Power cycles with ammonia-water mixtures as working fluid
Energy Technology Data Exchange (ETDEWEB)
Thorin, Eva
2000-05-01
It is of great interest to improve the efficiency of power generating processes, i.e. to convert more of the energy in the heat source to power. This is favorable from an environmental point of view and can also be an economic advantage. To use an ammonia-water mixture instead of water as working fluid is a possible way to improve the efficiency of steam turbine processes. This thesis includes studies of power cycles with ammonia-water mixtures as working fluid utilizing different kinds of heat sources for power and heat generation. The thermophysical properties of the mixture are also studied. They play an important role in the calculations of the process performance and for the design of its components, such as heat exchangers. The studies concern thermodynamic simulations of processes in applications suitable for Swedish conditions. Available correlations for the thermophysical properties are compared and their influence on simulations and heat exchanger area predictions is investigated. Measurements of ammonia-water mixture viscosities using a vibrating wire viscometer are also described. The studies performed show that power cycles with ammonia-water mixtures as the working fluid are well suited for utilization of waste heat from industry and from gas engines. The ammonia-water power cycles can give up to 32 % more power in the industrial waste heat application and up to 54 % more power in the gas engine bottoming cycle application compared to a conventional Rankine steam cycle. However, ammonia-water power cycles in small direct-fired biomass-fueled cogeneration plants do not show better performance than a conventional Rankine steam cycle. When different correlations for the thermodynamic properties are used in simulations of a simple ammonia-water power cycle the difference in efficiency is not larger than 4 %, corresponding to about 1.3 percentage points. The differences in saturation properties between the correlations are, however, considerable at high
Analysis of power and cooling cogeneration using ammonia-water mixture
International Nuclear Information System (INIS)
Padilla, Ricardo Vasquez; Demirkaya, Goekmen; Goswami, D. Yogi; Stefanakos, Elias; Rahman, Muhammad M.
2010-01-01
Development of innovative thermodynamic cycles is important for the efficient utilization of low-temperature heat sources such as solar, geothermal and waste heat sources. This paper presents a parametric analysis of a combined power/cooling cycle, which combines the Rankine and absorption refrigeration cycles, uses ammonia-water mixture as the working fluid and produces power and cooling simultaneously. This cycle, also known as the Goswami Cycle, can be used as a bottoming cycle using waste heat from a conventional power cycle or as an independent cycle using solar or geothermal energy. A thermodynamic study of power and cooling cogeneration is presented. The performance of the cycle for a range of boiler pressures, ammonia concentrations and isentropic turbine efficiencies are studied to find out the sensitivities of net work, amount of cooling and effective efficiencies. The roles of rectifier and superheater on the cycle performance are investigated. The cycle heat source temperature is varied between 90-170 o C and the maximum effective first law and exergy efficiencies for an absorber temperature of 30 o C are calculated as 20% and 72%, respectively. The turbine exit quality of the cycle for different boiler exit scenarios shows that turbine exit quality decreases when the absorber temperature decreases.
Liu, Lijuan; Sun, Chengliang; Liu, Xingxing; He, Xiaolin; Liu, Miao; Wu, Hao; Tang, Caixian; Jin, Chongwei; Zhang, Yongsong
2016-01-01
The inorganic nitrogenous amendments calcium cyanamide (CC), ammonia water (AW), and a mixture of ammonium bicarbonate with lime (A+L) are popularly used as fumigants to control soil-borne disease in China. However, it is unclear which of these fumigants is more effective in controlling R. solanacearum. This present study compared the efficiencies of the three nitrogenous amendments listed above at four nitrogen levels in suppressing the survival of R. solanacearum in soil. The CC showed the best ability to suppress R. solanacearum due to its highest capacity to increase soil and NO2− contents and pH. However, AW was more suitable to controlling bacterial wilt caused by R. solanacearum because it had a lower cost and its application rate of 0.25 g N kg−1 soil could effectively suppress the survival of R. solanacearum. Additionally, soil microbial activity and community populations were restored to their initial state four weeks after the application of each fumigant, indicating that the three fumigants had few detrimental impacts on soil microbial activity and community structure with an exception of the suppression of R. solanacearum. The present study provides guidance for the selection of a suitable alkaline nitrogenous amendment and its application rate in controlling bacterial wilt. PMID:26738601
Liu, Lijuan; Sun, Chengliang; Liu, Xingxing; He, Xiaolin; Liu, Miao; Wu, Hao; Tang, Caixian; Jin, Chongwei; Zhang, Yongsong
2016-01-01
The inorganic nitrogenous amendments calcium cyanamide (CC), ammonia water (AW), and a mixture of ammonium bicarbonate with lime (A+L) are popularly used as fumigants to control soil-borne disease in China. However, it is unclear which of these fumigants is more effective in controlling R. solanacearum. This present study compared the efficiencies of the three nitrogenous amendments listed above at four nitrogen levels in suppressing the survival of R. solanacearum in soil. The CC showed the best ability to suppress R. solanacearum due to its highest capacity to increase soil and NO2- contents and pH. However, AW was more suitable to controlling bacterial wilt caused by R. solanacearum because it had a lower cost and its application rate of 0.25 g N kg-1 soil could effectively suppress the survival of R. solanacearum. Additionally, soil microbial activity and community populations were restored to their initial state four weeks after the application of each fumigant, indicating that the three fumigants had few detrimental impacts on soil microbial activity and community structure with an exception of the suppression of R. solanacearum. The present study provides guidance for the selection of a suitable alkaline nitrogenous amendment and its application rate in controlling bacterial wilt.
Energetic analysis of a commercial absorption refrigeration unit using an ammonia-water mixture
Directory of Open Access Journals (Sweden)
Josegil Jorge de Araújo
2017-09-01
Full Text Available The ROBUR® absorption refrigeration system (ARS, model ACF60, with a capacity of 17.5 kW, is tested, modeled and simulated in the steady state. To simulate the thermal load a heating system with secondary coolant was used, in which a programmable logic controller (PLC kept the inlet temperature EVA at around 285.15 K. The mathematical model used was based on balancing the mass, energy and ammonia concentrations and completed by closing equations such as, Newton's cooling equation. The mathematical model was implemented using the Engineering Equation Solver – EES®. The results obtained after modeling and a numerical permanent simulation are studied using the Duhring diagram. Potential points of internal heat recovery are visualized, and by using graphs of the binary mixture, it is possible to identify the thermodynamic states of all monitored points. The data obtained in the numerical simulation of the ARS was compared with data acquired in the actual tests of the ARS with the ROBUR® apparatus.
International Nuclear Information System (INIS)
Bo Hanliang; Ma Changwen; Wu Shaorong
1997-01-01
On characteristics of heating source and cooling source in nuclear heating reactor cooperation, the authors advance a new kind of power cycle in which a multicomponent mixture as the work fluid, ammonia-water Rankine cycle, describe its running principle, and compare it with steam Rankine cycle in the same situation. The result is that: the new kind of power cycle, ammonia-water Rankine cycle has higher electricity efficiency; it suits for the situation of heating source and cooling source which offered by nuclear heating reactor cooperation. For low temperature heating source, it maybe has a widely application
DEFF Research Database (Denmark)
Kærn, Martin Ryhl; Modi, Anish; Jensen, Jonas Kjær
2016-01-01
on the required heat exchanger size (surface area)is investigated during numerical design. For this purpose, two case studies related to the use of the Kalina cycle are considered: a flue gas based heat recovery boiler for acombined cycle power plant and a hot oil based boiler for a solar thermal power plant......Heat transfer correlations for pool and flow boiling are indispensable for boiler design. The correlations for predicting in-tube flow boiling heat transfer ofammonia-water mixtures are not well established in the open literature and there is a lack of experimental measurements for the full range...... of composition, vapor qualities, fluid conditions, etc. This paper presents a comparison of several flow boiling heat transfer prediction methods (correlations) for ammonia-water mixtures. Firstly, these methods are reviewed and compared at various fluid conditions. The methods include: (1) the ammonia...
International Nuclear Information System (INIS)
Táboas, Francisco; Bourouis, Mahmoud; Vallès, Manel
2014-01-01
In this work, the use of waste heat energy of jacket water in diesel engines of fishing ships was analysed for use as a heat source for absorption refrigeration systems. The thermodynamic simulation of an absorption refrigeration cycle with three different working fluid mixtures that use ammonia as a refrigerant was carried out. This analysis was assessed in terms of the cooling demand and cycle performance as a function of the evaporator, condenser and generator temperatures. Moreover, the need for rectifying the vapour stream leaving the generator was analysed together with the drag of the fraction of non-evaporated liquid to the absorber. The results show that the NH 3 /(LiNO 3 + H 2 O) and NH 3 /LiNO 3 fluid mixtures have higher values of COP as compared to NH 3 /H 2 O fluid mixture, the differences being more pronounced at low generation temperatures. If the activation temperature is set to 85 °C, the minimum evaporation temperatures that can be achieved are −18.8 °C for the cycle with NH 3 /LiNO 3 , −17.5 °C for the cycle with NH 3 /(LiNO 3 + H 2 O) cycle and −13.7 °C for the NH 3 /H 2 O cycle at a condensing temperature of 25 °C. Also, for the NH 3 /(LiNO 3 + H 2 O) fluid mixture, it has been demonstrated that the absorption refrigeration cycle can be operated without a distillation column and in this case the water content in the refrigerant stream entering the evaporator is less than 1.5% in weight at the operating conditions selected. - Highlights: •Ammonia absorption systems can provide refrigeration necessities for fishing ships. •Absorption refrigeration systems reduce the energy consumption of fishing ships. •The NH 3 /(LiNO 3 + H 2 O) mixture is recommended for absorption refrigeration cycles
DEFF Research Database (Denmark)
Jensen, Jonas Kjær; Reinholdt, Lars; Markussen, Wiebke Brix
2014-01-01
The hybrid absorption/compression heat pump (HACHP) using ammonia-water as working fluid is a promising technology for development of a high temperature industrial heat pump. This is due to two properties inherent to the use of zeotropic mixtures: non-isothermal phase change and reduced vapour...... using these components. A technically and economically feasible solution is defined as one that satisfies constraints on the coefficient of performance (COP), low and high pressure, compressor discharge temperature and volumetric heat capacity. The ammonia mass fraction of the rich solution...
Radiation Chemistry in Ammonia-Water Ices
Loeffler, M. J.; Raut, U.; Baragiola, R. A.
2010-01-01
We studied the effects of 100 keV proton irradiation on films of ammonia-water mixtures between 20 and 120 K. Irradiation destroys ammonia, leading to the formation and trapping of H2, N2 NO, and N2O, the formation of cavities containing radiolytic gases, and ejection of molecules by sputtering. Using infrared spectroscopy, we show that at all temperatures the destruction of ammonia is substantial, but at higher temperatures (120 K), it is nearly complete (approximately 97% destroyed) after a fluence of 10(exp 16) ions per square centimeter. Using mass spectroscopy and microbalance gravimetry, we measure the sputtering yield of our sample and the main components of the sputtered flux. We find that the sputtering yield depends on fluence. At low temperatures, the yield is very low initially and increases quadratically with fluence, while at 120 K the yield is constant and higher initially. The increase in the sputtering yield with fluence is explained by the formation and trapping of the ammonia decay products, N2 and H2 which are seen to be ejected from the ice at all temperatures.
Microwave Determination of Water Mole Fraction in Humid Gas Mixtures
Cuccaro, R.; Gavioso, R. M.; Benedetto, G.; Madonna Ripa, D.; Fernicola, V.; Guianvarc'h, C.
2012-09-01
A small volume (65 cm3) gold-plated quasi-spherical microwave resonator has been used to measure the water vapor mole fraction x w of H2O/N2 and H2O/air mixtures. This experimental technique exploits the high precision achievable in the determination of the cavity microwave resonance frequencies and is particularly sensitive to the presence of small concentrations of water vapor as a result of the high polarizability of this substance. The mixtures were prepared using the INRIM standard humidity generator for frost-point temperatures T fp in the range between 241 K and 270 K and a commercial two-pressure humidity generator operated at a dew-point temperature between 272 K and 291 K. The experimental measurements compare favorably with the calculated molar fractions of the mixture supplied by the humidity generators, showing a normalized error lower than 0.8.
Boone, S.; Nicol, M. F.
1991-01-01
The phase relations of some mixtures of ammonia and water are investigated to create a phase diagram in pressure-temperature-composition space relevant to the geophysical study of bodies in the outer solar system. The mixtures of NH3(x)H2O(1-x), where x is greater than 0.30 but less than 0.51, are examined at pressures and temperatures ranging from 0-6.5 GPa and 125-400 K, respectively. The ruby luminescence technique monitors the pressure and a diamond-anvil cell compresses the samples, and the phases are identified by means of normal- and polarized-light optical microscopy. The melting curve for NH3H2O(2) is described by the equation T = 176 + 60P - 8.5P squared for the ranges of 0.06-1.4 GPa and 179-243 K. The equation for NH3H2O is T = 194 + 37P - P squared, which represents a minor correction of a previous description by Johnson et al. (1985). Observed phase transitions are consistent with the high-pressure stability limit of NH3H2O(2), and the transition boundary is found to be linear.
Ammonia-water system : Part I. Thermodynamic properties
International Nuclear Information System (INIS)
Goomer, N.C.; Dave, S.M.; Sadhukhan, H.K.
1980-01-01
The various thermodynamic properties which have direct bearing on design calculations and separation factor calculations for gaseous ammonia water system have been calculated and compiled in tabular form for easy reference. (auth.)
International Nuclear Information System (INIS)
Wu Tiehui; Wu Yuyuan; Yu Zhiqiang; Zhao Haichen; Wu Honglin
2011-01-01
Highlights: → An absorption refrigeration system with ternary solution of NH 3 -H 2 O-LiBr was set up. → Performance of the NH 3 -H 2 O-LiBr system without solution pump was firstly tested. → Generator pressure in NH 3 -H 2 O-LiBr system was lower than the one in NH 3 -H 2 O system. → The COP of the NH 3 -H 2 O-LiBr system was 51.89% larger than the NH 3 -H 2 O binary system. → The optimum mass fraction of LiBr of about 23% led to the largest COP of 0.401. -- Abstract: Experimental researches were carried out on a novel ammonia-water-lithium bromide ternary solution absorption refrigeration and air-conditioning system without solution pump and distillation equipments. The experiments were conducted by using three kinds of NH 3 -H 2 O binary solution and 17 kinds of ternary solution with difference in mass fraction of NH 3 and LiBr. The experimental results showed that the vapor pressure of the generator in the system would be lower than that of the generator in an ammonia-water absorption system. In above two situations the same ammonia mass fraction and the same solution temperature were kept. The amplitude of vapor pressure decrease of the system generator would be larger with the increase of the mass fraction of LiBr. The maximum amplitude of decrease would be of 50%. With the increase of the mass fraction of LiBr, the coefficient of performance (COP) of the system would be increased initially, and then decreased later when the mass fraction of LiBr exceeded a certain value. This value was about 23% for the solution with ammonia mass fraction of 50% and 55%, and about 30% for the solution with ammonia mass fraction of 60%. Compared with the ammonia-water system, the COP of the ternary solution system with the same mass fraction of ammonia would increase up to 30%. With the ammonia mass fraction of 60% and LiBr mass fraction of 30% applied, the COP of the ternary solution system was increased up to 0.401. It was 51.89% higher than that when binary
Mansour, Mohy S.; Imam, Hisham; Elsayed, Khaled A.; Elbaz, Ayman M.; Abbass, Wafaa
2015-01-01
Laser induced breakdown spectroscopy (LIBS) technique has been applied to quantitative mixture fraction measurements in flames. The measured spectra of different mixtures of natural gas and air are used to obtain the calibration parameters for local
Mansour, Mohy S.
2015-01-01
Laser induced breakdown spectroscopy (LIBS) technique has been applied to quantitative mixture fraction measurements in flames. The measured spectra of different mixtures of natural gas and air are used to obtain the calibration parameters for local elemental mass fraction measurements and hence calculate the mixture fraction. The results are compared with the mixture fraction calculations based on the ratios of the spectral lines of H/N elements, H/O elements and C/(N+O) and they show good agreement within the reaction zone of the flames. Some deviations are observed outside the reaction zone. The ability of LIBS technique as a tool for quantitative mixture fraction as well as elemental fraction measurements in reacting and non-reacting of turbulent flames is feasible. © 2014 Elsevier Ltd. All rights reserved.
Corrosion protection of steel in ammonia/water heat pumps
Mansfeld, Florian B.; Sun, Zhaoli
2003-10-14
Corrosion of steel surfaces in a heat pump is inhibited by adding a rare earth metal salt to the heat pump's ammonia/water working fluid. In preferred embodiments, the rare earth metal salt includes cerium, and the steel surfaces are cerated to enhance the corrosion-inhibiting effects.
Thermodynamic Model for the Ammonia-Water System
DEFF Research Database (Denmark)
Thomsen, Kaj; Rasmussen, Peter
2000-01-01
The ammonia-water system is described by the Extended UNIQUAC model, which is an electrolyte model, formed by combining the original UNIQUAC model, the Debye-Hückel law and the Soave-Redlich-Kwong equation of state. The model is limited to temperatures below the critical temperature of ammonia. V...
DEFF Research Database (Denmark)
Jensen, Jonas Kjær; Ommen, Torben Schmidt; Markussen, Wiebke Brix
2015-01-01
The ammonia-water hybrid absorption-compression heat pump (HACHP) has been proposed as a relevant technology for industrial heat supply, especially for high sink temperatures and high temperature glides in the sink and source. This is due to the reduced vapour pressure and the non-isothermal phase...... change of the zeotropic mixture, ammonia-water. To evaluate to which extent these advantages can be translated into feasible heat pump solutions, the working domain of the HACHP is investigated based on technical and economic constraints. The HACHP working domain is compared to that of the best available...... vapour compression heat pump with natural working fluids. This shows that the HACHP increases the temperature lifts and heat supply temperatures that are feasible to produce with a heat pump. The HACHP is shown to be capable of delivering heat supply temperatures as high as 150 °C and temperature lifts...
DEFF Research Database (Denmark)
Jensen, Jonas Kjær; Ommen, Torben Schmidt; Markussen, Wiebke Brix
2014-01-01
The ammonia-water hybrid absorption-compression heat pump (HACHP) is a relevant technology for industrial heat supply, especially for high sink temperatures and high temperature glides in the sink and source. This is due to the reduced vapour pressure and the non-isothermal phase change...... of the zeotropic mixture, ammonia-water. To evaluate to which extent these advantages can be translated into feasible heat pump solutions, the working domain of the HACHP is investigated based on technical and economic constraints. The HACHP working domain is compared to that of the best possible vapour...... compression heat pump with natural working fluids. This shows that the HACHP increases the temperature lifts and heat supply temperatures that are feasible to produce with a heat pump. The HACHP is shown to be capable of delivering heat supply temperatures as high as 140 XC and temperature lifts up to 60 K...
Thermodynamic simulation of ammonia-water absorption refrigeration system
Directory of Open Access Journals (Sweden)
Sathyabhama A.
2008-01-01
Full Text Available The ammonia-water absorption refrigeration system is attracting increasing research interests, since the system can be powered by waste thermal energy, thus reducing demand on electricity supply. The development of this technology demands reliable and effective system simulations. In this work, a thermodynamic simulation of the cycle is carried out to investigate the effects of different operating variables on the performance of the cycle. A computer program in C language is written for the performance analysis of the cycle.
Biogenic Carbon Fraction of Biogas and Natural Gas Fuel Mixtures Determined with 14C
Palstra, Sanne W. L.; Meijer, Harro A. J.
2014-01-01
This study investigates the accuracy of the radiocarbon-based calculation of the biogenic carbon fraction for different biogas and biofossil gas mixtures. The focus is on the uncertainty in the C-14 reference values for 100% biogenic carbon and on the C-13-based isotope fractionation correction of
International Nuclear Information System (INIS)
Wang, Jiangfeng; Yan, Zhequan; Wang, Man; Dai, Yiping
2013-01-01
Due to a good behavior of ammonia-water during the two-phase heat addition process and the liquefied natural gas with great cold energy, an ammonia-water power system with LNG as its heat sink is proposed to utilize the low grade waste heat. Based on the thermodynamic mathematical models, the effects of key thermodynamic design parameters, including turbine inlet pressure, turbine inlet temperature, ammonia mass fraction, pinch temperature difference and approach temperature difference in the heat recovery vapor generator, on the system performance are examined from the view of both thermodynamics and economics. To obtain the optimum performance, multi-objective optimization is conducted to find the best thermodynamic design parameters from both thermodynamic and economic aspects using NSGA-II (Non-dominated sorting genetic algorithm-II). The exergy efficiency, total heat transfer capability and turbine size parameter are selected as three objective functions to maximize the exergy efficiency, and minimize the total heat transfer capability and turbine size parameter under the given waste heat conditions. The results show that turbine inlet pressure, turbine inlet temperature, ammonia mass fraction, pinch temperature difference and approach temperature difference have significant effects on the system performance. By multi-objective optimization, the Pareto frontier solution for the ammonia-water power system is obtained. - Highlights: ► An ammonia-water power system with LNG as its heat sink is proposed. ► The effects of key parameters on the system performance are examined. ► Multi-objective optimization is conducted to obtain optimum system performance
On the development of high temperature ammonia-water hybrid absorption-compression heat pumps
DEFF Research Database (Denmark)
Jensen, Jonas Kjær; Markussen, Wiebke Brix; Reinholdt, Lars
2015-01-01
Ammonia-water hybrid absorption-compression heat pumps (HACHP) are a promising technology for development of ecient high temperature industrial heat pumps. Using 28 bar components HACHPs up to 100 °C are commercially available. Components developed for 50 bar and 140 bar show that these pressure...... limits may be possible to exceed if needed for actual applications. Feasible heat supply temperatures using these component limits are investigated. A feasible solution is defined as one that satisfies constraints on the COP, low and high pressure, compressor discharge temperature, vapour water content...... and volumetric heat capacity. The ammonia mass fraction and the liquid circulation ratio both influence these constraining parameters. The paper investigates feasible combinations of these parameters through the use of a numerical model. 28 bar components allow temperatures up to 111 °C, 50 bar up to 129°C...
Kruse, Stephan
2018-04-11
Partially premixed combustion is characterized by mixture fraction inhomogeneity upstream of the reaction zone and occurs in many applied combustion systems. The temporal and spatial fluctuations of the mixture fraction have tremendous impact on the combustion characteristics, emission formation, and flame stability. In this study, turbulent partially premixed flames are experimentally studied in a slot burner configuration. The local temperature and gas composition is determined by means of one-dimensional, simultaneous detection of Rayleigh and Raman scattering. The statistics of the mixture fraction are utilized to characterize the impact of the Reynolds number, the global equivalence ratio, the progress of mixing within the flame, as well as the mixing length on the mixing field. Furthermore, these effects are evaluated by means of a regime diagram for partially premixed flames. In this study, it is shown that the increase of the mixing length results in a significantly more stable flame. The impact of the Reynolds number on flame stability is found to be minor.
Kruse, Stephan; Mansour, Mohy S.; Elbaz, Ayman M.; Varea, Emilien; Grü nefeld, Gerd; Beeckmann, Joachim; Pitsch, Heinz
2018-01-01
Partially premixed combustion is characterized by mixture fraction inhomogeneity upstream of the reaction zone and occurs in many applied combustion systems. The temporal and spatial fluctuations of the mixture fraction have tremendous impact on the combustion characteristics, emission formation, and flame stability. In this study, turbulent partially premixed flames are experimentally studied in a slot burner configuration. The local temperature and gas composition is determined by means of one-dimensional, simultaneous detection of Rayleigh and Raman scattering. The statistics of the mixture fraction are utilized to characterize the impact of the Reynolds number, the global equivalence ratio, the progress of mixing within the flame, as well as the mixing length on the mixing field. Furthermore, these effects are evaluated by means of a regime diagram for partially premixed flames. In this study, it is shown that the increase of the mixing length results in a significantly more stable flame. The impact of the Reynolds number on flame stability is found to be minor.
Liquid--vapor isotope fractionation factors in argon--krypton binary mixtures
International Nuclear Information System (INIS)
Lee, M.W.; Neufeld, P.; Bigeleisen, J.
1977-01-01
An equilibrium isotope effect has been studied as a continuous function of the potential field acting on the atom undergoing isotopic exchange. This has been accomplished through a study of the liquid vapor isotope fractionation factors for both, 36 Ar/ 40 Ar and 80 Kr/ 84 Kr in a series of binary mixtures which span the range between the pure components at 117.5 0 K. The 36 Ar/ 40 Ar fractionation factor increases (linearly) from (lnα)2.49 x 10 -3 in pure liquid argon to 2.91 x 10 -3 in an infinitely dilute solution in liquid krypton. Conversely, the 80 Kr/ 84 Kr fractionation factor decreases (linearly) from (lnα)0.98 x 10 -3 in pure liquid krypton to 0.64 x 10 -3 in an infinetely dilute solution in pure liquid argon. The mean force constants 2 U>/sub c/ on both argon and krypton atoms in the mixtures are derived from the respective isotope fractionation factors.The mean force constants for argon and krypton as a function of composition have been calculated by a modified corresponding states theory which uses the pure liquids as input parameters. The discrepancy is 8 percent at X/sub Ar/ + O. A systematic set of calculations has been made of 2 U> (Ar) and 2 U> (Kr) as a function of composition using radial distribution functions generated by the Weeks--Chandler--Anderson perturbation theory
Industrial trigeneration using ammonia-water absorption refrigeration systems (AAR)
International Nuclear Information System (INIS)
Colonna, Piero; Gabrielli, Sandro
2003-01-01
In many industrial processes there is a simultaneous need for electric power and refrigeration at low temperatures. Examples are in the food and chemical industries. Nowadays the increase in fuel prices and the ecological implications are giving an impulse to energy technologies that better exploit the primary energy source and integrated production of utilities should be considered when designing a new production plant. The number of so-called trigeneration systems installations (electric generator and absorption refrigeration plant) is increasing. If low temperature refrigeration is needed (from 0 to -40 deg. C), ammonia-water absorption refrigeration plants can be coupled to internal combustion engines or turbogenerators. A thermodynamic system study of trigeneration configurations using a commercial software integrated with specifically designed modules is presented. The study analyzes and compares heat recovery from the primary mover at different temperature levels. In the last section a simplified economic assessment that takes into account disparate prices in European countries compares conventional electric energy supply from the grid and optimized trigeneration plants in one test case (10 MW electric power, 7000 h/year)
Mohajer, Ardavan; Tremier, Anne; Barrington, Suzelle; Teglia, Cecile
2010-01-01
Composting is a feasible biological treatment for the recycling of wastewater sludge as a soil amendment. The process can be optimized by selecting an initial compost recipe with physical properties that enhance microbial activity. The present study measured the microbial O(2) uptake rate (OUR) in 16 sludge and wood residue mixtures to estimate the kinetics parameters of maximum growth rate mu(m) and rate of organic matter hydrolysis K(h), as well as the initial biodegradable organic matter fractions present. The starting mixtures consisted of a wide range of moisture content (MC), waste to bulking agent (BA) ratio (W/BA ratio) and BA particle size, which were placed in a laboratory respirometry apparatus to measure their OUR over 4 weeks. A microbial model based on the activated sludge process was used to calculate the kinetic parameters and was found to adequately reproduced OUR curves over time, except for the lag phase and peak OUR, which was not represented and generally over-estimated, respectively. The maximum growth rate mu(m), was found to have a quadratic relationship with MC and a negative association with BA particle size. As a result, increasing MC up to 50% and using a smaller BA particle size of 8-12 mm was seen to maximize mu(m). The rate of hydrolysis K(h) was found to have a linear association with both MC and BA particle size. The model also estimated the initial readily biodegradable organic matter fraction, MB(0), and the slower biodegradable matter requiring hydrolysis, MH(0). The sum of MB(0) and MH(0) was associated with MC, W/BA ratio and the interaction between these two parameters, suggesting that O(2) availability was a key factor in determining the value of these two fractions. The study reinforced the idea that optimization of the physical characteristics of a compost mixture requires a holistic approach. 2010 Elsevier Ltd. All rights reserved.
The equivalent electrical permittivity of gas-solid mixtures at intermediate solid volume fractions.
Energy Technology Data Exchange (ETDEWEB)
Torczynski, John Robert; Ceccio, Steven Louis; Tortora, Paul Richard
2005-07-01
Several mixture models are evaluated for their suitability in predicting the equivalent permittivity of dielectric particles in a dielectric medium for intermediate solid volume fractions (0.4 to 0.6). Predictions of the Maxwell, Rayleigh, Bottcher and Bruggeman models are compared to computational simulations of several arrangements of solid particles in a gas and to the experimentally determined permittivity of a static particle bed. The experiment uses spherical glass beads in air, so air and glass permittivity values (1 and 7, respectively) are used with all of the models and simulations. The experimental system used to measure the permittivity of the static particle bed and its calibration are described. The Rayleigh model is found to be suitable for predicting permittivity over the entire range of solid volume fractions (0-0.6).
International Nuclear Information System (INIS)
Mansouri, Rami; Boukholda, Ismail; Bourouis, Mahmoud; Bellagi, Ahmed
2015-01-01
A steady-state simulation model of a commercial 3-ton ammonia/water absorption chiller is developed and validated using the flow-sheeting software Aspen-Plus. First an appropriate thermodynamic property model for the ammonia/water fluid mixture is selected. To this purpose nine methods from the software library are pre-selected and tested, but none of the methods predicts the VLE (vapour–liquid equilibrium) with sufficient accuracy. The interaction parameters of these models are then determined by fitting the equations of state (EOS) to VLE data. It is finally found that the Boston–Mathias modified Peng–Robinson EOS with fitted parameters predicts most accurately the VLE for the temperature and pressure ranges encountered in commercial chillers. A simulation model of the machine is then developed. The simulation results are found to be in good agreement with data from literature at a cooling air temperature of 35 ºC. The heat transfer characteristics (UA) of the various heat exchangers of the machine are then determined and the model modified to make it accept these (UA) as input parameters. The comparison of the simulation predictions at cooling air temperatures of 26.7 and 38 ºC with the bibliographical data showed good concordance. The proposed model could be very useful for the analysis and performance prediction of the commercial absorption chiller. - Highlights: • A commercial NH 3 /H 2 O absorption chiller is simulated using the software Aspen-Plus. • Peng-Robinson-Boston-Mathias equation of state is used to predict VLE of NH 3 /H 2 O fluid mixture. • A steady-state model describing the chiller operation is developed. • The model predicts the internal operating conditions and COP of the chiller.
RIEPMA, KA; VEENSTRA, J; DEBOER, AH; BOLHUIS, GK; ZUURMAN, K; LERK, CF; VROMANS, H
1991-01-01
Binary mixtures of different particle size fractions of alpha-lactose monohydrate were compacted into tablets. The results showed decreased crushing strengths and decreased internal specific surface areas of the tablets as compared with the values calculated by linear interpolation of the data
DEFF Research Database (Denmark)
Jensen, Jonas Kjær; Markussen, Wiebke Brix; Reinholdt, Lars
2014-01-01
Spray drying facilities are among the most energy intensive industrial processes. Using a heat pump to recover waste heat and replace gas combustion has the potential to attain both economic and emissions savings. In the case examined a drying gas of ambient air is heated to 200 XC. The inlet flow...... rate is 100,000 m3/h which yields a heat load of 6.1 MW. The exhaust air from the drying process is 80 XC. The implementation of an ammonia-water hybrid absorption-compression heat pump to partly cover the heat load is investigated. A thermodynamic analysis is applied to determine optimal circulation...... ratios for a number of ammonia mass fractions and heat pump loads. An exergoeconomic optimization is applied to minimize the lifetime cost of the system. Technological limitations are applied to constrain the solution to commercial components. The best possible implementation is identified in terms...
Directory of Open Access Journals (Sweden)
Nina Ching Y. Wang
2012-01-01
Full Text Available Both the Massachusetts Department of Environmental Protection (MADEP and the Total Petroleum Hydrocarbon Criteria Working Group (TPHCWG developed fraction-based approaches for assessing human health risks posed by total petroleum hydrocarbon (TPH mixtures in the environment. Both organizations defined TPH fractions based on their expected environmental fate and by analytical chemical methods. They derived toxicity values for selected compounds within each fraction and used these as surrogates to assess hazard or risk of exposure to the whole fractions. Membership in a TPH fraction is generally defined by the number of carbon atoms in a compound and by a compound's equivalent carbon (EC number index, which can predict its environmental fate. Here, we systematically and objectively re-evaluate the assignment of TPH to specific fractions using comparative molecular field analysis and hierarchical clustering. The approach is transparent and reproducible, reducing inherent reliance on judgment when toxicity information is limited. Our evaluation of membership in these fractions is highly consistent (̃80% on average across various fractions with the empirical approach of MADEP and TPHCWG. Furthermore, the results support the general methodology of mixture risk assessment to assess both cancer and noncancer risk values after the application of fractionation.
Directory of Open Access Journals (Sweden)
Silva-Aguilar Martín
2011-01-01
Full Text Available Metals are ubiquitous pollutants present as mixtures. In particular, mixture of arsenic-cadmium-lead is among the leading toxic agents detected in the environment. These metals have carcinogenic and cell-transforming potential. In this study, we used a two step cell transformation model, to determine the role of oxidative stress in transformation induced by a mixture of arsenic-cadmium-lead. Oxidative damage and antioxidant response were determined. Metal mixture treatment induces the increase of damage markers and the antioxidant response. Loss of cell viability and increased transforming potential were observed during the promotion phase. This finding correlated significantly with generation of reactive oxygen species. Cotreatment with N-acetyl-cysteine induces effect on the transforming capacity; while a diminution was found in initiation, in promotion phase a total block of the transforming capacity was observed. Our results suggest that oxidative stress generated by metal mixture plays an important role only in promotion phase promoting transforming capacity.
M. M. Clark; T. H. Fletcher; R. R. Linn
2010-01-01
The chemical processes of gas phase combustion in wildland fires are complex and occur at length-scales that are not resolved in computational fluid dynamics (CFD) models of landscape-scale wildland fire. A new approach for modelling fire chemistry in HIGRAD/FIRETEC (a landscape-scale CFD wildfire model) applies a mixtureâ fraction model relying on thermodynamic...
Study of an absorption machine for an ammonia-water system ...
African Journals Online (AJOL)
This paper deals with Study of an absorption machine for an ammonia-water system decentralized trigeneration. The effects of evaporator, absorber and boiler temperature on the coefficient of performance of this cycle investigate. Simulation results show that with increasing the evaporator and absorber temperature the ...
Pradhan, Tuhin; Ghoshal, Piue; Biswas, Ranjit
2008-02-07
The excited state intramolecular charge transfer reaction of 4-(1-azetidinyl)benzonitrile (P4C) has been studied in water-tertiary butanol (TBA) mixtures at different alcohol mole fractions by using steady state and time-resolved fluorescence spectroscopy. The ratio between the areas under the locally excited (LE) and charge transferred (CT) emission bands is found to exhibit a sharp rise at alcohol mole fraction approximately 0.04, a value at which several thermodynamic properties of this mixture is known to show anomalous change due to the enhancement of H-bonding network. The radiative rate associated with the LE emission also shows a maximum at this TBA mole fraction. Although the structural transition from the water-like tetrahedral network to the alcohol-like chain is reflected in the red shift of the absorption spectrum up to TBA mole fraction approximately 0.10, the emission bands (both LE and CT) show the typical nonideal alcohol mole fraction dependence at all TBA mole fractions. Quantum yield, CT radiative rate as well as transition moments also exhibit a nonideal alcohol mole fraction dependence. The time-resolved emission decay of P4C has been found to be biexponential at all TBA mole fractions, regardless of emission collection around either the LE or the CT bands. The time constant associated with the slow component (tau(slow)) shows a minimum at TBA mole fraction approximately 0.04, whereas such a minimum for the fast time constant, tau(fast) (representing the rate of LE --> CT conversion reaction) is not observed. The nonobservation of the minimum in tau(fast) might be due to the limited time resolution employed in our experiments.
Lizarraga, Ion; Bou-Ali, M. Mounir; Santamaría, C.
2018-03-01
In this study, the thermodiffusion coefficient of n-dodecane/n-hexane binary mixture at 25 ∘C mean temperature was determined for several pressure conditions and mass fractions. The experimental technique used to determine the thermodiffusion coefficient was the thermograviational column of cylindrical configuration. In turn, thermophysical properties, such as density, thermal expansion, mass expansion and dynamic viscosity up to 10 MPa were also determined. The results obtained in this work showed a linear relation between the thermophysical properties and the pressure. Thermodiffusion coefficient values confirm a linear effect when the pressure increases. Additionally, a new correlation based on the thermodiffusion coefficient for n C12/n C6 binary mixture at 25 ∘C temperature for any mass fraction and pressures, which reproduces the data within the experimental error, was proposed.
International Nuclear Information System (INIS)
Venkat Ram, D.; Sharma, A.K.
1992-01-01
The Heavy Water Plant at Talcher employs bithermal ammonia hydrogen exchange process for the production of heavy water. The paper describes about the existing ammonia water exchange column, its start-up, operating experience and the problems encountered in operation of the column. The operating experiences gained and the data collected over the last few years can be utilised for design and operation of new ammonia water exchange column. (V.R). 2 figs
Continuous Fractionation of a two-component mixture by zone electrophoresis
Zalewski, D.R.; Gardeniers, Johannes G.E.
2009-01-01
Synchronized continuous-flow zone electrophoresis is a recently demonstrated tool for performing electrophoretic fractionation of a complex sample. The method resembles free flow electrophoresis, but unlike in that technique, no mechanical fluid pumping is required. Instead, fast electrokinetic flow
International Nuclear Information System (INIS)
Furuta, Hiroshi; Yamamoto, Ichiro
1996-01-01
Diffusion coefficients in 4-component mixture D ij (4) were expressed explicitly in terms of binary diffusion coefficients and mole fractions by solving a ratio of determinants defined by Hirschfelder et al. The explicit expressions of D ij (4) were divided into two terms, a term due to the i-j pairs of attention and a term common to all the pairs out of the 4 components. The two terms of D ij (4) had extended structures similar to corresponding those of D ij (3) respectively. (author)
Energy Technology Data Exchange (ETDEWEB)
Preter, Felipe C.; Rocha, Marcelo S.; Simoes-Moreira, Jose Roberto [SISEA - Alternative Energy Systems Lab. Dept. of Mechanical Engineering. University of Sao Paulo (EP/USP), SP (Brazil)], e-mails: felipe.preter@poli.usp.br, msrocha@poli.usp.br, jrsimoes@usp.br; Andreos, Ronaldo [COMGAS - Companhia de Gas de Sao Paulo, SP (Brazil)], e-mail: randreos@comgas.com.br
2010-07-01
In this work, a CCHP or tri generation system has been projected, mounted, and tested in laboratory, combining a microturbine for power generation, a heat recovery boiler for hot water production, and an ammonia water absorption chiller for chilled water production. The project was motivated by the large practical applications of this kind of energy recovery system in commerce, and industry, and, in general, more than 85% of the energy source is used as power, hot water, and cold water. In the first part, the trigeneration system theoretical model is detailed, and in the second part, experimental results are presented for different operation conditions. (author)
International Nuclear Information System (INIS)
Gonçalves, Daniel; Costa, Patrícia; Rodrigues, Christianne E.C.; Rodrigues, Alírio E.
2017-01-01
Highlights: • Fractionation of crude acid lime essential oil using ethanol/water mixtures. • Extract phases were enriched in aroma-active components. • Predicted compositions of liquid phases fitted well with the experimental data. • Aroma-active components were separated from terpenes, keeping the original acid lime essential oil odour. • The water content in the solvent did not affect the aroma profile of the phases from the liquid–liquid equilibrium. - Abstract: This study aims to separate aroma-active components of the crude Citrus latifolia essential oil (EO) from the unstable terpene hydrocarbons using ethanol/water mixtures through liquid–liquid equilibrium (LLE) and to evaluate the aroma profiles of the crude EO and the LLE phases. For this purpose, the liquid compositions of the crude EOs and the LLE phases were found by gas chromatography analysis. The compositions of the liquid phases were predicted using the NRTL model and compared to the experimental data. Afterwards, the concentrations of the components in the vapour phases above the liquid mixtures were obtained by headspace analysis and the odour intensity of each component was estimated using the Stevens’ power law concept. Finally, the classification into olfactory families was evaluated through the Perfumery Radar methodology. The solvent extraction technique made it possible to obtain extract phases enriched in citral and poor in monoterpenes, with aromas profiles similar to that of the crude EO and classified as herbaceous and citrus scent, with floral, woody, and oriental nuances. The extract phase obtained from ethanol with 50% water was found to be a promising fraction for industrial applications. Furthermore, the results proved that the NRTL parameters can be efficiently used to predict the compositions of the phases from the LLE.
Void fraction in steam-water mixture downward motion in tubes and intertubular spaces
International Nuclear Information System (INIS)
Miropol'skij, Z.L.; Shneerova, R.I.; Karamysheva, A.I.
1978-01-01
Experiments have been carried out with a view to determining the averaged cross-section virtual steam contents for downward steam-air mixture flows in a pipe (diameter 40 mm, length 600 mm) and in a 400 mm-long cylindrical channel, which accomodated 19 cylindrical tubes. Equivalent channel diameter was 9.2 mm. The tests were carried out both under adiabatic flow conditions and in the presence of heat transfer through pipes, which were electrically heated. The p pressure was 3 mPa, specific heat fluxes g=0-0.27 MW/m 2 , mass rates wsub(p)=110-395 kg/m 2 xs in the tube bunch and 95-345 kg/m 2 xs in the pipe. The test results indicate that: the virtual volumetric steam contents in a downward flow of a steam-air mixture are higher than those in an upward flow; x in a tube bunch is substantially smaller than that in a pipe
Fractionation of benzene/n-hexane mixtures by pervaporation using polyurethane membranes
Directory of Open Access Journals (Sweden)
CUNHA V. S.
1999-01-01
Full Text Available In the present work polyurethane membranes obtained from different polyester/MDI-based polymers were used to separate benzene/n-hexane mixtures by pervaporation. In pervaporation experiments, with a 50% wt feed at room temperature, permeate fluxes in the range of 0.3 to 3.2 Kg/m2h (10 mm membrane thickness and selectivity in the range of 3.8 to 5.6 were obtained. The permeate was always enriched in benzene. Taking into account the compromise between flux and selectivity, the best performance membrane was selected for complementary sorption and pervaporation experiments. Results show that selectivity increases and the permeation flux decreases when the benzene concentration in the feed decreases. In the present application, results also show that sorption is the main factor for selectivity. Using the distillation azeotropic mixture as feed, almost no influence of temperature on selectivity was observed in the range of 25oC to 56oC. The permeate flux increases seven-fold, while selectivity remains constant near 8.0.
Artificial intelligent methods for thermodynamic evaluation of ammonia-water refrigeration systems
International Nuclear Information System (INIS)
Sencan, Arzu
2006-01-01
In this paper, Linear Regression and M5'Rules models within Data Mining Process and Artificial Neural Network (ANN) model for thermodynamic evaluation of ammonia-water absorption refrigeration systems was carried out. A new formulation based on ANN model is presented for the analysis of ammonia-water absorption refrigeration systems (AWRS) because the optimal result was obtained by using ANN Model. Thermodynamic analysis of the AWRS is very complex because of analytic functions used for calculating the properties of fluid couples and simulation programs. Therefore, it is extremely difficult to perform analysis of this system. COP and f are estimated depending on the temperatures of system component and concentration values. Using the weights obtained from the trained network a new formulation is presented for the calculation of the COP and f; the use of ANN is proliferating with high speed in simulation. The R 2 -values obtained when unknown data were used to the networks was 0.9996 and 0.9873 for the circulation ratio and COP respectively which is very satisfactory. The use of this new formulation, which can be employed with any programming language or spreadsheet program for the estimation of the circulation ratio and COP of AWRS, as described in this paper, may make the use of dedicated ANN software unnecessary
Mixture-fraction imaging at 1 kHz using femtosecond laser-induced fluorescence of krypton.
Richardson, Daniel R; Jiang, Naibo; Stauffer, Hans U; Kearney, Sean P; Roy, Sukesh; Gord, James R
2017-09-01
Femtosecond, two-photon-absorption laser-induced-fluorescence (TALIF) imaging measurements of krypton (Kr) are demonstrated to study mixing in gaseous flows. A measurement approach is presented in which observed Kr TALIF signals are 7 times stronger than the current state-of-the-art methodology. Fluorescence emission is compared for different gas pressures and excitation wavelengths, and the strongest fluorescence signals were observed when the excitation wavelength was tuned to 212.56 nm. Using this optimized excitation scheme, 1-kHz, single-laser-shot visualizations of unsteady flows and two-dimensional measurements of mixture fraction and scalar dissipation rate of a Kr-seeded jet are demonstrated.
Sear, Richard P.
2018-04-01
I model the drying of a liquid film containing small and big colloid particles. Fortini et al. [Phys. Rev. Lett. 116, 118301 (2016)] studied these films with both computer simulation and experiment. They found that at the end of drying, the mixture had stratified with a layer of the smaller particles on top of the big particles. I develop a simple model for this process. The model has two ingredients: arrest of the diffusion of the particles at high density and diffusiophoretic motion of the big particles due to gradients in the volume fraction of the small particles. The model predicts that stratification only occurs over a range of initial volume fractions of the smaller colloidal species. Above and below this range, the downward diffusiophoretic motion of the big particles is too slow to remove the big particles from the top of the film, and so there is no stratification. In agreement with earlier work, the model also predicts that large Péclet numbers for drying are needed to see stratification.
International Nuclear Information System (INIS)
Plummer, L.N.; Busenberg, E.; Drenkard, S.; Schlosser, P.; Ekwurzel, B.; Weppernig, R.; McConnell, J.B.; Michel, R.L.
1998-01-01
Tritium/helium-3 ( 3 H/ 3 He) and chlorofluorocarbon (CFCs, CFC-11, CFC-12, CFC-113) data are used to date the young fraction in groundwater mixtures from a karstic limestone aquifer near Valdosta, Georgia, where regional paleowater in the Upper Floridan aquifer receives recharge from two young sources-the flow of Withlacoochee River water through sinkholes in the river bed, and leakage of infiltration water through post-Eocene semi-confining beds above the Upper Floridan aquifer. In dating the young fraction of mixtures using CFCs, it is necessary to reconstruct the CFC concentration that was in the young fraction prior to mixing. The 3 H/ 3 He age is independent of the extent of dilution with older ( 3 H-free and 3 He trit -free) water. The groundwater mixtures are designated as Type-1 for mixtures of regional paleowater and regional infiltration water and Type-2 for mixtures containing more than approximately 4% of river water. The fractions of regional paleowater, regional infiltration water, and Withlacoochee River water in the groundwater mixtures were determined from Cl - and δ 18 O data for water from the Upper Floridan aquifer at Valdosta, Georgia.The chlorofluorocarbons CFC-11 and CFC-113 are removed by microbial degradation and/or sorption processes in most anaerobic (Type-2) groundwater at Valdosta, but are present in some aerobic Type-1 water. CFC-12 persists in both SO 4 -reducing and methanogenic water. The very low detection limits for CFCs (approximately 0.3 pg kg -1 ) permitted CFC-11 and CFC-12 dating of the fraction of regional infiltration water in Type-1 mixtures, and CFC-12 dating of the river-water fraction in Type-2 mixtures. Overall, approximately 50% of the 85 water samples obtained from the Upper Floridan aquifer have CFC-12-based ages of the young fraction that are consistent with the 3 H concentration of the groundwater. Because of uncertainties associated with very low 3 H and 3 He content in dilute mixtures, 3 H/ 3 He dating is
Bumbieris Junior, Valter Harry; Jobim, Cloves Cabreira; Emile, Jean Claude; Rossi, Robson; Calixto Junior, Moyses; Branco, Antonio Ferriani
2011-01-01
It was aimed to evaluate the ruminal degradability, and the fractioning of carbohydrates, as well as of the nitrogen fractions of triticale silages in singular culture or in mixtures with oats and/or legumes. The treatments had been: triticale silage (X. Triticosecale Wittimack) (ST); triticale silage + forage pea (Pisum arvense) (STE); triticale silage + oats (Avena strigosa Scheb) + forage pea + vetch (Vicia sativa) (STAE). Three castrated bovine Prim’Holstein males had been used, with aver...
RIEPMA, KA; ZUURMAN, K; BOLHUIS, GK; DEBOER, AH; LERK, CF
1992-01-01
Tablets were compacted from a coarse fraction (250-315 mum), a fine fraction (32-45 mum) and from binary blends of a coarse and a fine fraction of different types of crystalline lactose. The results showed differences in consolidation and compaction between the granular lactose types, i.e.,
Plummer, Niel; Busenberg, E.; Drenkard, S.; Schlosser, P.; Ekwurzel, B.; Weppernig, R.; McConnell, J.B.; Michel, R.L.
1998-01-01
Tritium/helium-3 (3H/3He) and chlorofluorocarbon (CFCs, CFC-11, CFC-12, CFC-113) data are used to date the young fraction in groundwater mixtures from a karstic limestone aquifer near Valdosta, Georgia, where regional paleowater in the Upper Floridan aquifer receives recharge from two young sources the flow of Withlacoochee River water through sinkholes in the river bed, and leakage of infiltration water through post-Eocene semi-confining beds above the Upper Floridan aquifer. In dating the young fraction of mixtures using CFCs, it is necessary to reconstruct the CFC concentration that was in the young fraction prior to mixing. The 3H/3He age is independent of the extent of dilution with older (3H-free and 3He(trit)-free) water. The groundwater mixtures are designated as Type-I for mixtures of regional paleowater and regional infiltration water and Type-2 for mixtures containing more than approximately 4% of river water. The fractions of regional paleowater, regional infiltration water, and Withlacoochee River water in the groundwater mixtures were determined from Cl- and ??18O data for water from the Upper Floridan aquifer at Valdosta, Georgia The chlorofluorocarbons CFC-11 and CFC-113 are removed by microbial degradation and/or sorption processes in most allaerobic (Type-2) groundwater at Valdosta, but are present in some aerobic Type-I water. CFC-12 persists in both SO4-reducing and methanogenic water. The very low detection limits for CFCs (approximately 0.3 pg kg-1) permitted CFC-11 and CFC-12 dating of the fraction of regional infiltration water in Type-I mixtures, and CFC-12 dating of the river-water fraction in Type-2 mixtures. Overall, approximately 50% of the 85 water sam pies obtained from the Upper Floridan aquifer have CFC-12-based ages of the young traction that are consistent with the 3H concentration of the groundwater. Because of uncertainties associated with very low 3H and 3He content in dilute mixtures, 3H/3He dating is limited to the river
Directory of Open Access Journals (Sweden)
H. Meftah
2010-03-01
Full Text Available In this paper, direct numerical simulation databases have been generated to analyze the impact of the propagation of a spray flame on several subgrid scales (SGS models dedicated to the closure of the transport equations of the subgrid fluctuations of the mixture fraction Z and the progress variable c. Computations have been carried out starting from a previous inert database [22] where a cold flame has been ignited in the center of the mixture when the droplet segregation and evaporation rate were at their highest levels. First, a RANS analysis has shown a brutal increase of the mixture fraction fluctuations due to the fuel consumption by the flame. Indeed, local vapour mass fraction reaches then a minimum value, far from the saturation level. It leads to a strong increase of the evaporation rate, which is also accompanied by a diminution of the oxidiser level. In a second part of this paper, a detailed evaluation of the subgrid models allowing to close the variance and the dissipation rates of the mixture fraction and the progress variable has been carried out. Models that have been selected for their efficiency in inert flows have shown a very good behaviour in the framework of reactive flows.
The importance of the ammonia purification process in ammonia-water absorption systems
International Nuclear Information System (INIS)
Fernandez-Seara, Jose; Sieres, Jaime
2006-01-01
Practical experience in working with ammonia-water absorption systems shows that the ammonia purification process is a crucial issue in order to obtain an efficient and reliable system. In this paper, the detrimental effects of the residual water content in the vapour refrigerant are described and quantified based on the system design variables that determine the effectiveness of the purification process. The study has been performed considering a single stage system with a distillation column with complete condensation. The ammonia purification effectiveness of the column is analysed in terms of the efficiencies in the stripping and rectifying sections and the reflux ratio. By varying the efficiencies from 0 to 1, systems with neither the rectifying nor stripping section, with either the rectifying or stripping section, or with both sections can be considered. The impact of the ammonia purification process on the absorption system performance is studied based on the column efficiencies and reflux ratio; and its effects on refrigerant concentration, system COP, system pressures and main system mass flow rates and concentrations are analysed. When the highest efficiency rectifying sections are used a combination of generation temperature and reflux ratio which leads to optimum COP values is found. The analysis covers different operating conditions with air and water cooled systems from refrigeration to air conditioning applications by changing the evaporation temperature. The importance of rectification in each kind of application is evaluated
Energy Technology Data Exchange (ETDEWEB)
Anheier, N.C. Jr.; McDonald, C.E.; Cuta, J.M.; Cuta, F.M.; Olsen, K.B.
1995-05-01
This report describes an evaluation of various sensing techniques for determining the ammonia concentration in the working fluid of ammonia/water absorption cycle systems. The purpose of this work was to determine if any existing sensor technology or instrumentation could provide an accurate, reliable, and cost-effective continuous measure of ammonia concentration in water. The resulting information will be used for design optimization and cycle control in an ammonia-absorption heat pump. PNL researchers evaluated each sensing technology against a set of general requirements characterizing the potential operating conditions within the absorption cycle. The criteria included the physical constraints for in situ operation, sensor characteristics, and sensor application. PNL performed an extensive literature search, which uncovered several promising sensing technologies that might be applicable to this problem. Sixty-two references were investigated, and 33 commercial vendors were identified as having ammonia sensors. The technologies for ammonia sensing are acoustic wave, refractive index, electrode, thermal, ion-selective field-effect transistor (ISFET), electrical conductivity, pH/colormetric, and optical absorption. Based on information acquired in the literature search, PNL recommends that follow-on activities focus on ISFET devices and a fiber optic evanescent sensor with a colormetric indicator. The ISFET and fiber optic evanescent sensor are inherently microminiature and capable of in situ measurements. Further, both techniques have been demonstrated selective to the ammonium ion (NH{sub 4}{sup +}). The primary issue remaining is how to make the sensors sufficiently corrosion-resistant to be useful in practice.
Elwell, Caleb
Beef tallow is a less common feedstock source for biodiesel than soy or canola oil, but it can have economic benefits in comparison to these traditional feedstocks. However, tallow methyl ester (TME) has the major disadvantage of poor cold temperature properties. Cloud point (CP) is an standard industry metric for evaluating the cold temperature performance of biodiesel and is directly related to the thermodynamic properties of the fuel's constituents. TME has a CP of 14.5°C compared with 2.3°C for soy methyl ester (SME) and -8.3°C for canola methyl ester (CME). In this study, three methods were evaluated to reduce the CP of TME: fractionation, blending with SME and CME, and using polymer additives. TME fractionation (i.e. removal of specific methyl ester constituents) was simulated by creating FAME mixtures to match the FAME profiles of fractionated TME. The fractionation yield was found to be highest at the eutectic point of methyl palmitate (MP) and methyl stearate (MS), which was empirically determined to be at a MP/(MP+MS) ratio of approximately 82%. Since unmodified TME has a MP/(MP+MS) ratio of 59%, initially only MS should be removed to produce a ratio closer to the eutectic point to reduce CP and maximize yield. Graphs relating yield (with 4:1 methyl stearate to methyl oleate carryover) to CP were produced to determine the economic viability of this approach. To evaluate the effect of blending TME with other methyl esters, SME and CME were blended with TME at blend ratios of 0 to 100%. Both the SME/TME and CME/TME blends exhibited decreased CPs with increasing levels of SME and CME. Although the CP of the SME/TME blends varied linearly with SME content, the CP of the CME/TME blends varied quadratically with CME content. To evaluate the potential of fuel additives to reduce the CP of TME, 11 different polymer additives were tested. Although all of these additives were specifically marketed to enhance the cold temperature properties of petroleum diesel or
RIEPMA, KA; LERK, CF; DEBOER, AH; BOLHUIS, GK; KUSSENDRAGER, KD
1990-01-01
Binary powder mixtures of four different types of crystalline lactose: alpha-lactose monohydrate, anhydrous alpha-lactose, roller-dried beta-lactose and crystalline beta-lactose, were compressed into tablets. The results showed a proportional intercorrelation of the crushing strength and internal
DEFF Research Database (Denmark)
Modi, Anish; Knudsen, Thomas; Haglind, Fredrik
2014-01-01
Concentrated solar power plants have attracted an increasing interest in the past few years – both with respect to the design of various plant components, and extending the operation hours by employing different types of storage systems. One approach to improve the overall plant performance is to...
