kenneth M.; Cherry, John A.; Parker, Beth L.

    2017-12-01

    Eleven porewater profiles in rock core from an upland exposed sandstone vadose zone in southern California, with thickness varying between 10 and 62 m, were analyzed for chloride (Cl) concentration to examine recharge mechanisms, estimate travel times in the vadose zone, assess spatial and temporal variability of recharge, and determine effects of land use changes on recharge. As a function of their location and the local terrain, the profiles were classified into four groups reflecting the range of site characteristics. Century- to millennium-average recharge varied from 4 to 23 mm y-1, corresponding to different average Cl concentrations in the vadose zone and in groundwater, the contribution of diffuse flow (estimated at 80%) and preferential flow (20%) to the total recharge was quantified. This model of dual porosity recharge was tested by simulating transient Cl transport along a physically based narrow column using a discrete fracture-matrix numerical model. Using a new approach based on partitioning both water and Cl between matrix and fracture flow, porewater was dated and vertical displacement rates estimated to range in the sandstone matrix from 3 to 19 cm y-1. Moreover, the temporal variability of recharge was estimated and, along each profile, past recharge rates calculated based on the sequence of Cl concentrations in the vadose zone. Recharge rates increased at specific times coincident with historical changes in land use. The consistency between the timing of land use modifications and changes in Cl concentration and the match between observed and simulated Cl concentration values in the vadose zone provide confidence in porewater age estimates, travel times, recharge estimates, and reconstruction of recharge histories. This study represents an advancement of the application of the chloride mass balance method to simultaneously determine recharge mechanisms and reconstruct location-specific recharge histories in fractured porous rock aquifers. The

  17. Estimation of hydrodinamics parameters in a volcanic fractured phreatic aquifer in Costa Rica. Part II. Double porosity model

    International Nuclear Information System (INIS)

    Macias, Julio; Vargas, Asdrubal

    2017-01-01

    MIM 1D transport model was successfully applied to simulate the asymmetric behavior observed in three breakthrough curves of tracer tests performed under natural gradient conditions in a phreatic fractured volcanic aquifer. The transport parameters obtained after adjustment with a computer program, suggest that only 50% of the total porosity effectively contributed to the advective-dispersive transport (mobile fraction) and the other 50% behaved as a temporary reservoir for the tracer (immobile fraction). The estimated values of hydraulic properties and MIM model parameters are within the range of values reported by other researchers. It was possible to establish a conceptual and numerical framework to explain the three-tracer tests curves behavior, despite the limitations in quality and quantity of available field information. (author) [es

  18. Flow modelling in fractured aquifers, development of multi-continua model (direct and inverse problems) and application to the CEA/Cadarache site

    International Nuclear Information System (INIS)

    Cartalade, Alain

    2002-01-01

    This research thesis concerns the modelling of aquifer flows under the CEA/Cadarache site. The author reports the implementation of a numerical simulation tool adapted to large scale flows in fractured media, and its application to the Cadarache nuclear site. After a description of the site geological and hydrogeological characteristics, the author presents the conceptual model on which the modelling is based, presents the inverse model which allows a better definition of parameters, reports the validation of the inverse approach by means of synthetic and semi-synthetic cases. Then, he reports experiments and simulation of the Cadarache site

  19. Controls on wind abrasion patterns through a fractured bedrock landscape

    Science.gov (United States)

    Perkins, J. P.; Finnegan, N. J.

    2017-12-01

    Wind abrasion is an important geomorphic process for understanding arid landscape evolution on Earth and interpreting the post-fluvial history of Mars. Both the presence and orientation of wind-abraded landforms provide potentially important constraints on paleo-climatic conditions; however, such interpretations can be complicated by lithologic and structural heterogeneity. To explore the influence of pre-existing structure on wind abrasion, we exploit a natural experiment along the 10.2 Ma Lower Rio San Pedro ignimbrite in northern Chile. Here, a 3.2 Ma andesite flow erupted from Cerro de las Cuevas and deposited atop the ignimbrite, supplying wind-transportable sediment and initiating a phase of downwind abrasion. Additionally, the lava flow provides a continually varying degree of upwind topographic shielding along the ignimbrite that is reflected in a range of surface morphologies. Where fully shielded the ignimbrite surface is partially blanketed by sediment. However, as relief decreases the surface morphology shifts from large polygonal structures that emerge due to the concentration of wind abrasion along pre-existing fracture sets, to polygons that are bisected by wind-parallel grooves that cross-cut fracture sets, to linear sets of yardangs. We reconstruct the ignimbrite surface using a high-resolution digital elevation model, and calculate erosion rates ranging from 0.002 to 0.45 mm/kyr that vary strongly with degree of topographic shielding (R2 = 0.97). We use measured abrasion rates together with nearby weather station data to estimate the nondimensional Rouse number and Inertial Parameter for a range of particle sizes. From these calculations, we hypothesize that the change from fracture-controlled to flow-controlled morphology reflects increases in the grain size and inertia of particles in the suspension cloud. Where the ignimbrite experiences persistent high winds, large particles may travel in suspension and are largely insensitive to topographic

  20. Hydrogeology of the Ramapo River-Woodbury Creek valley-fill aquifer system and adjacent areas in eastern Orange County, New York

    Science.gov (United States)

    Heisig, Paul M.

    2015-01-01

    The hydrogeology of the valley-fill aquifer system and surrounding watershed areas was investigated within a 23-mile long, fault-controlled valley in eastern Orange County, New York. Glacial deposits form a divide within the valley that is drained to the north by Woodbury Creek and is drained to the south by the Ramapo River. Surficial geology, extent and saturated thickness of sand and gravel aquifers, extent of confining units, bedrock-surface elevation beneath valleys, major lineaments, and the locations of wells for which records are available were delineated on an interactive map.

  1. Research on fracture analysis, groundwater flow and sorption processes in fractured rocks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae-Ha; Kim, Won-Young; Lee, Seung-Gu [Korea Institute of Geology Mining and Materials, Taejon (KR)] (and others)

    1999-12-01

    Due to increasing demand for numerous industrial facilities including nuclear power plants and waste repositories, the feasibility of rocks masses as sites for the facilities has been a geological issue of concern. Rock masses, in general, comprises systems of fractures which can provide pathways for groundwater flow and may also affect the stability of engineered structures. For the study of groundwater flow and sorption processes in fractured rocks, five boreholes were drilled. A stepwise and careful integration of various data obtained from field works and laboratory experiments were carried out to analyze groundwater flow in fractured rocks as follows; (1) investigation of geological feature of the site, (2) identification and characterization of fracture systems using core and televiewer logs, (3) determination of hydrogeological properties of fractured aquifers using geophysical borehole logging, pumping and slug tests, and continuous monitoring of groundwater level and quality, (4) evaluation of groundwater flow patterns using fluid flow modeling. The results obtained from these processes allow a qualitative interpretation of fractured aquifers in the study area. Column experiments of some reactive radionuclides were also performed to examine sorption processes of the radionuclides including retardation coefficients. In addition, analyses of fracture systems covered (1) reconstruction of the Cenozoic tectonic movements and estimation of frequency indices for the Holocene tectonic movements, (2) determination of distributions and block movements of the Quaternary marine terraces, (3) investigation of lithologic and geotechnical nature of study area, and (4) examination of the Cenozoic volcanic activities and determination of age of the dike swarms. Using data obtained from above mentioned analyses along with data related to earthquakes and active faults, probabilistic approach was performed to determine various potential hazards which may result from the

  2. Carbon and hydrogen isotopic evidence for the origin of combustible gases in water-supply wells in north-central Pennsylvania

    Science.gov (United States)

    Révész, K. M.; Breen, K.J.; Baldassare, A.J.; Burruss, R.C.

    2010-01-01

    The origin of the combustible gases in groundwater from glacial-outwash and fractured-bedrock aquifers was investigated in northern Tioga County, Pennsylvania. Thermogenic methane (CH4) and ethane (C2H6) and microbial CH4 were found. Microbial CH4 is from natural in situ processes in the shale bedrock and occurs chiefly in the bedrock aquifer. The δ13C values of CH4 and C2H6 for the majority of thermogenic gases from water wells either matched or were between values for the samples of non-native storage-field gas from injection wells and the samples of gas from storage-field observation wells. Traces of C2H6 with microbial CH4 and a range of C and H isotopic compositions of CH4 indicate gases of different origins are mixing in sub-surface pathways; gas mixtures are present in groundwater. Pathways for gas migration and a specific source of the gases were not identified. Processes responsible for the presence of microbial gases in groundwater could be elucidated with further geochemical study.

  3. Studies on groundwater transport in fractured crystalline rock under controlled conditions using nonradioactive tracers

    International Nuclear Information System (INIS)

    Gustafsson, E.; Klockars, C.-E.

    1981-04-01

    The purpose of the investigation has been study the following parameters along existing fractures between two boreholes: hydraulic properties of rock mass and fractures; adsorptive properties of some selected tracers during transport along fractures; dispersivity and dilution of tracers during transport in fractures; kinematic porosity of fractured bedrock. The procedure has been to determine the hydraulic properties of a rock mass by means of conventional hydraulic testing methods in 100 m deep boreholes, and to study transport mechanisms and properties of selected tracers in a selected fracture zone between two boreholes. (Auth.)

  4. Geohydrology of the stratified-drift aquifer system in the lower Sixmile Creek and Willseyville Creek trough, Tompkins County, New York

    Science.gov (United States)

    Miller, Todd S.; Karig, Daniel E.

    2010-01-01

    In 2002, the U.S. Geological Survey, in cooperation with the Tompkins County Planning Department began a series of studies of the stratified-drift aquifers in Tompkins County to provide geohydrologic data for planners to develop a strategy to manage and protect their water resources. This aquifer study in lower Sixmile Creek and Willseyville Creek trough is the second in a series of aquifer studies in Tompkins County. The study area is within the northern area of the Appalachian Plateau and extends about 9 miles from the boundary between Tompkins County and Tioga County in the south to just south of the City of Ithaca in the north. In lower Sixmile Creek and Willseyville Creek trough, confined sand and gravel aquifers comprise the major water-bearing units while less extensive unconfined units form minor aquifers. About 600 people who live in lower Sixmile Creek and Willseyville Creek trough rely on groundwater from the stratified-drift aquifer system. In addition, water is used by non-permanent residents such as staff at commercial facilities. The estimated total groundwater withdrawn for domestic use is about 45,000 gallons per day (gal/d) or 0.07 cubic foot per second (ft3/s) based on an average water use of 75 gal/d per person for self-supplied water systems in New York. Scouring of bedrock in the preglacial lower Sixmile Creek and Willseyville Creek valleys by glaciers and subglacial meltwaters truncated hillside spurs, formed U-shaped, transverse valley profiles, smoothed valley walls, and deepened the valleys by as much as 300 feet (ft), forming a continuous trough. The unconsolidated deposits in the study area consist mostly of glacial drift, both unstratified drift (till) and stratified drift (laminated lake, deltaic, and glaciofluvial sediments), as well as some post-glacial stratified sediments (lake-bottom sediments that were deposited in reservoirs, peat and muck that were deposited in wetlands, and alluvium deposited by streams). Multiple advances and

  5. Bedrock transport properties. Preliminary site description Simpevarp subarea - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Byegaard, Johan; Gustavsson, Eva [Geosigma AB, Uppsala (Sweden); Tullborg, Eva-Lena [Terralogica AB, Graabo (Sweden); Berglund, Sten [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2005-06-01

    This report presents the site descriptive model of transport properties developed as a part of the Simpevarp 1.2 site description. The main parameters included in the model, referred to as retardation parameters, are the matrix porosity and diffusivity, and the matrix sorption coefficient K{sub d}. The model is based on the presently available site investigation data, mainly obtained from laboratory investigations of core samples from boreholes within the Simpevarp subarea, and on data from previous studies at the Aespoe Hard Rock Laboratory (Aespoe HRL). The modelling is a first attempt, based on limited data, to obtain a description of the retardation parameters. Further refinement of the model is foreseen when more data becomes available for future versions of the Simpevarp site description. The modelling work included descriptions of rock mass geology, the fractures and deformation zones, the hydrogeochemistry and also the available results from the site specific porosity, sorption and diffusivity measurements. The description of the transport related aspects of the data and models presented by other modelling disciplines is an important part of the transport description. In accordance with the strategy for the modelling of transport properties, the results are presented as a 'retardation model', in which a summary of the transport data for the different geological compartments is given. Concerning the major rock types, Aevroe granite, quartz monzodiorite and fine-grained dioritoid are identified as the rock types dominating the main rock domains identified and described in the site descriptive model of the bedrock geology. However, relatively large parts of the rock consist of altered rock and the open fracture frequency appears to be correlated to the altered/oxidised parts of the rock. This implies that transport in open fractures to a large extent takes place in the altered parts of the rock. For the fracture mineralogy, it is found that the

  6. Interlobate esker architecture and related hydrogeological features derived from a combination of high-resolution reflection seismics and refraction tomography, Virttaankangas, southwest Finland

    Science.gov (United States)

    Maries, Georgiana; Ahokangas, Elina; Mäkinen, Joni; Pasanen, Antti; Malehmir, Alireza

    2017-05-01

    A novel high-resolution (2-4 m source and receiver spacing) reflection and refraction seismic survey was carried out for aquifer characterization and to confirm the existing depositional model of the interlobate esker of Virttaankangas, which is part of the Säkylänharju-Virttaankangas glaciofluvial esker-chain complex in southwest Finland. The interlobate esker complex hosting the managed aquifer recharge (MAR) plant is the source of the entire water supply for the city of Turku and its surrounding municipalities. An accurate delineation of the aquifer is therefore critical for long-term MAR planning and sustainable use of the esker resources. Moreover, an additional target was to resolve the poorly known stratigraphy of the 70-100-m-thick glacial deposits overlying a zone of fractured bedrock. Bedrock surface as well as fracture zones were confirmed through combined reflection seismic and refraction tomography results and further validated against existing borehole information. The high-resolution seismic data proved successful in accurately delineating the esker cores and revealing complex stratigraphy from fan lobes to kettle holes, providing valuable information for potential new pumping wells. This study illustrates the potential of geophysical methods for fast and cost-effective esker studies, in particular the digital-based landstreamer and its combination with geophone-based wireless recorders, where the cover sediments are reasonably thick.

  7. Sedimentary facies control on mechanical and fracture stratigraphy in turbidites

    NARCIS (Netherlands)

    Ogata, Kei; Storti, Fabrizio; Balsamo, Fabrizio; Tinterri, Roberto; Bedogni, Enrico; Fetter, Marcos; Gomes, Leonardo; Hatushika, Raphael

    2017-01-01

    Natural fracture networks exert a first-order control on the exploitation of resources such as aquifers, hydrocarbons, and geothermal reservoirs, and on environmental issues like underground gas storage and waste disposal. Fractures and the mechanical stratigraphy of layered sequences have been

  8. High-Resolution Wellbore Temperature Logging Combined with a Borehole-Scale Heat Budget: Conceptual and Analytical Approaches to Characterize Hydraulically Active Fractures and Groundwater Origin

    Directory of Open Access Journals (Sweden)

    Guillaume Meyzonnat

    2018-01-01

    Full Text Available This work aims to provide an overview of the thermal processes that shape wellbore temperature profiles under static and dynamic conditions. Understanding of the respective influences of advection and conduction heat fluxes is improved through the use of a new heat budget at the borehole scale. Keeping in mind the thermal processes involved, a qualitative interpretation of the temperature profiles allows the occurrence, the position, and the origin of groundwater flowing into wellbores from hydraulically active fractures to be constrained. With the use of a heat budget developed at the borehole scale, temperature logging efficiency has been quantitatively enhanced and allows inflow temperatures to be calculated through the simultaneous use of a flowmeter. Under certain hydraulic or pumping conditions, both inflow intensities and associated temperatures can also be directly modelled from temperature data and the use of the heat budget. Theoretical and applied examples of the heat budget application are provided. Applied examples are shown using high-resolution temperature logging, spinner flow metering, and televiewing for three wells installed in fractured bedrock aquifers in the St-Lawrence Lowlands, Quebec, Canada. Through relatively rapid manipulations, thermal measurements in such cases can be used to detect the intervals or discrete positions of hydraulically active fractures in wellbores, as well as the existence of ambient flows with a high degree of sensitivity, even at very low flows. Heat budget calculations at the borehole scale during pumping indicate that heat advection fluxes rapidly dominate over heat conduction fluxes with the borehole wall. The full characterization of inflow intensities provides information about the distribution of hydraulic properties with depth. The full knowledge of inflow temperatures indicates horizons that are drained from within the aquifer, providing advantageous information on the depth from which

  9. Conceptualization of flow and transport in a limestone aquifer by multiple dedicated hydraulic and tracer tests

    DEFF Research Database (Denmark)

    Mosthaf, Klaus; Brauns, Bentje; Fjordbøge, Annika Sidelmann

    2018-01-01

    Limestone aquifers are of great interest as a drinking water resource in many countries. They often have a complex crushed and fractured geology, which makes the analysis and description of flow and transport processes in such aquifers a challenging task. In this study, the solute transport behav...

  10. Bedrock Geologic Map of Woodstock, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG06-4 Thompson, P. J., 2006, Bedrock Geologic Map of Woodstock, Vermont: VGS Open-File Report VG06-4, scale 1:24,000. The bedrock geologic map...

  11. Combining outcrop, magnetic, and airborne LiDAR data in a course-based undergraduate research experience (CURE): interpretation of bedrock fracturing in the northeastern Deep River Basin and adjacent basement, North Carolina

    Science.gov (United States)

    Pedigo, R.; Waters-Tormey, C. L.; Styers, D.; Hurst, E.

    2017-12-01

    Course-based undergraduate research experiences (CUREs) are a way for students to learn the power of combining geological, geophysical, and geodetic datasets, while also generating new results to answer real questions. A 5-week undergraduate geophysics CURE combined newly released public domain LiDAR-derived ground models with outcrop and magnetic data. The goal was to see if this approach could improve understanding of bedrock fracture sets in the NC Piedmont, which in turn would improve decisions about groundwater resources and proposed hydraulic fracturing of "tight" shale reservoirs in the 230 Ma Deep River failed rift basin. The 10 km2 study area was selected because it straddles the fault contact between crystalline basement and basin sedimentary rocks, it contains 200 Ma NW-SE trending mafic dikes related to successful rifting of Pangea common in the Piedmont, bedrock exposure is typical of the Piedmont (poor), and its land use history is representative of much of the Piedmont. Students visited representative field sites to collect observations then manually identified lineaments in several adjacent LiDAR ground model tiles. Results suggest that (1) lineaments as short as a few m are easily identified except underneath Quaternary deposits, (2) the dominant lineament set trends NW-SE with m- to 10 m-scale spacing, (3) lineaments are better expressed in sedimentary rocks and (4) do not spatially coincide with dike traces. Using field observations, map patterns, and total magnetic intensity profiles across several dikes, the lineaments are interpreted to be edges of subvertical joint fractures recording extension parallel to the dikes' dilation direction. The CURE concluded with students in small groups proposing next steps for the larger research project. The CURE introduced geology majors to the power of using geophysical and remote sensing data with geological data to address geoscience questions. Student feedback was very positive even though the learning

  12. Uranium series geochemistry in aquifers: quantification of transport mechanisms of uranium and daughter products: the chalk aquifer (Champagne, France)

    International Nuclear Information System (INIS)

    Hubert, A.

    2005-09-01

    With the increase of contaminant flux of radionuclides in surface environment (soil, river, aquifer...), there is a need to understand and model the processes that control the distribution of uranium and its daughter products during transport within aquifers. We have used U-series disequilibria as an analogue for the transport of uranium and its daughter products in aquifer to understand such mechanisms. The measurements of uranium ( 234 U et 238 U), thorium ( 230 Th et 232 Th), 226 Ra and 222 Rn isotopes in the solid and liquid phases of the chalk aquifer in Champagne (East of France) allows us to understand the processes responsible for fractionation within the uranium decay chain. Fractionations are induced by physical and chemical properties of the elements (leaching, adsorption) but also by radioactive properties (recoil effect during α-decay). For the first time a comprehensive sampling of the solid phase has been performed, allowing quantifying mechanisms responsible for the long term evolution of the aquifer. A non steady state 1D model has been developed which takes into account leaching, adsorption processes as well as radioactive filiation and α-recoil effect. Retardation coefficients have been calculated for uranium, thorium and radium. The aquifer is characterised by a double porosity, and the contribution of fracture and matrix porosity on the water/rock interaction processes has been estimated. (author)

  13. Calculating the spatio-temporal variability of bedrock exposure on seasonal hydrograph timescales as a prerequisite to modeling bedrock river evolution

    Science.gov (United States)

    Hurst, A. A.; Anderson, R. S.; Tucker, G. E.

    2017-12-01

    Erosion of bedrock river channels exerts significant control on landscape evolution because it communicates climatic and tectonic signals across a landscape by setting the lower erosional boundaries for hillslopes. Hillslope erosion delivers sediment to the channels, which then either store or transport the sediment. At times of high storage, access to the bedrock floor of the channel is limited, inhibiting bedrock erosion. This affects the timescale of channel response to imposed base-level lowering, which in turn affects hillslope erosion. Because occasional exposure of the bedrock bed is a minimum prerequisite for bedrock erosion, we seek to understand the evolution of sediment cover, or scour history, with sufficient resolution to answer when and where the bed is exposed. The scour history at a site is governed by grain size, bed and channel morphology, sediment concentration in the water, and seasonal flow conditions (hydrograph). The transient nature of bedrock exposure during high-flow events implies that short-term sediment cover dynamics are important for predicting long-term bedrock incision rates. Models of channel profile evolution, or of landscape evolution, generally ignore evolution of sediment cover on the hydrograph timescale. To develop insight into the necessary and sufficient conditions for bedrock exposure followed by reburial, we have developed a 1-D model of the evolution of alluvial cover thickness in a long channel profile in response to a seasonal hydrograph. This model tracks erosion, deposition, and the concentration of sediment in the water column separately, and generates histories of scour and fill over the course of the hydrograph. We compare the model's predictions with net-scour measurements in tributaries of the Grand Canyon and with scour-chain and accelerometer measurements in the Cedar River, Washington. By addressing alluvial scour on short timescales, we acknowledge the processes required to allow bedrock incision and

  14. Aquifer Characteristics Data Report for the Weldon Spring Site chemical plant/raffinate pits and vicinity properties for the Weldon Spring Site Remedial Action Project, Weldon Spring, Missouri

    International Nuclear Information System (INIS)

    1990-11-01

    This report describes the procedures and methods used, and presents the results of physical testing performed, to characterize the hydraulic properties of the shallow Mississippian-Devonian aquifer beneath the Weldon Spring chemical plant, raffinate pits, and vicinity properties. The aquifer of concern is composed of saturated rocks of the Burlington-Keokuk Limestone which constitutes the upper portion of the Mississippian-Devonian aquifer. This aquifer is a heterogeneous anisotropic medium which can be described in terms of diffuse Darcian flow overlain by high porosity discrete flow zones and conduits. Average hydraulic conductivity for all wells tested is 9.6E-02 meters/day (3.1E-01 feet/day). High hydraulic conductivity values are representative of discrete flow in the fractured and weathered zones in the upper Burlington-Keokuk Limestone. They indicate heterogeneities within the Mississippian-Devonian aquifer. Aquifer heterogeneity in the horizontal plane is believed to be randomly distributed and is a function of fracture spacing, solution voids, and preglacial weathering phenomena. Relatively high hydraulic conductivities in deeper portions of the aquifer are though to be due to the presence of widely spaced fractures. 44 refs., 27 figs., 9 tabs

  15. Single-well injection-withdrawal tests (SWIW). Investigation of evaluation aspects under heterogeneous crystalline bedrock conditions

    International Nuclear Information System (INIS)

    Nordqvist, Rune; Gustafsson, Erik

    2004-08-01

    Single-well injection-withdrawal (SWIW) tracer tests have been identified by SKB as an investigation method for solute transport properties in the forthcoming site investigations. A previous report presents a literature study as well as scoping calculations for SWIW tests in homogeneous crystalline bedrock environments. The present report comprises further scoping calculations under assumptions of heterogeneous bedrock conditions. Simple but plausible homogeneous evaluation models are tested on simulated SWIW tests in hypothetical heterogeneous two-dimensional fractures. The results from this study indicate that heterogeneity may cause effects of flow irreversibility when background hydraulic gradients are significant and the tested section is located in a dominating flow path. This implies that such conditions make it more difficult to interpret results from SWIW tests of longer duration with sorbing and/or diffusing tracers. Sorption and diffusion processes may be best studied when SWIW tests are conducted in borehole sections with low natural flow rates

  16. Formative flow in bedrock canyons

    Science.gov (United States)

    Venditti, J. G.; Kwoll, E.; Rennie, C. D.; Church, M. A.

    2017-12-01

    In alluvial channels, it is widely accepted that river channel configuration is set by a formative flow that represents a balance between the magnitude and frequency of flood flows. The formative flow is often considered to be one that is just capable of filling a river channel to the top of its banks. Flows much above this formative flow are thought to cause substantial sediment transport and rearrange the channel morphology to accommodate the larger flow. This idea has recently been extended to semi-alluvial channels where it has been shown that even with bedrock exposed, the flows rarely exceed that required to entrain the local sediment cover. What constitutes a formative flow in a bedrock canyon is not clear. By definition, canyons have rock walls and are typically incised vertically, removing the possibility of the walls being overtopped, as can occur in an alluvial channel at high flows. Canyons are laterally constrained, have deep scour pools and often have width to maximum depth ratios approaching 1, an order of magnitude lower than alluvial channels. In many canyons, there are a sequence of irregularly spaced scour pools. The bed may have intermittent or seasonal sediment cover, but during flood flows the sediment bed is entrained leaving a bare bedrock channel. It has been suggested that canyons cut into weak, well-jointed rock may adjust their morphology to the threshold for block plucking because the rock bed is labile during exceptionally large magnitude flows. However, this hypothesis does not apply to canyons cut into massive crystalline rock where abrasion is the dominant erosion process. Here, we argue that bedrock canyon morphology is adjusted to a characteristic flow structure developed in bedrock canyons. We show that the deeply scoured canyon floor is adjusted to a velocity inversion that is present at low flows, but gets stronger at high flows. The effect is to increase boundary shear stresses along the scour pool that forms in constricted

  17. Extent and severity of groundwater contamination based on hydrochemistry mechanism of sandy tropical coastal aquifer.

    Science.gov (United States)

    Isa, Noorain Mohd; Aris, Ahmad Zaharin; Sulaiman, Wan Nor Azmin Wan

    2012-11-01

    Small islands are susceptible to anthropogenic and natural activities, especially in respect of their freshwater supply. The freshwater supply in small islands may be threatened by the encroachment of seawater into freshwater aquifers, usually caused by over pumping. This study focused on the hydrochemistry of the Kapas Island aquifer, which controls the groundwater composition. Groundwater samples were taken from six constructed boreholes for the analysis and measurement of its in-situ and major ions. The experimental results show a positive and significant correlation between Na-Cl (r=0.907; paquifer bedrock. About 76% of collected data (n=108) were found to be in the dissolution process of carbonate minerals. Moreover, the correlation between total CEC and Ca shows a positive and strong relationship (r=0.995; pchemical composition. The output of this research explains the chemical mechanism attributed to the groundwater condition of the Kapas Island aquifer. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Assessing the vulnerability of public-supply wells to contamination--Glacial aquifer system in Woodbury, Connecticut

    Science.gov (United States)

    Jagucki, Martha L.; Brown, Craig J.; Starn, J. Jeffrey; Eberts, Sandra M.

    2010-01-01

    , as indicated by the solvents, fuel components, road salt, and septic-system leachate that were detected in the glacial aquifer system during the current study. Age-dating combined with chemical modeling suggests that less than 2 percent of water produced by the public-supply well is water from the deep bedrock that is "old" (water that recharged, or entered, the aquifer before 1952). Such a small percentage of old groundwater entering the public-supply well offers little potential for dilution of young waters containing contaminants from human activities. Shallow groundwater that originated as recharge through urban areas generally had higher median concentrations and more detections of volatile organic compounds (VOCs) than did groundwater from the deep glacial deposits or fractured bedrock that originated mainly as recharge through agricultural and undeveloped land. Shallow groundwater was also found to be affected by road salt and septic-system leachate. A chemical mixing model indicates that up to 15 percent of nitrate in water from the supply well is likely from septic-system leachate. The Connecticut Department of Public Health has identified several potential sources of contamination in the commercial area of Woodbury (several light industrial or commercial properties where hazardous materials and petroleum products are used and stored). To reduce stormwater runoff in the commercial area, water from the parking lots and pavement is channeled into dry wells-drains that shunt water directly into the aquifer system, bypassing the soil and unsaturated zones. A computer-model simulation of groundwater flow indicates that approximately 16 percent of the water produced by the public-supply well is derived from runoff captured by these drains. Traveltime for water from the dry wells to the public-supply well ranges from about 1.5 to less than 4 years. Dry wells have the potential to enhance contaminant movement to the supply well, suggesting that stormwater

  19. Groundwater mixing at fracture intersections triggers massive iron-rich microbial mats

    Science.gov (United States)

    Bochet, O.; Le Borgne, T.; Bethencourt, L.; Aquilina, L.; Dufresne, A.; Pédrot, M.; Farasin, J.; Abbott, B. W.; Labasque, T.; Chatton, E.; Lavenant, N.; Petton, C.

    2017-12-01

    While most freshwater on Earth resides and flows in groundwater systems, these deep subsurface environments are often assumed to have little biogeochemical activity compared to surface environments. Here we report a massive microbial mat of iron-oxidizing bacteria, flourishing 60 meters below the surface, far below the mixing zone where most microbial activity is believed to occur. The abundance of microtubular structures in the mat hinted at the prevalence of of Leptothrix ochracea, but metagenomic analysis revealed a diverse consortium of iron-oxidizing bacteria dominated by unknown members of the Gallionellaceae family. This deep biogeochemical hot spot formed at the intersection of bedrock fractures, which maintain redox gradients by mixing water with different residence times and chemical compositions. Using measured fracture properties and hydrological conditions we developed a quantitative model to simulate the reactive zone where such deep hot spots could occur. While seasonal fluctuations are generally thought to decrease with depth, we found that meter-scale changes in water table level moved the depth of the reactive zone hundreds of meters because the microaerophilic threshold for ironoxidizers is highly sensitive to changes in mixing rates at fracture intersections. These results demonstrate that dynamic microbial communities can be sustained deep below the surface in bedrock fractures. Given the ubiquity of fractures at multiple scales in Earth's subsurface, such deep hot spots may strongly influence global biogeochemical cycles.

  20. Complementary investigations of the bedrock in the Finnsjoe and Karlshamn areas, Sweden

    International Nuclear Information System (INIS)

    Olkiewicz, A.; Scherman, S.; Kornfaelt, K.-A.

    1979-02-01

    In its statement of the 1978-10-05 the government decided that the KBS' reports I and II did not prove the existance of a''sufficiently large'' geological formation with the qualities which were required in the KBS risk analysis. The government therefore demanded further investigations. Complementary investigations were carried out in two areas, Finnsjoen in northwestern Uppland and Sternoe in southwestern Blekinge, Sweden. This report comprises mapping of the drillcores and extended geological mapping of the actual investigated areas. Measurements of borehole-deviation as well as surface-geophysical investigations from the Finnsjoen area are enclosed. The mapping of the four drill-cores in the Finnsjoe area shows that the cores are dominated by a slightly gneissic granodiorite. Of secondary importance occurs a young red homogenous granite. The frequency of fractures and fracture sets is high and evenly distributed. The tectonized parts are very often red coloured, foliated and containing many calcite healed fractures. The mapping also shows that mylonites and breccias are common in connection with more disturbed zones. Fractures are usually lined with calcite and chlorite. The mapping of these five new boreholes at Sternoe (one of the holes an extension of Ka 1 from earlier investigations) shows quite a complex picture of the bedrock. This is probably an effect of granitization of the coastal gneiss. Close to the surface coastal gneiss is dominating, in the deeper sections granitic material, gneissgranite and granite, are dominating. Pegmatites are common in the shallow sections of the area investigated. The frequency of fractures and fracture sets are very low. The only exception is one core, Ka 4, drilled in close connection with a thrust-zone in ''Munkahusviken''. Coatings of fracture surfaces are dominated by calcite and gypsum. (author)

  1. Defining the natural fracture network in a shale gas play and its cover succession: The case of the Utica Shale in eastern Canada

    Science.gov (United States)

    Ladevèze, P.; Séjourné, S.; Rivard, C.; Lavoie, D.; Lefebvre, R.; Rouleau, A.

    2018-03-01

    In the St. Lawrence sedimentary platform (eastern Canada), very little data are available between shallow fresh water aquifers and deep geological hydrocarbon reservoir units (here referred to as the intermediate zone). Characterization of this intermediate zone is crucial, as the latter controls aquifer vulnerability to operations carried out at depth. In this paper, the natural fracture networks in shallow aquifers and in the Utica shale gas reservoir are documented in an attempt to indirectly characterize the intermediate zone. This study used structural data from outcrops, shallow observation well logs and deep shale gas well logs to propose a conceptual model of the natural fracture network. Shallow and deep fractures were categorized into three sets of steeply-dipping fractures and into a set of bedding-parallel fractures. Some lithological and structural controls on fracture distribution were identified. The regional geologic history and similarities between the shallow and deep fracture datasets allowed the extrapolation of the fracture network characterization to the intermediate zone. This study thus highlights the benefits of using both datasets simultaneously, while they are generally interpreted separately. Recommendations are also proposed for future environmental assessment studies in which the existence of preferential flow pathways and potential upward fluid migration toward shallow aquifers need to be identified.

  2. Numerical Modeling of Methane Leakage from a Faulty Natural Gas Well into Fractured Tight Formations.

    Science.gov (United States)

    Moortgat, Joachim; Schwartz, Franklin W; Darrah, Thomas H

    2018-03-01

    Horizontal drilling and hydraulic fracturing have enabled hydrocarbon recovery from unconventional reservoirs, but led to natural gas contamination of shallow groundwaters. We describe and apply numerical models of gas-phase migration associated with leaking natural gas wells. Three leakage scenarios are simulated: (1) high-pressure natural gas pulse released into a fractured aquifer; (2) continuous slow leakage into a tilted fractured formation; and (3) continuous slow leakage into an unfractured aquifer with fluvial channels, to facilitate a generalized evaluation of natural gas transport from faulty natural gas wells. High-pressure pulses of gas leakage into sparsely fractured media are needed to produce the extensive and rapid lateral spreading of free gas previously observed in field studies. Transport in fractures explains how methane can travel vastly different distances and directions laterally away from a leaking well, which leads to variable levels of methane contamination in nearby groundwater wells. Lower rates of methane leakage (≤1 Mcf/day) produce shorter length scales of gas transport than determined by the high-pressure scenario or field studies, unless aquifers have low vertical permeabilities (≤1 millidarcy) and fractures and bedding planes have sufficient tilt (∼10°) to allow a lateral buoyancy component. Similarly, in fractured rock aquifers or where permeability is controlled by channelized fluvial deposits, lateral flow is not sufficiently developed to explain fast-developing gas contamination (0-3 months) or large length scales (∼1 km) documented in field studies. Thus, current efforts to evaluate the frequency, mechanism, and impacts of natural gas leakage from faulty natural gas wells likely underestimate contributions from small-volume, low-pressure leakage events. © 2018, National Ground Water Association.

  3. Radioelement (U,Th,Rn) concentrations in Norwegian bedrock groundwaters

    International Nuclear Information System (INIS)

    Banks, D.; Roeyset, O.; Strand, T.; Skarphagen, H.

    1993-12-01

    Samples of groundwater from bedrock boreholes in three Norwegian geological provinces have been analysed for content of 222 Rn, U and Th. Median values of 290 Bq/l, 7.6 μg/l and 0.02 μg/l were obtained for Rn, U and Th, respectively, while maximum values were 8500 Bq/l, 170 μg/l and 2.2 μg/l. Commonly suggested drinking water limits range from 8 to 1000 Bq/l for radon and 14 to 160 μg/l for uranium. Radioelement content was closely related to lithology, the lowest concentrations being derived from the largely Caledonian rocks of the Troendelag area, and the highest from the Precambrian Iddefjord Granite of South East Norway where median values of 2500 Bq/l, 15 μg/l and 0.38 μg/l, respectively, were obtained. The Iddefjord Granite is not believed to be unique in Norway yielding high dissolved radionuclide contents in groundwaters, and several other granitic aquifers warrant further investigation in this respect. 63 refs., 13 figs., 8 tabs

  4. Geology, Bedrock - BEDROCK_TOPOGRAPHY_MM36_IN: Bedrock Topography Contours, Indiana (Indiana Geological Survey, 1:500,000, Line Shapefile)

    Data.gov (United States)

    NSGIC State | GIS Inventory — Bedrock topography was converted from the original published map, Indiana Geological Survey Miscellaneous Map 36. The contours define the elevation/topography of the...

  5. Analysis of groundwater flow and stream depletion in L-shaped fluvial aquifers

    Science.gov (United States)

    Lin, Chao-Chih; Chang, Ya-Chi; Yeh, Hund-Der

    2018-04-01

    Understanding the head distribution in aquifers is crucial for the evaluation of groundwater resources. This article develops a model for describing flow induced by pumping in an L-shaped fluvial aquifer bounded by impermeable bedrocks and two nearly fully penetrating streams. A similar scenario for numerical studies was reported in Kihm et al. (2007). The water level of the streams is assumed to be linearly varying with distance. The aquifer is divided into two subregions and the continuity conditions of the hydraulic head and flux are imposed at the interface of the subregions. The steady-state solution describing the head distribution for the model without pumping is first developed by the method of separation of variables. The transient solution for the head distribution induced by pumping is then derived based on the steady-state solution as initial condition and the methods of finite Fourier transform and Laplace transform. Moreover, the solution for stream depletion rate (SDR) from each of the two streams is also developed based on the head solution and Darcy's law. Both head and SDR solutions in the real time domain are obtained by a numerical inversion scheme called the Stehfest algorithm. The software MODFLOW is chosen to compare with the proposed head solution for the L-shaped aquifer. The steady-state and transient head distributions within the L-shaped aquifer predicted by the present solution are compared with the numerical simulations and measurement data presented in Kihm et al. (2007).

  6. Accuracy of CFC groundwater dating in a crystalline bedrock aquifer: Data from a site in southern Sweden

    Science.gov (United States)

    Bockgård, Niclas; Rodhe, Allan; Olsson, K. A.

    The concentrations of chlorofluorocarbons (CFC-11, CFC-12, and CFC-113) and tritium were determined in groundwater in fractured crystalline bedrock at Finnsjön, Sweden. The specific goal was to investigate the accuracy of CFC dating in such an environment, taking potential degradation and mixing of water into consideration. The water was sampled to a depth of 42 m in three boreholes along an 800-m transect, from a recharge area to a local discharge area. The CFC-113 concentration was at the detection limit in most samples. The apparent recharge date obtained from CFC-11 was earlier than from CFC-12 for all samples, with a difference of over 20 years for some samples. The difference was probably caused by degradation of CFC-11. The CFC-12 dating of the samples ranged from before 1945 to 1975, with the exception of a sample from the water table, which had a present-day concentration. Conclusions about flow paths or groundwater velocity could not be drawn from the CFCs. The comparison between CFC-12 and tritium concentrations showed that most samples could be unmixed or mixtures of waters with different ages, and the binary mixtures that matched the measured concentrations were determined. The mixing model approach can be extended with additional tracers. Précision de la datation au CFC dans un aquifère rocheux-fracturé: données d'un site du sud de la Suède. Les concentrations en chlorofluorocarbones (CFC-11, CFC-12, CFC-113) et entritium ont été déterminées dans l'eau souterraine d'un massif fracturé à Finnsjön en Suède. Le but de cette étude est de mieux cerner la précision de la méthode de datation au CFC dans ce type d'environnement hydrogéologique, tout en considérant d'éventuels phénomènes de dégradation et de mélange d'eaux. L'eau a été échantillonnée à une profondeur de 42 mètres dans trois forages alignés sur 800 mètres entre une zone de recharge et une zone de déversement. Les concentrations en CFC-113 sont dans la plupart

  7. Characterization of the shallow groundwater system in an alpine watershed: Handcart Gulch, Colorado, USA

    Science.gov (United States)

    Kahn, Katherine G.; Ge, Shemin; Caine, Jonathan S.; Manning, A.

    2008-01-01

    Water-table elevation measurements and aquifer parameter estimates are rare in alpine settings because few wells exist in these environments. Alpine groundwater systems may be a primary source of recharge to regional groundwater flow systems. Handcart Gulch is an alpine watershed in Colorado, USA comprised of highly fractured Proterozoic metamorphic and igneous rocks with wells completed to various depths. Primary study objectives include determining hydrologic properties of shallow bedrock and surficial materials, developing a watershed water budget, and testing the consistency of measured hydrologic properties and water budget by constructing a simple model incorporating groundwater and surface water for water year 2005. Water enters the study area as precipitation and exits as discharge in the trunk stream or potential recharge for the deeper aquifer. Surficial infiltration rates ranged from 0.1-6.2??0-5 m/s. Discharge was estimated at 1.28??10-3 km3. Numerical modeling analysis of single-well aquifer tests predicted lower specific storage in crystalline bedrock than in ferricrete and colluvial material (6.7??10-5-2.10??0-3 l/m). Hydraulic conductivity in crystalline bedrock was significantly lower than in colluvial and alluvial material (4.3??10-9 -2.0??10-4 m/s). Water budget results suggest that during normal precipitation and temperatures water is available to recharge the deeper groundwater flow system. ?? Springer-Verlag 2007.

  8. Simulation of ground-water flow in the St. Peter aquifer in an area contaminated by coal-tar derivatives, St. Louis Park, Minnesota. Water Resources Investigation

    International Nuclear Information System (INIS)

    Lorenz, D.L.; Stark, J.R.

    1990-01-01

    A model constructed to simulate ground-water flow in part of the Prairie du Chien-Jordan and St. Peter aquifers, St. Louis Park, Minnesota, was used to test hypotheses about the movement of ground water contaminated with coal-tar derivatives and to simulate alternatives for reducing the downgradient movement of contamination in the St. Peter aquifer. The model, constructed for a previous study, was applied to simulate the effects of current ground-water withdrawals on the potentiometric surface of the St. Peter aquifer. Model simulations predict that the multiaquifer wells have the potential to limit downgradient migration of contaminants in the St. Peter aquifer caused by cones of depression created around the multiaquifer wells. Differences in vertical leakage to the St. Peter aquifer may exist in areas of bedrock valleys. Model simulations indicate that these differences are not likely to affect significantly the general patterns of ground-water flow

  9. Bedrock geology Forsmark. Modelling stage 2.3. Description of the bedrock geological map at the ground surface

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Michael B.; Bergman, Torbjoern (Geological Survey of Sweden, Uppsala (Sweden)); Isaksson, Hans (GeoVista AB, Luleaa (Sweden)); Petersson, Jesper (SwedPower AB, Stockholm (Sweden))

    2008-12-15

    A description of the bedrock geological map of the ground surface at the Forsmark site is presented here. This map is essentially a 2D model for the distribution of different types of rock unit on this surface. Besides showing the distribution of these rock units, the bedrock geological map also displays the distribution of some deformation zones that intersect the ground surface. It also presents information bearing on the position and form of outcrops, the location and projection of boreholes drilled during the site investigation programme, subordinate rock types, the occurrence of abandoned mines or exploration prospects, measurements of ductile structures in outcrops, inferred form lines, key minerals, and the occurrence of mylonite and cataclastic rock. Bedrock data from outcrops and excavations, airborne and ground magnetic data and information from the uppermost part of boreholes have all been used in the construction of the geological map. The description has also made use of complementary analytical data bearing on the composition and age of the rocks as well gamma-ray spectrometry and gravity data. Uncertainty in the position of the boundaries between rock units over the mapped area are addressed in a qualitative manner. Four model versions of the bedrock geological map have been delivered to SKB's GIS database (bedrock geological map, Forsmark, versions 1.1, 1.2, 2.2 and 2.3) at different times during the site investigation programme. The Forsmark area is situated along the coast of the Baltic Sea in northern Uppland, Sweden, in a region where the overall level of ductile strain in the bedrock is high. This high-strain region extends several tens of kilometres across the WNW-ENE to NW-SE strike of the rocks in this part of the Fennoscandian Shield. At Forsmark, the coastal region is composed partly of high-strain belts, which formed under amphibolite-facies metamorphic conditions, and partly of tectonic lenses, where the bedrock is also affected by

  10. Bedrock geology Forsmark. Modelling stage 2.3. Description of the bedrock geological map at the ground surface

    International Nuclear Information System (INIS)

    Stephens, Michael B.; Bergman, Torbjoern; Isaksson, Hans; Petersson, Jesper

    2008-12-01

    A description of the bedrock geological map of the ground surface at the Forsmark site is presented here. This map is essentially a 2D model for the distribution of different types of rock unit on this surface. Besides showing the distribution of these rock units, the bedrock geological map also displays the distribution of some deformation zones that intersect the ground surface. It also presents information bearing on the position and form of outcrops, the location and projection of boreholes drilled during the site investigation programme, subordinate rock types, the occurrence of abandoned mines or exploration prospects, measurements of ductile structures in outcrops, inferred form lines, key minerals, and the occurrence of mylonite and cataclastic rock. Bedrock data from outcrops and excavations, airborne and ground magnetic data and information from the uppermost part of boreholes have all been used in the construction of the geological map. The description has also made use of complementary analytical data bearing on the composition and age of the rocks as well gamma-ray spectrometry and gravity data. Uncertainty in the position of the boundaries between rock units over the mapped area are addressed in a qualitative manner. Four model versions of the bedrock geological map have been delivered to SKB's GIS database (bedrock geological map, Forsmark, versions 1.1, 1.2, 2.2 and 2.3) at different times during the site investigation programme. The Forsmark area is situated along the coast of the Baltic Sea in northern Uppland, Sweden, in a region where the overall level of ductile strain in the bedrock is high. This high-strain region extends several tens of kilometres across the WNW-ENE to NW-SE strike of the rocks in this part of the Fennoscandian Shield. At Forsmark, the coastal region is composed partly of high-strain belts, which formed under amphibolite-facies metamorphic conditions, and partly of tectonic lenses, where the bedrock is also affected by

  11. Large bedrock slope failures in a British Columbia, Canada fjord: first documented submarine sackungen

    Science.gov (United States)

    Conway, Kim W.; Vaughn Barrie, J.

