WorldWideScience

Sample records for fossil-fuel electric generation

  1. Developments in fossil fuel electricity generation

    International Nuclear Information System (INIS)

    Williams, A.; Argiri, M.

    1993-01-01

    A major part of the world's electricity is generated by the combustion of fossil fuels, and there is a significant environmental impact due to the production of fossil fuels and their combustion. Coal is responsible for 63% of the electricity generated from fossil fuels; natural gas accounts for about 20% and fuel oils for 17%. Because of developments in supply and improvements in generating efficiencies there is apparently a considerable shift towards a greater use of natural gas, and by the year 2000 it could provide 25% of the world electricity output. At the same time the amount of fuel oil burned will have decreased. The means to minimize the environmental impact of the use of fossil fuels, particularly coal, in electricity production are considered, together with the methods of emission control. Cleaner coal technologies, which include fluidized bed combustion and an integrated gasification combined cycle (IGCC), can reduce the emissions of NO x , SO 2 and CO 2 . (author)

  2. A Bayesian stochastic frontier analysis of Chinese fossil-fuel electricity generation companies

    International Nuclear Information System (INIS)

    Chen, Zhongfei; Barros, Carlos Pestana; Borges, Maria Rosa

    2015-01-01

    This paper analyses the technical efficiency of Chinese fossil-fuel electricity generation companies from 1999 to 2011, using a Bayesian stochastic frontier model. The results reveal that efficiency varies among the fossil-fuel electricity generation companies that were analysed. We also focus on the factors of size, location, government ownership and mixed sources of electricity generation for the fossil-fuel electricity generation companies, and also examine their effects on the efficiency of these companies. Policy implications are derived. - Highlights: • We analyze the efficiency of 27 quoted Chinese fossil-fuel electricity generation companies during 1999–2011. • We adopt a Bayesian stochastic frontier model taking into consideration the identified heterogeneity. • With reform background in Chinese energy industry, we propose four hypotheses and check their influence on efficiency. • Big size, coastal location, government control and hydro energy sources all have increased costs

  3. Three Essays on Renewable Energy Policy and its Effects on Fossil Fuel Generation in Electricity Markets

    Science.gov (United States)

    Bowen, Eric

    In this dissertation, I investigate the effectiveness of renewable policies and consider their impact on electricity markets. The common thread of this research is to understand how renewable policy incentivizes renewable generation and how the increasing share of generation from renewables affects generation from fossil fuels. This type of research is crucial for understanding whether policies to promote renewables are meeting their stated goals and what the unintended effects might be. To this end, I use econometric methods to examine how electricity markets are responding to an influx of renewable energy. My dissertation is composed of three interrelated essays. In Chapter 1, I employ recent scholarship in spatial econometrics to assess the spatial dependence of Renewable Portfolio Standards (RPS), a prominent state-based renewable incentive. In Chapter 2, I explore the impact of the rapid rise in renewable generation on short-run generation from fossil fuels. And in Chapter 3, I assess the impact of renewable penetration on coal plant retirement decisions.

  4. Projection of fossil fuels consumption in the Venezuelan electricity generation industry

    International Nuclear Information System (INIS)

    Vidoza, Jorge A.; Gallo, Waldyr L.R.

    2016-01-01

    This study presents a prospective analysis on the impacts of recent efficient energy policies application in Venezuela, integrating both oil production and electricity supply to assess energy resources balance in a quantitative manner. A special focus is given to main fossil fuels used in the electric power industry; natural gas, diesel oil and fuel oil. Four scenarios were proposed, ranging from a low-economy-growth/low-efficiency scenario to an optimist high-economy-growth/high-efficiency scenario. Efficiency effects are more notorious for high-economy-growth case, fuel consumption for electricity generation reduces 38% for natural gas, 12% for diesel and 29% for fuel oil, in the established time period. Deficits in oil and gas Venezuelan production were also determined, deficits are highly affected by economical forecasting, and by fuel smuggling in Venezuelan borders. Results showed the high importance of energy efficiency policies development for Venezuela, in order to reduce fossil fuel domestic consumption to allocate them in a more profitable market. - Highlights: • We made a prospective analysis on efficient energy policies impacts in Venezuela. • Reduced fuel consumption was obtained for efficient scenarios. • Current energy regulations are not enough to encourage energy efficiency. • Hydroelectricity projects need more promotion to have deeper impacts.

  5. Efficiency-improving fossil fuel technologies for electricity generation: Data selection and trends

    Energy Technology Data Exchange (ETDEWEB)

    Lanzi, Elisa [Fondazione Eni Enrico Mattei (Italy); Verdolini, Elena, E-mail: elena.verdolini@feem.it [Fondazione Eni Enrico Mattei (Italy); Universita Cattolica, del Sacro Cuore di Milano (Italy); Hascic, Ivan [OECD Environment Directorate (France)

    2011-11-15

    This paper studies patenting dynamics in efficiency improving electricity generation technologies as an important indicator of innovation activity. We build a novel database of worldwide patent applications in efficiency-improving fossil fuel technologies for electricity generation and then analyse patenting trends over time and across countries. We find that patenting has mostly been stable over time, with a recent decreasing trend. OECD countries represent the top innovators and the top markets for technology. Some non-OECD countries, and particularly China, are also very active in terms of patenting activity in this sector. The majority of patents are first filed in OECD countries and only then in BRIC and other non-OECD countries. BRIC and other non-OECD countries apply for patents that are mostly marketed domestically, but BRIC countries represent important markets for patent duplication of OECD inventions. These results are indicative of significant technology transfer in the field of efficiency-improving technologies for electricity production. - Highlights: > We study innovation in efficiency-improving electricity generation technologies. > Relevant patents are identified and used as an indicator of innovation. > We show that there is significant technology transfer in this field. > Most patents are first filed in OECD countries and then in non-OECD countries. > Patents in non-OECD countries are mostly marketed domestically.

  6. Efficiency-improving fossil fuel technologies for electricity generation: Data selection and trends

    International Nuclear Information System (INIS)

    Lanzi, Elisa; Verdolini, Elena; Hascic, Ivan

    2011-01-01

    This paper studies patenting dynamics in efficiency improving electricity generation technologies as an important indicator of innovation activity. We build a novel database of worldwide patent applications in efficiency-improving fossil fuel technologies for electricity generation and then analyse patenting trends over time and across countries. We find that patenting has mostly been stable over time, with a recent decreasing trend. OECD countries represent the top innovators and the top markets for technology. Some non-OECD countries, and particularly China, are also very active in terms of patenting activity in this sector. The majority of patents are first filed in OECD countries and only then in BRIC and other non-OECD countries. BRIC and other non-OECD countries apply for patents that are mostly marketed domestically, but BRIC countries represent important markets for patent duplication of OECD inventions. These results are indicative of significant technology transfer in the field of efficiency-improving technologies for electricity production. - Highlights: → We study innovation in efficiency-improving electricity generation technologies. → Relevant patents are identified and used as an indicator of innovation. → We show that there is significant technology transfer in this field. → Most patents are first filed in OECD countries and then in non-OECD countries. → Patents in non-OECD countries are mostly marketed domestically.

  7. Key Drivers of PPPs in Electricity Generation in Developing Countries : Cross-Country Evidence of Switching between PPP Investment in Fossil Fuel and Renewable-Based Generation

    OpenAIRE

    Vagliasindi, Maria

    2012-01-01

    This paper presents new global evidence on the key determinants of public-private partnership investment in electricity generated by fossil fuels and renewable energy based on a panel data analysis for 105 developing countries over a period of 16 years from 1993 to 2008. It aims to identify the key factors affecting private investors' decision to enter electricity generation, through probi...

  8. Health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California. Volume 1. Health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California

    International Nuclear Information System (INIS)

    Nero, A.V. Jr.

    1977-01-01

    This report presents an overview of a project on the health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California. In addition to presenting an executive summary of the project, it sets forth the main results of the four tasks of the project: to review the health impacts (and related standards) of these forms of power generation, to review the status of standards related to plant safety (with an emphasis on nuclear power), to consider the role of the California Energy Resources Conservation and Development Commission in selection of standards, and to set forth methodologies whereby that Commission may review the health and safety aspects of proposed sites and facilities

  9. 76 FR 3517 - Standards of Performance for Fossil-Fuel-Fired, Electric Utility, Industrial-Commercial...

    Science.gov (United States)

    2011-01-20

    ... Standards of Performance for Fossil-Fuel-Fired, Electric Utility, Industrial-Commercial-Institutional, and... following: Category NAICS \\1\\ Examples of regulated entities Industry 221112 Fossil fuel-fired electric utility steam generating units. Federal Government 22112 Fossil fuel-fired electric utility steam...

  10. Carbon emission and mitigation cost comparisons between fossil fuel, nuclear and renewable energy resources for electricity generation

    International Nuclear Information System (INIS)

    Sims, R.E.H.; Rogner, H.-H.; Gregory, Ken

    2003-01-01

    A study was conducted to compare the electricity generation costs of a number of current commercial technologies with technologies expected to become commercially available within the coming decade or so. The amount of greenhouse gas emissions resulting per kWh of electricity generated were evaluated. A range of fossil fuel alternatives (with and without physical carbon sequestration), were compared with the baseline case of a pulverised coal, steam cycle power plant. Nuclear, hydro, wind, bioenergy and solar generating plants were also evaluated. The objectives were to assess the comparative costs of mitigation per tonne of carbon emissions avoided, and to estimate the total amount of carbon mitigation that could result from the global electricity sector by 2010 and 2020 as a result of fuel switching, carbon dioxide sequestration and the greater uptake of renewable energy. Most technologies showed potential to reduce both generating costs and carbon emission avoidance by 2020 with the exception of solar power and carbon dioxide sequestration. The global electricity industry has potential to reduce its carbon emissions by over 15% by 2020 together with cost saving benefits compared with existing generation

  11. Comparing the sustainability parameters of renewable, nuclear and fossil fuel electricity generation technologies

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Annette; Strezov, Vladimir; Evans, Tim

    2010-09-15

    The sustainability parameters of electricity generation have been assessed by the application of eight key indicators. Photovoltaics, wind, hydro, geothermal, biomass, natural gas, coal and nuclear power have been assessed according to their price, greenhouse gas emissions, efficiency, land use, water use, availability, limitations and social impacts on a per kilowatt hour basis. The relevance of this information to the Australian context is discussed. Also included are the results of a survey on Australian opinions regarding electricity generation, which found that Australian prefer solar electricity above any other method, however coal, biomass and nuclear power have low acceptance.

  12. Electric power generated by fossil fuels: Impact and environmental administration at global and local level

    International Nuclear Information System (INIS)

    Moscarella, John Paul

    1999-01-01

    An analysis is presented on the derived environmental implications of the current and future structure in the electric power market at international level. The reduced prices of the hydrocarbons determine that the fossil electricity is imposed on other generation forms, that which generates serious challenges to the companies and the governments as regards control and handling of gases emissions. By means of a comparative sample of eight electric companies of developed countries and in development, the tendencies are evaluated in the local and regional markets, as well as the environmental effects of different generating systems of electricity. The mechanism of well-known market is analyzed as activities implemented jointly (AIJ) referred to activities to be implemented jointly to combat the greenhouse gases effect. It concludes that in the short and medium term the conditions of the market will continue favoring the generation of fossil energy, reason why they should strengthen mechanisms of the climatic change control and to impel toward the long term the development of renewable and alternative energy

  13. Fossil-fuel dependence and vulnerability of electricity generation: Case of selected European countries

    International Nuclear Information System (INIS)

    Bhattacharyya, Subhes C.

    2009-01-01

    This paper analyses the diversity of fuel mix for electricity generation in selected European countries and investigates how the fuel bill has changed as a share of GDP between 1995 and 2005. The drivers of fuel-dependence-related vulnerability are determined using Laspeyres index decomposition. A 'what-if' analysis is carried out to analyse the changes in the vulnerability index due to changes in the drivers and a scenario analysis is finally used to investigate the future vulnerability in the medium term. The paper finds that the British and the Dutch electricity systems are less diversified compared to three other countries analysed. The gas dependence of the Dutch and Italian systems made them vulnerable but the vulnerability increased in all countries in recent years. Gas price and the level of dependence on gas for power generation mainly influenced the gas vulnerability. The United Kingdom saw a substantial decline in its coal vulnerability due to a fall in coal price and coal dependence in electricity generation. The scenario analysis indicates that UK is likely to face greater gas vulnerability in the future due to increased gas dependence in electricity generation and higher import dependence.

  14. Steam-treated wood pellets: Environmental and financial implications relative to fossil fuels and conventional pellets for electricity generation

    International Nuclear Information System (INIS)

    McKechnie, Jon; Saville, Brad; MacLean, Heather L.

    2016-01-01

    Highlights: • Steam-treated pellets can greatly reduce greenhouse gas emissions relative to coal. • Cost advantage is seen relative to conventional pellets. • Higher pellet cost is more than balanced by reduced retrofit capital requirements. • Low capacity factors further favour steam-treated pellets over conventional pellets. - Abstract: Steam-treated pellets can help to address technical barriers that limit the uptake of pellets as a fuel for electricity generation, but there is limited understanding of the cost and environmental impacts of their production and use. This study investigates life cycle environmental (greenhouse gas (GHG) and air pollutant emissions) and financial implications of electricity generation from steam-treated pellets, including fuel cycle activities (biomass supply, pellet production, and combustion) and retrofit infrastructure to enable 100% pellet firing at a generating station that previously used coal. Models are informed by operating experience of pellet manufacturers and generating stations utilising coal, steam-treated and conventional pellets. Results are compared with conventional pellets and fossil fuels in a case study of electricity generation in northwestern Ontario, Canada. Steam-treated pellet production has similar GHG impacts to conventional pellets as their higher biomass feedstock requirement is balanced by reduced process electricity consumption. GHG reductions of more than 90% relative to coal and ∼85% relative to natural gas (excluding retrofit infrastructure) could be obtained with both pellet options. Pellets can also reduce fuel cycle air pollutant emissions relative to coal by 30% (NOx), 97% (SOx), and 75% (PM 10 ). Lesser retrofit requirements for steam-treated pellets more than compensate for marginally higher pellet production costs, resulting in lower electricity production cost compared to conventional pellets ($0.14/kW h vs. $0.16/kW h). Impacts of retrofit infrastructure become increasingly

  15. Carbon Capture and Water Emissions Treatment System (CCWESTRS) at Fossil-Fueled Electric Generating Plants

    Energy Technology Data Exchange (ETDEWEB)

    P. Alan Mays; Bert R. Bock; Gregory A. Brodie; L. Suzanne Fisher; J. Devereux Joslin; Donald L. Kachelman; Jimmy J. Maddox; N. S. Nicholas; Larry E. Shelton; Nick Taylor; Mark H. Wolfe; Dennis H. Yankee; John Goodrich-Mahoney

    2005-08-30

    The Tennessee Valley Authority (TVA), the Electric Power Research Institute (EPRI), and the Department of Energy-National Energy Technologies Laboratory (DOE-NETL) are evaluating and demonstrating integration of terrestrial carbon sequestration techniques at a coal-fired electric power plant through the use of Flue Gas Desulfurization (FGD) system gypsum as a soil amendment and mulch, and coal fly ash pond process water for periodic irrigation. From January to March 2002, the Project Team initiated the construction of a 40 ha Carbon Capture and Water Emissions Treatment System (CCWESTRS) near TVA's Paradise Fossil Plant on marginally reclaimed surface coal mine lands in Kentucky. The CCWESTRS is growing commercial grade trees and cover crops and is expected to sequester 1.5-2.0 MT/ha carbon per year over a 20-year period. The concept could be used to meet a portion of the timber industry's needs while simultaneously sequestering carbon in lands which would otherwise remain non-productive. The CCWESTRS includes a constructed wetland to enhance the ability to sequester carbon and to remove any nutrients and metals present in the coal fly ash process water runoff. The CCWESTRS project is a cooperative effort between TVA, EPRI, and DOE-NETL, with a total budget of $1,574,000. The proposed demonstration project began in October 2000 and has continued through December 2005. Additional funding is being sought in order to extend the project. The primary goal of the project is to determine if integrating power plant processes with carbon sequestration techniques will enhance carbon sequestration cost-effectively. This goal is consistent with DOE objectives to provide economically competitive and environmentally safe options to offset projected growth in U.S. baseline emissions of greenhouse gases after 2010, achieve the long-term goal of $10/ton of avoided net costs for carbon sequestration, and provide half of the required reductions in global greenhouse gases by

  16. The Role of Nuclear Power in Reducing Risk of the Fossil Fuel Prices and Diversity of Electricity Generation in Tunisia: A Portfolio Approach

    Science.gov (United States)

    Abdelhamid, Mohamed Ben; Aloui, Chaker; Chaton, Corinne; Souissi, Jomâa

    2010-04-01

    This paper applies real options and mean-variance portfolio theories to analyze the electricity generation planning into presence of nuclear power plant for the Tunisian case. First, we analyze the choice between fossil fuel and nuclear production. A dynamic model is presented to illustrate the impact of fossil fuel cost uncertainty on the optimal timing to switch from gas to nuclear. Next, we use the portfolio theory to manage risk of the electricity generation portfolio and to determine the optimal fuel mix with the nuclear alternative. Based on portfolio theory, the results show that there is other optimal mix than the mix fixed for the Tunisian mix for the horizon 2010-2020, with lower cost for the same risk degree. In the presence of nuclear technology, we found that the optimal generating portfolio must include 13% of nuclear power technology share.

  17. Health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California. Volume 9. Methodologies for review of the health and safety aspects of proposed nuclear, geothermal, and fossil-fuel sites and facilities

    International Nuclear Information System (INIS)

    Nero, A.V.; Quinby-Hunt, M.S.

    1977-01-01

    This report sets forth methodologies for review of the health and safety aspects of proposed nuclear, geothermal, and fossil-fuel sites and facilities for electric power generation. The review is divided into a Notice of Intention process and an Application for Certification process, in accordance with the structure to be used by the California Energy Resources Conservation and Development Commission, the first emphasizing site-specific considerations, the second examining the detailed facility design as well. The Notice of Intention review is divided into three possible stages: an examination of emissions and site characteristics, a basic impact analysis, and an assessment of public impacts. The Application for Certification review is divided into five possible stages: a review of the Notice of Intention treatment, review of the emission control equipment, review of the safety design, review of the general facility design, and an overall assessment of site and facility acceptability

  18. Electricity generation analyses in an oil-exporting country: Transition to non-fossil fuel based power units in Saudi Arabia

    International Nuclear Information System (INIS)

    Farnoosh, Arash; Lantz, Frederic; Percebois, Jacques

    2013-12-01

    In Saudi Arabia, fossil-fuel is the main source of power generation. Due to the huge economic and demographic growth, the electricity consumption in Saudi Arabia has increased and should continue to increase at a very fast rate. At the moment, more than half a million barrels of oil per day is used directly for power generation. Herein, we assess the power generation situation of the country and its future conditions through a modelling approach. For this purpose, we present the current situation by detailing the existing generation mix of electricity. Then we develop a optimization model of the power sector which aims to define the best production and investment pattern to reach the expected demand. Subsequently, we will carry out a sensitivity analysis so as to evaluate the robustness of the model's by taking into account the integration variability of the other alternative (non-fossil fuel based) resources. The results point out that the choices of investment in the power sector strongly affect the potential oil's exports of Saudi Arabia. (authors)

  19. Electricity generation analyses in an oil-exporting country: Transition to non-fossil fuel based power units in Saudi Arabia

    International Nuclear Information System (INIS)

    Farnoosh, Arash; Lantz, Frederic; Percebois, Jacques

    2014-01-01

    In Saudi Arabia, fossil-fuel is the main source of power generation. Due to the huge economic and demographic growth, the electricity consumption in Saudi Arabia has increased and should continue to increase at a very fast rate. At the moment, more than half a million barrels of oil per day is used directly for power generation. Herein, we assess the power generation situation of the country and its future conditions through a modelling approach. For this purpose, we present the current situation by detailing the existing generation mix of electricity. Then we develop an optimization model of the power sector which aims to define the best production and investment pattern to reach the expected demand. Subsequently, we will carry out a sensitivity analysis so as to evaluate the robustness of the model's by taking into account the integration variability of the other alternative (non-fossil fuel based) resources. The results point out that the choices of investment in the power sector strongly affect the potential oil's exports of Saudi Arabia. For instance, by decarbonizing half of its generation mix, Saudi Arabia can release around 0.5 Mb/d barrels of oil equivalent per day from 2020. Moreover, total power generation cost reduction can reach up to around 28% per year from 2030 if Saudi Arabia manages to attain the most optimal generation mix structure introduced in the model (50% of power from renewables and nuclear power plants and 50% from the fossil power plants). - Highlights: • We model the current and future power generation situation of Saudi Arabia. • We take into account the integration of the other alternative resources. • We consider different scenarios of power generation structure for the country. • Optimal generation mix can release considerable amount of oil for export

  20. Simulation of the park for electric generation of the Argentine Republic, analysis of its possible expansion with restrictions in the disposability of the fossil fuels

    International Nuclear Information System (INIS)

    Giubergia, J.H.; Coppari, N.R.; Rey, F.C.

    2004-01-01

    In this work one simulates, using the program MESSAGE, the generation park electric of the Argentine Republic and their possible expansion, with restrictions in the readiness of fossil fuels. This, as other models of planning energetics promoted by IAEA, optimizes the expansion of the net having as function objective the smallest cost in the system. 25 years they were simulated, adopting like base the anus 2000 and considering different scenarios of internal and external demands. It was analysed the increase of the demand with restrictions in the readiness of the natural gas in the winter periods, since the Argentinean electric system has a great dependence of this fuel. To cover the increase of the electric demand, were selected the machines and fuels, at the moment available, with more technical and economic possibilities. In the scenarios without restrictions to the use of natural gas the program selects to the nuclear power station of Atucha II, to the increase of bench mark of the hydraulic power station of Yacireta and combined cycles that burn natural gas. In those in that the supply of natural gas is limited, it selects previously besides the signal ones, other nuclear power stations, other hydroelectric projects and turbines of gas operating with gas oil to cover the top requirements. (Author)

  1. Simulation of the Argentine electric generation park and its possible expansion under the restriction of availability of fossil fuels

    International Nuclear Information System (INIS)

    Giubergia, Jorge H.; Coppari, Norberto R.; Rey, Carlos F.

    2003-01-01

    MESSAGE program was used to simulate the Argentine electric generation park for 25 years, taking as a base the year 2000 and different scenarios of internal and external demand. As the Argentine electric system is strongly dependent on natural gas, the increase of the demand has been analyzed with, and without, the assumption of shortage of this fuel during the winter periods. Equipment and fuels already available have been selected to cover the increase of the demand taking into account technical and economic factors. The completion of Atucha II nuclear power plant, the increase of the water level of the hydroelectric Yacireta plant and natural gas combined-cycle plants are necessary even if no restrictions in the gas supply are foreseen. On the other hand new nuclear plants, new hydroelectric projects and gas oils fueled turbines will be necessary if natural gas shortage is assumed

  2. Fossil fuel power generation within the European Research Area

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-12-10

    The report is the first in a series of three produced by the PowerClean Thematic Network that looks at and defines future requirements for research and development of fossil fuel power generation in the European Union. It makes the case for fossil fuel R & D with emphasis on the need for clean coal technologies (to increased efficiency and other CO{sub 2} capture and storage) For satisfying future energy demands of the enlarged European Union between now and 2030. The report concludes that affirmative R, D and D action is needed to support the EU power industry, working together on a Europe-wide basis, to establish the use of coal and other fossil fuels in near-zero emissions power plant. The role model would be the European Research Area, as in the Sixth Framework Programme (FP6), but with a more comprehensive range of technical objectives recognising the importance of fossil fuels. Section headings are: introduction; current energy use; future needs and requirements; the future for clean fossil fuel energy in Europe; comparison with approaches adopted elsewhere (USA Vision 21 and FutureGen programmes, Japan); and responsibilities for EU coal R, D & D. 14 refs., 9 figs., 4 tabs.

  3. Health effects and related standards for fossil-fuel and geothermal power plants. Volume 6 of health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California. [In California

    Energy Technology Data Exchange (ETDEWEB)

    Case, G.D.; Bertolli, T.A.; Bodington, J.C.; Choy, T.A.; Nero, A.V.

    1977-01-01

    This report reviews health effects and related standards for fossil-fuel and geothermal power plants, emphasizing impacts which may occur through emissions into the atmosphere, and treating other impacts briefly. Federal regulations as well as California state and local regulations are reviewed. Emissions are characterized by power plant type, including: coal-fired, oil-fired, gas-fired, combined cycle and advanced fossil-fuel plants; and liquid and vapor geothermal systems. Dispersion and transformation of emissions are treated. The state of knowledge of health effects, based on epidemiological, physiological, and biomedical studies, is reviewed.

  4. Fossil fuel combined cycle power generation method

    Science.gov (United States)

    Labinov, Solomon D [Knoxville, TN; Armstrong, Timothy R [Clinton, TN; Judkins, Roddie R [Knoxville, TN

    2008-10-21

    A method for converting fuel energy to electricity includes the steps of converting a higher molecular weight gas into at least one mixed gas stream of lower average molecular weight including at least a first lower molecular weight gas and a second gas, the first and second gases being different gases, wherein the first lower molecular weight gas comprises H.sub.2 and the second gas comprises CO. The mixed gas is supplied to at least one turbine to produce electricity. The mixed gas stream is divided after the turbine into a first gas stream mainly comprising H.sub.2 and a second gas stream mainly comprising CO. The first and second gas streams are then electrochemically oxidized in separate fuel cells to produce electricity. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.

  5. 75 FR 66008 - Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major...

    Science.gov (United States)

    2010-10-27

    ... Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings; Correction AGENCY: Office of Energy Efficiency and Renewable Energy, Department of... the fossil fuel- generated energy consumption [[Page 66009

  6. Soviet steam generator technology: fossil fuel and nuclear power plants

    International Nuclear Information System (INIS)

    Rosengaus, J.

    1987-01-01

    In the Soviet Union, particular operational requirements, coupled with a centralized planning system adopted in the 1920s, have led to a current technology which differs in significant ways from its counterparts elsewhere in the would and particularly in the United States. However, the monograph has a broader value in that it traces the development of steam generators in response to the industrial requirements of a major nation dealing with the global energy situation. Specifically, it shows how Soviet steam generator technology evolved as a result of changing industrial requirements, fuel availability, and national fuel utilization policy. The monograph begins with a brief technical introduction focusing on steam-turbine power plants, and includes a discussion of the Soviet Union's regional power supply (GRES) networks and heat and power plant (TETs) systems. TETs may be described as large central co-generating stations which, in addition to electricity, provide heat in the form of steam and hot water. Plants of this type are a common feature of the USSR today. The adoption of these cogeneration units as a matter of national policy has had a central influence on Soviet steam generator technology which can be traced throughout the monograph. The six chapters contain: a short history of steam generators in the USSR; steam generator design and manufacture in the USSR; boiler and furnace assemblies for fossil fuel-fired power stations; auxiliary components; steam generators in nuclear power plants; and the current status of the Soviet steam generator industry. Chapters have been abstracted separately. A glossary is included containing abbreviations and acronyms of USSR organizations. 26 references

  7. A Transition Strategy from Fossil Fuels to Renewable Energy Sources in the Mexican Electricity System

    Directory of Open Access Journals (Sweden)

    Juan J. Vidal-Amaro

    2018-03-01

    Full Text Available Renewable energy sources exploitation acquires special importance for creating low-carbon energy systems. In Mexico a national regulation limits the fossil fuel-based electricity generation to 65%, 60% and 50% by years 2024, 2030 and 2050 respectively. This study evaluates several scenarios of renewables incorporation into the Mexican electricity system to attend those targets as well as a 75% renewables-based electricity share target towards a 100% renewable system. By its size, the Mexican electricity system, with a generation of 260.4 TWh/year (85% based on fossil fuels, can be regarded as an illustrating reference. The impact of increasing amounts of wind, photovoltaic solar, biomass, biogas, geothermal, hydro and concentrating solar power on the system’s capacity to attend demand on a one-hour timescale resolution is investigated utilizing the EnergyPLAN model and the minimum total mix capacity method. Possible excess of electricity production is also assessed. For every target year, a solution is obtained corresponding to the combination resulting in the minimum total generation capacity for the electricity system. A transition strategy to a system with a high share of renewables-based electricity is designed where every transition step corresponds to the optimal energy mix for each of the target years.

  8. Economic evaluation of methods to substitute consumption of fossil fuel for nuclear one in power generation

    International Nuclear Information System (INIS)

    Veretennikov, G.A.; Boldyrev, V.M.; Sigal, M.V.

    1986-01-01

    Technical-and-economic indices of separate and combind processes of thermal and electric power production are compared for different energy sources (heat-only nuclear stations power and heat nuclear stations condensation nuclear power plants, fossil-fuel condensation power plants, fossil-fuel power and heat nuclear stations and fossil-fuel boiler houses). The data on capital outlays, fuel expenses and total reduced costs are presented. The analysis has shown that all versions of nuclear energy development with the use of heat-only nuclear stations in different combinations prove to be less preferable than the version of cogeneration of heat and electric power at power and heat nuclear stations

  9. Development of Nuclear Renewable Oil Shale Systems for Flexible Electricity and Reduced Fossil Fuel Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Daniel Curtis; Charles Forsberg; Humberto Garcia

    2015-05-01

    We propose the development of Nuclear Renewable Oil Shale Systems (NROSS) in northern Europe, China, and the western United States to provide large supplies of flexible, dispatchable, very-low-carbon electricity and fossil fuel production with reduced CO2 emissions. NROSS are a class of large hybrid energy systems in which base-load nuclear reactors provide the primary energy used to produce shale oil from kerogen deposits and simultaneously provide flexible, dispatchable, very-low-carbon electricity to the grid. Kerogen is solid organic matter trapped in sedimentary shale, and large reserves of this resource, called oil shale, are found in northern Europe, China, and the western United States. NROSS couples electricity generation and transportation fuel production in a single operation, reduces lifecycle carbon emissions from the fuel produced, improves revenue for the nuclear plant, and enables a major shift toward a very-low-carbon electricity grid. NROSS will require a significant development effort in the United States, where kerogen resources have never been developed on a large scale. In Europe, however, nuclear plants have been used for process heat delivery (district heating), and kerogen use is familiar in certain countries. Europe, China, and the United States all have the opportunity to use large scale NROSS development to enable major growth in renewable generation and either substantially reduce or eliminate their dependence on foreign fossil fuel supplies, accelerating their transitions to cleaner, more efficient, and more reliable energy systems.

  10. Present technologies and the next future in Mexico for the power generation starting from fossil fuels

    International Nuclear Information System (INIS)

    Gonzalez S, J.M.

    1999-01-01

    A brief analysis is done of the expected evolution of the world energy and electrical energy demand and a projection of the Mexican electrical demand is presented. Typical data for electric power generation technologies that currently in use or under development are presented and a discussion is made of the factors that influence technology selection, particularly for fossil fuel technologies. Taking into account the current expansion plans of the Mexican electrical sector, and proposing some reasonable hypotheses about the behavior of the factors that were identified, the evolution of the electrical demand in Mexico up to the year 2020 is presented, showing the installed capacity expected for each fuel and for each technology. At the end the needs for research and development in the area of power generation, emphasizing the Mexican R and D Programs, are discussed. (Author)

  11. Efficiency potentials of heat pumps with combined heat and power. For maximum reduction of CO2 emissions and for electricity generation from fossil fuels with CO2 reduction in Switzerland

    International Nuclear Information System (INIS)

    Rognon, F.

    2005-06-01

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) takes a look at how the efficiency potential of heat pumps together with combined heat and power systems can help provide a maximum reduction of CO 2 emissions and provide electricity generation from fossil fuel in Switzerland together with reductions in CO 2 emissions. In Switzerland, approximately 80% of the low-temperature heat required for space-heating and for the heating-up of hot water is produced by burning combustibles. Around a million gas and oil boilers were in use in Switzerland in 2000, and these accounted for approximately half the country's 41.1 million tonnes of CO 2 emissions. The authors state that there is a more efficient solution with lower CO 2 emissions: the heat pump. With the enormous potential of our environment it would be possible to replace half the total number of boilers in use today with heat pumps. This would be equivalent to 90 PJ p.a. of useful heat, or 500,000 systems. The power source for heat pumps should come from the substitution of electric heating systems (electric resistor-based systems) and from the replacement of boilers. This should be done by using combined heat and power systems with full heat utilisation. This means, according to the authors, that the entire required power source can be provided without the need to construct new electricity production plants. The paper examines and discusses the theoretical, technical, market and realisable potentials

  12. Water treatment for fossil fuel power generation - technology status report

    International Nuclear Information System (INIS)

    2006-01-01

    This technology status report focuses on the use of water treatment technology in fossil fuel power plants. The use of polymeric ion exchange resins for deionization of water, the currently preferred use of ion exchange for economically treating water containing low dissolved salts, the use of low pressure high-flux membranes, membrane microfiltration, and reverse osmosis are discussed. Details are given of the benefits of the technologies, water use at power plants, the current status of water treatment technologies, and the potential for future developments, along with power plant market trends and potentials, worldwide developments, and UK capabilities in water treatment plant design and manufacturing

  13. Contextualizing avian mortality: A preliminary appraisal of bird and bat fatalities from wind, fossil-fuel, and nuclear electricity

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K. [Energy Governance Program, Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore, Singapore 259772 (Singapore)], E-mail: bsovacool@nus.edu.sg

    2009-06-15

    This article explores the threats that wind farms pose to birds and bats before briefly surveying the recent literature on avian mortality and summarizing some of the problems with it. Based on operating performance in the United States and Europe, this study offers an approximate calculation for the number of birds killed per kWh generated for wind electricity, fossil-fuel, and nuclear power systems. The study estimates that wind farms and nuclear power stations are responsible each for between 0.3 and 0.4 fatalities per gigawatt-hour (GWh) of electricity while fossil-fueled power stations are responsible for about 5.2 fatalities per GWh. While this paper should be respected as a preliminary assessment, the estimate means that wind farms killed approximately seven thousand birds in the United States in 2006 but nuclear plants killed about 327,000 and fossil-fueled power plants 14.5 million. The paper concludes that further study is needed, but also that fossil-fueled power stations appear to pose a much greater threat to avian wildlife than wind and nuclear power technologies.

  14. Contextualizing avian mortality. A preliminary appraisal of bird and bat fatalities from wind, fossil-fuel, and nuclear electricity

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K. [Energy Governance Program, Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore, Singapore 259772 (Singapore)

    2009-06-15

    This article explores the threats that wind farms pose to birds and bats before briefly surveying the recent literature on avian mortality and summarizing some of the problems with it. Based on operating performance in the United States and Europe, this study offers an approximate calculation for the number of birds killed per kWh generated for wind electricity, fossil-fuel, and nuclear power systems. The study estimates that wind farms and nuclear power stations are responsible each for between 0.3 and 0.4 fatalities per gigawatt-hour (GWh) of electricity while fossil-fueled power stations are responsible for about 5.2 fatalities per GWh. While this paper should be respected as a preliminary assessment, the estimate means that wind farms killed approximately seven thousand birds in the United States in 2006 but nuclear plants killed about 327,000 and fossil-fueled power plants 14.5 million. The paper concludes that further study is needed, but also that fossil-fueled power stations appear to pose a much greater threat to avian wildlife than wind and nuclear power technologies. (author)

  15. Contextualizing avian mortality: A preliminary appraisal of bird and bat fatalities from wind, fossil-fuel, and nuclear electricity

    International Nuclear Information System (INIS)

    Sovacool, Benjamin K.

    2009-01-01

    This article explores the threats that wind farms pose to birds and bats before briefly surveying the recent literature on avian mortality and summarizing some of the problems with it. Based on operating performance in the United States and Europe, this study offers an approximate calculation for the number of birds killed per kWh generated for wind electricity, fossil-fuel, and nuclear power systems. The study estimates that wind farms and nuclear power stations are responsible each for between 0.3 and 0.4 fatalities per gigawatt-hour (GWh) of electricity while fossil-fueled power stations are responsible for about 5.2 fatalities per GWh. While this paper should be respected as a preliminary assessment, the estimate means that wind farms killed approximately seven thousand birds in the United States in 2006 but nuclear plants killed about 327,000 and fossil-fueled power plants 14.5 million. The paper concludes that further study is needed, but also that fossil-fueled power stations appear to pose a much greater threat to avian wildlife than wind and nuclear power technologies.

  16. Forecasting Fossil Fuel Energy Consumption for Power Generation Using QHSA-Based LSSVM Model

    Directory of Open Access Journals (Sweden)

    Wei Sun

    2015-01-01

    Full Text Available Accurate forecasting of fossil fuel energy consumption for power generation is important and fundamental for rational power energy planning in the electricity industry. The least squares support vector machine (LSSVM is a powerful methodology for solving nonlinear forecasting issues with small samples. The key point is how to determine the appropriate parameters which have great effect on the performance of LSSVM model. In this paper, a novel hybrid quantum harmony search algorithm-based LSSVM (QHSA-LSSVM energy forecasting model is proposed. The QHSA which combines the quantum computation theory and harmony search algorithm is applied to searching the optimal values of and C in LSSVM model to enhance the learning and generalization ability. The case study on annual fossil fuel energy consumption for power generation in China shows that the proposed model outperforms other four comparative models, namely regression, grey model (1, 1 (GM (1, 1, back propagation (BP and LSSVM, in terms of prediction accuracy and forecasting risk.

  17. Economic value of U.S. fossil fuel electricity health impacts.

    Science.gov (United States)

    Machol, Ben; Rizk, Sarah

    2013-02-01

    Fossil fuel energy has several externalities not accounted for in the retail price, including associated adverse human health impacts, future costs from climate change, and other environmental damages. Here, we quantify the economic value of health impacts associated with PM(2.5) and PM(2.5) precursors (NO(x) and SO(2)) on a per kilowatt hour basis. We provide figures based on state electricity profiles, national averages and fossil fuel type. We find that the economic value of improved human health associated with avoiding emissions from fossil fuel electricity in the United States ranges from a low of $0.005-$0.013/kWh in California to a high of $0.41-$1.01/kWh in Maryland. When accounting for the adverse health impacts of imported electricity, the California figure increases to $0.03-$0.07/kWh. Nationally, the average economic value of health impacts associated with fossil fuel usage is $0.14-$0.35/kWh. For coal, oil, and natural gas, respectively, associated economic values of health impacts are $0.19-$0.45/kWh, $0.08-$0.19/kWh, and $0.01-$0.02/kWh. For coal and oil, these costs are larger than the typical retail price of electricity, demonstrating the magnitude of the externality. When the economic value of health impacts resulting from air emissions is considered, our analysis suggests that on average, U.S. consumers of electricity should be willing to pay $0.24-$0.45/kWh for alternatives such as energy efficiency investments or emission-free renewable sources that avoid fossil fuel combustion. The economic value of health impacts is approximately an order of magnitude larger than estimates of the social cost of carbon for fossil fuel electricity. In total, we estimate that the economic value of health impacts from fossil fuel electricity in the United States is $361.7-886.5 billion annually, representing 2.5-6.0% of the national GDP. Published by Elsevier Ltd.

  18. Hydrogen generation from biogenic and fossil fuels by autothermal reforming

    Science.gov (United States)

    Rampe, Thomas; Heinzel, Angelika; Vogel, Bernhard

    Hydrogen generation for fuel cell systems by reforming technologies from various fuels is one of the main fields of investigation of the Fraunhofer ISE. Suitable fuels are, on the one hand, gaseous hydrocarbons like methane, propane but also, on the other hand, liquid hydrocarbons like gasoline and alcohols, e.g., ethanol as biogenic fuel. The goal is to develop compact systems for generation of hydrogen from fuel being suitable for small-scale membrane fuel cells. The most recent work is related to reforming according to the autothermal principle — fuel, air and steam is supplied to the reactor. Possible applications of such small-scale autothermal reformers are mobile systems and also miniature fuel cell as co-generation plant for decentralised electricity and heat generation. For small stand-alone systems without a connection to the natural gas grid liquid gas, a mixture of propane and butane is an appropriate fuel.

  19. Review of light--water reactor safety studies. Volume 3 of health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California

    International Nuclear Information System (INIS)

    Nero, A.V.; Farnaam, M.R.K.

    1977-01-01

    This report summarizes and compares important studies of light-water nuclear reactor safety, emphasizing the Nuclear Regulatory Commission's Reactor Safety Study, work on risk assessment funded by the Electric Power Research Institute, and the Report of the American Physical Society study group on light-water reactor safety. These reports treat risk assessment for nuclear power plants and provide an introduction to the basic issues in reactor safety and the needs of the reactor safety research program. Earlier studies are treated more briefly. The report includes comments on the Reactor Safety Study. The manner in which these studies may be used and alterations which would increase their utility are discussed

  20. The legacy of fossil fuels.

    Science.gov (United States)

    Armaroli, Nicola; Balzani, Vincenzo

    2011-03-01

    Currently, over 80% of the energy used by mankind comes from fossil fuels. Harnessing coal, oil and gas, the energy resources contained in the store of our spaceship, Earth, has prompted a dramatic expansion in energy use and a substantial improvement in the quality of life of billions of individuals in some regions of the world. Powering our civilization with fossil fuels has been very convenient, but now we know that it entails severe consequences. We treat fossil fuels as a resource that anyone anywhere can extract and use in any fashion, and Earth's atmosphere, soil and oceans as a dump for their waste products, including more than 30 Gt/y of carbon dioxide. At present, environmental legacy rather than consistence of exploitable reserves, is the most dramatic problem posed by the relentless increase of fossil fuel global demand. Harmful effects on the environment and human health, usually not incorporated into the pricing of fossil fuels, include immediate and short-term impacts related to their discovery, extraction, transportation, distribution, and burning as well as climate change that are spread over time to future generations or over space to the entire planet. In this essay, several aspects of the fossil fuel legacy are discussed, such as alteration of the carbon cycle, carbon dioxide rise and its measurement, greenhouse effect, anthropogenic climate change, air pollution and human health, geoengineering proposals, land and water degradation, economic problems, indirect effects on the society, and the urgent need of regulatory efforts and related actions to promote a gradual transition out of the fossil fuel era. While manufacturing sustainable solar fuels appears to be a longer-time perspective, alternatives energy sources already exist that have the potential to replace fossil fuels as feedstocks for electricity production. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The legacy of fossil fuels

    Energy Technology Data Exchange (ETDEWEB)

    Armaroli, N.; Balzani, V. [CNR, Bologna (Italy)

    2011-03-01

    Currently, over 80% of the energy used by mankind comes from fossil fuels. Harnessing coal, oil and gas, the energy resources contained in the store of our spaceship, Earth, has prompted a dramatic expansion in energy use and a substantial improvement in the quality of life of billions of individuals in some regions of the world. Powering our civilization with fossil fuels has been very convenient, but now we know that it entails severe consequences. We treat fossil fuels as a resource that anyone anywhere can extract and use in any fashion, and Earth's atmosphere, soil and oceans as a dump for their waste products, including more than 30 Gt/y of carbon dioxide. At present, environmental legacy rather than consistence of exploitable reserves, is the most dramatic problem posed by the relentless increase of fossil fuel global demand. Harmful effects on the environment and human health, usually not incorporated into the pricing of fossil fuels, include immediate and short-term impacts related to their discovery, extraction, transportation, distribution, and burning as well as climate change that are spread over time to future generations or over space to the entire planet. In this essay, several aspects of the fossil fuel legacy are discussed, such as alteration of the carbon cycle, carbon dioxide rise and its measurement, greenhouse effect, anthropogenic climate change, air pollution and human health, geoengineering proposals, land and water degradation, economic problems, indirect effects on the society, and the urgent need of regulatory efforts and related actions to promote a gradual transition out of the fossil fuel era. While manufacturing sustainable solar fuels appears to be a longer-time perspective, alternatives energy sources already exist that have the potential to replace fossil fuels as feedstocks for electricity production.

  2. Computerized optimum distribution of loads among the turbogenerators of fossil-fuel electric power plants

    Energy Technology Data Exchange (ETDEWEB)

    Foshko, L S; Zusmanovich, L B; Flos, S L; Pal' chik, V A; Konevskii, B I

    1979-04-01

    The problem of determining the optimum distribution of loads among turbogenerators in a fossil-fuel power plant is considered based on satisfying the following requirements: distribution of electrical and thermal loads to minimize the heat expended on the turbine unit; calculation based on turbogenerator characteristics that most completely describe operating conditions; no constraints on the configuration of turbogenerator performance characteristics; calculation of load distribution based on net characteristics including the internal needs of the turbogenerators; consideration of all operational limitations in turbogenerator working conditions; results should be applicable to any predetermined differential of the load change. A flowchart is given showing the organization of the Optim-76 program complex for solution of this problem. An example is given showing application of the Optim-76 program implemented by a Minsk-32 computer in the case of a heat and electric power station with three turbogenerators. The results show that a dynamic programming method has considerable advantages for this applicaton on third-generation computers.

  3. Fossil Fuels.

    Science.gov (United States)

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  4. Progress of fossil fuel science

    Energy Technology Data Exchange (ETDEWEB)

    Demirbas, M.F.

    2007-07-01

    Coal is the most abundant and widely distributed fossil fuel. More than 45% of the world's electricity is generated from coal, and it is the major fuel for generating electricity worldwide. The known coal reserves in the world are enough for more than 215 years of consumption, while the known oil reserves are only about 39 times of the world's consumption and the known natural gas reserves are about 63 times of the world's consumption level in 1998. In recent years, there have been effective scientific investigations on Turkish fossil fuels, which are considerable focused on coal resources. Coal is a major fossil fuel source for Turkey. Turkish coal consumption has been stable over the past decade and currently accounts for about 24% of the country's total energy consumption. Lignite coal has had the biggest share in total fossil fuel production, at 43%, in Turkey. Turkish researchers may investigate ten broad pathways of coal species upgrading, such as desulfurization and oxydesulfurization, pyrolysis and hydropyrolysis, liquefaction and hydroliquefaction, extraction and supercritical fluid extraction, gasification, oxidation, briquetting, flotation, and structure identification.

  5. Electrical discharge phenomena application for solid fossil fuels in-situ conversion

    International Nuclear Information System (INIS)

    Bukharkin, A A; Lopatin, V V; Martemyanov, S M; Koryashov, I A

    2014-01-01

    The application of high voltage to oil shale initiates partial discharges (PDs) with the following treeing like in insulating dielectrics. Critical PDs and treeing with a high propagation rate occur under the low electrical intensity ∼10 2 V/cm due to oil shale's high porosity, heterogeneity and anisotropy. The completed discharge occurs as a result of these phenomena. Carbonization is initiated around a plasma channel at the treeing stage and extended during electromagnetic action time. Carbonized rock electrical resistance decreases by 8÷10 degrees to 10 ohm·cm, and shale and coal could be heated by Joule heat in carbonized volume and discharge plasma. A high-current supply is necessary for this heating stage. Also, a high- voltage supply with steep-grade characteristics can be used for PDs and treeing initiating and heating the carbonized rock with low resistance. Thus, these phenomena allow in-situ processing in order to produce a flammable gas and synthetic oil from inferior solid fossil fuels by pyrolytic conversion. Computations show that the ratio between energy derived from gas flaming and energy for shale conversion is more than fifty. Therefore, oil shale conversion with the help of electrical discharge phenomena application can be very efficient, as it needs little energy

  6. Projected Growth in Small-Scale, Fossil-Fueled Distributed Generation: Potential Implications for the U.S. Greenhouse Gas Inventory

    Energy Technology Data Exchange (ETDEWEB)

    Eberle, Annika [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Heath, Garvin A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-03-29

    The generation capacity of small-scale (less than one megawatt) fossil-fueled electricity in the United States is anticipated to grow by threefold to twenty-fold from 2015 to 2040. However, in adherence with internationally agreed upon carbon accounting methods, the Environmental Protection Agency's (EPA's) U.S. Greenhouse Inventory (GHGI) does not currently attribute greenhouse gases (GHGs) from these small-scale distributed generation sources to the electric power sector and instead accounts for these emissions in the sector that uses the distributed generation (e.g., the commercial sector). In addition, no other federal electric-sector GHG emission data product produced by the EPA or the U.S. Energy Information Administration (EIA) can attribute these emissions to electricity. We reviewed the technical documentation for eight federal electric-sector GHG emission data products, interviewed the data product owners, collected their GHG emission estimates, and analyzed projections for growth in fossil-fueled distributed generation. We show that, by 2040, these small-scale generators could account for at least about 1%- 5% of total CO2 emissions from the U.S. electric power sector. If these emissions fall outside the electric power sector, the United States may not be able to completely and accurately track changes in electricity-related CO2 emissions, which could impact how the country sets GHG reduction targets and allocates mitigation resources. Because small-scale, fossil-fueled distributed generation is expected to grow in other countries as well, the results of this work also have implications for global carbon accounting.

  7. News technology utilization fossil fuel

    Directory of Open Access Journals (Sweden)

    Blišanová Monika

    2004-09-01

    Full Text Available Fossil fuel – “alternative energy“ is coal, petroleum, natural gas. Petroleum and natural gas are scarce resources, but they are delimited. Reserves petroleum will be depleted after 39 years and reserves natural gas after 60 years.World reserves coal are good for another 240 years. Coal is the most abundant fossil fuel. It is the least expensive energy source for generating electricity. Many environmental problems associated with use of coal:in coal production, mining creates environmental problems.On Slovakia representative coal only important internal fuel – power of source and coal is produced in 5 locality. Nowadays, oneself invest to new technology on utilization coal. Perspective solution onself shows UCG, IGCC.

  8. Increasing the flexibility of base-load generating units in operation on fossil fuel

    Energy Technology Data Exchange (ETDEWEB)

    Girshfel' d, V Ya; Khanaev, V A; Volkova, E D; Gorelov, V A; Gershenkroi, M L

    1979-01-01

    Increasing the flexibility of base-load generating units operating on fossil fuel by modifying them is a necessary measure. The highest economic effect is attained with modification of gas- and oil-fired generating units in the Western United Power Systems of the European part of the SPSS. On the basis of available experience, 150- and 200-MW units can be extensively used to regulate the power in the European part of the SPSS through putting them into reserve for the hours of the load dip at night. The change under favorable conditions of 150- and 200-MW units operating on coal to a district-heating operating mode does not reduce the possibilities for flexible operation of these units because it is possible greatly to unload the turbines while the minimum load level of the pulverized fuel fired boiler is retained through transferring a part of the heat load to the desuperheater. It is necessary to accumulate and analyze experience with operation of generating units (especially of supercritical units) with regular shutdowns and starts of groups of units and to solve the problems of modification of generating units, with differentiation with respect to types of fuel and to the united power supply system.

  9. ELECTRICITY SUPPLY, FOSSIL FUEL CONSUMPTION, CO2 EMISSIONS AND ECONOMIC GROWTH: IMPLICATIONS AND POLICY OPTIONS FOR SUSTAINABLE DEVELOPMENT IN NIGERIA

    Directory of Open Access Journals (Sweden)

    Chibueze Eze Nnaji

    2013-01-01

    Full Text Available This paper investigates the causal relationship among electricity supply, fossil fuel consumption, CO2 emissions and economic growth in Nigeria for the period 1971-2009, in a multivariate framework.Using the bound test approach to cointegration, we found a short-run as well as a long-run relationship among the variables with a positive and statistically significant relationship between CO2 emissions and fossil fuel consumption. The findings also indicate that economic growth is associated with increased CO2 emissions while a positive relationship exists between electricity supply and CO2 emissions revealing the poor nature of electricity supply in Nigeria. Further, the Granger causality test results indicate that electricity supply has not impacted significantly on economic growth in Nigeria. The results also strongly imply that policies aimed at reducing carbon emissions in Nigeria will not impede economic growth. The paper therefore concludes that a holistic energy planning and investment in energy infrastructure is needed to drive economic growth. In the long-run however, it is possible to meet the energy needs of the country, ensure sustainable development and at the same time reduce CO2 emissions by developing alternatives to fossil fuel consumption, the main source of CO2 emissions.

  10. Fossil fuel-fired power generation. Case studies of recently constructed coal- and gas-fired plants

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, C. [IEA Clean Coal Centre, London (United Kingdom)

    2007-10-23

    To meet future energy demand growth and replace older or inefficient units, a large number of fossil fuel-fired plants will be required to be built worldwide in the next decade. Yet CO{sub 2} emissions from fossil-fired power generation are a major contributor to climate change. As a result, new plants must be designed and operated at highest efficiency both to reduce CO{sub 2} emissions and to facilitate deployment of CO{sub 2} capture and storage in the future. The series of case studies in this report, which respond to a request to the IEA from the G8 Summit in July 2005, were conducted to illustrate what efficiency is achieved now in modern plants in different parts of the world using different grades of fossil fuels. The plants were selected from different geographical areas, because local factors influence attainable efficiency. The case studies include pulverized coal combustion (PCC) with both subcritical and supercritical (very high pressure and temperature) steam turbine cycles, a review of current and future applications of coal-fuelled integrated gasification combined cycle plants (IGCC), and a case study of a natural gas fired combined cycle plant to facilitate comparisons. The results of these analyses show that the technologies for high efficiency (low CO{sub 2} emission) and very low conventional pollutant emissions (particulates, SO{sub 2}, NOx) from fossil fuel-fired power generation are available now through PCC, IGCC or NGCC at commercially acceptable cost. This report contains comprehensive technical and indicative cost information for modern fossil fuel-fired plants that was previously unavailable. It serves as a valuable sourcebook for policy makers and technical decision makers contemplating decisions to build new fossil fuel-fired power generation plants.

  11. Social cost pricing of fossil fuels used in the production of electricity: implications to biomass feasibility

    International Nuclear Information System (INIS)

    Dillivan, K.D.; English, B.C.

    1997-01-01

    The primary objective of this study is to investigate full social pricing for fossil fuels and the subsequent effect on biomass quantities in the state of Tennessee. The first step is to estimate the full social costs and then to estimate the effects of their internalization. Other objectives are (1) investigate whether or not market imperfections exist, (2) if they exist, how should full social cost pricing be estimated, (3) what other barriers help fossil fuels stay economically attractive and prevent biomass from competing, (4) estimating the demand for biomass, and (5) given this demand for biomass, what are the implications for farmers and producers in Tennessee. (author)

  12. Simulation of the park for electric generation of the Argentine Republic, analysis of its possible expansion with restrictions in the disposability of the fossil fuels; Simulacion del parque de generacion electrica de la Republica Argentina, analisis de su posible expansion con restricciones en la disponibilidad de los combustibles fosiles

    Energy Technology Data Exchange (ETDEWEB)

    Giubergia, J H; Coppari, N R [Comision Nacional de Energia Atomica, Centro Atomico Constituyentes, Unidad de Actividad Reactores y Centrales Nucleares, Avda. Gral. Paz 1499 (1650) San Martin, Provincia de Buenos Aires (Argentina); Rey, F C [Comision Nacional de Energia Atomica, Centro Atomico Ezeiza, Presbitero Juan Gonzalez y Aragon 15, (B1802AYA) Ezeiza, Provincia de Buenos Aires (Argentina)

    2004-07-01

    In this work one simulates, using the program MESSAGE, the generation park electric of the Argentine Republic and their possible expansion, with restrictions in the readiness of fossil fuels. This, as other models of planning energetics promoted by IAEA, optimizes the expansion of the net having as function objective the smallest cost in the system. 25 years they were simulated, adopting like base the anus 2000 and considering different scenarios of internal and external demands. It was analysed the increase of the demand with restrictions in the readiness of the natural gas in the winter periods, since the Argentinean electric system has a great dependence of this fuel. To cover the increase of the electric demand, were selected the machines and fuels, at the moment available, with more technical and economic possibilities. In the scenarios without restrictions to the use of natural gas the program selects to the nuclear power station of Atucha II, to the increase of bench mark of the hydraulic power station of Yacireta and combined cycles that burn natural gas. In those in that the supply of natural gas is limited, it selects previously besides the signal ones, other nuclear power stations, other hydroelectric projects and turbines of gas operating with gas oil to cover the top requirements. (Author)

  13. Electricity from fossil fuels without CO2 emissions: assessing the costs of carbon dioxide capture and sequestration in U.S. electricity markets.

    Science.gov (United States)

    Johnson, T L; Keith, D W

    2001-10-01

    The decoupling of fossil-fueled electricity production from atmospheric CO2 emissions via CO2 capture and sequestration (CCS) is increasingly regarded as an important means of mitigating climate change at a reasonable cost. Engineering analyses of CO2 mitigation typically compare the cost of electricity for a base generation technology to that for a similar plant with CO2 capture and then compute the carbon emissions mitigated per unit of cost. It can be hard to interpret mitigation cost estimates from this plant-level approach when a consistent base technology cannot be identified. In addition, neither engineering analyses nor general equilibrium models can capture the economics of plant dispatch. A realistic assessment of the costs of carbon sequestration as an emissions abatement strategy in the electric sector therefore requires a systems-level analysis. We discuss various frameworks for computing mitigation costs and introduce a simplified model of electric sector planning. Results from a "bottom-up" engineering-economic analysis for a representative U.S. North American Electric Reliability Council (NERC) region illustrate how the penetration of CCS technologies and the dispatch of generating units vary with the price of carbon emissions and thereby determine the relationship between mitigation cost and emissions reduction.

  14. Reconciling fossil fuel power generation development and climate issues: CCS and CCS-Ready

    Energy Technology Data Exchange (ETDEWEB)

    Paelinck, Philippe; Sonnois, Louis; Leandri, Jean-Francois

    2010-09-15

    This paper intends to analyse how CCS can contribute to reduce CO2 emissions from fossil-fuel power plants and to describe what is its current overall status. Its potential future development is assessed, in both developed and developing countries, and an economical assessment of different investment options highlight the importance of CCS retrofit. The paper analyses then the challenges of the development of fossil fuelled power plants and details case examples to illustrate some technical challenges related to CCS and what are the technical solutions available today to ease and address them: CCS-Ready power plants.

  15. Ecological consequences of elevated total dissolved solids associated with fossil fuel extraction in the United States

    Science.gov (United States)

    Fossil fuel burning is considered a major contributor to global climate change. The outlook for production and consumption of fossil fuels int he US indicates continued growth to support growing energy demands. For example, coal-generated electricity is projected ot increase from...

