WorldWideScience

Sample records for fossil plant life

  1. Life cycle inventories for bioenergy and fossil-fuel fired cogeneration plants

    International Nuclear Information System (INIS)

    Braennstroem-Norberg, B.M.; Dethlefsen, U.

    1998-06-01

    Life-cycle inventories for heat production from forest fuel, Salix, coal and oil are presented. Data from the Oerebro cogeneration plant are used for the bioenergy and coal cycles, whereas the oil-fired cycle is based on a fictive plant producing 53 MW electricity and 106 MW heat, also located in the town of Oerebro. This life cycle analysis only covers the inventory stage. A complete life cycle analysis also includes an environmental impact assessment. The methods for assessing environmental impact are still being developed and thus this phase has been omitted here. The intention is, instead, to provide an overall perspective of where in the chain the greatest environmental load for each fuel can be found. Production and energy conversion of fuel requires energy, which is often obtained from fossil fuel. This input energy corresponds to about 11% of the extracted amount of energy for oil, 9% for coal, 6% for Salix, whereas it is about 4% for forest fuel. Utilization of fossil fuel in the coal cycle amounts to production of electricity using coal condensation intended for train transports within Poland. In a life cycle perspective, biofuels show 20-30 times lower emissions of greenhouse gases in comparison with fossil fuels. The chains for biofuels also give considerably lower SO 2 emissions than the chains for coal and oil. The coal chain shows about 50% higher NO x emission than the other fuels. Finally, the study illustrates that emission of particles are similar for all sources of energy. The biofuel cycle is assessed to be generally applicable to plants of similar type and size and with similar transport distances. The oil cycle is probably applicable to small-scale cogeneration plants. However, at present there are no cogeneration plants in Sweden that are solely fired with oil. In the case of the coal cycle, deep mining and a relatively long transport distance within Poland have been assumed. If the coal mining had been from open-cast mines, and if the

  2. Life extension for fossil power plants: The EPRI [Electric Power Research Institute] strategy

    International Nuclear Information System (INIS)

    Byron, J.; Dooley, B.

    1988-01-01

    Fossil fuel-fired generating plants have traditionally been built under the assumption of an economic life of 20-30 years. Due to low load growth, escalating interest rates and costs of construction, and increasing regulation, great interest is expressed in retaining these units in service for 50-60 years or longer. Life extension activities are part of an ongoing process that continues throughout the extended lives of a utility's units. The process begins with an initial evaluation of life extension as a generation alternative, resulting in a ranking of units for life extension and a prioritization of components for evaluation. As the process continues, more detailed inspection data are created by a three-level approach, as well as a means for collecting, organizing and scheduling the information. This is implemented through the Integrated Life Extension Management (ILEM) model. This model provides information needed for management decision making such as component performance on unit power rating, availability of components on unit availability, component performance on unit availability and overall costs of the life extension tasks. Risks involved in life extension include the initial unavailability of capacity credits, uncertainty as to the level of availability that can be achieved by the life-extended plant, and uncertainties in environmental compliance. 8 refs., 1 fig., 2 tabs

  3. POPCYCLE: a computer code for calculating nuclear and fossil plant levelized life-cycle power costs

    International Nuclear Information System (INIS)

    Hardie, R.W.

    1982-02-01

    POPCYCLE, a computer code designed to calculate levelized life-cycle power costs for nuclear and fossil electrical generating plants is described. Included are (1) derivations of the equations and a discussion of the methodology used by POPCYCLE, (2) a description of the input required by the code, (3) a listing of the input for a sample case, and (4) the output for a sample case

  4. Life cycle GHG assessment of fossil fuel power plants with carbon capture and storage

    International Nuclear Information System (INIS)

    Odeh, Naser A.; Cockerill, Timothy T.

    2008-01-01

    The evaluation of life cycle greenhouse gas emissions from power generation with carbon capture and storage (CCS) is a critical factor in energy and policy analysis. The current paper examines life cycle emissions from three types of fossil-fuel-based power plants, namely supercritical pulverized coal (super-PC), natural gas combined cycle (NGCC) and integrated gasification combined cycle (IGCC), with and without CCS. Results show that, for a 90% CO 2 capture efficiency, life cycle GHG emissions are reduced by 75-84% depending on what technology is used. With GHG emissions less than 170 g/kWh, IGCC technology is found to be favorable to NGCC with CCS. Sensitivity analysis reveals that, for coal power plants, varying the CO 2 capture efficiency and the coal transport distance has a more pronounced effect on life cycle GHG emissions than changing the length of CO 2 transport pipeline. Finally, it is concluded from the current study that while the global warming potential is reduced when MEA-based CO 2 capture is employed, the increase in other air pollutants such as NO x and NH 3 leads to higher eutrophication and acidification potentials

  5. Fossil power plant automation

    International Nuclear Information System (INIS)

    Divakaruni, S.M.; Touchton, G.

    1991-01-01

    This paper elaborates on issues facing the utilities industry and seeks to address how new computer-based control and automation technologies resulting from recent microprocessor evolution, can improve fossil plant operations and maintenance. This in turn can assist utilities to emerge stronger from the challenges ahead. Many presentations at the first ISA/EPRI co-sponsored conference are targeted towards improving the use of computer and control systems in the fossil and nuclear power plants and we believe this to be the right forum to share our ideas

  6. Nuclear plant life extension

    International Nuclear Information System (INIS)

    Negin, C.A.

    1989-01-01

    The nuclear power industry's addressing of life extension is a natural trend in the maturation of this technology after 20 years of commercial operation. With increasing emphasis on how plants are operated, and less on how to build them, attention is turning on to maximizing the use of these substantial investments. The first studies of life extension were conducted in the period from 1978 and 1982. These were motivated by the initiation, by the Nuclear Regulatory Commission (NRC), of studies to support decommissioning rulemaking. The basic conclusions of those early studies that life extension is feasible and worth pursuing have not been changed by the much more extensive investigations that have since been conducted. From an engineering perspective, life extension for nuclear plants is fundamentally the same as for fossil plants

  7. Diagnosis and on-line displacement monitoring for critical pipe of fossil power plant

    Energy Technology Data Exchange (ETDEWEB)

    Heo, J. S.; Hyun, J. S. [Korea Electric Power Corporation, Seoul (Korea, Republic of); Heo, J. R.; Lee, S. K.; Cho, S. Y. [Korea South-East Power Co., Ltd., Seoul (Korea, Republic of)

    2009-07-01

    High temperature steam pipes of fossil power plant are subject to a severe thermal range and usually operates well into the creep range. Cyclic operation of the plant subjects the piping system to mechanical and thermal fatigue mechanisms and poor or malfunctional support assemblies can impose massive loads or stress onto the piping system. In order to prevent the serious damage and failure of the critical pipe system, various inspection methods such as visual inspection, computational analysis and on-line piping displacement monitoring were developed. 3-Dimensional piping displacement monitoring system was developed with using he aluminum alloy rod and rotary encoder type sensors, this system was installed and operated on the 'Y' fossil power plant successfully. It is expected that this study will contribute to the safety of piping system, which could minimize stress and extend the actual life of critical piping.

  8. U.S. National and regional impacts nuclear plant life extension

    International Nuclear Information System (INIS)

    Makovick, L.; Fletcher, T.; Harrison, D.L.

    1987-01-01

    The purpose of this study was to evaluate the economic impacts of nuclear plant life extension on a national and regional level. Nuclear generating capacity is expected to reach 104 Gigawatts (119 units) in the 1994-1995 period. Nuclear units of the 1970 to 1980 vintage are expected to account for 96% of nuclear capacity. As operating licenses expire, a precipitous decline in nuclear capacity results, with an average of 5 gigawatts of capacity lost each year from 2010 to 2030. Without life extension, 95% of all nuclear capacity is retired between the years 2010 and 2030. Even with historically slow growth in electric demand and extensive fossil plant life extension, the need for new generating capacity in the 2010-2030 time period is eight times greater than installed nuclear capacity. Nuclear plant life extension costs and benefits were quantified under numerous scenarios using the DRI Electricity Market Model. Under a wide range of economic assumptions and investment requirements, nuclear plant life extension resulted in a net benefit to electricity consumers. The major source of net benefits from nuclear plant life extension results from the displacement of fossil-fired generating sources. In the most likely case, nuclear plant life extension provides a dollar 200 billion net savings through the year 2030. Regions with a large nuclear capacity share, newer nuclear units and relatively higher costs of alternative fuels benefit the most from life extension. This paper also discusses the importance of regulatory policies on nuclear plant life extension

  9. Recognition of the Environmental Costs of Fossil Fuel Plants

    Directory of Open Access Journals (Sweden)

    Hakkı FINDIK

    2015-12-01

    Full Text Available Environment that is the natural residential area of live life is among the interests of the various sciences. Within the scope of accounting science, the concept of social awareness requires a social responsibility based approach and this causes some additional environmental costs emerged when interaction of business with their environment considered. In the Uniform Accounting Plan there exists a special account relating with monitoring, controlling and managing of environmental costs. This study deals with environmental accounting for enterprises and introduces determination and recognition of the environmental costs of fossil fuel plants that use coal as a fuel

  10. Oconee: Is life extension in the cards for plants of this vintage

    International Nuclear Information System (INIS)

    Killian, D.E.; Moore, K.E.; Tally, C.W.

    1986-01-01

    Recent nuclear-industry interest in plant life extension is prompted by the realization that the economics of plant life extension are clearly favorable. Studies sponsored by the Electric Power Research Institute (EPRI) show that replacing even the most costly nuclear components can easily be justified, if the life of the plant can be extended just a few years. This may not be apparent for the early, small plants, but its applicability to the larger plants that started to appear in the early 70s-such as the three 860-MW Oconee units-is hard to dispute. The large capital investment in the typical nuclear station and extensive decommissioning costs add impetus to life-extension efforts. The same is true for fossil plants, and they are being successfully refurbished to extend their operating lives. Refurbishment of a fossil plant is comparatively simple, however, especially with regard to licensing and environmental qualifications where recognized standards are already in place. In the case of nuclear plants, much work must be done before all the pertinent issues and alternatives are identified. Potentially conflicting objectives may require resolution before a utility makes long-term decisions about life extension. For example, a utility may decide to designate a plant to accommodate grid load swings. In the near term, this may be a logical choice. However, the long-term negative aspects of component thermal cycling should be considered, especially if plant life extension is deemed important

  11. Turbulence and fossil turbulence lead to life in the universe

    International Nuclear Information System (INIS)

    Gibson, Carl H

    2013-01-01

    Turbulence is defined as an eddy-like state of fluid motion where the inertial-vortex forces of the eddies are larger than all the other forces that tend to damp the eddies out. Fossil turbulence is a perturbation produced by turbulence that persists after the fluid ceases to be turbulent at the scale of the perturbation. Because vorticity is produced at small scales, turbulence must cascade from small scales to large, providing a consistent physical basis for Kolmogorovian universal similarity laws. Oceanic and astrophysical mixing and diffusion are dominated by fossil turbulence and fossil turbulent waves. Observations from space telescopes show turbulence and vorticity existed in the beginning of the universe and that their fossils persist. Fossils of big bang turbulence include spin and the dark matter of galaxies: clumps of ∼10 12 frozen hydrogen planets that make globular star clusters as seen by infrared and microwave space telescopes. When the planets were hot gas, they hosted the formation of life in a cosmic soup of hot-water oceans as they merged to form the first stars and chemicals. Because spontaneous life formation according to the standard cosmological model is virtually impossible, the existence of life falsifies the standard cosmological model. (paper)

  12. Adaptation, plant evolution, and the fossil record

    Science.gov (United States)

    Knoll, A. H.; Niklas, K. J.

    1987-01-01

    The importance of adaptation in determining patterns of evolution has become an important focus of debate in evolutionary biology. As it pertains to paleobotany, the issue is whether or not adaptive evolution mediated by natural selection is sufficient to explain the stratigraphic distributions of taxa and character states observed in the plant fossil record. One means of addressing this question is the functional evaluation of stratigraphic series of plant organs set in the context of paleoenvironmental change and temporal patterns of floral composition within environments. For certain organ systems, quantitative estimates of biophysical performance can be made on the basis of structures preserved in the fossil record. Performance estimates for plants separated in time or space can be compared directly. Implicit in different hypotheses of the forces that shape the evolutionary record (e.g. adaptation, mass extinction, rapid environmental change, chance) are predictions about stratigraphic and paleoenvironmental trends in the efficacy of functional performance. Existing data suggest that following the evolution of a significant structural innovation, adaptation for improved functional performance can be a major determinant of evolutionary changes in plants; however, there are structural and development limits to functional improvement, and once these are reached, the structure in question may no longer figure strongly in selection until and unless a new innovation evolves. The Silurian-Devonian paleobotanical record is consistent with the hypothesis that the succession of lowland floodplain dominants preserved in the fossil record of this interval was determined principally by the repeated evolution of new taxa that rose to ecological importance because of competitive advantages conferred by improved biophysical performance. This does not seem to be equally true for Carboniferous-Jurassic dominants of swamp and lowland floodplain environments. In these cases

  13. [Lipids from fossil plants and their relation to modern plants. Example s of Cenomanian flora from Anjou and Bohemia].

    Science.gov (United States)

    Thanh, T N; Derenne, S; Largeau, C; Pons, D; Broutin, J; Mariotti, A; Bocherens, H

    2000-01-01

    Comparative analyses of lipids from fossil plants and from their extant counterparts were undertaken in order to test the taxonomic significance of lipids in palaeobotany. The comparison between lipids from a fossil Ginkgoaceae, Eretmophyllum andegavense, and its extant counterpart, Ginkgo biloba, revealed the presence of original molecules, dimethoxyalkylcoumarins, in lipids from both plants. Such compounds confirm, on chemical grounds the relationship between these extant and fossil Ginkgoaceaes. Moreover, differences in n-alkane distribution between E. andegavense and E. obtusum which are very similar morphologically, confirm that these fossil plants do not belong to the same species. Furthermore, comparative analyses of a fossil Cheirolepidiaceae, Frenelopsis alata, and its extant counterpart, the Cupressaceae Tetraclinis articulata, revealed some similarities between these two species although they do not belong to the same family. Otherwise, comparative analyses of fungi-infected and uninfected samples of F. alata demonstrated that these micro-organisms can significantly affect the chemical composition of fossil plant lipids. In conclusion, even if chemical analyses alone are not sufficient to determine the genus or species of a given fossil plant, they can precise the taxonomy of some specimens that have been previously studied by palaeobotanists.

  14. Life cycle inventory analysis of fossil energies in Japan

    International Nuclear Information System (INIS)

    Yoon Sungyee; Yamada, Tatsuya

    1999-01-01

    Given growing concerns over global warming problems in recent years, a matter of great importance has been to grasp GHG emissions from fossil energy use as accurately as possible by figuring out how much GHGs result from a life cycle (production, transportation and consumption) of various fossil energies. The objective of this study is to make a life cycle inventory (LCI) analysis of major fossil energies (coal, oil, LNG, LPG) consumed in Japan pursuant to ISO 14040. On these fossil energies imported to Japan in 1997, LCI analysis results of GHG emissions (specifically carbon dioxide and methane) put CO 2 intensity during their combustion stage (gross heat value basis) at 100:121:138:179 among LNG:LPG:oil:coal. But, in life cycle terms, the ratios turned to be 100:110:120:154. The world average (gross heat value basis) gained from IPCC data, among others, puts the ratios among LNG:LPG:oil:coal at 100:105:110:151. In comparison, our study that focused on Japan found their corresponding figures at 100:110:120:154. COP 3 set forth country-by-country targets. Yet, global warming, that is a worldwide problem, also requires a more comprehensive assessment based on a life cycle analysis (LCA). The estimation results of our study can be of some help in shaping some criteria when considering energy and environmental policies from a global viewpoint. In addition, our study results suggest the importance of the best energy mix that is endorsed by LCI analysis results, if global warming abatement efforts should successfully be in advance. As specific institutional designs of Kyoto Mechanism are currently under examination, the introduction of LCI method deserves to be considered in discussing the baseline issue of joint implementation and clean development mechanism. In the days ahead, by gathering and analysing detailed-ever data, and through fossil-energy LCA by use, we had better consider supply and demand of the right energies in the right uses. (author)

  15. Revisiting the origin and diversification of vascular plants through a comprehensive Bayesian analysis of the fossil record.

    Science.gov (United States)

    Silvestro, Daniele; Cascales-Miñana, Borja; Bacon, Christine D; Antonelli, Alexandre

    2015-07-01

    Plants have a long evolutionary history, during which mass extinction events dramatically affected Earth's ecosystems and its biodiversity. The fossil record can shed light on the diversification dynamics of plant life and reveal how changes in the origination-extinction balance have contributed to shaping the current flora. We use a novel Bayesian approach to estimate origination and extinction rates in plants throughout their history. We focus on the effect of the 'Big Five' mass extinctions and on estimating the timing of origin of vascular plants, seed plants and angiosperms. Our analyses show that plant diversification is characterized by several shifts in origination and extinction rates, often matching the most important geological boundaries. The estimated origin of major plant clades predates the oldest macrofossils when considering the uncertainties associated with the fossil record and the preservation process. Our findings show that the commonly recognized mass extinctions have affected each plant group differently and that phases of high extinction often coincided with major floral turnovers. For instance, after the Cretaceous-Paleogene boundary we infer negligible shifts in diversification of nonflowering seed plants, but find significantly decreased extinction in spore-bearing plants and increased origination rates in angiosperms, contributing to their current ecological and evolutionary dominance. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  16. Paleoclimate from fossil plants and application to the early Cenozoic Rocky Mountains

    Science.gov (United States)

    Wing, S. L.

    2011-12-01

    Wladimir Köppen called vegetation "crystallized, visible climate," and his metaphor encouraged paleobotanists to climb the chain of inference from fossil plants to paleovegetation to paleoclimate. Inferring paleovegetation from fossils has turned out to be very difficult, however, and today most paleobotanical methods for inferring paleoclimate do not try to reconstruct paleovegetation as a first step. Three major approaches are widely use to infer paleoclimate from plant fossils: 1) phylogenetic inferences rely on the climatic distributions of extant relatives of fossils, 2) morphological inferences use present-day correlations of climate with plant morphology (e.g, leaf shape, wood anatomy), and 3) chemical inferences rely on correlations between climate and the stable isotopic composition of plants or organic compounds. Each approach makes assumptions that are hard to verify. Phylogenetic inference depends on accurate identification of fossils, and also assumes that evolution and/or extinction has not shifted the climatic distributions of plant lineages through time. On average this assumption is less valid for older time periods, but probably it is not radically wrong for the early Cenozoic. Morphological approaches don't require taxonomic identification of plant fossils, but do assume that correlations between plant form and climate have been constant over time. This assumption is bolstered if the ecophysiological cause of the morphology-climate correlation is well understood, but often it isn't. Stable isotopic approaches assume that present-day correlations between isotopic composition and climate apply to the past. Commonly the chemical and physiological mechanisms responsible for the correlation are moderately well known, but often the variation among different taxonomic and functional groups of plants is poorly characterized. In spite of limitations and uncertainties on all methods for inferring paleoclimate from fossil plants, broad patterns emerge from

  17. East-Asia nuclear/fossil power plant competitiveness

    International Nuclear Information System (INIS)

    Braun, Ch.

    1996-01-01

    The competitiveness of a new nuclear plant vs. a new oil or gas fired combined cycle plant or a coal fired plant in East-Asia, is reviewed in the paper. Both the nuclear and the fossil fired plants are evaluated as either utility financed or independent power producer (IPP) financed. Two types of advanced light water reactors (ALWRs) are considered in this paper, namely evolutionary ALWRs (1200 MWe size) and passive ALWRs (600 MWe class). A range of capital and total generation costs for each plant type is reported here. The comparison centers on three elements of overall competitiveness: generation costs, hard currency requirements, and employment requirements. Each of these aspects is considered perspective. Year-by-Year generation cost history over the plant lifetime is shown in some cases. It is found here that a utility financed evolutionary and passive ALWRs are broadly competitive with an IPP financed gas fired combined cycle plant and are more economic than oil fired combined cycle or a coal fired plant. A single unit evolutionary ALWR may have a 12 - 15 % capital cost advantage over a single passive ALWR then adjusted on a per KWe basis. Front-end hard currency requirements of a passive ALWR are 2.5 times higher than for a combined plant and evolutionary ALWRs requires 3.6 times higher up-front cost. However, on a lifetime basis, passive ALWR net hard currency requirements are two times lower than for a combined cycle plant. Evolutionary ALWR net hard currency requirements are three times over than those of a combined cycle plant. The effects of domestic vs. world price of fossil fuels on relative nuclear competitiveness are reviewed in this nuclear competitiveness paper. Employment requirements in an ALWR during both the construction period and lifetime operation, exceed the requirements for oil or gas fired plants by a factor of five. While contributing to overall plant cost, employment requirements can also be viewed as opportunity to increase national

  18. A study on the development of a expert system for diagnosing fossil power plants

    International Nuclear Information System (INIS)

    Baik, Young Min; Jeong, Hee Don; Shin, Eun Ju

    2009-01-01

    In order to analyze the causes of fossil power plant facilities due to a degradation and corrosion, artificial degraded materials composed of the facilities were manufactured. Various experiment were performed based on mechanical test, microstructure observation, hardness test, Electrochemical Potentiokinetic Reactivation test (EPR) and corrosion scale thickness measurement test. The master curves were write out using Larson-Miller parameter to evaluate the degree of degradation with the above diagnosis methods. These data were applied to materials database of fossil power plant diagnosis. Finally expert system on the fossil power plant diagnosis was developed using the master curves and diagnosis algorithms.

  19. Fossil organic carbon in wastewater and its fate in treatment plants.

    Science.gov (United States)

    Law, Yingyu; Jacobsen, Geraldine E; Smith, Andrew M; Yuan, Zhiguo; Lant, Paul

    2013-09-15

    This study reports the presence of fossil organic carbon in wastewater and its fate in wastewater treatment plants. The findings pinpoint the inaccuracy of current greenhouse gas accounting guidelines which defines all organic carbon in wastewater to be of biogenic origin. Stable and radiocarbon isotopes ((13)C and (14)C) were measured throughout the process train in four municipal wastewater treatment plants equipped with secondary activated sludge treatment. Isotopic mass balance analyses indicate that 4-14% of influent total organic carbon (TOC) is of fossil origin with concentrations between 6 and 35 mg/L; 88-98% of this is removed from the wastewater. The TOC mass balance analysis suggests that 39-65% of the fossil organic carbon from the influent is incorporated into the activated sludge through adsorption or from cell assimilation while 29-50% is likely transformed to carbon dioxide (CO2) during secondary treatment. The fossil organic carbon fraction in the sludge undergoes further biodegradation during anaerobic digestion with a 12% decrease in mass. 1.4-6.3% of the influent TOC consists of both biogenic and fossil carbon is estimated to be emitted as fossil CO2 from activated sludge treatment alone. The results suggest that current greenhouse gas accounting guidelines, which assume that all CO2 emission from wastewater is biogenic may lead to underestimation of emissions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Comprehensive exergetic and economic comparison of PWR and hybrid fossil fuel-PWR power plants

    International Nuclear Information System (INIS)

    Sayyaadi, Hoseyn; Sabzaligol, Tooraj

    2010-01-01

    A typical 1000 MW Pressurized Water Reactor (PWR) nuclear power plant and two similar hybrid 1000 MW PWR plants operate with natural gas and coal fired fossil fuel superheater-economizers (Hybrid PWR-Fossil fuel plants) are compared exergetically and economically. Comparison is performed based on energetic and economic features of three systems. In order to compare system at their optimum operating point, three workable base case systems including the conventional PWR, and gas and coal fired hybrid PWR-Fossil fuel power plants considered and optimized in exergetic and exergoeconomic optimization scenarios, separately. The thermodynamic modeling of three systems is performed based on energy and exergy analyses, while an economic model is developed according to the exergoeconomic analysis and Total Revenue Requirement (TRR) method. The objective functions based on exergetic and exergoeconomic analyses are developed. The exergetic and exergoeconomic optimizations are performed using the Genetic Algorithm (GA). Energetic and economic features of exergetic and exergoeconomic optimized conventional PWR and gas and coal fired Hybrid PWR-Fossil fuel power plants are compared and discussed comprehensively.