    2018-01-01

    Very large (>60×106 m3) sackungen or deep-seated gravitational slope deformations occur below sea level along a steep fjord wall in central Douglas Channel, British Columbia. The massive bedrock blocks were mobile between 13 and 11.5 thousand radiocarbon years BP (15,800 and 13,400 BP) immediately following deglaciation. Deformation of fjord sediments is apparent in sedimentary units overlying and adjacent to the blocks. Faults bound the edges of each block, cutting the glacial section but not the Holocene sediments. Retrogressive slides, small inset landslides as well as incipient and older slides are found on and around the large failure blocks. Lineations, fractures and faults parallel the coastline of Douglas Channel along the shoreline of the study area. Topographic data onshore indicate that faults and joints demarcate discrete rhomboid-shaped blocks which controlled the form, size and location of the sackungen. The described submarine sackungen share characteristic geomorphic features with many montane occurrences, such as uphill-facing scarps, foliated bedrock composition, largely vertical dislocation and a deglacial timing of development.

  12. Iowa Bedrock Topography

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The Map of the Elevation of the Bedrock Surface in Iowa was compiled using all available data, principally information from GEOSAM, supplemented with well and boring...

  13. Structural and neural network analyses of fracture systems at the Aespoe Hard Rock Laboratory, SE Sweden

    International Nuclear Information System (INIS)

    Sirat, M.

    1999-01-01

    The > 10,000 fractures documented in the 450 m deep Aespoe Hard Rock Laboratory (HRL) provide a unique opportunity to study brittle deformation of a Swedish bedrock mass. The fracture population consists of six major sets, one sub-horizontal and five sub-vertical. A classical structural analysis explored the interrelations between geometry and frequency of both dry and wet fractures with respect to depth and in-situ stresses. Three main findings are: In-situ stresses govern frequency distributions of dilated, hence water-bearing fractures. About 68.5% of sub-horizontal fractures are dilated in the thrust regime above a depth of ca. 230 m while 53% of sub-vertical fractures are dilated in the underlying wrench regime. Fractures curve both horizontally and vertically, a finding confirmed by the application of artificial neural networks that included Back-Propagation and Self-Organizing (Kohonen) networks. The asymmetry of the total fracture population and tilts of the sub-Cambrian peneplain demonstrates that multiple reactivations of fractures have tilted the Aespoe rock mass 6 deg to the west. The potential space problem raised by this tilt is negated by systematic curvature of steep fractures, some of which sole out to gently dipping fracture zones. Fractures probably developed their curvature when they formed deep in crystalline crust in Precambrian times but have since reactivated at shallow depths. These findings add significantly to the conceptual model of Aespoe and should be taken into account in future studies regarding the isolation of Sweden's high-grade radioactive waste in crystalline bedrock

  14. Topographic and hydraulic controls over alluviation on a bedrock template

    Science.gov (United States)

    Milan, David; Heritage, George; Entwistle, Neil; Tooth, Stephen

    2017-04-01

    Bedrock-alluvial anastomosed channels found in dryland rivers are characterised by an over-wide channel cut into the host rock containing a network of interconnecting bedrock sub-channels separated by bedrock influenced interfluve areas. Whilst the channels remain largely free of sediment the interfluves display varying levels of alluviation ranging from bare rock, sand sheets and silt drapes through to consolidated bedrock core bars, islands and lateral deposits. Examination of the sedimentary units associated with the bedrock anastomosed reaches of the Sabie river in the Kruger National Park, South Africa reveal a repeating sequence of coarse sand / fine gravel grading through to silt representing successive flood related depositional units. Unit development in relation to the bedrock template was investigated using pre-flood aerial imagery of bedrock core bar locations and post flood LiDAR data of bedrock anastomosed sites stripped during the 2000 and 2012 extreme flood events. This revealed a propensity for bar development associated with bedrock hollows disconnected from the principal high-energy sub-channels. 2-D morpho-dynamic modelling was used to further investigate spatial patterns of deposition over the bedrock template. Although topographic lows displayed mid-range velocities during peak flow events, these are likely to be preferential routing areas, with sediments stalling in low energy areas on the falling limb of floods. It is also likely that vegetation development plays a fundamental role in the development of alluviated zones, through increasing strength of alluvial units and capturing new sediments. With these results in mind we present a conceptual model for the development of bedrock-core bars, the fundamental unit in bedrock-alluvial anastomosed channels.

  15. Thermal conductive heating in fractured bedrock: Screening calculations to assess the effect of groundwater influx

    Science.gov (United States)

    Baston, Daniel P.; Kueper, Bernard H.

    2009-02-01

    A two-dimensional semi-analytical heat transfer solution is developed and a parameter sensitivity analysis performed to determine the relative importance of rock material properties (density, thermal conductivity and heat capacity) and hydrogeological properties (hydraulic gradient, fracture aperture, fracture spacing) on the ability to heat fractured rock using thermal conductive heating (TCH). The solution is developed using a Green's function approach in which an integral equation is constructed for the temperature in the fracture. Subsurface temperature distributions are far more sensitive to hydrogeological properties than material properties. The bulk ground water influx ( q) can provide a good estimate of the extent of influx cooling when influx is low to moderate, allowing the prediction of temperatures during heating without specific knowledge of the aperture and spacing of fractures. Target temperatures may not be reached or may be significantly delayed when the groundwater influx is large.

  16. Combining periodic hydraulic tests and surface tilt measurements to explore in situ fracture hydromechanics

    Science.gov (United States)

    Schuite, Jonathan; Longuevergne, Laurent; Bour, Olivier; Guihéneuf, Nicolas; Becker, Matthew W.; Cole, Matthew; Burbey, Thomas J.; Lavenant, Nicolas; Boudin, Frédéric

    2017-08-01

    Fractured bedrock reservoirs are of socio-economical importance, as they may be used for storage or retrieval of fluids and energy. In particular, the hydromechanical behavior of fractures needs to be understood as it has implications on flow and governs stability issues (e.g., microseismicity). Laboratory, numerical, or field experiments have brought considerable insights to this topic. Nevertheless, in situ hydromechanical experiments are relatively uncommon, mainly because of technical and instrumental limitations. Here we present the early stage development and validation of a novel approach aiming at capturing the integrated hydromechanical behavior of natural fractures. It combines the use of surface tiltmeters to monitor the deformation associated with the periodic pressurization of fractures at depth in crystalline rocks. Periodic injection and withdrawal advantageously avoids mobilizing or extracting significant amounts of fluid, and it hinders any risk of reservoir failure. The oscillatory perturbation is intended to (1) facilitate the recognition of its signature in tilt measurements and (2) vary the hydraulic penetration depth in order to sample different volumes of the fractured bedrock around the inlet and thereby assess scale effects typical of fractured systems. By stacking tilt signals, we managed to recover small tilt amplitudes associated with pressure-derived fracture deformation. Therewith, we distinguish differences in mechanical properties between the three tested fractures, but we show that tilt amplitudes are weakly dependent on pressure penetration depth. Using an elastic model, we obtain fracture stiffness estimates that are consistent with published data. Our results should encourage further improvement of the method.

  17. Ontology of fractures

    Science.gov (United States)

    Zhong, Jian; Aydina, Atilla; McGuinness, Deborah L.

    2009-03-01

    Fractures are fundamental structures in the Earth's crust and they can impact many societal and industrial activities including oil and gas exploration and production, aquifer management, CO 2 sequestration, waste isolation, the stabilization of engineering structures, and assessing natural hazards (earthquakes, volcanoes, and landslides). Therefore, an ontology which organizes the concepts of fractures could help facilitate a sound education within, and communication among, the highly diverse professional and academic community interested in the problems cited above. We developed a process-based ontology that makes explicit specifications about fractures, their properties, and the deformation mechanisms which lead to their formation and evolution. Our ontology emphasizes the relationships among concepts such as the factors that influence the mechanism(s) responsible for the formation and evolution of specific fracture types. Our ontology is a valuable resource with a potential to applications in a number of fields utilizing recent advances in Information Technology, specifically for digital data and information in computers, grids, and Web services.

  18. Geohydrology and water quality of the stratified-drift aquifers in Upper Buttermilk Creek and Danby Creek Valleys, Town of Danby, Tompkins County, New York

    Science.gov (United States)

    Miller, Todd S.

    2015-11-20

    In 2006, the U.S. Geological Survey, in cooperation with the Town of Danby and the Tompkins County Planning Department, began a study of the stratified-drift aquifers in the upper Buttermilk Creek and Danby Creek valleys in the Town of Danby, Tompkins County, New York. In the northern part of the north-draining upper Buttermilk Creek valley, there is only one sand and gravel aquifer, a confined basal unit that overlies bedrock. In the southern part of upper Buttermilk Creek valley, there are as many as four sand and gravel aquifers, two are unconfined and two are confined. In the south-draining Danby Creek valley, there is an unconfined aquifer consisting of outwash and kame sand and gravel (deposited by glacial meltwaters during the late Pleistocene Epoch) and alluvial silt, sand, and gravel (deposited by streams during the Holocene Epoch). In addition, throughout the study area, there are several small local unconfined aquifers where large tributaries deposited alluvial fans in the valley.

  19. The fracture zone project - final report

    International Nuclear Information System (INIS)

    Andersson, Peter

    1993-09-01

    This report summarizes the work and the experiences gained during the fracture zone project at the Finnsjoen study site. The project is probably the biggest effort, so far, to characterize a major fracture zone in crystalline bedrock. The project was running between 1984-1990 involving a large number of geological, geohydrological, geochemical, and geomechanical investigation. The methods used for identification and characterization are reviewed and discussed in terms of applicability and possible improvements for future investigations. The discussion is exemplified with results from the investigation within the project. Flow and transport properties of the zone determined from hydraulic tests and tracer tests are discussed. A large number of numerical modelling efforts performed within the fracture zone project, the INTRAVAL project, and the SKB91-study are summarized and reviewed. Finally, occurrence of similar zones and the relevance of major low angle fracture zones in connection to the siting of an underground repository is addressed

  20. Determination of hydraulic characteristics of an aquifer capacity from ...

    African Journals Online (AJOL)

    Constant rate, single well pumping tests were conducted using boreholes located in four communities in the study area with the aim of determining the aquifer hydraulic properties using the Cooper Jacob method. Fractured shales yielded groundwater into the wells whose depths ranged from 26 to 35m while the static water ...

  1. Quaternary redox transitions in deep crystalline rock fractures at the western margin of the Greenland ice sheet

    International Nuclear Information System (INIS)

    Drake, Henrik; Suksi, Juhani; Tullborg, Eva-Lena; Lahaye, Yann

    2017-01-01

    When planning for long term deep geological repositories for spent nuclear fuel knowledge of processes that will influence and change the sub-surface environment is crucial. For repositories in northern Europe and similar areas, influence from advancing and retreating continental ice sheets must be planned for. Rapid transport of meltwater into the bedrock may introduce oxic conditions at great depth, which may affect the copper canisters planned to encapsulate the spent fuel. The lack of direct observations has led to simplified modelling assumptions not reflecting the complexity of natural systems. As part of a unique field and modelling study, The Greenland Analogue Project, of a continental ice sheet and related sub-surface conditions, we here present mineralogical and U-series data unravelling the Quaternary redox history in the deep bedrock fracture system close to the margin of the Greenland ice sheet. The aim was to increase the understanding of circulation of potentially oxygenated glacial meltwater from the surface down to 650 m depth. Secondary mineral coatings were sampled from open fractures in cored boreholes down to 650 m, within and below the current permafrost. Despite continental ice sheet coverage and/or prevailing permafrost during large parts of the last 1 Ma, measured disequilibrium in the 238 U- 234 U- 230 Th system shows that water has circulated in the bedrock fracture system at various occasions during this time span. In fractures of the upper 60 m, infiltration of oxygenated surface water has resulted in a prominent near-surface ”oxidised zone” with abundant FeOOH precipitation. However, this zone must be relict because it is currently within permafrost and the U-series disequilibrium signatures of most fracture coatings show evidence of deposition of U prior to the Holocene and even prior to the last glaciation maximum which occurred less than 100 ka ago. This U deposition is found both within and below the near surface

  2. Bedrock morphology and structure, upper Santa Cruz Basin, south-central Arizona, with transient electromagnetic survey data

    Science.gov (United States)

    Bultman, Mark W.; Page, William R.

    2016-10-31

    The upper Santa Cruz Basin is an important groundwater basin containing the regional aquifer for the city of Nogales, Arizona. This report provides data and interpretations of data aimed at better understanding the bedrock morphology and structure of the upper Santa Cruz Basin study area which encompasses the Rio Rico and Nogales 1:24,000-scale U.S. Geological Survey quadrangles. Data used in this report include the Arizona Aeromagnetic and Gravity Maps and Data referred to here as the 1996 Patagonia Aeromagnetic survey, Bouguer gravity anomaly data, and conductivity-depth transforms (CDTs) from the 1998 Santa Cruz transient electromagnetic survey (whose data are included in appendixes 1 and 2 of this report).Analyses based on magnetic gradients worked well to identify the range-front faults along the Mt. Benedict horst block, the location of possibly fault-controlled canyons to the west of Mt. Benedict, the edges of buried lava flows, and numerous other concealed faults and contacts. Applying the 1996 Patagonia aeromagnetic survey data using the horizontal gradient method produced results that were most closely correlated with the observed geology.The 1996 Patagonia aeromagnetic survey was used to estimate depth to bedrock in the upper Santa Cruz Basin study area. Three different depth estimation methods were applied to the data: Euler deconvolution, horizontal gradient magnitude, and analytic signal. The final depth to bedrock map was produced by choosing the maximum depth from each of the three methods at a given location and combining all maximum depths. In locations of rocks with a known reversed natural remanent magnetic field, gravity based depth estimates from Gettings and Houser (1997) were used.The depth to bedrock map was supported by modeling aeromagnetic anomaly data along six profiles. These cross sectional models demonstrated that by using the depth to bedrock map generated in this study, known and concealed faults, measured and estimated magnetic

  3. Analysis of groundwater flow and stream depletion in L-shaped fluvial aquifers

    Directory of Open Access Journals (Sweden)

    C.-C. Lin

    2018-04-01

    Full Text Available Understanding the head distribution in aquifers is crucial for the evaluation of groundwater resources. This article develops a model for describing flow induced by pumping in an L-shaped fluvial aquifer bounded by impermeable bedrocks and two nearly fully penetrating streams. A similar scenario for numerical studies was reported in Kihm et al. (2007. The water level of the streams is assumed to be linearly varying with distance. The aquifer is divided into two subregions and the continuity conditions of the hydraulic head and flux are imposed at the interface of the subregions. The steady-state solution describing the head distribution for the model without pumping is first developed by the method of separation of variables. The transient solution for the head distribution induced by pumping is then derived based on the steady-state solution as initial condition and the methods of finite Fourier transform and Laplace transform. Moreover, the solution for stream depletion rate (SDR from each of the two streams is also developed based on the head solution and Darcy's law. Both head and SDR solutions in the real time domain are obtained by a numerical inversion scheme called the Stehfest algorithm. The software MODFLOW is chosen to compare with the proposed head solution for the L-shaped aquifer. The steady-state and transient head distributions within the L-shaped aquifer predicted by the present solution are compared with the numerical simulations and measurement data presented in Kihm et al. (2007.

  4. An overview of geophysical technologies appropriate for characterization and monitoring at fractured-rock sites

    Science.gov (United States)

    Geophysical methods are used increasingly for characterization and monitoring at remediation sites in fractured-rock aquifers. The complex heterogeneity of fractured rock poses enormous challenges to groundwater remediation professionals, and new methods are needed to cost-effect...

  5. Origin of brackish groundwater in a sandstone aquifer on Bornholm, Denmark

    DEFF Research Database (Denmark)

    Jørgensen, Niels Oluf; Heinemeier, Jan

    2008-01-01

    A multi-isotope approach in combination with hydrochemical data and borehole logging is applied to identify the source of brackish groundwater in a borehole in the well field of Neksø Municipal Waterworks in Bornholm, Denmark. The aquifer lithology consists of fractured Lower Cambrian sandstones...

  6. Assessing the vulnerability of public-supply wells to contamination—Edwards aquifer near San Antonio, Texas

    Science.gov (United States)

    Jagucki, Martha L.; Musgrove, MaryLynn; Lindgren, Richard J.; Fahlquist, Lynne; Eberts, Sandra M.

    2011-01-01

    This fact sheet highlights findings from the vulnerability study of a public-supply well field in San Antonio, Texas. The well field consists of six production wells that tap the Edwards aquifer. Typically, one or two wells are pumped at a time, yielding an average total of 20-21 million gallons per day. Water samples were collected from public-supply wells in the well field and from monitoring wells installed along general directions of flow to the well field. Samples from the well field contained some constituents of concern for drinking-water quality, including nitrate; the pesticide compounds atrazine, deethylatrazine, and simazine; and the volatile organic compounds tetrachloroethene (also called perchloroethene, or PCE), chloroform, bromoform, and dibromochloromethane. These constituents were detected in untreated water at concentrations much less than established drinking-water standards, where such standards exist. Overall, the study findings point to four primary factors that affect the movement and fate of contaminants and the vulnerability of the public-supply well field in San Antonio, Texas: (1) groundwater age (how long ago water entered, or recharged, the aquifer), (2) fast pathways for flow of groundwater through features formed or enlarged by dissolution of bedrock, (3) recharge characteristics of the aquifer, and (4) natural geochemical processes within the aquifer. A computer-model simulation of groundwater flow and transport was used to estimate the traveltime (or age) of water particles entering public-supply well W4 in the well field. Modeled findings show that almost half of the water reaching the public-supply well is less than 2 years old. Such a large percentage of very young water indicates that (1) contaminants entering the aquifer may be transported rapidly to the well, (2) there is limited time for chemical reactions to occur in the aquifer that may attenuate contaminants, and (3) should recharge water become contaminated with

  7. Fate of individual sewage disposal system wastewater within regolith in mountainous terrain

    Science.gov (United States)

    Dano, Kathleen; Poeter, Eileen; Thyne, Geoff

    2008-06-01

    In order to improve understanding of the fate of septic tank or individual sewage disposal system (ISDS) effluent in regolith overlying fractured-rock aquifers, effluent from an ISDS in such a setting was tracked via geophysical, hydrological, and geochemical methods. Under typical precipitation conditions, the effluent entered the fractured bedrock within 5 m of the boundary of the constructed infiltration area. During a period of unusually high spring recharge, the plume migrated between 50 and 100 m within the regolith before infiltrating the fractured bedrock. The chemical signature of the effluent is similar to that required to account for the decline in water quality, suggesting a causative relationship (as estimated from mass-balance models of the surface-water chemistry near the mouth of the basin). The elevated salt content of the effluent during periods of high natural recharge to the infiltration area correlates with elevated salt concentrations in surface and groundwater at the basin scale, suggesting that some of the effluent salt load may be stored in the unsaturated zone during dry periods and flushed during periods of elevated natural recharge.

  8. Spatial bedrock erosion distribution in a natural gorge

    Science.gov (United States)

    Beer, A. R.; Turowski, J. M.; Kirchner, J. W.

    2015-12-01

    Quantitative analysis of morphological evolution both in terrestrial and planetary landscapes is of increasing interest in the geosciences. In mountainous regions, bedrock channel formation as a consequence of the interaction of uplift and erosion processes is fundamental for the entire surface evolution. Hence, the accurate description of bedrock channel development is important for landscape modelling. To verify existing concepts developed in the lab and to analyse how in situ channel erosion rates depend on the interrelations of discharge, sediment transport and topography, there is a need of highly resolved topographic field data. We analyse bedrock erosion over two years in a bedrock gorge downstream of the Gorner glacier above the town of Zermatt, Switzerland. At the study site, the Gornera stream cuts through a roche moutonnée in serpentine rock of 25m length, 5m width and 8m depth. We surveyed bedrock erosion rates using repeat terrestrial laser scanning (TLS) with an average point spacing of 5mm. Bedrock erosion rates in direction of the individual surface normals were studied directly on the scanned point clouds applying the M3C2 algorithm (Lague et al., 2013, ISPRS). The surveyed erosion patterns were compared to a simple stream erosivity visualisation obtained from painted bedrock sections at the study location. Spatially distributed erosion rates on bedrock surfaces based on millions of scan points allow deduction of millimeter-scale mean annual values of lateral erosion, incision and downstream erosion on protruding streambed surfaces. The erosion rate on a specific surface point is shown to depend on the position of this surface point in the channel's cross section, its height above the streambed and its spatial orientation to the streamflow. Abrasion by impacting bedload was likely the spatially dominant erosion process, as confirmed by the observed patterns along the painted bedrock sections. However, a single plucking event accounted for the half

  9. SFR site investigation. Bedrock Hydrogeochemistry

    International Nuclear Information System (INIS)

    Nilsson, Ann-Chatrin; Tullborg, Eva-Lena; Smellie, John; Gimeno, Maria J.; Gomez, Javier B.; Auque, Luis F.; Sandstroem, Bjoern; Pedersen, Karsten

    2011-11-01

    There are plans that the final repository for low and intermediate level radioactive waste, SFR, located about 150 km north of Stockholm, will be extended. Geoscientific studies to define and characterise a suitable bedrock volume for the extended repository have been carried out from 2007 to 2011, and have included the drilling and evaluation of seven new core drilled and four percussion boreholes. These new data, together with existing data extending back to 1985, have been interpreted and modelled in order to provide the necessary information for safety assessment and repository design. This report presents the final hydrogeochemical site description for the SFR site, and will constitute a background report for the integrated site description (the SFR Site Descriptive Model version 1.0) together with corresponding reports from the geological and hydrogeological disciplines. Most of the hydrogeochemical data from the field investigations consist of major ions and isotopes together with sporadic gas, microbe and measured redox data. Despite the close proximity of the Forsmark site, few data from this source are of relevance because of the shallow nature of the SFR site, the fact that SFR is located beneath the Baltic Sea and also the drawdown/upconing impacts of its construction on the hydrogeochemistry. This artificially imposed dynamic flow system is naturally more prevalent along major deformation fracture zones of higher transmissivity, whilst lower transmissive fractures together with the less transmissive bedrock masses between major deformation zones, still retain some evidence of the natural groundwater mixing patterns established prior to the SFR construction. The groundwaters in the SFR dataset cover a depth down to -250 m.a.s.l. with single sampling locations at -300 and -400 m.a.s.l. and represent a relatively limited salinity range (1,500 to 5,500 mg/L chloride). However, the δ 18 O values show a wide variation (-15.5 to -7.5 per mille V

  10. SFR site investigation. Bedrock Hydrogeochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Ann-Chatrin [Geosigma AB, Uppsala (Sweden); Tullborg, Eva-Lena [Terralogica AB, Graabo (Sweden); Smellie, John [Conterra AB, Uppsala (Sweden); Gimeno, Maria J.; Gomez, Javier B.; Auque, Luis F. [Univ. of Zaragoza, Zaragoza (Spain); Sandstroem, Bjoern [WSP Sverige AB, Goeteborg (Sweden); Pedersen, Karsten [Micans AB, Moelnlycke (Sweden)

    2011-11-15

    There are plans that the final repository for low and intermediate level radioactive waste, SFR, located about 150 km north of Stockholm, will be extended. Geoscientific studies to define and characterise a suitable bedrock volume for the extended repository have been carried out from 2007 to 2011, and have included the drilling and evaluation of seven new core drilled and four percussion boreholes. These new data, together with existing data extending back to 1985, have been interpreted and modelled in order to provide the necessary information for safety assessment and repository design. This report presents the final hydrogeochemical site description for the SFR site, and will constitute a background report for the integrated site description (the SFR Site Descriptive Model version 1.0) together with corresponding reports from the geological and hydrogeological disciplines. Most of the hydrogeochemical data from the field investigations consist of major ions and isotopes together with sporadic gas, microbe and measured redox data. Despite the close proximity of the Forsmark site, few data from this source are of relevance because of the shallow nature of the SFR site, the fact that SFR is located beneath the Baltic Sea and also the drawdown/upconing impacts of its construction on the hydrogeochemistry. This artificially imposed dynamic flow system is naturally more prevalent along major deformation fracture zones of higher transmissivity, whilst lower transmissive fractures together with the less transmissive bedrock masses between major deformation zones, still retain some evidence of the natural groundwater mixing patterns established prior to the SFR construction. The groundwaters in the SFR dataset cover a depth down to -250 m.a.s.l. with single sampling locations at -300 and -400 m.a.s.l. and represent a relatively limited salinity range (1,500 to 5,500 mg/L chloride). However, the {delta}{sup 18}O values show a wide variation (-15.5 to -7.5 per mille V

  11. Relationships of stable isotopes, water-rock interaction and salinization in fractured aquifers, Petrolina region, Pernambuco State, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Priscila Sousa, E-mail: priscila.silva@cprm.gov.br [Serviço Geológico do Brasil (CPRM), Manaus, AM (Brazil); Campos, José Eloi Guimarães; Cunha, Luciano Soares; Mancini, Luís Henrique, E-mail: eloi@unb.br, E-mail: lucianosc@unb.br, E-mail: lmancini@unb.br [Universidade de Brasília (UnB), Brasília, DF (Brazil)

    2018-01-15

    The Petrolina County, Pernambuco State, Brazil, presents specificities that make it unique from a hydrogeological point of view. Water resource scarcity is both a quantitative and qualitative issue. The climate is classified as semiarid, having low precipitation, along with high temperatures and evapotranspiration rates. Aquifer zones are related to low connected fractures resulting in a restricted water flow in the aquifer. The recharge is limited and the groundwater salinity is high. Stable isotope analyses of H and O were developed in groundwater samples (with different electrical conductivity) and surface water collected in a bypass channel flowing from the São Francisco River. The results were plotted in a δD ‰ versus δ{sup 18}O ‰ graph along with the curves of the global and local meteoric water line. Groundwater samples showed unexpected results showing a lighter sign pattern when compared to the meteoric waters. More negative δD and δ{sup 18}O values indicate an enrichment in light isotopes, which show that this process is not influenced by surface processes, where the enrichment occurs in heavy isotopes due to evaporation. The isotopic signature observed is interpreted either as resulting from the water-rock interaction, or as resulting from recharge from paleo rains. The waters are old and show restricted flow. So the water-rock contact time is extended. In the rock weathering processes, through the hydration of feldspars, there is preferential assimilation of heavy isotopes at the expense of the lighter ones that remain in the water. Analyses of the {sup 87}Sr/{sup 86}Sr ratio and isotopic groundwater dating assist in the interpretations. (author)

  12. The Breakdown: Hillslope Sources of Channel Blocks in Bedrock Landscapes

    Science.gov (United States)

    Selander, B.; Anderson, S. P.; Rossi, M.

    2017-12-01

    Block delivery from hillslopes is a poorly understood process that influences bedrock channel incision rates and shapes steep terrain. Previous studies demonstrate that hillslope sediment delivery rate and grain size increases with channel downcutting rate or fracture density (Attal et al., 2015, ESurf). However, blocks that exceed the competence of the channel can inhibit incision. In Boulder Creek, a bedrock channel in the Colorado Front Range, large boulders (>1 m diameter) are most numerous in the steepest channel reaches; their distribution seems to reflect autogenic channel-hillslope feedback between incision rate and block delivery (Shobe et al., 2016, GRL). It is clear that the processes, rates of production, and delivery of large blocks from hillslopes into channels are critical to our understanding of steep terrain evolution. Fundamental questions are 1) whether block production or block delivery is rate limiting, 2) what mechanisms release blocks, and 3) how block production and transport affect slope morphology. As a first step, we map rock outcrops on the granodiorite hillslopes lining Boulder Creek within Boulder Canyon using a high resolution DEM. Our algorithm uses high ranges of curvature values in conjunction with slopes steeper than the angle of repose to quickly identify rock outcrops. We field verified mapped outcrop and sediment-mantled locations on hillslopes above and below the channel knickzone. We find a greater abundance of exposed rock outcrops on steeper hillslopes in Boulder Canyon. Additionally, we find that channel reaches with large in-channel blocks are located at the base of hillslopes with large areas of exposed bedrock, while reaches lacking large in-channel blocks tend to be at the base of predominately soil mantled and forested hillslopes. These observations support the model of block delivery and channel incision of Shobe et al. (2016, GRL). Moreover, these results highlight the conundrum of how rapid channel incision is

  13. Bedrock Geologic Map of the Hinesburg Quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from Thompson, P., Thompson, T.B., and Doolan, B., 2004, Bedrock Geology of the Hinesburg quadrangle, Vermont. The bedrock geologic map data at a scale...

  14. Numerical simulation of groundwater movement and managed aquifer recharge from Sand Hollow Reservoir, Hurricane Bench area, Washington County, Utah

    Science.gov (United States)

    Marston, Thomas M.; Heilweil, Victor M.

    2012-01-01

    The Hurricane Bench area of Washington County, Utah, is a 70 square-mile area extending south from the Virgin River and encompassing Sand Hollow basin. Sand Hollow Reservoir, located on Hurricane Bench, was completed in March 2002 and is operated primarily as a managed aquifer recharge project by the Washington County Water Conservancy District. The reservoir is situated on a thick sequence of the Navajo Sandstone and Kayenta Formation. Total recharge to the underlying Navajo aquifer from the reservoir was about 86,000 acre-feet from 2002 to 2009. Natural recharge as infiltration of precipitation was approximately 2,100 acre-feet per year for the same period. Discharge occurs as seepage to the Virgin River, municipal and irrigation well withdrawals, and seepage to drains at the base of reservoir dams. Within the Hurricane Bench area, unconfined groundwater-flow conditions generally exist throughout the Navajo Sandstone. Navajo Sandstone hydraulic-conductivity values from regional aquifer testing range from 0.8 to 32 feet per day. The large variability in hydraulic conductivity is attributed to bedrock fractures that trend north-northeast across the study area.A numerical groundwater-flow model was developed to simulate groundwater movement in the Hurricane Bench area and to simulate the movement of managed aquifer recharge from Sand Hollow Reservoir through the groundwater system. The model was calibrated to combined steady- and transient-state conditions. The steady-state portion of the simulation was developed and calibrated by using hydrologic data that represented average conditions for 1975. The transient-state portion of the simulation was developed and calibrated by using hydrologic data collected from 1976 to 2009. Areally, the model grid was 98 rows by 76 columns with a variable cell size ranging from about 1.5 to 25 acres. Smaller cells were used to represent the reservoir to accurately simulate the reservoir bathymetry and nearby monitoring wells; larger

  15. Microbiology of transitional groundwater of the porous overburden and underlying shallow fractured bedrock aquifers in Olkiluoto, Finland. October 2005 - January 2006

    International Nuclear Information System (INIS)

    Pedersen, K.

    2007-05-01

    The subsurface biosphere on Earth appears to be far more expansive and metabolically and phylogenetically complex than previously thought. A diverse suite of subsurface environments has been reported to support microbial ecosystems, extending from a few meters below the surface to several thousand meters. The discovery of a deep biosphere will have several important implications for underground repositories for radioactive wastes. The main potential effects of microorganisms in the context of a KBS-3 type repository for spent fuel in the bedrock of Olkiluoto are: (1) Oxygen reduction and maintenance of anoxic and reduced conditions. (2) Bio-immobilisation and bio-mobilisation of radionuclides, and the effects from microbial metabolism on radionuclide mobility. (3) Sulphate reduction to sulphide and the risk for copper sulphide corrosion. The main objective of this study was to characterize the geochemistry, biomass and microbial diversity of shallow subsurface groundwater at Olkiluoto, from 4.0 m down to 14.9 m. This objective also permitted the determination of whether or not there is any transition in the shallow depths at Olkiluoto to microbial conditions associated with the deep subsurface. This was the second investigation that covered both shallow and some moderately deep groundwater microbiology in Olkiluoto. The analysis of microbiology is very important for proper understanding of the evolution of geochemical processes in and around the underground research facility ONKALO being constructed at Olkiluoto by Posiva since autumn 2004, as well as for the planned KBS-3 type spent fuel repository at Olkiluoto. There are several conclusions from this investigation that are of importance for ONKALO. The following present day conclusions can be drawn. Continued investigations will update and test them: The shallow biosphere was dominated by oxygen consuming microorganisms that block oxygen migration to deeper groundwater. This effect was most pronounced during the

  16. Aquifer test interpretation using derivative analysis and diagnostic plots

    Science.gov (United States)

    Hernández-Espriú, Antonio; Real-Rangel, Roberto; Cortés-Salazar, Iván; Castro-Herrera, Israel; Luna-Izazaga, Gabriela; Sánchez-León, Emilio

    2017-04-01

    Pumping tests remain a method of choice to deduce fundamental aquifer properties and to assess well condition. In the oil and gas (O&G) industry, well testing has been the core technique in examining reservoir behavior over the last 50 years. The pressure derivative by Bourdet, it is perhaps, the most significant single development in the history of well test analysis. Recently, the so-called diagnostics plots (e.g. drawdown and drawdown derivative in a log-log plot) have been successfully tested in aquifers. However, this procedure is still underutilized by groundwater professionals. This research illustrates the applicability range, advantages and drawbacks (e.g. smoothing procedures) of diagnostic plots using field examples from a wide spectrum of tests (short/long tests, constant/variable flow rates, drawdown/buildup stages, pumping well/observation well) in dissimilar geological conditions. We analyze new and pre-existent aquifer tests in Mexico, USA, Canada, Germany, France and Saudi Arabia. In constant flow rate tests, our results show that derivative analysis is an easy, robust and powerful tool to assess near-borehole damage effects, formation heterogeneity, boundaries, flow regimes, infinite-acting radial stages, i.e., valid Theisian framework, and fracture-driven flow. In step tests, the effectiveness relies on high-frequency drawdown measurements. Moreover, we adapt O&G analytical solutions to cater for the conditions in groundwater systems. In this context, further parameters can be computed analytically from the plots, such as skin factor, head losses, wellbore storage, distance to the boundary, channel-aquifer and/or fracture zone width, among others. Therefore, diagnostic plots should be considered a mandatory tool for pumping tests analysis among hydrogeologists. This project has been supported by DGAPA (UNAM) under the research project PAPIIT IN-112815.

  17. Field evidence for control of quarrying by rock bridges in jointed bedrock

    Science.gov (United States)

    Hooyer, T. S.; Cohen, D. O.; Iverson, N. R.

    2011-12-01

    Quarrying is generally thought to be the most important mechanism by which glaciers erode bedrock. In quarrying models it is assumed that slow, subcritical, growth of pre-existing cracks rate-limits the process and occurs where there are large stress differences in the bed, such as near rock bumps where ice separates from the bed to form water-filled cavities. Owing to the direction of principal stresses in rocks associated with sliding and resultant cavity formation, models predict that quarrying will occur along cracks oriented perpendicular to the ice flow direction or parallel to zones of ice-bed contact. Preglacial cracks in rocks will tend to propagate mainly downward, and in sedimentary or some metamorphic rocks will merge with bedding planes, thereby helping to isolate rock blocks for dislodgement. In contrast to these model assumptions, new measurements of quarried surface orientations in the deglaciated forefield of nine glaciers in Switzerland and Canada indicate a strong correlation between orientations of pre-existing joints and quarried bedrock surfaces, independent of ice flow direction or ice-water contact lines. The strong correlation persists across all rock types, and rocks devoid of major joints lack quarried surfaces. We propose a new conceptual model of quarrying that idealizes the bedrock as a series of blocks separated by discontinuous preglacial joints containing intact rock bridges. Bridges concentrate stress differences caused by normal and shear forces acting at the rock surface. Failure of bridges is caused by slow subcritical crack growth enhanced by water pressure fluctuations. To lend credibility to this new model, we show field evidence of failed rock bridges in quarried surfaces and of rib marks on plumose structures that we interpret as arrest fracture fronts due to transient subglacial water-pressure fluctuations.

  18. Weathering of the Rio Blanco Quartz Diorite, Luquillo Mountains, Puerto Rico: Coupling Oxidation, Dissolution, And Fracturing

    International Nuclear Information System (INIS)

    Buss, H.L.; Sak, P.B.; Webb, S.M.; Brantley, S.L.

    2008-01-01

    In the mountainous Rio Icacos watershed in northeastern Puerto Rico, quartz diorite bedrock weathers spheroidally, producing a 0.2-2 m thick zone of partially weathered rock layers (∼2.5 cm thickness each) called rindlets, which form concentric layers around corestones. Spheroidal fracturing has been modeled to occur when a weathering reaction with a positive ΔV of reaction builds up elastic strain energy. The rates of spheroidal fracturing and saprolite formation are therefore controlled by the rate of the weathering reaction. Chemical, petrographic, and spectroscopic evidence demonstrates that biotite oxidation is the most likely fracture-inducing reaction. This reaction occurs with an expansion in d (0 0 1) from 10.0 to 10.5 (angstrom), forming 'altered biotite'. Progressive biotite oxidation across the rindlet zone was inferred from thin sections and gradients in K and Fe(II). Using the gradient in Fe(II) and constraints based on cosmogenic age dates, we calculated a biotite oxidation reaction rate of 8.2 x 10 -14 mol biotite m -2 s -1 . Biotite oxidation was documented within the bedrock corestone by synchrotron X-ray microprobe fluorescence imaging and XANES. X-ray microprobe images of Fe(II) and Fe(III) at 2 (micro)m resolution revealed that oxidized zones within individual biotite crystals are the first evidence of alteration of the otherwise unaltered corestone. Fluids entering along fractures lead to the dissolution of plagioclase within the rindlet zone. Within 7 cm surrounding the rindlet-saprolite interface, hornblende dissolves to completion at a rate of 6.3 x 10 -13 mol hornblende m -2 s -1 : the fastest reported rate of hornblende weathering in the field. This rate is consistent with laboratory-derived hornblende dissolution rates. By revealing the coupling of these mineral weathering reactions to fracturing and porosity formation we are able to describe the process by which the quartz diorite bedrock disaggregates and forms saprolite. In the

  19. Characterization of the Cretaceous aquifer structure of the Meskala region of the Essaouira Basin, Morocco

    Science.gov (United States)

    Hanich, L.; Zouhri, L.; Dinger, J.

    2011-01-01

    The aquifer of early Cretaceous age in the Meskala region of the Essaouira Basin is defined by interpretation of geological drilling data of oil and hydrogeological wells, field measurement and analysis of in situ fracture orientations, and the application of a morphostructural method to identify lineaments. These analyzes are used to develop a stratigraphic-structural model of the aquifer delimited by fault zones of two principal orientations: NNE and WNW. These fault zones define fault blocks that range in area from 4 to 150km2. These blocks correspond either to elevated zones (horsts) or depressed zones (grabens). This structural setting with faults blocks of Meskala region is in accordance with the structure of the whole Essaouira Basin. Fault zones disrupt the continuity of the aquifer throughout the study area, create recharge and discharge zones, and create dip to the units from approximately 10?? to near vertical in various orientations. Fracture measurements and morphometric-lineament analyzes help to identify unmapped faults, and represent features important to groundwater hydraulics and water quality within fault blocks. The above geologic features will enable a better understanding of the behaviour and hydro-geo-chemical and hydrodynamics of groundwater in the Meskala aquifer. ?? 2010 Elsevier Ltd.

  20. Assessing Protection Afforded to the Microbiological Quality of Bedrock Groundwater from the Impacts of Septic Tank Effluent by Irish Glacial Till: A Field Study

    Science.gov (United States)

    Orr, Alison; McCarthy, Valerie; Meehan, Robert; Flynn, Raymond

    2010-05-01

    between sites. T-test results ranged from 37.96 min/25mm to 98.26 min/25mm, suggesting hydraulic conductivities of the order of 1.1x10-3 cm/s to 4.24x10-4 cm/s. The contrast in hydraulic conductivity between T-test and slug test results may reflect slight anisotropy within the till, with water flowing vertically a little more easily than horizontally, under equivalent gradients. Despite the low hydraulic conductivities and the low hydraulic gradients observed at each site, analyses of water samples collected from up to 115 metres from septic tank discharge points consistently detected FIOs. The results of the study highlight the possibility of viable pathogenic microorganisms being transported considerable distances from septic tanks through fine-grained glacial tills. Given limited survival times of FIOs outside of their host organisms, study findings suggest that travel times in the till separating septic tanks from monitoring points are of the order of 10s of days, despite similarly low hydraulic conductivities determined independently by the T-test and slug test methods. The microbiological results, coupled to hydraulic measurements, point to very low effective porosities in the till that may possibly relate to fracturing. Moreover, hydraulic conductivity anisotropy suggests that contaminants may flow equally easily to depth. However, the exact levels of protection provided by the till will be a function of effective porosity variation with depth; the role played by fractures remains to be investigated but could prove to be potentially significant. Overall, the results of the study suggest that the levels of protection afforded by fine-grained Irish tills to bedrock aquifers may be considerably lower than originally assumed.

  1. Iowa Bedrock Surface Elevation

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — This Digital Elevation Model (DEM) of the bedrock surface elevation in Iowa was compiled using all available data, principally information from GEOSAM, supplemented...

  2. Dating methods and geochronology of fractures and movements in bedrock: a review

    Energy Technology Data Exchange (ETDEWEB)

    Tullborg, E.L. [Terralogica AB, Graabo (Sweden); Larson, Sven Aake [Goeteborgs Univ. (Sweden); Morad, S. [Uppsala Univ. (Sweden)

    2001-06-01

    Constraining the absolute and relative ages of crustal movements is of fundamental importance in evaluating the potentials of a site as a repository for spent radioactive fuel. In this report a review summary of up to date absolute and relative dating methods is presented with specific attention to those methods most amenable for dating of fractures. A review of major fracture-and shear zones in the Swedish part of the Baltic Shield is also given. Since the shield has suffered a long and complicated history, geo-chronologists are faced with the problem of reactivated zones when attempting to date these. It is important to get structural control in order to make the choice of dating method since different methods may give answer to completely different questions. An integration of all geological background data is necessary in order to make the proper chose to fit the raised question.

  3. Dating methods and geochronology of fractures and movements in bedrock: a review

    International Nuclear Information System (INIS)

    Tullborg, E.L.; Larson, Sven Aake; Morad, S.