  16. The influence of the switch from fossil fuels to solar and wind energy on the electricity prices in Germany

    NARCIS (Netherlands)

    A.B. Dorsman (Andre); A. Khoshrou (Abdolrahman); E.J. Pauwels (Eric)

    2016-01-01

    textabstractGermany is actively pursuing a switch from fossil fuel to renewables, the so-called Energiewende (energy transition). Due to the fact that the supply of wind and solar energy is less predictable than the supply of fossil fuel, stabilizing the grid has become more challenging. On sunny

  17. An assessment of econometric models applied to fossil fuel power generation

    International Nuclear Information System (INIS)

    Gracceva, F.; Quercioli, R.

    2001-01-01

    The main purpose of this report is to provide a general view of those studies, in which the econometric approach is applied to the selection of fuel in fossil fired power generation, focusing the attention to the key role played by the fuel prices. The report consists of a methodological analysis and a survey of the studies available in literature. The methodological analysis allows to assess the adequateness of the econometric approach, in the electrical power utilities policy. With this purpose, the fundamentals of microeconomics, which are the basis of the econometric models, are pointed out and discussed, and then the hypotheses, which are needed to be assumed for complying the economic theory, are verified in their actual implementation in the power generation sector. The survey of the available studies provides a detailed description of the Translog and Logit models, and the results achieved with their application. From these results, the estimated models show to fit the data with good approximation, a certain degree of interfuel substitution and a meaningful reaction to prices on demand side [it

  18. Land use changes, greenhouse gas emissions and fossil fuel substitution of biofuels compared to bioelectricity production for electric cars in Austria

    International Nuclear Information System (INIS)

    Schmidt, Johannes; Gass, Viktoria; Schmid, Erwin

    2011-01-01

    Bioenergy is one way of achieving the indicative target of 10% renewable energy in the transportation sector outlined in the EU Directive 2009/28/EC. This article assesses the consequences of increasing the use of bioenergy for road transportation on land use, greenhouse gas (GHG) emissions, and fossil fuel substitution. Different technologies, including first and second generation fuels and electric cars fuelled by bioelectricity are assessed in relation to existing bioenergy uses for heat and power production. The article applies a spatially explicit energy system model that is coupled with a land use optimization model to allow assessing impacts of increased biomass utilization for energy production on land use in agriculture and forest wood harvests. Uncertainty is explicitly assessed with Monte-Carlo simulations of model parameters. Results indicate that electric mobility could save GHG emissions without causing a significant increase in domestic land use for energy crop production. Costs of electric cars are still prohibitive. Second generation biofuels are more effective in producing fuels than first generation ethanol. However, competition with power and heat production from ligno-cellulosic feedstock causes an increase in GHG emissions when introducing second generation fuels in comparison to a baseline scenario. -- Highlights: → Assessment of land use and greenhouse gas emissions (GHG) of renewable transportation options. → Optimization model compares 1st and 2nd generation biofuels and bioelectricity for electric cars. → Use of agricultural land for 1st generation ethanol production is highest among options. → 2nd generation fuel production deviates resources from efficient heat and power production. → Electric cars use less land and save more GHG emissions than other options but costs are prohibitive.

  19. Multiregional environmental comparison of fossil fuel power generation-Assessment of the contribution of fugitive emissions from conventional and unconventional fossil resources

    NARCIS (Netherlands)

    Bouman, Evert A.; Ramirez, Andrea; Hertwich, Edgar G.

    2015-01-01

    In this paper we investigate the influence of fugitive methane emissions from coal, natural gas, and shale gas extraction on the greenhouse gas (GHG) impacts of fossil fuel power generation through its life cycle. A multiregional hybridized life cycle assessment (LCA) model is used to evaluate

  20. Substitutability of Electricity and Renewable Materials for Fossil Fuels in a Post-Carbon Economy

    Directory of Open Access Journals (Sweden)

    Antonio García-Olivares

    2015-11-01

    Full Text Available A feasible way to avoid the risk of energy decline and combat climate change is to build a 100% renewable global energy mix. However, a globally electrified economy cannot grow much above 12 electric terawatts without putting pressure on the limits of finite mineral reserves. Here we analyze whether 12 TW of electricity and 1 TW of biomass (final power will be able to fuel a future post-carbon economy that can provide similar services to those of a contemporary economy. Contrarily to some pessimistic expectations, this analysis shows that the principle economic processes can be replaced with sustainable alternatives based on electricity, charcoal, biogas and hydrogen. Furthermore, those services that cannot be replaced are not as crucial so as to cause a return to a pre-industrial society. Even so, land transport and aviation are at the limit of what is sustainable, outdoor work should be reorganized, metal primary production should be based on hydrogen reduction when possible, mineral production should be increasingly based on recycling, the petrochemical industry should shrink to a size of 40%–43% of the 2012 petrochemical sector, i.e., a size similar to that the sector had in 1985–1986, and agriculture may require organic farming methods to be sustainable.

  1. Potential for Worldwide Displacement of Fossil-Fuel Electricity by Nuclear Energy in Three Decades Based on Extrapolation of Regional Deployment Data

    Science.gov (United States)

    Qvist, Staffan A.; Brook, Barry W.

    2015-01-01

    There is an ongoing debate about the deployment rates and composition of alternative energy plans that could feasibly displace fossil fuels globally by mid-century, as required to avoid the more extreme impacts of climate change. Here we demonstrate the potential for a large-scale expansion of global nuclear power to replace fossil-fuel electricity production, based on empirical data from the Swedish and French light water reactor programs of the 1960s to 1990s. Analysis of these historical deployments show that if the world built nuclear power at no more than the per capita rate of these exemplar nations during their national expansion, then coal- and gas-fired electricity could be replaced worldwide in less than a decade. Under more conservative projections that take into account probable constraints and uncertainties such as differing relative economic output across regions, current and past unit construction time and costs, future electricity demand growth forecasts and the retiring of existing aging nuclear plants, our modelling estimates that the global share of fossil-fuel-derived electricity could be replaced within 25–34 years. This would allow the world to meet the most stringent greenhouse-gas mitigation targets. PMID:25970621

  2. Potential for worldwide displacement of fossil-fuel electricity by nuclear energy in three decades based on extrapolation of regional deployment data.

    Science.gov (United States)

    Qvist, Staffan A; Brook, Barry W

    2015-01-01

    There is an ongoing debate about the deployment rates and composition of alternative energy plans that could feasibly displace fossil fuels globally by mid-century, as required to avoid the more extreme impacts of climate change. Here we demonstrate the potential for a large-scale expansion of global nuclear power to replace fossil-fuel electricity production, based on empirical data from the Swedish and French light water reactor programs of the 1960s to 1990s. Analysis of these historical deployments show that if the world built nuclear power at no more than the per capita rate of these exemplar nations during their national expansion, then coal- and gas-fired electricity could be replaced worldwide in less than a decade. Under more conservative projections that take into account probable constraints and uncertainties such as differing relative economic output across regions, current and past unit construction time and costs, future electricity demand growth forecasts and the retiring of existing aging nuclear plants, our modelling estimates that the global share of fossil-fuel-derived electricity could be replaced within 25-34 years. This would allow the world to meet the most stringent greenhouse-gas mitigation targets.

  3. Potential for worldwide displacement of fossil-fuel electricity by nuclear energy in three decades based on extrapolation of regional deployment data.

    Directory of Open Access Journals (Sweden)

    Staffan A Qvist

    Full Text Available There is an ongoing debate about the deployment rates and composition of alternative energy plans that could feasibly displace fossil fuels globally by mid-century, as required to avoid the more extreme impacts of climate change. Here we demonstrate the potential for a large-scale expansion of global nuclear power to replace fossil-fuel electricity production, based on empirical data from the Swedish and French light water reactor programs of the 1960s to 1990s. Analysis of these historical deployments show that if the world built nuclear power at no more than the per capita rate of these exemplar nations during their national expansion, then coal- and gas-fired electricity could be replaced worldwide in less than a decade. Under more conservative projections that take into account probable constraints and uncertainties such as differing relative economic output across regions, current and past unit construction time and costs, future electricity demand growth forecasts and the retiring of existing aging nuclear plants, our modelling estimates that the global share of fossil-fuel-derived electricity could be replaced within 25-34 years. This would allow the world to meet the most stringent greenhouse-gas mitigation targets.

  4. Environmental and health effects of fossil fuel and nuclear power generation

    International Nuclear Information System (INIS)

    Naqvi, S.J.; Black, D.B.; Phillips, C.R.

    1978-03-01

    The objective of this study was to identify and assess the present and future dimensions of environmental effects and impacts of various energy generation alternatives, and to place safety and environmental risks associated with the nuclear industry in Canada in perspective with the risks from other sources. It was found that nuclear power generation involves a comparable risk to that of conventional methods of thermoelectric power generation

  5. Heat and electricity generating methods

    International Nuclear Information System (INIS)

    Buter, J.

    1977-01-01

    A short synopsis on the actual methods of heating of lodgings and of industrial heat generation is given. Electricity can be generated in steam cycles heated by burning of fossil fuels or by nuclear energy. A valuable contribution to the electricity economy is produced in the hydroelectric power plants. Besides these classical methods, also the different procedures of direct electricity generation are treated: thermoelectric, thermionic, magnetohydrodynamic power sources, solar and fuel cells. (orig.) [de

  6. Assessment of wind energy potential for electricity generation

    African Journals Online (AJOL)

    Wind energy is proposed as an alternative source of electricity to fossil fuel generators .... can be connected to the national grid line to supplement the shortfall that arises during the dry ... systems are environmentally friendly. By generating ...

  7. Developing fossil fuel based technologies

    International Nuclear Information System (INIS)

    Manzoori, A.R.; Lindner, E.R.

    1991-01-01

    Some of the undesirable effects of burning fossil fuels in the conventional power generating systems have resulted in increasing demand for alternative technologies for power generation. This paper describes a number of new technologies and their potential to reduce the level of atmospheric emissions associated with coal based power generation, such as atmospheric and pressurized fluid bed combustion systems and fuel cells. The status of their development is given and their efficiency is compared with that of conventional pc fired power plants. 1 tab., 7 figs

  8. Cost and prices of electricity. Fossil fuels, nuclear power and renewable energy sources in comparison; Kosten und Preise fuer Strom. Fossile, Atomstrom und Erneuerbare Energien im Vergleich

    Energy Technology Data Exchange (ETDEWEB)

    Muehlenhoff, Joerg

    2011-09-15

    Consumers of electricity pay for production, transport and distribution as well as for taxes and dues. Electricity rates depend on various influencing factors, e.g. different fuel and capital cost of the power plants and the ratio of supply and demand in the electricity stock markets. End user electricity rats also include taxes and dues as well as the cost of power transmission. The publication presents background information on the formation of electricity rates in Germany. In a second step, the different cost factors of fossil fuels, nuclear power and renewable energy sources are compared. In particular, the external cost is gone into which often tends to be neglected in the electricity markets.

  9. Renewables vs fossil fuels

    Energy Technology Data Exchange (ETDEWEB)

    Adams, K. (Energy Research and Development Corporation (Australia))

    1992-01-01

    The paper examines some of the factors which will influence the future mix of energy from fossil fuels and renewable sources in Australia. Aspects covered include: the present energy situation; impact of environmental issues; potential for renewable energy; motivators for change; and research and development. It is concluded that the future for fossil fuels and renewable energy is dependent on a number of complex factors, many of which are currently unknown. The key factor is economic viability and that will be influenced by a range of factors such as policies of the Australian and overseas governments in relation to pollution and environment protection (reflected in the cost of meeting such requirements), exploration and production costs (also influenced by government policies), availability of supply, rate of technological development and the size of export markets. 8 refs., 2 figs., 1 tab.

  10. AIR POLLUTION: Emissions from Older Electricity Generating Units

    National Research Council Canada - National Science Library

    2002-01-01

    .... While fossil fuels-coal, natural gas, and oil-account for more than two thirds of our electricity, generating units that burn these fuels are major sources of airborne emissions that pose human...

  11. A proposed methodology for the calculation of direct consumption of fossil fuels and electricity for livestock breeding, and its application to Cyprus

    International Nuclear Information System (INIS)

    Kythreotou, Nicoletta; Florides, Georgios; Tassou, Savvas A.

    2012-01-01

    On-farm energy consumption is becoming increasingly important in the context of rising energy costs and concerns over greenhouse gas emissions. For farmers throughout the world, energy inputs represent a major and rapidly increasing cost. In many countries such as Cyprus, however, there is lack of systematic research on energy use in agriculture, which hinders benchmarking end evaluation of approaches and investment decisions for energy improvement. This study established a methodology for the estimation of the direct consumption of fossil fuels and electricity for livestock breeding, excluding transport, for locations where full data sets are not available. This methodology was then used to estimate fossil fuel and electricity consumption for livestock breeding in Cyprus. For 2008, this energy was found to be equivalent to 40.3 GWh that corresponds to 8% of the energy used in agriculture. Differences between the energy consumption per animal in Cyprus and other countries was found to be mainly due to differences in climatic conditions and technologies used in the farms. -- Highlights: ► A methodology to calculate energy consumption in farming applied to Cyprus. ► Annual consumption per animal was estimated to be 565 kWh/cow, 537 kWh/sow and 0.677 kWh/chicken. ► Direct energy consumption in livestock breeding is estimated at 40.3 GWh in 2008.

  12. Sustainability of Fossil Fuels

    Science.gov (United States)

    Lackner, K. S.

    2002-05-01

    For a sustainable world economy, energy is a bottleneck. Energy is at the basis of a modern, technological society, but unlike materials it cannot be recycled. Energy or more precisely "negentropy" (the opposite of entropy) is always consumed. Thus, one either accepts the use of large but finite resources or must stay within the limits imposed by dilute but self-renewing resources like sunlight. The challenge of sustainable energy is exacerbated by likely growth in world energy demand due to increased population and increased wealth. Most of the world still has to undergo the transition to a wealthy, stable society with the near zero population growth that characterizes a modern industrial society. This represents a huge unmet demand. If ten billion people were to consume energy like North Americans do today, world energy demand would be ten times higher. In addition, technological advances while often improving energy efficiency tend to raise energy demand by offering more opportunity for consumption. Energy consumption still increases at close to the 2.3% per year that would lead to a tenfold increase over the course of the next century. Meeting future energy demands while phasing out fossil fuels appears extremely difficult. Instead, the world needs sustainable or nearly sustainable fossil fuels. I propose the following definition of sustainable under which fossil fuels would well qualify: The use of a technology or resource is sustainable if the intended and unintended consequences will not force its abandonment within a reasonable planning horizon. Of course sustainable technologies must not be limited by resource depletion but this is only one of many concerns. Environmental impacts, excessive land use, and other constraints can equally limit the use of a technology and thus render it unsustainable. In the foreseeable future, fossil fuels are not limited by resource depletion. However, environmental concerns based on climate change and other environmental

  13. Fossil fuel power plant combustion control: Research in Italy

    International Nuclear Information System (INIS)

    Pasini, S.; Trebbi, G.

    1991-01-01

    Electric power demand forecasts for Italy to the year 2000 indicate an increase of about 50% which, due to the current moratorium on nuclear energy, should be met entirely by fossil fuel power plants. Now, there is growing public concern about possible negative health impacts due to the air pollution produced through the combustion of fossil fuels. In response to these concerns, ENEL (Italian National Electricity Board) is investing heavily in air pollution abatement technology R ampersand D. The first phase involves the investigation of pollution mechanisms in order to develop suitable mathematical models and diagnostic techniques. The validity of the models is being tested through through measurements made by sophisticated instrumentation placed directly inside the combustion chambers of steam generator systems. These are allowing engineers to develop improved combustion control methods designed to reduce air pollution at source

  14. Total energy analysis of nuclear and fossil fueled power plants

    International Nuclear Information System (INIS)

    Franklin, W.D.; Mutsakis, M.; Ort, R.G.

    1971-01-01

    The overall thermal efficiencies of electrical power generation were determined for Liquid Metal Fast Breeder, High Temperature Gas Cooled, Boiling Water, and Pressurized Water Reactors and for coal-, oil-, and gas-fired systems. All important energy consuming steps from mining through processing, transporting, and reprocessing the fuels were included in the energy balance along with electrical transmission and thermal losses and energy expenditures for pollution abatement. The results of these studies show that the overall fuel cycle efficiency of the light water nuclear fueled reactors is less than the efficiency of modern fossil fuel cycles. However, the nuclear fuel cycle based on the fast breeder reactors should produce power more efficiently than the most modern supercritical fossil fuel cycles. The high temperature gas cooled reactor has a cycle efficiency comparable to the supercritical coal fuel cycle

  15. Oxidation of dibenzothiophene as a model substrate for the removal of organic sulphur from fossil fuels by iron(III ions generated from pyrite by Acidithiobacillus ferrooxidans

    Directory of Open Access Journals (Sweden)

    VLADIMIR P. BESKOSKI

    2007-06-01

    Full Text Available Within this paper a new idea for the removal of organically bonded sulphur from fossil fuels is discussed. Dibenzothiophene (DBT was used as a model compound of organicmolecules containing sulphur. This form of (biodesulphurization was performed by an indirect mechanism in which iron(III ions generated from pyrite by Acidithiobacillus ferrooxidans performed the abiotic oxidation. The obtained reaction products, dibenzothiopene sulfoxide and dibenzothiophene sulfone, are more soluble in water than the basic substrate and the obtained results confirmed the basic hypothesis and give the posibility of continuing the experiments related to application of this (biodesulphurization process.

  16. Electric power monthly, July 1995 - with data for April 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This publication provides statistical data on net generation, fuel consumption, fossil fuel stocks, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on fossil fuel stocks and costs are also included.

  17. Electric power monthly, March 1998 with data for December 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The Electric Power Monthly (EPM) provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. 63 tabs.

  18. Fossil fuel furnace reactor

    Science.gov (United States)

    Parkinson, William J.

    1987-01-01

    A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

  19. Evaluation of hard fossil fuel

    International Nuclear Information System (INIS)

    Zivkovic, S.; Nuic, J.

    1999-01-01

    Because of its inexhaustible supplies hard fossil fuel will represent the pillar of the power systems of the 21st century. Only high-calorie fossil fuels have the market value and participate in the world trade. Low-calorie fossil fuels ((brown coal and lignite) are fuels spent on the spot and their value is indirectly expressed through manufactured kWh. For the purpose of determining the real value of a tonne of low-calorie coal, the criteria that help in establishing the value of a tonne of hard coal have to be corrected and thus evaluated and assessed at the market. (author)

  20. The effect of size-control policy on unified energy and carbon efficiency for Chinese fossil fuel power plants

    International Nuclear Information System (INIS)

    Zhang, Ning; Kong, Fanbin; Choi, Yongrok; Zhou, P.

    2014-01-01

    This paper examines the effect of size control policy on the energy and carbon efficiency for Chinese fossil fuel power industry. For this purpose, we propose two non-radial directional distance functions for energy/carbon efficiency analysis of fossil fuel electricity generation. One is named a total-factor directional distance function that incorporates the inefficiency of all input and output factors to measure the unified (operational and environmental) efficiency of fossil fuel power plants, and the other is called an energy–environmental directional distance function that can be used to measure the energy–environmental performance of fossil fuel electric power plants. Several standardized indicators for measuring unified efficiency and energy–environmental performance are derived from the two directional distance functions. An empirical study of 252 fossil fuel power plants in China is conducted by using the proposed approach. Our empirical results show that there exists a significant positive relationship between the plant size and unified efficiency, the five state-owned companies show lower unified efficiency and energy–environmental performance than other companies. It is suggested that Chinese government might need to consider private incentives and deregulation for its state-owned enterprises to improve their performance proactively. - Highlights: • Two non-radial directional distance functions are presented for energy/carbon efficiency analysis. • An empirical study of 252 fossil fuel power plants in China is conducted. • The five state-owned companies show lower unified efficiency and energy–environmental performance

  1. Electric power monthly January 1997 with data for October 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    This publication presents monthly electricity statistical data. Information is included on U.S. electric utility net generation, consumption of fossil fuels, and fossil-fuel stocks; U.S. electric utility sales; receipts and cost of fossil fuels at utilities; and monthly plant aggregates. A glossary is included.

  2. Status of fossil fuel reserves

    International Nuclear Information System (INIS)

    Laherrere, J.

    2005-01-01

    Reserves represent the sum of past and future productions up to the end of production. In most countries the reserve data of fields are confidential. Therefore, fossil fuel reserves are badly known because the published data are more political than technical and many countries make a confusion between resources and reserves. The cumulated production of fossil fuels represents only between a third and a fifth of the ultimate reserves. The production peak will take place between 2020 and 2050. In the ultimate reserves, which extrapolate the past, the fossil fuels represent three thirds of the overall energy. This document analyses the uncertainties linked with fossil fuel reserves: reliability of published data, modeling of future production, comparison with other energy sources, energy consumption forecasts, reserves/production ratio, exploitation of non-conventional hydrocarbons (tar sands, extra-heavy oils, bituminous shales, coal gas, gas shales, methane in overpressure aquifers, methane hydrates), technology impacts, prices impact, and reserves growth. (J.S.)

  3. Electric power monthly, February 1998 with data for November 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    The Electric Power Monthly (EPM) provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. 63 tabs.

  4. Approaches to bioremediation of fossil fuel contaminated soil: An ...

    African Journals Online (AJOL)

    Approaches to bioremediation of fossil fuel contaminated soil: An overview. ... African Journal of Biotechnology ... neither generates waste nor pollutes the soil environment, the final products either through accidental or deliberate spillage can ...

  5. Electric properties of biodiesel in the range from 20 Hz to 20 MHz. Comparison with diesel fossil fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Prieto, L.E. [Grupo de Energias Renovables, Facultad de Ingenieria, Universidad de Buenos Aires, Av. Paseo Colon 850, Buenos Aires, 1063 (Argentina); Sorichetti, P.A. [Laboratorio de Sistemas Liquidos, Facultad de Ingenieria, Universidad de Buenos Aires, Buenos Aires (Argentina); Romano, S.D. [Grupo de Energias Renovables, Facultad de Ingenieria, Universidad de Buenos Aires, Av. Paseo Colon 850, Buenos Aires, 1063 (Argentina); CONICET: Consejo Nacional de Investigaciones Cientificas y Tecnicas, Av. Rivadavia 1917, Buenos Aires, 1033 (Argentina)

    2008-07-15

    Determination of electric properties at the different steps of biodiesel (BD) production contributes to a better understanding of the influence of the variables. Measurements of complex permittivity and conductivity make possible to survey efficiently the diverse steps of the industrial-scale production process, from the conditioning of the raw material to the quality control of the final product. Moreover, electrical measurements are 'non-destructive' and require relatively small sample volumes. In this work, complex permittivity spectra of BD and DF from 20 Hz to 20 MHz are presented. Experimental data were taken in a range of temperatures from 25 to 75 C, measured with an accuracy of {+-}0.1 C. The measuring system used in this work requires a sample volume of 25cm{sup 3} and gives the real part of permittivity ({epsilon}{sup '}) with an accuracy better than 1%. Dielectric loss (tg{delta}) can be measured between 10{sup -2} and 10{sup 2}. (author)

  6. Nuclear energy and the fossil fuels

    Energy Technology Data Exchange (ETDEWEB)

    Folinsbee, R E

    1970-01-01

    The energy phenomenon of the first half of this century has been the increase in the use of petroleum and natural gas as fuels. World demand for petroleum energy has been increasing at the rate of 11% per yr. This demand is unsustainable, for the supply, as with any exhaustible resource, is limited. The continental energy policy is essentially one of integrating the North American supply and demand picture for the fossil fuels, using oil and gas from the interior of the continent to supply demand from the interior and using overseas supplies, up the limit of national security, for energy users farthest removed from these sources. The economics of expensive pipeline transportation as against cheap supertankers dictates this policy. Beyond any shadow of a doubt, the fuel of the future will be nuclear, and for this century almost entirely the energy of fission rather than of fusion. Recent estimates suggest that as much as 50% of the energy for the U.S. will be nuclear by the year 2,000, and for Canada the more modest National Energy Board estimate holds that in 1990, 35% of Canadian electric generation will be by nuclear power reactors concentrated in the fuel-starved province of Ontario. (17 refs.)

  7. Elucidating the consumption and CO_2 emissions of fossil fuels and low-carbon energy in the United States using Lotka–Volterra models

    International Nuclear Information System (INIS)

    Tsai, Bi-Huei; Chang, Chih-Jen; Chang, Chun-Hsien

    2016-01-01

    By using the Lotka–Volterra model, this work examines for the first time the feasibility of using low-carbon energy to reduce fossil fuel consumption in the United States and, ultimately, to decrease CO_2 emissions. The research sample in this work consists of data on energy consumption and CO_2 emissions in the United States. Parameter estimation results reveal that although the consumption of low-carbon energy increases the consumption of fossil fuels, the latter does not affect the former. Low-carbon energy usage, including nuclear energy and solar photovoltaic power, increases fossil fuel consumption because the entire lifetime of a nuclear or solar energy facility, from the construction of electricity plants to decommissioning, consumes tremendous amounts of fossil fuels. This result verifies the infeasibility of low-carbon energy to replace fossil fuels under the current mining technology, electricity generation skills and governmental policy in the United States and explains why the United States refused to become a signatory of the Kyoto Protocol. Equilibrium analysis results indicate that the annual consumption of fossil fuels will ultimately exceed that of low-carbon energy by 461%. Since our proposed Lotka–Volterra model accurately predicts the consumption and CO_2 emission of different energy sources, this work contributes to the energy policies. - Highlights: • Our Lotka–Volterra model accurately predicts consumption of different energy sources. • We find the current infeasibility of using low-carbon energy to reduce fossil fuels. • The set-up of nuclear and solar plants increases fossil fuel usage in the U.S. • The consumption of fossil fuels will exceed that of low-carbon energy by 435%. • United States government prefers economic development over environmental protection.

  8. Electric Power Monthly with data for July 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    This publication provides monthly statistics at the state, census division, and U.S. levels for net generation; fossil fuel consumption and stocks, quantity, and quality of fossil fuels; cost of fossil fuels; electricity retail sales; associated revenue; and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council regions. Statistics on net generation are published by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. The monthly update is summarized, and industry developments are briefly described. 57 tabs.

  9. New fossil fuel combustion technologies

    International Nuclear Information System (INIS)

    Minghetti, E.; Palazzi, G.

    1995-01-01

    The aim of the present article is to supply general information concerning fossil fuels that represent, today and for the near future, the main energy source of our Planet. New fossil fuel technologies are in continual development with two principal goals: to decrease environmental impact and increase transformation process efficiency. Examples of this efforts are: 1) gas-steam combined cycles integrated with coal gasification plants, or with pressurized-fluidized-bed combustors; 2) new cycles with humid air or coal direct fired turbine, now under development. In the first part of this article the international and national energy situations and trends are shown. After some brief notes on environmental problems and alternative fuels, such as bio masses and municipal wastes, technological aspects, mainly relevant to increase fossil-fueled power plant performances, are examined in greater depth. Finally the research and technological development activities of ENEA (Italian Agency for New Technologies, Energy and Environment) Engineering Branch, in order to improve fossil fuels energy and environmental use are presented

  10. Cofiring biomass and coal for fossil fuel reduction and other benefits–Status of North American facilities in 2010

    Science.gov (United States)

    David Nicholls; John. Zerbe

    2012-01-01

    Cofiring of biomass and coal at electrical generation facilities is gaining in importance as a means of reducing fossil fuel consumption, and more than 40 facilities in the United States have conducted test burns. Given the large size of many coal plants, cofiring at even low rates has the potential to utilize relatively large volumes of biomass. This could have...

  11. Sanitary effects of fossil fuels

    International Nuclear Information System (INIS)

    Nifenecker, H.

    2006-01-01

    In this compilation are studied the sanitary effects of fossil fuels, behavioral and environmental sanitary risks. The risks in connection with the production, the transport and the distribution(casting) are also approached for the oil(petroleum), the gas and the coal. Accidents in the home are evoked. The risks due to the atmospheric pollution are seen through the components of the atmospheric pollution as well as the sanitary effects of this pollution. (N.C.)

  12. Environmental impact of fossil fuel utilization in the thermal power plant

    International Nuclear Information System (INIS)

    Ghasem D Najafpour; Seyed Jafar Mehdizadeh; Abdul Rahman Mohamed

    2000-01-01

    Carbon dioxide causes green house effect, has been considered as a pollutant source of our safe environment. Since combustion of fossil fuel may create tremendous amount of carbon dioxide, detecting any pollutant sources would be important to eliminate the pollution sources. Evaluation of smoke dispersion that has been generated by a power plant utilizing fossil fuel is the objective of this paper. The concentration of NO, and SO, in the soil, have been analyzed from a distance of 3 to 4 km far from power plant. The experimental results shown. that the concentration of toxic gases was a little above the international standards. Replacement of fossil fuel by natural gas caused NO, concentration to be developed in the atmosphere, therefore usage of natural gas is limited by environmental protection agencies. Beside the nuclear power plant, the power generated by other sources. are limited. Electric power generated by water dam is not a major contribution of electric power demand. Therefore generation of electricity by any other energy sources, which are friendly to the environment, is recommended. Other sources of energy, such as wind power, solar energy, geothermal, ocean thennal and renewable source of energy can be considered safe for the environment. The goal of environmental management system would be to meet the minimum requirements were established and demanded by the local environmental protection agency or international standard organization (ISO-14000). (Author)

  13. The potential of PVs in developing countries: maintaining an equitable society in the face of fossil fuel depletion

    OpenAIRE

    Byrd, Hugh

    2010-01-01

    The availability of an adequate electrical supply to the whole population is essential for the wellbeing and equity of a society. However, for those countries that are largely dependent on fossil fuels for generating electricity, peak oil and gas threaten energy security and the ability to provide an uninterrupted supply of electricity on an equitable basis. This paper will review future energy demand and supply in Malaysia and implications for its electricity supply. It will demonstrate ...

  14. Electric power monthly, April 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-07

    The Electric Power Monthly is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions.

  15. Electric power monthly, May 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-25

    The Electric Power Monthly (EPM) is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions.

  16. Emissions Scenarios and Fossil-fuel Peaking

    Science.gov (United States)

    Brecha, R.

    2008-12-01

    Intergovernmental Panel on Climate Change (IPCC) emissions scenarios are based on detailed energy system models in which demographics, technology and economics are used to generate projections of future world energy consumption, and therefore, of greenhouse gas emissions. Built into the assumptions for these scenarios are estimates for ultimately recoverable resources of various fossil fuels. There is a growing chorus of critics who believe that the true extent of recoverable fossil resources is much smaller than the amounts taken as a baseline for the IPCC scenarios. In a climate optimist camp are those who contend that "peak oil" will lead to a switch to renewable energy sources, while others point out that high prices for oil caused by supply limitations could very well lead to a transition to liquid fuels that actually increase total carbon emissions. We examine a third scenario in which high energy prices, which are correlated with increasing infrastructure, exploration and development costs, conspire to limit the potential for making a switch to coal or natural gas for liquid fuels. In addition, the same increasing costs limit the potential for expansion of tar sand and shale oil recovery. In our qualitative model of the energy system, backed by data from short- and medium-term trends, we have a useful way to gain a sense of potential carbon emission bounds. A bound for 21st century emissions is investigated based on two assumptions: first, that extractable fossil-fuel resources follow the trends assumed by "peak oil" adherents, and second, that little is done in the way of climate mitigation policies. If resources, and perhaps more importantly, extraction rates, of fossil fuels are limited compared to assumptions in the emissions scenarios, a situation can arise in which emissions are supply-driven. However, we show that even in this "peak fossil-fuel" limit, carbon emissions are high enough to surpass 550 ppm or 2°C climate protection guardrails. Some

  17. Synergistic energy conversion process using nuclear energy and fossil fuels

    International Nuclear Information System (INIS)

    Hori, Masao

    2007-01-01

    Because primary energies such as fossil fuels, nuclear energy and renewable energy are limited in quantity of supply, it is necessary to use available energies effectively for the increase of energy demand that is inevitable this century while keeping environment in good condition. For this purpose, an efficient synergistic energy conversion process using nuclear energy and fossil fuels together converted to energy carriers such are electricity, hydrogen, and synthetic fuels seems to be effective. Synergistic energy conversion processes containing nuclear energy were surveyed and effects of these processes on resource saving and the CO 2 emission reduction were discussed. (T.T.)

  18. July 1, 2007: electricity and gas markets open to competition. Oil and gas pipelines, vital energy arteries. Warming of the Earth's northern latitudes: what are the consequences? Nuclear power, an alternative to costly fossil fuels

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    This issue of Alternatives newsletter features 4 main articles dealing with: 1 - July 1, 2007 - electricity and gas markets open to competition: first telecommunications, now energy. Starting July 1, 2007, every one of the European Union's 500 million consumers is free to chose a supplier for electricity and natural gas. How will this work? A road map. 2 - Oil and gas pipelines, vital energy arteries: they criss-cross the planet over land and under sea, offering an alternative to sea lanes. How do these strategically placed pipelines work to transport fossil fuels? 3 - Warming of the Earth's northern latitudes: what are the consequences?: Dr. Oleg Anisimov, one of the experts on the Intergovernmental Panel on Climate Change (IPCC) that met in April 2007, reviews the consequences of human activity on permafrost, that huge expense of ice covering almost 20% of the Earth's surface. 4 - Nuclear power, an alternative to costly fossil fuels: part two of a report on the World energy outlook. This publication of the International Energy agency predicts that nuclear power will continue to be one of the main sources of energy supply for the next 25 years

  19. The environmental dilemma of fossil fuels

    International Nuclear Information System (INIS)

    MacCracken, M.C.

    1992-04-01

    The increasing atmospheric concentration of carbon dioxide poses an environmental dilemma for fossil fuel energy generation that, unlike other related emissions, cannot be resolved by control technologies alone. Although fossil fuels presently provide the most cost-effective global energy source, and model projections suggest that their use is initiating climatic changes which, while quite uncertain, may induce significant, counter-balancing impacts to water resources, coastal resources, ecological systems, and possibly agricultural production. The climate model indicate that the warming should have begun, and there is some evidence for this occurring, but at a less rapid and more uneven rate than projected. In addition, different climate models are not yet in agreement in their latitudinal or regional predictions, and it will likely require a decade or more for such agreement to develop as high performance computers become available for addressing this ''grand challenge'' problem. Thus, in addition to the prospect for climatic change, the uncertainties of the changes and associated impacts contribute to the dilemma of dealing with the issue. Further, the problem is pervasive and international scope, with different countries and peoples having differing perspectives of technology, development, and environmental responsibility. Dealing with this issue will thus require creativity, commitment, and flexibility

  20. Economic analysis to compare fabrication of nuclear power and fossil fuel power plants at Iran

    International Nuclear Information System (INIS)

    Rasouliye Koohi, Mojtaba

    1997-01-01

    Electric power due to its many advantages over other forms of energies covers most of the world's energy demands.The electric power can be produced by various energy converting systems fed by different energy resources like fossil fuels, nuclear, hydro and renewable energies, each having their own appropriate technologies. The fossil fuel not only consumes the deplete and precious sources of non conventional energies but they add pollution to environment too. The nuclear power plants has its own share of radioactive pollutions which, of course can be controlled by taking precautionary measures. The investing cost of each generated unit (KWh) in the nuclear power plants, comparing with its equivalent production by fossil fuels is investigated. The various issues of economical analysis, technical, political and environmental are the different aspects, which individually can influence the decisions for kind of power plant to be installed. Finally, it is concluded that the fossil and nuclear power generations both has its own advantages and disadvantages. Hence, from a specializing point of view, it may not be proper to prefer one over the others

  1. Fossil-Fuel C02 Emissions Database and Exploration System

    Science.gov (United States)

    Krassovski, M.; Boden, T.

    2012-04-01

    Fossil-Fuel C02 Emissions Database and Exploration System Misha Krassovski and Tom Boden Carbon Dioxide Information Analysis Center Oak Ridge National Laboratory The Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL) quantifies the release of carbon from fossil-fuel use and cement production each year at global, regional, and national spatial scales. These estimates are vital to climate change research given the strong evidence suggesting fossil-fuel emissions are responsible for unprecedented levels of carbon dioxide (CO2) in the atmosphere. The CDIAC fossil-fuel emissions time series are based largely on annual energy statistics published for all nations by the United Nations (UN). Publications containing historical energy statistics make it possible to estimate fossil-fuel CO2 emissions back to 1751 before the Industrial Revolution. From these core fossil-fuel CO2 emission time series, CDIAC has developed a number of additional data products to satisfy modeling needs and to address other questions aimed at improving our understanding of the global carbon cycle budget. For example, CDIAC also produces a time series of gridded fossil-fuel CO2 emission estimates and isotopic (e.g., C13) emissions estimates. The gridded data are generated using the methodology described in Andres et al. (2011) and provide monthly and annual estimates for 1751-2008 at 1° latitude by 1° longitude resolution. These gridded emission estimates are being used in the latest IPCC Scientific Assessment (AR4). Isotopic estimates are possible thanks to detailed information for individual nations regarding the carbon content of select fuels (e.g., the carbon signature of natural gas from Russia). CDIAC has recently developed a relational database to house these baseline emissions estimates and associated derived products and a web-based interface to help users worldwide query these data holdings. Users can identify, explore and download desired CDIAC

  2. Electric power monthly

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The Energy Information Administration (EIA) prepares the Electric Power Monthly (EPM) for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. This publication provides monthly statistics for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source, consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead.

  3. Control of SO2 and NOx emissions from fossil fuel-fired power plants: Research and practice of TPRI

    International Nuclear Information System (INIS)

    Ming-Chuan Zhang.

    1993-01-01

    The generation of electric power in China has been dominated by coal for many years. By the end of 1990, total installed generating capacity reached 135 GW, of which fossil fuel-fired plants accounted for 74 percent. The total electricity generated reached 615 TWh, with fossil fuels accounting for 80.5 percent. About 276 million tons of raw coal are consumed in these fossil fuel-burning units per year, accounting for about 25 percent of the total output of the country. According to the government, by the year 2000, the total installed capacity of Chinese power systems should be at least 240 GW, of which fossil fuels will account for about 77 percent. The coal required for power generation will increase to about 530 million tons per year, accounting for about 38 percent of the total coal output. So, it is obvious that coal consumed in coal-fired power plants occupies a very important place in the national fuel balance. The current environmental protection standards, which are based on ground-level concentrations of pollutants, do not effectively lead to the control of pollution emission concentrations or total SO 2 emissions. Due to the practical limitations of the Chinese economy, there is a limited capability to introduce advanced sulfur emission control technologies. Thus, except for the two 360 MW units imported from Japan for the Luohuang Power Plant in Shichuan province, all the other fossil fuel-fired units have not yet adopted any kind of SO 2 removal measures. The Luohuang units are equipped with Mitsubishi limestone flue gas desulfurization systems. Because of the lack of effective pollution control technologies, large areas of the country have been seriously polluted by SO 2 , and some of them even by acid rain

  4. Fossil Fuels, Backstop Technologies, and Imperfect Substitution

    NARCIS (Netherlands)

    van der Meijden, G.C.; Pittel, Karen; van der Ploeg, Frederick; Withagen, Cees

    2014-01-01

    This chapter studies the transition from fossil fuels to backstop technologies in a general equilibrium model in which growth is driven by research and development. The analysis generalizes the existing literature by allowing for imperfect substitution between fossil fuels and the new energy

  5. What are the environmental benefits of electric vehicles? A life cycle based comparison of electric vehicles with biofuels, hydrogen and fossil fuels

    Energy Technology Data Exchange (ETDEWEB)

    Jungmeier, Gerfried; Canella, Lorenza; Beermann, Martin; Pucker, Johanna; Koenighofer, Kurt [JOANNEUM RESEARCH Forschungsgesellschaft mbH, Graz (Austria)

    2013-06-01

    The Renewable Energy Directive aims reaching a share of 10% of renewable fuels in Europe in 2020. These renewable fuels are transportation biofuels, renewable electricity and renewable hydrogen. In most European countries transportation biofuels are already on the transportation fuel market in significant shares, e.g. in Austria 7% by blending bioethanol to gasoline and biodiesel to diesel. Electric vehicles can significantly contribute towards creating a sustainable, intelligent mobility and intelligent transportation systems. They can open new business opportunities for the transportation engineering sector and electricity companies. But the broad market introduction of electric vehicles is only justified due to a significant improvement of the environmental impact compared to conventional vehicles. This means that in addition to highly efficient electric vehicles and renewable electricity, the overall environmental impact in the life cycle - from building the vehicles and the battery to recycling at the end of its useful life - has to be limited to an absolute minimum. There is international consensus that the environmental effects of electric vehicles (and all other fuel options) can only be analysed on the basis of life cycle assessment (LCA) including the production, operation and the end of life treatment of the vehicles. The LCA results for different environmental effects e.g. greenhouse gas emissions, primary energy consumption, eutrophication will be presented in comparison to other fuels e.g. transportation biofuels, gasoline, natural gas and the key factors to maximize the environmental benefits will be presented. The presented results are mainly based on a national research projects. These results are currently compared and discussed with international research activities within the International Energy Agency (lEA) in the Implementing Agreement on Hybrid and Electric Vehicles (IA-HEV) in Task 19 ''Life Cycle Assessment of Electric Vehicles

  6. Electricity from wetlands

    NARCIS (Netherlands)

    Wetser, K.

    2016-01-01

    Sustainable electricity generation by the plant microbial fuel cell

    Fossil fuels are currently the main source of electricity production. Combustion of fossil fuels causes air pollution severely affecting human health and nature. This results in an increasing demand for

  7. Environmental costs of fossil fuel energy production

    International Nuclear Information System (INIS)

    Riva, A.; Trebeschi, C.

    1997-01-01

    The costs of environmental impacts caused by fossil fuel energy production are external to the energy economy and normally they are not reflected in energy prices. To determine the environmental costs associated with an energy source a detailed analysis of all environmental impacts of the complete energy cycle is required. The economic evaluation of environmental damages is presented caused by atmospheric emissions produced by fossil fuel combustion for different uses. Considering the emission factors of sulphur oxides, nitrogen oxides, dust and carbon dioxide and the economic evaluation of their environmental damages reported in literature, a range of environmental costs associated with different fossil fuels and technologies is presented. A comparison of environmental costs resulting from atmospheric emissions produced by fossil-fuel combustion for energy production shows that natural gas has a significantly higher environmental value than other fossil fuels. (R.P.)

  8. Electric power monthly with data for June 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    This publication provides monthly statistics at the state, census division, and U.S. levels for net generation; fossil fuel consumption and stocks, quantity, and quality of fossil fuels; cost of fossil fuels; electricity retail sales; associated revenue; and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity, and cost of fossil fuels are also displayed for the North American Electric Reliability Council regions. Statistics on net generation by energy source and capability of new generating units by company and plant are also included. A section is included in the report which summarizes major industry developments. 1 fig., 64 tabs.

  9. CO2 emission reduction potential of large-scale energy efficiency measures in power generation from fossil fuels in China, India, Brazil, Indonesia and South Africa

    OpenAIRE

    Boehme, Benn J.; Krey, Matthias

    2005-01-01

    We quantify the theoretical potential for energy-efficiency CDM projects using best available technology in coal, natural gas or oil fuelled power generation in China, India, Brazil, Indonesia and South Africa, looking at new power plants or retrofit measures. We then discuss the likelihood of the potential emission reductions materialising under CDM. Our results are very sensitive to choices of baseline and project efficiencies and the level of electricity generation from potential emission ...

  10. Fossil fuel support mechanisms in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Lampinen, Ari

    2013-10-15

    Fossil fuel subsidies and other state support for fossil fuels are forbidden by the Kyoto Protocol and other international treaties. However, they are still commonly used. This publication presents and analyses diverse state support mechanisms for fossil fuels in Finland in 2003-2010. Total of 38 support mechanisms are covered in quantitative analysis and some other mechanisms are mentioned qualitatively only. For some mechanisms the study includes a longer historical perspective. This is the case for tax subsidies for crude oil based traffic fuels that have been maintained in Finland since 1965.

  11. Influence of fossil-fuel power plant emissions on the surface fine particulate matter in the Seoul Capital Area, South Korea.

    Science.gov (United States)

    Kim, Byeong-Uk; Kim, Okgil; Kim, Hyun Cheol; Kim, Soontae

    2016-09-01

    The South Korean government plans to reduce region-wide annual PM2.5 (particulate matter with an aerodynamic diameter ≤2.5 μm) concentrations in the Seoul Capital Area (SCA) from 2010 levels of 27 µg/m(3) to 20 µg/m(3) by 2024. At the same time, it is inevitable that emissions from fossil-fuel power plants will continue to increase if electricity generation expands and the generation portfolio remains the same in the future. To estimate incremental PM2.5 contributions due to projected electricity generation growth in South Korea, we utilized an ensemble forecasting member of the Integrated Multidimensional Air Quality System for Korea based on the Community Multi-scale Air Quality model. We performed sensitivity runs with across-the-board emission reductions for all fossil-fuel power plants in South Korea to estimate the contribution of PM2.5 from domestic fossil-fuel power plants. We estimated that fossil-fuel power plants are responsible for 2.4% of the annual PM2.5 national ambient air quality standard in the SCA as of 2010. Based on the electricity generation and the annual contribution of fossil-fuel power plants in 2010, we estimated that annual PM2.5 concentrations may increase by 0.2 µg/m(3) per 100 TWhr due to additional electricity generation. With currently available information on future electricity demands, we estimated that the total future contribution of fossil-fuel power plants would be 0.87 µg/m(3), which is 12.4% of the target reduction amount of the annual PM2.5 concentration by 2024. We also approximated that the number of premature deaths caused by existing fossil-fuel power plants would be 736 in 2024. Since the proximity of power plants to the SCA and the types of fuel used significantly impact this estimation, further studies are warranted on the impact of physical parameters of plants, such as location and stack height, on PM2.5 concentrations in the SCA due to each precursor. Improving air quality by reducing fine particle

  12. Hybrid Test Bed of Wind Electric Generator with Photovoltaic Panels

    OpenAIRE

    G.D.Anbarasi Jebaselvi; S.Paramasivam

    2014-01-01

    Driven by the increasing costs of power production and decreasing fossil fuel reserves with the addition of global environmental concerns, renewable energy is now becoming significant fraction of total electricity production in the world. Advancements in the field of wind electric generator technology and power electronics help to achieve rapid progress in hybrid power system which mainly involves wind, solar and diesel energy with a good battery back-up. Here the discussion brings about the ...

  13. Life cycle assessment of electricity generation in Mexico

    International Nuclear Information System (INIS)

    Santoyo-Castelazo, E.; Gujba, H.; Azapagic, A.

    2011-01-01

    This paper presents for the first time a Life Cycle Assessment (LCA) study of electricity generation in Mexico. The electricity mix in Mexico is dominated by fossil fuels, which contribute around 79% to the total primary energy; renewable energies contribute 16.5% (hydropower 13.5%, geothermal 3% and wind 0.02%) and the remaining 4.8% is from nuclear power. The LCA results show that 225 TWh of electricity generate about 129 million tonnes of CO 2 eq. per year, of which the majority (87%) is due to the combustion of fossil fuels. The renewables and nuclear contribute only 1.1% to the total CO 2 eq. Most of the other LCA impacts are also attributed to the fossil fuel options. The results have been compared with values reported for other countries with similar electricity mix, including Italy, Portugal and the UK, showing good agreement. -- Highlights: → This paper presents for the first time a Life Cycle Assessment (LCA) study of electricity generation in Mexico. → 129 million tonnes of CO 2 eq. per year are emitted from 225 TWh of electricity generated per year of which 87% is due to the combustion of fossil fuels. → Coal technologies generate 1094 g CO 2 eq./kWh, heavy fuel oil 964 g CO 2 eq./kWh, and gas 468 g CO 2 eq./kWh; by contrast, nuclear and hydro emit 12 g CO 2 eq./kWh. → Heavy fuel oil contributes most to the life cycle environmental impacts (59-97%). → The results show good agreement with values reported for other countries with similar electricity mix, including Italy, Portugal and the UK.

  14. Pollution and exhaustibility of fossil fuels

    NARCIS (Netherlands)

    Withagen, C.A.A.M.

    1994-01-01

    The use of fossil fuels causes environmental damage. This is modeled and the ‘optimal’ rate of depletion is derived. Also this trajectory is compared with the case where there occurs no environmental damage.

  15. Evaluation of conventional power systems. [emphasizing fossil fuels and nuclear energy

    Science.gov (United States)

    Smith, K. R.; Weyant, J.; Holdren, J. P.

    1975-01-01

    The technical, economic, and environmental characteristics of (thermal, nonsolar) electric power plants are reviewed. The fuel cycle, from extraction of new fuel to final waste management, is included. Emphasis is placed on the fossil fuel and nuclear technologies.

  16. Fossil fuels in the 21st century.

    Science.gov (United States)

    Lincoln, Stephen F

    2005-12-01

    An overview of the importance of fossil fuels in supplying the energy requirements of the 21st century, their future supply, and the impact of their use on global climate is presented. Current and potential alternative energy sources are considered. It is concluded that even with substantial increases in energy derived from other sources, fossil fuels will remain a major energy source for much of the 21st century and the sequestration of CO2 will be an increasingly important requirement.

  17. Understanding social acceptance of electricity generation sources

    International Nuclear Information System (INIS)

    Bronfman, Nicolás C.; Jiménez, Raquel B.; Arévalo, Pilar C.; Cifuentes, Luis A.

    2012-01-01

    Social acceptability is a determinant factor in the failure or success of the government's decisions about which electricity generation sources will satisfy the growing demand for energy. The main goal of this study was to validate a causal trust-acceptability model for electricity generation sources. In the model, social acceptance of an energy source is directly caused by perceived risk and benefit and also by social trust in regulatory agencies (both directly and indirectly, through perceived risk and benefit). Results from a web-based survey of Chilean university students demonstrated that data for energy sources that are controversial in Chilean society (fossil fuels, hydro, and nuclear power) fit the hypothesized model, whereas data for non conventional renewable energy sources (solar, wind, geothermal and tidal) did not. Perceived benefit had the greatest total effect on acceptability, thus emerging as a key predictive factor of social acceptability of controversial electricity generation sources. Further implications for regulatory agencies are discussed. - Highlights: ► We tested a causal trust-acceptability model for electricity generation sources in Chile. ► Data for controversial energy sources in the Chilean society (fossil fuels, hydro and nuclear power) fit the hypothesized model. ► Data for non conventional renewable energy sources did not fit the data. ► Perceived benefit showed the greatest total effect on acceptability.

  18. Aircraft borne combined measurements of the Fukushima radionuclide Xe-133 and fossil fuel combustion generated pollutants in the TIL - implications for cyclone induced rapid lift and TIL physico-chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Schlager, Hans; Aufmhoff, Heinfried; Baumann, Robert; Schumann, Ulrich [DLR IPA, Oberpfaffenhofen (Germany); Arnold, Frank [MPI Kernphysik, Heidelberg (Germany); DLR IPA, Oberpfaffenhofen (Germany); Simgen, Hardy; Lindemann, Siegfried; Rauch, Ludwig; Kaether, Frank [MPI Kernphysik, Heidelberg (Germany); Pirjola, Liisa [University of Helsinki, Helsinki (Finland)

    2013-07-01

    The radionuclide Xe-133, released by the March 2011 nuclear disaster at Fukushima/Daiichi (hereafter FD), represents an ideal tracer for atmospheric transport. We report the, to our best knowledge, only aircraft borne measurements of FD Xe-133 in the Tropopause Inversion Layer (TIL), indicating rapid lift of polluted planetary boundary layer air to the TIL. On the same research aircraft (FALCON), we have also conducted on-line measurements of fossil fuel combustion generated pollutant gases (SO{sub 2} and other species), which had increased concentrations in the TIL. In addition, we have conducted supporting model simulations of transport, chemical processes, and aerosol processes. Our investigations reveal a potentially important impact of East-Asian cyclone induced pollutants transport to the TIL. This impact includes particularly aerosol formation.

  19. Hinkley Point 'C' power station public inquiry: proof of evidence on the need for Hinkley Point 'C' to help meet capacity requirement and the non-fossil-fuel proportion economically

    International Nuclear Information System (INIS)

    Jenkin, F.P.

    1988-09-01

    A public inquiry has been set up to examine the planning application made by the Central Electricity Generating Board (CEGB) for the construction of a 1200 MW Pressurized Water Reactor power station at Hinkley Point (Hinkley Point ''C'') in the United Kingdom. The purpose of this evidence to the Inquiry is to show why there is a need now to go ahead with the construction of Hinkley Point ''C'' generating station to help meet the non-fossil-fuel proportion of generation economically and also to help meet future generating capacity requirement. The CEGB submits that it is appropriate to compare Hinkley Point ''C'' with other non-fossil-fuel alternatives under various bases. Those dealt with by this proof of evidence are as follows: i) ability to contribute to capacity need and in assisting the distribution companies to meet their duty to supply electricity; ii) ability to contribute to the non-fossil-fuel proportion; iii) relative economic merit. (author)

  20. Electric power monthly, December 1997 with data for September 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. This publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. 63 tabs.

  1. Electric power monthly, May 1995 with data for February 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-24

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisiommakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuel, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant.

  2. Taxing fossil fuels under speculative storage

    International Nuclear Information System (INIS)

    Tumen, Semih; Unalmis, Deren; Unalmis, Ibrahim; Unsal, D. Filiz

    2016-01-01

    Long-term environmental consequences of taxing fossil fuel usage have been extensively studied in the literature. However, these taxes may also impose several short-run macroeconomic policy challenges, the nature of which remains underexplored. This paper investigates the mechanisms through which environmental taxes on fossil fuel usage can affect the main macroeconomic variables in the short-run. We concentrate on a particular mechanism: speculative storage. Formulating and using a dynamic stochastic general equilibrium (DSGE) model, calibrated for the United States, with an explicit storage facility and nominal rigidities, we show that in designing environmental tax policies it is crucial to account for the fact that fossil fuel prices are subject to speculation. The existence of forward-looking speculators in the model improves the effectiveness of tax policies in reducing fossil fuel usage. Improved policy effectiveness, however, is costly: it drives inflation and interest rates up, while impeding output. Based on this tradeoff, we seek an answer to the question how monetary policy should interact with environmental tax policies in our DSGE model of fossil fuel storage. We show that, in an environment with no speculative storers, monetary policy should respond to output along with CPI inflation in order to minimize the welfare losses brought by taxes. However, when the storage facility is activated, responding to output in the monetary policy rule becomes less desirable.

  3. When will fossil fuel reserves be diminished?

    International Nuclear Information System (INIS)

    Shafiee, Shahriar; Topal, Erkan

    2009-01-01

    Crude oil, coal and gas are the main resources for world energy supply. The size of fossil fuel reserves and the dilemma that 'when non-renewable energy will be diminished' is a fundamental and doubtful question that needs to be answered. This paper presents a new formula for calculating when fossil fuel reserves are likely to be depleted and develops an econometrics model to demonstrate the relationship between fossil fuel reserves and some main variables. The new formula is modified from the Klass model and thus assumes a continuous compound rate and computes fossil fuel reserve depletion times for oil, coal and gas of approximately 35, 107 and 37 years, respectively. This means that coal reserves are available up to 2112, and will be the only fossil fuel remaining after 2042. In the Econometrics model, the main exogenous variables affecting oil, coal and gas reserve trends are their consumption and respective prices between 1980 and 2006. The models for oil and gas reserves unexpectedly show a positive and significant relationship with consumption, while presenting a negative and significant relationship with price. The econometrics model for coal reserves, however, expectedly illustrates a negative and significant relationship with consumption and a positive and significant relationship with price. Consequently, huge reserves of coal and low-level coal prices in comparison to oil and gas make coal one of the main energy substitutions for oil and gas in the future, under the assumption of coal as a clean energy source

  4. Fossil fuel usage and the environment

    International Nuclear Information System (INIS)

    Klass, D.L.

    1991-01-01

    The Greenhouse Effect and global warming, ozone formation in the troposphere, ozone destruction in the stratosphere, and acid rain are important environmental issues. The relationship of fossil fuel usage to some of these issues is discussed. Data on fossil fuel consumption and the sources and sinks of carbon dioxide, carbon monoxide, methane, nitrogen and sulfur oxides, and ozone indicate that natural gas provides lower emissions of carbon dioxide, carbon monoxide, and nitrogen and sulfur oxides than other fossil fuels. Global emissions of methane from the gas industry are significantly less than those from other anthropogenic activities and natural sources, and methane plays an important role along with carbon monoxide and nitric oxide in tropospheric ozone formation. Reductions in any or all of these air pollutants would reduce ozone in the lower atmosphere. Several remedial measures have been or are being implemented in certain countries to reduce fossil fuel emissions. These include removal of emissions from the atmosphere by new biomass growth, fuel substitution by use of cleaner burning fuels for stationary and mobile sources, and fossil fuel combustion at higher efficiencies. It is unlikely that concerted environmental action by all governments of the world will occur soon, but much progress has been made to achieve clean air

  5. Passive Solar Landscape Design: Its Impact on Fossil Fuel Consumption Through Landscape Design

    OpenAIRE

    Boelt, Robin Wiatt

    2006-01-01

    Gas, electricity, heating and cooling buildings - comfort â our lives revolve around fossil fuels. Technology and the demands of living in todayâ s society add to our gigantic fossil fuel appetite. With gas prices topping three dollars per gallon, changes must be made. This thesis project presents an analysis of passive solar landscape design (PSLD) principles used to create microclimates within the landscape, and thereby increasing human comfort both indoors and outdoors. The ...

  6. Multiple Threats to Child Health from Fossil Fuel Combustion: Impacts of Air Pollution and Climate Change

    Science.gov (United States)

    Perera, Frederica P.