International Nuclear Information System (INIS)
Anklam, T.M.; White, M.D.
1981-01-01
Experimental data is reported from a series of quasi-steady-state two-phase mixture level swell and void fraction distribution tests. Testing was performed at ORNL in the Thermal Hydraulic Test Facility - a large electrically heated test loop configured to produce conditions similar to those expected in a small break loss of coolant accident. Pressure was varied from 2.7 to 8.2 MPa and linear power ranged from 0.33 to 1.95 kW/m. Mixture swell was observed to vary linearly with the total volumetric vapor generation rate over the power range of primary interest in small break analysis. Void fraction data was fit by a drift-flux model and both the drift-velocity and concentration parameter were observed to decrease with increasing pressure
Pellegrino, J; Wright, S; Ranvill, J; Amy, G
2005-01-01
Flow-Field Flow Fractionation (FI-FFF) is an idealization of the cross flow membrane filtration process in that, (1) the filtration flux and crossflow velocity are constant from beginning to end of the device, (2) the process is a relatively well-defined laminar-flow hydrodynamic condition, and (3) the solutes are introduced as a pulse-input that spreads due to interactions with each other and the membrane in the dilute-solution limit. We have investigated the potential for relating FI-FFF measurements to membrane fouling. An advection-dispersion transport model was used to provide 'ideal' (defined as spherical, non-interacting solutes) solute residence time distributions (RTDs) for comparison with 'real' RTDs obtained experimentally at different cross-field velocities and solution ionic strength. An RTD moment analysis based on a particle diameter probability density function was used to extract "effective" characteristic properties, rather than uniquely defined characteristics, of the standard solute mixture. A semi-empirical unsteady-state, flux decline model was developed that uses solute property parameters. Three modes of flux decline are included: (1) concentration polarization, (2) cake buildup, and (3) adsorption on/in pores, We have used this model to test the hypothesis-that an analysis of a residence time distribution using FI-FFF can describe 'effective' solute properties or indices that can be related to membrane flux decline in crossflow membrane filtration. Constant flux filtration studies included the changes of transport hydrodynamics (solvent flux to solute back diffusion (J/k) ratios), solution ionic strength, and feed water composition for filtration using a regenerated cellulose ultrafiltration membrane. Tests of the modeling hypothesis were compared with experimental results from the filtration measurements using several correction parameters based on the mean and variance of the solute RTDs. The corrections used to modify the boundary layer
Energy Technology Data Exchange (ETDEWEB)
Plummer, L.N.; Busenberg, E. [U.S. Geological Survey, 432 National Center, Reston, VA (United States); Drenkard, S.; Schlosser, P.; Ekwurzel, B.; Weppernig, R. [Lamont-Doherty Earth Observatory of Columbia University, 61 Route 9W, Palisades, NY (United States); McConnell, J.B. [U.S. Geological Survey, 3039 Amwiler Rd., Atlanta, GA (United States); Michel, R.L. [U.S. Geological Survey, Mail Stop 434, 345 Middlefield Road, Menlo Park, CA (United States)
1998-11-01
Tritium/helium-3 ({sup 3}H/{sup 3}He) and chlorofluorocarbon (CFCs, CFC-11, CFC-12, CFC-113) data are used to date the young fraction in groundwater mixtures from a karstic limestone aquifer near Valdosta, Georgia, where regional paleowater in the Upper Floridan aquifer receives recharge from two young sources-the flow of Withlacoochee River water through sinkholes in the river bed, and leakage of infiltration water through post-Eocene semi-confining beds above the Upper Floridan aquifer. In dating the young fraction of mixtures using CFCs, it is necessary to reconstruct the CFC concentration that was in the young fraction prior to mixing. The {sup 3}H/{sup 3}He age is independent of the extent of dilution with older ({sup 3}H-free and {sup 3}He{sub trit}-free) water. The groundwater mixtures are designated as Type-1 for mixtures of regional paleowater and regional infiltration water and Type-2 for mixtures containing more than approximately 4% of river water. The fractions of regional paleowater, regional infiltration water, and Withlacoochee River water in the groundwater mixtures were determined from Cl{sup -} and {delta}{sup 18}O data for water from the Upper Floridan aquifer at Valdosta, Georgia.The chlorofluorocarbons CFC-11 and CFC-113 are removed by microbial degradation and/or sorption processes in most anaerobic (Type-2) groundwater at Valdosta, but are present in some aerobic Type-1 water. CFC-12 persists in both SO{sub 4}-reducing and methanogenic water. The very low detection limits for CFCs (approximately 0.3 pg kg{sup -1}) permitted CFC-11 and CFC-12 dating of the fraction of regional infiltration water in Type-1 mixtures, and CFC-12 dating of the river-water fraction in Type-2 mixtures. Overall, approximately 50% of the 85 water samples obtained from the Upper Floridan aquifer have CFC-12-based ages of the young fraction that are consistent with the {sup 3}H concentration of the groundwater. Because of uncertainties associated with very low {sup 3}H
Graphical expression of thermodynamic characteristics of absorption process in ammonia-water system
Directory of Open Access Journals (Sweden)
Fortelný Zdeněk
2012-04-01
Full Text Available The adiabatic sorption is very interesting phenomenon that occurs when vapor of refrigerant is in contact with unsaturated liquid absorbent-refrigerant mixture and exchange of heat is forbid between the system and an environment. This contribution introduces new auxiliary lines that enable correct position determination of the adiabatic sorption process in the p-T-x diagram of ammoniawater system. The presented auxiliary lines were obtained from common functions for fast calculation of water-ammonia system properties. Absorption cycles designers often utilize p-t-x diagrams of working mixtures for first suggestion of new absorption cycles. The p-t-x diagrams enable fast correct determination of saturate states of liquid (and gaseous mixtures of refrigerants and absorbents. The working mixture isn’t only at saturated state during a real working cycle. If we know pressure and temperature of an unsaturated mixture, exact position determination is possible in the p-t-x diagrams too.
Energy Technology Data Exchange (ETDEWEB)
Kuznetsov, B.N.; Sharypov, V.I.; Beregovtsova, N.G.; Baryshnikov, S.V.; Doroginskaya, A.N. [Russian Academy of Sciences, Krasnoyarsk (Russian Federation). Inst. of Chemistry of Natural Organic Materials Sibirian Branch
1997-12-31
Some features of co-processing of Kansk-Achinsk lignite with plastics into hydrocarbon mixtures in the presence of activated iron-containing minerals (hematite, magnetite, pyrrhotite) were investigated under various operating parameters. The following catalytic processes were studied: pyrolysis in an inert atmosphere, hydropyrolysis and water-steam cracking. (orig.)
Leuenberger, Daiana; Pascale, Céline; Guillevic, Myriam; Ackermann, Andreas; Niederhauser, Bernhard
2017-04-01
Ammonia (NH3) in the atmosphere is the major precursor for neutralising atmospheric acids and is thus affecting not only the long-range transport of sulphur dioxide and nitrogen oxides but also stabilises secondary particulate matter. These aerosols have negative impacts on air quality and human health. Moreover, they negatively affect terrestrial ecosystems after deposition. NH3 has been included in the air quality monitoring networks and emission reduction directives of European nations. Atmospheric concentrations are in the order of 0.5-500 nmol/mol. However, the lowest substance amount fraction of available certified reference material (CRM) is 10 μmol/mol. This due to the fact that adsorption on the walls of aluminium cylinders and desorption as pressure in the cylinder decreases cause substantial instabilities in the amount fractions of the gas mixtures. Moreover, analytical techniques to be calibrated are very diverse and cause challenges for the production and application of CRM. The Federal Institute of Metrology METAS has developed, partially in the framework of EMRP JRP ENV55 MetNH3, an infrastructure to meet with the different requirements in order to generate SI-traceable NH3 reference gas mixtures dynamically in the amount fraction range 0.5-500 nmol/mol and with uncertainties UNH3 international key-comparison CCQM K117. It is planned to establish this system to calibrate and re-sample gas cylinders due to its very economical gas use. Here we present insights into the development of said infrastructure and results of the first performance tests. Moreover, we include results of the study on adsorption/desorption effects in dry as well as humidified matrix gas into the discussion on the generation of reference gas mixtures. Acknowledgement: This work was supported by the European Metrology Research Programme (EMRP). The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.
International Nuclear Information System (INIS)
Mohtaram, Soheil; Chen, Wen; Zargar, T.; Lin, Ji
2017-01-01
Highlights: • Energy exergy analysis is conducted to find the effects of RP. • EES software is utilized to perform the detailed energy-exergy analyses. • Effects investigated through energy and exergy destruction, enthalpy, yields, etc. • Detailed results are reported showing the performance of gas and combined cycle. - Abstract: The purpose of this study is to investigate the effect of compressor pressure ratio (RP) on the thermodynamic performances of ammonia-water combined cycle through energy and exergy destruction, enthalpy temperature, yields, and flow velocity. The energy-exergy analysis is conducted on the ammonia water combined cycle and the Rankine cycle, respectively. Engineering Equation Solver (EES) software is utilized to perform the detailed analyses. Values and ratios regarding heat drop and exergy loss are presented in separate tables for different equipments. The results obtained by the energy-exergy analysis indicate that by increasing the pressure ratio compressor, exergy destruction of high-pressure compressors, intercooler, gas turbine and the special produced work of gas turbine cycle constantly increase and the exergy destruction of recuperator, in contrast, decreases continuously. In addition, the least amount of input fuel into the combined cycle is observed when the pressure ratio is no less than 7.5. Subsequently, the efficiency of the cycle in gas turbine and combined cycle is reduced because the fuel input into the combined cycle is increased.
Neish, Catherine D.; Somogyi, Árpád; Lunine, Jonathan I.; Smith, Mark A.
2009-05-01
Laboratory tholins react rapidly in 13 wt% ammonia-water at low temperature, producing complex organic molecules containing both oxygen and altered nitrogen functional groups. These reactions display first-order kinetics with half-lives between 0.3 and 14 days at 253 K. The reaction timescales are much shorter than the freezing timescales of impact melts and volcanic sites on Titan, providing ample time for the formation of oxygenated, possibly prebiotic, molecules on its surface. Comparing the rates of the hydrolysis reactions in ammonia-water to those measured in pure water [Neish, C.D, Somogyi, A., Imanaka, H., Lunine, J.I., Smith, M.A., 2008a. Astrobiology 8, 273-287], we find that incorporation of oxygen into the tholins is faster in the presence of ammonia. The rate increases could be due to the increased pH of the solution, or to the availability of new reaction pathways made possible by the presence of ammonia. Using labeled 15NH 3 water, we find that ammonia does incorporate into some products, and that the reactions with ammonia are largely independent of those with water. A related study in HO18 confirms water as the source of the oxygen incorporated into the oxygen containing products.
International Nuclear Information System (INIS)
Dzarasov, Yu.I.
1976-01-01
Results of studies for a vapour-water dispersive-ring flow in the heated tore channel are presented. The work area has been a vertical tore channel with external and internal cross-section diameters equal to 12 and 6 mm, respectively, and with the internal heated wall of 1000 mm and 2500 mm long, respectively. The medium moves upward with the pressure 35 and 70 bar. Local heat emission factors α as a function of the channel height have been determined with measuring wall-flow temperature difference at the outlet cross-section. It has been noted that in addition to dependence of the α factor from heat emission q, the factor is also greatly affected by the mass speed and steam content X with the growth of which α increases. The model of the flow explaining the effect of X upon α has been proposed. It has been found that convective heat emission under boiling of the vapour-water mixture in the channels is determined not only by the flow rate but by the amount of liquid in the flow and particular, by the amount of liquid setting at the heating surface
International Nuclear Information System (INIS)
Mukherjee, P.K.; Mishra, B.N.
1989-04-01
In the year 1980, the Department of Atomic Energy, (DAE), decided to set up a pilot plant for ammonia-water exchange process at Baroda. Based on basic data and information provided by DAE about basic process parameters such as flows, de uterium concentrations, temperatures, pressures, desired recovery effficiency etc, PDIL' s role included the following for the design and engineering of the pilot plant: (a) Process study for ammonia-water exchange system at an operating pressure of 20-30 Kg/Cm 2 and temperature in the range of 150-200degC. (b) Process study for ammonia-water rectification system to get water free ammonia in the overhead. (c) Process study of the ammonia-water stripping system for getting ammonia free water. Based on the above study a scheme has been prepared for a suitable sized pilot plant. This included the design and engineering of the pilot plant covering the above sections alongwith the piping, instruments, control and layout. The specifications for procurement of equipments and components including vendors' items were also prepared. The plant is totally independent of the fertilizer plant. (author)
Directory of Open Access Journals (Sweden)
S. Sheik Mansoor
2016-09-01
Full Text Available The kinetics of oxidation of methionine (Met by benzimidazolium fluorochromate (BIFC has been studied in the presence of chloroacetic acid. The reaction is first order with respect to methionine, BIFC and acid. The reaction rate has been determined at different temperatures and activation parameters calculated. With an increase in the mole fraction of acetic acid in its aqueous mixture, the rate increases. The solvent effect has been analyzed using the Kamlet’s multi parametric equation. A correlation of data with the Kamlet–Taft solvatochromic parameters (α, β, π∗ suggests that the specific solute–solvent interactions play a major role in governing the reactivity. The reaction does not induce polymerization of acrylonitrile. A suitable mechanism has been proposed.
Fongsatitkul, Prayoon; Elefsiniotis, Panagiotis; Wareham, David G
2010-09-01
This paper describes how the degradation of the organic fraction of municipal solid waste (OFMSW) is affected through codigestion with varying amounts of return activated sludge (RAS). Solid waste that had its inorganic fraction selectively removed was mixed with RAS in ratios of 100% OFMSW, 50% OFMSW/50% RAS, and 25% OFMSW/75% RAS. The total solids (TS) concentration was held at 8% and three anaerobic digester systems treating the mixtures were held (for the first run) at a total hydraulic retention time (HRT) of 28 days. Increasing amounts of RAS did not however improve the mixture's digestability, as indicated by little change and/or a drop in the main performance indices [including percentage volatile solids (VS) removal and specific gas production]. The optimum ratio in this research therefore appeared to be 100% OFMSW with an associated 85.1 ± 0.6% VS removal and 0.72 ± 0.01 L total gas g(- 1) VS. In the second run, the effect of increasing percentage of TS (8, 12% and 15%) at a system HRT of 28 days was observed to yield no improvement in the main performance indices (i.e. percentage VS removal and specific gas production). Finally, during the third run, variations in the total system HRT were investigated at an 8% TS, again using 100% OFMSW. Of the HRTs explored (23, 28 and 33 days), the longest HRT yielded the best performance overall, particularly in terms of specific gas production (0.77 ± 0.01 L total gas g(-1) VS).
Jamil, Norazaliza Mohd; Wang, Qi
2017-09-01
Renewable energy or biofuel from lignocellulosic biomass is an alternative way to replace the depleting fossil fuels. The production cost can be reduced by increasing the concentration of biomass particles. However, lignocellulosic biomass is a suspension of natural fibres, and processing at high solid concentration is a challenging task. Thus, understanding the factors that affect the rheology of biomass suspension is crucial in order to maximize the production at a minimum cost. Our aim was to develop a mathematical model for enzymatic hydrolysis of cellulose by combining three scales: the macroscopic flow field, the mesoscopic particle orientation, and the microscopic reactive kinetics. The governing equations for the flow field, particle stress, kinetic equations, and particle orientation were coupled and were simultaneously solved using a finite element method based software, COMSOL. One of the main results was the changes in rheology of biomass suspension were not only due to the decrease in volume fraction of particles, but also due the types of fibres. The results from the simulation model agreed qualitatively with the experimental findings. This approach has enables us to obtain better predictive capabilities, hence increasing our understanding on the behaviour of biomass suspension.
Simulation of solar-powered ammonia-water integrated hybrid cooling system
International Nuclear Information System (INIS)
Chinnappa, J.C.V.; Wijeysundera, N.E.
1992-01-01
A number of solar-operated air-conditioning systems based on the H 2 O-LiBr absorption chiller were built, installed, and monitored. A systematic study at the University of Colorado has been published. This paper presents a simple cost-benefit analysis of the conventional vapor compression system (VCS), the vapor absorption system (VAS), and the integrated hybrid system (IHS). The cost of energy input to the VAS and the IHS were compared with the energy cost of the VCS that these solar-powered systems replace. It was found that cost savings can be realized with solar-powered systems, only after a critical overall solar fraction is exceeded. Typically, this value was about 0.7 for a VAS and about 0.12 for a IHS. These cost-benefit results provided the motivation for a more detailed study of the IHS. There has also been other efforts in this direction
Energy Technology Data Exchange (ETDEWEB)
Heyse, Christoph; Stuerzebecher, Wolfgang [Tranter Solarice GmbH, Artern (Germany); Cibis, Dominik [Europaeische Studienakademie Kaelte-Klima-Lueftung, Maintal (Germany)
2012-07-01
The pursuit of the nations for more energy efficiency and environmentally friendly handling of nature and its resources is growing steadily. This new dimension of environmental awareness led to the fact that Germany has set the goal to become one of the most energy efficient and environmentally friendly economies of the world. Inter alia research and development in the areas of energy efficiency and renewable energy benefit from this. The meanwhile strongly forgotten potential of absorption chillers used for more than 150 years was due to rising energy costs and the rethinking in dealing with existing energy sources, newly discovered. The application of absorption chillers can be found everywhere, where a lot of heat is released unused into the environment. The implementation of the absorption refrigeration technology in power systems can have enormous energetic and thus ecological and economical benefits. Currently, mainly gas-fired cogeneration units whose main purpose is the generation of electricity can be used as heat sources. Particularly versatile is the application of NH{sub 3}-H{sub 2}O absorbers where heating temperatures are located at 100 Celsius and cooling temperatures up to -10 Celsius are needed, for example for air conditioning of buildings, cooling of food-stuff or for process cooling. The contribution under consideration reports on an overview of the working principle of ammonia water absorption chillers and presents various applications and uses in line with a combined power-heat-coldness coupling.
Mehrpooya, Mehdi; Dehghani, Hossein; Ali Moosavian, S. M.
2016-02-01
A combined system containing solid oxide fuel cell-gas turbine power plant, Rankine steam cycle and ammonia-water absorption refrigeration system is introduced and analyzed. In this process, power, heat and cooling are produced. Energy and exergy analyses along with the economic factors are used to distinguish optimum operating point of the system. The developed electrochemical model of the fuel cell is validated with experimental results. Thermodynamic package and main parameters of the absorption refrigeration system are validated. The power output of the system is 500 kW. An optimization problem is defined in order to finding the optimal operating point. Decision variables are current density, temperature of the exhaust gases from the boiler, steam turbine pressure (high and medium), generator temperature and consumed cooling water. Results indicate that electrical efficiency of the combined system is 62.4% (LHV). Produced refrigeration (at -10 °C) and heat recovery are 101 kW and 22.1 kW respectively. Investment cost for the combined system (without absorption cycle) is about 2917 kW-1.
International Nuclear Information System (INIS)
Plummer, L.N.; Busenberg, E.; McConnell, J.B.; Drenkard, S.; Schlosser, P.; Michel, R.L.
1998-01-01
The quality of water in the Upper Floridan aquifer near Valdosta, Georgia is affected locally by discharge of Withlacoochee River water through sinkholes in the river bed. Data on transient tracers and other dissolved substances, including Cl - , 3 H, tritiogenic helium-3 ( 3 He), chlorofluorocarbons (CFC-11, CFC-12, CFC-113), organic C (DOC), O 2 (DO), H 2 S, CH 4 , δ 18 O, δD, and 14 C were investigated as tracers of Withlacoochee River water in the Upper Floridan aquifer. The concentrations of all tracers were affected by dilution and mixing. Dissolved Cl - , δ 18 O, δD, CFC-12, and the quantity ( 3 H+ 3 He) are stable in water from the Upper Floridan aquifer, whereas DOC, DO, H 2 S, CH 4 , 14 C, CFC-11, and CFC-113 are affected by microbial degradation and other geochemical processes occurring within the aquifer. Groundwater mixing fractions were determined by using dissolved Cl - and δ 18 O data, recognizing 3 end-member water types in the groundwater mixtures: (1) Withlacoochee River water (δ 18 O=-2.5±0.3per thousand, Cl - =12.2±2 mg/l), (2) regional infiltration water (δ 18 O=-4.2±0.1per thousand, Cl - =2.3±0.1 mg/l), and (3) regional paleowater resident in the Upper Floridan aquifer (δ 18 O=-3.4±0.1per thousand, Cl - =2.6±0.1 mg/l) (uncertainties are ±1σ). Error simulation procedures were used to define uncertainties in mixing fractions. Fractions of river water in groundwater range from 0 to 72% and average 10%. The influence of river-water discharge on the quality of water in the Upper Floridan aquifer was traced from the sinkhole area on the Withlacoochee River 25 km SE in the direction of regional groundwater flow. Infiltration of water is most significant to the N and NW of Valdosta, but becomes negligible to the S and SE in the direction of general thickening of post-Eocene confining beds overlying the Upper Floridan aquifer. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)
Energy Technology Data Exchange (ETDEWEB)
Plummer, L.N.; Busenberg, E. [U.S. Geological Survey, 432 National Center, Reston, VA (United States); McConnell, J.B. [U.S. Geological Survey, 3039 Amwiler Rd., Atlanta, GA (United States); Drenkard, S.; Schlosser, P. [Lamont-Doherty Earth Observatory of Columbia University, 61 Route 9W, Palisades, NY (United States); Michel, R.L. [U.S. Geological Survey, Mail Stop 434, 345 Middlefield Road, Menlo Park, CA (United States)
1998-11-01
he quality of water in the Upper Floridan aquifer near Valdosta, Georgia is affected locally by discharge of Withlacoochee River water through sinkholes in the river bed. Data on transient tracers and other dissolved substances, including Cl{sup -}, {sup 3}H, tritiogenic helium-3 ({sup 3}He), chlorofluorocarbons (CFC-11, CFC-12, CFC-113), organic C (DOC), O{sub 2} (DO), H{sub 2}S, CH{sub 4}, {delta}{sup 18}O, {delta}D, and {sup 14}C were investigated as tracers of Withlacoochee River water in the Upper Floridan aquifer. The concentrations of all tracers were affected by dilution and mixing. Dissolved Cl{sup -}, {delta}{sup 18}O, {delta}D, CFC-12, and the quantity ({sup 3}H+{sup 3}He) are stable in water from the Upper Floridan aquifer, whereas DOC, DO, H{sub 2}S, CH{sub 4}, {sup 14}C, CFC-11, and CFC-113 are affected by microbial degradation and other geochemical processes occurring within the aquifer. Groundwater mixing fractions were determined by using dissolved Cl{sup -} and {delta}{sup 18}O data, recognizing 3 end-member water types in the groundwater mixtures: (1) Withlacoochee River water ({delta}{sup 18}O=-2.5{+-}0.3per thousand, Cl{sup -}=12.2{+-}2 mg/l), (2) regional infiltration water ({delta}{sup 18}O=-4.2{+-}0.1per thousand, Cl{sup -}=2.3{+-}0.1 mg/l), and (3) regional paleowater resident in the Upper Floridan aquifer ({delta}{sup 18}O=-3.4{+-}0.1per thousand, Cl{sup -}=2.6{+-}0.1 mg/l) (uncertainties are {+-}1{sigma}). Error simulation procedures were used to define uncertainties in mixing fractions. Fractions of river water in groundwater range from 0 to 72% and average 10%. The influence of river-water discharge on the quality of water in the Upper Floridan aquifer was traced from the sinkhole area on the Withlacoochee River 25 km SE in the direction of regional groundwater flow. Infiltration of water is most significant to theN and NW of Valdosta, but becomes negligible to the S and SE in the direction of general thickening of post-Eocene confining
Asphalt chemical fractionation
International Nuclear Information System (INIS)
Obando P, Klever N.
1998-01-01
Asphalt fractionation were carried out in the Esmeraldas Oil Refinery using n-pentane, SiO 2 and different mixture of benzene- methane. The fractions obtained were analyzed by Fourier's Transformed Infrared Spectrophotometry (FTIR)
DEFF Research Database (Denmark)
Jensen, Jonas Kjær; Ommen, Torben Schmidt; Markussen, Wiebke Brix
2016-01-01
District heating (DH) can reduce the primary energy consumption in urban areas with significant heat demands. The design of a serially connected ammonia-water hybrid absorption-compression heat pump system was investigated for operation in the Greater Copenhagen DH network in Denmark, in order...... to supply 7.2 MW heat at 85 °C utilizing a geothermal heat source at 73 °C. Both the heat source and heat sink experience a large temperature change over the heat transfer process, of which a significant part may be achieved by direct heat exchange. First a generic study with a simple representation...
Gomis Yagües, Vicente; Pedraza Berenguer, Ricardo; Saquete Ferrándiz, María Dolores; Font, Alicia; Garcia-Cano, Jorge
2015-01-01
Various hydrocarbons (n-hexane, cyclohexane, toluene, isooctane) and mixtures of them (binary, ternary or quaternary), as well as two different types of industrially produced naphtha (one obtained by direct distillation and the other from a catalytic cracking process), have been tested as candidate entrainers to dehydrate ethanol. The tests were carried out in an azeotropic distillation column on a semi pilot plant. The results show that it is possible to dehydrate bioethanol using naphtha as...
International Nuclear Information System (INIS)
Wykes, J.S.; Adsley, I.
1978-01-01
The condition of a coal rock mixture on a band conveyor is analyzed. With the help of a scintillation crystal sensor, natural gamma radiation of the mineral materials is realized as an electric signal, which is characteristic for the intensity of the sensed radiation. The corresponding electric circuit contains a further measuring point that measures the total weight of the material with a band balance. Both signals are transported to a central control of a loading station. (DG) [de
Energy Technology Data Exchange (ETDEWEB)
Prucole, Elisia S.; Henriques, Fernanda P.; Silva, Leandro M.; Touma, Silvia L. [PETROBRAS S.A., Rio de de Janeiro, RJ (Brazil)
2008-07-01
The remarkable increase in production and processing of national heavy oils is a scenario in which the deposition problem of heavy oil fractions is important, leading to huge losses, not only in economical terms but also in regard to environmental aspects, and can occur in practically all areas of the oil industry. Thus, the knowledge about technology concerning this subject is essential. In terms of heavy fractions, the asphaltenes are the heaviest components of oil and have propensity to aggregate, flocculate, precipitate and be adsorbed on surfaces. The difficulties for modeling the behavior of asphaltenes phases occur because of the high uncertainties which take in the current knowledge about the asphaltenes, their structures, flocculation and precipitation mechanisms and the phenomenon reversibility. The main goal of this work is to propose a predictive methodology for oils compatibility. A fuzzy classifier was implemented in order to predict the compatibility of oil mixtures, assessing whether the mixture condition is stable or not. The results were satisfactory, indicating a good predictive power of the proposed computational tool. (author)
International Nuclear Information System (INIS)
Hartmann, K.
1979-05-01
If the feed-breed-particle system is employed the Head-End of the reprocessing of HTR-fuel elements requires another separation step, the so called feed-breed separation. In this report a dry-mechanical procedure is described for separating a mixture consisting of unirradiated TRISO-feed and BISO-breed particles, matrix carbon, and broken kernels and hulls by a combination of a zigzag pneumatic classifier with a magnetic separator. The feed and breed crossover rates are less than 1 percent. Furthermore, measurements of the susceptibilities of the following materials have been carried out with the magnetic separator: unirradiated feed and breed particles and unbroken kernels, feed and breed kernels with a simulated burn-up, irradiated UO 2 -kernels (80% fifa). The results show that UO 2 -kernels keep their paramagnetic character if irradiated and that the difference between the susceptibilities of feed and breed kernels is sufficient for a complete magnetic separation. In addition, a procedure is proposed for separating a mixture of TRISO-feed and TRISO-breed particles and the average particle diameter is assessed which can be expected to give the best separation by the zigzag pneumatic classifier. (orig.) [de
Nascimento, Paulo Cicero; Gobo, Luciana Assis; Bohrer, Denise; Carvalho, Leandro Machado; Cravo, Margareth Coutinho; Leite, Leni Figueiredo Mathias
2015-12-01
Liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization was used for the determination of polycyclic aromatic hydrocarbon derivatives, the oxygenated polycyclic aromatic hydrocarbons and nitrated polycyclic aromatic hydrocarbons, formed in asphalt fractions. Two different methods have been developed for the determination of five oxygenated and seven nitrated polycyclic aromatic hydrocarbons that are characterized by having two or more condensed aromatic rings and present mutagenic and carcinogenic properties. The parameters of the atmospheric pressure chemical ionization interface were optimized to obtain the highest possible sensitivity for all compounds. The detection limits of the methods ranged from 0.1 to 57.3 μg/L for nitrated and from 0.1 to 6.6 μg/L for oxygenated derivatives. The limits of quantification were in the range of 4.6-191 μg/L for nitrated and 0.3-8.9 μg/L for oxygenated derivatives. The methods were validated against a diesel particulate extract standard reference material (National Institute of Standards and Technology SRM 1975), and the obtained concentrations (two nitrated derivatives) agreed with the certified values. The methods were applied in the analysis of asphalt samples after their fractionation into asphaltenes and maltenes, according to American Society for Testing and Material D4124, where the maltenic fraction was further separated into its basic, acidic, and neutral parts following the method of Green. Only two nitrated derivatives were found in the asphalt sample, quinoline and 2-nitrofluorene, with concentrations of 9.26 and 2146 mg/kg, respectively, whereas no oxygenated derivatives were detected. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bogan, Bill W; Beardsley, Kate E; Sullivan, Wendy R; Hayes, Thomas D; Soni, Bhupendra K
2005-01-01
Studies were conducted to examine the mobility and bioavailability to earthworms (Eisenia fetida) of priority pollutant polycyclic aromatic hydrocarbons (PAH) in a suite of 11 soils and soil/lampblack mixtures obtained from former manufactured-gas plant sites. Contaminant mobility was assessed using XAD4 resins encapsulated in dialysis tubing, which were exposed to slurried soils for 15 d. These experiments showed that mobility of PAH in the different soils strongly correlated to the levels of volatile hydrocarbons (namely, gasoline- and diesel-range organics [GRO and DRO]) that existed in the soils as co-contaminants. Actual PAH bioavailability (as measured by earthworm PAH concentrations) also appeared to depend on GRO + DRO levels, although this was most evident at high levels of these contaminants. These findings are discussed in view of the effects of dieselrange organics on oil viscosity, assuming that the hydrocarbon contaminants in these soils exist in the form of distinct adsorbed oil phases. This study, therefore, extends correlations between carrier-oil viscosity and dissolved solute bioavailability, previously observed in a number of other in vitro and whole-organism tests (and in bacterial mutagenicity studies in soil), to multicellular organisms inhabiting contaminated-soil systems.
Menendez-Miranda, Mario; Fernandez-Arguelles, Maria T; Costa-Fernandez, Jose M; Encinar, Jorge Ruiz; Sanz-Medel, Alfredo
2014-08-11
Separation and identification of nanoparticles of different composition, with similar particle diameter, coexisting in heterogeneous suspensions of polymer-coated CdSe/ZnS quantum dots (QDs) have been thoroughly assessed by asymmetric flow field-flow fractionation (AF4) coupled on-line to fluorescence and inductively coupled plasma mass spectrometry (ICPMS) detectors. Chemical characterization of any previously on-line separated nanosized species was achieved by the measurement of the elemental molar ratios of every element involved in the synthesis of the QDs, using inorganic standards and external calibration by flow injection analysis (FIA). Such elemental molar ratios, strongly limited so far to pure single nanoparticles suspensions, have been achieved with adequate accuracy by coupling for the first time an ICP-QQQ instrument to an AF4 system. This hyphenation turned out to be instrumental to assess the chemical composition of the different populations of nanoparticles coexisting in the relatively complex mixtures, due to its capabilities to detect the hardly detectable elements involved in the synthesis. Interestingly such information, complementary to that obtained by fluorescence, was very valuable to detect and identify unexpected nanosized species, present at significant level, produced during QDs synthesis and hardly detectable by standard approaches. Copyright © 2014. Published by Elsevier B.V.
International Nuclear Information System (INIS)
Menendez-Miranda, Mario; Fernandez-Arguelles, Maria T.; Costa-Fernandez, Jose M.; Encinar, Jorge Ruiz; Sanz-Medel, Alfredo
2014-01-01
Highlights: • The hyphenated system allows unequivocal identification of nanoparticle populations. • AF4 separation permitted detection of unexpected nanosized species in a sample. • ICP-QQQ provides elemental ratios with adequate accuracy in every nanoparticle. • Purity and chemical composition of different quantum dot samples were assessed. - Abstract: Separation and identification of nanoparticles of different composition, with similar particle diameter, coexisting in heterogeneous suspensions of polymer-coated CdSe/ZnS quantum dots (QDs) have been thoroughly assessed by asymmetric flow field-flow fractionation (AF4) coupled on-line to fluorescence and inductively coupled plasma mass spectrometry (ICPMS) detectors. Chemical characterization of any previously on-line separated nanosized species was achieved by the measurement of the elemental molar ratios of every element involved in the synthesis of the QDs, using inorganic standards and external calibration by flow injection analysis (FIA). Such elemental molar ratios, strongly limited so far to pure single nanoparticles suspensions, have been achieved with adequate accuracy by coupling for the first time an ICP-QQQ instrument to an AF4 system. This hyphenation turned out to be instrumental to assess the chemical composition of the different populations of nanoparticles coexisting in the relatively complex mixtures, due to its capabilities to detect the hardly detectable elements involved in the synthesis. Interestingly such information, complementary to that obtained by fluorescence, was very valuable to detect and identify unexpected nanosized species, present at significant level, produced during QDs synthesis and hardly detectable by standard approaches
Energy Technology Data Exchange (ETDEWEB)
Klyusov, A A; Bakshutov, V S; Kulyavtsev, V A
1980-10-23
A grouting mixture is proposed for low-temperature boreholes. The mixture contains cement, beta gypsum polyhydrate, and calcium chloride, so as to increase the water resistance and strength properties of expanding brick at conditions from 20 to -5/sup 0/ C, the components are in the following ratios: (by wt.-%): cement, 77.45-88.06; beta gypsum polyhydrate, 9.79-19.36; calcium chloride, 2.15-3.19. Grouting mortar for cold boreholes serves as the cement.
Determinant of flexible Parametric Estimation of Mixture Cure ...
African Journals Online (AJOL)
PROF. OLIVER OSUAGWA
2015-12-01
Dec 1, 2015 ... Suitability of four parametric mixture cure models were considered namely; Log .... regression analysis which relies on the ... The parameter of mixture cure fraction model was ..... Stochastic Models of Tumor Latency and Their.
Maria Klimikova
2010-01-01
Understanding the reasons of the present financial problems lies In understanding the substance of fractional reserve banking. The substance of fractional banking is in lending more money than the bankers have. Banking of partial reserves is an alternative form which links deposit banking and credit banking. Fractional banking is causing many unfavorable economic impacts in the worldwide system, specifically an inflation.
Povstenko, Yuriy
2015-01-01
This book is devoted to fractional thermoelasticity, i.e. thermoelasticity based on the heat conduction equation with differential operators of fractional order. Readers will discover how time-fractional differential operators describe memory effects and space-fractional differential operators deal with the long-range interaction. Fractional calculus, generalized Fourier law, axisymmetric and central symmetric problems and many relevant equations are featured in the book. The latest developments in the field are included and the reader is brought up to date with current research. The book contains a large number of figures, to show the characteristic features of temperature and stress distributions and to represent the whole spectrum of order of fractional operators. This work presents a picture of the state-of-the-art of fractional thermoelasticity and is suitable for specialists in applied mathematics, physics, geophysics, elasticity, thermoelasticity and engineering sciences. Corresponding sections of ...
Nicol, Malcolm; Johnson, Mary; Boone, Steven; Cynn, Hyunchee
1987-01-01
Several studies relative to high pressure cosmochemistry of major planetary interiors are summarized. The behavior of gas-ice mixtures at very high pressures, studies of the phase diagram of (NH3) sub x (H2O) sub 1-x at pressures to 5GPa and temperatures from 240 to 370 K, single crystal growth of ammonia dihydrate at room temperature in order to determine their structures by x-ray diffraction, spectroscopy of chemical reactions during shock compression in order to evaluate how the reactions affect the interpretation of equation of state data obtained by shock methods, and temperature and x-ray diffraction measurements made on resistively heated wire in diamond anvil cells in order to obtain phase and structural data relevant to the interiors of terrestrial planets are among the studies discussed.
Shear viscosity of liquid mixtures: Mass dependence
International Nuclear Information System (INIS)
Kaushal, Rohan; Tankeshwar, K.
2002-06-01
Expressions for zeroth, second, and fourth sum rules of transverse stress autocorrelation function of two component fluid have been derived. These sum rules and Mori's memory function formalism have been used to study shear viscosity of Ar-Kr and isotopic mixtures. It has been found that theoretical result is in good agreement with the computer simulation result for the Ar-Kr mixture. The mass dependence of shear viscosity for different mole fraction shows that deviation from ideal linear model comes even from mass difference in two species of fluid mixture. At higher mass ratio shear viscosity of mixture is not explained by any of the emperical model. (author)
Shear viscosity of liquid mixtures Mass dependence
Kaushal, R
2002-01-01
Expressions for zeroth, second, and fourth sum rules of transverse stress autocorrelation function of two component fluid have been derived. These sum rules and Mori's memory function formalism have been used to study shear viscosity of Ar-Kr and isotopic mixtures. It has been found that theoretical result is in good agreement with the computer simulation result for the Ar-Kr mixture. The mass dependence of shear viscosity for different mole fraction shows that deviation from ideal linear model comes even from mass difference in two species of fluid mixture. At higher mass ratio shear viscosity of mixture is not explained by any of the emperical model.
International Nuclear Information System (INIS)
Saminadayar, L.
2001-01-01
20 years ago fractional charges were imagined to explain values of conductivity in some materials. Recent experiments have proved the existence of charges whose value is the third of the electron charge. This article presents the experimental facts that have led theorists to predict the existence of fractional charges from the motion of quasi-particles in a linear chain of poly-acetylene to the quantum Hall effect. According to the latest theories, fractional charges are neither bosons nor fermions but anyons, they are submitted to an exclusive principle that is less stringent than that for fermions. (A.C.)
International Nuclear Information System (INIS)
Lamouroux, Christine; You, Dominique; Plancque, Gabriel; Roy, Marc; Laire, Charles; Schnongs, Philippe
2012-09-01
NH 3 concentrations and moisture fractions. At 100 deg. C a decrease of the pH becomes possible if the NH 3 concentration is lower than 1 ppm and for moisture fractions as low as 10 -2 %. However, the acetate concentration may increase during the PAA addition and must be monitored in the SG. (authors)
International Nuclear Information System (INIS)
Jackiw, R.; Massachusetts Inst. of Tech., Cambridge; Massachusetts Inst. of Tech., Cambridge
1984-01-01
The theory of fermion fractionization due to topologically generated fermion ground states is presented. Applications to one-dimensional conductors, to the MIT bag, and to the Hall effect are reviewed. (author)
International Nuclear Information System (INIS)
Springer, D.L.
1987-01-01
The objective of the project is to identify potential adverse biological activities associated with human exposures to complex organic mixtures (COM) from energy-related industries. Studies to identify the influence of chemical class fractions from a COM on the initiating activity of a known carcinogen, benzo(a)pyrene (BaP), demonstrated that the polycyclic aromatic hydrocarbons (PAH) and nitrogen-containing polycyclic aromatic compound (NPAC) fractions were the most effective inhibitors of initiation. In an effort to determine the contribution of BaP to the initiating activity of the COM, binding of radiolabeled BaP to mouse skin DNA was measured. Results indicated that binding of BaP to DNA decreased in the presence of the COM so that at initiating COM doses, BaP binding was near the limit detection. Addition of unlabeled BaP to the COM at an amount similar to that originally present in the COM did not significantly increase the binding. Studies to determine the rates of disappearance of carcinogenic PAH from the site of application on the skin indicated that half-lives for PAH differed by a factor of about 2. Analytical methods developed to identify PAH from COM which covalently bind to DNA demonstrated that the lower level of detection is approximately 200 picograms. Developmental studies demonstrated that both pregnant rats and mice treated dermally with a high-boiling COM developed fetuses with major malformations including cleft palate, small lungs, edema, and sagittal suture hemorrhages. 3 figures, 5 tables
Galand, Quentin; Van Vaerenbergh, Stéfan
2015-04-01
This paper provides the molecular diffusion and Soret coefficients of the ternary system 1,2,3,4-tetrahydronaphtalene, isobutylbenzene, n -dodecane system at mass fractions 0.8-0.1-0.1 and temperature 25 (°)C for implementation into the benchmark presented in this topical issue. The Soret coefficients are determined by digital interferometry using the data of DSC-DCMIX microgravity experiment. The method used takes into account the influence of the thermal field on the Soret separations and the selection of the image processing techniques results in reproducible Soret coefficients.The diffusion coefficients are obtained by the Open Ended Capillary technique The fitting of the data collected through a set of two complementary experimental runs allows retrieving the four Fickian diffusion coefficients.
Bhattacharyya, Sonalee; Namakshi, Nama; Zunker, Christina; Warshauer, Hiroko K.; Warshauer, Max
2016-01-01
Making math more engaging for students is a challenge that every teacher faces on a daily basis. These authors write that they are constantly searching for rich problem-solving tasks that cover the necessary content, develop critical-thinking skills, and engage student interest. The Mystery Fraction activity provided here focuses on a key number…
Adsorption on mixtures of ion exchangers
International Nuclear Information System (INIS)
Triolo, R.; Lietzke, M.H.
1979-01-01
A theoretical study has been made of adsorption on mixtures of ion exchangers. The effect of variables such as the concentration of the ion being adsorbed, the concentration of the supporting electrolyte, loading, the values of the capacities and equilibrium constants for the various exchange processes, and the fraction of each adsorber in the mixture on the observed distribution coefficient has been investigated. A computer program has been written to facilitate the calculation of distribution coefficients for the adsorption of an ion on a given mixture of ion exchangers under a specified set of conditions
A review of recent research on the use of zeotropic mixtures in power generation systems
International Nuclear Information System (INIS)
Modi, Anish; Haglind, Fredrik
2017-01-01
Highlights: • Review of studies using mixture organic Rankine cycle, ammonia-water Rankine cycle, Kalina cycle. • Literature sorted based on the application (solar, geothermal, waste heat, generic). • Key operating conditions and mixture components listed for quick overview. • General conclusions drawn from state-of-the-art and provided possible future directions for research. - Abstract: The use of zeotropic fluid mixtures in refrigeration cycles and heat pumps has been widely studied in the last three decades or so. However it is only in the past few years that the use of zeotropic mixtures in power generation applications has been analysed in a large number of studies, mostly with low grade heat as the energy source. This paper presents a review of the recent research on power cycles with zeotropic mixtures as the working fluid. The available literature primarily discusses the thermodynamic performance of the mixture power cycles through energy and exergy analyses but there are some studies which also consider the economic aspects through the investigation of capital investment costs or through a thermoeconomic analysis. The reviewed literature in this paper is divided based on the various applications such as solar energy based power systems, geothermal heat based power systems, waste heat recovery power systems, or generic studies. The fluid mixtures used in the various studies are listed along with the key operation parameters and the scale of the power plant. In order to limit the scope of the review, only the studies with system level analysis of various power cycles are considered. An overview of the key trends and general conclusions from the various studies and some possible directions for future research are also presented.
Fraction Reduction through Continued Fractions
Carley, Holly
2011-01-01
This article presents a method of reducing fractions without factoring. The ideas presented may be useful as a project for motivated students in an undergraduate number theory course. The discussion is related to the Euclidean Algorithm and its variations may lead to projects or early examples involving efficiency of an algorithm.
Directory of Open Access Journals (Sweden)
Giovani Levi Sant'Anna
2003-08-01
Full Text Available O conhecimento do módulo de resiliência dos solos de subleito e dos materiais que compõem as camadas de pavimentos rodoviários é obrigatório para uma análise eficiente de seu comportamento estrutural como um todo. Devido à importância dos materiais granulares como constituintes de camadas de pavimentos rodoviários flexíveis, tem-se evidenciado maior interesse em abordar a sua resposta resiliente e de misturas estabilizadas quimicamente obtidas a partir destes, procurando conhecer o seu comportamento mecânico, sob a ação de cargas repetidas, quando constituintes do pavimento de estradas florestais. Buscou-se, com a realização deste trabalho, identificar o módulo de resiliência de um solo arenoso comum na região de Viçosa-MG, em seu estado natural e quando estabilizado com cal e alcatrão, e propor correlações empíricas entre este e outros parâmetros geotécnicos de fácil obtenção em laboratório.Understanding the resilient modulus (M R of the sub-grade soils and materials composing the layers of road pavements is crucial for an efficient analysis of their structural behavior as a whole. Due to the importance of the granular materials as layers of flexible road pavements, it has been a practice to determine their resilient response and that of their chemically stabilized mixtures in order to understand their mechanical behavior under repeated loads when used as layers of forest road pavement. This work was conducted to identify the geotechnical and resilient properties of a sandy soil in the county of Viçosa-MG, in its natural state and after stabilization with lime and tar and to propose empirical correlations between the resilient modulus of these materials and geotechnical parameters easily determined from laboratory testing data.
Sinha, B K; Pal, Manisha; Das, P
2014-01-01
The book dwells mainly on the optimality aspects of mixture designs. As mixture models are a special case of regression models, a general discussion on regression designs has been presented, which includes topics like continuous designs, de la Garza phenomenon, Loewner order domination, Equivalence theorems for different optimality criteria and standard optimality results for single variable polynomial regression and multivariate linear and quadratic regression models. This is followed by a review of the available literature on estimation of parameters in mixture models. Based on recent research findings, the volume also introduces optimal mixture designs for estimation of optimum mixing proportions in different mixture models, which include Scheffé’s quadratic model, Darroch-Waller model, log- contrast model, mixture-amount models, random coefficient models and multi-response model. Robust mixture designs and mixture designs in blocks have been also reviewed. Moreover, some applications of mixture desig...
Distributed-order fractional diffusions on bounded domains
Meerschaert, Mark M.; Nane, Erkan; Vellaisamy, P.
2011-01-01
In a fractional Cauchy problem, the usual first order time derivative is replaced by a fractional derivative. The fractional derivative models time delays in a diffusion process. The order of the fractional derivative can be distributed over the unit interval, to model a mixture of delay sources. In this paper, we provide explicit strong solutions and stochastic analogues for distributed-order fractional Cauchy problems on bounded domains with Dirichlet boundary conditions. Stochastic solutio...
Rowlinson, J S; Baldwin, J E; Buckingham, A D; Danishefsky, S
2013-01-01
Liquids and Liquid Mixtures, Third Edition explores the equilibrium properties of liquids and liquid mixtures and relates them to the properties of the constituent molecules using the methods of statistical thermodynamics. Topics covered include the critical state, fluid mixtures at high pressures, and the statistical thermodynamics of fluids and mixtures. This book consists of eight chapters and begins with an overview of the liquid state and the thermodynamic properties of liquids and liquid mixtures, including vapor pressure and heat capacities. The discussion then turns to the thermodynami
Variable Weight Fractional Collisions for Multiple Species Mixtures
2017-08-28
Rarefied Kinetic Flow 2 Preionization Chemistry - CR-Excitation/Ionization 3 Driver Pulse - Ionization+ Electromagnetics 4 Field Reversal - Magnetic...Ionization 3 Driver Pulse - Ionization+ Electromagnetics 4 Field Reversal - Magnetic Reconnection 5 Plasmoid Ejection -~j× ~B, Neutral Entrainment Continuous...Preionization Chemistry - CR-Excitation/Ionization 3 Driver Pulse - Ionization+ Electromagnetics 4 Field Reversal - Magnetic Reconnection 5 Plasmoid Ejection
Fractional vector calculus for fractional advection dispersion
Meerschaert, Mark M.; Mortensen, Jeff; Wheatcraft, Stephen W.
2006-07-01
We develop the basic tools of fractional vector calculus including a fractional derivative version of the gradient, divergence, and curl, and a fractional divergence theorem and Stokes theorem. These basic tools are then applied to provide a physical explanation for the fractional advection-dispersion equation for flow in heterogeneous porous media.
Fractional Schroedinger equation
International Nuclear Information System (INIS)
Laskin, Nick
2002-01-01
Some properties of the fractional Schroedinger equation are studied. We prove the Hermiticity of the fractional Hamilton operator and establish the parity conservation law for fractional quantum mechanics. As physical applications of the fractional Schroedinger equation we find the energy spectra of a hydrogenlike atom (fractional 'Bohr atom') and of a fractional oscillator in the semiclassical approximation. An equation for the fractional probability current density is developed and discussed. We also discuss the relationships between the fractional and standard Schroedinger equations
Bergstra, Jan A.
2015-01-01
In the context of an involutive meadow a precise definition of fractions is formulated and on that basis formal definitions of various classes of fractions are given. The definitions follow the fractions as terms paradigm. That paradigm is compared with two competing paradigms for storytelling on fractions: fractions as values and fractions as pairs.
Communication: Modeling electrolyte mixtures with concentration dependent dielectric permittivity
Chen, Hsieh; Panagiotopoulos, Athanassios Z.
2018-01-01
We report a new implicit-solvent simulation model for electrolyte mixtures based on the concept of concentration dependent dielectric permittivity. A combining rule is found to predict the dielectric permittivity of electrolyte mixtures based on the experimentally measured dielectric permittivity for pure electrolytes as well as the mole fractions of the electrolytes in mixtures. Using grand canonical Monte Carlo simulations, we demonstrate that this approach allows us to accurately reproduce the mean ionic activity coefficients of NaCl in NaCl-CaCl2 mixtures at ionic strengths up to I = 3M. These results are important for thermodynamic studies of geologically relevant brines and physiological fluids.
Directory of Open Access Journals (Sweden)
Moysés Calixto Junior
2011-07-01
Full Text Available It was aimed to evaluate the ruminal degradability, and the fractioning of carbohydrates, as well as of the nitrogen fractions of triticale silages in singular culture or in mixtures with oats and/or legumes. The treatments had been: triticale silage (X. Triticosecale Wittimack (ST; triticale silage + forage pea (Pisum arvense (STE; triticale silage + oats (Avena strigosa Scheb + forage pea + vetch (Vicia sativa (STAE. Three castrated bovine Prim’Holstein males had been used, with average live weight of 300 kg, having ruminal cannulas. The incubation times had duration of 0, 6, 12, 24, 48, 72 and 96 hours. Fractions, a, c and ED of the DM of STAE silage was higher (30,33; 0,026 and 45,45% than others silages. Fraction b of the DM of ST silage was higher (58,45% than STE silages (45,36% and STAE (44,37%. In CP the ST silage presented higher fraction (72.12%. For the potentially degradability fraction (b of CP it was not observed difference among treatments. The degradation rate (c of the CP was higher for STE silage (0.063% than ST ensilage (0,012%, however this was similar to the STAE (0,045%. ED of CP was better for STE silage (77,71%. ST silage presented fraction a and b for NDF highest (8,62 and 81,99% than others silages. The degradation rate (c of NDF was higher for STAE (0,027%. ED for NDF did not present difference among treatments. ST silage presented the best values for the total carbohydrates (83,97% than STE (79,87% and STAE silages (76,77%. STE and STAE silages presented better DM degradability and suggest to be a potential source of non degradable protein in the rumen. The exclusive triticale silage revealed superior with regard to the degradability of fiber fraction, also presenting higher amount of total carbohydrates potentially degraded.O objetivo desse trabalho foi avaliar a degradabilidade ruminal, e o fracionamento de carboidratos, assim como das frações nitrogenadas das silagens de triticale em plantio singular ou em
Relationship between surface tension and refractive index in binary non-electrolyte mixtures
International Nuclear Information System (INIS)
Acevedo, I.L.; Pedrosa, G.C.; Katz, M.
1990-01-01
Lorentz-Lorenz equation for molecular refraction has been combined with Sugden's parachor equation for binary non-electrolyte mixtures at 298.15 K. The obtained equation has been shown successful in calculating values of surface tensions, by measuring refractive indices of the binary mixtures at the same mole fractions. The estimated error decreases when the mixtures present possible isorefractives. (Author) [es
psychrometry: from partial pressures to mole fractions
African Journals Online (AJOL)
ES Obe
1980-03-01
Mar 1, 1980 ... as an ideal gas mixture. Partial pressures then become identical: to mole fractions and sets of psychometric parameters result from rather elementary thermodynamic relations. Search for more accurate data has long led to the realization that neither dry air nor pure water vapour behaves like an ideal gas,.
Perception of trigeminal mixtures.
Filiou, Renée-Pier; Lepore, Franco; Bryant, Bruce; Lundström, Johan N; Frasnelli, Johannes
2015-01-01
The trigeminal system is a chemical sense allowing for the perception of chemosensory information in our environment. However, contrary to smell and taste, we lack a thorough understanding of the trigeminal processing of mixtures. We, therefore, investigated trigeminal perception using mixtures of 3 relatively receptor-specific agonists together with one control odor in different proportions to determine basic perceptual dimensions of trigeminal perception. We found that 4 main dimensions were linked to trigeminal perception: sensations of intensity, warmth, coldness, and pain. We subsequently investigated perception of binary mixtures of trigeminal stimuli by means of these 4 perceptual dimensions using different concentrations of a cooling stimulus (eucalyptol) mixed with a stimulus that evokes warmth perception (cinnamaldehyde). To determine if sensory interactions are mainly of central or peripheral origin, we presented stimuli in a physical "mixture" or as a "combination" presented separately to individual nostrils. Results showed that mixtures generally yielded higher ratings than combinations on the trigeminal dimensions "intensity," "warm," and "painful," whereas combinations yielded higher ratings than mixtures on the trigeminal dimension "cold." These results suggest dimension-specific interactions in the perception of trigeminal mixtures, which may be explained by particular interactions that may take place on peripheral or central levels. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Detonation velocity in poorly mixed gas mixtures
Prokhorov, E. S.
2017-10-01
The technique for computation of the average velocity of plane detonation wave front in poorly mixed mixture of gaseous hydrocarbon fuel and oxygen is proposed. Here it is assumed that along the direction of detonation propagation the chemical composition of the mixture has periodic fluctuations caused, for example, by layered stratification of gas charge. The technique is based on the analysis of functional dependence of ideal (Chapman-Jouget) detonation velocity on mole fraction (with respect to molar concentration) of the fuel. It is shown that the average velocity of detonation can be significantly (by more than 10%) less than the velocity of ideal detonation. The dependence that permits to estimate the degree of mixing of gas mixture basing on the measurements of average detonation velocity is established.