  1. Advanced fission and fossil plant economics-implications for fusion

    International Nuclear Information System (INIS)

    Delene, J.G.

    1994-01-01

    In order for fusion energy to be a viable option for electric power generation, it must either directly compete with future alternatives or serve as a reasonable backup if the alternatives become unacceptable. This paper discusses projected costs for the most likely competitors with fusion power for baseload electric capacity and what these costs imply for fusion economics. The competitors examined include advanced nuclear fission and advanced fossil-fired plants. The projected costs and their basis are discussed. The estimates for these technologies are compared with cost estimates for magnetic and inertial confinement fusion plants. The conclusion of the analysis is that fusion faces formidable economic competition. Although the cost level for fusion appears greater than that for fission or fossil, the costs are not so high as to preclude fusion's potential competitiveness

  2. Limiting conditions for nuclear power plant competitiveness vs. fossil and wind plants

    International Nuclear Information System (INIS)

    Feretic, Danilo; Cavlina, Nikola

    2010-01-01

    The aim of this paper is to compare potential energy options for future electricity generation. The paper considers comparison of discounted total cost of electricity generated by nuclear power plant and by combined natural gas and wind plants, having in total equal electricity generation. Large uncertainty in the future fuel costs makes planning of optimal power generating mix very difficult to justify. Probabilistic method is used in the analysis which allows inclusion of uncertainties in future electricity generating cost prediction. Additionally, an informative functional relation between nuclear plant investment cost, natural gas price and wind plant efficiency, that determines competitive power generation between considered options, is also shown. Limiting conditions for nuclear power plant competitiveness vs. fossil and wind plants are presented. (authors)

  3. Fossil fuel-fired power generation. Case studies of recently constructed coal- and gas-fired plants

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, C. [IEA Clean Coal Centre, London (United Kingdom)

    2007-10-23

    To meet future energy demand growth and replace older or inefficient units, a large number of fossil fuel-fired plants will be required to be built worldwide in the next decade. Yet CO{sub 2} emissions from fossil-fired power generation are a major contributor to climate change. As a result, new plants must be designed and operated at highest efficiency both to reduce CO{sub 2} emissions and to facilitate deployment of CO{sub 2} capture and storage in the future. The series of case studies in this report, which respond to a request to the IEA from the G8 Summit in July 2005, were conducted to illustrate what efficiency is achieved now in modern plants in different parts of the world using different grades of fossil fuels. The plants were selected from different geographical areas, because local factors influence attainable efficiency. The case studies include pulverized coal combustion (PCC) with both subcritical and supercritical (very high pressure and temperature) steam turbine cycles, a review of current and future applications of coal-fuelled integrated gasification combined cycle plants (IGCC), and a case study of a natural gas fired combined cycle plant to facilitate comparisons. The results of these analyses show that the technologies for high efficiency (low CO{sub 2} emission) and very low conventional pollutant emissions (particulates, SO{sub 2}, NOx) from fossil fuel-fired power generation are available now through PCC, IGCC or NGCC at commercially acceptable cost. This report contains comprehensive technical and indicative cost information for modern fossil fuel-fired plants that was previously unavailable. It serves as a valuable sourcebook for policy makers and technical decision makers contemplating decisions to build new fossil fuel-fired power generation plants.

  4. Life cycle analysis of photovoltaic cell and wind power plants

    International Nuclear Information System (INIS)

    Uchiyama, Yohji

    1997-01-01

    The paper presents life cycle analyses of net energy and CO 2 emissions on photovoltaic cell and wind power generation plants. Energy requirements associated with a plant are estimated for producing materials, manufacturing equipment, constructing facilities, acid operating plants. Energy ratio and net supplied energy are calculated by the process energy analysis that examines the entire energy inventory of input and output during life time of a plant. Life cycle CO 2 emission can also be calculated from the energy requirements obtained by the net energy analysis. The emission also includes greenhouse effect equivalent to CO 2 emission of methane gas leakage at a mining as well as CO 2 emissions from fossil fuel combustion during generating electricity, natural gas treatment at an extracting well and cement production in industry. The commercially available and future-commercial technologies are dealt with in the study. Regarding PV technologies, two different kinds of installation are investigated; roof-top typed installation of residential houses and ground installation of electric utilities. (author)

  5. Technical considerations in repowering a nuclear plant for fossil fueled operation

    International Nuclear Information System (INIS)

    Patti, F.J.

    1996-01-01

    Repowering involves replacement of the reactor by a fossil fuel source of steam. This source can be a conventional fossil fueled boiler or the heat recovery steam generator (HRSG) on a gas turbine exhaust. The existing steam turbine plant is used to the extent possible. Alternative fuels for repowering a nuclear plant are coal, natural gas and oil. In today's world oil is not usually an alternative. Selection of coal or natural gas is largely a matter of availability of the fuel near the location of the plant. Both the fossil boiler and the HRSG produce steam at higher pressures and temperatures than the throttle conditions for a saturated steam nuclear turbine. It is necessary to match the steam conditions from the new source to the existing turbine as closely as possible. Technical approaches to achieve a match range from using a topping turbine at the front end of the cycle to attemperation of the throttle steam with feedwater. The electrical output from the repowered plant is usually greater than that of the original nuclear fueled design. This requires consideration of the ability to use the excess electricity. Interfacing of the new facility with the existing turbine plant requires consideration of facility layout and design. Site factors must also be considered, especially for a coal fired boiler, since rail and coal handling facilities must be added to a site for which these were not considered. Additional site factors that require consideration are ash handling and disposal

  6. The importance of fossil-fired power plants for the future energy supply

    International Nuclear Information System (INIS)

    Czychon, K.H.

    2013-01-01

    In response to the nuclear disaster in Fukushima and the phasing out of nuclear energy in Germany which is planned up to the year 2022, in addition to the already decommissioned nuclear power plants, a further outage capacity of approximately 13 MW will result. Against the background of the unresolved storage problem, regardless of further expansion of the use of renewable energy sources, the need arises for additional fossil-fueled power plants, i.e. gas and coal power plants. The development of gas prices shows that a further expansion of the gas turbine power plants is limited for economic reasons. This leads to the consequence that the future coal-fired power plants are needed to produce electricity. To meet the requirements for a reduction of CO 2 emissions laws, new power plants must be built with increased efficiency compared to previous systems. In order to meet the challenges of future fossil fuel power plant generations, the Grosskraftwerk Mannheim (Large-scale Power Plant Mannheim) is involved in numerous research projects to increase efficiency, reduce harmful emissions and economic implementation of ambitious technologies.

  7. The effect of retrofitting Portuguese fossil fuel power plants with CCS

    International Nuclear Information System (INIS)

    Gerbelová, Hana; Versteeg, Peter; Ioakimidis, Christos S.; Ferrão, Paulo

    2013-01-01

    Highlights: ► A map of mainland Portugal with potential CO 2 source-sink matching was created. ► Four existing Portuguese power plants were simulated with and without CCS. ► Effect of CCS retrofit on performance and costs at each power plant was studied. ► The incremental COE was estimated at around 46 $/MW h for NGCC plants. ► The incremental COE was estimated at around 61 $/MW h for PC plants. -- Abstract: This work assesses the retrofit potential of existing Portuguese fossil fuel power plants with post-combustion CO 2 capture and storage (CCS) technology. The Integrated Environmental Control Model (IECM) was used to provide a systematic techno-economic analysis of the cost of emission control equipment, the reduction in greenhouse gas emissions, and other key parameters which may change when CCS is implemented at a fossil fuel power plant. The results indicate that CCS requires a large capital investment and significantly increases the levelized cost of electricity. However, the economic viability of CCS increases with higher CO 2 prices. The breakeven CO 2 price for plants with and without CCS was estimated at $85–$140/t of CO 2 depending on the technical parameters of the individual plants.

  8. Environmental impact of fossil fuel utilization in the thermal power plant

    International Nuclear Information System (INIS)

    Ghasem D Najafpour; Seyed Jafar Mehdizadeh; Abdul Rahman Mohamed

    2000-01-01

    Carbon dioxide causes green house effect, has been considered as a pollutant source of our safe environment. Since combustion of fossil fuel may create tremendous amount of carbon dioxide, detecting any pollutant sources would be important to eliminate the pollution sources. Evaluation of smoke dispersion that has been generated by a power plant utilizing fossil fuel is the objective of this paper. The concentration of NO, and SO, in the soil, have been analyzed from a distance of 3 to 4 km far from power plant. The experimental results shown. that the concentration of toxic gases was a little above the international standards. Replacement of fossil fuel by natural gas caused NO, concentration to be developed in the atmosphere, therefore usage of natural gas is limited by environmental protection agencies. Beside the nuclear power plant, the power generated by other sources. are limited. Electric power generated by water dam is not a major contribution of electric power demand. Therefore generation of electricity by any other energy sources, which are friendly to the environment, is recommended. Other sources of energy, such as wind power, solar energy, geothermal, ocean thennal and renewable source of energy can be considered safe for the environment. The goal of environmental management system would be to meet the minimum requirements were established and demanded by the local environmental protection agency or international standard organization (ISO-14000). (Author)

  9. A comparative study among fossil fuel power plants in PJM and California ISO by DEA environmental assessment

    International Nuclear Information System (INIS)

    Sueyoshi, Toshiyuki; Goto, Mika

    2013-01-01

    This study compares among fossil fuel power plants in PJM and California ISO by their unified (operational and environmental) performance. DEA (Data Envelopment Analysis) is used as a methodology. For comparative analysis, DEA incorporates strategic concepts such as natural and managerial disposability into the computational process. This study explores both how to measure Returns to Scale (RTS) under natural disposability and how to measure Damages to Scale (DTS) under managerial disposability. This empirical study obtains two implications on US energy policy. One of the two policy implications is that California ISO outperforms PJM in terms of the three unified efficiency measures. The result implies that strict regulation on undesirable outputs, as found in California, is important in enhancing the performance of US fossil fuel power plants. Thus, it is necessary for federal and local governments to regulate the fossil fuel power plants under the strict implementation of environmental protection. Under such a policy direction, it is possible for US fossil fuel power plants to attain economic prosperity (by enhancing their operational efficiencies) and to satisfy environmental regulation (by enhancing their environmental efficiencies). The other policy implication is that coal-fired and gas-fired power plants in PJM and California ISO need to reduce their operational sizes or introduce technology innovation on desirable and undesirable outputs and/or new management for environmental protection within their operations. Meanwhile, oil-fired power plants may increase their operational sizes if they can introduce technology innovation and new management on undesirable outputs. - Highlights: • This study compares fossil fuel power plants in PJM and California ISO. • California ISO outperforms PJM in terms of their unified efficiency measures. • Regulation by Clean Air Act is important for environmental protection. • Fossil fuel power plants need technology

  10. Proceedings of the 1978 symposium on instrumentation and control for fossil demonstration plants

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    The 1978 symposium on instrumentation and control for fossil demonstration plants was held at Newport Beach, California, June 19--21, 1978. It was sponsored by Argonne National Laboratory, the U.S. Department of Energy - Fossil Energy, and the Instrument Society of America - Orange County Section. Thirty-nine papers have been entered individually into the data base. (LTN)

  11. Modes of fossil preservation

    Science.gov (United States)

    Schopf, J.M.

    1975-01-01

    The processes of geologic preservation are important for understanding the organisms represented by fossils. Some fossil differences are due to basic differences in organization of animals and plants, but the interpretation of fossils has also tended to be influenced by modes of preservation. Four modes of preservation generally can be distinguished: (1) Cellular permineralization ("petrifaction") preserves anatomical detail, and, occasionally, even cytologic structures. (2) Coalified compression, best illustrated by structures from coal but characteristic of many plant fossils in shale, preserves anatomical details in distorted form and produces surface replicas (impressions) on enclosing matrix. (3) Authigenic preservation replicates surface form or outline (molds and casts) prior to distortion by compression and, depending on cementation and timing, may intergrade with fossils that have been subject to compression. (4) Duripartic (hard part) preservation is characteristic of fossil skeletal remains, predominantly animal. Molds, pseudomorphs, or casts may form as bulk replacements following dissolution of the original fossil material, usually by leaching. Classification of the kinds of preservation in fossils will aid in identifying the processes responsible for modifying the fossil remains of both animals and plants. ?? 1975.

  12. Economic analysis to compare fabrication of nuclear power and fossil fuel power plants at Iran

    International Nuclear Information System (INIS)

    Rasouliye Koohi, Mojtaba

    1997-01-01

    Electric power due to its many advantages over other forms of energies covers most of the world's energy demands.The electric power can be produced by various energy converting systems fed by different energy resources like fossil fuels, nuclear, hydro and renewable energies, each having their own appropriate technologies. The fossil fuel not only consumes the deplete and precious sources of non conventional energies but they add pollution to environment too. The nuclear power plants has its own share of radioactive pollutions which, of course can be controlled by taking precautionary measures. The investing cost of each generated unit (KWh) in the nuclear power plants, comparing with its equivalent production by fossil fuels is investigated. The various issues of economical analysis, technical, political and environmental are the different aspects, which individually can influence the decisions for kind of power plant to be installed. Finally, it is concluded that the fossil and nuclear power generations both has its own advantages and disadvantages. Hence, from a specializing point of view, it may not be proper to prefer one over the others

  13. Fossil Explorers

    Science.gov (United States)

    Moran, Sean; McLaughlin, Cheryl; MacFadden, Bruce; Jacobbe, Elizabeth; Poole, Michael

    2015-01-01

    Many young learners are fascinated with fossils, particularly charismatic forms such as dinosaurs and giant sharks. Fossils provide tangible, objective evidence of life that lived millions of years ago. They also provide a timescale of evolution not typically appreciated by young learners. Fossils and the science of paleontology can, therefore,…

  14. Gas fired combined cycle plant in Singapore: energy use, GWP and cost-a life cycle approach

    International Nuclear Information System (INIS)

    Kannan, R.; Leong, K.C.; Osman, Ramli; Ho, H.K.; Tso, C.P.

    2005-01-01

    A life cycle assessment was performed to quantify the non-renewable (fossil) energy use and global warming potential (GWP) in electricity generation from a typical gas fired combined cycle power plant in Singapore. The cost of electricity generation was estimated using a life cycle cost analysis (LCCA) tool. The life cycle assessment (LCA) of a 367.5 MW gas fired combined cycle power plant operating in Singapore revealed that hidden processes consume about 8% additional energy in addition to the fuel embedded energy, and the hidden GWP is about 18%. The natural gas consumed during the operational phase accounted for 82% of the life cycle cost of electricity generation. An empirical relation between plant efficiency and life cycle energy use and GWP in addition to a scenario for electricity cost with varying gas prices and plant efficiency have been established

  15. Exploring the interior of cuticles and compressions of fossil plants by FIB-SEM milling and image microscopy.

    Science.gov (United States)

    Sender, L M; Escapa, I; Benedetti, A; Cúneo, R; Diez, J B

    2018-01-01

    We present the first study of cuticles and compressions of fossil leaves by Focused Ion Beam Scanning Electron Microscopy (FIB-SEM). Cavities preserved inside fossil leaf compressions corresponding to substomatal chambers have been observed for the first time and several new features were identified in the cross-section cuts. These results open a new way in the investigation of the three-dimensional structures of both micro- and nanostructural features of fossil plants. Moreover, the application of the FIB-SEM technique to both fossils and extant plant remains represent a new source of taxonomical, palaeoenvironmental and palaeoclimatic information. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  16. The life cycle emission of greenhouse gases associated with plant oils used as biofuel

    NARCIS (Netherlands)

    Reijnders, L.

    2011-01-01

    Life cycle assessment of greenhouse gas emissions associated with biofuels should not only consider fossil fuel inputs, but also N2O emissions and changes in carbon stocks of (agro) ecosystems linked to the cultivation of biofuel crops. When this is done, current plant oils such as European rapeseed

  17. Discovery of fossil lamprey larva from the Lower Cretaceous reveals its three-phased life cycle.

    Science.gov (United States)

    Chang, Mee-mann; Wu, Feixiang; Miao, Desui; Zhang, Jiangyong

    2014-10-28

    Lampreys are one of the two surviving jawless vertebrate groups and one of a few vertebrate groups with the best exemplified metamorphosis during their life cycle, which consists of a long-lasting larval stage, a peculiar metamorphosis, and a relatively short adulthood with a markedly different anatomy. Although the fossil records have revealed that many general features of extant lamprey adults were already formed by the Late Devonian (ca. 360 Ma), little is known about the life cycle of the fossil lampreys because of the lack of fossilized lamprey larvae or transformers. Here we report the first to our knowledge discovery of exceptionally preserved premetamorphic and metamorphosing larvae of the fossil lamprey Mesomyzon mengae from the Lower Cretaceous of Inner Mongolia, China. These fossil ammocoetes look surprisingly modern in having an eel-like body with tiny eyes, oral hood and lower lip, anteriorly positioned branchial region, and a continuous dorsal skin fin fold and in sharing a similar feeding habit, as judged from the detritus left in the gut. In contrast, the larger metamorphosing individuals have slightly enlarged eyes relative to large otic capsules, thickened oral hood or pointed snout, and discernable radials but still anteriorly extended branchial area and lack a suctorial oral disk, which characterize the early stages of the metamorphosis of extant lampreys. Our discovery not only documents the larval conditions of fossil lampreys but also indicates the three-phased life cycle in lampreys emerged essentially in their present mode no later than the Early Cretaceous.

  18. Influence of fossil-fuel power plant emissions on the surface fine particulate matter in the Seoul Capital Area, South Korea.

    Science.gov (United States)

    Kim, Byeong-Uk; Kim, Okgil; Kim, Hyun Cheol; Kim, Soontae

    2016-09-01

    The South Korean government plans to reduce region-wide annual PM2.5 (particulate matter with an aerodynamic diameter ≤2.5 μm) concentrations in the Seoul Capital Area (SCA) from 2010 levels of 27 µg/m(3) to 20 µg/m(3) by 2024. At the same time, it is inevitable that emissions from fossil-fuel power plants will continue to increase if electricity generation expands and the generation portfolio remains the same in the future. To estimate incremental PM2.5 contributions due to projected electricity generation growth in South Korea, we utilized an ensemble forecasting member of the Integrated Multidimensional Air Quality System for Korea based on the Community Multi-scale Air Quality model. We performed sensitivity runs with across-the-board emission reductions for all fossil-fuel power plants in South Korea to estimate the contribution of PM2.5 from domestic fossil-fuel power plants. We estimated that fossil-fuel power plants are responsible for 2.4% of the annual PM2.5 national ambient air quality standard in the SCA as of 2010. Based on the electricity generation and the annual contribution of fossil-fuel power plants in 2010, we estimated that annual PM2.5 concentrations may increase by 0.2 µg/m(3) per 100 TWhr due to additional electricity generation. With currently available information on future electricity demands, we estimated that the total future contribution of fossil-fuel power plants would be 0.87 µg/m(3), which is 12.4% of the target reduction amount of the annual PM2.5 concentration by 2024. We also approximated that the number of premature deaths caused by existing fossil-fuel power plants would be 736 in 2024. Since the proximity of power plants to the SCA and the types of fuel used significantly impact this estimation, further studies are warranted on the impact of physical parameters of plants, such as location and stack height, on PM2.5 concentrations in the SCA due to each precursor. Improving air quality by reducing fine particle

  19. The effect of size-control policy on unified energy and carbon efficiency for Chinese fossil fuel power plants

    International Nuclear Information System (INIS)

    Zhang, Ning; Kong, Fanbin; Choi, Yongrok; Zhou, P.

    2014-01-01

    This paper examines the effect of size control policy on the energy and carbon efficiency for Chinese fossil fuel power industry. For this purpose, we propose two non-radial directional distance functions for energy/carbon efficiency analysis of fossil fuel electricity generation. One is named a total-factor directional distance function that incorporates the inefficiency of all input and output factors to measure the unified (operational and environmental) efficiency of fossil fuel power plants, and the other is called an energy–environmental directional distance function that can be used to measure the energy–environmental performance of fossil fuel electric power plants. Several standardized indicators for measuring unified efficiency and energy–environmental performance are derived from the two directional distance functions. An empirical study of 252 fossil fuel power plants in China is conducted by using the proposed approach. Our empirical results show that there exists a significant positive relationship between the plant size and unified efficiency, the five state-owned companies show lower unified efficiency and energy–environmental performance than other companies. It is suggested that Chinese government might need to consider private incentives and deregulation for its state-owned enterprises to improve their performance proactively. - Highlights: • Two non-radial directional distance functions are presented for energy/carbon efficiency analysis. • An empirical study of 252 fossil fuel power plants in China is conducted. • The five state-owned companies show lower unified efficiency and energy–environmental performance

  20. Nuclear versus fossil power plants: evolution of economic evaluation techniques

    International Nuclear Information System (INIS)

    Thuesen, G.J.

    1975-01-01

    The purpose of this presentation is to document the evolution of methods used by an electric utility for comparing the economic attractiveness of nuclear versus fossil electric power generation. This process of change is examined as it took place within the Georgia Power Company (GPC), a company spending in the neighborhood of half a billion dollars annually for capital improvements. This study provides a look at the variety of richness of information that can be made available through the application of different methods of economic analysis. In addition, the varied presentations used to disclose relationships between alternatives furnish evidence as to the effectiveness of providing pertinent information in a simple, meaningful manner. It had been generally accepted throughout GPC that nuclear power was economically desirable as an alternative for the production of base-load power. With inflation increasing, its advantage over fossil power appeared to be significantly increasing as the large operating costs of fossil generation seemed to be more vulnerable to inflation than the costs of operating a nuclear facility. An early indication that the company should reevaluate this position was the experience gained with the installation of their first nuclear plant. Here, actual total costs were exceeding their original construction estimates by a factor of two. Thus the question arose ''Does the high capital cost of nuclear generation offset its operating advantages when compared to similar-sized coal-burning plants.'' To answer this question, additional analyses were undertaken

  1. Fossil fuel power plant combustion control: Research in Italy

    International Nuclear Information System (INIS)

    Pasini, S.; Trebbi, G.

    1991-01-01

    Electric power demand forecasts for Italy to the year 2000 indicate an increase of about 50% which, due to the current moratorium on nuclear energy, should be met entirely by fossil fuel power plants. Now, there is growing public concern about possible negative health impacts due to the air pollution produced through the combustion of fossil fuels. In response to these concerns, ENEL (Italian National Electricity Board) is investing heavily in air pollution abatement technology R ampersand D. The first phase involves the investigation of pollution mechanisms in order to develop suitable mathematical models and diagnostic techniques. The validity of the models is being tested through through measurements made by sophisticated instrumentation placed directly inside the combustion chambers of steam generator systems. These are allowing engineers to develop improved combustion control methods designed to reduce air pollution at source

  2. Life cycle analysis on fossil energy ratio of algal biodiesel: effects of nitrogen deficiency and oil extraction technology.

    Science.gov (United States)

    Jian, Hou; Jing, Yang; Peidong, Zhang

    2015-01-01

    Life cycle assessment (LCA) has been widely used to analyze various pathways of biofuel preparation from "cradle to grave." Effects of nitrogen supply for algae cultivation and technology of algal oil extraction on life cycle fossil energy ratio of biodiesel are assessed in this study. Life cycle fossil energy ratio of Chlorella vulgaris based biodiesel is improved by growing algae under nitrogen-limited conditions, while the life cycle fossil energy ratio of biodiesel production from Phaeodactylum tricornutum grown with nitrogen deprivation decreases. Compared to extraction of oil from dried algae, extraction of lipid from wet algae with subcritical cosolvents achieves a 43.83% improvement in fossil energy ratio of algal biodiesel when oilcake drying is not considered. The outcome for sensitivity analysis indicates that the algal oil conversion rate and energy content of algae are found to have the greatest effects on the LCA results of algal biodiesel production, followed by utilization ratio of algal residue, energy demand for algae drying, capacity of water mixing, and productivity of algae.