    2016-01-01

    Background: Approaches to estimating and addressing the risk to children from fossil fuel combustion have been fragmented, tending to focus either on the toxic air emissions or on climate change. Yet developing children, and especially poor children, now bear a disproportionate burden of disease from both environmental pollution and climate change due to fossil fuel combustion. Objective: This commentary summarizes the robust scientific evidence regarding the multiple current and projected health impacts of fossil fuel combustion on the young to make the case for a holistic, child-centered energy and climate policy that addresses the full array of physical and psychosocial stressors resulting from fossil fuel pollution. Discussion: The data summarized here show that by sharply reducing our dependence on fossil fuels we would achieve highly significant health and economic benefits for our children and their future. These benefits would occur immediately and also play out over the life course and potentially across generations. Conclusion: Going beyond the powerful scientific and economic arguments for urgent action to reduce the burning of fossil fuels is the strong moral imperative to protect our most vulnerable populations. Citation: Perera FP. 2017. Multiple threats to child health from fossil fuel combustion: impacts of air pollution and climate change. Environ Health Perspect 125:141–148; http://dx.doi.org/10.1289/EHP299 PMID:27323709

  7. Multiple Threats to Child Health from Fossil Fuel Combustion: Impacts of Air Pollution and Climate Change.

    Science.gov (United States)

    Perera, Frederica P

    2017-02-01

    Approaches to estimating and addressing the risk to children from fossil fuel combustion have been fragmented, tending to focus either on the toxic air emissions or on climate change. Yet developing children, and especially poor children, now bear a disproportionate burden of disease from both environmental pollution and climate change due to fossil fuel combustion. This commentary summarizes the robust scientific evidence regarding the multiple current and projected health impacts of fossil fuel combustion on the young to make the case for a holistic, child-centered energy and climate policy that addresses the full array of physical and psychosocial stressors resulting from fossil fuel pollution. The data summarized here show that by sharply reducing our dependence on fossil fuels we would achieve highly significant health and economic benefits for our children and their future. These benefits would occur immediately and also play out over the life course and potentially across generations. Going beyond the powerful scientific and economic arguments for urgent action to reduce the burning of fossil fuels is the strong moral imperative to protect our most vulnerable populations. Citation: Perera FP. 2017. Multiple threats to child health from fossil fuel combustion: impacts of air pollution and climate change. Environ Health Perspect 125:141-148; http://dx.doi.org/10.1289/EHP299.

  8. Impact of electric range and fossil fuel price level on the economics of plug-in hybrid vehicles and greenhouse gas abatement costs

    International Nuclear Information System (INIS)

    Özdemir, Enver Doruk; Hartmann, Niklas

    2012-01-01

    In this paper, the energy consumption shares of plug-in hybrid vehicles (PHEVs) for electricity from the grid and conventional fuel depending on electric driving range are estimated. The resulting mobility costs and greenhouse gas (GHG) abatement costs per vehicle kilometer for the year 2030 are calculated and optimal electric driving range (which indicates the size of the battery) is found for different oil price levels with the help of a MATLAB based model for a typical compact passenger car (e.g. VW Golf). The results show that the optimum electric driving range for minimum mobility costs of a PHEV is between 12 and 32 km. Furthermore, optimum GHG abatement costs are achieved with an electric driving range between 16 and 23 km. These results are considerable lower than most market ready PHEVs (electric driving range of 50 to 100 km), which shows that the automobile industry should concentrate on shorter electric driving range for PHEVs in the near future to offer cost optimum mobility and low GHG abatement costs. However, the oil price level and the consumer driving habits impact heavily on the cost performance as well as the optimum electric driving range of plug-in hybrid vehicles. - Highlights: ► We analyze the energy consumption (and share of grid electricity) of plug-in hybrid vehicles. ► We analyzed the mobility costs and GHG abatement costs depending on electric driving range. ► Mobility costs of plug-in hybrid vehicles can be lower than those of conventional diesel vehicles in 2030. ► The optimum mobility costs are achieved with the electric driving range between 12 and 32 km. ► The optimum GHG abatement costs are achieved with the electric driving range between 16 and 23 km.

  9. The unstudied barriers to widespread renewable energy deployment: Fossil fuel price responses

    International Nuclear Information System (INIS)

    Foster, Edward; Contestabile, Marcello; Blazquez, Jorge; Manzano, Baltasar; Workman, Mark; Shah, Nilay

    2017-01-01

    Renewable energy policy focuses on supporting the deployment of renewable power generators so as to reduce their costs through scale economies and technological learning. It is expected that, once cost parity with fossil fuel generation is achieved, a transition towards renewable power should continue without the need for further renewable energy subsidies. However, this reasoning implicitly assumes that the cost of fossil fuel power generation does not respond to the large scale penetration of renewable power. In this paper we build a standard economic framework to test the validity of this assumption, particularly in the case of coal and gas fired power generation. We find that it is likely that the cost of fossil fuel power generation will respond to the large scale penetration of renewables, thus making the renewable energy transition slower or more costly than anticipated. More analysis is needed in order to be able to quantify this effect, the occurrence of which should be considered in the renewable energy discourse. - Highlights: • Renewables are increasingly competing with fossil fuel power generation. • This may have various effects on the fossil fuel generation value chain. • One such possible effect is a response of fossil fuel prices to renewables deployment. • We have tested this hypothesis using a supply-demand analytical framework. • We found that the effect is likely to occur and should be further investigated.

  10. Electric power monthly, July 1999, with data for April 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The Electric Power Division, Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy prepares the Electric Power Monthly (EPM). This publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatt hour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. 1 fig., 64 tabs.

  11. Electric power monthly, December 1996 with data for September 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    The report presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. This publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatt hour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. 57 tabs.

  12. Problems related to fossil fuels utilization

    International Nuclear Information System (INIS)

    Rota, R.

    1999-01-01

    Fossil fuels still present the main energy source in the world since about 90% of the energy produced comes from combustion. This paper, based on the lectures given at the conference of Energy and Environment hold at the Accademia dei Lincei in 1998, presents a short review of some of the problems related to the utilization of fossil fuels, such as their availability in the medium period, the effect of pollutant dispersion in the atmosphere as well as the available technologies to deal with such problems [it

  13. Environmental damage caused by fossil fuels consumption

    International Nuclear Information System (INIS)

    Barbir, F.; Veziroglu, T.N.

    1991-01-01

    This paper reports that the objectives of this study is to identify the negative effects of the fossil fuels use and to evaluate their economic significance. An economic value of the damage for each of the analyzed effects has been estimated in US dollars per unit energy of the fuel used ($/GJ). This external costs of fossil fuel use should be added to their existing market price, and such real costs should be compared with the real costs of other, environmentally acceptable, energy alternatives, such as hydrogen

  14. Spanish Moss as an atmospheric tracer for trace elements from fossil fuel burning power plants

    International Nuclear Information System (INIS)

    James, W.D.; Padaki, P.; McWilliams, E.L.

    1991-01-01

    Samples of Spanish Moss (Tillandsia usneoides) were analyzed by neutron activation analysis (NAA), inductively coupled argon plasma emission spectrometry (ICP), and x-ray fluorescence analysis (XRF) for trace elements as atmospheric environmental monitors. In particular, certain elements thought likely to be contributed to the atmosphere by combustion of fossil fuels were studied in samples collected along two transects, an east/west transect from the Louisiana line west to Dallas and a north/south transect from the Limestone electric Generating Station north to Dallas. Plants were sampled during peak electric generating periods in the summer, as well as following planned outages during the winter months. Se, As and several other volatile species known to concentrate in fly ash particles which are likely to escape power plant collection devices were shown to correlate with downwind directions of plant plumes. Attempts to determine levels of sulfur taken up by the plants which can be attributed to fossil fuel combustion through the use of these marker elements have also be made

  15. An assessment of econometric models applied to fossil fuel power generation; Un'analisi critica dell'applicazione dei modelli econometrici alla generazione termoelettrica

    Energy Technology Data Exchange (ETDEWEB)

    Gracceva, F.; Quercioli, R. [ENEA, Funzione Centrale Studi, Centro Ricerche Casaccia, Rome (Italy)

    2001-07-01

    The main purpose of this report is to provide a general view of those studies, in which the econometric approach is applied to the selection of fuel in fossil fired power generation, focusing the attention to the key role played by the fuel prices. The report consists of a methodological analysis and a survey of the studies available in literature. The methodological analysis allows to assess the adequateness of the econometric approach, in the electrical power utilities policy. With this purpose, the fundamentals of microeconomics, which are the basis of the econometric models, are pointed out and discussed, and then the hypotheses, which are needed to be assumed for complying the economic theory, are verified in their actual implementation in the power generation sector. The survey of the available studies provides a detailed description of the Translog and Logit models, and the results achieved with their application. From these results, the estimated models show to fit the data with good approximation, a certain degree of interfuel substitution and a meaningful reaction to prices on demand side. [Italian] In questo rapporto viene tracciato un quadro generale degli studi che utilizzano modelli econometrici per analizzare la scelta dei combustibili nella termogenerazione, con particoalre attenzione al ruolo svolto dal prezzo dei combustibili. La trattazione si compone di un'analisi di tipo metodologico e di una rassegna della letteratura. L'analisi metodologica consente di valutare l'adeguatezza dell'approccio econometrico nell'analisi del comportamento delle imprese di generazione elettrica. A tal fine vengono esplicitati e discussi i fondamenti microeconomici su cui poggiano i modelli econometrici, e viene verificata la sussistenza, nel settore termoelettrico, delle ipotesi che e' necessario assumere per soddisfare la teoria economica. La rassegna fornisce invece una descrizione dei modelli translog e logit lineare, ed un

  16. Environmental effects of fossil fuel combustion

    International Nuclear Information System (INIS)

    Chmielewski, A.G.

    1999-01-01

    Fossil fuel which include natural gas, petroleum, shale oil and bitumen are the main source of heat and electrical energy. All these fuels contain beside major constituents (carbon, hydrogen, oxygen) other materials as metal, sulfur and nitrogen compounds. During the combustion process different pollutants as fly ash, sulfur oxides (SO 2 and SO 3 ), nitrogen oxides (NO x NO + NO 2 ) and volatile organic compounds are emitted. Fly ash contain different trace elements (heavy metals). Gross emission of pollutants is tremendous all over the world. These pollutants are present in the atmosphere in such conditions that they can affect man and his environment. Air pollution caused by the particulate matter and other pollutants not only acts directly on environment but by contamination of water and soil leads to their degradation. Wet and dry deposition of inorganic pollutants leads to acidification of environment. These phenomena affect health of the people, increase corrosion, destroy cultivated soil and forests. Most of the plants, especially coniferous trees are not resistant to sulfur and nitrogen oxides. Following longer exposure leaves wither and fall. Widespread forest damage has been reported in Europe and North America regions. Many cultivated plants are not resistant to these pollutants either especially in the early period vegetation. The mechanisms of pollutants transformation in atmosphere are described by environmental chemistry. An important role in these transformations plays photochemistry. SO 2 and NO x are oxidized and sulfuric and nitric acids are formed in presence of water vapours, fog and droplets. Other problem discussed connected with human activities is emission of volatile organic compounds to the atmosphere. These emissions cause stratospheric ozone depletion, ground level photochemical ozone formation, toxic or carcinogenic human health effects, enhancing the global greenhouse effect, accumulation and persistence in environment. Wet flue gas

  17. Environmental effects of fossil fuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Chmielewski, A G

    1999-07-01

    Fossil fuel which include natural gas, petroleum, shale oil and bitumen are the main source of heat and electrical energy. All these fuels contain beside major constituents (carbon, hydrogen, oxygen) other materials as metal, sulfur and nitrogen compounds. During the combustion process different pollutants as fly ash, sulfur oxides (SO{sub 2} and SO{sub 3}), nitrogen oxides (NO{sub x} NO + NO{sub 2}) and volatile organic compounds are emitted. Fly ash contain different trace elements (heavy metals). Gross emission of pollutants is tremendous all over the world. These pollutants are present in the atmosphere in such conditions that they can affect man and his environment. Air pollution caused by the particulate matter and other pollutants not only acts directly on environment but by contamination of water and soil leads to their degradation. Wet and dry deposition of inorganic pollutants leads to acidification of environment. These phenomena affect health of the people, increase corrosion, destroy cultivated soil and forests. Most of the plants, especially coniferous trees are not resistant to sulfur and nitrogen oxides. Following longer exposure leaves wither and fall. Widespread forest damage has been reported in Europe and North America regions. Many cultivated plants are not resistant to these pollutants either especially in the early period vegetation. The mechanisms of pollutants transformation in atmosphere are described by environmental chemistry. An important role in these transformations plays photochemistry. SO{sub 2} and NO{sub x} are oxidized and sulfuric and nitric acids are formed in presence of water vapours, fog and droplets. Other problem discussed connected with human activities is emission of volatile organic compounds to the atmosphere. These emissions cause stratospheric ozone depletion, ground level photochemical ozone formation, toxic or carcinogenic human health effects, enhancing the global greenhouse effect, accumulation and persistence in

  18. Electric power monthly, June 1995 with data for March 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-19

    The Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy prepares the EPM. This publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. 68 tabs.

  19. Electric power monthly with data for December 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy prepares the EPM. This publication provides monthly statistics at the State, Census division, and U.S. levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant.

  20. Electric power monthly with data for January 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    The Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy prepares the EPM. This publication provides monthly statistics at the State, Census division, and U.S. levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant.

  1. Electric power monthly, September 1996, with data for June 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    The Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy prepares the EPM. This publication provides monthly statistics at the State, Census division, and U.S. levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatt hour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant.

  2. Electric power monthly with data for October 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    The Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy prepares the EPM. This publication provides monthly statistics at the State, Census division, and U.S. levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant.

  3. The Fascinating Story of Fossil Fuels

    Science.gov (United States)

    Asimov, Isaac

    1973-01-01

    How this energy source was created, its meaning to mankind, our drastically reduced supply, and why we cannot wait for nature to make more are considered. Today fossil fuels supply 96 percent of the energy used but we must find alternate energy options if we are to combat the energy crisis. (BL)

  4. Carbon Risk and the Fossil Fuel Industry

    International Nuclear Information System (INIS)

    Mathieu, Carole

    2015-04-01

    As calls for ambitious climate action intensify, questions arise concerning the resilience of the fossil fuel industry in a world ever more inclined to favour climate protection. This article will attempt to assess the extent of present risks and show how the strength of debate can affect practices and strategy employed by companies in this sector. (author)

  5. Electricity generation: a case study in Turkey

    International Nuclear Information System (INIS)

    Kaygusuz, K.

    1999-01-01

    Large-scale electricity generation provides versatile energy of the highest quality. Today, fossil fuels such as coal, oil, and natural gas are the primary sources of this energy. However, these fossil energy sources are limited and using fossil energy sources has the undesirable effect of releasing emissions that burden the environment and alter the climate. Therefore, governments and companies all over the world should find new and renewable energy sources. On the other hand, over the past two decades, power station construction programs in the developing countries accounted for nearly 30% of total public investment. In a large number of these countries, shortages of electricity have become a critical constraint to economic growth. In Turkey, from 1980 to 1995, the amount for electricity generated increased about fourfold from 23,275 Gwh to 86,247 Gwh, and annual growth rates were in the double digits. This is a good development, but not enough for Turkey. (author)

  6. Technical considerations in repowering a nuclear plant for fossil fueled operation

    International Nuclear Information System (INIS)

    Patti, F.J.

    1996-01-01

    Repowering involves replacement of the reactor by a fossil fuel source of steam. This source can be a conventional fossil fueled boiler or the heat recovery steam generator (HRSG) on a gas turbine exhaust. The existing steam turbine plant is used to the extent possible. Alternative fuels for repowering a nuclear plant are coal, natural gas and oil. In today's world oil is not usually an alternative. Selection of coal or natural gas is largely a matter of availability of the fuel near the location of the plant. Both the fossil boiler and the HRSG produce steam at higher pressures and temperatures than the throttle conditions for a saturated steam nuclear turbine. It is necessary to match the steam conditions from the new source to the existing turbine as closely as possible. Technical approaches to achieve a match range from using a topping turbine at the front end of the cycle to attemperation of the throttle steam with feedwater. The electrical output from the repowered plant is usually greater than that of the original nuclear fueled design. This requires consideration of the ability to use the excess electricity. Interfacing of the new facility with the existing turbine plant requires consideration of facility layout and design. Site factors must also be considered, especially for a coal fired boiler, since rail and coal handling facilities must be added to a site for which these were not considered. Additional site factors that require consideration are ash handling and disposal

  7. Diversity of fuel sources for electricity generation in an evolving U.S. power sector

    Science.gov (United States)

    DiLuccia, Janelle G.

    Policymakers increasingly have shown interest in options to boost the relative share of renewable or clean electricity generating sources in order to reduce negative environmental externalities from fossil fuels, guard against possible resource constraints, and capture economic advantages from developing new technologies and industries. Electric utilities and non-utility generators make decisions regarding their generation mix based on a number of different factors that may or may not align with societal goals. This paper examines the makeup of the electric power sector to determine how the type of generator and the presence (or lack) of competition in electricity markets at the state level may relate to the types of fuel sources used for generation. Using state-level electricity generation data from the U.S. Energy Information Administration from 1990 through 2010, this paper employs state and time fixed-effects regression modeling to attempt to isolate the impacts of state-level restructuring policies and the emergence of non-utility generators on states' generation from coal, from fossil fuel and from renewable sources. While the analysis has significant limitations, I do find that state-level electricity restructuring has a small but significant association with lowering electricity generation from coal specifically and fossil fuels more generally. Further research into the relationship between competition and fuel sources would aid policymakers considering legislative options to influence the generation mix.

  8. The effects of the evolution of fuel prices and the environmental regulations on the producers of electric power based on fossil fuel

    International Nuclear Information System (INIS)

    Balasoiu, Constantin; Alecu, Sorin

    2006-01-01

    The production of electric power in the context of the concept of human society's lasting development is influenced in the recent years by a series of external factors, both circumstantial and derived from internal and international regulations. This work proposes a theoretical analysis of additional costs induced by the evolution of fuel prices as well as of the short, medium and long term environmental restrictions for the producers of lignite based electric power in Romania. To this purpose, the authors have considered as theoretical elements of analysis, a 330 MW functioning power station, working entirely on lignite GEL (70% expenses on fuel) with a production cost of 40 Euros/MWh at a 70% degree of usage capacity and 36 Euros/MWh at 100%. The paper addresses the following items: 1. The periods of analysis and the influential factors; 2. The evaluation of additional costs for the observance of EU Directive 2001/80/EC; 3. The evaluation of additional costs induced by the stipulations of the Kyoto Protocol; 4. The evaluation of additional costs induced by the evolution of the price of the fuel. In conclusion accumulating all the influences described in the chapters of this material, the impact in the rise of production costs for the described lignite based power plant is summarized by taking into account: the impact of CO 2 emissions; the impact Directive 2001/80/EC; the impact of the fuel price; the total rise. One can notice, that the biggest influence on the additional production costs comes from the impact of CO 2 emissions, in the outlook of the integration in the EU ETS, which depends on: 1) The way in which the National Allocation Plan for the allowances of CO 2 emissions is made in the power sector. The higher D utl.ref is, the stronger will be their place on the market. 2) The evolution of the price of CO 2 emissions on the EU ETS

  9. Electric power monthly, June 1998, with data for March 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. This publication provides monthly statistics at the State, Census division, and Us levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. 5 refs., 57 tabs.

  10. Starting of the steam generator of a fossil fuel power plant, using predictive control based in a neuronal model; Arranque del generador de vapor de una central termoelectrica, usando control predictivo basado en un modelo neuronal

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo Dominguez, Tonatiuh

    2004-09-15

    In this thesis work it is presented the design and implementation of a simulator of total scope of a predictive controller based in the neuronal model of the temperature in two stages of the heating of the steam generator of a fossil fuel power plant. An implemented control scheme is detailed, as well as the methodology for the identification of a neuronal model utilized for the control. Finally the results of the implementation in the simulator located at the Instituto de Investigaciones Electricas (IIE) are shown to be satisfactory. This control structure is not applied directly in closed circuit, but provides the value of the control actions to a human operator. [Spanish] En este trabajo de tesis se presenta el diseno e implementacion, en un simulador de alcance total, de un controlador predictivo basado en un modelo neuronal para el control de la temperatura en dos etapas del calentamiento del generador de vapor de una central termoelectrica. Se detalla el esquema de control implementado, asi como la metodologia de identificacion de un modelo neuronal utilizado para la sintesis del control. Finalmente se muestran los resultados de la implementacion en el simulador que se encuentra en el Instituto de Investigaciones Electricas (IIE); dichos resultados fueron satisfactorios. Esta estructura de control no se aplica directamente en lazo cerrado, sino que provee el valor de las acciones de control a un operador humano.

  11. Renewable Generators' Consortium: ensuring a market for green electricity

    International Nuclear Information System (INIS)

    1999-03-01

    This project summary focuses on the objectives and key achievements of the Renewable Generators Consortium (RGC) which was established to help renewable energy projects under the Non-Fossil Fuel Obligation (NFFO) to continue to generate in the open liberated post-1998 electricity market. The background to the NFFO is traced, and the development of the Consortium, and the attitudes of generators and suppliers to the Consortium are discussed along with the advantages of collective negotiations through the RGC, the Heads of Terms negotiations, and the success of RGC which has demonstrated the demand for green electricity

  12. Calculation of CO2 emissions, primary fossil fuel energy consumption and electric efficiency in the Netherlands; Berekening van de CO2-emissies, het primair fossiel energieverbruik en het rendement van elektriciteit in Nederland

    Energy Technology Data Exchange (ETDEWEB)

    Harmelink, M. [Harmelink consulting, Utrecht (Netherlands); Bosselaar, L. [Agentschap NL, DEn Haag (Netherlands); Gerdes, J.; Boonekamp, P. [ECN Beleidsstudies, Petten (Netherlands); Segers, R.; Pouwelse, H. [Centraal Bureau voor de Statistiek CBS, Den Haag (Netherlands); Verdonk, M. [Planbureau voor de Leefomgeving PBL, Den Haag (Netherlands)

    2012-09-15

    The monitoring of energy and climate policy lacks nationally and internationally accepted general standard values for CO2 emissions of fossil fuel energy consumption per unit of produced, consumed or saved electricity. In the Netherlands this has led to a situation in which different methods and indicators are used for monitoring activities. The methods used are not always transparent. Parties in the Netherlands that are responsible for development of methods and calculation of indicators (NL Agency, PBL, ECN and Statistics Netherlands) find this situation undesirable and took the joint initiative to draw up this report in which transparent standard values and methods for this topic have been included. The target audience of this report are organizations, advisory agencies and businesses that are involved in monitoring and evaluation of energy and climate policy [Dutch] Om het energie-en klimaatbeleid te monitoren zijn er nationaal en internationaal geen algemeen geaccepteerde standaardwaarden beschikbaar voor de CO2-emissies of het primair fossiel energiegebruik per eenheid geproduceerde, geconsumeerde of bespaarde elektriciteit. In Nederland heeft dit geleid tot de situatie dat voor (monitoring-)activiteiten verschillende methoden en kengetallen worden gehanteerd. De gebruikte methoden zijn niet altijd transparant. Partijen die in Nederland verantwoordelijk zijn voor de ontwikkeling van methoden en de berekening van kengetallen (Agentschap NL, PBL, ECN en CBS) achten dit een onwenselijke situatie en hebben het gezamenlijke initiatief genomen om dit rapport op te stellen waarin wel transparante standaardwaarden en methoden voor dit onderwerp zijn opgenomen. De doelgroepen voor dit rapport zijn organisaties, adviesbureaus en bedrijven die bezig zijn met de monitoring en evaluatie van energie-en klimaatbeleid.

  13. Options of electric generation and sustainability

    International Nuclear Information System (INIS)

    Martin del Campo M, C.

    2004-01-01

    In this paper a study on the sustainability of the main electricity generation options is presented. The study is based on a matrix of sustainability indicators developed in Switzerland. A revision of some sustainability studies performed in countries with certain energy diversity and with experience in nuclear power plants operation, is done. Studies, in general, are performed for the power plant life cycle, taking into account economic aspects, fuel prices impact on electricity generation costs, fuel reserves indicators and material consumption. Air emission, waste production and human health impact data are also presented. All the results lead to confirm that nuclear energy has a high degree of sustainability vis a vis other options based on fossil fuels and renewable. Finally some comments are presented in order to highlight the importance that nuclear energy might have in the sustainable development of Mexico. (Author)

  14. Diatoms: a fossil fuel of the future.

    Science.gov (United States)

    Levitan, Orly; Dinamarca, Jorge; Hochman, Gal; Falkowski, Paul G

    2014-03-01

    Long-term global climate change, caused by burning petroleum and other fossil fuels, has motivated an urgent need to develop renewable, carbon-neutral, economically viable alternatives to displace petroleum using existing infrastructure. Algal feedstocks are promising candidate replacements as a 'drop-in' fuel. Here, we focus on a specific algal taxon, diatoms, to become the fossil fuel of the future. We summarize past attempts to obtain suitable diatom strains, propose future directions for their genetic manipulation, and offer biotechnological pathways to improve yield. We calculate that the yields obtained by using diatoms as a production platform are theoretically sufficient to satisfy the total oil consumption of the US, using between 3 and 5% of its land area. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Geothermal energy in the western United States and Hawaii: Resources and projected electricity generation supplies

    International Nuclear Information System (INIS)

    1991-09-01

    Geothermal energy comes from the internal heat of the Earth, and has been continuously exploited for the production of electricity in the United States since 1960. Currently, geothermal power is one of the ready-to-use baseload electricity generating technologies that is competing in the western United States with fossil fuel, nuclear and hydroelectric generation technologies to provide utilities and their customers with a reliable and economic source of electric power. Furthermore, the development of domestic geothermal resources, as an alternative to fossil fuel combustion technologies, has a number of associated environmental benefits. This report serves two functions. First, it provides a description of geothermal technology and a progress report on the commercial status of geothermal electric power generation. Second, it addresses the question of how much electricity might be competitively produced from the geothermal resource base. 19 figs., 15 tabs

  16. Potential for use of condenser cooling waters from fossil fuel and nuclear power generating stations for freshwater aquaculture in cold climates

    International Nuclear Information System (INIS)

    Armstrong, G.C.

    1976-01-01

    Some limiting factors to the future development of freshwater aquaculture are considered. The most important of these are the need for new and improved technology for the production of better quality products at lower cost and for the promotion and establishment of new markets. The use of relatively small amounts of heated effluent water from power generating stations to optimize water temperatures is one feasible method for increasing growth and lowering the cost of production. (author)

  17. IGT calculates world reserves of fossil fuels

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The Institute of Gas Technology has published the IGT World Reserves Survey, giving their latest tabulation of world reserves of fossil fuels and uranium. The report contains 120 Tables and 41 Figures. Estimates are provided for proved reserves, resources, current production, and life indexes of the non-renewable energy sources of the US and of the world as a whole. World regional data are also provided in many cases. The data are summarized here. 2 figures, 5 tables

  18. Electrical generator

    International Nuclear Information System (INIS)

    Purdy, D.L.

    1976-01-01

    A nuclear heart pacer having a heat-to-electricity converter including a solid-state thermoelectric unit embedded in rubber which is compressed to impress hydrostatic precompression on the unit is described. The converter and the radioactive heat source are enclosed in a container which includes the electrical circuit components for producing and controlling the pulses; the converter and components being embedded in rubber. The portions of the rubber in the converter and in the container through which heat flows between the radioactive primary source and the hot junction and between the cold junction and the wall of the container are of thermally conducting silicone rubber. The 238 Pu primary radioactive source material is encapsuled in a refractory casing of WC-222 (T-222) which in turn is encapsuled in a corrosion-resistant casing of platinum rhodium, a diffusion barrier separating the WC-222 and the Pt--Rh casings. The Pt--Rh casing is in a closed basket of tantalum. The tantalum protects the Pt--Rh from reacting with other materials during cremation of the host, if any. The casings and basket suppress the transmission of hard x rays generated by the alpha particles from the 238 Pu. The outside casing of the pacer is typically of titanium but its surface is covered by an electrically insulating coating, typically epoxy resin, except over a relatively limited area for effective electrical grounding to the body of the host. It is contemplated that the pacer will be inserted in the host with the exposed titanium engaging a non-muscular region of the body

  19. Electric power monthly, May 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. This publication provides monthly statistics for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Statistics by company and plant are published on the capability of new generating units, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fossil fuels.

  20. Electric power monthly with data for October 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This publication provides monthly statistics at the State, Census division, and U.S. levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council regions. Statistics are published on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. A monthly utility update and summary of industry developments are also included. 63 tabs., 1 fig.

  1. Electric power monthly with data for August 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This publication provides monthly statistics at the state, census division, and U.S. levels for net generation; fossil fuel consumption and stocks, quantity, and quality of fossil fuels; cost of fossil fuels; electricity retail sales; associated revenue; and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council regions. Statistics on net generation are published by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. The monthly update is summarized, and industry developments are briefly described. 1 fig., 63 tabs.

  2. Electric power monthly, August 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-13

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The EPM is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions.

  3. Electric power monthly, September 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-17

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The EPM is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions.

  4. Traversing the mountaintop: world fossil fuel production to 2050.

    Science.gov (United States)

    Nehring, Richard

    2009-10-27

    During the past century, fossil fuels--petroleum liquids, natural gas and coal--were the dominant source of world energy production. From 1950 to 2005, fossil fuels provided 85-93% of all energy production. All fossil fuels grew substantially during this period, their combined growth exceeding the increase in world population. This growth, however, was irregular, providing for rapidly growing per capita production from 1950 to 1980, stable per capita production from 1980 to 2000 and rising per capita production again after 2000. During the past half century, growth in fossil fuel production was essentially limited by energy demand. During the next half century, fossil fuel production will be limited primarily by the amount and characteristics of remaining fossil fuel resources. Three possible scenarios--low, medium and high--are developed for the production of each of the fossil fuels to 2050. These scenarios differ primarily by the amount of ultimate resources estimated for each fossil fuel. Total fossil fuel production will continue to grow, but only slowly for the next 15-30 years. The subsequent peak plateau will last for 10-15 years. These production peaks are robust; none of the fossil fuels, even with highly optimistic resource estimates, is projected to keep growing beyond 2050. World fossil fuel production per capita will thus begin an irreversible decline between 2020 and 2030.

  5. Can Geothermal Power Replace Fossil Fuels?

    Science.gov (United States)

    Klenner, R.; Gosnold, W. D.

    2009-12-01

    is scaled up to produce power in the MW range. Values needed for these systems are temperatures of 92+ °C and flow rates of 140-1000 gpm. In a detailed analysis of the North Dakota part of the Williston Basin, we used heat flow, bottom-hole temperatures, and measured temperature gradients to calculate the energy contained within specific formations having temperatures in the range of 100 °C to 150 °C. We find that at a 2% recovery factor, approximately 4500 MW/hr can be recovered at depths of 3-4 km. North Dakota currently produces approximately 3100 MW/hr from non-renewable sources such as coal and petroleum. We conclude that the geothermal resource in the Williston Basin could completely replace fossil fuels as an electrical power supply for North Dakota.

  6. Nuclear Energy R and D Imperative 3: Enable a Transition Away from Fossil Fuel in the Transportation and Industrial Sectors

    International Nuclear Information System (INIS)

    Petti, David; Herring, J. Stephen

    2010-01-01

    As described in the Department of Energy Office of Nuclear Energy's Nuclear Energy R and D Roadmap, nuclear energy can play a significant role in supplying energy for a growing economy while reducing both our dependence on foreign energy supplies and emissions from the burning of fossil fuels. The industrial and transportation sectors are responsible for more than half of the greenhouse gas emissions in the U.S., and imported oil supplies 70% of the energy used in the transportation sector. It is therefore important to examine the various ways nuclear energy can facilitate a transition away from fossil fuels to secure environmentally sustainable production and use of energy in the transportation and manufacturing industry sectors. Imperative 3 of the Nuclear Energy R and D Roadmap, entitled 'Enable a Transition Away from Fossil Fuels by Producing Process Heat for use in the Transportation and Industrial Sectors', addresses this need. This document presents an Implementation Plan for R and D efforts related to this imperative. The expanded use of nuclear energy beyond the electrical grid will contribute significantly to overcoming the three inter-linked energy challenges facing U.S. industry: the rising and volatile prices for premium fossil fuels such as oil and natural gas, dependence on foreign sources for these fuels, and the risks of climate change resulting from carbon emissions. Nuclear energy could be used in the industrial and transportation sectors to: (1) Generate high temperature process heat and electricity to serve industrial needs including the production of chemical feedstocks for use in manufacturing premium fuels and fertilizer products, (2) Produce hydrogen for industrial processes and transportation fuels, and (3) Provide clean water for human consumption by desalination and promote wastewater treatment using low-grade nuclear heat as a useful additional benefit. Opening new avenues for nuclear energy will significantly enhance our nation

  7. The limits of bioenergy for mitigating global lifecycle greenhouse gas emissions from fossil fuels.

    OpenAIRE

    Staples, Mark; Malina, Robert; Barrett, Steven

    2017-01-01

    In this Article we quantify the optimal allocation and deployment of global bioenergy resources to offset fossil fuels in 2050. We find that bioenergy could reduce lifecycle emissions attributable to combustion-fired electricity and heat, and liquid transportation fuels, by a maximum of 4.9-38.7 Gt CO2e, or 9-68%, and that offsetting fossil fuel-fired electricity and heat with bioenergy is on average 1.6-3.9 times more effective for emissions mitigation than offsetting fossil fuelderived ...

  8. Energy and the transport sector. [For countries with no fossil fuels

    Energy Technology Data Exchange (ETDEWEB)

    Olson, P E

    1979-01-01

    This article describes the current energy situation from both the global viewpoint and the viewpoint of countries with no indigenous sources of fossil fuels. The lack of fossil fuels necessitates a substitution with indigenous sources of energy, where feasible. Long-distance railway transport is a self-evident element in the expanding transport sector. In view of the proven high energy efficiency of electric railway systems, there is every incentive for a more active investment policy in railway electrification. This applies to both medium-distance transportation of freight and passengers and different electric mass transit systems.

  9. Hydrogen for transport in Denmark towards 2050. Contribution to electric-powered transport, growth, CO{sub 2} reduction and independence of fossil fuels; Brint til transport i Danmark frem mod 2050. Bidrag til elektrisk transport, vaekst, CO{sub 2} reduktion og fossil uafhaengighed. Baggrundsrapport. Endelig udgave

    Energy Technology Data Exchange (ETDEWEB)

    Wennike, F. (Hydrogen Link Danmark (Denmark)); Mortensgaard, A. (Brint and Braendselscelle Partnerskabet, Copenhagen (Denmark)); Sloth, M. (H2 Logic A/S, Herning (Denmark))

    2011-12-15

    Significant funding has been invested internationally in the development of hydrogen and fuel cells for the last 10 years, among others by the leading car makers. In Denmark alone businesses have, along with contributions from public programs, invested two billion DKK since 2001. The investments have helped to develop and mature hydrogen and fuel cells so that a deployment can be initiated from 2015. With the Danish government's new initiative, ''Our Energy'', which is targeted towards a switch to a fossil fuel-independent society in 2050, it is obvious that hydrogen is included as one of many technologies that can help solve the challenge within the transport sector. The Hydrogen Link Denmark Association and selected Danish players in the Hydrogen and Fuel Cell Partnership in Denmark has therefore prepared this analysis which describes a possible contribution to electrical transport, growth, CO{sub 2} reduction and fossil fuel independence by introduction of hydrogen for transport in Denmark up to 2050. The analysis is based on a possible share of hydrogen cars in the Danish car fleet in 2050 of 50% and the secondary effects of activation of the energy policy objectives for fossil fuel independence, and not least the significant potential for Danish exports of hydrogen and fuel cell technology and affected jobs. Similarly, the contribution of hydrogen for transport in relation to balancing the increased share of fluctuating renewable energy production was analyzed. (LN)

  10. Mini-biomass electric generation

    Energy Technology Data Exchange (ETDEWEB)

    Elliot, G. [International Applied Engineering, Inc., Atlanta, GA (United States)

    1997-12-01

    Awareness of the living standards achieved by others has resulted in a Russian population which is yearning for a higher standard of living. Such a situation demands access to affordable electricity in remote areas. Remote energy requirements creates the need to transport power or fossil fuels over long distances. Application of local renewable energy resources could eliminate the need for and costs of long distance power supply. Vast forest resources spread over most of Russia make biomass an ideal renewable energy candidate for many off-grid villages. The primary objective for this preliminary evaluation is to examine the economic feasibility of replacing distillate and gasoline fuels with local waste biomass as the primary fuel for village energy in outlying regions of Russia. Approximately 20 million people live in regions where Russia`s Unified Electric System grid does not penetrate. Most of these people are connected to smaller independent power grids, but approximately 8 million Russians live in off-grid villages and small towns served by stand-alone generation systems using either diesel fuel or gasoline. The off-grid villages depend on expensive distillate fuels and gasoline for combustion in small boilers and engines. These fuels are used for both electricity generation and district heating. Typically, diesel generator systems with a capacity of up to 1 MW serve a collective farm, settlement and their rural enterprises (there are an estimated 10,000 such systems in Russia). Smaller gasoline-fueled generator systems with capacities in the range of 0.5 - 5 kW serve smaller farms or rural enterprises (there are about 60,000 such systems in Russia).

  11. Electric power monthly, April 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. This publication provides monthly statistics at the U.S., Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. This April 1994 issue contains 1993 year-end data and data through January 1994.

  12. Say no to fossil fuels and yes to nuclear energy

    International Nuclear Information System (INIS)

    Raghava Chari, S.

    2011-01-01

    Mistaken notion and wrongful fear of nuclear energy based on the horrors of the second world war bombing of Nagasaki and Hiroshima and accidents at Chernobyl and Three mile island and lately the Fukushima nuclear plant meltdown to earthquake and and tsunami have developed antagonism to nuclear energy (NE) and clouded its usefulness as a practical, clean, environment friendly and affordable alternate source of energy. Such antagonism has slowed down research on NE and its adoption on a much wider scale, the crying need of the day. There is a motivated disinformation campaign against nuclear energy in India as witnessed from the ongoing agitation at Kudankulam in Tamil Nadu and Jaitapur in Maharashtra. In fact nuclear energy is the only practical alternative energy source to meet the ever increasing energy needs of the world particularly the developing nations, and to save the world from the greenhouse ill effects of massive carbon dioxide and other emissions from burning fossil fuels like coal, oil and natural gas. Emissions from fossil fuel burning including radioactive emissions are hundreds of times more in weight and volume and far more hazardous than from an equal capacity nuclear plant. In fact there are no greenhouse gases (CO 2 ), acid rain gases (SO 2 ) or carcinogen emissions (NO x ) from nuclear plants. The accident rates and severity of accidents owing to nuclear plants is much lower as compared to fossil fuel power generation. Last but not the least NE offers economic freedom from the clutches of the few monopolistic oil producing countries, which charge exorbitant oil prices and cripple the finances of developing nations. (author)

  13. Electric power monthly, February 1999 with data for November 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    The Electric Power Monthly presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decision makers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Statistics are provided for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatt-hour of electricity sold.

  14. Environmental biotechnologies for the fossil fuel industry

    International Nuclear Information System (INIS)

    Lee, D. W.; Donald, G. M.

    1997-01-01

    Five recent technologies that have been proven to be viable means to mitigate the environmental impact of the fossil fuel industry were described as evidence of the industry's concern about environmental pollution. The technologies were: bioventing, bioslurping, biofiltration, phytoremediation and the use of genetically engineered organisms. Special attention was paid to genetic modification strategies with reference to improved degradation rates and the regulations in Canada affecting genetically engineered organisms and their use. Case histories were cited to illustrate application of the various processes. 34 refs

  15. Environmental biotechnologies for the fossil fuel industry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D W; Donald, G M [Hycal Energy Research Labs. Ltd., Calgary, AB (Canada)

    1997-09-01

    Five recent technologies that have been proven to be viable means to mitigate the environmental impact of the fossil fuel industry were described as evidence of the industry`s concern about environmental pollution. The technologies were: bioventing, bioslurping, biofiltration, phytoremediation and the use of genetically engineered organisms. Special attention was paid to genetic modification strategies with reference to improved degradation rates and the regulations in Canada affecting genetically engineered organisms and their use. Case histories were cited to illustrate application of the various processes. 34 refs.

  16. Recent developments in biodesulfurization of fossil fuels.

    Science.gov (United States)

    Xu, Ping; Feng, Jinhui; Yu, Bo; Li, Fuli; Ma, Cuiqing

    2009-01-01

    The emission of sulfur oxides can have adverse effects on the environment. Biodesulfurization of fossil fuels is attracting more and more attention because such a bioprocess is environmentally friendly. Some techniques of desulfurization have been used or studied to meet the stricter limitation on sulfur content in China. Recent advances have demonstrated the mechanism and developments for biodesulfurization of gasoline, diesel and crude oils by free cells or immobilized cells. Genetic technology was also used to improve sulfur removal efficiencies. In this review, we summarize recent progress mainly in China on petroleum biodesulfurization.

  17. Co-firing biomass and fossil fuels

    International Nuclear Information System (INIS)

    Junge, D.C.

    1991-01-01

    In June 1989, the Alaska Energy Authority and the University of Alaska Anchorage published a monograph summarizing the technology of co-firing biomass and fossil fuels. The title of the 180 page monograph is 'Use of Mixed Fuels in Direct Combustion Systems'. Highlights from the monograph are presented in this paper with emphasis on the following areas: (1) Equipment design and operational experience co-firing fuels; (2) The impact of co-firing on efficiency; (3) Environmental considerations associated with co-firing; (4) Economic considerations in co-firing; and (5) Decision making criteria for co-firing

  18. Comparison of approximate electrical energy generating costs in OECD countries

    International Nuclear Information System (INIS)

    Stevens, G.H.; Bertel, E.

    1996-01-01

    Costs of power generating in nuclear power plants have been predicted taking into account all factors connected with investment, maintenance, exploitation and decommissioning, basing on last OECD report. The costs have been compared with alternative solutions. In majority of OECD countries the direct costs of electricity generation are very close for nuclear fossil-fuel and gas power plants. All indirect costs such as environmental impact, public health hazard, waste management, accident risk and also public acceptance for nuclear power have been discussed. 13 refs, 5 tabs

  19. Innovative fossil fuel fired vitrification technology for soil remediation

    International Nuclear Information System (INIS)

    1993-08-01

    Vortex has successfully completed Phase 1 of the ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation'' program with the Department of Energy (DOE) Morgantown Energy Technology Center (METC). The Combustion and Melting System (CMS) has processed 7000 pounds of material representative of contaminated soil that is found at DOE sites. The soil was spiked with Resource Conversation and Recovery Act (RCRA) metals surrogates, an organic contaminant, and a surrogate radionuclide. The samples taken during the tests confirmed that virtually all of the radionuclide was retained in the glass and that it did not leach to the environment. The organic contaminant, anthracene, was destroyed during the test with a Destruction and Removal Efficiency (DRE) of at least 99.99%. RCRA metal surrogates, that were in the vitrified product, were retained and will not leach to the environment--as confirmed by the TCLP testing. Semi-volatile RCRA metal surrogates were captured by the Air Pollution Control (APC) system, and data on the amount of metal oxide particulate and the chemical composition of the particulate were established for use in the Phase 2 APC system design. This topical report will present a summary of the activities conducted during Phase 1 of the ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation'' program. The report includes the detail technical data generated during the experimental program and the design and cost data for the preliminary Phase 2 plant

  20. FUTURE FOSSIL FUEL PRICE IMPACTS ON NDC ACHIEVEMENT; ESTIMATION OF GHG EMISSIONS AND MITIGATION COSTS

    Directory of Open Access Journals (Sweden)

    Yosuke Arino

    2017-12-01

    Full Text Available The Shale Revolution in the US, a supply-side innovation in oil and gas production, has been dramatically changing the world’s fossil fuel energy markets – leading to a decrease in oil, gas and coal prices. Some projections suggest that low fossil fuel prices might continue at least over the next few decades. Uncertainty in fossil fuel prices might affect the levels of emission reductions expected from submitted nationally determined contributions (NDCs and/or influence the difficulty of achieving the NDCs. This paper evaluated the impact of different (high, medium, and low fossil fuel prices, sustained through to 2050, on worldwide GHG emissions reductions and associated costs (mainly marginal abatement costs (MACs. Total global GHG emissions were estimated to be 57.5-61.5 GtCO2eq by 2030, with the range shown reflecting uncertainties about fossil fuel prices and the target levels of several NDCs (i.e., whether their upper or lower targets were adopted. It was found that lower fuel prices not only diminished the environmental effectiveness of global NDCs but also widened regional differences of marginal and total abatement costs, thereby generating more room for carbon leakage. One possible policy direction in terms of abatement efficiency, fairness and environmental effectiveness would be to require countries with low marginal and total abatement costs but having a major influence on global GHG emissions (such as China and India to increase their mitigation efforts, especially in a low-fuelprice world.

  1. Electric Power Monthly, September 1995: With data for June 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy prepares the EPM. This publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions.

  2. Electric power monthly: April 1996, with data for January 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decision makers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy prepares the EPM. This publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatt hour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. 64 tabs.

  3. Energy properties of solid fossil fuels and solid biofuels

    International Nuclear Information System (INIS)

    Holubcik, Michal; Jandacka, Jozef; Kolkova, Zuzana

    2016-01-01

    The paper deals about the problematic of energy properties of solid biofuels in comparison with solid fossil fuels. Biofuels are alternative to fossil fuels and their properties are very similar. During the experiments were done in detail experiments to obtain various properties of spruce wood pellets and wheat straw pellets like biofuels in comparison with brown coal and black coal like fossil fuels. There were tested moisture content, volatile content, fixed carbon content, ash content, elementary analysis (C, H, N, S content) and ash fusion temperatures. The results show that biofuels have some advantages and also disadvantages in comparison with solid fossil fuels.

  4. Energy properties of solid fossil fuels and solid biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Holubcik, Michal, E-mail: michal.holubcik@fstroj.uniza.sk; Jandacka, Jozef, E-mail: jozef.jandacka@fstroj.uniza.sk [University of Žilina, Faculty of Mechanical Engineering, Department of Power Engineering, Univerzitná 8215/1, 010 26 Žilina (Slovakia); Kolkova, Zuzana, E-mail: zuzana.kolkova@rc.uniza.sk [Research centre, University of Žilina, Univerzitna 8215/1, 010 26 Žilina (Slovakia)

    2016-06-30

    The paper deals about the problematic of energy properties of solid biofuels in comparison with solid fossil fuels. Biofuels are alternative to fossil fuels and their properties are very similar. During the experiments were done in detail experiments to obtain various properties of spruce wood pellets and wheat straw pellets like biofuels in comparison with brown coal and black coal like fossil fuels. There were tested moisture content, volatile content, fixed carbon content, ash content, elementary analysis (C, H, N, S content) and ash fusion temperatures. The results show that biofuels have some advantages and also disadvantages in comparison with solid fossil fuels.

  5. The strategic value of fossil fuels: challenges and responses

    International Nuclear Information System (INIS)

    1996-01-01

    Several speeches of the conference concerning the strategic value of fossil fuels that was held on May 8 to 11, 1995 in Houston, Texas are presented. The current and future importance of fossil fuels in energy consumption throughout the world is highlighted. The role of developing countries in the fossil fuels market is increasing, and these countries need some assistance from developed countries to develop. International and regional cooperation seems to be a good way to ensure economic growth. The importance of fossil fuels is shown by the growth of international coal and natural gas trade. (TEC)

  6. Electric Power Generation, Transmission and Distribution (NAICS 2211)

    Science.gov (United States)

    Find EPA regulatory information for electrical utilities, including coal-fired power plants. Includes links to NESHAPs for RICE, stationary combustion engines, fossil fuel waste, cooling water, effluent guidelines. Find information on the MATS rule.

  7. Natural Gas Based Electricity Production and Low Carbon Technology Options

    Science.gov (United States)

    Concerns regarding air quality, global climate change, and the national energy security impacts of the intensive use of fossil fuels and their environmental impacts in the power generation sector have raised interest in alternative low carbon electricity generation technology and...

  8. An examination of electricity generation by utility organizations in the Southeast United States

    International Nuclear Information System (INIS)

    Craig, Christopher A.; Feng, Song

    2016-01-01

    This study examined the impact of climatic variability on electricity generation in the Southeast United States. The relationship cooling degree days (CDD) and heating degree days (HDD) shared with electricity generation by fuel source was explored. Using seasonal autoregressive integrated weighted average (ARIMA) and seasonal simple exponentially smoothed models, retrospective time series analysis was run. The hypothesized relationship between climatic variability and total electricity generation was supported, where an ARIMA model including CDDs as a predictor explained 57.6% of the variability. The hypothesis that climatic variability would be more predictive of fossil fuel electricity generation than electricity produced by clean energy sources was partially supported. The ARIMA model for natural gas indicated that CDDS were the only predictor for the fossil fuel source, and that 79.4% of the variability was explained. Climatic variability was not predictive of electricity generation from coal or petroleum, where simple seasonal exponentially smoothed models emerged. However, HDDs were a positive predictor of hydroelectric electricity production, where 48.9% of the variability in the clean energy source was explained by an ARIMA model. Implications related to base load electricity from fossil fuels, and future electricity generation projections relative to extremes and climate change are discussed. - Highlights: • Models run to examine impact of climatic variability on electricity generation. • Cooling degree days explained 57.6% of variability in total electricity generation. • Climatic variability was not predictive of coal or petroleum generation. • Cooling degree days explained 79.4% of natural gas generation. • Heating degree days were predictive of nuclear and hydroelectric generation.

  9. Electricity

    International Nuclear Information System (INIS)

    Tombs, F.

    1983-01-01

    The subject is discussed, with particular reference to the electricity industry in the United Kingdom, under the headings; importance and scope of the industry's work; future fuel supplies (estimated indigenous fossil fuels reserves); outlook for UK energy supplies; problems of future generating capacity and fuel mix (energy policy; construction programme; economics and pricing; contribution of nuclear power - thermal and fast reactors; problems of conversion of oil-burning to coal-burning plant). (U.K.)

  10. Microbial biocatalyst developments to upgrade fossil fuels.

    Science.gov (United States)

    Kilbane, John J

    2006-06-01

    Steady increases in the average sulfur content of petroleum and stricter environmental regulations concerning the sulfur content have promoted studies of bioprocessing to upgrade fossil fuels. Bioprocesses can potentially provide a solution to the need for improved and expanded fuel upgrading worldwide, because bioprocesses for fuel upgrading do not require hydrogen and produce far less carbon dioxide than thermochemical processes. Recent advances have demonstrated that biodesulfurization is capable of removing sulfur from hydrotreated diesel to yield a product with an ultra-low sulfur concentration that meets current environmental regulations. However, the technology has not yet progressed beyond laboratory-scale testing, as more efficient biocatalysts are needed. Genetic studies to obtain improved biocatalysts for the selective removal of sulfur and nitrogen from petroleum provide the focus of current research efforts.

  11. The Contribution of Electricity Generation to Greenhouse Effect

    International Nuclear Information System (INIS)

    Lubis, Erwansyah

    2008-01-01

    The development activities has successfully increasing the human kind, but also has increasing trend the planet changes radically, because of the greenhouse effect (GHE), decreasing ozone layer and acid rain, that all could treat the living of the species-species and including man inside. The electricity generation and transportation are the main contribution of greenhouse gas (GHG), reaching 1/3 of global emission. Base on the Kyoto protocol in 1997, that all countries, alone or together agree to reduce the emission of GG of 5.2 % under the emission of the 1990. The decreasing of GHG could be reached by implementing the technology generation that contain low carbon, such a natural gas, hydro power, wind, solar and nuclear power. Diversification of electricity generation has to take into a count of environmental capacity, so the supply stability and sustainable development could be reached. The IAEA results studies indicated that the emission factor of fossil fuel 2 times greater compare to the natural gas. The emission factor of wind and biomass lie between solar and nuclear power. In the electricity generation chain, nuclear power emit the 25 g of CO 2 /kWh compare to fossil fuel emit 250 - 1250 g CO 2 /kWh. (author)

  12. Divesting from Fossil Fuels Makes Sense Morally… and Financially

    Science.gov (United States)

    Cleveland, Cutler J.; Reibstein, Richard

    2015-01-01

    Should university endowments divest from fossil fuels? A public discussion of this question has seen some university presidents issuing statements that they would not divest--that investments should not be used for "political action." Many universities hold large endowments that have significant positions in fossil fuel companies or…

  13. Microalgal and terrestrial transport biofuels to displace fossil fuels

    NARCIS (Netherlands)

    Reijnders, L.

    2009-01-01

    Terrestrial transport biofuels differ in their ability to replace fossil fuels. When both the conversion of solar energy into biomass and the life cycle inputs of fossil fuels are considered, ethanol from sugarcane and biodiesel from palm oil do relatively well, if compared with ethanol from corn,

  14. Role of Energy Storage with Renewable Electricity Generation

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

    2010-01-01

    Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as intermittent) output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

  15. Technical descriptions of Hudson River electricity generating stations

    International Nuclear Information System (INIS)

    Hutchison, J.B.

    1988-01-01

    Six fossil-fueled and one nuclear electricity generating plants are sited along the Hudson River estuary between kilometers 8 and 228, measured from the river mouth. Their aggregate rated capacity is 5,798 MW of electricity; operating at that capacity they would withdraw cooling water from the river at the rate of 1.5 x 10 to the 9th power cu m/d and reject heat at the rate of 155 x 10 to the 9th power kcal/d. Three of these plants, the fossil-fueled Roseton and Bowline and the nuclear Indian Point facilities; account for 75% of total rated capacity, 62% of maximum water withdrawal, and 79% of potential heat rejection. These three plants and a proposed pumped-storage facility at Cornwall, all sited between km 60 and 106, were the focus of environmental litigation. The Indian Point plant normally operates at 100% generation capacity; the other plants may experience daily operating load changes that vary from approximately 50% to 100% of total generation capacity, depending on system electrical demand or economic considerations. All plants experience periodic unscheduled outages for repairs. 6 refs., 7 figs

  16. Security of supply: a neglected fossil fuel externality

    International Nuclear Information System (INIS)

    Cavallo, A.J.

    1995-01-01

    Various groups have attempted to set a monetary value on the externalities of fossil fuel usage based on damages caused by emissions of particulates, sulfur dioxide, and oxides of nitrogen and carbon. One externality that has been neglected in this type of analysis, however, is the cost of maintaining a secure supply of fossil fuels. Military expenditures for this purpose are relatively easy to quantify based on US Department of Defense and Office of Management and Budget figures, and amount to between $1 and more than $3 per million Btu, based on total fossil fuel consumption in the US. Open acknowledgment of such expenses would, at the very least, have a profound effect on the perceived competitiveness of all non-fossil fuel technologies. It should also provide a simple and easily comprehended rationale for an energy content (Btu) charge on all fossil fuels. (Author)

  17. Electric power monthly, August 1998, with data for May 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. This publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. 9 refs., 57 tabs.

  18. Electric power monthly, March 1999 with data for December 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be sued in forming various perspectives on electric issues that lie ahead. This publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. 63 tabs.

  19. Electric power monthly, May 1998, with data for February 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974. The EPM provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. 30 refs., 58 tabs.

  20. Risk limitation, safety and environmental compatibility in electricity generation

    International Nuclear Information System (INIS)

    Angelini, A.M.

    1981-01-01

    The purpose of this paper is to present the problem of meeting future electricity needs while at the same time reducing to a minimum the risks, the pollution of air and water and the environmental effects of power stations. The first resource to exploit is the ''virtual source'' represented by energy saving pursued to the limit of the possible. The second, in order of priority, is that of renewable resources as yet unused and under development. Unfortunately, in most countries these latter resources are far from sufficient: it is then necessary to choose between the use of conventional fossil fuels and nuclear fuels. In this paper it is shown that, of all the possible fossil fuels, only coal can be considered for electricity production. As a result, in meeting new electricity needs, the choice will have to be made between coal and nuclear power. Attention is directed to factors having a significant influence on this choice, particularly the risks and safety problems in the widest sense, with a view to making a global evaluation comprising not just generating stations but the entire production cycle, from the search for the primary source to the supplying of electricity to the user. The most important problems that arise in this connection are briefly analysed in the paper, which concludes with an appeal for more objectivity in providing information on energy, such information being at present very ''polluted'' and exerting a major influence on the views of experts. (author)

  1. Environmental pricing of externalities from different sources of electricity generation in Chile

    International Nuclear Information System (INIS)

    Aravena, Claudia; Hutchinson, W. George; Longo, Alberto

    2012-01-01

    The rapid increase in electricity demand in Chile means a choice must be made between major investments in renewable or non-renewable sources for additional production. Current projects to develop large dams for hydropower in Chilean Patagonia impose an environmental price by damaging the natural environment. On the other hand, the increased use of fossil fuels entails an environmental price in terms of air pollution and greenhouse gas emissions contributing to climate change. This paper studies the debate on future electricity supply in Chile by investigating the preferences of households for a variety of different sources of electricity generation such as fossil fuels, large hydropower in Chilean Patagonia and other renewable energy sources. Using Double Bounded Dichotomous Choice Contingent Valuation, a novel advanced disclosure method and internal consistency test are used to elicit the willingness to pay for less environmentally damaging sources. Policy results suggest a strong preference for renewable energy sources with higher environmental prices imposed by consumers on electricity generated from fossil fuels than from large dams in Chilean Patagonia. Policy results further suggest the possibility of introducing incentives for renewable energy developments that would be supported by consumers through green tariffs or environmental premiums. Methodological findings suggest that advanced disclosure learning overcomes the problem of internal inconsistency in SB-DB estimates.

  2. A strong argument for using non-commodities to generate electricity

    International Nuclear Information System (INIS)

    Santiago, Katarina Tatiana Marques; Campello de Souza, Fernando Menezes; Carvalho Bezerra, Diogo de

    2014-01-01

    An optimal control approach towards generating electricity is used to analyze the trade-off between using of primary sources which are regarded as commodities, such as fossil fuels, biomass and water to generate electricity, and exploiting these sources for their other economic uses (for example, in the petrochemical industry, in the production of fuels, in agriculture, in steelmaking, and so forth). In order to do so, a dynamic model is presented which establishes relationships between economic growth, the fossil fuel, water and biomass sectors, and energy policies, based on the application of the Pontryagin Maximum Principle. Among other results, the analysis establishes that, under the optimal path, the price of commodities for non-energy uses should be twice the price of the energy assets. This indicates that sources which are not commodities such as solar energy, wind energy, and geothermal energy, should be used to generate electricity. - Highlights: • We used an optimal control approach to analyze the trade-off between the multiple uses of energy resource. • We used a dynamic model which establishes relationships between economic growth, the fossil fuel, water and biomass sectors. • The analysis establishes that the price of commodities for non-energy uses should be twice the price of the energy assets

  3. Fossil fuel derivatives with reduced carbon. Phase I final report

    Energy Technology Data Exchange (ETDEWEB)

    Kennel, E.B.; Zondlo, J.W.; Cessna, T.J.