    2001-06-01

    Constraining the absolute and relative ages of crustal movements is of fundamental importance in evaluating the potentials of a site as a repository for spent radioactive fuel. In this report a review summary of up to date absolute and relative dating methods is presented with specific attention to those methods most amenable for dating of fractures. A review of major fracture-and shear zones in the Swedish part of the Baltic Shield is also given. Since the shield has suffered a long and complicated history, geo-chronologists are faced with the problem of reactivated zones when attempting to date these. It is important to get structural control in order to make the choice of dating method since different methods may give answer to completely different questions. An integration of all geological background data is necessary in order to make the proper chose to fit the raised question

  4. Application of the top specified boundary layer (TSBL) approximation to initial characterization of an inland aquifer mineralization: 2. Seepage of saltwater through semi-confining layers

    Science.gov (United States)

    Rubin, H.; Buddemeier, R.W.

    1998-01-01

    This paper presents a generalized basic study that addresses practical needs for an understanding of the major mechanisms involved in the mineralization of groundwater in the Great Bend Prairie aquifer in south- central Kansas. This Quaternary alluvial aquifer and associated surface waters are subject to contamination by saltwater, which in some areas seeps from the deeper Permian bedrock formation into the overlying freshwater aquifer through semiconfining layers. A simplified conceptual model is adopted. It incorporates the freshwater aquifer whose bottom is comprised of a semiconfining layer through which a hydrologically minor but geochemically important saline water discharge seeps into the aquifer. A hierarchy of approximate approaches is considered to analyze the mineralization processes taking place in the aquifer. The recently developed top specified boundary layer (TSBL) approach is very convenient to use for the initial characterization of these processes, and is further adapted to characterization of head-driven seepage through semi-confining layers. TSBL calculations indicate that the seeping saline water may create two distinct new zones in the aquifer: (1) a completely saline zone (CSZ) adjacent to the semiconfining bottom of the aquifer, and (2) a transition zone (TZ) which develops between the CSZ and the freshwater zone. Some possible scenarios associated with the various mineralization patterns are analyzed and discussed.

  5. New extractive technologies for unconventional hydrocarbon exploitation and potential environmental hazards to the Guarani aquifer

    International Nuclear Information System (INIS)

    Meroni, E.; Pineiro, G.

    2014-01-01

    This investigation presents a scientific approach about the impact of hydraulic fracturing (f racking) in North America. We focus on the impacts to groundwater, to ascertain whether this technology would produce a similar impact if applied to Norte Basin of Uruguay and a possible impact on the Guarani aquifer. The non- conventional methodologies for hydrocarbon exploitation are described and analysed, taking into account in particular, the characteristics and the profitability of the geological formations that might be potential sources in the Norte Basin of Uruguay. By several in-depth interviews to academic, technic and politic personalities we explored the amount and quality of information that Uruguayan people have about the presence of shale oil and gas resources in the country, as well as on the current normative for their eventual exploitation, and on the contracts that the Uruguayan government has already signed with international oil companies pending the studies required by the current pertinent environmental regulation. The risks for the Guarani Aquifer System if applying hydraulic fracture in rocks directly related to those containing the aquifer, is also analysed

  6. Hydraulic properties and scale effects investigation in regional rock aquifers, south-western Quebec, Canada

    Science.gov (United States)

    Nastev, M.; Savard, M. M.; Lapcevic, P.; Lefebvre, R.; Martel, R.

    This paper reports on the characterization of hydraulic properties of regional rock aquifers carried out within a groundwater resources assessment project in the St. Lawrence Lowlands of south-western Quebec. To understand the aquifer behavior at both the fracture level and at field scale, hydraulic investigations were carried out using various aquifer tests. The groundwater flow at the local scale is controlled mostly by the fracture system. Results of the constant-head injection tests show a weak decreasing trend of hydraulic conductivity with depth indicating that a major part of the groundwater flow occurs in the first meters of the rock sequence. At the regional scale, the equivalent porous media approach is applicable. The hydraulic conductivity measurements were correlated to the scale of the aquifer tests expressed with the investigated aquifer volume. A simple interpolation procedure for the hydraulic conductivity field was developed based on the distance between field measurements and the tested aquifer volumes. The regional distribution of the hydraulic conductivity for the major fractured aquifer units indicates that dolostone is the most permeable whereas sandstone and crystalline rocks are the least permeable units. Este artículo trata de la caracterización de las propiedades hidráulicas en acuíferos regionales rocosos, la cual se llevó a cabo dentro del proyecto de evaluación de los recursos de agua subterránea en St. Lawrence Lowlands al suroeste de Quebec. Para entender el comportamiento del acuífero tanto a nivel de fractura como a escala del campo, se ejecutaron investigaciones hidráulicas usando varias pruebas de acuífero. El flujo del agua subterránea a escala local está controlado principalmente por el sistema de fracturas. Los resultados de las pruebas de inyección con cabeza constante muestran una tendencia decreciente débil de la conductividad hidráulica con la profundidad, indicando que la mayor parte del flujo de agua

  7. Water hydrochemical of the Punta Espinillo fissured aquifer, Montevideo-Uruguay

    International Nuclear Information System (INIS)

    Montano, J.; Peel, E.; Sienra, M.; Gianotti, V.; Lacues, X. . E mail: montanox@movinet.com.uy

    2004-01-01

    In the westernmost part of the Department of Montevideo an intensive agronomic activity is developed based on irrigation systems. There, the majority of the vegetables and fruits consumed in Montevideo city are produced. The studied area consists in approximately 1500 ha. divided into orchards of 5 ha or less. Former studies show that salinization risk is due to the proximity of de La Plata river and / or the draw - downs in static levels because of over exploitation. The aquifer type is fractured and shows flows from 2 m3/h to 20 m3/h. The aim of this work is to perform a preliminary hydrochemical characterization of the Punta Espinillo fractured aquifer system and to determine human use and irrigation aptitudes. The results show that the groundwater is sodi c bi carbonated and it varies from hard to very hard. Moreover, from the correlation studies between hydrochemical parameters it is observed that Cl- and SO42- ions are responsible for the high salinity. It is also observed that exist important restrictions for human and irrigation use [es

  8. Hydraulic fracture considerations in oil sand overburden dams

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, R.; Madden, B.; Danku, M. [Syncrude Canada Ltd., Fort McMurray, AB (Canada)

    2008-07-01

    This paper discussed hydraulic fracture potential in the dry-filled temporary dams used in the oil sands industry. Hydraulic fractures can occur when reservoir fluid pressures are greater than the minimum stresses in a dam. Stress and strain conditions are influenced by pore pressures, levels of compaction in adjacent fills as well as by underlying pit floor and abutment conditions. Propagation pressure and crack initiation pressures must also be considered in order to provide improved hydraulic fracture protection to dams. Hydraulic fractures typically result in piping failures. Three cases of hydraulic fracture at oil sands operations in Alberta were presented. The study showed that hydraulic fracture failure modes must be considered in dam designs, particularly when thin compacted lift of dry fill are used to replace wetted clay cores. The risk of hydraulic fractures can be reduced by eliminating in situ bedrock irregularities and abutments. Overpressure heights, abutment sloping, and the sloping of fills above abutments, as well as the dam's width and base conditions must also be considered in relation to potential hydraulic fractures. It was concluded that upstream sand beaches and internal filters can help to prevent hydraulic fractures in dams in compacted control zones. 5 refs., 16 figs.

  9. Linking carbon and hydrologic fluxes in the critical zone: Observations from high-frequency monitoring of a weathered bedrock vadose zone

    Science.gov (United States)

    Tune, A. K.; Druhan, J. L.; Wang, J.; Cargill, S.; Murphy, C.; Rempe, D. M.

    2017-12-01

    A principle challenge in quantifying feedbacks between continental weathering and atmospheric CO2 is to improve understanding of how biogeochemical processes in the critical zone influence the distribution and mobility of organic and inorganic carbon. In particular, in landscapes characterized by thin soils and heterogeneous weathered and fractured bedrock, little data exist to inform and constrain predictive models for carbon dynamics. Here, we present the results of an intensive water and gas sampling campaign across an 18 m thick, variably saturated argillite weathering profile in the Eel River CZO. We monitor water content in situ and regularly collect samples of freely-draining water, tightly-held water, and gas through wet and dry seasons using a novel Vadose-zone Monitoring System (VMS) consisting of sensors and samplers distributed across a 20 m long inclined borehole. This novel approach facilitates the interception of gas and water during transport across the entire variably saturated weathering profile. The data demonstrate that seasonal changes in saturation control the vertical distribution and mobility of carbon in the fractured critical zone. Concentrations of gaseous CO2, O2, and dissolved organic and inorganic carbon fluctuate significantly and repeatably with seasonal additions of water infiltrating the weathered bedrock. A persistent vertical structure in the concentrations of dissolved phases and gas concentrations broadly corresponds to depths associated with unsaturated, seasonally saturated, and chronically saturated zones. Associated variations in the vertical structure of mineralogy and elemental composition, including solid phase organic carbon content, are observed in core obtained during drilling. Together, our observations indicate significant respiration of organic carbon at depths greater than the base of the soil, and thus motivate further investigation of the role of heterogeneous weathered, bedrock environments, which are needed to

  10. A self-regulating model of bedrock river channel geometry

    Science.gov (United States)

    Stark, C. P.

    2006-02-01

    The evolution of many mountain landscapes is controlled by the incision of bedrock river channels. While the rate of incision is set by channel shape through its mediation of flow, the channel shape is itself set by the history of bedrock erosion. This feedback between channel geometry and incision determines the speed of landscape response to tectonic or climatic forcing. Here, a model for the dynamics of bedrock channel shape is derived from geometric arguments, a normal flow approximation for channel flow, and a threshold bed shear stress assumption for bedrock abrasion. The model dynamics describe the competing effects of channel widening, tilting, bending, and variable flow depth. Transient solutions suggest that channels may take ~1-10 ky to adapt to changes in discharge, implying that channel disequilibrium is commonplace. If so, landscape evolution models will need to include bedrock channel dynamics if they are to probe the effects of climate change.

  11. Hydrogeology and water quality of the stratified-drift aquifer in the Pony Hollow Creek Valley, Tompkins County, New York

    Science.gov (United States)

    Bugliosi, Edward F.; Miller, Todd S.; Reynolds, Richard J.

    2014-01-01

    The lithology, areal extent, and the water-table configuration in stratified-drift aquifers in the northern part of the Pony Hollow Creek valley in the Town of Newfield, New York, were mapped as part of an ongoing aquifer mapping program in Tompkins County. Surficial geologic and soil maps, well and test-boring records, light detection and ranging (lidar) data, water-level measurements, and passive-seismic surveys were used to map the aquifer geometry, construct geologic sections, and determine the depth to bedrock at selected locations throughout the valley. Additionally, water-quality samples were collected from selected streams and wells to characterize the quality of surface and groundwater in the study area. Sedimentary bedrock underlies the study area and is overlain by unstratified drift (till), stratified drift (glaciolacustrine and glaciofluvial deposits), and recent post glacial alluvium. The major type of unconsolidated, water-yielding material in the study area is stratified drift, which consists of glaciofluvial sand and gravel, and is present in sufficient amounts in most places to form an extensive unconfined aquifer throughout the study area, which is the source of water for most residents, farms, and businesses in the valleys. A map of the water table in the unconfined aquifer was constructed by using (1) measurements made between the mid-1960s through 2010, (2) control on the altitudes of perennial streams at 10-foot contour intervals from lidar data collected by Tompkins County, and (3) water surfaces of ponds and wetlands that are hydraulically connected to the unconfined aquifer. Water-table contours indicate that the direction of groundwater flow within the stratified-drift aquifer is predominantly from the valley walls toward the streams and ponds in the central part of the valley where groundwater then flows southwestward (down valley) toward the confluence with the Cayuta Creek valley. Locally, the direction of groundwater flow is radially

  12. Geologic framework and hydrostratigraphy of the Edwards and Trinity aquifers within northern Bexar and Comal Counties, Texas

    Science.gov (United States)

    Clark, Allan K.; Golab, James A.; Morris, Robert R.

    2016-11-28

    forms a confining unit between the middle and lower zones of the Trinity aquifer. The lower zone of the Trinity aquifer consists of the Sligo and Hosston Formations, which do not crop out in the study area.The upper zone of the Trinity aquifer is subdivided into five informal HSUs (top to bottom): cavernous, Camp Bullis, upper evaporite, fossiliferous, and lower evaporite. The middle zone of the Trinity aquifer is composed of the (top to bottom) Bulverde, Little Blanco, Twin Sisters, Doeppenschmidt, Rust, Honey Creek, Hensell, and Cow Creek HSUs. The underlying Hammett HSU is a regional confining unit between the middle and lower zones of the Trinity aquifer. The lower zone of the Trinity aquifer is not exposed in the study area.Groundwater recharge and flow paths in the study area are influenced not only by the hydrostratigraphic characteristics of the individual HSUs but also by faults and fractures and geologic structure. Faulting associated with the Balcones fault zone (1) might affect groundwater flow paths by forming a barrier to flow that results in water moving parallel to the fault plane, (2) might affect groundwater flow paths by increasing flow across the fault because of fracturing and juxtaposing porous and permeable units, or (3) might have no effect on the groundwater flow paths.The hydrologic connection between the Edwards and Trinity aquifers and the various HSUs is complex. The complexity of the aquifer system is a combination of the original depositional history, bioturbation, primary and secondary porosity, diagenesis, and fracturing of the area from faulting. All of these factors have resulted in development of modified porosity, permeability, and transmissivity within and between the aquifers. Faulting produced highly fractured areas that have allowed for rapid infiltration of water and subsequently formed solutionally enhanced fractures, bedding planes, channels, and caves that are highly permeable and transmissive. The juxtaposition resulting

  13. Initial yield to depth relation for water wells drilled into crystalline bedrock - Pinardville quadrangle, New Hampshire

    Science.gov (United States)

    Drew, L.J.; Schuenemeyer, J.H.; Amstrong, T.R.; Sutphin, D.M.

    2001-01-01

    A model is proposed to explain the statistical relations between the mean initial water well yields from eight time increments from 1984 to 1998 for wells drilled into the crystalline bedrock aquifer system in the Pinardville area of southern New Hampshire and the type of bedrock, mean well depth, and mean well elevation. Statistical analyses show that the mean total yield of drilling increments is positively correlated with mean total well depth and mean well elevation. In addition, the mean total well yield varies with rock type from a minimum of 46.9 L/min (12.4 gpm) in the Damon Pond granite to a maximum of 74.5 L/min (19.7 gpm) in the Permian pegmatite and granite unit. Across the eight drilling increments that comprise 211 wells each, the percentages of very low-yield wells (1.9 L/min [0.5 gpm] or less) and high-yield wells (151.4 L/min [40 gpm] or more) increased, and those of intermediate-yield wells decreased. As housing development progressed during the 1984 to 1998 interval, the mean depth of the wells and their elevations increased, and the mix of percentages of the bedrock types drilled changed markedly. The proposed model uses a feed-forward mechanism to explain the interaction between the increasing mean elevation, mean well depth, and percentages of very low-yielding wells and the mean well yield. The increasing percentages of very low-yielding wells through time and the economics of the housing market may control the system that forces the mean well depths, percentages of high-yield wells, and mean well yields to increase. The reason for the increasing percentages of very low-yield wells is uncertain, but the explanation is believed to involve the complex structural geology and tectonic history of the Pinardville quadrangle.

  14. Cokriging surface elevation and seismic refraction data for bedrock topography

    International Nuclear Information System (INIS)

    Nyquist, J.E.; Doll, W.E.; Davis, R.K.; Hopkins, R.A.

    1992-01-01

    Analysis of seismic refraction data collected at a proposed site of the Advanced Neutron Source (ANS) Facility showed a strong correlation between surface and bedrock topography. By combining seismically determined bedrock elevation data with surface elevation data using cokriging, we were able to significantly improve our map of bedrock topography without collecting additional seismic data

  15. Processes Governing Alkaline Groundwater Chemistry within a Fractured Rock (Ophiolitic Mélange Aquifer Underlying a Seasonally Inhabited Headwater Area in the Aladağlar Range (Adana, Turkey

    Directory of Open Access Journals (Sweden)

    Cüneyt Güler

    2017-01-01

    Full Text Available The aim of this study was to investigate natural and anthropogenic processes governing the chemical composition of alkaline groundwater within a fractured rock (ophiolitic mélange aquifer underlying a seasonally inhabited headwater area in the Aladağlar Range (Adana, Turkey. In this aquifer, spatiotemporal patterns of groundwater flow and chemistry were investigated during dry (October 2011 and wet (May 2012 seasons utilizing 25 shallow hand-dug wells. In addition, representative samples of snow, rock, and soil were collected and analyzed to constrain the PHREEQC inverse geochemical models used for simulating water-rock interaction (WRI processes. Hydrochemistry of the aquifer shows a strong interseasonal variability where Mg–HCO3 and Mg–Ca–HCO3 water types are prevalent, reflecting the influence of ophiolitic and carbonate rocks on local groundwater chemistry. R-mode factor analysis of hydrochemical data hints at geochemical processes taking place in the groundwater system, that is, WRI involving Ca- and Si-bearing phases; WRI involving amorphous oxyhydroxides and clay minerals; WRI involving Mg-bearing phases; and atmospheric/anthropogenic inputs. Results from the PHREEQC modeling suggested that hydrogeochemical evolution is governed by weathering of primary minerals (calcite, chrysotile, forsterite, and chromite, precipitation of secondary minerals (dolomite, quartz, clinochlore, and Fe/Cr oxides, atmospheric/anthropogenic inputs (halite, and seasonal dilution from recharge.

  16. Charaterising water-rock interaction in a mixed carbonate-evaporite karstified aquifer system, Qatar

    Science.gov (United States)

    Thirathititham, R.; Whitaker, F.

    2017-12-01

    Qatar is an arid country, most of the rainfall (80 mm/yr) occurring during intense storms. Surface runoff is endorheic and recharge is facilitated by karst features developed over an extended (c.30 Ma) period of exposure of the carbonate bedrock. In December 2016, we sampled a rare intense rainfall event (41 mm over 3 days), after which waters ponded within low-relief terminal depressions prior to infiltration. We compare the chemistry of these recharge waters with that of ground waters from 76 wells distributed across Qatar to understand the nature and spatial distribution of water-rock interaction. Using Cl- as a conservative tracer for seawater mixing, we calculate concentrations of rock-derived Ca2+, Mg2+ and SO42-. During surface detention, rain chemistry is modified by evaporation and interaction with clays and the surface bedrock over days to weeks. However, groundwater chemistry is dominated by subsurface interaction between recharge waters and the karstified Tertiary aquifers. These include the largely dolomitic Paleocene to Lower Eocene Umm er Radhuma (UER) and overlying Lower Eocene Rus, with the Middle Eocene Abarug limestone forming a locally important aquifer in the south west. Away from coastal areas which show clear evidence of salinisation, TDS of groundwaters in the interior of the peninsula increases from north to south. All groundwaters are significantly enriched in SO42-, but this enrichment is marked greater in the south. This likely reflects the presence of a unit of middle Rus gypsum that in the south of the country confines the Lower Rus and UER aquifers, whilst in the north either gypsum was not deposited or has been dissolved. Waters in the Abarug limestone show limited sulfate enrichment and a 1:1 molar ratio of rock-derived SO42-: Ca2+, but across much of the country both SO42- enrichment and SO42-: Ca2+ molar ratio are significantly higher, the latter reaching 2:1 and suggesting an additional sink for Ca2+. The dolomite aquifer waters

  17. Forsmark site investigation. Bedrock geology - overview and excursion guide

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Michael B. (Geological Survey of Sweden, Uppsala (Sweden))

    2010-09-15

    Bearing in mind the significance of the bedrock data from the ground surface for the geological 3D modelling work, SKB decided to present excursion guides that serve in the demonstration of the bedrock geology at the ground surface in both the Forsmark (this guide) and Laxemar-Simpevarp areas. An excursion guide is also available for the Olkiluoto area in south-western Finland, which has been selected for the construction of a repository for the disposal of highly radioactive, spent nuclear fuel in Finland. The current excursion guide presents the bedrock geology and describes in detail the character of the bedrock at ten representative outcrops or outcrop areas at the ground surface in the site investigation area at Forsmark. All localities are located within or immediately adjacent to the proposed repository volume selected by SKB

  18. Oskarshamn site investigation. Bedrock geology - overview and excursion guide

    Energy Technology Data Exchange (ETDEWEB)

    Wahlgren, Carl-Henric (Geological Survey of Sweden, Uppsala (Sweden))

    2010-09-15

    Bearing in mind the significance of the bedrock data from the ground surface for the geological 3D modelling work, SKB decided to present excursion guides that serve in the demonstration of the bedrock geology at the ground surface in both the Forsmark and Laxemar-Simpevarp (this guide) areas. An excursion guide is also available for the Olkiluoto area in south-western Finland, which has been selected for the construction of a repository for the disposal of highly radioactive, spent nuclear fuel. The current excursion guide presents the bedrock geology and describes in detail the character of the bedrock at eight representative outcrops or outcrop areas at the ground surface in the site investigation area at Laxemar-Simpevarp and at one locality north of this area, i.e. at a total of nine localities

  19. Oskarshamn site investigation. Bedrock geology - overview and excursion guide

    International Nuclear Information System (INIS)

    Wahlgren, Carl-Henric

    2010-09-01

    Bearing in mind the significance of the bedrock data from the ground surface for the geological 3D modelling work, SKB decided to present excursion guides that serve in the demonstration of the bedrock geology at the ground surface in both the Forsmark and Laxemar-Simpevarp (this guide) areas. An excursion guide is also available for the Olkiluoto area in south-western Finland, which has been selected for the construction of a repository for the disposal of highly radioactive, spent nuclear fuel. The current excursion guide presents the bedrock geology and describes in detail the character of the bedrock at eight representative outcrops or outcrop areas at the ground surface in the site investigation area at Laxemar-Simpevarp and at one locality north of this area, i.e. at a total of nine localities

  20. Forsmark site investigation. Bedrock geology - overview and excursion guide

    International Nuclear Information System (INIS)

    Stephens, Michael B.

    2010-09-01

    Bearing in mind the significance of the bedrock data from the ground surface for the geological 3D modelling work, SKB decided to present excursion guides that serve in the demonstration of the bedrock geology at the ground surface in both the Forsmark (this guide) and Laxemar-Simpevarp areas. An excursion guide is also available for the Olkiluoto area in south-western Finland, which has been selected for the construction of a repository for the disposal of highly radioactive, spent nuclear fuel in Finland. The current excursion guide presents the bedrock geology and describes in detail the character of the bedrock at ten representative outcrops or outcrop areas at the ground surface in the site investigation area at Forsmark. All localities are located within or immediately adjacent to the proposed repository volume selected by SKB

  1. Alluvial cover controlling the width, slope and sinuosity of bedrock channels

    Science.gov (United States)

    Turowski, Jens Martin

    2018-02-01

    Bedrock channel slope and width are important parameters for setting bedload transport capacity and for stream-profile inversion to obtain tectonics information. Channel width and slope development are closely related to the problem of bedrock channel sinuosity. It is therefore likely that observations on bedrock channel meandering yields insights into the development of channel width and slope. Active meandering occurs when the bedrock channel walls are eroded, which also drives channel widening. Further, for a given drop in elevation, the more sinuous a channel is, the lower is its channel bed slope in comparison to a straight channel. It can thus be expected that studies of bedrock channel meandering give insights into width and slope adjustment and vice versa. The mechanisms by which bedrock channels actively meander have been debated since the beginning of modern geomorphic research in the 19th century, but a final consensus has not been reached. It has long been argued that whether a bedrock channel meanders actively or not is determined by the availability of sediment relative to transport capacity, a notion that has also been demonstrated in laboratory experiments. Here, this idea is taken up by postulating that the rate of change of both width and sinuosity over time is dependent on bed cover only. Based on the physics of erosion by bedload impacts, a scaling argument is developed to link bedrock channel width, slope and sinuosity to sediment supply, discharge and erodibility. This simple model built on sediment-flux-driven bedrock erosion concepts yields the observed scaling relationships of channel width and slope with discharge and erosion rate. Further, it explains why sinuosity evolves to a steady-state value and predicts the observed relations between sinuosity, erodibility and storm frequency, as has been observed for meandering bedrock rivers on Pacific Arc islands.

  2. Alluvial cover controlling the width, slope and sinuosity of bedrock channels

    Directory of Open Access Journals (Sweden)

    J. M. Turowski

    2018-02-01

    Full Text Available Bedrock channel slope and width are important parameters for setting bedload transport capacity and for stream-profile inversion to obtain tectonics information. Channel width and slope development are closely related to the problem of bedrock channel sinuosity. It is therefore likely that observations on bedrock channel meandering yields insights into the development of channel width and slope. Active meandering occurs when the bedrock channel walls are eroded, which also drives channel widening. Further, for a given drop in elevation, the more sinuous a channel is, the lower is its channel bed slope in comparison to a straight channel. It can thus be expected that studies of bedrock channel meandering give insights into width and slope adjustment and vice versa. The mechanisms by which bedrock channels actively meander have been debated since the beginning of modern geomorphic research in the 19th century, but a final consensus has not been reached. It has long been argued that whether a bedrock channel meanders actively or not is determined by the availability of sediment relative to transport capacity, a notion that has also been demonstrated in laboratory experiments. Here, this idea is taken up by postulating that the rate of change of both width and sinuosity over time is dependent on bed cover only. Based on the physics of erosion by bedload impacts, a scaling argument is developed to link bedrock channel width, slope and sinuosity to sediment supply, discharge and erodibility. This simple model built on sediment-flux-driven bedrock erosion concepts yields the observed scaling relationships of channel width and slope with discharge and erosion rate. Further, it explains why sinuosity evolves to a steady-state value and predicts the observed relations between sinuosity, erodibility and storm frequency, as has been observed for meandering bedrock rivers on Pacific Arc islands.

  3. Characterisation of fracture network and groundwater preferential ...

    African Journals Online (AJOL)

    2014-03-18

    Mar 18, 2014 ... In this study, we use a new method to present fracture networks and analyse the connectivity of the .... bounded aquifers are currently the most common targets for water supply ... a conceptual model that integrates all of the available data ...... Integrated multi-scale characterization of ground-water flow and.

  4. Comparison of Rooting Strategies to Explore Rock Fractures for Shallow Soil-Adapted Tree Species with Contrasting Aboveground Growth Rates: A Greenhouse Microcosm Experiment.

    Science.gov (United States)

    Nie, Yunpeng; Chen, Hongsong; Ding, Yali; Yang, Jing; Wang, Kelin

    2017-01-01

    For tree species adapted to shallow soil environments, rooting strategies that efficiently explore rock fractures are important because soil water depletion occurs frequently. However, two questions: (a) to what extent shallow soil-adapted species rely on exploring rock fractures and (b) what outcomes result from drought stress, have rarely been tested. Therefore, based on the expectation that early development of roots into deep soil layers is at the cost of aboveground growth, seedlings of three tree species ( Cyclobalanopsis glauca, Delavaya toxocarpa , and Acer cinnamomifolium ) with distinct aboveground growth rates were selected from a typical shallow soil region. In a greenhouse experiment that mimics the basic features of shallow soil environments, 1-year-old seedlings were transplanted into simulated microcosms of shallow soil overlaying fractured bedrock. Root biomass allocation and leaf physiological activities, as well as leaf δ 13 C values were investigated and compared for two treatments: regular irrigation and repeated cycles of drought stress. Our results show that the three species differed in their rooting strategies in the context of encountering rock fractures, however, these strategies were not closely related to the aboveground growth rate. For the slowest-growing seedling, C. glauca , percentages of root mass in the fractures, as well as in the soil layer between soil and bedrock increased significantly under both treatments, indicating a specialized rooting strategy that facilitated the exploration of rock fractures. Early investment in deep root growth was likely critical to the establishment of this drought-vulnerable species. For the intermediate-growing, A. cinnamomifolium , percentages of root mass in the bedrock and interface soil layers were relatively low and exhibited no obvious change under either treatment. This limited need to explore rock fractures was compensated by a conservative water use strategy. For the fast-growing, D

  5. Comparison of Rooting Strategies to Explore Rock Fractures for Shallow Soil-Adapted Tree Species with Contrasting Aboveground Growth Rates: A Greenhouse Microcosm Experiment

    Directory of Open Access Journals (Sweden)

    Yunpeng Nie

    2017-09-01

    Full Text Available For tree species adapted to shallow soil environments, rooting strategies that efficiently explore rock fractures are important because soil water depletion occurs frequently. However, two questions: (a to what extent shallow soil-adapted species rely on exploring rock fractures and (b what outcomes result from drought stress, have rarely been tested. Therefore, based on the expectation that early development of roots into deep soil layers is at the cost of aboveground growth, seedlings of three tree species (Cyclobalanopsis glauca, Delavaya toxocarpa, and Acer cinnamomifolium with distinct aboveground growth rates were selected from a typical shallow soil region. In a greenhouse experiment that mimics the basic features of shallow soil environments, 1-year-old seedlings were transplanted into simulated microcosms of shallow soil overlaying fractured bedrock. Root biomass allocation and leaf physiological activities, as well as leaf δ13C values were investigated and compared for two treatments: regular irrigation and repeated cycles of drought stress. Our results show that the three species differed in their rooting strategies in the context of encountering rock fractures, however, these strategies were not closely related to the aboveground growth rate. For the slowest-growing seedling, C. glauca, percentages of root mass in the fractures, as well as in the soil layer between soil and bedrock increased significantly under both treatments, indicating a specialized rooting strategy that facilitated the exploration of rock fractures. Early investment in deep root growth was likely critical to the establishment of this drought-vulnerable species. For the intermediate-growing, A. cinnamomifolium, percentages of root mass in the bedrock and interface soil layers were relatively low and exhibited no obvious change under either treatment. This limited need to explore rock fractures was compensated by a conservative water use strategy. For the fast

  6. IN SITU MEASUREMENT OF BEDROCK EROSION

    Directory of Open Access Journals (Sweden)

    D. H. Rieke-Zapp

    2012-07-01

    Full Text Available While long term erosion rates of bedrock material may be estimated by dating methods, current day erosion rates are – if at all available – based on rough estimates or on point measurements. Precise quantification of short term erosion rates are required to improve our understanding of short term processes, for input in landscape evolution models, as well as for studying the mechanics and efficiency of different erosion processes in varying geomorphological settings. Typical current day erosion rates in the European Alps range from sub-millimetre to several millimetres per year depending on the dominant erosion processes. The level of surveying accuracy required for recurring sub-millimetre to millimetre measurements in the field is demanding. A novel surveying setup for in-situ measurement of bedrock erosion was tested recently in three different locations in Switzerland. Natural bedrock was investigated in the Gornera gorge close to Zermatt. Further on, bedrock samples were installed in exposed locations in the Erlenbach research watershed close to Einsiedeln, and in the Illgraben debris flow channel, located in the Canton Schwyz and Valais, respectively. A twofold measurement approach was chosen for all locations. For the first setup control points providing an absolute reference frame for recurrent measurements were embedded close to the area of interest. Close range photogrammetry was applied to measure surface changes on the bedrock samples. The precision for surface measurements in the field was 0.1 mm (1 σ and thus suitable for the application. The equipment needed for the surveys can easily be carried to the field. At one field site a structured light scanner was used along with the photogrammetric setup. Although the current generation of structured light scanners appeared less suitable for field application, data acquisition was much faster and checking the data for completeness in the field was straight forward. The latest

  7. In Situ Measurement of Bedrock Erosion

    Science.gov (United States)

    Rieke-Zapp, D. H.; Beer, A.; Turowski, J. M.; Campana, L.

    2012-07-01

    While long term erosion rates of bedrock material may be estimated by dating methods, current day erosion rates are - if at all available - based on rough estimates or on point measurements. Precise quantification of short term erosion rates are required to improve our understanding of short term processes, for input in landscape evolution models, as well as for studying the mechanics and efficiency of different erosion processes in varying geomorphological settings. Typical current day erosion rates in the European Alps range from sub-millimetre to several millimetres per year depending on the dominant erosion processes. The level of surveying accuracy required for recurring sub-millimetre to millimetre measurements in the field is demanding. A novel surveying setup for in-situ measurement of bedrock erosion was tested recently in three different locations in Switzerland. Natural bedrock was investigated in the Gornera gorge close to Zermatt. Further on, bedrock samples were installed in exposed locations in the Erlenbach research watershed close to Einsiedeln, and in the Illgraben debris flow channel, located in the Canton Schwyz and Valais, respectively. A twofold measurement approach was chosen for all locations. For the first setup control points providing an absolute reference frame for recurrent measurements were embedded close to the area of interest. Close range photogrammetry was applied to measure surface changes on the bedrock samples. The precision for surface measurements in the field was 0.1 mm (1 σ) and thus suitable for the application. The equipment needed for the surveys can easily be carried to the field. At one field site a structured light scanner was used along with the photogrammetric setup. Although the current generation of structured light scanners appeared less suitable for field application, data acquisition was much faster and checking the data for completeness in the field was straight forward. The latest generation of compact

  8. Water-table and discharge changes associated with the 2016-2017 seismic sequence in central Italy: hydrogeological data and a conceptual model for fractured carbonate aquifers

    Science.gov (United States)

    Petitta, Marco; Mastrorillo, Lucia; Preziosi, Elisabetta; Banzato, Francesca; Barberio, Marino Domenico; Billi, Andrea; Cambi, Costanza; De Luca, Gaetano; Di Carlo, Giuseppe; Di Curzio, Diego; Di Salvo, Cristina; Nanni, Torquato; Palpacelli, Stefano; Rusi, Sergio; Saroli, Michele; Tallini, Marco; Tazioli, Alberto; Valigi, Daniela; Vivalda, Paola; Doglioni, Carlo

    2018-01-01

    A seismic sequence in central Italy from August 2016 to January 2017 affected groundwater dynamics in fractured carbonate aquifers. Changes in spring discharge, water-table position, and streamflow were recorded for several months following nine Mw 5.0-6.5 seismic events. Data from 22 measurement sites, located within 100 km of the epicentral zones, were analyzed. The intensity of the induced changes were correlated with seismic magnitude and distance to epicenters. The additional post-seismic discharge from rivers and springs was found to be higher than 9 m3/s, totaling more than 0.1 km3 of groundwater release over 6 months. This huge and unexpected contribution increased streamflow in narrow mountainous valleys to previously unmeasured peak values. Analogously to the L'Aquila 2009 post-earthquake phenomenon, these hydrogeological changes might reflect an increase of bulk hydraulic conductivity at the aquifer scale, which would increase hydraulic heads in the discharge zones and lower them in some recharge areas. The observed changes may also be partly due to other mechanisms, such as shaking and/or squeezing effects related to intense subsidence in the core of the affected area, where effects had maximum extent, or breaching of hydraulic barriers.

  9. Relation between "terra rossa" from the Apulia aquifer of Italy and the radon content of groundwater: Experimental results and their applicability to radon occurrence in the aquifer

    Science.gov (United States)

    Tadolini, T.; Spizzico, M.

    The radon-222 (222Rn) activity in groundwater of the Apulian karstic aquifer in southern Italy is as great as 500 Becquerel per liter (Bq/L) locally. Normal radium-226 (226Ra) activity in the limestone and calcareous dolomites of the aquifer is not enough to explain such a high level. Laboratory investigations identified high 226Ra activity in the "terra rossa," the residuum occupying fissures and cavities in the bedrock, and also the relation between (1) 226Ra-bearing bedrock and "terra rossa" and (2) 222Rn in water. The "terra rossa" is the primary source of the radon in the groundwater. The experimental results show the need to characterize the "terra rossa" of Apulia on the basis of 226Ra activity and also to study the distribution and variations in 222Rn activity over time in the aquifer. Résumé L'activité du radon-222 (222Rn) dans les eaux souterraines de l'aquifère karstique des Pouilles, dans le sud de l'Italie, atteint localement 500 Becquerel par litre (Bq/L). L'activité normale du radium-226 (226Ra) dans les calcaires et dans les calcaires dolomitiques de l'aquifère n'est pas assez élevée pour expliquer des valeurs aussi élevées. Des analyses de laboratoire ont mis en évidence une forte activité en 226Ra dans la terra rossa, remplissage de fissures et de cavités de la roche, ainsi qu'une relation entre (1) la roche et la terra rossa contenant du 226Ra et (2) le 222Rn dans l'eau. La terra rossa est la source primaire de radon dans l'eau souterraine. Les résultats expérimentaux montrent qu'il est nécessaire de caractériser la terra rossa des Pouilles par son activité en 226Ra et d'étudier la distribution et les variations de l'activité en 222Rn au cours du temps dans l'aquifère. Resumen La actividad del radon-222 (222Rn) en el agua subterránea del acuífero cárstico de Apulia, al sur de Italia, alcanza localmente los 500Bq/L. La actividad normal del radio-226 (226Ra) en las calcitas y dolomitas del acuífero no es suficiente para

  10. Compound-Specific Isotope Analyses to Assess TCE Biodegradation in a Fractured Dolomitic Aquifer.

    Science.gov (United States)

    Clark, Justin A; Stotler, Randy L; Frape, Shaun K; Illman, Walter A

    2017-01-01

    The potential for trichloroethene (TCE) biodegradation in a fractured dolomite aquifer at a former chemical disposal site in Smithville, Ontario, Canada, is assessed using chemical analysis and TCE and cis-DCE compound-specific isotope analysis of carbon and chlorine collected over a 16-month period. Groundwater redox conditions change from suboxic to much more reducing environments within and around the plume, indicating that oxidation of organic contaminants and degradation products is occurring at the study site. TCE and cis-DCE were observed in 13 of 14 wells sampled. VC, ethene, and/or ethane were also observed in ten wells, indicating that partial/full dechlorination has occurred. Chlorine isotopic values (δ 37 Cl) range between 1.39 to 4.69‰ SMOC for TCE, and 3.57 to 13.86‰ SMOC for cis-DCE. Carbon isotopic values range between -28.9 and -20.7‰ VPDB for TCE, and -26.5 and -11.8‰ VPDB for cis-DCE. In most wells, isotopic values remained steady over the 15-month study. Isotopic enrichment from TCE to cis-DCE varied between 0 and 13‰ for carbon and 1 and 4‰ for chlorine. Calculated chlorine-carbon isotopic enrichment ratios (ϵ Cl /ϵ C ) were 0.18 for TCE and 0.69 for cis-DCE. Combined, isotopic and chemical data indicate very little dechlorination is occurring near the source zone, but suggest bacterially mediated degradation is occurring closer to the edges of the plume. © 2016, National Ground Water Association.

  11. Groundwater recharge dynamics in unsaturated fractured chalk: a case study

    Science.gov (United States)

    Cherubini, Claudia; Pastore, Nicola; Giasi, Concetta I.; Allegretti, Nicolaetta M.

    2016-04-01

    The heterogeneity of the unsaturated zone controls its hydraulic response to rainfall and the extent to which pollutants are delayed or attenuated before reaching groundwater. It plays therefore a very important role in the recharge of aquifers and the transfer of pollutants because of the presence of temporary storage zones and preferential flows. A better knowledge of the physical processes in the unsaturated zone would allow an improved assessment of the natural recharge in a heterogeneous aquifer and of its vulnerability to surface-applied pollution. The case study regards the role of the thick unsaturated zone of the Cretaceous chalk aquifer in Picardy (North of France) that controls the hydraulic response to rainfall. In the North Paris Basin, much of the recharge must pass through a regional chalk bed that is composed of a porous matrix with embedded fractures. Different types of conceptual models have been formulated to explain infiltration and recharge processes in the unsaturated fractured rock. The present study analyses the episodic recharge in fractured Chalk aquifer using the kinematic diffusion theory to predict water table fluctuation in response to rainfall. From an analysis of the data, there is the evidence of 1) a seasonal behavior characterized by a constant increase in the water level during the winter/spring period and a recession period, 2) a series of episodic behaviors during the summer/autumn. Kinematic diffusion models are useful for predict preferential fluxes and dynamic conditions. The presented approach conceptualizes the unsaturated flow as a combination of 1) diffusive flow refers to the idealized portion of the pore space of the medium within the flow rate is driven essentially by local gradient of potential; 2) preferential flow by which water moves across macroscopic distances through conduits of macropore length.

  12. Fracture toughness testing of core from the Cambro-Ordovician Section on the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Lemiszki, P.J.; Landes, J.D.

    1996-01-01

    The modified ring test was used to determine the mode I fracture toughness of bedrock cores from the DOE Oak Ridge Reservation in east Tennessee. Low porosity sandstones, limestones, and dolostones from the lower part of the Paleozoic section in Copper Creek and Whiteoak Mountain thrust sheets were sampled. In general, the average mode I fracture toughness decreases from sandstone, dolostone, and limestone. The fracture toughness of the limestones varies between rock units, which is related to different sedimentologic characteristics. Quality of results was evaluated by testing cores of Berea Sandstone and Indiana Limestone, which produced results similar to published results

  13. Paleohydrogeological implications from fracture calcites in fissures of low transmissivity. A report of investigations in 2011

    International Nuclear Information System (INIS)

    Sahlstedt, E.; Karhu, J.

    2014-07-01

    Samples of fracture fillings were collected from 26 bedrock fractures at Olkiluoto. Special attention was paid to fractures having low transmissivities of <1E-8 m 2 /s. The chemical composition and the C and O isotopic composition of the fracture filling calcite were analysed. In addition, fluid inclusions were studied and microthermometric measurements conducted on fracture filling calcite. The most common minor element in calcite fillings was Mn, having concentrations up to 3.4 wt-%. The δ13C values had a wide range, from -13.0 to 14.5 per mille, and the δ18O values a narrower range, from -13.4 to -7.3 per mille. The δ18O values of late-stage calcite appear to be independent of the transmissivity of the fractures, ranging from -11.2 to -7.3 per mille over a T range from 3E -6 to 1.6E -1 1 m 2 /s. The δ13C values of late-stage calcite appear to have more variation at high transmissivities of >1E-8 m 2 /s. Unusually low and high δ13C values in late-stage calcite fillings occur in the upper ∼ 400 m of the bedrock and are probably related to microbial reduction processes, at near surface (<60 m) conditions to oxidation of organic matter resulting in low δ13C values and at ∼ 55-400 m to methanogenesis, causing high δ 13C values. A relatively low spread in the δ 13C values of late-stage calcite precipitates in low transmissivity (<1E-8 m 2 /s) fractures is most likely caused by stable conditions in the areas of low conductivity in the bedrock, reflecting slow dissolution/reprecipitation of older carbonate fillings. Fluid inclusion data indicate variation in fracture water types from high temperature, ∼ 200 deg C, low salinity fluid with < 4 wt-% of NaCl eq to low temperature, <100 deg C, high salinity fluid with 17-29 wt-% of NaCl eq . The high temperature fluid is associated with Group 5 calcite fillings and the low temperature fluid with Group 3 calcite. The composition of fluids related to Group 4 calcite falls roughly between the compositions

  14. Isotopic and chemical investigations of quaternary aquifer in sinai peninsula

    International Nuclear Information System (INIS)

    Sadek, M.A.; Ahmed, M.A.; Awad, M.A.

    2001-01-01

    The present study has been conducted to investigate the renewal activity and mineralization potential of the quaternary aquifer in Sinai peninsula using environmental isotopes and hydrochemistry. The quaternary aquifer is vital for development processes as it has a wide extension and shallow water table. The total dissolved salts vary greatly from one location to another and range widely between 510-7060 mg/1, reflecting all categories from fresh to saline water. The change in salinity all over Sinai can be attributed to variations in the rate of evaporation. Leaching and dissolution of terrestrial salts during floods as well as the effects of sea spray and saline water intrusion. The main sources of groundwater recharge are the infiltration of Local precipitation and surface runoff as well as lateral flow through hydraulic connection with fractured aquifers. Snow melt also contributes to aquifer recharge in some areas in the central part of southern Sinai. The environmental stable isotopic contents of the ground water in the quaternary aquifer in Sinai reflect the isotopic composition of rain water from continental and east Mediterranean precipitation and monsonal air mass which comes from Indian ocean as well as the seepage of partly evaporated floodwater. The southern samples are more suitable for drinking and irrigation purposes due to its lower salinity and sodium hazard

  15. VT Biodiversity Project - Bedrock Classification

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This dataset is a five category, nine sub-category classification of the bedrock units appearing on the Centennial Geologic Map of Vermont. The...