  3. Evaluation of Biodiesel Fuels to Reduce Fossil Fuel Use in Corps of Engineers Floating Plant Operations

    Science.gov (United States)

    2016-07-01

    ER D C/ CH L TR -1 6- 11 Dredging Operations and Environmental Research Program Evaluation of Biodiesel Fuels to Reduce Fossil Fuel Use... Fuels to Reduce Fossil Fuel Use in Corps of Engineers Floating Plant Operations Michael Tubman and Timothy Welp Coastal and Hydraulics Laboratory...sensitive emissions, increase use of renewable energy, and reduce the use of fossil fuels was conducted with funding from the U.S. Army Corps of

  4. Gas separation membranes for zero-emission fossil power plants: MEM-BRAIN

    NARCIS (Netherlands)

    Czyperek, M.; Zapp, P.; Bouwmeester, Henricus J.M.; Modigell, M.; Ebert, K.; Voigt, I.; Meulenberg, W.A.; Singheiser, L.; Stöver, D.

    2010-01-01

    The objective of the “MEM-BRAIN” project is the development and integration of ceramic and polymeric gas separation membranes for zero-emission fossil power plants. This will be achieved using membranes with a high permeability and selectivity for either CO2, O2 or H2, for the three CO2 capture

  5. New Mesozoic and Cenozoic fossils from Ecuador: Invertebrates, vertebrates, plants, and microfossils

    Science.gov (United States)

    Cadena, Edwin A.; Mejia-Molina, Alejandra; Brito, Carla M.; Peñafiel, Sofia; Sanmartin, Kleber J.; Sarmiento, Luis B.

    2018-04-01

    Ecuador is well known for its extensive extant biodiversity, however, its paleobiodiversity is still poorly explored. Here we report seven new Mesozoic and Cenozoic fossil localities from the Pacific coast, inter-Andean depression and Napo basin of Ecuador, including vertebrates, invertebrates, plants, and microfossils. The first of these localities is called El Refugio, located near the small town of Chota, Imbabura Province, from where we report several morphotypes of fossil leaves and a mycetopodid freshwater mussel of the Upper Miocene Chota Formation. A second site is also located near the town of Chota, corresponding to potentially Pleistocene to Holocene lake deposits from which we report the occurrence of leaves and fossil diatoms. A third locality is at the Pacific coast of the country, near Rocafuerte, a town in Esmeraldas Province, from which we report a late Miocene palm leaf. We also report the first partially articulated skull with teeth from a Miocene scombridid (Mackerels) fish from El Cruce locality, and completely preserved seeds from La Pila locality, both sites from Manabí Province. Two late Cretaceous fossil sites from the Napo Province, one near Puerto Napo showing a good record of fossil shrimps and a second near the town of Loreto shows the occurrence of granular amber and small gymnosperms seeds and cuticles. All these new sites and fossils show the high potential of the sedimentary sequences and basins of Ecuador for paleontological studies and for a better understanding of the fossil record of the country and northern South America.

  6. Comparative life cycle assessment (LCA) of biodiesel and fossil diesel fuel

    International Nuclear Information System (INIS)

    Spirinckx, C.; Xeuterick, D.

    1997-01-01

    Complementary to VlTO's demonstration project on the use of biodiesel as engine fuel (including on the road emission measurements) in Flanders, Belgium, a comparative life cycle assessment (LCA) has been carried out for rapeseed methyl ester (RME) and fossil diesel fuel. The primary concern of this study is the question as to whether or not the production of biodiesel is comparable to the production of fossil diesel fuel from an environmental point of view, taking into account all stages of the life cycle of these two products. The study covers: (1) a description of the LCA methodology used; (2) a definition of the goal and scope of the study: (3) an inventory of the consumption of energy and materials and the discharges to the environment, from the cradle to the grave, for both alternative fuels: (4) a comparative impact assessment; and (5) the interpretation of the results. The results of this comparative LCA can be used in the final decision making process next to the results of a social and economical assessment. 6 refs

  7. Life extension of nuclear power plants. World situation and the USA case

    International Nuclear Information System (INIS)

    Leon, Pablo T.; Cuesta, Loreto; Serra, Eduardo; Yaguee, Luis

    2010-01-01

    Life extension of Nuclear Power Plants above 40 years of operation is an important issue in many countries. The Kyoto limits for CO 2 emissions, the security of supply, the costs and predictability of renewable energy, etc., are putting nuclear energy in the agenda of many countries all around the world. The delay, due to the economic crisis, of the new nuclear projects in many countries, push governments to continue operation of nuclear plants above the 40 years design life. This is the case in the USA, where 59 units have obtained the extension of operation license from 40 to 60 years, and currently have 19 units are in the reviewing process. The life extension of these plants permits savings in CO 2 emissions and in the consumption of additional amounts of fossil fuels. In this paper, the position of the different nuclear countries about the Extension of Life will be reviewed, with a special emphasis on the situation in the USA. In this last case, the NRC approach for operation licenses above 40 years will be explained, and actions taken by nuclear companies in the country will be reviewed. In this country, the debate about life extension over 40 years has been surpassed, and the new technical discussion focuses on the operation of nuclear power plants above 60 years. (authors)

  8. Life extension of nuclear power plants. World situation and the USA case

    Energy Technology Data Exchange (ETDEWEB)

    Leon, Pablo T.; Cuesta, Loreto; Serra, Eduardo; Yaguee, Luis [Endesa. C/ Ribera del Loira, No.60, 28042 Madrid (Spain)

    2010-07-01

    Life extension of Nuclear Power Plants above 40 years of operation is an important issue in many countries. The Kyoto limits for CO{sub 2} emissions, the security of supply, the costs and predictability of renewable energy, etc., are putting nuclear energy in the agenda of many countries all around the world. The delay, due to the economic crisis, of the new nuclear projects in many countries, push governments to continue operation of nuclear plants above the 40 years design life. This is the case in the USA, where 59 units have obtained the extension of operation license from 40 to 60 years, and currently have 19 units are in the reviewing process. The life extension of these plants permits savings in CO{sub 2} emissions and in the consumption of additional amounts of fossil fuels. In this paper, the position of the different nuclear countries about the Extension of Life will be reviewed, with a special emphasis on the situation in the USA. In this last case, the NRC approach for operation licenses above 40 years will be explained, and actions taken by nuclear companies in the country will be reviewed. In this country, the debate about life extension over 40 years has been surpassed, and the new technical discussion focuses on the operation of nuclear power plants above 60 years. (authors)

  9. Evaluation of condensate filtration technologies in fossil plants

    Energy Technology Data Exchange (ETDEWEB)

    D' Angelo, Philip J. [JoDan Technologies Ltd., Glen Mills, PA (United States)

    2009-09-15

    Long-term protection of electric power generating station boilers depends upon the quality of their feedwater chemistry with respect to the transport and deposition of corrosion products to the boilers from various corrosion sources in the plant's condensate and feedwater cycle. It is in the utility's best interests to expand their programs to include ways to reduce the transport of corrosion products, especially those that occur during plant start-ups. Condensate filtration is a strategy employed by some utilities with demonstrable results in minimizing corrosion product transport and achieving a return on their investment. This paper provides a comparative review of available condensate filtration technologies as well as performance data from fossil plants with the new large diameter high flow filtration systems. Additionally, the paper identifies critical parameters to consider before installation as well as the necessity for agreement between utilities and suppliers on common filtration terminology definitions, to insure an ''apple-to-apple'' basis when comparing a system or technology from more than one supplier. (orig.)

  10. Preservation of biological information in thermal spring deposits - Developing a strategy for the search for fossil life on Mars

    Science.gov (United States)

    Walter, M. R.; Des Marais, David J.

    1993-01-01

    Paleobiological experience on earth is used here to develop a search strategy for fossil life on Mars. In particular, the exploration of thermal spring deposits is proposed as a way to maximize the chance of finding fossil life on Mars. As a basis for this suggestion, the characteristics of thermal springs are discussed in some detail.

  11. Paleovegetation changes recorded by n-alkyl lipids bound in macromolecules of plant fossils and kerogens from the Cretaceous sediments in Japan

    Science.gov (United States)

    Miyata, Y.; Sawada, K.; Nakamura, H.; Takashima, R.; Takahashi, M.

    2014-12-01

    Resistant macromolecules composing living plant tissues tend to be preserved through degradation and diagenesis, hence constituate major parts of sedimentary plant-derived organic matter (kerogen), and their monomer compositions vary widely among different plant taxa, organs and growth stages. Thus, analysis of such macromolecule may serve as new technique for paleobotanical evaluation distinctive from classical paleobotnical studies depends on morphological preservation of fossils. In the present study, we analyzed plant fossils and kerogens in sediments from the Cretaceous strata in Japan to examine chemotaxonomic characteristics of fossil macromolecules and to reconstruct paleovegetation change by kerogen analysis. The kerogens were separated from the powdered sediments of Cretaceous Yezo Group, Hokkaido, Japan. All kerogens have been confirmed to be mostly originated from land plant tissues by microscopic observation. Mummified angiosperm and gymnosperm fossil leaves were separated from carbonaceous sandstone of the Cretaceous Ashizawa Formation, Futaba Group. The kerogens and plant fossils were extracted with methanol and dichloromethane, and were subsequently refluxed under 110°C to remove free compounds completely. The residues are hydrolyzed by KOH/methanol under 110°C. These released compounds are analyzed by GC-MS. As main hydrolyzed products (ester-bound molecular units) from all kerogens, C10-C28 n-alkanoic acids and C10-C30 n-alkanols were detected. Recent studies on the hydrolysis products of plant tissues suggested the long chain (>C20) n-alkanols were predominantly abundant in deciduous broadleaved angiosperms. Correspondingly, the stratigraphic variation of the ratios of long chain (>C20) n-alkanols to fatty acids was concordant with the variation of angiosperm/gymnosperm ratios recorded by land plant-derived terpenoid biomarkers. In addition, we found that the long chain n-alkanols/fatty acids ratio in the angiosperm fossil leaf was

  12. The energy return on energy investment (EROI) of photovoltaics: Methodology and comparisons with fossil fuel life cycles

    International Nuclear Information System (INIS)

    Raugei, Marco; Fullana-i-Palmer, Pere; Fthenakis, Vasilis

    2012-01-01

    A high energy return on energy investment (EROI) of an energy production process is crucial to its long-term viability. The EROI of conventional thermal electricity from fossil fuels has been viewed as being much higher than those of renewable energy life-cycles, and specifically of photovoltaics (PVs). We show that this is largely a misconception fostered by the use of outdated data and, often, a lack of consistency among calculation methods. We hereby present a thorough review of the methodology, discuss methodological variations and present updated EROI values for a range of modern PV systems, in comparison to conventional fossil-fuel based electricity life-cycles. - Highlights: ► We perform a review of the EROI methodology. ► We provide new calculations for PV compared to oil- and coal-based energy systems. ► If compared consistently, PV sits squarely in the same range of EROI as conventional fossil fuel life cycles.

  13. Health effects and related standards for fossil-fuel and geothermal power plants. Volume 6 of health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California. [In California

    Energy Technology Data Exchange (ETDEWEB)

    Case, G.D.; Bertolli, T.A.; Bodington, J.C.; Choy, T.A.; Nero, A.V.

    1977-01-01

    This report reviews health effects and related standards for fossil-fuel and geothermal power plants, emphasizing impacts which may occur through emissions into the atmosphere, and treating other impacts briefly. Federal regulations as well as California state and local regulations are reviewed. Emissions are characterized by power plant type, including: coal-fired, oil-fired, gas-fired, combined cycle and advanced fossil-fuel plants; and liquid and vapor geothermal systems. Dispersion and transformation of emissions are treated. The state of knowledge of health effects, based on epidemiological, physiological, and biomedical studies, is reviewed.

  14. Technology for controlling emissions from power plants fired with fossil fuel

    Energy Technology Data Exchange (ETDEWEB)

    Slack, A V

    1981-04-01

    Emission control technologies for fossil-fuel-fired power plants are examined. Acid rain, impaired visibility, and health effects of respirable particulates have combined to raise concerns from the local to the regional level. This report discusses advantages, disadvantages, and costs of technologies associated with emissions of sulfur oxides, nitrogen oxides, and particulate matter. Coal, oil and natural gas fuels are discussed. 7 refs.

  15. Spanish Moss as an atmospheric tracer for trace elements from fossil fuel burning power plants

    International Nuclear Information System (INIS)

    James, W.D.; Padaki, P.; McWilliams, E.L.

    1991-01-01

    Samples of Spanish Moss (Tillandsia usneoides) were analyzed by neutron activation analysis (NAA), inductively coupled argon plasma emission spectrometry (ICP), and x-ray fluorescence analysis (XRF) for trace elements as atmospheric environmental monitors. In particular, certain elements thought likely to be contributed to the atmosphere by combustion of fossil fuels were studied in samples collected along two transects, an east/west transect from the Louisiana line west to Dallas and a north/south transect from the Limestone electric Generating Station north to Dallas. Plants were sampled during peak electric generating periods in the summer, as well as following planned outages during the winter months. Se, As and several other volatile species known to concentrate in fly ash particles which are likely to escape power plant collection devices were shown to correlate with downwind directions of plant plumes. Attempts to determine levels of sulfur taken up by the plants which can be attributed to fossil fuel combustion through the use of these marker elements have also be made

  16. Base-Load and Peak Electricity from a Combined Nuclear Heat and Fossil Combined-Cycle Plant

    International Nuclear Information System (INIS)

    Conklin, Jim; Forsberg, Charles W.

    2007-01-01

    A combined-cycle power plant is proposed that uses heat from a high-temperature reactor and fossil fuel to meet base-load and peak electrical demands. The high-temperature gas turbine produces shaft power to turn an electric generator. The hot exhaust is then fed to a heat recovery steam generator (HRSG) that provides steam to a steam turbine for added electrical power production. A simplified computational model of the thermal power conversion system was developed in order to parametrically investigate two different steady-state operation conditions: base load nuclear heat only from an Advanced High Temperature Reactor (AHTR), and combined nuclear heat with fossil heat to increase the turbine inlet temperature. These two cases bracket the expected range of power levels, where any intermediate power level can result during electrical load following. The computed results indicate that combined nuclear-fossil systems have the potential to offer both low-cost base-load electricity and lower-cost peak power relative to the existing combination of base-load nuclear plants and separate fossil-fired peak-electricity production units. In addition, electric grid stability, reduced greenhouse gases, and operational flexibility can also result with using the conventional technology presented here for the thermal power conversion system coupled with the AHTR

  17. 'Capture ready' regulation of fossil fuel power plants - Betting the UK's carbon emissions on promises of future technology

    International Nuclear Information System (INIS)

    Markusson, Nils; Haszeldine, Stuart

    2010-01-01

    Climate change legislation requires emissions reductions, but the market shows interest in investing in new fossil fuelled power plants. The question is whether capture ready policy can reconcile these interests. The term 'capture ready' has been used a few years by the UK Government when granting licences for fossil fuelled power plants, but only recently has the meaning of the term been defined. The policy has been promoted as a step towards CCS and as an insurance against carbon lock-in. This paper draws on literature on technology lock-in and on regulation of technology undergoing development. Further, versions of the capture readiness concept proposed to date are compared. Capture readiness requirements beyond the minimum criterion of space on the site for capture operations are explored. This includes integration of capture and power plant, downstream operations, overall system integration and regulation of future retrofitting. Capture readiness comes with serious uncertainties and is no guarantee that new-built fossil plants will be abatable or abated in the future. As a regulatory strategy, it has been over-promised in the UK.

  18. The late Paleozoic ecological-evolutionary laboratory, a land-plant fossil record perspective

    NARCIS (Netherlands)

    Looy, Cindy; Kerp, Hans; Duijnstee, Ivo; DiMichele, Bill

    2014-01-01

    In this essay we examine the fossil record of land plants, focusing on the late Paleozoic. We explore the nature of this record in terms of what is preserved, where, why and with what biases. And as a consequence, how it can be used to answer questions posed at various spatial and temporal scales,

  19. Plant life management

    International Nuclear Information System (INIS)

    Charbonneau, S.; Framatome, J.B.

    1992-01-01

    Plant life assessment and extension studies have been performed by numerous companies all over the world. Critical equipment has been identified as well as various degradation mechanisms involved in the plant aging process. Nowadays one has to think what to implement to improve the existing situation in the Nuclear Power Plant (NPP). FRAMATOME has undertaken this thought process in order to find the right answers and bring them to utilities facing either critical concern for plant life extension or the problem of management of power plant potential longevity. This is why we prepared a Plant Life Improvement Action Plan, comprising 10 (ten) major items described hereafter using examples of work performed by FRAMATOME for its utility customers desiring to manage the lives of their plants, both in France with EDF and abroad

  20. Project management in fossil plant construction: A perspective for the Nineties

    International Nuclear Information System (INIS)

    Bhatia, N.K.

    1991-01-01

    The continuing growth in demand for electric power, and the reluctance of electric utility management to commit to new capacity additions has created a potential for somewhat hectic activity in the fossil power plant construction market. With the changing matrix of power plant types and ownerships, the project manager is called upon to deliver a complex product with exacting contract requirements: lump sum contracts, competitive pricing, short schedules, and performance guarantees. A shortage of experienced professionals in the ranks of the owners, engineers, contractors, and suppliers magnifies the challenge. Plant replication, automation, creative management of vendors and contractors, and participative management of the work force will be key elements of successful projects. Partnering between the clients and the engineers-constructors will be an interesting new relationship model

  1. Nitrogen-fixing symbiosis inferred from stable isotope analysis of fossil tree rings from the Oligocene of Ethiopia

    Science.gov (United States)

    Erik L. Gulbranson; Bonnie F. Jacobs; William C. Hockaday; Michael C. Wiemann; Lauren A. Michel; Kaylee Richards; John W. Kappelman

    2017-01-01

    The acquisition of reduced nitrogen (N) is essential for plant life, and plants have developed numerous strategies and symbioses with soil microorganisms to acquire this form of N. The evolutionary history of specific symbiotic relationships of plants with soil bacteria, however, lacks evidence from the fossil record confirming these mutualistic relationships. Here we...

  2. Can hybrid solar-fossil power plants mitigate CO2 at lower cost than PV or CSP?

    Science.gov (United States)

    Moore, Jared; Apt, Jay

    2013-03-19

    Fifteen of the United States and several nations require a portion of their electricity come from solar energy. We perform an engineering-economic analysis of hybridizing concentrating solar thermal power with fossil fuel in an Integrated Solar Combined Cycle (ISCC) generator. We construct a thermodynamic model of an ISCC plant in order to examine how much solar and fossil electricity is produced and how such a power plant would operate, given hourly solar resource data and hourly electricity prices. We find that the solar portion of an ISCC power plant has a lower levelized cost of electricity than stand-alone solar power plants given strong solar resource in the US southwest and market conditions that allow the capacity factor of the solar portion of the power plant to be above 21%. From a local government perspective, current federal subsidies distort the levelized cost of electricity such that photovoltaic electricity is slightly less expensive than the solar electricity produced by the ISCC. However, if the cost of variability and additional transmission lines needed for stand-alone solar power plants are taken into account, the solar portion of an ISCC power plant may be more cost-effective.

  3. Developing the optimum boiler water and feedwater treatment for fossil plants

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, B [Electric Power Research Inst., Palo Alto, California (United States)

    1996-12-01

    Over the last two years a new set of cycle chemistry guidelines has been developed for each of the treatments used in fossil plants. These revisions have been based on research conducted over the last ten years, much at the international collaborative level. By careful selection and optimization of the boiler water and feedwater treatments, it will be possible to accrue large financial, maintenance, availability and performance improvements. (au) 14 refs.

  4. Specification of life cycle assessment in nuclear power plants

    International Nuclear Information System (INIS)

    Abbaspour, M.; Kargari, N.; Mastouri, R.

    2008-01-01

    Life Cycle Assessment is an environmental management tool for assessing the environmental impacts of a product of a process. life cycle assessment involves the evaluation of environmental impacts through all stages of life cycle of a product or process. In other words life cycle assessment has a c radle to grave a pproach. Some results of life cycle assessment consist of pollution prevention, energy efficient system, material conservation, economic system and sustainable development. All power generation technologies affect the environment in one way or another. The main environmental impact does not always occur during operation of power plant. The life cycle assessment of nuclear power has entailed studying the entire fuel cycle from mine to deep repository, as well as the construction, operation and demolition of the power station. Nuclear power plays an important role in electricity production for several countries. even though the use of nuclear power remains controversial. But due to the shortage of fossil fuel energy resources many countries have started to try more alternation to their sources of energy production. A life cycle assessment could detect all environmental impacts of nuclear power from extracting resources, building facilities and transporting material through the final conversion to useful energy services

  5. Life cycle assessment of a small-scale anaerobic digestion plant from cattle waste

    International Nuclear Information System (INIS)

    Mezzullo, William G.; McManus, Marcelle C.; Hammond, Geoff P.

    2013-01-01

    Highlights: ► Emissions from plant manufacture contributed little towards the lifecycle impacts. ► The use phase of the AD plant could have significant impacts. ► Production of biogas and fertiliser created significant impacts. ► The consequential displacement of kerosene showed a net-benefit. ► The study concluded that it is essential to cover the digestate storage tank. -- Abstract: This paper outlines the results of a comprehensive life cycle study of the production of energy, in the form of biogas, using a small scale farm based cattle waste fed anaerobic digestion (AD) plant. The life cycle assessment (LCA) shows that in terms of environmental and energy impact the plant manufacture contributes very little to the whole life cycle impacts. The results show that compared with alternative energy supply the production and use of biogas is beneficial in terms of greenhouse gases and fossil fuel use. This is mainly due to the replacement of the alternative, kerosene, and from fertiliser production from the AD process. However, these benefits come at a cost to ecosystem health and the production of respiratory inorganics. These were found to be a result of ammonia emissions during the production phase of the biogas. These damages can be significantly reduced if further emission control measures are undertaken.

  6. NDT methods for life-time assessment of high temperature plant; Ofoerstoerande provning foer livslaengdsbedoemning av hoegtemperaturanlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Storesund, J [Swedish Inst. for Metals Research, Stockholm (Sweden)

    1996-10-01

    A comprehensive literature study of NDT and analysis methods for residual life-time assessment of high temperature plant has been made. The study has been concentrated on components in boilers, steam piping and turbines in fossil fired power plant. Most types of components are exposed to creep which is also the life-time limiting mechanism in many cases. In addition to creep, other stresses and damages which appear in plant are described for each type of component. Thermal fatigue, corrosion and embrittlement as well as combined damage mechanisms are also life-time limiting in many cases. The literature shows a large number of NDT methods developed and under development in purpose to identify and measure the size and extent of damage in the components. The methods and their limitations are described in relation to the experience and understanding of character, distribution and development of damage in different situations. 83 refs, 12 figs, 1 tab

  7. Cost and performance of fossil fuel power plants with CO2 capture and storage

    International Nuclear Information System (INIS)

    Rubin, Edward S.; Chen, Chao; Rao, Anand B.

    2007-01-01

    CO 2 capture and storage (CCS) is receiving considerable attention as a potential greenhouse gas (GHG) mitigation option for fossil fuel power plants. Cost and performance estimates for CCS are critical factors in energy and policy analysis. CCS cost studies necessarily employ a host of technical and economic assumptions that can dramatically affect results. Thus, particular studies often are of limited value to analysts, researchers, and industry personnel seeking results for alternative cases. In this paper, we use a generalized modeling tool to estimate and compare the emissions, efficiency, resource requirements and current costs of fossil fuel power plants with CCS on a systematic basis. This plant-level analysis explores a broader range of key assumptions than found in recent studies we reviewed for three major plant types: pulverized coal (PC) plants, natural gas combined cycle (NGCC) plants, and integrated gasification combined cycle (IGCC) systems using coal. In particular, we examine the effects of recent increases in capital costs and natural gas prices, as well as effects of differential plant utilization rates, IGCC financing and operating assumptions, variations in plant size, and differences in fuel quality, including bituminous, sub-bituminous and lignite coals. Our results show higher power plant and CCS costs than prior studies as a consequence of recent escalations in capital and operating costs. The broader range of cases also reveals differences not previously reported in the relative costs of PC, NGCC and IGCC plants with and without CCS. While CCS can significantly reduce power plant emissions of CO 2 (typically by 85-90%), the impacts of CCS energy requirements on plant-level resource requirements and multi-media environmental emissions also are found to be significant, with increases of approximately 15-30% for current CCS systems. To characterize such impacts, an alternative definition of the 'energy penalty' is proposed in lieu of the

  8. Plant life management at Loviisa

    International Nuclear Information System (INIS)

    Hytoenen, Y.; Savikoski, A.