    1999-06-30

    This project involves the simultaneous production of clean fossil fuel derivatives with reduced carbon and sulfur, along with value-added carbon nanofibers. This can be accomplished because the nanofiber production process removes carbon via a catalyzed pyrolysis reaction, which also has the effect of removing 99.9% of the sulfur, which is trapped in the nanofibers. The reaction is mildly endothermic, meaning that net energy production with real reductions in greenhouse emissions are possible. In Phase I research, the feasibility of generating clean fossil fuel derivatives with reduced carbon was demonstrated by the successful design, construction and operation of a facility capable of utilizing coal as well as natural gas as an inlet feedstock. In the case of coal, for example, reductions in CO{sub 2} emissions can be as much as 70% (normalized according to kilowatts produced), with the majority of carbon safely sequestered in the form of carbon nanofibers or coke. Both of these products are value-added commodities, indicating that low-emission coal fuel can be done at a profit rather than a loss as is the case with most clean-up schemes. The main results of this project were as follows: (1) It was shown that the nanofiber production process produces hydrogen as a byproduct. (2) The hydrogen, or hydrogen-rich hydrocarbon mixture can be consumed with net release of enthalpy. (3) The greenhouse gas emissions from both coal and natural gas are significantly reduced. Because coal consumption also creates coke, the carbon emission can be reduced by 75% per kilowatt-hour of power produced.

  4. Fossil fuels, uranium, and the energy crisis

    Energy Technology Data Exchange (ETDEWEB)

    Playford, P E

    1977-01-01

    Relevant data on the world energy picture are presented to indicate present energy sources and resources, especially fossil fuels and the role of uranium in energy production, with some predictions for the future. World energy is presently being derived from petroleum (some 62%), coal (31%), hydropower (6%), and nuclear (1%). The fundamental cause of the present world energy crisis is attributed to the increase in consumption of petroleum over the past 20 yr, compared with the relatively small size and unequal distribution of the world's remaining reserves. The reserves/production ratio for petroleum has fallen steadily from a general level of 60 to 80 yr from 1920 to 1955, to about 31 yr today. New oil is becoming harder and more expensive to find and produce, the size of discoveries is declining. There is no reason to believe that this trend will be substantially altered, and production is expected to begin to decline between 1985 and 1990. Gas resources also are expected to fall short after the mid-1980s. Coal reserves are enormous, but their full utilization is doubtful because of economic and environmental problems. Tar sands and oil shale resources are potentially major sources of oil, and they are expected to become more competitive with petroleum as higher oil prices occur.

  5. Radiation exposures due to fossil fuel combustion

    Science.gov (United States)

    Beck, Harold L.

    The current consensus regarding the potential radiation exposures resulting from the combustion of fossil fuels is examined. Sources, releases and potential doses to humans are discussed, both for power plants and waste materials. It is concluded that the radiation exposure to most individuals from any pathway is probably insignificant, i.e. only a tiny fraction of the dose received from natural sources in soil and building materials. Any small dose that may result from power-plant emissions will most likely be from inhalation of the small insoluble ash particles from the more poorly controlled plants burning higher than average activity fuel, rather than from direct or indirect ingestion of food grown on contaminated soil. One potentially significant pathway for exposure to humans that requires further evaluation is the effect on indoor external γ-radiation levels resulting from the use of flyash in building materials. The combustion of natural gas in private dwellings is also discussed, and the radiological consequences are concluded to be generally insignificant, except under certain extraordinary circumstances.

  6. Cost of electricity from small scale co-generation of electricity and heat

    Energy Technology Data Exchange (ETDEWEB)

    Kjellstroem, Bjoern

    2012-07-15

    There is an increasing interest in Sweden for using also small heat loads for cogeneration of electricity and heat. Increased use of small CHP-plants with heat supply capacities from a few 100 kW(h) up to 10 MW(h) cannot change the structure of the electricity supply system significantly, but could give an important contribution of 2 - 6 TWh(e) annually. The objective of this study was to clarify under what conditions electricity can be generated in small wood fired CHP-plants in Sweden at costs that can compete with those for plants using fossil fuels or nuclear energy. The capacity range studied was 2 - 10 MW(h). The results should facilitate decisions about the meaningfulness of considering CHP as an option when new heat supply systems for small communities or sawmills are planned. At the price for green certificates in Sweden, 250 - 300 SEK/MWh(e), generation costs in small wood fired CHP-plants should be below about 775 SEK/MWh(e) to compete with new nuclear power plants and below about 925 SEK/MWh(e) to compete with generation using fossil fuels.

  7. Coal-fired electricity generation in Ontario

    International Nuclear Information System (INIS)

    2001-03-01

    This report examines coal-fired electricity generation in Ontario and recommends actions to be taken by the provincial government to protect the environment. The recommendations are also designed to assist in making decisions about the environmental safeguards needed for a competitive electricity industry. The report examines air emissions from coal-fired generating plants in the larger context of air pollution in the province; summarizes background information on key air pollutants; provides an individual profile of all coal-fired power stations in the province; and benchmarks Ontario's emissions performance by comparing it with 19 nearby U.S. jurisdictions. Current and proposed environmental controls for fossil fuel power generation in the province are elaborated. Options for maximizing environmental performance and the framework for strengthening environmental protection are reviewed. The report also contains a series of findings and recommendations which are deemed necessary before the moratorium imposed on the sale of coal-fired electricity plants imposed in May 2000, can be lifted. tabs., figs

  8. Mitigating environmental pollution and impacts from fossil fuels: The role of alternative fuels

    Energy Technology Data Exchange (ETDEWEB)

    Liu, L.; Cheng, S.Y.; Li, J.B.; Huang, Y.F. [Dalhousie University, Halifax, NS (Canada)

    2007-07-01

    In order to meet the rising global demand for energy, rapid development of conventional fossil fuels (i.e., coal, oil, and natural gas) have been experienced by many nations, bringing dramatic economic benefit and prosperity to fossil-fuel industries as well as well being of human society. However, various fossil-fuel related activities emit huge quantities of gaseous, liquid, and solid waste materials, posing a variety of impacts, risks, and liabilities to the environment. Therefore, on the one hand, control measures are desired for effectively managing pollution issues; on the other hand, it becomes extremely critical to invest efforts in finding promising alternative energy sources as solutions to the possible energy shortage crisis in future. This article focuses on both aspects through: (1) a discussion of waste materials generated from fossil-fuel industries and waste management measures; and (2) an exploration of some well-recognized alternative fuels in terms of their nature, availability, production, handling, environmental performances, and current and future applications. The conclusion restates the urgency of finding replaceable long-term alternatives to the conventional fuels.

  9. Air pollution health effects of electric power generation

    International Nuclear Information System (INIS)

    1975-11-01

    stitutt for Atomenergi (IFA) and Norsk Institutt for Luftforskning (NILU) have undertaken a joint project with the ultimate purpose of comparing the relative air pollution health effects of gas-fired, oil-fired and uranium-fueled electric power generating plants. Phase I of the project includes a literature review on pollutant emissions and their health effects. The methods which have previouously been used to compare the relative health effects are also reviewed. The radioactive effluents from nuclear power plants are tabulated and the health effects discussed on the basis of data from Hiroshima and Nagasaki, medical irradiation therapy and studies of USAEC and UKAEA employees. It is pointed out that there is no indication that chronic low-level radiation has somatic effects, and the Japanese data gives no conclusive indication of genetic effects. Background irradiation in Kerala and Guarapari and in USA is also cited. Following a brief presentation of the principal air pollutants from fossil fuels a number of studies of 'smog' incidents in the UK and USA are discussed, and a prediction equation based on multiple regression analysis is presented. Finally the methods of comparing the health effects from nuclear and fossil-fuel plants are discussed. In an appendix Lave and Freeburg's study 'Health effects of electricity generation from coal, oil and nuclear fuel' is evaluated. (JIW)

  10. Fossil fuels. Commercializing clean coal technologies

    International Nuclear Information System (INIS)

    Fultz, Keith O.; Sprague, John W.; Kirk, Roy J.; Clark, Marcus R. Jr.; Greene, Richard M.; Buncher, Carole S.; Kleigleng, Robert G.; Imbrogno, Frank W.

    1989-03-01

    Coal, an abundant domestic energy source, provides 25 percent of the nation's energy needs, but its use contributes to various types of pollution, including acid rain. The Department of Energy (DOE) has a Clean Coal Technology (CCT) program whose goal is to expand the use of coal in an environmentally safe manner by contributing to the cost of projects demonstrating the commercial applications of emerging clean coal technologies. Concerned about the implementation of the CCT program, the Chairman, Subcommittee on Energy and Power, House Committee on Energy and Commerce, requested GAO to report on (1) DOE's process of negotiating cooperative agreements with project sponsors, (2) changes DOE has made to the program, (3) the status of funded projects, and (4) the interrelationship between acid rain control proposals and the potential commercialization of clean coal technologies. Under the CCT program, DOE funds up to 50 percent of the cost of financing projects that demonstrate commercial applications of emerging clean coal technologies. DOE has conducted two solicitations for demonstration project proposals and is planning a third solicitation by May 1989. The Congress has appropriated $400 million for the first solicitation, or round one of the program, $575 million for round two, and $575 million for round three, for a total of $1.55 billion. For the round-one solicitation, DOE received 51 proposals from project sponsors. As of December 31, 1988, DOE had funded nine projects and was in the process of negotiating cooperative financial assistance agreements with sponsors of four projects. In September 1988, DOE selected 16 round-two projects from 55 proposals submitted and began the process of negotiating cooperative agreements with the project sponsors. The Congress has debated the need to reduce acid rain-causing emissions associated with fossil fuel combustion. The 100th Congress considered but did not enact about 20 acid rain control bills. On February 9, 1989

  11. Legislative and Regulatory Timeline for Fossil Fuel Combustion Wastes

    Science.gov (United States)

    This timeline walks through the history of fossil fuel combustion waste regulation since 1976 and includes information such as regulations, proposals, notices, amendments, reports and meetings and site visits conducted.

  12. Fossil fuel produced radioactivities and their effect on foodchains

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, K [New South Wales Univ., Kensington (Australia). Dept. of Applied Mathematics

    1980-10-01

    The environmental impact of radioactivities produced from fossil fuel burning is not necessarily small compared with that of nuclear energy. The effect of these radioactivities on the foodchain through seafoods is discussed.

  13. The change from fossil fuel dependence to sustainable energy sources in Nigeria

    International Nuclear Information System (INIS)

    Chukwu, C.; Ajedegba, J.

    2006-01-01

    Nigeria faces a serious energy crisis due to declining electricity generation from domestic power plants. Although the country is highly dependent on fossil fuel resources, Nigeria has a range of unexploited biomass and hydro power resources, as well as extensive solar energy potential. This paper presented a current energy balance of Nigeria and examined ways of reaching an environmentally sustainable energy balance through the use of a mix of renewable resources. Supply and consumption details of domestic, industrial and transportation sectors as well as electricity production statistics were presented. Total hydropower potential based on the country's river system was estimated to be 10,000 MW. It was estimated that Nigeria has an average of 1.804 x 10 15 of incident solar energy annually, which is 27 times the nation's total conventional energy resources in energy units. It was noted that Nigeria also possesses a significant amount of biomass resources from several large forests that may be used to supply domestic cooking and heating needs as well as for ethanol production. It was noted that wind energy may not be a viable alternative for large scale electricity production in Nigeria. Recommendations to promote the use of renewable resources in the national energy mix included encouraging the decentralization of energy supplies; discouraging the use of wood as fuel; promoting efficient methods in the use of biomass energy resources; private sector participation; and global partnerships. 15 refs., 7 tabs

  14. Hydrogen production econometric studies. [hydrogen and fossil fuels

    Science.gov (United States)

    Howell, J. R.; Bannerot, R. B.

    1975-01-01

    The current assessments of fossil fuel resources in the United States were examined, and predictions of the maximum and minimum lifetimes of recoverable resources according to these assessments are presented. In addition, current rates of production in quads/year for the fossil fuels were determined from the literature. Where possible, costs of energy, location of reserves, and remaining time before these reserves are exhausted are given. Limitations that appear to hinder complete development of each energy source are outlined.

  15. Implementation of optimum solar electricity generating system

    International Nuclear Information System (INIS)

    Singh, Balbir Singh Mahinder; Karim, Samsul Ariffin A.; Sivapalan, Subarna; Najib, Nurul Syafiqah Mohd; Menon, Pradeep

    2014-01-01

    Under the 10 th Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels

  16. Implementation of optimum solar electricity generating system

    Science.gov (United States)

    Singh, Balbir Singh Mahinder; Sivapalan, Subarna; Najib, Nurul Syafiqah Mohd; Menon, Pradeep; Karim, Samsul Ariffin A.

    2014-10-01

    Under the 10th Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.

  17. Implementation of optimum solar electricity generating system

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Balbir Singh Mahinder, E-mail: balbir@petronas.com.my; Karim, Samsul Ariffin A., E-mail: samsul-ariffin@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 31750 Bandar Seri Iskandar, Perak (Malaysia); Sivapalan, Subarna, E-mail: subarna-sivapalan@petronas.com.my [Department of Management and Humanities, Universiti Teknologi PETRONAS, 31750 Bandar Seri Iskandar, Perak (Malaysia); Najib, Nurul Syafiqah Mohd; Menon, Pradeep [Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS, 31750 Bandar Seri Iskandar, Perak (Malaysia)

    2014-10-24

    Under the 10{sup th} Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.

  18. Prospects of nuclear power in fossil fuel saving

    International Nuclear Information System (INIS)

    Chernavskij, S.Ya.

    1984-01-01

    Economic aspects of the World energy situation are considered. The growth in the world prices for energy and energy resources has demanded to reconstruct the structure of both consumers and primary energy resources. The nuclear power development is one of the most important aspects of this reconstruction. In connection with its development the acceptability of nuclear power technology and possible spheres of its application in different fields of power engineering are considered. When discussing these problems one pays the main attention to the psychological effect and potential measures for its compensation. A forecast estimate is given of specific capital investments in and expenditures on electric energy production for NPPs and conventional power stations for the considered period of 30 years. The estimates are differentiated for the European and Asian parts of the country. The problems of developing nuclear central heating-and-power plants and nuclear thermal stations are discussed. It is pointed out that presently no sufficient experience has been gained in their commerical operation to discuss for sure the prospects of their wide-scale utilization. Results of calculations are presented showing that in the range of high-temperature processes the use of electric energy based on the nuclear power development is more efficient than direct combustion of fossil fuel as estimated with respect to its export at the world market prices

  19. A long-term view of worldwide fossil fuel prices

    International Nuclear Information System (INIS)

    Shafiee, Shahriar; Topal, Erkan

    2010-01-01

    This paper reviews a long-term trend of worldwide fossil fuel prices in the future by introducing a new method to forecast oil, natural gas and coal prices. The first section of this study analyses the global fossil fuel market and the historical trend of real and nominal fossil fuel prices from 1950 to 2008. Historical fossil fuel price analysis shows that coal prices are decreasing, while natural gas prices are increasing. The second section reviews previously available price modelling techniques and proposes a new comprehensive version of the long-term trend reverting jump and dip diffusion model. The third section uses the new model to forecast fossil fuel prices in nominal and real terms from 2009 to 2018. The new model follows the extrapolation of the historical sinusoidal trend of nominal and real fossil fuel prices. The historical trends show an increase in nominal/real oil and natural gas prices plus nominal coal prices, as well as a decrease in real coal prices. Furthermore, the new model forecasts that oil, natural gas and coal will stay in jump for the next couple of years and after that they will revert back to the long-term trend until 2018. (author)

  20. Fossil fuel and biomass burning effect on climate - heating or cooling

    Energy Technology Data Exchange (ETDEWEB)

    Kaufman, Y.J.; Fraser, R.S.; Mahoney, R.L. (NASA/Goddard Space Flight Center, Greenbelt, MD (USA))

    1991-06-01

    Emission from burning of fossil fuels and biomass (associated with deforestation) generates a radiative forcing on the atmosphere and a possible climate change. Emitted trace gases heat the atmosphere through their greenhouse effect, while particulates formed from emitted SO{sub 2} cause cooling by increasing cloud albedos through alteration of droplet size distributions. This paper reviews the characteristics of the cooling effect and applies Twomey's theory to check whether the radiative balance favours heating or cooling for the cases of fossil fuel and biomass burning. It is also shown that although coal and oil emit 120 times as many CO{sub 2} molecules as SO{sub 2} molecules, each SO{sub 2} molecule is 50-1100 times more effective in cooling the atmosphere (through the effect of aerosol particles on cloud albedo) than a CO{sub 2} molecule is in heating it. Note that this ratio accounts for the large difference in the aerosol (3-10 days) and CO{sub 2} (7-100 years) lifetimes. It is concluded, that the cooling effect from coal and oil burning may presently range from 0.4 to 8 times the heating effect. Within this large uncertainty, it is presently more likely that fossil fuel burning causes cooling of the atmosphere rather than heating. Biomass burning associated with deforestation, on the other hand, is more likely to cause heating of the atmosphere than cooling since its aerosol cooling effect is only half that from fossil fuel burning and its heating effect is twice as large. Future increases in coal and oil burning, and the resultant increase in concentration of cloud condensation nuclei, may saturate the cooling effect, allowing the heating effect to dominate. For a doubling in the CO{sub 2} concentration due to fossil fuel burning, the cooling effect is expected to be 0.1 to 0.3 of the heating effect. 75 refs., 8 tabs.

  1. The energy return on energy investment (EROI) of photovoltaics: Methodology and comparisons with fossil fuel life cycles

    International Nuclear Information System (INIS)

    Raugei, Marco; Fullana-i-Palmer, Pere; Fthenakis, Vasilis

    2012-01-01

    A high energy return on energy investment (EROI) of an energy production process is crucial to its long-term viability. The EROI of conventional thermal electricity from fossil fuels has been viewed as being much higher than those of renewable energy life-cycles, and specifically of photovoltaics (PVs). We show that this is largely a misconception fostered by the use of outdated data and, often, a lack of consistency among calculation methods. We hereby present a thorough review of the methodology, discuss methodological variations and present updated EROI values for a range of modern PV systems, in comparison to conventional fossil-fuel based electricity life-cycles. - Highlights: ► We perform a review of the EROI methodology. ► We provide new calculations for PV compared to oil- and coal-based energy systems. ► If compared consistently, PV sits squarely in the same range of EROI as conventional fossil fuel life cycles.

  2. Electricity generation and environmental externalities: Case studies, September 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-28

    Electricity constitutes a critical input in sustaining the Nation`s economic growth and development and the well-being of its inhabitants. However, there are byproducts of electricity production that have an undesirable effect on the environment. Most of these are emissions introduced by the combustion of fossil fuels, which accounts for nearly 70 percent of the total electricity generated in the United States. The environmental impacts (or damages) caused by these emissions are labeled environmental ``externalities.`` Included in the generic term ``externality`` are benefits or costs resulting as an unintended byproduct of an economic activity that accrue to someone other than the parties involved in the activity. This report provides an overview of the economic foundation of externalities, the Federal and State regulatory approaches, and case studies of the impacts of the externality policies adopted by three States.

  3. Comparative assessment of electricity generation options using DECADES

    International Nuclear Information System (INIS)

    Perez Martin, D.; Lopez Lopez, I.; Turtos Carbonell, L.

    1999-01-01

    Cuba is poor in primary energy resources. In 1998, 99.4% of electricity generated by the National Electric System came from fossil fuel with the environment implications that this Situation causes. Cuba joint DECADES project (Databases and methodologies for Comparative Assessment of Different Energy Sources) to support planning and decision making process with Appropriated tools. The paper presents the main work carried out with DECADES. An important Effort was devoted to implement the Country Specific Database, to assess power plants and Chains, to select and evaluate different expansion scenarios taking into consideration its Environment implications. At the same time an effort was dedicated to correct, test and Implement DECADES capabilities. The potential role of nuclear power in the expansion policy of Cuban electric system, the Influence of an Oil Steam Boiler project and control technology installation, were performed. Conclusions of the main task done with DECADES are presented

  4. Electricity generation from landfill gas: a commercial view revisited

    International Nuclear Information System (INIS)

    Limbrick, A.J.

    1992-01-01

    Wapsey's Wood power station has been generating electricity from landfill gas since 1987. Despite a good technical track record, the project did not secure a fair price for the electricity it sold until it was included in the 1991 Non-Fossil Fuel Obligation (NFFO). The NFFO has served to bring forward approximately 560 MW of renewable energy generating capacity, of which 15 per cent is fuelled by landfill gas. However, case histories such as that of Wapsey's Wood highlight the weaknesses of the current arrangements. To secure the continued steady growth of commercially robust renewable energy projects, there is a need to boost the business confidence of potential developers. The paper proposes two ways to remove the present uncertainty: simplify the application procedures, and remove the December 1998 expiry date that currently applies to power purchase agreements under the NFFO. (author)

  5. Geothermal energy in the western United States and Hawaii: Resources and projected electricity generation supplies. [Contains glossary and address list of geothermal project developers and owners

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    Geothermal energy comes from the internal heat of the Earth, and has been continuously exploited for the production of electricity in the United States since 1960. Currently, geothermal power is one of the ready-to-use baseload electricity generating technologies that is competing in the western United States with fossil fuel, nuclear and hydroelectric generation technologies to provide utilities and their customers with a reliable and economic source of electric power. Furthermore, the development of domestic geothermal resources, as an alternative to fossil fuel combustion technologies, has a number of associated environmental benefits. This report serves two functions. First, it provides a description of geothermal technology and a progress report on the commercial status of geothermal electric power generation. Second, it addresses the question of how much electricity might be competitively produced from the geothermal resource base. 19 figs., 15 tabs.

  6. Electric power monthly, January 1994

    International Nuclear Information System (INIS)

    1994-01-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. This publication provides monthly statistics at the US Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. Statistics by company and plant are published in the EPM on the capability of new generating units, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fossil fuels

  7. Electric power monthly, January 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-26

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. This publication provides monthly statistics at the US Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. Statistics by company and plant are published in the EPM on the capability of new generating units, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fossil fuels.

  8. Electric power monthly, October 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-20

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. Statistics by company and plant are published in the EPM on the capability of new generating units, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fossil fuels.

  9. Economics of generating electricity from nuclear power

    International Nuclear Information System (INIS)

    Boadu, H.O.

    2001-01-01

    The paper reviews and compares experiences and projected future construction and electricity generation costs for nuclear and fossil fired power plants. On the basis of actual operating experience, nuclear power has been demonstrated to be economically competitive with other base load generation options, and international studies project that this economic competitiveness will be largely maintained in the future, over a range of conditions and in a number of countries. However, retaining and improving this competitive position requires concerted efforts to ensure that nuclear plants are constructed within schedule and budgets, and are operated reliably and efficiently. Relevant cost impacting factors is identified, and conclusions for successful nuclear power plant construction and operation are drawn. The desire to attain sustainable development with balanced resource use and control of the environmental and climate impacts of energy systems could lead to renewed interest in nuclear power as an energy source that does not emit greenhouse gases, thus contributing to a revival of the nuclear option. In this regard, mitigation of emissions from fossil-fuelled power plants could lead to restrictions of fossil fuel use and/or result in higher costs of fossil based generation, thus improving the economic competitiveness of nuclear power (au)

  10. Fossil fuels in a sustainable energy future

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel, T.F. [Dept. of Energy, Morgantown, WV (United States)

    1995-12-01

    The coal industry in the United States has become a world leader in safety, productivity, and environmental protection in the mining of coal. The {open_quotes}pick-and-shovel{close_quotes} miner with mangled limbs and black lung disease has been replaced by the highly skilled technicians that lead the world in tons per man-hour. The gob piles, polluted streams, and scared land are a thing of the past. The complementary efforts of the DOE and EPRI-funded programs in coal utilization R&D and the Clean Coal Technology Program commercial demonstrations, have positioned the power generation industry to utilize coal in a way that doesn`t pollute the air or water, keeps electrical power costs low, and avoids the mountains of waste material. This paper reviews the potential for advanced coal utilization technologies in new power generation applications as well as the repowering of existing plants to increase their output, raise their efficiency, and reduce pollution. It demonstrates the potential for these advanced coal-fueled plants to play a complementary role in future planning with the natural gas and oil fired units currently favored in the market place. The status of the US program to demonstrate these technologies at commercial scale is reviewed in some detail.

  11. Spatiotemporal patterns of the fossil-fuel CO2 signal in central Europe: results from a high-resolution atmospheric transport model

    Science.gov (United States)

    Liu, Yu; Gruber, Nicolas; Brunner, Dominik

    2017-11-01

    detectable for a surface-based observing system for atmospheric CO2, while it is beyond the edge of detectability for the current generation of satellites with the exception of a few hotspot sites. Changes in variability in atmospheric CO2 might open an additional door for the monitoring and verification of changes in fossil-fuel emissions, primarily for surface-based systems.

  12. Heat planning for fossil-fuel-free district heating areas with extensive end-use heat savings

    DEFF Research Database (Denmark)

    Harrestrup, Maria; Svendsen, S.

    2014-01-01

    is a theoretical investigation of the district heating system in the Copenhagen area, in which heat conservation is related to the heat supply in buildings from an economic perspective. Supplying the existing building stock from low-temperature energy resources, e.g. geothermal heat, might lead to oversized......The Danish government plans to make the Danish energy system to be completely free of fossil fuels by 2050 and that by 2035 the energy supply for buildings and electricity should be entirely based on renewable energy sources. To become independent from fossil fuels, it is necessary to reduce...... the energy consumption of the existing building stock, increase energy efficiency, and convert the present heat supply from fossil fuels to renewable energy sources. District heating is a sustainable way of providing space heating and domestic hot water to buildings in densely populated areas. This paper...

  13. Optimization of low sulfur jerusalem artichoke juice for fossil fuels biodesulfurization process

    OpenAIRE

    Silva, Tiago P.; Paixão, Susana M.; Roseiro, J. Carlos; Alves, Luís Manuel

    2013-01-01

    Most of the world’s energy is generated from the burning of fossil fuels such as oil and its derivatives. When burnt, these fuels release into the atmosphere volatile organic compounds, sulfur as sulfur dioxide (SO2) and the fine particulate matter of metal sulfates. These are pollutants which can be responsible for bronchial irritation, asthma attacks, cardio-pulmonary diseases and lung cancer mortality, and they also contribute for the occurrence of acid rains and the increase of the hole i...

  14. Modules for estimating solid waste from fossil-fuel technologies

    International Nuclear Information System (INIS)

    Crowther, M.A.; Thode, H.C. Jr.; Morris, S.C.

    1980-10-01

    Solid waste has become a subject of increasing concern to energy industries for several reasons. Increasingly stringent air and water pollution regulations result in a larger fraction of residuals in the form of solid wastes. Control technologies, particularly flue gas desulfurization, can multiply the amount of waste. With the renewed emphasis on coal utilization and the likelihood of oil shale development, increased amounts of solid waste will be produced. In the past, solid waste residuals used for environmental assessment have tended only to include total quantities generated. To look at environmental impacts, however, data on the composition of the solid wastes are required. Computer modules for calculating the quantities and composition of solid waste from major fossil fuel technologies were therefore developed and are described in this report. Six modules have been produced covering physical coal cleaning, conventional coal combustion with flue gas desulfurization, atmospheric fluidized-bed combustion, coal gasification using the Lurgi process, coal liquefaction using the SRC-II process, and oil shale retorting. Total quantities of each solid waste stream are computed together with the major components and a number of trace elements and radionuclides

  15. Analytical assessments on the potential of harnessing tidal currents for electricity generation in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Yun Seng; Koh, Siong Lee [Department of Physical Science, Electrical and Electronic Engineering, Tunku Abdul Rahman University (Malaysia)

    2010-05-15

    Malaysia is heavily dependent on fossil fuel for electricity generation. With the rapidly diminishing of its fuel reserve and the increasingly negative effects of fossil fuels to the environment, the government has begun to utilise bio-fuel and solar radiation for electricity generation. However, the potential of harnessing other renewable sources, particular ocean energy, in Malaysia has not been fully realised. Therefore, studies were carried out to identify the potential of harnessing ocean energy for electricity generation. The Princeton Ocean Model was used to create a three-dimensional numerical ocean model for Malaysia which was calibrated against measurement by a means of adjoint data assimilation approach. A set of reliable tidal speed and tidal elevation data was therefore generated to determine the types of tides available in Malaysia, the potential areas of installing marine current turbines (MCTs), the total amount of electricity to be generated by MCT, the economical viability and the environmental benefits of using MCT in Malaysia. This paper presents the findings on the studies, encompassing the technical, economical and environmental aspects of installing MCT in Malaysia. The results are critical to policy makers and the potential investors on tidal energy in Malaysia for decision making. It may also help the neighboring countries to realize the possible potential of their ocean energy for electricity generation. (author)

  16. Electricity generation by living plants in a plant microbial fuel cell

    NARCIS (Netherlands)

    Timmers, R.A.

    2012-01-01

    Society is facing local and global challenges to secure needs of people. One of those needs is the increasing demand of energy. Currently most energy is generated by conversion of fossil fuels. The major drawback of using fossil fuels is pollution of the environment by emission of carbon

  17. Microalgal and Terrestrial Transport Biofuels to Displace Fossil Fuels

    Directory of Open Access Journals (Sweden)

    Lucas Reijnders

    2009-02-01

    Full Text Available Terrestrial transport biofuels differ in their ability to replace fossil fuels. When both the conversion of solar energy into biomass and the life cycle inputs of fossil fuels are considered, ethanol from sugarcane and biodiesel from palm oil do relatively well, if compared with ethanol from corn, sugar beet or wheat and biodiesel from rapeseed. When terrestrial biofuels are to replace mineral oil-derived transport fuels, large areas of good agricultural land are needed: about 5x108 ha in the case of biofuels from sugarcane or oil palm, and at least 1.8-3.6x109 ha in the case of ethanol from wheat, corn or sugar beet, as produced in industrialized countries. Biofuels from microalgae which are commercially produced with current technologies do not appear to outperform terrestrial plants such as sugarcane in their ability to displace fossil fuels. Whether they will able to do so on a commercial scale in the future, is uncertain.

  18. Electricity generation with natural gas or with uranium?

    International Nuclear Information System (INIS)

    Villanueva M, C.

    2009-10-01

    The program of works and investments of electric sector that actualize each year the Federal Commission of Electricity, include to the projects of electric power generating stations that will begin its commercial operation inside the horizon of the next ten years, in order to satisfy opportunely with appropriate reservation margins the demand of power and energy in the national interconnected system that grows year to year. In spite of its inherent advantages, in the electric sector prospective 2008-2017 are not considered explicitly to the nuclear power plants, except for the small amplification of capacity of nuclear power plant of Laguna Verde, that already is executing. In this context, the objective of this work is to present and to discuss arguments to favor and against the combined cycle and nuclear technologies, to indicate the risks and disadvantages in that it incurs the electric sector when leaning on so disproportionately on the fossil fuels for the electricity generation, in particular the natural gas, deferring to an indefinite future the installation of nuclear plants whose proven technology is economic, sure, clean and reliable and it contributes decisively to the national energy security. To mitigate the harmful effects of excessive dependence on natural gas to generate electric power, was propose alternatives to the expansion program of electric sector to year 2017, which would have as benefits the decrease of the annual total cost of electric power supply for public service, the significant reduction of natural gas imports and emissions reduction of CO 2 to the atmosphere. (Author)

  19. Assessing the Environmental Sustainability of Electricity Generation in Turkey on a Life Cycle Basis

    Directory of Open Access Journals (Sweden)

    Burcin Atilgan

    2016-01-01

    Full Text Available Turkey’s electricity mix is dominated by fossil fuels, but the country has ambitious future targets for renewable and nuclear energy. At present, environmental impacts of electricity generation in Turkey are unknown so this paper represents a first attempt to fill this knowledge gap. Taking a life cycle approach, the study considers eleven impacts from electricity generation over the period 1990–2014. All 516 power plants currently operational in Turkey are assessed: lignite, hard coal, natural gas, hydro, onshore wind and geothermal. The results show that the annual impacts from electricity have been going up steadily over the period, increasing by 2–9 times, with the global warming potential being higher by a factor of five. This is due to a four-fold increase in electricity demand and a growing share of fossil fuels. The impact trends per unit of electricity generated differ from those for the annual impacts, with only four impacts being higher today than in 1990, including the global warming potential. Most other impacts are lower from 35% to two times. These findings demonstrate the need for diversifying the electricity mix by increasing the share of domestically-abundant renewable resources, such as geothermal, wind, and solar energy.

  20. Carbon dioxide emissions from fossil-fuel use, 1751-1950

    Energy Technology Data Exchange (ETDEWEB)

    Andres, R.J.; Fielding, D.J.; Marland, G.; Boden, T.A.; Kumar, N.; Kearney, A.T. [University of Alaska, Fairbanks, AK (US). Inst. of Northern Engineering

    1999-09-01

    Newly compiled energy statistics allow the complete time series of carbon dioxide (CO{sub 2}) emissions from fossil-fuel use for the years 1751 to the present to be estimated. The time series begins with 3 x 10{sup 6} metric tonnes carbon (C). The CO{sub 2} flux increased exponentially until World War I. The time series derived here seamlessly joins the modern 1950 to present time series. Total cumulative CO{sub 2} emissions through 1949 were 61.0 x 10{sup 9} tonne C from fossil-fuel use, virtually all since the beginning of the Industrial Revolution around 1860. The rate of growth continues to grow during present times, generating debate on the probability of enhanced greenhouse warming. In addition to global totals, national totals and 1 degree global distributions of the data have been calculated.

  1. The role of natural gas in assessing environmental cost of fossil fuels

    International Nuclear Information System (INIS)

    Riva, A.; Trebeschi, C.

    1999-01-01

    The actual price of a resource is the results of its internal and external costs. Internal costs means the price paid by the users in order to utilise the resource. On the other hand, externals costs, which are associated with the resource, are not paid directly by the users, but they shall be paid for by the society of the future generations. The article presents methodologies and issues relevant to energy policy decisions, when it comes to evaluating and using environmental external costs of fossil fuel life, with particular consideration to the end-use phase. The results of published studies on environmental costs of energy sources and an analysis applied to the Italia case show that natural gas as a significantly higher environmental value than other fossil fuels. The range of values depends upon the technologies considered and on the assumptions adopted when assessment environmental damages [it

  2. Constraints of fossil fuels depletion on global warming projections

    Energy Technology Data Exchange (ETDEWEB)

    Chiari, Luca, E-mail: chiari@science.unitn.it [Department of Physics, University of Trento, Via Sommarive 14, 38123 Povo (Italy); Zecca, Antonio, E-mail: zecca@science.unitn.it [Department of Physics, University of Trento, Via Sommarive 14, 38123 Povo (Italy)

    2011-09-15

    A scientific debate is in progress about the intersection of climate change with the new field of fossil fuels depletion geology. Here, new projections of atmospheric CO{sub 2} concentration and global-mean temperature change are presented, should fossil fuels be exploited at a rate limited by geological availability only. The present work starts from the projections of fossil energy use, as obtained from ten independent sources. From such projections an upper bound, a lower bound and an ensemble mean profile for fossil CO{sub 2} emissions until 2200 are derived. Using the coupled gas-cycle/climate model MAGICC, the corresponding climatic projections out to 2200 are obtained. We find that CO{sub 2} concentration might increase up to about 480 ppm (445-540 ppm), while the global-mean temperature increase w.r.t. 2000 might reach 1.2 deg. C (0.9-1.6 deg. C). However, future improvements of fossil fuels recovery and discoveries of new resources might lead to higher emissions; hence our climatic projections are likely to be underestimated. In the absence of actions of emissions reduction, a level of dangerous anthropogenic interference with the climate system might be already experienced toward the middle of the 21st century, despite the constraints imposed by the exhaustion of fossil fuels. - Highlights: > CO{sub 2} and global temperature are projected under fossil fuels exhaustion scenarios. > Temperature is projected to reach a minimum of 2 deg. C above pre-industrial. > Temperature projections are possibly lower than the IPCC ones. > Fossil fuels exhaustion will not avoid dangerous global warming.

  3. Constraints of fossil fuels depletion on global warming projections

    International Nuclear Information System (INIS)

    Chiari, Luca; Zecca, Antonio

    2011-01-01

    A scientific debate is in progress about the intersection of climate change with the new field of fossil fuels depletion geology. Here, new projections of atmospheric CO 2 concentration and global-mean temperature change are presented, should fossil fuels be exploited at a rate limited by geological availability only. The present work starts from the projections of fossil energy use, as obtained from ten independent sources. From such projections an upper bound, a lower bound and an ensemble mean profile for fossil CO 2 emissions until 2200 are derived. Using the coupled gas-cycle/climate model MAGICC, the corresponding climatic projections out to 2200 are obtained. We find that CO 2 concentration might increase up to about 480 ppm (445-540 ppm), while the global-mean temperature increase w.r.t. 2000 might reach 1.2 deg. C (0.9-1.6 deg. C). However, future improvements of fossil fuels recovery and discoveries of new resources might lead to higher emissions; hence our climatic projections are likely to be underestimated. In the absence of actions of emissions reduction, a level of dangerous anthropogenic interference with the climate system might be already experienced toward the middle of the 21st century, despite the constraints imposed by the exhaustion of fossil fuels. - Highlights: → CO 2 and global temperature are projected under fossil fuels exhaustion scenarios. → Temperature is projected to reach a minimum of 2 deg. C above pre-industrial. → Temperature projections are possibly lower than the IPCC ones. → Fossil fuels exhaustion will not avoid dangerous global warming.

  4. Study Of The Fuel Cycle Effect To The Electricity Generating Cost

    International Nuclear Information System (INIS)

    Salimy, D. H.

    1998-01-01

    The nuclear fuel cycle cost contributes relatively small fraction to the total nuclear power generation cost, I.e. about 15 to 30%, compared to the fuel cost in the coal-generated electricity (40-60%). Or in the oil-generated electricity (70-80%). This situation will give effect that the future generation cost is much less sensitive to the changes in the fuel prince than in the case of fossil fuel power plants. The study has shown that by assuming a 100% increase in the natural uranium price, the total nuclear fuel cycle cost would increase only by about 27% and in turn it contributes about 29% increase to the total nuclear fuel cycle cost. As a result, it contributes only 4 to 8% increase in the nuclear energy generation cost. As a comparison, if the same situation should occur to fossil fuel plants, the assumed fuel price increase would have increased the electricity generating cost by about 40-65% for coal-fired plants, and about 70-85% for oil-fired plants. This study also has assesses the economic aspects of the electricity generating cots for nuclear power plant (NPP) and the coal power plant. For an NPP the most affecting factor is the investment cost, while for the coal power plant, the major factor influencing the total cost is the price/cost of the fuel

  5. Methane emissions and climate compatibility of fossil fuels

    International Nuclear Information System (INIS)

    Meier, B.

    1992-01-01

    Methane contributes directly and indirectly to the additional greenhouse effect caused by human activities. The vast majority of the anthropogenic methane release occurs worldwide in non-fossil sources such as rice cultivation, livestock operations, sanitary landfills and combustion of bio-mass. Methane emissions also occur during production, distribution and utilisation of fossil fuels. Also when considering the methane release and CO 2 -emissions of processes upstream of combustion, the ranking of environmental compatibility of natural gas, fuel oil and cool remains unchanged. Of all fossil fuels, natural gas contributes the least to the greenhouse effect. (orig.) [de

  6. International cost relations in electric power generation

    International Nuclear Information System (INIS)

    Schmitt, D.; Duengen, H.; Wilhelm, M.

    1986-01-01

    In spite of the fact that analyses of the cost of electric power generation as the result of international comparative evaluations are indisputably relevant, problems pending in connection with the costs of representative power plant technologies are of the methodological bind. German authors have hitherto also been failing to clear up and consider all aspects connected with the problems of data acquisition and the adequate interpretation of results. The analysis presented by the paper abstracted therefore aims at the following: 1) Systematization of the different categories of cost relevant in connection with international comparative evaluation. Classification into different categories of decision making and development of standards meeting the requirements of international comparative evaluation. 2) Calculation of relevant average financial costs of Western German, America and French fossil-fuel and nuclear power plants by means of adequate calculation models, that is the assessment of costs with regard to countries and power plant technologies which are relevant to the Federal Republic of Germany. 3) Analysis of the resulting differences and determinantal interpretation. (orig./UA) [de

  7. Carbon dioxide emissions from fossil-fuel use, 1751-1950

    Energy Technology Data Exchange (ETDEWEB)

    Andres, R.J.; Fielding, D.J. [Alaska Fairbanks Univ., Fairbanks AK (United States). Inst. of Northern Engineering; Marland, G.; Boden, T.A. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Kumar, N.; Kearney, A.T. [153 East 53rd Street, New York, NY (United States)

    1999-09-01

    Newly compiled energy statistics allow for an estimation of the complete time series of carbon dioxide (CO{sub 2}) emissions from fossil-fuel use for the years 1751 to the present. The time series begins with 3 x 10{sup 6} metric tonnes carbon (C). This initial flux represents the early stages of the fossil-fuel era. The CO{sub 2} flux increased exponentially until World War I. The time series derived here seamlessly joins the modern 1950 to present time series. Total cumulative CO{sub 2} emissions through 1949 were 61.0 x 10{sup 9} tonnes C from fossil-fuel use, virtually all since the beginning of the Industrial Revolution around 1860. The rate of growth continues to grow during present times, generating debate on the probability of enhanced greenhouse warming. In addition to global totals, national totals and 1 deg global distributions of the data have been calculated 18 refs, 4 figs, 2 tabs

  8. Nitrogen Isotope Composition of Thermally Produced NOx from Various Fossil-Fuel Combustion Sources.

    Science.gov (United States)

    Walters, Wendell W; Tharp, Bruce D; Fang, Huan; Kozak, Brian J; Michalski, Greg

    2015-10-06

    The nitrogen stable isotope composition of NOx (δ(15)N-NOx) may be a useful indicator for NOx source partitioning, which would help constrain NOx source contributions in nitrogen deposition studies. However, there is large uncertainty in the δ(15)N-NOx values for anthropogenic sources other than on-road vehicles and coal-fired energy generating units. To this end, this study presents a broad analysis of δ(15)N-NOx from several fossil-fuel combustion sources that includes: airplanes, gasoline-powered vehicles not equipped with a three-way catalytic converter, lawn equipment, utility vehicles, urban buses, semitrucks, residential gas furnaces, and natural-gas-fired power plants. A relatively large range of δ(15)N-NOx values was measured from -28.1‰ to 8.5‰ for individual exhaust/flue samples that generally tended to be negative due to the kinetic isotope effect associated with thermal NOx production. A negative correlation between NOx concentrations and δ(15)N-NOx for fossil-fuel combustion sources equipped with selective catalytic reducers was observed, suggesting that the catalytic reduction of NOx increases δ(15)N-NOx values relative to the NOx produced through fossil-fuel combustion processes. Combining the δ(15)N-NOx measured in this study with previous published values, a δ(15)N-NOx regional and seasonal isoscape was constructed for the contiguous U.S., which demonstrates seasonal and regional importance of various NOx sources.

  9. Electric power monthly, July 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. The EPM is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. Statistics by company and plant are published in the EPM on the capability of new generating units, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fossil fuels. Data on quantity, quality, and cost of fossil fuels lag data on net generation, fuel consumption, fuel stocks, electricity sales, and average revenue per kilowatthour by 1 month. This difference in reporting appears in the US, Census division, and State level tables. However, for purposes of comparison, plant-level data are presented for the earlier month.

  10. Economists and the end of fossil fuels (1865-1931)

    International Nuclear Information System (INIS)

    Missemer, Antoine

    2017-01-01

    From the 1860's to the 1930's, economists' views about the end of fossil fuels changed. Technological as well as theoretical developments were behind this. The challenge here is to disentangle this web in order to understand how economists (even today) deal with environmental topics

  11. Financial subsidies to the Australian fossil fuel industry

    International Nuclear Information System (INIS)

    Riedy, Chris; Diesendorf, Mark

    2003-01-01

    A common claim during international greenhouse gas reduction negotiations has been that domestic emissions cuts will harm national economies. This argument fails to consider the distorting effect of existing financial subsidies and associated incentives to fossil fuel production and consumption provided by governments in most developed countries. These subsidies support a fossil fuel energy sector that is the major contributor to global greenhouse gas emissions and conflict with attempts to expand the role of sustainable energy technologies. Reform of these types of subsidies has the potential to provide substantial gains in economic efficiency as well as reductions in carbon dioxide emissions--a 'no regrets' outcome for the economy and the environment. This paper examines financial subsidies to fossil fuel production and consumption in Australia and estimates the magnitude of the subsidies. Subsidies and associated incentives to fossil fuel production and consumption in Australia are similar to those in the United States and the other countries that have pushed for increased 'flexibility' during international negotiations

  12. FOSSIL FUEL ENERGY RESOURCES OF ETHIOPIA Wolela Ahmed ...

    African Journals Online (AJOL)

    a

    KEY WORDS: Coal, Energy, Ethiopia, Fossil fuel, Oil shale, Oil and gas. INTRODUCTION .... The marginal faults favoured the accumulation of alluvial fan sandy ... sediments towards the western marginal areas of the basin. ...... subsiding East African continental margin initiated to deposit fluvio-lacustrine sediments. A.

  13. Cumulative emissions, unburnable fossil fuel, and the optimal carbon tax

    NARCIS (Netherlands)

    van der Ploeg, F.; Rezai, A.

    2017-01-01

    A stylised analytical framework is used to show how the global carbon tax and the amount of untapped fossil fuel can be calculated from a simple rule given estimates of society's rate of time impatience and intergenerational inequality aversion, the extraction cost technology, the rate of technical

  14. The financial impact of divestment from fossil fuels

    NARCIS (Netherlands)

    Plantinga, Auke; Scholtens, Bert

    2016-01-01

    Divesting from fossil companies has been put forward as a means to address climate change. We study the impact of such divesting on investment portfolio performance. To this extent, we systematically investigate the investment performance of portfolios with and without fossil fuel company stocks. We

  15. Rationale of Early Adopters of Fossil Fuel Divestment

    Science.gov (United States)

    Beer, Christopher Todd

    2016-01-01

    Purpose: This research uses the social science perspectives of institutions, ecological modernization and social movements to analyze the rationale used by the early-adopting universities of fossil fuel divestment in the USA. Design/methodology/approach: Through analysis of qualitative data from interviews with key actors at the universities that…

  16. Divesting Fossil Fuels : The Implications for Investment Portfolios

    NARCIS (Netherlands)

    Trinks, Arjan; Scholtens, Bert; Mulder, Machiel; Dam, Lammertjan

    2017-01-01

    Fossil fuel divestment campaigns urge investors to sell their stakes in companies that supply coal, oil, and gas. However, avoiding investments in such companies can be expected to impose a financial cost on the investor because of reduced opportunities for portfolio diversification. We compare the

  17. A world-wide strategy for conserving fossil fuels

    International Nuclear Information System (INIS)

    Ogisu, Y.

    1994-01-01

    This paper deals with the fact that fossil fuels are capable technologies for savings energy in order to prevent the global warning. It gives some general principles of energy saving such as: Improvement of energy conversion rate; Lowering of burden; Use of natural energy; Storage of heat. (TEC)

  18. Solid state nuclear magnetic resonance of fossil fuels

    International Nuclear Information System (INIS)

    Axelson, D.E.

    1985-01-01

    This book contains the following chapters: Principles of solid state NMR; Relaxation processes: Introduction to pulse sequences; Quantitative analysis; Removal of artifacts from CPMAS FT experiments; Line broadening mechanisms; Resolution enhancement of solid state NMR spectra; and /sup 13/C CPMAS NMR of fossil fuels--general applications

  19. The European carbon balance. Part 1: fossil fuel emissions

    NARCIS (Netherlands)

    Ciais, P.; Paris, J.D.; Marland, G.; Peylin, P.; Piao, S.L.; levin, I.; Pregger, T.; Scholz, Y.; Friedrich, R.; Rivier, L.; Houweling, S.; Schulze, E.D.

    2010-01-01

    We analyzed the magnitude, the trends and the uncertainties of fossil-fuel CO2 emissions in the European Union 25 member states (hereafter EU-25), based on emission inventories from energy-use statistics. The stability of emissions during the past decade at EU-25 scale masks decreasing trends in

  20. The preliminary study of urbanization, fossil fuels consumptions and ...

    African Journals Online (AJOL)

    PROMOTING ACCESS TO AFRICAN RESEARCH ... As a result the demand of more energy in form of fossil fuels increased for domestic, industrial and transportation purpose. ... During 1980 to 2007 the consumption of oil and petrol, natural gas and coal increased to ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  1. Implicit CO_2 prices of fossil fuel use in Switzerland

    International Nuclear Information System (INIS)

    Schleiniger, Reto

    2016-01-01

    This study aims to assess the efficiency of the fossil fuel taxation scheme currently in effect in Switzerland. To this end, the concept of implicit CO_2 prices is introduced, based on which prices for different fossil fuel uses are derived. Implicit CO_2 prices are defined as the difference between actual prices paid by consumers and efficient domestic fuel prices. Efficient domestic fuel prices, in turn, consist of private production costs, a uniform value added tax and only local external costs, not including external costs due to CO_2 emissions and global climate change. The resulting prices differ substantially, which suggests that there is considerable cost-saving potential in reducing CO_2 emissions in Switzerland. For passenger cars and air traffic, the implicit prices are negative. For these uses, higher fuel charges would therefore be beneficial from a purely domestic perspective, i.e., without considering the negative repercussions of global warming. - Highlights: •Efficient fossil fuel policy must take into account local and global externalities. •Implicit CO_2 prices are applied as efficiency indicator of fossil energy policy. •Implicit CO_2 prices vary strongly for different fossil fuel uses in Switzerland. •There is a large cost-saving potential in terms of reducing CO_2 emissions.

  2. Fossil fuel combined cycle power system

    Science.gov (United States)

    Labinov, Solomon Davidovich; Armstrong, Timothy Robert; Judkins, Roddie Reagan

    2006-10-10

    A system for converting fuel energy to electricity includes a reformer for converting a higher molecular weight gas into at least one lower molecular weight gas, at least one turbine to produce electricity from expansion of at least one of the lower molecular weight gases, and at least one fuel cell. The system can further include at least one separation device for substantially dividing the lower molecular weight gases into at least two gas streams prior to the electrochemical oxidization step. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.

  3. Into the mire: A closer look at fossil fuel subsidies

    Directory of Open Access Journals (Sweden)

    Radoslaw (Radek Stefanski

    2016-03-01

    Full Text Available Threatened by climate change, governments the world over are attempting to nudge markets in the direction of less carbon-intensive energy. Perversely, many of these governments continue to subsidize fossil fuels, distorting markets and raising emissions. Determining how much money is involved is difficult, as neither the providers nor the recipients of those subsidies want to own up to them. This paper builds on a unique method to extract fossil fuel subsidies from patterns in countries’ carbon emission-to-GDP ratios. This approach is useful since it: 1 overcomes the problem of scarce data; 2 derives a wider and more comparable measure of subsidies than existing measures and 3 allows for the performance of counterfactuals which help measure the impact of subsidies on emissions and growth. The resultant 170-country, 30-year database finds that the financial and the environmental costs of such subsidies are enormous, especially in China and the U.S. The overwhelming majority of the world’s fossil fuel subsidies stem from China, the U.S. and the ex-USSR; as of 2010, this figure was $712 billion or nearly 80 per cent of the total world value of subsidies. For its part, Canada has been subsidizing rather than taxing fossil fuels since 1998. By 2010, Canadian subsidies sat at $13 billion, or 1.4 per cent of GDP. In that same year, the total global direct and indirect financial costs of all such subsidies amounted to $1.82 trillion, or 3.8 per cent of global GDP. Aside from the money saved, in 2010 a world without subsidies would have had carbon emissions 36 per cent lower than they actually were. Any government looking to ease strained budgets and make a significant (and cheap contribution to the fight against climate change must consider slashing fossil fuel subsidies. As the data show, this is a sound decision – fiscally and environmentally.

  4. Fossil fuel subsidy reform: lessons from the Indonesian case

    International Nuclear Information System (INIS)

    Savatic, Filip

    2016-10-01

    Global assessments of consumption and the Indonesian case show the relevance of non-household consumers of subsidized energy products. As shown in this study, understanding in more nuance how reforms affect them has the potential to improve the reforms that will be developed by policy-makers worldwide. Further study can reinforce the many benefits of successful reform for the countries and societies slowly turning away from these policies of the past. Estimates regarding the amount of public funds utilized to subsidize the production or consumption of fossil fuels are staggering. For 2011, they range from $83 billion in OECD member states, to nearly $4.1 trillion worldwide if environmental externalities are considered. Numerous studies have demonstrated that subsidies repress economic growth, undermine energy sector investment, increase public debt, benefit wealthy citizens over the poor, instigate a rise in illicit activities, and engender greater global and local pollution. The negative effects of fossil fuel subsidies have led numerous governments to reform their energy policies. There has also been a growing international consensus in favor of reform. While the components of successful reform programs have been identified through past case studies, the nature of reforms adopted by several governments that target non-households have not been systematically examined. Since the late 1990s, the Indonesian government has implemented numerous reforms of its fossil fuel subsidies, including measures targeting household as well as non-household energy consumption. In doing so, it has incurred significant fiscal savings. However, an innovative budgetary analysis reveals that households receive a minority, and a declining share, of fossil fuel subsidy funds. This is the case despite the fact that subsidies were implemented to ensure poor households have access to cheap energy. These findings demonstrate the need to consider non-household sectors in the design of fossil

  5. Assessment of the Potential of Biomass Gasification for Electricity Generation in Bangladesh

    Directory of Open Access Journals (Sweden)

    Barun Kumar Das

    2014-01-01

    Full Text Available Bangladesh is an agriculture based country where more than 65 percent of the people live in rural areas and over 70% of total primary energy consumption is covered by biomass, mainly agricultural waste and wood. Only about 6% of the entire population has access to natural gas, primarily in urban areas. Electricity production in Bangladesh largely depends on fossil fuel whose reserve is now under threat and the government is now focusing on the alternating sources to harness electricity to meet the continuous increasing demand. To reduce the dependency on fossil fuels, biomass to electricity could play a vital role in this regard. This paper explores the biomass based power generation potential of Bangladesh through gasification technology—an efficient thermochemical process for distributed power generation. It has been estimated that the total power generation from the agricultural residue is about 1178 MWe. Among them, the generation potential from rice husk, and bagasses is 1010 MWe, and 50 MWe, respectively. On the other hand, wheat straw, jute stalks, maize residues, lentil straw, and coconut shell are also the promising biomass resources for power generation which counted around 118 MWe. The forest residue and municipal solid waste could also contribute to the total power generation 250 MWe and 100 MWe, respectively.

  6. Electric power monthly, October 1998, with data for July 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The Electric Power Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy prepares the EPM. This publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. 57 tabs.

  7. Electric power monthly, November 1998, with data for August 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The Electric Power Division; Office of Coal, Nuclear, Electric and Alternate fuels, Energy Information Administration (EIA), Department of Energy prepares the EPM. This publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. 57 tabs.

  8. Electric power monthly, September 1998, with data for June 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The Electric Power Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy prepares the EPM. This publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant.

  9. Electric power monthly, June 1999, with data for March 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The Electric Power Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy prepares the EPM. This publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. 57 tabs.

  10. Electric power monthly, April 1999 with data for January 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The Electric Power Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy prepares the EPM. This publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant.

  11. Electric power monthly: October 1995, with data for July 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-19

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy prepares the EPM. This publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant.

  12. Exploring utility organization electricity generation, residential electricity consumption, and energy efficiency: A climatic approach

    International Nuclear Information System (INIS)

    Craig, Christopher A.; Feng, Song

    2017-01-01

    Highlights: • Study examined impact of electricity fuel sources and consumption on emissions. • 97.2% of variability in emissions explained by coal and residential electricity use. • Increasing cooling degree days significantly related to increased electricity use. • Effectiveness of state-level energy efficiency programs showed mixed results. - Abstract: This study examined the impact of electricity generation by fuel source type and electricity consumption on carbon emissions to assess the role of climatic variability and energy efficiency (EE) in the United States. Despite high levels of greenhouse gas emissions, residential electricity consumption continues to increase in the United States and fossil fuels are the primary fuel source of electricity generation. 97.2% of the variability in carbon emissions in the electricity industry was explained by electricity generation from coal and residential electricity consumption. The relationships between residential electricity consumption, short-term climatic variability, long-term climatic trends, short-term reduction in electricity from EE programs, and long-term trends in EE programs was examined. This is the first study of its nature to examine these relationships across the 48 contiguous United States. Inter-year and long-term trends in cooling degree days, or days above a baseline temperature, were the primary climatic drivers of residential electricity consumption. Cooling degree days increased across the majority of the United States during the study period, and shared a positive relationship with residential electricity consumption when findings were significant. The majority of electricity reduction from EE programs was negatively related to residential electricity consumption where findings were significant. However, the trend across the majority of states was a decrease in electricity reduction from EE while residential electricity consumption increased. States that successfully reduced consumption

  13. Global exergetic dimension of hydrogen use in reducing fossil fuel consumption

    International Nuclear Information System (INIS)

    Adnan Midilli; Ibrahim Dincer

    2009-01-01

    In this paper, hydrogen is considered as a renewable and sustainable solution for minimizing the fossil fuel based-global irreversibility coefficient of global fossil fuel consumption and combating global warming and studied exergetically through a parametric performance analysis. The environmental impact results are then compared with the ones obtained for fossil fuels. In this regard, some exergetic expressions such as global waste exergy factor, global irreversibility coefficient and hydrogen based-global exergetic indicator. In order to investigate the role of hydrogen use at minimizing the fossil fuel based global irreversibility, the actual fossil fuel consumption data are taken from the literature. Due to the unavailability of appropriate hydrogen data for analysis, it is assumed that the utilization ratios of hydrogen are ranged between 0 and 1. Consequently, if exergetic utilization ratio of hydrogen from non-fossil fuel sources at a certain exergetic utilization ratio of fossil fuels increases, the fossil fuel based-global irreversibility coefficient will decrease. (author)

  14. Contribution of anaerobic digesters to emissions mitigation and electricity generation under U.S. climate policy.

    Science.gov (United States)

    Zaks, David P M; Winchester, Niven; Kucharik, Christopher J; Barford, Carol C; Paltsev, Sergey; Reilly, John M

    2011-08-15

    Livestock husbandry in the U.S. significantly contributes to many environmental problems, including the release of methane, a potent greenhouse gas (GHG). Anaerobic digesters (ADs) break down organic wastes using bacteria that produce methane, which can be collected and combusted to generate electricity. ADs also reduce odors and pathogens that are common with manure storage and the digested manure can be used as a fertilizer. There are relatively few ADs in the U.S., mainly due to their high capital costs. We use the MIT Emissions Prediction and Policy Analysis (EPPA) model to test the effects of a representative U.S. climate stabilization policy on the adoption of ADs which sell electricity and generate methane mitigation credits. Under such policy, ADs become competitive at producing electricity in 2025, when they receive methane reduction credits and electricity from fossil fuels becomes more expensive. We find that ADs have the potential to generate 5.5% of U.S. electricity.