  16. Hydrogeology and water-quality characteristics of the Lower Floridan aquifer in east-central Florida

    Science.gov (United States)

    O'Reilly, Andrew M.; Spechler, Rick M.; McGurk, Brian E.

    2002-01-01

    The hydrogeology and water-quality characteristics of the Lower Floridan aquifer and the relation of the Lower Floridan aquifer to the framework of the Floridan aquifer system were evaluated during a 6-year (1995-2001) study. The study area, a 7,500 square-mile area of east-central Florida, is underlain by three principal hydrogeologic units: the surficial aquifer system, the intermediate confining unit, and the Floridan aquifer system. The Floridan aquifer system, a carbonate-rock aquifer system composed of the Upper Floridan aquifer, a middle semiconfining unit, a middle confining unit, and the Lower Floridan aquifer, is the major source of water supply to east-central Florida. The Upper Floridan aquifer provides much of the water required to meet the current (2002) demand; however, the Lower Floridan aquifer is being used increasingly as a source of freshwater, particularly for municipal needs. For this reason, a better understanding of the aquifer is needed. The Lower Floridan aquifer is present throughout east-central Florida. The aquifer is composed of alternating beds of limestone and dolomite, and is characterized by abundant fractured dolomite zones and solution cavities. The altitude of the top of the Lower Floridan aquifer ranges from less than 600 feet below sea level in the northern part of the study area to more than 1,600 feet below sea level in the southwestern part. Thickness of the unit ranges from about 910 to 1,180 feet. The top of the Lower Floridan aquifer generally is marked by an increase in formation resistivity and by an increase in the occurrence of fractures and solution cavities within the carbonates. Also, a noticeable increase in borehole flow often marks the top of the unit. The bottom of the Lower Floridan aquifer is based on the first occurrence of evaporites. Ground-water in the Lower Floridan aquifer generally moves in a southwest-to-northeast direction across the study area. In September 1998, the altitude of the potentiometric

  17. Geohydrology and water quality of stratified-drift aquifers in the lower Merrimack and coastal river basins, southeastern New Hampshire

    Science.gov (United States)

    Stekl, Peter J.; Flanagan, Sarah M.

    1992-01-01

    Communities in the lower Merrimack River basin and coastal river basins of southeastern New Hampshire are experiencing increased demands for water because of a rapid increase in population. The population in 1987 was 225,495 and is expected to increase by 30 percent during the next decade. As of 1987, five towns used the stratified-drift aquifers for municipal supply and withdrew an estimated 6 million gallons per day. Four towns used the bedrock aquifer for municipal supply and withdrew an average of 1 .6 million gallons per day. Stratified-drift deposits cover 78 of the 327 square miles of the study area. These deposits are generally less than 10 square miles in areal extent, and their saturated thickness ranges front less than 20 feet to as much as 100 feet . Transinissivity exceeds 4,000 square feet per day in several locations. Stratified-drift aquifers in the eastern part are predominantly small ice-contact deposits surrounded by marine sediments or till of low hydraulic conductivity. Stratified-drift aquifers in the western part consist of ice-contact and proglacial deposits that are large in areal extent and are commonly in contact with surface-water bodies. Five stratified-drift aquifers, in the towns of Derry, Windham, Kingston, North Hampton, and Greenland, have the greatest potential to supply additional amounts of water. Potential yields and contributing areas of hypothetical supply wells were estimated for an aquifer in Windham near Cobbetts Pond and for an aquifer in Kingston along the Powwow River by use of a method analogous to superposition in conjunction with a numerical ground-waterflow model. The potential yield is estimated to be 0 .6 million gallons per day for the Windham-Cobbetts Pond aquifer and 4 .0 million gallons per day for the Kingston-Powwow River aquifer. Contributing recharge area for supply wells is estimated to be 1.6 square miles in the Windham-Cobbetts Pond aquifer and 4.9 square miles in the Kingston-Powwow River aquifer

  18. Chemistry and age of groundwater in bedrock aquifers of the Piceance and Yellow Creek watersheds, Rio Blanco County, Colorado, 2010-12

    Science.gov (United States)

    McMahon, P.B.; Thomas, J.C.; Hunt, A.G.

    2013-01-01

    Fourteen monitoring wells completed in the Uinta and Green River Formations in the Piceance Creek and Yellow Creek watersheds in Rio Blanco County, Colorado, were sampled for chemical, isotopic, and groundwater-age tracers to provide information on the overall groundwater quality, the occurrence and distribution of chemicals that could be related to the development of underlying natural-gas reservoirs, and to better understand groundwater residence times in the flow system. Methane concentrations in groundwater ranged from less than 0.0005 to 387 milligrams per liter. The methane was predominantly biogenic in origin, although the biogenic methane was mixed with thermogenic methane in water from seven wells. Three BTEX compounds (benzene, toluene, and ethylbenzene) were detected in water from six of the wells, but none of the concentrations exceeded Federal drinking-water standards. The presence of thermogenic methane in the aquifers indicates a connection and vulnerability to chemicals in deeper geologic units. Helium-4 data indicate that groundwater had ages ranging from less than 1,000 years to greater than 50,000 years. The presence of old groundwater in parts of the aquifers indicates that these aquifers may not be useful for large-scale water supply because of low recharge rates.

  19. Three-dimensional geologic model of the Arbuckle-Simpson aquifer, south-central Oklahoma

    Science.gov (United States)

    Faith, Jason R.; Blome, Charles D.; Pantea, Michael P.; Puckette, James O.; Halihan, Todd; Osborn, Noel; Christenson, Scott; Pack, Skip

    2010-01-01

    The Arbuckle-Simpson aquifer of south-central Oklahoma encompasses more than 850 square kilometers and is the principal water resource for south-central Oklahoma. Rock units comprising the aquifer are characterized by limestone, dolomite, and sandstones assigned to two lower Paleozoic units: the Arbuckle and Simpson Groups. Also considered to be part of the aquifer is the underlying Cambrian-age Timbered Hills Group that contains limestone and sandstone. The highly faulted and fractured nature of the Arbuckle-Simpson units and the variable thickness (600 to 2,750 meters) increases the complexity in determining the subsurface geologic framework of this aquifer. A three-dimensional EarthVision (Trademark) geologic framework model was constructed to quantify the geometric relationships of the rock units of the Arbuckle-Simpson aquifer in the Hunton anticline area. This 3-D EarthVision (Trademark) geologic framework model incorporates 54 faults and four modeled units: basement, Arbuckle-Timbered Hills Group, Simpson Group, and post-Simpson. Primary data used to define the model's 54 faults and four modeled surfaces were obtained from geophysical logs, cores, and cuttings from 126 water and petroleum wells. The 3-D framework model both depicts the volumetric extent of the aquifer and provides the stratigraphic layer thickness and elevation data used to construct a MODFLOW version 2000 regional groundwater-flow model.

  20. Multi-scale geophysical study to model the distribution and development of fractures in relation to the knickpoint in the Luquillo Critical Zone Observatory (Puerto Rico)

    Science.gov (United States)

    Comas, X.; Wright, W. J.; Hynek, S. A.; Ntarlagiannis, D.; Terry, N.; Job, M. J.; Fletcher, R. C.; Brantley, S.

    2017-12-01

    Previous studies in the Rio Icacos watershed in the Luquillo Mountains (Puerto Rico) have shown that regolith materials are rapidly developed from the alteration of quartz diorite bedrock, and create a blanket on top of the bedrock with a thickness that decreases with proximity to the knickpoint. The watershed is also characterized by a system of heterogeneous fractures that likely drive bedrock weathering and the formation of corestones and associated spheroidal fracturing and rindlets. Previous efforts to characterize the spatial distribution of fractures were based on aerial images that did not account for the architecture of the critical zone below the subsurface. In this study we use an array of near-surface geophysical methods at multiple scales to better understand how the spatial distribution and density of fractures varies with topography and proximity to the knickpoint. Large km-scale surveys using ground penetrating radar (GPR), terrain conductivity, and capacitively coupled resistivity, were combined with smaller scale surveys (10-100 m) using electrical resistivity imaging (ERI), and shallow seismics, and were directly constrained with boreholes from previous studies. Geophysical results were compared to theoretical models of compressive stress as due to gravity and regional compression, and showed consistency at describing increased dilation of fractures with proximity to the knickpoint. This study shows the potential of multidisciplinary approaches to model critical zone processes at multiple scales of measurement and high spatial resolution. The approach can be particularly efficient at large km-scales when applying geophysical methods that allow for rapid data acquisition (i.e. walking pace) at high spatial resolution (i.e. cm scales).

  1. Oil shale in situ research and development. Final report, August 1, 1977--December 22, 1978. [Hydraulic fractures; explosive rubblization

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, H.B.

    1978-01-01

    The selected Site Section 17 was prepared for hydraulic fracturing and explosive rubblization, and these operations accomplished. This report presents the field and laboratory preparations for the fracturing, rubblization, and evaluation operations. A series of four, parallel, hydraulically induced fractures was created during the first year. The evaluation tests showed the following about the four hydraulic fractures: (1) They were horizontal and narrow, that is, as large as 0.05 inches thick within a 50-foot radius and as small as 0.0011 inches thick for the average of all four fractures over the entire radius. (2) They extended at least 113 feet to the outer ring of production wells in a southeasterly direction. (3) They extended out beyond the outer ring of production wells in a northwesterly direction. (4) They had some degree of communication with the naturally fractured aquifer lying about them. And, (5), they had no significant communication with naturally fractured aquifer lying below them. The rubblization event took place on 21 August 1978, early in the second year of the contract. An evaluation of the areal extent, thickness, porosity, interconnectivity, and the influence of the explosion upon the adjacent aquifers was determined. The dynamic tests showed that the explosive slurry was loaded into the four hydraulic features and that detonation occurred simultaneously. The postrubblization evaluation demonstrated that: (1) There were four layers of damage of less than two-feet thick each, (2) massive permeability was apparent from all production wells, and (3) the permeability is in the form of block, open cracks rather than porous medium.

  2. Radiolytic hydrogen production in the subseafloor basaltic aquifer

    Directory of Open Access Journals (Sweden)

    Mary E Dzaugis

    2016-02-01

    Full Text Available Hydrogen (H2 is produced in geological settings by dissociation of water due to radiation from radioactive decay of naturally occurring uranium (238U, 235U, thorium (232Th and potassium (40K. To quantify the potential significance of radiolytic H2 as an electron donor for microbes within the South Pacific subseafloor basaltic aquifer, we use radionuclide concentrations of 43 basalt samples from IODP Expedition 329 to calculate radiolytic H2 production rates in basement fractures. The samples are from three sites with very different basement ages and a wide range of alteration types. U, Th and K concentrations vary by up to an order of magnitude from sample to sample at each site. Comparison of our samples to each other and to the results of previous studies of unaltered East Pacific Rise basalt suggests that significant variations in radionuclide concentrations are due to differences in initial (unaltered basalt concentrations (which can vary between eruptive events and post-emplacement alteration. In our samples, there is no clear relationship between alteration type and calculated radiolytic yields. Local maxima in U, Th, and K produce hotspots of H2 production, causing calculated radiolytic rates to differ by up to a factor of 80 from sample to sample. Fracture width also greatly influences H2 production, where microfractures are hotspots for radiolytic H2 production. For example, H2 production rates normalized to water volume are 190 times higher in 1 μm wide fractures than in fractures that are 10 cm wide. To assess the importance of water radiolysis for microbial communities in subseafloor basaltic aquifers, we compare electron transfer rates from radiolysis to rates from iron oxidation in subseafloor basalt. Radiolysis appears likely to be a more important electron donor source than iron oxidation in old (>10 Ma basement basalt. Radiolytic H2 production in the volume of water adjacent to a square cm of the most radioactive SPG basalt may

  3. Stimuli Responsive/Rheoreversible Hydraulic Fracturing Fluids for Enhanced Geothermal Energy Production (Part I)

    Science.gov (United States)

    Fernandez, C. A.; Jung, H. B.; Shao, H.; Bonneville, A.; Heldebrant, D.; Hoyt, D.; Zhong, L.; Holladay, J.

    2014-12-01

    Cost-effective yet safe creation of high-permeability reservoirs inside deep crystalline bedrock is the primary challenge for the viability of enhanced geothermal systems and unconventional oil/gas recovery. Current reservoir stimulation processes utilize brute force (hydraulic pressures in the order of hundreds of bar) to create/propagate fractures in the bedrock. Such stimulation processes entail substantial economic costs ($3.3 million per reservoir as of 2011). Furthermore, the environmental impacts of reservoir stimulation are only recently being determined. Widespread concerns about the environmental contamination have resulted in a number of regulations for fracturing fluids advocating for greener fracturing processes. To reduce the costs and environmental impact of reservoir stimulation, we developed an environmentally friendly and recyclable hydraulic fracturing fluid that undergoes a controlled and large volume expansion with a simultaneous increase in viscosity triggered by CO2 at temperatures relevant for reservoir stimulation in Enhanced Geothermal System (EGS). The volume expansion, which will specifically occurs at EGS depths of interest, generates an exceptionally large mechanical stress in fracture networks of highly impermeable rock propagating fractures at effective stress an order of magnitude lower than current technology. This paper will concentrate on the presentation of this CO2-triggered expanding hydrogel formed from diluted aqueous solutions of polyallylamine (PAA). Aqueous PAA-CO2 mixtures also show significantly higher viscosities than conventional rheology modifiers at similar pressures and temperatures due to the cross-linking reaction of PAA with CO2, which was demonstrated by chemical speciation studies using in situ HP-HT 13C MAS-NMR. In addtion, PAA shows shear-thinning behavior, a critical advantage for the use of this fluid system in EGS reservoir stimulation. The high pressure/temperature experiments and their results as well

  4. Hydrogeology, groundwater flow, and groundwater quality of an abandoned underground coal-mine aquifer, Elkhorn Area, West Virginia

    Science.gov (United States)

    Kozar, Mark D.; McCoy, Kurt J.; Britton, James Q.; Blake, B.M.

    2017-01-01

    The Pocahontas No. 3 coal seam in southern West Virginia has been extensively mined by underground methods since the 1880’s. An extensive network of abandoned mine entries in the Pocahontas No. 3 has since filled with good-quality water, which is pumped from wells or springs discharging from mine portals (adits), and used as a source of water for public supplies. This report presents results of a three-year investigation of the geology, hydrology, geochemistry, and groundwater flow processes within abandoned underground coal mines used as a source of water for public supply in the Elkhorn area, McDowell County, West Virginia. This study focused on large (> 500 gallon per minute) discharges from the abandoned mines used as public supplies near Elkhorn, West Virginia. Median recharge calculated from base-flow recession of streamflow at Johns Knob Branch and 12 other streamflow gaging stations in McDowell County was 9.1 inches per year. Using drainage area versus mean streamflow relationships from mined and unmined watersheds in McDowell County, the subsurface area along dip of the Pocahontas No. 3 coal-mine aquifer contributing flow to the Turkey Gap mine discharge was determined to be 7.62 square miles (mi2), almost 10 times larger than the 0.81 mi2 surface watershed. Results of this investigation indicate that groundwater flows down dip beneath surface drainage divides from areas up to six miles east in the adjacent Bluestone River watershed. A conceptual model was developed that consisted of a stacked sequence of perched aquifers, controlled by stress-relief and subsidence fractures, overlying a highly permeable abandoned underground coal-mine aquifer, capable of substantial interbasin transfer of water. Groundwater-flow directions are controlled by the dip of the Pocahontas No. 3 coal seam, the geometry of abandoned mine workings, and location of unmined barriers within that seam, rather than surface topography. Seven boreholes were drilled to intersect

  5. Bedrock hydrogeochemistry Forsmark. Site descriptive modelling SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Laaksoharju, Marcus [Geopoint AB, Sollentuna (Sweden); Smellie, John [Conterra AB, Partille (Sweden); Tullborg, Eva-Lena [Terralogica, Graabo (Sweden); Gimeno, Maria [Univ. of Zaragoza, Zaragoza (Spain); Hallbeck, Lotta [Microbial Analytics, Goeteborg (Sweden); Molinero, Jorge [Amphos XXI Consulting S.L., Barcelona (Spain); Waber, Nick [Univ. of Bern, Bern (Switzerland)

    2008-12-15

    The overall objectives of the hydrogeochemical site description for Forsmark are to establish a detailed understanding of the hydrogeochemical conditions at the site, and to use this understanding to develop models that address the needs identified by the safety assessment groups during the site investigation phase. Issues of concern to safety assessment are radionuclide transport and technical barrier behaviour, both of which are dependent on the chemistry of groundwater and porewater and their evolution with time. The specific aims of the hydrogeochemical work were: To document the hydrogeochemistry at the Forsmark site with focus on the development of conceptual models to describe and visualise the site. To provide relevant parameter values to be used for safety assessment calculations. To provide the hydrogeochemical basis for the modelling work by other teams, in particular hydrogeology. To take account of the feedback from the SR-Can safety assessment work that bears relevance to the hydrogeochemical modelling work. The work has involved the development of descriptive and mathematical models for groundwaters in relation to rock domains, fracture domains and deformation zones. In this report, the groundwaters have been interpreted in relation to their origin, evolution and composition, which require close integration with geological, climatological and hydrogeological information. Past climate changes are one of the major driving forces for long-term hydrogeochemical changes (hundreds to thousands of years) and are, therefore, of fundamental importance for understanding the palaeohydrogeological, palaeohydrogeochemical and present evolution of groundwater in the Fennoscandian crystalline bedrock. In contrast, redox buffer capacity of the bedrock will minimise the effects on changes in alkalinity and redox at repository depths, therefore limiting the variations in pH and Eh significantly, regardless of major changes in groundwater composition. There is

  6. Bedrock hydrogeochemistry Forsmark. Site descriptive modelling SDM-Site Forsmark

    International Nuclear Information System (INIS)

    Laaksoharju, Marcus; Smellie, John; Tullborg, Eva-Lena; Gimeno, Maria; Hallbeck, Lotta; Molinero, Jorge; Waber, Nick

    2008-12-01

    The overall objectives of the hydrogeochemical site description for Forsmark are to establish a detailed understanding of the hydrogeochemical conditions at the site, and to use this understanding to develop models that address the needs identified by the safety assessment groups during the site investigation phase. Issues of concern to safety assessment are radionuclide transport and technical barrier behaviour, both of which are dependent on the chemistry of groundwater and porewater and their evolution with time. The specific aims of the hydrogeochemical work were: To document the hydrogeochemistry at the Forsmark site with focus on the development of conceptual models to describe and visualise the site. To provide relevant parameter values to be used for safety assessment calculations. To provide the hydrogeochemical basis for the modelling work by other teams, in particular hydrogeology. To take account of the feedback from the SR-Can safety assessment work that bears relevance to the hydrogeochemical modelling work. The work has involved the development of descriptive and mathematical models for groundwaters in relation to rock domains, fracture domains and deformation zones. In this report, the groundwaters have been interpreted in relation to their origin, evolution and composition, which require close integration with geological, climatological and hydrogeological information. Past climate changes are one of the major driving forces for long-term hydrogeochemical changes (hundreds to thousands of years) and are, therefore, of fundamental importance for understanding the palaeohydrogeological, palaeohydrogeochemical and present evolution of groundwater in the Fennoscandian crystalline bedrock. In contrast, redox buffer capacity of the bedrock will minimise the effects on changes in alkalinity and redox at repository depths, therefore limiting the variations in pH and Eh significantly, regardless of major changes in groundwater composition. There is

  7. Geohydrology and Water Quality of the Valley-Fill Aquifer System in the Upper Sixmile Creek and West Branch Owego Creek Valleys in the Town of Caroline, Tompkins County, New York

    Science.gov (United States)

    Miller, Todd S.

    2009-01-01

    In 2002, the U.S. Geological Survey, in cooperation with the Town of Caroline and Tompkins County Planning Department, began a study of the valley-fill aquifer system in upper Sixmile Creek and headwaters of West Branch Owego Creek valleys in the Town of Caroline, NY. The purpose of the study is to provide geohydrologic data to county and town planners as they develop a strategy to manage and protect their water resources. The first aquifer reach investigated in this series is in the Town of Caroline and includes the upper Sixmile Creek valley and part of West Branch Owego Creek valley. The portions of the valley-fill aquifer system that are comprised of saturated coarse-grained sediments including medium to coarse sand and sandy gravel form the major aquifers. Confined sand and gravel units form the major aquifers in the western and central portions of the upper Sixmile Creek valley, and an unconfined sand and gravel unit forms the major aquifer in the eastern portion of the upper Sixmile Creek valley and in the headwaters of the West Branch Owego Creek valley. The valley-fill deposits are thinnest near the edges of the valley where they pinch out along the till-mantled bedrock valley walls. The thickness of the valley fill in the deepest part of the valley, at the western end of the study area, is about 100 feet (ft); the thickness is greater than 165 ft on top of the Valley Heads Moraine in the central part of the valley. An estimated 750 people live over and rely on groundwater from the valley-fill aquifers in upper Sixmile Creek and West Branch Owego Creek valleys. Most groundwater withdrawn from the valley-fill aquifers is pumped from wells with open-ended 6-inch diameter casings; the remaining withdrawals are from shallow dug wells or cisterns that collect groundwater that discharges to springs (especially in the Brooktondale area). The valley-fill aquifers are the sources of water for about 200 households, several apartment complexes, two mobile home parks

  8. Microbes in crystalline bedrock. Assimilation of CO2 and introduced organic compounds by bacterial populations in groundwater from deep crystalline bedrock at Laxemar and Stripa

    International Nuclear Information System (INIS)

    Pedersen, K.; Ekendahl, S.; Arlinger, J.

    1991-12-01

    The assimilation of CO 2 and of introduced organic compounds by bacterial populations in deep groundwater from fractured crystalline bedrock has been studied. Three depth horizons of the subvertical boreholes KLZ01 at Laxemar in southeastern Sweden, 830-841 m, 910-921 m and 999-1078 m, and V2 in the Stripa mine, 799-807m 812-820 m and 970-1240 m were sampled. The salinity profile of the KLX01 borehole is homogeneous and the groundwater had the following physico-chemical characteristics: pH values of 8.2, 8.4 and 8.5; Eh values of 270, no data and -220 mV; sulphide: 2.3, 11.0 and 5.6 μM; CO 3 2- : 104, 98 and 190 μM; CH 4 : 26, 27 and 31 μl/l and N 2 : 47, 25 and 18 ml/l, respectively. The groundwater in V2 in Stripa were obtained from fracture systems without close hydraulic connections and had the following physico-chemical characteristics: pH values of 9.5, 9.4 and 10.2; Eh values of +205, +199 and -3 mV; sulphide: 0, 106 and 233 μM; CO 3 2- : 50, 57 and 158 μM; CH 4 : 245, 170 and 290 μl/l and N 2 : 25, 31 and 25 ml/l, respectively. Biofilm reactors with hydrophilic glass surfaces were connected to the flowing groundwaters from each of the 3 depths with flow rates of approximately 3x10 -3 m sec -1 over 19 days in Laxemar and 27 to 161 days in Stripa. There were between 0.15 to 0.68 x 10 5 unattached bacteria ml -1 groundwater and 0.94 to 1.2 x 10 5 attached bacteria cm -2 on the surface in Laxemar and from 1.6 x 10 3 up to 3.2 x 10 5 bacteria ml -1 groundwater and from 2.4 x 10 5 up to 1.1 x 10 7 bacteria cm -2 of colonized test surfaces in Stripa. Assuming a mean channel width of 0.1 mm, our results imply that there would be from 10 3 up to 10 6 more attached than unattached bacteria in a water conducting channel in crystalline bedrock. (54 refs., 23 figs., 10 tabs.) (au)

  9. An inexpensive and portable drill rig for bedrock groundwater studies in headwater catchments

    Science.gov (United States)

    C. Gabrielli; J.J. McDonnell

    2011-01-01

    Bedrock groundwater dynamics in headwater catchments are poorly understood and poorly characterized. Here, we present an inexpensive and portable bedrock drilling system designed for use in remote locations. Our system is capable of drilling bedrock wells up to 11 m deep and 38 mm in diameter in a wide range of bedrock types. The drill consists of a lawn mower engine...

  10. Conduit enlargement in an eogenetic karst aquifer

    Science.gov (United States)

    Moore, Paul J.; Martin, Jonathan B.; Screaton, Elizabeth J.; Neuhoff, Philip S.

    2010-11-01

    SummaryMost concepts of conduit development have focused on telogenetic karst aquifers, where low matrix permeability focuses flow and dissolution along joints, fractures, and bedding planes. However, conduits also exist in eogenetic karst aquifers, despite high matrix permeability which accounts for a significant component of flow. This study investigates dissolution within a 6-km long conduit system in the eogenetic Upper Floridan aquifer of north-central Florida that begins with a continuous source of allogenic recharge at the Santa Fe River Sink and discharges from a first-magnitude spring at the Santa Fe River Rise. Three sources of water to the conduit include the allogenic recharge, diffuse recharge through epikarst, and mineralized water upwelling from depth. Results of sampling and inverse modeling using PHREEQC suggest that dissolution within the conduit is episodic, occurring only during 30% of 16 sampling times between March 2003 and April 2007. During low flow conditions, carbonate saturated water flows from the matrix to the conduit, restricting contact between undersaturated allogenic water with the conduit wall. When gradients reverse during high flow conditions, undersaturated allogenic recharge enters the matrix. During these limited periods, estimates of dissolution within the conduit suggest wall retreat averages about 4 × 10 -6 m/day, in agreement with upper estimates of maximum wall retreat for telogenetic karst. Because dissolution is episodic, time-averaged dissolution rates in the sink-rise system results in a wall retreat rate of about 7 × 10 -7 m/day, which is at the lower end of wall retreat for telogenetic karst. Because of the high permeability matrix, conduits in eogenetic karst thus enlarge not just at the walls of fractures or pre-existing conduits such as those in telogenetic karst, but also may produce a friable halo surrounding the conduits that may be removed by additional mechanical processes. These observations stress the

  11. Site descriptive modelling Forsmark, stage 2.2. A fracture domain concept as a basis for the statistical modelling of fractures and minor deformation zones, and interdisciplinary coordination

    Energy Technology Data Exchange (ETDEWEB)

    Olofsson, Isabelle; Simeonov, Assen [Swedish Nuclear Fuel and Waste Manageme nt Co., Stockholm (Sweden); Stephens, Michael [Geological Survey of Sweden (SGU), U ppsala (Sweden); Follin, Sven [SF GeoLogic AB, Taeby (Sweden); Nilsson, Ann-Chatrin [G eosigma AB, Uppsala (Sweden); Roeshoff, Kennert; Lindberg, Ulrika; Lanaro, Flavio [Bergbygg konsult AB, Haesselby (Sweden); Fredriksson, Anders; Persson, Lars [Golder Associat es AB (Sweden)

    2007-04-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is undertaking site characterization at two different locations, Forsmark and Simpevarp/Laxemar, with the objective of siting a final waste repository at depth for spent nuclear fuel. The programme is built upon the development of site descriptive models after each data freeze. This report describes the first attempt to define fracture domains for the Forsmark site modelling in stage 2.2. Already during model version 1.2 at Forsmark, significant spatial variability in the fracture pattern was observed. The variability appeared to be so significant that it provoked the need for a subdivision of the model volume for the treatment of geological and hydrogeological data into sub-volumes. Subsequent analyses of data collected up to data freeze 2.1 led to a better understanding of the site and a concept for the definition of fracture domains based on geological characteristics matured. The main objectives of this report are to identify and describe fracture domains at the site on the basis of geological data and to compile hydrogeological, hydrogeochemical and rock mechanics data within each fracture domain and address the implications of this integration activity. On the basis of borehole data, six fracture domains (FFM01-FFM06) have been recognized inside and immediately around the candidate volume. Three of these domains (FFM01, FFM02 and FFM06) lie inside the target volume for a potential repository in the northwestern part of the candidate area, and need to be addressed in the geological DFN modelling work. The hydrogeological data support the subdivision of the bedrock into fracture domains FFM01, FFM02 and FFM03. Few or no data are available for the other three domains. The hydrogeochemical data also support the subdivision into fracture domains FFM01 and FFM02. Since few data are available from the bedrock between deformation zones inside FFM03, there is little information on the hydrogeochemical

  12. Geochemistry of the Springfield Plateau aquifer of the Ozark Plateaus Province in Arkansas, Kansas, Missouri and Oklahoma, USA

    Science.gov (United States)

    Adamski, J.C.

    2000-01-01

    Geochemical data indicate that the Springfield Plateau aquifer, a carbonate aquifer of the Ozark Plateaus Province in central USA, has two distinct hydrochemical zones. Within each hydrochemical zone, water from springs is geochemically and isotopically different than water from wells. Geochemical data indicate that spring water generally interacts less with the surrounding rock and has a shorter residence time, probably as a result of flowing along discrete fractures and solution openings, than water from wells. Water type throughout most of the aquifer was calcium bicarbonate, indicating that carbonate-rock dissolution is the primary geochemical process occurring in the aquifer. Concentrations of calcium, bicarbonate, dissolved oxygen and tritium indicate that most ground water in the aquifer recharged rapidly and is relatively young (less than 40 years). In general, field-measured properties, concentrations of many chemical constituents, and calcite saturation indices were greater in samples from the northern part of the aquifer (hydrochemical zone A) than in samples from the southern part of the aquifer (hydrochemical zone B). Factors affecting differences in the geochemical composition of ground water between the two zones are difficult to identify, but could be related to differences in chert content and possibly primary porosity, solubility of the limestone, and amount and type of cementation between zone A than in zone B. In addition, specific conductance, pH, alkalinity, concentrations of many chemical constituents and calcite saturation indices were greater in samples from wells than in samples from springs in each hydrochemical zone. In contrast, concentrations of dissolved oxygen, nitrite plus nitrate, and chloride generally were greater in samples from springs than in samples from wells. Water from springs generally flows rapidly through large conduits with minimum water-rock interactions. Water from wells flow through small fractures, which restrict

  13. Hydrogeology of Two Areas of the Tug Hill Glacial-Drift Aquifer, Oswego County, New York

    Science.gov (United States)

    Miller, Todd S.; Bugliosi, Edward F.; Hetcher-Aguila, Kari K.; Eckhardt, David A.

    2007-01-01

    Two water-production systems, one for the Village of Pulaski and the other for the Villages of Sandy Creek and Lacona in Oswego County, New York, withdraw water from the Tug Hill glacial-drift aquifer, a regional sand and gravel aquifer along the western flank of the Tug Hill Plateau, and provide the sole source of water for these villages. As a result of concerns about contamination of the aquifer, two studies were conducted during 2001 to 2004, one for each water-production system, to refine the understanding of ground-water flow surrounding these water-production systems. Also, these studies were conducted to determine the cause of the discrepancy between ground-water ages estimated from previously constructed numerical ground-water-flow models for the Pulaski and Sandy Creek/Lacona well fields and the apparent ground-water ages determined using concentrations of tritium and chlorofluorocarbons. The Village of Pulaski withdrew 650,000 gallons per day in 2000 from four shallow, large-diameter, dug wells finished in glaciolacustrine deposits consisting of sand with some gravelly lenses 3 miles east of the village. Four 2-inch diameter test wells were installed upgradient from each production well, hydraulic heads were measured, and water samples collected and analyzed for physical properties, inorganic constituents, nutrients, bacteria, tritium, dissolved gases, and chlorofluorocarbons. Recharge to the Tug Hill glacial-drift aquifer is from precipitation directly over the aquifer and from upland sources in the eastern part of the recharge area, including (1) unchannelized runoff from till and bedrock hills east of the aquifer, (2) seepage to the aquifer from streams that drain the Tug Hill Plateau, (3) ground-water inflow from the till and bedrock on the adjoining Tug Hill Plateau. Water-quality data collected from four piezometers near the production wells in November 2003 indicated that the water is a calcium-bicarbonate type with iron concentrations that

  14. Water flow in bedrock; estimation of influence of transmissive shaft and borehole

    International Nuclear Information System (INIS)

    Andersson, L.; Neretnieks, J.; Rasmuson, A.

    1983-01-01

    The bedrock, a system of large and small fractures that permit water transport through the rock mass. The water content of the bedrock can, under varying hydrostatic pressure conditions, give rise to different flow patterns via boreholes or shafts drilled through the rock. A case is dealt with where a borehole connects a low point in the terrain with a point in the repository where the hydrostatic pressure is higher than at the mouth of the borehole. The situation may be conceived as having arisen when the area was investigated and a hole was drilled at an angle down from the valley to a point below the high point in the area. If the borehole is not sealed, an artesian well may be created. The conductivity used, 2 times 10- 9 m/s, presumes that the repository has been emplaced in average quality rock at this depth. In reality, the repository site will be selected where the rock is better than average. In reality, a shaft - even if it is imperfectly backfilled - or a borehole exerts a flow resistance that reduces the available pressure difference at a depth of 500 m. Taken together, these factors indicate that approx. 5 m 3 /(year, 5 m) is the water flow that can be expected to emerge from the repository through a shaft or a borehole. Only this flow can have been contaminated with escaping substances from the repository area. Water that flows in from other parts of the hole dilutes this flow considerably. (G.B.)

  15. Erste Erkenntnisse zur Prospektion und Charakterisierung des Aquifers der Aroser Dolomiten, Schweiz

    Science.gov (United States)

    Regli, Christian; Kleboth, Peter; Eichenberger, Urs; Schmassmann, Silvia; Nyfeler, Peter; Bolay, Stephan

    2014-03-01

    In urban areas of the Swiss Alps the use of geothermal energy from several hundred meters depth becomes increasingly important. For this mainly open systems have priority. This work presents the first insights in the prospection and characterisation of the so far unexplored, utilizable, and abundant Aquifer of the Arosa Dolomites. Besides the use of established methods and techniques, such as seismic measurements, an exploration drilling, borehole geophysical measurements, and pumping tests, the application of the KARSYS-approach for geological and conceptual hydrogeological 3D-modelling of the aquifer is illustrated. In addition, the development of a viewer for 3D-visualization of drillings is documented. The hydrogeological and metrological approaches allow a lithological facies differentiation of the Arosa Dolomites, and a differentiation of the fractured and karstified areas within the aquifer. The results represent the basis for advanced findings optimizing and risks minimising exploration and drilling planning, and for sustainable utilization planning.

  16. Hydrogeologic data for the Big River-Mishnock River stream-aquifer system, central Rhode Island

    Science.gov (United States)

    Craft, P.A.

    2001-01-01

    Hydrogeology, ground-water development alternatives, and water quality in the BigMishnock stream-aquifer system in central Rhode Island are being investigated as part of a long-term cooperative program between the Rhode Island Water Resources Board and the U.S. Geological Survey to evaluate the ground-water resources throughout Rhode Island. The study area includes the Big River drainage basin and that portion of the Mishnock River drainage basin upstream from the Mishnock River at State Route 3. This report presents geologic data and hydrologic and water-quality data for ground and surface water. Ground-water data were collected from July 1996 through September 1998 from a network of observation wells consisting of existing wells and wells installed for this study, which provided a broad distribution of data-collection sites throughout the study area. Streambed piezometers were used to obtain differences in head data between surface-water levels and ground-water levels to help evaluate stream-aquifer interactions throughout the study area. The types of data presented include monthly ground-water levels, average daily ground-water withdrawals, drawdown data from aquifer tests, and water-quality data. Historical water-level data from other wells within the study area also are presented in this report. Surface-water data were obtained from a network consisting of surface-water impoundments, such as ponds and reservoirs, existing and newly established partial-record stream-discharge sites, and synoptic surface-water-quality sites. Water levels were collected monthly from the surface-water impoundments. Stream-discharge measurements were made at partial-record sites to provide measurements of inflow, outflow, and internal flow throughout the study area. Specific conductance was measured monthly at partial-record sites during the study, and also during the fall and spring of 1997 and 1998 at 41 synoptic sites throughout the study area. General geologic data, such as

  17. Mapping Bedrock Topography using Electromagnetic Profiling ...

    African Journals Online (AJOL)

    Mapping Bedrock Topography using Electromagnetic Profiling. ... will be constructed The area under study is within the Abakaliki Shales Geologic Formation. ... micaceous sandstone; micaceous siltstone, sandy shales and shelly limestone.

  18. Hydraulic Fracturing and the Environment

    Science.gov (United States)

    Ayatollahy Tafti, T.; Aminzadeh, F.; Jafarpour, B.; de Barros, F.

    2013-12-01

    In this presentation, we highlight two key environmental concerns of hydraulic fracturing (HF), namely induced seismicity and groundwater contamination (GC). We examine the induced seismicity (IS) associated with different subsurface fluid injection and production (SFIP) operations and the key operational parameters of SFIP impacting it. In addition we review the key potential sources for possible water contamination. Both in the case of IS and GC we propose modeling and data analysis methods to quantify the risk factors to be used for monitoring and risk reduction. SFIP include presents a risk in hydraulic fracturing, waste water injection, enhanced oil recovery as well as geothermal energy operations. Although a recent report (NRC 2012) documents that HF is not responsible for most of the induced seismicities, we primarily focus on HF here. We look into vaious operational parameters such as volume and rate of water injection, the direction of the well versus the natural fracture network, the depth of the target and the local stress field and fault system, as well as other geological features. The latter would determine the potential for triggering tectonic related events by small induced seismicity events. We provide the building blocks for IS risk assessment and monitoring. The system we propose will involve adequate layers of complexity based on mapped seismic attributes as well as results from ANN and probabilistic predictive modeling workflows. This leads to a set of guidelines which further defines 'safe operating conditions' and 'safe operating zones' which will be a valuable reference for future SFIP operations. We also illustrate how HF can lead to groundwater aquifer contamination. The source of aquifer contamination can be the hydrocarbon gas or the chemicals used in the injected liquid in the formation. We explore possible pathways of contamination within and discuss the likelihood of contamination from each source. Many of the chemical compounds used

  19. Digital bedrock geologic map of the Mount Snow & Readsboro quadrangles, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG95-DM1 Ratcliffe, NM, 1995, Digital bedrock geologic map of the Mount Snow & Readsboro quadrangles, Vermont, scale 1:24000, The bedrock...

  20. Noble gas signatures in the Island of Maui, Hawaii: Characterizing groundwater sources in fractured systems

    Science.gov (United States)

    Niu, Yi; Castro, M. Clara; Hall, Chris M.; Gingerich, Stephen B.; Scholl, Martha A.; Warrier, Rohit B.

    2017-01-01

    Uneven distribution of rainfall and freshwater scarcity in populated areas in the Island of Maui, Hawaii, renders water resources management a challenge in this complex and ill-defined hydrological system. A previous study in the Galapagos Islands suggests that noble gas temperatures (NGTs) record seasonality in that fractured, rapid infiltration groundwater system rather than the commonly observed mean annual air temperature (MAAT) in sedimentary systems where infiltration is slower thus, providing information on recharge sources and potential flow paths. Here we report noble gas results from the basal aquifer, springs, and rainwater in Maui to explore the potential for noble gases in characterizing this type of complex fractured hydrologic systems. Most samples display a mass-dependent depletion pattern with respect to surface conditions consistent with previous observations both in the Galapagos Islands and Michigan rainwater. Basal aquifer and rainwater noble gas patterns are similar and suggest direct, fast recharge from precipitation to the basal aquifer. In contrast, multiple springs, representative of perched aquifers, display highly variable noble gas concentrations suggesting recharge from a variety of sources. The distinct noble gas patterns for the basal aquifer and springs suggest that basal and perched aquifers are separate entities. Maui rainwater displays high apparent NGTs, incompatible with surface conditions, pointing either to an origin at high altitudes with the presence of ice or an ice-like source of undetermined origin. Overall, noble gas signatures in Maui reflect the source of recharge rather than the expected altitude/temperature relationship commonly observed in sedimentary systems.

  1. Numerical simulation of ground-water flow through glacial deposits and crystalline bedrock in the Mirror Lake area, Grafton County, New Hampshire

    Science.gov (United States)

    Tiedeman, Claire; Goode, Daniel J.; Hsieh, Paul A.

    1997-01-01

    This report documents the development of a computer model to simulate steady-state (long-term average) flow of ground water in the vicinity of Mirror Lake, which lies at the eastern end of the Hubbard Brook valley in central New Hampshire. The 10-km2 study area includes Mirror Lake, the three streams that flow into Mirror Lake, Leeman's Brook, Paradise Brook, and parts of Hubbard Brook and the Pemigewasset River. The topography of the area is characterized by steep hillsides and relatively flat valleys. Major hydrogeologic units include glacial deposits, composed of till containing pockets of sand and gravel, and fractured crystalline bedrock, composed of schist intruded by granite, pegmatite, and lamprophyre. Ground water occurs in both the glacial deposits and bedrock. Precipitation and snowmelt infiltrate to the water table on the hillsides, flow downslope through the saturated glacial deposits and fractured bedrock, and discharge to streams and to Mirror Lake. The model domain includes the glacial deposits, the uppermost 150m of bedrock, Mirror Lake, the layer of organic sediments on the lake bottom, and streams and rivers within the study area. A streamflow routing package was included in the model to simulate baseflow in streams and interaction between streams and ground water. Recharge from precipitation is assumed to be areally uniform, and riparian evapotranspiration along stream banks is assumed negligible. The spatial distribution of hydraulic conductivity is represented by dividing the model domain into several zones, each having uniform hydraulic properties. Local variations in recharge and hydraulic conductivities are ignored; therefore, the simulation results characterize the general ground-water system, not local details of ground-water movement. The model was calibrated using a nonlinear regression method to match hydraulic heads measured in piezometers and wells, and baseflow in three inlet streams to Mirror Lake. Model calibration indicates that

  2. Time scales for dissolution of calcite fracture fillings and implications for saturated zone radionuclide transport at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Winterle, J.R.; Murphy, W.M.

    1999-01-01

    An analysis was performed to estimate time scales for dissolution of calcite fracture fillings in the fractured tuff aquifer that underlies Yucca Mountain (YM), Nevada, where groundwater is chemically undersaturated with respect to calcite. The impetus for this analysis originates from speculation that undissolved calcite in the saturated zone is evidence for limited diffusive exchange between fracture and matrix waters. Assuming that matrix diffusion is the rate-limiting process, the time scale for dissolution of calcite fracture fillings depends on the amount of calcite initially deposited, the distance between flowing fractures, the degree of chemical disequilibrium, and the rate of diffusion. Assuming geochemistry of J-13 well water in free-flowing fractures, estimated time scales for complete dissolution of matrix-entrapped calcite range from about 10 4 yr for a 2 mm-thick deposit located 1 m from a flowing fracture, to over 10 7 yr for a 2 cm-thick deposit located 100 m from a flowing fracture. The authors conclude that, given the geochemical and hydrologic characteristics observed at YM, the persistence of calcite minerals over geologic time scales in aquifers where flowing water is under-saturated with calcite does not necessarily preclude matrix diffusion as a dilution mechanism. However, the model suggests that the effective spacing between flowing fractures may be large enough to diminish the overall benefit of matrix diffusion to proposed high-level waste repository performance

  3. First measurement of ice-bedrock interface of alpine glaciers by cosmic muon radiography

    Science.gov (United States)

    Nishiyama, R.; Ariga, A.; Ariga, T.; Käser, S.; Lechmann, A.; Mair, D.; Scampoli, P.; Vladymyrov, M.; Ereditato, A.; Schlunegger, F.

    2017-06-01

    The shape of the bedrock underneath alpine glaciers bears vital information on the erosional mechanism related to the flow of ice. So far, several geophysical exploration methods have been proposed to map the bedrock topography though with limited accuracy. Here we illustrate the first results from a technology, called cosmic ray muon radiography, newly applied in glacial geology to investigate the bedrock geometry beneath the Aletsch Glacier situated in the Central Swiss Alps. For this purpose we installed new cosmic muon detectors made of emulsion films at three sites along the Jungfrau railway tunnel and measured the shape of the bedrock under the uppermost part of Aletsch Glacier (Jungfraufirn). Our results constrain the continuation of the bedrock-ice interface up to a depth of 50 m below the surface, where the bedrock underneath the glacier strikes NE-SW and dips at 45° ± 5°. This documents the first successful application of this technology to a glaciated environment.

  4. Rate estimates for lateral bedrock erosion based on radiocarbon ages, Duck River, Tennessee

    International Nuclear Information System (INIS)

    Brakenridge, G.R.