Fractional Vector Calculus and Fractional Special Function
Li, Ming-Fan; Ren, Ji-Rong; Zhu, Tao
2010-01-01
Fractional vector calculus is discussed in the spherical coordinate framework. A variation of the Legendre equation and fractional Bessel equation are solved by series expansion and numerically. Finally, we generalize the hypergeometric functions.
Iterative Mixture Component Pruning Algorithm for Gaussian Mixture PHD Filter
Directory of Open Access Journals (Sweden)
Xiaoxi Yan
2014-01-01
Full Text Available As far as the increasing number of mixture components in the Gaussian mixture PHD filter is concerned, an iterative mixture component pruning algorithm is proposed. The pruning algorithm is based on maximizing the posterior probability density of the mixture weights. The entropy distribution of the mixture weights is adopted as the prior distribution of mixture component parameters. The iterative update formulations of the mixture weights are derived by Lagrange multiplier and Lambert W function. Mixture components, whose weights become negative during iterative procedure, are pruned by setting corresponding mixture weights to zeros. In addition, multiple mixture components with similar parameters describing the same PHD peak can be merged into one mixture component in the algorithm. Simulation results show that the proposed iterative mixture component pruning algorithm is superior to the typical pruning algorithm based on thresholds.
International Nuclear Information System (INIS)
Wang, Lipu; Han, Kewei; Xia, Shuqian; Ma, Peisheng; Yan, Fangyou
2014-01-01
Highlights: • A high-pressure view cell was used to measure the critical properties of mixtures. • Three binary mixtures’ and three ternary mixtures’ critical properties were reported. • The experimental data of each system covered the whole mole fraction range. • The critical properties of the ternary mixtures were predicted with the PR–WS model. • Empirical equations were used to correlate the experimental results. - Abstract: The critical properties of three binary mixtures and three ternary mixtures containing gasoline additives (including methanol + 1-propanol, heptane + ethanol, heptane + 1-propanol, methanol + 1-propanol + heptane, methanol + 1-propanol + methyl tert-butyl ether (MTBE), and ethanol + heptane + MTBE) were determined by a high-pressure cell. All the critical lines of binary mixtures belong to the type I described by Scott and van Konynenburg. The system of methanol + 1-propanol showed little non-ideal behavior due to their similar molecular structures. The heptane + ethanol and heptane + 1-propanol systems showed visible non-ideal behavior for their great differences in molecular structure. The Peng–Robinson equation of state combined with the Wong–Sandler mixing rule (PR–WS) was applied to correlate the critical properties of binary mixtures. The critical points of the three ternary mixtures were predicted by the PR–WS model with the binary interaction parameters using the procedure proposed by Heidemann and Khalil. The predicted critical temperatures were in good agreement with the experimental values, while the predicted critical pressures differed from the measured values. The experimental values of binary mixtures were fitted well with the Redlich–Kister equation. The critical properties of ternary mixtures were correlated with the Cibulka’s equation, and the critical surfaces were plotted using the Cibulka’s equations
Laskin, Nick
2018-01-01
Fractional quantum mechanics is a recently emerged and rapidly developing field of quantum physics. This is the first monograph on fundamentals and physical applications of fractional quantum mechanics, written by its founder. The fractional Schrödinger equation and the fractional path integral are new fundamental physical concepts introduced and elaborated in the book. The fractional Schrödinger equation is a manifestation of fractional quantum mechanics. The fractional path integral is a new mathematical tool based on integration over Lévy flights. The fractional path integral method enhances the well-known Feynman path integral framework. Related topics covered in the text include time fractional quantum mechanics, fractional statistical mechanics, fractional classical mechanics and the α-stable Lévy random process. The book is well-suited for theorists, pure and applied mathematicians, solid-state physicists, chemists, and others working with the Schrödinger equation, the path integral technique...
Fractional vector calculus and fractional Maxwell's equations
International Nuclear Information System (INIS)
Tarasov, Vasily E.
2008-01-01
The theory of derivatives and integrals of non-integer order goes back to Leibniz, Liouville, Grunwald, Letnikov and Riemann. The history of fractional vector calculus (FVC) has only 10 years. The main approaches to formulate a FVC, which are used in the physics during the past few years, will be briefly described in this paper. We solve some problems of consistent formulations of FVC by using a fractional generalization of the Fundamental Theorem of Calculus. We define the differential and integral vector operations. The fractional Green's, Stokes' and Gauss's theorems are formulated. The proofs of these theorems are realized for simplest regions. A fractional generalization of exterior differential calculus of differential forms is discussed. Fractional nonlocal Maxwell's equations and the corresponding fractional wave equations are considered
Fractional statistics and fractional quantized Hall effect
International Nuclear Information System (INIS)
Tao, R.; Wu, Y.S.
1985-01-01
The authors suggest that the origin of the odd-denominator rule observed in the fractional quantized Hall effect (FQHE) may lie in fractional statistics which govern quasiparticles in FQHE. A theorem concerning statistics of clusters of quasiparticles implies that fractional statistics do not allow coexistence of a large number of quasiparticles at fillings with an even denominator. Thus, no Hall plateau can be formed at these fillings, regardless of the presence of an energy gap. 15 references
Feasibility study for application of mixture working fluid cycle to nuclear reactor power plant
International Nuclear Information System (INIS)
Takeuchi, Yutaka; Ohshima, Iwao; Shiomi, Hirozo; Miyamae, Nobuhiko; Hiramatsu, Miki; Montani, Mitsuto
1999-01-01
There exists a large amount of unused energy in nuclear power plants. However, it consists of relatively low temperature energy, so it is difficult to generate electricity by the conventional water-steam cycle. In order to utilize such low temperature energy, we applied a mixture working fluid cycle called as the Kalina cycle to a light water nuclear reactor power plant. The Kalina cycle uses a working fluid composed of ammonia and water to create a variable temperature boiling process. We applied a saturation type Kalina cycle with single stage ammonia-water separation process as a bottoming cycle to a conventional water-steam cycle of a 1100MWe class BWR as an example case. The input heat source is the exhaust or the partial extraction of a low pressure turbine (LPT). A steady state chemical process modeling code ASPENPLUS was used for the sensitivity analyses. The maximum efficiency was calculated to be realized when using the lowest heat sink temperature, 8degC. The additional electrical output is about 95 MWe when using the exhaust of LPT and is about 127 MWe when using the partial extraction of LPT. Namely, about 4.3% of the exhaust heat for the former case and about 5.8% for the latter case can be utilized as electrical power, respectively. (author)
Initialized Fractional Calculus
Lorenzo, Carl F.; Hartley, Tom T.
2000-01-01
This paper demonstrates the need for a nonconstant initialization for the fractional calculus and establishes a basic definition set for the initialized fractional differintegral. This definition set allows the formalization of an initialized fractional calculus. Two basis calculi are considered; the Riemann-Liouville and the Grunwald fractional calculi. Two forms of initialization, terminal and side are developed.
Mixtures Estimation and Applications
Mengersen, Kerrie; Titterington, Mike
2011-01-01
This book uses the EM (expectation maximization) algorithm to simultaneously estimate the missing data and unknown parameter(s) associated with a data set. The parameters describe the component distributions of the mixture; the distributions may be continuous or discrete. The editors provide a complete account of the applications, mathematical structure and statistical analysis of finite mixture distributions along with MCMC computational methods, together with a range of detailed discussions covering the applications of the methods and features chapters from the leading experts on the subject
Energy Technology Data Exchange (ETDEWEB)
Sabzikar, Farzad, E-mail: sabzika2@stt.msu.edu [Department of Statistics and Probability, Michigan State University, East Lansing, MI 48823 (United States); Meerschaert, Mark M., E-mail: mcubed@stt.msu.edu [Department of Statistics and Probability, Michigan State University, East Lansing, MI 48823 (United States); Chen, Jinghua, E-mail: cjhdzdz@163.com [School of Sciences, Jimei University, Xiamen, Fujian, 361021 (China)
2015-07-15
Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered fractional difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series.
Sabzikar, Farzad; Meerschaert, Mark M.; Chen, Jinghua
2015-07-01
Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered fractional difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series.
International Nuclear Information System (INIS)
Sabzikar, Farzad; Meerschaert, Mark M.; Chen, Jinghua
2015-01-01
Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered fractional difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series
Void fraction prediction in saturated flow boiling
International Nuclear Information System (INIS)
Francisco J Collado
2005-01-01
Full text of publication follows: An essential element in thermal-hydraulics is the accurate prediction of the vapor void fraction, or fraction of the flow cross-sectional area occupied by steam. Recently, the author has suggested to calculate void fraction working exclusively with thermodynamic properties. It is well known that the usual 'flow' quality, merely a mass flow rate ratio, is not at all a thermodynamic property because its expression in function of thermodynamic properties includes the slip ratio, which is a parameter of the process not a function of state. By the other hand, in the classic and well known expression of the void fraction - in function of the true mass fraction of vapor (also called 'static' quality), and the vapor and liquid densities - does not appear the slip ratio. Of course, this would suggest a direct procedure for calculating the void fraction, provided we had an accurate value of the true mass fraction of vapor, clearly from the heat balance. However the classic heat balance is usually stated in function of the 'flow' quality, what sounds really contradictory because this parameter, as we have noted above, is not at all a thermodynamic property. Then we should check against real data the actual relationship between the thermodynamic properties and the applied heat. For saturated flow boiling just from the inlet of the heated tube, and not having into account the kinetic and potential terms, the uniform applied heat per unit mass of inlet water and per unit length (in short, specific linear heat) should be closely related to a (constant) slope of the mixture enthalpy. In this work, we have checked the relation between the specific linear heat and the thermodynamic enthalpy of the liquid-vapor mixture using the actual mass fraction. This true mass fraction is calculated using the accurate measurements of the outlet void fraction taken during the Cambridge project by Knights and Thom in the sixties for vertical and horizontal
GOOS, Peter; JONES, Bradley; SYAFITRI, Utami
2013-01-01
In mixture experiments, the factors under study are proportions of the ingredients of a mixture. The special nature of the factors in a mixture experiment necessitates specific types of regression models, and specific types of experimental designs. Although mixture experiments usually are intended to predict the response(s) for all possible formulations of the mixture and to identify optimal proportions for each of the ingredients, little research has been done concerning their I-optimal desi...
Higher fractions theory of fractional hall effect
International Nuclear Information System (INIS)
Kostadinov, I.Z.; Popov, V.N.
1985-07-01
A theory of fractional quantum Hall effect is generalized to higher fractions. N-particle model interaction is used and the gap is expressed through n-particles wave function. The excitation spectrum in general and the mean field critical behaviour are determined. The Hall conductivity is calculated from first principles. (author)
Catalytic Pyrolysis of Waste Plastic Mixture
Sembiring, Ferdianta; Wahyu Purnomo, Chandra; Purwono, Suryo
2018-03-01
Inorganic waste especially plastics still become a major problem in many places. Low biodegradability of this materials causes the effort in recycling become very difficult. Most of the municipal solid waste (MSW) recycling facilities in developing country only use composting method to recover the organic fraction of the waste, while the inorganic fraction is still untreated. By pyrolysis, plastic waste can be treated to produce liquid fuels, flammable gas and chars. Reduction in volume and utilization of the liquid and gas as fuel are the major benefits of the process. By heat integration actually this process can become a self-sufficient system in terms of energy demand. However, the drawback of this process is usually due to the diverse type of plastic in the MSW creating low grade of liquid fuel and harmful gases. In this study, the mixture of plastics i.e. polypropylene (PP) and polyethylene terephthalate (PET) is treated using pyrolysis with catalyst in several operating temperature. PET is problematic to be treated using pyrolysis due to wax-like byproduct in liquid which may cause pipe clogging. The catalyst is the mixture of natural zeolite and bentonite which is able to handle PP and PET mixture feed to produce high grade liquid fuels in terms of calorific value and other fuel properties.
Groten, J.P.
2000-01-01
Drinking water can be considered as a complex mixture that consists of tens, hundreds or thousands of chemicals of which the composition is qualitatively and quantitatively not fully known. From a public health point of view it is most relevant to answer the question of whether chemicals in drinking
Pool Boiling of Hydrocarbon Mixtures on Water
Energy Technology Data Exchange (ETDEWEB)
Boee, R.
1996-09-01
In maritime transport of liquefied natural gas (LNG) there is a risk of spilling cryogenic liquid onto water. The present doctoral thesis discusses transient boiling experiments in which liquid hydrocarbons were poured onto water and left to boil off. Composition changes during boiling are believed to be connected with the initiation of rapid phase transition in LNG spilled on water. 64 experimental runs were carried out, 14 using pure liquid methane, 36 using methane-ethane, and 14 using methane-propane binary mixtures of different composition. The water surface was open to the atmosphere and covered an area of 200 cm{sup 2} at 25 - 40{sup o}C. The heat flux was obtained by monitoring the change of mass vs time. The void fraction in the boiling layer was measured with a gamma densitometer, and a method for adapting this measurement concept to the case of a boiling cryogenic liquid mixture is suggested. Significant differences in the boil-off characteristics between pure methane and binary mixtures revealed by previous studies are confirmed. Pure methane is in film boiling, whereas the mixtures appear to enter the transitional boiling regime with only small amounts of the second component added. The results indicate that the common assumption that LNG will be in film boiling on water because of the high temperature difference, may be questioned. Comparison with previous work shows that at this small scale the results are influenced by the experimental apparatus and procedures. 66 refs., 76 figs., 28 tabs.
Khankari, Goutam; Karmakar, Sujit
2017-06-01
This paper proposes a comparative performance analysis based on 4-E (Energy, Exergy, Environment, and Economic) of a bottoming pure Ammonia (NH3) based Organic Rankine Cycle (ORC) and Ammonia-water (NH3-H2O) based Kalina Cycle System 11(KCS 11) for additional power generation through condenser waste heat recovery integrated with a conventional 500MWe Subcritical coal-fired thermal power plant. A typical high-ash Indian coal is used for the analysis. The flow-sheet computer programme `Cycle Tempo' is used to simulate both the cycles for thermodynamic performance analysis at different plant operating conditions. Thermodynamic analysis is done by varying different NH3 mass fraction in KCS11 and at different turbine inlet pressure in both ORC and KCS11. Results show that the optimum operating pressure of ORC and KCS11 with NH3 mass fraction of 0.90 are about 15 bar and 11.70 bar, respectively and more than 14 bar of operating pressure, the plant performance of ORC integrated power plant is higher than the KCS11 integrated power plant and the result is observed reverse below this pressure. The energy and exergy efficiencies of ORC cycle are higher than the KCS11 by about 0.903 % point and 16.605 % points, respectively under similar saturation vapour temperature at turbine inlet for both the cycles. Similarly, plant energy and exergy efficiencies of ORC based combined cycle power plant are increased by 0.460 % point and 0.420 % point, respectively over KCS11 based combined cycle power plant. Moreover, the reduction of CO2 emission in ORC based combined cycle is about 3.23 t/hr which is about 1.5 times higher than the KCS11 based combined cycle power plant. Exergy destruction of the evaporator in ORC decreases with increase in operating pressure due to decrease in temperature difference of heat exchanging fluids. Exergy destruction rate in the evaporator of ORC is higher than KCS11 when the operating pressure of ORC reduces below 14 bar. This happens due to variable
Solvatochromism of naringenin in aqueous alcoholic mixtures
Directory of Open Access Journals (Sweden)
Faraji Mohammad
2016-01-01
Full Text Available The spectral change of naringenin was studied by Uv-vis spectrophotometric method in binary mixtures of water with methanol, ethanol and 1-propanol at 25°C. The effect of solvent was investigated by analysis of electron transition energy at the maximum absorption wavelength as a function of Kamlet and Taft parameters of mixtures by means of linear solvation energy relationships. The nonlinear response of solvatochromism was explained based on solute-solvent and solvent-solvent interactions. The possible preferential solvation of naringenin by each of solvents was studied through a modified preferential solvation model which considers the hydrogen bonding interactions between the prior solvents due to solvent-solvent interactions. The preferential solvation parameters and local mole fraction distribution around the solute were calculated. Results indicate that naringenin prefers to be more solvated by the complex solvating species and organic solvents than water.
Mixture based outlier filtration
Czech Academy of Sciences Publication Activity Database
Pecherková, Pavla; Nagy, Ivan
2006-01-01
Roč. 46, č. 2 (2006), s. 30-35 ISSN 1210-2709 R&D Projects: GA MŠk 1M0572; GA MDS 1F43A/003/120 Institutional research plan: CEZ:AV0Z10750506 Keywords : data filtration * system modelling * mixture models Subject RIV: BD - Theory of Information http://library.utia.cas.cz/prace/20060165.pdf
Smarandache Continued Fractions
Ibstedt, H.
2001-01-01
The theory of general continued fractions is developed to the extent required in order to calculate Smarandache continued fractions to a given number of decimal places. Proof is given for the fact that Smarandache general continued fractions built with positive integer Smarandache sequences baving only a finite number of terms equal to 1 is convergent. A few numerical results are given.
Mixture for plugging absorption zones
Energy Technology Data Exchange (ETDEWEB)
Sitinkov, G V; Kovalenko, N G; Makarov, L V; Zinnatulchin, Ts Kh
1981-01-17
A mixture is proposed for plugging absorption zones. The mixture contains synthetic polymer and a solvent. So as to increase the penetrability of the mixture through a reduction in its viscosity and an increase in insulation properties, the compound contains either Capron or Neilon as the synthetic polyamide resin polmyer, and concentrated chloride as the solvent. The mixture is prepared in a special AzINMASh-30 unit (acid cart). After the mixture has been produced, it is injected into the borehole by means of an acid cart pump. So as to prevent coaggulation at the point when the mixture in injected into the stratum through tubes, the mixture is placed betwen chemically inert fluids, for example, a clay mortar. The inert and compressed fluids are injected by means of a cementing unit. The entire process of production and application of the mixture is simple and fully automated through the use of well-known equipment.
Contributions to the analytical control of polyphenolic mixture
Energy Technology Data Exchange (ETDEWEB)
Barrera Pinero, R
1961-07-01
Separation and identification experiences of polyphenylic mixtures are described. the following technique are used: vacuum fractional distillation, vacuum sublimation and chromatography on acetylated paper. Also new coloured reactions of polyphenyls with aldehyde chlorides and their spectrophotometric application are studied. (Author) 17 refs.
Contributions to the analytical control of polyphenylic mixture
International Nuclear Information System (INIS)
Barrera Pinero, R.
1961-01-01
Separation and identification experiences of polyphenylic mixtures are described. the following technique are used: vacuum fractional distillation, vacuum sublimation and chromatography on acetylated paper. Also new coloured reactions of polyphenyls with aldehyde chlorides and their spectrophotometric application are studied. (Author) 17 refs
Shamim, Atif
2011-03-01
For the first time, a generalized Smith chart is introduced here to represent fractional order circuit elements. It is shown that the standard Smith chart is a special case of the generalized fractional order Smith chart. With illustrations drawn for both the conventional integer based lumped elements and the fractional elements, a graphical technique supported by the analytical method is presented to plot impedances on the fractional Smith chart. The concept is then applied towards impedance matching networks, where the fractional approach proves to be much more versatile and results in a single element matching network for a complex load as compared to the two elements in the conventional approach. © 2010 IEEE.
Ostwald ripening in two-phase mixtures
International Nuclear Information System (INIS)
Voorhees, P.W.
1982-01-01
Experimental measurements of the temperature of a rapidly solidified solid-liquid mixture have been made over a range of volume fractions solid 0.23 to 0.95. These experiments demonstrate the viability of measuring the change in interfacial curvature with time via precision thermometry. The experimental measurements also indicate that there is no radical change in interface morphology over a wide range of volume fractions solid. A solution to the multi-particle diffusion problem (MDP) has been constructed through the use of potential theory. The solution to the MDP was used to describe the diffusion field within a coarsening two-phase mixture consisting of dispersed spherical second-phase particles. Since this theory is based upon the MDP, interparticle diffusional interactions are specifically included in the treatment. As a result, the theory yields, for the first time, insights into the influence of the local distribution of curvature on a particle's coarsening rate. The effect of interparticle interactions on the collective behavior of an ensemble of coarsening particles was also investigated. It was found that any arbitrary distribution of particle radii will tend to a specific time independent distribution when the particle radii are scaled by the average particle radius. Furthermore, it was determined that with increasing volume fraction of coarsening phase, these time independent distributions become broader and more symmetric. It was also found that the ripening kinetics, as measured by the growth rate of the average particle size, increases by a factor of five upon increasing the volume fraction of coarsening phase from zero to 0.5
Separating Underdetermined Convolutive Speech Mixtures
DEFF Research Database (Denmark)
Pedersen, Michael Syskind; Wang, DeLiang; Larsen, Jan
2006-01-01
a method for underdetermined blind source separation of convolutive mixtures. The proposed framework is applicable for separation of instantaneous as well as convolutive speech mixtures. It is possible to iteratively extract each speech signal from the mixture by combining blind source separation...
Mixtures of truncated basis functions
DEFF Research Database (Denmark)
Langseth, Helge; Nielsen, Thomas Dyhre; Rumí, Rafael
2012-01-01
In this paper we propose a framework, called mixtures of truncated basis functions (MoTBFs), for representing general hybrid Bayesian networks. The proposed framework generalizes both the mixture of truncated exponentials (MTEs) framework and the mixture of polynomials (MoPs) framework. Similar t...
Volatilization of multicomponent mixtures in soil vapor extraction applications
International Nuclear Information System (INIS)
Bass, D.H.
1995-01-01
In soil vapor extraction (SVE) applications involving multicomponent mixtures, prediction of mass removal by volatilization as a function remediation extent is required to estimate remediation time and to size offgas treatment equipment. SVE is a commonly used remediation technology which volatilizes and enhances aerobic biodegradation of contamination adsorbed to vadose zone soils. SVE is often applied at sites contaminated with petroleum products, which are usually mixtures of many different compounds with vapor pressures spanning several orders of magnitude. The most volatile components are removed first, so the vapor pressure of the remaining contaminant continually decreases over the course of the remediation. A method for assessing how vapor pressure, and hence the rate of volatilization, of a multicomponent mixture changes over the course of a vapor extraction remedy has been developed. Each component is listed, alone, with its mass fraction in the mixture, in decreasing order of pure component vapor pressure (where component analyses are unavailable, model compounds can be used), For most petroleum distillates, the vapor pressure for each component plotted against the cumulative mass fraction of the component in the mixture on semilog coordinates will produce a straight line with a high correlation coefficient. This regression can be integrated to produce an expression for vapor pressure of the overall mixture as a function of extent or remediation
Dey, Aloke
2009-01-01
A one-stop reference to fractional factorials and related orthogonal arrays.Presenting one of the most dynamic areas of statistical research, this book offers a systematic, rigorous, and up-to-date treatment of fractional factorial designs and related combinatorial mathematics. Leading statisticians Aloke Dey and Rahul Mukerjee consolidate vast amounts of material from the professional literature--expertly weaving fractional replication, orthogonal arrays, and optimality aspects. They develop the basic theory of fractional factorials using the calculus of factorial arrangements, thereby providing a unified approach to the study of fractional factorial plans. An indispensable guide for statisticians in research and industry as well as for graduate students, Fractional Factorial Plans features: * Construction procedures of symmetric and asymmetric orthogonal arrays. * Many up-to-date research results on nonexistence. * A chapter on optimal fractional factorials not based on orthogonal arrays. * Trend-free plans...
Fractional Dynamics and Control
Machado, José; Luo, Albert
2012-01-01
Fractional Dynamics and Control provides a comprehensive overview of recent advances in the areas of nonlinear dynamics, vibration and control with analytical, numerical, and experimental results. This book provides an overview of recent discoveries in fractional control, delves into fractional variational principles and differential equations, and applies advanced techniques in fractional calculus to solving complicated mathematical and physical problems.Finally, this book also discusses the role that fractional order modeling can play in complex systems for engineering and science. Discusses how fractional dynamics and control can be used to solve nonlinear science and complexity issues Shows how fractional differential equations and models can be used to solve turbulence and wave equations in mechanics and gravity theories and Schrodinger’s equation Presents factional relaxation modeling of dielectric materials and wave equations for dielectrics Develops new methods for control and synchronization of...
Prevalence Incidence Mixture Models
The R package and webtool fits Prevalence Incidence Mixture models to left-censored and irregularly interval-censored time to event data that is commonly found in screening cohorts assembled from electronic health records. Absolute and relative risk can be estimated for simple random sampling, and stratified sampling (the two approaches of superpopulation and a finite population are supported for target populations). Non-parametric (absolute risks only), semi-parametric, weakly-parametric (using B-splines), and some fully parametric (such as the logistic-Weibull) models are supported.
Thermodynamics of mixtures containing amines
Energy Technology Data Exchange (ETDEWEB)
Gonzalez, Juan Antonio [G.E.T.E.F. Dpto Termodinamica y Fisica Aplicada, Facultad de Ciencias, Universidad de Valladolid, Valladolid 47071 (Spain)], E-mail: jagl@termo.uva.es; Mozo, Ismael; Garcia de la Fuente, Isaias; Cobos, Jose Carlos [G.E.T.E.F. Dpto Termodinamica y Fisica Aplicada, Facultad de Ciencias, Universidad de Valladolid, Valladolid 47071 (Spain); Riesco, Nicolas [Department of Chemical Engineering, Loughborough University, Loughborough, LE113TU Leicestershire (United Kingdom)
2008-01-30
Mixtures with dimethyl or trimethylpyridines and alkane, aromatic compound or 1-alkanol have been examined using different theories: DISQUAC, Flory, the concentration-concentration structure factor, S{sub CC}(0), or the Kirkwood-Buff formalism. DISQUAC represents fairly well the available experimental data, and improves theoretical calculations from Dortmund UNIFAC. Two important effects have been investigated: (i) the effect of increasing the number of methyl groups attached to the aromatic ring of the amine; (ii) the effect of modifying the position of the methyl groups in this ring. The molar excess enthalpy, H{sup E}, and the molar excess volume, V{sup E}, decrease in systems with alkane or methanol as follows: pyridine > 3-methylpyridine > 3,5-dimethylpyridine and pyridine > 2-methylpyridine > 2,4-dimethylpyridine > 2,4,6-trimethylpyridine, which has been attributed to a weakening of the amine-amine interactions in the same sequences. This is in agreement with the relative variation of the effective dipole moment, {mu}-bar, and of the differences between the boiling temperature of a pyridine base and that of the homomorphic alkane. For heptane solutions, the observed H{sup E} variation, H{sup E} (3,5-dimethylpyridine) > H{sup E} (2,4-dimethylpyridine) > H{sup E} (2,6-dimethylpyridine), is explained similarly. Calculations on the basis of the Flory model confirm that orientational effects become weaker in systems with alkane in the order: pyridine > methylpyridine > dimethylpyridine > trimethylpyridine. S{sub CC}(0) calculations show that steric effects increase with the number of CH{sub 3}- groups in the pyridine base, and that the steric effects exerted by methyl groups in positions 2 and 6 are higher than when they are placed in positions 3 and 5. The hydrogen bond energy in methanol mixtures is independent of the pyridine base, and it is estimated to be -35.2 kJ mol{sup -1}. Heterocoordination in these solutions is due in part to size effects. Their
Dividing Fractions: A Pedagogical Technique
Lewis, Robert
2016-01-01
When dividing one fraction by a second fraction, invert, that is, flip the second fraction, then multiply it by the first fraction. To multiply fractions, simply multiply across the denominators, and multiply across the numerators to get the resultant fraction. So by inverting the division of fractions it is turned into an easy multiplication of…
Radon emanation fractions from concretes containing fly ash and metakaolin
International Nuclear Information System (INIS)
Taylor-Lange, Sarah C.; Juenger, Maria C.G.; Siegel, Jeffrey A.
2014-01-01
Radon ( 222 Rn) and progenies emanate from soil and building components and can create an indoor air quality hazard. In this study, nine concrete constituents, including the supplementary cementitious materials (SCMs) fly ash and metakaolin, were used to create eleven different concrete mixtures. We investigated the effect of constituent radium specific activity, radon effective activity and emanation fraction on the concrete emanation fraction and the radon exhalation rate. Given the serious health effects associated with radionuclide exposure, experimental results were coupled with Monte Carlo simulations to demonstrate predictive differences in the indoor radon concentration due to concrete mixture design. The results from this study show that, on average, fly ash constituents possessed radium specific activities ranging from 100 Bq/kg to 200 Bq/kg and emanation fractions ranging from 1.1% to 2.5%. The lowest emitting concrete mixture containing fly ash resulted in a 3.4% reduction in the concrete emanation fraction, owing to the relatively low emanation that exists when fly ash is part of concrete. On average, the metakaolin constituents contained radium specific activities ranging from 67 Bq/kg to 600 Bq/kg and emanation fractions ranging from 8.4% to 15.5%, and changed the total concrete emanation fraction by roughly ± 5% relative to control samples. The results from this study suggest that SCMs can reduce indoor radon exposure from concrete, contingent upon SCM radionucleotide content and emanation fraction. Lastly, the experimental results provide SCM-specific concrete emanation fractions for indoor radon exposure modeling. - Highlights: • Fly ash or metakaolin SCMs can neutralize or reduce concrete emanation fractions. • The specific activity of constituents is a poor predictor of the concrete emanation fraction. • Exhalation from fly ash concretes represents a small fraction of the total indoor radon concentration
International Nuclear Information System (INIS)
1981-01-01
Apparatus is described for the separation of a gaseous plasma mixture into components in some of which the original concentration of a specific ion has been greatly increased or decreased, comprising: a source for converting the gaseous mixture into a train of plasma packets; an open-ended vessel with a main section and at least one branch section, adapted to enclose along predetermined tracks the original plasma packets in the main section, and the separated plasma components in the branch sections; drive means for generating travelling magnetic waves along the predetermined tracks with the magnetic flux vector of the waves transverse to each of the tracks; and means for maintaining phase coherence between the plasma packets and the magnetic waves at a value needed for accelerating the components of the packets to different velocities and in such different directions that the plasma of each packet is divided into distinctly separate packets in some of which the original concentration of a specific ion has been greatly increased or decreased, and which plasma packets are collected from the branch sections of the vessels. (author)
Chemometrics as a tool to analyse complex chemical mixtures
DEFF Research Database (Denmark)
Christensen, J. H.
Chemical characterisation of contaminant mixtures is important for environmental forensics and risk assessment. The great challenge in future research lies in develop- ing suitable, rapid, reliable and objective methods for analysis of the composition of complex chemical mixtures. This thesis...... describes the development of such methods for assessing the identity (chemical fingerprinting) and fate (e.g. biodegradation) of petroleum hydrocarbon mixtures. The methods comply with the general concept that suitable methods must be rapid and inexpensive, objective with limited human in- tervention...... and at the same time must consider a substantial fraction of compounds in the complex mixture. A combination of a) limited sample preparation, b) rapid chemical screening analysis, c) fast and semi-automatic pre-processing, d) compre- hensive multivariate statistical data analysis and e) objective data evaluation...
Response of steam-water mixtures to pressure transients
International Nuclear Information System (INIS)
Hull, L.M.
1985-01-01
During the transition phase of a hypothetical core-disruptive accident in a liquid-metal fast breeder reactor, melting fuel-steel mixtures may begin to boil, resulting in a two-phase mixture of molten reactor fuel and steel vapor. Dispersal of this mixture by pressure transients may prevent recriticality of the fuel material. This paper describes the results of a series of experiments that investigated the response of two-phase mixtures to pressure transients. Simulant fluids (steam/water) were used in a transparent 10.2-cm-dia, 63.5-cm-long acrylic tube. The pressure transient was provided by releasing pressurized nitrogen from a supply tank. The data obtained are in the form of pressure-time records and high-speed movies. The varied parameters are initial void fraction (10% and 40%) and transient pressure magnitude (3.45 and 310 kPa)
Co-pyrolysis of wood biomass and synthetic polymers mixtures
Energy Technology Data Exchange (ETDEWEB)
Sharypov, V.I.; Beregovtsova, N.G.; Kuznetsov, B.N.; Baryshnikov, S.V. [Institute of Chemistry and Chemical Technology SB RAS, K. Marx Str., Krasnoyarsk 660049 (Russian Federation); Cebolla, V.L. [Instituto de Carboquimica, CSIC, Zaragoza (Spain); Weber, J.V.; Collura, S.; Finqueneisel, G.; Zimny, T. [Laboratoire de Chimie et Applications, Universite de Metz, IUT, rue V. Demange, 57500 Saint Avold (France)
2006-06-01
The pyrolysis in a hydrogen atmosphere of pine wood and synthetic polymers (polyethylene and polypropylene) mixtures was studied in a rotating autoclave. The effects of reaction temperature, wood/polymers mixture composition and catalysts, on the mixtures conversion into liquids and gases were established and discussed. The used catalysts were pyrrhotite and haematite materials activated by mechanochemical treatment. In the co-liquefaction processes the interaction between fragments of wood and polymers thermal decomposition took place. This results in non-additive increase of the wood/polymers conversion degree by 10-15wt.% and of the yield of distillate fractions by 14-19wt.%. Iron ore materials were found catalytically active in the process of hydropyrolysis of wood/polymers mixtures. By using these catalysts a significant increase of the distillable liquids amounts (by 14-21wt.%) and a sharp decrease of olefins and cycloparaffins content (by approximately two to three times) were observed. (author)
Structural transition of a homopolymer in solvents mixture
Energy Technology Data Exchange (ETDEWEB)
Guettari, Moez [Laboratoire de Physique de la Matiere Molle, Faculte des Sciences de Tunis, Campus Universitaire, 2092 Tunisia (Tunisia)], E-mail: gtarimoez@yahoo.fr; Aschi, Adel; Gomati, Riadh; Gharbi, Abdelhafidh [Laboratoire de Physique de la Matiere Molle, Faculte des Sciences de Tunis, Campus Universitaire, 2092 Tunisia (Tunisia)
2008-07-01
The present work is aimed at studying the thermodynamic behaviour of a polymer in solvents mixture. Dynamic light scattering is used to measure the hydrodynamic radius of polyvinylpyrrolidone (M{sub w} = 360,000 g/mol), in water/methanol solvents mixture, versus the mixed solvents composition at 25 deg. C. Then, we show that the polymer conformation adopts the Coil-Globule-Coil structure when the methanol molar fraction X{sub A} is varied. This transition is attributed to solvent quality change which result from water and methanol complex formation. The polymer contraction rate calculated for each composition takes its maximum value at X{sub A} = 0.17. Hildebrand theory assuming the solvents mixture as an equivalent solvent was used to analyze the change in mixed solvents quality. These changes can be attributed to dispersive forces in solvents mixture.
Structural transition of a homopolymer in solvents mixture
International Nuclear Information System (INIS)
Guettari, Moez; Aschi, Adel; Gomati, Riadh; Gharbi, Abdelhafidh
2008-01-01
The present work is aimed at studying the thermodynamic behaviour of a polymer in solvents mixture. Dynamic light scattering is used to measure the hydrodynamic radius of polyvinylpyrrolidone (M w = 360,000 g/mol), in water/methanol solvents mixture, versus the mixed solvents composition at 25 deg. C. Then, we show that the polymer conformation adopts the Coil-Globule-Coil structure when the methanol molar fraction X A is varied. This transition is attributed to solvent quality change which result from water and methanol complex formation. The polymer contraction rate calculated for each composition takes its maximum value at X A = 0.17. Hildebrand theory assuming the solvents mixture as an equivalent solvent was used to analyze the change in mixed solvents quality. These changes can be attributed to dispersive forces in solvents mixture
Separation of carbon nanotubes into chirally enriched fractions
Doorn, Stephen K [Los Alamos, NM; Niyogi, Sandip [Los Alamos, NM
2012-04-10
A mixture of single-walled carbon nanotubes ("SWNTs") is separated into fractions of enriched chirality by preparing an aqueous suspension of a mixture of SWNTs and a surfactant, injecting a portion of the suspension on a column of separation medium having a density gradient, and centrifuging the column. In some embodiments, salt is added prior to centrifugation. In other embodiments, the centrifugation is performed at a temperature below room temperature. Fractions separate as colored bands in the column. The diameter of the separated SWNTs decreases with increasing density along the gradient of the column. The colored bands can be withdrawn separately from the column.
Fractional distillation of oil
Energy Technology Data Exchange (ETDEWEB)
Jones, L D
1931-10-31
A method of dividing oil into lubricating oil fractions without substantial cracking by introducing the oil in a heated state into a fractionating column from which oil fractions having different boiling points are withdrawn at different levels, while reflux liquid is supplied to the top of the column, and additional heat is introduced into the column by contacting with the oil therein a heated fluid of higher monlecular weight than water and less susceptible to thermal decomposition than is the highest boiling oil fraction resulting from the distillation, or of which any products produced by thermal decomposition will not occur in the highest boiling distillate withdrawn from the column.
Measurement Of Multiphase Flow Water Fraction And Water-cut
Xie, Cheng-gang
2007-06-01
This paper describes a microwave transmission multiphase flow water-cut meter that measures the amplitude attenuation and phase shift across a pipe diameter at multiple frequencies using cavity-backed antennas. The multiphase flow mixture permittivity and conductivity are derived from a unified microwave transmission model for both water- and oil-continuous flows over a wide water-conductivity range; this is far beyond the capability of microwave-resonance-based sensors currently on the market. The water fraction and water cut are derived from a three-component gas-oil-water mixing model using the mixture permittivity or the mixture conductivity and an independently measured mixture density. Water salinity variations caused, for example, by changing formation water or formation/injection water breakthrough can be detected and corrected using an online water-conductivity tracking technique based on the interpretation of the mixture permittivity and conductivity, simultaneously measured by a single-modality microwave sensor.
Research of Deformation of Clay Soil Mixtures Mixtures
Romas Girkontas; Tadas Tamošiūnas; Andrius Savickas
2014-01-01
The aim of this article is to determine clay soils and clay soils mixtures deformations during drying. Experiments consisted from: a) clay and clay mixtures bridges (height ~ 0,30 m, span ~ 1,00 m); b) tiles of clay and clay, sand and straw (height, length, wide); c) cylinders of clay; clay and straw; clay, straw and sand (diameter; height). According to the findings recommendations for clay and clay mixtures drying technology application were presented. During the experiment clay bridge bear...
Mutagenicity of complex mixtures
International Nuclear Information System (INIS)
Pelroy, R.A.
1985-01-01
The effect of coal-derived complex chemical mixtures on the mutagenicity of 6-aminochrysene (6-AC) was determined with Salmonella typhimurium TA98. Previous results suggested that the mutagenic potency of 6-AC for TA98 in the standard microsomal activation (Ames) assay increased if it was presented to the cells mixed with high-boiling coal liquids (CL) from the solvent refined coal (SRC) process. In this year's work, the apparent mutational synergism of CL and 6-AC was independently verified in a fluctuation bioassay which allowed quantitation of mutational frequencies and cell viability. The results of this assay system were similar to those in the Ames assay. Moreover, the fluctation assay revealed that mutagenesis and cellular toxicity induced by 6-AC were both strongly enhanced if 6-AC was presented to the cells mixed in a high-boiling CL. 4 figures
Zhang, Tao; Cai, Guojun; Duan, Weihong
2018-02-01
The disposal of scrap rubber tires has induced critical environmental issue worldwide due to the rapid increase in the number of vehicles. Recycled scrap tires as a construction material in civil engineering have significant environmental benefits from a waste management perspective. A systematic study that deals with strength and microstructure characteristics of the rubber-sand mixtures is initiated, and mechanical response of the mixtures is discussed in this investigation. Experiments were conducted to evaluate the effects of rubber fraction on the basic properties including mass density (ρ), stress-strain characteristics, shear strength, and unconfined compression strength (q u ) of the rubber-sand mixtures. Additionally, scanning electron microscopy (SEM) was carried out to reveal the microstructure characteristics of the mixtures with various rubber fractions. A discussion on the micromechanics of the mixtures also was conducted. This study demonstrates that the ρ, friction angle, and q u decrease linearly with an increase in rubber fraction, whereas shear strain at peak increases. The stress-strain characteristics of the rubber-sand mixtures shift from brittle to ductile as the rubber fraction increase. These changes are attributed to remarkably lower stiffness and higher compressibility of the rubber particle compared with those of the conventional mineral aggregates. With an increase in the rubber fraction, the mechanical response of rubber-sand mixtures exhibits two types: sand-like material and rubber-like material. Rubber particle possesses the capacity to prevent the contacted sand particles from sliding at lower rubber fraction, whereas it transmits the applied loadings as the rubber fraction increased. This outcome reinforces the practicability of using recycled rubber tire-sand mixtures as a lightweight backfill in subbase/base applications.
Fractional Poisson process (II)
International Nuclear Information System (INIS)
Wang Xiaotian; Wen Zhixiong; Zhang Shiying
2006-01-01
In this paper, we propose a stochastic process W H (t)(H-bar (12,1)) which we call fractional Poisson process. The process W H (t) is self-similar in wide sense, displays long range dependence, and has more fatter tail than Gaussian process. In addition, it converges to fractional Brownian motion in distribution
Wilkerson, Trena L.; Bryan, Tommy; Curry, Jane
2012-01-01
This article describes how using candy bars as models gives sixth-grade students a taste for learning to represent fractions whose denominators are factors of twelve. Using paper models of the candy bars, students explored and compared fractions. They noticed fewer different representations for one-third than for one-half. The authors conclude…
Can Kindergartners Do Fractions?
Cwikla, Julie
2014-01-01
Mathematics professor Julie Cwikla decided that she needed to investigate young children's understandings and see what precurricular partitioning notions young minds bring to the fraction table. Cwikla realized that only a handful of studies have examined how preschool-age and early elementary school-age students solve fraction problems (Empson…
Diaz, Victor Alfonzo; Giusti, Andrea
2018-03-01
The aim of this paper is to present a simple generalization of bosonic string theory in the framework of the theory of fractional variational problems. Specifically, we present a fractional extension of the Polyakov action, for which we compute the general form of the equations of motion and discuss the connection between the new fractional action and a generalization the Nambu-Goto action. Consequently, we analyze the symmetries of the modified Polyakov action and try to fix the gauge, following the classical procedures. Then we solve the equations of motion in a simplified setting. Finally, we present a Hamiltonian description of the classical fractional bosonic string and introduce the fractional light-cone gauge. It is important to remark that, throughout the whole paper, we thoroughly discuss how to recover the known results as an "integer" limit of the presented model.
Solution Thermodynamics of Lysine Clonixinate in Some Ethanol + Water Mixtures
Delgado, Daniel R.; Martínez, Fleming; Gutiérrez, Rahumir A.
2012-01-01
The solubility of lysine clonixinate (LysClon) in several ethanol + water mixtures was determined at 293.15 to 313.15 K. The thermodynamic functions, Gibbs energy, enthalpy, and entropy of solution and of mixing were obtained from these solubility data by using the van’t Hoff and Gibbs equations. In general this drug exhibit good solubility and the greatest value was obtained in the mixture 0.60 in mass fraction of ethanol. A non-linear enthalpy–entropy relationship was observed from ...
Mixtures of Strongly Interacting Bosons in Optical Lattices
International Nuclear Information System (INIS)
Buonsante, P.; Penna, V.; Giampaolo, S. M.; Illuminati, F.; Vezzani, A.
2008-01-01
We investigate the properties of strongly interacting heteronuclear boson-boson mixtures loaded in realistic optical lattices, with particular emphasis on the physics of interfaces. In particular, we numerically reproduce the recent experimental observation that the addition of a small fraction of 41 K induces a significant loss of coherence in 87 Rb, providing a simple explanation. We then investigate the robustness against the inhomogeneity typical of realistic experimental realizations of the glassy quantum emulsions recently predicted to occur in strongly interacting boson-boson mixtures on ideal homogeneous lattices
A new efficient mixture screening design for optimization of media.
Rispoli, Fred; Shah, Vishal
2009-01-01
Screening ingredients for the optimization of media is an important first step to reduce the many potential ingredients down to the vital few components. In this study, we propose a new method of screening for mixture experiments called the centroid screening design. Comparison of the proposed design with Plackett-Burman, fractional factorial, simplex lattice design, and modified mixture design shows that the centroid screening design is the most efficient of all the designs in terms of the small number of experimental runs needed and for detecting high-order interaction among ingredients. (c) 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009.
Asymptotic Limits for Transport in Binary Stochastic Mixtures
Energy Technology Data Exchange (ETDEWEB)
Prinja, A. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2017-05-01
The Karhunen-Loeve stochastic spectral expansion of a random binary mixture of immiscible fluids in planar geometry is used to explore asymptotic limits of radiation transport in such mixtures. Under appropriate scalings of mixing parameters - correlation length, volume fraction, and material cross sections - and employing multiple- scale expansion of the angular flux, previously established atomic mix and diffusion limits are reproduced. When applied to highly contrasting material properties in the small cor- relation length limit, the methodology yields a nonstandard reflective medium transport equation that merits further investigation. Finally, a hybrid closure is proposed that produces both small and large correlation length limits of the closure condition for the material averaged equations.
Fractional Order Generalized Information
Directory of Open Access Journals (Sweden)
José Tenreiro Machado
2014-04-01
Full Text Available This paper formulates a novel expression for entropy inspired in the properties of Fractional Calculus. The characteristics of the generalized fractional entropy are tested both in standard probability distributions and real world data series. The results reveal that tuning the fractional order allow an high sensitivity to the signal evolution, which is useful in describing the dynamics of complex systems. The concepts are also extended to relative distances and tested with several sets of data, confirming the goodness of the generalization.
Fractional finite Fourier transform.
Khare, Kedar; George, Nicholas
2004-07-01
We show that a fractional version of the finite Fourier transform may be defined by using prolate spheroidal wave functions of order zero. The transform is linear and additive in its index and asymptotically goes over to Namias's definition of the fractional Fourier transform. As a special case of this definition, it is shown that the finite Fourier transform may be inverted by using information over a finite range of frequencies in Fourier space, the inversion being sensitive to noise. Numerical illustrations for both forward (fractional) and inverse finite transforms are provided.
Social Trust and Fractionalization:
DEFF Research Database (Denmark)
Bjørnskov, Christian
2008-01-01
This paper takes a closer look at the importance of fractionalization for the creation of social trust. It first argues that the determinants of trust can be divided into two categories: those affecting individuals' trust radii and those affecting social polarization. A series of estimates using...... a much larger country sample than in previous literature confirms that fractionalization in the form of income inequality and political diversity adversely affects social trust while ethnic diversity does not. However, these effects differ systematically across countries, questioning standard...... interpretations of the influence of fractionalization on trust....
International Nuclear Information System (INIS)
Atilhan, Mert; Aparicio, Santiago; Ejaz, Saquib; Zhou, Jingjun; Al-Marri, Mohammed; Holste, James J.; Hall, Kenneth R.
2015-01-01
This paper includes high-accuracy density measurements and phase envelopes for deepwater natural gas mixtures. Mixtures primarily consist of (0.88 and 0.94) mole fraction methane and both mixtures includes heavy components (C 6+ ) more than 0.002 mole fraction. Experimental density and phase envelope data for deep and ultra-deep reservoir mixtures are scarce in literature and high accuracy measurements for such parameters for such natural gas-like mixtures are essential to validate the benchmark equations for custody transfer such as AGA8-DC92 and GERG-2008 equation of states (EOS). Thus, in this paper we report density and phase envelope experimental data via compact single-sinker magnetic suspension densimeter and isochoric apparatuses. Such data help gas industry to avoid retrograde condensation in natural gas pipelines
Component effects in mixture experiments
International Nuclear Information System (INIS)
Piepel, G.F.
1980-01-01
In a mixture experiment, the response to a mixture of q components is a function of the proportions x 1 , x 2 , ..., x/sub q/ of components in the mixture. Experimental regions for mixture experiments are often defined by constraints on the proportions of the components forming the mixture. The usual (orthogonal direction) definition of a factor effect does not apply because of the dependence imposed by the mixture restriction, /sup q/Σ/sub i=1/ x/sub i/ = 1. A direction within the experimental region in which to compute a mixture component effect is presented and compared to previously suggested directions. This new direction has none of the inadequacies or errors of previous suggestions while having a more meaningful interpretation. The distinction between partial and total effects is made. The uses of partial and total effects (computed using the new direction) in modification and interpretation of mixture response prediction equations are considered. The suggestions of the paper are illustrated in an example from a glass development study in a waste vitrification program. 5 figures, 3 tables
Mixtures of skewed Kalman filters
Kim, Hyoungmoon; Ryu, Duchwan; Mallick, Bani K.; Genton, Marc G.
2014-01-01
Normal state-space models are prevalent, but to increase the applicability of the Kalman filter, we propose mixtures of skewed, and extended skewed, Kalman filters. To do so, the closed skew-normal distribution is extended to a scale mixture class
Easy and flexible mixture distributions
DEFF Research Database (Denmark)
Fosgerau, Mogens; Mabit, Stefan L.
2013-01-01
We propose a method to generate flexible mixture distributions that are useful for estimating models such as the mixed logit model using simulation. The method is easy to implement, yet it can approximate essentially any mixture distribution. We test it with good results in a simulation study...
Influence of the composition of radionuclide mixtures on the maximum permissible concentration
International Nuclear Information System (INIS)
Schillinger, K.; Schuricht, V.
1975-08-01
By dividing radionuclides according to their formation mechanisms it is possible to assess the influence of separate partial mixtures on the maximum permissible concentration (MPC) of the total mixture without knowing exactly their contribution to the total activity. Calculations showed that the MPC of a total mixture of unsoluble radionuclides, which may occur in all fields of peaceful uses of nuclear energy, depends on the gastrointestinal tract as the critical organ and on the composition of the fission product mixture. The influence of fractionation on the MPC can be reglected in such a case, whereas in case of soluble radionuclides this is not possible
FRACTIONS: CONCEPTUAL AND DIDACTIC ASPECTS
Directory of Open Access Journals (Sweden)
Sead Rešić
2016-09-01
Full Text Available Fractions represent the manner of writing parts of whole numbers (integers. Rules for operations with fractions differ from rules for operations with integers. Students face difficulties in understanding fractions, especially operations with fractions. These difficulties are well known in didactics of Mathematics throughout the world and there is a lot of research regarding problems in learning about fractions. Methods for facilitating understanding fractions have been discovered, which are essentially related to visualizing operations with fractions.
Fractional Stochastic Field Theory
Honkonen, Juha
2018-02-01
Models describing evolution of physical, chemical, biological, social and financial processes are often formulated as differential equations with the understanding that they are large-scale equations for averages of quantities describing intrinsically random processes. Explicit account of randomness may lead to significant changes in the asymptotic behaviour (anomalous scaling) in such models especially in low spatial dimensions, which in many cases may be captured with the use of the renormalization group. Anomalous scaling and memory effects may also be introduced with the use of fractional derivatives and fractional noise. Construction of renormalized stochastic field theory with fractional derivatives and fractional noise in the underlying stochastic differential equations and master equations and the interplay between fluctuation-induced and built-in anomalous scaling behaviour is reviewed and discussed.
Goodrich, Christopher
2015-01-01
This text provides the first comprehensive treatment of the discrete fractional calculus. Experienced researchers will find the text useful as a reference for discrete fractional calculus and topics of current interest. Students who are interested in learning about discrete fractional calculus will find this text to provide a useful starting point. Several exercises are offered at the end of each chapter and select answers have been provided at the end of the book. The presentation of the content is designed to give ample flexibility for potential use in a myriad of courses and for independent study. The novel approach taken by the authors includes a simultaneous treatment of the fractional- and integer-order difference calculus (on a variety of time scales, including both the usual forward and backwards difference operators). The reader will acquire a solid foundation in the classical topics of the discrete calculus while being introduced to exciting recent developments, bringing them to the frontiers of the...
Shamim, Atif; Radwan, Ahmed Gomaa; Salama, Khaled N.
2011-01-01
matching networks, where the fractional approach proves to be much more versatile and results in a single element matching network for a complex load as compared to the two elements in the conventional approach. © 2010 IEEE.
Intracellular Cadmium Isotope Fractionation
Horner, T. J.; Lee, R. B.; Henderson, G. M.; Rickaby, R. E.
2011-12-01
Recent stable isotope studies into the biological utilization of transition metals (e.g. Cu, Fe, Zn, Cd) suggest several stepwise cellular processes can fractionate isotopes in both culture and nature. However, the determination of fractionation factors is often unsatisfactory, as significant variability can exist - even between different organisms with the same cellular functions. Thus, it has not been possible to adequately understand the source and mechanisms of metal isotopic fractionation. In order to address this problem, we investigated the biological fractionation of Cd isotopes within genetically-modified bacteria (E. coli). There is currently only one known biological use or requirement of Cd, a Cd/Zn carbonic anhydrase (CdCA, from the marine diatom T. weissfloggii), which we introduce into the E. coli genome. We have also developed a cleaning procedure that allows for the treating of bacteria so as to study the isotopic composition of different cellular components. We find that whole cells always exhibit a preference for uptake of the lighter isotopes of Cd. Notably, whole cells appear to have a similar Cd isotopic composition regardless of the expression of CdCA within the E. coli. However, isotopic fractionation can occur within the genetically modified E. coli during Cd use, such that Cd bound in CdCA can display a distinct isotopic composition compared to the cell as a whole. Thus, the externally observed fractionation is independent of the internal uses of Cd, with the largest Cd isotope fractionation occurring during cross-membrane transport. A general implication of these experiments is that trace metal isotopic fractionation most likely reflects metal transport into biological cells (either actively or passively), rather than relating to expression of specific physiological function and genetic expression of different metalloenzymes.
Fractional laser skin resurfacing.
Alexiades-Armenakas, Macrene R; Dover, Jeffrey S; Arndt, Kenneth A
2012-11-01
Laser skin resurfacing (LSR) has evolved over the past 2 decades from traditional ablative to fractional nonablative and fractional ablative resurfacing. Traditional ablative LSR was highly effective in reducing rhytides, photoaging, and acne scarring but was associated with significant side effects and complications. In contrast, nonablative LSR was very safe but failed to deliver consistent clinical improvement. Fractional LSR has achieved the middle ground; it combined the efficacy of traditional LSR with the safety of nonablative modalities. The first fractional laser was a nonablative erbium-doped yttrium aluminum garnet (Er:YAG) laser that produced microscopic columns of thermal injury in the epidermis and upper dermis. Heralding an entirely new concept of laser energy delivery, it delivered the laser beam in microarrays. It resulted in microscopic columns of treated tissue and intervening areas of untreated skin, which yielded rapid reepithelialization. Fractional delivery was quickly applied to ablative wavelengths such as carbon dioxide, Er:YAG, and yttrium scandium gallium garnet (2,790 nm), providing more significant clinical outcomes. Adjustable laser parameters, including power, pitch, dwell time, and spot density, allowed for precise determination of percent surface area, affected penetration depth, and clinical recovery time and efficacy. Fractional LSR has been a significant advance to the laser field, striking the balance between safety and efficacy.
Simulation and optimization of fractional crystallization processes
DEFF Research Database (Denmark)
Thomsen, Kaj; Rasmussen, Peter; Gani, Rafiqul
1998-01-01
A general method for the calculation of various types of phase diagrams for aqueous electrolyte mixtures is outlined. It is shown how the thermodynamic equilibrium precipitation process can be used to satisfy the operational needs of industrial crystallizer/centrifuge units. Examples of simulation...... and optimization of fractional crystallization processes are shown. In one of these examples, a process with multiple steady states is analyzed. The thermodynamic model applied for describing the highly non-ideal aqueous electrolyte systems is the Extended UNIQUAC model. (C) 1998 Published by Elsevier Science Ltd...