    1998-01-01

    IVO, Power Engineering Ltd. has developed a company-wide approach to plant life management. The first stage of plant life management comprises operational and maintenance histories, design and plant inspection data using advanced computer systems. The life of the plant can be controlled by maintenance, refurbishment and inspection programs, and by varying the method of plant operation. On-line monitoring is needed, and cost control and training must be taken into account if the life of the plant is to be managed efficiently. Identifying the life-limiting factors is essential at Loviisa. It has been concentrated on the aging in the form of materials degradation due to fatigue, erosion, corrosion, radiation and thermal effects. Certain other life-limiting factors are also mentioned

  9. Microalgal and Terrestrial Transport Biofuels to Displace Fossil Fuels

    Directory of Open Access Journals (Sweden)

    Lucas Reijnders

    2009-02-01

    Full Text Available Terrestrial transport biofuels differ in their ability to replace fossil fuels. When both the conversion of solar energy into biomass and the life cycle inputs of fossil fuels are considered, ethanol from sugarcane and biodiesel from palm oil do relatively well, if compared with ethanol from corn, sugar beet or wheat and biodiesel from rapeseed. When terrestrial biofuels are to replace mineral oil-derived transport fuels, large areas of good agricultural land are needed: about 5x108 ha in the case of biofuels from sugarcane or oil palm, and at least 1.8-3.6x109 ha in the case of ethanol from wheat, corn or sugar beet, as produced in industrialized countries. Biofuels from microalgae which are commercially produced with current technologies do not appear to outperform terrestrial plants such as sugarcane in their ability to displace fossil fuels. Whether they will able to do so on a commercial scale in the future, is uncertain.

  10. Nuclear power plant life management

    International Nuclear Information System (INIS)

    Rorive, P.; Berthe, J.; Lafaille, J.P.; Eussen, G.

    1998-01-01

    Several definitions can be given to the design life of a nuclear power plant just as they can be attributed to the design life of an industrial installation: the book-keeping life which is the duration of the provision for depreciation of the plant, the licensed life which corresponds to the duration for which the plant license has been granted and beyond which a new license should be granted by the safety authorities, the design life which corresponds to the duration specified for ageing and fatigue calculations in the design of some selected components during the plant design phase, the technical life which is the duration of effective technical operation and finally the economic life corresponding to the duration of profitable operation of the plant compared with other means of electricity production. Plant life management refers to the measures taken to cope with the combination of licensed, design, technical and economical life. They can include repairs and replacements of components which have arrived to the end of their life due to known degradation processes such as fatigue, embrittlement, corrosion, wear, erosion, thermal ageing. In all cases however, it is of great importance to plan the intervention so as to minimise the economic impact. Predictive maintenance is used together with in-service inspection programs to fulfil this goal. The paper will go over the methodologies adopted in Belgium in all aspects of electrical, mechanical and civil equipment for managing plant life. (author)

  11. New fossil fuel combustion technologies

    International Nuclear Information System (INIS)

    Minghetti, E.; Palazzi, G.

    1995-01-01

    The aim of the present article is to supply general information concerning fossil fuels that represent, today and for the near future, the main energy source of our Planet. New fossil fuel technologies are in continual development with two principal goals: to decrease environmental impact and increase transformation process efficiency. Examples of this efforts are: 1) gas-steam combined cycles integrated with coal gasification plants, or with pressurized-fluidized-bed combustors; 2) new cycles with humid air or coal direct fired turbine, now under development. In the first part of this article the international and national energy situations and trends are shown. After some brief notes on environmental problems and alternative fuels, such as bio masses and municipal wastes, technological aspects, mainly relevant to increase fossil-fueled power plant performances, are examined in greater depth. Finally the research and technological development activities of ENEA (Italian Agency for New Technologies, Energy and Environment) Engineering Branch, in order to improve fossil fuels energy and environmental use are presented

  12. Control of SO2 and NOx emissions from fossil fuel-fired power plants: Research and practice of TPRI

    International Nuclear Information System (INIS)

    Ming-Chuan Zhang.

    1993-01-01

    The generation of electric power in China has been dominated by coal for many years. By the end of 1990, total installed generating capacity reached 135 GW, of which fossil fuel-fired plants accounted for 74 percent. The total electricity generated reached 615 TWh, with fossil fuels accounting for 80.5 percent. About 276 million tons of raw coal are consumed in these fossil fuel-burning units per year, accounting for about 25 percent of the total output of the country. According to the government, by the year 2000, the total installed capacity of Chinese power systems should be at least 240 GW, of which fossil fuels will account for about 77 percent. The coal required for power generation will increase to about 530 million tons per year, accounting for about 38 percent of the total coal output. So, it is obvious that coal consumed in coal-fired power plants occupies a very important place in the national fuel balance. The current environmental protection standards, which are based on ground-level concentrations of pollutants, do not effectively lead to the control of pollution emission concentrations or total SO 2 emissions. Due to the practical limitations of the Chinese economy, there is a limited capability to introduce advanced sulfur emission control technologies. Thus, except for the two 360 MW units imported from Japan for the Luohuang Power Plant in Shichuan province, all the other fossil fuel-fired units have not yet adopted any kind of SO 2 removal measures. The Luohuang units are equipped with Mitsubishi limestone flue gas desulfurization systems. Because of the lack of effective pollution control technologies, large areas of the country have been seriously polluted by SO 2 , and some of them even by acid rain

  13. The Report of Maintenance and Management Optimization for the Korean Fossil Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Ha, J.S.; Yoo, K.B.; Chung, H.; Chang, S.H. [Korea Electric Power Research Institute, Taejon (Korea)

    2002-07-01

    For the Korean fossil power plants, the main component and facillities were classified by maintainability, reliability, production, cost model to assess the cost effective performance of a power plant's maintenance. Maintenance program interacts with the generation process and estimates the leverage provided by expenditures on preventive maintenance. This optimization method is an engineering tool for tracking each asset's production and cost performance under appropriate engineering approximations. Thus, it provides useful insights into where maintenance resources can be expended most effectively to increase generation and reduce operating costs. (author). 7 refs., 3 tabs.

  14. Chemotaxonomy in some Mediterranean plants and implications for fossil biomarker records

    Science.gov (United States)

    Norström, Elin; Katrantsiotis, Christos; Smittenberg, Rienk H.; Kouli, Katerina

    2017-12-01

    The increasing utilization of n-alkanes as plant-derived paleo-environmental proxies calls for improved chemotaxonomic control of the modern flora in order to calibrate fossil sediment records to modern analogues. Several recent studies have investigated long-chain n-alkane concentrations and chain-length distributions in species from various vegetation biomes, but up to date, the Mediterranean flora is relatively unexplored in this respect. Here, we analyse the n-alkane concentrations and chain-length distributions in some of the most common species of the modern macchia and phrygana vegetation in south western Peloponnese, Greece. We show that the drought adapted phrygana herbs and shrubs, as well as some of the sclerophyll and gymnosperm macchia components, produce high concentrations of n-alkanes, on average more than double n-alkane production in local wetland reed vegetation. Furthermore, the chain-length distribution in the analysed plants is related to plant functionality, with longer chain lengths associated with higher drought adaptive capacities, probably as a response to long-term evolutionary processes in a moisture limited environment. Furthermore, species with relatively higher average chain lengths (ACL) showed more enriched carbon isotope composition in their tissues (δ13Cplant), suggesting a dual imprint from both physiological and biochemical drought adaptation. The findings have bearings on interpretation of fossil sedimentary biomarker records in the Mediterranean region, which is discussed in relation to a case study from Agios Floros fen, Messenian plain, Peloponnese. The 6000 year long n-alkane record from Agios Floros (ACL, δ13Cwax) is linked to the modern analogue and then evaluated through a comparison with other regional-wide as well as local climate and vegetation proxy-data. The high concentration of long chain n-alkanes in phrygana vegetation suggests a dominating imprint from this vegetation type in sedimentary archives from this

  15. Life management plants at nuclear power plants PWR

    International Nuclear Information System (INIS)

    Esteban, G.

    2014-01-01

    Since in 2009 the CSN published the Safety Instruction IS-22 (1) which established the regulatory framework the Spanish nuclear power plants must meet in regard to Life Management, most of Spanish nuclear plants began a process of convergence of their Life Management Plants to practice 10 CFR 54 (2), which is the current standard of Spanish nuclear industry for Ageing Management, either during the design lifetime of the plant, as well as for Long-Term Operation. This article describe how Life Management Plans are being implemented in Spanish PWR NPP. (Author)

  16. The global environment effects of fossil and nuclear fuels

    International Nuclear Information System (INIS)

    Kemeny, L.G.

    1981-01-01

    The relative risks and environmental impacts of coal and uranium fueled power plants are dicussed. Fossil-fuel power plants are associated with a build-up of carbon dioxide levels and consequent climatic changes, release of sulphur dioxide and resultant acid rains and radioactive emissions. In comparing the discharges per megawatt year of sulphur dioxide, nitrogen dioxide and radioactive Ra-226 and Ra-225 in fly ash from coal and other fossil plants with Kr-85 and I-131 from nuclear plants, the fossil plants have a much poorer performance. Estimates indicate that nuclear energy can be adopted on a large scale as an alternative to coal without any increase in hazards and with a probability of a substantial reduction

  17. Melanins in Fossil Animals: Is It Possible to Infer Life History Traits from the Coloration of Extinct Species?

    OpenAIRE

    Negro, Juan J.; Fynlayson, Clive; Galván, Ismael

    2018-01-01

    Paleo-colour scientists have recently made the transition from describing melanin-based colouration in fossil specimens to inferring life-history traits of the species involved. Two such cases correspond to counter-shaded dinosaurs: dark-coloured due to melanins dorsally, and light-coloured ventrally. We believe that colour reconstruction of fossils based on the shape of preserved microstructures—the majority of paleo-colour studies involve melanin granules—is not without risks. In addition, ...

  18. Remaining life assessment and plant life extension in high temperature components of power and petrochemical plant

    International Nuclear Information System (INIS)

    Fleming, A.

    2003-01-01

    This paper explains the reasons why plant life can so easily be extended beyond the original design life. It details the means by which plant life extension is normally achieved, a structured plan for achieving such plant life extension at reasonable cost and some of the key techniques used in assessing the remaining life and discusses the simple repair options available. (author)

  19. Comparative life cycle assessment of biodiesel and fossil diesel fuel

    International Nuclear Information System (INIS)

    Ceuterick, D.; Nocker, L. De; Spirinckx, C.

    1999-01-01

    Biofuels offer clear advantages in terms of greenhouse gas emissions, but do they perform better when we look at all the environmental impacts from a life cycle perspective. In the context of a demonstration project at the Flemish Institute for Technology Research (VITO) on the use of rapeseed methyl ester (RME) or biodiesel as automotive fuel, a life cycle assessment (LCA) of biodiesel and diesel was made. The primary concern was the question as to whether or not the biodiesel chain was comparable to the conventional diesel chain, from an environmental point of view, taking into account all stages of the life cycle of the two products. Additionally, environmental damage costs were calculated, using an impact pathway analysis. This paper presents the results of the two methods for evaluation of environmental impacts of RME and conventional diesel. Both methods are complementary and share the conclusion that although biodiesel has much lower greenhouse gas emissions, it still has significant impacts on other impact categories. The external costs of biodiesel are a bit lower compared to fossil diesel. For both fuels, external costs are significantly higher than the private production cost. (Author)

  20. Integrating life cycle assessment and emergy synthesis for the evaluation of a dry steam geothermal power plant in Italy

    International Nuclear Information System (INIS)

    Buonocore, Elvira; Vanoli, Laura; Carotenuto, Alberto; Ulgiati, Sergio

    2015-01-01

    Greenhouse gas emissions, climate change and the rising energy demand are currently seen as most crucial environmental concerns. With the exploration of renewable energy sources to meet the challenges of energy security and climate change, geothermal energy is expected to play an important role. In this study a LCA (Life Cycle Assessment) and an EMA (Emergy Assessment) of a 20 MW dry steam geothermal power plant located in the Tuscany Region (Italy) are performed and discussed. The plant is able to produce electricity by utilizing locally available renewable resources together with a moderate support by non-renewable resources. This makes the geothermal source eligible to produce renewable electricity. However, the direct utilization of the geothermal fluid generates the release into the atmosphere of carbon dioxide, hydrogen sulfide, mercury, arsenic and other chemicals that highly contribute to climate change, acidification potential, eutrophication potential, human toxicity and photochemical oxidation. The study aims to understand to what extent the geothermal power plant is environmentally sound, in spite of claims by local populations, and if there are steps and/or components that require further attention. The application of the Emergy Synthesis method provides a complementary perspective to LCA, by highlighting the direct and indirect contribution in terms of natural capital and ecosystem services to the power plant construction and operation. The environmental impacts of the geothermal power plant are also compared to those of renewable and fossil-based power plants. The release of CO 2 -eq calculated for the investigated geothermal plant (248 g kWh −1 ) is lower than fossil fuel based power plants but still higher than renewable technologies like solar photovoltaic and hydropower plant. Moreover, the SO 2- eq release associated to the geothermal power plant (3.37 g kWh −1 ) is comparable with fossil fuel based power plants. Results suggest the

  1. Electricity supply. Older plants' impact on reliability and air quality

    International Nuclear Information System (INIS)

    England-Joseph, Judy A.; Adams, Charles M.; Wood, David G.; Feehan, Daniel J.; Veal, Howard F.; Skeen, John H. III; Koenigs, Melvin J.; Lichtenfeld, David I.; Seretakis, Pauline J.

    1990-09-01

    Life extension of fossil fuel plants is a relatively recent phenomenon; thus, utilities have little experience to demonstrate the longer-term operating reliability of plants with an extended service life. While utility industry officials and government and industry studies express optimism that these plants will continue to operate reliably, the officials and the studies also caution that it is too soon to determine how pursuing life extension will affect the reliability of the nation's electricity supply. According to DOE, the number of fossil fuel generating units' 30 years old or older is expected to increase from about 2,500 in 1989 to roughly 3,700 in 1998, increasing such plants' share of overall generating capacity from 13 percent in 1989 to 27 percent in 1998. EPA estimates that with existing air quality requirements, fossil fuel plant emissions will increase steadily during the coming decade. Proposed acid rain control legislation, which would affect many plants that may have their service life extended, would require utilities to significantly reduce emissions by the year 2000 but would allow utilities flexibility in deciding how and where to achieve the reductions. If such legislation is enacted, utilities generally are expected to find reducing emissions from existing plants more cost-effective than replacing them and to continue extending plants' service life. Officials of DOE and utility organizations expressed concern, however, that EPA could decide, as it did for one plant in 1988, that alterations made in extending the service life of plants exempted from the Clean Air Act would result in increased emissions and thus cause the altered plants to lose their exemption. According to the officials, the additional costs of achieving the Clean Air Act's standards could discourage some life extension projects. However, such decisions by EPA could also reduce the nation's total power plant emissions by eliminating an existing incentive to retain exempt

  2. Nuclear power plant performance statistics. Comparison with fossil-fired units

    International Nuclear Information System (INIS)

    Tabet, C.; Laue, H.J.; Qureshi, A.; Skjoeldebrand, R.; White, D.

    1983-01-01

    The joint UNIPEDE/World Energy Conference Committee on Availability of Thermal Generating Plants has a mandate to study the availability of thermal plants and the different factors that influence it. This has led to the collection and publication at the Congress of the World Energy Conference (WEC) every third year of availability and unavailability factors to be used in systems reliability studies and operations and maintenance planning. For nuclear power plants the joint UNIPEDE/WEC Committee relies on the IAEA to provide availability and unavailability data. The IAEA has published an annual report with operating data from nuclear plants in its Member States since 1971, covering in addition back data from the early 1960s. These reports have developed over the years and in the early 1970s the format was brought into close conformity with that used by UNIPEDE and WEC to report performance of fossil-fired generating plants. Since 1974 an annual analytical summary report has been prepared. In 1981 all information on operating experience with nuclear power plants was placed in a computer file for easier reference. The computerized Power Reactor Information System (PRIS) ensures that data are easily retrievable and at its present level it remains compatible with various national systems. The objectives for the IAEA data collection and evaluation have developed significantly since 1970. At first, the IAEA primarily wanted to enable the individual power plant operator to compare the performance of his own plant with that of others of the same type; when enough data had been collected, they provided the basis for assessment of the fundamental performance parameters used in economic project studies; now, the data base merits being used in setting availability objectives for power plant operations. (author)

  3. Life cycle assessment of greenhouse gas emissions, water and land use for concentrated solar power plants with different energy backup systems

    International Nuclear Information System (INIS)

    Klein, Sharon J.W.; Rubin, Edward S.

    2013-01-01

    Concentrated solar power (CSP) is unique among intermittent renewable energy options because for the past four years, utility-scale plants have been using an energy storage technology that could allow a CSP plant to operate as a baseload renewable energy generator in the future. No study to-date has directly compared the environmental implications of this technology with more conventional CSP backup energy options. This study compares the life cycle greenhouse gas (GHG) emissions, water consumption, and direct, onsite land use associated with one MW h of electricity production from CSP plants with wet and dry cooling and with three energy backup systems: (1) minimal backup (MB), (2) molten salt thermal energy storage (TES), and (3) a natural gas-fired heat transfer fluid heater (NG). Plants with NG had 4–9 times more life cycle GHG emissions than plants with TES. Plants with TES generally had twice as many life cycle GHG emissions as the MB plants. Dry cooling reduced life cycle water consumption by 71–78% compared to wet cooling. Plants with larger backup capacities had greater life cycle water consumption than plants with smaller backup capacities, and plants with NG had lower direct, onsite life cycle land use than plants with MB or TES. - highlights: • We assess life cycle environmental effects of concentrated solar power (CSP). • We compare CSP with three energy backup technologies and two cooling technologies. • We selected solar field area to minimize energy cost for plants with minimal backup and salt storage. • Life cycle greenhouse gas emissions were 4–9 times lower with thermal energy storage than with fossil fuel backup. • Dry cooling reduced life cycle water use by 71–78% compared to wet cooling

  4. Managing BWR plant life extension

    International Nuclear Information System (INIS)

    Ianni, P.W.; Kiss, E.

    1985-01-01

    Recent studies have confirmed that extending the useful life of a large nuclear plant can be justified with very high cost benefit ratio. In turn, experience with large power plant systems and equipment has shown that a well-integrated and -managed plan is essential in order to achieve potential economic benefits. Consequently, General Electric's efforts have been directed at establishing a life extension plan that considers alternative options and cost-effective steps that can be taken in early life, those appropriate during middle life, and those required in late life. This paper briefly describes an approach designed to provide the plant owner a maximum of flexibility in developing a life extension plan

  5. Lessons learned from fossil FAC assessments

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, R. Barry; Shields, Kevin J. [Structural Integrity Associates, Inc., Oakville, ON (Canada); Shulder, Stephen J. [Structural Integrity Associates, Inc., Annapolis, MD (United States)

    2010-09-15

    In their work the authors have noted great diversity in the Flow-Accelerated Corrosion (FAC) Programs used at conventional fossil power plants. The results and findings of FAC Program assessments conducted at 22 conventional plants are summarized and discussed. By comparing the FAC Program characteristics and relevant unit features with damage and failure experiences, a number of common factors requiring attention from fossil utility organizations have been identified. The assessment experiences have also provided a picture of trends in specific FAC activities and general awareness within the conventional fossil fleet. One of the most important aspects of these studies is that while a few new locations of FAC have been found, there is some consolidation of the most frequently found locations. (orig.)

  6. Gas power plants heat the public mind

    International Nuclear Information System (INIS)

    Chauveau, L.

    2009-01-01

    Nuclear energy provides most part of the electricity produced in France but fossil thermal plants remain necessary to face peaking demand. The French government has planned to replace all the fossil plants by combined cycle gas plants that release far less CO 2 than classic coal or oil plants. 31 new gas plants have been authorized and among them 2 are operating, 10 are being built and 8 are at the project stage. In some projects like in the little town of Verberie (Oise department) these projects are facing a strong local opposition. The objection of the opponents is two-fold: -) the plant will have a strong negative impact on the wild life particularly the population of boars and stags and -) this huge program of 31 gas plants contradict the government that committed itself to reduce the consumption of fossil energies and to favor renewable energies through its Grenelle environmental policy. (A.C.)

  7. POWER-GEN '90 conference papers: Volume 7 (Fossil plant performance availability and improvement) and Volume 8 (Nuclear power issues)

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    This is book 4 of papers presented at the Third International Exhibition and Conference for the Power Generation Industries, December 4-6, 1990. This book contains Volume 7, Fossil Plant Performance Availability and Improvement, and Volume 8, Nuclear Power Issues. The topics of the papers include computer applications in plant operations and maintenance, managing aging plants, plant improvements, plant operations and maintenance, the future of nuclear power, achieving cost effective plant operation, managing nuclear plant aging and license renewal, and the factors affecting a decision to build a new nuclear plant

  8. Miocene fossil plants from Bukpyeong Formation of Bukpyeong Basin in Donghae City, Gangwon-do Province, Korea and their palaeoenvironmental implications

    Science.gov (United States)

    Jeong, Eun Kyoung; Kim, Hyun Joo; Uemura, Kazuhiko; Kim, Kyungsik

    2016-04-01

    The Tertiary sedimentary basins are distributed along the eastern coast of Korean Peninsula. The northernmost Bukpyeong Basin is located in Donghae City, Gangwon-do Province, Korea. The Bukpyeong Basin consists of Bukpyeong Formation and Dogyeongri Conglomerate in ascending order. The geologic age of Bukpyeong Formation has been suggested as from Early Miocene to Pliocene, In particular, Lee & Jacobs (2010) suggested the age of the Bukpyeong Formation as late Early Miocene to early Middle Miocene based on the fossils of rodent teeth. Sedimentary environment has been thought as mainly fresh water lake and/or swamp partly influenced by marine water. Lately, new outcrops of Bukpyeong Formation were exposed during the road construction and abundant fossil plants were yielded from the newly exposed outcrops. As a result of palaeobotanical studies 47 genera of 23 families have been found. This fossil plant assemblage is composed of gymnosperms and dicotyledons. Gymnosperms were Pinaceae (e.g., Pinus, Tsuga), Sciadopityaceae (e.g., Sciadopitys) and Cupressaceae with well-preserved Metasequoia cones. Dicotyledons were deciduous trees such as Betulaceae (e.g., Alnus, Carpinus) and Sapindaceae (e.g., Acer, Aesculus, Sapindus), and evergreen trees such as evergreen Fagaceae (e.g., Castanopsis, Cyclobalanopsis, Pasania) and Lauraceae (e.g., Cinnamomum, Machilus). In addition, fresh water plants such as Hemitrapa (Lytraceae) and Ceratophyllum (Ceratophyllaceae) were also found. The fossil plant assemblage of the Bukpyeong Formation supported the freshwater environment implied by previous studies. It can be suggested that the palaeoflora of Bukpyeong Formation was oak-laurel forest with broad-leaved evergreen and deciduous trees accompanying commonly by conifers of Pinaceae and Cupressaceae under warm-temperate climate.

  9. Deactivation and Storage Issues Shared by Fossil and Nuclear Facilities

    International Nuclear Information System (INIS)

    Thomas S. LaGuardia

    1998-01-01

    The deactivation of a power plant, be it nuclear or fossil fueled, requires that the facility be placed in a safe and stable condition to prevent unacceptable exposure of the public or the environment to hazardous materials until the facility can be decommissioned. The conditions at two Texas plants are examined. These plants are fossil fueled, but their conditions might be duplicated at a nuclear plant

  10. The significance of plant life management

    International Nuclear Information System (INIS)

    Myrddin Davies, L.