    1985-01-01

    Rates of bedrock erosion in ingrown meandering rivers can be inferred from the location of buried relict flood-plain and river-bank surfaces, associated paleosols, and radiocarbon dates. Two independent methods are used to evaluate the long-term rates of limestone bedrock erosion by the Duck River. Radiocarbon dates on samples retrieved from buried Holocene flood-plain and bank surfaces indicate lateral migration of the river bank at average rates of 0.6-1.9 m/100 yr. Such rates agree with lateral bedrock cliff erosion rates of 0.5-1.4 m/100 yr, as determined from a comparison of late Pleistocene and modern bedrock cliff and terrace scarp positions. These results show that lateral bedrock erosion by this river could have occurred coevally with flood-plain and terrace formation and that the resulting evolution of valley meander bends carved into bedrock is similar in many respects to that of channel meanders cut into alluvium. 11 references, 5 figures

  5. Indications of postglacial and recent bedrock movements in Finland and Russian Karelia

    Energy Technology Data Exchange (ETDEWEB)

    Kuivamaeki, A.; Vuorela, P.; Paananen, M

    1998-12-31

    This report is mainly a summary report of the studies done 1986 - 1997 by the Geological Survey of Finland/Nuclear Waste Disposal Research on postglacial faulting (PG-faults) and recent bedrock movements. Most of the results have already been published in other YST-reports in Finnish. The first part of the report deals with the postglacial faults in Finland and in the second part the problems connected with the origin and age of paleoseismic dislocations found in Russian Karelia are described. The final part deals with the present vertical and horizontal movements of Finnish bedrock. The Pasmajaervi PG-fault is the most thoroughly studied PG-fault in Finland. Around the fault lineament interpretations and geophysical ground measurements have been done and the fault zone has been penetrated with two drill holes. Three levelling networks and one GPS-network have been established for revealing any recent movements of the PG-fault area. Other PG-faults studied, but not in the same detail, are Venejaervi, Ruostejaervi, Suasselkae and Vaalajaervi PG-faults. The PG-faults in Finland strike in the SW-NE direction and dip to the SE with the exception of the Vaalajaervi PG-fault. It strikes in the NW-SE direction. The dip direction is unknown. The length of the PG-faults is 4-36 km and the scarp height 0-12 m. PG-faults are reverse faults and they are located in old, reactivated fracture zones. The results of drillings and resistivity soundings in the Pasmajaervi PG-fault indicate, that the dip angle of 45 deg in the surface becomes more gentle with the increasing depth. This result may be important from a technical point of view when designing nuclear waste repositories. The strike directions of the PG-faults are perpendicular with the direction of prevailing horizontal maximum stress. The structure and location of the PG-faults is in accordance with the model presented by Muir Wood for the origin of PG-faults. The exceptional direction of the Vaalajaervi PG-fault is

  6. Indications of postglacial and recent bedrock movements in Finland and Russian Karelia

    International Nuclear Information System (INIS)

    Kuivamaeki, A.; Vuorela, P.; Paananen, M.

    1998-01-01

    This report is mainly a summary report of the studies done 1986 - 1997 by the Geological Survey of Finland/Nuclear Waste Disposal Research on postglacial faulting (PG-faults) and recent bedrock movements. Most of the results have already been published in other YST-reports in Finnish. The first part of the report deals with the postglacial faults in Finland and in the second part the problems connected with the origin and age of paleoseismic dislocations found in Russian Karelia are described. The final part deals with the present vertical and horizontal movements of Finnish bedrock. The Pasmajaervi PG-fault is the most thoroughly studied PG-fault in Finland. Around the fault lineament interpretations and geophysical ground measurements have been done and the fault zone has been penetrated with two drill holes. Three levelling networks and one GPS-network have been established for revealing any recent movements of the PG-fault area. Other PG-faults studied, but not in the same detail, are Venejaervi, Ruostejaervi, Suasselkae and Vaalajaervi PG-faults. The PG-faults in Finland strike in the SW-NE direction and dip to the SE with the exception of the Vaalajaervi PG-fault. It strikes in the NW-SE direction. The dip direction is unknown. The length of the PG-faults is 4-36 km and the scarp height 0-12 m. PG-faults are reverse faults and they are located in old, reactivated fracture zones. The results of drillings and resistivity soundings in the Pasmajaervi PG-fault indicate, that the dip angle of 45 deg in the surface becomes more gentle with the increasing depth. This result may be important from a technical point of view when designing nuclear waste repositories. The strike directions of the PG-faults are perpendicular with the direction of prevailing horizontal maximum stress. The structure and location of the PG-faults is in accordance with the model presented by Muir Wood for the origin of PG-faults. The exceptional direction of the Vaalajaervi PG-fault is

  7. Quantifying Preferential Flow and Seasonal Storage in an Unsaturated Fracture-Facial Domain

    Science.gov (United States)

    Nimmo, J. R.; Malek-Mohammadi, S.

    2012-12-01

    Preferential flow through deep unsaturated zones of fractured rock is hydrologically important to a variety of contaminant transport and water-resource issues. The unsaturated zone of the English Chalk Aquifer provides an important opportunity for a case study of unsaturated preferential flow in isolation from other flow modes. The chalk matrix has low hydraulic conductivity and stays saturated, owing to its fine uniform pores and the wet climate of the region. Therefore the substantial fluxes observed in the unsaturated chalk must be within fractures and interact minimally with matrix material. Price et al. [2000] showed that irregularities on fracture surfaces provide a significant storage capacity in the chalk unsaturated zone, likely accounting for volumes of water required to explain unexpected dry-season water-table stability during substantial continuing streamflow observed by Lewis et al. [1993] In this presentation we discuss and quantify the dynamics of replenishment and drainage of this unsaturated zone fracture-face storage domain using a modification of the source-responsive model of Nimmo [2010]. This model explains the processes in terms of two interacting flow regimes: a film or rivulet preferential flow regime on rough fracture faces, active on an individual-storm timescale, and a regime of adsorptive and surface-tension influences, resembling traditional diffuse formulations of unsaturated flow, effective mainly on a seasonal timescale. The modified model identifies hydraulic parameters for an unsaturated fracture-facial domain lining the fractures. Besides helping to quantify the unsaturated zone storage described by Price et al., these results highlight the importance of research on the topic of unsaturated-flow relations within a near-fracture-surface domain. This model can also facilitate understanding of mechanisms for reinitiation of preferential flow after temporary cessation, which is important in multi-year preferential flow through deep

  8. The fluoride in the groundwater of Guarani Aquifer System: the origin associated with black shales of Paraná Basin

    Science.gov (United States)

    Kern, M. L.; Vieiro, A. P.; Machado, G.

    2008-09-01

    This work presents petrological and geochemical results of the black shales interval from Permian and Devonian strata of the Paraná Basin, Brazil and its relationships with fluoride of groundwater from Guarani Aquifer System. The Guarani Aquifer, located in South Brazil, Uruguay, Paraguay and Argentine, presents contents of fluoride higher than the Brazilian accepted potability limits. Several hypotheses have been presented for the origin of the fluoride in the groundwater of the Guarani Aquifer. Microcrystalline fluorite was registered in black shales of Ponta Grossa and Irati formations from Paraná Basin. The results shown in this work suggest that fluoride present in groundwater of Guarani Aquifer can be originated in deeper groundwater that circulates in Ponta Grossa and Irati formations. The interaction of the groundwater coming from deeper black shales with the groundwater-bearing Aquifer Guarani System occurs through regional fragile structures (faults and fractures) that constitute excellent hydraulic connectors between the two sedimentary packages. The microcrystalline fluorite registered in Ponta Grossa and Irati Formations can be dissolved promoting fluoride enrichment in groundwater of these black shales and Guarani Aquifer System.

  9. Carbonate aquifers

    Science.gov (United States)

    Cunningham, Kevin J.; Sukop, Michael; Curran, H. Allen

    2012-01-01

    Only limited hydrogeological research has been conducted using ichnology in carbonate aquifer characterization. Regardless, important applications of ichnology to carbonate aquifer characterization include its use to distinguish and delineate depositional cycles, correlate mappable biogenically altered surfaces, identify zones of preferential groundwater flow and paleogroundwater flow, and better understand the origin of ichnofabric-related karst features. Three case studies, which include Pleistocene carbonate rocks of the Biscayne aquifer in southern Florida and Cretaceous carbonate strata of the Edwards–Trinity aquifer system in central Texas, demonstrate that (1) there can be a strong relation between ichnofabrics and groundwater flow in carbonate aquifers and (2) ichnology can offer a useful methodology for carbonate aquifer characterization. In these examples, zones of extremely permeable, ichnofabric-related macroporosity are mappable stratiform geobodies and as such can be represented in groundwater flow and transport simulations.

  10. Aquifer geometry, lithology, and water levels in the Anza–Terwilliger area—2013, Riverside and San Diego Counties, California

    Science.gov (United States)

    Landon, Matthew K.; Morita, Andrew Y.; Nawikas, Joseph M.; Christensen, Allen H.; Faunt, Claudia C.; Langenheim, Victoria E.

    2015-11-24

    The population of the Anza–Terwilliger area relies solely on groundwater pumped from the alluvial deposits and surrounding bedrock formations for water supply. The size, characteristics, and current conditions of the aquifer system in the Anza–Terwilliger area are poorly understood, however. In response to these concerns, the U.S. Geological Survey, in cooperation with the High Country Conservancy and Rancho California Water District, undertook a study to (1) improve mapping of groundwater basin geometry and lithology and (2) to resume groundwater-level monitoring last done during 2004–07 in the Anza–Terwilliger area. 

  11. Application of ERTS-1 imagery to fracture related mine safety hazards in the coal mining industry. [Indiana

    Science.gov (United States)

    Wier, C. E.; Wobber, F. J. (Principal Investigator); Russell, O. R.; Amato, R. V.; Leshendok, T. V.

    1974-01-01

    The author has identified the following significant results. New fracture detail of Indiana has been observed and mapped from ERTS-1 imagery. Studies so far indicate a close relationship between the directions of fracture traces mapped from the imagery, fractures measured on bedrock outcrops, and fractures measured in the underground mines. First hand observations and discussions with underground mine operators indicate good correlation of mine hazard maps prepared from ERTS-1/aircraft imagery and actual roof falls. The inventory of refuse piles/slurry ponds of the coal field of Indiana has identified over 225 such sites from past mining operations. These data will serve the State Legislature in making tax decisions on coal mining which take on increased importance because of the energy crisis.

  12. Radon concentration: A tool for assessing the fracture network at ...

    African Journals Online (AJOL)

    drinie

    2003-01-01

    Jan 1, 2003 ... This work has positive implications for the location of groundwater resources in fractured-rock aquifers such as in South Africa, where most ... tool in groundwater exploration in South Africa, where the passive Radon Gas Monitor ..... rainfall infiltration, the main infiltration area can be identified;. • The method ...

  13. High-resolution monitoring of fluvial bedrock erosion in a natural gorge

    Science.gov (United States)

    Beer, Alexander R.; Turowski, Jens M.

    2014-05-01

    Morphological evolution of terrestrial and planetary landscapes is of increasing interest in the geosciences. In mountainous regions stream development and stream shape as a consequence of the interaction of uplift and erosion is fundamental for surface formation. Bedrock stream sections are prevalent that are routings for water and sediments. Hence, the correct description of bedrock channel evolution is fundamental for landscape modelling. To analyse how in situ erosion rates depend on factors like discharge, sediment transport and topography, there is a need of highly resolved topographic field data that so far is not available. Here we present preliminary outcomes of a change detection study from the Gorner Gorge above Zermatt, Switzerland. The outflow of the Gorner glacier (the Gornera stream) is captured most of the time by a water intake for hydropower production. However this intake is flushed twice a day in summer to purge settled sediments. Then the Gornera, charged with erosive bedload, runs along its natural stream bed that cuts through a roche moutonnée. This bedrock section (25m long, 5m wide and 8m deep) was surveyed repeatedly twice a year benefiting from nearly dry bed conditions during water capturing. A Leica ScanStation C10 was used for capturing high density point clouds (aspired average point spacing 5mm) of the bedrock surfaces. Referencing each of the various scanning positions was conducted using Leica HDS targets attached to fixed anchor bolts in the bedrock, that were surveyed locally with a total station. Resulting DEMs were used to calculate DEMs of difference (DoDs) for the bedrock walls and a huge boulder residing on the gravel bed. Erosion rates are visualised and discussed in respect of to the local spatial arrangement of the bedrock to the stream flow and water level.

  14. Graffiti for science: Qualitative detection of erosional patterns through bedrock erosion painting

    Science.gov (United States)

    Beer, Alexander R.; Kirchner, James W.; Turowski, Jens M.

    2016-04-01

    Bedrock erosion is a crucial constraint on stream channel incision, and hence whole landscape evolution, in steep mountainous terrain and tectonically active regions. Several interacting processes lead to bedrock erosion in stream channels, with hydraulic shear detachment, plucking, and abrasion due to sediment impacts generally being the most efficient. Bedrock topography, together with the sediment tools and cover effects, regulate the rate and spatial pattern of in situ surface change. Measurements of natural bedrock erosion rates are valuable for understanding the underlying process physics, as well as for modelling landscape evolution and designing engineered structures. However, quantifying spatially distributed bedrock erosion rates in natural settings is challenging and few such measurements exist. We studied spatial bedrock erosion in a 30m-long bedrock gorge in the Gornera, a glacial meltwater stream above Zermatt. This stream is flushed episodically with sediment-laden streamflow due to hydropower operations upstream, with negligible discharge in the gorge in between these flushing events. We coated several bedrock surface patches with environmentally safe, and water-insoluble outdoor paint to document the spatial pattern of surface abrasion, or to be more precise, to document its driving forces. During four consecutive years, the change of the painted areas was recorded repeatedly with photographs before the painting was renewed. These photographs visually documented the spatial patterns of vertical erosion (channel incision), of lateral erosion (channel widening) and of downstream-directed erosion (channel clearance). The observed qualitative patterns were verified through comparison to quantitative change detection analyses based on annual high-resolution terrestrial laser scanning surveys of the bedrock surfaces. Comparison of repeated photographs indicated a temporal cover effect and a general height limit of the tools effect above the streambed

  15. Characterization of chlorinated solvent contamination in limestone using innovative FLUTe® technologies in combination with other methods in a line of evidence approach

    DEFF Research Database (Denmark)

    Broholm, Mette Martina; Janniche, Gry Sander; Mosthaf, Klaus

    2016-01-01

    Characterization of dense non-aqueous phase liquid (DNAPL) source zones in limestone aquifers/bedrock is essential to develop accurate site-specific conceptual models and perform risk assessment. Here innovative field methods were combined to improve determination of source zone architecture......, hydrogeology and contaminant distribution. The FACT™ is a new technology and it was applied and tested at a contaminated site with a limestone aquifer, together with a number of existing methods including wire-line coring with core subsampling, FLUTe® transmissivity profiling and multilevel water sampling...... groundwater sampling (under two flow conditions) and FACT™ sampling and analysis combined with FLUTe® transmissivity profiling and modeling were used to provide a line of evidence for the presence of DNAPL, dissolved and sorbed phase contamination in the limestone fractures and matrix. The combined methods...

  16. The amount of glacial erosion of the bedrock

    International Nuclear Information System (INIS)

    Paasse, Tore

    2004-11-01

    The purpose of this study is to estimate an upper bound for the average erosion of fresh bedrock that can reasonably be expected during a glacial period or a single glaciation. The study is based on the assumption that classic sediments, formed by Scandinavian ice erosion during the Quaternary period, still exist within the formerly glaciated area or its periphery. The volume of these sediments thus constitutes the maximum average glacial erosion of bedrock within this area. This volume is calculated by estimating the thickness of the minerogenic Quaternary from well data in Sweden and Denmark and from seismic measurements in adjacent sea areas. The average thickness of the Quaternary deposits and other reogolith in the investigated area was estimated to 16 m. Assuming that the whole volume is the result of glacial erosion of fresh bedrock this corresponds to 12 m depth. However, a great part of the sediments may consist of glacially redistributed Tertiary regolith. As the amount of Tertiary regolith is uncertain the estimated maximum average glacial erosion rate in fresh bedrock is uncertain, and assuming that the total sediment volume is the result of glacial erosion leads to an overestimation of the glacial erosion depth. Considering this, the average glacial erosion during a full glacial period has been estimated to between 0.2 m and 4 m. If the extremes in the made assumptions are excluded the glacial erosion during a glacial cycle can be estimated to about 1 m

  17. The amount of glacial erosion of the bedrock

    Energy Technology Data Exchange (ETDEWEB)

    Paasse, Tore [Geological Survey of Sweden, Uppsala (Sweden)

    2004-11-01

    The purpose of this study is to estimate an upper bound for the average erosion of fresh bedrock that can reasonably be expected during a glacial period or a single glaciation. The study is based on the assumption that classic sediments, formed by Scandinavian ice erosion during the Quaternary period, still exist within the formerly glaciated area or its periphery. The volume of these sediments thus constitutes the maximum average glacial erosion of bedrock within this area. This volume is calculated by estimating the thickness of the minerogenic Quaternary from well data in Sweden and Denmark and from seismic measurements in adjacent sea areas. The average thickness of the Quaternary deposits and other reogolith in the investigated area was estimated to 16 m. Assuming that the whole volume is the result of glacial erosion of fresh bedrock this corresponds to 12 m depth. However, a great part of the sediments may consist of glacially redistributed Tertiary regolith. As the amount of Tertiary regolith is uncertain the estimated maximum average glacial erosion rate in fresh bedrock is uncertain, and assuming that the total sediment volume is the result of glacial erosion leads to an overestimation of the glacial erosion depth. Considering this, the average glacial erosion during a full glacial period has been estimated to between 0.2 m and 4 m. If the extremes in the made assumptions are excluded the glacial erosion during a glacial cycle can be estimated to about 1 m.

  18. Design of a groundwater sampling network for Minnesota

    International Nuclear Information System (INIS)

    Kanivetsky, R.

    1977-01-01

    This folio was compiled to facilitate the use of groundwater as a sampling medium to aid in exploration for hitherto undiscovered deposits of uranium in the subsurface rocks of Minnesota. The report consists of the following sheets of the hydrogeologic map of Minnesota: (1) map of bedrock hydrogeology, (2) generalized cross sections of the hydrogeologic map of Minnesota, showing both Quaternary deposits and bedrock, (3) map of waterwells that penetrate Precambrian rocks in Minnesota. A list of these wells, showing locations, names of owners, type of Precambrian aquifers penetrated, lithologic material of the aquifers, and well depths is provided in the appendix to this report. Structural settings, locations, and composition of the bedrock aquifers, movement of groundwater, and preliminary suggestions for a sampling program are discussed below under the heading Bedrock Hydrogeology of Minnesota. The map sheet showing Quaternary hydrogeology is not included in this report because the chemistry of groundwater in these deposits is not directly related to bedrock mineralization

  19. Hydrogeology and water quality of the Leetown area, West Virginia

    Science.gov (United States)

    Kozar, Mark D.; McCoy, Kurt J.; Weary, David J.; Field, Malcolm S.; Pierce, Herbert A.; Schill, William Bane; Young, John A.

    2008-01-01

    characterize the quality of water and the hydraulic properties of the aquifer. Surface geophysical surveys provided a 3-dimensional view of bedrock resistivity in order to assess geologic and lithologic controls on ground-water flow. Borehole geophysical surveys were conducted in monitoring wells to assess the storage and movement of water in subsurface fractures. Numerous single-well, multi-well, and straddle packer aquifer tests and step-drawdown tests were conducted to define the hydraulic properties of the aquifer and to assess the role of bedrock fractures and solution conduits in the flow of ground water. Water samples collected from wells and springs were analyzed to assess the current quality of ground water and provide a baseline for future assessment. Microbiological sampling of wells for indicator bacteria and human and animal DNA provided an analysis of agricultural and suburban development impacts on ground-water quality. Light detection and ranging (LiDAR) data were analyzed to develop digital elevation models (DEMs) for assessing sinkhole distribution, to provide elevation data for development of a ground-water flow model, and to assess the distribution of major fractures and faults in the Leetown area. The flow of ground water in the study area is controlled by lithology and geologic structure. Bedrock, especially low permeability units such as the shale Martinsburg Formation and the Conococheague Limestone, act as barriers to water flowing down gradient and across bedding. This retardation of cross-strike flow is especially pronounced in the Leetown area, where bedding typically dips at steep angles. Highly permeable fault and fracture zones that disrupt the rocks in cross-strike directions provide avenues through which ground water can flow laterally across or through strata of low primary permeability. Significant strike parallel thrust faults and cross-strike faults typically coincide with larger solution conduits and act as drains for the more pervasive

  20. The Role of Attached and Free-Living Bacteria in Biodegradation in Karst Aquifers

    Directory of Open Access Journals (Sweden)

    Ahmad Kheder

    2011-12-01

    Full Text Available Natural attenuation of groundwater contamination occurs at some level for all aquifers impacted with organic contaminants. The issues regarding natural attenuation are whether it takes place at a sufficient rate to be protective of human health and the environment. Implementation of a Monitored Natural Attenuation (MNA remedial alternative for groundwater requires parties responsible for the contamination to demonstrate to regulators and the public that MNA is protective at a given site. Analysis of MNA for remediation of karst aquifers is hampered by a lack of understanding of biodegradation in karst environments. The lack of studies examining biodegradation in karst aquifers may in large part be due to the widespread perception that contaminants are rapidly flushed out of karst aquifers resulting in insufficient residence times for contaminants to biodegrade. In highly developed and well-connected conduit systems, the rate of contaminant migration is perceived to be much faster than the rate of biodegradation. This perception of contaminant transport is largely incorrect. Tracer studies for karst aquifers often indicate that these aquifers are characterized by diverse flow regimes and storage capabilities. Additionally, it is also believed that if bioremediation in bedrock aquifers is dependent upon contact between surface-attached bacteria and contaminants, then bioremediation would be limited by the low surface-area-to-volume ratio (SA/V of karst aquifers. A quantitative basis, however, for accepting or rejecting the assumption that attached bacteria dominate the biodegradation process in karst conduits has not been shown. The objective of this research was to determine if free-living karst bacteria from contributed as much to toluene biodegradation as attached bacteria. This is an important area of research. Research indicates bacteria are both attached and free-living in karst aquifers and it is unrealistic to think that only the attached

  1. Bedrock hydrogeology Forsmark. Site descriptive modelling, SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Follin, Sven (SF GeoLogic AB, Taeby (Sweden))

    2008-12-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) has conducted site investigations at two different locations, the Forsmark and Laxemar-Simpevarp areas, with the objective of siting a final repository for spent nuclear fuel according to the KBS-3 concept. Site characterisation should provide all data required for an integrated evaluation of the suitability of the investigated site and an important component in the characterisation work is the development of a hydrogeological model. The hydrogeological model is used by repository engineering to design the underground facility and to develop a repository layout adapted to the site. It also provides input to the safety assessment. Another important use of the hydrogeological model is in the environmental impact assessment. This report presents the understanding of the hydrogeological conditions of the bedrock at Forsmark reached following the completion of the surface-based investigations and provides a summary of the bedrock hydrogeological model and the underlying data supporting its development. It constitutes the main reference on bedrock hydrogeology for the site descriptive model concluding the surface-based investigations at Forsmark, SDM-site, and is intended to describe the hydraulic properties and hydrogeological conditions of the bedrock at the site and to give the information essential for demonstrating understanding

  2. The Guarani Aquifer System: estimation of recharge along the Uruguay-Brazil border

    Science.gov (United States)

    Gómez, Andrea A.; Rodríguez, Leticia B.; Vives, Luis S.

    2010-11-01

    The cities of Rivera and Santana do Livramento are located on the outcropping area of the sandstone Guarani Aquifer on the Brazil-Uruguay border, where the aquifer is being increasingly exploited. Therefore, recharge estimates are needed to address sustainability. First, a conceptual model of the area was developed. A multilayer, heterogeneous and anisotropic groundwater-flow model was built to validate the conceptual model and to estimate recharge. A field campaign was conducted to collect water samples and monitor water levels used for model calibration. Field data revealed that there exists vertical gradients between confining basalts and underlying sandstones, suggesting basalts could indirectly recharge sandstone in fractured areas. Simulated downward flow between them was a small amount within the global water budget. Calibrated recharge rates over basalts and over outcropping sandstones were 1.3 and 8.1% of mean annual precipitation, respectively. A big portion of sandstone recharge would be drained by streams. The application of a water balance yielded a recharge of 8.5% of average annual precipitation. The numerical model and the water balance yielded similar recharge values consistent with determinations from previous authors in the area and other regions of the aquifer, providing an upper bound for recharge in this transboundary aquifer.

  3. Hydrogeologic and geochemical characterization and evaluation of two arroyos for managed aquifer recharge by surface infiltration in the Pojoaque River Basin, Santa Fe County, New Mexico, 2014–15

    Science.gov (United States)

    Robertson, Andrew J.; Cordova, Jeffrey; Teeple, Andrew; Payne, Jason; Carruth, Rob

    2017-02-22

    In order to provide long-term storage of diverted surface water from the Rio Grande as part of the Aamodt water rights settlement, managed aquifer recharge by surface infiltration in Pojoaque River Basin arroyos was proposed as an option. The initial hydrogeologic and geochemical characterization of two arroyos located within the Pojoaque River Basin was performed in 2014 and 2015 in cooperation with the Bureau of Reclamation to evaluate the potential suitability of these two arroyos as sites for managed aquifer recharge through surface infiltration.The selected reaches were high-gradient (average 3.0–3.5 percent) braided channels filled with unconsolidated sand and gravel-sized deposits that were generally 30–50 feet thick. Saturation was not observed in the unconsolidated channel sands in four subsurface borings but was found at 7–60 feet below the contact between the unconsolidated channel sands and the bedrock. The poorly to well-cemented alluvial deposits that make up the bedrock underlying the unconsolidated channel material is the Tesuque Formation. The individual beds of the Tesuque Formation are reported to be highly heterogeneous and anisotropic, and the bedrock at the site was observed to have variable moisture and large changes in lithology. Surface electrical-resistivity geophysical survey methods showed a sharp contrast between the electrically resistive unconsolidated channel sands and the highly conductive bedrock; however, because of the high conductivity, the resistivity methods were not able to image the water table or preferential flow paths (if they existed) in the bedrock.Infiltration rates measured by double-ring and bulk infiltration tests on a variety of channel morphologies in the study reaches were extremely large (9.7–94.5 feet per day), indicating that the channels could potentially accommodate as much as 6.6 cubic feet per second of applied water without generating surface runoff out of the reach; however, the small volume

  4. A gas migration test in saturated, fractured rock. Final report for the Joint UKDOE/AECL Project. Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Gascoyne, M.; Wuschke, D.M.; Brown, A.; Hayles, J.G.; Kozak, E.T.; Lodha, G.S.; Thorne, G.A. [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs.

    1991-12-31

    Helium gas was injected at constant pressure into an inclined fracture zone through an access borehole at a depth of about 40 m, in the Lac du Bonnet granite, southeastern Manitoba. The gas flow rate, arrival time and pattern of distribution of gas at the surface were monitored by soil gas surveys. The field results were compared with predictions of a simple analytical model. Good agreement was found when the influence of vertical fracturing in the bedrock and a low-permeability overburden were included in the model. The model was then used to determine the hydraulic conductivity of individual gas flow paths in the fractured rock. (author).

  5. A gas migration test in saturated, fractured rock. Final report for the Joint UKDOE/AECL Project. Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Gascoyne, M; Wuschke, D M; Brown, A; Hayles, J G; Kozak, E T; Lodha, G S; Thorne, G A [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs.

    1992-12-31

    Helium gas was injected at constant pressure into an inclined fracture zone through an access borehole at a depth of about 40 m, in the Lac du Bonnet granite, southeastern Manitoba. The gas flow rate, arrival time and pattern of distribution of gas at the surface were monitored by soil gas surveys. The field results were compared with predictions of a simple analytical model. Good agreement was found when the influence of vertical fracturing in the bedrock and a low-permeability overburden were included in the model. The model was then used to determine the hydraulic conductivity of individual gas flow paths in the fractured rock. (author).

  6. Hydrogeology and results of aquifer tests in the vicinity of a hazardous-waste disposal site near Byron, Illinois

    Science.gov (United States)

    Kay, Robert T.; Olson, David N.; Ryan, Barbara J.

    1989-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency, conducted an investigation of a Superfund Site near Byron, Illinois. The purpose of the investigation was to determine the hydrogeologic properties of the Galena-Platteville and St. Peter aquifers, the primary water-supply aquifers for domestic supply in the area. The Galena and Platteville Groups and older St. Peter Sandstone are separated by the Harmony Hill Shale Member of the Glenwood Formation. The Harmony Hill Shale Member is a semiconfining unit. Groundwater flow in the study area is from the site northwestward to the Rock River. Movement of groundwater in the dolomites is mainly through joints, fractures, and solution openings. Analysis of the Galena-Platteville aquifer-test data indicates that the calculated aquifer transmissivity ranges from 490 to 670 sq ft/day, and the calculated specific yield ranges from 0.017 to 0.140. Aquifer test data also indicate that the Galena-Platteville aquifer is heterogeneous and anisotropic. Analysis of the St. Peter aquifer-test data indicates that the calculated transmissivity of the aquifer ranges from 1,200 to 1 ,305 sq ft/day, storativity ranges from 0.000528 to 0.00128, horizontal hydraulic conductivity ranges from 2.9 to 3.1 ft/day, and leakage through the Harmony Hill Shale Member ranges from .000123 to .000217 ft/day/ft. (USGS)

  7. Numerical simulation of pollutant transport in fractured vuggy porous karstic aquifers

    KAUST Repository

    Sun, S.

    2011-01-01

    This paper begins with presenting a mathematical model for contaminant transport in the fractured vuggy porous media of a species of contaminant (PCP). Two phases are numerically simulated for a process of contaminant and clean water infiltrated in the fractured vuggy porous media by coupling mixed finite element (MFE) method and finite volume method (FVM), both of which are locally conservative, to approximate the model. A hybrid mixed finite element (HMFE) method is applied to approximate the velocity field for the model. The convection and diffusion terms are approached by FVM and the standard MFE, respectively. The pressure distribution and temporary evolution of the concentration profiles are obtained for two phases. The average effluent concentration on the outflow boundary is obtained at different time and shows some different features from the matrix porous media. The temporal multiscale phenomena of the effluent concentration on the outlet are observed. The results show how the different distribution of the vugs and the fractures impacts on the contaminant transport and the effluent concentration on the outlet. This paper sheds light on certain features of karstic groundwater are obtained.

  8. Numerical Simulation of Pollutant Transport in Fractured Vuggy Porous Karstic Aquifers

    Directory of Open Access Journals (Sweden)

    Xiaolin Fan

    2011-01-01

    Full Text Available This paper begins with presenting a mathematical model for contaminant transport in the fractured vuggy porous media of a species of contaminant (PCP. Two phases are numerically simulated for a process of contaminant and clean water infiltrated in the fractured vuggy porous media by coupling mixed finite element (MFE method and finite volume method (FVM, both of which are locally conservative, to approximate the model. A hybrid mixed finite element (HMFE method is applied to approximate the velocity field for the model. The convection and diffusion terms are approached by FVM and the standard MFE, respectively. The pressure distribution and temporary evolution of the concentration profiles are obtained for two phases. The average effluent concentration on the outflow boundary is obtained at different time and shows some different features from the matrix porous media. The temporal multiscale phenomena of the effluent concentration on the outlet are observed. The results show how the different distribution of the vugs and the fractures impacts on the contaminant transport and the effluent concentration on the outlet. This paper sheds light on certain features of karstic groundwater are obtained.

  9. A Fractal Interpretation of Controlled-Source Helicopter Electromagnetic Survey Data: Seco Creek, Edwards Aquifer, TX

    Science.gov (United States)

    Decker, K. T.; Everett, M. E.

    2009-12-01

    The Edwards aquifer lies in the structurally complex Balcones fault zone and supplies water to the growing city of San Antonio. To ensure that future demands for water are met, the hydrological and geophysical properties of the aquifer must be well-understood. In most settings, fracture lengths and displacements occur in power-law distributions. Fracture distribution plays an important role in determining electrical and hydraulic current flowpaths. 1-D synthetic models of the controlled-source electromagnetic (CSEM) response for layered models with a fractured layer at depth described by the roughness parameter βV, such that 0≤βVlaw length-scale dependence of electrical conductivity are developed. A value of βV = 0 represents homogeneous, continuous media, while a value of 0<βV<1 shows that roughness exists. The Seco Creek frequency-domain helicopter electromagnetic survey data set is analyzed by introducing the similarly defined roughness parameter βH to detect lateral roughness along survey lines. Fourier transforming the apparent resistivity as a function of position along flight line into wavenumber domain using a 256-point sliding window gives the power spectral density (PSD) plot for each line. The value of βH is the slope of the least squares regression for the PSD in each 256-point window. Changes in βH with distance along the flight line are plotted. Large values of βH are found near well-known large fractures and maps of βH produced by interpolating values of βH along survey lines suggest previously undetected structure at depth.

  10. 2D soil and engineering-seismic bedrock modeling of eastern part of Izmir inner bay/Turkey

    Science.gov (United States)

    Pamuk, Eren; Akgün, Mustafa; Özdağ, Özkan Cevdet; Gönenç, Tolga

    2017-02-01

    Soil-bedrock models are used as a base when the earthquake-soil common behaviour is defined. Moreover, the medium which is defined as bedrock is classified as engineering and seismic bedrock in itself. In these descriptions, S-wave velocity is (Vs) used as a base. The mediums are called soil where the Vs is bedrock as well. Additionally, the parts are called engineering bedrock where the Vs is between 3000 m/s and 760 m/s, the parts where are bigger than 3000 m/s called seismic bedrock. The interfacial's horizontal topography where is between engineering and seismic bedrock is effective on earthquake's effect changing on the soil surface. That's why, 2D soil-bedrock models must be used to estimate the earthquake effect that could occur on the soil surface. In this research, surface wave methods and microgravity method were used for occuring the 2D soil-bedrock models in the east of İzmir bay. In the first stage, velocity values were obtained by the studies using surface wave methods. Then, density values were calculated from these velocity values by the help of the empiric relations. 2D soil-bedrock models were occurred based upon both Vs and changing of density by using these density values in microgravity model. When evaluating the models, it was determined that the soil is 300-400 m thickness and composed of more than one layers in parts where are especially closer to the bay. Moreover, it was observed that the soil thickness changes in the direction of N-S. In the study area, geologically, it should be thought the engineering bedrock is composed of Bornova melange and seismic bedrock unit is composed of Menderes massif. Also, according to the geophysical results, Neogene limestone and andesite units at between 200 and 400 m depth show that engineering bedrock characteristic.

  11. Periodic Hydraulic Testing for Discerning Fracture Network Connections

    Science.gov (United States)

    Becker, M.; Le Borgne, T.; Bour, O.; Guihéneuf, N.; Cole, M.

    2015-12-01

    Discrete fracture network (DFN) models often predict highly variable hydraulic connections between injection and pumping wells used for enhanced oil recovery, geothermal energy extraction, and groundwater remediation. Such connections can be difficult to verify in fractured rock systems because standard pumping or pulse interference tests interrogate too large a volume to pinpoint specific connections. Three field examples are presented in which periodic hydraulic tests were used to obtain information about hydraulic connectivity in fractured bedrock. The first site, a sandstone in New York State, involves only a single fracture at a scale of about 10 m. The second site, a granite in Brittany, France, involves a fracture network at about the same scale. The third site, a granite/schist in the U.S. State of New Hampshire, involves a complex network at scale of 30-60 m. In each case periodic testing provided an enhanced view of hydraulic connectivity over previous constant rate tests. Periodic testing is particularly adept at measuring hydraulic diffusivity, which is a more effective parameter than permeability for identify the complexity of flow pathways between measurement locations. Periodic tests were also conducted at multiple frequencies which provides a range in the radius of hydraulic penetration away from the oscillating well. By varying the radius of penetration, we attempt to interrogate the structure of the fracture network. Periodic tests, therefore, may be uniquely suited for verifying and/or calibrating DFN models.

  12. Hydrogeological characterisation and modelling of deformation zones and fracture domains, Forsmark modelling stage 2.2

    Energy Technology Data Exchange (ETDEWEB)

    Follin, Sven (SF GeoLogic AB, Taeby (SE)); Leven, Jakob (Swedish Nuclear Fuel and Waste Management Co., Stockholm (SE)); Hartley, Lee; Jackson, Peter; Joyce, Steve; Roberts, David; Swift, Ben (Serco Assurance, Harwell (GB))

    2007-09-15

    The work reported here collates the structural-hydraulic information gathered in 21 cored boreholes and 32 percussion-drilled boreholes belonging to Forsmark site description, modelling stage 2.2. The analyses carried out provide the hydrogeological input descriptions of the bedrock in Forsmark needed by the end users Repository Engineering, Safety Assessment and Environmental Impact Assessment; that is, hydraulic properties of deformation zones and fracture domains. The same information is also needed for constructing 3D groundwater flow models of the Forsmark site and surrounding area. The analyses carried out render the following conceptual model regarding the observed heterogeneity in deformation zone transmissivity: We find the geological division of the deterministically modelled deformation zones into eight categories (sets) useful from a hydrogeological point of view. Seven of the eight categories are steeply dipping, WNW, NW, NNW, NNE, NE, ENE and EW, and on is gently dipping, G. All deformation zones, regardless of orientation (strike and dip), are subjected to a substantial decrease in transmissivity with depth. The data gathered suggest a contrast of c. 20,000 times for the uppermost one kilometre of bedrock, i.e. more than four orders of magnitude. The hydraulic properties below this depth are not investigated. The lateral heterogeneity is also substantial but more irregular in its appearance. For instance, for a given elevation and deformation zone category (orientation), the spatial variability in transmissivity within a particular deformation zone appears to be as large as the variability between all deformation zones. This suggests that the lateral correlation length is shorter than the shortest distance between two adjacent observation points and shorter than the category spacing. The observation that the mean transmissivity of the gently-dipping deformation zones is c. one to two orders of magnitude greater than the mean transmissivities of all

  13. Bedrock Geologic Map of Vermont - Dikes

    Data.gov (United States)

    Vermont Center for Geographic Information — The bedrock geology was last mapped at a statewide scale 50 years ago at a scale of 1:250,000 (Doll and others, 1961). The 1961 map was compiled from 1:62,500-scale...

  14. Bedrock Geologic Map of Vermont - Units

    Data.gov (United States)

    Vermont Center for Geographic Information — The bedrock geology was last mapped at a statewide scale 50 years ago at a scale of 1:250,000 (Doll and others, 1961). The 1961 map was compiled from 1:62,500-scale...

  15. RCRA Facility investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1991-09-01

    This report describes the borehole geophysical logging performed at selected monitoring wells at waste area grouping (WAG) 6 of Oak Ridge National Laboratory in support of the WAG 6 Resource Conservation and Recovery Act Facility Investigation (RFI). It identifies the locations and describes the methods, equipment used in the effort, and the results of the activity. The actual logs for each well logged are presented in Attachment 1 through 4 of the TM. Attachment 5 provide logging contractor service literature and Attachment 6 is the Oak Ridge National Laboratory (ORNL) Procedure for Control of a Nuclear Source Utilized in Geophysical logging. The primary objectives of the borehole geophysical logging program were to (1) identify water-bearing fractured bedrock zones to determine the placement of the screen and sealed intervals for subsequent installation, and (2) further characterize local bedrock geology and hydrogeology and gain insight about the deeper component of the shallow bedrock aquifer flow system. A secondary objective was to provide stratigraphic and structural correlations with existing logs for Hydraulic Head Monitoring Station (HHMS) wells, which display evidence of faulting

  16. VSP in crystalline rocks - from downhole velocity profiling to 3-D fracture mapping

    International Nuclear Information System (INIS)

    Cosma, C.; Heikkinen, P.; Keskinen, J.; Enescu, N.

    1998-01-01

    VSP surveys have been carried out at several potential nuclear waste disposal sites in Finland since the mid 80s. To date, more than 200 three-component profiles have been measured. The main purpose of the surveys was to detect fracture zones in the crystalline bedrock and to determine their position. Most seismic events could be linked to zones of increased fracturing observed in the borehole logs. The more pronounced seismic reflectors could be correlated with hydrogeologically significant zones, which have been the main targets in the investigations. Processing and interpretation methods have been developed specifically for VSP surveys in crystalline rocks: Weak reflections from thin fracture zones are enhanced by multi-channel filtering techniques based on the Radon transform. The position and orientation of the fracture zones are determined by polarisation analysis and by combining data from several shot points. The compilation of the results from several boreholes gives a comprehensive image of the fracture zones at the scale of the whole site. The discussion of the methodology is based on examples from the Olkiluoto site, in SW Finland

  17. Lithological and hydrological influences on ground-water composition in a heterogeneous carbonate-clay aquifer system

    Science.gov (United States)

    Kauffman, S.J.; Herman, J.S.; Jones, B.F.

    1998-01-01

    The influence of clay units on ground-water composition was investigated in a heterogeneous carbonate aquifer system of Miocene age in southwest Florida, known as the Intermediate aquifer system. Regionally, the ground water is recharged inland, flows laterally and to greater depths in the aquifer systems, and is discharged vertically upward at the saltwater interface along the coast. A depth profile of water composition was obtained by sampling ground water from discrete intervals within the permeable carbonate units during coring and by squeezing pore water from a core of the less-permeable clay layers. A normative salt analysis of solute compositions in the water indicated a marine origin for both types of water and an evolutionary pathway for the clay water that involves clay diagenesis. The chemical composition of the ground water in the carbonate bedrock is significantly different from that of the pore water in the clay layers. Dissolution of clays and opaline silica results in high silica concentrations relative to water in other parts of the Intermediate aquifer system. Water enriched in chloride relative to the overlying and underlying ground water recharges the aquifer inland where the confining clay layer is absent, and it dissolves carbonate and silicate minerals and reacts with clays along its flow path, eventually reaching this coastal site and resulting in the high chloride and silica concentrations observed in the middle part of the Intermediate aquifer system. Reaction-path modeling suggests that the recharging surficial water mixes with sulfate-rich water upwelling from the Upper Floridan aquifer, and carbonate mineral dissolution and precipitation, weathering and exchange reactions, clay mineral diagenesis, clay and silica dissolution, organic carbon oxidation, and iron and sulfate reduction result in the observed water compositions.A study was conducted to clarify the influence of clay units on ground-water composition in a heterogeneous

  18. The role of bedrock groundwater in rainfall-runoff response at hillslope and catchment scales

    Science.gov (United States)

    C. Gabrielli; J.J. McDonnell; W.T. Jarvis

    2012-01-01

    Bedrock groundwater dynamics in headwater catchments are poorly understood and poorly characterized. Direct hydrometric measurements have been limited due to the logistical challenges associated with drilling through hard rock in steep, remote and often roadless terrain. We used a new portable bedrock drilling system to explore bedrock groundwater dynamics aimed at...

  19. Preliminary study of the physico-chemical and hydrodynamical characteristics of the crystalline basement aquifer of the Ihorombe region (south of Madagascar)

    International Nuclear Information System (INIS)

    Rakotoaridera, Z.S.

    2008-04-01

    The hydrochemical, hydrogeological and isotopic data have been used to determine the chemical and hydrodynamical characteristics of crystalline basement aquifer of the Ihorombe region. The study area is located in the District of Ihosy, which is about 600 km in the south of Antananarivo along the national road 7. Two types of aquifer have been found in this area: a phreatic aquifer composed of alterd metamorphic rocks, and a semi confined aquifer, which flows in a fissured and fractured rocks such as gneiss, and leptinites.The ground water mineralization is controlled by HCO 3- , Ca 2+ , Na + , Cl - . The dominant hydrochemical types of water in the study area are calcium and sodium bicarbonate. Some water samples show chloride types. The groundwater mineralization process is especially due to water rock interaction. The ground water is directly recharged by rain water. For the phreatic aquifer, the tritium values have provide a mean resident time less than 50 years, and for the semi confined aquifer, it is approximately above 100 years. [fr

  20. Proposed approach for bedrock characterization at Chalk River Nuclear Laboratories for waste disposal

    International Nuclear Information System (INIS)

    Heystee, R.J.; Dixon, D.F.