Series expansion in fractional calculus and fractional differential equations
Li, Ming-Fan; Ren, Ji-Rong; Zhu, Tao
2009-01-01
Fractional calculus is the calculus of differentiation and integration of non-integer orders. In a recently paper (Annals of Physics 323 (2008) 2756-2778), the Fundamental Theorem of Fractional Calculus is highlighted. Based on this theorem, in this paper we introduce fractional series expansion method to fractional calculus. We define a kind of fractional Taylor series of an infinitely fractionally-differentiable function. Further, based on our definition we generalize hypergeometric functio...
A general mixture theory. I. Mixtures of spherical molecules
Hamad, Esam Z.
1996-08-01
We present a new general theory for obtaining mixture properties from the pure species equations of state. The theory addresses the composition and the unlike interactions dependence of mixture equation of state. The density expansion of the mixture equation gives the exact composition dependence of all virial coefficients. The theory introduces multiple-index parameters that can be calculated from binary unlike interaction parameters. In this first part of the work, details are presented for the first and second levels of approximations for spherical molecules. The second order model is simple and very accurate. It predicts the compressibility factor of additive hard spheres within simulation uncertainty (equimolar with size ratio of three). For nonadditive hard spheres, comparison with compressibility factor simulation data over a wide range of density, composition, and nonadditivity parameter, gave an average error of 2%. For mixtures of Lennard-Jones molecules, the model predictions are better than the Weeks-Chandler-Anderson perturbation theory.
Radon emanation fractions from concretes containing fly ash and metakaolin.
Taylor-Lange, Sarah C; Juenger, Maria C G; Siegel, Jeffrey A
2014-01-01
Radon ((222)Rn) and progenies emanate from soil and building components and can create an indoor air quality hazard. In this study, nine concrete constituents, including the supplementary cementitious materials (SCMs) fly ash and metakaolin, were used to create eleven different concrete mixtures. We investigated the effect of constituent radium specific activity, radon effective activity and emanation fraction on the concrete emanation fraction and the radon exhalation rate. Given the serious health effects associated with radionuclide exposure, experimental results were coupled with Monte Carlo simulations to demonstrate predictive differences in the indoor radon concentration due to concrete mixture design. The results from this study show that, on average, fly ash constituents possessed radium specific activities ranging from 100 Bq/kg to 200 Bq/kg and emanation fractions ranging from 1.1% to 2.5%. The lowest emitting concrete mixture containing fly ash resulted in a 3.4% reduction in the concrete emanation fraction, owing to the relatively low emanation that exists when fly ash is part of concrete. On average, the metakaolin constituents contained radium specific activities ranging from 67 Bq/kg to 600 Bq/kg and emanation fractions ranging from 8.4% to 15.5%, and changed the total concrete emanation fraction by roughly ±5% relative to control samples. The results from this study suggest that SCMs can reduce indoor radon exposure from concrete, contingent upon SCM radionucleotide content and emanation fraction. Lastly, the experimental results provide SCM-specific concrete emanation fractions for indoor radon exposure modeling. © 2013.
Preparation of reminiscent aroma mixture of Japanese soy sauce.
Bonkohara, Kaori; Fuji, Maiko; Nakao, Akito; Igura, Noriyuki; Shimoda, Mitsuya
2016-01-01
To prepare an aroma mixture of Japanese soy sauce by fewest components, the aroma concentrate of good sensory attributes was prepared by polyethylene membrane extraction, which could extract only the volatiles with diethyl ether. GC-MS-Olfactometry was done with the aroma concentrate, and 28 odor-active compounds were detected. Application of aroma extract dilution analysis to the separated fraction revealed high flavor dilution factors with respect to acetic acid, 4-hydroxy-2(or5)-ethyl-5(or2)-methyl-3(2H)-furanone (HEMF), 3-methyl-1-butanol (isoamyl alcohol), and 3-(methylsulfanyl)propanal (methional). A model aroma mixture containing above four odorants showed a good similarity with the aroma of the soy sauce itself. Consequently, the reminiscent aroma mixture of soy sauce was prepared in water. The ratio of acetic acid, HEMF, isoamyl alcohol, and methional was 2500:300:100:1.
A classification system for tableting behaviors of binary powder mixtures
Directory of Open Access Journals (Sweden)
Changquan Calvin Sun
2016-08-01
Full Text Available The ability to predict tableting properties of a powder mixture from individual components is of both fundamental and practical importance to the efficient formulation development of tablet products. A common tableting classification system (TCS of binary powder mixtures facilitates the systematic development of new knowledge in this direction. Based on the dependence of tablet tensile strength on weight fraction in a binary mixture, three main types of tableting behavior are identified. Each type is further divided to arrive at a total of 15 sub-classes. The proposed classification system lays a framework for a better understanding of powder interactions during compaction. Potential applications and limitations of this classification system are discussed.
The aluminosilicate fraction of North Pacific manganese nodules
Bischoff, J.L.; Piper, D.Z.; Leong, K.
1981-01-01
Nine nodules collected from throughout the deep North Pacific were analyzed for their mineralogy and major-element composition before and after leaching with Chester-Hughes solution. Data indicate that the mineral phillipsite accounts for the major part (> 75%) of the aluminosilicate fraction of all nodules. It is suggested that formation of phillipsite takes place on growing nodule surfaces coupled with the oxidation of absorbed manganous ion. All the nodules could be described as ternary mixtures of amorphous iron fraction (Fe-Ti-P), manganese oxide fraction (Mn-Mg Cu-Ni), and phillipsite fraction (Al-Si-K-Na), these fractions accounting for 96% of the variability of the chemical composition. ?? 1981.
Use of soil-rock mixtures in dam construction
Caldeira, L.; Brito, A.
2014-01-01
The employment of non-traditional materials such as soil–rock mixtures, for economic and environmental reasons, in the construction of earthworks poses some new challenges for compaction techniques and their control as well as for the determination of the characteristics of the embankment that result from the compaction method. Those characteristics experience important changes according to the relative percentages of the existing fractions. Usually, this kind of material results from bulky r...
Catanionic mixtures forming gemini-like amphiphiles.
Sakai, Hideki; Okabe, Yuji; Tsuchiya, Koji; Sakai, Kenichi; Abe, Masahiko
2011-01-01
The properties of aqueous mixtures of cationic species with alkyl dicarboxylic acid compounds have been studied. The cationic compounds used in this study were tertiary amine-type N-methyl-N-(2,3-dioxypropyl)hexadecylamine (C16amine) and quaternary ammonium-type N,N-dimethyl-N-(2,3-dioxypropyl)hexadecylammonium chloride (C16Q). The alkyl dicarboxylic acid compounds used were HOOC(CH(2))(10)COOH (C12H) and its sodium salt (C12Na). Three aqueous mixtures were examined in this study: (System I) C16amine + C12H, (System II) C16Q + C12Na, and (System III) C16Q + C12H. The solution pH was set at 12 for System III. The combination of (1)H-NMR and mass spectroscopy data has suggested that a stoichiometric complex is formed in the aqueous solutions at a mole fraction of C12H (or C12Na) = 0.33. Here, the C12H (or C12Na) molecule added to the system bridges two cationic molecules, like a spacer of gemini surfactants. In fact, the static surface tensiometry has demonstrated that the stoichiometric complex behaves as gemini-like amphiphiles in aqueous solutions. Our current study offers a possible way for easily preparing gemini surfactant systems.
International Nuclear Information System (INIS)
Eckstein, C.B.
1982-03-01
The influence of martensite in mechanical properties of stable mixtures formed by austenite and martensite was studied by varying the amount of martensite in the mixtures. Microstructural parameters were determined by Optical Quantitative Metallography and used to establish the correlation between the mechanical response of the mixtures in tension and their microstructures. The 'in situ' deformation of each phase in mixtures was determined experimentally in terms of the rule of mixtures. It is shown that the partitioning of the deformation depends on the amount of martensite in the mixture and that it tends to a condition of isostrain at higher martensite volume fractions. Optical observation of fractured specimens showed that the beginning of the fracture process may related to regions of the austenite grain boundaries where they meet martensite plates. (Author) [pt
FRACTIONS: CONCEPTUAL AND DIDACTIC ASPECTS
Sead Rešić; Ismet Botonjić; Maid Omerović
2016-01-01
Fractions represent the manner of writing parts of whole numbers (integers). Rules for operations with fractions differ from rules for operations with integers. Students face difficulties in understanding fractions, especially operations with fractions. These difficulties are well known in didactics of Mathematics throughout the world and there is a lot of research regarding problems in learning about fractions. Methods for facilitating understanding fractions have been discovered...
Biswas, Karabi; Caponetto, Riccardo; Mendes Lopes, António; Tenreiro Machado, José António
2017-01-01
This book focuses on two specific areas related to fractional order systems – the realization of physical devices characterized by non-integer order impedance, usually called fractional-order elements (FOEs); and the characterization of vegetable tissues via electrical impedance spectroscopy (EIS) – and provides readers with new tools for designing new types of integrated circuits. The majority of the book addresses FOEs. The interest in these topics is related to the need to produce “analogue” electronic devices characterized by non-integer order impedance, and to the characterization of natural phenomena, which are systems with memory or aftereffects and for which the fractional-order calculus tool is the ideal choice for analysis. FOEs represent the building blocks for designing and realizing analogue integrated electronic circuits, which the authors believe hold the potential for a wealth of mass-market applications. The freedom to choose either an integer- or non-integer-order analogue integrator...
The effect of non-condensable gas on direct contact condensation of steam/air mixture
International Nuclear Information System (INIS)
Lee, H. C.; Park, S. K.; Kim, M. H.
1998-01-01
To investigate the effects of noncondensable gas on the direct contact film condensation of vapor mixture, a series of experiments has been carried out. The rectangular duct inclined 87.deg. to the horizontal plane was used for this experiment. The average heat transfer coefficient of the steam-air mixture was obtained at the atmospheric pressure with four main parameters, air-mass fraction, vapor velocity, film Reynolds number,and the degree of water film subcooling having an influence on the condensation heat transfer coefficient. With the analysis on 88 cases of experiments, a correlation of the average Nusselt number for direct contact film condensation of steam-air mixture at a vertical wall proposed as functions of film Reynolds number, mixture Reynolds number, air mass fraction, and Jacob number. The average heat transfer coefficient for steam-air mixture condensation decreased significantly while air mass fraction increases with the same inlet mixture velocity and inlet film temperature. The average heat transfer coefficients also decreased with the degree of film subcooling increasing and were scarcely affected by film Reynolds number below the mixture Reynolds number about 30,000
Natural convection in ternary mixtures
International Nuclear Information System (INIS)
Kremer, G.M.; Kai, L.
1981-01-01
The field equations for a mixture of a viscous fluid, a deformable solid and a non-viscous fluid are studied, based on a linearized theory proposed by Bowen. The fields of density of each constituent, temperature, velocity of each fluid and displacement of the solid are determined, for steady states flow of the mixture between two parallel planes and between two concentric cylinders which are maintained at diferent temperatures. (Author) [pt
Centrifugal separation of mixture gases
International Nuclear Information System (INIS)
Zhou, M.S.; Chen, W.N.; Yin, Y.T.
2008-01-01
An attempt for single centrifugal separation of mixtures with different molecular formula was presented in this paper. The mixtures of SF 6 and CCl 3 F, and SF 6 and CCl 4 were chosen as the processing gases, which were prepared in three mass ratios, 0.5, 0.8 and 0.2, respectively. The separating characteristics such as the overall separation factors and the variation of cuts were studied. (author)
Performance evaluation of Louisiana superpave mixtures.
2008-12-01
This report documents the performance of Louisiana Superpave mixtures through laboratory mechanistic tests, mixture : volumetric properties, gradation analysis, and early field performance. Thirty Superpave mixtures were evaluated in this : study. Fo...
International Nuclear Information System (INIS)
Al-Merey, R.; Al-Hameish, M.
2001-01-01
Isobutyl acetate (IBA) -methyl isobutyl ketone (MIBK) mixture used in analytical laboratories was re-purified by fractional distillation. The used mixture was washed with 0.5 M Na 2 CO 3 solution for the removal of inorganic substances. The range of fractional distillation was between 111-114 Centigrade which gave an azeotropic mixture that consists of 70% of IBA, 20% of MIBK and 10% of isobutanol (IBL). Gas chromatography (GC) analysis showed that isobutanol was increased by about 10% on the expense of IBA. This study suggests that MIBK could be determined in organic mixture spectrophotometrically. The analytical function of the re-purified mixture is found to be better than the unused mixture. Finally the distillation recovery was 93%. (author)
Asphaltene self-association: Modeling and effect of fractionation with a polar solvent
DEFF Research Database (Denmark)
Garcia, Daniel Merino; Murgich, J; Andersen, Simon Ivar
2004-01-01
of DeltaH(a) obtained suggest that a fraction of asphaltenes is not active in the calorimetric experiments. Asphaltenes from Venezuela (LM1) and Mexico (KU) have been fractionated by precipitation with a mixture of acetone and toluene. It is considered that the most polar compounds are collected...
Fractional gradient and its application to the fractional advection equation
D'Ovidio, M.; Garra, R.
2013-01-01
In this paper we provide a definition of fractional gradient operators, related to directional derivatives. We develop a fractional vector calculus, providing a probabilistic interpretation and mathematical tools to treat multidimensional fractional differential equations. A first application is discussed in relation to the d-dimensional fractional advection-dispersion equation. We also study the connection with multidimensional L\\'evy processes.
Vinogradova, Natalya; Blaine, Larry
2013-01-01
Almost everyone loves chocolate. However, the same cannot be said about fractions, which are loved by markedly fewer. Middle school students tend to view them with wary respect, but little affection. The authors attempt to sweeten the subject by describing a type of game involving division of chocolate bars. The activity they describe provides a…
Fermion Number Fractionization
Indian Academy of Sciences (India)
Srimath
1 . In tro d u ctio n. T he N obel P rize in C hem istry for the year 2000 w as aw arded to A lan J H ... soliton, the ground state of the ferm ion-soliton system can have ..... probability density,in a heuristic w ay that a fractional ferm ion num ber m ay ...
Momentum fractionation on superstrata
International Nuclear Information System (INIS)
Bena, Iosif; Martinec, Emil; Turton, David; Warner, Nicholas P.
2016-01-01
Superstrata are bound states in string theory that carry D1, D5, and momentum charges, and whose supergravity descriptions are parameterized by arbitrary functions of (at least) two variables. In the D1-D5 CFT, typical three-charge states reside in high-degree twisted sectors, and their momentum charge is carried by modes that individually have fractional momentum. Understanding this momentum fractionation holographically is crucial for understanding typical black-hole microstates in this system. We use solution-generating techniques to add momentum to a multi-wound supertube and thereby construct the first examples of asymptotically-flat superstrata. The resulting supergravity solutions are horizonless and smooth up to well-understood orbifold singularities. Upon taking the AdS_3 decoupling limit, our solutions are dual to CFT states with momentum fractionation. We give a precise proposal for these dual CFT states. Our construction establishes the very nontrivial fact that large classes of CFT states with momentum fractionation can be realized in the bulk as smooth horizonless supergravity solutions.
Fractional Differential Equation
Directory of Open Access Journals (Sweden)
Moustafa El-Shahed
2007-01-01
where 2<α<3 is a real number and D0+α is the standard Riemann-Liouville fractional derivative. Our analysis relies on Krasnoselskiis fixed point theorem of cone preserving operators. An example is also given to illustrate the main results.
Vapor liquid fraction determination
International Nuclear Information System (INIS)
1980-01-01
This invention describes a method of measuring liquid and vapor fractions in a non-homogeneous fluid flowing through an elongate conduit, such as may be required with boiling water, non-boiling turbulent flows, fluidized bed experiments, water-gas mixing analysis, and nuclear plant cooling. (UK)
Brewing with fractionated barley
Donkelaar, van L.H.G.
2016-01-01
Brewing with fractionated barley
Beer is a globally consumed beverage, which is produced from malted barley, water, hops and yeast. In recent years, the use of unmalted barley and exogenous enzymes have become more popular because they enable simpler processing and reduced environmental
Fractionation and rectification apparatus
Energy Technology Data Exchange (ETDEWEB)
Sauerwald, A
1932-05-25
Fractionation and rectifying apparatus with a distillation vessel and a stirring tube, drainage tubes leading from its coils to a central collecting tube, the drainage tubes being somewhat parallel and attached to the outer half of the stirring tube and partly on the inner half of the central collecting tube, whereby distillation and rectification can be effected in a single apparatus.
International Nuclear Information System (INIS)
Innes, W.; Klein, S.; Perl, M.; Price, J.C.
1982-06-01
A device to search for fractional charge in matter is described. The sample is coupled to a low-noise amplifier by a periodically varying capacitor and the resulting signal is synchronously detected. The varying capacitor is constructed as a rapidly spinning wheel. Samples of any material in volumes of up to 0.05 ml may be searched in less than an hour
Thermo-Chemical Conversion of Microwave Activated Biomass Mixtures
Barmina, I.; Kolmickovs, A.; Valdmanis, R.; Vostrikovs, S.; Zake, M.
2018-05-01
Thermo-chemical conversion of microwave activated wheat straw mixtures with wood or peat pellets is studied experimentally with the aim to provide more effective application of wheat straw for heat energy production. Microwave pre-processing of straw pellets is used to provide a partial decomposition of the main constituents of straw and to activate the thermo-chemical conversion of wheat straw mixtures with wood or peat pellets. The experimental study includes complex measurements of the elemental composition of biomass pellets (wheat straw, wood, peat), DTG analysis of their thermal degradation, FTIR analysis of the composition of combustible volatiles entering the combustor, the flame temperature, the heat output of the device and composition of the products by comparing these characteristics for mixtures with unprocessed and mw pre-treated straw pellets. The results of experimental study confirm that mw pre-processing of straw activates the thermal decomposition of mixtures providing enhanced formation of combustible volatiles. This leads to improvement of the combustion conditions in the flame reaction zone, completing thus the combustion of volatiles, increasing the flame temperature, the heat output from the device, the produced heat energy per mass of burned mixture and decreasing at the same time the mass fraction of unburned volatiles in the products.
Fission product release from core-concrete mixtures
International Nuclear Information System (INIS)
Roche, M.F.; Settle, J.; Leibowitz, L.; Johnson, C.E.; Ritzman, R.L.
1988-01-01
The objective of this research is to measure the amount of strontium, barium, and lanthanum that is vaporized from core-concrete mixtures. The measurements are being done using a transpiration method. Mixtures of limestone-aggregated concrete, urania doped with a small amount of La, Sr, Ba, and Zr oxides, and stainless steel were vaporized at 2150 K from a zirconia crucible into flowing He-6% H 2 -0.06% H 2 O (a partial molar free energy of oxygen of -420 kJ). The amounts that were vaporized was determined by weight change and by chemical analyses on condensates. The major phases present in the mixture were inferred from electron probe microanalysis (EPM). They were: (1) urania containing calcia and zirconia, (2) calcium zirconate, (3) a calcium magnesium silicate, and (4) magnesia. About 10% of the zirconia crucible was dissolved by the concrete-urania mixture during the experiment, which accounts for the presence of zirconia-containing major phases. To circumvent the problem of zirconia dissolution, we repeated the experiments using mixtures of the limestone-aggregate concrete and the doped urania in molybdenum crucibles. These studies show that thermodynamic calculations of the release of refractory fission products will yield release fractions that are a factor of sixteen too high if the effects of zirconate formation are ignored
The separation of solid and liquid components of mixtures
International Nuclear Information System (INIS)
Hunter, W.M.
1980-01-01
An improved method of separating solid and liquid components of mixtures is described which is particularly suited for use in automated radioimmunoassay systems in the analysis of bound and free fractions. A second liquid, having a density intermediate between those of the solid and liquid components, is delivered to the solid/ liquid mixture to form a discrete layer below the mixture and the solid separates into this lower liquid layer assisted by centrifugal force. The second liquid of intermediate density is an aqueous solution of a highly hydrophilic and electrically non-polar solute, such as an aqueous sucrose solution. Further liquids of intermediate density and progressively higher density may be delivered to form further discrete layers below the initial layer of the second dense liquid. After separation of the solid and liquid components of the mixture, the supernatant liquid component of the original mixture is removed in a controlled and non-turbulent manner. The method is illustrated in radioimmunoassays for platelet β-thromboglobulin and human follicle stimulating hormone. (U.K.)
Cosolvent effect on the dynamics of water in aqueous binary mixtures
Zhang, Xia; Zhang, Lu; Jin, Tan; Zhang, Qiang; Zhuang, Wei
2018-04-01
Water rotational dynamics in the mixtures of water and amphiphilic molecules, such as acetone and dimethyl sulfoxide (DMSO), measured by femtosecond infrared, often vary non-monotonically as the amphiphilic molecule's molar fraction changes from 0 to 1. Recent study has attributed the non-ideal water rotation with concentration in DMSO-water mixtures to different microscopic hydrophilic-hydrophobic segregation structure in water-rich and water-poor mixtures. Interestingly, the acetone molecule has very similar molecular structure to DMSO, but the extremum of the water rotational time in the DMSO-water mixtures significantly shifts to lower concentration and the rotation of water is much faster than those in acetone-water mixtures. The simulation results here shows that the non-ideal rotational dynamics of water in both mixtures are due to the frame rotation during the interval of hydrogen bond (HB) switchings. A turnover of the frame rotation with concentration takes place as the structure transition of mixture from the hydrogen bond percolation structure to the hydrophobic percolation structure. The weak acetone-water hydrogen bond strengthens the hydrophobic aggregation and accelerates the relaxation of the hydrogen bond, so that the structure transition takes places at lower concentration and the rotation of water is faster in acetone-water mixture than in DMSO-water mixture. A generally microscopic picture on the mixing effect on the water dynamics in binary aqueous mixtures is presented here.
Nonparametric e-Mixture Estimation.
Takano, Ken; Hino, Hideitsu; Akaho, Shotaro; Murata, Noboru
2016-12-01
This study considers the common situation in data analysis when there are few observations of the distribution of interest or the target distribution, while abundant observations are available from auxiliary distributions. In this situation, it is natural to compensate for the lack of data from the target distribution by using data sets from these auxiliary distributions-in other words, approximating the target distribution in a subspace spanned by a set of auxiliary distributions. Mixture modeling is one of the simplest ways to integrate information from the target and auxiliary distributions in order to express the target distribution as accurately as possible. There are two typical mixtures in the context of information geometry: the [Formula: see text]- and [Formula: see text]-mixtures. The [Formula: see text]-mixture is applied in a variety of research fields because of the presence of the well-known expectation-maximazation algorithm for parameter estimation, whereas the [Formula: see text]-mixture is rarely used because of its difficulty of estimation, particularly for nonparametric models. The [Formula: see text]-mixture, however, is a well-tempered distribution that satisfies the principle of maximum entropy. To model a target distribution with scarce observations accurately, this letter proposes a novel framework for a nonparametric modeling of the [Formula: see text]-mixture and a geometrically inspired estimation algorithm. As numerical examples of the proposed framework, a transfer learning setup is considered. The experimental results show that this framework works well for three types of synthetic data sets, as well as an EEG real-world data set.
-Dimensional Fractional Lagrange's Inversion Theorem
Directory of Open Access Journals (Sweden)
F. A. Abd El-Salam
2013-01-01
Full Text Available Using Riemann-Liouville fractional differential operator, a fractional extension of the Lagrange inversion theorem and related formulas are developed. The required basic definitions, lemmas, and theorems in the fractional calculus are presented. A fractional form of Lagrange's expansion for one implicitly defined independent variable is obtained. Then, a fractional version of Lagrange's expansion in more than one unknown function is generalized. For extending the treatment in higher dimensions, some relevant vectors and tensors definitions and notations are presented. A fractional Taylor expansion of a function of -dimensional polyadics is derived. A fractional -dimensional Lagrange inversion theorem is proved.
Gauge invariant fractional electromagnetic fields
International Nuclear Information System (INIS)
Lazo, Matheus Jatkoske
2011-01-01
Fractional derivatives and integrations of non-integers orders was introduced more than three centuries ago but only recently gained more attention due to its application on nonlocal phenomenas. In this context, several formulations of fractional electromagnetic fields was proposed, but all these theories suffer from the absence of an effective fractional vector calculus, and in general are non-causal or spatially asymmetric. In order to deal with these difficulties, we propose a spatially symmetric and causal gauge invariant fractional electromagnetic field from a Lagrangian formulation. From our fractional Maxwell's fields arose a definition for the fractional gradient, divergent and curl operators. -- Highlights: → We propose a fractional Lagrangian formulation for fractional Maxwell's fields. → We obtain gauge invariant fractional electromagnetic fields. → Our generalized fractional Maxwell's field is spatially symmetrical. → We discuss the non-causality of the theory.
Gauge invariant fractional electromagnetic fields
Energy Technology Data Exchange (ETDEWEB)
Lazo, Matheus Jatkoske, E-mail: matheuslazo@furg.br [Instituto de Matematica, Estatistica e Fisica - FURG, Rio Grande, RS (Brazil)
2011-09-26
Fractional derivatives and integrations of non-integers orders was introduced more than three centuries ago but only recently gained more attention due to its application on nonlocal phenomenas. In this context, several formulations of fractional electromagnetic fields was proposed, but all these theories suffer from the absence of an effective fractional vector calculus, and in general are non-causal or spatially asymmetric. In order to deal with these difficulties, we propose a spatially symmetric and causal gauge invariant fractional electromagnetic field from a Lagrangian formulation. From our fractional Maxwell's fields arose a definition for the fractional gradient, divergent and curl operators. -- Highlights: → We propose a fractional Lagrangian formulation for fractional Maxwell's fields. → We obtain gauge invariant fractional electromagnetic fields. → Our generalized fractional Maxwell's field is spatially symmetrical. → We discuss the non-causality of the theory.
On matrix fractional differential equations
Directory of Open Access Journals (Sweden)
Adem Kılıçman
2017-01-01
Full Text Available The aim of this article is to study the matrix fractional differential equations and to find the exact solution for system of matrix fractional differential equations in terms of Riemann–Liouville using Laplace transform method and convolution product to the Riemann–Liouville fractional of matrices. Also, we show the theorem of non-homogeneous matrix fractional partial differential equation with some illustrative examples to demonstrate the effectiveness of the new methodology. The main objective of this article is to discuss the Laplace transform method based on operational matrices of fractional derivatives for solving several kinds of linear fractional differential equations. Moreover, we present the operational matrices of fractional derivatives with Laplace transform in many applications of various engineering systems as control system. We present the analytical technique for solving fractional-order, multi-term fractional differential equation. In other words, we propose an efficient algorithm for solving fractional matrix equation.
Interactions among different fractions in the thermoplastic state of Goonyella coking coal
Energy Technology Data Exchange (ETDEWEB)
Takahiro Yoshida; Toshimasa Takanohashi; Masashi Iino; Haruo Kumagai; Kenji Kato [National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan)
2004-04-01
Goonyella coking-coal was extracted with a 1:1 (v/v) carbon disulfide/N-methyl-2-pyrrolidinone (CS{sub 2}/NMP) mixed solvent and then fractionated into four with pyridine and chloroform. High-temperature {sup 1}H NMR analysis conducted on each fraction and their mixtures in-situ showed that the lightest, the chloroform-soluble fraction (CS), was rich in mobile hydrogen, H{sub m}, the variation of which with temperature corresponded to that of a thermoplastic parameter tan {delta} determined by in-situ viscoelastic measurement. In contrast, chloroform-insoluble and pyridine-soluble (CIPS) and pyridine-insoluble (PIMS) fractions showed scant change in H{sub m} with temperature, although the intermediate hydrogen, H{sub int}, increased upon heating. These results allow the different fractions to be characterized qualitatively on the basis of differences in hydrogen mobility. In mixtures of the continuous fractions, positive interactions occurred that enhanced the value of tan {delta} as well as the overall hydrogen mobility. A single maximum was observed in the tan {delta} response of these mixtures, which indicated that the heavier fractions were solvated through the action of the lighter ones. In a discontinuous mixture of the fractions, molecular interaction was slight compared to continuous mixtures; only the light fraction started to soften at low temperature and, as a result, a bimodal response occurred in tan {delta}. The thermoplastic response of coking coal can be modeled on a self-dissolution basis involving the {approximately}50% of solvent-soluble components that are present in whole coking coals and which possess a continuous fraction distribution from light to heavy. The mobility of the system develops continuously upon heating as a result of the progressive solvating action of the lighter components facilitating dissolution and/or dispersion of the heavier components. 25 refs., 7 figs., 2 tabs.
The Local Fractional Bootstrap
DEFF Research Database (Denmark)
Bennedsen, Mikkel; Hounyo, Ulrich; Lunde, Asger
We introduce a bootstrap procedure for high-frequency statistics of Brownian semistationary processes. More specifically, we focus on a hypothesis test on the roughness of sample paths of Brownian semistationary processes, which uses an estimator based on a ratio of realized power variations. Our...... new resampling method, the local fractional bootstrap, relies on simulating an auxiliary fractional Brownian motion that mimics the fine properties of high frequency differences of the Brownian semistationary process under the null hypothesis. We prove the first order validity of the bootstrap method...... and in simulations we observe that the bootstrap-based hypothesis test provides considerable finite-sample improvements over an existing test that is based on a central limit theorem. This is important when studying the roughness properties of time series data; we illustrate this by applying the bootstrap method...
[Mixture Leaching Remediation Technology of Arsenic Contaminated Soil].
Chen, Xun-feng; Li, Xiao-ming; Chen, Can; Yang, Qi; Deng, Lin-jing; Xie, Wei-qiang; Zhong, Yui; Huang, Bin; Yang, Wei-qiang; Zhang, Zhi-bei
2016-03-15
Soil contamination of arsenic pollution has become a severely environmental issue, while soil leaching is an efficient method for remediation of arsenic-contaminated soil. In this study, batch tests were primarily conducted to select optimal mixture leaching combination. Firstly, five conventional reagents were selected and combined with each other. Secondly, the fractions were analyzed before and after the tests. Finally, to explore the feasibility of mixed leaching, three soils with different arsenic pollution levels were used to compare the leaching effect. Comparing with one-step washing, the two-step sequential washing with different reagents increased the arsenic removal efficiency. These results showed that the mixture of 4 h 0.5 mol · L⁻¹ NaOH + 4 h 0.1 mol · L⁻¹ EDTA was found to be practicable, which could enhance the removal rate of arsenic from 66.67% to 91.83%, and the concentration of arsenic in soil was decreased from 186 mg · kg⁻¹ to 15.2 mg · kg⁻¹. Furthermore, the results indicated that the distribution of fractions of arsenic in soil changed apparently after mixture leaching. Leaching process could significantly reduce the available contents of arsenic in soil. Moreover, the mixture of 0.5 mol · L⁻¹ NaOH + 0.1 mol L⁻¹ EDTA could well decrease the arsenic concentration in aluminum-type soils, while the mixture of 0.5 mol · L⁻¹ OX + 0.5 mol · L⁻¹ NaOH could well decrease the arsenic concentration in iron-type soils.
Gel and gel-free approaches for the quantitative characterisation of complex protein mixtures
CSIR Research Space (South Africa)
Buthelezi, S
2012-10-01
Full Text Available reliable set of methods for profiling proteins in a complex mixture in order to allow for the mining of low abundant species. To achieve this, several fractionation techniques were applied to samples of bovine hepatic tissue. These included two... further separated via low pH reverse phase (RP) chromatography before being introduced for mass spectrometric analysis. MATERIALS AND METHODS Figure 1: Study design to analyse a complex mixture of proteins extracted from hepatic tissue. To determine...
Solution thermodynamics and preferential solvation of sulfamethazine in (methanol + water) mixtures
International Nuclear Information System (INIS)
Delgado, Daniel R.; Almanza, Ovidio A.; Martínez, Fleming; Peña, María A.; Jouyban, Abolghasem; Acree, William E.
2016-01-01
Highlights: • Solubility of sulfamethazine (SMT) was measured in (methanol + water) mixtures. • SMT solubility was correlated with Jouyban–Acree model. • Gibbs energy, enthalpy, and entropy of dissolution of SMT were calculated. • Non-linear enthalpy–entropy relationship was observed for SMT. • Preferential solvation of SMT by methanol was analyzed by using the IKBI method. - Abstract: The solubility of sulfamethazine (SMT) in {methanol (1) + water (2)} co-solvent mixtures was determined at five different temperatures from (293.15 to 313.15) K. The sulfonamide exhibited its highest mole fraction solubility in pure methanol (δ 1 = 29.6 MPa 1/2 ) and its lowest mole fraction solubility in water (δ 2 = 47.8 MPa 1/2 ) at each of the five temperatures studied. The Jouyban–Acree model was used to correlate/predict the solubility values. The respective apparent thermodynamic functions Gibbs energy, enthalpy, and entropy of solution were obtained from the solubility data through the van’t Hoff and Gibbs equations. Apparent thermodynamic quantities of mixing were also calculated for this drug using values of the ideal solubility reported in the literature. A non-linear enthalpy–entropy relationship was noted for SMT in plots of both the enthalpy vs. Gibbs energy of mixing and the enthalpy vs. entropy of mixing. These plots suggest two different trends according to the slopes obtained when the composition of the mixtures changes. Accordingly, the mechanism for SMT transfer processes in water-rich mixtures from water to the mixture with 0.70 in mass fraction of methanol is entropy driven. Conversely, the mechanism is enthalpy driven in mixtures whenever the methanol composition exceeds 0.70 mol fraction. An inverse Kirkwood–Buff integral analysis of the preferential solvation of SMT indicated that the drug is preferentially solvated by water in water-rich mixtures but is preferentially solvated by methanol in methanol-rich mixtures.
Fractionalization and Entrepreneurial Activities
Awaworyi Churchill, Sefa
2015-01-01
The vast majority of the literature on ethnicity and entrepreneurship focuses on the construct of ethnic entrepreneurship. However, very little is known about how ethnic heterogeneity affects entrepreneurship. This study attempts to fill the gap, and thus examines the effect of ethnic heterogeneity on entrepreneurial activities in a cross-section of 90 countries. Using indices of ethnic and linguistic fractionalization, we show that ethnic heterogeneity negatively influences entrepreneurship....
Mixtures of skewed Kalman filters
Kim, Hyoungmoon
2014-01-01
Normal state-space models are prevalent, but to increase the applicability of the Kalman filter, we propose mixtures of skewed, and extended skewed, Kalman filters. To do so, the closed skew-normal distribution is extended to a scale mixture class of closed skew-normal distributions. Some basic properties are derived and a class of closed skew. t distributions is obtained. Our suggested family of distributions is skewed and has heavy tails too, so it is appropriate for robust analysis. Our proposed special sequential Monte Carlo methods use a random mixture of the closed skew-normal distributions to approximate a target distribution. Hence it is possible to handle skewed and heavy tailed data simultaneously. These methods are illustrated with numerical experiments. © 2013 Elsevier Inc.
Preparation of conducting solid mixtures
International Nuclear Information System (INIS)
Spokas, J.J.
1978-01-01
The application of conducting plastic mixtures to the fundamental problem of radiation dosimetry is briefly reviewed. A particular approach to achieving formulations with the necessary characteristics is described. A number of successful mixtures are defined for a number of different specific dosimetry situations. To obtain high quality stable materials requires intense blending and working of the materials at elevated temperatures. One machine that succeeds in this task is the Shonka plastics mixer-extruder. The Shonka mixer is described in complete detail. The procedures used in preparing representative formulations with this device are presented. A number of properties of successful conducting mixtures so prepared are summarized. The conditions required for molding such material are given. Several special welding methods for specific application with these formulations have been devised and are described
Bayesian Kernel Mixtures for Counts.
Canale, Antonio; Dunson, David B
2011-12-01
Although Bayesian nonparametric mixture models for continuous data are well developed, there is a limited literature on related approaches for count data. A common strategy is to use a mixture of Poissons, which unfortunately is quite restrictive in not accounting for distributions having variance less than the mean. Other approaches include mixing multinomials, which requires finite support, and using a Dirichlet process prior with a Poisson base measure, which does not allow smooth deviations from the Poisson. As a broad class of alternative models, we propose to use nonparametric mixtures of rounded continuous kernels. An efficient Gibbs sampler is developed for posterior computation, and a simulation study is performed to assess performance. Focusing on the rounded Gaussian case, we generalize the modeling framework to account for multivariate count data, joint modeling with continuous and categorical variables, and other complications. The methods are illustrated through applications to a developmental toxicity study and marketing data. This article has supplementary material online.
Fractional Number Operator and Associated Fractional Diffusion Equations
Rguigui, Hafedh
2018-03-01
In this paper, we study the fractional number operator as an analog of the finite-dimensional fractional Laplacian. An important relation with the Ornstein-Uhlenbeck process is given. Using a semigroup approach, the solution of the Cauchy problem associated to the fractional number operator is presented. By means of the Mittag-Leffler function and the Laplace transform, we give the solution of the Caputo time fractional diffusion equation and Riemann-Liouville time fractional diffusion equation in infinite dimensions associated to the fractional number operator.
Toxicology of Chemical Mixtures: A Review of Mixtures Assessment
National Research Council Canada - National Science Library
Bjarnason, Stephen
2004-01-01
.... Recent advances in disciplines such as genomics, proteomics, metabonomics and physiologically-based pharmacokinetic modeling should assist in the hazard assessment of complex chemical mixtures. However, the process of regulatory assessment of these types of exposures will remain both complex and difficult.
Mutagenic hazards of complex polycyclic aromatic hydrocarbon mixtures in contaminated soil
Energy Technology Data Exchange (ETDEWEB)
Lemieux, C.L.; Lambert, A.B.; Lundstedt, S.; Tysklind, M.; White, P.A. [Health Canada, Ottawa, ON (Canada). Safe Environment Program
2008-04-15
The objective of the present study was to evaluate hazard/risk assessment methods for complex environmental mixtures that involve a targeted, priority chemical approach based on the cumulative hazard/risk of known mixture components or analyses of sufficiently similar mixtures. Ten polycyclic aromatic hydrocarbon (PAH)-contaminated soils were separated into nonpolar and semipolar fractions, and both fractions elicited positive responses on the Salmonella reverse mutation assay. Targeted and nontargeted methods of hazard prediction routinely overestimated mutagenic activities for the nonpolar soil fractions, suggesting nonadditive interactions of PAHs in complex mixtures. This suggests that current risk assessment methods for complex mixtures may provide conservative estimates regarding soils contaminated with priority PAHs alone. Significant underestimations of total risk, however, will be obtained if the soils also contain unidentified PAHs as well as polycyclic aromatic compounds and related compounds that contribute to the total mutagenic activity. Furthermore, estimates of excess lifetime cancer risk associated with the nondietary ingestion of the PAH-contaminated soils studied here indicate that a traditional risk assessment model based on identified priority PAHs and an assumption of additivity generally underestimates the risk associated with the nonpolar soil fractions (in comparison to bioassay-derived risk estimates). Additional cancer risk may be associated with the more polar compounds that also are found at these contaminated sites and that rarely are included in the standard risk assessment methodology.
Void fraction measurements using neutron radiography
International Nuclear Information System (INIS)
Glickstein, S.S.; Vance, W.H.; Joo, H.
1992-01-01
Real-time neutron radiography is being evaluated for studying the dynamic behavior of two phase flow and for measuring void fraction in vertical and inclined water ducts. This technique provides a unique means of visualizing the behavior of fluid flow inside thick metal enclosures. To simulate vapor conditions encountered in a fluid flow duct, an air-water flow system was constructed. Air was injected into the bottom of the duct at flow rates up to 0.47 I/s (1 cfm). The water flow rate was varied between 0--3.78 I/m (0--1 gpm). The experiments were performed at the Pennsylvania State University nuclear reactor facility using a real-time neutron radiography camera. With a thermal neutron flux on the order of 10 6 n/cm 2 /s directed through the thin duct dimension, the dynamic behavior of the air bubbles was clearly visible through 5 cm (2 in.) thick aluminum support plates placed on both sides of the duct wall. Image analysis techniques were employed to extract void fractions from the data which was recorded on videotape. This consisted of time averaging 256 video frames and measuring the gray level distribution throughout the region. The distribution of the measured void fraction across the duct was determined for various air/water mixtures. Details of the results of experiments for a variety of air and water flow conditions are presented
Gauge invariant fractional electromagnetic fields
Lazo, Matheus Jatkoske
2011-09-01
Fractional derivatives and integrations of non-integers orders was introduced more than three centuries ago but only recently gained more attention due to its application on nonlocal phenomenas. In this context, several formulations of fractional electromagnetic fields was proposed, but all these theories suffer from the absence of an effective fractional vector calculus, and in general are non-causal or spatially asymmetric. In order to deal with these difficulties, we propose a spatially symmetric and causal gauge invariant fractional electromagnetic field from a Lagrangian formulation. From our fractional Maxwell's fields arose a definition for the fractional gradient, divergent and curl operators.
The Extended Fractional Subequation Method for Nonlinear Fractional Differential Equations
Zhao, Jianping; Tang, Bo; Kumar, Sunil; Hou, Yanren
2012-01-01
An extended fractional subequation method is proposed for solving fractional differential equations by introducing a new general ansätz and Bäcklund transformation of the fractional Riccati equation with known solutions. Being concise and straightforward, this method is applied to the space-time fractional coupled Burgers’ equations and coupled MKdV equations. As a result, many exact solutions are obtained. It is shown that the considered method provides a very effective, convenient, and powe...
Thermal mixtures in stochastic mechanics
Energy Technology Data Exchange (ETDEWEB)
Guerra, F [Rome Univ. (Italy). Ist. di Matematica; Loffredo, M I [Salerno Univ. (Italy). Ist. di Fisica
1981-01-17
Stochastic mechanics is extended to systems in thermal equilibrium. The resulting stochastic processes are mixtures of Nelson processes. Their Markov property is investigated in some simple cases. It is found that in order to inforce Markov property the algebra of observable associated to the present must be suitably enlarged.
Characterization of bioactive mixtures oligogalacturonidos
International Nuclear Information System (INIS)
Mederos Torres, Yuliem; Hormaza Montenegro, Josefa; Reynaldo Escobar, Ines; Montesino Sequi, Raquel
2011-01-01
Oligogalacturonides are pectic oligosaccharides composed of lineal chains of D-galacturonic acid, linked by α (1-4) glycosidic linkage. Oligogalacturonides' mixtures are obtained by enzymatic hydrolysis of pectins of diverse vegetal species. These oligosaccharides unchain a diverse biological activity in plants, which depends mainly on their polymerization degrees. The National Institute of Agricultural Science has a patent technology at national scale that lets to obtain a mixture of oligogalacturonides with different polymerization degree. In this work is presented the characterization of oligogalacturonides by spectrophotometric analysis attending to their uronic acids, reductor sugars, and neutral sugars content. Also the chromatographic profile of samples in study is obtained, using the derivatization with 2-aminobenzamide label and the separation by high pH anion exchange chromatography. It is achieved the separation of at least eight galacturonic acid oligomers with a variable degree of polymerization. On the other hand, the analysis by Fourier transform-infrared spectroscopy (FT-IR) showed that mixtures were composed by galacturonic acid salts. Results indicated that starting from two pectic acids with different characteristics, mixtures of oligogalacturonides of similar chemical composition could be obtained, but they differ in the proportion that they are presented
Ecological Assembly of Chemical Mixtures
Human-environment interactions have a significant role in the formation of chemical mixtures in the environment and by extension in human tissues and fluids. These interactions, which include decisions to purchase and use products containing chemicals as well as behaviors and act...
Functional Fractional Calculus
Das, Shantanu
2011-01-01
When a new extraordinary and outstanding theory is stated, it has to face criticism and skeptism, because it is beyond the usual concept. The fractional calculus though not new, was not discussed or developed for a long time, particularly for lack of its application to real life problems. It is extraordinary because it does not deal with 'ordinary' differential calculus. It is outstanding because it can now be applied to situations where existing theories fail to give satisfactory results. In this book not only mathematical abstractions are discussed in a lucid manner, with physical mathematic
Andreasen, Niels; Bjerregaard, Mads; Lund, Jonas; Olsen, Ove Bitsch; Rasmussen, Andreas Dalgas
2012-01-01
Projektet er bygget op omkring kritisk realisme, som er det gennemgående videnskabelige fundament til undersøgelsen af hvilke strukturelle grunde der er til finansiel ustabilitet i Danmark. Projektet går i dybden med Fractional Reserve Banking og incitamentsstrukturen i banksystemet. Vi bevæger os både på det makro- og mikroøkonomiske niveau i analysen. På makro niveau bruger vi den østrigske skole om konjunktur teori (The Positive Theory of the Cycle). På mikro niveau arbejder vi med princip...
Farrugia, Albert; Evers, Theo; Falcou, Pierre-Francois; Burnouf, Thierry; Amorim, Luiz; Thomas, Sylvia
2009-04-01
Procurement and processing of human plasma for fractionation of therapeutic proteins or biological medicines used in clinical practice is a multi-billion dollar international trade. Together the private sector and public sector (non-profit) provide large amounts of safe and effective therapeutic plasma proteins needed worldwide. The principal therapeutic proteins produced by the dichotomous industry include gamma globulins or immunoglobulins (including pathogen-specific hyperimmune globulins, such as hepatitis B immune globulins) albumin, factor VIII and Factor IX concentrates. Viral inactivation, principally by solvent detergent and other processes, has proven highly effective in preventing transmission of enveloped viruses, viz. HBV, HIV, and HCV.
Monitoring urban greenness dynamics using multiple endmember spectral mixture analysis.
Directory of Open Access Journals (Sweden)
Muye Gan
Full Text Available Urban greenness is increasingly recognized as an essential constituent of the urban environment and can provide a range of services and enhance residents' quality of life. Understanding the pattern of urban greenness and exploring its spatiotemporal dynamics would contribute valuable information for urban planning. In this paper, we investigated the pattern of urban greenness in Hangzhou, China, over the past two decades using time series Landsat-5 TM data obtained in 1990, 2002, and 2010. Multiple endmember spectral mixture analysis was used to derive vegetation cover fractions at the subpixel level. An RGB-vegetation fraction model, change intensity analysis and the concentric technique were integrated to reveal the detailed, spatial characteristics and the overall pattern of change in the vegetation cover fraction. Our results demonstrated the ability of multiple endmember spectral mixture analysis to accurately model the vegetation cover fraction in pixels despite the complex spectral confusion of different land cover types. The integration of multiple techniques revealed various changing patterns in urban greenness in this region. The overall vegetation cover has exhibited a drastic decrease over the past two decades, while no significant change occurred in the scenic spots that were studied. Meanwhile, a remarkable recovery of greenness was observed in the existing urban area. The increasing coverage of small green patches has played a vital role in the recovery of urban greenness. These changing patterns were more obvious during the period from 2002 to 2010 than from 1990 to 2002, and they revealed the combined effects of rapid urbanization and greening policies. This work demonstrates the usefulness of time series of vegetation cover fractions for conducting accurate and in-depth studies of the long-term trajectories of urban greenness to obtain meaningful information for sustainable urban development.
ETHANOL PRODUCTION FROM THE MIXTURE OF HEMICELLULOSE PREHYDROLYSATE AND PAPER SLUDGE
Li Kang,; Yoon Y. Lee,; Sung-Hoon Yoon,; Allen J. Smith,; Gopal A. Krishnagopalan
2012-01-01
Much of the hemicellulose fraction of pulp mill feedstock is released into black liquor during the pulping process, and it is combusted to recover chemicals and energy in the form of steam and electricity. It is technically feasible to recover this fraction of carbohydrates and convert it into value-added products. In this study, a portion of the hemicellulose in pulp feed was hydrolyzed to soluble sugars by hot-water treatment. The sugars (mixtures of pentose, hexose, and their oligomers) we...
Radiation-energy partition among mixture components: current ideas on an old question
International Nuclear Information System (INIS)
Swallow, A.J.
1988-01-01
We review the basis of the familiar idea that the energy partition among mixture components in the initial stage would be governed by the total electron fraction. For considerations of many problems in radiation chemistry, it is better to use the valence-electron fraction. We also point out recent developments in more detailed treatments, which indicate limitations of the very concept of the energy partition for the determination of the yields of initial molecular species that appear under irradiation. (author)
Use of Monomer Fraction Data in the Parametrization of Association Theories
DEFF Research Database (Denmark)
Kontogeorgis, Georgios; Tsivintzelis, Ioannis; von Solms, Nicolas
2010-01-01
the monomer fraction of hydrogen bonding compounds and their mixtures. Monomer fraction data are obtained from spectroscopic measurements and they are available for a few compounds such as pure water and alcohols as well as for some alcohol–alkane and similar mixtures. These data are useful...... “improved” model parameters can be obtained if monomer fraction data are included in the parameter estimation together with vapor pressures and liquid densities. The expression “improved” implies parameters which can represent several pure compound properties as well as monomer fraction data for pure......, liquid densities and monomer fractions of water and alcohols. The 4C scheme is the best choice for water, while for methanol there is small difference between the 2B and 3B association schemes....
Le Bihanic, Florane; Clérandeau, Christelle; Le Menach, Karyn; Morin, Bénédicte; Budzinski, Hélène; Cousin, Xavier; Cachot, Jérôme
2014-12-01
In aquatic environments, polycyclic aromatic hydrocarbons (PAHs) mostly occur as complex mixtures, for which risk assessment remains problematic. To better understand the effects of PAH mixture toxicity on fish early life stages, this study compared the developmental toxicity of three PAH complex mixtures. These mixtures were extracted from a PAH-contaminated sediment (Seine estuary, France) and two oils (Arabian Light and Erika). For each fraction, artificial sediment was spiked at three different environmental concentrations roughly equivalent to 0.5, 4, and 10 μg total PAH g(-1) dw. Japanese medaka embryos were incubated on these PAH-spiked sediments throughout their development, right up until hatching. Several endpoints were recorded at different developmental stages, including acute endpoints, morphological abnormalities, larvae locomotion, and genotoxicity (comet and micronucleus assays). The three PAH fractions delayed hatching, induced developmental abnormalities, disrupted larvae swimming activity, and damaged DNA at environmental concentrations. Differences in toxicity levels, likely related to differences in PAH proportions, were highlighted between fractions. The Arabian Light and Erika petrogenic fractions, containing a high proportion of alkylated PAHs and low molecular weight PAHs, were more toxic to Japanese medaka early life stages than the pyrolytic fraction. This was not supported by the toxic equivalency approach, which appeared unsuitable for assessing the toxicity of the three PAH fractions to fish early life stages. This study highlights the potential risks posed by environmental mixtures of alkylated and low molecular weight PAHs to early stages of fish development.
Advances in robust fractional control
Padula, Fabrizio
2015-01-01
This monograph presents design methodologies for (robust) fractional control systems. It shows the reader how to take advantage of the superior flexibility of fractional control systems compared with integer-order systems in achieving more challenging control requirements. There is a high degree of current interest in fractional systems and fractional control arising from both academia and industry and readers from both milieux are catered to in the text. Different design approaches having in common a trade-off between robustness and performance of the control system are considered explicitly. The text generalizes methodologies, techniques and theoretical results that have been successfully applied in classical (integer) control to the fractional case. The first part of Advances in Robust Fractional Control is the more industrially-oriented. It focuses on the design of fractional controllers for integer processes. In particular, it considers fractional-order proportional-integral-derivative controllers, becau...
International Nuclear Information System (INIS)
Turner, R.E.
1984-01-01
A search was made for fractional charges of the form Z plus two-thirds e, where Z is an integer. It was assumed that the charges exist in natural form bound with other fractional charges in neutral molecules. It was further assumed that these neutral molecules are present in air. Two concentration schemes were employed. One sample was derived from the waste gases from a xenon distillation plant. This assumes that high mass, low vapor pressure components of air are concentrated along with the xenon. The second sample involved ionizing air, allowing a brief recombination period, and then collecting residual ions on the surface of titanium discs. Both samples were analyzed at the University of Rochester in a system using a tandem Van de Graff to accelerate particles through an essentially electrostatic beam handling system. The detector system employed both a Time of Flight and an energy-sensitive gas ionization detector. In the most sensitive mode of analysis, a gas absorber was inserted in the beam path to block the intense background. The presence of an absorber limited the search to highly penetrating particles. Effectively, this limited the search to particles with low Z and masses greater than roughly fifty GeV. The final sensitivities attained were on the order of 1 x 10 -20 for the ionized air sample and 1 x 10 -21 for the gas sample. A discussion of the caveats that could reduce the actual level of sensitivity is included
Isotope enrichment effect of gaseous mixtures in standing sound vibration
International Nuclear Information System (INIS)
Knesebeck, R.L.
1984-01-01
When standing acoustic waves are excited in a tube containing a mixture of two gases, a partial zonal fractioning of the components arises as consequence of mass transport by diffusion, driven by the thermal and pressure gradients which are associeted with the standing waves. This effect is present in each zone corresponding to a quarter wavelength, with the heavier component becoming enriched at the nodes fo the standing waves and deplected at the crests. The magnitude of the enrichment in one of the components of a binary gas mixture is given by Δω=ap 2 /lambda [b + (1-bω)] 2 . Where ω is the mass concentration of the component in the mixture, a and b are parameters which are related to molecular proprieties of the gases, p is the relative pressure amplitude of the standing wave and lambda is its wavelength. For a natural mixture of uranium hexafluorate, with 0.715% of the uranium isotope 340 an enrichment of about 2 x 10 -6 % in the concentration of this isotope is theorecticaly attainable per stage consisting of a quarter wavelenght, when a standing acoustical wave of relative pressure amplitude of 0,2 and wavelenght of 20 cm is used. Since standing acoustical waves are easely excited in gas columns, an isotope enrichment plant made of a cascade of tubes in which standing waves are excited, is presumably feasible with relatively low investment and operation costs. (Author) [pt
Fractional Reserve in Banking System
Valkonen, Maria
2016-01-01
This thesis is aimed to provide understanding of the role of the fractional reserve in the mod-ern banking system worldwide and particularly in Finland. The fractional reserve banking is used worldwide, but the benefits of this system are very disputable. On the one hand, experts say that the fractional reserve is a necessary instrument for the normal business and profit making. On the other hand, sceptics openly criticize the fractional reserve system and blame it for fiat money (money n...
On matrix fractional differential equations
Adem Kılıçman; Wasan Ajeel Ahmood
2017-01-01
The aim of this article is to study the matrix fractional differential equations and to find the exact solution for system of matrix fractional differential equations in terms of Riemann–Liouville using Laplace transform method and convolution product to the Riemann–Liouville fractional of matrices. Also, we show the theorem of non-homogeneous matrix fractional partial differential equation with some illustrative examples to demonstrate the effectiveness of the new methodology. The main objec...
Fractional Hopfield Neural Networks: Fractional Dynamic Associative Recurrent Neural Networks.
Pu, Yi-Fei; Yi, Zhang; Zhou, Ji-Liu
2017-10-01
This paper mainly discusses a novel conceptual framework: fractional Hopfield neural networks (FHNN). As is commonly known, fractional calculus has been incorporated into artificial neural networks, mainly because of its long-term memory and nonlocality. Some researchers have made interesting attempts at fractional neural networks and gained competitive advantages over integer-order neural networks. Therefore, it is naturally makes one ponder how to generalize the first-order Hopfield neural networks to the fractional-order ones, and how to implement FHNN by means of fractional calculus. We propose to introduce a novel mathematical method: fractional calculus to implement FHNN. First, we implement fractor in the form of an analog circuit. Second, we implement FHNN by utilizing fractor and the fractional steepest descent approach, construct its Lyapunov function, and further analyze its attractors. Third, we perform experiments to analyze the stability and convergence of FHNN, and further discuss its applications to the defense against chip cloning attacks for anticounterfeiting. The main contribution of our work is to propose FHNN in the form of an analog circuit by utilizing a fractor and the fractional steepest descent approach, construct its Lyapunov function, prove its Lyapunov stability, analyze its attractors, and apply FHNN to the defense against chip cloning attacks for anticounterfeiting. A significant advantage of FHNN is that its attractors essentially relate to the neuron's fractional order. FHNN possesses the fractional-order-stability and fractional-order-sensitivity characteristics.