    2000-01-01

    The paper carries a definition and describes Plant life and plant life management. It also describes the procedures and defines the categorisation of components giving examples and referring to key components. Examples of 'good practice and guidance' are given for the establishment and implementation of plant life management programmes. A description is given of recent and current IAEA activities under the aegis of the International Working Group on Nuclear Power Plant Life Management (IWG-LMNPP). Some of the future activities in this field are described. (author)

  11. Clean fossil-fuelled power generation

    International Nuclear Information System (INIS)

    Oliver, Tony

    2008-01-01

    Using fossil fuels is likely to remain the dominant means of producing electricity in 2030 and even 2050, partly because power stations have long lives. There are two main ways of reducing CO 2 emissions from fossil-fuelled power plants. These are carbon capture and storage (CCS), which can produce near-zero CO 2 emissions, and increases in plant efficiency, which can give rise to significant reductions in CO 2 emissions and to reduced costs. If a typical UK coal-fired plant was replaced by today's best available technology, it would lead to reductions of around 25% in emissions of CO 2 per MW h of electricity produced. Future technologies are targeting even larger reductions in emissions, as well as providing a route, with CCS, to zero emissions. These two routes are linked and they are both essential activities on the pathway to zero emissions. This paper focuses on the second route and also covers an additional third route for reducing emissions, the use of biomass. It discusses the current status of the science and technologies for fossil-fuelled power generation and outlines likely future technologies, development targets and timescales. This is followed by a description of the scientific and technological developments that are needed to meet these challenges. Once built, a power plant can last for over 40 years, so the ability to upgrade and retrofit a plant during its lifetime is important

  12. Challenges in estimating past plant diversity from fossil pollen data: statistical assessment, problems, and possible solutions.

    NARCIS (Netherlands)

    Weng, C.; Hooghiemstra, H.; Duivenvoorden, J.F.

    2006-01-01

    Fossil pollen data from sediment cores may be used as a measure for past plant diversity. According to the theory of probability, palynological richness is positively related to the pollen count. In a low pollen count, only common taxa are detected, whereas rare taxa are only detected by chance. The

  13. A study on the boiler efficiency influenced by the boiler operation parameter in fossil power plant

    International Nuclear Information System (INIS)

    Kwon, Y. S.; Suh, J. S.

    2002-01-01

    The main reason to analyze the boiler operation parameter in fossil power plant is to increase boiler high efficiency and energy saving movement in the government. This study intends to have trend and analyze the boiler efficiency influenced by the boiler parameter in sub-critical and super-critical type boiler

  14. Fossil plants from Romanian deposits of Bacles, Dolj District, Romania

    Directory of Open Access Journals (Sweden)

    Nicolae T̡icleanu

    2001-09-01

    Full Text Available From the Middle Romanian lacustrine deposits of the Oltenia province, the authors describe the youngest fossil flora known until now in Oltenia. The inventory of the fossil flora includes the following taxa: Taxodium dubium, ?Platanus platanifolia, Ulmus laevis, Quercus roburoides, Q. cf. muehlenbergii, Carya serraefolia, Acer cf. tricuspidatum and Salix sp. In the Bâcleş fossil flora, Glyptostrobus europaeus, which is a thermophilous and shows a high frequency in all Oltenia area till the XV-th coal seam, is absent. Consequently, having in view the high frequency of Taxodium dubium, which indicate temperate climate conditions, the other consider that the fossil flora from Bâcleş is much more younger and marks an important cooling. From palaeofloristic point of view, the study of Bâcleş fossil flora is indicative for river meadow forest and, probably, flat plain forest environments.

  15. Boiler tube failure prevention in fossil fired boilers

    International Nuclear Information System (INIS)

    Townsend, R.D.

    1993-01-01

    It is the common experience of power generating companies worldwide that the main causes of forced outages on power plant are those due to boiler tube failures on fossil units. The main reason for the large number of failures are the severe environmental conditions in fossil boilers as the effects of stress, temperature, temperature gradients, corrosion, erosion and vibration combine to produce degradation of the tube steel. Corrosion by oxidation, by combustion products and by impure boiler water can significantly reduce the tube wall thickness and result in failure of a tube many years before its designed service life. Errors can also occur in the design manufacturer, storage, operation, and maintenance of boiler tubing and the wrong material installed in a critical location can lead to premature failure. Altogether, experts in the US and UK, from many different disciplines, have identified seven broad categories of boiler tube failure mechanisms. 1 tab., 2 figs

  16. Mollusc life and death assemblages on a tropical rocky shore as proxies for the taphonomic loss in a fossil counterpart

    DEFF Research Database (Denmark)

    Sørensen, Anne Mehlin; Surlyk, Finn

    2013-01-01

    a lower taxonomic agreement to the death assemblage than found in previous published studies. Rocky shore life and death assemblages thus appear to show lower taxonomic agreement compared to muddy or sandy shelf assemblages due to the mix after death with the sandy beach assemblage. A hypothetical fossil......Comparison of a modern rocky shore mollusc life assemblage from Thailand with the associated death assemblage, and interpretation of the fossilization potential of the latter, are used to investigate the fidelity in reconstruction of ancient analogues. The fauna from the death assemblage represents...... species from the rocky shore and the associated sandy pocket beaches, and only a few exotic species from other, completely different habitats are present. The environmental fidelity between the life and death assemblage is thus high, with the majority of species from the death assemblage representing...

  17. The Zero Emission Fossil Fuel Power Plant - from vision to reality.

    Energy Technology Data Exchange (ETDEWEB)

    Stroemberg, L.; Sauthoff, M.

    2007-07-01

    Sufficient supply of energy without fossil fuels is not possible the next fifty years. Thus, we must find a solution to use coal, without endangering the environment. Carbon Capture and Storage, CCS, might be the answer. At a cost of about 20 Euro/ton CO{sub 2}, there exist technologies, which can be ready for commercial application in 2020. After that, even more cost effective technologies will be developed. To reduce emissions by more than half until 2050, cannot be reached without CCS. However, CCS is very powerful, but not the only tool. All ways to reduce emissions, including renewables and nuclear must be used. To put emphasis behind the words, Vattenfall has started an R and D program to develop technology for CCS in a ten year program. As part of that, Vattenfall is building a Pilot Plant including all process steps from coal input to liquid CO{sub 2}. It will be ready in 2008. In parallel, preparations for a demonstration plant are ongoing. It will be a coal fired full size plant with storage on shore. That will be ready for operation in 2015. (auth)

  18. Availability performance of fossil-fired and nuclear power plants around the world

    International Nuclear Information System (INIS)

    Glorian, D.; Aye, L.; Lefeuvre, P.; Bouget, Y.H.

    1996-01-01

    For future thermal electricity, the electricity producer facing needs for extension or renewal of his own generating capacity can choose among a large number of proven technologies. These technologies can be nuclear or conventional (fossil-fired): steam turbines, cogeneration or gas turbines. The economic competitiveness of these different types of installations over their entire lifetime is calculated on the basis of various cost assumptions and/or scenarios, taking into account capital investment, fuel, operating and maintenance costs.. Equally important are such factors as construction duration, discount rate, service lifetime, usage mode (base load, intermediate load or peak load). In addition, costs and hypotheses in relation to the environment should be taken into account, including the cost of dismantling nuclear power plants. Hypotheses concerning the service delivered to the grid, that is to say the expected availability of the plant, is one of the main factors governing the quality of service provided. This paper deals particularly with experience feedback in the area of availability factors for nuclear and conventional power plants (steam turbines) of over 100 MW around the world. The assumptions for future (i.e. new) plants are compared against experience feedback. In the second part, assumptions for new plants are presented. (authors)

  19. The use of PEANO for on-line monitoring of fossil power plants

    International Nuclear Information System (INIS)

    Fantoni, Paolo F.; Zanetta, Gian Antonio; Gregori, Luca

    2004-01-01

    This paper describes the results of the use of a combined approach of artificial neural network and fuzzy logic, implemented in the computer code PEANO, to the on-line monitoring of the steam-water cycle of a 320 MW fossil plant in Italy. First, a short review of the underlying theory is reported. Then some results are illustrated of data pre-processing, aimed at selecting the appropriate data and to address the neural networks architecture. Finally the simulation of continuous monitoring is documented and data reconciliation capability of the code is discussed in some detail. These results demonstrate that the approach provided by PEANO is very effective to validate measured signals and to track a process on-line, giving the plant operator an immediate insight of the evolution of a possible fault in sensors or system components. (Author)

  20. Reducing life cycle greenhouse gas emissions of corn ethanol by integrating biomass to produce heat and power at ethanol plants

    International Nuclear Information System (INIS)

    Kaliyan, Nalladurai; Morey, R. Vance; Tiffany, Douglas G.

    2011-01-01

    A life-cycle assessment (LCA) of corn ethanol was conducted to determine the reduction in the life-cycle greenhouse gas (GHG) emissions for corn ethanol compared to gasoline by integrating biomass fuels to replace fossil fuels (natural gas and grid electricity) in a U.S. Midwest dry-grind corn ethanol plant producing 0.19 hm 3 y -1 of denatured ethanol. The biomass fuels studied are corn stover and ethanol co-products [dried distillers grains with solubles (DDGS), and syrup (solubles portion of DDGS)]. The biomass conversion technologies/systems considered are process heat (PH) only systems, combined heat and power (CHP) systems, and biomass integrated gasification combined cycle (BIGCC) systems. The life-cycle GHG emission reduction for corn ethanol compared to gasoline is 38.9% for PH with natural gas, 57.7% for PH with corn stover, 79.1% for CHP with corn stover, 78.2% for IGCC with natural gas, 119.0% for BIGCC with corn stover, and 111.4% for BIGCC with syrup and stover. These GHG emission estimates do not include indirect land use change effects. GHG emission reductions for CHP, IGCC, and BIGCC include power sent to the grid which replaces electricity from coal. BIGCC results in greater reductions in GHG emissions than IGCC with natural gas because biomass is substituted for fossil fuels. In addition, underground sequestration of CO 2 gas from the ethanol plant's fermentation tank could further reduce the life-cycle GHG emission for corn ethanol by 32% compared to gasoline.

  1. Life cycle management in the U.S.: Stone and Webster's experience

    International Nuclear Information System (INIS)

    Banerjee, A.K.

    1992-01-01

    Life Cycle Management (LCM) is a sound methodology that integrates plant operations, maintenance requirements and practices, capital improvements, radioactive waste strategies, decommissioning, and life extension. It is a structured decision-making process for plant aging management and performance improvement. Stone and Webster has used this process for many fossil plants, and is now using it at several nuclear plants. This paper discusses Stone and Webster's experiences with LCM programs at U.S. nuclear power plants. 1 ref., 3 tabs., 8 figs

  2. Plant life management optimized utilization of existing nuclear power plants

    International Nuclear Information System (INIS)

    Watzinger, H.; Erve, M.

    1999-01-01

    For safe, reliable and economical nuclear power generation it is of central importance to understand, analyze and manage aging-related phenomena and to apply this information in the systematic utilization and as-necessary extension of the service life of components and systems. An operator's overall approach to aging and plant life management which also improves performance characteristics can help to optimize plant operating economy. In view of the deregulation of the power generation industry with its increased competition, nuclear power plants must today also increasingly provide for or maintain a high level of plant availability and low power generating costs. This is a difficult challenge even for the newest, most modern plants, and as plants age they can only remain competitive if a plant operator adopts a strategic approach which takes into account the various aging-related effects on a plant-wide basis. The significance of aging and plant life management for nuclear power plants becomes apparent when looking at their age: By the year 2000 roughly fifty of the world's 434 commercial nuclear power plants will have been in operation for thirty years or more. According to the International Atomic Energy Agency, as many as 110 plants will have reached the thirty-year service mark by the year 2005. In many countries human society does not push the construction of new nuclear power plants and presumably will not change mind within the next ten years. New construction licenses cannot be expected so that for economical and ecological reasons existing plants have to be operated unchallengeably. On the other hand the deregulation of the power production market is asking just now for analysis of plant life time to operate the plants at a high technical and economical level until new nuclear power plants can be licensed and constructed. (author)

  3. Soviet steam generator technology: fossil fuel and nuclear power plants

    International Nuclear Information System (INIS)

    Rosengaus, J.

    1987-01-01

    In the Soviet Union, particular operational requirements, coupled with a centralized planning system adopted in the 1920s, have led to a current technology which differs in significant ways from its counterparts elsewhere in the would and particularly in the United States. However, the monograph has a broader value in that it traces the development of steam generators in response to the industrial requirements of a major nation dealing with the global energy situation. Specifically, it shows how Soviet steam generator technology evolved as a result of changing industrial requirements, fuel availability, and national fuel utilization policy. The monograph begins with a brief technical introduction focusing on steam-turbine power plants, and includes a discussion of the Soviet Union's regional power supply (GRES) networks and heat and power plant (TETs) systems. TETs may be described as large central co-generating stations which, in addition to electricity, provide heat in the form of steam and hot water. Plants of this type are a common feature of the USSR today. The adoption of these cogeneration units as a matter of national policy has had a central influence on Soviet steam generator technology which can be traced throughout the monograph. The six chapters contain: a short history of steam generators in the USSR; steam generator design and manufacture in the USSR; boiler and furnace assemblies for fossil fuel-fired power stations; auxiliary components; steam generators in nuclear power plants; and the current status of the Soviet steam generator industry. Chapters have been abstracted separately. A glossary is included containing abbreviations and acronyms of USSR organizations. 26 references

  4. Plant life management and maintenance technologies for nuclear power plants

    International Nuclear Information System (INIS)

    Ikegami, Tsukasa; Aoki, Masataka; Shimura, Takao; Kaimori, Kimihiro; Koike, Masahiro

    2001-01-01

    Nuclear power generation occupying an important position for energy source in Japan and supplying about one third of total electric power usage is now required for further upgrading of its economics under regulation relaxation of electric power business. And, under execution retardation of its new planning plant, it becomes important to operate the already established plants for longer term and to secure their stability. Therefore, technical development in response to the plant life elongation is promoted under cooperation of the Ministry of Economics and Industries, electric power companies, literate, and plant manufacturers. Under such conditions, the Hitachi, Ltd. has progressed some technical developments on check inspection, repairs and maintenance for succession of the already established nuclear power plants for longer term under securing of their safety and reliability. And in future, by proposing the check inspection and maintenance program combined with these technologies, it is planned to exert promotion of maintenance program with minimum total cost from a viewpoint of its plant life. Here were described on technologies exerted in the Hitachi, Ltd. such as construction of plant maintenance program in response to plant life elongation agreeing with actual condition of each plant, yearly change mechanism grasping, life evaluation on instruments and materials necessary for maintenance, adequate check inspection, repairs and exchange, and so forth. (G.K.)

  5. Plant Betterment as Anticipated Measure For Plant Life Management

    International Nuclear Information System (INIS)

    Louvat, J. P.

    1991-01-01

    A lot of modifications have been made since critically on each of the 28 standardized 900 MW class PWR units in France. Most of this technical upgrading was accomplished to facilitate operation, improve availability, or bring the unit design in line with evolving regulatory requirements, but a substantial part of the modifications was dedicated to Plant Life Management. As part of the program launched by EDF for plant life management, this paper introduces the Frustum's contribution for plant betterment and enhancement of reactor operation concurrently to ensure or extend plant service life. The solutions contemplated in this field are provided to reduce the frequency of unexpected reactor trip occurrences, to mitigate their negative effects or to smooth off the reactor operation and thus the magnitude of associated transients. The lifetime evaluation of NPP is basically an economical exercise, which tries to determine how long the operation of the plant will remain competitive, taking into account the long term perspective maintenance costs. There cannot be any conflict between lifetime and safety considerations, based upon the pituitary requisite that the safety requirement must be met at any time of the operation. Plant life management needs a consistent approach that can not be improvised on a case by case basis. Instead, it must be kept in mind from the very beginning of unit operation. This is the sense of the backfitting and technical upgrading carried out in France for the PWRs of the 900 MW class. It is thanks to this necessary anticipation that plant life will be actually managed, giving benefit both from the standpoint of availability and from that of the service lives of sensitive components. Substantial savings will thus be obtained

  6. Fossils and palaeontological distributions of Macaranga and Mallotus (Euphorbiaceae)

    NARCIS (Netherlands)

    Nucete, M.; van Konijnenburg-van Cittert, J.H.A.; van Welzen, P.C.

    2012-01-01

    The correct identification of described plant fossils from the sister genera Macaranga and Mallotus (Euphorbiaceae) needs to be confirmed in order to correctly date their phylogeny and map their palaeontological distributions. Previous identifications of fossil specimens often appear to be

  7. Environmental burdens over the entire life cycle of a biomass CHP plant

    International Nuclear Information System (INIS)

    Jungmeier, G.; Spitzer, J.; Resch, G.

    1998-01-01

    To increase the use of biomass for energy production it is important to know the possible and significant environmental effects. A life cycle inventory (LCI) was made on a 1.3 MW el biomass CHP plant located in Reuthe/Vorarlberg/Austria with the purpose of analysing the different environmental burdens over the entire life cycle. The plant is fired with coarse and small fuelwood (10,000 t/yr) from industrial waste and forest residues. The boiler for the steam process has a moving grate burner and a muffle burner. The annual production is 4700 MWh of electricity and 29,000 MWh of district heat. The methodology of the analysis is orientated on the ISO Committee Draft of the Series 13,600. The analysis was carried out for the different sections of the biomass plant over their entire life cycle-construction (1 yr), operation (20 yrs) and dismantling (1 yr). The plant in Reuthe, which is the first cogeneration system of this kind in Austria, is a model for other similar projects. The results are shown as environmental burdens of one year and of the entire life cycle. Some results of the life cycle inventory, like the mass and energy balances, selected emissions to air, allocation results and effects on carbon storage pools are given. The results demonstrate that depending on the stage and the period of life, different environmental burdens become significant, i.e. CO 2 emissions of fossil fuels during construction. NO x emission during operation, emissions to soil during dismantling. The different options for allocation the environmental burdens to electricity and heat show a wide range of possible results, depending on the choice of allocation parameters (energy, exergy, credits for heat or electricity, price) i.e. for the particles emissions: 161 mg/kWh el to minus 566 mg/kWh el , 0 mg/kWh th to 118 mg/kWh th . With the results of the analysis it is thus possible for future similar projects to know when and where significant environmental burdens might be further

  8. Development of a new generation of ion exchange resin for nuclear and fossil power plant

    International Nuclear Information System (INIS)

    Tsuzuki, Shintaro; Tagawa, Hidemi; Yamashita, Futoshi; Okamoto, Ryutaro

    2008-01-01

    It is required to maintain water quality supplied to steam generator to the water designed based on its water chemistry in order to keep the sound operation of nuclear power plants or fossil power plants. Condensate Polishing Plant (CPP) is installed for removing ions in the water which uses a mixed bed of cation exchange resin and anion exchange resin. We have developed new generation of CPP resin. The product is a unique combination of super high exchange capacity cation exchange resin and high fouling resistant anion exchange resin. The CPP resin has been used in many power plants. Amberjet 1006 was developed as a cation exchange resin with high oxidative stability, high operational capacity and New IRA900CP was developed as an anion exchange resin with high fouling resistant to leachables released out of cation exchange resin by oxidative degradation over the service period. The novel CPP resin was first used in 2000 and has now been used in many power plants in Japan. The CPP resin has been giving excellent quality of water. (author)

  9. Economic competitiveness of seawater desalinated by nuclear and fossil energy

    International Nuclear Information System (INIS)

    Tian Li; Wang Yongqing; Guo Jilin; Liu Wei

    2001-01-01

    The levelized discounted production water cost method and the new desalination economic evaluation program (DEEP1.1) were used to compare the economics of desalination using nuclear or fossil energy. The results indicate that nuclear desalination is more economic than fossil desalination with reverse osmosis (RO), multi-effect distillation (MED) and multi-stage flash (MSF). The desalination water cost varies depending on the desalination technology and the water plant size from 0.52-1.98 USD·m -3 with the lowest water price by RO and the highest by MSF. The sensitivity factors for the economic competitiveness increases in order of the discounted rate, desalination plant scale, fossil fuel price, specific power plant investment, seawater temperature and total dissolve solid (TDS). The highest water cost is about 22.6% more than the base case

  10. The occurrence of p-coumaric acid and ferulic acid in fossil plant materials and their use as UV-proxy.

    NARCIS (Netherlands)

    Blokker, P.; Boelen, P.; Broekman, R.A.

    2006-01-01

    The applicability of p-coumaric acid and ferulic acid concentrations or ratios in (sub)fossil plant remnant as UV-B proxies relies on various aspects, which are discussed in this paper and will be illustrated with some experimental data. A newly developed THM-micropyrolysis-gas chromatography-mass

  11. Comparative evaluation of solar, fission, fusion, and fossil energy resources. Part 4: Energy from fossil fuels

    Science.gov (United States)

    Williams, J. R.

    1974-01-01

    The conversion of fossil-fired power plants now burning oil or gas to burn coal is discussed along with the relaxation of air quality standards and the development of coal gasification processes to insure a continued supply of gas from coal. The location of oil fields, refining areas, natural gas fields, and pipelines in the U.S. is shown. The technologies of modern fossil-fired boilers and gas turbines are defined along with the new technologies of fluid-bed boilers and MHD generators.

  12. Δ14C level of annual plants and fossil fuel derived CO2 distribution across different regions of China

    International Nuclear Information System (INIS)

    Xi, X.T.; Ding, X.F.; Fu, D.P.; Zhou, L.P.; Liu, K.X.

    2013-01-01

    The 14 C level in annual plants is a sensitive tracer for monitoring fossil fuel derived CO 2 in the atmosphere. Corn leave samples were selected from different regions of China, including high mountains in the Tibetan Plateau, grassland in Inner Mongolia, and inland and coastal cities during the summer of 2010. The 14 C/ 12 C ratio of the samples was measured with the NEC compact AMS system at the Institute of Heavy Ion Physics, Peking University. The fossil fuel derived CO 2 was estimated by comparing the measured Δ 14 C values of corn leave samples to background atmospheric Δ 14 C level. The influences of topography, meteorological conditions and carbon cycling processes on the fossil fuel derived CO 2 concentration are considered when interpreting the data. Our results show a clear association of the low Δ 14 C values with regions where human activities are intensive.

  13. Biomass from agriculture in small-scale combined heat and power plants - A comparative life cycle assessment

    International Nuclear Information System (INIS)

    Kimming, M.; Sundberg, C.; Nordberg, A.; Baky, A.; Bernesson, S.; Noren, O.; Hansson, P.-A.

    2011-01-01

    Biomass produced on farm land is a renewable fuel that can prove suitable for small-scale combined heat and power (CHP) plants in rural areas. However, it can still be questioned if biomass-based energy generation is a good environmental choice with regards to the impact on greenhouse gas emissions, and if there are negative consequences of using of agricultural land for other purposes than food production. In this study, a simplified life cycle assessment (LCA) was conducted over four scenarios for supply of the entire demand of power and heat of a rural village. Three of the scenarios are based on utilization of biomass in 100 kW (e) combined heat and power (CHP) systems and the fourth is based on fossil fuel in a large-scale plant. The biomass systems analyzed were based on 1) biogas production with ley as substrate and the biogas combusted in a microturbine, 2) gasification of willow chips and the product gas combusted in an IC-engine and 3) combustion of willow chips for a Stirling engine. The two first scenarios also require a straw boiler. The results show that the biomass-based scenarios reduce greenhouse gas emissions considerably compared to the scenario based on fossil fuel, but have higher acidifying emissions. Scenario 1 has by far the best performance with respect to global warming potential and the advantage of utilizing a byproduct and thus not occupying extra land. Scenario 2 and 3 require less primary energy and less fossil energy input than 1, but set-aside land for willow production must be available. The low electric efficiency of scenario 3 makes it an unsuitable option.