    1985-07-01

    Low- and intermediate-level wastes (L AND ILW) are produced at the Chalk River Nuclear Laboratories (CRNL) by the operation of reactors for nuclear research and development and by the production of radioisotopes. CRNL also manages L and ILW produced by Canadian research laboratories, universities, hospitals and some industries. An option that is being considered for the disposal of some of these wastes is to emplace them in a shallow rock cavity in fractured crystalline bedrock on the CRNL property. To design such a disposal facility and to evalute its long-term performance, data must be obtained on the geologic and hydrogeologic characteristics of the site. Over the past several years, a variety of airborne, ground surface and borehole geological, geophysical and/or hydrogeological methods have been used to acquire data on some rock mass discontinuities at CRNL. The techniques which are apparently more useful for acquiring these data are described and a proposed approach to site characterization for a shallow rock cavity at CRNL is outlined

  1. Numerical simulation of earth fissures caused by overly aquifer exploitation at Guangming Village, China

    Science.gov (United States)

    Ye, S.; Franceschini, A.; Zhang, Y.; Janna, C.; Gong, X.; Yu, J.; Teatini, P.

    2017-12-01

    Earth fissures accompanying anthropogenic land subsidence due to overly aquifer exploitation create significant geohazards in China. In the framework of an efficient and safe management of groundwater, numerical models represent a unique scientific approach to predict the generation and development of earth fissures. However, the common geomechanical simulators fail to reproduce fissure development because, due to compatibility conditions, they cannot be effectively applied in discontinuous mechanics. We present an innovative modelling approach for the simulation of fissure development. Firstly, a regional 3D groundwater model is calibrated on available piezometric records; secondly, the regional outcome is used to define the boundary conditions of a local 3D groundwater model developed at the fissure scale and implementing a refined discretization of the local hydrogeologic setting; finally, the pressure change are used as forcing factor in a local 3D geomechanical model, which combines Finite Elements and Interface Elements to simulate the deformation of the continuous aquifer system and the generation and sliding/opening of earth fissures The approach has been applied to simulate the earth fissure at Guangming Village in Wuxi, China with land subsidence of more than 1 m caused by the overexploitation of the second confined aquifer. The first earth fissure was observed in 1998. It developed fast from 1998 to 2007. The domain addressed by the local simulations is 2 km wide and 5 km long. The thickness of the aquifer system ranges from 0 m, in the proximity of a mountain ridge southward, to 210 m northward and includes a phreatic aquifer, the first and second confined aquifers, and four aquitards. The simulations spanned the period from 1980, i.e. before the inception of large groundwater withdrawals, to 2015. The modelling results highlight that the earth fissures at Guangming Village have been caused by tension and shear, which developed from the land surface

  2. Host Rock Classification (HRC) system for nuclear waste disposal in crystalline bedrock

    International Nuclear Information System (INIS)

    Hagros, A.

    2006-01-01

    A new rock mass classification scheme, the Host Rock Classification system (HRC-system) has been developed for evaluating the suitability of volumes of rock mass for the disposal of high-level nuclear waste in Precambrian crystalline bedrock. To support the development of the system, the requirements of host rock to be used for disposal have been studied in detail and the significance of the various rock mass properties have been examined. The HRC-system considers both the long-term safety of the repository and the constructability in the rock mass. The system is specific to the KBS-3V disposal concept and can be used only at sites that have been evaluated to be suitable at the site scale. By using the HRC-system, it is possible to identify potentially suitable volumes within the site at several different scales (repository, tunnel and canister scales). The selection of the classification parameters to be included in the HRC-system is based on an extensive study on the rock mass properties and their various influences on the long-term safety, the constructability and the layout and location of the repository. The parameters proposed for the classification at the repository scale include fracture zones, strength/stress ratio, hydraulic conductivity and the Groundwater Chemistry Index. The parameters proposed for the classification at the tunnel scale include hydraulic conductivity, Q' and fracture zones and the parameters proposed for the classification at the canister scale include hydraulic conductivity, Q', fracture zones, fracture width (aperture + filling) and fracture trace length. The parameter values will be used to determine the suitability classes for the volumes of rock to be classified. The HRC-system includes four suitability classes at the repository and tunnel scales and three suitability classes at the canister scale and the classification process is linked to several important decisions regarding the location and acceptability of many components of

  3. Geogas in crystaline bedrock

    International Nuclear Information System (INIS)

    Hermansson, H.P.; Sjoeblom, R.; Aakerblom, G.

    1991-10-01

    The scientific literature provides conclusive evidence of gas migration through crystalline bedrock and up to the surface. In this paper, a compilation is made of various significant observations of geogas. Based on these observations, and on well-known physical and chemical principles, possible models for the behaviour of the gas are analysed and discussed. Thus, at a depth of some tens or hundreds of meters, the partial gas pressure might exceed the hydrostatic pressure, enabling the development of a gas phase. Such gas may form in fissures in the rock of perhaps 0.1 mm width. The gas deposited will attempt to minimize its surface energy. The shape assumed will thus depend on the geometrical constraints as well as on the specific surface energies between gas and water, gas and rock, and water and rock. For a small bubble, or a bubble of moderate size, these effects can be expected to make the bubble stay in place. The accumulation of gas into the gas pocket will lead to the exertion of pressure onto the uppermost part of the pocket. At some stage of gas accumulation, this pressure will become sufficient for the gas to penetrate upwards through the fissure. As the gas propagates, the hydrostatic pressure will decrease and the volume of the gas will also increase. Eventually, when the surface is reached, a burst of gas may be observed. Four mechanisms have been identified that may describe how heavy elements can be transported from considerable depths to the surface by means of gas: transport through volatile compounds that dissolve in the gas, transport by elements bonded to complexing agents that are surface active and enrich themselves onto the interface between the water and the gas, flotation (bubbles attaching themselves onto particles and lifting them) and transport by aerosols that may form when gas moves rapidly through a fracture in the rock. Finally, the paper makes some recommendations to geoscientists regarding phenomena that it may be fruitful to

  4. Implications of Earth analogs to Martian sulfate-filled Fractures

    Science.gov (United States)

    Holt, R. M.; Powers, D. W.

    2017-12-01

    Sulfate-filled fractures in fine-grained sediments on Mars are interpreted to be the result of fluid movement during deep burial. Fractures in the Dewey Lake (aka Quartermaster) Formation of southeastern New Mexico and west Texas are filled with gypsum that is at least partially synsedimentary. Sulfate in the Dewey Lake takes two principal forms: gypsum cement and gypsum (mainly fibrous) that fills fractures ranging from horizontal to vertical. Apertures are mainly mm-scale, though some are > 1 cm. The gypsum is antitaxial, fibrous, commonly approximately perpendicular to the wall rock, and displays suture lines and relics of the wall rock. Direct evidence of synsedimentary, near-surface origin includes gypsum intraclasts, intraclasts that include smaller intraclasts that contain gypsum clasts, intraclasts of gypsum with suture lines, gypsum concentrated in small desiccation cracks, and intraclasts that include fibrous gypsum-filled fractures that terminate at the eroded clast boundary. Dewey Lake fracture fillings suggest that their Martian analogs may also have originated in the shallow subsurface, shortly following the deposition of Martian sediments, in the presence of shallow aquifers.

  5. Simulating flow in karst aquifers at laboratory and sub-regional scales using MODFLOW-CFP

    Science.gov (United States)

    Gallegos, Josue Jacob; Hu, Bill X.; Davis, Hal

    2013-12-01

    Groundwater flow in a well-developed karst aquifer dominantly occurs through bedding planes, fractures, conduits, and caves created by and/or enlarged by dissolution. Conventional groundwater modeling methods assume that groundwater flow is described by Darcian principles where primary porosity (i.e. matrix porosity) and laminar flow are dominant. However, in well-developed karst aquifers, the assumption of Darcian flow can be questionable. While Darcian flow generally occurs in the matrix portion of the karst aquifer, flow through conduits can be non-laminar where the relation between specific discharge and hydraulic gradient is non-linear. MODFLOW-CFP is a relatively new modeling program that accounts for non-laminar and laminar flow in pipes, like karst caves, within an aquifer. In this study, results from MODFLOW-CFP are compared to those from MODFLOW-2000/2005, a numerical code based on Darcy's law, to evaluate the accuracy that CFP can achieve when modeling flows in karst aquifers at laboratory and sub-regional (Woodville Karst Plain, Florida, USA) scales. In comparison with laboratory experiments, simulation results by MODFLOW-CFP are more accurate than MODFLOW 2005. At the sub-regional scale, MODFLOW-CFP was more accurate than MODFLOW-2000 for simulating field measurements of peak flow at one spring and total discharges at two springs for an observed storm event.

  6. Identification Of Rippability And Bedrock Depth Using Seismic Refraction

    Science.gov (United States)

    Ismail, Nur Azwin; Saad, Rosli; Nawawi, M. N. M.; Muztaza, Nordiana Mohd; El Hidayah Ismail, Noer; Mohamad, Edy Tonizam

    2010-12-01

    Spatial variability of the bedrock with reference to the ground surface is vital for many applications in geotechnical engineering to decide the type of foundation of a structure. A study was done within the development area of Mutiara Damansara utilising the seismic refraction method using ABEM MK8 24 channel seismograph. The geological features of the subsurface were investigated and velocities, depth to the underlying layers were determined. The seismic velocities were correlated with rippability characteristics and borehole records. Seismic sections generally show a three layer case. The first layer with velocity 400-600 m/s predominantly consists of soil mix with gravel. The second layer with velocity 1600-2000 m/s is suggested to be saturated and weathered area. Both layers forms an overburden and generally rippable. The third layer represents granite bedrock with average depth and velocity 10-30 m and >3000 m/s respectively and it is non-rippable. Steep slope on the bedrock are probably the results of shear zones.

  7. Identification Of Rippability And Bedrock Depth Using Seismic Refraction

    International Nuclear Information System (INIS)

    Ismail, Nur Azwin; Saad, Rosli; Nawawi, M. N. M; Muztaza, Nordiana Mohd; El Hidayah Ismail, Noer; Mohamad, Edy Tonizam

    2010-01-01

    Spatial variability of the bedrock with reference to the ground surface is vital for many applications in geotechnical engineering to decide the type of foundation of a structure. A study was done within the development area of Mutiara Damansara utilising the seismic refraction method using ABEM MK8 24 channel seismograph. The geological features of the subsurface were investigated and velocities, depth to the underlying layers were determined. The seismic velocities were correlated with rippability characteristics and borehole records. Seismic sections generally show a three layer case. The first layer with velocity 400-600 m/s predominantly consists of soil mix with gravel. The second layer with velocity 1600-2000 m/s is suggested to be saturated and weathered area. Both layers forms an overburden and generally rippable. The third layer represents granite bedrock with average depth and velocity 10-30 m and >3000 m/s respectively and it is non-rippable. Steep slope on the bedrock are probably the results of shear zones.

  8. Uncertainty Analysis of a Fractured Reservoir’s Performance: A Case Study Analyse d’incertitudes des performances d’un réservoir fracturé : étude de cas

    Directory of Open Access Journals (Sweden)

    Khosravi M.

    2012-05-01

    Full Text Available In recent years, the oil industry has given great importance to reservoir management and reservoir uncertainty analysis. The development of a method that can model and quantify uncertainties in reservoir simulation studies in an efficient and practical way is clearly desirable. Different approaches such as Response Surface Methodology (RSM and Monte-Carlo simulation have been used to address the uncertainties. In this paper, response surface method is used to realize the most influential parameters on pressure drop and recovery factor changes, regarding their practical levels of uncertainties during the development of fractured reservoir model. The present approach is performed to magnify the significant parameters and developing compatible and more realistic proxy equation for forecasting oil recovery from a typical low permeable fractured reservoir. The proxy model allows Monte-Carlo analysis to determine sensitivities and the quantification of the impact of uncertainty on production forecasts. Results indicate that the oil recovery is more sensitive to aquifer strength, fracture permeability and block height. In addition, however the interaction between other parameters, such as matrix size, fracture permeability and aquifer volume, showed a degree of importance during this analysis. Monte-Carlo analysis forecasts wide range of oil recovery for this field development. Ces dernières années, l’industrie du pétrole a accordé une grande importance à la gestion et à l’analyse d’incertitudes des réservoirs. Le développement d’une méthode permettant de modéliser et de quantifier les incertitudes au cours des études de simulation de réservoir d’une façon efficace et pratique est clairement souhaitable. Des approches différentes telles que la méthodologie des surfaces de réponse (RSM; Response Surface Methodology et la simulation de Monte-Carlo ont été utilisées pour évaluer les incertitudes. Au sein de cet article, la m

  9. Hydraulic tomography of discrete networks of conduits and fractures in a karstic aquifer by using a deterministic inversion algorithm

    Science.gov (United States)

    Fischer, P.; Jardani, A.; Lecoq, N.

    2018-02-01

    In this paper, we present a novel inverse modeling method called Discrete Network Deterministic Inversion (DNDI) for mapping the geometry and property of the discrete network of conduits and fractures in the karstified aquifers. The DNDI algorithm is based on a coupled discrete-continuum concept to simulate numerically water flows in a model and a deterministic optimization algorithm to invert a set of observed piezometric data recorded during multiple pumping tests. In this method, the model is partioned in subspaces piloted by a set of parameters (matrix transmissivity, and geometry and equivalent transmissivity of the conduits) that are considered as unknown. In this way, the deterministic optimization process can iteratively correct the geometry of the network and the values of the properties, until it converges to a global network geometry in a solution model able to reproduce the set of data. An uncertainty analysis of this result can be performed from the maps of posterior uncertainties on the network geometry or on the property values. This method has been successfully tested for three different theoretical and simplified study cases with hydraulic responses data generated from hypothetical karstic models with an increasing complexity of the network geometry, and of the matrix heterogeneity.

  10. AN ADVANCED FRACTURE CHARACTERIZATION AND WELL PATH NAVIGATION SYSTEM FOR EFFECTIVE RE-DEVELOPMENT AND ENHANCEMENT OF ULTIMATE RECOVERY FROM THE COMPLEX MONTEREY RESERVOIR OF SOUTH ELLWOOD FIELD, OFFSHORE CALIFORNIA

    Energy Technology Data Exchange (ETDEWEB)

    Steve Horner

    2004-04-29

    Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the

  11. A gas migration test in saturated, fractured rock - final report for the joint UKDOE/AECL project, phase 2

    International Nuclear Information System (INIS)

    Gascoyne, M.; Wuschke, D.M.; Brown, A.; Hayles, J.G.; Kozak, E.T.; Lodha, G.S.; Thorne, G.A.

    1991-12-01

    Helium gas was injected at constant pressure into an inclined fracture zone through an access borehole at a depth of about 40 m, in the Lac du Bonnet granite, southeastern Manitoba. The gas flow rate, arrival time and pattern of distribution of gas at the surface were monitored by soil gas surveys. The field results were compared with predictions of a simple analytical model derived from Thunvik and Braester (1987). Good agreement was found when the influence of vertical fracturing in the bedrock and a low-permeability overburden were included in the model. The model was then used to determined the hydraulic conductivity of individual gas flow paths in the fractured rock. (author). 23 refs., 5 tabs., 37 figs

  12. The use of geological data from pilot holes for predicting FPI (full perimeter intersection) fractures

    International Nuclear Information System (INIS)

    Joutsen, A.

    2012-02-01

    Posiva Oy is responsible for preparation of final disposal of spent nuclear fuel in Olkiluoto. The knowledge about existing network of fractures is important for the safety and feasibility of the final repository. The bedrock properties essential for safety case are analyzed in investigations of Rock Suitability Criteria (RSC). One subtask in RSC is avoidance of large (long) fractures adjacent to disposal holes. The long fractures have been defined in tunnel mapping to indicate tunnel cross-cutting fractures (TCF) or full perimeter intersections (FPI). The purpose for this study was to evaluate the possibility of recognizing FPIs from drill cores by their geological properties. The study was carried out by correlating FPIs mapped from the ONKALO tunnel to the pilot holes logging data with a view of finding out which fracture in the pilot hole corresponds to the FPI in the tunnel. It was also estimated what kind of geological properties does FPIs commonly have in the tunnel and how does these properties differ from the FPI correlated pilot hole fractures. The data sources for this study are the pilot holes from ONK-PH8 to ONK-PH14 and the systematic geological mapping data. The FPIs used in this study usually follow the general trends of the fracturing in the Olkiluoto bedrock. The fracture surface profiles are principally undulating and a striation can be often seen on the fracture surfaces. The FPIs are frequently moderately to intensely altered with diverse filling mineralogy and thick fracture fillings in comparison to the regular fractures. The FPI correlated pilot hole fractures have slightly different properties in comparison to the FPIs. These fractures have wider range of different fracture surface profiles and are slightly less altered than the FPIs. Filling mineralogy follows the trends of the FPIs but filling thicknesses are thinner. These differences probably occur because of the variable uncertainties related to the correlation and to the fact that the

  13. The use of geological data from pilot holes for predicting FPI (full perimeter intersection) fractures

    Energy Technology Data Exchange (ETDEWEB)

    Joutsen, A.

    2012-02-15

    Posiva Oy is responsible for preparation of final disposal of spent nuclear fuel in Olkiluoto. The knowledge about existing network of fractures is important for the safety and feasibility of the final repository. The bedrock properties essential for safety case are analyzed in investigations of Rock Suitability Criteria (RSC). One subtask in RSC is avoidance of large (long) fractures adjacent to disposal holes. The long fractures have been defined in tunnel mapping to indicate tunnel cross-cutting fractures (TCF) or full perimeter intersections (FPI). The purpose for this study was to evaluate the possibility of recognizing FPIs from drill cores by their geological properties. The study was carried out by correlating FPIs mapped from the ONKALO tunnel to the pilot holes logging data with a view of finding out which fracture in the pilot hole corresponds to the FPI in the tunnel. It was also estimated what kind of geological properties does FPIs commonly have in the tunnel and how does these properties differ from the FPI correlated pilot hole fractures. The data sources for this study are the pilot holes from ONK-PH8 to ONK-PH14 and the systematic geological mapping data. The FPIs used in this study usually follow the general trends of the fracturing in the Olkiluoto bedrock. The fracture surface profiles are principally undulating and a striation can be often seen on the fracture surfaces. The FPIs are frequently moderately to intensely altered with diverse filling mineralogy and thick fracture fillings in comparison to the regular fractures. The FPI correlated pilot hole fractures have slightly different properties in comparison to the FPIs. These fractures have wider range of different fracture surface profiles and are slightly less altered than the FPIs. Filling mineralogy follows the trends of the FPIs but filling thicknesses are thinner. These differences probably occur because of the variable uncertainties related to the correlation and to the fact that the

  14. A review of published literature on the effects of permafrost on the hydrogeochemistry of bedrock

    International Nuclear Information System (INIS)

    Cascoyne, M.

    2000-06-01

    of seawater, enhanced or depleted sulphate concentrations in certain groundwaters, and lighter isotopic signature of the saline waters caused by the ice-water isotopic fractionation. This review has found that salt-rejection processes undoubtedly will have occurred in groundwaters in the marine sediments and bedrock of the Baltic coast during the Pleistocene. Deeply penetrating permafrost in the bedrock would cause relatively pure water to form as ice in fractures and displace residual saline fluids, under density flow, to greater depths. The process could have occurred to a sufficient extent that large volumes of saline water were generated, some of which may currently remain in the fractured rock. In these waters, loss of sulphate by mirabilite precipitation would be expected to have occurred but, on warming and degradation of the permafrost, lower-salinity meltwaters would re-dissolve the mirabilite, giving rise to a SO 4 -rich groundwater. This may be the origin of groundwater that is currently identified as Litorina Sea water at the Aespoe and Olkiluoto sites. This mechanism differs from that suggested by Israeli workers who propose freezing of open seawater and infiltration of residual brines into the bedrock followed by lateral migration inland. The hypothesis presented here, of formation of saline waters and brines by permafrost aggradation and salt-rejection is more acceptable from a hydrogeological standpoint because the saline waters are formed in situ and need not migrate laterally. Further field evidence, coupled with modelling of depths of permafrost penetration, could be used to assess the volume and concentration of saline groundwater formed as a result of downward advancement of permafrost in the crystalline bedrock. (orig.)

  15. A review of published literature on the effects of permafrost on the hydrogeochemistry of bedrock

    International Nuclear Information System (INIS)

    Gascoyne, M.

    2000-04-01

    , enhanced or depleted sulphate concentrations in certain groundwaters, and lighter isotopic signature of the saline waters caused by the ice-water isotopic fractionation. This review has found that salt-rejection processes undoubtedly will have occurred in groundwaters in the marine sediments and bedrock of the Baltic coast during the Pleistocene. Deeply penetrating permafrost in the bedrock would cause relatively pure water to form as ice in fractures and displace residual saline fluids,under density flow, to greater depths. The process could have occurred to a sufficient extent that large volumes of saline water were generated, some of which may currently remain in the fractured rock. In these waters,loss of sulphate by mirabilite precipitation would be expected to have occurred but, on warming and degradation of the permafrost,lower-salinity meltwaters would re-dissolve the mirabilite, giving rise to a SO 4 -rich groundwater. This may be the origin of groundwater that is currently identified as Litorina Sea water at the Aespoe and Olkiluoto sites. This mechanism differs from that suggested by Israeli workers who propose freezing of open seawater and infiltration of residual brines into the bedrock followed by lateral migration inland. The hypothesis presented here, of formation of saline waters and brines by permafrost aggradation and salt-rejection is more acceptable from a hydrogeological standpoint because the saline waters are formed in situ and need not migrate laterally. Further field evidence, coupled with modelling of depths of permafrost penetration, could be used to assess the volume and concentration of saline groundwater formed as a result of downward advancement of permafrost in the crystalline bedrock

  16. A review of published literature on the effects of permafrost on the hydrogeochemistry of bedrock

    Energy Technology Data Exchange (ETDEWEB)

    Gascoyne, M. [Gascoyne GeoProjects Inc., Pinawa (Canada)

    2000-04-01

    seawater, enhanced or depleted sulphate concentrations in certain groundwaters, and lighter isotopic signature of the saline waters caused by the ice-water isotopic fractionation. This review has found that salt-rejection processes undoubtedly will have occurred in groundwaters in the marine sediments and bedrock of the Baltic coast during the Pleistocene. Deeply penetrating permafrost in the bedrock would cause relatively pure water to form as ice in fractures and displace residual saline fluids,under density flow, to greater depths. The process could have occurred to a sufficient extent that large volumes of saline water were generated, some of which may currently remain in the fractured rock. In these waters,loss of sulphate by mirabilite precipitation would be expected to have occurred but, on warming and degradation of the permafrost,lower-salinity meltwaters would re-dissolve the mirabilite, giving rise to a SO{sub 4}-rich groundwater. This may be the origin of groundwater that is currently identified as Litorina Sea water at the Aespoe and Olkiluoto sites. This mechanism differs from that suggested by Israeli workers who propose freezing of open seawater and infiltration of residual brines into the bedrock followed by lateral migration inland. The hypothesis presented here, of formation of saline waters and brines by permafrost aggradation and salt-rejection is more acceptable from a hydrogeological standpoint because the saline waters are formed in situ and need not migrate laterally. Further field evidence, coupled with modelling of depths of permafrost penetration, could be used to assess the volume and concentration of saline groundwater formed as a result of downward advancement of permafrost in the crystalline bedrock.

  17. A review of published literature on the effects of permafrost on the hydrogeochemistry of bedrock

    Energy Technology Data Exchange (ETDEWEB)

    Cascoyne, M. [Gascoyne GeoProjects Inc. (Canada)

    2000-06-01

    formed on freezing of seawater, enhanced or depleted sulphate concentrations in certain groundwaters, and lighter isotopic signature of the saline waters caused by the ice-water isotopic fractionation. This review has found that salt-rejection processes undoubtedly will have occurred in groundwaters in the marine sediments and bedrock of the Baltic coast during the Pleistocene. Deeply penetrating permafrost in the bedrock would cause relatively pure water to form as ice in fractures and displace residual saline fluids, under density flow, to greater depths. The process could have occurred to a sufficient extent that large volumes of saline water were generated, some of which may currently remain in the fractured rock. In these waters, loss of sulphate by mirabilite precipitation would be expected to have occurred but, on warming and degradation of the permafrost, lower-salinity meltwaters would re-dissolve the mirabilite, giving rise to a SO{sub 4}-rich groundwater. This may be the origin of groundwater that is currently identified as Litorina Sea water at the Aespoe and Olkiluoto sites. This mechanism differs from that suggested by Israeli workers who propose freezing of open seawater and infiltration of residual brines into the bedrock followed by lateral migration inland. The hypothesis presented here, of formation of saline waters and brines by permafrost aggradation and salt-rejection is more acceptable from a hydrogeological standpoint because the saline waters are formed in situ and need not migrate laterally. Further field evidence, coupled with modelling of depths of permafrost penetration, could be used to assess the volume and concentration of saline groundwater formed as a result of downward advancement of permafrost in the crystalline bedrock. (orig.)

  18. Numerical simulation of pollutant transport in fractured vuggy porous karstic aquifers

    KAUST Repository

    Sun, S.; Fan, X.; Wei, W.; Kou, J.

    2011-01-01

    distribution of the vugs and the fractures impacts on the contaminant transport and the effluent concentration on the outlet. This paper sheds light on certain features of karstic groundwater are obtained.

  19. Hydrology, water quality, and effects of drought in Monroe County, Michigan

    Science.gov (United States)

    Nicholas, J.R.; Rowe, Gary L.; Brannen, J.R.

    1996-01-01

    Monroe County relies heavily on its aquifers and streams for drinking water, irrigation, and other ~ses; however, increased water use, high concentrations of certain constituents in ground water, and droughts may limit the availability of water resources. Although the most densely populated parts of the county use water from the Great Lakes, large amounts of ground water are withdrawn for quarry dewatering, domestic supply, and irrigation.Unconsolidated deposits and bedrock of Silurian and Devonian age underlie Mon_roe County. The unconsolidated deposits are mostly clayey and less than 50 feet thick. Usable amounts of ground water generally are obtained from thin, discontinuous surficial sand deposits or, in the northwestern part of the county, from deep glaciofluvial deposits. In most of the county, however, ground water in unconsolidated deposits is highly susceptible to effects of droughts and to contamination.The bedrock is mostly carbonate rock, and usable quantities of ground water can be obtained from fractures and other secondary openings throughout the county. Transmissivities of the Silurian-Devonian aquifer range from 10 to 6,600 feet squared per day. Aquifer tests and historical informati.on indicate that the Silurian-Devonian aquifer is confmed throughout most of the county. The major recharge area for the Silurian-Devonian aquifer in Monroe County is in the southwest, and groundwater flow is mostly southeastward toward Lake Erie. In the northeastern and southeastern parts of the county, the potentiometric surface of the SilurianDevonian aquifers has been lowered by pumpage to below the elevation of Lake Erie.Streams and artificial drains in Monroe County are tributary to Lake Erie. Most streams are perennial because of sustained discharge from the sand aquifer and the Silurian-Devonian aquifer; however, the lower reaches of River Raisin and Plum Creek lost water to the Silurian-Devonian aquifer in July 1990.The quality of ground water and of

  20. Aquifer characterization and groundwater modeling in support of remedial actions at the Weldon Spring Site

    International Nuclear Information System (INIS)

    Durham, L.A.; Carman, J.D.

    1993-01-01

    Aquifer characterization studies were performed to develop a hydrogeologic understanding of an unconfined shallow aquifer at the Weldon Spring site west of St. Louis, Missouri. The 88-ha site became contaminated because of uranium and thorium processing and disposal activities that took place from the 1940s through the 1960s. Slug and pumping tests provided valuable information on the lateral distribution of hydraulic conductivities, and packer tests and lithologic information were used to determine zones of contrasting hydrologic properties within the aquifer. A three-dimensional, finite- element groundwater flow model was developed and used to simulate the shallow groundwater flow system at the site. The results of this study show that groundwater flow through the system is predominantly controlled by a zone of fracturing and weathering in the upper portion of the limestone aquifer. The groundwater flow model, developed and calibrated from field investigations, improved the understanding of the hydrogeology and supported decisions regarding remedial actions at the site. The results of this study illustrate the value, in support of remedial actions, of combining field investigations with numerical modeling to develop an improved understanding of the hydrogeology at the site

  1. Integration of models of various types of aquifers for water quality management in the transboundary area of the Soča/Isonzo river basin (Slovenia/Italy).

    Science.gov (United States)

    Vižintin, Goran; Ravbar, Nataša; Janež, Jože; Koren, Eva; Janež, Naško; Zini, Luca; Treu, Francesco; Petrič, Metka

    2018-04-01

    Due to intrinsic characteristics of aquifers groundwater frequently passes between various types of aquifers without hindrance. The complex connection of underground water paths enables flow regardless of administrative boundaries. This can cause problems in water resources management. Numerical modelling is an important tool for the understanding, interpretation and management of aquifers. Useful and reliable methods of numerical modelling differ with regard to the type of aquifer, but their connections in a single hydrodynamic model are rare. The purpose of this study was to connect different models into an integrated system that enables determination of water travel time from the point of contamination to water sources. The worst-case scenario is considered. The system was applied in the Soča/Isonzo basin, a transboundary river in Slovenia and Italy, where there is a complex contact of karst and intergranular aquifers and surface flows over bedrock with low permeability. Time cell models were first elaborated separately for individual hydrogeological units. These were the result of numerical hydrological modelling (intergranular aquifer and surface flow) or complex GIS analysis taking into account the vulnerability map and tracer tests results (karst aquifer). The obtained cellular models present the basis of a contamination early-warning system, since it allows an estimation when contaminants can be expected to appear, and in which water sources. The system proves that the contaminants spread rapidly through karst aquifers and via surface flows, and more slowly through intergranular aquifers. For this reason, karst water sources are more at risk from one-off contamination incidents, while water sources in intergranular aquifers are more at risk in cases of long-term contamination. The system that has been developed is the basis for a single system of protection, action and quality monitoring in the areas of complex aquifer systems within or on the borders of

  2. A coupling model for gas diffusion and seepage in SRV section of shale gas reservoirs

    Directory of Open Access Journals (Sweden)

    Shusheng Gao

    2017-03-01

    Full Text Available A prerequisite to effective shale gas development is a complicated fracture network generated by extensive and massive fracturing, which is called SRV (stimulated reservoir volume section. Accurate description of gas flow behaviors in such section is fundamental for productivity evaluation and production performance prediction of shale gas wells. The SRV section is composed of bedrocks with varying sizes and fracture networks, which exhibit different flow behaviors – gas diffusion in bedrocks and gas seepage in fractures. According to the porosity and permeability and the adsorption, diffusion and seepage features of bedrocks and fractures in a shale gas reservoir, the material balance equations were built for bedrocks and fractures respectively and the continuity equations of gas diffusion and seepage in the SRV section were derived. For easy calculation, the post-frac bedrock cube was simplified to be a sphere in line with the principle of volume consistency. Under the assumption of quasi-steady flow behavior at the cross section of the sphere, the gas channeling equation was derived based on the Fick's laws of diffusion and the density function of gas in bedrocks and fractures. The continuity equation was coupled with the channeling equation to effectively characterize the complicated gas flow behavior in the SRV section. The study results show that the gas diffusivity in bedrocks and the volume of bedrocks formed by volume fracturing (or the scale of fracturing jointly determines the productivity and stable production period of a shale gas well. As per the actual calculation for the well field A in the Changning–Weiyuan Block in the Sichuan Basin, the matrix has low gas diffusivity – about 10−5 cm2/s and a large volume with an equivalent sphere radius of 6.2 m, hindering the gas channeling from bedrocks to fractures and thereby reducing the productivity of the shale gas well. It is concluded that larger scale of volume fracturing

  3. Depth to Bedrock: Isopach of Unconsolidated Materials

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — This vector dataset gives the approximate depth to bedrock (in feet) from Iowa's current land surface. This 50 foot isopach data was derived from the Digital...

  4. [Effect of irregular bedrock topography on the soil profile pattern of water content in a Karst hillslope.

    Science.gov (United States)

    Jia, Jin Tian; Fu, Zhi Yong; Chen, Hong Song; Wang, Ke Lin; Zhou, Wei Jun

    2016-06-01

    Based on three manually excavated trenches (projection length of 21 m, width of 1 m) along a typical Karst hillslope, the changing trends for soil-bedrock structure, average water content of soil profile and soil-bedrock interface water content along each individual trench were studied. The effect of irregular bedrock topography on soil moisture distribution was discussed. The results showed that the surface topography was inconsistent with the bedrock topography in the Karst hill-slopes. The bedrock topography was highly irregular with a maximum variation coefficient of 82%. The distribution pattern of soil profile of moisture was significantly affected by the underlying undulant bedrock. The soil water content was related to slope position when the fluctuation was gentle, and displayed a linear increase from upslope to downslope. When the bedrock fluctuation increased, the downslope linear increasing trend for soil water content became unapparent, and the spatial continuity of soil moisture was weakened. The soil moisture was converged in rock dents and cracks. The average water content of soil profile was significantly positively correlated with the soil-bedrock interface water content, while the latter responded more sensitively to the bedrock fluctuation.

  5. Bedrock erosion by sliding wear in channelized granular flow

    Science.gov (United States)

    Hung, C. Y.; Stark, C. P.; Capart, H.; Smith, B.; Maia, H. T.; Li, L.; Reitz, M. D.

    2014-12-01

    Boundary forces generated by debris flows can be powerful enough to erode bedrock and cause considerable damage to infrastructure during runout. Bedrock wear can be separated into impact and sliding wear processes. Here we focus on sliding wear. We have conducted experiments with a 40-cm-diameter grainflow-generating rotating drum designed to simulate dry channelized debris flows. To generate sliding erosion, we placed a 20-cm-diameter bedrock plate axially on the back wall of the drum. The rotating drum was half filled with 2.3-mm-diameter grains, which formed a thin grain-avalanching layer with peak flow speed and depth close to the drum axis. The whole experimental apparatus was placed on a 100g-ton geotechnical centrifuge and, in order to scale up the stress level, spun to a range of effective gravity levels. Rates and patterns of erosion of the bedrock plate were mapped after each experiment using 3d micro-photogrammetry. High-speed video and particle tracking were employed to measure granular flow dynamics. The resulting data for granular velocities and flow geometry were used to estimate impulse exchanges and forces on the bedrock plate. To address some of the complexities of granular flow under variable gravity levels, we developed a continuum model framed around a GDR MiDi rheology. This model allowed us to scale up boundary forcing while maintaining the same granular flow regime, and helped us to understand important aspects of the flow dynamics including e.g. fluxes of momentum and kinetic energy. In order to understand the detailed processes of boundary forcing, we performed numerical simulations with a new contact dynamics model. This model confirmed key aspects of our continuum model and provided information on second-order behavior such as fluctuations in the forces acting on the wall. By combining these measurements and theoretical analyses, we have developed and calibrated a constitutive model for sliding wear that is a threshold function of

  6. Bedrock Geologic Map of Charlotte,�Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG09-5 Gale, M., Kim, J., Earle, H., Clark, A., Smith, T., and Petersen, K., 2009, Bedrock Geologic Map of Charlotte, Vermont: VGS Open-File Report...

  7. Conceptual model of fractured aquifer of Uranium Deposit in Caetité, Bahia: implications for groundwater flow; Modelo conceitual do aquífero fraturado da área da jazida de urânio de Caetité, Bahia: implicações para o fluxo subterrâneo

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Liliane Ferreira da

    2015-07-01

    The studied area is represented by the uraniferous district of Lagoa Real, located in the center-south of Bahia State, Brazil. The region is set in a semiarid climate context, with hot and dry weather parameters, with hydric deficit along all months of the year and high aridity index. Rural population is affected on drought periods since small agriculture and animal rearing are the main economic activities which are vulnerable in dry seasons. Groundwater represents the main supply source considering that most surface water sources are temporary and only exhibit flow in rainy periods. The main aquifer system present on the region is fractured, and the presence of groundwater flow occurs through the discontinuities of the rock considering that the rock mass corresponds to the set formed by the rock matrix and all its discontinuities (fractures, foliations, discordance, etc). In this sense, the main purpose of this Master Dissertation was to develop a conceptual model for the aquifer system, through the geotechnical characterization of discontinuities, once these structures allow the secondary porosity of the medium. Hydrochemical data hand out as complement for physical characterization for the behavioral interpretation of the aquifer. The aquifer system is unconfined, however, presents points of stagnation of flow forming compartments without communication with the surrounding areas. According to the International Society of Rock Mechanics ISRM method, which consist on qualitative and quantitative characterization of discontinuities of rock mass scanlines were constructed, systematically, describing, the following structure parameters: attitude, spacing, persistence, openness, infilling and roughness. From the results analysis it could be concluded that the aquifer system is composed of three discontinuities sets: one set which dips to NE, second set dipping to SW-W-NW and the last set sub-horizontal. The first and second sets are responsible for the aquifer

  8. Compilation of geologic, hydrologic, and ground-water flow modeling information for the Spokane Valley-Rathdrum Prairie aquifer, Spokane County, Washington, and Bonner and Kootenai Counties, Idaho

    Science.gov (United States)

    Kahle, Sue C.; Caldwell, Rodney R.; Bartolino, James R.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the Idaho Department of Water Resources and Washington Department of Ecology compiled and described geologic, hydrologic, and ground-water flow modeling information about the Spokane Valley-Rathdrum Prairie (SVRP) aquifer in northern Idaho and northeastern Washington. Descriptions of the hydrogeologic framework, water-budget components, ground- and surface-water interactions, computer flow models, and further data needs are provided. The SVRP aquifer, which covers about 370 square miles including the Rathdrum Prairie, Idaho and the Spokane valley and Hillyard Trough, Washington, was designated a Sole Source Aquifer by the U.S. Environmental Protection Agency in 1978. Continued growth, water management issues, and potential effects on water availability and water quality in the aquifer and in the Spokane and Little Spokane Rivers have illustrated the need to better understand and manage the region's water resources. The SVRP aquifer is composed of sand, gravel, cobbles, and boulders primarily deposited by a series of catastrophic glacial outburst floods from ancient Glacial Lake Missoula. The material deposited in this high-energy environment is coarser-grained than is typical for most basin-fill deposits, resulting in an unusually productive aquifer with well yields as high as 40,000 gallons per minute. In most places, the aquifer is bounded laterally by bedrock composed of granite, metasedimentary rocks, or basalt. The lower boundary of the aquifer is largely unknown except along the margins or in shallower parts of the aquifer where wells have penetrated its entire thickness and reached bedrock or silt and clay deposits. Based on surface geophysics, the thickness of the aquifer is about 500 ft near the Washington-Idaho state line, but more than 600 feet within the Rathdrum Prairie and more than 700 feet in the Hillyard trough based on drilling records. Depth to water in the aquifer is greatest in the northern

  9. Characterising aquifer treatment for pathogens in managed aquifer recharge.

    Science.gov (United States)

    Page, D; Dillon, P; Toze, S; Sidhu, J P S

    2010-01-01

    In this study the value of subsurface treatment of urban stormwater during Aquifer Storage Transfer Recovery (ASTR) is characterised using quantitative microbial risk assessment (QMRA) methodology. The ASTR project utilizes a multi-barrier treatment train to treat urban stormwater but to date the role of the aquifer has not been quantified. In this study it was estimated that the aquifer barrier provided 1.4, 2.6, >6.0 log(10) removals for rotavirus, Cryptosporidium and Campylobacter respectively based on pathogen diffusion chamber results. The aquifer treatment barrier was found to vary in importance vis-à-vis the pre-treatment via a constructed wetland and potential post-treatment options of UV-disinfection and chlorination for the reference pathogens. The risk assessment demonstrated that the human health risk associated with potable reuse of stormwater can be mitigated (disability adjusted life years, DALYs aquifer is integrated with suitable post treatment options into a treatment train to attenuate pathogens and protect human health.

  10. Designing a large scale combined pumping and tracer test in a fracture zone at Palmottu, Finland

    International Nuclear Information System (INIS)

    Gustafsson, E.; Nordqvist, R.; Korkealaakso, J.; Galarza, G.

    1997-01-01

    The Palmottu Natural Analogue Project in Finland continued as an EC-supported international analogue project in 1996, in order to study radionuclide migration in a natural uranium-rich environment. The site is located in an area of crystalline bedrock, characterized by granites and metamorphic rocks. The uranium deposit extends from the surface to a depth of more than 300 m, and have a thickness of up to 15 m. An overall aim of the project is to increase knowledge of factors affecting mobilization and retardation of uranium in crystalline bedrock. One of the important tasks within the project is to characterize the major flow paths for the groundwater, i.e. important hydraulic features, around the orebody. A planned experiment in one such feature, a sub-horizontal fracture zone which cross-cuts the uranium mineralization. The objectives of the planned combined pumping and tracer test is to verify and further up-date the present hydro-structural model around the central part of the mineralization, increase the current understanding about the hydraulic and solute transport properties of the sub-horizontal fracture zone, as well as to verify and further characterize its hydraulic boundaries. (author)

  11. Developing and exploring a theory for the lateral erosion of bedrock channels for use in landscape evolution models

    Directory of Open Access Journals (Sweden)

    A. L. Langston

    2018-01-01

    Full Text Available Understanding how a bedrock river erodes its banks laterally is a frontier in geomorphology. Theories for the vertical incision of bedrock channels are widely implemented in the current generation of landscape evolution models. However, in general existing models do not seek to implement the lateral migration of bedrock channel walls. This is problematic, as modeling geomorphic processes such as terrace formation and hillslope–channel coupling depends on the accurate simulation of valley widening. We have developed and implemented a theory for the lateral migration of bedrock channel walls in a catchment-scale landscape evolution model. Two model formulations are presented, one representing the slow process of widening a bedrock canyon and the other representing undercutting, slumping, and rapid downstream sediment transport that occurs in softer bedrock. Model experiments were run with a range of values for bedrock erodibility and tendency towards transport- or detachment-limited behavior and varying magnitudes of sediment flux and water discharge in order to determine the role that each plays in the development of wide bedrock valleys. The results show that this simple, physics-based theory for the lateral erosion of bedrock channels produces bedrock valleys that are many times wider than the grid discretization scale. This theory for the lateral erosion of bedrock channel walls and the numerical implementation of the theory in a catchment-scale landscape evolution model is a significant first step towards understanding the factors that control the rates and spatial extent of wide bedrock valleys.

  12. Developing and exploring a theory for the lateral erosion of bedrock channels for use in landscape evolution models

    Science.gov (United States)

    Langston, Abigail L.; Tucker, Gregory E.

    2018-01-01

    Understanding how a bedrock river erodes its banks laterally is a frontier in geomorphology. Theories for the vertical incision of bedrock channels are widely implemented in the current generation of landscape evolution models. However, in general existing models do not seek to implement the lateral migration of bedrock channel walls. This is problematic, as modeling geomorphic processes such as terrace formation and hillslope-channel coupling depends on the accurate simulation of valley widening. We have developed and implemented a theory for the lateral migration of bedrock channel walls in a catchment-scale landscape evolution model. Two model formulations are presented, one representing the slow process of widening a bedrock canyon and the other representing undercutting, slumping, and rapid downstream sediment transport that occurs in softer bedrock. Model experiments were run with a range of values for bedrock erodibility and tendency towards transport- or detachment-limited behavior and varying magnitudes of sediment flux and water discharge in order to determine the role that each plays in the development of wide bedrock valleys. The results show that this simple, physics-based theory for the lateral erosion of bedrock channels produces bedrock valleys that are many times wider than the grid discretization scale. This theory for the lateral erosion of bedrock channel walls and the numerical implementation of the theory in a catchment-scale landscape evolution model is a significant first step towards understanding the factors that control the rates and spatial extent of wide bedrock valleys.

  13. Estimation of intrinsic aquifer vulnerability with index-overlay and statistical methods: the case of eastern Kopaida, central Greece

    KAUST Repository

    Tziritis, E.