  15. The Use of Nuclear Generation to Provide Power System Stability

    OpenAIRE

    Heather Wyman-Pain; Yuankai Bian; Furong Li

    2016-01-01

    The decreasing use of fossil fuel power stations has a negative effect on the stability of the electricity systems in many countries. Nuclear power stations have traditionally provided minimal ancillary services to support the system but this must change in the future as they replace fossil fuel generators. This paper explains the development of the four most popular reactor types still in regular operation across the world which have formed the basis for most reactor dev...

  16. Hydrogen as a renewable and sustainable solution in reducing global fossil fuel consumption

    International Nuclear Information System (INIS)

    Midilli, Adnan; Dincer, Ibrahim

    2008-01-01

    In this paper, hydrogen is considered as a renewable and sustainable solution for reducing global fossil fuel consumption and combating global warming and studied exergetically through a parametric performance analysis. The environmental impact results are then compared with the ones obtained for fossil fuels. In this regard, some exergetic expressions are derived depending primarily upon the exergetic utilization ratios of fossil fuels and hydrogen: the fossil fuel based global waste exergy factor, hydrogen based global exergetic efficiency, fossil fuel based global irreversibility coefficient and hydrogen based global exergetic indicator. These relations incorporate predicted exergetic utilization ratios for hydrogen energy from non-fossil fuel resources such as water, etc., and are used to investigate whether or not exergetic utilization of hydrogen can significantly reduce the fossil fuel based global irreversibility coefficient (ranging from 1 to +∞) indicating the fossil fuel consumption and contribute to increase the hydrogen based global exergetic indicator (ranging from 0 to 1) indicating the hydrogen utilization at a certain ratio of fossil fuel utilization. In order to verify all these exergetic expressions, the actual fossil fuel consumption and production data are taken from the literature. Due to the unavailability of appropriate hydrogen data for analysis, it is assumed that the utilization ratios of hydrogen are ranged between 0 and 1. For the verification of these parameters, the variations of fossil fuel based global irreversibility coefficient and hydrogen based global exergetic indicator as the functions of fossil fuel based global waste exergy factor, hydrogen based global exergetic efficiency and exergetic utilization of hydrogen from non-fossil fuels are analyzed and discussed in detail. Consequently, if exergetic utilization ratio of hydrogen from non-fossil fuel sources at a certain exergetic utilization ratio of fossil fuels increases

  17. Fossil fuel depletion and socio-economic scenarios: An integrated approach

    International Nuclear Information System (INIS)

    Capellán-Pérez, Iñigo; Mediavilla, Margarita; Castro, Carlos de; Carpintero, Óscar; Miguel, Luis Javier

    2014-01-01

    The progressive reduction of high-quality-easy-to-extract energy is a widely recognized and already ongoing process. Although depletion studies for individual fuels are relatively abundant, few of them offer a global perspective of all energy sources and their potential future developments, and even fewer include the demand of the socio-economic system. This paper presents an Economy-Energy-Environment model based on System Dynamics which integrates all those aspects: the physical restrictions (with peak estimations for oil, gas, coal and uranium), the techno-sustainable potential of renewable energy estimated by a novel top-down methodology, the socio-economic energy demands, the development of alternative technologies and the net CO 2 emissions. We confront our model with the basic assumptions of previous Global Environmental Assessment (GEA) studies. The results show that demand-driven evolution, as performed in the past, might be unfeasible: strong energy-supply scarcity is found in the next two decades, especially in the transportation sector before 2020. Electricity generation is unable to fulfill its demand in 2025–2040, and a large expansion of electric renewable energies move us close to their limits. In order to find achievable scenarios, we are obliged to set hypotheses which are hardly used in GEA scenarios, such as zero or negative economic growth. - Highlights: • The paper presents and describes a new Energy–Economy–Environment global model. • GEA scenario dynamics have the potential to lead us to energy resource scarcity in the next 2 decades. • Global forecasts of international agencies show inconsistency in energy constraints. • Renewable energies are only partially able to replace fossil fuels depletion. • Climate change still reaches dangerous dimensions

  18. Energy use and environmental impact of new alternative fuel mix in electricity generation in Malaysia

    International Nuclear Information System (INIS)

    Al-Amin, A.Q.; Siwar, C.; Jaafar, A.H.

    2009-01-01

    The Government of Malaysia introduced a five-fuel diversification strategy in 1999 to ensure security of energy supply. This strategy will continue until 2020 to reduce Malaysia's dependence on fossil fuels for generating electricity. This paper empirically explored the economic impact of electricity generation and scenario analysis that separately identifies impact on the environment of coal, fuel and hydro generating electricity technologies. It also evaluated emissions of carbon dioxide, sulphur dioxide and nitrogen oxide for the year 1991 and 2000 based on business as usual techniques and projection of those emissions based on business as usual and fuel mix strategy as specified in the fuel diversification strategy. The strategy in the electricity sector aims for a gradual change in fuel use from 74.9 per cent natural gas, 9.7 per cent coal, 10.4 per cent hydro, and 5 per cent petroleum in the year 2000 to 40 per cent natural gas, 30 per cent hydro, 29 per cent coal, and only 1 per cent petroleum by the year 2020. This paper presented the underlying model which is based on input-output techniques. The pollution emission levels from the fossil fuels were estimated. The study revealed that the fuel mix envisioned by the Fuel Diversification Strategy, designed to reduce Malaysia's dependence on fuel oil and increase its energy security would result in an increase in undesired emissions. 16 refs., 5 tabs., 3 figs

  19. Is There a Future for Nuclear Power? Wind and Emission Reduction Targets in Fossil-Fuel Alberta.

    Science.gov (United States)

    van Kooten, G Cornelis; Duan, Jun; Lynch, Rachel

    2016-01-01

    This paper explores the viability of relying on wind power to replace upwards of 60% of electricity generation in Alberta that would be lost if coal-fired generation is phased out. Using hourly wind data from 17 locations across Alberta, we are able to simulate the potential wind power output available to the Alberta grid when modern, 3.5 MW-capacity wind turbines are spread across the province. Using wind regimes for the years 2006 through 2015, we find that available wind power is less than 60% of installed capacity 98% of the time, and below 30% of capacity 74% of the time. There is only a small amount of correlation between wind speeds at different locations, but yet it remains necessary to rely on fossil fuel generation. Then, based on the results from a grid allocation model, we find that CO2 emissions can be reduced by about 30%, but only through a combination of investment in wind energy and reliance on purchases of hydropower from British Columbia. Only if nuclear energy is permitted into the generation mix would Alberta be able to meet its CO2-emissions reduction target in the electricity sector. With nuclear power, emissions can be reduced by upwards of 85%.

  20. Is There a Future for Nuclear Power? Wind and Emission Reduction Targets in Fossil-Fuel Alberta

    Science.gov (United States)

    Duan, Jun; Lynch, Rachel

    2016-01-01

    This paper explores the viability of relying on wind power to replace upwards of 60% of electricity generation in Alberta that would be lost if coal-fired generation is phased out. Using hourly wind data from 17 locations across Alberta, we are able to simulate the potential wind power output available to the Alberta grid when modern, 3.5 MW-capacity wind turbines are spread across the province. Using wind regimes for the years 2006 through 2015, we find that available wind power is less than 60% of installed capacity 98% of the time, and below 30% of capacity 74% of the time. There is only a small amount of correlation between wind speeds at different locations, but yet it remains necessary to rely on fossil fuel generation. Then, based on the results from a grid allocation model, we find that CO2 emissions can be reduced by about 30%, but only through a combination of investment in wind energy and reliance on purchases of hydropower from British Columbia. Only if nuclear energy is permitted into the generation mix would Alberta be able to meet its CO2-emissions reduction target in the electricity sector. With nuclear power, emissions can be reduced by upwards of 85%. PMID:27902712

  1. Potential CO{sub 2} reduction by fuel substitution to generate electricity in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Masjuki, H.H.; Mahlia, T.M.I.; Choudhury, I.A.; Saidur, R. [University of Malaysia, Kuala Lumpur (Malaysia). Dept. of Mechanical Engineers

    2002-04-01

    Because of changing fossil fuel prices, sources and environmental consciousness, Malaysian utilities have been forced to change the type of energy sources to generate electricity. This new policy of electricity generation companies will change fuel use gradually from 70% gas, 15% coal, 10% hydro and 5% petroleum in the year 2000 to 40% gas, 30% hydro, 29% coal and only 1% petroleum in the year of 2020. These changes tend to reduce CO{sub 2} emission. This study predicts the potential CO{sub 2} reduction due to these changes. The calculation is based on CO{sub 2} emission for unit electricity generated and the changing type of fuel percentages for electricity generation in Malaysia. The study found that the substitution will reduce CO{sub 2} emission from power plants in this country.

  2. Fossil Fuels: Factors of Supply Reduction and Use of The Renewable Energy As A Suitable Alternative

    OpenAIRE

    Askari Mohammad Bagher,

    2015-01-01

    In this article we will review the consumption of fossil fuels in the world. According to the exhaustible resources of fossil fuels, and the damaging effects of these fuels on the environment and nature, we introduce renewable energy sources as perfect replacement for fossil fuels.

  3. July 1, 2007: electricity and gas markets open to competition. Oil and gas pipelines, vital energy arteries. Warming of the Earth's northern latitudes: what are the consequences? Nuclear power, an alternative to costly fossil fuels; 1. juillet 2007: les marches de l'electricite et du gaz sont ouverts a la concurrence. Oleoducs et gazoducs, arteres vitales de l'energie. Rechauffement des terres froides: quelles consequences? Le nucleaire, alternative aux hydrocarbures chers

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2008-07-01

    This issue of Alternatives newsletter features 4 main articles dealing with: 1 - July 1, 2007 - electricity and gas markets open to competition: first telecommunications, now energy. Starting July 1, 2007, every one of the European Union's 500 million consumers is free to chose a supplier for electricity and natural gas. How will this work? A road map. 2 - Oil and gas pipelines, vital energy arteries: they criss-cross the planet over land and under sea, offering an alternative to sea lanes. How do these strategically placed pipelines work to transport fossil fuels? 3 - Warming of the Earth's northern latitudes: what are the consequences?: Dr. Oleg Anisimov, one of the experts on the Intergovernmental Panel on Climate Change (IPCC) that met in April 2007, reviews the consequences of human activity on permafrost, that huge expense of ice covering almost 20% of the Earth's surface. 4 - Nuclear power, an alternative to costly fossil fuels: part two of a report on the World energy outlook. This publication of the International Energy agency predicts that nuclear power will continue to be one of the main sources of energy supply for the next 25 years.

  4. The future of oil: unconventional fossil fuels.

    Science.gov (United States)

    Chew, Kenneth J

    2014-01-13

    Unconventional fossil hydrocarbons fall into two categories: resource plays and conversion-sourced hydrocarbons. Resource plays involve the production of accumulations of solid, liquid or gaseous hydro-carbons that have been generated over geological time from organic matter in source rocks. The character of these hydrocarbons may have been modified subsequently, especially in the case of solids and extra-heavy liquids. These unconventional hydrocarbons therefore comprise accumulations of hydrocarbons that are trapped in an unconventional manner and/or whose economic exploitation requires complex and technically advanced production methods. This review focuses primarily on unconventional liquid hydro-carbons. The future potential of unconventional gas, especially shale gas, is also discussed, as it is revolutionizing the energy outlook in North America and elsewhere.

  5. Evaluation of negative environmental impacts of electricity generation: Neoclassical and institutional approaches

    International Nuclear Information System (INIS)

    Kim, Sang-Hoon

    2007-01-01

    Neoclassical and institutional economics have developed different theories and methodologies for evaluating environmental and social impacts of electricity generation. The neoclassical approach valuates external costs, and the institutional approach uses social cost valuation and MCDM methods. This paper focuses on three dimensions: theoretical and methodological backgrounds; critical review of specific studies: methodologies, results, and limitations; and discussing their results and implications for environmental policy and further research. The two approaches lead to a common conclusion that fossil fuels and nuclear power show the highest environmental impact. Despite the common conclusion, the conclusion has limited implications for environmental policy because of the weakness of their methodologies

  6. Fuel cells : a viable fossil fuel alternative

    Energy Technology Data Exchange (ETDEWEB)

    Paduada, M.

    2007-02-15

    This article presented a program initiated by Natural Resources Canada (NRCan) to develop proof-of-concept of underground mining vehicles powered by fuel cells in order to eliminate emissions. Recent studies on American and Canadian underground mines provided the basis for estimating the operational cost savings of switching from diesel to fuel cells. For the Canadian mines evaluated, the estimated ventilation system operating cost reductions ranged from 29 per cent to 75 per cent. In order to demonstrate the viability of a fuel cell-powered vehicle, NRCan has designed a modified Caterpillar R1300 loader with a 160 kW hybrid power plant in which 3 stacks of fuel cells deliver up to 90 kW continuously, and a nickel-metal hydride battery provides up to 70 kW. The battery subsystem transiently boosts output to meet peak power requirements and also accommodates regenerative braking. Traction for the loader is provided by a brushless permanent magnet traction motor. The hydraulic pump motor is capable of a 55 kW load continuously. The loader's hydraulic and traction systems are operated independently. Future fuel cell-powered vehicles designed by the program may include a locomotive and a utility vehicle. Future mines running their operations with hydrogen-fueled equipment may also gain advantages by employing fuel cells in the operation of handheld equipment such as radios, flashlights, and headlamps. However, the proton exchange membrane (PEM) fuel cells used in the project are prohibitively expensive. The catalytic content of a fuel cell can add hundreds of dollars per kW of electric output. Production of catalytic precious metals will be strongly connected to the scale of use and acceptance of fuel cells in vehicles. In addition, the efficiency of hydrogen production and delivery is significantly lower than the well-to-tank efficiency of many conventional fuels. It was concluded that an adequate hydrogen infrastructure will be required for the mining industry

  7. Carbon dioxide from fossil fuels: adapting to uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Chen, K; Winter, R C; Bergman, M K

    1980-12-01

    If present scientific information is reasonable, the world is likely to experience noticeable global warming by the beginning of the next century if high annual growth rates of fossil-fuel energy use continue. Only with optimistic assumptions and low growth rates will carbon-dioxide-induced temperature increases be held below 2/sup 0/C or so over the next century. Conservation, flexible energy choices, and control options could lessen the potential effects of carbon dioxide. Though perhaps impractical from the standpoint of costs and efficiency losses, large coastal centralized facilities would be the most amenable to carbon dioxide control and disposal. Yet no country can control carbon dioxide levels unilaterally. The USA, however, which currently contributes over a quarter of all fossil-fuel carbon dioxide emissions and possesses a quarter of the world's coal resources, could provide a much needed role in leadership, research and education. 70 references.

  8. Greenhouse gas emissions reduction from fossil fuels: options and prospects

    International Nuclear Information System (INIS)

    McDonald, M.M.

    1999-01-01

    If levels of carbon dioxide in the atmosphere are to be stabilized over the next 50 years, net emissions from the use of fossil fuels have to be reduced. One concept worth exploring is the removal of carbon dioxide from plant flue gases and disposing of it in a manner that sequesters it from the atmosphere. A number of technologies, which are either commercially available or under development, promise to make this concept viable. The question of where to dispose of the carbon dioxide removed is not the limiting factor, given the potential for use in enhanced hydrocarbon production as well as other geological disposal options. In the longer term, fossil fuel use will significantly decline, but these extraction and sequestration technologies can provide the time for the transition to take place in a manner which causes least impact to the economies of the world. (author)

  9. Fossil fuels: Kyoto initiatives and opportunities. Part 1

    International Nuclear Information System (INIS)

    Pinelli, G.; Zerlia, T.

    2008-01-01

    GHG emission in the upstream step of fossil fuel chains could give an environmental as well as economic opportunity for traditional sectors. This study deepens the matter showing an increasing number of initiative over the last few years taken both the involved sectors and by various stake holders (public and private subjects) within the Kyoto flexible mechanism (CDM and JI) or linked to voluntary national or at a global level actions. The above undertakings give evidence for an increased interest and an actual activity dealing with GHG reduction whose results play an evident and positive role for the environment too. Part 1. of this study deals with fossil fuel actions within the Kyoto protocol mechanism. Part 2. will show international and national voluntary initiative [it

  10. Origin and monitoring of pollutants in fossil-fuel flames

    International Nuclear Information System (INIS)

    Chigier, N.A.

    1976-01-01

    A review is given of the origin of pollutants in fossil-fuel flames. Burning of fossil fuels is the major cause of air pollution and significant reductions in levels of environmental pollution can be achieved by more effective control of combustion systems. The chemical kinetics of formation of unburned hydrocarbons, oxides of nitrogen, carbon monoxide and particulate matter are described, as well as the reactions which can lead to oxidation and destruction of these pollutants within the flame. The important influence of mixing and aerodynamics is discussed, together with methods of mathematical modelling and prediction methods. Practical problems arising in gas turbine engines, spark ignition engines and diesel engines are investigated in order to minimize the emission of pollutants while preserving fuel economy. (author)

  11. Displacement efficiency of alternative energy and trans-provincial imported electricity in China.

    Science.gov (United States)

    Hu, Yuanan; Cheng, Hefa

    2017-02-17

    China has invested heavily on alternative energy, but the effectiveness of such energy sources at substituting the dominant coal-fired generation remains unknown. Here we analyse the displacement of fossil-fuel-generated electricity by alternative energy, primarily hydropower, and by trans-provincial imported electricity in China between 1995 and 2014 using two-way fixed-effects panel regression models. Nationwide, each unit of alternative energy displaces nearly one-quarter of a unit of fossil-fuel-generated electricity, while each unit of imported electricity (regardless of the generation source) displaces ∼0.3 unit of fossil-fuel electricity generated locally. Results from the six regional grids indicate that significant displacement of fossil-fuel-generated electricity occurs once the share of alternative energy in the electricity supply mix exceeds ∼10%, which is accompanied by 10-50% rebound in the consumption of fossil-fuel-generated electricity. These findings indicate the need for a policy that integrates carbon taxation, alternative energy and energy efficiency to facilitate China's transition towards a low-carbon economy.

  12. Displacement efficiency of alternative energy and trans-provincial imported electricity in China

    Science.gov (United States)

    Hu, Yuanan; Cheng, Hefa

    2017-02-01

    China has invested heavily on alternative energy, but the effectiveness of such energy sources at substituting the dominant coal-fired generation remains unknown. Here we analyse the displacement of fossil-fuel-generated electricity by alternative energy, primarily hydropower, and by trans-provincial imported electricity in China between 1995 and 2014 using two-way fixed-effects panel regression models. Nationwide, each unit of alternative energy displaces nearly one-quarter of a unit of fossil-fuel-generated electricity, while each unit of imported electricity (regardless of the generation source) displaces ~0.3 unit of fossil-fuel electricity generated locally. Results from the six regional grids indicate that significant displacement of fossil-fuel-generated electricity occurs once the share of alternative energy in the electricity supply mix exceeds ~10%, which is accompanied by 10-50% rebound in the consumption of fossil-fuel-generated electricity. These findings indicate the need for a policy that integrates carbon taxation, alternative energy and energy efficiency to facilitate China's transition towards a low-carbon economy.

  13. Joint environmental and cost efficiency analysis of electricity generation

    International Nuclear Information System (INIS)

    Welch, Eric; Barnum, Darold

    2009-01-01

    Fossil-fuel based electricity generation produces the largest proportion of human-related carbon pollution in the United States. Hence, fuel choices by steam plants are key determinants of the industry's impact on national and global greenhouse gas emissions, and key foci for climate change policy. Yet, little research has been done to examine the economic and environmental tradeoffs among the different types of fuels that are used by these plants. This paper applies a Data Envelopment Analysis procedure that incorporates the materials balance principle to estimate the allocations of coal, gas and oil inputs that minimize carbon emissions and costs. Using EIA 906 and FERC 423 data, the paper estimates cost/carbon tradeoffs facing two sets of plants: those that use coal and gas inputs, and those that use coal, gas and oil inputs. Findings for our three-input sample show that there would be a 79% increase in cost for moving from the cost-efficient point to the carbon efficient point, while there would be a 38% increase in carbon for moving from the carbon efficient point to the cost-efficient point. These conclusions indicate that, in general, the gap between efficient cost and efficient environmental production is wide, and would require substantial policy intervention, technological change or market adjustment before it could be narrowed. However, our examination of individual plants shows that what is true in general is often not true for specific plants. Some plants that are currently less efficient than those on the production frontier could produce the same amount of electricity with less carbon output and less fuel input. Additionally, many plants on the production frontier could improve both cost and carbon efficiency by changing their mixture of fossil-fuel inputs. (author)

  14. US fossil fuel technologies for Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Buehring, W.A.; Dials, G.E.; Gillette, J.L.; Szpunar, C.B.; Traczyk, P.A.

    1990-10-01

    The US Department of Energy has been encouraging other countries to consider US coal and coal technologies in meeting their future energy needs. Thailand is one of three developing countries determined to be a potentially favorable market for such exports. This report briefly profiles Thailand with respect to population, employment, energy infrastructure and policies, as well as financial, economic, and trade issues. Thailand is shifting from a traditionally agrarian economy to one based more strongly on light manufacturing and will therefore require increased energy resources that are reliable and flexible in responding to anticipated growth. Thailand has extensive lignite deposits that could fuel a variety of coal-based technologies. Atmospheric fluidized-bed combustors could utilize this resource and still permit Thailand to meet emission standards for sulfur dioxide. This option also lends itself to small-scale applications suitable for private-sector power generation. Slagging combustors and coal-water mixtures also appear to have potential. Both new construction and refurbishment of existing plants are planned. 18 refs., 3 figs., 7 tabs.

  15. Electric power monthly, May 1999, with data for February 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decision makers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. This publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatt hour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. 64 tabs.

  16. Electric power monthly: October 1996, with data for July 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. This publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. This report contains approximately 60 tables.

  17. On the nuclear fuel and fossil fuel reserves

    International Nuclear Information System (INIS)

    Fettweis, G.

    1978-01-01

    A short discussion of the nuclear fuel and fossil fuel reserves and the connected problem of prices evolution is presented. The need to regard fuel production under an economic aspect is emphasized. Data about known and assessed fuel reserves, world-wide and with special consideration of Austria, are reviewed. It is concluded that in view of the fuel reserves situation an energy policy which allows for a maximum of options seems adequate. (G.G.)

  18. Reducing DoD Fossil-Fuel Dependence

    Science.gov (United States)

    2006-09-01

    domestic market for demand and consumption of fossil fuel alternatives, or to drive fuel and transportation technology developments, in general. Barring...wholesale to the power market . IPPs own and operate their stations as non-utilities and do not own the transmission lines. Joule The (kinetic) energy acquired...maturiry for its seed. [Wikipedia, 13Aug06] TW Terawatt = 1012 Watts UAV Unmanned/Unpiloted Air Vehicle UCG Underground coal gasification USDA U.S

  19. Sanitary effects of fossil fuels; Effets sanitaires des combustibles fossiles

    Energy Technology Data Exchange (ETDEWEB)

    Nifenecker, H. [Centre National de la Recherche Scientifique (IN2P3/CNRS), 38 - Grenoble (France)

    2006-07-01

    In this compilation are studied the sanitary effects of fossil fuels, behavioral and environmental sanitary risks. The risks in connection with the production, the transport and the distribution(casting) are also approached for the oil(petroleum), the gas and the coal. Accidents in the home are evoked. The risks due to the atmospheric pollution are seen through the components of the atmospheric pollution as well as the sanitary effects of this pollution. (N.C.)

  20. New Optical Sensor Suite for Ultrahigh Temperature Fossil Fuel Application

    Energy Technology Data Exchange (ETDEWEB)

    John Coggin; Tom Flynn; Jonas Ivasauskas; Daniel Kominsky; Carrie Kozikowski; Russell May; Michael Miller; Tony Peng; Gary Pickrell; Raymond Rumpf; Kelly Stinson-Bagby; Dan Thorsen; Rena Wilson

    2007-12-31

    Accomplishments of a program to develop and demonstrate photonic sensor technology for the instrumentation of advanced powerplants and solid oxide fuel cells are described. The goal of this project is the research and development of advanced, robust photonic sensors based on improved sapphire optical waveguides, and the identification and demonstration of applications of the new sensors in advanced fossil fuel power plants, where the new technology will contribute to improvements in process control and monitoring.

  1. Microbial Biotechnology 2020; microbiology of fossil fuel resources.

    Science.gov (United States)

    Head, Ian M; Gray, Neil D

    2016-09-01

    This roadmap examines the future of microbiology research and technology in fossil fuel energy recovery. Globally, the human population will be reliant on fossil fuels for energy and chemical feedstocks for at least the medium term. Microbiology is already important in many areas relevant to both upstream and downstream activities in the oil industry. However, the discipline has struggled for recognition in a world dominated by geophysicists and engineers despite widely known but still poorly understood microbially mediated processes e.g. reservoir biodegradation, reservoir souring and control, microbial enhanced oil recovery. The role of microbiology is even less understood in developing industries such as shale gas recovery by fracking or carbon capture by geological storage. In the future, innovative biotechnologies may offer new routes to reduced emissions pathways especially when applied to the vast unconventional heavy oil resources formed, paradoxically, from microbial activities in the geological past. However, despite this potential, recent low oil prices may make industry funding hard to come by and recruitment of microbiologists by the oil and gas industry may not be a high priority. With regards to public funded research and the imperative for cheap secure energy for economic growth in a growing world population, there are signs of inherent conflicts between policies aimed at a low carbon future using renewable technologies and policies which encourage technologies which maximize recovery from our conventional and unconventional fossil fuel assets. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  2. The effect of a phase out of nuclear power in OECD countries on demand for fossil fuel and on sulphur precipitation in Sweden

    International Nuclear Information System (INIS)

    1986-10-01

    This report has been prepared to evaluate the effect of a phase out of nuclear generating capacity in OECD countries on the demand for, and price of, coal and oil in 1990 and 1995, and to assess the effect of increased use of fossil fuels on pollution from sulfur precipitation in Sweden. Our forecasts are based on the model which is shown diagrammatically. We begin with overall energy demand and in particular with forecasts of electricity demand in the key OECD countries. Demand is related to existing capacity and to current plans to install new capacity. The fuel demand resulting from these present plans has been calculated - this provides the base case. Existing and planned non-nuclear capacity is then related to demand and the nuclear capacity which must be retained in 1990 and the new non nuclear capacity which must be constructed for 1995 has been estimated. Fuel demand under these new conditions has then been computed and the increase resulting from a nuclear phase out has been calculated. The effect of this increase has been related to overall world demand for fuels and the effect on prices has been predicted. The emission, transport and precipitation of sulfur in Sweden and its neighbours has been considered. The increase in precipitation which will occur as a result of this greater use of fossil fuels has been calculated

  3. Costs of electric power generation in different types of power plants

    International Nuclear Information System (INIS)

    Weible, H.

    1977-01-01

    In the framework of our study 'energy - environment - industry' we need among other things the costs of electric power generation. We register their structure in a sub-model. Recently there was disagreement on effective costs of electric power generation particularly when comparing fossil-fuel power plants to nuclear power plants. For this reason, expertises on the costs of electric power generation in nuclear and fossil-fuel power plants were ordered with the Energy-Economic Institute in Cologne as well as with the Battelle Institute in Frankfurt. In the framwork of our paper on the system 'energy - environment - industry' we do not want to give new data potentially required for our task, before the expertises will be finished. Therefore the results given in part III of this lecture are only meant as an example in order to show possible consequences of the cost programs set up, depending on initial data whose general recognition is to be aimed at. Furthermore, the theoretical approach to investment calculation has to win general recognition when recording calculation methods computer-compatibly. Any new formulations discussed in industrial management have not been taken into account. (orig.) [de

  4. Cost-effective policy instruments for greenhouse gas emission reduction and fossil fuel substitution through bioenergy production in Austria

    International Nuclear Information System (INIS)

    Schmidt, Johannes; Leduc, Sylvain; Dotzauer, Erik; Schmid, Erwin

    2011-01-01

    Climate change mitigation and security of energy supply are important targets of Austrian energy policy. Bioenergy production based on resources from agriculture and forestry is an important option for attaining these targets. To increase the share of bioenergy in the energy supply, supporting policy instruments are necessary. The cost-effectiveness of these instruments in attaining policy targets depends on the availability of bioenergy technologies. Advanced technologies such as second-generation biofuels, biomass gasification for power production, and bioenergy with carbon capture and storage (BECCS) will likely change the performance of policy instruments. This article assesses the cost-effectiveness of energy policy instruments, considering new bioenergy technologies for the year 2030, with respect to greenhouse gas emission (GHG) reduction and fossil fuel substitution. Instruments that directly subsidize bioenergy are compared with instruments that aim at reducing GHG emissions. A spatially explicit modeling approach is used to account for biomass supply and energy distribution costs in Austria. Results indicate that a carbon tax performs cost-effectively with respect to both policy targets if BECCS is not available. However, the availability of BECCS creates a trade-off between GHG emission reduction and fossil fuel substitution. Biofuel blending obligations are costly in terms of attaining the policy targets. - Highlights: → Costs of energy policies and effects on reduction of CO 2 emissions and fossil fuel consumption. → Particular focus on new bioenergy production technologies such as second generation biofuels. → Spatially explicit techno-economic optimization model. → CO 2 tax: high costs for reducing fossil fuel consumption if carbon capture and storage is available. → Biofuel policy: no significant reductions in CO 2 emissions or fossil fuel consumption.

  5. How do the stock prices of new energy and fossil fuel companies correlate? Evidence from China

    International Nuclear Information System (INIS)

    Wen, Xiaoqian; Guo, Yanfeng; Wei, Yu; Huang, Dengshi

    2014-01-01

    This study documents the return and volatility spillover effect between the stock prices of Chinese new energy and fossil fuel companies using the asymmetric BEKK model. Based on daily samples taken from August 30, 2006 to September 11, 2012, the dynamics of new energy/fossil fuel stock spillover are found to be significant and asymmetric. Compared with positive news, negative news about new energy and fossil fuel stock returns leads to larger return changes in their counter assets. News about both new energy and fossil fuel stock returns spills over into variances of their counter assets, and the volatility spillovers depend complexly on the respective signs of the return shocks of each asset. The empirical results demonstrate that new energy and fossil fuel stocks are generally viewed as competing assets, that positive news about new energy stocks could affect the attractiveness of fossil fuel stocks and that new energy stock investment is more speculative and riskier than fossil fuel stock investment. These results have potential implications for asset allocation, financial risk management and energy policymaking. - Highlights: • The dynamics of Chinese new energy/fossil fuel stock spillover are significant and asymmetric. • New energy and fossil fuel stocks are generally viewed as competing assets. • Positive news about new energy stocks affects the attractiveness of fossil fuel stocks. • New energy stock investment is more speculative and riskier than fossil fuel stock investment

  6. Challenges of efficient and clean use of fossil fuels for power production

    Energy Technology Data Exchange (ETDEWEB)

    Vortmeyer, Nicolas; Zimmermann, Gerhard

    2010-09-15

    Constantly increasing resource efficiency together with the broad introduction of CCS technologies is fundamental for a continuous use of fossil fuels in power generation against the background of up-coming requirements for CO2 emission reduction. In principle, CCS means up-grading conventional power plant technology with proven CO2 removal processes. However, this leads to additional losses, auxiliary power demand and cost. System integration, development or at least adaption of components and processes are the main requirements in this context. Different technology solutions and recent developments will be addressed as well as challenges when implementing in demonstration projects.

  7. Blown by the wind. Replacing nuclear power in German electricity generation

    International Nuclear Information System (INIS)

    Lechtenböhmer, Stefan; Samadi, Sascha

    2013-01-01

    to gradually reduce fossil fuel generated electricity. Whether the reduction in fossil fuel use will be sufficient to adequately contribute to national greenhouse gas mitigation targets significantly depends on an active policy to promote electricity savings, continuous efforts to increase the use of renewables and a higher share of natural gas (preferably used in combined heat and power plants) in fossil fuel power generation.

  8. Small-scale electric generators for arctic applications

    International Nuclear Information System (INIS)

    Lamp, T.R.

    1995-01-01

    Forest fires that have endangered remote US Air Force sites equipped with radioisotope thermoelectric generators (RTGs) has prompted the assessment of power generating systems as substitutes for RTGs in small scale (10--120 watt) applications. A team of scientists and engineers of the US Air Forces' Wright Laboratory conductd an assessment of electrical power technologies for use by the Air Force in remote, harsh environments. The surprisingly high logistics costs of operating fossil fuel generators resulted in the extension of the assessment to non-RTG sites. The candidate power sources must operate unattended for long periods at a high level of operational reliability. Selection of the optimum power generation technology is complicated and heavily driven by the severe operating environment and compounded by the remoteness of the location. It is these site-related characteristics, more than any other, that drive the selection of a safe and economical power source for Arctic applications. A number of proven power generation technologies were evaluated. The assessment concluded that RGTs are clearly the safest, most reliable, and most economical approach to supplying electrical power for remote, difficult to assess locations. The assessment also indicated that the logistics costs associated with combustion driven generator systems could be substantially reduced through the use of conversion technologies which have been previously developed for space power applications. copyright 1995 American Institute of Physics

  9. Health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California. Volume 4. Radiological emergency response planning for nuclear power plants in California

    International Nuclear Information System (INIS)

    Yen, W.W.S.

    1977-01-01

    This report reviews the state of emergency response planning for nuclear power plants in California. Attention is given to the role of Federal agencies, particularly the Nuclear Regulatory Commission, in planning for both on and off site emergency measures and to the role of State and local agencies for off site planning. The relationship between these various authorities is considered. Existing emergency plans for nuclear power plants operating or being constructed in California are summarized. The developing role of the California Energy Resources Conservation and Development Commission is examined

  10. Health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California. Volume 5. Control of population densities surrounding nuclear power plants

    International Nuclear Information System (INIS)

    Nero, A.V.; Schroeder, C.H.; Yen, W.W.S.

    1977-01-01

    In view of the requirement that the California Energy Resources Conservation and Development Commission must specify land-use/population-density control measures to be used in the vicinity of nuclear power plants being granted land use, the possible forms of such measures are examined. Since these measures must maintain population densities below Nuclear Regulatory Commission criteria, if appropriate, NRC criteria for land use and population densities are given particular attention. In addition, a preliminary comparison of the cost of possible control measures with the reduced potential for damage to the public health and safety is made, yielding the result that control measures within approximately one mile of the plant site may be justified, in certain cases, on a strictly cost-benefit basis. However, it is not clear whether controls over such a limited region would satisfy the legal mandate

  11. Health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California. Volume 2. Radiological health and related standards for nuclear power plants

    International Nuclear Information System (INIS)

    Nero, A.V.; Wong, Y.C.

    1977-01-01

    This report summarizes the status and basis of radiation protection standards, with a view to identifying how they particularly apply to nuclear power plants. The national and international organizations involved in the setting of standards are discussed, paying explicit attention to their jurisdictions and to the considerations they use in setting standards. The routine and accidental radioactive emissions from nuclear power plants are characterized, and the effect of these emissions on ambient radiation levels is discussed. The state of information on the relationship between radiation exposures and health effects is summarized

  12. Electric power generation

    International Nuclear Information System (INIS)

    Pinske, J.D.

    1981-01-01

    Apart from discussing some principles of power industry the present text deals with the different ways of electric power generation. Both the conventional methods of energy conversion in heating and water power stations and the facilities for utilizing regenerative energy sources (sun, wind, ground heat, tidal power) are considered. The script represents the essentials of the lecture of the same name which is offered to the students of the special subject 'electric power engineering' at the Fachhochschule Hamburg. It does not require any special preliminary knowledge except for the general principles of electrical engineering. It is addressing students of electrical engineering who have passed their preliminary examination at technical colleges and universities. Moreover, it shall also be of use for engineers who want to obtain a quick survey of the structure and the operating characteristics of the extremely different technical methods of power generation. (orig.) [de

  13. Electric power monthly, February 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-16

    The Electric Power Monthly (EMP) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. Statistics by company and plant are published in the EPM on the capability of new generating units, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fossil fuels.

  14. Carbon as Investment Risk—The Influence of Fossil Fuel Divestment on Decision Making at Germany’s Main Power Providers

    Directory of Open Access Journals (Sweden)

    Dagmar Kiyar

    2015-09-01

    Full Text Available German electricity giants have recently taken high-level decisions to remove selected fossil fuel operations from their company portfolio. This new corporate strategy could be seen as a direct response to the growing global influence of the fossil fuel divestment campaign. In this paper we ask whether the divestment movement currently exerts significant influence on decision-making at the top four German energy giants—E.On, RWE, Vattenfall and EnBW. We find that this is not yet the case. After describing the trajectory of the global fossil fuel divestment campaign, we outline four alternative influences on corporate strategy that, currently, are having a greater impact than the divestment movement on Germany’s power sector. In time, however, clear political decisions and strong civil support may increase the significance of climate change concerns in the strategic management of the German electricity giants.

  15. A study of the contract terms offered by the regional electricity companies to generators of renewable energy outside the NFFO

    International Nuclear Information System (INIS)

    Williams, N.C.; Limbrick, A.J.

    1996-01-01

    The aim of this study was to review the terms and conditions of contract for the purchase of renewable energy currently offered by the Regional Electricity Companies (RECs) outside the Non-Fossil Fuel Obligation (NFFO), through consultation with electricity generators. It focused on projects contracted under the first and second tranches of the NFFO, and those which have been developed outside this support mechanism (both renewable and fossil-fuelled), but which are characterised by being ''embedded'' in the RECs' distribution networks. (UK)

  16. Wind electric power generation

    International Nuclear Information System (INIS)

    Koch, M.K.; Wind, L.; Canter, B.; Moeller, T.

    2001-01-01

    The monthly statistics of wind electric power generation in Denmark are compiled from information given by the owners of the private wind turbines. For each wind turbine the name of the site and of the type of turbine is given, and the power generation data are given for the month in question together with the total production in 1999 and 2000. Also the data of operation start are given. On the map of Denmark the sites of the wind turbines are marked. (CLS)

  17. Wind electric power generation

    International Nuclear Information System (INIS)

    Koch, M. K.; Wind, L.; Canter, B.; Moeller, T.

    2002-01-01

    The monthly statistics of wind electric power generation in Denmark are compiled from information given by the owners of the private wind turbines. For each wind turbine the name of the site and of the type of turbine is given, and the power generation data are given for the month in question together with the total production in 2000 and 2001. Also the data of operation start are given. On the map of Denmark the sites of the wind turbines are marked. (SM)

  18. Thermoacoustic magnetohydrodynamic electrical generator

    International Nuclear Information System (INIS)

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1986-01-01

    A thermoacoustic magnetohydrodynamic electrical generator is described comprising a magnet having a magnetic field, an elongate hollow housing containing an electrically conductive liquid and a thermoacoustic structure positioned in the liquid, heat exchange means thermally connected to the thermoacoustic structure for inducing the liquid to oscillate at an acoustic resonant frequency within the housing. The housing is positioned in the magnetic field and oriented such that the direction of the magnetic field and the direction of oscillatory motion of the liquid are substantially orthogonal to one another, first and second electrical conductor means connected to the liquid on opposite sides of the housing along an axis which is substantially orthogonal to both the direction of the magnetic field and the direction of oscillatory motion of the liquid, an alternating current output signal is generated in the conductor means at a frequency corresponding to the frequency of the oscillatory motion of the liquid

  19. Burning Fossil Fuels: Impact of Climate Change on Health.

    Science.gov (United States)

    Sommer, Alfred

    2016-01-01

    A recent, sophisticated granular analysis of climate change in the United States related to burning fossil fuels indicates a high likelihood of dramatic increases in temperature, wet-bulb temperature, and precipitation, which will dramatically impact the health and well-being of many Americans, particularly the young, the elderly, and the poor and marginalized. Other areas of the world, where they lack the resources to remediate these weather impacts, will be even more greatly affected. Too little attention is being paid to the impending health impact of accumulating greenhouse gases. © The Author(s) 2015.

  20. Monthly, global emissions of carbon dioxide from fossil fuel consumption

    DEFF Research Database (Denmark)

    Andres, R.J.; Gregg, Jay Sterling; Losey, L.

    2011-01-01

    This paper examines available data, develops a strategy and presents a monthly, global time series of fossil-fuel carbon dioxide emissions for the years 1950–2006. This monthly time series was constructed from detailed study of monthly data from the 21 countries that account for approximately 80......% of global total emissions. These data were then used in a Monte Carlo approach to proxy for all remaining countries. The proportional-proxy methodology estimates by fuel group the fraction of annual emissions emitted in each country and month. Emissions from solid, liquid and gas fuels are explicitly...

  1. Carbon dioxide from fossil fuels. Adapting to uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Chen, K; Winter, R C; Bergman, M K

    1980-12-01

    The world is likely to experience noticeable carbon dioxide induced global warming by the beginning of the next century if high annual growth rates of fossil fuel energy use continue. This article proposes some ideas about what can be done from a policy-making perspective if the CO$SUB$2 effects occur, and how, in addition, we can deal now with the uncertainties. It also considers questions concerning the potential for control of CO$SUB$2 emissions drawing up on current work in long range coal-based energy technology assessment. (70 refs.)

  2. Recognition of the Environmental Costs of Fossil Fuel Plants

    Directory of Open Access Journals (Sweden)

    Hakkı FINDIK

    2015-12-01

    Full Text Available Environment that is the natural residential area of live life is among the interests of the various sciences. Within the scope of accounting science, the concept of social awareness requires a social responsibility based approach and this causes some additional environmental costs emerged when interaction of business with their environment considered. In the Uniform Accounting Plan there exists a special account relating with monitoring, controlling and managing of environmental costs. This study deals with environmental accounting for enterprises and introduces determination and recognition of the environmental costs of fossil fuel plants that use coal as a fuel

  3. The effect of retrofitting Portuguese fossil fuel power plants with CCS

    International Nuclear Information System (INIS)

    Gerbelová, Hana; Versteeg, Peter; Ioakimidis, Christos S.; Ferrão, Paulo

    2013-01-01

    Highlights: ► A map of mainland Portugal with potential CO 2 source-sink matching was created. ► Four existing Portuguese power plants were simulated with and without CCS. ► Effect of CCS retrofit on performance and costs at each power plant was studied. ► The incremental COE was estimated at around 46 $/MW h for NGCC plants. ► The incremental COE was estimated at around 61 $/MW h for PC plants. -- Abstract: This work assesses the retrofit potential of existing Portuguese fossil fuel power plants with post-combustion CO 2 capture and storage (CCS) technology. The Integrated Environmental Control Model (IECM) was used to provide a systematic techno-economic analysis of the cost of emission control equipment, the reduction in greenhouse gas emissions, and other key parameters which may change when CCS is implemented at a fossil fuel power plant. The results indicate that CCS requires a large capital investment and significantly increases the levelized cost of electricity. However, the economic viability of CCS increases with higher CO 2 prices. The breakeven CO 2 price for plants with and without CCS was estimated at $85–$140/t of CO 2 depending on the technical parameters of the individual plants.

  4. Economics of Carbon Dioxide Sequestration and Mitigation versus a Suite of Alternative Renewable Energy Sources for Electricity Generation in U.S.

    Directory of Open Access Journals (Sweden)

    Zheming Zhang

    2011-01-01

    Full Text Available An equilibrium economic model for policy evaluation related to electricity generation in U.S has been developed; the model takes into account the non-renewable and renewable energy sources, demand and supply factors and environmental constraints. The non-renewable energy sources include three types of fossil fuels: coal, natural gas and petroleum, and renewable energy sources include nuclear, hydraulic, wind, solar photovoltaic, biomass wood, biomass waste and geothermal. Energy demand sectors include households, industrial manufacturing and non-manufacturing commercial enterprises. Energy supply takes into account the electricity delivered to the consumer by the utility companies at a certain price which maybe different for retail and wholesale customers. Environmental risks primarily take into account the CO2 generation from fossil fuels. The model takes into account the employment in various sectors and labor supply and demand. Detailed electricity supply and demand data, electricity cost data, employment data in various sectors and CO2 generation data are collected for a period of nineteen years from 1990 to 2009 in U.S. The model is employed for policy analysis experiments if a switch is made in sources of electricity generation, namely from fossil fuels to renewable energy sources. As an example, we consider a switch of 10% of electricity generation from coal to 5% from wind, 3% from solar photovoltaic, 1% from biomass wood and 1% from biomass waste. The model is also applied to a switch from 10% coal to 10% from clean coal technologies. It should be noted that the cost of electricity generation from different sources is different and is taken into account. The consequences of this switch on supply and demand, employment, wages, and emissions are obtained from the economic model under three scenarios: (1 energy prices are fully regulated, (2 energy prices are fully adjusted with electricity supply fixed, and (3 energy prices and

  5. Proposals for the gradual reduction of the inefficiencies associated with the account of consumption of fossil fuels of isolated systems; Propostas para a gradativa reducao das ineficiencias associadas a conta de consumo de combustiveis fosseis dos sistemas isolados

    Energy Technology Data Exchange (ETDEWEB)

    Magalhaes, Pedro Coelho de Souza Monteiro; Tiryaki, Gisele Ferreira [Universidade Salvador (UNIFACS), BA (Brazil)

    2008-07-01

    Restricted access to electricity, the existence of an energy matrix based on fossil fueled electricity plants and the lack of financial means by the population living in the Northern region of Brazil to afford the costs with electricity generation, transmission and distribution in the region created the need to implement cross subsidies in the country's Electric Sector Isolated System. The subsidy policies have aimed at allowing the access to electricity for the population and industries in the north of Brazil and at promoting the economic development of this region, but have brought a great cost to society, particularly the Fuel Consumption Account (CCC). This paper evaluates the current structure and the regulatory norms of the electricity sector' subsidies granted to the Isolated Systems, and indicates solutions to the inefficiency associated to cross-subsidization. (author)

  6. Environmental challenges and opportunities of the evolving North American electricity market : Estimating future air pollution from new electric power generation

    International Nuclear Information System (INIS)

    Miller, P.; Patterson, Z.; Vaughan, S.

    2002-06-01

    A significant source of air pollutants and greenhouse gases in North America is a direct result of the generation of electricity from the combustion of fossil fuels. An attempt at estimating the future emissions of four key pollutants from the electricity generation sector in North America was made by the authors in this paper. They based their estimates on projections of future electricity generation capacity changes. They looked at new power plant projects in North America, as well as the expected changes in emissions as a result of these projects compared to the historical data originating from power plant emissions in the recent past. Both the local context and the national level were examined. Nitrogen oxides, sulfur dioxide, mercury, and carbon dioxide, all arising from the combustion of fossil fuels, were considered in this paper. Ground level ozone, or smog results from nitrogen oxides. Acidic deposition, also called acid rain, is caused in part by both nitrogen oxides and sulfur dioxide, as is fine particles in the atmosphere linked to lung damage and premature death. Fish consumption advisories were issued due to the levels of toxic mercury deposited in lakes and streams. Global climate change is caused in part to the greenhouse gas carbon dioxide. Air quality and climate change will both be impacted by the future evolution of the electricity generation sector in an integrated North American energy market. The authors attempted to provide a baseline of air emissions from that sector in North America for a common reference year, enabling the tracking of changes in emissions patterns in the future. A reference case inventory for the four pollutants was estimated, followed by the development of two boundary cases estimating future emissions in 2007. refs., 22 tabs

  7. Fossil fuel savings, carbon emission reduction and economic attractiveness of medium-scale integrated biomass gasification combined cycle cogeneration plants

    Directory of Open Access Journals (Sweden)

    Kalina Jacek

    2012-01-01

    Full Text Available The paper theoretically investigates the system made up of fluidized bed gasifier, SGT-100 gas turbine and bottoming steam cycle. Different configurations of the combined cycle plant are examined. A comparison is made between systems with producer gas (PG and natural gas (NG fired turbine. Supplementary firing of the PG in a heat recovery steam generator is also taken into account. The performance of the gas turbine is investigated using in-house built Engineering Equation Solver model. Steam cycle is modeled using GateCycleTM simulation software. The results are compared in terms of electric energy generation efficiency, CO2 emission and fossil fuel energy savings. Finally there is performed an economic analysis of a sample project. The results show relatively good performance in the both alternative configurations at different rates of supplementary firing. Furthermore, positive values of economic indices were obtained. [Acknowledgements. This work was carried out within the frame of research project no. N N513 004036, titled: Analysis and optimization of distributed energy conversion plants integrated with gasification of biomass. The project is financed by the Polish Ministry of Science.

  8. API focuses on cleanliness, economics of fossil fuels

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Fossil fuels, consumed in free markets, are playing positive economic and environmental roles as the world economy becomes integrated, industry leader said last week. Environmental zealots threaten to force conversion from gasoline as a motor fuel in the U.S. and oppose the growing integration of the world economy. Fossil fuels, free markets, human creativity, and entrepreneurial spirit--not government intervention--are the keys to a clean environment, said API pres. Charles J. DiBona and outgoing Chairman C.J. (Pete) Silas, chairman and chief executive officer of Phillips Petroleum Co. DiBona said proponents of the BTU tax defeated earlier this year used erroneous assumptions to make a case against oil use in an effort to replace the efficiency of the marketplace with the inefficiency of bureaucracy. The government's role is to set tough standards and avoid dictating the way environmental standards are met, they said. Other speakers warned that voluntary measures put forward by the Clinton administration of address global climate change issues likely will fall short

  9. The Water-Energy-Food Nexus of Unconventional Fossil Fuels.

    Science.gov (United States)

    Rosa, L.; Davis, K. F.; Rulli, M. C.; D'Odorico, P.

    2017-12-01

    Extraction of unconventional fossil fuels has increased human pressure on freshwater resources. Shale formations are globally abundant and widespread. Their extraction through hydraulic fracturing, a water-intensive process, may be limited by water availability, especially in arid and semiarid regions where stronger competition is expected to emerge with food production. It is unclear to what extent and where shale resource extraction could compete with local water and food security. Although extraction of shale deposits materializes economic gains and increases energy security, in some regions it may exacerbate the reliance on food imports, thereby decreasing regional food security. We consider the global distribution of known shale deposits suitable for oil and gas extraction and evaluate their impacts on water resources for food production and other human and environmental needs. We find that 17% of the world's shale deposits are located in areas affected by both surface water and groundwater stress, 50% in areas with surface water stress, and about 30% in irrigated areas. In these regions shale oil and shale gas production will likely threaten water and food security. These results highlight the importance of hydrologic analyses in the extraction of fossil fuels. Indeed, neglecting water availability as one of the possible factors constraining the development of shale deposits around the world could lead to unaccounted environmental impacts and business risks for firms and investors. Because several shale deposits in the world stretch across irrigated agricultural areas in arid regions, an adequate development of these resources requires appropriate environmental, economic and political decisions.

  10. Biomass - alternative renewable energy source to the fossil fuels

    Directory of Open Access Journals (Sweden)

    Koruba Dorota

    2017-01-01

    Full Text Available The article presents the fossil fuels combustion effects in terms of the dangers of increasing CO2 concentration in the atmosphere. Based on the bibliography review the negative impact of increased carbon dioxide concentration on the human population is shown in the area of the external environment, particularly in terms of the air pollution and especially the impact on human health. The paper presents biomass as the renewable energy alternative source to fossil fuels which combustion gives a neutral CO2 emissions and therefore should be the main carrier of primary energy in Poland. The paper presents the combustion heat results and humidity of selected dry wood pellets (pellets straw, energy-crop willow pellets, sawdust pellets, dried sewage sludge from two sewage treatment plants of the Holly Cross province pointing their energy potential. In connection with the results analysis of these studies the standard requirements were discussed (EN 14918:2010 “Solid bio-fuels-determination of calorific value” regarding the basic parameters determining the biomass energy value (combustion heat, humidity.

  11. Depletion of fossil fuels and the impacts of global warming

    International Nuclear Information System (INIS)

    Hoel, M.; Kverndokk, S.

    1996-01-01

    This paper combines the theory of optimal extraction of exhaustible resources with the theory of greenhouse externalities, to analyze problems of global warming when the supply side is considered. The optimal carbon tax will initially rise but eventually fall when the externality is positively related to the stock of carbon in the atmosphere. It is shown that the tax will start falling before the stock of carbon in the atmosphere reaches its maximum. If there exists a non-polluting backstop technology, it will be optimal to extract and consume fossil fuels even when the price of fossil fuels is equal to the price of the backstop. The total extraction is the same as when the externality is ignored, but in the presence of the greenhouse effect, it will be optimal to slow the extraction and spread it over a longer period. If, on the other hand, the greenhouse externality depends on the rate of change in the atmospheric stock of carbon, the evolution of the optimal carbon tax is more complex. It can even be optimal to subsidize carbon emissions to avoid future rapid changes in the stock of carbon, and therefore future damages. 22 refs., 3 figs

  12. Could reducing fossil-fuel emissions cause global warming

    Energy Technology Data Exchange (ETDEWEB)

    Wigley, T M.L. [University of East Anglia, Norwich (UK). Climatic Research Unit

    1991-02-07

    When fossil fuel is burned, both carbon dioxide and sulphur dioxide are added to the atmosphere. The former should cause warming of the lower atmosphere by enhancing the greenhouse effect, whereas the latter, by producing sulphate aerosols, may cause a cooling effect. The possibility that these two processes could offset each other was suggested many years ago but during most of the intervening period, attention has focused on the greenhouse effect. Interest in tropospheric aerosols has, however, recently been rekindled by the realization that they may influence climate, not only through clear-sky radiative effects, but also by modifying cloud albedo. The author examines the sensitivity of the climate system to simultaneous changes in SO{sub 2} and CO{sub 2} emissions, as might occur if controls were imposed on fossil-fuel use. Over the next 10-30 years, it is conceivable that the increased radiative forcing due to SO{sub 2} concentration changes could more than offset reductions in radiative forcing due to reduced CO{sub 2} emissions. 16 refs., 3 figs., 1 tab.

  13. Measuring the energy security implications of fossil fuel resource concentration

    International Nuclear Information System (INIS)

    Lefevre, Nicolas

    2010-01-01

    Economic assessments of the welfare effects of energy insecurity are typically uncertain and fail to provide clear guidance to policy makers. As a result, governments have had little analytical support to complement expert judgment in the assessment of energy security. This is likely to be inadequate when considering multiple policy goals, and in particular the intersections between energy security and climate change mitigation policies. This paper presents an alternative approach which focuses on gauging the causes of energy insecurity as a way to assist policy making. The paper focuses on the energy security implications of fossil fuel resource concentration and distinguishes between the price and physical availability components of energy insecurity. It defines two separate indexes: the energy security price index (ESPI), based on the measure of market concentration in competitive fossil fuel markets, and the energy security physical availability index (ESPAI), based on the measure of supply flexibility in regulated markets. The paper illustrates the application of ESPI and ESPAI with two case studies-France and the United Kingdom-looking at the evolution of both indexes to 2030.

  14. Measuring the energy security implications of fossil fuel resource concentration

    Energy Technology Data Exchange (ETDEWEB)

    Lefevre, Nicolas [Woodrow Wilson School of Public and International Affairs, Princeton University, New Jersey (United States)

    2010-04-15

    Economic assessments of the welfare effects of energy insecurity are typically uncertain and fail to provide clear guidance to policy makers. As a result, governments have had little analytical support to complement expert judgment in the assessment of energy security. This is likely to be inadequate when considering multiple policy goals, and in particular the intersections between energy security and climate change mitigation policies. This paper presents an alternative approach which focuses on gauging the causes of energy insecurity as a way to assist policy making. The paper focuses on the energy security implications of fossil fuel resource concentration and distinguishes between the price and physical availability components of energy insecurity. It defines two separate indexes: the energy security price index (ESPI), based on the measure of market concentration in competitive fossil fuel markets, and the energy security physical availability index (ESPAI), based on the measure of supply flexibility in regulated markets. The paper illustrates the application of ESPI and ESPAI with two case studies - France and the United Kingdom - looking at the evolution of both indexes to 2030. (author)

  15. Does fossil fuel combustion lead to global warming?

    International Nuclear Information System (INIS)

    Schwartz, S.E.

    1993-01-01

    Tropospheric sulfate aerosols produced by atmospheric oxidation of SO 2 emitted from fossil fuel combustion scatter solar radiation and enhance the reflectivity of clouds. Both effects decrease the absorption of solar radiation by the earth-atmosphere system. This cooling influence tends to offset the warming influence resulting from increased absorption of terrestrial infrared radiation by increased atmospheric concentrations of CO 2 . The sulfate forcing is estimated to be offsetting 70% of the forcing by CO 2 derived from fossil fuel combustion, although the uncertainty of this estimate is quite large--range 28-140%, the latter figure indicating that the present combined forcing is net cooling. Because of the vastly different atmospheric residence times of sulfate aerosol (about a week) and CO 2 (about 100 years), the cooling influence of sulfate aerosol is exerted immediately, whereas most of the warming influence of CO 2 is exerted over more than 100 years. Consequently the total forcing integrated over the entire time the materials reside in the atmosphere is net warming, with the total CO 2 forcing estimate to exceed the sulfate forcing by a factor of 4. The present situation in which the forcing by sulfate is comparable to that by CO 2 is shown to be a consequence of the steeply increasing rates of emission over the industrial era. (author)

  16. Bolide impacts and their significance in fossil fuel geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Saxby, J.D. (CSIRO Division of Coal Technology (Australia))

    1989-01-01

    One of the most dramatic scientific theories of the past ten years has been that a collision between the earth and a large meteor or bolide about 10 km in diameter caused mass extinctions of most of the then-existing species (including dinosaurs) at the end of the Cretaceous, 65 million years ago. Controversy continues but, by and large, organic geochemists researching fossil fuels have not been active participants. Only recently has a relationship between kerogen and the all-important iridium anomaly been investigated (Schmitz et al., 1988). Sediment samples at the Cretaceous-Tertiary boundary contain anomalously high concentrations of iridium, an element whose abundance in the earth's crust is only one ten thousandth of that found in meteorites and presumably in other solar system debris. The purpose of this paper is to briefly raise some questions regarding the bolide impact theory as it affects coal and petroleum deposits. It may well be that organic geochemical evidence will be crucial in either supporting or refuting the impact hypothesis or one of its variations. Even if future research tends to favor widespread explosive volcanism, rather than bolide impacts, the significance of such catastrophic events to the formation and characteristics of fossil fuels needs to be assessed.