  14. Preservation of Plant Biomolecules and the Relevance to the Interpretation of Paleoenvironmental Signals: Tertiary Metasequoia Fossils as Examples

    Science.gov (United States)

    Yang, H.; Leng, Q.

    2004-12-01

    The degradation and preservation of biomolecules in plant tissues not only affects the inference on paleoecology of ancient plants but also bears significance in the interpretation of paleoenvironmental signals. Using a combined SEM and geochemical approach, we are able to show the source, liability, and preservation of structural biopolymers from morphologically well-preserved Metasequoia tissues from three Tertiary deposits. We detected a continuum of biomolecular preservation in this evolutionarily-conserved conifer. Pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) was applied to solvent-extracted residues from both fossil leaf and wood remains in comparison with tissues from their living counterparts. The late Paleocene-early Eocene leaves from Ellesmere Island, Canadian Arctic Archipelago, exhibit the best quality of biochemical preservation and show pyrolysis products derived from labile biomolecules characterized by large amounts of polysaccharides. These labile biomolecules are the oldest record of these kinds so far characterized by the pyrolysis technology. The middle Eocene leaf tissues from Axel Heiberg Island, Canadian Arctic Archipelago, yielded slightly lesser amounts of polysaccharide moieties, but the lignin products are similar to those identified from the Ellesmere Island fossils. Compared with these Arctic materials, the Metasequoia leaves from Miocene Clarkia, Idaho, USA, show the lowest quality of molecular preservation, characterized by a dramatic reduction of polysaccharides. This continuum of relative quality of biomolecular preservation is further confirmed by SEM observations of transverse sections of these fossil leaves. The investigation revealed tissue-specific degradation, and our data support the in-situ polymerization hypothesis for the origin of long-chain homologous pairs of aliphatic n-alk-1-enes/n-alkanes as leaf alteration products. The preferential degradation and selective removal of polysaccharides may be

  15. Fossiler i Grønland. 2. del

    DEFF Research Database (Denmark)

    Harper, David Alexander Taylor; Lindow, Bent Erik Kramer

    2009-01-01

    Dette er anden og sidste del af POST Greenlands serie om fossiler i Grønland med tre frimærker, der beretter om de mange og spændende fossilfund fra Grønland. Mærkerne fortsætter vores rejse gennem nogle af nøglebegivenhederne i livets historie, smukt illustreret af endnu flere unikke fossiler....... Disse tre fossiler, en plante, et bløddyr og et hvirveldyr, er fra de yngre aflejringer i Grønland med aldre spændende fra for 200 millioner og indtil kun 8.000 år siden....

  16. Greenhouse gases in the life cycle of fossil fuels: critical aspects in upstream emissions estimate and their repercussions on the overall life-cycle

    International Nuclear Information System (INIS)

    Zerlia, Tiziana

    2004-01-01

    Combustion accounts for the main contribution to greenhouse-gas (GHG) emissions in electricity generation via fossil fuels. To date, minor attention has been paid to pre combustion emissions associated with fossil fuel upstream segment (production, processing and transportation). This study seeks to provide insight into GHG emissions in the pre combustion step of natural gas and coal. Owing to the size/complexity of the upstream processes and to a lack of detailed site-specific data, this study just outlines some of the key aspects involved. The attention will be focused on the elements that may have a significant impact on fossil fuel life-cycle and no on the evaluation of GHG: the sources, the extent of the pre combustion GHG emissions and the accuracy of their estimate. Some key results are summarized in the following. The first one is that pre combustion GHG, owing of the huge Italy reliance on fossil fuels imports, are mainly emitted abroad. In addition, they are released to the atmosphere mainly as fugitive emissions (methane and carbon dioxide being the predominant gases). Moreover, although pre combustion emissions give a modest contribution to GHG of the whole energy sector, they may account for a consistent part of the aver all fuel life-cycle in power generation even though combustion technologies efficiency plays a key role in emission reduction. Some examples are reported, showing the potential impact of pre combustion emissions on coal and natural gas life-cycle in Italy's electricity generation. The second one is that pre combustion emissions are very site specific as they depend on several factors which may vary greatly between countries and even between individual companies. The sources and the extent of upstream emissions are in fact a function of a least three factor types: (a) technical parameters (design and operating practices, process operating conditions, efficiency of potential emission control/reduction equipment, age and conditions of

  17. Countermeasure to plant life management of the nuclear power plants out of Japan

    International Nuclear Information System (INIS)

    1999-01-01

    Some investigations on countermeasure to plant life management of the nuclear power plants were begun since beginning of 1990s under cooperation with Ministry of International Trade and Industry and all electric power companies under consideration of recent state on abroad and at concept of preventive conservation implementation against the plant life management. As a result, the Tokyo Electric Power Company, the Kansai Electric Power Company and the Japan Atomic Power Company settled each program on countermeasure to plant life management of the Fukushima-1 Power Plant, the Mihama-1 Power Plant and the Tsuruga-1 Power Plant, respectively, which were reported to the Atomic Energy Safety Commission to issue on February, 1999, after deliberation in the Adviser Group of Ministry of International Trade and Industry. Such investigations on countermeasure to the plant life management are also conducted out of Japan in parallel to those in Japan, which contain programs reflecting states of operation and maintenance of nuclear power plants and atmosphere around atomic energy in each country. Here were described on some present states of the countermeasures to plant life management in U.S.A., France, Germany, Sweden, England and so forth. (G.K.)

  18. Fossil energy savings potential of sugar cane bio-energy systems

    DEFF Research Database (Denmark)

    Nguyen, Thu Lan T; Hermansen, John Erik; Sagisaka, Masayuki

    2009-01-01

    One important rationale for bio-energy systems is their potential to save fossil energy. Converting a conventional sugar mill into a bio-energy process plant would contribute to fossil energy savings via the extraction of renewable electricity and ethanol substituting for fossil electricity...... and gasoline, respectively. This paper takes a closer look at the Thai sugar industry and examines two practical approaches that will enhance fossil energy savings. The first one addresses an efficient extraction of energy in the form of electricity from the excess bagasse and cane trash. The second while...... proposing to convert molasses or sugar cane to ethanol stresses the use of bagasse as well as distillery spent wash to replace coal in meeting ethanol plants' energy needs. The savings potential achieved with extracting ethanol from surplus sugar versus current practice in sugar industry in Thailand amounts...

  19. An integrated approach to plant life management

    International Nuclear Information System (INIS)

    Fredlund, L.

    1998-01-01

    Plant life is no longer determined by components, almost everything can be replaced. A plant life management program should aim at actions and replacements being performed at the right time. In order to manage this there is need for experience feedback systems, a plant specific risk study and safety upgrades. (author)

  20. Fossil Energy Advanced Research and Technology Development (AR&TD) Materials Program semiannual progress report for the period ending September 30, 1991. Fossil Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.; Cole, N.C. [comps.

    1992-04-01

    The objective of the Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The Program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Research is outlined in four areas: Ceramics, New Alloys, Corrosion and Erosion Research, and Technology Development and Transfer. (VC)

  1. Business aspects and cost advantages of partnering for fossil engineering services

    International Nuclear Information System (INIS)

    Featham, M.D.; Sensenig, R.G.

    1995-01-01

    In today's environment where utility companies are attempting to reduce costs, alternative cost competitive approaches are being adopted to traditional fossil power plant engineering. One approach is to utilize Partnering of multiple organizations to provide cost competitive and quality engineering services. An approach to Partnering that involves Florida Power Corporation Partnering with multiple architect/engineers to provide the fossil plant engineering services is described in this paper

  2. Microalgal and terrestrial transport biofuels to displace fossil fuels

    NARCIS (Netherlands)

    Reijnders, L.

    2009-01-01

    Terrestrial transport biofuels differ in their ability to replace fossil fuels. When both the conversion of solar energy into biomass and the life cycle inputs of fossil fuels are considered, ethanol from sugarcane and biodiesel from palm oil do relatively well, if compared with ethanol from corn,

  3. BALTICA III. Plant condition and life management

    International Nuclear Information System (INIS)

    Hietanen, S.; Auerkari, P.

    1995-01-01

    The BALTICA III, International Conference on Plant Condition and Life Management was held on June 6 - 8, 1995 on board Silja Serenade on its cruise between Helsinki - Stockholm and at the Forest Lake Hotel Korpilampi in Espoo. BALTICA III provides forum for the transfer of technology from applied research to practise. This is the second volume of the publications, which contain the presentations given at the BALTICA III, Plant Condition and Life Management. A total of 45 articles report recent experience in plant condition and life management. The conference focuses on recent applications that have been demonstrated for the benefit of safe and economical operation of power plants. Practical approach is emphasised, including the presentations that aim to provide insight into new techniques, improvements in assessment methodologies as well as maintenance strategies. Compared to earlier occasions in the BALTICA series, a new aspect is in the applications of knowledge-based systems in the service of power plant life management. (orig.)

  4. Plant life management (PLIM) in Swiss nuclear power plants

    International Nuclear Information System (INIS)

    Stejskal, Jan; Steudler, Daniel; Thoma, Kurt; Fuchs, Reinhard

    2002-01-01

    Full text: The Swiss Utility Working group for ageing Management (AM) presented their programme for the first time at the PLIM/PLEX 93. In the meantime the key guideline documents have been prepared and the most so called S teckbrief - files for Safety Class 1 (SC1) are issued. The 'Steckbrief' file is a summary of the component history and includes the results of the Reviews performed and measures taken or planned to counteract ageing mechanisms. The scope of these activities does not only serve the important aspect of reliable plant service but also facilitates component and plant life extension feasibility. The older plants have been operated now for up to 30 years, so PLEX will become a more important topic for Swiss NPP. It is very encouraging, that there is an official memorandum of the Swiss authority with the clear statement, that they could not identify any technical reason, why the older plants should not extend their design life of 40 years for at least 10 and the younger for 20 years. The result of this is that a well established Ageing Management Programme (AMP) provide a good basis for Plant Life Extension (PLEX), e.g. the Swiss AMP has to be seen as a PLIM. (author)

  5. From Fossils to Astrobiology Records of Life on Earth and Search for Extraterrestrial Biosignatures

    CERN Document Server

    Seckbach, Joseph

    2008-01-01

    From Fossils to Astrobiology reviews developments in paleontology and geobiology that relate to the rapidly-developing field of Astrobiology, the study of life in the Universe. Many traditional areas of scientific study, including astronomy, chemistry and planetary science, contribute to Astrobiology, but the study of the record of life on planet Earth is critical in guiding investigations in the rest of the cosmos. In this varied book, expert scientists from 15 countries present peer-reviewed, stimulating reviews of paleontological and astrobiological studies. The overviews of established and emerging techniques for studying modern and ancient microorganisms on Earth and beyond, will be valuable guides to evaluating biosignatures which could be found in the extraterrestrial surface or subsurface within the Solar System and beyond. This volume also provides discussion on the controversial reports of "nanobacteria" in the Martian meteorite ALH84001. It is a unique volume among Astrobiology monographs in focusi...

  6. Life extension economic analysis

    International Nuclear Information System (INIS)

    Smithling, A.P.

    1992-01-01

    Life extension economic analyses of fossil fueled power plants need the development of consistent methods which consider the capital costs associated with component replacement or repair and estimates of normal station capital expenditures over the units remaining life. In order to link capital and production costs, Niagra Mohawk Power Corp. develops most and worst cases. A most case includes capital components that would definitely need replacement or modification for life extension. The worst case scenario contains must case capital costs plus various components which may need replacement or modification. In addition, two forecasted conditions are used, base case capacity and low capacity

  7. The legacy of fossil fuels.

    Science.gov (United States)

    Armaroli, Nicola; Balzani, Vincenzo

    2011-03-01

    Currently, over 80% of the energy used by mankind comes from fossil fuels. Harnessing coal, oil and gas, the energy resources contained in the store of our spaceship, Earth, has prompted a dramatic expansion in energy use and a substantial improvement in the quality of life of billions of individuals in some regions of the world. Powering our civilization with fossil fuels has been very convenient, but now we know that it entails severe consequences. We treat fossil fuels as a resource that anyone anywhere can extract and use in any fashion, and Earth's atmosphere, soil and oceans as a dump for their waste products, including more than 30 Gt/y of carbon dioxide. At present, environmental legacy rather than consistence of exploitable reserves, is the most dramatic problem posed by the relentless increase of fossil fuel global demand. Harmful effects on the environment and human health, usually not incorporated into the pricing of fossil fuels, include immediate and short-term impacts related to their discovery, extraction, transportation, distribution, and burning as well as climate change that are spread over time to future generations or over space to the entire planet. In this essay, several aspects of the fossil fuel legacy are discussed, such as alteration of the carbon cycle, carbon dioxide rise and its measurement, greenhouse effect, anthropogenic climate change, air pollution and human health, geoengineering proposals, land and water degradation, economic problems, indirect effects on the society, and the urgent need of regulatory efforts and related actions to promote a gradual transition out of the fossil fuel era. While manufacturing sustainable solar fuels appears to be a longer-time perspective, alternatives energy sources already exist that have the potential to replace fossil fuels as feedstocks for electricity production. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The legacy of fossil fuels

    Energy Technology Data Exchange (ETDEWEB)

    Armaroli, N.; Balzani, V. [CNR, Bologna (Italy)

    2011-03-01

    Currently, over 80% of the energy used by mankind comes from fossil fuels. Harnessing coal, oil and gas, the energy resources contained in the store of our spaceship, Earth, has prompted a dramatic expansion in energy use and a substantial improvement in the quality of life of billions of individuals in some regions of the world. Powering our civilization with fossil fuels has been very convenient, but now we know that it entails severe consequences. We treat fossil fuels as a resource that anyone anywhere can extract and use in any fashion, and Earth's atmosphere, soil and oceans as a dump for their waste products, including more than 30 Gt/y of carbon dioxide. At present, environmental legacy rather than consistence of exploitable reserves, is the most dramatic problem posed by the relentless increase of fossil fuel global demand. Harmful effects on the environment and human health, usually not incorporated into the pricing of fossil fuels, include immediate and short-term impacts related to their discovery, extraction, transportation, distribution, and burning as well as climate change that are spread over time to future generations or over space to the entire planet. In this essay, several aspects of the fossil fuel legacy are discussed, such as alteration of the carbon cycle, carbon dioxide rise and its measurement, greenhouse effect, anthropogenic climate change, air pollution and human health, geoengineering proposals, land and water degradation, economic problems, indirect effects on the society, and the urgent need of regulatory efforts and related actions to promote a gradual transition out of the fossil fuel era. While manufacturing sustainable solar fuels appears to be a longer-time perspective, alternatives energy sources already exist that have the potential to replace fossil fuels as feedstocks for electricity production.

  9. CANDU plant life management - An integrated approach

    International Nuclear Information System (INIS)

    Charlebois, P.; Hart, R.S.; Hopkins, J.R.

    1998-01-01

    Commercial versions of CANDU reactors were put into service starting more than 25 years ago. The first unit of Ontario Hydro's Pickering A station was put into service in 1971, and Bruce A in 1977. Most CANDU reactors, however, are only now approaching their mid-life of 15 to 20 years of operation. In particular, the first series of CANDU 6 plants which entered service in the early 1980's were designed for a 30 year life and are now approaching mid life. The current CANDU 6 design is based on a 40 year life as a result of advancement in design and materials through research and development. In order to assure safe and economic operation of these reactors, a comprehensive CANDU Plant Life Management (PLIM) program is being developed from the knowledge gained during the operation of Ontario Hydro's Pickering, Bruce, and Darlington stations, worldwide information from CANDU 6 stations, CANDU research and development programs, and other national and international sources. This integration began its first phase in 1994, with the identification of most of the critical systems structures and components in these stations, and a preliminary assessment of degradation and mechanisms that could affect their fitness for service for their planned life. Most of these preliminary assessments are now complete, together with the production of the first iteration of Life Management Plans for several of the systems and components. The Generic CANDU 6 PLIM program is now reaching its maturity, with formal processes to systematically identify and evaluate the major CSSCs in the station, and a plan to ensure that the plant surveillance, operation, and maintenance programs monitor and control component degradation well within the original design specifications essential for the plant life attainment. A Technology Watch program is being established to ensure that degradation mechanisms which could impact on plant life are promptly investigated and mitigating programs established. The

  10. CAP--a combined codes, alarms and paging system--effective in nuclear and fossil-fueled power plants

    International Nuclear Information System (INIS)

    Foster, W.M.; Anderson, M.E.

    1981-01-01

    The CAP system now employed in two TVA power generating facilities has proven to be effective in both operational and emergency alerting and voice communications. Alternatives to emergency signalling point to advantages of a distributed amplifier/speaker system providing multi-signal and voice capabilities. Inclusion of a CAP-type system in all nuclear and fossil-fueled power plants is recommended, particularly in view of new NCR emergency alerting guidelines recently published. Outdoor-area warning is also included. Paper No. 80 JPGC 803-7

  11. Nuclear versus fossil weighing up the safety issues

    International Nuclear Information System (INIS)

    Gittus, Dzh.

    1992-01-01

    The problems of nuclear power plant safety are discussed as compared with those for the plants based on fossil fuel utilization. The conclusion is made that merits of nuclear power are much greater than its disadvantages as far as the environmental impacts are concerned

  12. Melanins in Fossil Animals: Is It Possible to Infer Life History Traits from the Coloration of Extinct Species?

    Science.gov (United States)

    Negro, Juan J; Finlayson, Clive; Galván, Ismael

    2018-01-23

    Paleo-colour scientists have recently made the transition from describing melanin-based colouration in fossil specimens to inferring life-history traits of the species involved. Two such cases correspond to counter-shaded dinosaurs: dark-coloured due to melanins dorsally, and light-coloured ventrally. We believe that colour reconstruction of fossils based on the shape of preserved microstructures-the majority of paleo-colour studies involve melanin granules-is not without risks. In addition, animals with contrasting dorso-ventral colouration may be under different selection pressures beyond the need for camouflage, including, for instance, visual communication or ultraviolet (UV) protection. Melanin production is costly, and animals may invest less in areas of the integument where pigments are less needed. In addition, melanocytes exposed to UV radiation produce more melanin than unexposed melanocytes. Pigment economization may thus explain the colour pattern of some counter-shaded animals, including extinct species. Even in well-studied extant species, their diversity of hues and patterns is far from being understood; inferring colours and their functions in species only known from one or few specimens from the fossil record should be exerted with special prudence.

  13. Melanins in Fossil Animals: Is It Possible to Infer Life History Traits from the Coloration of Extinct Species?

    Science.gov (United States)

    Negro, Juan J.; Finlayson, Clive; Galván, Ismael

    2018-01-01

    Paleo-colour scientists have recently made the transition from describing melanin-based colouration in fossil specimens to inferring life-history traits of the species involved. Two such cases correspond to counter-shaded dinosaurs: dark-coloured due to melanins dorsally, and light-coloured ventrally. We believe that colour reconstruction of fossils based on the shape of preserved microstructures—the majority of paleo-colour studies involve melanin granules—is not without risks. In addition, animals with contrasting dorso-ventral colouration may be under different selection pressures beyond the need for camouflage, including, for instance, visual communication or ultraviolet (UV) protection. Melanin production is costly, and animals may invest less in areas of the integument where pigments are less needed. In addition, melanocytes exposed to UV radiation produce more melanin than unexposed melanocytes. Pigment economization may thus explain the colour pattern of some counter-shaded animals, including extinct species. Even in well-studied extant species, their diversity of hues and patterns is far from being understood; inferring colours and their functions in species only known from one or few specimens from the fossil record should be exerted with special prudence. PMID:29360744

  14. Melanins in Fossil Animals: Is It Possible to Infer Life History Traits from the Coloration of Extinct Species?

    Directory of Open Access Journals (Sweden)

    Juan J. Negro

    2018-01-01

    Full Text Available Paleo-colour scientists have recently made the transition from describing melanin-based colouration in fossil specimens to inferring life-history traits of the species involved. Two such cases correspond to counter-shaded dinosaurs: dark-coloured due to melanins dorsally, and light-coloured ventrally. We believe that colour reconstruction of fossils based on the shape of preserved microstructures—the majority of paleo-colour studies involve melanin granules—is not without risks. In addition, animals with contrasting dorso-ventral colouration may be under different selection pressures beyond the need for camouflage, including, for instance, visual communication or ultraviolet (UV protection. Melanin production is costly, and animals may invest less in areas of the integument where pigments are less needed. In addition, melanocytes exposed to UV radiation produce more melanin than unexposed melanocytes. Pigment economization may thus explain the colour pattern of some counter-shaded animals, including extinct species. Even in well-studied extant species, their diversity of hues and patterns is far from being understood; inferring colours and their functions in species only known from one or few specimens from the fossil record should be exerted with special prudence.

  15. NDE and plant life extension

    International Nuclear Information System (INIS)

    Liu, S.N.; Ammirato, F.V.; Nottingham, L.D.

    1991-01-01

    Component life extension is the process of making run-repair-replace decisions for plant components and includes a thorough analysis of the capability of the component to perform throughout the projected lifetime. For many critical plant components, nondestructive evaluation (NDE) is essential in determining whether the component can be operated safely and economically in the extended life period and to help utilities determine safe and economic inspection intervals. NDE technology is required for not only detecting defects that could grow to a size of concern during extended lifetimes, but also will be called upon to measure and monitor accumulating material degradation that strongly affects component reliability. This paper discusses the role of NDE in life extension by reviewing three examples--a reactor pressure vessel, steam turbine-generator rotors, and generator retaining rings. In each example, the contribution of NDE to life extension decisions is described. (author)

  16. Motor life management at Gentilly 2 nuclear power plant

    International Nuclear Information System (INIS)

    Lazic, L.; Renaud, P.; Marcotte, P.

    2002-01-01

    Hydro Quebec's Gentilly 2 CANDU Nuclear Power Plant (NPP) located on the St. Lawrence River about 150 kms NE of Montreal Quebec Canada, is completing its second full decade of commercial operation. Since the original design life of 30 years is fast approaching, Hydro Quebec (HQ) is positioning itself proactively, to ensure plant operation for the original design life as well implementing a plant life management program to achieve a plant life extension to 50 years. All components in a nuclear plant are affected by ageing during the plant service life. This affects the availability, reliability, and safety of the plant operation and could affect the plant service life. However, if a life management program (LMP) is implemented; the ageing mechanisms can be understood and monitored, and their effects can be controlled and even mitigated. Among other vital equipment in the plant, the station motors are being examined to determine what has to be done to ensure that the motors do not contribute negatively to the plant operating plan. Gentilly 2 NPP has almost 900 motors of various configurations. Their size ranges from 0.1 HP to 9000 HP. A distribution of quantity at different horsepower levels is given. This paper will describe the plant's motor history, method of operation, and proposed future changes required to ensure effective life management of the motors. Up to the present time, Gentilly 2 NPP staff has had very good experience with plant motor operation and reliability. Nevertheless, indications from other industry motor experiences indicate that this favourable trend is unlikely to continue. A plant motor life management strategy as outlined in this paper, based on condition based maintenance in combination with traditional types of maintenance, can help to ensure protection against unexpected plant motor problems and help to ensure achievement of motor design life and beyond. Although nothing will ever replace a thorough visual inspection for discovering

  17. Determination of fossil carbon content in Swedish waste fuel by four different methods.

    Science.gov (United States)

    Jones, Frida C; Blomqvist, Evalena W; Bisaillon, Mattias; Lindberg, Daniel K; Hupa, Mikko

    2013-10-01

    This study aimed to determine the content of fossil carbon in waste combusted in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign included 42 solid samples, 21 flue gas samples, 3 sorting analyses and 2 investigations using the balance method. The fossil carbon content in the solid samples and in the flue gas samples was determined using (14)C-analysis. From the analyses it was concluded that about a third of the carbon in mixed Swedish waste (municipal solid waste and industrial waste collected at Swedish industry sites) is fossil. The two other methods (the balance method and calculations from sorting analyses), based on assumptions and calculations, gave similar results in the plants in which they were used. Furthermore, the results indicate that the difference between samples containing as much as 80% industrial waste and samples consisting of solely municipal solid waste was not as large as expected. Besides investigating the fossil content of the waste, the project was also established to investigate the usability of various methods. However, it is difficult to directly compare the different methods used in this project because besides the estimation of emitted fossil carbon the methods provide other information, which is valuable to the plant owner. Therefore, the choice of method can also be controlled by factors other than direct determination of the fossil fuel emissions when considering implementation in the combustion plants.