The random continued fraction transformation
Kalle, Charlene; Kempton, Tom; Verbitskiy, Evgeny
2017-03-01
We introduce a random dynamical system related to continued fraction expansions. It uses random combinations of the Gauss map and the Rényi (or backwards) continued fraction map. We explore the continued fraction expansions that this system produces, as well as the dynamical properties of the system.
How Weird Are Weird Fractions?
Stuffelbeam, Ryan
2013-01-01
A positive rational is a weird fraction if its value is unchanged by an illegitimate, digit-based reduction. In this article, we prove that each weird fraction is uniquely weird and initiate a discussion of the prevalence of weird fractions.
Do Children Understand Fraction Addition?
Braithwaite, David W.; Tian, Jing; Siegler, Robert S.
2017-01-01
Many children fail to master fraction arithmetic even after years of instruction. A recent theory of fraction arithmetic (Braithwaite, Pyke, & Siegler, in press) hypothesized that this poor learning of fraction arithmetic procedures reflects poor conceptual understanding of them. To test this hypothesis, we performed three experiments…
On fractional Fourier transform moments
Alieva, T.; Bastiaans, M.J.
2000-01-01
Based on the relation between the ambiguity function represented in a quasi-polar coordinate system and the fractional power spectra, the fractional Fourier transform moments are introduced. Important equalities for the global second-order fractional Fourier transform moments are derived and their
Fractional dynamic calculus and fractional dynamic equations on time scales
Georgiev, Svetlin G
2018-01-01
Pedagogically organized, this monograph introduces fractional calculus and fractional dynamic equations on time scales in relation to mathematical physics applications and problems. Beginning with the definitions of forward and backward jump operators, the book builds from Stefan Hilger’s basic theories on time scales and examines recent developments within the field of fractional calculus and fractional equations. Useful tools are provided for solving differential and integral equations as well as various problems involving special functions of mathematical physics and their extensions and generalizations in one and more variables. Much discussion is devoted to Riemann-Liouville fractional dynamic equations and Caputo fractional dynamic equations. Intended for use in the field and designed for students without an extensive mathematical background, this book is suitable for graduate courses and researchers looking for an introduction to fractional dynamic calculus and equations on time scales. .
Continuous electrophoretic purification of individual analytes from multicomponent mixtures.
McLaren, David G; Chen, David D Y
2004-04-15
Individual analytes can be isolated from multicomponent mixtures and collected in the outlet vial by carrying out electrophoretic purification through a capillary column. Desired analytes are allowed to migrate continuously through the column under the electric field while undesired analytes are confined to the inlet vial by application of a hydrodynamic counter pressure. Using pressure ramping and buffer replenishment techniques, 18% of the total amount present in a bulk sample can be purified when the resolution to the adjacent peak is approximately 3. With a higher resolution, the yield could be further improved. Additionally, by periodically introducing fresh buffer into the sample, changes in pH and conductivity can be mediated, allowing higher purity (>or=99.5%) to be preserved in the collected fractions. With an additional reversed cycle of flow counterbalanced capillary electrophoresis, any individual component in a sample mixture can be purified providing it can be separated in an electrophoresis system.
Hydroprocesssing of light gas oil - rape oil mixtures
Energy Technology Data Exchange (ETDEWEB)
Walendziewski, Jerzy; Stolarski, Marek; Luzny, Rafal; Klimek, Bartlomiej [Faculty of Chemistry, Wroclaw University of Technology, ul. Gdanska 7/9, 50-310 Wroclaw (Poland)
2009-05-15
Two series of experiments of hydroprocessing of light gas oil - rape oil mixtures were carried out. The reactor feed was composed of raw material: first series - 10 wt.% rape oil and 90 wt.% of diesel oil; second series - 20 wt.% rape oil and 80 wt.% of diesel oil. Hydroprocessing of both mixtures was performed with the same parameter sets, temperature (320, 350 and 380 C), hydrogen pressure 3 and 5 MPa, LHSV = 2 h{sup -} {sup 1} and hydrogen feed ratio of 500 Nm{sup 3}/m{sup 3}. It was stated that within limited range it is possible to control vegetable oil hydrogenolysis in the presence of light gas oil fraction (diesel oil boiling range) through the proper selection of the process parameters. Hydrogenolysis of ester bonds and hydrogenation of olefinic bonds in vegetable oils are the main reactions in the process. Basic physicochemical properties of the obtained hydroprocessed products are presented. (author)
First principles predictions of thermophysical properties of refrigerant mixtures.
Oakley, Mark T; Do, Hainam; Hirst, Jonathan D; Wheatley, Richard J
2011-03-21
We present pair potentials for fluorinated methanes and their dimers with CO(2) based on ab initio potential energy surfaces. These potentials reproduce the experimental second virial coefficients of the pure fluorinated methanes and their mixtures with CO(2) without adjustment. Ab initio calculations on trimers are used to model the effects of nonadditive dispersion and induction. Simulations using these potentials reproduce the experimental phase-coexistence properties of CH(3)F within 10% over a wide range of temperatures. The phase coexistence curve of the mixture of CH(2)F(2) and CO(2) is reproduced with an error in the mole fractions of both phases of less than 0.1. The potentials described here are based entirely on ab initio calculations, with no empirical fits to improve the agreement with experiment.
Mixtures in nonstable Levy processes
International Nuclear Information System (INIS)
Petroni, N Cufaro
2007-01-01
We analyse the Levy processes produced by means of two interconnected classes of nonstable, infinitely divisible distribution: the variance gamma and the Student laws. While the variance gamma family is closed under convolution, the Student one is not: this makes its time evolution more complicated. We prove that-at least for one particular type of Student processes suggested by recent empirical results, and for integral times-the distribution of the process is a mixture of other types of Student distributions, randomized by means of a new probability distribution. The mixture is such that along the time the asymptotic behaviour of the probability density functions always coincide with that of the generating Student law. We put forward the conjecture that this can be a general feature of the Student processes. We finally analyse the Ornstein-Uhlenbeck process driven by our Levy noises and show a few simulations of it
Nonhomogeneous fractional Poisson processes
Energy Technology Data Exchange (ETDEWEB)
Wang Xiaotian [School of Management, Tianjin University, Tianjin 300072 (China)]. E-mail: swa001@126.com; Zhang Shiying [School of Management, Tianjin University, Tianjin 300072 (China); Fan Shen [Computer and Information School, Zhejiang Wanli University, Ningbo 315100 (China)
2007-01-15
In this paper, we propose a class of non-Gaussian stationary increment processes, named nonhomogeneous fractional Poisson processes W{sub H}{sup (j)}(t), which permit the study of the effects of long-range dependance in a large number of fields including quantum physics and finance. The processes W{sub H}{sup (j)}(t) are self-similar in a wide sense, exhibit more fatter tail than Gaussian processes, and converge to the Gaussian processes in distribution in some cases. In addition, we also show that the intensity function {lambda}(t) strongly influences the existence of the highest finite moment of W{sub H}{sup (j)}(t) and the behaviour of the tail probability of W{sub H}{sup (j)}(t)
Nonhomogeneous fractional Poisson processes
International Nuclear Information System (INIS)
Wang Xiaotian; Zhang Shiying; Fan Shen
2007-01-01
In this paper, we propose a class of non-Gaussian stationary increment processes, named nonhomogeneous fractional Poisson processes W H (j) (t), which permit the study of the effects of long-range dependance in a large number of fields including quantum physics and finance. The processes W H (j) (t) are self-similar in a wide sense, exhibit more fatter tail than Gaussian processes, and converge to the Gaussian processes in distribution in some cases. In addition, we also show that the intensity function λ(t) strongly influences the existence of the highest finite moment of W H (j) (t) and the behaviour of the tail probability of W H (j) (t)
Membrane Assisted Enzyme Fractionation
DEFF Research Database (Denmark)
Yuan, Linfeng
to the variation in size of the proteins and a reasonable separation factor can be observed only when the size difference is in the order of 10 or more. This is partly caused by concentration polarization and membrane fouling which hinders an effective separation of the proteins. Application of an electric field...... across the porous membrane has been demonstrated to be an effective way to reduce concentration polarization and membrane fouling. In addition, this technique can also be used to separate the proteins based on difference in charge, which to some extent overcome the limitations of size difference...... of proteins on the basis of their charge, degree of hydrophobicity, affinity or size. Adequate purity is often not achieved unless several purification steps are combined thereby increasing cost and reducing product yield. Conventional fractionation of proteins using ultrafiltration membranes is limited...
Fraction Reduction in Membrane Systems
Directory of Open Access Journals (Sweden)
Ping Guo
2014-01-01
Full Text Available Fraction reduction is a basic computation for rational numbers. P system is a new computing model, while the current methods for fraction reductions are not available in these systems. In this paper, we propose a method of fraction reduction and discuss how to carry it out in cell-like P systems with the membrane structure and the rules with priority designed. During the application of fraction reduction rules, synchronization is guaranteed by arranging some special objects in these rules. Our work contributes to performing the rational computation in P systems since the rational operands can be given in the form of fraction.
Thermochemical transformations of anthracite fractions
Energy Technology Data Exchange (ETDEWEB)
Belkina, T.V.; Privalov, V.E.; Stepanenko, atM.A.
1979-08-01
Research on the nature of thermochemical transformations of anthracite fractions and the possibility of increasing their activity and identifying conditions for their use in the electrode pitch process is described. From research done on different anthracite fractions processed at varying temperatures it was concluded that accumulations of condensates from heating anthracite fractions occur significantly slower in comparison with pitch. As a result the electrode pitch process is prolonged. Thermal treatment of an anthracite fraction causes the formation and accumulation of condensates and promotes thermochemical transformations. Lastly, the use of thermally treated anthracite fractions apparently intensifies the electrode pitch process and improves its quality. (16 refs.) (In Russian)
Process and apparatus for fractionating close-boiling components of a multi-component system
International Nuclear Information System (INIS)
Tsao, U.
1983-01-01
A process and apparatus are described for the fractionation of close-boiling components of a multi-component system comprising at least two fractionation columns A, B in series having a plurality of equilibrium stages in which the vapor stream from a downstream fractionation column B is compressed by a compressor and passed into a lower portion of a preceding fractionation column A and a liquid bottom stream from any one of said columns except the last is expanded by an orifice sufficiently to convey the resulting liquid-vapor mixture to the upper portion of the next fractionation column B. In a particularly preferred embodiment, the compressed overhead vapor stream is passed in heat transfer relationship to a liquid stream withdrawn from the preceding fractionation column A prior to introduction into the lower portion of such preceding fractionation column A. In one of the claims, the multi-component close-boiling system is a deuterium oxide-water solution. (author)
Toward lattice fractional vector calculus
Tarasov, Vasily E.
2014-09-01
An analog of fractional vector calculus for physical lattice models is suggested. We use an approach based on the models of three-dimensional lattices with long-range inter-particle interactions. The lattice analogs of fractional partial derivatives are represented by kernels of lattice long-range interactions, where the Fourier series transformations of these kernels have a power-law form with respect to wave vector components. In the continuum limit, these lattice partial derivatives give derivatives of non-integer order with respect to coordinates. In the three-dimensional description of the non-local continuum, the fractional differential operators have the form of fractional partial derivatives of the Riesz type. As examples of the applications of the suggested lattice fractional vector calculus, we give lattice models with long-range interactions for the fractional Maxwell equations of non-local continuous media and for the fractional generalization of the Mindlin and Aifantis continuum models of gradient elasticity.
A study of gas mixtures for the ATLAS MDT
International Nuclear Information System (INIS)
Zhao, T.; He, L.
1996-01-01
Results of a gas study for the ATLAS Monitored Drift Tubes (MDT) are reported. The electron drift velocity, Lorentz angle and tube radius to drift time relations are calculated for selected gas mixtures by using the CERN drift chamber simulation code GARFIELD/MAGBOLTZ. The drift tube efficiency, gas gain, avalanche size and self-quenching streamer (SQS) mode fraction as functions of anode voltage are measured by using radioactive sources. Discussions of the results, including effects of nitrogen and water vapor, are presented
Diffusion measurements in binary liquid mixtures by Raman spectroscopy
DEFF Research Database (Denmark)
Berg, Rolf W.; Hansen, Susanne Brunsgaard; Shapiro, Alexander
2007-01-01
It is shown that Raman spectroscopy allows determination of the molar fractions in mixtures subjected to molecular diffusion. Spectra of three binary systems, benzene/n-hexane, benzene/cyclohexane, and benzene/ acetone, were obtained during vertical (exchange) diffusion at several different heights...... in the literature were found, even in a thermostatically controlled diffusion cell, recording spectra through circulating water. For the system benzene/acetone, the determined diffusion coefficients were in good agreement with the literature data. The limitations of the Raman method are discussed...
Characteristics of Electron Drift in an Ar-Hg Mixture
Golyatina, R. I.; Maiorov, S. A.
2018-04-01
The characteristics of electron drift in a mixture of argon with mercury vapor at reduced electric fields of E/ N = 1-100 Td are calculated and analyzed with allowance for inelastic collisions. It is shown that even a minor additive of mercury to argon at a level of a fraction of percent substantially affects the discharge parameters, in particular, the characteristics of inelastic processes. The influence of the concentration of mercury vapor in argon on the kinetic characteristics, such as the diffusion and mobility coefficients and ionization frequency, is investigated.
A numerical study of blood flow using mixture theory
Wu, Wei-Tao; Aubry, Nadine; Massoudi, Mehrdad; Kim, Jeongho; Antaki, James F.
2014-01-01
In this paper, we consider the two dimensional flow of blood in a rectangular microfluidic channel. We use Mixture Theory to treat this problem as a two-component system: One component is the red blood cells (RBCs) modeled as a generalized Reiner–Rivlin type fluid, which considers the effects of volume fraction (hematocrit) and influence of shear rate upon viscosity. The other component, plasma, is assumed to behave as a linear viscous fluid. A CFD solver based on OpenFOAM® was developed and ...
Solid-phase extraction NMR studies of chromatographic fractions of saponins from Quillaja saponaria.
Nyberg, Nils T; Baumann, Herbert; Kenne, Lennart
2003-01-15
The saponin mixture QH-B from the tree Quillaja saponaria var. Molina was fractionated by RP-HPLC in several steps. The fractions were analyzed by solid-phase extraction NMR (SPE-NMR), a technique combining the workup by solid-phase extraction with on-line coupling to an NMR flow probe. Together with MALDI-TOF mass spectrometry and comparison with chemical shifts of similar saponins, the structures of both major and minor components in QH-B could be obtained. The procedure described is a simple method to determine the structure of components in a complex mixture. The two major fractions of the mixture were found to contain at least 28 saponins, differing in the carbohydrate substructures. Eight of these have not previously been determined. The 28 saponins formed 14 equilibrium pairs by the migration of an O-acyl group between two adjacent positions on a fucosyl residue.
Topological defects in mixtures of superconducting condensates with different charges
Garaud, Julien; Babaev, Egor
2014-06-01
We investigate the topological defects in phenomenological models describing mixtures of charged condensates with commensurate electric charges. Such situations are expected to appear for example in liquid metallic deuterium. This is modeled by a multicomponent Ginzburg-Landau theory where the condensates are coupled to the same gauge field by different coupling constants whose ratio is a rational number. We also briefly discuss the case where electric charges are incommensurate. Flux quantization and finiteness of the energy per unit length dictate that the different condensates have different winding and thus different number of (fractional) vortices. Competing attractive and repulsive interactions lead to molecule-like bound states between fractional vortices. Such bound states have finite energy and carry integer flux quanta. These can be characterized by the CP1 topological invariant that motivates their denomination as skyrmions.
Dermal tumorigen PAH and complex mixtures for biological research
International Nuclear Information System (INIS)
Griest, W.H.; Guerin, M.R.; Ho, C.
1985-01-01
Thirteen commercially available, commonly reported four-five ring dermal tumorigen PAHs, were determined in a set of complex mixtures consisting of crude and upgraded coal liquids, and petroleum crude oils and their distillate fractions. Semi-preparative scale, normal phase high performance liquid chromatographic fractionation followed by capillary column gas chromatography or gas chromatography-mass spectroscopy were used for the measurements. Deuterated or carbon-14 labeled PAH served as internal standards or allowed recovery corrections. Approaches for the preparation and measurement of radiolabeled PAH were examined to provide chemical probes for biological study. Synthetic routes for production of 14 C labeled dihydrobenzo[a]pyrene and 14 C- or 3 H 10-azabenzo[a]pyrene are being studied to provide tracers for fundamental studies in tracheal transplant and skin penetration systems. (DT)
Dissociation constants of phosphoric acid in dimethylformamide-water mixtures at 298.15 K
Safonova, L. P.; Fadeeva, Yu. A.; Pryakhin, A. A.
2009-10-01
The dissociation constants of phosphoric acid (p K 1 and p K 2) in water-dimethylformamide (DMFA) mixtures (0-0.65 mole fractions of DMFA) were determined at 298.15 K by potentiometric titration. The extrapolation of these data to pure DMFA and the comparative calculation method were used to estimate the dissociation constants of the acid in DMFA.
Behavior of the Thermodynamic Properties of Binary Mixtures near the Critical Azeotrope
Directory of Open Access Journals (Sweden)
Azzedine Abbaci
2003-12-01
Full Text Available Abstract: In this work we investigate the critical line of binary azeotropic mixtures of acetone-n-pentane. We pinpoint the abnormal behavior of the critical density line as a function of the mole fraction of one of the component and show its influence on other thermodynamic properties such as the volume, the enthalpy and the entropy.
Misonidazole in fractionated radiotherapy: are many small fractions best
International Nuclear Information System (INIS)
Denekamp, J.; McNally, N.J.; Fowler, J.F.; Joiner, M.C.
1980-01-01
The largest sensitizing effect is always demonstrated with six fractions, each given with 2 g/m 2 of misonidazole. In the absence of reoxygenation a sensitizer enhancement ratio of 1.7 is predicted, but this falls to 1.1-1.2 if extensive reoxygenation occurs. Less sensitization is observed with 30 fractions, each with 0.4 g/m 2 of drug. However, for clinical use, the important question is which treatment kills the maximum number of tumour cells. Many of the simulations predict a marked disadvantage of reducing the fraction number for X rays alone. The circumstances in which this disadvantage is offset by the large Sensitizer enhancement ratio values with a six-fraction schedule are few. The model calculations suggest that many small fractions, each with a low drug dose, are safest unless the clinician has some prior knowledge that a change in fraction number is not disadvantageous. (author)
Consistency of the MLE under mixture models
Chen, Jiahua
2016-01-01
The large-sample properties of likelihood-based statistical inference under mixture models have received much attention from statisticians. Although the consistency of the nonparametric MLE is regarded as a standard conclusion, many researchers ignore the precise conditions required on the mixture model. An incorrect claim of consistency can lead to false conclusions even if the mixture model under investigation seems well behaved. Under a finite normal mixture model, for instance, the consis...
Dirichlet Process Parsimonious Mixtures for clustering
Chamroukhi, Faicel; Bartcus, Marius; Glotin, Hervé
2015-01-01
The parsimonious Gaussian mixture models, which exploit an eigenvalue decomposition of the group covariance matrices of the Gaussian mixture, have shown their success in particular in cluster analysis. Their estimation is in general performed by maximum likelihood estimation and has also been considered from a parametric Bayesian prospective. We propose new Dirichlet Process Parsimonious mixtures (DPPM) which represent a Bayesian nonparametric formulation of these parsimonious Gaussian mixtur...
Konishi, C.
2014-12-01
Gravel-sand-clay mixture model is proposed particularly for unconsolidated sediments to predict permeability and velocity from volume fractions of the three components (i.e. gravel, sand, and clay). A well-known sand-clay mixture model or bimodal mixture model treats clay contents as volume fraction of the small particle and the rest of the volume is considered as that of the large particle. This simple approach has been commonly accepted and has validated by many studies before. However, a collection of laboratory measurements of permeability and grain size distribution for unconsolidated samples show an impact of presence of another large particle; i.e. only a few percent of gravel particles increases the permeability of the sample significantly. This observation cannot be explained by the bimodal mixture model and it suggests the necessity of considering the gravel-sand-clay mixture model. In the proposed model, I consider the three volume fractions of each component instead of using only the clay contents. Sand becomes either larger or smaller particles in the three component mixture model, whereas it is always the large particle in the bimodal mixture model. The total porosity of the two cases, one is the case that the sand is smaller particle and the other is the case that the sand is larger particle, can be modeled independently from sand volume fraction by the same fashion in the bimodal model. However, the two cases can co-exist in one sample; thus, the total porosity of the mixed sample is calculated by weighted average of the two cases by the volume fractions of gravel and clay. The effective porosity is distinguished from the total porosity assuming that the porosity associated with clay is zero effective porosity. In addition, effective grain size can be computed from the volume fractions and representative grain sizes for each component. Using the effective porosity and the effective grain size, the permeability is predicted by Kozeny-Carman equation
Fractional statistics and fractional quantized Hall effect. Revision
International Nuclear Information System (INIS)
Tao, R.; Wu, Y.S.
1984-01-01
We suggest that the origin of the odd denominator rule observed in the fractional quantized Hall effect (FQHE) may lie in fractional statistics which governs quasiparticles in FQHE. A theorem concerning statistics of clusters of quasiparticles implies that fractional statistics does not allow coexistence of a large number of quasiparticles at fillings with an even denominator. Thus no Hall plateau can be formed at these fillings, regardless of the presence of an energy gap. 15 references
Fractionation of Pb and Cu in the fine fraction (landfill.
Kaczala, Fabio; Orupõld, Kaja; Augustsson, Anna; Burlakovs, Juris; Hogland, Marika; Bhatnagar, Amit; Hogland, William
2017-11-01
The fractionation of metals in the fine fraction (landfill was carried out to evaluate the metal (Pb and Cu) contents and their potential towards not only mobility but also possibilities of recovery/extraction. The fractionation followed the BCR (Community Bureau of Reference) sequential extraction, and the exchangeable (F1), reducible (F2), oxidizable (F3) and residual fractions were determined. The results showed that Pb was highly associated with the reducible (F2) and oxidizable (F3) fractions, suggesting the potential mobility of this metal mainly when in contact with oxygen, despite the low association with the exchangeable fraction (F1). Cu has also shown the potential for mobility when in contact with oxygen, since high associations with the oxidizable fraction (F3) were observed. On the other hand, the mobility of metals in excavated waste can be seen as beneficial considering the circular economy and recovery of such valuables back into the economy. To conclude, not only the total concentration of metals but also a better understanding of fractionation and in which form metals are bound is very important to bring information on how to manage the fine fraction from excavated waste both in terms of environmental impacts and also recovery of such valuables in the economy.
Fractional variational calculus in terms of Riesz fractional derivatives
International Nuclear Information System (INIS)
Agrawal, O P
2007-01-01
This paper presents extensions of traditional calculus of variations for systems containing Riesz fractional derivatives (RFDs). Specifically, we present generalized Euler-Lagrange equations and the transversality conditions for fractional variational problems (FVPs) defined in terms of RFDs. We consider two problems, a simple FVP and an FVP of Lagrange. Results of the first problem are extended to problems containing multiple fractional derivatives, functions and parameters, and to unspecified boundary conditions. For the second problem, we present Lagrange-type multiplier rules. For both problems, we develop the Euler-Lagrange-type necessary conditions which must be satisfied for the given functional to be extremum. Problems are considered to demonstrate applications of the formulations. Explicitly, we introduce fractional momenta, fractional Hamiltonian, fractional Hamilton equations of motion, fractional field theory and fractional optimal control. The formulations presented and the resulting equations are similar to the formulations for FVPs given in Agrawal (2002 J. Math. Anal. Appl. 272 368, 2006 J. Phys. A: Math. Gen. 39 10375) and to those that appear in the field of classical calculus of variations. These formulations are simple and can be extended to other problems in the field of fractional calculus of variations
Some properties of explosive mixtures containing peroxides
International Nuclear Information System (INIS)
Zeman, Svatopluk; Trzcinski, Waldemar A.; Matyas, Robert
2008-01-01
This study concerns mixtures of triacetone triperoxide (3,3,6,6,9,9-hexamethyl-1,2,4,5,7,8-hexoxonane, TATP) and ammonium nitrate (AN) with added water (W), as the case may be, and dry mixtures of TATP with urea nitrate (UN). Relative performances (RP) of the mixtures and their individual components, relative to TNT, were determined by means of ballistic mortar. The detonation energies, E 0 , and detonation velocities, D, were calculated for the mixtures studied by means of the thermodynamic code CHEETAH. Relationships have been found and are discussed between the RP and the E 0 values related to unit volume of gaseous products of detonation of these mixtures. These relationships together with those between RP and oxygen balance values of the mixtures studied indicate different types of participation of AN and UN in the explosive decomposition of the respective mixtures. Dry TATP/UN mixtures exhibit lower RP than analogous mixtures TATP/AN containing up to 25% of water. Depending on the water content, the TATP/AN mixtures possess higher detonability values than the ANFO explosives. A semi-logarithmic relationship between the D values and oxygen coefficients has been derived for all the mixtures studied at the charge density of 1000 kg m -3 . Among the mixtures studied, this relationship distinguishes several samples of the type of 'tertiary explosives' as well as samples that approach 'high explosives' in their performances and detonation velocities
Modelling altered fractionation schedules
International Nuclear Information System (INIS)
Fowler, J.F.
1993-01-01
The author discusses the conflicting requirements of hyperfractionation and accelerated fractionation used in radiotherapy, and the development of computer modelling to predict how to obtain an optimum of tumour cell kill without exceeding normal-tissue tolerance. The present trend is to shorten hyperfractionated schedules from 6 or 7 weeks to give overall times of 4 or 5 weeks as in new schedules by Herskovic et al (1992) and Harari (1992). Very high doses are given, much higher than can be given when ultrashort schedules such as CHART (12 days) are used. Computer modelling has suggested that optimum overall times, to yield maximum cell kill in tumours ((α/β = 10 Gy) for a constant level of late complications (α/β = 3 Gy) would be X or X-1 weeks, where X is the doubling time of the tumour cells in days (Fowler 1990). For median doubling times of about 5 days, overall times of 4 or 5 weeks should be ideal. (U.K.)
Measurement of local void fraction in a ribbed annulus
International Nuclear Information System (INIS)
Steimke, J.L.
1992-01-01
The computer code FLOWTRAN-TF is used to analyze hypothetical hydraulic accidents for the nuclear reactor at the Savannah River Site. During a hypothetical Large Break Loss-of-Coolant Accident (LOCA), reactor assemblies would contain a two-phase mixture of air and water which flows downward. Reactor assemblies consist of nested, ribbed annuli. Longitudinal ribs divide each annulus into four subchannels. For accident conditions, air and water can flow past ribs from one subchannel to another. For FLOWTRAN-TF to compute the size of those flows, it is necessary to know the local void fraction in the region of the rib. Measurements have previously been made of length-average void fraction in a ribbed annulus. However, no direct measurements were available of local void fraction. Due to the lack of data, a test was designed to measure local void fraction at the rib. One question addressed by the test was whether void fraction at the rib is solely a function of azimuthal-average void fraction or a function of additional variables such as pressure boundary conditions. This report provides a discussion of this test
Dielectric barrier discharge in a two-phase mixture
Energy Technology Data Exchange (ETDEWEB)
Ye Qizheng; Zhang Ting; Lu Fei; Li Jin; He Zhenghao; Lin Fuchang [College of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)
2008-01-21
This paper reports the experimental investigation of the dielectric barrier discharge in which the gap area is filled with a two-phase mixture (TPM), air and solid particles. We found that there are two kinds of discharges in the TPM. One is the surface discharge generated on the surface of the solid particles and the other is the filament discharge generated in the air void. For the case of low volume fraction of solid particles, the surface discharge starts to occur when the applied voltage is higher than the onset voltage. At a further voltage increase, the filament discharge takes place at the same time. For the case of high volume fraction, such as the packed-bed reactor, only the surface discharge exists. Under the condition of the same volume fraction, the larger the diameter of the solid particles, the lower the surface discharge onset voltage. As a conclusion, we think that the plasma reactor using the form of low volume fraction of solid particles may be a better choice for waste-gas treatment enhanced by catalysts.
Picosecond spectral relaxation of curcumin excited state in toluene–alcohol mixtures
Energy Technology Data Exchange (ETDEWEB)
Saini, R.K.; Das, K., E-mail: kaustuv@rrcat.gov.in
2013-12-15
Excited state photophysics of Curcumin in a binary solvent mixture of toluene and five different alcohols (Methanol, Ethanol, 1-Propanol, 1-Butanol and 1-Octanol) are compared with an instrument time resolution of ∼40 ps. As the alcohol mole-fraction is varied from zero to unity, the observed trends in the fluorescence quantum yield and lifetime of the pigment in toluene–alcohol mixtures changes significantly in going from Methanol to 1-Octanol. This is attributed to the different degree of modulation of the non-radiative rates associated with the excited state intermolecular H bonding between the pigment and the alcohol. Fluorescence decays taken at the red edge of the emission spectrum started to show measurable rise times (200–30 ps) the magnitude of which decreased gradually with increasing alcohol mole-fraction. As a consequence the solvation times in the binary mixture were observed to slow down considerably at certain solvent compositions compared to that in neat alcohol. However, in toluene-1-Octanol mixture, the rise times and corresponding solvation times did not show a dependence on the 1-Octanol mole-fraction. The observed results suggest that viscosity, polarity and hydrogen bonding property of the alcohol solvent plays an important role in the excited state processes of the pigment in toluene–alcohol mixture. -- Highlights: • Excited state photophysics of Curcumin in a binary solvent mixture of toluene and five different alcohols were studied. • The observed trends in the fluorescence properties are attributed to intermolecular H bonding between the pigment and the alcohol. • Except 1-Octanol, the average solvation times of the pigment were observed to depend upon alcohol mole-fraction. • Viscosity, polarity and hydrogen bonding play an important role in the excited state processes of the pigment.
Picosecond spectral relaxation of curcumin excited state in toluene–alcohol mixtures
International Nuclear Information System (INIS)
Saini, R.K.; Das, K.
2013-01-01
Excited state photophysics of Curcumin in a binary solvent mixture of toluene and five different alcohols (Methanol, Ethanol, 1-Propanol, 1-Butanol and 1-Octanol) are compared with an instrument time resolution of ∼40 ps. As the alcohol mole-fraction is varied from zero to unity, the observed trends in the fluorescence quantum yield and lifetime of the pigment in toluene–alcohol mixtures changes significantly in going from Methanol to 1-Octanol. This is attributed to the different degree of modulation of the non-radiative rates associated with the excited state intermolecular H bonding between the pigment and the alcohol. Fluorescence decays taken at the red edge of the emission spectrum started to show measurable rise times (200–30 ps) the magnitude of which decreased gradually with increasing alcohol mole-fraction. As a consequence the solvation times in the binary mixture were observed to slow down considerably at certain solvent compositions compared to that in neat alcohol. However, in toluene-1-Octanol mixture, the rise times and corresponding solvation times did not show a dependence on the 1-Octanol mole-fraction. The observed results suggest that viscosity, polarity and hydrogen bonding property of the alcohol solvent plays an important role in the excited state processes of the pigment in toluene–alcohol mixture. -- Highlights: • Excited state photophysics of Curcumin in a binary solvent mixture of toluene and five different alcohols were studied. • The observed trends in the fluorescence properties are attributed to intermolecular H bonding between the pigment and the alcohol. • Except 1-Octanol, the average solvation times of the pigment were observed to depend upon alcohol mole-fraction. • Viscosity, polarity and hydrogen bonding play an important role in the excited state processes of the pigment
Accessible solitons of fractional dimension
Energy Technology Data Exchange (ETDEWEB)
Zhong, Wei-Ping, E-mail: zhongwp6@126.com [Department of Electronic and Information Engineering, Shunde Polytechnic, Guangdong Province, Shunde 528300 (China); Texas A& M University at Qatar, P.O. Box 23874, Doha (Qatar); Belić, Milivoj [Texas A& M University at Qatar, P.O. Box 23874, Doha (Qatar); Zhang, Yiqi [Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China)
2016-05-15
We demonstrate that accessible solitons described by an extended Schrödinger equation with the Laplacian of fractional dimension can exist in strongly nonlocal nonlinear media. The soliton solutions of the model are constructed by two special functions, the associated Legendre polynomials and the Laguerre polynomials in the fraction-dimensional space. Our results show that these fractional accessible solitons form a soliton family which includes crescent solitons, and asymmetric single-layer and multi-layer necklace solitons. -- Highlights: •Analytic solutions of a fractional Schrödinger equation are obtained. •The solutions are produced by means of self-similar method applied to the fractional Schrödinger equation with parabolic potential. •The fractional accessible solitons form crescent, asymmetric single-layer and multilayer necklace profiles. •The model applies to the propagation of optical pulses in strongly nonlocal nonlinear media.
TRANSPORT PROPERTIES FOR REFRIGERANT MIXTURES
Directory of Open Access Journals (Sweden)
V. Geller
2014-06-01
Full Text Available A set of models to predict viscosity and thermal conductivity of refrigerant mixtures is developed. A general model for viscosity and thermal conductivity use the three contributions sum form (the dilute-gas terms, the residual terms, and the liquid terms. The corresponding states model is recommended to predict the dense gas transport properties over a range of reduced density from 0 to 2. It is shown that the RHS model provides the most reliable results for the saturated-liquid and the compressed-liquid transport properties over a range of given temperatures from 0,5 to 0,95.
Nonparametric Mixture of Regression Models.
Huang, Mian; Li, Runze; Wang, Shaoli
2013-07-01
Motivated by an analysis of US house price index data, we propose nonparametric finite mixture of regression models. We study the identifiability issue of the proposed models, and develop an estimation procedure by employing kernel regression. We further systematically study the sampling properties of the proposed estimators, and establish their asymptotic normality. A modified EM algorithm is proposed to carry out the estimation procedure. We show that our algorithm preserves the ascent property of the EM algorithm in an asymptotic sense. Monte Carlo simulations are conducted to examine the finite sample performance of the proposed estimation procedure. An empirical analysis of the US house price index data is illustrated for the proposed methodology.
An investigation on the supersonic ejectors working with mixture of air and steam
Energy Technology Data Exchange (ETDEWEB)
Shafaee, Maziar; Tavakol, Mohsen; Riazi, Rouzbeh [University of Tehran, Tehran (Iran, Islamic Republic of); Sharifi, Navid [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)
2015-11-15
This study evaluated the performance of an ejector using two streams of fluids as suction flow. Three motive flow pressures were considered when investigating ejector performance; the suction flow pressure was assumed to be constant. The suction flow consisted of a mixture of air and steam and the mass fraction of air in this mixture varied from 0 to 1. The ejector performance curves were analyzed for different mass fractions of air. The results indicate that variation of the mass fraction of air in the suction flow mixture had a significant effect on ejector performance. At all motive flow pressures, the ejector entertainment ratio increased as the mass fraction of air in the suction flow increased. The results also show that the sensitivity of ejector performance to variation in the mass fraction of air in the suction flow decreases at higher motive flow pressures. An increase in motive flow pressure caused the transition from supersonic to subsonic flow to occur at higher ejector discharge pressures.
An investigation on the supersonic ejectors working with mixture of air and steam
International Nuclear Information System (INIS)
Shafaee, Maziar; Tavakol, Mohsen; Riazi, Rouzbeh; Sharifi, Navid
2015-01-01
This study evaluated the performance of an ejector using two streams of fluids as suction flow. Three motive flow pressures were considered when investigating ejector performance; the suction flow pressure was assumed to be constant. The suction flow consisted of a mixture of air and steam and the mass fraction of air in this mixture varied from 0 to 1. The ejector performance curves were analyzed for different mass fractions of air. The results indicate that variation of the mass fraction of air in the suction flow mixture had a significant effect on ejector performance. At all motive flow pressures, the ejector entertainment ratio increased as the mass fraction of air in the suction flow increased. The results also show that the sensitivity of ejector performance to variation in the mass fraction of air in the suction flow decreases at higher motive flow pressures. An increase in motive flow pressure caused the transition from supersonic to subsonic flow to occur at higher ejector discharge pressures
Fractional Calculus and Shannon Wavelet
Directory of Open Access Journals (Sweden)
Carlo Cattani
2012-01-01
Full Text Available An explicit analytical formula for the any order fractional derivative of Shannon wavelet is given as wavelet series based on connection coefficients. So that for any 2(ℝ function, reconstructed by Shannon wavelets, we can easily define its fractional derivative. The approximation error is explicitly computed, and the wavelet series is compared with Grünwald fractional derivative by focusing on the many advantages of the wavelet method, in terms of rate of convergence.
Fractional variational principles in action
Energy Technology Data Exchange (ETDEWEB)
Baleanu, Dumitru [Department of Mathematics and Computer Science, Faculty of Art and Sciences, Cankaya University, 06530 Ankara (Turkey); Institute of Space Sciences, PO Box MG-23, R 76900, Magurele-Bucharest (Romania)], E-mail: dumitru@cankaya.edu.tr
2009-10-15
The fractional calculus has gained considerable importance in various fields of science and engineering, especially during the last few decades. An open issue in this emerging field is represented by the fractional variational principles area. Therefore, the fractional Euler-Lagrange and Hamilton equations started to be examined intensely during the last decade. In this paper, we review some new trends in this field and we discuss some of their potential applications.
Kimura, Taro; Pestun, Vasily
2018-04-01
We introduce quiver gauge theory associated with the non-simply laced type fractional quiver and define fractional quiver W-algebras by using construction of Kimura and Pestun (Lett Math Phys, 2018. https://doi.org/10.1007/s11005-018-1072-1; Lett Math Phys, 2018. https://doi.org/10.1007/s11005-018-1073-0) with representation of fractional quivers.
Hosseinabadi, Abdolali Neamaty; Nategh, Mehdi
2014-01-01
This work, dealt with the classical mean value theorem and took advantage of it in the fractional calculus. The concept of a fractional critical point is introduced. Some sufficient conditions for the existence of a critical point is studied and an illustrative example rele- vant to the concept of the time dilation effect is given. The present paper also includes, some connections between convexity (and monotonicity) with fractional derivative in the Riemann-Liouville sense.
[Estimation of Hunan forest carbon density based on spectral mixture analysis of MODIS data].
Yan, En-ping; Lin, Hui; Wang, Guang-xing; Chen, Zhen-xiong
2015-11-01
With the fast development of remote sensing technology, combining forest inventory sample plot data and remotely sensed images has become a widely used method to map forest carbon density. However, the existence of mixed pixels often impedes the improvement of forest carbon density mapping, especially when low spatial resolution images such as MODIS are used. In this study, MODIS images and national forest inventory sample plot data were used to conduct the study of estimation for forest carbon density. Linear spectral mixture analysis with and without constraint, and nonlinear spectral mixture analysis were compared to derive the fractions of different land use and land cover (LULC) types. Then sequential Gaussian co-simulation algorithm with and without the fraction images from spectral mixture analyses were employed to estimate forest carbon density of Hunan Province. Results showed that 1) Linear spectral mixture analysis with constraint, leading to a mean RMSE of 0.002, more accurately estimated the fractions of LULC types than linear spectral and nonlinear spectral mixture analyses; 2) Integrating spectral mixture analysis model and sequential Gaussian co-simulation algorithm increased the estimation accuracy of forest carbon density to 81.5% from 74.1%, and decreased the RMSE to 5.18 from 7.26; and 3) The mean value of forest carbon density for the province was 30.06 t · hm(-2), ranging from 0.00 to 67.35 t · hm(-2). This implied that the spectral mixture analysis provided a great potential to increase the estimation accuracy of forest carbon density on regional and global level.
Fractionated Spacecraft Architectures Seeding Study
National Research Council Canada - National Science Library
Mathieu, Charlotte; Weigel, Annalisa
2006-01-01
.... Models were developed from a customer-centric perspective to assess different fractionated spacecraft architectures relative to traditional spacecraft architectures using multi-attribute analysis...
Preparation of fuels and chemical products from mixtures of coal and petroleum
Energy Technology Data Exchange (ETDEWEB)
Krichko, A A; Yulin, M K
1973-01-01
The distillate to 320/sup 0/C from the liquid phase hydrogenation of a 1 : 1 coal-Arlan petroleum mixture was processed to yield phenols 3.4 percent, high aromatics gasoline 81.2 percent, C/sub 1/--C/sub 4/ alkanes 13.5 percent, H/sub 2/S 0.5 percent, and water 1.0 percent. Thus, C/sub 6/--C/sub 8/ phenols were separated from the fraction distilling to 240/sup 0/C, and the phenol-free fraction and the 240 to 320/sup 0/C fraction were hydrofined over an aluminum-cobalt-molybdenum catalyst at 400/sup 0/C and 50 atm. Distillation gave a gasoline fraction, which was reformed, and a 180 to 320/sup 0/C fraction, which was hydrocracked at 380/sup 0/C and 40 atm on a zeolite catalyst.
Pucci, G N; Pucci, O H
2003-01-01
The complex composition of the crude oil and the hydrocarbons that integrate the waste of the different stages of the oil industry turn this product a mixture that presents different difficulties for its elimination by biological methods. The objective of this paper was to study the biodegradation potential of autochthonous bacterial communities on hydrocarbons obtained from four polluted places and subjected to landfarming biorremediation system during a decade. The results showed a marked difference in biodegradability of the three main fractions of crude oil, aliphatic, aromatic, and polar fractions, obtained by column chromatography. All fractions were used as carbon source and energy. There were variations in the production of biomass among the different fractions as well as in the kinetics of biodegradation, according to the composition of each fraction.
GRAVITY PIPELINE TRANSPORT FOR HARDENING FILLING MIXTURES
Directory of Open Access Journals (Sweden)
Leonid KROUPNIK
2015-12-01
Full Text Available In underground mining of solid minerals becoming increasingly common development system with stowing hardening mixtures. In this case the natural ore array after it is replaced by an artificial excavation of solidified filling mixture consisting of binder, aggregates and water. Such a mixture is prepared on the surface on special stowing complexes and transported underground at special stowing pipelines. However, it is transported to the horizons of a few kilometers, which requires a sustainable mode of motion of such a mixture in the pipeline. Hardening stowing mixture changes its rheological characteristics over time, which complicates the calculation of the parameters of pipeline transportation. The article suggests a method of determining the initial parameters of such mixtures: the status coefficient, indicator of transportability, coefficient of hydrodynamic resistance to motion of the mixture. These indicators characterize the mixture in terms of the possibility to transport it through pipes. On the basis of these indicators is proposed methodology for calculating the parameters of pipeline transport hardening filling mixtures in drift mode when traffic on the horizontal part of the mixture under pressure column of the mixture in the vertical part of the backfill of the pipeline. This technique allows stable operation is guaranteed to provide pipeline transportation.
Aerosol Mass Scattering Efficiency: Generalized Treatment of the Organic Fraction
Garland, R. M.; Ravishankara, A. R.; Lovejoy, E. R.; Tolbert, M. A.; Baynard, T.
2005-12-01
Atmospheric aerosols are complex mixtures of organic and inorganic compounds. Current efforts to provide a simplified parameterization to describe the RH dependence of water uptake and associated optical properties lack the capability to include any dependence on the composition of the organic fraction. Using laboratory generated aerosol we have investigated the validity of such simplified treatment of organic fraction and estimated potential biases. In this study, we use cavity ring-down aerosol extinction photometry (CRD-AEP) to study the relative humidity (RH) dependence of the light extinction of aerosols, σep, simultaneously considering the influence of particle size, chemical composition, and mixing state (internal and external mixtures). We have produced internally mixed aerosol systems including; ammonium sulfate, ammonium nitrate, sodium chloride, dicarboxylic acids, sugars, amino acids and humic acid. These aerosols are produced with an atomizer and size-selected with a Differential Mobility Analyzer (DMA). The particles then enter into a CRD-AEP to measure dry extinction, σep(Dry), after which they travel into a RH conditioner and another CRD-AEP to measure the humidified aerosol extinction, fσ(ep)RH. The ratio of the humidified extinction to the dry extinction is fσ(ep)RH. Representative organic compounds were found to have fσ(ep)RH values that are much smaller than pure salts; though the fσ(ep)RH values vary little within the organic compounds studied. In addition, we have found that treating the inorganic/organic aerosols as external mixtures is generally correct to within ~10%, indicating appropriate simplified treatment of the RH dependence of atmospheric aerosol according to inorganic/organic fraction. In this presentation, we include recommendations for the generalized treatment of the organic fraction, exceptions to this generalized behavior, and estimates of the potential bias caused by generalized treatment.
Vibrational relaxation in OCS mixtures
International Nuclear Information System (INIS)
Simpson, C.J.S.M.; Gait, P.D.; Simmie, J.M.
1976-01-01
Experimental measurements are reported of vibrational relaxation times which may be used to show whether there is near resonant vibration-rotation energy transfer between OCS and H 2 , D 2 or HD. Vibrational relaxation times have been measured in OCS and OCS mixtures over the temperature range 360 to 1000 K using a shock tube and a laser schlieren system. The effectiveness of the additives in reducing the relaxation time of OCS is in the order 4 He 3 He 2 2 and HD. Along this series the effect of an increase in temperature changes from the case of speeding up the rate with 4 He to retarding it with D 2 , HD and H 2 . There is no measurable difference in the effectiveness of n-D 2 and o-D 2 and little, or no, difference between n-H 2 and p-H 2 . Thus the experimental results do not give clear evidence for rotational-vibration energy transfer between hydrogen and OCS. This contrasts with the situation for CO 2 + H 2 mixtures. (author)
Supercritical Water Mixture (SCWM) Experiment
Hicks, Michael C.; Hegde, Uday G.
2012-01-01
The subject presentation, entitled, Supercritical Water Mixture (SCWM) Experiment, was presented at the International Space Station (ISS) Increment 33/34 Science Symposium. This presentation provides an overview of an international collaboration between NASA and CNES to study the behavior of a dilute aqueous solution of Na2SO4 (5% w) at near-critical conditions. The Supercritical Water Mixture (SCWM) investigation, serves as important precursor work for subsequent Supercritical Water Oxidation (SCWO) experiments. The SCWM investigation will be performed in DECLICs High Temperature Insert (HTI) for the purpose of studying critical fluid phenomena at high temperatures and pressures. The HTI includes a completely sealed and integrated test cell (i.e., Sample Cell Unit SCU) that will contain approximately 0.3 ml of the aqueous test solution. During the sequence of tests, scheduled to be performed in FY13, temperatures and pressures will be elevated to critical conditions (i.e., Tc = 374C and Pc = 22 MPa) in order to observe salt precipitation, precipitate agglomeration and precipitate transport in the presence of a temperature gradient without the influences of gravitational forces. This presentation provides an overview of the motivation for this work, a description of the DECLIC HTI hardware, the proposed test sequences, and a brief discussion of the scientific research objectives.
Thermodynamic studies of mixtures for topical anesthesia: Lidocaine-salol binary phase diagram
Energy Technology Data Exchange (ETDEWEB)
Lazerges, Mathieu [Laboratoire de Chimie Physique (EA 4066), Faculte des Sciences Pharmaceutiques et Biologiques, Universite Paris Descartes, 4 Avenue de l' Observatoire, 75270 Paris Cedex 06 (France); Rietveld, Ivo B., E-mail: ivo.rietveld@parisdescartes.fr [Laboratoire de Chimie Physique (EA 4066), Faculte des Sciences Pharmaceutiques et Biologiques, Universite Paris Descartes, 4 Avenue de l' Observatoire, 75270 Paris Cedex 06 (France); Corvis, Yohann; Ceolin, Rene; Espeau, Philippe [Laboratoire de Chimie Physique (EA 4066), Faculte des Sciences Pharmaceutiques et Biologiques, Universite Paris Descartes, 4 Avenue de l' Observatoire, 75270 Paris Cedex 06 (France)
2010-01-10
The lidocaine-salol binary system has been investigated by differential scanning calorimetry, direct visual observations, and X-ray powder diffraction, resulting in a temperature-composition phase diagram with a eutectic equilibrium. The eutectic mixture, found at 0.423 {+-} 0.007 lidocaine mole-fraction, melts at 18.2 {+-} 0.5 {sup o}C with an enthalpy of 17.3 {+-} 0.5 kJ mol{sup -1}. This indicates that the liquid phase around the eutectic composition is stable at room temperature. Moreover, the undercooled liquid mixture does not easily crystallize. The present binary mixture exhibits eutectic behavior similar to the prilocaine-lidocaine mixture in the widely used EMLA topical anesthetic preparation.
Novoselov, Ivan; Karengin, Alexander; Shamanin, Igor; Alyukov, Evgeny; Gusev, Alexander
2018-03-01
Article represents results on theoretical and experimental research of yttria and zirconia plasmachemical synthesis in air plasma from water-salt-organic mixtures "yttrium nitrate-water-acetone" and "zirconyl nitrate-water-acetone". On the basis of thermotechnical calculations the influence of organic component on lower heat value and adiabatic combustion temperature of water-salt-organic mixtures as well as compositions of mixtures providing their energy-efficient plasma treatment were determined. The calculations found the influence of mass fraction and temperature of air plasma supporting gas on the composition of plasma treatment products. It was determined the conditions providing yttria and zirconia plasmachemical synthesis in air plasma. During experiments it was b eing carried out the plasmachemical synthesis of yttria and zirconia powders in air plasma flow from water -salt-organic mixtures. Analysis of the results for obtained powders (scanning electron microscopy, X-ray diffraction analysis, BET analysis) confirm nanostructure of yttria and zirconia.
Thermodynamic studies of mixtures for topical anesthesia: Lidocaine-salol binary phase diagram
International Nuclear Information System (INIS)
Lazerges, Mathieu; Rietveld, Ivo B.; Corvis, Yohann; Ceolin, Rene; Espeau, Philippe
2010-01-01
The lidocaine-salol binary system has been investigated by differential scanning calorimetry, direct visual observations, and X-ray powder diffraction, resulting in a temperature-composition phase diagram with a eutectic equilibrium. The eutectic mixture, found at 0.423 ± 0.007 lidocaine mole-fraction, melts at 18.2 ± 0.5 o C with an enthalpy of 17.3 ± 0.5 kJ mol -1 . This indicates that the liquid phase around the eutectic composition is stable at room temperature. Moreover, the undercooled liquid mixture does not easily crystallize. The present binary mixture exhibits eutectic behavior similar to the prilocaine-lidocaine mixture in the widely used EMLA topical anesthetic preparation.
A predictive model of natural gas mixture combustion in internal combustion engines
Directory of Open Access Journals (Sweden)
Henry Espinoza
2007-05-01
Full Text Available This study shows the development of a predictive natural gas mixture combustion model for conventional com-bustion (ignition engines. The model was based on resolving two areas; one having unburned combustion mixture and another having combustion products. Energy and matter conservation equations were solved for each crankshaft turn angle for each area. Nonlinear differential equations for each phase’s energy (considering compression, combustion and expansion were solved by applying the fourth-order Runge-Kutta method. The model also enabled studying different natural gas components’ composition and evaluating combustion in the presence of dry and humid air. Validation results are shown with experimental data, demonstrating the software’s precision and accuracy in the results so produced. The results showed cylinder pressure, unburned and burned mixture temperature, burned mass fraction and combustion reaction heat for the engine being modelled using a natural gas mixture.
Abnormal breakdown characteristic in a two-phase mixture
International Nuclear Information System (INIS)
Ye Qizheng; Li Jin; Lu Fei
2006-01-01
A two-phase mixture (TPM) is a mixture of gas and macroparticles of high concentration. Based on Townsend's theory, a new cell-iterative model in analytical form for the breakdown mechanism in TPM is presented. Compared with the original cell-iterative model in our previous paper, the obstructive factor of the macroparticles that influences the electron avalanche propagation is considered, except for the macroparticles distorting the electrical field and capture of the electrons. The cell attractive parameter k is presented according to the classical continuum theory for field charging. The modified Paschen law for a TPM is presented to calculate the breakdown voltage. The breakdown voltage of the TPM, U TPM , increases gradually with an increase in the macroparticle number density (m). The voltage U TPM is lower than that of the pure gas at low m values and larger at high m values. With a decrease of the macroparticle volume fraction and the dielectric mismatch, the voltage U TPM increases gradually at low m values and decreases gradually at high m values. The voltage U TPM at pd 200 cm Torr is lower than that at pd = 760 cm Torr for low m values and larger for high m values. This kind of abnormal breakdown characteristic in the TPM occurs in the case of high macroparticle volume fraction. On the other hand, the minimum of the TPM's Paschen curve increases with increase in m. It provides the possibility and the conditions of greatly increasing the breakdown voltage in a nearly uniform field
COMMERCIAL SNF ACCIDENT RELEASE FRACTIONS
Energy Technology Data Exchange (ETDEWEB)
S.O. Bader
1999-10-18
The purpose of this design analysis is to specify and document the total and respirable fractions for radioactive materials that are released from an accident event at the Monitored Geologic Repository (MGR) involving commercial spent nuclear fuel (CSNF) in a dry environment. The total and respirable release fractions will be used to support the preclosure licensing basis for the MGR. The total release fraction is defined as the fraction of total CSNF assembly inventory, typically expressed as an activity inventory (e.g., curies), of a given radionuclide that is released to the environment from a waste form. The radionuclides are released from the inside of breached fuel rods (or pins) and from the detachment of radioactive material (crud) from the outside surfaces of fuel rods and other components of fuel assemblies. The total release fraction accounts for several mechanisms that tend to retain, retard, or diminish the amount of radionuclides that are available for transport to dose receptors or otherwise can be shown to reduce exposure of receptors to radiological releases. The total release fraction includes a fraction of airborne material that is respirable and could result in inhalation doses. This subset of the total release fraction is referred to as the respirable release fraction. Potential accidents may involve waste forms that are characterized as either bare (unconfined) fuel assemblies or confined fuel assemblies. The confined CSNF assemblies at the MGR are contained in shipping casks, canisters, or disposal containers (waste packages). In contrast to the bare fuel assemblies, the container that confines the fuel assemblies has the potential of providing an additional barrier for diminishing the total release fraction should the fuel rod cladding breach during an accident. However, this analysis will not take credit for this additional bamer and will establish only the total release fractions for bare unconfined CSNF assemblies, which may however be
COMMERCIAL SNF ACCIDENT RELEASE FRACTIONS
International Nuclear Information System (INIS)
S.O. Bader
1999-01-01
The purpose of this design analysis is to specify and document the total and respirable fractions for radioactive materials that are released from an accident event at the Monitored Geologic Repository (MGR) involving commercial spent nuclear fuel (CSNF) in a dry environment. The total and respirable release fractions will be used to support the preclosure licensing basis for the MGR. The total release fraction is defined as the fraction of total CSNF assembly inventory, typically expressed as an activity inventory (e.g., curies), of a given radionuclide that is released to the environment from a waste form. The radionuclides are released from the inside of breached fuel rods (or pins) and from the detachment of radioactive material (crud) from the outside surfaces of fuel rods and other components of fuel assemblies. The total release fraction accounts for several mechanisms that tend to retain, retard, or diminish the amount of radionuclides that are available for transport to dose receptors or otherwise can be shown to reduce exposure of receptors to radiological releases. The total release fraction includes a fraction of airborne material that is respirable and could result in inhalation doses. This subset of the total release fraction is referred to as the respirable release fraction. Potential accidents may involve waste forms that are characterized as either bare (unconfined) fuel assemblies or confined fuel assemblies. The confined CSNF assemblies at the MGR are contained in shipping casks, canisters, or disposal containers (waste packages). In contrast to the bare fuel assemblies, the container that confines the fuel assemblies has the potential of providing an additional barrier for diminishing the total release fraction should the fuel rod cladding breach during an accident. However, this analysis will not take credit for this additional bamer and will establish only the total release fractions for bare unconfined CSNF assemblies, which may however be
Dissolution and biodegradation of a mixture of immiscible liquids
International Nuclear Information System (INIS)
Gandhi, P.; Erickson, L.E.; Fan, L.T.