  17. Krakow clean fossil fuels and energy efficiency project

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, T.A.; Pierce, B.L. [Brookhaven National Lab., Upton, NY (United States)

    1995-11-01

    The Support for Eastern European Democracy (SEED) Act of 1989 directed the U.S. Department of Energy (DOE) to undertake an equipment assessment project aimed at developing the capability within Poland to manufacture or modify industrial-scale combustion equipment to utilize fossil fuels cleanly. This project is being implemented in the city of Krakow as the `Krakow Clean Fossil Fuels and Energy Efficiency Project.` Funding is provided through the U.S. Agency for International Development (AID). The project is being conducted in a manner that can be generalized to all of Poland and to the rest of Eastern Europe. The historic city of Krakow has a population of 750,000. Almost half of the heating energy used in Krakow is supplied by low-efficiency boilerhouses and home coal stoves. Within the town, there are more than 1,300 local boilerhouses and 100,000 home stoves. These are collectively referred to as the `low emission sources` and they are the primary sources of particulates and hydrocarbon emissions in the city and major contributors of sulfur dioxide and carbon monoxide.

  18. Bolide impacts and their significance in fossil fuel geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Saxby, J D [CSIRO Division of Coal Technology (Australia)

    1989-01-01

    One of the most dramatic scientific theories of the past ten years has been that a collision between the earth and a large meteor or bolide about 10 km in diameter caused mass extinctions of most of the then-existing species (including dinosaurs) at the end of the Cretaceous, 65 million years ago. Controversy continues but, by and large, organic geochemists researching fossil fuels have not been active participants. Only recently has a relationship between kerogen and the all-important iridium anomaly been investigated (Schmitz et al., 1988). Sediment samples at the Cretaceous-Tertiary boundary contain anomalously high concentrations of iridium, an element whose abundance in the earth's crust is only one ten thousandth of that found in meteorites and presumably in other solar system debris. The purpose of this paper is to briefly raise some questions regarding the bolide impact theory as it affects coal and petroleum deposits. It may well be that organic geochemical evidence will be crucial in either supporting or refuting the impact hypothesis or one of its variations. Even if future research tends to favor widespread explosive volcanism, rather than bolide impacts, the significance of such catastrophic events to the formation and characteristics of fossil fuels needs to be assessed.

  19. CAUSAL RELATIONSHIP BETWEEN FOSSIL FUEL CONSUMPTION AND ECONOMIC GROWTH IN JAPAN: A MULTIVARIATE APPROACH

    Directory of Open Access Journals (Sweden)

    Hazuki Ishida

    2013-01-01

    Full Text Available This paper explores whether Japanese economy can continue to grow without extensive dependence on fossil fuels. The paper conducts time series analysis using a multivariate model of fossil fuels, non-fossil energy, labor, stock and GDP to investigate the relationship between fossil fuel consumption and economic growth in Japan. The results of cointegration tests indicate long-run relationships among the variables. Using a vector error-correction model, the study reveals bidirectional causality between fossil fuels and GDP. The results also show that there is no causal relationship between non-fossil energy and GDP. The results of cointegration analysis, Granger causality tests, and variance decomposition analysis imply that non-fossil energy may not necessarily be able to play the role of fossil fuels. Japan cannot seem to realize both continuous economic growth and the departure from dependence on fossil fuels. Hence, growth-oriented macroeconomic policies should be re-examined.

  20. Environmental Accounting and Reporting in Fossil Fuel Sector : A Study on Bangladesh Oil, Gas and Mineral Corporation (Petrobangla)

    OpenAIRE

    Bose, Sudipta

    2006-01-01

    Petrobangla is the sole responsible organization to maintain the fossil fuel sector in Bangladesh. It is accountable to next generations for oil, gas and other natural resources. It is necessary to ensure optimum use of these resources. Development activities cannot be sustained if these resources are depleted through wasteful use. This study indicates that Petrobangla takes many initiatives to provide environment-friendly energy in the economy. Environmental Accounting and reporting is th...

  1. Toxicity evaluation of 2-hydroxybiphenyl and other compounds involved in studies of fossil fuels biodesulphurisation.

    Science.gov (United States)

    Alves, L; Paixão, S M

    2011-10-01

    The acute toxicity of some compounds used in fossil fuels biodesulphurisation studies, on the respiration activity, was evaluated by Gordonia alkanivorans and Rhodococcus erythropolis. Moreover, the effect of 2-hydroxybiphenyl on cell growth of both strains was also determined, using batch (chronic bioassays) and continuous cultures. The IC₅₀ values obtained showed the toxicity of all the compounds tested to both strains, specially the high toxicity of 2-HBP. These results were confirmed by the chronic toxicity data. The toxicity data sets highlight for a higher sensitivity to the toxicant by the strain presenting a lower growth rate, due to a lower cells number in contact with the toxicant. Thus, microorganisms exhibiting faster generation times could be more resistant to 2-HBP accumulation during a BDS process. The physiological response of both strains to 2-HBP pulse in a steady-state continuous culture shows their potential to be used in a future fossil fuel BDS process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Assessing the environmental sustainability of electricity generation in Chile.

    Science.gov (United States)

    Gaete-Morales, Carlos; Gallego-Schmid, Alejandro; Stamford, Laurence; Azapagic, Adisa

    2018-09-15

    Around 40% of electricity in Chile is supplied by renewables and the rest by fossil fuels. Despite the growing electricity demand in the country, its environmental impacts are as yet unknown. To address this gap, the current study presents the first comprehensive assessment of the life cycle environmental sustainability of electricity generation in Chile. Both the individual sources and the electricity mix over the past 10 years are considered. The following sources present in the electricity mix are evaluated: coal, oil, natural gas, biogas, biomass, wind, solar photovoltaics (PV) and hydropower. In total, 10 electricity technologies and 174 power plants installed across the country have been considered. Eleven environmental impacts have been estimated, including global warming, human toxicity, ecotoxicities, as well as resource and ozone layer depletion. The results reveal that hydropower is environmentally the most sustainable option across the impacts, followed by onshore wind and biogas. Electricity from natural gas has 10%-84% lower impacts than biomass for seven categories. It is also 13%-98% better than solar PV for six impacts and 17%-66% than wind for four categories. Solar PV has the highest abiotic depletion potential due to the use of scarce elements in the manufacture of panels. While electricity generation has grown by 44% in the past 10 years, all the impacts except ozone layer depletion have increased by 1.6-2.7 times. In the short term, environmental regulations should be tightened to improve the emissions control from coal and biomass plants. In the medium term, the contribution of renewables should be ramped up, primarily increasing the hydro, wind and biogas capacity. Coal and oil should be phased out, using natural gas as a transitional fuel to help the stability of the grid with the increasing contribution of intermittent renewables. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Evaluation of Biodiesel Fuels to Reduce Fossil Fuel Use in Corps of Engineers Floating Plant Operations

    Science.gov (United States)

    2016-07-01

    ER D C/ CH L TR -1 6- 11 Dredging Operations and Environmental Research Program Evaluation of Biodiesel Fuels to Reduce Fossil Fuel Use... Fuels to Reduce Fossil Fuel Use in Corps of Engineers Floating Plant Operations Michael Tubman and Timothy Welp Coastal and Hydraulics Laboratory...sensitive emissions, increase use of renewable energy, and reduce the use of fossil fuels was conducted with funding from the U.S. Army Corps of

  4. Potential Co-Generation of Electrical Energy from Mill Waste: A Case Study of the Malaysian Furniture Manufacturing Industry

    Directory of Open Access Journals (Sweden)

    Jegatheswaran Ratnasingam

    2016-04-01

    Full Text Available Furniture manufacturing in Malaysia is an established industry driven primarily by the availability of raw materials and labor. However, the industry suffers from the low-recovery rate of its materials, as it produces a substantial amount of waste during the manufacturing process. Although smaller waste fragments, or off-cuts, are recovered for other purposes, the splinters, shavings, and coarse dust have little economic value and are often discarded. Because wood is a well-established source of bioenergy, this study investigated the potential use of mill waste from the furniture-manufacturing industry for electrical energy generation. Waste from the rubberwood, bamboo, and rattan furniture industries was evaluated for its potential electrical energy generation, and the amount was compared with the electrical energy that was consumed by the furniture industry. The study also compared the emission of greenhouse gases from the combustion of these waste materials against fossil fuels used to generate electricity to assess its potential in terms of the environmental benefits. In conclusion, such mill waste could be utilized as substitute for fossil fuel to generate energy in the furniture industry.

  5. Electricity generation: options for reduction in carbon emissions.

    Science.gov (United States)

    Whittington, H W

    2002-08-15

    Historically, the bulk production of electricity has been achieved by burning fossil fuels, with unavoidable gaseous emissions, including large quantities of carbon dioxide: an average-sized modern coal-burning power station is responsible for more than 10 Mt of CO(2) each year. This paper details typical emissions from present-day power stations and discusses the options for their reduction. Acknowledging that the cuts achieved in the past decade in the UK CO(2) emissions have been achieved largely by fuel switching, the remaining possibilities offered by this method are discussed. Switching to less-polluting fossil fuels will achieve some measure of reduction, but the basic problem of CO(2) emissions continues. Of the alternatives to fossil fuels, only nuclear power represents a zero-carbon large-scale energy source. Unfortunately, public concerns over safety and radioactive waste have still to be assuaged. Other approaches include the application of improved combustion technology, the removal of harmful gases from power-station flues and the use of waste heat to improve overall power-station efficiency. These all have a part to play, but many consider our best hope for emissions reduction to be the use of renewable energy. The main renewable energy contenders are assessed in this paper and realistic estimates of the contribution that each could provide are indicated. It appears that, in the time-scale envisaged by planners for reduction in CO(2) emission, in many countries renewable energy will be unlikely to deliver. At the same time, it is worth commenting that, again in many countries, the level of penetration of renewable energy will fall short of the present somewhat optimistic targets. Of renewable options, wind energy could be used in the short to medium term to cover for thermal plant closures, but for wind energy to be successful, the network will have to be modified to cope with wind's intermittent nature. Globally, hydroelectricity is currently the

  6. Wind power. [electricity generation

    Science.gov (United States)

    Savino, J. M.

    1975-01-01

    A historical background on windmill use, the nature of wind, wind conversion system technology and requirements, the economics of wind power and comparisons with alternative systems, data needs, technology development needs, and an implementation plan for wind energy are presented. Considerable progress took place during the 1950's. Most of the modern windmills feature a wind turbine electricity generator located directly at the top of their rotor towers.

  7. Electricity Generation Baseline Report

    Energy Technology Data Exchange (ETDEWEB)

    Logan, Jeffrey [National Renewable Energy Lab. (NREL), Golden, CO (United States); Marcy, Cara [National Renewable Energy Lab. (NREL), Golden, CO (United States); McCall, James [National Renewable Energy Lab. (NREL), Golden, CO (United States); Flores-Espino, Francisco [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bloom, Aaron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Aabakken, Jorn [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cole, Wesley [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jenkin, Thomas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Porro, Gian [National Renewable Energy Lab. (NREL), Golden, CO (United States); Liu, Chang [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ganda, Francesco [Argonne National Lab. (ANL), Argonne, IL (United States); Boardman, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tarka, Thomas [National Energy Technology Lab. (NETL), Albany, OR (United States); Brewer, John [National Energy Technology Lab. (NETL), Albany, OR (United States); Schultz, Travis [National Energy Technology Lab. (NETL), Albany, OR (United States)

    2017-01-01

    This report was developed by a team of national laboratory analysts over the period October 2015 to May 2016 and is part of a series of studies that provide background material to inform development of the second installment of the Quadrennial Energy Review (QER 1.2). The report focuses specifically on U.S. power sector generation. The report limits itself to the generation sector and does not address in detail parallel issues in electricity end use, transmission and distribution, markets and policy design, and other important segments. The report lists 15 key findings about energy system needs of the future.

  8. Electric power generator

    International Nuclear Information System (INIS)

    Carney, H.C.

    1977-01-01

    An electric power generator of the type employing a nuclear heat source and a thermoelectric converter is described wherein a transparent thermal insulating medium is provided inside an encapsulating enclosure to thermally insulate the heat source and thermoelectric generator. The heat source, the thermoelectric converter, and the enclosure are provided with facing surfaces which are heat-reflective to a substantial degree to inhibit radiation of heat through the medium of the encapsulating enclosure. Multiple reflective foils may be spaced within the medium as necessary to inhibit natural convection of heat and/or further inhibit radiation

  9. Wind electric power generation

    International Nuclear Information System (INIS)

    Groening, B.; Koch, M.; Canter, B.; Moeller, T.

    1995-01-01

    The monthly statistics of wind electric power generation in Denmark are compiled from information given by the owners of private wind turbines. For each wind turbine the name of the site and of the type of turbine is given, and the power generation data are given for the month in question together with the total production in 1988 and 1989. Also the data of operation start are given. On the map of Denmark the sites of the wind turbines are marked. The statistics for December 1994 comprise 2328 wind turbines

  10. Optimized Renewable and Sustainable Electricity Generation Systems for Ulleungdo Island in South Korea

    Directory of Open Access Journals (Sweden)

    Kyeongsik Yoo

    2014-11-01

    Full Text Available The South Korean government has long been attempting to reduce the nation’s heavy reliance on fossil fuels and increase environmental safety by developing and installing renewable power generation infrastructures and implementing policies for promoting the green growth of Korea’s energy industry. This study focuses on the use of independent renewable power generation systems in the more than 3000 officially affirmed islands off Korea’s coast and proposes a simulated solution to the electricity load demand on Ulleungdo Island that incorporates several energy sources (including solar, batteries, and wind as well as one hydro-electric and two diesel generators. Recommendations based on the simulation results and the limitations of the study are discussed.

  11. Electricity generation cost

    International Nuclear Information System (INIS)

    Bald, M.

    1984-01-01

    Also questions of efficiency play a part in the energy discussion. In this context, the economic evaluation of different energy supply variants is of importance. Especially with regard to the generation of electric power there have been discussions again and again during the last years on the advantage of the one or the other kind of electric power generation. In the meantime, a large number of scientific studies has been published on this topic which mainly deal with comparisons of the costs of electric power generated by hard coal or nuclear energy, i.e. of those energy forms which still have the possibilities of expansion. The following part shows a way for the evaluation of efficiency comparisons which starts from simplified assumptions and which works with arithmetical aids, which don't leave the area of the fundamental operations. The general comprehensibility is paid for with cuts on ultimate analytical and arithmetical precision. It will, however, turn out that the results achieved by this method don't differ very much from those which have been won by scientific targets. (orig./UA) [de

  12. An econometrics view of worldwide fossil fuel consumption and the role of US

    International Nuclear Information System (INIS)

    Shafiee, Shahriar; Topal, Erkan

    2008-01-01

    Crude oil, coal and gas, known as fossil fuels, play a crucial role in the global economy. This paper proposes new econometrics modelling to demonstrate the trend of fossil fuels consumption. The main variables affecting consumption trends are: world reserves, the price of fossil fuels, US production and US net imports. All variables have been analysed individually for more than half a century. The research found that while the consumption of fossil fuels worldwide has increased trends in the US production and net imports have been dependent on the type of fossil fuels. Most of the US coal and gas production has been for domestic use, which is why it does not have a strong influence on worldwide fossil fuel prices. Moreover, the reserves of fossil fuels have not shown any diminution during the last couple of decades and predictions that they were about to run out are not substantiated. The nominal and real price of fossil fuels was found to change depending on the type. Finally, estimates of three econometric models for the consumption of fossil fuels from 1949 to 2006 are presented which identify the effects of significant variables

  13. Renewables, nuclear, or fossil fuels? Scenarios for Great Britain’s power system considering costs, emissions and energy security

    International Nuclear Information System (INIS)

    Pfenninger, Stefan; Keirstead, James

    2015-01-01

    Highlights: • We compare a large number of cost-optimal future power systems for Great Britain. • Scenarios are assessed on cost, emissions reductions, and energy security. • Up to 60% of variable renewable capacity is possible with little cost increase. • Higher shares require storage, imports or dispatchable renewables such as tidal range. - Abstract: Mitigating climate change is driving the need to decarbonize the electricity sector, for which various possible technological options exist, alongside uncertainty over which options are preferable in terms of cost, emissions reductions, and energy security. To reduce this uncertainty, we here quantify two questions for the power system of Great Britain (England, Wales and Scotland): First, when compared within the same high-resolution modeling framework, how much do different combinations of technologies differ in these three respects? Second, how strongly does the cost and availability of grid-scale storage affect overall system cost, and would it favor some technology combinations above others? We compare three main possible generation technologies: (1) renewables, (2) nuclear, and (3) fossil fuels (with/without carbon capture and storage). Our results show that across a wide range of these combinations, the overall costs remain similar, implying that different configurations are equally feasible both technically and economically. However, the most economically favorable scenarios are not necessarily favorable in terms of emissions or energy security. The availability of grid-scale storage in scenarios with little dispatchable generation can reduce overall levelized electricity cost by up to 50%, depending on storage capacity costs. The UK can rely on its domestic wind and solar PV generation at lower renewable shares, with levelized costs only rising more than 10% above the mean of 0.084 GBP/kWh for shares of 50% and below at a 70% share, which is 35% higher. However, for more than an 80% renewable

  14. Life cycle inventories for bioenergy and fossil-fuel fired cogeneration plants

    International Nuclear Information System (INIS)

    Braennstroem-Norberg, B.M.; Dethlefsen, U.

    1998-06-01

    Life-cycle inventories for heat production from forest fuel, Salix, coal and oil are presented. Data from the Oerebro cogeneration plant are used for the bioenergy and coal cycles, whereas the oil-fired cycle is based on a fictive plant producing 53 MW electricity and 106 MW heat, also located in the town of Oerebro. This life cycle analysis only covers the inventory stage. A complete life cycle analysis also includes an environmental impact assessment. The methods for assessing environmental impact are still being developed and thus this phase has been omitted here. The intention is, instead, to provide an overall perspective of where in the chain the greatest environmental load for each fuel can be found. Production and energy conversion of fuel requires energy, which is often obtained from fossil fuel. This input energy corresponds to about 11% of the extracted amount of energy for oil, 9% for coal, 6% for Salix, whereas it is about 4% for forest fuel. Utilization of fossil fuel in the coal cycle amounts to production of electricity using coal condensation intended for train transports within Poland. In a life cycle perspective, biofuels show 20-30 times lower emissions of greenhouse gases in comparison with fossil fuels. The chains for biofuels also give considerably lower SO 2 emissions than the chains for coal and oil. The coal chain shows about 50% higher NO x emission than the other fuels. Finally, the study illustrates that emission of particles are similar for all sources of energy. The biofuel cycle is assessed to be generally applicable to plants of similar type and size and with similar transport distances. The oil cycle is probably applicable to small-scale cogeneration plants. However, at present there are no cogeneration plants in Sweden that are solely fired with oil. In the case of the coal cycle, deep mining and a relatively long transport distance within Poland have been assumed. If the coal mining had been from open-cast mines, and if the

  15. Development of the ultra high efficiency thermal power generation facility

    Energy Technology Data Exchange (ETDEWEB)

    Sano, Toshihiro

    2010-09-15

    In order to prevent global warming, attention is focused on nuclear power generation and renewable energy such as wind and solar power generation. The electric power suppliers of Japan are aiming to increase the amount of nuclear and non-fossil fuel power generation over 50% of the total power generation by 2020. But this means that the remaining half will still be of thermal power generation using fossil fuel and will still play an important role. Under such circumstances, further efficiency improvement of the thermal power generation and its aggressive implementation is ongoing in Japan.

  16. Development of Nano-crystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Hai [Missouri Univ. of Science and Technology, Rolla, MO (United States); Dong, Junhang [Univ. of Cincinnati, OH (United States); Lin, Jerry [Arizona State Univ., Tempe, AZ (United States); Romero, Van [New Mexico Institute of Mining and Technology, Socorro, NM (United States)

    2012-03-01

    This is a final technical report for the first project year from July 1, 2005 to Jan 31, 2012 for DoE/NETL funded project DE-FC26-05NT42439: Development of Nanocrystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases. This report summarizes the technical progresses and achievements towards the development of novel nanocrystalline doped ceramic material-enabled optical fiber sensors for in situ and real time monitoring the gas composition of flue or hot gas streams involved in fossil-fuel based power generation and hydrogen production.

  17. Fast neutron activation analysis of fossil fuels and liquefaction products

    International Nuclear Information System (INIS)

    Ehmann, W.D.; Khalil, S.R.; Koppenaal, D.W.

    1982-01-01

    The problems associated with neutron absorption/thermalization, gamma-ray self-absorption, and variable irradiation and counting geometries associated with the composition, densities and physical states of the samples and standards of fossil fuels are considered. Two sets of liquid organic reagent primary standards and several solid standards are selected and evaluated for use in the determiation of oxygen and nitrogen in coals, coal conversion liquids, and residual solids. Analyses of a number of coals, conversion products and NBS reference standards are presented. Problems associated with selecting a reproducible pre-analysis drying procedure for oxygen determinations in coal and discussed. It is suggested that a brief freeze-drying procedure may result in minimal matrix alternation and yield reproducible values for bulk oxygen contents of coals

  18. Progress performance report of clean uses of fossil fuels

    Energy Technology Data Exchange (ETDEWEB)

    Todd, Jr., Lee T.; Boggess, Ronald J.; Carson, Ronald J.; Falkenberg, Virginia P.; Flanagan, Patrick; Hettinger, Jr., William P.; Kimel, Kris; Kupchella, Charles E.; Magid, Lee J.; McLaughlin, Barbara; Royster, Wimberly C.; Streepey, Judi L.; Wells, James H.; Stencel, John; Derbyshire, Frank J.; Hanley, Thomas R.; Magid, Lee J.; McEllistrem, Marc T.; Riley, John T.; Steffen, Joseph M.

    1992-01-01

    A one-year USDOE/EPSCOR Traineeship Grant, entitled Clean Uses of Fossil Fuels.'' was awarded to the Kentucky EPSCoR Committee in September 1991 and administered through the the DOE/EPSCoR Subcommittee. Ten Traineeships were awarded to doctoral students who are enrolled or accepted into Graduate Programs at either the University of Kentucky or the University of Louisville. The disciplines of these students include Biology, Chemical Engineering, Chemistry, Geological Sciences, and Physics. The methods used for a statewide proposal solicitation and to award the Traineeships are presented. The review panel and Kentucky DOE/EPSCoR Subcommittee involved in awarding the Traineeships are described. A summary of the proposed research to be performed within these awards is presented, along with a description of the qualifications of the faculty and students who proposed projects. Future efforts to increase participation in Traineeship proposals for the succeeding funding period are outlined.

  19. Progress performance report of clean uses of fossil fuels

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    A one-year USDOE/EPSCOR Traineeship Grant, entitled ``Clean Uses of Fossil Fuels.`` was awarded to the Kentucky EPSCoR Committee in September 1991 and administered through the the DOE/EPSCoR Subcommittee. Ten Traineeships were awarded to doctoral students who are enrolled or accepted into Graduate Programs at either the University of Kentucky or the University of Louisville. The disciplines of these students include Biology, Chemical Engineering, Chemistry, Geological Sciences, and Physics. The methods used for a statewide proposal solicitation and to award the Traineeships are presented. The review panel and Kentucky DOE/EPSCoR Subcommittee involved in awarding the Traineeships are described. A summary of the proposed research to be performed within these awards is presented, along with a description of the qualifications of the faculty and students who proposed projects. Future efforts to increase participation in Traineeship proposals for the succeeding funding period are outlined.

  20. Biodesulfurization of refractory organic sulfur compounds in fossil fuels.

    Science.gov (United States)

    Soleimani, Mehran; Bassi, Amarjeet; Margaritis, Argyrios

    2007-01-01

    The stringent new regulations to lower sulfur content in fossil fuels require new economic and efficient methods for desulfurization of recalcitrant organic sulfur. Hydrodesulfurization of such compounds is very costly and requires high operating temperature and pressure. Biodesulfurization is a non-invasive approach that can specifically remove sulfur from refractory hydrocarbons under mild conditions and it can be potentially used in industrial desulfurization. Intensive research has been conducted in microbiology and molecular biology of the competent strains to increase their desulfurization activity; however, even the highest activity obtained is still insufficient to fulfill the industrial requirements. To improve the biodesulfurization efficiency, more work is needed in areas such as increasing specific desulfurization activity, hydrocarbon phase tolerance, sulfur removal at higher temperature, and isolating new strains for desulfurizing a broader range of sulfur compounds. This article comprehensively reviews and discusses key issues, advances and challenges for a competitive biodesulfurization process.

  1. On Corporate Accountability: Lead, Asbestos, and Fossil Fuel Lawsuits.

    Science.gov (United States)

    Shearer, Christine

    2015-08-01

    This paper examines the use of lawsuits against three industries that were eventually found to be selling products damaging to human heath and the environment: lead paint, asbestos, and fossil fuels. These industries are similar in that some companies tried to hide or distort information showing their products were harmful. Common law claims were eventually filed to hold the corporations accountable and compensate the injured. This paper considers the important role the lawsuits played in helping establish some accountability for the industries while also noting the limitations of the lawsuits. It will be argued that the lawsuits helped create pressure for government regulation of the industries' products but were less successful at securing compensation for the injured. Thus, the common law claims strengthened and supported administrative regulation and the adoption of industry alternatives more than they provided a means of legal redress. © The Author(s) 2015.

  2. Regulatory taxation of fossil fuels. Theory and policy

    International Nuclear Information System (INIS)

    Wolfson, Dirk J.; Koopmans, Carl C.

    1996-01-01

    Research on energy taxation is often based on purely theoretical deductions. This paper stays closer to the real world, using empirical data and interpreting results in a political-economic setting of risk and uncertainty. Economic growth in developing countries will boost energy demand, increasing the risk of shortages of oil and natural gas half-way through the next century, and of coal towards the year 2100. Furthermore, there is mounting evidence that emissions of CO 2 trigger harmful climate changes. A timely introduction of regulatory taxes will reduce demand for fossil fuels and accelerate the introduction of sustainable technology. The empirical results presented show, moreover, that such taxes may claim a substantial part of the rent on energy extraction for the energy-importing countries. It is argued that optimal control and the avoidance of displacement effects require a tax affecting marginal use, with exceptions to safeguard competitive positions. Exceptions may be scaled down as the jurisdiction is enlarged

  3. Options of electric generation and sustainability; Opciones de generacion electrica y sustentabilidad

    Energy Technology Data Exchange (ETDEWEB)

    Martin del Campo M, C. [UNAM, Facultad de Ingenieria, Laboratorio de Analisis en Ingenieria de Reactores Nucleares, Paseo Cuauhnahuac 8532, Jiutepec, Morelos (Mexico)

    2004-07-01

    In this paper a study on the sustainability of the main electricity generation options is presented. The study is based on a matrix of sustainability indicators developed in Switzerland. A revision of some sustainability studies performed in countries with certain energy diversity and with experience in nuclear power plants operation, is done. Studies, in general, are performed for the power plant life cycle, taking into account economic aspects, fuel prices impact on electricity generation costs, fuel reserves indicators and material consumption. Air emission, waste production and human health impact data are also presented. All the results lead to confirm that nuclear energy has a high degree of sustainability vis a vis other options based on fossil fuels and renewable. Finally some comments are presented in order to highlight the importance that nuclear energy might have in the sustainable development of Mexico. (Author)

  4. Foresight Study on Advanced Conversion Technologies of Fossil Fuels

    International Nuclear Information System (INIS)

    Claver, A.; Cabrera, J. A.

    2000-01-01

    The Observatorio de Prospectiva Tecnologica Industrial (OPTI) is a Foundation supported by the Ministry of Industry and Energy, (MINER) and has as main objective to provide a basic information and knowledge on technology evolution. This information will be accessible to the Administration and to the Companies and can be taking into account in planning and decision making of technology policies. Ciemat is member of OPTI and is the organism in charge of the actions in the Energy sector. CIEMAT has the responsibility on the realisation of the sector studies to get in three years (1998 to 2001) a foresight vision of the critical technology topics. The OPTI integrated strategic plan undertake the analysis of other seven technology sectors, with the same criteria on methodological aspects. Delphi method was used for the realization of the studies. It consisted of a survey conducted in two rounds using a questionnaire to check the experts opinion. The time frame of the studies was defined from 1999 to 2015. The study presented in this document has been performed by CIEMAT in the second stage of the OPTI activities. The main goal behind this study is to identify the advanced clean and efficient technologies for the conversion of fossil fuels to promote in our country. The questionnaire was addressed to 250 experts and the response rate was about the 37%, ratifying the final results. The spanish position and the barriers for the development of each technology has been determined and also the recommended measures to facilitate their performance in the future. This basic information is consider of main interest, taking in account the actual energetic situation with a foreseeable demand increase and fossil fuels dependence. (Author) 17 refs

  5. Nuclear power as a substitute for fossil fuels

    International Nuclear Information System (INIS)

    Bahramabadi, G. A.; Shirzadi, C.

    2008-01-01

    The challenge in energy policy is to reduce CO 2 emissions and the worlds dependence on oil while satisfying a substantially increased demand for energy. Putting aside the still-speculative possibility of sequestering carbon dioxide, this challenge reduces to that of using energy more efficiently and finding substitutes for fossil fuels. Alternatives to fossil fuels fall into two broad categories: Renewable sources. Most of these sources-including hydroelectric power, wind power, direct solar heating, photovoltaic power, and biomass-derive their energy ultimately from the Sun and will not be exhausted during the next billion years. Geothermal energy and tidal energy are also renewable, in this sense, although they do not rely on the sun. However, there is almost an inverse correlation between the extent to which the source b now being used and the size of the potentially trap able resource. Thus, expansion of hydroelectric power (which is substantially used) is constricted by limited sites and environmental objections, whereas wind (for which the resource is large) is as yet less used and thus is not fully proven as a large-scale contributor. Nuclear sources. The two nuclear possibilities are fission and fusion. The latter would be inexhaustible for all practical purposes, but developing an effective fusion system remains an uncertain hope. Fission energy would also have an extremely long time span if breeder reactors arc employed, but with present-day reactors limits on uranium (or thorium) resources could be an eventual problem. At present, fission power faces problems of public acceptance and economic competitiveness. The broad alternatives of renewable energy and nuclear energy can be considered as being in competition, with one or the other to be the dominant choice, or complementary, with both being extensively employed

  6. The regional electricity generation mix in Scotland: A portfolio selection approach incorporating marine technologies

    International Nuclear Information System (INIS)

    Allan, Grant; Eromenko, Igor; McGregor, Peter; Swales, Kim

    2011-01-01

    Standalone levelised cost assessments of electricity supply options miss an important contribution that renewable and non-fossil fuel technologies can make to the electricity portfolio: that of reducing the variability of electricity costs, and their potentially damaging impact upon economic activity. Portfolio theory applications to the electricity generation mix have shown that renewable technologies, their costs being largely uncorrelated with non-renewable technologies, can offer such benefits. We look at the existing Scottish generation mix and examine drivers of changes out to 2020. We assess recent scenarios for the Scottish generation mix in 2020 against mean-variance efficient portfolios of electricity-generating technologies. Each of the scenarios studied implies a portfolio cost of electricity that is between 22% and 38% higher than the portfolio cost of electricity in 2007. These scenarios prove to be mean-variance 'inefficient' in the sense that, for example, lower variance portfolios can be obtained without increasing portfolio costs, typically by expanding the share of renewables. As part of extensive sensitivity analysis, we find that Wave and Tidal technologies can contribute to lower risk electricity portfolios, while not increasing portfolio cost. - Research Highlights: → Portfolio analysis of scenarios for Scotland's electricity generating mix in 2020. → Reveals potential inefficiencies of selecting mixes based on levelised cost alone. → Portfolio risk-reducing contribution of Wave and Tidal technologies assessed.

  7. The regional electricity generation mix in Scotland: A portfolio selection approach incorporating marine technologies

    Energy Technology Data Exchange (ETDEWEB)

    Allan, Grant, E-mail: grant.j.allan@strath.ac.u [Fraser of Allander Institute, Department of Economics, University of Strathclyde, Sir William Duncan Building, 130 Rottenrow, Glasgow G4 0GE (United Kingdom); Eromenko, Igor; McGregor, Peter [Fraser of Allander Institute, Department of Economics, University of Strathclyde, Sir William Duncan Building, 130 Rottenrow, Glasgow G4 0GE (United Kingdom); Swales, Kim [Department of Economics, University of Strathclyde, Sir William Duncan Building, 130 Rottenrow, Glasgow G4 0GE (United Kingdom)

    2011-01-15

    Standalone levelised cost assessments of electricity supply options miss an important contribution that renewable and non-fossil fuel technologies can make to the electricity portfolio: that of reducing the variability of electricity costs, and their potentially damaging impact upon economic activity. Portfolio theory applications to the electricity generation mix have shown that renewable technologies, their costs being largely uncorrelated with non-renewable technologies, can offer such benefits. We look at the existing Scottish generation mix and examine drivers of changes out to 2020. We assess recent scenarios for the Scottish generation mix in 2020 against mean-variance efficient portfolios of electricity-generating technologies. Each of the scenarios studied implies a portfolio cost of electricity that is between 22% and 38% higher than the portfolio cost of electricity in 2007. These scenarios prove to be mean-variance 'inefficient' in the sense that, for example, lower variance portfolios can be obtained without increasing portfolio costs, typically by expanding the share of renewables. As part of extensive sensitivity analysis, we find that Wave and Tidal technologies can contribute to lower risk electricity portfolios, while not increasing portfolio cost. - Research Highlights: {yields} Portfolio analysis of scenarios for Scotland's electricity generating mix in 2020. {yields} Reveals potential inefficiencies of selecting mixes based on levelised cost alone. {yields} Portfolio risk-reducing contribution of Wave and Tidal technologies assessed.

  8. Greenhouse gases in the life cycle of fossil fuels: critical aspects in upstream emissions estimate and their repercussions on the overall life-cycle

    International Nuclear Information System (INIS)

    Zerlia, Tiziana

    2004-01-01

    Combustion accounts for the main contribution to greenhouse-gas (GHG) emissions in electricity generation via fossil fuels. To date, minor attention has been paid to pre combustion emissions associated with fossil fuel upstream segment (production, processing and transportation). This study seeks to provide insight into GHG emissions in the pre combustion step of natural gas and coal. Owing to the size/complexity of the upstream processes and to a lack of detailed site-specific data, this study just outlines some of the key aspects involved. The attention will be focused on the elements that may have a significant impact on fossil fuel life-cycle and no on the evaluation of GHG: the sources, the extent of the pre combustion GHG emissions and the accuracy of their estimate. Some key results are summarized in the following. The first one is that pre combustion GHG, owing of the huge Italy reliance on fossil fuels imports, are mainly emitted abroad. In addition, they are released to the atmosphere mainly as fugitive emissions (methane and carbon dioxide being the predominant gases). Moreover, although pre combustion emissions give a modest contribution to GHG of the whole energy sector, they may account for a consistent part of the aver all fuel life-cycle in power generation even though combustion technologies efficiency plays a key role in emission reduction. Some examples are reported, showing the potential impact of pre combustion emissions on coal and natural gas life-cycle in Italy's electricity generation. The second one is that pre combustion emissions are very site specific as they depend on several factors which may vary greatly between countries and even between individual companies. The sources and the extent of upstream emissions are in fact a function of a least three factor types: (a) technical parameters (design and operating practices, process operating conditions, efficiency of potential emission control/reduction equipment, age and conditions of

  9. The future of airborne sulfur-containing particles in the absence of fossil fuel sulfur dioxide emissions.

    Science.gov (United States)

    Perraud, Véronique; Horne, Jeremy R; Martinez, Andrew S; Kalinowski, Jaroslaw; Meinardi, Simone; Dawson, Matthew L; Wingen, Lisa M; Dabdub, Donald; Blake, Donald R; Gerber, R Benny; Finlayson-Pitts, Barbara J

    2015-11-03

    Sulfuric acid (H2SO4), formed from oxidation of sulfur dioxide (SO2) emitted during fossil fuel combustion, is a major precursor of new airborne particles, which have well-documented detrimental effects on health, air quality, and climate. Another precursor is methanesulfonic acid (MSA), produced simultaneously with SO2 during the atmospheric oxidation of organosulfur compounds (OSCs), such as dimethyl sulfide. In the present work, a multidisciplinary approach is used to examine how contributions of H2SO4 and MSA to particle formation will change in a large coastal urban area as anthropogenic fossil fuel emissions of SO2 decline. The 3-dimensional University of California Irvine-California Institute of Technology airshed model is used to compare atmospheric concentrations of gas phase MSA, H2SO4, and SO2 under current emissions of fossil fuel-associated SO2 and a best-case futuristic scenario with zero fossil fuel sulfur emissions. Model additions include results from (i) quantum chemical calculations that clarify the previously uncertain gas phase mechanism of formation of MSA and (ii) a combination of published and experimental estimates of OSC emissions, such as those from marine, agricultural, and urban processes, which include pet waste and human breath. Results show that in the zero anthropogenic SO2 emissions case, particle formation potential from H2SO4 will drop by about two orders of magnitude compared with the current situation. However, particles will continue to be generated from the oxidation of natural and anthropogenic sources of OSCs, with contributions from MSA and H2SO4 of a similar order of magnitude. This could be particularly important in agricultural areas where there are significant sources of OSCs.

  10. The Impact of the EU Emissions Trading System on CO{sub 2} Intensity in Electricity Generation

    Energy Technology Data Exchange (ETDEWEB)

    Widerberg, Anna (Dept. of Economics, Goeteborgs Univ., Goeteborg (Sweden)); Wraake, Markus (Swedish Environmental Research Institute Ltd., Stockholm (Sweden)). e-mail: markus.wrake@ivl.se

    2009-07-15

    Prior to the launch of the EU Emissions Trading System (EU ETS) in 2005, the electricity sector was widely proclaimed to have more low-cost emission abatement opportunities than other sectors. If this were true, effects of the EU ETS on carbon dioxide (CO{sub 2}) emissions would likely be visible in the electricity sector. Our study looks at the effect of the price of emission allowances (EUA) on CO{sub 2} emissions from Swedish electricity generation, using an econometric time series analysis for the period 2004-2008. We control for effects of other input prices and hydropower reservoir levels. Our results do not indicate any link between the price of EUA and the CO{sub 2} emissions of Swedish electricity production. A number of reasons may explain this result and we conclude that other determinants of fossil fuel use in Swedish electricity generation probably diminished the effects of the EU ETS

  11. Environmental costs resulting from the use of hard coal to electricity generation in Poland

    Science.gov (United States)

    Stala-Szlugaj, Katarzyna; Grudziński, Zbigniew

    2017-10-01

    In the world's fuel mix used for generating electricity, the most common fossil fuel is coal. In the EU, coal combustion and electricity generation entail the need to purchase emission allowances (EUA) whose purchase costs affect the costs of electricity generation significantly. The research described in the article shows how current market conditions shape the profitability of generating electricity from coal and how Clean Dark Spread (CDS) changes as a function of changes in energy and coal prices at the assumed levels of emission and prices of EUA allowances. The article compares the results of CDS calculations in two variants. Areas have been highlighted where prices of both coal and EUA allowances cause CDS to assume values at which the prices of generated electricity do not cover the costs of fuel (i) and CO2 emission allowances, cover all costs (ii), or constitute positive prices (iii), but still do not cover all fixed costs. With higher power plant efficiency, CO2 emissions are lower (0.722 t/MWh). The costs of purchasing fuel required to generate 1 MWh of electricity are also lower. In such case—even with relatively high prices of coal—a power plant can achieve profitability of electricity generation.

  12. Environmental costs resulting from the use of hard coal to electricity generation in Poland

    Directory of Open Access Journals (Sweden)

    Stala-Szlugaj Katarzyna

    2017-01-01

    Full Text Available In the world's fuel mix used for generating electricity, the most common fossil fuel is coal. In the EU, coal combustion and electricity generation entail the need to purchase emission allowances (EUA whose purchase costs affect the costs of electricity generation significantly. The research described in the article shows how current market conditions shape the profitability of generating electricity from coal and how Clean Dark Spread (CDS changes as a function of changes in energy and coal prices at the assumed levels of emission and prices of EUA allowances. The article compares the results of CDS calculations in two variants. Areas have been highlighted where prices of both coal and EUA allowances cause CDS to assume values at which the prices of generated electricity do not cover the costs of fuel (i and CO2 emission allowances, cover all costs (ii, or constitute positive prices (iii, but still do not cover all fixed costs. With higher power plant efficiency, CO2 emissions are lower (0.722 t/MWh. The costs of purchasing fuel required to generate 1 MWh of electricity are also lower. In such case—even with relatively high prices of coal—a power plant can achieve profitability of electricity generation.

  13. Forecasting production of fossil fuel sources in Turkey using a comparative regression and ARIMA model

    International Nuclear Information System (INIS)

    Ediger, Volkan S.; Akar, Sertac; Ugurlu, Berkin

    2006-01-01

    This study aims at forecasting the most possible curve for domestic fossil fuel production of Turkey to help policy makers to develop policy implications for rapidly growing dependency problem on imported fossil fuels. The fossil fuel dependency problem is international in scope and context and Turkey is a typical example for emerging energy markets of the developing world. We developed a decision support system for forecasting fossil fuel production by applying a regression, ARIMA and SARIMA method to the historical data from 1950 to 2003 in a comparative manner. The method integrates each model by using some decision parameters related to goodness-of-fit and confidence interval, behavior of the curve, and reserves. Different forecasting models are proposed for different fossil fuel types. The best result is obtained for oil since the reserve classifications used it is much better defined them for the others. Our findings show that the fossil fuel production peak has already been reached; indicating the total fossil fuel production of the country will diminish and theoretically will end in 2038. However, production is expected to end in 2019 for hard coal, in 2024 for natural gas, in 2029 for oil and 2031 for asphaltite. The gap between the fossil fuel consumption and production is growing enormously and it reaches in 2030 to approximately twice of what it is in 2000

  14. Comparing the social costs of biofuels and fossil fuels: A case study of Vietnam

    NARCIS (Netherlands)

    Thanh, le L.; Ierland, van E.C.; Zhu, X.; Wesseler, J.H.H.; Ngo, G.

    2013-01-01

    Biofuel substitution for fossil fuels has been recommended in the literature and promoted in many countries; however, there are concerns about its economic viability. In this paper we focus on the cost-effectiveness of fuels, i.e., we compare the social costs of biofuels and fossil fuels for a

  15. Fossil Fuels. A Supplement to the "Science 100, 101" Curriculum Guide. Curriculum Support Series.

    Science.gov (United States)

    Soprovich, William, Comp.

    When the fossil fuels unit was first designed for Science 101 (the currently approved provincial guide for grade 10 science in Manitoba), Canadian support materials were very limited. Since students are asked to interpret data concerning energy consumption and sources for certain fossil fuels, the need for appropriate Canadian data became obvious.…

  16. Renewable and nuclear sources of energy reduce the share of fossil fuels

    International Nuclear Information System (INIS)

    Koprda, V.

    2009-01-01

    In this paper author presents a statistical data use of nuclear energy, renewable sources and fossil fuels in the share of energy production in the Slovak Republic. It is stated that use of nuclear energy and renewable sources reduce the share of fossil fuels.

  17. Renewable and nuclear sources of energy decreases of share of fossil fuels

    International Nuclear Information System (INIS)

    Koprda, V.

    2009-01-01

    In this paper author presents a statistical data use of nuclear energy, renewable sources and fossil fuels in the share of energy production in the Slovak Republic. It is stated that use of nuclear energy and renewable sources decreases of share of fossil fuels.

  18. An integrated model for long-term power generation planning toward future smart electricity systems

    International Nuclear Information System (INIS)

    Zhang, Qi; Mclellan, Benjamin C.; Tezuka, Tetsuo; Ishihara, Keiichi N.

    2013-01-01

    Highlights: • An integrated model for planning future smart electricity systems was developed. • The model consists of an optimization model and an hour-by-hour simulation model. • The model was applied to Tokyo area, Japan in light of the Fukushima Accident. • Paths to best generation mixes of smart electricity systems were obtained. • Detailed hourly operation patterns in smart electricity systems were obtained. - Abstract: In the present study, an integrated planning model was developed to find economically/environmentally optimized paths toward future smart electricity systems with high level penetration of intermittent renewable energy and new controllable electric devices at the supply and demand sides respectively for regional scale. The integrated model is used to (i) plan the best power generation and capacity mixes to meet future electricity demand subject to various constraints using an optimization model; (ii) obtain detailed operation patterns of power plants and new controllable electric devices using an hour-by-hour simulation model based on the obtained optimized power generation mix. As a case study, the model was applied to power generation planning in the Tokyo area, Japan, out to 2030 in light of the Fukushima Accident. The paths toward best generation mixes of smart electricity systems in 2030 based on fossil fuel, hydro power, nuclear and renewable energy were obtained and the feasibility of the integrated model was proven

  19. Emerging technologies in electricity generation : an energy market assessment

    International Nuclear Information System (INIS)

    2006-03-01

    Canada's National Energy Board (NEB) monitors the supply of electricity as well as its demand in both domestic and export markets. It monitors the main drivers affecting current trends in generation, demand, prices, infrastructure additions, and inter-regional and international trade. This document presented an assessment of renewable and other emerging technologies that are considered to have significant promise and increased application in Canada over the longer term. It provided comprehensive information on the status and prospects for these technologies, related issues and regional perspectives. Alternative and renewable resources and demand management are becoming more important in addressing air quality issues and supply adequacy. In preparation of this report, staff at the NEB participated in a series of informal meetings with electric utilities, independent power producers, provincial energy regulators, power system operators and those engaged in technology development. The report involved on-site information gathering at wind farms, small hydro facilities, biomass, solar and geothermal operations and other facilities associated with emerging energy technologies such as fuel cells and ocean energy. Clean coal technologies that refer to methods by which emissions from coal-fired generation can be reduced were also evaluated. It was noted that the prospects for emerging technologies vary among the provinces and territories depending on regional resources, provincial government policies and strategies regarding fuel preferences. It was noted that currently in Canada, only 3 per cent of the installed generating capacity consists of emerging technologies. This low penetration is due to the low cost of electricity derived from conventional sources and to the structure of the industry in which large publicly owned utilities have historically opted for large central generating stations. It was suggested that the large increase in fossil fuel prices, public concern

  20. External costs of nuclear-generated electricity

    International Nuclear Information System (INIS)

    Rotaru, I.; Glodeanu, F.; Popescu, D.; Andrei, V.

    2004-01-01

    in market prices, such as security of supply, cost stability and broad economic impacts on employment and balance of trade. If such externalities would be internalized, the effect would be positive for nuclear energy in Romania. In conclusion, like other energy sources, nuclear energy has risks and benefits that need to be fully recognized and assessed to evaluate its external costs. Both internalized (direct) costs and externalities vary from country to country, and from technology to technology. For fossil fuels and biomass, external costs may be of the same order of magnitude as direct cost. Nuclear electricity, solar photovoltaic and wind power have external costs at least one order of magnitude lower than the direct cost. Beyond the competitive generation costs of existing nuclear power plants in most markets, benefits of nuclear power, that are not reflected currently in prices, include: security of supply, cost stability and the quasi absence of atmospheric emissions of greenhouse gases, other pollutant gases and particulates. The capital and operating costs of nuclear power plants and fuel cycle facilities already internalize a major portion of the potential external costs, and these are reflected in the prices paid by consumers of nuclear-generated electricity. The internalization of external costs for all electricity generating technologies will help nuclear energy to be more competitive. (authors)

  1. Fuel price and technological uncertainty in a real options model for electricity planning

    International Nuclear Information System (INIS)

    Fuss, Sabine; Szolgayova, Jana

    2010-01-01

    Electricity generation is an important source of total CO 2 emissions, which in turn have been found to relate to an acceleration of global warming. Given that many OECD countries have to replace substantial portions of their electricity-generating capacity over the next 10-20 years, investment decisions today will determine the CO 2 -intensity of the future energy mix. But by what type of power plants will old (mostly fossil-fuel-fired) capacity be replaced? Given that modern, less carbon-intensive technologies are still expensive but can be expected to undergo improvements due to technical change in the near future, they may become more attractive, especially if fossil fuel price volatility makes traditional technologies more risky. At the same time, technological progress is an inherently uncertain process itself. In this paper, we use a real options model with stochastic technical change and stochastic fossil fuel prices in order to investigate their impact on replacement investment decisions in the electricity sector. We find that the uncertainty associated with the technological progress of renewable energy technologies leads to a postponement of investment. Even the simultaneous inclusion of stochastic fossil fuel prices in the same model does not make renewable energy competitive compared to fossil-fuel-fired technology in the short run based on the data used. This implies that policymakers have to intervene if renewable energy is supposed to get diffused more quickly. Otherwise, old fossil-fuel-fired equipment will be refurbished or replaced by fossil-fuel-fired capacity again, which enforces the lock-in of the current system into unsustainable electricity generation. (author)

  2. Developing an optimal electricity generation mix for the UK 2050 future

    International Nuclear Information System (INIS)

    Sithole, H.; Cockerill, T.T.; Hughes, K.J.; Ingham, D.B.; Ma, L.; Porter, R.T.J.; Pourkashanian, M.

    2016-01-01

    The UK electricity sector is undergoing a transition driven by domestic and regional climate change and environmental policies. Aging electricity generating infrastructure is set to affect capacity margins after 2015. These developments, coupled with the increased proportion of inflexible and variable generation technologies will impact on the security of electricity supply. Investment in low-carbon technologies is central to the UK meeting its energy policy objectives. The complexity of these challenges over the future development of the UK electricity generation sector has motivated this study which aims to develop a policy-informed optimal electricity generation scenario to assess the sector's transition to 2050. The study analyses the level of deployment of electricity generating technologies in line with the 80% by 2050 emission target. This is achieved by using an excel-based “Energy Optimisation Calculator” which captures the interaction of various inputs to produce a least-cost generation mix. The key results focus on the least-cost electricity generation portfolio, emission intensity, and total investment required to assemble a sustainable electricity generation mix. A carbon neutral electricity sector is feasible if low-carbon technologies are deployed on a large scale. This requires a robust policy framework that supports the development and deployment of mature and emerging technologies. - Highlights: • Electricity generation decarbonised in 2030 and nearly carbon neutral in 2050. • Nuclear, CCS and offshore wind are central in decarbonising electricity generation. • Uncertainty over future fuel and investment cost has no impact on decarbonisation. • Unabated fossil fuel generation is limited unless with Carbon Capture and Storage. • Decarbonising the electricity generation could cost about £213.4 billion by 2030.

  3. Generation of electrical power

    International Nuclear Information System (INIS)

    Hursen, T.F.; Kolenik, S.A.; Purdy, D.L.

    1976-01-01

    A heat-to-electricity converter is disclosed which includes a radioactive heat source and a thermoelectric element of relatively short overall length capable of delivering a low voltage of the order of a few tenths of a volt. Such a thermoelectric element operates at a higher efficiency than longer higher-voltage elements; for example, elements producing 6 volts. In the generation of required power, the thermoelectric element drives a solid-state converter which is controlled by input current rather than input voltage and operates efficiently for a high signal-plus-noise to signal ratio of current. The solid-state converter has the voltage gain necessary to deliver the required voltage at the low input of the thermoelectric element

  4. Electric Power monthly, November 1995 with data for August 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-15

    This report presents monthly electricity statistics, with the purpose of providing energy decisionmakers with accurate, timely information that may be used in forming various perspectives on electric issues that lie ahead. EIA collected the information in this report to fulfill its data collection and dissemination responsibilities; the information are from six data sources: forms EIA-759, FERC Form 423, EIA-826, EIA-861, EIA-860, and Form OE-417R. An article on reclicensing and environmental issues affecting hydropower is included. Then the statistics are presented in: US electric power at a glance, utility net generation, utility consumption of fossil fuels, fossil-fuel stocks at utilities, fossil fuel receipts and costs, utility sales/revenue/average revenue per kWh, and monthly plant aggregates. Finally, nonutility power producer statistics, bibliography, technical notes, and a glossary are presented.

  5. The regional electricity generation mix in Scotland. A portfolio selection approach incorporating marine technologies

    Energy Technology Data Exchange (ETDEWEB)

    Allan, Grant; Eromenko, Igor; McGregor, Peter [Fraser of Allander Institute, Department of Economics, University of Strathclyde, Sir William Duncan Building, 130 Rottenrow, Glasgow G4 0GE (United Kingdom); Swales, Kim [Department of Economics, University of Strathclyde, Sir William Duncan Building, 130 Rottenrow, Glasgow G4 0GE (United Kingdom)

    2011-01-15

    Standalone levelised cost assessments of electricity supply options miss an important contribution that renewable and non-fossil fuel technologies can make to the electricity portfolio: that of reducing the variability of electricity costs, and their potentially damaging impact upon economic activity. Portfolio theory applications to the electricity generation mix have shown that renewable technologies, their costs being largely uncorrelated with non-renewable technologies, can offer such benefits. We look at the existing Scottish generation mix and examine drivers of changes out to 2020. We assess recent scenarios for the Scottish generation mix in 2020 against mean-variance efficient portfolios of electricity-generating technologies. Each of the scenarios studied implies a portfolio cost of electricity that is between 22% and 38% higher than the portfolio cost of electricity in 2007. These scenarios prove to be mean-variance 'inefficient' in the sense that, for example, lower variance portfolios can be obtained without increasing portfolio costs, typically by expanding the share of renewables. As part of extensive sensitivity analysis, we find that Wave and Tidal technologies can contribute to lower risk electricity portfolios, while not increasing portfolio cost. (author)

  6. External costs from electricity generation of China up to 2030 in energy and abatement scenarios

    International Nuclear Information System (INIS)

    Zhang, Qingyu; Weili, Tian; Yumei, Wei; Yingxu, Chen

    2007-01-01

    This paper presents estimated external costs of electricity generation in China under different scenarios of long-term energy and environmental policies. Long-range Energy Alternatives Planning (LEAP) software is used to develop a simple model of electricity demand and to estimate gross electricity generation in China up to 2030 under these scenarios. Because external costs for unit of electricity from fossil fuel will vary in different government regulation periods, airborne pollutant external costs of SO 2 , NO x , PM 10 , and CO 2 from fired power plants are then estimated based on emission inventories and environmental cost for unit of pollutants, while external costs of non-fossil power generation are evaluated with external cost for unit of electricity. The developed model is run to study the impact of different energy efficiency and environmental abatement policy initiatives that would reduce total energy requirement and also reduce external costs of electricity generation. It is shown that external costs of electricity generation may reduce 24-55% with three energy policies scenarios and may further reduce by 20.9-26.7% with two environmental policies scenarios. The total reduction of external costs may reach 58.2%. (author)

  7. Magnetohydrodynamic generators in power generation (a bibliography with abstracts). Report for 1964--Jun 1976

    International Nuclear Information System (INIS)

    Grooms, D.W.

    1976-06-01

    The results of Government-sponsored research on the use of magnetohydrodynamic generators in electric power production are presented. The report includes research on performance, costs, efficiency, and design of MHD generators and their use in fusion and fission reactors, and fossil fueled plants. (This updated bibliography contains 120 abstracts, 25 of which are new entries to the previous edition.)

  8. Identifying the European fossil fuel plumes in the atmosphere over the Northeast Atlantic Region through isotopic observations and numerical modelling

    DEFF Research Database (Denmark)

    Geels, C.; Christensen, J.H.; Hansen, A.W.

    2006-01-01

    Atmospheric transport, C-14. fossil fuel CO_2, numerical modeling, the north East Atlantic Region Udgivelsesdato: 18 August......Atmospheric transport, C-14. fossil fuel CO_2, numerical modeling, the north East Atlantic Region Udgivelsesdato: 18 August...

  9. Comparison based on energy and exergy analyses of the potential cogeneration efficiencies for fuel cells and other electricity generation devices

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, M A [Ryerson Polytechnical Inst., Toronto, (CA). Dept. of Mechanical Engineering

    1990-01-01

    Comparisons of the potential cogeneration efficiencies are made, based on energy and exergy analyses, for several devices for electricity generation. The investigation considers several types of fuel cell system (Phosphoric Acid, Alkaline, Solid Polymer Electrolyte, Molten Carbonate and Solid Oxide), and several fossil-fuel and nuclear cogeneration systems based on steam power plants. In the analysis, each system is modelled as a device for which fuel and air enter, and electrical- and thermal-energy products and material and thermal-energy wastes exit. The results for all systems considered indicate that exergy analyses should be used when analysing the cogeneration potential of systems for electricity generation, because they weigh the usefulnesses of heat and electricity on equivalent bases. Energy analyses tend to present overly optimistic views of performance. These findings are particularly significant when large fractions of the heat output from a system are utilized for cogeneration. (author).