  18. Electrochemical techniques application in corrosion problems of fossil power plants; Aplicacion de tecnicas electroquimicas en problemas de corrosion en centrales termoelectricas

    Energy Technology Data Exchange (ETDEWEB)

    Cano Castillo, Ulises; Garcia Ochoa, Esteban Miguel; Martinez Villafane, Alberto; Mariaca Rodriguez, Liboria; Malo Tamayo, Jose Maria; Uruchurtu Chavarin, Jorge [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1991-12-31

    Some aspects of the electrochemical techniques employed to evaluate the corrosion at low temperature in fossil power plants are commented, as well as the results obtained with the application of them in three power plants of this type. [Espanol] Se comentan algunos aspectos de tecnicas electroquimicas utilizadas para evaluar la corrosion en baja temperatura en centrales termoelectricas, asi como los resultados de la aplicacion de las mismas en tres centrales de este tipo.

  19. Electrochemical techniques application in corrosion problems of fossil power plants; Aplicacion de tecnicas electroquimicas en problemas de corrosion en centrales termoelectricas

    Energy Technology Data Exchange (ETDEWEB)

    Cano Castillo, Ulises; Garcia Ochoa, Esteban Miguel; Martinez Villafane, Alberto; Mariaca Rodriguez, Liboria; Malo Tamayo, Jose Maria; Uruchurtu Chavarin, Jorge [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1990-12-31

    Some aspects of the electrochemical techniques employed to evaluate the corrosion at low temperature in fossil power plants are commented, as well as the results obtained with the application of them in three power plants of this type. [Espanol] Se comentan algunos aspectos de tecnicas electroquimicas utilizadas para evaluar la corrosion en baja temperatura en centrales termoelectricas, asi como los resultados de la aplicacion de las mismas en tres centrales de este tipo.

  20. Prudence in a fossil generation

    International Nuclear Information System (INIS)

    Ruschak, R.R.; Yost, R.E.

    1991-01-01

    During the last decade, regulatory agencies have increasingly required that to be reimbursed for an investment in facilities, utilities must first prove their generating facility construction projects were prudently managed. The proof was almost always solicited when the plants were nearing completion. Utilities failing this retrospective prudence test have often suffered severe financial penalties. Thus far fossil plants have been spared the brunt of the prudence challenge. However, this situation may change. Regulatory agencies are honing the prudence concept into a broad tool. Application of this regulatory method is not likely to wane but rather just change its focus - from that of nuclear to other large utility expenditures. The primary ones being fossil construction, fuel purchases, and transmission facilities. For new plant construction to begin again and successfully pass the prudence challenge, the industry must learn from the troubles of the nuclear era, and change the way that decisions are made, documented and archived. Major decisions resulting in the commitment of millions of dollars over extended time periods (and governmental administrations) must be appropriately structured, packaged, collated to key issues and stored for ease of retrieval when the Prudence questions are asked. This paper describes how utilities can anticipate fossil-related prudence and shield themselves from extensive retrospective reconstruction of decisions made years ago. Through the establishment of a formal program of prudence safeguards, utility management can reduce its exposure to potentially adverse prudence reviews. In many cases, the resulting focus on, and improvements in, the decision making process can have beneficial side effects - such as better decisions that lead to lower project costs

  1. Implications for global energy markets: implications for non-fossil energy sources

    International Nuclear Information System (INIS)

    Grubb, Michael

    1998-01-01

    This paper highlights the recent developments concerning non-fossil energy and examines the impact of the Kyoto Protocol on non-fossil energy sources, and the implications for non-fossil sources in the implementation of the Kyoto Protocol. The current contributions of fossil and non-fossil fuels to electricity production, prospects for expansion of the established non-fossil sources, new renewables in Europe to date, renewables in Europe to 2010, and policy integration in the EU are discussed. Charts illustrating the generating capacity of renewable energy plant in Britain (1992-1966), wind energy capacity in Europe (1990-2000), and projected renewable energy contributions in the EU (wind, small hydro, photovoltaic, biomass and geothermal) are provided. (UK)

  2. Economics and policies of nuclear plant life management

    International Nuclear Information System (INIS)

    Yamagata, H.

    1998-01-01

    NEA provides an opportunity for international exchange of information on the economics and policies of nuclear plant life management for governments and plant owners. The NEA Secretariat is finalising the 'state-of-the-art report' on the economics and policies of nuclear plant life management, including the model approach and national summaries. In order to meet power supply obligations in the early 2000, taking into account energy security, environmental impact, and the economics of nuclear power plants whose lives have been extended, initiatives at national level must be taken to monitor, co-ordinate, and support the various industry programmes of nuclear plant life management by integrated and consistent policies, public acceptance, R and D, and international co-operation. Nuclear power owners should establish an organisation and objectives to carry nuclear plant life management in the most economic and smoothest way taking into consideration internal and external influences. The organisation must identify the critical item and the ageing processes, and optimise equipment reliability and maintenance workload. (author)

  3. Buried piping integrity management at fossil power plants

    Energy Technology Data Exchange (ETDEWEB)

    Shulder, Stephen J. [Structural Integrity Associates, Annapolis, MD (United States); Biagiotti, Steve [Structural Integrity Associates, Inc., Centennial, CO (United States)

    2011-07-15

    In the last decade several industries (oil and gas pipelines, nuclear power, and municipal water) have experienced an increase in the frequency and public scrutiny of leaks and failures associated with buried piping and tank assets. In several industries, regulatory pressure has resulted in the mandated need for databases and inspection programs to document and ensure the continued integrity of these assets. Power plants are being extended beyond their design life and the condition of below grade assets is essential toward continued operation. This article shares the latest advances in managing design, operation, process, inspection, and historical data for power plant piping. Applications have also been developed to help with risk prioritization, inspection method selection, managing cathodic protection data for external corrosion control, and a wide variety of other information. This data can be managed in a GIS environment allowing two and three dimensional (2D and 3D) access to the database information. (orig.)

  4. Natural product terpenoids in Eocene and Miocene conifer fossils.

    Science.gov (United States)

    Otto, Angelika; White, James D; Simoneit, Bernd R T

    2002-08-30

    Numerous saturated and aromatic hydrocarbons, but not polar compounds, originating from plants and microorganisms (biomarkers) have been reported in sediments, coals, and petroleum. Here we describe natural product terpenoids found in two fossil conifers, Taxodium balticum (Eocene) and Glyptostrobus oregonensis (Miocene). A similar terpenoid pattern is also observed in extant Taxodium distichum. The preservation of characteristic terpenoids (unaltered natural products) in the fossil conifers supports their systematic assignment to the Cypress family (Cupressaceae sensu lato). The results also show that fossil conifers can contain polar terpenoids, which are valuable markers for (paleo)chemosystematics and phylogeny.

  5. Japan's policy on the nuclear power plant life management, life management for nuclear power plants and measures to cope with aging

    International Nuclear Information System (INIS)

    Takuma, Masao

    2002-01-01

    Full text: Nuclear Plant is born after a lengthy, multi-year construction period, and ends its life decades later, having generated a vast amount of electricity. Its period of operation is, far longer than its period of construction. 'Construction' is the process of 'creating something of value', a new nuclear plant, using technology. 'Operation' is the process of 'raising the child with care' so that its potential can be realized to the fullest over the course of its life. From the view point of plant life management, it is appropriate to divide the life of a power plant into three stages, 'fostering, mature and aging', from the start of operation to the end of its operation. It is important to manage a plant accordingly. It is recently become important to the Utility companies under the competitive power market to manage aging plants effectively, in order to extend its life with sustained high level of performances, with plant safety in the first place. Whether this is, in fact, possible or not, depends upon how the plant was operated in the prior stages, that means, depends upon how it was 'brought up'. This report briefly shows what are important points of management in these 3 stages, and also describes general significances of plant maintenance and inspection, with the practices applied to the plants in Japan. Currently 52 plants Light Water Reactor Nuclear Plants are in operation in Japan, and 13 plants within next 5 years and 23 plants within 10 years are regarded as aged plants. So the contents of periodic inspections by the government and maintenance requirements on the Utilities will be modified to keep and enhance safe and stable operations of the aged plants. In the year 1994, Japanese Government released the report 'Basic Concepts on the Nuclear Power Plant Aging', the objectives of which was the evaluation of the soundness of major equipment and to establish the concepts of aging measures, assuming the plant to be operated 60 years. Utilities, in

  6. Results of aerosol and SO/sub 2/ measurements at Neurath fossil-fuel power plant in November 1974

    Energy Technology Data Exchange (ETDEWEB)

    Paffrath, D; Peters, W

    1975-11-01

    The structure of cooling tower plumes depends on meteorological conditions, especially on wind, temperature gradients, and turbulence. This influence of meteorological atmospheric conditions on the plumes may be quantitatively described by so-called diffusion parameters. These parameters may be determined with the aid of tracer measurements by determining tracer diffusion and, from the distribution of the tracers, calculating the diffusion parameters. At the Neurath power plant, there were three of these tracers. First, the vertical concentration distribution of the atmospheric background aerosol may yield information on the vertical stratification. Secondly, pollutants from anthropogenic sources, e.g., from the stacks of Neurath fossil-fuel power plant itself, may be used for investigation. In the present study, particle concentrations and SO/sub 2/ content of the air due to the waste gases from the power plant stacks were used for measurement.

  7. Plant control system upgrades in the context of industry trends towards plant life-extension

    International Nuclear Information System (INIS)

    De Grosbois, J.; Basso, R.; Hepburn, A.; Kumar, V.

    2002-01-01

    Domestic CANDU nuclear plants were brought online between 1972 and 1986. Over the next decade, most of these stations will be nearing the end of their designed operating life. Effort has traditionally been placed on ensuring that the existing installed plant control system equipment could operate reliably until the end of this design life. Until recently, little attention has been given to plant control system upgrades or replacements to meet the expected requirement for 30+ years of additional plant operation following potential plant refurbishments. Industry developments are changing this thinking. The combination of expected increases in electricity demand (and prices), and the many recent successful turnaround stories of U.S. nuclear power plants has resulted in new interest in plant life improvement and plant life extension programs. Plant control system upgrade decisions are now being driven by the need to replace or upgrade these systems to support plant life extension. This article is the first of several that investigate aspects of plant control system upgrades or replacement, specifically in the context of the CANDU station digital control computers (DCCs). It sets the context for the discussion in the subsequent articles by providing a brief review of industry trends favouring plant refurbishment, by outlining the basic issues of aging and obsolescence of control system equipment, by establishing the need for upgrades and replacements, and by introducing some of the basic challenges to be addressed by the industry as it moves forward. (author)

  8. The physico-chemistry of SO2 in the smoke plumes of fossil-fueled power plants

    International Nuclear Information System (INIS)

    Sabroux, Jean-Christophe

    1974-01-01

    An experimental determination was made of the type and speed of chemical-physical transformations occurring in the stack effluents of fossil-fueled power-plants, from their emission into the atmosphere. The homogeneous chemical reactions were taken into consideration, as well as the heterogeneous reactions in the presence of a metal, oxide aerosol or water droplets owed to condensation. The results gave a general indication that the quantitatively important transformations of SO 2 , in a stack plume produced by fuel combustion, took place at the moment of water-vapor condensation; in these conditions the oxidising role of NO 2 became prevailing. (author) [fr

  9. X-ray micro-CT and neutron CT as complementary imaging tools for non-destructive 3D imaging of rare silicified fossil plants

    Science.gov (United States)

    Karch, J.; Dudák, J.; Žemlička, J.; Vavřík, D.; Kumpová, I.; Kvaček, J.; Heřmanová, Z.; Šoltés, J.; Viererbl, L.; Morgano, M.; Kaestner, A.; Trtík, P.

    2017-12-01

    Computed tomography provides 3D information of inner structures of investigated objects. The obtained information is, however, strongly dependent on the used radiation type. It is known that as X-rays interact with electron cloud and neutrons with atomic nucleus, the obtained data often provide different contrast of sample structures. In this work we present a set of comparative radiographic and CT measurements of rare fossil plant samples using X-rays and thermal neutrons. The X-ray measurements were performed using large area photon counting detectors Timepix at IEAP CTU in Prague and Perkin Elmer flat-panel detector at Center of Excellence Telč. The neutron CT measurement was carried out at Paul Scherrer Institute using BOA beam-line. Furthermore, neutron radiography of fossil samples, provided by National Museum, were performed using a large-area Timepix detector with a neutron-sensitive converting 6LiF layer at Research Centre Rez, Czech Republic. The obtained results show different capabilities of both imaging approaches. While X-ray micro-CT provides very high resolution and enables visualization of fine cracks or small cavities in the samples neutron imaging provides high contrast of morphological structures of fossil plant samples, where X-ray imaging provides insufficient contrast.

  10. Screening potential social impacts of fossil fuels and biofuels for vehicles

    International Nuclear Information System (INIS)

    Ekener-Petersen, Elisabeth; Höglund, Jonas; Finnveden, Göran

    2014-01-01

    The generic social and socioeconomic impacts of various biofuels and fossil fuels were screened by applying Social Life Cycle Assessment methodology. Data were taken from the Social Hotspots Database on all categories for all the related themes and all indicators available. To limit the amount of data, only high and very high risk indicators were considered for each combination. The risks identified per life cycle phase were listed for each fuel assessed and the results were then aggregated by counting the number of high and very high risk indicators for that fuel. All the fossil fuels and biofuels analysed were found to display high or very high risks of negative impacts. Country of origin seemed to be of greater importance for risks than fuel type, as the most risk-related and least risk-related product systems referred to the same type of fuel, fossil oil from Russia/Nigeria and fossil oil from Norway, respectively. These results suggest that in developing policy, strict procurement requirements on social performance should be set for both fossil fuel and biofuel. However, the results must be interpreted with care owing to some limitations in the assessment, such as simplifications to life cycles, method used and data collection. - Highlights: • Both fossil and biofuels displayed high or very high risks of negative social impacts. • Social procurement requirements should be applied on all vehicle fuels. • Applying social criteria only on biofuels may be unfairly benefiting fossil fuels. • Social LCA can identify severe social impacts and influence policies accordingly. • Schemes can be adapted to include relevant criteria for specific fuels and/or origins

  11. Nuclear plant life - A business decision

    International Nuclear Information System (INIS)

    Joosten, J.K.

    1995-01-01

    Regarding the future of the nuclear power option, many scenarios have been put forth over the years. The most commonly accepted projections for installed nuclear capacity show it growing at a rate of about 2% per year throughout the next few decades. These projections appear modes on the surface. However, underlying the projections are critical assumptions and sometimes misconceptions about the lifetimes of existing reactors and how they are determined. The notion of a 40 year plant life is very common. Consequently, many projections start either with the assumption that no plants will be retired in the near terms or with the assumption that each retired plant will be replaced by another nuclear plant after 40 years. Effectively, these assumptions yield future projections for installed capacity that might be characterized as low growth, medium growth and high growth scenarios - or grow, grow, grow. The question remains as to whether or not these assumptions accurately model the driving forces and constraints to nuclear development. After all, there is no scientific basis for believing that all plants, PWRs BWRs, RBMKs, etc., should have the same 40 year life. Most power plant owners purchase the plant for the main reason of supplying electrical power to their consumer. For these owners, electricity production is a day to day commercial activity with various alternatives on how to achieve the prime objective. The decision of which electricity generation alternative to select (gas, coal, nuclear or renewable energy) and how long to operate the plant before replacing it with a new one is essentially a business decision. The paper discusses ageing, the nuclear plant life decision process, the factors which influence the decision and their ramifications regarding the near term growth of nuclear power capacity. The modelling of nuclear plant lifetimes is also discussed. (author). 5 refs, 10 figs, 1 tab

  12. Paleovegetation reconstruction of fossil forests dominated by Metasequoia and Glyptostrobus from the late Pliocene Kobiwako Group, central Japan

    OpenAIRE

    CHIYOMI, YAMAKAWA; ARATA, MOMOHARA; TOMOO, NUNOTANI; MIDORI, MATSUMOTO; YASUYUKI, WATANO; Lake Biwa Museum; Graduate School of Horticulture, Chiba University; Lake Biwa Museum; Graduate School of Science, Chiba University; Graduate School of Science, Chiba University

    2008-01-01

    A late Pliocene (1.8-1.9 Ma) wetland fossil forest community that was dominated by Metasequoia and Glyptostrobus was reconstructed based on the species composition of the stumps and other plant macrofossil assemblages. The plant fossils were recovered from a fossil forest preserved in deposits of the Kobiwako Group that are exposed in the Echi River, Shiga Prefecture, central Japan. Fossil wood of Metasequoia and Glyptostrobus was distinguished based on anatomical characteristics. Apportionme...

  13. Methodology for calculation of carbon emission and energy generation efficiency by fossil coal thermal power plants

    International Nuclear Information System (INIS)

    Licks, Leticia A.; Pires, Marcal

    2008-01-01

    This work intends to evaluate the emissions of carbon dioxide (CO 2 ) emitted by the burning of fossil coal in Brazil. So, a detailed methodology is proposed for calculation of CO 2 emissions from the carbon emission coefficients specific for the Brazilian carbons. Also, the using of secondary fuels (fuel oil and diesel oil) were considered and the power generation for the calculation of emissions and efficiencies of each power plant as well. The obtained results indicate carbon emissions for the year 2002 approximately of the order of 1,794 Gg, with 20% less than the obtained by the official methodology (MCT). Such differences are related to the non consideration of the humidity containment of the coals as well as the using of generic coefficients not adapted to the Brazilian coals. The obtained results indicate the necessity to review the emission inventories and the modernization of the burning systems aiming the increase the efficiency and reduction of the CO 2 and other pollutants, as an alternative for maintaining the sustainable form of using the fossil coal in the country

  14. A long-term view of fossil-fuelled power generation in Europe

    International Nuclear Information System (INIS)

    Tzimas, Evangelos; Georgakaki, Aliki

    2010-01-01

    The paper presents a view into the long term future of fossil-fuelled power generation in the European Union, based on a number of alternative scenarios for the development of the coal, natural gas and CO 2 markets, and the penetration of renewable and nuclear technologies. The new fossil fuelled capacity needed and the likely technology mix are estimated using a cost optimisation model based on the screening curve method, taking into consideration the rate of retirement of the current power plant fleet, the capacity already planned or under construction and the role of carbon capture and storage technologies. This analysis shows that measures to increase both non-fossil-fuel-based power generation and the price of CO 2 are necessary to drive the composition of the European power generation capacity so that the European policy goal of reducing greenhouse gas emissions is achieved. Meeting this goal will however require a high capital investment for the creation of an optimal fossil fuel power plant technology mix.

  15. Reliability estimation for multiunit nuclear and fossil-fired industrial energy systems

    International Nuclear Information System (INIS)

    Sullivan, W.G.; Wilson, J.V.; Klepper, O.H.

    1977-01-01

    As petroleum-based fuels grow increasingly scarce and costly, nuclear energy may become an important alternative source of industrial energy. Initial applications would most likely include a mix of fossil-fired and nuclear sources of process energy. A means for determining the overall reliability of these mixed systems is a fundamental aspect of demonstrating their feasibility to potential industrial users. Reliability data from nuclear and fossil-fired plants are presented, and several methods of applying these data for calculating the reliability of reasonably complex industrial energy supply systems are given. Reliability estimates made under a number of simplifying assumptions indicate that multiple nuclear units or a combination of nuclear and fossil-fired plants could provide adequate reliability to meet industrial requirements for continuity of service

  16. Understanding future emissions from low-carbon power systems by integration of life-cycle assessment and integrated energy modelling

    Science.gov (United States)

    Pehl, Michaja; Arvesen, Anders; Humpenöder, Florian; Popp, Alexander; Hertwich, Edgar G.; Luderer, Gunnar

    2017-12-01

    Both fossil-fuel and non-fossil-fuel power technologies induce life-cycle greenhouse gas emissions, mainly due to their embodied energy requirements for construction and operation, and upstream CH4 emissions. Here, we integrate prospective life-cycle assessment with global integrated energy-economy-land-use-climate modelling to explore life-cycle emissions of future low-carbon power supply systems and implications for technology choice. Future per-unit life-cycle emissions differ substantially across technologies. For a climate protection scenario, we project life-cycle emissions from fossil fuel carbon capture and sequestration plants of 78-110 gCO2eq kWh-1, compared with 3.5-12 gCO2eq kWh-1 for nuclear, wind and solar power for 2050. Life-cycle emissions from hydropower and bioenergy are substantial (˜100 gCO2eq kWh-1), but highly uncertain. We find that cumulative emissions attributable to upscaling low-carbon power other than hydropower are small compared with direct sectoral fossil fuel emissions and the total carbon budget. Fully considering life-cycle greenhouse gas emissions has only modest effects on the scale and structure of power production in cost-optimal mitigation scenarios.

  17. {Delta}{sup 14}C level of annual plants and fossil fuel derived CO{sub 2} distribution across different regions of China

    Energy Technology Data Exchange (ETDEWEB)

    Xi, X.T.; Ding, X.F.; Fu, D.P. [State Key Laboratory of Nuclear Physics and Technology and Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871 (China); Zhou, L.P. [Laboratory for Earth Surface Processes, Department of Geography, Peking University, Beijing 100871 (China); Liu, K.X., E-mail: kxliu@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology and Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871 (China)

    2013-01-15

    The {sup 14}C level in annual plants is a sensitive tracer for monitoring fossil fuel derived CO{sub 2} in the atmosphere. Corn leave samples were selected from different regions of China, including high mountains in the Tibetan Plateau, grassland in Inner Mongolia, and inland and coastal cities during the summer of 2010. The {sup 14}C/{sup 12}C ratio of the samples was measured with the NEC compact AMS system at the Institute of Heavy Ion Physics, Peking University. The fossil fuel derived CO{sub 2} was estimated by comparing the measured {Delta}{sup 14}C values of corn leave samples to background atmospheric {Delta}{sup 14}C level. The influences of topography, meteorological conditions and carbon cycling processes on the fossil fuel derived CO{sub 2} concentration are considered when interpreting the data. Our results show a clear association of the low {Delta}{sup 14}C values with regions where human activities are intensive.

  18. Multiregional environmental comparison of fossil fuel power generation-Assessment of the contribution of fugitive emissions from conventional and unconventional fossil resources

    NARCIS (Netherlands)

    Bouman, Evert A.; Ramirez, Andrea; Hertwich, Edgar G.

    2015-01-01

    In this paper we investigate the influence of fugitive methane emissions from coal, natural gas, and shale gas extraction on the greenhouse gas (GHG) impacts of fossil fuel power generation through its life cycle. A multiregional hybridized life cycle assessment (LCA) model is used to evaluate

  19. Perspectives of new fossil-fuelled power plants with CO2 capture in the liberalised European electricity market

    International Nuclear Information System (INIS)

    Kober, Tom

    2014-01-01

    Against the background of an increasing importance of climate change mitigation and the liberalization of the European energy supply this study assesses the perspectives of power plants with Carbon dioxide Capture and Storage (CCS). CCS power plants represent one option to reduce CO 2 emissions of fossil energy based electricity production significantly. In this study the deployment of CCS power plants is investigated for the European electricity market until 2050 taking different energy and climate policy framework conditions into consideration. By applying an integrated model-based approach, structural changes of the whole energy system are incorporated, including their implications on costs and emissions. The study addresses uncertainties concerning future CCS power plant invest costs and efficiencies explicitly, and analyses the effects of changes of these parameters with respect to the perspectives of CCS power plants in Europe. Thereby, interdependencies on horizontal level related to competition of different technologies within the electricity sector are examined, but also vertical interdependencies resulting from effects between the upstream and energy demand sectors. In order to reflect the heterogeneity among the national energy systems in Europe, country specific particularities on technical aspects and energy policy are taken into account, such as potentials and costs of CO 2 storage, and national regulations on the use of nuclear power and renewable energy. The results of the analysis reveal a strong influence of the stringency of the EU greenhouse gas reduction target and the policy on the use of nuclear energy on the perspectives of CCS power plants in the European electricity market. Comparing the influence of different policy frameworks analysed in this study with the influences of the variation of the technical and economic CCS power plant parameters shows, that uncertainties concerning energy policy measures can have a stronger influence on the

  20. The fossil record of the sixth extinction.

    Science.gov (United States)

    Plotnick, Roy E; Smith, Felisa A; Lyons, S Kathleen

    2016-05-01

    Comparing the magnitude of the current biodiversity crisis with those in the fossil record is difficult without an understanding of differential preservation. Integrating data from palaeontological databases with information on IUCN status, ecology and life history characteristics of contemporary mammals, we demonstrate that only a small and biased fraction of threatened species (fossil record, compared with 20% of non-threatened species. We find strong taphonomic biases related to body size and geographic range. Modern species with a fossil record tend to be large and widespread and were described in the 19(th) century. The expected magnitude of the current extinction based only on species with a fossil record is about half of that of one based on all modern species; values for genera are similar. The record of ancient extinctions may be similarly biased, with many species having originated and gone extinct without leaving a tangible record. © 2016 John Wiley & Sons Ltd/CNRS.