1994-01-01
Subsurface contaminants are frequently encountered as mixtures of nonaqueous phase liquids (NAPLs) at sites contaminated by gasoline or coal tar comprising organic mixtures. The leaching of these organic mixtures from the aquifer has been examined with and without biodegradation. The results obtained have been compared with the limiting case of a single component NAPL. Various physical processes involved have been quantified based on the assumptions that liquid-liquid and sorption equilibria are established at the beginning of each flushing; oxygen required for biochemical oxidation is completely consumed by the end of each flushing; and the rate of biochemical oxidation obeys the Monod kinetics for a multi-substrate system, characterized by an oxygen utilization factor. This has given rise to an equilibrium model expressing the mass fraction of any component remaining in the aquifer, its aqueous concentration, and the composition of the NAPL as functions of the number of flushings. The results of the simulation with the model demonstrate that bioremediation can significantly reduce the time necessary for removing the components of intermediate solubility such as xylene. Highly soluble components of the NAPL are mainly removed by the pump-and-treat mechanism while the components of extremely low solubility are unavailable to the microbes as substrates in a multi-component system
Fractions, Number Lines, Third Graders
Cramer, Kathleen; Ahrendt, Sue; Monson, Debra; Wyberg, Terry; Colum, Karen
2017-01-01
The Common Core State Standards for Mathematics (CCSSM) (CCSSI 2010) outlines ambitious goals for fraction learning, starting in third grade, that include the use of the number line model. Understanding and constructing fractions on a number line are particularly complex tasks. The current work of the authors centers on ways to successfully…
Unwrapping Students' Ideas about Fractions
Lewis, Rebecca M.; Gibbons, Lynsey K.; Kazemi, Elham; Lind, Teresa
2015-01-01
Supporting students to develop an understanding of the meaning of fractions is an important goal of elementary school mathematics. This involves developing partitioning strategies, creating representations, naming fractional quantities, and using symbolic notation. This article describes how teachers can use a formative assessment problem to…
Understanding Magnitudes to Understand Fractions
Gabriel, Florence
2016-01-01
Fractions are known to be difficult to learn and difficult to teach, yet they are vital for students to have access to further mathematical concepts. This article uses evidence to support teachers employing teaching methods that focus on the conceptual understanding of the magnitude of fractions.
Financial Planning with Fractional Goals
Goedhart, Marc; Spronk, Jaap
1995-01-01
textabstractWhen solving financial planning problems with multiple goals by means of multiple objective programming, the presence of fractional goals leads to technical difficulties. In this paper we present a straightforward interactive approach for solving such linear fractional programs with multiple goal variables. The approach is illustrated by means of an example in financial planning.
Deterministic ratchets for suspension fractionation
Kulrattanarak, T.
2010-01-01
Driven by the current insights in sustainability and technological development in
biorefining natural renewable resources, the food industry has taken an interest in
fractionation of agrofood materials, like milk and cereal crops. The purpose of fractionation
is to split the raw
Fermion fractionization and index theorem
International Nuclear Information System (INIS)
Hirayama, Minoru; Torii, Tatsuo
1982-01-01
The relation between the fermion fractionization and the Callias-Bott-Seeley index theorem for the Dirac operator in the open space of odd dimension is clarified. Only the case of one spatial dimension is discussed in detail. Sum rules for the expectation values of various quantities in fermion-fractionized configurations are derived. (author)
Czech Academy of Sciences Publication Activity Database
Vaněk, A.; Grygar, Tomáš; Chrastný, V.; Tejnecký, V.; Drahota, Petr; Komárek, M.
2010-01-01
Roč. 176, 1-3 (2010), s. 913-918 ISSN 0304-3894 Institutional research plan: CEZ:AV0Z4032918; CEZ:AV0Z30130516 Keywords : Metal * Sequential extraction * Goethite * Ferrihydrite * Birnessite * Illite Subject RIV: DD - Geochemistry Impact factor: 3.723, year: 2010
A new fractional wavelet transform
Dai, Hongzhe; Zheng, Zhibao; Wang, Wei
2017-03-01
The fractional Fourier transform (FRFT) is a potent tool to analyze the time-varying signal. However, it fails in locating the fractional Fourier domain (FRFD)-frequency contents which is required in some applications. A novel fractional wavelet transform (FRWT) is proposed to solve this problem. It displays the time and FRFD-frequency information jointly in the time-FRFD-frequency plane. The definition, basic properties, inverse transform and reproducing kernel of the proposed FRWT are considered. It has been shown that an FRWT with proper order corresponds to the classical wavelet transform (WT). The multiresolution analysis (MRA) associated with the developed FRWT, together with the construction of the orthogonal fractional wavelets are also presented. Three applications are discussed: the analysis of signal with time-varying frequency content, the FRFD spectrum estimation of signals that involving noise, and the construction of fractional Harr wavelet. Simulations verify the validity of the proposed FRWT.
Generalized random sequential adsorption of polydisperse mixtures on a one-dimensional lattice
International Nuclear Information System (INIS)
Lončarević, I; Budinski-Petković, Lj; Vrhovac, S B; Belić, A
2010-01-01
Generalized random sequential adsorption (RSA) of polydisperse mixtures of k-mers on a one-dimensional lattice is studied numerically by means of Monte Carlo simulations. The kinetics of the deposition process of mixtures is studied for the irreversible case, for adsorption–desorption processes and for the case where adsorption, desorption and diffusion are present simultaneously. We concentrate here on the influence of the number of mixture components and the length of the k-mers making up the mixture on the temporal behavior of the coverage fraction θ(t). The approach of the coverage θ(t) to the jamming limit θ jam in the case of irreversible RSA is found to be exponential, θ jam -θ(t)∝ exp(-t/σ), not only for a whole mixture, but also for the individual components. For the reversible deposition of polydisperse mixtures, we find that after the initial 'jamming', a stretched exponential growth of the coverage θ(t) towards the equilibrium state value θ eq occurs, i.e., θ eq -θ(t)∝ exp[-(t/τ) β ]. The characteristic timescale τ is found to decrease with the desorption probability P des . When adsorption, desorption and diffusion occur simultaneously, the coverage of a mixture always reaches an equilibrium value θ eq , but there is a significant difference in temporal evolution between the coverage with diffusion and that without
Mechanical properties of steel/kenaf (hybrid) fibers added into concrete mixtures
Baarimah, A. O.; Syed Mohsin, S. M.
2018-04-01
This paper investigates the potential advantages of adding hybrid steel-kenaf fibers to concrete mixtures. Compression and flexural test were conducted on six concrete mixtures at 28 days to investigate the mechanical properties of the concrete. The experimental work consists of six concrete mixtures, in which the first mixture was a control mixture without adding any fiber. The following five concrete mixtures contain a total of 1% of volume fraction for steel, kenaf and a mixture of steel-kenaf (hybrid) fibers. Three ratios were considered for hybrid fibers with the ratios of 0.25/0.75, 0.5/0.5 and 0.75/0.25 for steel and kenaf fibers, respectively. From the investigation, it was observed that fibers have minimal effect on compressive strength of the concrete. However, the findings suggest promising improvement on the flexural strength of the concrete added with hybrid fiber (up to 86%) as well as manages to change the mode of failure of the beam from brittle to a more ductile manner.
Generalized fractional Schroedinger equation with space-time fractional derivatives
International Nuclear Information System (INIS)
Wang Shaowei; Xu Mingyu
2007-01-01
In this paper the generalized fractional Schroedinger equation with space and time fractional derivatives is constructed. The equation is solved for free particle and for a square potential well by the method of integral transforms, Fourier transform and Laplace transform, and the solution can be expressed in terms of Mittag-Leffler function. The Green function for free particle is also presented in this paper. Finally, we discuss the relationship between the cases of the generalized fractional Schroedinger equation and the ones in standard quantum
Permutation entropy of fractional Brownian motion and fractional Gaussian noise
International Nuclear Information System (INIS)
Zunino, L.; Perez, D.G.; Martin, M.T.; Garavaglia, M.; Plastino, A.; Rosso, O.A.
2008-01-01
We have worked out theoretical curves for the permutation entropy of the fractional Brownian motion and fractional Gaussian noise by using the Bandt and Shiha [C. Bandt, F. Shiha, J. Time Ser. Anal. 28 (2007) 646] theoretical predictions for their corresponding relative frequencies. Comparisons with numerical simulations show an excellent agreement. Furthermore, the entropy-gap in the transition between these processes, observed previously via numerical results, has been here theoretically validated. Also, we have analyzed the behaviour of the permutation entropy of the fractional Gaussian noise for different time delays
International Nuclear Information System (INIS)
Wang, Z.; Jokuty, P.; Fingas, M.; Sigouin, L.
2001-01-01
In 1998, the Petroleum Technology Alliance of Canada (PTAC) and the Canadian Association of Petroleum Producers (CAPP) launched an important research project for the oil and gas industry entitled A Fraction-Specific Toxicity and Derivation of Recommended Soil Quality Guidelines for Crude Oil in Agricultural Soils. The objective was to generate useful and relevant data that could be used to develop soil quality guidelines for petroleum hydrocarbon residuals in agricultural soils. The oil used in the study was Federated crude oil which was fractionated into four fractions using a distillation method. The fraction-based approach was used to support ecologically-relevant, risk-based, soil quality criteria for the protection of environmental health. This paper presented the nominal carbon number and boiling point ranges of these fractions and described the distillation procedures for producing the fractions from the Federated crude oil. The paper also presented the detailed chemical characterization results of each distillation fraction. The toxicity of the crude oil mixture to plants and soil invertebrates was also assessed using standardized toxicity tests. Tests were also conducted to assess the toxicity of fractions of the crude oil and the toxic interactions of the fractions responsible for a significant proportion of the toxicity. Phase 2 of the project was designed to determine if hydrocarbon residuals exceeding 1000 μg/g and weathered for short or long periods of time, posed an ecotoxicological risk or impaired soil physical, chemical and biological properties such that productivity of the agricultural soils was compromised. The objectives of phase 2 were to amend differently textured soils in field plots at sites with fresh crude oil and to monitor their toxicity to terrestrial organisms using laboratory-based ecotoxicity tests. The study showed that because of the nature of the chemical composition of hydrocarbons (such as boiling points, nominal carbon range
Arctic lead detection using a waveform mixture algorithm from CryoSat-2 data
Directory of Open Access Journals (Sweden)
S. Lee
2018-05-01
Full Text Available We propose a waveform mixture algorithm to detect leads from CryoSat-2 data, which is novel and different from the existing threshold-based lead detection methods. The waveform mixture algorithm adopts the concept of spectral mixture analysis, which is widely used in the field of hyperspectral image analysis. This lead detection method was evaluated with high-resolution (250 m MODIS images and showed comparable and promising performance in detecting leads when compared to the previous methods. The robustness of the proposed approach also lies in the fact that it does not require the rescaling of parameters (i.e., stack standard deviation, stack skewness, stack kurtosis, pulse peakiness, and backscatter σ0, as it directly uses L1B waveform data, unlike the existing threshold-based methods. Monthly lead fraction maps were produced by the waveform mixture algorithm, which shows interannual variability of recent sea ice cover during 2011–2016, excluding the summer season (i.e., June to September. We also compared the lead fraction maps to other lead fraction maps generated from previously published data sets, resulting in similar spatiotemporal patterns.
Arctic lead detection using a waveform mixture algorithm from CryoSat-2 data
Lee, Sanggyun; Kim, Hyun-cheol; Im, Jungho
2018-05-01
We propose a waveform mixture algorithm to detect leads from CryoSat-2 data, which is novel and different from the existing threshold-based lead detection methods. The waveform mixture algorithm adopts the concept of spectral mixture analysis, which is widely used in the field of hyperspectral image analysis. This lead detection method was evaluated with high-resolution (250 m) MODIS images and showed comparable and promising performance in detecting leads when compared to the previous methods. The robustness of the proposed approach also lies in the fact that it does not require the rescaling of parameters (i.e., stack standard deviation, stack skewness, stack kurtosis, pulse peakiness, and backscatter σ0), as it directly uses L1B waveform data, unlike the existing threshold-based methods. Monthly lead fraction maps were produced by the waveform mixture algorithm, which shows interannual variability of recent sea ice cover during 2011-2016, excluding the summer season (i.e., June to September). We also compared the lead fraction maps to other lead fraction maps generated from previously published data sets, resulting in similar spatiotemporal patterns.
Semiparametric accelerated failure time cure rate mixture models with competing risks.
Choi, Sangbum; Zhu, Liang; Huang, Xuelin
2018-01-15
Modern medical treatments have substantially improved survival rates for many chronic diseases and have generated considerable interest in developing cure fraction models for survival data with a non-ignorable cured proportion. Statistical analysis of such data may be further complicated by competing risks that involve multiple types of endpoints. Regression analysis of competing risks is typically undertaken via a proportional hazards model adapted on cause-specific hazard or subdistribution hazard. In this article, we propose an alternative approach that treats competing events as distinct outcomes in a mixture. We consider semiparametric accelerated failure time models for the cause-conditional survival function that are combined through a multinomial logistic model within the cure-mixture modeling framework. The cure-mixture approach to competing risks provides a means to determine the overall effect of a treatment and insights into how this treatment modifies the components of the mixture in the presence of a cure fraction. The regression and nonparametric parameters are estimated by a nonparametric kernel-based maximum likelihood estimation method. Variance estimation is achieved through resampling methods for the kernel-smoothed likelihood function. Simulation studies show that the procedures work well in practical settings. Application to a sarcoma study demonstrates the use of the proposed method for competing risk data with a cure fraction. Copyright © 2017 John Wiley & Sons, Ltd.
Mixtures and their risk assessment in toxicology.
Mumtaz, Moiz M; Hansen, Hugh; Pohl, Hana R
2011-01-01
For communities generally and for persons living in the vicinity of waste sites specifically, potential exposures to chemical mixtures are genuine concerns. Such concerns often arise from perceptions of a site's higher than anticipated toxicity due to synergistic interactions among chemicals. This chapter outlines some historical approaches to mixtures risk assessment. It also outlines ATSDR's current approach to toxicity risk assessment. The ATSDR's joint toxicity assessment guidance for chemical mixtures addresses interactions among components of chemical mixtures. The guidance recommends a series of steps that include simple calculations for a systematic analysis of data leading to conclusions regarding any hazards chemical mixtures might pose. These conclusions can, in turn, lead to recommendations such as targeted research to fill data gaps, development of new methods using current science, and health education to raise awareness of residents and health care providers. The chapter also provides examples of future trends in chemical mixtures assessment.
Toward lattice fractional vector calculus
International Nuclear Information System (INIS)
Tarasov, Vasily E
2014-01-01
An analog of fractional vector calculus for physical lattice models is suggested. We use an approach based on the models of three-dimensional lattices with long-range inter-particle interactions. The lattice analogs of fractional partial derivatives are represented by kernels of lattice long-range interactions, where the Fourier series transformations of these kernels have a power-law form with respect to wave vector components. In the continuum limit, these lattice partial derivatives give derivatives of non-integer order with respect to coordinates. In the three-dimensional description of the non-local continuum, the fractional differential operators have the form of fractional partial derivatives of the Riesz type. As examples of the applications of the suggested lattice fractional vector calculus, we give lattice models with long-range interactions for the fractional Maxwell equations of non-local continuous media and for the fractional generalization of the Mindlin and Aifantis continuum models of gradient elasticity. (papers)
Solubilities of benzoic acid in binary (benzyl alcohol + benzaldehyde) solvent mixtures
International Nuclear Information System (INIS)
Wang, Hui; Wang, Qinbo; Xiong, Zhenhua; Chen, Chuxiong; Shen, Binwei
2015-01-01
Highlights: • Solubilities of benzoic acid in (benzyl alcohol + benzaldehyde) mixtures were measured at 1 atm. • The experimental temperature ranges at (298.35 to 355.65) K. • Effects of benzyl alcohol mass concentration at (0.00 to 1.00) on the solubilities of benzoic acid were studied. • The experimental data were correlated with NRTL model. • Thermodynamic functions of dissolution of benzoic acid in (benzyl alcohol + benzaldehyde) mixtures were discussed. - Abstract: The solubility of benzoic acid in binary (benzyl alcohol + benzaldehyde) solvent mixtures was measured at temperature from (298.35 to 355.65) K and atmospheric pressure. The measured solubility increases with the increasing temperature at constant solvent composition. The effects of mass fraction benzaldehyde in the solvent mixtures at (0.0 to 1.00) on the solubility were studied. The measured solubility decreases with the increasing mass fraction of benzaldehyde. The experimental results were correlated with the non-random two-liquid (NRTL) equations, and good agreement between the correlated and the experimental values was obtained. Thermodynamic functions for the solution of benzoic acid in binary (benzyl alcohol + benzaldehyde) solvent mixtures were calculated with the van’t Hoff plot. The apparent dissolution Gibbs free energy change was also calculated
Efficient radiative transfer in dust grain mixtures
Wolf, S.
2002-01-01
The influence of a dust grain mixture consisting of spherical dust grains with different radii and/or chemical composition on the resulting temperature structure and spectral energy distribution of a circumstellar shell is investigated. The comparison with the results based on an approximation of dust grain parameters representing the mean optical properties of the corresponding dust grain mixture reveal that (1) the temperature dispersion of a real dust grain mixture decreases substantially ...
Some properties of explosive mixtures containing peroxides
Energy Technology Data Exchange (ETDEWEB)
Zeman, Svatopluk [Institute of Energetic Materials, Faculty of Chemical Technology, University of Pardubice, CZ-532 10 Pardubice (Czech Republic)], E-mail: svatopluk.zeman@upce.cz; Trzcinski, Waldemar A. [Institute of Chemistry, Military University of Technology, PL-00-908 Warsaw 49 (Poland); Matyas, Robert [Institute of Energetic Materials, Faculty of Chemical Technology, University of Pardubice, CZ-532 10 Pardubice (Czech Republic)
2008-06-15
This study concerns mixtures of triacetone triperoxide (3,3,6,6,9,9-hexamethyl-1,2,4,5,7,8-hexoxonane, TATP) and ammonium nitrate (AN) with added water (W), as the case may be, and dry mixtures of TATP with urea nitrate (UN). Relative performances (RP) of the mixtures and their individual components, relative to TNT, were determined by means of ballistic mortar. The detonation energies, E{sub 0}, and detonation velocities, D, were calculated for the mixtures studied by means of the thermodynamic code CHEETAH. Relationships have been found and are discussed between the RP and the E{sub 0} values related to unit volume of gaseous products of detonation of these mixtures. These relationships together with those between RP and oxygen balance values of the mixtures studied indicate different types of participation of AN and UN in the explosive decomposition of the respective mixtures. Dry TATP/UN mixtures exhibit lower RP than analogous mixtures TATP/AN containing up to 25% of water. Depending on the water content, the TATP/AN mixtures possess higher detonability values than the ANFO explosives. A semi-logarithmic relationship between the D values and oxygen coefficients has been derived for all the mixtures studied at the charge density of 1000 kg m{sup -3}. Among the mixtures studied, this relationship distinguishes several samples of the type of 'tertiary explosives' as well as samples that approach 'high explosives' in their performances and detonation velocities.
Ferroelectric Fractional-Order Capacitors
Agambayev, Agamyrat
2017-07-25
Poly(vinylidene fluoride)-based polymers and their blends are used to fabricate electrostatic fractional-order capacitors. This simple but effective method allows us to precisely tune the constant phase angle of the resulting fractional-order capacitor by changing the blend composition. Additionally, we have derived an empirical relation between the ratio of the blend constituents and the constant phase angle to facilitate the design of a fractional order capacitor with a desired constant phase angle. The structural composition of the fabricated blends is investigated using Fourier transform infrared spectroscopy and X-ray diffraction techniques.
Ferroelectric Fractional-Order Capacitors
Agambayev, Agamyrat; Patole, Shashikant P.; Farhat, Mohamed; Elwakil, Ahmed; Bagci, Hakan; Salama, Khaled N.
2017-01-01
Poly(vinylidene fluoride)-based polymers and their blends are used to fabricate electrostatic fractional-order capacitors. This simple but effective method allows us to precisely tune the constant phase angle of the resulting fractional-order capacitor by changing the blend composition. Additionally, we have derived an empirical relation between the ratio of the blend constituents and the constant phase angle to facilitate the design of a fractional order capacitor with a desired constant phase angle. The structural composition of the fabricated blends is investigated using Fourier transform infrared spectroscopy and X-ray diffraction techniques.
On Generalized Fractional Differentiator Signals
Directory of Open Access Journals (Sweden)
Hamid A. Jalab
2013-01-01
Full Text Available By employing the generalized fractional differential operator, we introduce a system of fractional order derivative for a uniformly sampled polynomial signal. The calculation of the bring in signal depends on the additive combination of the weighted bring-in of N cascaded digital differentiators. The weights are imposed in a closed formula containing the Stirling numbers of the first kind. The approach taken in this work is to consider that signal function in terms of Newton series. The convergence of the system to a fractional time differentiator is discussed.
Sorption behavior of cobalt on manganese dioxide, smectite and their mixture
International Nuclear Information System (INIS)
Ohnuki, T.; Kozai, N.
1995-01-01
The sorption behavior of cobalt on manganese dioxide, the clay mineral smectite and mixtures of the two was studied by batch type sorption/desorption experiments at neutral pH. Sorption behavior was examined by sequential extraction, in which the sorbents were contacted first with a 1 M CH 3 COONH 4 solution and then with a hydroxylamine solution (NH 2 OH of 1 M with 25 weight % CH 3 COOH). More than 70% of the sorbed cobalt was desorbed from smectite with a 1 M CH 3 COONH 4 solution: about 15% of the cobalt remained on the smectite after treatment with the hydroxylamine solution. Less than 1% of the remaining cobalt was desorbed from manganese dioxide with a 1 M CH 3 COONH 4 solution; with the hydroxylamine solution, all was desorbed. In mixtures of MnO 2 and smectite that were formulated to sorb equal amounts of cobalt regardless of the MnO 2 /smectite ratio in the mixture, less than 5% of the sorbed cobalt was desorbed by treatment with 1 M CH 3 COONH 4 . The fraction of the cobalt desorbed by treatment with the hydroxylamine solution increased with increased MnO 2 in the mixtures. The fraction of the cobalt sorbed on MnO 2 in the mixture was estimated from the desorption experiments. The results showed that higher fractions were sorbed onto MnO 2 than were estimated by the weighted averages of distribution coefficients for MnO 2 and smectite. Therefore, in minerals of the mixture, manganese dioxide is a more important component than smectite for the sorption of cobalt. (orig.)
Method for separating gaseous mixtures of isotopes
International Nuclear Information System (INIS)
Neimann, H.J.; Schuster, E.; Kersting, A.
1976-01-01
A gaseous mixture of isotopes is separated by laser excitation of the isotope mixture with a narrow band of wavelengths, molecularly exciting mainly the isotope to be separated and thereby promoting its reaction with its chemical partner which is excited in a separate chamber. The excited isotopes and the chemical partner are mixed, perhaps in a reaction chamber to which the two excited components are conducted by very short conduits. The improvement of this method is the physical separation of the isotope mixture and its partner during excitation. The reaction between HCl and the mixture of 238 UF 6 and 235 UF 6 is discussed
Evaluation of mastic in bituminous mixtures
Silva, Hugo Manuel Ribeiro Dias da; Pais, Jorge C.; Pereira, Paulo A. A.
2002-01-01
The efficiency of the asphalt-aggregate bond is one of the key factors which affects the mechanical resistance of bituminous mixtures and a better understanding of its performance allows the behaviour of mixture to be more accurately predicted. The asphalt-aggregate bond depends on the properties of the mastic and the mixture of fine aggregate and bitumen which bonds itself to the larger sized particles within the bituminous mixture. This mastic plays an im-portant role in the asphalt-aggr...
Investigation of Boiling Heat Transfer of Binary Mixture from Vertical Tube Embedded in porous Media
Institute of Scientific and Technical Information of China (English)
HailongMo; TongzeMa; 等
1996-01-01
Ethanol-water binary mixtures with 7 different mole fractions of ethanol ranging from 0 to 1 were adopted as testing liquids in the experiment.The vertical heating tube was inserted in porous matrix composed of five well sorted glass beads whise diameters range from 0.5 to 4.3mm.Due to the effect of composition,the trend of combination of vapor bubbles was reduced.resulting in the increase of peak heat flux of binary mixture,With the increase of ethanol mole fraction,0.5mm diameter bead of peak heat flux of binary mixture.with the increase of ethanol mole fraction.0.5mm diameter bead had lower value of peak heat flux,while for pure liquid the critical state is difficult to appear,with given diameter of glass bead,there existed an optimum value of mole fraction of ethanol,which was decreased with the increase of bead diameter,A dimensionless heat transfer coefficient was predicted through the introduction of a dimensionless parameter of porous matrix which agreed with the experimental results satisfactorily.
Energy Technology Data Exchange (ETDEWEB)
Santos, Michelle I.; Azevedo, Vildomar S.; Jacinto, Tulio Wagner B. [Aurizonia Petroleo S.A, Natal, RN (Brazil); Vieira, Mariane; Vidal, Rosangela Regia Lima; Garcia, Rosangela Balaban [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)
2008-07-01
The oil can be defined as a mixture of hydrocarbons and sulphur, nitrogen and oxygenated organic derivatives at lower amount. There is a practical difficulty of analytical determination of the oil composition, mainly due to the large quantity of medium and heavy oil fractions. For heavier fractions, it is necessary to infer the composition of the cut from properties that can be readily obtained in the laboratory, such as refraction index, density and viscosity. The analysis of oil composition and its fractions is important information on various aspects (IOB et al., 1996): determining the operating conditions of refining, selection of suitable catalysts and mixing operations ('blending'), the economic evaluation of mixtures and analysis of environmental impact due to emissions. The first study on characterization of fractions of the oil was reported by Hill and Coats (1928), who set an empirical relationship between the density and Saybolt viscosity named viscosity-density constant (VGC). The statement was obtained from the analysis of the density with the oil viscosity changes. Physical properties such as density, boiling point and viscosity can be used to classify the oil. The aim of this work was to classify oil fractions based on viscosity-density constant, using mixtures of oils with different APIs. The results showed that there is an optimum composition for each mixture, and the addition of more oil of medium classification does not lead to potential commercial oil. (author)
Cui, Shengting; de Almeida, Valmor F; Khomami, Bamin
2014-09-11
Molecular dynamics simulations of tri-n-butyl-phosphate (TBP)/n-dodecane mixture in the liquid phase have been carried out using two recently developed TBP force field models (J. Phys. Chem. B 2012, 116, 305) in combination with the all-atom optimized potentials for liquid simulations (OPLS-AA) force field model for n-dodecane. Specifically, the electric dipole moment of TBP, mass density of the mixture, and the excess volume of mixing were computed with TBP mole fraction ranging from 0 to 1. It is found that the aforementioned force field models accurately predict the mass density of the mixture in the entire mole fraction range. Commensurate with experimental measurements, the electric dipole moment of the TBP was found to slightly increase with the mole fraction of TBP in the mixture. Also, in accord with experimental data, the excess volume of mixing is positive in the entire mole fraction range, peaking at TBP mole fraction range 0.3-0.5. Finally, a close examination of the spatial pair correlation functions between TBP molecules, and between TBP and n-dodecane molecules, revealed formation of TBP dimers through self-association at close distance, a phenomenon with ample experimental evidence.
Deciding which chemical mixtures risk assessment methods work best for what mixtures
International Nuclear Information System (INIS)
Teuschler, Linda K.
2007-01-01
The most commonly used chemical mixtures risk assessment methods involve simple notions of additivity and toxicological similarity. Newer methods are emerging in response to the complexities of chemical mixture exposures and effects. Factors based on both science and policy drive decisions regarding whether to conduct a chemical mixtures risk assessment and, if so, which methods to employ. Scientific considerations are based on positive evidence of joint toxic action, elevated human exposure conditions or the potential for significant impacts on human health. Policy issues include legislative drivers that may mandate action even though adequate toxicity data on a specific mixture may not be available and risk assessment goals that impact the choice of risk assessment method to obtain the amount of health protection desired. This paper discusses three important concepts used to choose among available approaches for conducting a chemical mixtures risk assessment: (1) additive joint toxic action of mixture components; (2) toxicological interactions of mixture components; and (3) chemical composition of complex mixtures. It is proposed that scientific support for basic assumptions used in chemical mixtures risk assessment should be developed by expert panels, risk assessment methods experts, and laboratory toxicologists. This is imperative to further develop and refine quantitative methods and provide guidance on their appropriate applications. Risk assessors need scientific support for chemical mixtures risk assessment methods in the form of toxicological data on joint toxic action for high priority mixtures, statistical methods for analyzing dose-response for mixtures, and toxicological and statistical criteria for determining sufficient similarity of complex mixtures
Directory of Open Access Journals (Sweden)
M.F. Holovko
2017-12-01
Full Text Available The scaled particle theory is developed for the description of thermodynamical properties of a mixture of hard spheres and hard spherocylinders. Analytical expressions for free energy, pressure and chemical potentials are derived. From the minimization of free energy, a nonlinear integral equation for the orientational singlet distribution function is formulated. An isotropic-nematic phase transition in this mixture is investigated from the bifurcation analysis of this equation. It is shown that with an increase of concentration of hard spheres, the total packing fraction of a mixture on phase boundaries slightly increases. The obtained results are compared with computer simulations data.
Identification of natural metabolites in mixture: a pattern recognition strategy based on (13)C NMR.
Hubert, Jane; Nuzillard, Jean-Marc; Purson, Sylvain; Hamzaoui, Mahmoud; Borie, Nicolas; Reynaud, Romain; Renault, Jean-Hugues
2014-03-18
Because of their highly complex metabolite profile, the chemical characterization of bioactive natural extracts usually requires time-consuming multistep purification procedures to achieve the structural elucidation of pure individual metabolites. The aim of the present work was to develop a dereplication strategy for the identification of natural metabolites directly within mixtures. Exploiting the polarity range of metabolites, the principle was to rapidly fractionate a multigram quantity of a crude extract by centrifugal partition extraction (CPE). The obtained fractions of simplified chemical composition were subsequently analyzed by (13)C NMR. After automatic collection and alignment of (13)C signals across spectra, hierarchical clustering analysis (HCA) was performed for pattern recognition. As a result, strong correlations between (13)C signals of a single structure within the mixtures of the fraction series were visualized as chemical shift clusters. Each cluster was finally assigned to a molecular structure with the help of a locally built (13)C NMR chemical shift database. The proof of principle of this strategy was achieved on a simple model mixture of commercially available plant secondary metabolites and then applied to a bark extract of the African tree Anogeissus leiocarpus Guill. & Perr. (Combretaceae). Starting from 5 g of this genuine extract, the fraction series was generated by CPE in only 95 min. (13)C NMR analyses of all fractions followed by pattern recognition of (13)C chemical shifts resulted in the unambiguous identification of seven major compounds, namely, sericoside, trachelosperogenin E, ellagic acid, an epimer mixture of (+)-gallocatechin and (-)-epigallocatechin, 3,3'-di-O-methylellagic acid 4'-O-xylopyranoside, and 3,4,3'-tri-O-methylflavellagic acid 4'-O-glucopyranoside.
Rander, D. N.; Joshi, Y. S.; Kanse, K. S.; Kumbharkhane, A. C.
2016-01-01
The measurements of complex dielectric permittivity of xylitol-water mixtures have been carried out in the frequency range of 10 MHz-30 GHz using a time domain reflectometry technique. Measurements have been done at six temperatures from 0 to 25 °C and at different weight fractions of xylitol (0 xylitol-water can be well described by Cole-Davidson model having an asymmetric distribution of relaxation times. The dielectric parameters such as static dielectric constant and relaxation time for the mixtures have been evaluated. The molecular interaction between xylitol and water molecules is discussed using the Kirkwood correlation factor ( g eff ) and thermodynamic parameter.
Concentration of uranium-235 in mixtures with uranium-238 using ion exchange resins
International Nuclear Information System (INIS)
Seko, M.; Kakihana, H.
1976-01-01
A method is described of simultaneously obtaining separate enriched fractions of 235 U and 238 U from isotopic mixtures thereof with the use of an ion exchange column by passing a liquid body containing the isotopic mixture through the column. The uranium as it is passed through the column is presented as a U(IV) coordination compound with a ligand at different valent states and is followed by an eluant and forms a band which travels through the column, the front and rear portions of which are respectively enriched in one of the isotopes and depleted in the other. 16 claims
Concentration of uranium-235 in mixtures with uranium-238 using ion exchange resins
International Nuclear Information System (INIS)
Seko, M.; Kakihana, H.
1976-01-01
A method is described for simultaneously obtaining separate enriched fractions of 235 U and 238 U from isotopic mixtures of these with the use of an ion exchange column by passing a liquid body containing the isotopic mixture through the column. The uranium as it is passed through the column is present as a U(IV) coordination compound with a ligand at different valent states and is followed by an eluant and forms a band which travels through the column, the front and rear portions of which are respectively enriched in one of the isotopes and depleted in the other. 16 claims, no drawings
On electron attachment effect on characteristics of the DBD in chlorine and its mixtures with xenon
Avtaeva, S. V.
2017-11-01
The electron attachment effect on DBD characteristics in chlorine and its mixtures with xenon has been studied. Characteristics of the DBDs in pure chlorine and in xenon-chlorine mixtures with a chlorine fraction of 0.1-5% were modeled using the fluid model. It is shown that the electron attachment limits a magnitude of the DBD current, contributes to formation of multiple current spikes, appearance of a double layer near the dielectric surface and formation of XeCl* excimer molecules, and leads to a redistribution of the power deposited into the discharge: more power is deposited into ions and less power is deposited into electrons.
International Nuclear Information System (INIS)
Cotterman, R.L.; Bender, R.; Prausnitz, J.M.
1984-01-01
For some multicomponent mixtures, where detailed chemical analysis is not feasible, the compositio of the mixture may be described by a continuous distribution function of some convenient macroscopic property suc as normal boiling point or molecular weight. To attain a quantitative description of phase equilibria for such mixtures, this work has developed thermodynamic procedures for continuous systems; that procedure is called continuous thermodynamics. To illustrate, continuous thermodynamics is used to calculate dew points for natural-gas mixtures, solvent loss in a high-pressure absorber, and liquid-liquid phase equilibria in a polymer fractionation process. Continuous thermodynamics provides a rational method for calculating phase equilibria for those mixtures where complete chemical analysis is not available but where composition can be given by some statistical description. While continuous thermodynamics is only the logical limit of the well-known pseudo-component method, it is more efficient than that method because it is less arbitrary and it often requires less computer time
On generalized fractional vibration equation
International Nuclear Information System (INIS)
Dai, Hongzhe; Zheng, Zhibao; Wang, Wei
2017-01-01
Highlights: • The paper presents a generalized fractional vibration equation for arbitrary viscoelastically damped system. • Some classical vibration equations can be derived from the developed equation. • The analytic solution of developed equation is derived under some special cases. • The generalized equation is particularly useful for developing new fractional equivalent linearization method. - Abstract: In this paper, a generalized fractional vibration equation with multi-terms of fractional dissipation is developed to describe the dynamical response of an arbitrary viscoelastically damped system. It is shown that many classical equations of motion, e.g., the Bagley–Torvik equation, can be derived from the developed equation. The Laplace transform is utilized to solve the generalized equation and the analytic solution under some special cases is derived. Example demonstrates the generalized transfer function of an arbitrary viscoelastic system.
Physcicists rewarded for 'fractional electrons'
Ball, P
1998-01-01
The 1998 Nobel prize for physics has been awarded to Horst Stormer, Daniel Tsui and Robert Laughlin.Stormer and Tsui were the first to observe the fractional quantum Hall effect and Laughlin provided the theory shortly afterwards (1 page).
Ultracentrifugation for ultrafine nanodiamond fractionation
Koniakhin, S. V.; Besedina, N. A.; Kirilenko, D. A.; Shvidchenko, A. V.; Eidelman, E. D.
2018-01-01
In this paper we propose a method for ultrafine fractionation of nanodiamonds using the differential centrifugation in the fields up to 215000g. The developed protocols yield 4-6 nm fraction giving main contribution to the light scattering intensity. The desired 4-6 nm fraction can be obtained from various types of initial nanodiamonds: three types of detonation nanodiamonds differing in purifying methods, laser synthesis nanodiamonds and nanodiamonds made by milling. The characterization of the obtained hydrosols was conducted with Dynamic Light Scattering, Zeta potential measurements, powder XRD and TEM. According to powder XRD and TEM data ultracentrifugation also leads to a further fractionation of the primary diamond nanocrystallites in the hydrosols from 4 to 2 nm.
Commercial SNF Accident Release Fractions
Energy Technology Data Exchange (ETDEWEB)
J. Schulz
2004-11-05
The purpose of this analysis is to specify and document the total and respirable fractions for radioactive materials that could be potentially released from an accident at the repository involving commercial spent nuclear fuel (SNF) in a dry environment. The total and respirable release fractions are used to support the preclosure licensing basis for the repository. The total release fraction is defined as the fraction of total commercial SNF assembly inventory, typically expressed as an activity inventory (e.g., curies), of a given radionuclide that is released to the environment from a waste form. Radionuclides are released from the inside of breached fuel rods (or pins) and from the detachment of radioactive material (crud) from the outside surfaces of fuel rods and other components of fuel assemblies. The total release fraction accounts for several mechanisms that tend to retain, retard, or diminish the amount of radionuclides that are available for transport to dose receptors or otherwise can be shown to reduce exposure of receptors to radiological releases. The total release fraction includes a fraction of airborne material that is respirable and could result in inhalation doses; this subset of the total release fraction is referred to as the respirable release fraction. Accidents may involve waste forms characterized as: (1) bare unconfined intact fuel assemblies, (2) confined intact fuel assemblies, or (3) canistered failed commercial SNF. Confined intact commercial SNF assemblies at the repository are contained in shipping casks, canisters, or waste packages. Four categories of failed commercial SNF are identified: (1) mechanically and cladding-penetration damaged commercial SNF, (2) consolidated/reconstituted assemblies, (3) fuel rods, pieces, and debris, and (4) nonfuel components. It is assumed that failed commercial SNF is placed into waste packages with a mesh screen at each end (CRWMS M&O 1999). In contrast to bare unconfined fuel assemblies, the
Commercial SNF Accident Release Fractions
International Nuclear Information System (INIS)
Schulz, J.
2004-01-01
The purpose of this analysis is to specify and document the total and respirable fractions for radioactive materials that could be potentially released from an accident at the repository involving commercial spent nuclear fuel (SNF) in a dry environment. The total and respirable release fractions are used to support the preclosure licensing basis for the repository. The total release fraction is defined as the fraction of total commercial SNF assembly inventory, typically expressed as an activity inventory (e.g., curies), of a given radionuclide that is released to the environment from a waste form. Radionuclides are released from the inside of breached fuel rods (or pins) and from the detachment of radioactive material (crud) from the outside surfaces of fuel rods and other components of fuel assemblies. The total release fraction accounts for several mechanisms that tend to retain, retard, or diminish the amount of radionuclides that are available for transport to dose receptors or otherwise can be shown to reduce exposure of receptors to radiological releases. The total release fraction includes a fraction of airborne material that is respirable and could result in inhalation doses; this subset of the total release fraction is referred to as the respirable release fraction. Accidents may involve waste forms characterized as: (1) bare unconfined intact fuel assemblies, (2) confined intact fuel assemblies, or (3) canistered failed commercial SNF. Confined intact commercial SNF assemblies at the repository are contained in shipping casks, canisters, or waste packages. Four categories of failed commercial SNF are identified: (1) mechanically and cladding-penetration damaged commercial SNF, (2) consolidated/reconstituted assemblies, (3) fuel rods, pieces, and debris, and (4) nonfuel components. It is assumed that failed commercial SNF is placed into waste packages with a mesh screen at each end (CRWMS M andO 1999). In contrast to bare unconfined fuel assemblies, the
Interfacial tensions of binary mixtures of ethanol with octane, decane, dodecane, and tetradecane
International Nuclear Information System (INIS)
Mejia, Andres; Cartes, Marcela; Segura, Hugo
2011-01-01
Highlights: → Experimental interfacial tensions in binary mixtures with aneotropic behavior. → Experimental interfacial tensions for ethanol + hydrocarbon mixtures. → Aneotropic displacement in ethanol mixtures. - Abstract: This contribution is devoted to the experimental characterization of interfacial tensions of a representative group of binary mixtures pertaining to the (ethanol + linear hydrocarbon) series (i.e. octane, decane, dodecane, and tetradecane). Experimental measurements were isothermically performed using a maximum differential bubble pressure technique, which was applied over the whole mole fraction range and over the temperature range 298.15 K < T/K < 318.15 K. Experimental results show that the interfacial tensions of (ethanol + octane or decane) negatively deviate from the linear behavior and that sharp minimum points on concentration, or aneotropes, are observed for each isotherm. The interfacial tensions of (ethanol + dodecane or tetradecane), in turn, are characterized by combined deviations from the linear behavior, and inflecting behavior observed on concentration for each isotherm. The experimental evidence also shows that these latter mixtures are close to exhibit aneotropy. For the case of (ethanol + octane or decane) mixtures, aneotropy was clearly induced by the similarity of the interfacial tension values of the constituents. The inflecting behavior of the interfacial tensions of (ethanol + dodecane or tetradecane), in turn, was observed in the vicinity of the coordinates of the critical point of these mixtures, thus pointing to the fact that the quasi-aneotropic singularity that affects these mixtures was provoked by the proximity of an immiscibility gap of the liquid phase. Finally, the experimental data of interfacial tensions were smoothed with the Scott-Myers expansion, from which it is possible to conclude that the observed aneotropic concentrations weakly depend on temperature for all the analyzed mixtures.
Fractional Reserve Banking: Some Quibbles
Bagus, Philipp; Howden, David
2010-01-01
We explore several unaddressed issues in George Selgin’s (1988) claim that the best monetary system to maintain monetary equilibrium is a fractional reserve free banking one. The claim that adverse clearing balances would limit credit expansion in a fractional reserve free banking system is more troublesome than previously reckoned. Both lengthened clearing periods and interbank agreements render credit expansion unrestrained. “The theory of free banking” confuses increases in money held with...
Intelligent fractions learning system: implementation
CSIR Research Space (South Africa)
Smith, Andrew C
2011-05-01
Full Text Available Conference Proceedings Paul Cunningham and Miriam Cunningham (Eds) IIMC International Information Management Corporation, 2011 ISBN: 978-1-905824-24-3 An Intelligent Fractions Learning System: Implementation Andrew Cyrus SMITH1, Teemu H. LAINE2 1CSIR... to fractions. Our aim with the current research project is to extend the existing UFractions learning system to incorporate automatic data capturing. ?Intelligent UFractions? allows a teacher to remotely monitor the children?s progress during...
Johnston, D S; Chapman, D
1988-04-22
We have used a computer-controlled differential scanning calorimeter to determine the phases present in mixtures of the brain galactocerebrosides with other representative brain lipids. There are two types of brain galactocerebroside, those which possess an alpha-hydroxy substituent on the acyl chain (HFA) and those that do not (NFA). In the liquid crystalline state both cerebrosides were miscible with all the lipids studied, but in the gel state they were immiscible with cholesterol and the brain phosphatidylcholines. However, cholesterol mixtures in which the cholesterol mole fraction exceeded one third formed homogeneous metastable gel states on cooling from above the melting point of the cerebroside. Relaxation to the stable two phase state took place slowly over several hours. The solubilities of the galactocerebrosides in the other main brain sphingolipid, sphingomyelin, were much higher. Only in the case of the NFA galactocerebroside and at low mole fractions of sphingomyelin was immiscibility detected. Ternary mixtures of the two cerebrosides with sphingomyelin/cholesterol and phosphatidylcholine/cholesterol (PC/Chol) showed different miscibility characteristics. On cooling from 80 degrees C all mixtures formed homogeneous gel states. However, on standing the cerebrosides separated into discrete gel phases in all mixtures but one, that in which HFA galactocerebrosides were mixed with sphingomyelin and cholesterol. The cerebroside in the mixture with the composition closest to that of myelin, HFA/PC/Chol, melted at 38 degrees C. On scanning guinea pig CNS myelin which had been equilibrated at 5 degrees C a transition was detected with Tmax 33 degrees C. On the basis of comparison with the HFA/PC/Chol mixture we propose that the transition in myelin at this temperature is due to the melting of a galactocerebroside gel phase.
Xenon fractionation in porous planetesimals
Zahnle, Kevin; Pollack, James B.; Kasting, James F.
1990-01-01
The distinctively fractionated Xe on Mars and earth may have its root in a common source from which both planets accreted. Beginning with Ozima and Nakazawa's (1980) hypothesis that terrestrial Xe fractionation was caused by gravitational separation of adsorbed solar nebular gases inside large porous planetesimals, it is pointed out that Xe would have been trapped as the planetesimal grew and pores were squeezed shut by lithostatic pressure. It is shown that enough fractionated Xe to supply the earth could have been trapped this way. The degree of fractionation is controlled by the lithostatic pressure at the pore-closing front and so would have been roughly the same for all large planetesimals. The predicted degree of fractionation agrees well with that preserved in terrestrial and Martian Xe. Relative to Xe, this source is strongly depleted in other noble gases. In contrast to the original Ozima and Nakazawa hypothesis, the present hypothesis predicts the observed fractionation, and it allows planetary accretion to occur after the dissipation of the solar nebula.
Fractional Charge Definitions and Conditions
Energy Technology Data Exchange (ETDEWEB)
Goldhaber, A.S.
2004-06-04
Fractional charge is known through theoretical and experimental discoveries of isolable objects carrying fractions of familiar charge units--electric charge Q, spin S, and the difference of baryon and lepton numbers B-L. With a few simple assumptions all these effects may be described using a generalized version of charge renormalization for locally conserved charges, in which medium correlations yield familiar adiabatic, continuous renormalization, or sometimes nonadiabatic, discrete renormalization. Fractional charges may be carried by fundamental particles or fundamental solitons. Either picture works for the simplest fractional-quantum-Hall-effect quasiholes, though the particle description is far more general. The only known fundamental solitons in three or fewer space dimensions d are the kink (d = 1), the vortex (d = 2), and the magnetic monopole (d = 3). Further, for a charge not intrinsically coupled to the topological charge of a soliton, only the kink and the monopole may carry fractional values. The same reasoning enforces fractional values of B-L for electrically charged elementary particles.
Fractional Charge Definitions and Conditions
International Nuclear Information System (INIS)
Goldhaber, A.S.
2004-01-01
Fractional charge is known through theoretical and experimental discoveries of isolable objects carrying fractions of familiar charge units--electric charge Q, spin S, and the difference of baryon and lepton numbers B-L. With a few simple assumptions all these effects may be described using a generalized version of charge renormalization for locally conserved charges, in which medium correlations yield familiar adiabatic, continuous renormalization, or sometimes nonadiabatic, discrete renormalization. Fractional charges may be carried by fundamental particles or fundamental solitons. Either picture works for the simplest fractional-quantum-Hall-effect quasiholes, though the particle description is far more general. The only known fundamental solitons in three or fewer space dimensions d are the kink (d = 1), the vortex (d = 2), and the magnetic monopole (d = 3). Further, for a charge not intrinsically coupled to the topological charge of a soliton, only the kink and the monopole may carry fractional values. The same reasoning enforces fractional values of B-L for electrically charged elementary particles
Xenon fractionation in porous planetesimals
International Nuclear Information System (INIS)
Zahnle, K.; Pollack, J.B.; Kasting, J.F.
1990-01-01
The distinctively fractionated Xe on Mars and Earth may have its root in a common source from which both planets accreted. We begin with Ozima and Nakazawa's hypothesis that terrestrial Xe fractionation was caused by gravitational separation of adsorbed solar nebular gases inside large porous planetesimals. We point out that Xe would have been trapped as the planetesimal grew and pores were squeezed shut by lithostatic pressure. We show that enough fractionated Xe to supply the Earth could have been trapped this way. The degree of fractionation is controlled by the lithostatic pressure at the pore-closing front and so would have been roughly the same for all large planetesimals. The predicted degree of fractionation agrees well with that preserved in terrestrial and martian Xe. Relative to Xe, this source is strongly depleted in other noble gases. In contrast to the original Ozima and Nakazawa hypothesis, our hypothesis predicts the observed fractionation, and it allows planetary accretion to occur after the dissipation of the solar nebula. The required planetesimals are large, representing a class of object now extinct in the solar system
Gutierrez-Villagomez, Juan Manuel; Vázquez-Martínez, Juan; Ramírez-Chávez, Enrique; Molina-Torres, Jorge; Trudeau, Vance L
2017-01-01
In this study, we report for the first time the efficiency of pentafluorobenzyl bromide (PFBBr) for naphthenic acid (NA) mixtures derivatization, and the comparison in the optimal conditions to the most common NAs derivatization reagents, BF 3 /MeOH and N-(t-butyldimethylsilyl)-N-methyltrifluoroacetamide (MTBSTFA). Naphthenic acids are carboxylic acid mixtures of petrochemical origin. These compounds are important for the oil industry because of their corrosive properties, which can damage oil distillation infrastructure. Moreover, NAs are commercially used in a wide range of products such as paint and ink driers, wood and fabric preservatives, fuel additives, emulsifiers, and surfactants. Naphthenic acids have also been found in sediments after major oils spills in the United States and South Korea. Furthermore, the toxicity of the oil sands process-affected water (OSPW), product of the oil sands extraction activities in Canada's oil sands, has largely been attributed to NAs. One of the main challenges for the chromatographic analysis of these mixtures is the resolution of the components. The derivatization optimization was achieved using surface response analysis with molar ratio and time as factors for derivatization signal yield. After gas chromatography-electron impact mass spectrometry (GC/EIMS) analysis of a mixture of NA standards, it was found that the signal produced by PFB-derivatives was 2.3 and 1.4 times higher than the signal produced by methylated and MTBS-derivatives, respectively. The pentafluorobenzyl derivatives have a characteristic fragment ion at 181m/z that is diagnostic for the differentiation of carboxylic and non-carboxylic acid components within mixtures. In the analysis of a Sigma and a Merichem derivatized oil extract NA mixtures, it was found that some peaks lack the characteristic fragment ion; therefore they are not carboxylic acids. Open column chromatography was used to obtain a hexane and a methanol fraction of the Sigma and
International Nuclear Information System (INIS)
Hannerz, K.
1976-01-01
An oxide-mixture fuel containing uranium and plutonium dioxides having the slage of spherical, or nearly spherical, oxide-mixture particles with a diameter within the range of from 0.2 to 2 mn charactarized in that each oxide-mixture particles is provided with an outer layer comprising mainly UO2, the thickness of which is at least 0.05; whereas the inner portion of the oxide-mixture particles comprises mainly PUO 2
Process Dissociation and Mixture Signal Detection Theory
DeCarlo, Lawrence T.
2008-01-01
The process dissociation procedure was developed in an attempt to separate different processes involved in memory tasks. The procedure naturally lends itself to a formulation within a class of mixture signal detection models. The dual process model is shown to be a special case. The mixture signal detection model is applied to data from a widely…
Buffer gas cooling and mixture analysis
Patterson, David S.; Doyle, John M.
2018-03-06
An apparatus for spectroscopy of a gas mixture is described. Such an apparatus includes a gas mixing system configured to mix a hot analyte gas that includes at least one analyte species in a gas phase into a cold buffer gas, thereby forming a supersaturated mixture to be provided for spectroscopic analysis.
Unfolding the potential of wheat cultivar mixtures
DEFF Research Database (Denmark)
Borg, J.; Kiær, Lars Pødenphant; Lecarpentier, C.
2018-01-01
and they are not encouraged by advisory services. Based on the methodology developed by Kiær et al. (2009), we achieved a meta-analysis of cultivar mixtures in wheat. Among the 120 publications dedicated to wheat, we selected 32 studies to analyze various factors that may condition the success or failure of wheat mixtures...
Separation of organic azeotropic mixtures by pervaporation
Energy Technology Data Exchange (ETDEWEB)
Baker, R.W.
1991-12-01
Distillation is a commonly used separation technique in the petroleum refining and chemical processing industries. However, there are a number of potential separations involving azetropic and close-boiling organic mixtures that cannot be separated efficiently by distillation. Pervaporation is a membrane-based process that uses selective permeation through membranes to separate liquid mixtures. Because the separation process is not affected by the relative volatility of the mixture components being separated, pervaporation can be used to separate azetropes and close-boiling mixtures. Our results showed that pervaporation membranes can be used to separate azeotropic mixtures efficiently, a result that is not achievable with simple distillation. The membranes were 5--10 times more permeable to one of the components of the mixture, concentrating it in the permeate stream. For example, the membrane was 10 times more permeable to ethanol than methyl ethyl ketone, producing 60% ethanol permeate from an azeotropic mixture of ethanol and methyl ethyl ketone containing 18% ethanol. For the ethyl acetate/water mixture, the membranes showed a very high selectivity to water (> 300) and the permeate was 50--100 times enriched in water relative to the feed. The membranes had permeate fluxes on the order of 0.1--1 kg/m{sup 2}{center dot}h in the operating range of 55--70{degrees}C. Higher fluxes were obtained by increasing the operating temperature.
Fibril assembly in whey protein mixtures
Bolder, S.G.
2007-01-01
The objective of this thesis was to study fibril assembly in mixtures of whey proteins. The effect of the composition of the protein mixture on the structures and the resulting phase behaviour was investigated. The current work has shown that beta-lactoglobulin is responsible for the fibril assembly
Process of decomposing an oil mixture
Energy Technology Data Exchange (ETDEWEB)
Kubierschky, K
1917-12-02
A process is described for the decomposition of oil mixtures, and the like, by means of alcohol, characterized in that the subject mixture is brought into solution in high-grade alcohol, and this solution is washed countercurrent with dilute alcohol.
Mixture Modeling: Applications in Educational Psychology
Harring, Jeffrey R.; Hodis, Flaviu A.
2016-01-01
Model-based clustering methods, commonly referred to as finite mixture modeling, have been applied to a wide variety of cross-sectional and longitudinal data to account for heterogeneity in population characteristics. In this article, we elucidate 2 such approaches: growth mixture modeling and latent profile analysis. Both techniques are…
Intelligent gas-mixture flow sensor
Lammerink, Theodorus S.J.; Dijkstra, Fred; Houkes, Z.; van Kuijk, J.C.C.; van Kuijk, Joost
A simple way to realize a gas-mixture flow sensor is presented. The sensor is capable of measuring two parameters from a gas flow. Both the flow rate and the helium content of a helium-nitrogen gas mixture are measured. The sensor exploits two measurement principles in combination with (local)
Shock formation in mixtures of fluids
International Nuclear Information System (INIS)
Virgopia, N.; Ferraioli, F.
1987-01-01
The problem of weak-discontinuity propagation in mixtures of two ideal fluids is examined. The presence of exchenge of momentum reduces or enhances the time for shock formation depending on the machanism with whom the exchange of momentum takes place. Numerical evaluation are also presented for mixtures of nitrogen and oxygen simulating dry-air models
The Modified Enskog Equation for Mixtures
Beijeren, H. van; Ernst, M.H.