  10. Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Owen; Worrell, Ernst

    2005-08-03

    The nation's power system is facing a diverse and broad set of challenges. These range from restructuring and increased competitiveness in power production to the need for additional production and distribution capacity to meet demand growth, and demands for increased quality and reliability of power and power supply. In addition, there are growing concerns about emissions from fossil fuel powered generation units and generators are seeking methods to reduce the CO{sub 2} emission intensity of power generation. Although these challenges may create uncertainty within the financial and electricity supply markets, they also offer the potential to explore new opportunities to support the accelerated deployment of cleaner and cost-effective technologies to meet such challenges. The federal government and various state governments, for example, support the development of a sustainable electricity infrastructure. As part of this policy, there are a variety of programs to support the development of ''cleaner'' technologies such as combined heat and power (CHP, or cogeneration) and renewable energy technologies. Energy from renewable energy sources, such as solar, wind, hydro, and biomass, are considered carbon-neutral energy technologies. The production of renewable energy creates no incremental increase in fossil fuel consumption and CO{sub 2} emissions. Electricity and thermal energy production from all renewable resources, except biomass, produces no incremental increase in air pollutants such as nitrogen oxides, sulfur oxides, particulate matter, and carbon monoxide. There are many more opportunities for the development of cleaner electricity and thermal energy technologies called ''recycled'' energy. A process using fossil fuels to produce an energy service may have residual energy waste streams that may be recycled into useful energy services. Recycled energy methods would capture energy from sources that would otherwise

  11. Solar thermal electricity generation

    Science.gov (United States)

    Gasemagha, Khairy Ramadan

    1993-01-01

    This report presents the results of modeling the thermal performance and economic feasibility of large (utility scale) and small solar thermal power plants for electricity generation. A number of solar concepts for power systems applications have been investigated. Each concept has been analyzed over a range of plant power ratings from 1 MW(sub e) to 300 MW(sub e) and over a range of capacity factors from a no-storage case (capacity factor of about 0.25 to 0.30) up to intermediate load capacity factors in the range of 0.46 to 0.60. The solar plant's economic viability is investigated by examining the effect of various parameters on the plant costs (both capital and O & M) and the levelized energy costs (LEC). The cost components are reported in six categories: collectors, energy transport, energy storage, energy conversion, balance of plant, and indirect/contingency costs. Concentrator and receiver costs are included in the collector category. Thermal and electric energy transport costs are included in the energy transport category. Costs for the thermal or electric storage are included in the energy storage category; energy conversion costs are included in the energy conversion category. The balance of plant cost category comprises the structures, land, service facilities, power conditioning, instrumentation and controls, and spare part costs. The indirect/contingency category consists of the indirect construction and the contingency costs. The concepts included in the study are (1) molten salt cavity central receiver with salt storage (PFCR/R-C-Salt); (2) molten salt external central receiver with salt storage (PFCR/R-E-Salt); (3) sodium external central receiver with sodium storage (PFCR/RE-Na); (4) sodium external central receiver with salt storage (PFCR/R-E-Na/Salt); (5) water/steam external central receiver with oil/rock storage (PFCR/R-E-W/S); (6) parabolic dish with stirling engine conversion and lead acid battery storage (PFDR/SLAB); (7) parabolic dish

  12. Monthly, global emissions of carbon dioxide from fossil fuel consumption

    Energy Technology Data Exchange (ETDEWEB)

    Andres, R. J.; Marland, G.; Boden, T. A. (Environmental Sciences Div., Oak Ridge National Laboratory, Oak Ridge, TN (United States)), e-mail: andresrj@ornl.gov; Gregg, J. S. (Risoe DTU National Laboratory for Sustainable Energy, Roskilde (Denmark)); Losey, L. (Dept. of Space Studies, Univ. of North Dakota, Grand Forks, ND (United States))

    2011-07-15

    This paper examines available data, develops a strategy and presents a monthly, global time series of fossil-fuel carbon dioxide emissions for the years 1950-2006. This monthly time series was constructed from detailed study of monthly data from the 21 countries that account for approximately 80% of global total emissions. These data were then used in a Monte Carlo approach to proxy for all remaining countries. The proportional-proxy methodology estimates by fuel group the fraction of annual emissions emitted in each country and month. Emissions from solid, liquid and gas fuels are explicitly modelled by the proportional-proxy method. The primary conclusion from this study is the global monthly time series is statistically significantly different from a uniform distribution throughout the year. Uncertainty analysis of the data presented show that the proportional-proxy method used faithfully reproduces monthly patterns in the data and the global monthly pattern of emissions is relatively insensitive to the exact proxy assignments used. The data and results presented here should lead to a better understanding of global and regional carbon cycles, especially when the mass data are combined with the stable carbon isotope data in atmospheric transport models

  13. Depletion of fossil fuels and anthropogenic climate change—A review

    International Nuclear Information System (INIS)

    Höök, Mikael; Tang, Xu

    2013-01-01

    Future scenarios with significant anthropogenic climate change also display large increases in world production of fossil fuels, the principal CO 2 emission source. Meanwhile, fossil fuel depletion has also been identified as a future challenge. This chapter reviews the connection between these two issues and concludes that limits to availability of fossil fuels will set a limit for mankind's ability to affect the climate. However, this limit is unclear as various studies have reached quite different conclusions regarding future atmospheric CO 2 concentrations caused by fossil fuel limitations. It is concluded that the current set of emission scenarios used by the IPCC and others is perforated by optimistic expectations on future fossil fuel production that are improbable or even unrealistic. The current situation, where climate models largely rely on emission scenarios detached from the reality of supply and its inherent problems are problematic. In fact, it may even mislead planners and politicians into making decisions that mitigate one problem but make the other one worse. It is important to understand that the fossil energy problem and the anthropogenic climate change problem are tightly connected and need to be treated as two interwoven challenges necessitating a holistic solution. - Highlights: ► Review of the development of emission scenarios. ► Survey of future fossil fuel trajectories used by the IPCC emission scenarios. ► Discussions on energy transitions in the light of oil depletion. ► Review of earlier studies of future climate change and fossil fuel limitations.

  14. Gas turbine electric generator

    International Nuclear Information System (INIS)

    Nemoto, Masaaki; Yuhara, Tetsuo.

    1993-01-01

    When troubles are caused to a boundary of a gas turbine electric generator, there is a danger that water as an operation medium for secondary circuits leaks to primary circuits, to stop a plant and the plant itself can not resume. Then in the present invention, helium gases are used as the operation medium not only for the primary circuits but also for the secondary circuits, to provide so-called a direct cycle gas turbine system. Further, the operation media of the primary and secondary circuits are recycled by a compressor driven by a primary circuit gas turbine, and the turbine/compressor is supported by helium gas bearings. Then, problems of leakage of oil and water from the bearings or the secondary circuits can be solved, further, the cooling device in the secondary circuit is constituted as a triple-walled tube structure by way of helium gas, to prevent direct leakage of coolants into the reactor core even if cracks are formed to pipes. (N.H.)

  15. The Fossil Fuel Divestment Movement: An Ethical Dilemma for the Geosciences?

    Science.gov (United States)

    Greene, C. H.; Kammen, D. M.

    2014-12-01

    For over 200 years, fossil fuels have been the basis for an industrial revolution that has delivered a level of prosperity to modern society unimaginable during the previous 5000 years of human civilization. However, society's dependence on fossil fuels is coming to an end for two reasons. The first reason is because our fossil fuel reserves are running out, oil in this century, natural gas during the next century, and coal a few centuries later. The second reason is because fossil fuels are having a devastating impact on the habitability of our planet, disrupting our climate system and acidifying our oceans. So the question is not whether we will discontinue using fossil fuels, but rather whether we will stop using them before they do irreparable damage to the Earth's life-support systems. Within our geoscience community, climate scientists have determined that a majority of existing fossil fuel reserves must remain unburned if dangerous climate change and ocean acidification are to be avoided. In contrast, Exxon-Mobil, Shell, and other members of the fossil fuel industry are pursuing a business model that assumes all of their reserves will be burned and will not become stranded assets. Since the geosciences have had a long and mutually beneficial relationship with the fossil fuel industry, this inherent conflict between climate science and industrial interests presents an ethical dilemma for many geoscientists. This conflict is further heightened by the fossil fuel divestment movement, which is underway at over 400 college and university campuses around the world. This presentation will explore some of the ethical and financial issues being raised by the divestment movement from a geoscientist's perspective.

  16. A Monte Carlo based decision-support tool for assessing generation portfolios in future carbon constrained electricity industries

    International Nuclear Information System (INIS)

    Vithayasrichareon, Peerapat; MacGill, Iain F.

    2012-01-01

    This paper presents a novel decision-support tool for assessing future generation portfolios in an increasingly uncertain electricity industry. The tool combines optimal generation mix concepts with Monte Carlo simulation and portfolio analysis techniques to determine expected overall industry costs, associated cost uncertainty, and expected CO 2 emissions for different generation portfolio mixes. The tool can incorporate complex and correlated probability distributions for estimated future fossil-fuel costs, carbon prices, plant investment costs, and demand, including price elasticity impacts. The intent of this tool is to facilitate risk-weighted generation investment and associated policy decision-making given uncertainties facing the electricity industry. Applications of this tool are demonstrated through a case study of an electricity industry with coal, CCGT, and OCGT facing future uncertainties. Results highlight some significant generation investment challenges, including the impacts of uncertain and correlated carbon and fossil-fuel prices, the role of future demand changes in response to electricity prices, and the impact of construction cost uncertainties on capital intensive generation. The tool can incorporate virtually any type of input probability distribution, and support sophisticated risk assessments of different portfolios, including downside economic risks. It can also assess portfolios against multi-criterion objectives such as greenhouse emissions as well as overall industry costs. - Highlights: ► Present a decision support tool to assist generation investment and policy making under uncertainty. ► Generation portfolios are assessed based on their expected costs, risks, and CO 2 emissions. ► There is tradeoff among expected cost, risks, and CO 2 emissions of generation portfolios. ► Investment challenges include economic impact of uncertainties and the effect of price elasticity. ► CO 2 emissions reduction depends on the mix of

  17. Projected Costs of Generating Electricity - 2015 Edition. Executive Summary

    International Nuclear Information System (INIS)

    2015-01-01

    This joint report by the International Energy Agency (IEA) and the Nuclear Energy Agency (NEA) is the eighth in a series of studies on electricity generating costs. As policy makers work to ensure that the power supply is reliable, secure and affordable, while making it increasingly clean and sustainable in the context of the debate on climate change, it is becoming more crucial that they understand what determines the relative cost of electricity generation using fossil fuel, nuclear or renewable sources of energy. A wide range of fuels and technologies are presented in the report, including natural gas, coal, nuclear, hydro, solar, onshore and offshore wind, biomass and biogas, geothermal, and combined heat and power, drawing on a database from surveys of investment and operating costs that include a larger number of countries than previous editions. The analysis of more than 180 plants, based on data covering 22 countries, reveals several key trends, pointing, for example, to a significant decline in recent years in the cost of renewable generation. The report also reveals that nuclear energy costs remain in line with the cost of other base-load technologies, particularly in markets that value de-carbonisation. Overall, cost drivers of the different generating technologies remain both market-specific and technology-specific. Readers will find a wealth of details and analysis, supported by over 200 figures and tables, underlining this report's value as a tool for decision makers and researchers concerned with energy policies, climate change and the evolution of power sectors around the world. (authors)

  18. Alternative solutions for electricity generation

    International Nuclear Information System (INIS)

    Kuenstle, K.

    1976-01-01

    Ten illustrations - mainly comparitive ones - dealing with the possibilities of an economical energy conversion, in particular electricity generation, in the FRG are explained and commented upon. (UA) [de

  19. Effects of New Fossil Fuel Developments on the Possibilities of Meeting 2C Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Meindertsma, W.; Blok, K.

    2012-12-15

    Recent years have seen an increasing activity in developing new fossil fuel production capacity. This includes unconventional fossil fuels, such as tar sands and shale gas, fossil fuels from remote locations, and fossil fuels with a very large increase in production in the near future. In this report, the impact of such developments on our ability to mitigate climate change is investigated. Our inventory shows that the new fossil fuel developments currently underway consist of 29,400 billion cubic meters of natural gas, 260,000 million barrels of oil and 49,600 million tonnes of coal. The development of these new fossil fuels would result in emissions of 300 billion tonnes of CO2 -equivalent (CO2e) from 2012 until 2050. Until 2050, a 'carbon budget' of 1550 billion tonnes CO2e is still available if we want to of keep global warming below 2C with a 50% probability. For a 75% probability to stay below 2C this budget is only 1050 billion tonnes CO2e. So, the new fossil fuel developments identified in this report consume 20-33% of the remaining carbon budget until 2050. In a scenario where the new fossil fuels are developed, we need to embark on a rapid emission reductions pathway at the latest in 2019 in order to meet the 50% probability carbon budget. Avoiding the development of new fossil fuels will give us until 2025 to start further rapid emission reductions. These calculations are based on the assumption that the maximum emission reduction rate is 4% per year and that the maximum change in emission trend is 0.5 percentage point per year. The starting year for rapid emission reductions depends on the choice of these parameters. A sensitivity analysis shows that, in all cases, refraining from new fossil fuel development allows for a delay of 5 to 8 years before we should embark on a rapid emission reduction pathway. The high investments required for developing new fossil fuels lead to a lock in effect; once developed, these fossil fuels need to be

  20. Climate agreements: Optimal taxation of fossil fuels and the distribution of costs and benefits across countries

    Energy Technology Data Exchange (ETDEWEB)

    Holtsmark, Bjart

    1997-12-31

    This report analyses the response of governments to a climate agreement that commits them to reduce their CO{sub 2} emissions. It develops a formula for optimal taxation of fossil fuels in open economies subject both to an emission constraint and a public budget constraint. The theory captures how national governments` behaviours are sensitive to the size of the benefits from revenue recycling and how these benefits adjust the distribution of abatement costs. The empirical part of the report illustrates the significance of the participating countries` current and potential fossil fuel taxation schemes and their roles in the fossil fuel markets. 23 refs., 11 figs., 2 tabs.

  1. A Comparison of Electricity Generation System Sustainability among G20 Countries

    Directory of Open Access Journals (Sweden)

    Jinchao Li

    2016-12-01

    Full Text Available Planning for electricity generation systems is a very important task and should take environmental and economic factors into account. This paper reviews the existing metrics and methods in evaluating energy sustainability, and we propose a sustainability assessment index system. The input indexes include generation capacity, generation cost, and land use. The output indexes include desirable and undesirable parts. The desirable outputs are total electricity generation and job creation. The undesirable outputs are external supply risk and external costs associated with the environment and health. The super-efficiency data envelopment analysis method is used to calculate the sustainability of electricity generation systems of 23 countries from 2005 to 2014. The three input indexes and three undesirable output indexes are used as the input variables. The two desirable outputs are used as the output variables. The results show that most countries’ electricity generation sustainability values have decreasing trends. In addition, nuclear and hydro generation have positive effects. Solar, wind, and fossil fuel generation have negative effects on sustainability.

  2. Microbial Fuel Cells using Mixed Cultures of Wastewater for Electricity Generation

    International Nuclear Information System (INIS)

    Zain, S.M; Roslani, N.S.; Hashim, R.; Anuar, N.; Suja, F.; Basi, N.E.A.; Anuar, N.; Daud, W.R.W.

    2011-01-01

    Fossil fuels (petroleum, natural gas and coal) are the main resources for generating electricity. However, they have been major contributors to environmental problems. One potential alternative to explore is the use of microbial fuel cells (MFCs), which generate electricity using microorganisms. MFCs uses catalytic reactions activated by microorganisms to convert energy preserved in the chemical bonds between organic molecules into electrical energy. MFC has the ability to generate electricity during the wastewater treatment process while simultaneously treating the pollutants. This study investigated the potential of using different types of mixed cultures (raw sewage, mixed liquor from the aeration tank and return waste activated sludge) from an activated sludge treatment plant in MFCs for electricity generation and pollutant removals (COD and total kjeldahl nitrogen, TKN). The MFC in this study was designed as a dual-chambered system, in which the chambers were separated by a Nafion TM membrane using a mixed culture of wastewater as a bio catalyst. The maximum power density generated using activated sludge was 9.053 mW/ cm 2 , with 26.8 % COD removal and 40 % TKN removal. It is demonstrated that MFC offers great potential to optimize power generation using mixed cultures of wastewater. (author)

  3. Utilization of oil wells for electricity generation: Performance and economics

    International Nuclear Information System (INIS)

    Kharseh, Mohamad; Al-Khawaja, Mohammed; Hassani, Ferri

    2015-01-01

    There is a general agreement that the climate change, which is the most important challenge facing humanity, is anthropogenic and attributed to fossil fuel consumption. Therefore, deploying more renewable energy resources is an urgent issue to be addressed. Geothermal refers to existing heat energy in deep rock and sedimentary basins. Traditionally, geothermal energy has been exploited in places with plentiful hot water at relatively shallow depth. Unfortunately, the high exploration and drilling costs of boreholes is the main barrier to the commerciality of geothermal worldwide. In oil producing countries, such problems can be overcome by utilizing oil or gas wells. The current study presents thermodynamic and economic analyses of a binary geothermal power generation system for commercial electricity generation. Two different source temperatures (100 and 120 °C) and constant sink temperature (29 °C) were considered. The optimal working fluid and optimal design that improve the performance of the plant are determined. For the current costs in Qatar, the economical analysis of 5 MW geothermal plant shows that the levelized cost of electricity for the plant varies from 5.6 to 5.2 ¢/kW. Whereas, the payback period of such plants lies between 5.8 and 4.8 years. - Highlights: • Utilizing oil well makes geothermal plant competitive with other resources. • R32 seems to be the best working fluid. • The levelized cost of electricity for geothermal plant is less than 5.6 ¢/kWh. • The payback time of geothermal plant is less than 6 years.

  4. Prevent the risk of climate change by taxing fossil fuels

    International Nuclear Information System (INIS)

    Martin, Y.

    1992-01-01

    Of all the greenhouse gases, it is emissions of CO 2 which most urgently require reduction. On the one hand, given the very long lifetime of this gas, its emissions are almost irreversible in character. On the other hand, the measures to be taken concern technological choices, and choices in matters of planning and land use, which are not easily reversible either. It would be very costly, later on, to go back on decisions we make in the coming years without taking into account the risk of climate change. We will only be able to stabilize the concentration of CO 2 in the atmosphere if we are able to reduce present emissions by 60 per cent. The challenge to humanity is considerable, since this reduction in emissions has to be achieved despite the forecast doubling of the world's population. We must organize ourselves both to stabilize the world's forests (reforestation in certain regions compensating for the inevitable deforestation elsewhere), and to reduce by 25 per cent the average consumption of fossil fuel per inhabitant. Such a radical reorientation of our habits in the consumption of fossil energy does not seem to me technically unreachable, and it will not cause widespread ruin if we manage to optimize its organization. Preventive work will only be effective if it is made on a planetary scale. It will only be undertaken if we are able to share the burden fairly between the various countries; and it will not be ruinous if we manage to decentralize necessary initiatives, so that the least costly methods are undertaken everywhere from the outset. (author)

  5. PERSPECTIVE: Keeping a closer eye on fossil fuel CO2

    Science.gov (United States)

    Nelson, Peter F.

    2009-12-01

    all have a major influence on progress to an international agreement. It is important that the political challenges are not underestimated. Long-term observers of the negotiations necessary for global agreements (Inman 2009) are pessimistic about the chances for success at COP15, and argue that agreements between smaller groups of countries may be more effective. China and other developing countries clearly expect greater emission cuts by developed nations as a condition for a successful deal (Pan 2009). Conversely, the constraints on US climate policies are considerable, notably those imposed by fears that an international agreement that does not include equitable emission control measures for developing countries like China and India, will compromise the agreement and reduce its effectiveness (Skodvin and Andresen 2009). In this context the need for earlier, and more reliable, information on emissions is a high priority. Myhre and coworkers (Myhre et al 2009) provide an efficient method for calculating global carbon dioxide emissions from fossil fuel combustion by combining industry statistics with data from the Carbon Dioxide Information Analysis Center (CDIAC; http://cdiac.ornl.gov/). Recent analyses of carbon dioxide emission data show a worrying acceleration in emissions, beyond even the most extreme IPCC projections, but are based largely on the CDIAC which gives information about emissions released two to three years before real time (Canadell et al 2007, Raupach et al 2007). The approach used by Myhre et al (2009) uses BP annual statistics of fossil fuel consumption and has a much shorter lag, of the order of six months. Of significant concern is that their analysis of the data also reveals that the recent strong increase in fossil fuel CO2 is largely driven by an increase in emissions from coal, most significantly in China. By contrast, emissions from oil and gas continue to follow longer-term historical trends. Earlier and accurate data on CO2 emissions is

  6. Geothermal electricity generation

    International Nuclear Information System (INIS)

    Eliasson, E.T.

    1991-01-01

    Geothermal conversion, as discussed here, is the conversion of the heat bound within the topmost three kilometres of the upper crust of the earth into useful energy, principally electricity. The characteristics of a geothermal reservoir and its individual technical features are highly site-specific. Applications therefore must be designed to match the specific geothermal reservoir. An estimate of the electric energy potential world-wide made by the Electric Power Research Institute (United States) in 1978 and based on sustaining a continuous 30-year operation is given in the box at the right for comparison purposes only. 8 refs, 5 figs

  7. Carbon dioxide emissions from fossil fuel use: Recent performance and future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Jefferson, Michael

    1998-12-01

    This publication gives an overview and discusses carbon dioxide emissions from fossil fuel use worldwide. Main themes discussed in this connection cover recent performance and future prospects. Some proposals on the reduction of CO{sub 2} emissions are given

  8. Hydrogen movement and the next action: fossil fuels industry and sustainability economics

    International Nuclear Information System (INIS)

    Nejat Veziroglu, T.

    1997-01-01

    Since the hydrogen movement started in 1974, there has been progress in research, development, demonstration and commercialization activities, covering all aspects of the hydrogen energy system. In order to solve the interrelated problems of depletion of fossil fuels and the environmental impact of the combustion products of fossil fuels, it is desirable to speed up the conversion to the hydrogen energy system. Most established industries have joined the hydrogen movement. There is one exception: the fossil fuel industry. A call is made to the fossil fuel industry to join the hydrogen movement. It is also proposed to change the present economic system with a sustainability economics in order to account for environmental damage, recyclability and decommissioning, and thus, ensure a sustainable future. (Author)

  9. Applying Thermodynamics to Fossil Fuels: Heats of Combustion from Elemental Compositions.

    Science.gov (United States)

    Lloyd, William G.; Davenport, Derek A.

    1980-01-01

    Discussed are the calculations of heats of combustions of some selected fossil fuel compounds such as some foreign shale oils and United States coals. Heating values for coal- and petroleum-derived fuel oils are also presented. (HM)

  10. A synthesis of carbon dioxide emissions from fossil-fuel combustion

    DEFF Research Database (Denmark)

    Andres, R.J.; Boden, T.A.; Bréon, F.-M.

    2012-01-01

    This synthesis discusses the emissions of carbon dioxide from fossil-fuel combustion and cement production. While much is known about these emissions, there is still much that is unknown about the details surrounding these emissions. This synthesis explores our knowledge of these emissions in terms......; and the uncertainties associated with these different aspects of the emissions. The magnitude of emissions from the combustion of fossil fuels has been almost continuously increasing with time since fossil fuels were first used by humans. Despite events in some nations specifically designed to reduce emissions......, or which have had emissions reduction as a byproduct of other events, global total emissions continue their general increase with time. Global total fossilfuel carbon dioxide emissions are known to within 10% uncertainty (95% confidence interval). Uncertainty on individual national total fossil-fuel carbon...

  11. Status of fossil fuel reserves; Etat des reserves des combustibles fossiles

    Energy Technology Data Exchange (ETDEWEB)

    Laherrere, J

    2005-07-01

    Reserves represent the sum of past and future productions up to the end of production. In most countries the reserve data of fields are confidential. Therefore, fossil fuel reserves are badly known because the published data are more political than technical and many countries make a confusion between resources and reserves. The cumulated production of fossil fuels represents only between a third and a fifth of the ultimate reserves. The production peak will take place between 2020 and 2050. In the ultimate reserves, which extrapolate the past, the fossil fuels represent three thirds of the overall energy. This document analyses the uncertainties linked with fossil fuel reserves: reliability of published data, modeling of future production, comparison with other energy sources, energy consumption forecasts, reserves/production ratio, exploitation of non-conventional hydrocarbons (tar sands, extra-heavy oils, bituminous shales, coal gas, gas shales, methane in overpressure aquifers, methane hydrates), technology impacts, prices impact, and reserves growth. (J.S.)

  12. ISLSCP II Carbon Dioxide Emissions from Fossil Fuels, Cement, and Gas Flaring

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set contains decadal (1950, 1960, 1970, 1980, 1990 and 1995) estimates of gridded fossil-fuel emissions, expressed in 1,000 metric tons C per...

  13. CMS: CO2 Emissions from Fossil Fuels Combustion, ACES Inventory for Northeastern USA

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset provides estimates of annual and hourly carbon dioxide (CO2) emissions from the combustion of fossil fuels (FF) for 13 states across the Northeastern...

  14. ISLSCP II Carbon Dioxide Emissions from Fossil Fuels, Cement, and Gas Flaring

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains decadal (1950, 1960, 1970, 1980, 1990 and 1995) estimates of gridded fossil-fuel emissions, expressed in 1,000 metric tons C per year per one...

  15. The importance and the policy impacts of post-contractual opportunism and competition in the English and Welsh non-fossil fuel obligation

    International Nuclear Information System (INIS)

    Agnolucci, Paolo

    2007-01-01

    The non-fossil fuel obligation (NFFO), which consisted in a competitive auction for the deployment of renewable electricity, was the main policy for almost a decade in England and Wales. Once also used in Ireland and France, it has recently been abandoned in all countries. Many critics of the NFFO have focused on its inability to develop a national industry and promote a climate of stability among investors. This paper focuses on the incentives faced by developers bidding for a NFFO contract and shows that the low deployment rate under this scheme is likely to have been a predictable outcome of how the policy was structured and implemented rather than an unfortunate accident. The importance of the NFFO goes beyond the lack of an intense deployment of renewable electricity generation observed in the years in which the policy was on place. In fact, the NFFO has contributed to: promoting hostility against wind farms; creating false expectations of a price competitive renewable electricity sector; creating a playing field giving advantages to big players; preventing the creation of a wide renewable lobby coalition and the effective solution of planning constraints encountered by several renewable developers

  16. Process and plant for obtaining producer gas from fossil fuels. Verfahren und Anlage zur Gewinnung von Generatorgas aus fossilen Brennstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1983-12-01

    In a plant for generating producer gas from fossil fuels with relatively high humidity, there is predrying of the wet material in two drying chambers situated above the actual reactor shaft. The drying air required for this purpose is drawn off via blowers and heat exchangers preheated from the area of the combustion zone. The preparation of the crude gases produced first in the process is done by a socalled bypass gas system, i.e. the reintroduction of the crude gases enriched with tar oil and steam and diverting prepared hot gases via an annular pipe from the area of the reduction zone.

  17. CAP--a combined codes, alarms and paging system--effective in nuclear and fossil-fueled power plants

    International Nuclear Information System (INIS)

    Foster, W.M.; Anderson, M.E.

    1981-01-01

    The CAP system now employed in two TVA power generating facilities has proven to be effective in both operational and emergency alerting and voice communications. Alternatives to emergency signalling point to advantages of a distributed amplifier/speaker system providing multi-signal and voice capabilities. Inclusion of a CAP-type system in all nuclear and fossil-fueled power plants is recommended, particularly in view of new NCR emergency alerting guidelines recently published. Outdoor-area warning is also included. Paper No. 80 JPGC 803-7

  18. Fossil fuel subsidies and the new EU Climate and Energy Governance Mechanism

    International Nuclear Information System (INIS)

    Sartor, Oliver; Spencer, Thomas

    2016-07-01

    There is currently no dedicated process to track the extent of fossil fuel subsidies, nor to ensure that Member States phase them out. This situation is inconsistent with the European Union's stated decarbonization and energy efficiency dimensions under the Energy Union. The EU is therefore in need of an alternative process for tracking and ensuring the phase-out of fossil fuel subsidies by the Member States. The new Energy Union governance mechanism presents an opportunity for creating this alternative. Providing the right price signals is essential part of the policy mix that is needed to achieve Europe's climate policy goals. Phasing out fossil fuel subsidies in the EU is an important part of aligning energy prices with the EU's climate and energy goals. Depending on how they are measured, combined fossil fuel subsidies in the EU range from 39 to over euro 200 billion per annum (European Commission, 2014). They therefore constitute a significant source of incoherence between the EU's climate mitigation and fiscal policies for energy. However, there has recently been mixed progress in addressing fossil fuel subsidies in Europe. For instance, under the Europe 2020 Strategy, Member States had committed to begin developing plans for phasing out fossil fuel subsidies by 2020. Progress on implementing these plans was supposed to be monitored under the European Semester. However, the decision was taken to remove the focus on energy and fossil fuel subsidies from the European Semester in 2015. As yet, no new system for governing the phase-out of fossil fuel subsidies has been advanced, leaving the question of fossil fuel subsidy reform in limbo. The advent of the EU's Energy Union project creates an opportunity for putting the phase-out of fossil fuel subsidies back on track in Europe. This could be done by including requirements for national goal setting on specific kinds of fossil fuel subsidies in a dedicated sub-section of the National Climate and Energy Plans

  19. A Pilot Study to Evaluate California's Fossil Fuel CO2 Emissions Using Atmospheric Observations

    Science.gov (United States)

    Graven, H. D.; Fischer, M. L.; Lueker, T.; Guilderson, T.; Brophy, K. J.; Keeling, R. F.; Arnold, T.; Bambha, R.; Callahan, W.; Campbell, J. E.; Cui, X.; Frankenberg, C.; Hsu, Y.; Iraci, L. T.; Jeong, S.; Kim, J.; LaFranchi, B. W.; Lehman, S.; Manning, A.; Michelsen, H. A.; Miller, J. B.; Newman, S.; Paplawsky, B.; Parazoo, N.; Sloop, C.; Walker, S.; Whelan, M.; Wunch, D.

    2016-12-01

    Atmospheric CO2 concentration is influenced by human activities and by natural exchanges. Studies of CO2 fluxes using atmospheric CO2 measurements typically focus on natural exchanges and assume that CO2 emissions by fossil fuel combustion and cement production are well-known from inventory estimates. However, atmospheric observation-based or "top-down" studies could potentially provide independent methods for evaluating fossil fuel CO2 emissions, in support of policies to reduce greenhouse gas emissions and mitigate climate change. Observation-based estimates of fossil fuel-derived CO2 may also improve estimates of biospheric CO2 exchange, which could help to characterize carbon storage and climate change mitigation by terrestrial ecosystems. We have been developing a top-down framework for estimating fossil fuel CO2 emissions in California that uses atmospheric observations and modeling. California is implementing the "Global Warming Solutions Act of 2006" to reduce total greenhouse gas emissions to 1990 levels by 2020, and it has a diverse array of ecosystems that may serve as CO2 sources or sinks. We performed three month-long field campaigns in different seasons in 2014-15 to collect flask samples from a state-wide network of 10 towers. Using measurements of radiocarbon in CO2, we estimate the fossil fuel-derived CO2 present in the flask samples, relative to marine background air observed at coastal sites. Radiocarbon (14C) is not present in fossil fuel-derived CO2 because of radioactive decay over millions of years, so fossil fuel emissions cause a measurable decrease in the 14C/C ratio in atmospheric CO2. We compare the observations of fossil fuel-derived CO2 to simulations based on atmospheric modeling and published fossil fuel flux estimates, and adjust the fossil fuel flux estimates in a statistical inversion that takes account of several uncertainties. We will present the results of the top-down technique to estimate fossil fuel emissions for our field

  20. The roles of countries in the international fossil fuel trade: An emergy and network analysis

    International Nuclear Information System (INIS)

    Zhong, Weiqiong; An, Haizhong; Shen, Lei; Fang, Wei; Gao, Xiangyun; Dong, Di

    2017-01-01

    A better understanding of the roles of countries in the international fossil fuel trade is crucial for trade security and policy optimization. This study aims to provide a new way to quantitatively analyze the roles of countries in the international fossil fuel trade by complex network analysis and Emergy theory. We transform the trade quantity of coal, crude oil and natural gas into emergy and the sum of the three emergies is the emergy of fossil fuel. We build up network models of fossil fuel based on the value of fossil fuel emergy. Then, the top relationships, the central position, the intermediary ability of the countries, and the roles of countries in the trade groups were used to analyze the roles of countries in the international fossil fuel trade network. We choose four countries, the USA, China, Russia and Saudi Arabia, as examples to show the analysis of roles and policy implications. We suggest that the USA and Russia should try to improve their intermediary abilities by diversifying their trade orientations and pay more attention to building up relationships with countries in different communities. China should seek for more tight relationships with other countries to improve its central position, and more pipelines connecting China, Russia, and other Middle Asia countries are needed. As for Saudi Arabia, expanding its industrial chain of crude oil is a better way to deal with the more fierce competition in the market. - Highlights: • Trade amounts of coal, crude oil and natural gas are transformed into Emergy. • Integrated complex network model of international fossil fuel trade is constructed. • Geographical factor is reinforced due to the restriction of transportation cost. • The old pattern is breaking and the new pattern is forming. • Different countries play different roles in international fossil fuel trade network.

  1. Reforming fossil fuel prices in India: Dilemma of a developing economy

    International Nuclear Information System (INIS)

    Anand, Mukesh Kumar

    2016-01-01

    Over the period between 1990–1 and 2012–3, fossil fuel use on farms has risen and its indirect use in farming, particularly for non-energy purposes, is also growing. Consequently, both energy intensity and fossil fuel intensity are rising for Indian agriculture. But, these are declining for the aggregate Indian economy. Thus, revision of fossil fuel prices acquires greater significance for Indian agriculture than for rest of the economy. There are significant differences across crops. The crop-level analysis is supplemented by an alternative approach that utilizes a three-sector input–output (I–O) model for the Indian economy representing farming, fossil fuels, and rest of economy. Fossil fuels sector is assessed to portray, in general, strong forward linkages. The increase in total cost of farming, for a given change in fossil fuel prices, is estimated as a multiple of increase in direct input cost of fossil fuels in farming. From the three-sector aggregated economy this multiple was estimated at 3.99 for 1998–9. But it grew to 6.7 in 2007–8. The findings have stronger ramifications than commonly recognized, for inflation and cost of implementing the policy on food security. - Highlights: •Fossil fuels’ contribution in primary energy supply has risen from 55 to 75 per cent. •Energy intensity halved for aggregate GDP, but doubled for agricultural GDP. •Impact of fossil fuel price increase on farming costs mimics a widening spiral. •Total cost of farming may increase 6.7 times the increase in direct fuel input cost.

  2. A revisit of fossil-fuel subsidies in China: Challenges and opportunities for energy price reform

    International Nuclear Information System (INIS)

    Lin, Boqiang; Ouyang, Xiaoling

    2014-01-01

    Highlights: • We measure fossil-fuel subsidies and effects of subsidy removal in a systematic fashion during 2006–2010. • Fossil-fuel subsidies scale of China was CNY 881.94 billion in 2010, equivalent to 2.59% of GDP. • Impacts of removing subsidies on macroeconomic variables are examined by the CGE model. • Future policy should focus on designing transparent, targeted and efficient energy subsidies. - Abstract: Fossil-fuel subsidies contribute to the extensive growth of energy demand and the related carbon dioxide emissions in China. However, the process of energy price reform is slow, even though China faces increasing problems of energy scarcity and environmental deterioration. This paper focuses on analyzing fossil fuel subsidies in China by estimating subsidies scale and the implications for future reform. We begin by measuring fossil-fuel subsidies and the effects of subsidy removal in a systematic fashion during 2006–2010 using a price-gap approach. Results indicate that the oil price reform in 2009 significantly reduced China’s fossil-fuel subsidies and modified the subsidy structure. Fossil-fuel subsidies scale in China was 881.94 billion CNY in 2010, which was lower than the amount in 2006, equivalent to 2.59% of the GDP. The macro-economic impacts of removing fossil-fuel subsidies are then evaluated by the computable general equilibrium (CGE) model. Results demonstrate that the economic growth and employment will be negatively affected as well as energy demand, carbon dioxide and sulfur dioxide emissions. Finally, policy implications are suggested: first, risks of government pricing of energy are far from negligible; second, an acceptable macroeconomic impact is a criterion for energy price reform in China; third, the future energy policy should focus on designing transparent, targeted and efficient energy subsidies

  3. Upward revision of global fossil fuel methane emissions based on isotope database.

    Science.gov (United States)

    Schwietzke, Stefan; Sherwood, Owen A; Bruhwiler, Lori M P; Miller, John B; Etiope, Giuseppe; Dlugokencky, Edward J; Michel, Sylvia Englund; Arling, Victoria A; Vaughn, Bruce H; White, James W C; Tans, Pieter P

    2016-10-06

    Methane has the second-largest global radiative forcing impact of anthropogenic greenhouse gases after carbon dioxide, but our understanding of the global atmospheric methane budget is incomplete. The global fossil fuel industry (production and usage of natural gas, oil and coal) is thought to contribute 15 to 22 per cent of methane emissions to the total atmospheric methane budget. However, questions remain regarding methane emission trends as a result of fossil fuel industrial activity and the contribution to total methane emissions of sources from the fossil fuel industry and from natural geological seepage, which are often co-located. Here we re-evaluate the global methane budget and the contribution of the fossil fuel industry to methane emissions based on long-term global methane and methane carbon isotope records. We compile the largest isotopic methane source signature database so far, including fossil fuel, microbial and biomass-burning methane emission sources. We find that total fossil fuel methane emissions (fossil fuel industry plus natural geological seepage) are not increasing over time, but are 60 to 110 per cent greater than current estimates owing to large revisions in isotope source signatures. We show that this is consistent with the observed global latitudinal methane gradient. After accounting for natural geological methane seepage, we find that methane emissions from natural gas, oil and coal production and their usage are 20 to 60 per cent greater than inventories. Our findings imply a greater potential for the fossil fuel industry to mitigate anthropogenic climate forcing, but we also find that methane emissions from natural gas as a fraction of production have declined from approximately 8 per cent to approximately 2 per cent over the past three decades.

  4. Method for protecting an electric generator

    Science.gov (United States)

    Kuehnle, Barry W.; Roberts, Jeffrey B.; Folkers, Ralph W.

    2008-11-18

    A method for protecting an electrical generator which includes providing an electrical generator which is normally synchronously operated with an electrical power grid; providing a synchronizing signal from the electrical generator; establishing a reference signal; and electrically isolating the electrical generator from the electrical power grid if the synchronizing signal is not in phase with the reference signal.

  5. A synthesis of carbon dioxide emissions from fossil-fuel combustion

    Directory of Open Access Journals (Sweden)

    R. J. Andres

    2012-05-01

    Full Text Available This synthesis discusses the emissions of carbon dioxide from fossil-fuel combustion and cement production. While much is known about these emissions, there is still much that is unknown about the details surrounding these emissions. This synthesis explores our knowledge of these emissions in terms of why there is concern about them; how they are calculated; the major global efforts on inventorying them; their global, regional, and national totals at different spatial and temporal scales; how they are distributed on global grids (i.e., maps; how they are transported in models; and the uncertainties associated with these different aspects of the emissions. The magnitude of emissions from the combustion of fossil fuels has been almost continuously increasing with time since fossil fuels were first used by humans. Despite events in some nations specifically designed to reduce emissions, or which have had emissions reduction as a byproduct of other events, global total emissions continue their general increase with time. Global total fossil-fuel carbon dioxide emissions are known to within 10 % uncertainty (95 % confidence interval. Uncertainty on individual national total fossil-fuel carbon dioxide emissions range from a few percent to more than 50 %. This manuscript concludes that carbon dioxide emissions from fossil-fuel combustion continue to increase with time and that while much is known about the overall characteristics of these emissions, much is still to be learned about the detailed characteristics of these emissions.

  6. Material Flow Analysis of Fossil Fuels in China during 2000–2010

    Science.gov (United States)

    Wang, Sheng; Dai, Jing; Su, Meirong

    2012-01-01

    Since the relationship between the supply and demand of fossil fuels is on edge in the long run, the contradiction between the economic growth and limited resources will hinder the sustainable development of the Chinese society. This paper aims to analyze the input of fossil fuels in China during 2000–2010 via the material flow analysis (MFA) that takes hidden flows into account. With coal, oil, and natural gas quantified by MFA, three indexes, consumption and supply ratio (C/S ratio), resource consumption intensity (RCI), and fossil fuels productivity (FFP), are proposed to reflect the interactions between population, GDP, and fossil fuels. The results indicated that in the past 11 years, China's requirement for fossil fuels has been increasing continuously because of the growing mine productivity in domestic areas, which also leads to a single energy consumption structure as well as excessive dependence on the domestic exploitation. It is advisable to control the fossil fuels consumption by energy recycling and new energy facilities' popularization in order to lead a sustainable access to nonrenewable resources and decrease the soaring carbon emissions. PMID:23365525

  7. Recent decreases in fossil-fuel emissions of ethane and methane derived from firn air.

    Science.gov (United States)

    Aydin, Murat; Verhulst, Kristal R; Saltzman, Eric S; Battle, Mark O; Montzka, Stephen A; Blake, Donald R; Tang, Qi; Prather, Michael J

    2011-08-10

    Methane and ethane are the most abundant hydrocarbons in the atmosphere and they affect both atmospheric chemistry and climate. Both gases are emitted from fossil fuels and biomass burning, whereas methane (CH(4)) alone has large sources from wetlands, agriculture, landfills and waste water. Here we use measurements in firn (perennial snowpack) air from Greenland and Antarctica to reconstruct the atmospheric variability of ethane (C(2)H(6)) during the twentieth century. Ethane levels rose from early in the century until the 1980s, when the trend reversed, with a period of decline over the next 20 years. We find that this variability was primarily driven by changes in ethane emissions from fossil fuels; these emissions peaked in the 1960s and 1970s at 14-16 teragrams per year (1 Tg = 10(12) g) and dropped to 8-10 Tg  yr(-1) by the turn of the century. The reduction in fossil-fuel sources is probably related to changes in light hydrocarbon emissions associated with petroleum production and use. The ethane-based fossil-fuel emission history is strikingly different from bottom-up estimates of methane emissions from fossil-fuel use, and implies that the fossil-fuel source of methane started to decline in the 1980s and probably caused the late twentieth century slow-down in the growth rate of atmospheric methane.

  8. Material flow analysis of fossil fuels in China during 2000-2010.

    Science.gov (United States)

    Wang, Sheng; Dai, Jing; Su, Meirong

    2012-01-01

    Since the relationship between the supply and demand of fossil fuels is on edge in the long run, the contradiction between the economic growth and limited resources will hinder the sustainable development of the Chinese society. This paper aims to analyze the input of fossil fuels in China during 2000-2010 via the material flow analysis (MFA) that takes hidden flows into account. With coal, oil, and natural gas quantified by MFA, three indexes, consumption and supply ratio (C/S ratio), resource consumption intensity (RCI), and fossil fuels productivity (FFP), are proposed to reflect the interactions between population, GDP, and fossil fuels. The results indicated that in the past 11 years, China's requirement for fossil fuels has been increasing continuously because of the growing mine productivity in domestic areas, which also leads to a single energy consumption structure as well as excessive dependence on the domestic exploitation. It is advisable to control the fossil fuels consumption by energy recycling and new energy facilities' popularization in order to lead a sustainable access to nonrenewable resources and decrease the soaring carbon emissions.

  9. Environmental Performance of Electricity Generation Based on Resources: A Life Cycle Assessment Case Study in Turkey

    Directory of Open Access Journals (Sweden)

    Zerrin Günkaya

    2016-10-01

    Full Text Available The aim of this paper was to determine how to change the environmental performance of electricity generation depending on the resources and their shares, in order to support decision-makers. Additionally, this paper presents an application of life cycle assessment (LCA methodology to determine the environmental burdens of electricity generation in Turkey. Electricity generation data in Turkey for the years 2012 and 2023 were used as a case study. The functional unit for electricity generation was 1 kWh. The LCA calculations were carried out using CML-IA (v3.00 data and the results were interpreted with respect to Monte Carlo simulation analysis (with the Monte Carlo function built in SimaPro 8.0.1 software. The results demonstrated that the fossil fuel consumption not only contributes to global warming, but it also has effects on the elemental basis of abiotic depletion due to raw material consumption for plant infrastructure. Additionally, it was observed that the increasing proportion of wind power in the electricity mix would also increase certain life cycle impacts (such as the elemental basis of abiotic depletion, human ecotoxicity, and terrestrial ecotoxicity in Turkey’s geography compared to increasing the share of other renewable energy sources, such as hydropower, geothermal, as well as solar.

  10. Continental-scale enrichment of atmospheric 14CO2 from the nuclear power industry: potential impact on the estimation of fossil fuel-derived CO2

    Science.gov (United States)

    Graven, H. D.; Gruber, N.

    2011-12-01

    The 14C-free fossil carbon added to atmospheric CO2 by combustion dilutes the atmospheric 14C/C ratio (Δ14C), potentially providing a means to verify fossil CO2 emissions calculated using economic inventories. However, sources of 14C from nuclear power generation and spent fuel reprocessing can counteract this dilution and may bias 14C/C-based estimates of fossil fuel-derived CO2 if these nuclear influences are not correctly accounted for. Previous studies have examined nuclear influences on local scales, but the potential for continental-scale influences on Δ14C has not yet been explored. We estimate annual 14C emissions from each nuclear site in the world and conduct an Eulerian transport modeling study to investigate the continental-scale, steady-state gradients of Δ14C caused by nuclear activities and fossil fuel combustion. Over large regions of Europe, North America and East Asia, nuclear enrichment may offset at least 20% of the fossil fuel dilution in Δ14C, corresponding to potential biases of more than -0.25 ppm in the CO2 attributed to fossil fuel emissions, larger than the bias from plant and soil respiration in some areas. Model grid cells including high 14C-release reactors or fuel reprocessing sites showed much larger nuclear enrichment, despite the coarse model resolution of 1.8°×1.8°. The recent growth of nuclear 14C emissions increased the potential nuclear bias over 1985-2005, suggesting that changing nuclear activities may complicate the use of Δ14C observations to identify trends in fossil fuel emissions. The magnitude of the potential nuclear bias is largely independent of the choice of reference station in the context of continental-scale Eulerian transport and inversion studies, but could potentially be reduced by an appropriate choice of reference station in the context of local-scale assessments.

  11. Human health impacts in the life cycle of future European electricity generation

    International Nuclear Information System (INIS)

    Treyer, Karin; Bauer, Christian; Simons, Andrew

    2014-01-01

    This paper presents Life Cycle Assessment (LCA) based quantification of the potential human health impacts (HHI) of base-load power generation technologies for the year 2030. Cumulative Greenhouse Gas (GHG) emissions per kWh electricity produced are shown in order to provide the basis for comparison with existing literature. Minimising negative impacts on human health is one of the key elements of policy making towards sustainable development: besides their direct impacts on quality of life, HHI also trigger other impacts, e.g. external costs in the health care system. These HHI are measured using the Life Cycle Impact Assessment (LCIA) methods “ReCiPe” with its three different perspectives and “IMPACT2002+”. Total HHI as well as the shares of the contributing damage categories vary largely between these perspectives and methods. Impacts due to climate change, human toxicity, and particulate matter formation are the main contributors to total HHI. Independently of the perspective chosen, the overall impacts on human health from nuclear power and renewables are substantially lower than those caused by coal power, while natural gas can have lower HHI than nuclear and some renewables. Fossil fuel combustion as well as coal, uranium and metal mining are the life cycle stages generating the highest HHI. - Highlights: • Life cycle human health impacts (HHI) due to electricity production are analysed. • Results are shown for the three ReCiPe perspectives and IMPACT2002+LCIA method. • Total HHI of nuclear and renewables are much below those of fossil technologies. • Climate change and human toxicity contribute most to total HHI. • Fossil fuel combustion and coal mining are the most polluting life cycle stages

  12. PV, Wind and Storage Integration on Small Islands for the Fulfilment of the 50-50 Renewable Electricity Generation Target

    Directory of Open Access Journals (Sweden)

    Javier Mendoza-Vizcaino

    2017-05-01

    Full Text Available Decarbonisation in the generation of electricity is necessary to reduce fossil fuel consumption, the pollution emitted and to meet the Energy Technology Perspectives 2 ° C Scenario (2DS targets. Small islands are not exempt from this target, so this study’s emphasis is placed on a 50-50 target: to reduce the fossil fuel consumption through electricity generation from Renewable Energy Sources (RES to cover 50% of all electric demand by 2050 on small islands. Using Cozumel Island, Mexico, as a case study, this analysis will be based on three factors: economical, technical, and land-use possibilities of integrating Renewable Energy Technologies (RETs into the existing electrical grid. This analysis is made through long-term statistical models. A deterministic methodology is used to perform time-series simulations. The selection of the best system was made on the basis of a Dimensional Statistical Variable (DSV through primary and secondary category rankings. The presented methodology determines the best systems for capturing the initial capital cost and competitiveness of this new proposal compared with the current system of electricity generation on the Island, and can be applied to small islands as well. According to the results, all systems proposed are able to completely satisfy the renewable electricity needed by 2050 in all scenarios. From the 12 system proposals that were compared, two systems, System 2 and System 7, were chosen as eligible systems to be installed. The Levelized Cost of Energy (LCOE result for System 2 was 0.2518 US$/kWh and for System 7 was 0.2265 US$/kWh by 2018 in the Base Scenario. Meanwhile, the Internal Rate of Return (IRR value fluctuated from 17.2% for System 2 to 31% for System 7.

  13. Smart grids - intelligence for sustainable electrical power systems

    NARCIS (Netherlands)

    Slootweg, J.G.; Cordova, C.E.P.; Montes Portela, C.; Morren, J.

    2011-01-01

    Due to the adverse impacts of the consumption of fossil fuels on our environment, the quest for a more sustainable energy supply is increasingly intensifying. Many renewable energy sources, such as wind, solar and tidal power generate electricity. Therefore, the development towards a sustainable

  14. THERMO-ELECTRIC GENERATOR

    Science.gov (United States)

    Jordan, K.C.

    1958-07-22

    The conversion of heat energy into electrical energy by a small compact device is descrtbed. Where the heat energy is supplied by a radioactive material and thermopIIes convert the heat to electrical energy. The particular battery construction includes two insulating discs with conductive rods disposed between them to form a circular cage. In the center of the cage is disposed a cup in which the sealed radioactive source is located. Each thermopile is formed by connecting wires from two adjacent rods to a potnt on an annular ring fastened to the outside of the cup, the ring having insulation on its surface to prevent electrica1 contact with the thermopiles. One advantage of this battery construction is that the radioactive source may be inserted after the device is fabricated, reducing the radiation hazard to personnel assembling the battery.

  15. A portfolio risk analysis on electricity supply planning

    International Nuclear Information System (INIS)

    Huang, Y.-H.; Wu, J.-H.

    2008-01-01

    Conventional electricity planning selects from a range of alternative technologies based on the least-cost method without assessing cost-related risks. The current approach to determining energy generation portfolios creates a preference for fossil fuel. Consequently, this preference results in increased exposure to recent fluctuations in fossil fuel prices, particularly for countries heavily depend on imported energy. This paper applies portfolio theory in conventional electricity planning with Taiwan as a case study. The model objective is to minimize the 'risk-weighted present value of total generation cost'. Both the present value of generating cost and risk (variance of the generating cost) are considered. Risk of generating cost is introduced for volatile fuel prices and uncertainty of technological change and capital cost reduction. The impact of risk levels on the portfolio of power generation technologies is also examined to provide some valuable policy suggestions. Study results indicate that replacing fossil fuel with renewable energy helps reduce generating cost risk. However, due to limited renewable development potential in Taiwan, there is an upper bound of 15% on the maximum share of renewable energy in the generating portfolio. In the meantime, reevaluating the current nuclear energy policy for reduced exposure to fossil fuel price fluctuations is worthwhile

  16. Heat operated cryogenic electrical generator

    International Nuclear Information System (INIS)

    Fletcher, J.C.; Wang, T.C.; Saffren, M.M.; Elleman, D.D.

    1975-01-01

    An electrical generator useful for providing electrical power in deep space, is disclosed. The subject electrical generator utilizes the unusual hydrodynamic property exhibited by liquid helium as it is converted to and from a superfluid state to cause opposite directions of rotary motion for a rotor cell thereof. The physical motion of said rotor cell is employed to move a magnetic field provided by a charged superconductive coil mounted on the exterior of said cell. An electrical conductor is placed in surrounding proximity to said cell to interact with the moving magnetic field provided by the superconductive coil and thereby generate electrical energy. A heat control arrangement is provided for the purpose of causing the liquid helium to be partially converted to and from a superfluid state by being cooled and heated, respectively. (U.S.)

  17. Centralized or decentralized electricity production

    International Nuclear Information System (INIS)

    Boer, H.A. de.

    1975-01-01

    Because of low overall efficiency in electric power generation, it is argued that energy provision based on gas, combined with locally decentralized electricity production, saves for the Netherlands slightly more fossile fuel than nuclear technologies and makes the country independent of uranium resources. The reason the Netherlands persues this approach is that a big part of the energy is finally used for heating in the normal or moderate temperatures

  18. Comparative assessment of electricity generation options for Mexico

    International Nuclear Information System (INIS)

    Cecilia, Martin Del Campo; Francois, Juan Luis

    2009-01-01

    This paper presents an approach to the evaluation of sustainability of energy options for the electricity generation in Mexico. The study evaluated technologies that could be planned in the short term because their high maturity. The purpose was to rank the energy options based on the evaluation of a set of criteria grouped in impact areas for each dimension of the sustainability: economic, environmental and social. Obviously, no single technology exhibited superior performance on the basis of all the criteria and it was necessary to apply a mult criteria decision analysis (MCDA). In total this study all the decision elements were combined and integrated in an inference fuzzy logic system that takes into account the weights of different indicators. The methodology was applied to compare five technologies based on wind, nuclear, natural gas, coal, hydro and oil resources under the current Mexican conditions. In view of the features of the energy options, oil and gas are subject to limited energy resources. Coal and oil show relatively unfavorable ecological and accident risk characteristics. Gas is by far the option with the best performance among the fossil fuel options. In the case of nuclear energy, the economic, environmental and health indicators are highly favorable, however, social indicators for nuclear energy are unfavorable but they are also very controversial and additional studies must be carried out. The global sustainability of hydro, nuclear, wind and natural gas resulted very close; so these energy options must be considered in the generation expansion planning studies to search the expansion plans with the better combination of generation, energetic diversification and emissions, between other criteria

  19. Maintenance management balancing performance maintenance and cost balance at reinforced concrete constructions of the fossil-fuel and nuclear power stations

    International Nuclear Information System (INIS)

    Ito, Hiroshi; Benno, Hiroshi; Ozaki, Mitsuhiro

    2003-01-01

    Life elongation of concrete constructions (CCs) is a very important needs for supporting future safe supply of electric power. However, some CCs constructed and used for a long term at fossil-fuel and nuclear power stations had reduction of their required performance by deterioration based on environmental and using conditions represented by salt-damage. As such constructions are anxious to increase in future, it is necessary to keep reliability of their establishments by providing desired rehabilitation to persist supplying effect of their facilities. On the other hand, as it is also essential to progress keeping and reducing cost of power generation together with development of recent liberalization of electric power, it is an important subject how to keep their performance maintenance and cost balance. Therefore, here were outlined on required performance setting method, inspection method, long-term deterioration forecasting and evaluating methods, selection method of countermeasure scenarios minimizing LCC, inspection period setting method, introduction of database and deterioration forecasting system, and so on, to economically maintain and manage already built reinforced concrete constructions at suitable materials and places to elongate their lives. (G.K.)

  20. Small Scale SOFC Demonstration Using Bio-Based and Fossil Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Petrik, Michael [Technology Management Inc., Cleveland, OH (United States); Ruhl, Robert [Technology Management Inc., Cleveland, OH (United States)

    2012-05-01

    Technology Management, Inc. (TMI) of Cleveland, Ohio, has completed the project entitled Small Scale SOFC Demonstration using Bio-based and Fossil Fuels. Under this program, two 1-kW systems were engineered as technology demonstrators of an advanced technology that can operate on either traditional hydrocarbon fuels or renewable biofuels. The systems were demonstrated at Patterson's Fruit Farm of Chesterland, OH and were open to the public during the first quarter of 2012. As a result of the demonstration, TMI received quantitative feedback on operation of the systems as well as qualitative assessments from customers. Based on the test results, TMI believes that > 30% net electrical efficiency at 1 kW on both traditional and renewable fuels with a reasonable entry price is obtainable. The demonstration and analysis provide the confidence that a 1 kW entry-level system offers a viable value proposition, but additional modifications are warranted to reduce sound and increase reliability before full commercial acceptance.

  1. Children Are Likely to Suffer Most from Our Fossil Fuel Addiction

    Science.gov (United States)

    Perera, Frederica P.

    2008-01-01

    Background The periods of fetal and child development arguably represent the stages of greatest vulnerability to the dual impacts of fossil fuel combustion: the multiple toxic effects of emitted pollutants (polycyclic aromatic hydrocarbons, particles, sulfur oxides, nitrogen oxides, metals) and the broad health impacts of global climate change attributable in large part to carbon dioxide released by fossil fuel burning. Objectives In this commentary I highlight current scientific evidence indicating that the fetus and young child are at heightened risk of developmental impairment, asthma, and cancer from fossil fuel pollutants and from the predicted effects of climate disruption such as heat waves, flooding, infectious disease, malnutrition, and trauma. Increased risk during early development derives from the inherently greater biologic vulnerability of the developing fetus and child and from their long future lifetime, during which early insults can potentially manifest as adult as well as childhood disease. I cite recent reports concluding that reducing dependence on fossil fuel and promoting clean and sustainable energy is economically feasible. Discussion Although much has been written separately about the toxicity of fossil fuel burning emissions and the effects of climate change on health, these two faces of the problem have not been viewed together with a focus on the developing fetus and child. Adolescence and old age are also periods of vulnerability, but the potential for both immediate and long-term adverse effects is greatest when exposure occurs prenatally or in the early years. Conclusions Consideration of the full spectrum of health risks to children from fossil fuel combustion underscores the urgent need for environmental and energy policies to reduce fossil fuel dependence and maximize the health benefits to this susceptible population. We do not have to leave our children a double legacy of ill health and ecologic disaster. PMID:18709169

  2. Prices versus policy: An analysis of the drivers of the primary fossil fuel mix

    International Nuclear Information System (INIS)

    Atalla, Tarek; Blazquez, Jorge; Hunt, Lester C.; Manzano, Baltasar

    2017-01-01

    Energy policymakers often attempt to shape their countries' energy mix, rather than leave it purely to market forces. By calibrating and simulating a Dynamic Stochastic General Equilibrium (DSGE) model, this paper analyzes the primary fossil fuel mix in the USA and compares it to Germany and the UK, given the different evolution of the mixes and the different roles played by relative prices and policy in North America and Europe. It is found that the model explains well the evolution of the primary fossil fuel mix in the USA for the period 1980–2014, suggesting that relative fossil fuel prices generally dominated in determining the mix during this time. However, this is not the case for Germany and the UK. For both countries, the model performs well only for the period after the market-oriented reforms in the 1990s. Additionally, the volatility of private consumption and output for the pre- and post-reform periods is evaluated for Germany and the UK and it is found that the liberalized energy markets brought about a transition from coal to natural gas, but with increased macroeconomic volatility. - Highlights: • Macroeconomic analysis of the importance of prices vs policy in driving the primary fossil fuel mix. • USA primary fossil fuel mix chiefly driven by relative prices since the early 1980s. • Germany and UK primary fossil fuel mix chiefly driven by policy until 1990s. • Germany and UK primary fossil fuel mix chiefly driven by relative prices since early to mid-1990s. • Transition from coal to natural gas in Germany and UK increased macroeconomic volatility.