    2016-03-01

    The intrinsic vulnerability of a karstic aquifer system in central Greece was jointly assessed with the use of a statistical approach and PI method, as a function of topography, protective cover effectiveness and the degree to which this cover is bypassed due to flow conditions. The input data for the index-overlay PI method were derived from field works and 71 boreholes of the area; the information was obtained, subsequently its critical factors were compiled which included lithology, fissuring and karstification of bedrock, soil characteristics, hydrology, hydrogeology, topography and vegetation. The aforementioned parameters were processed jointly with the aid of a GIS and yielded the final estimation of intrinsic aquifer vulnerability to contamination. Results were compared with an equivalent spatially distributed probability map obtained through a stochastic approach. The calibration and test phase of the latter relied on morphometric conditions derived by terrain analyses of a digital elevation model as well as on geology and land use from thematic maps. This procedure allowed taking into account the topographic influences with respect to a deep system such as the local karstic aquifer of eastern Kopaida basin. Finally, results were validated with ground truth nitrate values obtained from 41 groundwater samples, highlighted the spatial delineation of susceptible areas to contamination in both cases and provided a robust tool for regional planning actions and water resources management schemes.

  14. Alluvial Aquifer

    Data.gov (United States)

    Kansas Data Access and Support Center — This coverage shows the extents of the alluvial aquifers in Kansas. The alluvial aquifers consist of unconsolidated Quaternary alluvium and contiguous terrace...

  15. The origin and significance of sinuosity along incising bedrock rivers

    Science.gov (United States)

    Barbour, Jonathan Ross

    Landscapes evolve through processes acting at the earth's surface in response to tectonics and climate. Rivers that cut into bedrock are particularly important since they set the local baselevel and communicate changes in boundary conditions across the landscape through erosion and deposition; the pace of topographic evolution depends on both the rate of change of the boundary conditions and the speed of the bedrock channel network response. Much of the work so far has considered the effects of tectonically-controlled changes in slope and climatically-controlled changes in discharges to the rate of channel bed erosion while considering bank erosion, if active at all, to be of at best secondary importance to landscape evolution. Sprinkled throughout the literature of the past century are studies that have recognized lateral activity along incising rivers, but conflicting interpretations have left many unanswered questions about how to identify and measure horizontal erosion, what drives it, what effect it has on the landscape, and how it responds to climate and tectonics. In this thesis, I begin to answer some of these questions by focusing on bedrock river sinuosity and its evolution through horizontal erosion of the channel banks. An analysis of synoptic scale topography and climatology of the islands of eastern Asia reveals a quantitative signature of storm frequency in a regional measure of mountain river sinuosity. This is partly explained through a study of the hydro- and morphodynamics of a rapidly evolving bedrock river in Taiwan which shows how the erosive forces vary along a river to influence the spatiotemporal distribution of downcutting, sidecutting, and sediment transport. Through these analyses, I also present evidence that suggests that the relative frequency of erosive events is far more important than the absolute magnitude of extreme events in setting the erosion rate, and I show that the horizontal erosion of bedrock rivers is an important

  16. Laboratory Experiments to Evaluate Matrix Diffusion of Dissolved Organic Carbon Carbon-14 in Southern Nevada Fractured-rock Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Hershey, Ronald L. [Nevada University, Reno, NV (United States). Desert Research Institute; Fereday, Wyatt [Nevada University, Reno, NV (United States). Desert Research Institute

    2016-05-01

    Dissolved inorganic carbon (DIC) carbon-14 (14C) is used to estimate groundwater ages by comparing the DIC 14C content in groundwater in the recharge area to the DIC 14C content in the downgradient sampling point. However, because of chemical reactions and physical processes between groundwater and aquifer rocks, the amount of DIC 14C in groundwater can change and result in 14C loss that is not because of radioactive decay. This loss of DIC 14C results in groundwater ages that are older than the actual groundwater ages. Alternatively, dissolved organic carbon (DOC) 14C in groundwater does not react chemically with aquifer rocks, so DOC 14C ages are generally younger than DIC 14C ages. In addition to chemical reactions, 14C ages may also be altered by the physical process of matrix diffusion. The net effect of a continuous loss of 14C to the aquifer matrix by matrix diffusion and then radioactive decay is that groundwater appears to be older than it actually is. Laboratory experiments were conducted to measure matrix diffusion coefficients for DOC 14C in volcanic and carbonate aquifer rocks from southern Nevada. Experiments were conducted using bromide (Br-) as a conservative tracer and 14C-labeled trimesic acid (TMA) as a surrogate for groundwater DOC. Outcrop samples from six volcanic aquifers and five carbonate aquifers in southern Nevada were used. The average DOC 14C matrix diffusion coefficient for volcanic rocks was 2.9 x 10-7 cm2/s, whereas the average for carbonate rocks was approximately the same at 1.7 x 10-7 cm2/s. The average Br- matrix diffusion coefficient for volcanic rocks was 10.4 x 10-7 cm2/s, whereas the average for carbonate rocks was less at 6.5 x 10-7 cm2/s. Carbonate rocks exhibited greater variability in

  17. Integrating petrography, mineralogy and hydrochemistry to constrain the influence and distribution of groundwater contributions to baseflow in poorly productive aquifers: insights from Gortinlieve catchment, Co. Donegal, NW Ireland.

    Science.gov (United States)

    Caulfield, John; Chelliah, Merlyn; Comte, Jean-Christophe; Cassidy, Rachel; Flynn, Raymond

    2014-12-01

    Identifying groundwater contributions to baseflow forms an essential part of surface water body characterisation. The Gortinlieve catchment (5 km(2)) comprises a headwater stream network of the Carrigans River, itself a tributary of the River Foyle, NW Ireland. The bedrock comprises poorly productive metasediments that are characterised by fracture porosity. We present the findings of a multi-disciplinary study that integrates new hydrochemical and mineralogical investigations with existing hydraulic, geophysical and structural data to identify the scales of groundwater flow and the nature of groundwater/bedrock interaction (chemical denudation). At the catchment scale, the development of deep weathering profiles is controlled by NE-SW regional scale fracture zones associated with mountain building during the Grampian orogeny. In-situ chemical denudation of mineral phases is controlled by micro- to meso-scale fractures related to Alpine compression during Palaeocene to Oligocene times. The alteration of primary muscovite, chlorite (clinochlore) and albite along the surfaces of these small-scale fractures has resulted in the precipitation of illite, montmorillonite and illite-montmorillonite clay admixtures. The interconnected but discontinuous nature of these small-scale structures highlights the role of larger scale faults and fissures in the supply and transportation of weathering solutions to/from the sites of mineral weathering. The dissolution of primarily mineral phases releases the major ions Mg, Ca and HCO3 that are shown to subsequently form the chemical makeup of groundwaters. Borehole groundwater and stream baseflow hydrochemical data are used to constrain the depths of groundwater flow pathways influencing the chemistry of surface waters throughout the stream profile. The results show that it is predominantly the lower part of the catchment, which receives inputs from catchment/regional scale groundwater flow, that is found to contribute to the

  18. Searching for an Acidic Aquifer in the Rio Tinto Basin: First Geobiology Results of MARTE Project

    Science.gov (United States)

    Fernandez-Remolar, D. C.; Prieto-Ballesteros, O.; Stoker, C.

    2004-01-01

    Among the conceivable modern habitats to be explored for searching life on Mars are those potentially developed underground. Subsurface habitats are currently environments that, under certain physicochemical circumstances, have high thermal and hydrochemical stability [1, 2]. In planets like Mars lacking an atmospheric shield, such systems are obviously protected against radiation, which strongly alters the structure of biological macromolecules. Low porosity but fractured aquifers currently emplaced inside ancient volcano/sedimentary and hydrothermal systems act as excellent habitats [3] due to its thermal and geochemical properties. In these aquifers the temperature is controlled by a thermal balance between conduction and advection processes, which are driven by the rock composition, geological structure, water turnover of aquifers and heat generation from geothermal processes or chemical reactions [4]. Moreover, microbial communities based on chemolithotrophy can obtain energy by the oxidation of metallic ores that are currently associated to these environments. Such a community core may sustain a trophic web composed of non-autotrophic forms like heterotrophic bacteria, fungi and protozoa.

  19. Environmental effects of aquifer overexploitation: a case study in the highlands of Mexico.

    Science.gov (United States)

    Esteller, Maria Vicenta; Diaz-Delgado, Carlos

    2002-02-01

    There are several environmental processes occurring under aquifer overexploitation conditions. These processes include groundwater table decline, subsidence, attenuation and drying of springs, decrease of river flow, and increased pollution vulnerability, among others processes. Some of these effects have been observed on the Upper Basin of the Lerma River. The Lerma River begins in the SE of the Valley of Toluca at 2,600 m asl, in the wetland known as Lagoons of Almoloya del Río. This wetland is made up of a group of lagoons, which are an important aquatic system from an environmental point of view. The water inflow of this wetland is a discharge of springs, which occur between the fractured volcanic material of the mountain range and granular volcanic-continental deposits of the Valley of Toluca aquifer. The intensive exploitation of the Valley of Toluca aquifer to supply urban and industrial water to Mexico City and Toluca began in 1950 and is responsible for a steady decline of piezometric levels of 1-3.5 m/yr. Other effects of this exploitation--the drying of the wetland, the decrease of river flow and the land subsidence--caused serious ecological and social impacts. The authorities declared this aquifer as overexploited in order to reduce the exploitation and preserve the availability of water resources in this important region.

  20. Recharge quantification with radiocarbon: Independent corroboration in three Karoo aquifer studies in Botswana

    International Nuclear Information System (INIS)

    Verhagen, B.Th.; Bredenkamp, D.B.; Janse van Rensburg, H.; Farr, J.L.

    1999-01-01

    Environmental isotope data from a 'snapshot' sampling hold out the promise of producing acceptable estimates of ground water recharge for resource management purposes. In three major ground water developments in Botswana, estimates of recharge to the Karoo aquifers in the Kalahari, were based on residence times derived from radiocarbon data. In the assessment, three factors needed to be considered: 1) the model leading to acceptable values of residence times 2) the initial, or recharge, radiocarbon value and 3) appropriate values of aquifer porosity. In the three studies, porosity had been measured on numerous drill cores obtained from the principal fractured sandstone aquifers. The resulting isotope-based recharge values correspond reasonably with independent recharge assessments using the equal volume method to analyse long-term rest level observations in two cases; in the third, recharge was independently assessed on the basis of chloride balance in both unsaturated and saturated zones. It is concluded that a) the isotope snapshot approach can give acceptable values for recharge in the development of ground water resources, providing rational management information early in the life of a ground water supply scheme; b) the exponential model and an initial radiocarbon values of 85% atmospheric are realistic in this environment and c) the total porosity appears to be the appropriate parameter in the calculation of recharge. This also provides an insight into the behaviour of the aquifers. (author)

  1. Characterization of a fluvial aquifer at a range of depths and scales: the Triassic St Bees Sandstone Formation, Cumbria, UK

    Science.gov (United States)

    Medici, Giacomo; West, L. J.; Mountney, N. P.

    2018-03-01

    Fluvial sedimentary successions represent porous media that host groundwater and geothermal resources. Additionally, they overlie crystalline rocks hosting nuclear waste repositories in rift settings. The permeability characteristics of an arenaceous fluvial succession, the Triassic St Bees Sandstone Formation in England (UK), are described, from core-plug to well-test scale up to 1 km depth. Within such lithified successions, dissolution associated with the circulation of meteoric water results in increased permeability ( K 10-1-100 m/day) to depths of at least 150 m below ground level (BGL) in aquifer systems that are subject to rapid groundwater circulation. Thus, contaminant transport is likely to occur at relatively high rates. In a deeper investigation (> 150 m depth), where the aquifer has not been subjected to rapid groundwater circulation, well-test-scale hydraulic conductivity is lower, decreasing from K 10-2 m/day at 150-400 m BGL to 10-3 m/day down-dip at 1 km BGL, where the pore fluid is hypersaline. Here, pore-scale permeability becomes progressively dominant with increasing lithostatic load. Notably, this work investigates a sandstone aquifer of fluvial origin at investigation depths consistent with highly enthalpy geothermal reservoirs ( 0.7-1.1 km). At such depths, intergranular flow dominates in unfaulted areas with only minor contribution by bedding plane fractures. However, extensional faults represent preferential flow pathways, due to presence of high connective open fractures. Therefore, such faults may (1) drive nuclear waste contaminants towards the highly permeable shallow (< 150 m BGL) zone of the aquifer, and (2) influence fluid recovery in geothermal fields.

  2. Scale dependency of fractional flow dimension in a fractured formation

    Directory of Open Access Journals (Sweden)

    Y.-C. Chang

    2011-07-01

    Full Text Available The flow dimensions of fractured media were usually predefined before the determination of the hydraulic parameters from the analysis of field data in the past. However, it would be improper to make assumption about the flow geometry of fractured media before site characterization because the hydraulic structures and flow paths are complex in the fractured media. An appropriate way to investigate the hydrodynamic behavior of a fracture system is to determine the flow dimension and aquifer parameters simultaneously. The objective of this study is to analyze a set of field data obtained from four observation wells during an 11-day hydraulic test at Chingshui geothermal field (CGF in Taiwan in determining the hydrogeologic properties of the fractured formation. Based on the generalized radial flow (GRF model and the optimization scheme, simulated annealing, an approach is therefore developed for the data analyses. The GRF model allows the flow dimension to be integer or fractional. We found that the fractional flow dimension of CGF increases near linearly with the distance between the pumping well and observation well, i.e. the flow dimension of CGF exhibits scale-dependent phenomenon. This study provides insights into interpretation of fracture flow at CGF and gives a reference for characterizing the hydrogeologic properties of fractured media.

  3. Focused modelling. Fracture identification in Olkiluoto borehole OL-KR04

    International Nuclear Information System (INIS)

    Jokinen, J.; Jakobsson, K.

    2004-10-01

    An extensive set of measured borehole data has been obtained from geological repository investigations in the bedrock of Olkiluoto. Our hypothesis is that geophysical data may be used more efficiently to identify and classify fracture zones. It is known that several geophysical logging methods yield useful information outside the borehole walls that cannot be reached otherwise. At present, this data is used for additional fracture characterization but not for identification purposes. The study focuses on the application of 14 different geophysical data measured in the borehole OL-KR04. The whole data set is divided into main groups using the Principal Component Analysis (PCA). Each group is composed mainly of sensitive methods detecting specific physical characteristics. The main groups from the geophysical point of view are open fractures, reduced density, increased electrical conductivity, and increased natural radiation. The Varimax optimization method is used to maximize the importance of supporting data as well as to emphasize differences between the discovered principal components. In fracture zone analysis, drilling core samples and the hydrological measurement results form an indispensable data set. For practical reasons, and in order to fulfill the requirements of the PCA analysis, S-wave velocity and electrical resistivity measurements are also performed. A combination of these methods, simultaneously applied using suitable 'trigger limits', identifies penetrated extensive fracture sections in a borehole cost-effectively and unambiguously. (orig.)

  4. Numerical modeling of groundwater flow in the coastal aquifer system of Taranto (southern Italy)

    Science.gov (United States)

    De Filippis, Giovanna; Giudici, Mauro; Negri, Sergio; Margiotta, Stefano; Cattaneo, Laura; Vassena, Chiara

    2014-05-01

    -shore sea; c. the modeling of seawater intrusion in the coastal aquifer system. The first objective is achieved through the analysis of hydrostratigraphic reconstructions obtained from different data sets: well logs, published geological field maps, studies for the characterization of contaminated sites. The hydrostratigraphic setup is merged with maps of land use, hydraulic head maps, data on water extraction and source discharge, in order to identify the conceptual model. For the numerical simulations, the computer code YAGMod, which was originally developed to perform 3D groundwater flow simulation with a simplified treatment of unsaturated/saturated conditions and the effects of strong aquifer exploitation (i.e., high well pumping rates), is extended to the case of a variable density flow. The results will be compared with those obtained with other modeling software (e.g., Tough2). [1] Giudici M., Margiotta S., Mazzone F., Negri S., Vassena C., 2012. Modelling Hydrostratigraphy and groundwater flow of a fractured and karst aquifer in a Mediterranean basin (Salento peninsula, southeastern Italy), Environmental Earth Sciences. doi: 10.1007/s12665-012-1631-1 [2] De Filippis G., Giudici M., Margiotta S., Mazzone F., Negri S., Vassena C., 2013. Numerical modeling of the groundwater flow in the fractured and karst aquifer of the Salento peninsula (Southern Italy), Acque Sotterranee, 2:17-28. doi: 10.7343/AS-016-013-0040

  5. Geological and geophysical evaluation of the Ajana area’s groundwater potential, southwestern Nigeria

    Directory of Open Access Journals (Sweden)

    O.M Ajibade

    2011-06-01

    Full Text Available Acombined geological and geophysical evaluation was madeof the groundwater potential of the Ajana, RemoNorth area in south-western Nigeria; the geology and other structural features of the rocks there strongly influenced and correlated the aquifers' storability and transmissivity. Geological mapping revealed that the area was made up of granite, quartzite and varieties of gneiss, some of which have good secondary porosity and permeability. Ten vertical electric soundings (VES stations were established using a Schlumberger electrode array. Five geoelectric layers consisting of topsoil, sand,
    clayey-sandy, fractured / weathered basement and fresh bedrock were delineated. The aquifer layers were the 38.3m thick 283 ?m resistivity sand/sandy clay and 55 - 518 ?m resistivity fractured/weathered basement. Other geoelectric parameters used in evaluating the area's hydrogeological potential included curve type, anisotropy coefficient and reflection coefficient - The QH curve type was predominant in the area. The anisotropy Coefficients suggested VES stations having high groundwater potential ranging from 1.4 - 1.56; while the reflection coefficients for the area ranged from 0.21 - 0.99. The overall results showed that VES stations 8, 9 and 10 could be possible groundwater sources having high expected yield.

  6. Bioremediation in fractured rock: 1. Modeling to inform design, monitoring, and expectations

    Science.gov (United States)

    Tiedeman, Claire; Shapiro, Allen M.; Hsieh, Paul A.; Imbrigiotta, Thomas; Goode, Daniel J.; Lacombe, Pierre; DeFlaun, Mary F.; Drew, Scott R.; Johnson, Carole D.; Williams, John H.; Curtis, Gary P.

    2018-01-01

    Field characterization of a trichloroethene (TCE) source area in fractured mudstones produced a detailed understanding of the geology, contaminant distribution in fractures and the rock matrix, and hydraulic and transport properties. Groundwater flow and chemical transport modeling that synthesized the field characterization information proved critical for designing bioremediation of the source area. The planned bioremediation involved injecting emulsified vegetable oil and bacteria to enhance the naturally occurring biodegradation of TCE. The flow and transport modeling showed that injection will spread amendments widely over a zone of lower‐permeability fractures, with long residence times expected because of small velocities after injection and sorption of emulsified vegetable oil onto solids. Amendments transported out of this zone will be diluted by groundwater flux from other areas, limiting bioremediation effectiveness downgradient. At nearby pumping wells, further dilution is expected to make bioremediation effects undetectable in the pumped water. The results emphasize that in fracture‐dominated flow regimes, the extent of injected amendments cannot be conceptualized using simple homogeneous models of groundwater flow commonly adopted to design injections in unconsolidated porous media (e.g., radial diverging or dipole flow regimes). Instead, it is important to synthesize site characterization information using a groundwater flow model that includes discrete features representing high‐ and low‐permeability fractures. This type of model accounts for the highly heterogeneous hydraulic conductivity and groundwater fluxes in fractured‐rock aquifers, and facilitates designing injection strategies that target specific volumes of the aquifer and maximize the distribution of amendments over these volumes.

  7. A field experiment on the controls of sediment transport on bedrock erosion

    Science.gov (United States)

    Beer, A. R.; Turowski, J. M.; Fritschi, B.; Rieke-Zapp, D.; Campana, L.; Lavé, J.

    2012-12-01

    The earth`s surface is naturally shaped by interactions of physical and chemical processes. In mountainous regions with steep topography river incision fundamentally controls the geomorphic evolution of the whole landscape. There, erosion of exposed bedrock sections by fluvial sediment transport is an important mechanism forming mountain river channels. The links between bedload transport and bedrock erosion has been firmly established using laboratory experiments. However, there are only few field datasets linking discharge, sediment transport, impact energy and erosion that can be used for process understanding and model evaluation. To fill this gap, a new measuring setup has been commissioned to raise an appropriate simultaneous dataset of hydraulics, sediment transport and bedrock erosion at high temporal and spatial resolution. Two natural stone slabs were installed flush with the streambed of the Erlenbach, a gauged stream in the Swiss Pre-Alps. They are mounted upon force sensors recording vertical pressure und downstream shear caused by passing sediment particles. The sediment transport rates can be assessed using geophone plates and an automated moving basket system taking short-term sediment samples. These devices are located directly downstream of the stone slabs. Bedrock erosion rates are measured continuously with erosion sensors at sub-millimeter accuracy at three points on each slab. In addition, the whole slab topography is surveyed with photogrammetry and a structured-light 3D scanner after individual flood events. Since the installation in 2011, slab bedrock erosion has been observed during several transport events. We discuss the relation between hydraulics, bedload transport, resulting pressure forces on the stone slabs and erosion rates. The aim of the study is the derivation of an empirical process law for fluvial bedrock erosion driven by moving sediment particles.

  8. Durable terrestrial bedrock predicts submarine canyon formation

    Science.gov (United States)

    Smith, Elliot; Finnegan, Noah J.; Mueller, Erich R.; Best, Rebecca J.

    2017-01-01

    Though submarine canyons are first-order topographic features of Earth, the processes responsible for their occurrence remain poorly understood. Potentially analogous studies of terrestrial rivers show that the flux and caliber of transported bedload are significant controls on bedrock incision. Here we hypothesize that coarse sediment load could exert a similar role in the formation of submarine canyons. We conducted a comprehensive empirical analysis of canyon occurrence along the West Coast of the contiguous United States which indicates that submarine canyon occurrence is best predicted by the occurrence of durable crystalline bedrock in adjacent terrestrial catchments. Canyon occurrence is also predicted by the flux of bed sediment to shore from terrestrial streams. Surprisingly, no significant correlation was observed between canyon occurrence and the slope or width of the continental shelf. These findings suggest that canyon incision is promoted by greater yields of durable terrestrial clasts to the shore.

  9. Comparison of aquifer characteristics derived from local and regional aquifer tests.

    Science.gov (United States)

    Randolph, R.B.; Krause, R.E.; Maslia, M.L.

    1985-01-01

    A comparison of the aquifer parameter values obtained through the analysis of a local and a regional aquifer test involving the same area in southeast Georgia is made in order to evaluate the validity of extrapolating local aquifer-test results for use in large-scale flow simulations. Time-drawdown and time-recovery data were analyzed by using both graphical and least-squares fitting of the data to the Theis curve. Additionally, directional transmissivity, transmissivity tensor, and angle of anisotropy were computed for both tests. -from Authors Georgia drawdown transmissivity regional aquifer tests

  10. InSAR to support sustainable urbanization over compacting aquifers: The case of Toluca Valley, Mexico

    Science.gov (United States)

    Castellazzi, Pascal; Garfias, Jaime; Martel, Richard; Brouard, Charles; Rivera, Alfonso

    2017-12-01

    This paper illustrates how InSAR alone can be used to delineate potential ground fractures related to aquifer system compaction. An InSAR-derived ground fracturing map of the Toluca Valley, Mexico, is produced and validated through a field campaign. The results are of great interest to support sustainable urbanization and show that InSAR processing of open-access Synthetic Aperture Radar (SAR) data from the Sentinel-1 satellites can lead to reliable and cost-effective products directly usable by cities to help decision-making. The Toluca Valley Aquifer (TVA) sustains the water needs of two million inhabitants living within the valley, a growing industry, an intensively irrigated agricultural area, and 38% of the water needs of the megalopolis of Mexico City, located 40 km east of the valley. Ensuring water sustainability, infrastructure integrity, along with supporting the important economic and demographic growth of the region, is a major challenge for water managers and urban developers. This paper presents a long-term analysis of ground fracturing by interpreting 13 years of InSAR-derived ground displacement measurements. Small Baseline Subset (SBAS) and Persistent Scatterer Interferometry (PSI) techniques are applied over three SAR datasets totalling 93 acquisitions from Envisat, Radarsat-2, and Sentinel-1A satellites and covering the period from 2003 to 2016. From 2003 to 2016, groundwater level declines of up to 1.6 m/yr, land subsidence up to 77 mm/yr, and major infrastructure damages are observed. Groundwater level data show highly variable seasonal responses according to their connectivity to recharge areas. However, the trend of groundwater levels consistently range from -0.5 to -1.5 m/yr regardless of the well location and depth. By analysing the horizontal gradients of vertical land subsidence, we provide a potential ground fracture map to assist in future urban development planning in the Toluca Valley.

  11. Evaluation of bedrock mainly composed of volcanic aggregate rocks at the Higashidori Nuclear Power Station

    International Nuclear Information System (INIS)

    Hashimoto, Shuichi; Miwa, Tadashi; Nishidachi, Masayuki

    2000-01-01

    When carrying out engineering evaluation on foundation bedrock for important constructions such as nuclear power station, dam, and so forth, it is required as a premise on carrying out various surveys, tests, and analyses to select adequate geological elements, to classify them to some groups capable of regarding as a common engineering property, and to rate them. On a hard bedrock, there is a classification method with relatively higher versatility adding condition of crack and weathering to performances at each site as an index, but on a soft one, most of its classification are carried out individually for its site in response to an index caused by the bedrock itself. Here were shown the results carried out some bedrock classifications on a base of grouping for rock sorts and rock phases, according to some concepts on a draft of the standard on the soft bedrock classification due to the nuclear engineering committee of the Japan Society of Civil Engineers, a reference draft on the soft bedrock classification of the 'Technical indications on seismic resistance design of the nuclear power station' of the Japan Electric Association, (JEAG4601-1987), and so forth. As a result applied the reference draft on the soft bedrock, and so forth to the bedrock at the Higashidori Nuclear Power Station composed of volcanic aggregate rocks of the Miocene epoch of the new Tertiary system, an adequate engineering evaluation was made possible by making grouping of rock sorts and rock phases to a foundation. And, on property evaluation of the quality changed vein, as a result of various tests, appropriate properties could be obtained. (G.K.)

  12. Aquifer Storage Recovery (ASR) of chlorinated municipal drinking water in a confined aquifer

    Science.gov (United States)

    Izbicki, John A.; Petersen, Christen E.; Glotzbach, Kenneth J.; Metzger, Loren F.; Christensen, Allen H.; Smith, Gregory A.; O'Leary, David R.; Fram, Miranda S.; Joseph, Trevor; Shannon, Heather

    2010-01-01

    About 1.02 x 106 m3 of chlorinated municipal drinking water was injected into a confined aquifer, 94-137 m below Roseville, California, between December 2005 and April 2006. The water was stored in the aquifer for 438 days, and 2.64 x 106 m3 of water were extracted between July 2007 and February 2008. On the basis of Cl data, 35% of the injected water was recovered and 65% of the injected water and associated disinfection by-products (DBPs) remained in the aquifer at the end of extraction. About 46.3 kg of total trihalomethanes (TTHM) entered the aquifer with the injected water and 37.6 kg of TTHM were extracted. As much as 44 kg of TTHMs remained in the aquifer at the end of extraction because of incomplete recovery of injected water and formation of THMs within the aquifer by reactions with freechlorine in the injected water. Well-bore velocity log data collected from the Aquifer Storage Recovery (ASR) well show as much as 60% of the injected water entered the aquifer through a 9 m thick, high-permeability layer within the confined aquifer near the top of the screened interval. Model simulations of ground-water flow near the ASR well indicate that (1) aquifer heterogeneity allowed injected water to move rapidly through the aquifer to nearby monitoring wells, (2) aquifer heterogeneity caused injected water to move further than expected assuming uniform aquifer properties, and (3) physical clogging of high-permeability layers is the probable cause for the observed change in the distribution of borehole flow. Aquifer heterogeneity also enhanced mixing of native anoxic ground water with oxic injected water, promoting removal of THMs primarily through sorption. A 3 to 4-fold reduction in TTHM concentrations was observed in the furthest monitoring well 427 m downgradient from the ASR well, and similar magnitude reductions were observed in depth-dependent water samples collected from the upper part of the screened interval in the ASR well near the end of the extraction

  13. Root distribution and seasonal water status in weathered granitic bedrock under chaparral

    Science.gov (United States)

    P. D. Sternberg; M. A. Anderson; R. C. Graham; J. L. Beyers; K. R. Tice

    1996-01-01

    Soils in mountainous terrain are often thin and unable to store sufficient water to support existing vegetation through dry seasons. This observation has led to speculation about the role of bedrock in supporting plant growth in natural ecosystems, since weathered bedrocks often have appreciable porosity and, like soil, can store and transmit water. This study, within...

  14. Hydrology of the Claiborne aquifer and interconnection with the Upper Floridan aquifer in southwest Georgia

    Science.gov (United States)

    Gordon, Debbie W.; Gonthier, Gerard

    2017-04-24

    The U.S. Geological Survey conducted a study, in cooperation with the Georgia Environmental Protection Division, to define the hydrologic properties of the Claiborne aquifer and evaluate its connection with the Upper Floridan aquifer in southwest Georgia. The effort involved collecting and compiling hydrologic data from the aquifer in subarea 4 of southwestern Georgia. Data collected for this study include borehole geophysical logs in 7 wells, and two 72-hour aquifer tests to determine aquifer properties.The top of the Claiborne aquifer extends from an altitude of about 200 feet above the North American Vertical Datum of 1988 (NAVD 88) in Terrell County to 402 feet below NAVD 88 in Decatur County, Georgia. The base of the aquifer extends from an altitude of about 60 feet above NAVD 88 in eastern Sumter County to about 750 feet below NAVD 88 in Decatur County. Aquifer thickness ranges from about 70 feet in eastern Early County to 400 feet in Decatur County.The transmissivity of the Claiborne aquifer, determined from two 72-hour aquifer tests, was estimated to be 1,500 and 700 feet squared per day in Mitchell and Early Counties, respectively. The storage coefficient was estimated to be 0.0006 and 0.0004 for the same sites, respectively. Aquifer test data from Mitchell County indicate a small amount of leakage occurred during the test. Groundwater-flow models suggest that the source of the leakage was the underlying Clayton aquifer, which produced about 2.5 feet of drawdown in response to pumping in the Claiborne aquifer. The vertical hydraulic conductivity of the confining unit between the Claiborne and Clayton aquifers was simulated to be about 0.02 foot per day.Results from the 72-hour aquifer tests run for this study indicated no interconnection between the Claiborne and overlying Upper Floridan aquifers at the two test sites. Additional data are needed to monitor the effects that increased withdrawals from the Claiborne aquifer may have on future water resources.

  15. Quality of water from crystalline rock aquifers in New England, New Jersey, and New York, 1995-2007

    Science.gov (United States)

    Flanagan, Sarah M.; Ayotte, Joseph D.; Robinson, Gilpin R.

    2012-06-25

    Crystalline bedrock aquifers in New England and parts of New Jersey and New York (NECR aquifers) are a major source of drinking water. Because the quality of water in these aquifers is highly variable, the U.S. Geological Survey (USGS) statistically analyzed chemical data on samples of untreated groundwater collected from 117 domestic bedrock wells in New England, New York, and New Jersey, and from 4,775 public-supply bedrock wells in New England to characterize the quality of the groundwater. The domestic-well data were from samples collected by the USGS National Water-Quality Assessment (NAWQA) Program from 1995 through 2007. The public-supply-well data were from samples collected for the U.S. Environmental Protection Agency (USEPA) Safe Drinking Water Act (SDWA) Program from 1997 through 2007. Chemical data compiled from the domestic wells include pH, specific conductance, dissolved oxygen, alkalinity, and turbidity; 6 nitrogen and phosphorus compounds, 14 major ions, 23 trace elements, 222radon gas (radon), 48 pesticide compounds, and 82 volatile organic compounds (VOCs). Additional samples were collected from the domestic wells for the analysis of gross alpha- and gross beta-particle radioactivity, radium isotopes, chlorofluorocarbon isotopes, and the dissolved gases methane, carbon dioxide, nitrogen, and argon. Chemical data compiled from the public-supply wells include pH, specific conductance, nitrate, iron, manganese, sodium, chloride, fluoride, arsenic, uranium, radon, combined radium (226radium plus 228radium), gross alpha-particle radioactivity, and methyl tert-butyl ether (MtBE).Patterns in fluoride, arsenic, uranium, and radon distributions were discernable when the data were compared to lithology groupings of the bedrock, indicating that the type of bedrock has an effect on the quality of groundwater from NECR aquifers. Fluoride concentrations were significantly higher in groundwater samples from the alkali granite, peraluminous granite, and

  16. Fracture detection and groundwater flow characterization in poorly exposed ground using helium and radon in soil gases

    International Nuclear Information System (INIS)

    Gascoyne, M.; Wuschke, D.M.

    1991-05-01

    Radon and helium in soil gases have been used to identify locations of groundwater discharge and the presence of fractures outcropping beneath overburden in two areas near the Underground Research Laboratory (URL), Lac du Bonnet, Manitoba, Canada. In particular, groundwater discharge from a known, inclined fracture zone at the URL was clearly identified by a helium excess in overlying soil gases. A model was developed to describe gas phase flow in bedrock and overburden at this location, from gas injection in an adjacent borehole. Predictions were made of gas transport pathway and breakthrough time at the surface, in preparation for a gas injection test

  17. An evaluation of aquifer intercommunication between the unconfined and Rattlesnake Ridge aquifers on the Hanford Site

    International Nuclear Information System (INIS)

    Jensen, E.J.

    1987-10-01

    During 1986, Pacific Northwest Laboratory conducted a study of a portion of the Rattlesnake Ridge aquifer (confined aquifer) that lies beneath the B Pond - Gable Mountain Pond area of the Hanford Site. The purpose was to determine the extent of intercommunication between the unconfined aquifer and the uppermost regionally extensive confined aquifer, referred to as the Rattlesnake Ridge aquifer. Hydraulic head data and chemical data were collected from the ground water in the study area during December 1986. The hydraulic head data were used to determine the effects caused by water discharged to the ground from B Pond on both the water table of the unconfined aquifer and the potentiometric surface of the confined aquifer. The chemical data were collected to determine the extent of chemical constituents migrating from the unconfined aquifer to the confined aquifer. Analysis of chemical constituents in the Rattlesnake Ridge aquifer demonstrated that communication between the unconfined and confined aquifers had occurred. However, the levels of contaminants found in the Rattlesnake Ridge aquifer during this study were below the DOE Derived Concentration Guides

  18. Quantification of the specific yield in a two-layer hard-rock aquifer model

    Science.gov (United States)

    Durand, Véronique; Léonardi, Véronique; de Marsily, Ghislain; Lachassagne, Patrick

    2017-08-01

    Hard rock aquifers (HRA) have long been considered to be two-layer systems, with a mostly capacitive layer just below the surface, the saprolite layer, and a mainly transmissive layer underneath, the fractured layer. Although this hydrogeological conceptual model is widely accepted today within the scientific community, it is difficult to quantify the respective storage properties of each layer with an equivalent porous medium model. Based on an HRA field site, this paper attempts to quantify in a distinct manner the respective values of the specific yield (Sy) in the saprolite and the fractured layer, with the help of a deterministic hydrogeological model. The study site is the Plancoët migmatitic aquifer located in north-western Brittany, France, with piezometric data from 36 observation wells surveyed every two weeks for eight years. Whereas most of the piezometers (26) are located where the water table lies within the saprolite, thus representing the specific yield of the unconfined layer (Sy1), 10 of them are representative of the unconfined fractured layer (Sy2), due to their position where the saprolite is eroded or unsaturated. The two-layer model, based on field observations of the layer geometry, runs with the MODFLOW code. 81 values of the Sy1/Sy2 parameter sets were tested manually, as an inverse calibration was not able to calibrate these parameters. In order to calibrate the storage properties, a new quality-of-fit criterion called ;AdVar; was also developed, equal to the mean squared deviation of the seasonal piezometric amplitude variation. Contrary to the variance, AdVar is able to select the best values for the specific yield in each layer. It is demonstrated that the saprolite layer is about 2.5 times more capacitive than the fractured layer, with Sy1 = 10% (7% < Sy1 < 15%) against Sy2 = 2% (1% < Sy2 < 3%), in this particular example.

  19. Groundwater Contamination by Uranium and Mercury at the Ridaura Aquifer (Girona, NE Spain

    Directory of Open Access Journals (Sweden)

    Andrés Navarro

    2016-08-01

    Full Text Available Elevated concentrations of uranium and mercury have been detected in drinking water from public supply and agricultural wells in alluvial and granitic aquifers of the Ridaura basin located at Catalan Coastal Ranges (CCR. The samples showed high concentrations of U above the U.S. standards and the World Health Organization regulations which set a maximum value of 30 µg/L. Further, high mercury concentrations above the European Drinking Water Standards (1 μg/L were found. Spatial distribution of U in groundwater and geochemical evolution of groundwater suggest that U levels appear to be highest in granitic areas where groundwater has long residence times and a significant salinity. The presence of high U concentrations in alluvial groundwater samples could be associated with hydraulic connection through fractures between the alluvial system and deep granite system. According to this model, oxidizing groundwater moving through fractures in the leucocratic/biotitic granite containing anomalous U contents are the most likely to acquire high levels of U. The distribution of Hg showed concentrations above 1 μg/L in 10 alluvial samples, mainly located near the limit of alluvial aquifer with igneous rocks, which suggests a possible migration of Hg from granitic materials. Also, some samples showed Hg concentrations comprised between 0.9 and 1.5 μg/L, from wells located in agricultural areas.

  20. Feasibility study and technical proposal for the use of microseismic methods in the long-term observation of bedrock stability

    International Nuclear Information System (INIS)

    Saari, J.

    1995-04-01

    Recent geodetic and seismological studies have paid attention to the slow deformation occurring in the Fennoscandian Shield. On the basis of these studies, together with in-situ stress measurements, the idea has been put forth that horizontal movement can be even greater than vertical movement. Local seismotectonics has importance in relation to the predictions of the long-term stability of the bedrock at the final disposal site. Potential direct and - what in Finland is more likely - indirect effects on the vault are due to local earthquakes of creep. The direct effects on the repository include rock vibration and displacement on an increasing fault. The indirect effects are changes in the surrounding structure, in the stress field, in the groundwater table, pressure, flux and chemistry. The block movements are controlled mainly by the network of fracture zones. The report deals with the possibilities to monitor by seismic methods slow movements occurring in the bedrock at the local level. The report includes descriptions of instrumentation for recording microearthquakes, the seismic network and an interpretation of the observations. The potential sites for disposal (Kuhmo, Aeaenekoski, Eurajoki) are compared in relation to seismic monitoring. Also the experiences of other investigations and a proposal for microearthquake investigations as well as of prospective developments within monitoring are presented. (28 refs., 17 figs.)

  1. Hydrogeologic and geochemical characterization of groundwater resources in Deep Creek Valley and adjacent areas, Juab and Tooele Counties, Utah, and Elko and White Pine Counties, Nevada

    Science.gov (United States)

    Gardner, Philip M.; Masbruch, Melissa D.

    2015-09-18

    The water resources of Deep Creek Valley were assessed during 2012–13 with an emphasis on better understanding the groundwater flow system and groundwater budget. Surface-water resources are limited in Deep Creek Valley and are generally used for agriculture. Groundwater is the predominant water source for most other uses and to supplement irrigation. Most groundwater withdrawal in Deep Creek Valley occurs from the unconsolidated basin-fill deposits, in which conditions are generally unconfined near the mountain front and confined in the lower-altitude parts of the valley. Productive aquifers are also present in fractured bedrock that occurs along the valley margins and beneath the basin-fill deposits. The consolidated-rock and basin-fill aquifers are hydraulically connected in many areas with much of the recharge occurring in the consolidated-rock mountain blocks and most of the discharge occurring from the lower-altitude basin-fill deposits.

  2. Diagnosis of the Ghiss Nekor aquifer in order to elaborate the aquifer contract

    Science.gov (United States)

    Baite, Wissal; Boukdir, A.; Zitouni, A.; Dahbi, S. D.; Mesmoudi, H.; Elissami, A.; Sabri, E.; Ikhmerdi, H.

    2018-05-01

    The Ghiss-Nekor aquifer, located in the north-east of the action area of the ABHL, plays a strategic role in the drinkable water supply of the city of Al Hoceima and of the neighboring urban areas. It also participates in the irrigation of PMH. However, this aquifer has problems such as over-exploitation and pollution. In the face of these problems, the only Solution is the establishment of a new mode of governance, which privileges the participation, the involvement and the responsibility of the actors concerned in a negotiated contractual framework, namely the aquifer contract. The purpose of this study is to diagnose the current state of the Ghiss Nekor aquifer, the hydrogeological characterization of the aquifer, the use of the waters of the aquifer, the Problem identification and the introduction of the aquifer contract, which aims at the participatory and sustainable management of underground water resources in the Ghiss- Nekor plain, to ensure sustainable development.

  3. Multiple-scale hydraulic characterization of a surficial clayey aquitard overlying a regional aquifer in Louisiana

    Science.gov (United States)

    Chapman, Steven W.; Cherry, John A.; Parker, Beth L.

    2018-03-01

    The vertical hydraulic conductivity (Kv) of a 30-m thick surficial clayey aquitard overlying a regional aquifer at an industrial site in the Mississippi River Valley in Louisiana was investigated via intensive hydraulic characterization using high resolution vertical hydraulic head profiles with temporal monitoring and laboratory tests. A study area was instrumented with a semi-circular array of piezometers at many depths in the aquitard at equal distance from a large capacity pumping well including replicate piezometers. Profiles showed negligible head differential to 20 m bgs, below which there was an abrupt change in vertical gradients over the lower 8-10 m of the aquitard. Hydraulic characteristics are strongly associated with depositional environment; the upper zone of minimal head differentials with depth and minimal variation over time correlates with Paleo-Mississippi River backswamp deposits, while the lower zone with large head differentials and slow but moderate head changes correlates with lacustrine deposits. The lower zone restricts groundwater flow between the surface and underlying regional aquifer, which is hydraulically connected to the Mississippi River. Lab tests on lacustrine samples show low Kv (8 × 10-11-4 × 10-9 m/s) bracketing field estimates (6 × 10-10 m/s) from 1-D model fits to piezometric data in response to large aquifer head changes. The slow response indicates absence of through-going open fractures in the lacustrine unit, consistent with geotechnical properties (high plasticity, normal consolidation), suggesting high integrity that protects the underlying aquifer from surficial contamination. The lack of vertical gradients in the overlying backswamp unit indicates abundant secondary permeability features (e.g. fractures, rootholes) consistent with depositional and weathering conditions. 2-D stylized transient flow simulations including both units supports this interpretation. Other published reports on surficial aquitards in the

  4. Isotopic and hydrochemical study of aquifers from Rio Claro District (Sao Paulo State, Brazil)

    International Nuclear Information System (INIS)

    Bonotto, D.N.

    1992-01-01

    An isotopic and hydrochemical study was performed in three aquifers in Rio Claro city area, Sao Paulo State, to establish the chemical facies of the groundwaters and to evaluate the mechanisms of dissolution of the unstable isotope 234 U and 238 U. Mapped groundwater facies were: calcium-bicarbonate for Rio Claro Formation, sodium-nitrate-chloride for fractures in database and sodium-bicarbonate for Tubarao Group. The highest dissolved U contents were measured in groundwaters from the fractured diabase, however, the groundwaters from Tubarao Group showed the highest base-exchange index. Most of the results showed enhancement of 234 U in solution and the highest 234 U/ 238 U activity ratios were measured for groundwaters from Tubarao Group. (author). 33 refs., 5 figs., 1 tab

  5. On the Versatility of Rheoreversible, Stimuli-responsive Hydraulic-Fracturing Fluids for Enhanced Geothermal Systems: Effect of Reservoir pH

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Carlos A.; Shao, Hongbo; Bonneville, Alain; Varga, Tamas; Zhong, Lirong

    2016-04-25

    Abstract The primary challenge for the feasibility of enhanced geothermal systems (EGS) is to cost-effectively create high-permeability reservoirs inside deep crystalline bedrock. Although fracturing fluids are commonly used for oil/gas, standard fracturing methods are not developed or proven for EGS temperatures and pressures. Furthermore, the environmental impacts of currently used fracturing methods are only recently being determined. These authors recently reported an environmentally benign, CO2-activated, rheoreversible fracturing fluid that enhances permeability through fracturing due to in situ volume expansion and gel formation. The potential of this novel fracturing fluid is evaluated in this work towards its application at geothermal sites under different pH conditions. Laboratory-scale fracturing experiments using Coso Geothermal rock cores under different pH environments were performed followed by X-ray microtomography characterization. The results demonstrate that CO2-reactive aqueous solutions of environmentally amenable polyallylamine (PAA) consistently and reproducibly creates/propagates fracture networks through highly impermeable crystalline rock from Coso EGS sites at considerably lower effective stress as compared to conventional fracturing fluids. In addition, permeability was significantly enhanced in a wide range of formation-water pH values. This effective, and environmentally-friendly fracturing fluid technology represents a potential alternative to conventional fracturing fluids.