1973-01-01
In a previous paper it was shown that a modified form of the Enskog equation, applied to mixtures of hard spheres, should be considered as the correct extension of the usual Enskog equation to the case of mixtures. The main argument was that the modified Enskog equation leads to linear transport
Fractional Diffusion Equations and Anomalous Diffusion
Evangelista, Luiz Roberto; Kaminski Lenzi, Ervin
2018-01-01
Preface; 1. Mathematical preliminaries; 2. A survey of the fractional calculus; 3. From normal to anomalous diffusion; 4. Fractional diffusion equations: elementary applications; 5. Fractional diffusion equations: surface effects; 6. Fractional nonlinear diffusion equation; 7. Anomalous diffusion: anisotropic case; 8. Fractional Schrödinger equations; 9. Anomalous diffusion and impedance spectroscopy; 10. The Poisson–Nernst–Planck anomalous (PNPA) models; References; Index.
Conformable Fractional Bessel Equation and Bessel Functions
Gökdoğan, Ahmet; Ünal, Emrah; Çelik, Ercan
2015-01-01
In this work, we study the fractional power series solutions around regular singular point x=0 of conformable fractional Bessel differential equation and fractional Bessel functions. Then, we compare fractional solutions with ordinary solutions. In addition, we present certain property of fractional Bessel functions.
Discrete fractional solutions of a Legendre equation
Yılmazer, Resat
2018-01-01
One of the most popular research interests of science and engineering is the fractional calculus theory in recent times. Discrete fractional calculus has also an important position in fractional calculus. In this work, we acquire new discrete fractional solutions of the homogeneous and non homogeneous Legendre differential equation by using discrete fractional nabla operator.
International Nuclear Information System (INIS)
Chu, W.; Dhir, V.K.; Marshall, J.
1983-01-01
An experimental investigation of two phase flow through porous layers formed of non-heated glass particles (nominal diameter 1 to 6 mm) has been made. Particulate bed depths of 30 cm and 70 cm were used. The effect of particle size, particle size distribution and bed porosity on void fraction and pressure drop through a particulate bed formed in a cylindrical test section has been investigated. The superficial velocity of liquid (water) is varied from 1.83 to 18.3 mm/s while the superficial velocity of gas (air) is varied from 0 to 68.4 mm/s. These superficial velocities were chosen so that pressure drop and void fraction measurement could be made for the porous layer in fixed and fluidized states. A model based on drift flux approach has been developed for the void fraction. Using the two phase friction pressure drop data, the relative permeabilities of the two phases have been concluded with void fraction. The void fraction and two phase friction pressure gradient in beds composed of mixtures of spherical particles as well as sharps of different nominal sizes have also been examined. It is found that the models for single size particles are also applicable to mixtures of particles if a mean particle diameter for the mixture is defined
Mixture toxicity of PBT-like chemicals
DEFF Research Database (Denmark)
Syberg, Kristian; Dai, Lina; Ramskov, Tina
addition is a suitable model for default estimations of mixture effects. One of the major challenges is therefore how to select specific chemicals for actual mixture toxicity assessments. Persistant chemicals are likely to be present in the environment for an extended period of time, thus increasing...... the likelihood of them being present in environmentally found mixtures. Persistant, bioaccumulative and toxic (PBT) chemicals are therefore a highly relevant group of chemicals to consider for mixture toxicity regulation. The present study evaluates to what extent a number of PBT-like chemicals posess concern...... beyond that of the individual components. Firstly, the effects of three chemicals with PBT-like properties (acetyl cedrene, pyrene and triclosan) was examined on the freshwater snail, Potamopyrgus antipodarum. Secondly, mixture bioaccumulation of the same three chemicals were assessed experimentally...
A binary mixture operated heat pump
International Nuclear Information System (INIS)
Hihara, E.; Saito, T.
1991-01-01
This paper evaluates the performance of possible binary mixtures as working fluids in high- temperature heat pump applications. The binary mixtures, which are potential alternatives of fully halogenated hydrocarbons, include HCFC142b/HCFC22, HFC152a/HCFC22, HFC134a/HCFC22. The performance of the mixtures is estimated by a thermodynamic model and a practical model in which the heat transfer is considered in heat exchangers. One of the advantages of binary mixtures is a higher coefficient of performance, which is caused by the small temperature difference between the heat-sink/-source fluid and the refrigerant. The mixture HCFC142b/HCFC22 is promising from the stand point of thermodynamic performance
Radiolytic decomposition of water-ethanol mixtures
International Nuclear Information System (INIS)
Baquey, Charles
1968-07-01
This research thesis addresses the study of the behaviour of binary mixtures submitted to ionizing radiations, and notably aims, by studying the case of water-ethanol mixtures, at verifying solutions proposed by previously published works on the origin of hydrogen atoms and of molecular hydrogen, on the intervention of excited atoms, and on the origin of products appearing under radiolysis. The experimental part of this work consists in the dosing of products formed in water-ethanol mixtures irradiated in presence or absence of nitrate, hydrogen, hydrocarbon, acetaldehyde, 2-3 butanediol and nitrite. Results are discussed and interpreted in terms of acetaldehyde efficiency, 2-3 butanediol efficiencies, and hydrocarbon efficiencies in pure ethanol, and in water-ethanol mixtures. The influence of the presence of nitrate ions in mixtures is also discussed
Deformation Properties and Fatigue of Bituminous Mixtures
Directory of Open Access Journals (Sweden)
Frantisek Schlosser
2013-01-01
Full Text Available Deformation properties and fatigue performance are important characteristics of asphalt bound materials which are used for construction of pavement layers. Viscoelastic asphalt mixtures are better characterized via dynamic tests. This type of tests allows us to collate materials with regard to axle vibrations which lie usually in the range of 6 Hz–25 Hz for standard conditions. Asphalt modified for heat sensitivity in the range from −20°C to +60°C has significant impact on the overall characteristics of the mixture. Deformation properties are used as inputs for empirical mixture design, and fatigue performance of asphalt mixtures reflects the parameters of functional tests. Master curves convey properties of asphalt mixtures for various conditions and allow us to evaluate them without the need of time expensive testing.
Zhu, Hua; Zhang, Peng; Meng, Zhaonan; Li, Ming
2015-04-01
The eutectic mixture of lauric acid (LA) and stearic acid (SA) is a desirable phase change material (PCM) due to the constant melting temperature and large latent heat. However, its poor thermal conductivity has hampered its broad utilization. In the present study, pure LA, SA and the mixtures with various mass fractions of LA-SA were used as the basic PCMs, and 10 wt% expanded graphite (EG) was added to enhance the thermal conductivities. The phase change behaviors, microstructural analysis, thermal conductivities and thermal stabilities of the mixtures of PCMs were investigated by differential scanning calorimetry (DSC), scanning electronic microscope (SEM), transient plane source (TPS) and thermogravimetric analysis (TGA), respectively. The results show that the LA-SA binary mixture of mixture ratio of 76.3 wt%: 23.7 wt% forms an eutectic mixture, which melts at 38.99 °C and has a latent heat of 159.94 J/g. The melted fatty acids are well absorbed by the porous network of EG and they have a good thermal stability. Furthermore, poor thermal conductivities can be well enhanced by the addition of EG.
Finotello, Alexia; Bara, Jason E; Narayan, Suguna; Camper, Dean; Noble, Richard D
2008-02-28
This study focuses on the solubility behaviors of CO2, CH4, and N2 gases in binary mixtures of imidazolium-based room-temperature ionic liquids (RTILs) using 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2mim][Tf2N]) and 1-ethyl-3-methylimidazolium tetrafluoroborate ([C2mim][BF4]) at 40 degrees C and low pressures (approximately 1 atm). The mixtures tested were 0, 25, 50, 75, 90, 95, and 100 mol % [C2mim][BF4] in [C2mim][Tf2N]. Results show that regular solution theory (RST) can be used to describe the gas solubility and selectivity behaviors in RTIL mixtures using an average mixture solubility parameter or an average measured mixture molar volume. Interestingly, the solubility selectivity, defined as the ratio of gas mole fractions in the RTIL mixture, of CO2 with N2 or CH4 in pure [C2mim][BF4] can be enhanced by adding 5 mol % [C2mim][Tf2N].
Thermophysical Properties of Fluid Latent Heat Storage Material using Urea-Water Mixture
Hokamura, Taku; Ohkubo, Hidetoshi; Ashizawa, Kiyonori
This study is concerned with the measurement of thermophysical properties of a urea-water mixture with the aim of adopting the mixture as a latent heat storage material for air-conditioning systems. The urea-water mixture is made of natural substances and has a good fluidity. The urea concentration in the mixture was controlled by measuring the refractive index of the mixture. Being a multi-component substance, a urea-water solution has a liquid-solid co-existent phase on a phase-diagram. Therefore, the liquidus temperature was measured to establish a relationship between the fraction of the solid-phase and temperature. Furthermore, apparent values of specific heat and coefficient of viscosity were measured in the two-phase region where the solid phase is ice. The apparent specific heat and coefficient of viscosity were measure by using an adiabatic calorimeter and a stirring torque meter respectively. The results revealed that the urea-water mixture can probably be used as a latent heat storage material of good fluidity.
Theoretical analysis of a combined power and ejector refrigeration cycle using zeotropic mixture
International Nuclear Information System (INIS)
Yang, Xingyang; Zhao, Li; Li, Hailong; Yu, Zhixin
2015-01-01
Highlights: • A combined power and refrigeration cycle using zeotropic mixture is analyzed. • The cycle performances with different mixture compositions are compared. • Both exergy and parametric analysis of the combined cycle are conducted. - Abstract: A theoretical study on a combined power and ejector refrigeration cycle using zeotropic mixture isobutane/pentane is carried out. The performances of different mixture compositions are compared. An exergy analysis is conducted for the cycle. The result reveals that most exergy destruction happens in the ejector, where more than 40% exergy is lost. The heat exchange in generator causes the second largest exergy loss, larger than 28%. As the mass fraction of isobutane changes ranges from 100% to 0%, the relative exergy destruction of each component is also changing. And mixture isobutane/pentane (50/50) has the maximum exergy efficiency of 7.83%. The parametric analysis of generator temperature, condenser temperature and evaporator temperature for all the mixtures shows that, all these three thermodynamic parameters have a strong effect on the cycle performance.
M. L. Kavvas; T. Tu; A. Ercan; J. Polsinelli
2017-01-01
Using fractional calculus, a dimensionally consistent governing equation of transient, saturated groundwater flow in fractional time in a multi-fractional confined aquifer is developed. First, a dimensionally consistent continuity equation for transient saturated groundwater flow in fractional time and in a multi-fractional, multidimensional confined aquifer is developed. For the equation of water flux within a multi-fractional multidimensional confined aquifer, a dimensionally...
Void fraction fluctuations in two-phase gas-liquid flow
International Nuclear Information System (INIS)
Ulbrich, R.
1987-01-01
Designs of the apparatus in which two-phase gas-liquid flow occurs are usually based on the mean value of parameters such as pressure drop and void fraction. The flow of two-phase mixtures generally presents a very complicated flow structure, both in terms of the unsteady formation on the interfacial area and in terms of the fluctuations of the velocity, pressure and other variables within the flow. When the gas void fraction is near 0 or 1 / bubble or dispersed flow regimes / then oscillations of void fraction are very small. The intermittent flow such as plug and slug/ froth is characterized by alternately flow portions of liquid and gas. It influences the change of void fractions in time. The results of experimental research of gas void fraction fluctuations in two-phase adiabatic gas-liquid flow in a vertical pipe are presented
Fractional charge definitions and conditions
International Nuclear Information System (INIS)
Goldhaber, Alfred Scharff
2003-01-01
The phenomenon of fractional charge has come to prominence in recent decades through theoretical and experimental discoveries of isolable objects which carry fractions of familiar charge units--electric charge Q, spin S, baryon number B and lepton number L. It is shown here on the basis of a few simple assumptions that all these effects may be described using a generalized version of charge renormalization for locally conserved charges, in which many-body correlations can produce familiar adiabatic, continuous renormalization, and in some circumstances nonadiabatic, discrete renormalization. The fractional charges may be carried either by fundamental particles or by fundamental solitons. This excludes nontopological solitons and also skyrmions: The only known fundamental solitons in three or fewer space dimensions d are the kink (d=1), the vortex (d=2), and the magnetic monopole (d=3). Further, for a charge which is not intrinsically coupled to the topological charge of a soliton, only the kink and the monopole may carry fractional values. The same reasoning enforces fractional local values of B-L for electrically charged elementary particles
REFractions: The Representing Equivalent Fractions Game
Tucker, Stephen I.
2014-01-01
Stephen Tucker presents a fractions game that addresses a range of fraction concepts including equivalence and computation. The REFractions game also improves students' fluency with representing, comparing and adding fractions.
dimensional generalised time-fractional Hirota equation
Indian Academy of Sciences (India)
Youwei Zhang
2018-02-09
Feb 9, 2018 ... Fractional calculus has attracted much attention in ... cally proved that the fractional calculus theory is non- ... calculus and various definitions of fractional integration .... basic features of the tanh-expansion are outlined as.
International Nuclear Information System (INIS)
Mostafa, N.
2007-01-01
The effect of addition of both alcohols and diols to polyacrylamide (PAA) and polymethylmethacrylate (PMMA) forming polymer mixtures was studied using positron annihilation lifetime (PAL) and Doppler broadening of annihilation radiation (DBAR) techniques. It was found that, by increasing chain length of alcohols, PAA-alcohols contain free volume with small size V and low fraction f, while PMMA-alcohols contain free volume with large size and high fraction. On the other hand, S-parameter increases and W-parameter decreases in PAA-diols according to the number of carbon and hydrogen atoms in the chain. In addition, the electrical conductivity measurements are performed on the above two polymer mixtures. The results showed that both PAA and PMMA exhibit semiconducting properties by the addition of alcohols and diols. Correlation between the macroscopic conductivity properties and the microstructures such as free volume and microdefects are established
Diffusion in lattice Lorentz gases with mixtures of point scatterers
International Nuclear Information System (INIS)
Acedo, L.; Santos, A.
1994-01-01
Monte Carlo simulations are carried out to evaluate the diffusion coefficient in some lattice Lorentz gases with mixtures of point scatterers in the limit of a low concentration of scatterers. Two models on a square lattice are considered: (a) right and left stochastic rotators plus pure reflectors and (b) right and left stochastic mirrors plus pure reflectors. The simulation data are compared with the repeated ring approximation (RRA). The agreement is excellent for models in the absence of pure reflectors, suggesting that the RRA gives the correct diffusion coefficient for those cases. As the fraction x B of reflectors increases, the diffusion coefficient decreases and seems to vanish at x B c congruent 0.8 (percolation threshold) with a critical exponent μ congruent 2 (stochastic model) or μ congruent 3 (deterministic rotator model)
A numerical study of blood flow using mixture theory.
Wu, Wei-Tao; Aubry, Nadine; Massoudi, Mehrdad; Kim, Jeongho; Antaki, James F
2014-03-01
In this paper, we consider the two dimensional flow of blood in a rectangular microfluidic channel. We use Mixture Theory to treat this problem as a two-component system: One component is the red blood cells (RBCs) modeled as a generalized Reiner-Rivlin type fluid, which considers the effects of volume fraction (hematocrit) and influence of shear rate upon viscosity. The other component, plasma, is assumed to behave as a linear viscous fluid. A CFD solver based on OpenFOAM ® was developed and employed to simulate a specific problem, namely blood flow in a two dimensional micro-channel, is studied. Finally to better understand this two-component flow system and the effects of the different parameters, the equations are made dimensionless and a parametric study is performed.
Purification of iodine-containing mixtures and compositions useful therefor
International Nuclear Information System (INIS)
Cobb, R.L.
1987-01-01
This patent describes a process for the preparation by distillation of essentially colorless hydrocarbon product substantially free of color-forming impurities, which process comprises: (a) adding 0.02 to 0.10 wt% of a metal, M, to a solution comprising: (i) a hydrocarbon product having 8-30 carbon atoms, and (ii) at least one color-forming impurity selected from the group consisting of: I/sub 2/, and R-I, wherein R is H or an organic radical having 1-30 carbon atoms, inclusive. The color-forming impurity and the metal interact under distillation conditions form a complex, MI/sub n/, where n is equal to the valence of the metal M, and the complex MI/sub n/ is non-volatile and essentially non-decomposable under distillation conditions; (b) subjecting the resulting mixture to distillation conditions; and (c) recovering essentially colorless hydrocarbon product as the overhead fraction from the distillation
Investigation of the helium proportion influence on the Prandtl number value of gas mixtures
Directory of Open Access Journals (Sweden)
S. A. Burtsev
2014-01-01
Full Text Available The paper investigates an influence of helium fraction (light gases on the Prandtl number value for binary and more complex gas mixtures.It is shown that a low value of the Prandtl number (Pr-number results in decreasing a temperature recovery factor value and, respectively, in reducing a recovery temperature value on the wall (thermoinsulated wall temperature with the compressive gas flow bypassing it. This, in turn, allows us to increase efficiency of gasdynamic energy separation in Leontyev's tube.The paper conducts a numerical research of the influence of binary and more complex gas mixture composition on the Prandtl number value. It is shown that a mixture of two gases with small and large molecular weight allows us to produce a mixture with a lower value of the Prandtl number in comparison with the initial gases. Thus, the value of Prandtl number decreases by 1.5-3.2 times in comparison with values for pure components (the more a difference of molar mass of components, the stronger is a decrease.The technique to determine the Prandtl number value for mixtures of gases in the wide range of temperatures and pressure is developed. Its verification based on experimental data and results of numerical calculations of other authors is executed. It is shown that it allows correct calculation of binary and more complex mixtures of gasesFor the mixtures of inert gases it has been obtained that the minimum value of the Prandtl number is as follows: for helium - xenon mixtures (He-Xe makes 0.2-0.22, for helium - krypton mixtures (He-Kr – 0.3, for helium - argon mixes (He-Ar – 0.41.For helium mixture with carbon dioxide the minimum value of the Prandtl number makes about 0.4, for helium mixture with N2 nitrogen the minimum value of the Prandtl number is equal to 0.48, for helium-methane (CH4 - 0.5 and helium – oxygen (O2 – 0.46.This decrease is caused by the fact that the thermal capacity of mixture changes under the linear law in regard to the
Generalized Multiparameters Fractional Variational Calculus
Directory of Open Access Journals (Sweden)
Om Prakash Agrawal
2012-01-01
Full Text Available This paper builds upon our recent paper on generalized fractional variational calculus (FVC. Here, we briefly review some of the fractional derivatives (FDs that we considered in the past to develop FVC. We first introduce new one parameter generalized fractional derivatives (GFDs which depend on two functions, and show that many of the one-parameter FDs considered in the past are special cases of the proposed GFDs. We develop several parts of FVC in terms of one parameter GFDs. We point out how many other parts could be developed using the properties of the one-parameter GFDs. Subsequently, we introduce two new two- and three-parameter GFDs. We introduce some of their properties, and discuss how they can be used to develop FVC. In addition, we indicate how these formulations could be used in various fields, and how the generalizations presented here can be further extended.
Semi-infinite fractional programming
Verma, Ram U
2017-01-01
This book presents a smooth and unified transitional framework from generalised fractional programming, with a finite number of variables and a finite number of constraints, to semi-infinite fractional programming, where a number of variables are finite but with infinite constraints. It focuses on empowering graduate students, faculty and other research enthusiasts to pursue more accelerated research advances with significant interdisciplinary applications without borders. In terms of developing general frameworks for theoretical foundations and real-world applications, it discusses a number of new classes of generalised second-order invex functions and second-order univex functions, new sets of second-order necessary optimality conditions, second-order sufficient optimality conditions, and second-order duality models for establishing numerous duality theorems for discrete minmax (or maxmin) semi-infinite fractional programming problems. In the current interdisciplinary supercomputer-oriented research envi...
Multi-temperature mixture of fluids
Directory of Open Access Journals (Sweden)
Ruggeri Tommaso
2009-01-01
Full Text Available We present a survey on some recent results concerning the different models of a mixture of compressible fluids. In particular we discuss the most realistic case of a mixture when each constituent has its own temperature (MT and we first compare the solutions of this model with the one with a unique common temperature (ST . In the case of Eulerian fluids it will be shown that the corresponding (ST differential system is a principal subsystem of the (MT one. Global behavior of smooth solutions for large time for both systems will also be discussed through the application of the Shizuta-Kawashima condition. Then we introduce the concept of the average temperature of mixture based upon the consideration that the internal energy of the mixture is the same as in the case of a single-temperature mixture. As a consequence, it is shown that the entropy of the mixture reaches a local maximum in equilibrium. Through the procedure of Maxwellian iteration a new constitutive equation for non-equilibrium temperatures of constituents is obtained in a classical limit, together with the Fick's law for the diffusion flux. Finally, to justify the Maxwellian iteration, we present for dissipative fluids a possible approach of a classical theory of mixture with multi-temperature and we prove that the differences of temperatures between the constituents imply the existence of a new dynamical pressure even if the fluids have a zero bulk viscosity.
Abnormal breakdown characteristic in a two-phase mixture
Energy Technology Data Exchange (ETDEWEB)
Ye Qizheng; Li Jin; Lu Fei [College of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074 (China)
2006-05-21
A two-phase mixture (TPM) is a mixture of gas and macroparticles of high concentration. Based on Townsend's theory, a new cell-iterative model in analytical form for the breakdown mechanism in TPM is presented. Compared with the original cell-iterative model in our previous paper, the obstructive factor of the macroparticles that influences the electron avalanche propagation is considered, except for the macroparticles distorting the electrical field and capture of the electrons. The cell attractive parameter k is presented according to the classical continuum theory for field charging. The modified Paschen law for a TPM is presented to calculate the breakdown voltage. The breakdown voltage of the TPM, U{sub TPM}, increases gradually with an increase in the macroparticle number density (m). The voltage U{sub TPM} is lower than that of the pure gas at low m values and larger at high m values. With a decrease of the macroparticle volume fraction and the dielectric mismatch, the voltage U{sub TPM} increases gradually at low m values and decreases gradually at high m values. The voltage U{sub TPM} at pd 200 cm Torr is lower than that at pd = 760 cm Torr for low m values and larger for high m values. This kind of abnormal breakdown characteristic in the TPM occurs in the case of high macroparticle volume fraction. On the other hand, the minimum of the TPM's Paschen curve increases with increase in m. It provides the possibility and the conditions of greatly increasing the breakdown voltage in a nearly uniform field.
On a fractional difference operator
Directory of Open Access Journals (Sweden)
P. Baliarsingh
2016-06-01
Full Text Available In the present article, a set of new difference sequence spaces of fractional order has been introduced and subsequently, an application of these spaces, the notion of the derivatives and the integrals of a function to the case of non-integer order have been generalized. Certain results involving the unusual and non-uniform behavior of the corresponding difference operator have been investigated and also been verified by using some counter examples. We also verify these unusual and non-uniform behaviors by studying the geometry of fractional calculus.
International Nuclear Information System (INIS)
Pyun, H.C.; Park, W.B.; Kim, K.Y.; Sung, K.Y.
1980-01-01
Electron beam curable prepolymers were prepared by the addition reaction of methyl methacrylate-glycidyl methacrylate copolymer with methacrylic acid, and electron beam curing was studied for the prepolymer and their mixtures of several kind of vinyl monomers. When the reaction was carried out in the presence of triethylbenzyl ammonium chloride in N,N-dimethyl formamide solution, the rate of addition reaction obeyed first-order kinetics. In the electron beam curing, the rate of gel formation of the prepolymer was slower than that of the mixtures of prepolymer and monomers. In the curing of mixtures of prepolymer with polyethyleneglycol dimethacrylates, the rate of gel formation increased with the increase in the degree of polymerization of polyethylene oxide fraction of polyethyleneglycol dimethacrylate, and decreased with the increase the polyethyleneglycol dimethacrylate content. The properties of cured coatings were also examined. (author)
Binary gas mixture adsorption-induced deformation of microporous carbons by Monte Carlo simulation.
Cornette, Valeria; de Oliveira, J C Alexandre; Yelpo, Víctor; Azevedo, Diana; López, Raúl H
2018-07-15
Considering the thermodynamic grand potential for more than one adsorbate in an isothermal system, we generalize the model of adsorption-induced deformation of microporous carbons developed by Kowalczyk et al. [1]. We report a comprehensive study of the effects of adsorption-induced deformation of carbonaceous amorphous porous materials due to adsorption of carbon dioxide, methane and their mixtures. The adsorption process is simulated by using the Grand Canonical Monte Carlo (GCMC) method and the calculations are then used to analyze experimental isotherms for the pure gases and mixtures with different molar fraction in the gas phase. The pore size distribution determined from an experimental isotherm is used for predicting the adsorption-induced deformation of both pure gases and their mixtures. The volumetric strain (ε) predictions from the GCMC method are compared against relevant experiments with good agreement found in the cases of pure gases. Copyright © 2018 Elsevier Inc. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Alcantara, Mara Tania S.; Lugao, Ademar B., E-mail: maratalcantara@uol.com.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Taqueda, Maria Elena S. [Universidade de Sao Paulo (USP), SP (Brazil). Escola Politecnica. Dept. de Engenharia Quimica
2009-07-01
Hydrogels are three dimensional hydrophilic crosslinked polymeric networks that have capacity to swell by absorbing water or biological fluids without dissolve. Hydrogels have been widely used in different application fields from agriculture, industry and in biomedicine. The properties of a hydrogel are extremely important in selecting which materials are suitable for a specific application. So mixtures can offer hydrogels with different properties to different applications. The PVP hydrogels were prepared by gamma radiation of an aqueous polymer solution and crosslinked by gamma ray, an effective and simple method for hydrogel formation that offers some advantages over the other techniques. In this work, a mixture experimental design was used to study the relationship between polymer cross-linking and swelling properties of PVP hydrogels with PEG as plasticizer and agar as gellifier. The gel fraction was measured for every mixture specified for the experiment D-optimal designs. (author)
International Nuclear Information System (INIS)
Alcantara, Mara Tania S.; Lugao, Ademar B.; Taqueda, Maria Elena S.
2009-01-01
Hydrogels are three dimensional hydrophilic crosslinked polymeric networks that have capacity to swell by absorbing water or biological fluids without dissolve. Hydrogels have been widely used in different application fields from agriculture, industry and in biomedicine. The properties of a hydrogel are extremely important in selecting which materials are suitable for a specific application. So mixtures can offer hydrogels with different properties to different applications. The PVP hydrogels were prepared by gamma radiation of an aqueous polymer solution and crosslinked by gamma ray, an effective and simple method for hydrogel formation that offers some advantages over the other techniques. In this work, a mixture experimental design was used to study the relationship between polymer cross-linking and swelling properties of PVP hydrogels with PEG as plasticizer and agar as gellifier. The gel fraction was measured for every mixture specified for the experiment D-optimal designs. (author)
Measurement and modelling of hydrogen bonding in 1-alkanol plus n-alkane binary mixtures
DEFF Research Database (Denmark)
von Solms, Nicolas; Jensen, Lars; Kofod, Jonas L.
2007-01-01
Two equations of state (simplified PC-SAFT and CPA) are used to predict the monomer fraction of 1-alkanols in binary mixtures with n-alkanes. It is found that the choice of parameters and association schemes significantly affects the ability of a model to predict hydrogen bonding in mixtures, eve...... studies, which is clarified in the present work. New hydrogen bonding data based on infrared spectroscopy are reported for seven binary mixtures of alcohols and alkanes. (C) 2007 Elsevier B.V. All rights reserved....... though pure-component liquid densities and vapour pressures are predicted equally accurately for the associating compound. As was the case in the study of pure components, there exists some confusion in the literature about the correct interpretation and comparison of experimental data and theoretical...
Refractive indices of ternary liquid mixtures containing aliphatic alcohols at several temperatures
Directory of Open Access Journals (Sweden)
Sovilj Milan N.
2005-01-01
Full Text Available The refractive indices of ternary liquid mixtures (2-propanol+2-butanol+ethanol and (chloroform+2-propanol+2-butanol were measured at 20, 25, 30, and 35°C, and atmospheric pressure. The results were used to calculate the refractive index deviations over the entire mole fraction range for the mixtures. The refractive index deviations for the ternary mixtures were further fitted to empirical correlations (Cibulka Nagata-Tamura, and Lopez et al to estimate the ternary fitting parameters. Standard deviations and average percentage deviations from the regression lines are shown. The best fit was obtained by the Nagata-Tamura empirical correlation. Some of the existing predictive equations for the refractive index deviations (Tsao-Smith, Köhler, and Colinet were tested.
Directory of Open Access Journals (Sweden)
Gonzalo Astray
2014-07-01
Full Text Available CO2 + ethanol mixtures have a huge scientific interest and enormous relevance for many industrial processes. Obtaining of their chemical and physical properties is a fundamental task. Relative permittivity (r of these mixtures is a key property because allows a better knowledge of the structure and the interactions in other media. In this work predictive values of relative permittivity (r of carbon dioxide + ethanol mixtures were obtained implementing artificial neural networks (ANNs. They are used successfully in very different fields; therefore it is a very useful tool. In this case the obtained results enhance the ones from the usual multiple linear regression analysis. In both cases mass fraction, pressure and temperature experimental data from a direct capacitance method were used.
Improvement on sugar cane bagasse hydrolysis using enzymatic mixture designed cocktail.
Bussamra, Bianca Consorti; Freitas, Sindelia; Costa, Aline Carvalho da
2015-01-01
The aim of this work was to study cocktail supplementation for sugar cane bagasse hydrolysis, where the enzymes were provided from both commercial source and microorganism cultivation (Trichoderma reesei and genetically modified Escherichia coli), followed by purification. Experimental simplex lattice mixture design was performed to optimize the enzymatic proportion. The response was evaluated through hydrolysis microassays validated here. The optimized enzyme mixture, comprised of T. reesei fraction (80%), endoglucanase (10%) and β-glucosidase (10%), converted, theoretically, 72% of cellulose present in hydrothermally pretreated bagasse, whereas commercial Celluclast 1.5L converts 49.11%±0.49. Thus, a rational enzyme mixture designed by using synergism concept and statistical analysis was capable of improving biomass saccharification. Copyright © 2015 Elsevier Ltd. All rights reserved.
A PROCESS FOR SEPARATING AZEOTROPIC MIXTURES BY EXTRACTIVE AND CONVECTIVE DISTILLATION
Frazer, J.W.
1961-12-19
A method is described for separating an azeotrope of carbon tetrachloride and 1,1,2,2-tetrafluorodinitroethane boiling at 60 deg C. The ndethod comnprises, specifically, feeding azeotrope vapors admixed with a non- reactive gas into an extractive distillation column heated to a temperature preferably somewhat above the boiling point of the constant boiling mixture. A solvent, di-n-butylphthalate, is metered into the column above the gas inlet and permitted to flow downward, earrying with it the higher bomling fraction, while the constituent having the lower boiling point passes out of the top of the column with the non-reactive gas and is collected in a nitrogen cold trap. Other solvents which alter the vapor pressure relationship may be substituted. The method is generally applicable to azeotropic mixtures. A number of specific mixtures whicb may be separated are disclosed. (AEC)
The use of soil-rock mixtures in dams in Portugal
Caldeira, L.; Brito, A.
2010-01-01
Soil-rock mixtures are being used in the construction of dam shells. The measured deformations associated to these materials have been larger than expected. This situation represents new challenges to compaction techniques and their control as well as to the determination of the characteristics of the embankment that results from the compaction method, as those characteristics suffer important changes according to the relative percentage of the existing fractions. For the execution control of...
Pascale, C.; Guillevic, M.; Ackermann, A.; Leuenberger, D.; Niederhauser, B.
2017-12-01
To answer the needs of air quality and climate monitoring networks, two new gas generators were developed and manufactured at METAS in order to dynamically generate SI-traceable reference gas mixtures for reactive compounds at atmospheric concentrations. The technical features of the transportable generators allow for the realization of such gas standards for reactive compounds (e.g. NO2, volatile organic compounds) in the nmol · mol-1 range (ReGaS2), and fluorinated gases in the pmol ṡ mol-1 range (ReGaS3). The generation method is based on permeation and dynamic dilution. The transportable generators have multiple individual permeation chambers allowing for the generation of mixtures containing up to five different compounds. This mixture is then diluted using mass flow controllers, thus making the production process adaptable to generate the required amount of substance fraction. All parts of ReGaS2 in contact with the gas mixture are coated to reduce adsorption/desorption processes. Each input parameter required to calculate the generated amount of substance fraction is calibrated with SI-primary standards. The stability and reproducibility of the generated amount of substance fractions were tested with NO2 for ReGaS2 and HFC-125 for ReGaS3. They demonstrate stability over 1-4 d better than 0.4% and 0.8%, respectively, and reproducibility better than 0.7% and 1%, respectively. Finally, the relative expanded uncertainty of the generated amount of substance fraction is smaller than 3% with the major contributions coming from the uncertainty of the permeation rate and/or of the purity of the matrix gas. These relative expanded uncertainties meet then the needs of the data quality objectives fixed by the World Meteorological Organization.
International Nuclear Information System (INIS)
Liu, Baoyou; Liu, Yaru
2016-01-01
Graphical abstract: Viscosity deviation (Δη) against mole fraction of ethanol for [ethanol(1) + [(acetamide + KSCN)](2)] mixtures at several temperatures. The solid lines represent the corresponding correlation by the Redlich–Kister equation. - Highlights: • Density, viscosity and conductivity of (acetamide + KSCN) ethanol solution were measured. • V"E and Δη were calculated from the measured density and viscosity respectively. • V"E and Δη were both well fitted by a third order Redlich–Kister equation. • The conductivity was described by a Castell–Amis equation. - Abstract: Density, viscosity and conductivity were determined for the binary mixture of (acetamide + KSCN) eutectic ionic liquid with ethanol at T = (298.15, 303.15, 308.15, 313.15, 318.15) K and atmospheric pressure. The density, viscosity values decrease with the increase of temperature while the conductivity values increase over the whole concentration range. The density and viscosity values decrease monotonically with the increase of the mole content of ethanol. From the experimental values, excess molar volumes V"E and viscosity deviations Δη for the binary mixture were calculated and V"E and Δη were both well fitted by a third order Redlich–Kister equation. With the increase mole fraction of ethanol, the conductivity values of the mixture increase gradually first and then decrease dramatically, and the highest conductivity values appear at 0.8562 mol fraction of ethanol. The relationship between the conductivity and the mole fraction of ethanol can be well described by a Castell–Amis equation. The interactions with ethanol molecular and ions of (acetamide + KSCN) ionic liquid were discussed by FTIR spectra.
Probabilistic mixture-based image modelling
Czech Academy of Sciences Publication Activity Database
Haindl, Michal; Havlíček, Vojtěch; Grim, Jiří
2011-01-01
Roč. 47, č. 3 (2011), s. 482-500 ISSN 0023-5954 R&D Projects: GA MŠk 1M0572; GA ČR GA102/08/0593 Grant - others:CESNET(CZ) 387/2010; GA MŠk(CZ) 2C06019; GA ČR(CZ) GA103/11/0335 Institutional research plan: CEZ:AV0Z10750506 Keywords : BTF texture modelling * discrete distribution mixtures * Bernoulli mixture * Gaussian mixture * multi-spectral texture modelling Subject RIV: BD - Theory of Information Impact factor: 0.454, year: 2011 http://library.utia.cas.cz/separaty/2011/RO/haindl-0360244.pdf
Principles and practice of mixtures toxicology
National Research Council Canada - National Science Library
Mumtaz, Moiz
2010-01-01
... accurate predictions for the adverse effects of mixtures has been limited by the difficulty of acquiring data for all the possible combinations of dose and time that exist even in simple mixtures. Such predictions are also compromised by our use of single-agent toxicity studies since most "realworld" exposures are to mixtures. This has resulted in a variety of approaches (models, protocols, techniques, etc.) to address these issues. These are described in detail in the two dozen chapters of this book along with ca...
Directory of Open Access Journals (Sweden)
Maggy T. Suhartono
2012-12-01
Full Text Available Fractionation of green sirih (Piper betle Linn extract by chromatography colom using the mixture of several solvents i.e. chloroform, ethanol and acetic acid (4:1:1 resulted in 17 fractions. All fractions showed antibacterial activities but only 2 fractions (fraction 3 and fraction 4 showed the highest inhibition towards the six tested bacteria Escherichia coli, Salmonella Typhimurium, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus cereus and Listeria monocytogenes. Among the tested bacteria, all fractions of green sirih extracts showed the most effective inhibition against, Salmonella Typhimurium with inhibition zone diameters ranging from 10 mm to 26 mm. Identification using GC-MS found that fraction 3 and fraction 4 contained chavicol; dodecanoic acid, myristic, palmitic and oleic acid.
SORPTION OF 2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN TO SOILS FROM WATER/METHANOL MIXTURES
Sorption of 14C-labeled 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) to soils from water/methanol mixtures has been evaluated by batch shake testing. Uncontaminated soils from Times Beach, MO, were used in these experiments and ranged in fraction organic carbon (U...
A framework for ecological risk assessment of metal mixtures in aquatic systems.
Nys, Charlotte; Van Regenmortel, Tina; Janssen, Colin R; Oorts, Koen; Smolders, Erik; De Schamphelaere, Karel A C
2018-03-01
Although metal mixture toxicity has been studied relatively intensely, there is no general consensus yet on how to incorporate metal mixture toxicity into aquatic risk assessment. We combined existing data on chronic metal mixture toxicity at the species level with species sensitivity distribution (SSD)-based in silico metal mixture risk predictions at the community level for mixtures of Ni, Zn, Cu, Cd, and Pb, to develop a tiered risk assessment scheme for metal mixtures in freshwater. Generally, independent action (IA) predicts chronic metal mixture toxicity at the species level most accurately, whereas concentration addition (CA) is the most conservative model. Mixture effects are noninteractive in 69% (IA) and 44% (CA) and antagonistic in 15% (IA) and 51% (CA) of the experiments, whereas synergisms are only observed in 15% (IA) and 5% (CA) of the experiments. At low effect sizes (∼ 10% mixture effect), CA overestimates metal mixture toxicity at the species level by 1.2-fold (i.e., the mixture interaction factor [MIF]; median). Species, metal presence, or number of metals does not significantly affect the MIF. To predict metal mixture risk at the community level, bioavailability-normalization procedures were combined with CA or IA using SSD techniques in 4 different methods, which were compared using environmental monitoring data of a European river basin (the Dommel, The Netherlands). We found that the simplest method, in which CA is directly applied to the SSD (CA SSD ), is also the most conservative method. The CA SSD has median margins of safety (MoS) of 1.1 and 1.2 respectively for binary mixtures compared with the theoretically more consistent methods of applying CA or IA to the dose-response curve of each species individually prior to estimating the fraction of affected species (CA DRC or IA DRC ). The MoS increases linearly with an increasing number of metals, up to 1.4 and 1.7 for quinary mixtures (median) compared with CA DRC and IA DRC
Haxhimali, Tomorr; Rudd, Robert E.; Cabot, William H.; Graziani, Frank R.
2015-11-01
We present molecular dynamics (MD) calculations of shear viscosity for asymmetric mixed plasma for thermodynamic conditions relevant to astrophysical and inertial confinement fusion plasmas. Specifically, we consider mixtures of deuterium and argon at temperatures of 100-500 eV and a number density of 1025 ions/cc. The motion of 30 000-120 000 ions is simulated in which the ions interact via the Yukawa (screened Coulomb) potential. The electric field of the electrons is included in this effective interaction; the electrons are not simulated explicitly. Shear viscosity is calculated using the Green-Kubo approach with an integral of the shear stress autocorrelation function, a quantity calculated in the equilibrium MD simulations. We systematically study different mixtures through a series of simulations with increasing fraction of the minority high-Z element (Ar) in the D-Ar plasma mixture. In the more weakly coupled plasmas, at 500 eV and low Ar fractions, results from MD compare very well with Chapman-Enskog kinetic results. In the more strongly coupled plasmas, the kinetic theory does not agree well with the MD results. We develop a simple model that interpolates between classical kinetic theories at weak coupling and the Murillo Yukawa viscosity model at higher coupling. This hybrid kinetics-MD viscosity model agrees well with the MD results over the conditions simulated, ranging from moderately weakly coupled to moderately strongly coupled asymmetric plasma mixtures.
Fouling tendency of ash resulting from burning mixtures of biofuels. Part 2: Deposit chemistry
Energy Technology Data Exchange (ETDEWEB)
Mischa Theis; Bengt-Johan Skrifvars; Maria Zevenhoven; Mikko Hupa; Honghi Tranb [Aabo Akademi Process Chemistry Centre, Aabo (Finland). Combustion and Materials Chemistry
2006-10-15
Mixtures of peat with bark and peat with straw were burned in a lab-scale entrained flow reactor under controlled conditions, and deposits were collected on an air-cooled probe at a temperature of 550 {sup o}C. The fuel and deposit compositions were compared using chemical fractionation analysis and SEM/EDX. Chemical fractionation analysis was capable of explaining the relative fouling tendency of peat, bark, and straw. The composition of deposits obtained from firing peat, bark, and straw individually resembled the composition of their ashes. When firing peat-bark and peat-straw mixtures, it was found that the deposition rate only started to increase when the Cl/S molar ratio in the feed ash exceeded 0.15. The composition of the ensuing deposits resembled the deposits obtained from burning either bark or straw individually. For peat-bark mixtures it was concluded that the presence of S in the feed suppresses deposition by sulfating chloride compounds, leading to deposits that contain less Cl and have less molten phase. For peat-straw mixtures it was concluded that the deposition behaviour is governed by other mechanisms than the interaction of Cl and S. 27 refs., 7 figs., 1 tab.
Optimization of thermal neutron shield concrete mixture using artificial neural network
Energy Technology Data Exchange (ETDEWEB)
Yadollahi, A. [Engineering Department, Shahid Beheshti University, G.C., P.O. Box: 1983963113, Tehran (Iran, Islamic Republic of); Nazemi, E., E-mail: nazemi.ehsan@yahoo.com [Young Researchers and Elite Club, Kermanshah Branch, Islamic Azad University, Kermanshah (Iran, Islamic Republic of); Zolfaghari, A. [Engineering Department, Shahid Beheshti University, G.C., P.O. Box: 1983963113, Tehran (Iran, Islamic Republic of); Ajorloo, A.M. [Water and Environmental Engineering Department, Shahid Beheshti University, P.O. Box: 167651719, Tehran (Iran, Islamic Republic of)
2016-08-15
Highlights: • Colemanite was used in fabricating of thermal neutron shield concrete. • The Taguchi method was implemented to obtain the data set required for training the ANN. • Trained ANN predicted quality characteristics of thermal neutron shield. - Abstract: Colemanite is the most convenient boron mineral which has been widely used in construction of radiation shielding concrete in order to improve the capture of thermal neutrons. But utilization of Colemanite in radiation shielding concrete has a deleterious effect on both physical and mechanical properties. In the present work, Taguchi method and artificial neural network (ANN) were employed to find an optimal mixture of Colemanite based concrete in order to improve the boron content of concrete and increase thermal neutron absorption without violating the standards for physical and mechanical properties. Using Taguchi method for experimental design, 27 concrete samples with different mixtures were fabricated and tested. Water/cement ratio, cement quantity, volume fraction of Colemanite aggregate and silica fume quantity were selected as control factors, and compressive strength, ultrasonic pulse velocity and thermal neutron transmission ratio were considered as the quality responses. Obtained data from 27 experiments were used to train 3 ANNs. Four control factors were utilized as the inputs of 3 ANNs and 3 quality responses were used as the outputs, separately (each ANN for one quality response). After training the ANNs, 1024 different mixtures with different quality responses were predicted. At the final, optimum mixture was obtained among the predicted different mixtures. Results demonstrated that the optimal mixture of thermal neutron shielding concrete has a water–cement ratio of 0.38, cement content of 400 kg/m{sup 3}, a volume fraction Colemanite aggregate of 50% and silica fume–cement ratio of 0.15.
Optimization of thermal neutron shield concrete mixture using artificial neural network
International Nuclear Information System (INIS)
Yadollahi, A.; Nazemi, E.; Zolfaghari, A.; Ajorloo, A.M.
2016-01-01
Highlights: • Colemanite was used in fabricating of thermal neutron shield concrete. • The Taguchi method was implemented to obtain the data set required for training the ANN. • Trained ANN predicted quality characteristics of thermal neutron shield. - Abstract: Colemanite is the most convenient boron mineral which has been widely used in construction of radiation shielding concrete in order to improve the capture of thermal neutrons. But utilization of Colemanite in radiation shielding concrete has a deleterious effect on both physical and mechanical properties. In the present work, Taguchi method and artificial neural network (ANN) were employed to find an optimal mixture of Colemanite based concrete in order to improve the boron content of concrete and increase thermal neutron absorption without violating the standards for physical and mechanical properties. Using Taguchi method for experimental design, 27 concrete samples with different mixtures were fabricated and tested. Water/cement ratio, cement quantity, volume fraction of Colemanite aggregate and silica fume quantity were selected as control factors, and compressive strength, ultrasonic pulse velocity and thermal neutron transmission ratio were considered as the quality responses. Obtained data from 27 experiments were used to train 3 ANNs. Four control factors were utilized as the inputs of 3 ANNs and 3 quality responses were used as the outputs, separately (each ANN for one quality response). After training the ANNs, 1024 different mixtures with different quality responses were predicted. At the final, optimum mixture was obtained among the predicted different mixtures. Results demonstrated that the optimal mixture of thermal neutron shielding concrete has a water–cement ratio of 0.38, cement content of 400 kg/m 3 , a volume fraction Colemanite aggregate of 50% and silica fume–cement ratio of 0.15.
International Nuclear Information System (INIS)
Almasi, Mohammad
2014-01-01
Graphical abstract: Viscosity deviations △η vs. mole fraction of FA, for binary mixtures of FA with (□) 2-PrOH, (●) 2-BuOH, (■) 2-PenOH, (◀) 2-HexOH, (◊) 2-HepOH at T = 298.15 K. The solid curves were calculated from Redlich–Kister type equation. -- Highlights: • Densities and viscosities of the mixtures (formamide + 2-alkanols) were measured. • Experiments were performed over the entire mole fraction at four temperatures. • SAFT and PC-SAFT were applied to predict the volumetric behavior of mixtures. • PRSV equation of state (EOS) has been used to predict the binary viscosities. -- Abstract: Densities and viscosities of binary liquid mixtures of formamide (FA) with polar solvents namely, 2-PrOH, 2-BuOH, 2-PenOH, 2-HexOH, and 2-HepOH, have been measured as a function of composition range at temperatures (298.15, 303.15, 308.15, 313.15) K and ambient pressure. From experimental data, excess molar volumes, V m E and viscosity deviations Δη, were calculated and correlated by Redlich–Kister type function. The effect of temperature and chain-length of the 2-alkanols on the excess molar volumes and viscosity deviations are discussed in terms of molecular interaction between unlike molecules. The statistical associating fluid theory (SAFT), and perturbed chain statistical associating fluid theory (PC-SAFT) were applied to correlate and predict the volumetric behavior of the mixtures. The best predictions were achieved with the PC-SAFT equation of state. Also the Peng–Robinson–Stryjek–Vera equation of state has been used to predict the viscosity of binary mixtures
Energy Technology Data Exchange (ETDEWEB)
Zhang, Shengjun; Wang, Huaixin; Guo, Tao [Department of Thermal Energy and Refrigeration Engineering, School of Mechanical Engineering, Tianjin University, Tianjin 300072 (China)
2010-05-15
Experimental investigations were carried out on non-azeotropic refrigerant mixtures, named M1A (mass fraction of 20%R152a and 80%R245fa), M1B (mass fraction of 37% R152a and 63%R245fa) and M1C (mass fraction of 50%R152a and 50%R245fa), based on a water-to-water heat pump system in the condensing temperature range of 70-90 C with a cycle temperature lift of 45 C. Performance of R245fa was tested for comparison. Unfair factors in experimental comparative evaluation research with the same apparatus were identified and corrected. Experimental cycle performance of the mixtures were tested and compared with improved experimental assessment methodology. The results show that all of the mixtures deliver higher discharge temperature, higher heating capacity, higher COP and higher {epsilon}{sub h,c} than R245fa. M1B presents the most excellent cycle performance and is recommended as working fluid for moderate/high temperature heat pump. (author)
On a Fractional Binomial Process
Cahoy, Dexter O.; Polito, Federico
2012-02-01
The classical binomial process has been studied by Jakeman (J. Phys. A 23:2815-2825, 1990) (and the references therein) and has been used to characterize a series of radiation states in quantum optics. In particular, he studied a classical birth-death process where the chance of birth is proportional to the difference between a larger fixed number and the number of individuals present. It is shown that at large times, an equilibrium is reached which follows a binomial process. In this paper, the classical binomial process is generalized using the techniques of fractional calculus and is called the fractional binomial process. The fractional binomial process is shown to preserve the binomial limit at large times while expanding the class of models that include non-binomial fluctuations (non-Markovian) at regular and small times. As a direct consequence, the generality of the fractional binomial model makes the proposed model more desirable than its classical counterpart in describing real physical processes. More statistical properties are also derived.
Riesz potential versus fractional Laplacian
Ortigueira, Manuel Duarte
2014-09-01
This paper starts by introducing the Grünwald-Letnikov derivative, the Riesz potential and the problem of generalizing the Laplacian. Based on these ideas, the generalizations of the Laplacian for 1D and 2D cases are studied. It is presented as a fractional version of the Cauchy-Riemann conditions and, finally, it is discussed with the n-dimensional Laplacian.
A fast fractional difference algorithm
DEFF Research Database (Denmark)
Jensen, Andreas Noack; Nielsen, Morten Ørregaard
2014-01-01
We provide a fast algorithm for calculating the fractional difference of a time series. In standard implementations, the calculation speed (number of arithmetic operations) is of order T 2, where T is the length of the time series. Our algorithm allows calculation speed of order T log...
A Fast Fractional Difference Algorithm
DEFF Research Database (Denmark)
Jensen, Andreas Noack; Nielsen, Morten Ørregaard
We provide a fast algorithm for calculating the fractional difference of a time series. In standard implementations, the calculation speed (number of arithmetic operations) is of order T 2, where T is the length of the time series. Our algorithm allows calculation speed of order T log...
Geodesic continued fractions and LLL
Beukers, F
2014-01-01
We discuss a proposal for a continued fraction-like algorithm to determine simultaneous rational approximations to dd real numbers α1,…,αdα1,…,αd. It combines an algorithm of Hermite and Lagarias with ideas from LLL-reduction. We dynamically LLL-reduce a quadratic form with parameter tt as t↓0t↓0.
A graph with fractional revival
Bernard, Pierre-Antoine; Chan, Ada; Loranger, Érika; Tamon, Christino; Vinet, Luc
2018-02-01
An example of a graph that admits balanced fractional revival between antipodes is presented. It is obtained by establishing the correspondence between the quantum walk on a hypercube where the opposite vertices across the diagonals of each face are connected and, the coherent transport of single excitations in the extension of the Krawtchouk spin chain with next-to-nearest neighbour interactions.
Riesz potential versus fractional Laplacian
Ortigueira, Manuel Duarte; Laleg-Kirati, Taous-Meriem; Machado, José Antó nio Tenreiro
2014-01-01
This paper starts by introducing the Grünwald-Letnikov derivative, the Riesz potential and the problem of generalizing the Laplacian. Based on these ideas, the generalizations of the Laplacian for 1D and 2D cases are studied. It is presented as a fractional version of the Cauchy-Riemann conditions and, finally, it is discussed with the n-dimensional Laplacian.
What next in fractionated radiotherapy
International Nuclear Information System (INIS)
Fowler, J.F.
1984-01-01
Trends in models for predicting the total dose required to produce tolerable normal-tissue injury can be seen by the progression from the ''cube root law'', through Strandqvist's slope of 0.22, to NSD, TDF and CRE which have separate time and fraction number exponents, to even better approximations now available. The dose-response formulae that can be used to define the effect of fraction size (and number) include (1) the linear quadratic (LQ) model (2) the two-component (TC) multi-target model and (3) repair-misrepair models. The LQ model offers considerable convenience, requires only two parameters to be determined, and emphasizes the difference between late and early normal-tissue dependence on dose per fraction first shown by exponents greater than the NSD slope of 0.24. Exponents of overall time, e.g. Tsup(0.11), yield the wrong shape of time curve, suggesting that most proliferating occurs early, although it really occurs after a delay depending on the turnover time of the tissue. Improved clinical results are being sought by hyperfractionation, accelerated fractionation, or continuous low dose rate irradiation as in interstitial implants. (U.K.)
Fractional Laplace Transforms - A Perspective
Directory of Open Access Journals (Sweden)
Rudolf A. Treumann
2014-06-01
Full Text Available A new form of the Laplace transform is reviewed as a paradigm for an entire class of fractional functional transforms. Various of its properties are discussed. Such transformations should be useful in application to differential/integral equations or problems in non-extensive statistical mechanics.
Pythagorean Approximations and Continued Fractions
Peralta, Javier
2008-01-01
In this article, we will show that the Pythagorean approximations of [the square root of] 2 coincide with those achieved in the 16th century by means of continued fractions. Assuming this fact and the known relation that connects the Fibonacci sequence with the golden section, we shall establish a procedure to obtain sequences of rational numbers…
DEFF Research Database (Denmark)
Agger, Jane; Viksø-Nielsen, Ander; Meyer, Anne S.
2010-01-01
In the present work enzymatic hydrolysis of arabinoxylan from pretreated corn bran (190 °C, 10 min) was evaluated by measuring the release of xylose and arabinose after treatment with a designed minimal mixture of monocomponent enzymes consisting of α-l-arabinofuranosidases, an endoxylanase......, and a β-xylosidase. The pretreatment divided the corn bran material 50:50 into soluble and insoluble fractions having A:X ratios of 0.66 and 0.40, respectively. Addition of acetyl xylan esterase to the monocomponent enzyme mixture almost doubled the xylose release from the insoluble substrate fraction...
Fractional Processes and Fractional-Order Signal Processing Techniques and Applications
Sheng, Hu; Qiu, TianShuang
2012-01-01
Fractional processes are widely found in science, technology and engineering systems. In Fractional Processes and Fractional-order Signal Processing, some complex random signals, characterized by the presence of a heavy-tailed distribution or non-negligible dependence between distant observations (local and long memory), are introduced and examined from the ‘fractional’ perspective using simulation, fractional-order modeling and filtering and realization of fractional-order systems. These fractional-order signal processing (FOSP) techniques are based on fractional calculus, the fractional Fourier transform and fractional lower-order moments. Fractional Processes and Fractional-order Signal Processing: • presents fractional processes of fixed, variable and distributed order studied as the output of fractional-order differential systems; • introduces FOSP techniques and the fractional signals and fractional systems point of view; • details real-world-application examples of FOSP techniques to demonstr...
Measurements of void fraction in a water-molten tin system by X-ray absorption
International Nuclear Information System (INIS)
Baker, Michael C.; Bonazza, Riccardo; Corradini, Michael L.
1998-01-01
A facility has been developed to study the explosive interactions of gas-water injection into a molten tin pool. The experimental apparatus allows for variable nitrogen gas and water injection into the base of a steel tank containing up to 25 kg of molten tin. Due to the opaque nature of the molten metal-gas-water mixture and steel tank, a visualization and measurement technique using continuous high energy x-rays had to be developed. Visualization of the multiphase mixture can be done at 220 Hz with 256x256 pixel resolution or at 30 Hz with 480x1128 pixel resolution. These images are stored digitally and subsequently processed to obtain two dimensional mappings of the chordal average void fraction in the mixture. The image processing method has been used to measure void fraction in experiments that did not include water in the injection mixture. This work includes a comparison to previous studies of integral void fraction data in pools of molten metal with gas injection. (author)
Quantiles for Finite Mixtures of Normal Distributions
Rahman, Mezbahur; Rahman, Rumanur; Pearson, Larry M.