  3. Global combustion: the connection between fossil fuel and biomass burning emissions (1997–2010)

    Science.gov (United States)

    Balch, Jennifer K.; Nagy, R. Chelsea; Archibald, Sally; Moritz, Max A.; Williamson, Grant J.

    2016-01-01

    Humans use combustion for heating and cooking, managing lands, and, more recently, for fuelling the industrial economy. As a shift to fossil-fuel-based energy occurs, we expect that anthropogenic biomass burning in open landscapes will decline as it becomes less fundamental to energy acquisition and livelihoods. Using global data on both fossil fuel and biomass burning emissions, we tested this relationship over a 14 year period (1997–2010). The global average annual carbon emissions from biomass burning during this time were 2.2 Pg C per year (±0.3 s.d.), approximately one-third of fossil fuel emissions over the same period (7.3 Pg C, ±0.8 s.d.). There was a significant inverse relationship between average annual fossil fuel and biomass burning emissions. Fossil fuel emissions explained 8% of the variation in biomass burning emissions at a global scale, but this varied substantially by land cover. For example, fossil fuel burning explained 31% of the variation in biomass burning in woody savannas, but was a non-significant predictor for evergreen needleleaf forests. In the land covers most dominated by human use, croplands and urban areas, fossil fuel emissions were more than 30- and 500-fold greater than biomass burning emissions. This relationship suggests that combustion practices may be shifting from open landscape burning to contained combustion for industrial purposes, and highlights the need to take into account how humans appropriate combustion in global modelling of contemporary fire. Industrialized combustion is not only an important driver of atmospheric change, but also an important driver of landscape change through companion declines in human-started fires. This article is part of the themed issue ‘The interaction of fire and mankind’. PMID:27216509

  4. Global combustion: the connection between fossil fuel and biomass burning emissions (1997-2010).

    Science.gov (United States)

    Balch, Jennifer K; Nagy, R Chelsea; Archibald, Sally; Bowman, David M J S; Moritz, Max A; Roos, Christopher I; Scott, Andrew C; Williamson, Grant J

    2016-06-05

    Humans use combustion for heating and cooking, managing lands, and, more recently, for fuelling the industrial economy. As a shift to fossil-fuel-based energy occurs, we expect that anthropogenic biomass burning in open landscapes will decline as it becomes less fundamental to energy acquisition and livelihoods. Using global data on both fossil fuel and biomass burning emissions, we tested this relationship over a 14 year period (1997-2010). The global average annual carbon emissions from biomass burning during this time were 2.2 Pg C per year (±0.3 s.d.), approximately one-third of fossil fuel emissions over the same period (7.3 Pg C, ±0.8 s.d.). There was a significant inverse relationship between average annual fossil fuel and biomass burning emissions. Fossil fuel emissions explained 8% of the variation in biomass burning emissions at a global scale, but this varied substantially by land cover. For example, fossil fuel burning explained 31% of the variation in biomass burning in woody savannas, but was a non-significant predictor for evergreen needleleaf forests. In the land covers most dominated by human use, croplands and urban areas, fossil fuel emissions were more than 30- and 500-fold greater than biomass burning emissions. This relationship suggests that combustion practices may be shifting from open landscape burning to contained combustion for industrial purposes, and highlights the need to take into account how humans appropriate combustion in global modelling of contemporary fire. Industrialized combustion is not only an important driver of atmospheric change, but also an important driver of landscape change through companion declines in human-started fires.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).

  5. Children are likely to suffer most from our fossil fuel addiction.

    Science.gov (United States)

    Perera, Frederica P

    2008-08-01

    The periods of fetal and child development arguably represent the stages of greatest vulnerability to the dual impacts of fossil fuel combustion: the multiple toxic effects of emitted pollutants (polycyclic aromatic hydrocarbons, particles, sulfur oxides, nitrogen oxides, metals) and the broad health impacts of global climate change attributable in large part to carbon dioxide released by fossil fuel burning. In this commentary I highlight current scientific evidence indicating that the fetus and young child are at heightened risk of developmental impairment, asthma, and cancer from fossil fuel pollutants and from the predicted effects of climate disruption such as heat waves, flooding, infectious disease, malnutrition, and trauma. Increased risk during early development derives from the inherently greater biologic vulnerability of the developing fetus and child and from their long future lifetime, during which early insults can potentially manifest as adult as well as childhood disease. I cite recent reports concluding that reducing dependence on fossil fuel and promoting clean and sustainable energy is economically feasible. Although much has been written separately about the toxicity of fossil fuel burning emissions and the effects of climate change on health, these two faces of the problem have not been viewed together with a focus on the developing fetus and child. Adolescence and old age are also periods of vulnerability, but the potential for both immediate and long-term adverse effects is greatest when exposure occurs prenatally or in the early years. Consideration of the full spectrum of health risks to children from fossil fuel combustion underscores the urgent need for environmental and energy policies to reduce fossil fuel dependence and maximize the health benefits to this susceptible population. We do not have to leave our children a double legacy of ill health and ecologic disaster.

  6. Spot markets vs. long-term contracts - modelling tools for regional electricity generating utilities

    International Nuclear Information System (INIS)

    Grohnheit, P.E.

    1999-01-01

    A properly organised market for electricity requires that some information will be available for all market participants. Also a range of generally available modelling tools are necessary. This paper describes a set of simple models based on published data for analyses of the long-term revenues of regional utilities with combined heat and power generation (CHP), who will operate a competitive international electricity market and a local heat market. The future revenues from trade on the spot market is analysed using a load curve model, in which marginal costs are calculated on the basis of short-term costs of the available units and chronological hourly variations in the demands for electricity and heat. Assumptions on prices, marginal costs and electricity generation by the different types of generating units are studied for selected types of local electricity generators. The long-term revenue requirements to be met by long-term contracts are analysed using a traditional techno-economic optimisation model focusing on technology choice and competition among technologies over 20.30 years. A possible conclusion from this discussion is that it is important for the economic and environmental efficiency of the electricity market that local or regional generators of CHP, who are able to react on price signals, do not conclude long-term contracts that include fixed time-of-day tariff for sale of electricity. Optimisation results for a CHP region (represented by the structure of the Danish electricity and CHP market in 1995) also indicates that a market for CO 2 tradable permits is unlikely to attract major non-fossil fuel technologies for electricity generation, e.g. wind power. (au)

  7. Assessing the difference. Greenhouse gas emissions of electricity generation chains

    International Nuclear Information System (INIS)

    Spadaro, J.V.; Langlois, L.; Hamilton, B.

    2000-01-01

    Greenhouse gases have to the potential to influence global climate change by interfering with the natural process of heat exchange between the earth's atmosphere and outer space. Reducing atmospheric GHG concentrations have become an international priority as evidenced by the signing of the Kyoto Protocol, which would reduce emissions from industrialized countries (Annex 1) by about 5% below 1990 levels during the commitment period 2008-12. There are a number of technical options that could be implemented in order to achieve the proposed reduction target. As for emissions related to electricity generation, perhaps the most important factor over the near term is the improvement in efficiency of using energy at all the stages of the fuel cycle, including fuel preparation and transportation, fuel-to-electricity conversion at the power plant and at the point of end-use (which has not been considered here). Strategies for reducing methane releases during fuel mining and during gas transmission are very relevant. Switching to less carbon intensive or low carbon fuels, such as gas, nuclear power and renewables, will play a major role in reducing emissions. These changes are technically feasible using present day knowledge and experience, require minimal changes in consumer lifestyle, and represent reasonable capital turnover (gas and nuclear for baseload generation and renewables in niche markets or for peak load applications). This article has presented information on GHG emission factors for different fuels using a Full Energy Chain approach, which attempts to quantify the environmental emissions from all stages of electricity generation, i.e. 'cradle-to-grave'. Fossil-fueled technologies have the highest emission factors, with coal typically twice as high as natural gas. Considering the large variations in fuel- to-electricity conversion technology, it can be said that GHG emission factors can be an order of magnitude higher than current solar PV systems and up to two

  8. Impact of externalities on various power generation technologies

    International Nuclear Information System (INIS)

    Rubow, L.

    2008-01-01

    In the absence of externalities and other economic benefits, nuclear, and specifically BeleneNPP, is economically superior to other reasonable options. When externalities and other economic benefits are included, the advantage of nuclear is much more pronounced. Nuclear power can assist in meeting CO 2 emissions targets established through the Kyoto Protocol (or its successor), as well as the elimination of SO 2 , NO x , CO and Dust emissions associated with fossil fuel technologies. Nuclear Power, and specifically the BeleneNPP Project, can provide Bulgaria with considerable short-and long-term economic benefits, including energy security, job creation, and electric generation revenue, when compared to fossil fuel options

  9. Progress and challenges in utilization of palm oil biomass as fuel for decentralized electricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Bazmi, Aqeel Ahmed [Process Systems Engineering Centre (PROSPECT), Department of Chemical Engineering, Faculty of Chemical and Natural Resources Engineering, University Technology Malaysia, Skudai 81310, Johor Bahru, JB (Malaysia); Biomass Conversion Research Center (BCRC), Department of Chemical Engineering, COMSATS Institute of Information Technology, Lahore (Pakistan); Zahedi, Gholamreza; Hashim, Haslenda [Process Systems Engineering Centre (PROSPECT), Department of Chemical Engineering, Faculty of Chemical and Natural Resources Engineering, University Technology Malaysia, Skudai 81310, Johor Bahru, JB (Malaysia)

    2011-01-15

    It has been broadly accepted worldwide that global warming, indeed, is the greatest threat of the time to the environment. Renewable energy (RE) is expected as a perfect solution to reduce global warming and to endorse sustainable development. Progressive release of greenhouse gases (GHG) from increasing energy-intensive industries has eventually caused human civilization to suffer. Realizing the exigency of reducing emissions and simultaneously catering to needs of industries, researchers foresee the RE as the perfect entrant to overcome these challenges. RE provides an effective option for the provision of energy services from the technical point of view while biomass, a major source of energy in the world until before industrialization when fossil fuels become dominant, appears an important renewable source of energy and researches have proven from time to time its viability for large-scale production. Being a widely spread source, biomass offers the execution of decentralized electricity generation gaining importance in liberalized electricity markets. The decentralized power is characterized by generation of electricity nearer to the demand centers, meeting the local energy needs. Researchers envisaged an increasing decentralization of power supply, expected to make a particular contribution to climate protection. This article investigates the progress and challenges for decentralized electricity generation by palm oil biomass according to the overall concept of sustainable development. (author)

  10. Progress and challenges in utilization of palm oil biomass as fuel for decentralized electricity generation

    International Nuclear Information System (INIS)

    Bazmi, Aqeel Ahmed; Zahedi, Gholamreza; Hashim, Haslenda

    2011-01-01

    It has been broadly accepted worldwide that global warming, indeed, is the greatest threat of the time to the environment. Renewable energy (RE) is expected as a perfect solution to reduce global warming and to endorse sustainable development. Progressive release of greenhouse gases (GHG) from increasing energy-intensive industries has eventually caused human civilization to suffer. Realizing the exigency of reducing emissions and simultaneously catering to needs of industries, researchers foresee the RE as the perfect entrant to overcome these challenges. RE provides an effective option for the provision of energy services from the technical point of view while biomass, a major source of energy in the world until before industrialization when fossil fuels become dominant, appears an important renewable source of energy and researches have proven from time to time its viability for large-scale production. Being a widely spread source, biomass offers the execution of decentralized electricity generation gaining importance in liberalized electricity markets. The decentralized power is characterized by generation of electricity nearer to the demand centers, meeting the local energy needs. Researchers envisaged an increasing decentralization of power supply, expected to make a particular contribution to climate protection. This article investigates the progress and challenges for decentralized electricity generation by palm oil biomass according to the overall concept of sustainable development. (author)

  11. Application of genetic algorithm (GA) technique on demand estimation of fossil fuels in Turkey

    International Nuclear Information System (INIS)

    Canyurt, Olcay Ersel; Ozturk, Harun Kemal

    2008-01-01

    The main objective is to investigate Turkey's fossil fuels demand, projection and supplies by using the structure of the Turkish industry and economic conditions. This study develops scenarios to analyze fossil fuels consumption and makes future projections based on a genetic algorithm (GA). The models developed in the nonlinear form are applied to the coal, oil and natural gas demand of Turkey. Genetic algorithm demand estimation models (GA-DEM) are developed to estimate the future coal, oil and natural gas demand values based on population, gross national product, import and export figures. It may be concluded that the proposed models can be used as alternative solutions and estimation techniques for the future fossil fuel utilization values of any country. In the study, coal, oil and natural gas consumption of Turkey are projected. Turkish fossil fuel demand is increased dramatically. Especially, coal, oil and natural gas consumption values are estimated to increase almost 2.82, 1.73 and 4.83 times between 2000 and 2020. In the figures GA-DEM results are compared with World Energy Council Turkish National Committee (WECTNC) projections. The observed results indicate that WECTNC overestimates the fossil fuel consumptions. (author)

  12. Biofuel: an alternative to fossil fuel for alleviating world energy and economic crises.

    Science.gov (United States)

    Bhattarai, Keshav; Stalick, Wayne M; McKay, Scott; Geme, Gija; Bhattarai, Nimisha

    2011-01-01

    The time has come when it is desirable to look for alternative energy resources to confront the global energy crisis. Consideration of the increasing environmental problems and the possible crisis of fossil fuel availability at record high prices dictate that some changes will need to occur sooner rather than later. The recent oil spill in the Gulf of Mexico is just another example of the environmental threats that fossil fuels pose. This paper is an attempt to explore various bio-resources such as corn, barley, oat, rice, wheat, sorghum, sugar, safflower, and coniferous and non-coniferous species for the production of biofuels (ethanol and biodiesel). In order to assess the potential production of biofuel, in this paper, countries are organized into three groups based on: (a) geographic areas; (b) economic development; and(c) lending types, as classified by the World Bank. First, the total fossil fuel energy consumption and supply and possible carbon emission from burning fossil fuel is projected for these three groups of countries. Second, the possibility of production of biofuel from grains and vegetative product is projected. Third, a comparison of fossil fuel and biofuel is done to examine energy sustainability issues.

  13. Households' willingness to pay for safeguarding security of natural gas supply in electricity generation

    International Nuclear Information System (INIS)

    Damigos, D.; Tourkolias, C.; Diakoulaki, D.

    2009-01-01

    Security of energy supply is a major issue for all EU Member States due to Europe's increasing dependence on imported fossil-fuel sources and the continuous rise in energy demand. The latter is of particular importance in electricity sector given the continuously increasing use of gas for electricity generation. In order to properly tackle with the problem, concerted actions are required by the EU Member States in several levels, i.e. legislative, political, etc. Nevertheless, these actions will come at an additional cost paid by the society either through increased electricity bills or through public financing for energy security investments. Thus, such policies should be justified on the basis of cost-benefit analysis. Towards this direction, it may be necessary to take into account non-market costs and benefits, i.e. the value that consumers place on interruptions avoided. In order to explore households' perceptions and willingness to pay for securing gas supply for electricity production, an empirical study was conducted by means of the contingent valuation method. The results indicate that consumers are willing to pay a premium on their electricity bills in order to internalize the external costs of electricity production, in terms of energy security, which are caused from imported fuels. (author)

  14. Diagnosis of Heat Exchanger Tube Failure in Fossil Fuel Boilers Through Estimation of Steady State Operating Conditions

    International Nuclear Information System (INIS)

    Herszage, A.; Toren, M.

    1998-01-01

    Estimation of operating conditions for fossil fuel boiler heat exchangers is often required due to changes in working conditions, design modifications and especially for monitoring performance and failure diagnosis. Regular heat exchangers in fossil fuel boilers are composed of tube banks through which water or steam flow, while hot combustion (flue) gases flow outside the tubes. This work presents a top-down approach to operating conditions estimation based on field measurements. An example for a 350 MW unit superheater is thoroughly discussed. Integral calculations based on measurements for all unit heat exchangers (reheaters, superheaters) were performed first. Based on these calculations a scheme of integral conservation equations (lumped parameter) was then formulated at the single tube level. Steady state temperatures of superheater tube walls were obtained as a main output, and were compared to the maximum allowable operating temperatures of the tubes material. A combined lumped parameter - CFD (Computational Fluid Dynamics, FLUENT code) approach constitutes an efficient tool in certain cases. A brief report of such a case is given for another unit superheater. We conclude that steady state evaluations based on both integral and detailed simulations are a valuable monitoring and diagnosis tool for the power generation industry

  15. Life cycle GHG assessment of fossil fuel power plants with carbon capture and storage

    International Nuclear Information System (INIS)

    Odeh, Naser A.; Cockerill, Timothy T.

    2008-01-01

    The evaluation of life cycle greenhouse gas emissions from power generation with carbon capture and storage (CCS) is a critical factor in energy and policy analysis. The current paper examines life cycle emissions from three types of fossil-fuel-based power plants, namely supercritical pulverized coal (super-PC), natural gas combined cycle (NGCC) and integrated gasification combined cycle (IGCC), with and without CCS. Results show that, for a 90% CO 2 capture efficiency, life cycle GHG emissions are reduced by 75-84% depending on what technology is used. With GHG emissions less than 170 g/kWh, IGCC technology is found to be favorable to NGCC with CCS. Sensitivity analysis reveals that, for coal power plants, varying the CO 2 capture efficiency and the coal transport distance has a more pronounced effect on life cycle GHG emissions than changing the length of CO 2 transport pipeline. Finally, it is concluded from the current study that while the global warming potential is reduced when MEA-based CO 2 capture is employed, the increase in other air pollutants such as NO x and NH 3 leads to higher eutrophication and acidification potentials

  16. Comparison of radiative forcing impacts of the use of wood, peat, and fossil fuels

    International Nuclear Information System (INIS)

    Savolainen, I.; Hillebrand, K.; Nousiainen, I.; Sinisalo, J.

    1994-01-01

    The present study investigates the greenhouse impacts and the relevant time factors of the use of peat and wood for energy production and compares them with those of fossil fuels. Emissions and sinks of the whole energy production chain and subsequent use of the wood or peat production site are taken into account. The radiative forcing caused by energy production is used as a measure for the greenhouse impact. Economical considerations are not included. Radiative forcing is calculated for carbon dioxide (CO 2 ), methane (CH 4 ) and nitrous oxide (N 2 O) emissions. The real emissions of energy production are calculated by subtracting the emissions of non-use from the emissions of energy production. All the emissions are given as a function of time, i.e. their evolution over time is taken into account. At this point the estimates for some emission developments are quite crude and should be considered exemplary. The studied energy production chains can be divided roughly into three groups, if the greenhouse impact caused by continuous energy production of hundred years is considered. In this case forest residues, planted stands and unused merchantable wood cause the least radiative forcing per unit of primary energy generated. Natural gas and peat from cultivated peatland form the middle group. According to the calculations coal and conventional peat cause the greatest greenhouse impact

  17. Consumptive Water Use from Electricity Generation in the Southwest under Alternative Climate, Technology, and Policy Futures.

    Science.gov (United States)

    Talati, Shuchi; Zhai, Haibo; Kyle, G Page; Morgan, M Granger; Patel, Pralit; Liu, Lu

    2016-11-15

    This research assesses climate, technological, and policy impacts on consumptive water use from electricity generation in the Southwest over a planning horizon of nearly a century. We employed an integrated modeling framework taking into account feedbacks between climate change, air temperature and humidity, and consequent power plant water requirements. These direct impacts of climate change on water consumption by 2095 differ with technology improvements, cooling systems, and policy constraints, ranging from a 3-7% increase over scenarios that do not incorporate ambient air impacts. Upon additional factors being changed that alter electricity generation, water consumption increases by up to 8% over the reference scenario by 2095. With high penetration of wet recirculating cooling, consumptive water required for low-carbon electricity generation via fossil fuels will likely exacerbate regional water pressure as droughts become more common and population increases. Adaptation strategies to lower water use include the use of advanced cooling technologies and greater dependence on solar and wind. Water consumption may be reduced by 50% in 2095 from the reference, requiring an increase in dry cooling shares to 35-40%. Alternatively, the same reduction could be achieved through photovoltaic and wind power generation constituting 60% of the grid, consistent with an increase of over 250% in technology learning rates.

  18. Nuclear Power as a Basis for Future Electricity Generation

    Science.gov (United States)

    Pioro, Igor; Buruchenko, Sergey

    2017-12-01

    It is well known that electrical-power generation is the key factor for advances in industry, agriculture, technology and the level of living. Also, strong power industry with diverse energy sources is very important for country independence. In general, electrical energy can be generated from: 1) burning mined and refined energy sources such as coal, natural gas, oil, and nuclear; and 2) harnessing energy sources such as hydro, biomass, wind, geothermal, solar, and wave power. Today, the main sources for electrical-energy generation are: 1) thermal power - primarily using coal and secondarily - natural gas; 2) “large” hydro power from dams and rivers and 3) nuclear power from various reactor designs. The balance of the energy sources is from using oil, biomass, wind, geothermal and solar, and have visible impact just in some countries. In spite of significant emphasis in the world on using renewables sources of energy, in particular, wind and solar, they have quite significant disadvantages compared to “traditional” sources for electricity generation such as thermal, hydro, and nuclear. These disadvantages include low density of energy, which requires large areas to be covered with wind turbines or photovoltaic panels or heliostats, and dependence of these sources on Mother Nature, i.e., to be unreliable ones and to have low (20 - 40%) or very low (5 - 15%) capacity factors. Fossil-fueled power plants represent concentrated and reliable source of energy. Also, they operate usually as “fast-response” plants to follow rapidly changing electrical-energy consumption during a day. However, due to combustion process they emit a lot of carbon dioxide, which contribute to the climate change in the world. Moreover, coal-fired power plants, as the most popular ones, create huge amount of slag and ash, and, eventually, emit other dangerous and harmful gases. Therefore, Nuclear Power Plants (NPPs), which are also concentrated and reliable source of energy

  19. Long-term ocean oxygen depletion in response to carbon dioxide emissions from fossil fuels

    DEFF Research Database (Denmark)

    Shaffer, G.; Olsen, S.M.; Pedersen, Jens Olaf Pepke

    2009-01-01

    Ongoing global warming could persist far into the future, because natural processes require decades to hundreds of thousands of years to remove carbon dioxide from fossil-fuel burning from the atmosphere(1-3). Future warming may have large global impacts including ocean oxygen depletion and assoc......Ongoing global warming could persist far into the future, because natural processes require decades to hundreds of thousands of years to remove carbon dioxide from fossil-fuel burning from the atmosphere(1-3). Future warming may have large global impacts including ocean oxygen depletion...... solubility from surface-layer warming accounts for most of the enhanced oxygen depletion in the upper 500 m of the ocean. Possible weakening of ocean overturning and convection lead to further oxygen depletion, also in the deep ocean. We conclude that substantial reductions in fossil-fuel use over the next...

  20. Long time management of fossil fuel resources to limit global warming and avoid ice age onsets

    Science.gov (United States)

    Shaffer, Gary

    2009-02-01

    There are about 5000 billion tons of fossil fuel carbon in accessible reserves. Combustion of all this carbon within the next few centuries would force high atmospheric CO2 content and extreme global warming. On the other hand, low atmospheric CO2 content favors the onset of an ice age when changes in the Earth's orbit lead to low summer insolation at high northern latitudes. Here I present Earth System Model projections showing that typical reduction targets for fossil fuel use in the present century could limit ongoing global warming to less than one degree Celcius above present. Furthermore, the projections show that combustion pulses of remaining fossil fuel reserves could then be tailored to raise atmospheric CO2 content high and long enough to parry forcing of ice age onsets by summer insolation minima far into the future. Our present interglacial period could be extended by about 500,000 years in this way.

  1. Effect of subsidies to fossil fuel companies on United States crude oil production

    Science.gov (United States)

    Erickson, Peter; Down, Adrian; Lazarus, Michael; Koplow, Doug

    2017-11-01

    Countries in the G20 have committed to phase out `inefficient' fossil fuel subsidies. However, there remains a limited understanding of how subsidy removal would affect fossil fuel investment returns and production, particularly for subsidies to producers. Here, we assess the impact of major federal and state subsidies on US crude oil producers. We find that, at recent oil prices of US50 per barrel, tax preferences and other subsidies push nearly half of new, yet-to-be-developed oil investments into profitability, potentially increasing US oil production by 17 billion barrels over the next few decades. This oil, equivalent to 6 billion tonnes of CO2, could make up as much as 20% of US oil production through 2050 under a carbon budget aimed at limiting warming to 2 °C. Our findings show that removal of tax incentives and other fossil fuel support policies could both fulfil G20 commitments and yield climate benefits.

  2. The role of nuclear energy in the more efficient exploitation of fossil fuel resources

    International Nuclear Information System (INIS)

    Seifritz, W.

    1978-01-01

    The energy theory of value, being a valuable addition to the debate on the rational exploitation of man's energy reserves, is applied in order to clarify the presently confused energy input/output relations for nuclear and solar systems as they interact with fossil fuel. It is shown on the basis of purely energetics considerations that the nuclear route - at present and in future - is a very efficient way to stretch out and finally to substitute for the limited fossil fuel resources. This is particularly true if one considers the transitory phase where the substituting process has to exhibit a rapid exponential growth rate. The energetical effectiveness of the production of a synthetic fuel, as for example hydrogen by water splitting processes, is addressed at the end and serves to give an idea how effectively the energy available in fossil fuels can be amplified by virtue of the coupling of nuclear energy into the process. (author)

  3. Correlation between occurrence of leprosy and fossil fuels: role of fossil fuel bacteria in the origin and global epidemiology of leprosy.

    Science.gov (United States)

    Chakrabarty, A N; Dastidar, S G

    1989-06-01

    On the basis of correlative data on the global distribution of leprosy, its bacteria metabolizing fossil fuels (FF), and the FF themselves, the origin of leprosy in the world as a whole, and in the leprosy-free countries, in particular, as indigenous cases, appeared to be primarily due to a soil-to-man, and secondarily due to a man-to-man infection. These findings helped to elucidate similar problems of animal leprosies and nocardial diseases.

  4. Energy demand of electricity generation

    International Nuclear Information System (INIS)

    Drahny, M.

    1992-01-01

    The complex energy balance method was applied to selected electricity generation subsystems. The hydroelectric, brown coal based, and nuclear based subsystems are defined. The complex energy balance basically consists in identifying the mainstream and side-stream energy inputs and outputs for both the individual components and the entire electricity generation subsystem considered. Relationships for the complete energy balance calculation for the i-th component of the subsystem are given, and its side-stream energy inputs and outputs are defined. (J.B.). 4 figs., 4 refs

  5. Nuclear electricity generation a sustainable energy resource for Romania along the next two decades

    International Nuclear Information System (INIS)

    Prodea, Iosif; Margeanu, Cristina Alice; Aioanei, Corina; Prisecaru, Ilie; Danila, Nicolae

    2008-01-01

    The main goal of the paper is to evaluate different electricity generation costs inside of the National Romanian energy sector along the next two decades. The IAEA -MESSAGE code (Model for Energy Supply Strategy Alternatives and their General Environmental Impacts) will be used to accomplish these assessments. Due to the natural gas crisis started at the beginning of 2006, Romania has adopted a courageous energy policy based on increasing nuclear electricity share. Since then, the second nuclear Unit was commissioned at Cernavoda in 2007 and the other two CANDU-6 (700 MWe) were scheduled to be operational in 2015. On the other side the European integration of Romania asks for doubling the indigenous gas price during this year, 2008, and also for reducing the atmospheric gaseous emissions from the fossil fuel technologies. Therefore, we evaluated the economical competition between all electricity technologies in the Romanian energy sector in the next two decades for which our MESSAGE model was developed. We focused on coal, gas and, of course, nuclear electricity technologies. Some representative energy scenarios centered on nuclear share electricity growing were considered and MESSAGE results were analyzed from the energetic sustainable point of view. (authors)

  6. Decentralized energy supply and electricity market structures

    OpenAIRE

    Weber, Christoph; Vogel, Philip

    2005-01-01

    Small decentralized power generation units (DG) are politically promoted because of their potential to reduce GHG-emissions and the existing dependency on fossil fuels. A long term goal of this promotion should be the creation of a level playing field for DG and conventional power generation. Due to the impact of DG on the electricity grid infrastructure, future regulation should consider the costs and benefits of the integration of decentralized energy generation units. Without an adequate c...

  7. Heat planning for fossil-fuel-free district heating areas with extensive end-use heat savings: A case study of the Copenhagen district heating area in Denmark

    International Nuclear Information System (INIS)

    Harrestrup, M.; Svendsen, S.

    2014-01-01

    The Danish government plans to make the Danish energy system to be completely free of fossil fuels by 2050 and that by 2035 the energy supply for buildings and electricity should be entirely based on renewable energy sources. To become independent from fossil fuels, it is necessary to reduce the energy consumption of the existing building stock, increase energy efficiency, and convert the present heat supply from fossil fuels to renewable energy sources. District heating is a sustainable way of providing space heating and domestic hot water to buildings in densely populated areas. This paper is a theoretical investigation of the district heating system in the Copenhagen area, in which heat conservation is related to the heat supply in buildings from an economic perspective. Supplying the existing building stock from low-temperature energy resources, e.g. geothermal heat, might lead to oversized heating plants that are too expensive to build in comparison with the potential energy savings in buildings. Long-term strategies for the existing building stock must ensure that costs are minimized and that investments in energy savings and new heating capacity are optimized and carried out at the right time. - Highlights: • We investigate how much heating consumption needs to be reduced in a district heating area. • We examine fossil-fuel-free supply vs. energy conservations in the building stock. • It is slightly cost-beneficial to invest in energy renovation from today for a societal point of view. • It is economically beneficial for district heating companies to invest in energy renovations from today. • The cost per delivered heat unit is lower when energy renovations are carried out from today

  8. Interaction of carbon reduction and green energy promotion in a small fossil-fuel importing economy

    International Nuclear Information System (INIS)

    Pethig, Ruediger; Wittlich, Christian

    2009-01-01

    We study the incidence of carbon-reduction and green-energy promotion policies in an open fossil-fuel importing general equilibrium economy. The focus is on mixed price-based or quantity-based policies. Instruments directed toward promoting green energy are shown to reduce also carbon emissions and vice versa. Their direct effects are stronger than their side effects, the more so, the greater is the elasticity of substitution in consumption between energy and the consumption good. We calculate the effects of variations in individual policy parameters, especially on energy prices and welfare costs, and determine the impact of exogenous fossil-fuel price shocks on the economy. (orig.)

  9. Reduced carbon emission estimates from fossil fuel combustion and cement production in China

    OpenAIRE

    Liu, Zhu; Guan, Dabo; Wei, Wei; Davis, Steven J.; Ciais, Philippe; Bai, Jin; Peng, Shushi; Zhang, Qiang; Hubacek, Klaus; Garland, Gregg; Andres, Robert J.; Crawford-Brown, Douglas; Lin, Jintai; Zhao, Hongyan; Hong, Chaopeng

    2015-01-01

    This is the author accepted manuscript. The final version is available from NPG via http://dx.doi.org/10.1038/nature14677 Nearly three-quarters of the growth in global carbon emission from burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China's total fossil fuel carbon emissions in 2008 varied by 0.3 GtC, or 15 per cent. The primary sources of this uncertainty are c...

  10. The “keep in the ground future” of Arctic fossil fuel resources

    Directory of Open Access Journals (Sweden)

    Sandi Lansetti

    2016-12-01

    Full Text Available It is extremely important to understand which role Arctic fossil fuel resources will play in the development and geopolitics of the Arctic region. The article analyses the recent trends in the world energy supply with special focus on renewable energy and future demand for fossil fuels. Focusing on the Arctic LNG projects it comes to the conclusion that there is a growing possibility that the majority of Arctic oil and natural gas will be kept in the ground. Such an outcome would strongly influence the sustainable development and geopolitics of the region.

  11. Acute lethality data for Ontario's electric power generation sector effluents covering the period from December 1990 to May 1991

    International Nuclear Information System (INIS)

    Poirier, D.G.; Lee, J.T.; Mueller, M.C.; Westlake, G.F.

    1995-01-01

    Regulations require that electric power generation facilities monitor their liquid effluents. Acute lethality tests are simple, rapid standard methods for measuring potential impacts on aquatic ecosystems. These toxicity tests will detect harmful concentrations of chemicals and mixtures of compounds in effluents, but compliance with end of pipe limits for acute toxicity will not necessarily control all adverse environmental effects. In these tests, aquatic organisms were exposed to undiluted effluent, as well as a series of effluent dilutions for a fixed period of time. This report is a compilation of six months of test results. Typically the most toxic samples were taken from the waste treatment plant (WTP) neutral sumps. This was true for fossil fueled as well as for nuclear generating stations. tabs., figs

  12. Electricity generation using electromagnetic radiation

    Science.gov (United States)

    Halas, Nancy J.; Nordlander, Peter; Neumann, Oara

    2017-08-22

    In general, in one aspect, the invention relates to a system to create vapor for generating electric power. The system includes a vessel comprising a fluid and a complex and a turbine. The vessel of the system is configured to concentrate EM radiation received from an EM radiation source. The vessel of the system is further configured to apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat. The vessel of the system is also configured to transform, using the heat generated by the complex, the fluid to vapor. The vessel of the system is further configured to sending the vapor to a turbine. The turbine of the system is configured to receive, from the vessel, the vapor used to generate the electric power.

  13. Cost and quality of fuels for electric utility plants 1991

    International Nuclear Information System (INIS)

    1992-01-01

    Data for 1991 and 1990 receipts and costs for fossil fuels discussed in the Executive Summary are displayed in Tables ES1 through ES7. These data are for electric generating plants with a total steam-electric and combined-cycle nameplate capacity of 50 or more megawatts. Data presented in the Executive Summary on generation, consumption, and stocks of fossil fuels at electric utilities are based on data collected on the Energy Information Administration, Form EIA-759, ''Monthly Power Plant Report.'' These data cover all electric generating plants. The average delivered cost of coal, petroleum, and gas each decreased in 1991 from 1990 levels. Overall, the average annual cost of fossil fuels delivered to electric utilities in 1991 was $1.60 per million Btu, a decrease of $0.09 per million Btu from 1990. This was the lowest average annual cost since 1978 and was the result of the abundant supply of coal, petroleum, and gas available to electric utilities. US net generation of electricity by all electric utilities in 1991 increased by less than I percent--the smallest increase since the decline that occurred in 1982.3 Coal and gas-fired steam net generation, each, decreased by less than I percent and petroleum-fired steam net generation by nearly 5 percent. Nuclear-powered net generation, however, increased by 6 percent. Fossil fuels accounted for 68 percent of all generation; nuclear, 22 percent; and hydroelectric, 10 percent. Sales of electricity to ultimate consumers in 1991 were 2 percent higher than during 1990

  14. Electricity Generation Through the Koeberg Nuclear Power Station of Eskom in South Africa

    International Nuclear Information System (INIS)

    Dladla, G.; Joubert, J.

    2015-01-01

    The poster provides information on the process of nuclear energy generation in a nuclear power plant in order to produce electricity. Nuclear energy currently provides approximately 11% of the world’s electricity needs, with Koeberg Nuclear Power Station situated in the Western Cape providing 4.4% of South Africa’s electricity needs. As Africa’s first nuclear power station, Koeberg has an installed capacity of 1910 MW of power. Koeberg’ s total net output is 1860 MW. While there are significant differences, there are many similarities between nuclear power plants and other electrical generating facilities. Uranium is used for fuel in nuclear power plants to make electricity. With the exception of solar, wind, and hydroelectric plants, all others including nuclear plants convert water to steam that spins the propeller-like blades of a turbine that spins the shaft of a generator. Inside the generator coils of wire and magnetic fields interact to create electricity. The energy needed to boil water into steam is produced in one of two ways: by burning coal, oil, or gas (fossil fuels) in a furnace or by splitting certain atoms of uranium in a nuclear energy plant. The uranium fuel generates heat through a controlled fission process fission, which is described in this poster presentation. The Koeberg Nuclear Power Station is a Pressurised water reactor (PWR). The operating method and the components of the Koeberg Power Station are also described. The nuclear waste generated at a nuclear power station is described under three headings— low-level waste, intermediate-level waste and used or spent fuel, which can be solid, liquid or gaseous. (author)

  15. Potential applications for nuclear energy besides electricity generation: A global perspective

    International Nuclear Information System (INIS)

    Gauthier, Jean Claude; Ballot, Bernard; Lebrun, Jean Philippe; Lecomte, Michel; Hittner, Dominique; Carre, Frank

    2007-01-01

    Energy supply is increasingly showing up as a major issue for electricity supply, transportation, settlement, and process heat industrial supply including hydrogen production. Nuclear power is part of the solution. For electricity supply, as exemplified in Finland and France, the EPR brings an immediate answer; HTR could bring another solution in some specific cases. For other supply, mostly heat, the HTR brings a solution inaccessible to conventional nuclear power plants for very high or even high temperature. As fossil fuels costs increase and efforts to avoid generation of Greenhouse gases are implemented, a market for nuclear generated process heat will be developed. Following active developments in the 80's, HTR have been put on the back burner up to 5 years ago. Light water reactors are widely dominating the nuclear production field today. However, interest in the HTR technology was renewed in the past few years. Several commercial projects are actively promoted, most of them aiming at electricity production. ANTARES is today AREVA's response to the cogeneration market. It distinguishes itself from other concepts with its indirect cycle design powering a combined cycle power plant. Several reasons support this design choice, one of the most important of which is the design flexibility to adapt readily to combined heat and power applications. From the start, AREVA made the choice of such flexibility with the belief that the HTR market is not so much in competition with LWR in the sole electricity market but in the specific added value market of cogeneration and process heat. In view of the volatility of the costs of fossil fuels, AREVA's choice brings to the large industrial heat applications the fuel cost predictability of nuclear fuel with the efficiency of a high temperature heat sources free of Greenhouse gases emissions. The ANTARES module produces 600 MWth which can be split into the required process heat, the remaining power drives an adapted prorated

  16. Potential Applications for Nuclear Energy besides Electricity Generation: AREVA Global Perspective of HTR Potential Market

    International Nuclear Information System (INIS)

    Soutworth, Finis; Gauthier, Jean-Claude; Lecomte, Michel; Carre, Franck

    2007-01-01

    Energy supply is increasingly showing up as a major issue for electricity supply, transportation, settlement, and process heat industrial supply including hydrogen production. Nuclear power is part of the solution. For electricity supply, as exemplified in Finland and France, the EPR brings an immediate answer; HTR could bring another solution in some specific cases. For other supply, mostly heat, the HTR brings a solution inaccessible to conventional nuclear power plants for very high or even high temperature. As fossil fuels costs increase and efforts to avoid generation of Greenhouse gases are implemented, a market for nuclear generated process heat will develop. Following active developments in the 80's, HTR have been put on the back burner up to 5 years ago. Light water reactors are widely dominating the nuclear production field today. However, interest in the HTR technology was renewed in the past few years. Several commercial projects are actively promoted, most of them aiming at electricity production. ANTARES is today AREVA's response to the cogeneration market. It distinguishes itself from other concepts with its indirect cycle design powering a combined cycle power plant. Several reasons support this design choice, one of the most important of which is the design flexibility to adapt readily to combined heat and power applications. From the start, AREVA made the choice of such flexibility with the belief that the HTR market is not so much in competition with LWR in the sole electricity market but in the specific added value market of cogeneration and process heat. In view of the volatility of the costs of fossil fuels, AREVA's choice brings to the large industrial heat applications the fuel cost predictability of nuclear fuel with the efficiency of a high temperature heat source free of greenhouse gases emissions. The ANTARES module produces 600 MWth which can be split into the required process heat, the remaining power drives an adapted prorated

  17. Projected costs of generating electricity

    International Nuclear Information System (INIS)

    2005-01-01

    Previous editions of Projected Costs of Generating Electricity have served as the reference in this field for energy policy makers, electricity system analysts and energy economists. The study is particularly timely in the light of current discussions of energy policy in many countries. The joint IEA/NEA study provides generation cost estimates for over a hundred power plants that use a variety of fuels and technologies. These include coal-fired, gas-fired, nuclear, hydro, solar and wind plants. Cost estimates are also given for combined heat and power plants that use coal, gas and combustible renewables. Data and information for this study were provided by experts from 19 OECD member countries and 3 non-member countries. The power plants examined in the study use technologies available today and considered by participating countries as candidates for commissioning by 2010-2015 or earlier. Investors and other decision makers will also need to take the full range of other factors into account (such as security of supply, risks and carbon emissions) when selecting an electricity generation technology. The study shows that the competitiveness of alternative generation sources and technologies ultimately depends on many parameters: there is no clear-cut ''winner''. Major issues related to generation costs addressed in the report include: descriptions of state-of-the-art generation technologies; the methodologies for incorporating risk in cost assessments; the impact of carbon emission trading; and how to integrate wind power into the electricity grid. An appendix to the report provides country statements on generation technologies and costs. Previous studies in the series were published in 1983, 1986, 1990, 1993 and 1998. (author)

  18. Assessing the value of wind generation in future carbon constrained electricity industries

    International Nuclear Information System (INIS)

    Vithayasrichareon, Peerapat; MacGill, Iain F.

    2013-01-01

    This paper employs a novel Monte-Carlo based generation portfolio assessment tool to explore the implications of increasing wind penetration and carbon prices within future electricity generation portfolios under considerable uncertainty. This tool combines optimal generation mix techniques with Monte Carlo simulation and portfolio analysis methods to determine expected overall generation costs, associated cost uncertainty and expected CO 2 emissions for different possible generation portfolios. A case study of an electricity industry with coal, Combined Cycle Gas Turbines (CCGT), Open Cycle Gas Turbines (OCGT) and wind generation options that faces uncertain future fossil-fuel prices, carbon pricing, electricity demand and plant construction costs is presented to illustrate some of the key issues associated with growing wind penetrations. The case study uses half-hourly demand and wind generation data from South Eastern Australia, and regional estimates of new-build plant costs and characteristics. Results suggest that although wind generation generally increases overall industry costs, it reduces associated cost uncertainties and CO 2 emissions. However, there are some cases in which wind generation can reduce the overall costs of generation portfolios. The extent to which wind penetration affects industry expected costs and uncertainties depends on the level of carbon price and the conventional technology mix in the portfolios. - Highlights: ► A probabilistic portfolio analysis tool to assess generation portfolios with wind power. ► Explore the impacts of wind penetrations and carbon prices under uncertainties. ► Wind generation increases overall portfolio costs but reduces cost risks and emissions. ► The value of wind power depends on the carbon price and the technology mix. ► Complex interactions between wind penetration level and carbon pricing.

  19. The substitutive effect of biofuels on fossil fuels in the lower and higher crude oil price periods

    International Nuclear Information System (INIS)

    Chang, Ting-Huan; Su, Hsin-Mei

    2010-01-01

    Various biofuels, including bioethanol and biodiesel are technologically being considered replacements for fossil fuels, such as the conventional gasoline and diesel. This paper aims to measure whether economic substitutability can be generated during periods of higher and/or lower prices of crude oil. The empirical results of the bivariate EGARCH model prove that this substitutive effect was occurred during the higher crude oil price period due to the significant price spillover effects from crude oil futures to corn and soybean futures, indicating that the increase in food prices can be attributed to more consumption of biofuels. We suggest more extensive research in the search for fuel alternatives from inedible feedstock such as pongamia, jojoba, jatropha, especially the 2nd generation biofuel technologies such as algae-based biofuels. (author)

  20. The substitutive effect of biofuels on fossil fuels in the lower and higher crude oil price periods

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ting-Huan [Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu County 310 (China); Department of Banking and Finance, Tamkang University, No.151, Ying-Chuan Road, Taipei County 251 (China); Su, Hsin-Mei [Department of Banking and Finance, Tamkang University, No.151, Ying-Chuan Road, Taipei County 251 (China)

    2010-07-15

    Various biofuels, including bioethanol and biodiesel are technologically being considered replacements for fossil fuels, such as the conventional gasoline and diesel. This paper aims to measure whether economic substitutability can be generated during periods of higher and/or lower prices of crude oil. The empirical results of the bivariate EGARCH model prove that this substitutive effect was occurred during the higher crude oil price period due to the significant price spillover effects from crude oil futures to corn and soybean futures, indicating that the increase in food prices can be attributed to more consumption of biofuels. We suggest more extensive research in the search for fuel alternatives from inedible feedstock such as pongamia, jojoba, jatropha, especially the 2nd generation biofuel technologies such as algae-based biofuels. (author)

  1. The external costs of electricity generation: a comparison of generation technologies

    Energy Technology Data Exchange (ETDEWEB)

    Ozdemiroglu, E [Economics for the Environment Consultancy, London (United Kingdom)

    1995-12-01

    from the United Kingdom, including the non-fossil fuel obligation, a system for encouraging energy generation from nuclear fuels and renewable resources. Section D discusses various strategies for internalizing external costs of conventional forms of energy, including emission taxes and tradable emission permits. (author) 10 refs, 5 tabs

  2. The external costs of electricity generation: a comparison of generation technologies

    International Nuclear Information System (INIS)

    Ozdemiroglu, E.

    1995-01-01

    from the United Kingdom, including the non-fossil fuel obligation, a system for encouraging energy generation from nuclear fuels and renewable resources. Section D discusses various strategies for internalizing external costs of conventional forms of energy, including emission taxes and tradable emission permits. (author)

  3. Centralized electricity generation in Africa

    International Nuclear Information System (INIS)

    Jaujay, J.

    2000-01-01

    In Africa, over 90 per cent of the suburban and rural populations do not have access to electricity, even if it represents the engine and consequence of change on the continent. A global approach represents the best way to meet the extensive needs of the continent. The author briefly reviewed the recent projects implemented in Africa to meet the increasing demand. Diesel generators were used to satisfy demand in small electrical sectors (less than 1000 MW), hydroelectricity or combustion turbines were used for medium electrical sectors (1000 to 5000 MW). A discussion of the technologies followed, touching on diesel electric stations and combustion turbines. Both methods meet environmental standards as they apply to emission control and noise control. The choice between the two technologies must be based on required unit power, site isolation, access to gas, and the cost of available combustibles. Hydroelectric power has great potential in the sub-Sahara region, and the challenges faced by each project are similar: difficulty in finding the required financing, meeting the environmental constraints, and the distribution of the energy. A modular nuclear reactor project for the generation of electricity is being developed by ESKOM Enterprises, in association with the British Nuclear Fuel Limited and PECCO and progress will be closely monitored. Decision makers must ensure that appropriate decisions are made in a reasonable time frame to allow sufficient time to develop a project to implementation. Demand requirements must be examined closely, technology adequately selected in order to come up with a financing plan. 4 tabs

  4. The generation mix in the Spanish electric system: factors affecting its evolution

    International Nuclear Information System (INIS)

    Chiarri, A.

    2009-01-01

    Currently while dealing with the electricity generation mix issue, the three pillars it is based on must be considered: sustain ability, security of supply and economic competitiveness. The two main sustain ability challenges that directly affect the future generation mix for the next decade is the development of the renewable sources and the reduction of the greenhouse gas emissions. This will cause an important increase of renewable and that the electricity system should be prepared for other low-carbon technologies such as nuclear and carbon capture and storage applied to fossil fuel plants. Regarding the security of supply, there is an increasing need to improve it. This can be achieved mainly through two actions: increase the self-sufficiency in primary energy and/or improve the diversification of the primary energy sources and of the origin such sources. finally it is also important to achieve and efficient investment system. In order to attain this goal, there is a need for a stable regulatory framework that should be the base for a real price for electricity. In order to fulfill all these requirements there is a need to keep all the options open, and also, to prepare the system to face the changes that are on sight. (Author) 8 refs

  5. Biomass gasification for electricity generation with internal combustion engines. Process efficiency

    International Nuclear Information System (INIS)

    Lesme-Jaén, René; Garcia Faure, Luis; Recio Recio, Angel; Oliva Ruiz, Luis; Pajarín Rodríguez, Juan; Revilla Suarez, Dennis

    2015-01-01

    Biomass is a renewable source of energy worldwide increased prospects for its potential and its lower environmental impact compared to fossil fuels. By processes and energy conversion technologies it is possible to obtain fuels in solid, liquid and gaseous form from any biomass. The biomass gasification is the thermal conversion thereof into a gas, which can be used for electricity production with the use of internal combustion engines with a certain level of efficiency, which depends on the characteristics of biomass and engines used. In this work the evaluation of thermal and overall efficiency of the gasification in Integrated Forestry Enterprise of Santiago de Cuba, designed to generate electricity from waste from the forest industry is presented. Is a downdraft gasifier reactor, COMBO-80 model and engine manufacturing Hindu (diesel) model Leyland modified to work with producer gas. The evaluation was carried out for different loads (electric power generated) engine from experimental measurements of flow and composition of the gas supplied to the engine. The results show that the motor operates with a thermal efficiency in the range of 20-32% with an overall efficiency between 12-25%. (full text)

  6. The Hestia Project: High Spatial Resolution Fossil Fuel Carbon Dioxide Emissions Quantification at Hourly Scale in Indianapolis, USA

    Science.gov (United States)

    Zhou, Y.; Gurney, K. R.

    2009-12-01

    In order to advance the scientific understanding of carbon exchange with the land surface and contribute to sound, quantitatively-based U.S. climate change policy interests, quantification of greenhouse gases emissions drivers at fine spatial and temporal scales is essential. Quantification of fossil fuel CO2 emissions, the primary greenhouse gases, has become a key component to cost-effective CO2 emissions mitigation options and a carbon trading system. Called the ‘Hestia Project’, this pilot study generated CO2 emissions down to high spatial resolution and hourly scale for the greater Indianapolis region in the USA through the use of air quality and traffic monitoring data, remote sensing, GIS, and building energy modeling. The CO2 emissions were constructed from three data source categories: area, point, and mobile. For the area source emissions, we developed an energy consumption model using DOE/EIA survey data on building characteristics and energy consumption. With the Vulcan Project’s county-level CO2 emissions and simulated building energy consumption, we quantified the CO2 emissions for each individual building by allocating Vulcan emissions to roughly 50,000 structures in Indianapolis. The temporal pattern of CO2 emissions in each individual building was developed based on temporal patterns of energy consumption. The point sources emissions were derived from the EPA National Emissions Inventory data and effluent monitoring of electricity producing facilities. The mobile source CO2 emissions were estimated at the month/county scale using the Mobile6 combustion model and the National Mobile Inventory Model database. The month/county scale mobile source CO2 emissions were downscaled to the “native” spatial resolution of road segments every hour using a GIS road atlas and traffic monitoring data. The result is shown in Figure 1. The resulting urban-scale inventory can serve as a baseline of current CO2 emissions and should be of immediate use to

  7. Electromechanically generating electricity with a gapped-graphene electric generator

    Science.gov (United States)

    Dressen, Donald; Golovchenko, Jene

    2015-03-01

    We demonstrate the fabrication and operation of a gapped-graphene electric generator (G-GEG) device. The G-GEG generates electricity from the mechanical oscillation of droplets of electrolytes and ionic liquids. The spontaneous adsorption of ionic species on graphene charges opposing electric double-layer capacitors (EDLCs) on each half of the device. Modulating the area of contact between the droplet and graphene leads to adsorption/desorption of ions, effectively charging/discharging each EDLC and generating a current. The flow of current supports a potential difference across the G-GEG due to the device's internal impedance. Both the magnitude and polarity of the induced current and voltage show a strong dependence on the type of ionic species used, suggesting that certain ions interact more strongly with graphene than others. We find that a simple model circuit consisting of an AC current source in series with a resistor and a time-varying capacitor accurately predicts the device's dynamic behavior. Additionally, we discuss the effect of graphene's intrinsic quantum capacitance on the G-GEG's performance and speculate on the utility of the device in the context of energy harvesting.

  8. Towards a Future of District Heating Systems with Low-Temperature Operation together with Non-Fossil Fuel Heat Sources

    DEFF Research Database (Denmark)

    Tol, Hakan; Dinçer, Ibrahim; Svendsen, Svend

    2012-01-01

    This study focused on investigation of non-fossil fuel heat sources to be supplied to low-energy district heating systems operating in low temperature such as 55 C and 25 C in terms of, respectively, supply and return. Vast variety of heat sources classed in categories such as fossil fuel...

  9. A new evaluation of the uncertainty associated with CDIAC estimates of fossil fuel carbon dioxide emission

    Directory of Open Access Journals (Sweden)

    Robert J. Andres

    2014-07-01

    Full Text Available Three uncertainty assessments associated with the global total of carbon dioxide emitted from fossil fuel use and cement production are presented. Each assessment has its own strengths and weaknesses and none give a full uncertainty assessment of the emission estimates. This approach grew out of the lack of independent measurements at the spatial and temporal scales of interest. Issues of dependent and independent data are considered as well as the temporal and spatial relationships of the data. The result is a multifaceted examination of the uncertainty associated with fossil fuel carbon dioxide emission estimates. The three assessments collectively give a range that spans from 1.0 to 13% (2 σ. Greatly simplifying the assessments give a global fossil fuel carbon dioxide uncertainty value of 8.4% (2 σ. In the largest context presented, the determination of fossil fuel emission uncertainty is important for a better understanding of the global carbon cycle and its implications for the physical, economic and political world.

  10. Time-dependent climate benefits of using forest residues to substitute fossil fuels

    International Nuclear Information System (INIS)

    Sathre, Roger; Gustavsson, Leif

    2011-01-01

    In this study we analyze and compare the climate impacts from the recovery, transport and combustion of forest residues (harvest slash and stumps), versus the climate impacts that would have occurred if the residues were left in the forest and fossil fuels used instead. We use cumulative radiative forcing (CRF) as an indicator of climate impacts, and we explicitly consider the temporal dynamics of atmospheric carbon dioxide and biomass decomposition. Over a 240-year period, we find that CRF is significantly reduced when forest residues are used instead of fossil fuels. The type of fossil fuel replaced is important, with coal replacement giving the greatest CRF reduction. Replacing oil and fossil gas also gives long-term CRF reduction, although CRF is positive during the first 10-25 years when these fuels are replaced. Biomass productivity is also important, with more productive forests giving greater CRF reduction per hectare. The decay rate for biomass left in the forest is found to be less significant. Fossil energy inputs for biomass recovery and transport have very little impact on CRF. -- Highlights: → Cumulative radiative forcing (CRF) can measure climate impacts of dynamic systems. → Climate impact is reduced when forest slash and stumps are used to replace fossil fuels. → Forest biofuels may cause short-term climate impact, followed by long-term climate benefit. → Forest residues should replace coal to avoid short-term climate impact. → Fossil energy used for biofuel recovery and transport has very little climate impact.

  11. Comprehensive exergetic and economic comparison of PWR and hybrid fossil fuel-PWR power plants

    International Nuclear Information System (INIS)

    Sayyaadi, Hoseyn; Sabzaligol, Tooraj

    2010-01-01

    A typical 1000 MW Pressurized Water Reactor (PWR) nuclear power plant and two similar hybrid 1000 MW PWR plants operate with natural gas and coal fired fossil fuel superheater-economizers (Hybrid PWR-Fossil fuel plants) are compared exergetically and economically. Comparison is performed based on energetic and economic features of three systems. In order to compare system at their optimum operating point, three workable base case systems including the conventional PWR, and gas and coal fired hybrid PWR-Fossil fuel power plants considered and optimized in exergetic and exergoeconomic optimization scenarios, separately. The thermodynamic modeling of three systems is performed based on energy and exergy analyses, while an economic model is developed according to the exergoeconomic analysis and Total Revenue Requirement (TRR) method. The objective functions based on exergetic and exergoeconomic analyses are developed. The exergetic and exergoeconomic optimizations are performed using the Genetic Algorithm (GA). Energetic and economic features of exergetic and exergoeconomic optimized conventional PWR and gas and coal fired Hybrid PWR-Fossil fuel power plants are compared and discussed comprehensively.

  12. Workshop on an Assessment of Gas-Side Fouling in Fossil Fuel Exhaust Environments

    Science.gov (United States)

    Marner, W. J. (Editor); Webb, R. L. (Editor)

    1982-01-01

    The state of the art of gas side fouling in fossil fuel exhaust environments was assessed. Heat recovery applications were emphasized. The deleterious effects of gas side fouling including increased energy consumption, increased material losses, and loss of production were identified.

  13. Subsidy regulation in WTO Law : Some implications for fossil fuels and renewable energy

    NARCIS (Netherlands)

    Marhold, Anna

    2016-01-01

    This contribution discusses WTO subsidies disciplines in the context of the energy sector. After laying out the relevant disciplines, it will discuss the paradox of WTO law with respect to subsidies towards fossil fuels vis-à-vis those towards renewable energy. It is clear that subsidies on clean

  14. Impact of fossil fuel emissions on atmospheric radiocarbon and various applications of radiocarbon over this century.

    Science.gov (United States)

    Graven, Heather D

    2015-08-04

    Radiocarbon analyses are commonly used in a broad range of fields, including earth science, archaeology, forgery detection, isotope forensics, and physiology. Many applications are sensitive to the radiocarbon ((14)C) content of atmospheric CO2, which has varied since 1890 as a result of nuclear weapons testing, fossil fuel emissions, and CO2 cycling between atmospheric, oceanic, and terrestrial carbon reservoirs. Over this century, the ratio (14)C/C in atmospheric CO2 (Δ(14)CO2) will be determined by the amount of fossil fuel combustion, which decreases Δ(14)CO2 because fossil fuels have lost all (14)C from radioactive decay. Simulations of Δ(14)CO2 using the emission scenarios from the Intergovernmental Panel on Climate Change Fifth Assessment Report, the Representative Concentration Pathways, indicate that ambitious emission reductions could sustain Δ(14)CO2 near the preindustrial level of 0‰ through 2100, whereas "business-as-usual" emissions will reduce Δ(14)CO2 to -250‰, equivalent to the depletion expected from over 2,000 y of radioactive decay. Given current emissions trends, fossil fuel emission-driven artificial "aging" of the atmosphere is likely to occur much faster and with a larger magnitude than previously expected. This finding