  6. Bedrock Geologic Map of the Underhill quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG03-4B Doolan, B., Cherchetti, L., Holt, J., Ryan, J., Hengstenburg, C., and Rosencrantz, E., 2003,�Bedrock Geologic Map of the Underhill...

  7. Bedrock Geologic Map of the Bristol, VT Quadrangle

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG13-1 Kim, J, Weber, E, and Klepeis, K, 2013, Bedrock Geologic Map of the Bristol, VT Quadrangle: Vermont Geological Survey Open File Report...

  8. Quaternary sediment thickness and bedrock topography of the glaciated United States east of the Rocky Mountains

    Science.gov (United States)

    Soller, David R.; Garrity, Christopher P.

    2018-01-26

    is called the Holocene and, together with the Pleistocene, constitutes the Quaternary Period of geologic time; this publication characterizes the three-dimensional geometry of the Quaternary sediments and the bedrock surface that lies beneath.The pre-glacial landscape was underlain mostly by weathered bedrock generally similar in nature to that found in many areas of the non-glaciated United States. Glacial erosion and redeposition of earth materials produced a young, mineral-rich soil that formed the basis for the highly productive agricultural economy in the U.S. midcontinent. Extensive buried sands and gravels within the glacial deposits also provided a stimulus to other economic sectors by serving as high-quality aquifers supplying groundwater to the region’s industry and cities. An understanding of the three-dimensional distribution of these glacial sediments has direct utility for addressing various societal issues including groundwater quality and supply, and landscape and soil response to earthquake-induced shaking.The Quaternary sediment thickness map and bedrock topographic map shown here provide a regional overview and are intended to supplement the more detailed work on which they are based. Detailed mapping is particularly useful in populated areas for site-specific planning. In contrast, regional maps such as these serve to place local, detailed mapping in context; to permit the extrapolation of data into unmapped areas; and to depict large-scale regional geologic features and patterns that are beyond the scope of local, detailed mapping. They also can enhance the reader’s general understanding of the region’s landscape and geologic history and provide a source of information for regional decision making that could benefit by improved predictability of bedrock depth beneath the unconsolidated Quaternary sediments. To enable these maps to be analyzed in conjunction with other types of information, this publication also includes the map data in GIS

  9. Rural Community Development: Bedrock for National Development ...

    African Journals Online (AJOL)

    This paper advocates that community development is the bedrock for national development. For any meaningful development to take place, whether national or global development must have its building blocks or firm-root in rural development. However, the rural communities are characterized by isolation from ideas and ...

  10. Groundwater Remediation in a Floodplain Aquifer at Shiprock, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Dave [Navarro Research and Engineering; Miller, David [Navarro Research and Engineering; Kautsky, Mark [U. S. Department of Energy, Office of Legacy Management; Dander, David [Navarro Research and Engineering; Nofchissey, Joni [Navajo Nation Division of Natural Resources

    2016-03-06

    A uranium- and vanadium-ore-processing mill operated from 1954 to 1968 within the Navajo Nation near Shiprock, New Mexico. By September 1986, all tailings and structures on the former mill property were encapsulated in a disposal cell built on top of two existing tailings piles on the Shiprock site (the site) [1]. Local groundwater was contaminated by multiple inorganic constituents as a result of the milling operations. The U.S. Department of Energy (DOE) took over management of the site in 1978 as part of the Uranium Mill Tailings Remedial Action (UMTRA) Project. The DOE Office of Legacy Management currently manages ongoing activities at the former mill facility, including groundwater remediation. Remediation activities are designed primarily to reduce the concentrations and total plume mass of the mill-related contaminants sulfate, uranium, and nitrate. In addition to contaminating groundwater in alluvial and bedrock sediments directly below the mill site, ore processing led to contamination of a nearby floodplain bordering the San Juan River. Groundwater in a shallow alluvial aquifer beneath the floodplain is strongly influenced by the morphology of the river channel as well as changing flows in the river, which provides drainage for regional runoff from the San Juan Mountains of Colorado. As part of a recent study of the floodplain hydrology, a revised conceptual model was developed for the alluvial aquifer along with an updated status of contaminant plumes that have been impacted by more than 10 years of groundwater pumping for site remediation purposes. Several findings from the recent study will be discussed here.

  11. The effect of wet-dry weathering on the rate of bedrock river channel erosion by saltating gravel

    Science.gov (United States)

    Inoue, Takuya; Yamaguchi, Satomi; Nelson, Jonathan M.

    2017-01-01

    Previous work has shown that the bedrock erosion rate E because of collisions of saltating bedload can be expressed by E = βqb(1-Pc), where qb is the sediment transport rate, Pc is the extent of alluvial cover, and β is the abrasion coefficient. However, the dependence of the abrasion coefficient on the physical characteristics of the bedrock material is poorly known, and in particular, the effects of wet-dry weathering on the saltation-abrasion bedrock incision has not been specifically characterized. Observation suggests that the typical wet-dry cycling of exposed bedrock in river beds gives rise to cracks and voids that are likely to alter the incision rate of the material when subjected to impacts of moving sediment. In this study, flume experiments are performed to develop an understanding of how wet-dry cycling affects the rock tensile strength and the bedrock erosion rate. To represent the physical effects of weathering, boring cores taken from natural bedrock channel are exposed to artificial wet-dry cycles. The experimental results suggest the following: (1) the abrasion coefficient for fresh bedrock is estimated by β = 1.0 × 10− 4σT− 2(d/ksb)0.5, where σT is the tensile strength, d is the diameter of colliding gravel, and ksb is the hydraulic roughness height of bedrock; (2) the tensile strength of the bedrock decreases exponentially as a result of repeated wet-dry cycles, σT/σT0 = exp (-CTNWa0/σT0), where σT0 is the initial tensile strength, Wa0 is the initial normalized rate of water absorption., N is the number of wet-dry cycles, and CT is a constant; (3) the erosion rate of fresh bedrock depends on the inverse of the square of tensile strength, but the erosion rate of weathered bedrock depends on the − 1.5 power of tensile strength.

  12. Reactive transport modelling of groundwater chemistry in a chalk aquifer at the watershed scale.

    Science.gov (United States)

    Mangeret, A; De Windt, L; Crançon, P

    2012-09-01

    This study investigates thermodynamics and kinetics of water-rock interactions in a carbonate aquifer at the watershed scale. A reactive transport model is applied to the unconfined chalk aquifer of the Champagne Mounts (France), by considering both the chalk matrix and the interconnected fracture network. Major element concentrations and main chemical parameters calculated in groundwater and their evolution along flow lines are in fair agreement with field data. A relative homogeneity of the aquifer baseline chemistry is rapidly reached in terms of pH, alkalinity and Ca concentration since calcite equilibrium is achieved over the first metres of the vadose zone. However, incongruent chalk dissolution slowly releases Ba, Mg and Sr in groundwater. Introducing dilution effect by rainwater infiltration and a local occurrence of dolomite improves the agreement between modelling and field data. The dissolution of illite and opal-CT, controlling K and SiO(2) concentrations in the model, can be approximately tackled by classical kinetic rate laws, but not the incongruent chalk dissolution. An apparent kinetic rate has therefore been fitted on field data by inverse modelling: 1.5×10(-5) mol(chalk)L (-1) water year (-1). Sensitivity analysis indicates that the CO(2) partial pressure of the unsaturated zone is a critical parameter for modelling the baseline chemistry over the whole chalk aquifer. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Characteristics of Southern California coastal aquifer systems

    Science.gov (United States)

    Edwards, B.D.; Hanson, R.T.; Reichard, E.G.; Johnson, T.A.

    2009-01-01

    , litany of names for the various formations, lithofacies, and aquifer systems identified within these basins. Despite these nomenclatural problems, available data show that most basins contain similar sequences of deposits and share similar geologic histories dominated by glacio-eustatic sea-level fluctuations, and overprinted by syndepositional and postdepositional tectonic deformation. Impermeable, indurated mid-Tertiary units typically form the base of each siliciclastic groundwater basin. These units are overlain by stacked sequences of Pliocene to Holocene interbedded marine, paralic, fluvial, and alluvial sediment (weakly indurated, folded, and fractured) that commonly contain the historically named "80-foot sand," "200-foot sand," and "400-foot gravel" in the upper part of the section. An unconformity, cut during the latest Pleistocene lowstand (??18O stage 2; ca. 18 ka), forms a major sequence boundary that separates these units from the overlying Holocene fluvial sands and gravels. Unconfined aquifers occur in amalgamated coarse facies near the bounding mountains (forebay area). These units are inferred to become lithologically more complex toward the center of the basins and coast line, where interbedded permeable and low-permeability alluvial, fluvial, paralic, and marine facies contain confined aquifers (pressure area). Coastal bounding faults limit intrabasin and/or interbasin flow in parts of many basins. ?? 2009 Geological Society of America.

  14. Hydrochemical Regions of the Glacial Aquifer System, Northern United States, and Their Environmental and Water-Quality Characteristics

    Science.gov (United States)

    Arnold, Terri L.; Warner, Kelly L.; Groschen, George E.; Caldwell, James P.; Kalkhoff, Stephen J.

    2008-01-01

    The glacial aquifer system in the United States is a large (953,000 square miles) regional aquifer system of heterogeneous composition. As described in this report, the glacial aquifer system includes all unconsolidated geologic material above bedrock that lies on or north of the line of maximum glacial advance within the United States. Examining ground-water quality on a regional scale indicates that variations in the concentrations of major and minor ions and some trace elements most likely are the result of natural variations in the geologic and physical environment. Study of the glacial aquifer system was designed around a regional framework based on the assumption that two primary characteristics of the aquifer system can affect water quality: intrinsic susceptibility (hydraulic properties) and vulnerability (geochemical properties). The hydrochemical regions described in this report were developed to identify and explain regional spatial variations in ground-water quality in the glacial aquifer system within the hypothetical framework context. Data analyzed for this study were collected from 1991 to 2003 at 1,716 wells open to the glacial aquifer system. Cluster analysis was used to group wells with similar ground-water concentrations of calcium, chloride, fluoride, magnesium, potassium, sodium, sulfate, and bicarbonate into five unique groups. Maximum Likelihood Classification was used to make the extrapolation from clustered groups of wells, defined by points, to areas of similar water quality (hydrochemical regions) defined in a geospatial model. Spatial data that represented average annual precipitation, average annual temperature, land use, land-surface slope, vertical soil permeability, average soil clay content, texture of surficial deposits, type of surficial deposit, and potential for ground-water recharge were used in the Maximum Likelihood Classification to classify the areas so the characteristics of the hydrochemical regions would resemble the

  15. Seismic reflection and structuring characterization of deep aquifer system in the Dakhla syncline (Cap Bon, North-Eastern Tunisia)

    Science.gov (United States)

    Bellali, Abir; Jarraya Horriche, Faten; Gabtni, Hakim; Bédir, Mourad

    2018-04-01

    The Dakhla syncline is located in the North-Eastern Tunisia. It is bounded by Abd El Rahmene anticline to the North-West, El Haouaria Graben to the North-East, Grombalia Graben to the South-West and the Mediterranean Sea to the East. The main aquifer reservoirs of Dakhla syncline are constituted by stacks of fluvial to deltaic Neogene sequences and carbonates. The interpretation of eight seismic reflection profiles, calibrated by wire line logging data of three oil wells, hydraulic wells and geologic field sections highlighted the impact of tectonics on the structuring geometry of aquifers and their distribution in elevated structures and subsurface depressions. Lithostratigraphic correlations and seismic profiles analysis through the syncline show that the principal aquifers are thickest within the central and northern part of the study area and thinnest to the southern part of the syncline. Seismic sections shows that the fracture/fault pattern in this syncline is mainly concentrated along corridors with a major direction of NW-SE and secondary directions of N-S, E-W and NE-SW with different release. This is proved by the complexity structure of Eastern Tunisia, resulted from the interaction between the African and Eurasiatic plates. Isochron maps of aquifers systems exhibited the structuring of this syncline in sub-surface characterized by important lateral and vertical geometric and thickness variations. Seismic sections L1, L2, L3, L4, L5 and petroleum wells showed an heterogeneous multilayer aquifers of Miocene formed by the arrangement of ten sandstone bodies, separated by impermeable clay packages. Oligo-Miocene deposits correspond to the most great potential aquifers, with respectively an average transmissivity estimated: Somaa aquifer 6.5 10-4 m2/s, Sandstone level aquifer 2.6 10-3 m2/s, Beglia aquifer 1.1 10-3 m2/s, Ain Ghrab aquifer 1.3 10-4 m2/s and Oligocene aquifer 2 10-3 m2/s. The interpretation of spatial variations of seismic units and the

  16. EPA Region 1 Sole Source Aquifers

    Science.gov (United States)

    This coverage contains boundaries of EPA-approved sole source aquifers. Sole source aquifers are defined as an aquifer designated as the sole or principal source of drinking water for a given aquifer service area; that is, an aquifer which is needed to supply 50% or more of the drinking water for the area and for which there are no reasonable alternative sources should the aquifer become contaminated.The aquifers were defined by a EPA hydrogeologist. Aquifer boundaries were then drafted by EPA onto 1:24000 USGS quadrangles. For the coastal sole source aquifers the shoreline as it appeared on the quadrangle was used as a boundary. Delineated boundaries were then digitized into ARC/INFO.

  17. Mapping the global depth to bedrock for land surface modelling

    Science.gov (United States)

    Shangguan, W.; Hengl, T.; Yuan, H.; Dai, Y. J.; Zhang, S.

    2017-12-01

    Depth to bedrock serves as the lower boundary of land surface models, which controls hydrologic and biogeochemical processes. This paper presents a framework for global estimation of Depth to bedrock (DTB). Observations were extracted from a global compilation of soil profile data (ca. 130,000 locations) and borehole data (ca. 1.6 million locations). Additional pseudo-observations generated by expert knowledge were added to fill in large sampling gaps. The model training points were then overlaid on a stack of 155 covariates including DEM-based hydrological and morphological derivatives, lithologic units, MODIS surfacee reflectance bands and vegetation indices derived from the MODIS land products. Global spatial prediction models were developed using random forests and Gradient Boosting Tree algorithms. The final predictions were generated at the spatial resolution of 250m as an ensemble prediction of the two independently fitted models. The 10-fold cross-validation shows that the models explain 59% for absolute DTB and 34% for censored DTB (depths deep than 200 cm are predicted as 200 cm). The model for occurrence of R horizon (bedrock) within 200 cm does a good job. Visual comparisons of predictions in the study areas where more detailed maps of depth to bedrock exist show that there is a general match with spatial patterns from similar local studies. Limitation of the data set and extrapolation in data spare areas should not be ignored in applications. To improve accuracy of spatial prediction, more borehole drilling logs will need to be added to supplement the existing training points in under-represented areas.

  18. Hydrological connectivity of perched aquifers and regional aquifers in semi-arid environments: a case study from Namibia

    Science.gov (United States)

    Hamutoko, J. T.; Wanke, H.

    2017-12-01

    Integrated isotopic and hydrological tracers along with standard hydrological data are used to understand complex dry land hydrological processes on different spatial and temporal scales. The objective of this study is to analyse the relationship between the perched aquifers and the regional aquifer using hydrochemical data and isotopic composition in the Cuvelai-Etosha Basin in Namibia. This relation between the aquifers will aid in understanding groundwater recharge processes and flow dynamics. Perched aquifers are discontinuous shallow aquifers with water level ranging from 0 to 30 meters below ground level. The regional aquifer occurs in semi-consolidated sandstone at depths between about 60 and 160 meters below ground level. Water samples were collected from both aquifers in 10 villages and were analysed for major ions and stable isotopes. The results show overlapping hydrochemistry and isotopic compositions of both aquifers in 8 villages which suggest the possibility of perched aquifer water infiltrating into the regional aquifer. In two villages the hydrochemistry and isotopic composition of the aquifers are totally different and this suggests that there is no interaction between this aquifers. Areas where perched aquifers are connected to regional aquifers maybe recharge zones. These finding have important implications for groundwater resource management.

  19. Modelling Waterfall Retreat in Heterogenous Bedrock

    Science.gov (United States)

    Attal, M.; Hodge, R. A.; Williams, R.; Baynes, E.

    2016-12-01

    Bedrock rivers are the mediators of environmental change through mountainous landscapes. In response to an increase in uplift rate for example, a "knickpoint" (often materialised as a waterfall) will propagate upstream, separating a domain downstream where the river and its adjacent hillslopes have steepened in response to the change from a "relict" domain upstream which is adjusted to the conditions before the change (Crosby and Whipple 2006). Many studies assume that knickpoint propagation rate scales with drainage area, based on the stream power theory. However, recent studies in a range of locations have found no obvious relationship between knickpoint retreat rate and drainage area, potentially resulting from the stream power law neglecting (i) the influence of sediment on the processes associated with waterfall migration and (ii) thresholds for bedrock detachment (Cook et al. 2013; Mackey et al. 2014; DiBiase et al. 2015; Baynes et al. 2015; Brocard et al. 2016). In this study, we develop a 1D model of waterfall retreat in horizontally bedded bedrock with varying joint spacing. In the model, knickpoint migration is based on two rules: a waterfall will start migrating once the threshold flow depth (a function of knickpoint height and joint spacing) has been exceeded (Lamb and Dietrich 2009), and the migration rate will then be a function of the water-depth-to-waterfall-height ratio, based on experimental results by Baynes (2015). Using a hydrograph based on a Poisson rectangular pulse rainfall simulator (Tucker and Bras 2001), we demonstrate the importance of structure in controlling the speed at which waterfalls migrate but also their number and the length over which they are distributed (Fig. 1). The model is applied to the Jökulsá á Fjöllum, NE Iceland, where rapid migration of waterfalls as a result of discrete events has been identified (Baynes et al. 2015), using new constraints on joint spacing derived from high resolution lidar survey of the gorge

  20. Fracture and seepage characteristics in the floor strata when mining above a confined aquifer%承压水体上开采底板岩层破断及渗流特征

    Institute of Scientific and Technical Information of China (English)

    王金安; 魏现昊; 陈绍杰

    2012-01-01

    以山西某煤矿承压水体上下组煤开采为工程背景,通过对煤层底板岩石进行全应力-应变渗透性试验及单裂隙渗透性试验,揭示了岩石应力-渗流耦合机理,获得了断裂面渗透系数的定量关系式;采用离散元流固耦合模拟方法,对承压水体上煤层开采底板岩层的应力状态及渗流特征进行模拟分析.结果表明:底板岩层"四带"中的渗透性均与水平应力密切相关,其中:直接底板受工作面矿压影响严重,岩层中的水平应力杂乱无章,破坏带厚度约13m;奥灰含水层顶部岩层为低围压区,容易形成奥灰水楔劈裂导升机理,导升带厚度为17m左右;底板中部层位受采动矿压及底板承压水直接影响相对较小,此带中水平应力自上而下呈递增状态,有效隔水层带厚度38m,是底板的关键阻水层.%A quantitative relationship for the fractured rock permeability coefficient was obtained by conducting stress-strain permeability tests on intact and fractured rock samples. The stress seepage coupling mechanism is elucidated from these results. Mining a lower coal seam located above a confined aquifer in Shanxi province motivated this research. A discrete element numerical model was used to simulate fluid-solid coupling and determine stress and seepage in the floor strata. Four typical zones appear in the floor strata that are closely related to the hori- zontal stress. The damage state and the permeability are used to define these zones. If the di- rect floor stratum is seriously affected by mining induced pressure the horizontal stress is disor- dered and the damaged zone is about 13 m thick. The confining pressure in the strata above the Ordovician aquifer is low and hydraulic splitting fractures it easily. The thickness of the zone where water rises is about 17 m. The middle of the floor strata are less affected by mining and the confined aquifer. The horizontal stresses increase with increasing depth the

  1. Imaging Quaternary glacial deposits and basement topography using the transient electromagnetic method for modeling aquifer environments

    Science.gov (United States)

    Simard, Patrick Tremblay; Chesnaux, Romain; Rouleau, Alain; Daigneault, Réal; Cousineau, Pierre A.; Roy, Denis W.; Lambert, Mélanie; Poirier, Brigitte; Poignant-Molina, Léo

    2015-08-01

    Aquifer formations along the northern shore of the Saint-Lawrence River in Quebec (Canada) mainly consist of glacial and coastal deposits of variable thickness overlying Precambrian bedrock. These deposits are important because they provide the main water supply for many communities. As part of a continuing project aimed at developing an inventory of the groundwater resources in the Charlevoix and Haute-Côte-Nord (CHCN) regions of the province of Quebec in Canada, the central loop transient electromagnetic (TEM) method was used to map the principal hydrogeological environments in these regions. One-dimensional smooth inversion models of the TEM soundings have been used to construct two-dimensional electrical resistivity sections, which provided images for hydrogeological validation. Electrical contour lines of aquifer environments were compared against available well logs and Quaternary surface maps in order to interpret TEM soundings. A calibration table was achieved to represent common deposits and basements. The calibration table was then exported throughout the CHCN region. This paper presents three case studies; one in the Forestville site, another in the Les Escoumins site and the other in the Saint-Urbain site. These sites were selected as targets for geophysical surveys because of the general lack of local direct hydrogeological data related to them.

  2. A Black Hills-Madison Aquifer origin for Dakota Aquifer groundwater in northeastern Nebraska.

    Science.gov (United States)

    Stotler, Randy; Harvey, F Edwin; Gosselin, David C

    2010-01-01

    Previous studies of the Dakota Aquifer in South Dakota attributed elevated groundwater sulfate concentrations to Madison Aquifer recharge in the Black Hills with subsequent chemical evolution prior to upward migration into the Dakota Aquifer. This study examines the plausibility of a Madison Aquifer origin for groundwater in northeastern Nebraska. Dakota Aquifer water samples were collected for major ion chemistry and isotopic analysis ((18)O, (2)H, (3)H, (14)C, (13)C, (34)S, (18)O-SO(4), (87)Sr, (37)Cl). Results show that groundwater beneath the eastern, unconfined portion of the study area is distinctly different from groundwater sampled beneath the western, confined portion. In the east, groundwater is calcium-bicarbonate type, with delta(18)O values (-9.6 per thousand to -12.4 per thousand) similar to local, modern precipitation (-7.4 per thousand to -10 per thousand), and tritium values reflecting modern recharge. In the west, groundwater is calcium-sulfate type, having depleted delta(18)O values (-16 per thousand to -18 per thousand) relative to local, modern precipitation, and (14)C ages 32,000 to more than 47,000 years before present. Sulfate, delta(18)O, delta(2)H, delta(34)S, and delta(18)O-SO(4) concentrations are similar to those found in Madison Aquifer groundwater in South Dakota. Thus, it is proposed that Madison Aquifer source water is also present within the Dakota Aquifer beneath northeastern Nebraska. A simple Darcy equation estimate of groundwater velocities and travel times using reported physical parameters from the Madison and Dakota Aquifers suggests such a migration is plausible. However, discrepancies between (14)C and Darcy age estimates indicate that (14)C ages may not accurately reflect aquifer residence time, due to mixtures of varying aged water.

  3. Bedrock Geologic Map of the Old Lyme Quadrangle, New London and Middlesex Counties, Connecticut

    Science.gov (United States)

    Walsh, Gregory J.; Scott, Robert B.; Aleinikoff, John N.; Armstrong, Thomas R.

    2009-01-01

    The bedrock geology of the Old Lyme quadrangle consists of Neoproterozoic and Permian gneisses and granites of the Gander and Avalon terranes, Silurian metasedimentary rocks of the Merrimack terrane, and Silurian to Devonian metasedimentary rocks of uncertain origin. The Avalon terrane rocks crop out within the Selden Neck block, and the Gander terrane rocks crop out within the Lyme dome. The Silurian to Devonian rocks crop out between these two massifs. Previous mapping in the Old Lyme quadrangle includes the work by Lawrence Lundgren, Jr. Lundgren's work provides an excellent resource for rock descriptions and detailed modal analyses of rock units that will not be duplicated in this current report. New research that was not covered in detail by Lundgren is the focus of this report and includes (1) evaluation of the rocks in the core of the Lyme dome in an effort to subdivide units in this area; (2) structural analysis of foliations and folds in and around the Lyme dome; (3) geochronology of selected units within the Lyme dome; and (4) analysis of joints and the fracture properties of the rocks.

  4. Estimating Groundwater Mounding in Sloping Aquifers for Managed Aquifer Recharge.

    Science.gov (United States)

    Zlotnik, Vitaly A; Kacimov, Anvar; Al-Maktoumi, Ali

    2017-11-01

    Design of managed aquifer recharge (MAR) for augmentation of groundwater resources often lacks detailed data, and simple diagnostic tools for evaluation of the water table in a broad range of parameters are needed. In many large-scale MAR projects, the effect of a regional aquifer base dip cannot be ignored due to the scale of recharge sources (e.g., wadis, streams, reservoirs). However, Hantush's (1967) solution for a horizontal aquifer base is commonly used. To address sloping aquifers, a new closed-form analytical solution for water table mound accounts for the geometry and orientation of recharge sources at the land surface with respect to the aquifer base dip. The solution, based on the Dupiuit-Forchheimer approximation, Green's function method, and coordinate transformations is convenient for computing. This solution reveals important MAR traits in variance with Hantush's solution: mounding is limited in time and space; elevation of the mound is strongly affected by the dip angle; and the peak of the mound moves over time. These findings have important practical implications for assessment of various MAR scenarios, including waterlogging potential and determining proper rates of recharge. Computations are illustrated for several characteristic MAR settings. © 2017, National Ground Water Association.

  5. An ice flow modeling perspective on bedrock adjustment patterns of the Greenland ice sheet

    Directory of Open Access Journals (Sweden)

    M. Olaizola

    2012-11-01

    Full Text Available Since the launch in 2002 of the Gravity Recovery and Climate Experiment (GRACE satellites, several estimates of the mass balance of the Greenland ice sheet (GrIS have been produced. To obtain ice mass changes, the GRACE data need to be corrected for the effect of deformation changes of the Earth's crust. Recently, a new method has been proposed where ice mass changes and bedrock changes are simultaneously solved. Results show bedrock subsidence over almost the entirety of Greenland in combination with ice mass loss which is only half of the currently standing estimates. This subsidence can be an elastic response, but it may however also be a delayed response to past changes. In this study we test whether these subsidence patterns are consistent with ice dynamical modeling results. We use a 3-D ice sheet–bedrock model with a surface mass balance forcing based on a mass balance gradient approach to study the pattern and magnitude of bedrock changes in Greenland. Different mass balance forcings are used. Simulations since the Last Glacial Maximum yield a bedrock delay with respect to the mass balance forcing of nearly 3000 yr and an average uplift at present of 0.3 mm yr−1. The spatial pattern of bedrock changes shows a small central subsidence as well as more intense uplift in the south. These results are not compatible with the gravity based reconstructions showing a subsidence with a maximum in central Greenland, thereby questioning whether the claim of halving of the ice mass change is justified.

  6. Bedrock Geologic Map of Vermont - Faults and Contacts

    Data.gov (United States)

    Vermont Center for Geographic Information — The bedrock geology was last mapped at a statewide scale 50 years ago at a scale of 1:250,000 (Doll and others, 1961). The 1961 map was compiled from 1:62,500-scale...

  7. Bedrock Geologic Map of Vermont - Geochronology Sample Locations

    Data.gov (United States)

    Vermont Center for Geographic Information — The bedrock geology was last mapped at a statewide scale 50 years ago at a scale of 1:250,000 (Doll and others, 1961). The 1961 map was compiled from 1:62,500-scale...

  8. Aquifer thermal-energy-storage modeling

    Science.gov (United States)

    Schaetzle, W. J.; Lecroy, J. E.

    1982-09-01

    A model aquifer was constructed to simulate the operation of a full size aquifer. Instrumentation to evaluate the water flow and thermal energy storage was installed in the system. Numerous runs injecting warm water into a preconditioned uniform aquifer were made. Energy recoveries were evaluated and agree with comparisons of other limited available data. The model aquifer is simulated in a swimming pool, 18 ft by 4 ft, which was filled with sand. Temperature probes were installed in the system. A 2 ft thick aquifer is confined by two layers of polyethylene. Both the aquifer and overburden are sand. Four well configurations are available. The system description and original tests, including energy recovery, are described.

  9. Hydrogeology and groundwater quality of the glaciated valleys of Bradford, Tioga, and Potter Counties, Pennsylvania

    Science.gov (United States)

    Williams, John H.; Taylor, Larry E.; Low, Dennis J.

    1998-01-01

    The most important sources of groundwater in Bradford, Tioga, and Potter Counties are the stratified-drift aquifers. Saturated sand and gravel primarily of outwash origin forms extensive unconfined aquifers in the valleys. Outwash is underlain in most major valleys by silt, clay, and very fine sand of lacustrine origin that comprise extensive confining units. The lacustrine confining units locally exceed 100 feet in thickness. Confined aquifers of ice-contact sand and gravel are buried locally beneath the lacustrine deposits. Bedrock and till are the basal confining units of the stratifies-drift aquifer systems. Recharge to the stratified-drift aquifers if by direct infiltration of precipitation, tributary-stream infiltration, infiltration of unchanneled runoff at the valley walls, and groundwater inflow from the bedrock and till uplands. Valley areas underlain by superficial sand and gravel contribute about 1 million gallons per day per square mile of water from precipitation to the aquifers. Tributary streams provide recharge of nearly 590 gallons per day per foot of stream reach. Water is added at the rate of 1 million gallons per day per square mile of bordering uplands not drained by tributary streams to the stratified-drift aquifers from unchanneled runoff and groundwater inflow. Induced infiltration can be a major source of recharge to well fields completed in unconfined stratified-drift aquifers that are in good hydraulic connection with surface water. The well fields of an industrial site in North Towanda, a public-water supplier at Tioga Point, and the U.S. Fish and Wildlife Service at Asaph accounted for 75 percent of the 10.8 million gallons per day pf groundwater withdrawn by public suppliers and other selected users in 1985. The well fields tap stratified-drift aquifers that are substantially recharged by induced infiltration or tributary-stream infiltration. Specific-capacity data from 95 wells indicate that most wells completed in stratified

  10. Assessment of Groundwater Quality in the Western Aquifers of Mauritius Using Isotope Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Dindyal, D.; Brizmohun, R.; Fanny, J. O.Y. [National Environmental Laboratory, Reduit (Mauritius); Sacchi, E. [Dipartimento di Scienze della Terra e dell' Ambiente, Universita di Pavia (Italy)

    2013-07-15

    This contribution reports the results obtained in the IAEA TC project Mar/8/007, initiated in 2007. Fourteen boreholes were sampled during three sampling campaigns (rainy season, winter and summer): analyses include major ions, trace elements, stable isotopes ({delta}{sup 2}H, {delta}{sup 18}O and {delta}{sup 13}C) and a microbiological assessment (TC and E. coli). Results indicate that groundwater quality is generally good. Recharge mostly occurs in the central plateau area, but the increase in nitrates along the groundwater flow and the common presence of E. coli indicate that a minor recharge occurs all over the aquifer's extension. Infiltration is rapid and favoured by the presence of vertical fractures in the basalts. Discharge occurs at a lower altitude and is marked by a different stable isotope content and lower nitrates. In addition to validating the general groundwater circulation model, these results show that aquifers are not adequately protected against a possible input of pollutants from the surface. (author)

  11. The make up of crystalline bedrock - crystalline body and blocks

    International Nuclear Information System (INIS)

    Huber, M.; Huber, A.

    1986-01-01

    Statements of a geological nature can be made on the basis of investigations of the bedrock exposed in southern Black Forest and these can, in the form of prognoses, be applied to the crystalline Basement of northern Switzerland. Such statements relate to the average proportions of the main lithological groups at the bedrock surface and the surface area of the granite body. Some of the prognoses can be compared and checked with the results from the deep drilling programme in northern Switzerland. Further, analogical interferences from the situation in the southern Black Forest allow predictions to be made on the anticipated block structure of the crystalline Basement. (author)

  12. Analytical Estimation of Water-Oil Relative Permeabilities through Fractures

    Directory of Open Access Journals (Sweden)

    Saboorian-Jooybari Hadi

    2016-05-01

    Full Text Available Modeling multiphase flow through fractures is a key issue for understanding flow mechanism and performance prediction of fractured petroleum reservoirs, geothermal reservoirs, underground aquifers and carbon-dioxide sequestration. One of the most challenging subjects in modeling of fractured petroleum reservoirs is quantifying fluids competition for flow in fracture network (relative permeability curves. Unfortunately, there is no standard technique for experimental measurement of relative permeabilities through fractures and the existing methods are very expensive, time consuming and erroneous. Although, several formulations were presented to calculate fracture relative permeability curves in the form of linear and power functions of flowing fluids saturation, it is still unclear what form of relative permeability curves must be used for proper modeling of flow through fractures and consequently accurate reservoir simulation. Basically, the classic linear relative permeability (X-type curves are used in almost all of reservoir simulators. In this work, basic fluid flow equations are combined to develop a new simple analytical model for water-oil two phase flow in a single fracture. The model gives rise to simple analytic formulations for fracture relative permeabilities. The model explicitly proves that water-oil relative permeabilities in fracture network are functions of fluids saturation, viscosity ratio, fluids density, inclination of fracture plane from horizon, pressure gradient along fracture and rock matrix wettability, however they were considered to be only functions of saturations in the classic X-type and power (Corey [35] and Honarpour et al. [28, 29] models. Eventually, validity of the proposed formulations is checked against literature experimental data. The proposed fracture relative permeability functions have several advantages over the existing ones. Firstly, they are explicit functions of the parameters which are known for

  13. Analysis of aquifer tests conducted in borehole USW G-2, 1996, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    O'Brien, G.M.

    1998-01-01

    Borehole USW G-2 is located north of Yucca Mountain in a large-hydraulic-gradient area. Two single-borehole aquifer tests were conducted in the borehole during 1996. A 54.9-hour pumping period was conducted February 6--8, 1996, and a 408-hour pumping period was conducted April 8--25, 1996. The purpose of testing was to obtain estimates of the aquifer-system transmissivity and to determine if perched water was affecting the observed water level in borehole USW G-2. This report presents and analyzes data collected between February 6 and December 17, 1996. Analysis of the aquifer-test data indicated that fracture flow, dual-porosity flow, and boundary-affected flow conditions were observed in the drawdown and recovery data. Transmissivity estimates ranged from 2.3 to 12 meters squared per day. The most representative transmissivity estimate for the interval tested is the early-time mean transmissivity of 9.4 meters squared per day. The Calico Hills Formation was the primary formation tested, but the top 3 meters of the nonpumping water column was within the overlying Topopah Spring Tuff. Persistent residual drawdown following pumping more than 6 million liters of water during aquifer testing may indicate that the bore-hole intersected a perched water body. After 236 days of recovery, residual drawdown was 0.5 meter. The quantitative effect of the perched water on the observed water level in borehole USW G-2, however, cannot be determined with the available data

  14. Stable isotope and noble gas constraints on the source and residence time of spring water from the Table Mountain Group Aquifer, Paarl, South Africa and implications for large scale abstraction

    Science.gov (United States)

    Miller, J. A.; Dunford, A. J.; Swana, K. A.; Palcsu, L.; Butler, M.; Clarke, C. E.

    2017-08-01

    Large scale groundwater abstraction is increasingly being used to support large urban centres especially in areas of low rainfall but presents particular challenges in the management and sustainability of the groundwater system. The Table Mountain Group (TMG) Aquifer is one of the largest and most important aquifer systems in South Africa and is currently being considered as an alternative source of potable water for the City of Cape Town, a metropolis of over four million people. The TMG aquifer is a fractured rock aquifer hosted primarily in super mature sandstones, quartzites and quartz arenites. The groundwater naturally emanates from numerous springs throughout the cape region. One set of springs were examined to assess the source and residence time of the spring water. Oxygen and hydrogen isotopes indicate that the spring water has not been subject to evaporation and in combination with Na/Cl ratios implies that recharge to the spring systems is via coastal precipitation. Although rainfall in the Cape is usually modelled on orographic rainfall, δ18O and δ2H values of some rainfall samples are strongly positive indicating a stratiform component as well. Comparing the spring water δ18O and δ2H values with that of local rainfall, indicates that the springs are likely derived from continuous bulk recharge over the immediate hinterland to the springs and not through large and/or heavy downpours. Noble gas concentrations, combined with tritium and radiocarbon activities indicate that the residence time of the TMG groundwater in this area is decadal in age with a probable maximum upper limit of ∼40 years. This residence time is probably a reflection of the slow flow rate through the fractured rock aquifer and hence indicates that the interconnectedness of the fractures is the most important factor controlling groundwater flow. The short residence time of the groundwater suggest that recharge to the springs and the Table Mountain Group Aquifer as a whole is

  15. Bedrock Geologic Map of the Essex Junction Quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG12-3, Gale, M., Kim. J., and Ruksznis, A., 2012, Bedrock Geologic Map of the essex Junction Quadrangle: Vermont Geological Survey Open File...

  16. Morphodynamic simulation of sediment deposition patterns on a recently stripped bedrock anastomosed channel

    Directory of Open Access Journals (Sweden)

    D. Milan

    2018-04-01

    Full Text Available Some mixed bedrock-alluvial dryland rivers are known to undergo cycles of alluvial building during low flow periods, punctuated by stripping events during rare high magnitude flows. We focus on the Olifants River, Kruger National Park, South Africa, and present 2-D morphodynamic simulations of hydraulics and sediment deposition patterns over an exposed bedrock anastomosed pavement. We examine the assumptions underlying a previous conceptual model, namely that sedimentation occurs preferentially on bedrock highs. Our modelling results and local field observations in fact show that sediment thicknesses are greater over bedrock lows, suggesting these are the key loci for deposition, barform initiation and island building. During peak flows, velocities in the topographic lows tend to be lower than in intermediate topographic areas. It is likely that intermediate topographic areas supply sediment to the topographic lows at this flow stage, which is then deposited in the lows on the falling limb of the hydrograph as velocities reduce. Subsequent vegetation establishment on deposits in the topographic lows is likely to play a key role in additional sedimentation and vegetation succession, both through increasing the cohesive strength of alluvial units and by capturing new sediments and propagules.

  17. Morphodynamic simulation of sediment deposition patterns on a recently stripped bedrock anastomosed channel

    Science.gov (United States)

    Milan, David; Heritage, George; Entwistle, Neil; Tooth, Stephen

    2018-04-01

    Some mixed bedrock-alluvial dryland rivers are known to undergo cycles of alluvial building during low flow periods, punctuated by stripping events during rare high magnitude flows. We focus on the Olifants River, Kruger National Park, South Africa, and present 2-D morphodynamic simulations of hydraulics and sediment deposition patterns over an exposed bedrock anastomosed pavement. We examine the assumptions underlying a previous conceptual model, namely that sedimentation occurs preferentially on bedrock highs. Our modelling results and local field observations in fact show that sediment thicknesses are greater over bedrock lows, suggesting these are the key loci for deposition, barform initiation and island building. During peak flows, velocities in the topographic lows tend to be lower than in intermediate topographic areas. It is likely that intermediate topographic areas supply sediment to the topographic lows at this flow stage, which is then deposited in the lows on the falling limb of the hydrograph as velocities reduce. Subsequent vegetation establishment on deposits in the topographic lows is likely to play a key role in additional sedimentation and vegetation succession, both through increasing the cohesive strength of alluvial units and by capturing new sediments and propagules.

  18. Models of bedrock surface and overburden thickness over Olkiluoto island and nearby sea area

    Energy Technology Data Exchange (ETDEWEB)

    Moenkkoenen, H. [WSP Finland Oy, Helsinki (Finland)

    2012-04-15

    In this report, a model of bedrock surface and a model of overburden thickness over the Olkiluoto Island and the nearby sea area are presented. Also in purpose to produce material for biosphere and radionuclide transport modelling, stratigraphy models of different sediment layers were created at two priority areas north and south of the Olkiluoto Island. The work concentrated on the collection and description of available data of bedrock surface and overburden thickness. Because the information on the bedrock surface and overburden is collected from different sources and is based on a number of types of data the quality and applicability of data sets varies. Consequently also the reliability in different parts of the models varies. Input data for the bedrock surface and overburden thickness models include 2928 single points and additional outcrops observations (611 polygons) in the modelled area. In addition, the input data include 173 seismic refraction lines (6534 points) and acousticseismic sounding lines (26655 points from which 13721 points are located in model area) in the Olkiluoto offshore area. The average elevation of bedrock surface in area is 2.1 metres above the sea level. The average thickness of overburden is 2.5 metres varying typically between 2 - 4 metres. Thickest overburden covers (approximately 16 metres) of terrestrial area are located at the western end of the Olkiluoto Island and in sea basin south of the island. (orig.)

  19. Models of bedrock surface and overburden thickness over Olkiluoto island and nearby sea area

    International Nuclear Information System (INIS)

    Moenkkoenen, H.

    2012-04-01

    In this report, a model of bedrock surface and a model of overburden thickness over the Olkiluoto Island and the nearby sea area are presented. Also in purpose to produce material for biosphere and radionuclide transport modelling, stratigraphy models of different sediment layers were created at two priority areas north and south of the Olkiluoto Island. The work concentrated on the collection and description of available data of bedrock surface and overburden thickness. Because the information on the bedrock surface and overburden is collected from different sources and is based on a number of types of data the quality and applicability of data sets varies. Consequently also the reliability in different parts of the models varies. Input data for the bedrock surface and overburden thickness models include 2928 single points and additional outcrops observations (611 polygons) in the modelled area. In addition, the input data include 173 seismic refraction lines (6534 points) and acousticseismic sounding lines (26655 points from which 13721 points are located in model area) in the Olkiluoto offshore area. The average elevation of bedrock surface in area is 2.1 metres above the sea level. The average thickness of overburden is 2.5 metres varying typically between 2 - 4 metres. Thickest overburden covers (approximately 16 metres) of terrestrial area are located at the western end of the Olkiluoto Island and in sea basin south of the island. (orig.)

  20. Aquifer test to determine hydraulic properties of the Elm aquifer near Aberdeen, South Dakota

    Science.gov (United States)

    Schaap, Bryan D.

    2000-01-01

    The Elm aquifer, which consists of sandy and gravelly glacial-outwash deposits, is present in several counties in northeastern South Dakota. An aquifer test was conducted northeast of Aberdeen during the fall of 1999 to determine the hydraulic properties of the Elm aquifer in that area. An improved understanding of the properties of the aquifer will be useful in the possible development of the aquifer as a water resource. Historical water-level data indicate that the saturated thickness of the Elm aquifer can change considerably over time. From September 1977 through November 1985, water levels at three wells completed in the Elm aquifer near the aquifer test site varied by 5.1 ft, 9.50 ft, and 11.1 ft. From June 1982 through October 1999, water levels at five wells completed in the Elm aquifer near the aquifer test site varied by 8.7 ft, 11.4 ft, 13.2 ft, 13.8 ft, and 19.7 ft. The water levels during the fall of 1999 were among the highest on record, so the aquifer test was affected by portions of the aquifer being saturated that might not be saturated during drier times. The aquifer test was conducted using five existing wells that had been installed prior to this study. Well A, the pumped well, has an operating irrigation pump and is centrally located among the wells. Wells B, C, D, and E are about 70 ft, 1,390 ft, 2,200 ft, and 3,100 ft, respectively, in different directions from Well A. Using vented pressure transducers and programmable data loggers, water-level data were collected at the five wells prior to, during, and after the pumping, which started on November 19, 1999, and continued a little over 72 hours. Based on available drilling logs, the Elm aquifer near the test area was assumed to be unconfined. The Neuman (1974) method theoretical response curves that most closely match the observed water-level changes at Wells A and B were calculated using software (AQTESOLV for Windows Version 2.13-Professional) developed by Glenn M. Duffield of Hydro