2006-01-01
Quantiles for finite mixtures of normal distributions are computed. The difference between a linear combination of independent normal random variables and a linear combination of independent normal densities is emphasized. (Contains 3 tables and 1 figure.)
Shear-induced phase changes in mixtures
International Nuclear Information System (INIS)
Romig, K.D.; Hanley, H.J.M.
1986-01-01
A thermodynamic theory to account for the behavior of liquid mixtures exposed to a shear is developed. One consequence of the theory is that shear-induced phase changes are predicted. The theory is based on a thermodynamics that includes specifically the shear rate in the formalism and is applied to mixtures by a straightforward modification of the corresponding states, conformalsolution approach. The approach is general but is used here for a mixture of Lennard-Jones particles with a Lennard-Jones equation of state as a reference fluid. The results are discussed in the context of the Scott and Van Konynenberg phase classification. It is shown that the influence of a shear does affect substantially the type of the phase behavior. Results from the model mixture are equated loosely with those from real polymeric liquids
A simple approach to polymer mixture miscibility.
Higgins, Julia S; Lipson, Jane E G; White, Ronald P
2010-03-13
Polymeric mixtures are important materials, but the control and understanding of mixing behaviour poses problems. The original Flory-Huggins theoretical approach, using a lattice model to compute the statistical thermodynamics, provides the basic understanding of the thermodynamic processes involved but is deficient in describing most real systems, and has little or no predictive capability. We have developed an approach using a lattice integral equation theory, and in this paper we demonstrate that this not only describes well the literature data on polymer mixtures but allows new insights into the behaviour of polymers and their mixtures. The characteristic parameters obtained by fitting the data have been successfully shown to be transferable from one dataset to another, to be able to correctly predict behaviour outside the experimental range of the original data and to allow meaningful comparisons to be made between different polymer mixtures.
Model structure selection in convolutive mixtures
DEFF Research Database (Denmark)
Dyrholm, Mads; Makeig, S.; Hansen, Lars Kai
2006-01-01
The CICAAR algorithm (convolutive independent component analysis with an auto-regressive inverse model) allows separation of white (i.i.d) source signals from convolutive mixtures. We introduce a source color model as a simple extension to the CICAAR which allows for a more parsimonious represent......The CICAAR algorithm (convolutive independent component analysis with an auto-regressive inverse model) allows separation of white (i.i.d) source signals from convolutive mixtures. We introduce a source color model as a simple extension to the CICAAR which allows for a more parsimonious...... representation in many practical mixtures. The new filter-CICAAR allows Bayesian model selection and can help answer questions like: ’Are we actually dealing with a convolutive mixture?’. We try to answer this question for EEG data....
Modelling of an homogeneous equilibrium mixture model
International Nuclear Information System (INIS)
Bernard-Champmartin, A.; Poujade, O.; Mathiaud, J.; Mathiaud, J.; Ghidaglia, J.M.
2014-01-01
We present here a model for two phase flows which is simpler than the 6-equations models (with two densities, two velocities, two temperatures) but more accurate than the standard mixture models with 4 equations (with two densities, one velocity and one temperature). We are interested in the case when the two-phases have been interacting long enough for the drag force to be small but still not negligible. The so-called Homogeneous Equilibrium Mixture Model (HEM) that we present is dealing with both mixture and relative quantities, allowing in particular to follow both a mixture velocity and a relative velocity. This relative velocity is not tracked by a conservation law but by a closure law (drift relation), whose expression is related to the drag force terms of the two-phase flow. After the derivation of the model, a stability analysis and numerical experiments are presented. (authors)
Viscosities of corium-concrete mixtures
International Nuclear Information System (INIS)
Seiler, J.M.; Ganzhorn, J.
1997-01-01
Severe accidents on nuclear reactors involve many situations such as pools of molten core material, melt spreading, melt/concrete interactions, etc. The word 'corium' designates mixtures of materials issued from the molten core at high temperature; these mixtures involve mainly: UO2, ZrO2, Zr and, in small amounts, Ni, Cr, Ag, In, Cd. These materials, when flowing out of the reactor vessel, may interact with the concrete of the reactor building thus introducing decomposition products of concrete into the original mixture. These decomposition products are mainly: SiO 2 , FeO, MgO, CaO and Al 2 O 3 in different amounts depending on the nature of the concrete being considered. Siliceous concrete is rich in SiO 2 , limestone concrete contains both SiO 2 and CaO. Liquidus temperatures of such mixtures are generally obove 2300 K whereas solidus temperatures are ∝1400 K. (orig.)
Negative muon capture in noble gas mixtures
International Nuclear Information System (INIS)
Hutson, R.L.; Knight, J.D.; Leon, M.; Schillaci, M.E.; Knowles, H.B.; Reidy, J.J.
1980-01-01
We have determined the probabilities of atomic negative muon capture in binary mixtures of the gases He, Ne, Ar, and Kr at partial pressures near five atmospheres. Relative capture rates were deduced from measured muonic X-ray yields. (orig.)
Mixture design procedure for flexible base.
2013-04-01
This document provides information on mixture design requirements for a flexible base course. Sections : design requirements, job mix formula, contractor's responsibility, and engineer's responsibility. Tables : material requirements; requirements fo...
Directory of Open Access Journals (Sweden)
M. L. Kavvas
2017-10-01
Full Text Available Using fractional calculus, a dimensionally consistent governing equation of transient, saturated groundwater flow in fractional time in a multi-fractional confined aquifer is developed. First, a dimensionally consistent continuity equation for transient saturated groundwater flow in fractional time and in a multi-fractional, multidimensional confined aquifer is developed. For the equation of water flux within a multi-fractional multidimensional confined aquifer, a dimensionally consistent equation is also developed. The governing equation of transient saturated groundwater flow in a multi-fractional, multidimensional confined aquifer in fractional time is then obtained by combining the fractional continuity and water flux equations. To illustrate the capability of the proposed governing equation of groundwater flow in a confined aquifer, a numerical application of the fractional governing equation to a confined aquifer groundwater flow problem was also performed.
Predicting skin permeability from complex chemical mixtures
International Nuclear Information System (INIS)
Riviere, Jim E.; Brooks, James D.
2005-01-01
Occupational and environmental exposure to topical chemicals is usually in the form of complex chemical mixtures, yet risk assessment is based on experimentally derived data from individual chemical exposures from a single, usually aqueous vehicle, or from computed physiochemical properties. We present an approach using hybrid quantitative structure permeation relationships (QSPeR) models where absorption through porcine skin flow-through diffusion cells is well predicted using a QSPeR model describing the individual penetrants, coupled with a mixture factor (MF) that accounts for physicochemical properties of the vehicle/mixture components. The baseline equation is log k p = c + mMF + aΣα 2 H + bΣβ 2 H + sπ 2 H + rR 2 + vV x where Σα 2 H is the hydrogen-bond donor acidity, Σβ 2 H is the hydrogen-bond acceptor basicity, π 2 H is the dipolarity/polarizability, R 2 represents the excess molar refractivity, and V x is the McGowan volume of the penetrants of interest; c, m, a, b, s, r, and v are strength coefficients coupling these descriptors to skin permeability (k p ) of 12 penetrants (atrazine, chlorpyrifos, ethylparathion, fenthion, methylparathion, nonylphenol, ρ-nitrophenol, pentachlorophenol, phenol, propazine, simazine, and triazine) in 24 mixtures. Mixtures consisted of full factorial combinations of vehicles (water, ethanol, propylene glycol) and additives (sodium lauryl sulfate, methyl nicotinate). An additional set of 4 penetrants (DEET, SDS, permethrin, ricinoleic acid) in different mixtures were included to assess applicability of this approach. This resulted in a dataset of 16 compounds administered in 344 treatment combinations. Across all exposures with no MF, R 2 for absorption was 0.62. With the MF, correlations increased up to 0.78. Parameters correlated to the MF include refractive index, polarizability and log (1/Henry's Law Constant) of the mixture components. These factors should not be considered final as the focus of these studies
On modeling of structured multiphase mixtures
International Nuclear Information System (INIS)
Dobran, F.
1987-01-01
The usual modeling of multiphase mixtures involves a set of conservation and balance equations of mass, momentum, energy and entropy (the basic set) constructed by an averaging procedure or postulated. The averaged models are constructed by averaging, over space or time segments, the local macroscopic field equations of each phase, whereas the postulated models are usually motivated by the single phase multicomponent mixture models. In both situations, the resulting equations yield superimposed continua models and are closed by the constitutive equations which place restrictions on the possible material response during the motion and phase change. In modeling the structured multiphase mixtures, the modeling of intrinsic motion of grains or particles is accomplished by adjoining to the basic set of field equations the additional balance equations, thereby placing restrictions on the motion of phases only within the imposed extrinsic and intrinsic sources. The use of the additional balance equations has been primarily advocated in the postulatory theories of multiphase mixtures and are usually derived through very special assumptions of the material deformation. Nevertheless, the resulting mixture models can predict a wide variety of complex phenomena such as the Mohr-Coulomb yield criterion in granular media, Rayleigh bubble equation, wave dispersion and dilatancy. Fundamental to the construction of structured models of multiphase mixtures are the problems pertaining to the existence and number of additional balance equations to model the structural characteristics of a mixture. Utilizing a volume averaging procedure it is possible not only to derive the basic set of field equation discussed above, but also a very general set of additional balance equations for modeling of structural properties of the mixture
Muonium radicals in benzene-styrene mixtures
International Nuclear Information System (INIS)
Ng, B.W.; Stadlbauer, J.W.; Walker, D.C.
1984-01-01
Muonium radicals were observed through their μ + SR precession frequencies in high transverse magnetic fields in pure benzene, pure styrene and their mixtures, all as liquids at room temperature. In benzene-styrene mixtures, the radicals obtained in each pure liquid are both present, so no slow (10 -9 -10 -5 s) intermolecular exchange occurs; but strong selectivity was found with the formation of the radical from styrene being about eight-times more probable than the radical from benzene. (Auth.)
Isotope mixtures of hydrogen in vanadium
International Nuclear Information System (INIS)
Mecking-Schloetensack, P.
1982-03-01
The properties of isotope-mixtures of Protium and Deuterium stored in Vanadium have been studied. Protium and Deuterium are existing as interstitial-atoms on tetrahedral sites as well as on octahedral sites in this system. This feature leads to large isotopic-effects between the two isotopes. The dependence of the thermodynamic functions like heat of solution, nonconfigurational entropy, specific heat and ordering temperatures from the composition of the isotope-mixture has been determined. (orig.)
Generalized time fractional IHCP with Caputo fractional derivatives
International Nuclear Information System (INIS)
Murio, D A; MejIa, C E
2008-01-01
The numerical solution of the generalized time fractional inverse heat conduction problem (GTFIHCP) on a finite slab is investigated in the presence of measured (noisy) data when the time fractional derivative is interpreted in the sense of Caputo. The GTFIHCP involves the simultaneous identification of the heat flux and temperature transient functions at one of the boundaries of the finite slab together with the initial condition of the original direct problem from noisy Cauchy data at a discrete set of points on the opposite (active) boundary. A finite difference space marching scheme with adaptive regularization, using trigonometric mollification techniques and generalized cross validation is introduced. Error estimates for the numerical solution of the mollified problem and numerical examples are provided.
Thermodiffusion in multicomponent n-alkane mixtures.
Galliero, Guillaume; Bataller, Henri; Bazile, Jean-Patrick; Diaz, Joseph; Croccolo, Fabrizio; Hoang, Hai; Vermorel, Romain; Artola, Pierre-Arnaud; Rousseau, Bernard; Vesovic, Velisa; Bou-Ali, M Mounir; Ortiz de Zárate, José M; Xu, Shenghua; Zhang, Ke; Montel, François; Verga, Antonio; Minster, Olivier
2017-01-01
Compositional grading within a mixture has a strong impact on the evaluation of the pre-exploitation distribution of hydrocarbons in underground layers and sediments. Thermodiffusion, which leads to a partial diffusive separation of species in a mixture due to the geothermal gradient, is thought to play an important role in determining the distribution of species in a reservoir. However, despite recent progress, thermodiffusion is still difficult to measure and model in multicomponent mixtures. In this work, we report on experimental investigations of the thermodiffusion of multicomponent n -alkane mixtures at pressure above 30 MPa. The experiments have been conducted in space onboard the Shi Jian 10 spacecraft so as to isolate the studied phenomena from convection. For the two exploitable cells, containing a ternary liquid mixture and a condensate gas, measurements have shown that the lightest and heaviest species had a tendency to migrate, relatively to the rest of the species, to the hot and cold region, respectively. These trends have been confirmed by molecular dynamics simulations. The measured condensate gas data have been used to quantify the influence of thermodiffusion on the initial fluid distribution of an idealised one dimension reservoir. The results obtained indicate that thermodiffusion tends to noticeably counteract the influence of gravitational segregation on the vertical distribution of species, which could result in an unstable fluid column. This confirms that, in oil and gas reservoirs, the availability of thermodiffusion data for multicomponent mixtures is crucial for a correct evaluation of the initial state fluid distribution.
Using Big Data Analytics to Address Mixtures Exposure
The assessment of chemical mixtures is a complex issue for regulators and health scientists. We propose that assessing chemical co-occurrence patterns and prevalence rates is a relatively simple yet powerful approach in characterizing environmental mixtures and mixtures exposure...
Some comparison of two fractional oscillators
International Nuclear Information System (INIS)
Kang Yonggang; Zhang Xiu'e
2010-01-01
The other form of fractional oscillator equation comparing to the widely discussed one is ushered in. The properties of vibration of two fractional oscillators are discussed under the influence of different initial conditions. The interpretation of the characteristics of the fractional oscillators using different method is illustrated. Based on two fractional oscillator equations, two linked bodies and the continuous system are studied.
9 CFR 113.7 - Multiple fractions.
2010-01-01
... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Multiple fractions. 113.7 Section 113... § 113.7 Multiple fractions. (a) When a biological product contains more than one immunogenic fraction, the completed product shall be evaluated by tests applicable to each fraction. (b) When similar...
A fractional Dirac equation and its solution
International Nuclear Information System (INIS)
Muslih, Sami I; Agrawal, Om P; Baleanu, Dumitru
2010-01-01
This paper presents a fractional Dirac equation and its solution. The fractional Dirac equation may be obtained using a fractional variational principle and a fractional Klein-Gordon equation; both methods are considered here. We extend the variational formulations for fractional discrete systems to fractional field systems defined in terms of Caputo derivatives. By applying the variational principle to a fractional action S, we obtain the fractional Euler-Lagrange equations of motion. We present a Lagrangian and a Hamiltonian for the fractional Dirac equation of order α. We also use a fractional Klein-Gordon equation to obtain the fractional Dirac equation which is the same as that obtained using the fractional variational principle. Eigensolutions of this equation are presented which follow the same approach as that for the solution of the standard Dirac equation. We also provide expressions for the path integral quantization for the fractional Dirac field which, in the limit α → 1, approaches to the path integral for the regular Dirac field. It is hoped that the fractional Dirac equation and the path integral quantization of the fractional field will allow further development of fractional relativistic quantum mechanics.
On the fractional calculus of Besicovitch function
International Nuclear Information System (INIS)
Liang Yongshun
2009-01-01
Relationship between fractional calculus and fractal functions has been explored. Based on prior investigations dealing with certain fractal functions, fractal dimensions including Hausdorff dimension, Box dimension, K-dimension and Packing dimension is shown to be a linear function of order of fractional calculus. Both Riemann-Liouville fractional calculus and Weyl-Marchaud fractional derivative of Besicovitch function have been discussed.
12 CFR 5.67 - Fractional shares.
2010-01-01
... connection with fractional shares, a national bank issuing additional stock by stock dividend, upon... fair price upon the fraction not being issued through its sale, or the purchase of the additional... stock; (c) Remit the cash equivalent of the fraction not being issued to those to whom fractional shares...
Gainer, Amy; Cousins, Mark; Hogan, Natacha; Siciliano, Steven D
2018-05-05
Although petroleum hydrocarbons (PHCs) released to the environment typically occur as mixtures, PHC remediation guidelines often reflect individual substance toxicity. It is well documented that groups of aliphatic PHCs act via the same mechanism of action, nonpolar narcosis and, theoretically, concentration addition mixture toxicity principles apply. To assess this theory, ten standardized acute and chronic soil invertebrate toxicity tests on a range of organisms (Eisenia fetida, Lumbricus terrestris, Enchytraeus crypticus, Folsomia candida, Oppia nitens and Hypoaspis aculeifer) were conducted with a refined PHC binary mixture. Reference models for concentration addition and independent action were applied to the mixture toxicity data with consideration of synergism, antagonism and dose level toxicity. Both concentration addition and independent action, without further interactions, provided the best fit with observed response to the mixture. Individual fraction effective concentration values were predicted from optimized, fitted reference models. Concentration addition provided a better estimate than independent action of individual fraction effective concentrations based on comparison with available literature and species trends observed in toxic responses to the mixture. Interspecies differences in standardized laboratory soil invertebrate species responses to PHC contaminated soil was reflected in unique traits. Diets that included soil, large body size, permeable cuticle, low lipid content, lack of ability to molt and no maternal transfer were traits linked to a sensitive survival response to PHC contaminated soil in laboratory tests. Traits linked to sensitive reproduction response in organisms tested were long life spans with small clutch sizes. By deriving single fraction toxicity endpoints considerate of mixtures, we reduce resources and time required in conducting site specific risk assessments for the protection of soil organism's exposure pathway. This
Fractional vector calculus and fluid mechanics
Lazopoulos, Konstantinos A.; Lazopoulos, Anastasios K.
2017-04-01
Basic fluid mechanics equations are studied and revised under the prism of fractional continuum mechanics (FCM), a very promising research field that satisfies both experimental and theoretical demands. The geometry of the fractional differential has been clarified corrected and the geometry of the fractional tangent spaces of a manifold has been studied in Lazopoulos and Lazopoulos (Lazopoulos KA, Lazopoulos AK. Progr. Fract. Differ. Appl. 2016, 2, 85-104), providing the bases of the missing fractional differential geometry. Therefore, a lot can be contributed to fractional hydrodynamics: the basic fractional fluid equations (Navier Stokes, Euler and Bernoulli) are derived and fractional Darcy's flow in porous media is studied.
FRACTIONATION AND CHARACTERISATION OF TECHNICAL AMMONIUM LIGNOSULPHONATE
Directory of Open Access Journals (Sweden)
Cheryl Ann Leger
2010-08-01
Full Text Available It is difficult to use lignin in any analytical methodology without reducing its considerable polydispersity by fractionation. An ammonium lignosulphonate sample was fractionated using a method of partial solubility in solutions of isopropanol increasingly diluted with distilled water, effectively fractionating by polarity. Selected fractions were characterised by gravimetric determination of the fractions, and determination of acid insoluble lignin, soluble lignin, and carbohydrate contents. Acid-insoluble lignin content was very low, and soluble lignin provided the majority of the lignin content, as should be expected from sulphonated lignin. Carbohydrate contents were also fairly low, the highest percentage at 14.5 being in Fraction 2, with the bulk lignin and Fraction 3 having 6.5% and 3.2%, respectively. Differences in the composition of each fraction support the efficacy of the fractionation process and permitted selection of fractions for use in subsequent studies.
A turbulence model in mixtures. First part: Statistical description of mixture
International Nuclear Information System (INIS)
Besnard, D.
1987-03-01
Classical theory of mixtures gives a model for molecular mixtures. This kind of model is based on a small gradient approximation for concentration, temperature, and pression. We present here a mixture model, allowing for large gradients in the flow. We also show that, with a local balance assumption between material diffusion and flow gradients evolution, we obtain a model similar to those mentioned above [fr
Fractional hydrodynamic equations for fractal media
International Nuclear Information System (INIS)
Tarasov, Vasily E.
2005-01-01
We use the fractional integrals in order to describe dynamical processes in the fractal medium. We consider the 'fractional' continuous medium model for the fractal media and derive the fractional generalization of the equations of balance of mass density, momentum density, and internal energy. The fractional generalization of Navier-Stokes and Euler equations are considered. We derive the equilibrium equation for fractal media. The sound waves in the continuous medium model for fractional media are considered
Equilibrium moisture content of waste mixtures from post-consumer carton packaging.
Bacelos, M S; Freire, J T
2012-01-01
The manufacturing of boards and roof tiles is one of the routes to reuse waste from the recycled-carton-packaging process. Such a process requires knowledge of the hygroscopic behaviour of these carton-packaging waste mixtures in order to guarantee the quality of the final product (e.g. boards and roof tiles). Thus, with four carton-packaging waste mixtures of selected compositions (A, B, C and D), the sorption isotherms were obtained at air temperature of 20, 40 and 60 degrees C by using the static method. This permits one to investigate which model can relate the equilibrium moisture content of the mixture with that of a pure component through the mass fraction of each component in the mixtures. The results show that the experimental data can be well described by the weighted harmonic mean model. This suggests that the mean equilibrium moisture content of the carton-packaging mixture presents a non-linear relationship with each single, pure compound.
International Nuclear Information System (INIS)
Tuncbilek, Kadir; Sari, Ahmet; Tarhan, Sefa; Erguenes, Gazanfer; Kaygusuz, Kamil
2005-01-01
Palmitic acid (PA, 59.8 deg. C) and lauric acid (LA, 42.6 deg. C) are phase change materials (PCM) having quite high melting temperatures which can limit their use in low temperature solar applications such as solar space heating and greenhouse heating. However, their melting temperatures can be tailored to appropriate value by preparing a eutectic mixture of the lauric and the palmitic acids. In the present study, the thermal analysis based on differential scanning calorimetry (DSC) technique shows that the mixture of 69.0 wt% LA and 31 wt% PA forms a eutectic mixture having melting temperature of 35.2 deg. C and the latent heat of fusion of 166.3 J g -1 . This study also considers the experimental determination of the thermal characteristics of the eutectic mixture during the heat charging and discharging processes. Radial and axial temperature distribution, heat transfer coefficient between the heat transfer fluid (HTF) pipe and the PCM, heat recovery rate and heat charging and discharging fractions were experimentally established employing a vertical concentric pipe-in-pipe energy storage system. The changes of these characteristics were evaluated with respect to the effect of inlet HTF temperature and mass flow rate. The DSC thermal analysis and the experimental results indicate that the LA-PA eutectic mixture can be a potential material for low temperature thermal energy storage applications in terms of its thermo-physical and thermal characteristics
Energy Technology Data Exchange (ETDEWEB)
Lam, Royce K.; Smith, Jacob W.; Saykally, Richard J., E-mail: saykally@berkeley.edu [Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)
2016-05-21
While methanol and ethanol are macroscopically miscible with water, their mixtures exhibit negative excess entropies of mixing. Despite considerable effort in both experiment and theory, there remains significant disagreement regarding the origin of this effect. Different models for the liquid mixture structure have been proposed to address this behavior, including the enhancement of the water hydrogen bonding network around the alcohol hydrophobic groups and microscopic immiscibility or clustering. We have investigated mixtures of methanol, ethanol, and isopropanol with water by liquid microjet X-ray absorption spectroscopy on the oxygen K-edge, an atom-specific probe providing details of both inter- and intra-molecular structure. The measured spectra evidence a significant enhancement of hydrogen bonding originating from the methanol and ethanol hydroxyl groups upon the addition of water. These additional hydrogen bonding interactions would strengthen the liquid-liquid interactions, resulting in additional ordering in the liquid structures and leading to a reduction in entropy and a negative enthalpy of mixing, consistent with existing thermodynamic data. In contrast, the spectra of the isopropanol-water mixtures exhibit an increase in the number of broken alcohol hydrogen bonds for mixtures containing up to 0.5 water mole fraction, an observation consistent with existing enthalpy of mixing data, suggesting that the measured negative excess entropy is a result of clustering or micro-immiscibility.
Lam, Royce K.; Smith, Jacob W.; Saykally, Richard J.
2016-05-01
While methanol and ethanol are macroscopically miscible with water, their mixtures exhibit negative excess entropies of mixing. Despite considerable effort in both experiment and theory, there remains significant disagreement regarding the origin of this effect. Different models for the liquid mixture structure have been proposed to address this behavior, including the enhancement of the water hydrogen bonding network around the alcohol hydrophobic groups and microscopic immiscibility or clustering. We have investigated mixtures of methanol, ethanol, and isopropanol with water by liquid microjet X-ray absorption spectroscopy on the oxygen K-edge, an atom-specific probe providing details of both inter- and intra-molecular structure. The measured spectra evidence a significant enhancement of hydrogen bonding originating from the methanol and ethanol hydroxyl groups upon the addition of water. These additional hydrogen bonding interactions would strengthen the liquid-liquid interactions, resulting in additional ordering in the liquid structures and leading to a reduction in entropy and a negative enthalpy of mixing, consistent with existing thermodynamic data. In contrast, the spectra of the isopropanol-water mixtures exhibit an increase in the number of broken alcohol hydrogen bonds for mixtures containing up to 0.5 water mole fraction, an observation consistent with existing enthalpy of mixing data, suggesting that the measured negative excess entropy is a result of clustering or micro-immiscibility.
International Nuclear Information System (INIS)
He, Ji-Huan; Elagan, S.K.; Li, Z.B.
2012-01-01
The fractional complex transform is suggested to convert a fractional differential equation with Jumarie's modification of Riemann–Liouville derivative into its classical differential partner. Understanding the fractional complex transform and the chain rule for fractional calculus are elucidated geometrically. -- Highlights: ► The chain rule for fractional calculus is invalid, a counter example is given. ► The fractional complex transform is explained geometrically. ► Fractional equations can be converted into differential equations.
Glass polymorphism in glycerol–water mixtures: II. Experimental studies
Bachler, Johannes; Fuentes-Landete, Violeta; Jahn, David A.; Wong, Jessina; Giovambattista, Nicolas
2016-01-01
We report a detailed experimental study of (i) pressure-induced transformations in glycerol–water mixtures at T = 77 K and P = 0–1.8 GPa, and (ii) heating-induced transformations of glycerol–water mixtures recovered at 1 atm and T = 77 K. Our samples are prepared by cooling the solutions at ambient pressure at various cooling rates (100 K s–1–10 K h–1) and for the whole range of glycerol mole fractions, χ g. Depending on concentration and cooling rates, cooling leads to samples containing amorphous ice (χ g ≥ 0.20), ice (χ g ≤ 0.32), and/or “distorted ice” (0 HDA). PIA of ice domains within the glycerol–water mixtures is shown to be possible only up to χ g ≈ 0.32 (T = 77 K). This is rather surprising since it has been known that at χ g HDA upon compression. Upon heating samples recovered at 1 atm, we observe a rich phase behavior. Differential scanning calorimetry indicates that only at χ g ≤ 0.15, the water domains within the sample exhibit polyamorphism, i.e., the HDA-to-LDA (low-density amorphous ice) transformation. At 0.15 HDA domains. All samples (χ g ≤ 0.38) show: the crystallization of amorphous ice domains, followed by the glass transition of the vitrified glycerol–water domains and, finally, the melting of ice at high temperatures. Our work exemplifies the complex “phase” behavior of glassy binary mixtures due to phase-separation (ice formation) and polyamorphism, and the relevance of sample preparation, concentration as well as cooling rates. The presence of the distorted ice (called “interphase” by us) also explains the debated “drift anomaly” upon melting. These results are compatible with the high-pressure study by Suzuki and Mishima indicating disappearance of polyamorphism at P ≈ 0.03–0.05 GPa at χ g ≈ 0.12–0.15 [J. Chem. Phys., 2014, 141, 094505]. PMID:27044677
Energy Technology Data Exchange (ETDEWEB)
Chang, Chong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-08-09
We present a simple approach for determining ion, electron, and radiation temperatures of heterogeneous plasma-photon mixtures, in which temperatures depend on both material type and morphology of the mixture. The solution technique is composed of solving ion, electron, and radiation energy equations for both mixed and pure phases of each material in zones containing random mixture and solving pure material energy equations in subdivided zones using interface reconstruction. Application of interface reconstruction is determined by the material configuration in the surrounding zones. In subdivided zones, subzonal inter-material energy exchanges are calculated by heat fluxes across the material interfaces. Inter-material energy exchange in zones with random mixtures is modeled using the length scale and contact surface area models. In those zones, inter-zonal heat flux in each material is determined using the volume fractions.
International Nuclear Information System (INIS)
Chang, Chong
2016-01-01
We present a simple approach for determining ion, electron, and radiation temperatures of heterogeneous plasma-photon mixtures, in which temperatures depend on both material type and morphology of the mixture. The solution technique is composed of solving ion, electron, and radiation energy equations for both mixed and pure phases of each material in zones containing random mixture and solving pure material energy equations in subdivided zones using interface reconstruction. Application of interface reconstruction is determined by the material configuration in the surrounding zones. In subdivided zones, subzonal inter-material energy exchanges are calculated by heat fluxes across the material interfaces. Inter-material energy exchange in zones with random mixtures is modeled using the length scale and contact surface area models. In those zones, inter-zonal heat flux in each material is determined using the volume fractions.
Vejsada, J; Jelínek, E; Randa, Z; Hradil, D; Prikryl, R
2005-01-01
Sorption is an important process for the transport of radionuclides through backfill materials in a radioactive waste underground repository. Within this study, sorption of Cs on selected Czech clay materials and their mixtures with sand was investigated by batch tests. The experiments were performed under oxic conditions at 25 degrees C. Synthetic groundwater as a liquid phase and unconditioned clays (as they were provided by their producer) were used to reach the natural conditions as close as possible. Distribution ratios (Rds) of Cs for all selected clays rise with increase of the clay fraction in clay/sand mixtures in agreement with previous works studying sorption behaviour of such mixtures. The rise of Rds is from 10(2) cm3 g(-1) for mixtures with 80% of sand to 10(3) cm3 g(-1) for pure clays. There are significant differences between natural and technologically modified clays.
Spectral mixture analyses of hyperspectral data acquired using a tethered balloon
Chen, Xuexia; Vierling, Lee
2006-01-01
Tethered balloon remote sensing platforms can be used to study radiometric issues in terrestrial ecosystems by effectively bridging the spatial gap between measurements made on the ground and those acquired via airplane or satellite. In this study, the Short Wave Aerostat-Mounted Imager (SWAMI) tethered balloon-mounted platform was utilized to evaluate linear and nonlinear spectral mixture analysis (SMA) for a grassland-conifer forest ecotone during the summer of 2003. Hyperspectral measurement of a 74-m diameter ground instantaneous field of view (GIFOV) attained by the SWAMI was studied. Hyperspectral spectra of four common endmembers, bare soil, grass, tree, and shadow, were collected in situ, and images captured via video camera were interpreted into accurate areal ground cover fractions for evaluating the mixture models. The comparison between the SWAMI spectrum and the spectrum derived by combining in situ spectral data with video-derived areal fractions indicated that nonlinear effects occurred in the near infrared (NIR) region, while nonlinear influences were minimal in the visible region. The evaluation of hyperspectral and multispectral mixture models indicated that nonlinear mixture model-derived areal fractions were sensitive to the model input data, while the linear mixture model performed more stably. Areal fractions of bare soil were overestimated in all models due to the increased radiance of bare soil resulting from side scattering of NIR radiation by adjacent grass and trees. Unmixing errors occurred mainly due to multiple scattering as well as close endmember spectral correlation. In addition, though an apparent endmember assemblage could be derived using linear approaches to yield low residual error, the tree and shade endmember fractions calculated using this technique were erroneous and therefore separate treatment of endmembers subject to high amounts of multiple scattering (i.e. shadows and trees) must be done with caution. Including the
Continuous fractional distillation of petroleum
Energy Technology Data Exchange (ETDEWEB)
1921-11-05
This invention has for its object a process of distillation, fractional, and continuous, of shale oil, tar, etc., characterized by the vapors leaving the evaporation chamber being forced, before condensation, to go over a continuous circuit. The vapors traverse first a preheater then return to the vaporization chamber in which they are passed along large surfaces and by application of the counter-current principle in contact with the liquid to be distilled. They stream through the chamber in a continuous manner (the quantity of vapor emitted in the circuit being determined in a manner to advance the distillation just to completion); the excess of vapor formed being removed from the circuit and sent to a condensing apparatus for fractionation.
Search for free fractional charge
International Nuclear Information System (INIS)
Heilig, S.J.
1985-01-01
Recent results of searches for free fractional charge have been null with the exception of the experiment at Stanford under the leadership of W. Fairbank. His experiment, while claiming the observation of free fractional charge, has yet to show that this observation was not spurious. The need for a confirming experiment with a different physical system is the motivation for the current work. A torsional pendulum has been constructed of a fused silica fiber with an attached fused silica crossbar. A transverse electric field is applied to the end of the crossbar, and the resulting deflection of the crossbar is used to measure the torque applied by the field. To date the limit of measurement for the charge on the crossbar (without sample) is 0 +/- 24 electronic charges. The history of this experiment is discussed, along with plans for pushing the limits of measurement to below the single-charge level
Measuring condensate fraction in superconductors
International Nuclear Information System (INIS)
Chakravarty, Sudip; Kee, Hae-Young
2000-01-01
An analysis of off-diagonal long-range order in superconductors shows that the spin-spin correlation function is significantly influenced by the order if the order parameter is anisotropic on a microscopic scale. Thus, magnetic neutron scattering can provide a direct measurement of the condensate fraction of a superconductor. It is also argued that recent measurements in high-temperature superconductors come very close to achieving this goal. (c) 2000 The American Physical Society
Microfluidic Devices for Blood Fractionation
Hou, Han Wei; Bhagat, Ali Asgar S.; Lee, Wong Cheng J.; Huang, Sha; Han, Jongyoon; Lim, Chwee Teck
2011-01-01
Blood, a complex biological fluid, comprises 45% cellular components suspended in protein rich plasma. These different hematologic components perform distinct functions in vivo and thus the ability to efficiently fractionate blood into its individual components has innumerable applications in both clinical diagnosis and biological research. Yet, processing blood is not trivial. In the past decade, a flurry of new microfluidic based technologies has emerged to address this compelling problem. ...
Surfaces allowing for fractional statistics
International Nuclear Information System (INIS)
Aneziris, Charilaos.
1992-07-01
In this paper we give a necessary condition in order for a geometrical surface to allow for Abelian fractional statistics. In particular, we show that such statistics is possible only for two-dimentional oriented surfaces of genus zero, namely the sphere S 2 , the plane R 2 and the cylindrical surface R 1 *S 1 , and in general the connected sum of n planes R 2 -R 2 -R 2 -...-R 2 . (Author)
Stabilization of Bio-Oil Fractions for Insertion into Petroleum Refineries
Energy Technology Data Exchange (ETDEWEB)
Brown, Robert C. [Iowa State Univ., Ames, IA (United States); Smith, Ryan [Iowa State Univ., Ames, IA (United States); Wright, Mark [Iowa State Univ., Ames, IA (United States); Elliott, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Resasco, Daniel [Univ. of Oklahoma, Norman, OK (United States); Crossley, Steven [Univ. of Oklahoma, Norman, OK (United States)
2014-09-28
This project is part of a collaboration effort between Iowa State University (ISU), University of Oklahoma (OK) and Pacific Northwest National Laboratory (PNNL). The purpose of this project is to stabilize bio-oil fractions and improve their suitability for insertion into petroleum refineries. Bio-oil from fast pyrolysis of biomass is a complex mixture of unstable organic compounds. These organic compounds react under standard room conditions resulting in increases in bio-oil viscosity and water content – both detrimental for bio-oil storage and transportation. This study employed fractionation and upgrading systems to improve the stability of bio-oil. The fractionation system consists of a series of condensers, and electrostatic precipitators designed to separate bio-oil into five fractions: soluble carbohydrates (SF1&2), clean phenolic oligomers (CPO) and middle fraction (SF3&4), light oxygenates (SF5). A two-stage upgrading process was designed to process bio-oil stage fractions into stable products that can be inserted into a refinery. In the upgrading system, heavy and middle bio-oil fractions were upgraded into stable oil via cracking and subsequent hydrodeoxygenation. The light oxygenate fraction was steam reformed to provide a portion of requisite hydrogen for hydroprocessing. Hydrotreating and hydrocracking employed hydrogen from natural gas, fuel gas and light oxygenates reforming. The finished products from this study consist of gasoline- and diesel-blend stock fuels.
Electrochemically controlled iron isotope fractionation
Black, Jay R.; Young, Edward D.; Kavner, Abby
2010-02-01
Variations in the stable isotope abundances of transition metals have been observed in the geologic record and trying to understand and reconstruct the physical/environmental conditions that produced these signatures is an area of active research. It is clear that changes in oxidation state lead to large fractionations of the stable isotopes of many transition metals such as iron, suggesting that transition metal stable isotope signatures could be used as a paleo-redox proxy. However, the factors contributing to these observed stable isotope variations are poorly understood. Here we investigate how the kinetics of iron redox electrochemistry generates isotope fractionation. Through a combination of electrodeposition experiments and modeling of electrochemical processes including mass-transport, we show that electron transfer reactions are the cause of a large isotope separation, while mass transport-limited supply of reactant to the electrode attenuates the observed isotopic fractionation. Furthermore, the stable isotope composition of electroplated transition metals can be tuned in the laboratory by controlling parameters such as solution chemistry, reaction overpotential, and solution convection. These methods are potentially useful for generating isotopically-marked metal surfaces for tracking and forensic purposes. In addition, our studies will help interpret stable isotope data in terms of identifying underlying electron transfer processes in laboratory and natural samples.
Energy Technology Data Exchange (ETDEWEB)
Mukherjee, Santanu, E-mail: s.mukherjee@fz-juelich.de [Institute of Bio- and Geosciences (IBG-3), Agrosphere Institute, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Tappe, Wolfgang; Weihermueller, Lutz; Hofmann, Diana; Köppchen, Stephan [Institute of Bio- and Geosciences (IBG-3), Agrosphere Institute, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Laabs, Volker; Schroeder, Tom [BASF SE, Crop Protection, 67117, Limburgerhof (Germany); Vereecken, Harry [Institute of Bio- and Geosciences (IBG-3), Agrosphere Institute, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Burauel, Peter [Sustainable Campus, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany)
2016-02-15
Biopurification systems, such as biofilters, are biotechnological tools to prevent point sources of pesticide pollution stemming from on-farm operations. For the purification processes pesticide sorption and mineralization and/or dissipation are essential and both largely depend on the type of filling materials and the pesticide in use. In this paper the mineralization and dissipation of three contrasting {sup 14}C-labeled pesticides (bentazone, boscalid, and pyrimethanil) were investigated in laboratory incubation experiments using sandy soil, biochar produced from Pine woodchips, and/or digestate obtained from anaerobic digestion process using maize silage, chicken manure, beef and pig urine as feedstock. The results indicate that the addition of digestate increased pesticide mineralization, whereby the mineralization was not proportional to the digestate loads in the mixture, indicating a saturation effect in the turnover rate of pesticides. This effect was in correlation with the amount of water extractable DOC, obtained from the digestate based mixtures. Mixing biochar into the soil generally reduced total mineralization and led to larger sorption/sequestration of the pesticides, resulting in faster decrease of the extractable fraction. Also the addition of biochar to the soil/digestate mixtures reduced mineralization compared to the digestate alone mixture but mineralization rates were still higher as for the biochar/soil alone. In consequence, the addition of biochar to the soil generally decreased pesticide dissipation times and larger amounts of biochar led to high amounts of non-extractable residues of pesticide in the substrates. Among the mixtures tested, a mixture of digestate (5%) and biochar (5%) gave optimal results with respect to mineralization and simultaneous sorption for all three pesticides. - Highlights: • Biochar and digestate significantly affects the dissipation pattern of pesticides. • Addition of digestate enhanced mineralization of
International Nuclear Information System (INIS)
Mukherjee, Santanu; Tappe, Wolfgang; Weihermueller, Lutz; Hofmann, Diana; Köppchen, Stephan; Laabs, Volker; Schroeder, Tom; Vereecken, Harry; Burauel, Peter
2016-01-01
Biopurification systems, such as biofilters, are biotechnological tools to prevent point sources of pesticide pollution stemming from on-farm operations. For the purification processes pesticide sorption and mineralization and/or dissipation are essential and both largely depend on the type of filling materials and the pesticide in use. In this paper the mineralization and dissipation of three contrasting "1"4C-labeled pesticides (bentazone, boscalid, and pyrimethanil) were investigated in laboratory incubation experiments using sandy soil, biochar produced from Pine woodchips, and/or digestate obtained from anaerobic digestion process using maize silage, chicken manure, beef and pig urine as feedstock. The results indicate that the addition of digestate increased pesticide mineralization, whereby the mineralization was not proportional to the digestate loads in the mixture, indicating a saturation effect in the turnover rate of pesticides. This effect was in correlation with the amount of water extractable DOC, obtained from the digestate based mixtures. Mixing biochar into the soil generally reduced total mineralization and led to larger sorption/sequestration of the pesticides, resulting in faster decrease of the extractable fraction. Also the addition of biochar to the soil/digestate mixtures reduced mineralization compared to the digestate alone mixture but mineralization rates were still higher as for the biochar/soil alone. In consequence, the addition of biochar to the soil generally decreased pesticide dissipation times and larger amounts of biochar led to high amounts of non-extractable residues of pesticide in the substrates. Among the mixtures tested, a mixture of digestate (5%) and biochar (5%) gave optimal results with respect to mineralization and simultaneous sorption for all three pesticides. - Highlights: • Biochar and digestate significantly affects the dissipation pattern of pesticides. • Addition of digestate enhanced mineralization of
Experimental determination of (p, ρ, T) data for binary mixtures of methane and helium
International Nuclear Information System (INIS)
Hernández-Gómez, R.; Tuma, D.; Segovia, J.J.; Chamorro, C.R.
2016-01-01
Highlights: • Accurate density data for two binary mixtures of methane and helium are presented. • Experimental data are compared with the densities calculated from different EOS. • Deviations from GERG-2008 exceeded the 3% for some points. • Deviations from AGA8-DC92 did not exceed the 0.3% at any experimental point. • The relative deviations are clearly higher for GERG-2008 than for AGA8-DC92. - Abstract: The basis for the development and evaluation of equations of state for mixtures is experimental data for several thermodynamic properties. The quality and the availability of experimental data limit the achievable accuracy of the equation. Referring to the fundamentals of GERG-2008 wide-range equation of state, no suitable data were available for many mixtures containing secondary natural gas components. This work provides accurate experimental (p, ρ, T) data for two binary mixtures of methane with helium (0.95 (amount-of-substance fraction) CH_4 + 0.05 He and 0.90 CH_4 + 0.10 He). Density measurements were performed at temperatures between (250 and 400) K and pressures up to 20 MPa by using a single-sinker densimeter with magnetic suspension coupling. Experimental data were compared with the corresponding densities calculated from the GERG-2008 and the AGA8-DC92 equations of state. Deviations from GERG-2008 were found within a 2% band for the (0.95 CH_4 + 0.05 He) mixture but exceeded the 3% limit for the (0.95 CH_4 + 0.05 He) mixture. The highest deviations were observed at T = 250 K and pressures between (17 and 19) MPa. Values calculated from AGA8-DC92, however, deviated from the experimental data by only 0.1% at high pressures and exceeded the 0.2% limit only at temperatures of 300 K and above, for the (0.90 CH_4 + 0.10 He) mixture.
International Nuclear Information System (INIS)
Cárdenas, Zaira J.; Jiménez, Daniel M.; Delgado, Daniel R.; Almanza, Ovidio A.; Jouyban, Abolghasem; Martínez, Fleming; Acree, William E.
2017-01-01
Highlights: • Parabens equilibrium solubility was determined in methanol + water binary mixtures at 298.15 K. • Solubility values were correlated with the Jouyban-Acree model. • Preferential solvation parameters were derived by using the IKBI method. • δx 1,3 values are negative in water-rich mixtures but positive in the other mixtures. - Abstract: Methyl, ethyl and propyl parabens equilibrium solubility was determined in (methanol + water) binary mixtures at 298.15 K. The mole fraction solubility of these compounds increased in 503 (from 2.40 × 10 −4 to 0.121), 1377 (from 9.86 × 10 −5 to 0.136) and 4597 (from 3.73 × 10 −5 to 0.171) times when passing from neat water to neat methanol, for methyl, ethyl and propyl parabens, respectively. All these solubility values were correlated with the Jouyban-Acree model. Preferential solvation parameters by methanol (δx 1,3 ) of these parabens were derived from their thermodynamic solution properties using the inverse Kirkwood-Buff integrals (IKBI) method. For all compounds δx 1,3 values are negative in water-rich mixtures but positive in mixtures with methanol mole fraction greater than 0.32. It is conjecturable that in the former case the hydrophobic hydration around non-polar groups of parabens plays a relevant role in the solvation. Besides, the preferential solvation of these solutes by methanol in mixtures of similar co-solvent compositions and in methanol-rich mixtures could be explained in terms of the higher basic behaviour of methanol.
The theoretical justification for the fractionation of bulk materials during separation
Directory of Open Access Journals (Sweden)
Piven Valery
2017-01-01
Full Text Available In separating lines at different stages of the technological process is carried out fractionation of the bulk material. These different quality streams subsequently processed on the working bodies or machines that are more suited for a specific faction. Fractionation can increase productivity, reduce costs, reduce the amount of material being processed through the working bodies of the passes. Criteria for selection of the working body for fractionation and its place in the production line depends on many factors and insufficiently developed. The aim of this work is to determine the criteria for evaluating the effectiveness of the working body for the fractionation of the raw material on the basis of a possible increase productivity throughout the production line. The curves obtained by calculation, allow us to estimate the total increase in line speed. Obtained dependence can be used for calculations of separation processes of granular mixtures in the production of building materials, food industry, powder metallurgy, pharmaceutical and other.
Granule fraction inhomogeneity of calcium carbonate/sorbitol in roller compacted granules
DEFF Research Database (Denmark)
Bacher, Charlotte; Olsen, P.M.; Bertelsen, P.
2008-01-01
The granule fraction inhomogeneity of roller compacted granules was examined on mixtures of three different morphologic forms of calcium carbonate and three particle sizes of sorbitol. The granule fraction inhomogeneity was determined by the distribution of the calcium carbonate in each of the 10...... size fractions between 0 and 2000 µm and by calculating the demixing potential. Significant inhomogeneous occurrence of calcium carbonate in the size fractions was demonstrated, depending mostly on the particles sizes of sorbitol but also on the morphological forms of calcium carbonate......, the ability of the powder to agglomerate in the roller compactor was demonstrated to be related to the ability of the powder to be compacted into a tablet, thus the most compactable calcium carbonate and the smallest sized sorbitol improved the homogeneity by decreasing the demixing potential....
Hydrogen production via catalytic steam reforming of fast pyrolysis oil fractions
International Nuclear Information System (INIS)
Wang, D.; Czernik, S.; Montane, D.; Mann, M.; Chornet, E.
1997-01-01
Hydrogen is the prototype of the environmentally cleanest fuel of interest for power generation using fuel cells, and as a co-adjuvant or autonomous transportation fuel in internal combustion engines. The conversion of biomass to hydrogen can be carried out through two distinct thermochemical strategies: (a) gasification followed by shift conversion; (b) catalytic steam reforming and shift conversion of specific fractions derived from fast pyrolysis and aqueous/steam processes of biomass. This paper shows that fast pyrolysis of biomass results in a bio-oil that can be adequately fractionated into valuable co-products leaving as by-product an aqueous fraction containing soluble organics (a mixture of alcohols, aldehydes and acids). This fraction can be converted to hydrogen by catalytic steam reforming followed by a shift conversion step. The methods used, the yields obtained and their economic significance will be discussed. (author)
Park, Chang-Beom; Jang, Jiyi; Kim, Sanghun; Kim, Young Jun
2017-03-01
In freshwater environments, aquatic organisms are generally exposed to mixtures of various chemical substances. In this study, we tested the toxicity of three organic UV-filters (ethylhexyl methoxycinnamate, octocrylene, and avobenzone) to Daphnia magna in order to evaluate the combined toxicity of these substances when in they occur in a mixture. The values of effective concentrations (ECx) for each UV-filter were calculated by concentration-response curves; concentration-combinations of three different UV-filters in a mixture were determined by the fraction of components based on EC 25 values predicted by concentration addition (CA) model. The interaction between the UV-filters were also assessed by model deviation ratio (MDR) using observed and predicted toxicity values obtained from mixture-exposure tests and CA model. The results from this study indicated that observed ECx mix (e.g., EC 10mix , EC 25mix , or EC 50mix ) values obtained from mixture-exposure tests were higher than predicted ECx mix (e.g., EC 10mix , EC 25mix , or EC 50mix ) values calculated by CA model. MDR values were also less than a factor of 1.0 in a mixtures of three different UV-filters. Based on these results, we suggest for the first time a reduction of toxic effects in the mixtures of three UV-filters, caused by antagonistic action of the components. Our findings from this study will provide important information for hazard or risk assessment of organic UV-filters, when they existed together in the aquatic environment. To better understand the mixture toxicity and the interaction of components in a mixture, further studies for various combinations of mixture components are also required. Copyright © 2016 Elsevier Inc. All rights reserved.
Mixture toxicity revisited from a toxicogenomic perspective.
Altenburger, Rolf; Scholz, Stefan; Schmitt-Jansen, Mechthild; Busch, Wibke; Escher, Beate I
2012-03-06
The advent of new genomic techniques has raised expectations that central questions of mixture toxicology such as for mechanisms of low dose interactions can now be answered. This review provides an overview on experimental studies from the past decade that address diagnostic and/or mechanistic questions regarding the combined effects of chemical mixtures using toxicogenomic techniques. From 2002 to 2011, 41 studies were published with a focus on mixture toxicity assessment. Primarily multiplexed quantification of gene transcripts was performed, though metabolomic and proteomic analysis of joint exposures have also been undertaken. It is now standard to explicitly state criteria for selecting concentrations and provide insight into data transformation and statistical treatment with respect to minimizing sources of undue variability. Bioinformatic analysis of toxicogenomic data, by contrast, is still a field with diverse and rapidly evolving tools. The reported combined effect assessments are discussed in the light of established toxicological dose-response and mixture toxicity models. Receptor-based assays seem to be the most advanced toward establishing quantitative relationships between exposure and biological responses. Often transcriptomic responses are discussed based on the presence or absence of signals, where the interpretation may remain ambiguous due to methodological problems. The majority of mixture studies design their studies to compare the recorded mixture outcome against responses for individual components only. This stands in stark contrast to our existing understanding of joint biological activity at the levels of chemical target interactions and apical combined effects. By joining established mixture effect models with toxicokinetic and -dynamic thinking, we suggest a conceptual framework that may help to overcome the current limitation of providing mainly anecdotal evidence on mixture effects. To achieve this we suggest (i) to design studies to
Energy Technology Data Exchange (ETDEWEB)
Ghanadzadeh, A. [Department of Chemistry, Guilan University, Rasht (Iran, Islamic Republic of)]. E-mail: aggilani@guilan.ac.ir; Ghanadzadeh, H. [Department of Chemical Engineering, Guilan University, Rasht (Iran, Islamic Republic of); Sariri, R. [Department of Chemistry, Guilan University, Rasht (Iran, Islamic Republic of); Ebrahimi, L. [Department of Chemistry, Guilan University, Rasht (Iran, Islamic Republic of)
2005-04-15
Experimental results of dielectric investigations of three binary mixtures (ethanol + 2-ethyl-1-hexanol), (n-butanol + 2-ethyl-1-hexanol), and (tert-butanol + 2-ethyl-1-hexanol) were reported for various mole fractions at 298.2 K. The variations of dipole moment and correlation factor, g, with mole fraction in these mixtures were investigated using a unified quasichemical method described by Durov. The molecular associations of (ethanol + cyclohexane), (n-butanol + cyclohexane), and (tert-butanol + cyclohexane) binary mixtures were also investigated using the static dielectric method. A similar trend was observed in the variation of the dipole moments with the solute mole fractions in the both binary systems (i.e., alcohol + 2-ethyl-1-hexanol and alcohol + cyclohexane)
A constitutive theory of reacting electrolyte mixtures
Costa Reis, Martina; Wang, Yongqi; Bono Maurizio Sacchi Bassi, Adalberto
2013-11-01
A constitutive theory of reacting electrolyte mixtures is formulated. The intermolecular interactions among the constituents of the mixture are accounted for through additional freedom degrees to each constituent of the mixture. Balance equations for polar reacting continuum mixtures are accordingly formulated and a proper set of constitutive equations is derived with basis in the Müller-Liu formulation of the second law of thermodynamics. Moreover, the non-equilibrium and equilibrium responses of the reacting mixture are investigated in detail by emphasizing the inner and reactive structures of the medium. From the balance laws and constitutive relations, the effects of molecular structure of constituents upon the fluid flow are studied. It is also demonstrated that the local thermodynamic equilibrium state can be reached without imposing that the set of independent constitutive variables is time independent, neither spatially homogeneous nor null. The resulting constitutive relations presented throughout this work are of relevance to many practical applications, such as swelling of clays, developing of bio and polymeric membranes, and use of electrorheological fluids in industrial processes. The first author acknowledges financial support from National Counsel of Technological and Scientific Development (CNPq) and German Academic Exchange Service (DAAD).
Yield and competition in barley variety mixtures
Directory of Open Access Journals (Sweden)
Kari Jokinen
1991-09-01
Full Text Available Competition between spring barley varieties and yield performance of two-, three and four-variety mixtures were studied in two replacement series field experiments. In the first experiment, repeated in three successive years (1983 —85 the components were the six-row varieties Agneta, Arra, Hja-673 and Porno. In the second experiment (1984, including two nitrogen doses (50 and 100 kgN/ha, both six-row (Agneta, Pomo and two-row (Ida, Kustaa varieties were used. Arra in the first and Agneta in the second experiment were the most competitive varieties. The results suggested that the fast growth of Arra at the beginning promoted its competitive ability. Increase in available nitrogen usually strengthened the competitiveness of Agneta. The observed competitive differences between varieties were not related to the earliness of a variety, neither to the morphological characters (two- and six-row varieties nor to the grain yield of a variety grown alone. The competitive ability was not always a stable character, the dominant suppression relationship varying from one environment to another (e.g. growing season, nitrogen dose. The observed overyielding was not statistically significant. The ratio of actual to expected yield and the relative yield total of several mixtures exceeded slightly one. As a conclusion, the yield advantage of mixtures was marginal. As a rule, the mixtures were not more stable than monocultures as determined by the coefficient of variation. However, the yield of some mixtures varied less than the yield of the most stable monoculture.
DCMDN: Deep Convolutional Mixture Density Network
D'Isanto, Antonio; Polsterer, Kai Lars
2017-09-01
Deep Convolutional Mixture Density Network (DCMDN) estimates probabilistic photometric redshift directly from multi-band imaging data by combining a version of a deep convolutional network with a mixture density network. The estimates are expressed as Gaussian mixture models representing the probability density functions (PDFs) in the redshift space. In addition to the traditional scores, the continuous ranked probability score (CRPS) and the probability integral transform (PIT) are applied as performance criteria. DCMDN is able to predict redshift PDFs independently from the type of source, e.g. galaxies, quasars or stars and renders pre-classification of objects and feature extraction unnecessary; the method is extremely general and allows the solving of any kind of probabilistic regression problems based on imaging data, such as estimating metallicity or star formation rate in galaxies.