  1. Fossil fuel furnace reactor

    Science.gov (United States)

    Parkinson, William J.

    1987-01-01

    A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

  2. Combining phylogenomics and fossils in higher-level squamate reptile phylogeny: molecular data change the placement of fossil taxa.

    Science.gov (United States)

    Wiens, John J; Kuczynski, Caitlin A; Townsend, Ted; Reeder, Tod W; Mulcahy, Daniel G; Sites, Jack W

    2010-12-01

    Molecular data offer great potential to resolve the phylogeny of living taxa but can molecular data improve our understanding of relationships of fossil taxa? Simulations suggest that this is possible, but few empirical examples have demonstrated the ability of molecular data to change the placement of fossil taxa. We offer such an example here. We analyze the placement of snakes among squamate reptiles, combining published morphological data (363 characters) and new DNA sequence data (15,794 characters, 22 nuclear loci) for 45 living and 19 fossil taxa. We find several intriguing results. First, some fossil taxa undergo major changes in their phylogenetic position when molecular data are added. Second, most fossil taxa are placed with strong support in the expected clades by the combined data Bayesian analyses, despite each having >98% missing cells and despite recent suggestions that extensive missing data are problematic for Bayesian phylogenetics. Third, morphological data can change the placement of living taxa in combined analyses, even when there is an overwhelming majority of molecular characters. Finally, we find strong but apparently misleading signal in the morphological data, seemingly associated with a burrowing lifestyle in snakes, amphisbaenians, and dibamids. Overall, our results suggest promise for an integrated and comprehensive Tree of Life by combining molecular and morphological data for living and fossil taxa.

  3. Plant life management in Hungary

    International Nuclear Information System (INIS)

    Gillemot, F.

    1998-01-01

    The life management in Hungary is in an early stage. The preparation of a suitable database, development of maintenance systems and education of the plant and consultant staff is essential. The Act of Nuclear Safety, the introduction of the 10 years periodic safety review system (periodic licence extension) is a good basis for life management. At the same time the economic changes in the country make the life management difficult. Presently most important task is to prepare the technical environment and the methodology for NPP Life management, and within a few years, when the economy would be consolidated, a real life management will be performed

  4. Advances in processing technologies for titanium heat exchanger tubes of fossil and nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Likhareva, T P; Tchizhik, A A; Chavchanidze, N N [Polzanov Central Boiler and Turbine Institute, St. Petersburg (Russian Federation)

    1999-12-31

    The advances in processing technologies for titanium heat exchangers with rolled and welded tubes of fossil and nuclear power plants in Russia are presented. The special methodology of investigations with constant small strain rate have been used to study the effects of mixed corrosion and creep processes in condensers cooled by sea or synthetic sea waters. The results of corrosion creep tests and K1scc calculations are given. The Russian science activities concerning condensers manufactured from titanium show the possibilities for designing structures with very high level service reliability in different corrosion aggressive mediums with high total salt, Cl-ion and oxygen contents. (orig.)

  5. Advances in processing technologies for titanium heat exchanger tubes of fossil and nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Likhareva, T.P.; Tchizhik, A.A.; Chavchanidze, N.N. [Polzanov Central Boiler and Turbine Institute, St. Petersburg (Russian Federation)

    1998-12-31

    The advances in processing technologies for titanium heat exchangers with rolled and welded tubes of fossil and nuclear power plants in Russia are presented. The special methodology of investigations with constant small strain rate have been used to study the effects of mixed corrosion and creep processes in condensers cooled by sea or synthetic sea waters. The results of corrosion creep tests and K1scc calculations are given. The Russian science activities concerning condensers manufactured from titanium show the possibilities for designing structures with very high level service reliability in different corrosion aggressive mediums with high total salt, Cl-ion and oxygen contents. (orig.)

  6. Instrumentation and process control for fossil demonstration plants. Quarterly technical progress report, April--June 1977

    Energy Technology Data Exchange (ETDEWEB)

    LeSage, L.G.

    1977-07-01

    Work has been performed on updating the study of the state-of-the-art of instrumentation for Fossil Demonstration Plants (FDP), development of mass-flow and other on-line instruments for FDP, process control analysis for FDP, and organization of a symposium on instrumentation and control for FDP. A Solids/Gas Flow Test Facility (S/GFTF) under construction for instrument development, testing, evaluation, and calibration is described. The development work for several mass-flow and other on-line instruments is described: acoustic flowmeter, capacitive density flowmeter, neutron activation flowmeter and composition analysis system, gamma ray correlation flowmeter, optical flowmeter, and capacitive liquid interface level meter.

  7. Δ14CO2 from dark respiration in plants and its impact on the estimation of atmospheric fossil fuel CO2.

    Science.gov (United States)

    Xiong, Xiaohu; Zhou, Weijian; Cheng, Peng; Wu, Shugang; Niu, Zhenchuan; Du, Hua; Lu, Xuefeng; Fu, Yunchong; Burr, George S

    2017-04-01

    Radiocarbon ( 14 C) has been widely used for quantification of fossil fuel CO 2 (CO 2ff ) in the atmosphere and for ecosystem source partitioning studies. The strength of the technique lies in the intrinsic differences between the 14 C signature of fossil fuels and other sources. In past studies, the 14 C content of CO 2 derived from plants has been equated with the 14 C content of the atmosphere. Carbon isotopic fractionation mechanisms vary among plants however, and experimental study on fractionation associated with dark respiration is lacking. Here we present accelerator mass spectrometry (AMS) radiocarbon results of CO 2 respired from 21 plants using a lab-incubation method and associated bulk organic matter. From the respired CO 2 we determine Δ 14 C res values, and from the bulk organic matter we determine Δ 14 C bom values. A significant difference between Δ 14 C res and Δ 14 C bom (P < 0.01) was observed for all investigated plants, ranging from -42.3‰ to 10.1‰. The results show that Δ 14 C res values are in agreement with mean atmospheric Δ 14 CO 2 for several days leading up to the sampling date, but are significantly different from corresponding bulk organic Δ 14 C values. We find that although dark respiration is unlikely to significantly influence the estimation of CO 2ff , an additional bias associated with the respiration rate during a plant's growth period should be considered when using Δ 14 C in plants to quantify atmospheric CO 2ff . Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. New methods reveal oldest known fossil epiphyllous moss: Bryiidites utahensis gen. et sp. nov. (Bryidae).

    Science.gov (United States)

    Barclay, Richard S; McElwain, Jennifer C; Duckett, Jeffrey G; van Es, Maarten H; Mostaert, Anika S; Pressel, Silvia; Sageman, Bradley B

    2013-12-01

    Epiphyllous bryophytes are a highly characteristic feature of many humid tropical forest ecosystems. In contrast to the extensive fossil record for the leaves of their host plants, the record is virtually nonexistent for the epiphylls themselves, despite a fossil record for mosses that begins in the Middle Carboniferous Period, 330 million years ago. Epifluorescence optical microscopy, scanning electron microscopy, and atomic force microscopy were employed to investigate an intimate association between a newly discovered epiphyllous moss and a Lauraceae plant host from the middle Cretaceous. We describe the oldest fossil specimen of an epiphyllous moss, Bryiidites utahensis gen. et sp. nov., identified from an individual specimen only 450 µm long, situated on an approximately one millimeter square fossil leaf fragment. The moss epiphyll is exquisitely preserved as germinating spores and short-celled protonemata with transverse and oblique cross-walls closely matching those of extant epiphyllous mosses on the surface of the plant-leaf hosts. The extension of the epiphyll record back to the middle Cretaceous provides fossil evidence for the appearance of epiphyllous mosses during the diversification of flowering plants, at least 95 million years ago. It also provides substantive evidence for a tropical maritime climate in central North America during the middle Cretaceous.

  9. Responses of high-elevation herbaceous plant assemblages to low glacial CO₂ concentrations revealed by fossil marmot (Marmota) teeth.

    Science.gov (United States)

    McLean, Bryan S; Ward, Joy K; Polito, Michael J; Emslie, Steven D

    2014-08-01

    Atmospheric CO2 cycles of the Quaternary likely imposed major constraints on the physiology and growth of C3 plants worldwide. However, the measured record of this remains both geographically and taxonomically sparse. We present the first reconstruction of physiological responses in a late Quaternary high-elevation herbaceous plant community from the Southern Rocky Mountains, USA. We used a novel proxy-fossilized tooth enamel of yellow-bellied marmots (Marmota flaviventris)-which we developed using detailed isotopic analysis of modern individuals. Calculated C isotopic discrimination (Δ) of alpine plants was nearly 2 ‰ lower prior to the Last Glacial Maximum than at present, a response almost identical to that of nonherbaceous taxa from lower elevations. However, initial shifts in Δ aligned most closely with the onset of the late Pleistocene bipolar temperature "seesaw" rather than CO2 increase, indicating unique limitations on glacial-age high-elevation plants may have existed due to both low temperatures and low CO2. Further development of system-specific faunal proxies can help to clarify this and other plant- and ecosystem-level responses to past environmental change.

  10. Comparison of manual and automated pretreatment methods for AMS radiocarbon dating of plant fossils

    Science.gov (United States)

    Bradley, L.A.; Stafford, Thomas W.

    1994-01-01

    A new automated pretreatment system for the preparation of materials submitted for accelerator mass spectrometry (AMS) analysis is less time-consuming and results in a higher sample yield. The new procedure was tested using two groups of plant fossils: one group was pretreated using the traditional method, and the second, using the automated pretreatment apparatus. The time it took to complete the procedure and the amount of sample material remaining were compared. The automated pretreatment apparatus proved to be more than three times faster and, in most cases, produced a higher yield. A darker discoloration of the KOH solutions was observed indicating that the automated system is more thorough in removing humates from the specimen compared to the manual method. -Authors

  11. Fossil energy savings potential of sugar cane bio-energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thu Lan T. [Department of Agroecology, Aarhus University, Tjele (Denmark); The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand); Hermansen, John E. [Department of Agroecology, Aarhus University, Tjele (Denmark); Sagisaka, Masayuki [Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan)

    2009-11-15

    One important rationale for bio-energy systems is their potential to save fossil energy. Converting a conventional sugar mill into a bio-energy process plant would contribute to fossil energy savings via the extraction of renewable electricity and ethanol substituting for fossil electricity and gasoline, respectively. This paper takes a closer look at the Thai sugar industry and examines two practical approaches that will enhance fossil energy savings. The first one addresses an efficient extraction of energy in the form of electricity from the excess bagasse and cane trash. The second while proposing to convert molasses or sugar cane to ethanol stresses the use of bagasse as well as distillery spent wash to replace coal in meeting ethanol plants' energy needs. The savings potential achieved with extracting ethanol from surplus sugar versus current practice in sugar industry in Thailand amounts to 15 million barrels of oil a year. Whether the saving benefits could be fully realized, however, depends on how well the potential land use change resulting from an expansion of ethanol production is managed. The results presented serve as a useful guidance to formulate strategies that enable optimum utilization of biomass as an energy source. (author)

  12. Power plant engineering for the use of fossil, regenerative and nuclear energy sources

    International Nuclear Information System (INIS)

    Strauss, K.

    1992-01-01

    Electrical power is the motor for technical advance and for the development of the standard of living in industrial countries. It has been provided for about 110 years on the industrial scale for general use by energy conversion in powerstations. This book gives the present state of technology for this and points out possible future developments. The author deals with the following aspects: Survey of available energy sources (fossil, regenerative, nuclear) the principles for the conversion of primary energy into electricity contamination of the environment resulting from energy conversion statements on the efficiency, availability of plant and costs. The reader can estimate the order of magnitude of energy and material flows and the dimensions of components and units from examples with answers. The book is intended for students and practical engineers in energy and powerstation technology. (orig.) With 210 figs [de

  13. Considering plant life management influences on new plant design

    International Nuclear Information System (INIS)

    Dam, R.F.; Choy, E.; Soulard, M.; Nickerson, J.H.; Hopwood, J.

    2003-01-01

    After operating successfully for more than half their design life, owners of CANDU reactors are now engaging in Plant Life Management (PLiM) activities to ensure not only life attainment, but also life extension. For several years, Atomic Energy of Canada Ltd. (AECL) has been working with domestic and offshore CANDU utilities on a comprehensive and integrated CANDU PLiM program that will see existing CANDU plants successfully and reliably operate through their design life and beyond. To support the PLiM program development, a significant level of infrastructure has been, and continues to be, developed at AECL. This includes the development of databases that document relevant knowledge and background to allow for a more accessible and complete understanding of degradation issues and the strategies needed to deal with these issues. As the level of integration with various project, services and R and D activities in AECL increases, this infrastructure is growing to encompass a wider range of design, operations and maintenance details to support comprehensive and quantitative assessment of CANDU stations. With the maturation of the PLiM program, these processes were adapted for application to newer plants. In particular, a fully integrated program was developed that interrelates the design basis, operations, safety, and reliability and maintenance strategies, as applied to meet plant design goals. This has led to the development of the maintenance-based design concept. The various PLiM technologies, developed and applied in the above programs with operating stations, are being modified and tailored to assist with the new plant design processes to assure that ACR- Advanced CANDU Reactor meets its targets for operation, maintenance, and lifetime performance. Currently, the ACR, developed by Atomic Energy of Canada Ltd. (AECL), is being designed with features to increase capacity factors, to reduce the risk of major equipment failures, to improve access to key components

  14. Remanent life management of nuclear power plants

    International Nuclear Information System (INIS)

    Pinedo, J.; Gomez Santamaria, J.

    1995-01-01

    The concept of life in the nuclear power plants is very special. The main aceptions are: design life, economic life and useful life. The good management of NPP will do the prolongation of the life in the NPP. The remanent of management life summarizes certain activities in order to prolong the lifetime of the NPP. This article presents the activities of the RML program, the technological program and its benefits

  15. Risk informed life cycle plant design

    International Nuclear Information System (INIS)

    Hill, Ralph S. III; Nutt, Mark M.

    2003-01-01

    Many facility life cycle activities including design, construction, fabrication, inspection and maintenance are evolving from a deterministic to a risk-informed basis. The risk informed approach uses probabilistic methods to evaluate the contribution of individual system components to total system performance. Total system performance considers both safety and cost considerations including system failure, reliability, and availability. By necessity, a risk-informed approach considers both the component's life cycle and the life cycle of the system. In the nuclear industry, risk-informed approaches, namely probabilistic risk assessment (PRA) or probabilistic safety assessment (PSA), have become a standard tool used to evaluate the safety of nuclear power plants. Recent studies pertaining to advanced reactor development have indicated that these new power plants must provide enhanced safety over existing nuclear facilities and be cost-competitive with other energy sources. Risk-informed approaches, beyond traditional PRA, offer the opportunity to optimize design while considering the total life cycle of the plant in order to realize these goals. The use of risk-informed design approaches in the nuclear industry is only beginning, with recent promulgation of risk-informed regulations and proposals for risk-informed codes. This paper briefly summarizes the current state of affairs regarding the use of risk-informed approaches in design. Key points to fully realize the benefit of applying a risk-informed approach to nuclear power plant design are then presented. These points are equally applicable to non-nuclear facilities where optimization for cost competitiveness and/or safety is desired. (author)

  16. Reconstructing Middle Eocene Climate and Atmospheric Carbon Dioxide Concentration: Application of a mechanistic theoretical approach to fossil plants from the Messel Pit (Germany)

    Science.gov (United States)

    Grein, M.; Roth-Nebelsick, A.; Wilde, V.; Konrad, W.; Utescher, T.

    2009-12-01

    It is assumed that changes in atmospheric CO2 concentrations (from now on expressed as Ca) strongly influenced the development of global temperatures during parts of the Cenozoic. Thus, detailed knowledge of ancient Ca and its variations is of utmost importance for exploring the coupling of atmospheric CO2 and global climate change. Numerous techniques (such as carbon and boron isotopes) were applied in order to obtain Ca, with varying and sometimes even conflicting results. Stomatal density (number of stomata per leaf area) represents another promising proxy for the calculation of ancient Ca since many plants reduce the number of stomata (pores on the leaf surface used for gas exchange) under increasing Ca. As a reason it is assumed that plants try to adjust stomatal conductance in order to optimize their gas exchange (which means maximal assimilation at minimal transpiration). The common technique for calculating Ca from fossil stomatal frequency is to create empirical transfer functions of living plants derived from herbar material or greenhouse experiments. In the presented project, Ca of the Middle Eocene is calculated by applying a different approach which utilizes a mechanistic-theoretical calibration. It couples the processes of a) C3-photosynthesis, b) diffusion and c) transpiration with palaeoclimatic and leaf-anatomical data. The model also includes an optimisation principle supported by ecophysiological data. According to this optimisation principle, plants adjust their stomatal conductance in such a way that photosynthesis rates are constrained by optimal water use (transpiration). This model was applied in the present study to fossil plants from the Messel Pit near Darmstadt (Germany). In order to reconstruct Ca by using fossil plant taxa from Messel, numerous parameters which represent model input have to be estimated from measurements of living representatives. Furthermore, since climate parameters are also required by the model, quantitative

  17. Survey of population health in towns with nuclear and fossil fuel power plants

    International Nuclear Information System (INIS)

    Ivanov, E.; Shubik, V. M.

    2004-01-01

    Comparative assessment of population health in Sosnovy Bor with nuclear power plant and Kirovsk with fossil fuel power station was made for public and administration information. Both towns are located in Leningrad administrative region at 150 km distance from each other. In nuclear power town radiological situation was assessed as normal and in Kirovsk up to 1995 yr. with coal fuel, maximum permissible levels of suspended particle of sulfur oxide in atmosphere were exceeded in 6-9% of samples. After 1995 yr. the natural gas was used as fuel. Demographic data for 1991-2000 yrs indicate that mortality including infants mortality and stillborns was lower in Sosnovy Bor (NOS) then in Kirovsk (fossil fuel) and on average Leningrad administrative region. Birth rate and population growth was higher in Sosnovy Bor at the same time surprisingly the recorded morbidity was higher in Sosnovy Bor which might be explained by extensive medical supervision and improved diagnostics. However, cancer and tuberculosis morbidity was lower in Sosnovy Bor. In Kirovsk in 1997-2000 yrs. oncological morbidity was higher on average comparing to Leningrad administrative region. Oncological mortality in Sosnovy Bor in 1997-2000 yrs. was lower than in Kirovsk and Leningrad region Standardized annual mortality in Sosnovy Bor, Kirovsk and Leningrad administrative region was 128.3, 209.6 and 211.7 on 100 000 respectively. Health state of pregnant women, deliveries, new-born condition were all in normal range in Sosnovy Bor, contrary to higher increased abortion rate and pregnancy complications in Kirovsk. These findings need further studies. (Author)

  18. Survey of population health in towns with nuclear and fossil fuel power plants

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, E.; Shubik, V. M.

    2004-07-01

    Comparative assessment of population health in Sosnovy Bor with nuclear power plant and Kirovsk with fossil fuel power station was made for public and administration information. Both towns are located in Leningrad administrative region at 150 km distance from each other. In nuclear power town radiological situation was assessed as normal and in Kirovsk up to 1995 yr. with coal fuel, maximum permissible levels of suspended particle of sulfur oxide in atmosphere were exceeded in 6-9% of samples. After 1995 yr. the natural gas was used as fuel. Demographic data for 1991-2000 yrs indicate that mortality including infants mortality and stillborns was lower in Sosnovy Bor (NOS) then in Kirovsk (fossil fuel) and on average Leningrad administrative region. Birth rate and population growth was higher in Sosnovy Bor at the same time surprisingly the recorded morbidity was higher in Sosnovy Bor which might be explained by extensive medical supervision and improved diagnostics. However, cancer and tuberculosis morbidity was lower in Sosnovy Bor. In Kirovsk in 1997-2000 yrs. oncological morbidity was higher on average comparing to Leningrad administrative region. Oncological mortality in Sosnovy Bor in 1997-2000 yrs. was lower than in Kirovsk and Leningrad region Standardized annual mortality in Sosnovy Bor, Kirovsk and Leningrad administrative region was 128.3, 209.6 and 211.7 on 100 000 respectively. Health state of pregnant women, deliveries, new-born condition were all in normal range in Sosnovy Bor, contrary to higher increased abortion rate and pregnancy complications in Kirovsk. These findings need further studies. (Author)

  19. The Panama fossil power plants generation system: Atmospheric pollution, general and legal aspects; El sistema de generacion termoelectrico en Panama: Contaminacion atmosferica, aspectos generales y legales

    Energy Technology Data Exchange (ETDEWEB)

    Milciades, Concepcion [Instituto de Recursos Hidraulicos y Electrificacion, (Panama)

    1997-12-31

    The Thermal electric energy resource of Panama is administered by four Regional Managements and a group of Regional Systems comprising the fossil power plants supplying electric energy to the country`s marginal areas. The characteristics of the different fuels used in these fossil power plants, the results of the assessment of the polluting particles and sulfur and nitrogen oxides are presented. Finally, the alleviation measures and the environmental legislation implanted in these power plants are also presented [Espanol] El parque termico de Panama es administrado por cuatro Gerencias Regionales y un conjunto de Sistemas Regionales que comprenden las plantas termicas de menor capacidad destinadas a suplir de energia a las areas marginadas del pais. Se presentan las caracteristicas de los diferentes combustibles utilizados en estas unidades termicas; los resultados de las mediciones de particulas contaminantes y de oxidos de azufre y oxidos de nitrogeno. Por ultimo se presentan las medidas de mitigacion y legislacion ambiental implantadas en estas centrales termoelectricas

  20. The Panama fossil power plants generation system: Atmospheric pollution, general and legal aspects; El sistema de generacion termoelectrico en Panama: Contaminacion atmosferica, aspectos generales y legales

    Energy Technology Data Exchange (ETDEWEB)

    Milciades, Concepcion [Instituto de Recursos Hidraulicos y Electrificacion, (Panama)

    1996-12-31

    The Thermal electric energy resource of Panama is administered by four Regional Managements and a group of Regional Systems comprising the fossil power plants supplying electric energy to the country`s marginal areas. The characteristics of the different fuels used in these fossil power plants, the results of the assessment of the polluting particles and sulfur and nitrogen oxides are presented. Finally, the alleviation measures and the environmental legislation implanted in these power plants are also presented [Espanol] El parque termico de Panama es administrado por cuatro Gerencias Regionales y un conjunto de Sistemas Regionales que comprenden las plantas termicas de menor capacidad destinadas a suplir de energia a las areas marginadas del pais. Se presentan las caracteristicas de los diferentes combustibles utilizados en estas unidades termicas; los resultados de las mediciones de particulas contaminantes y de oxidos de azufre y oxidos de nitrogeno. Por ultimo se presentan las medidas de mitigacion y legislacion ambiental implantadas en estas centrales termoelectricas

  1. Aging management review for license renewal and plant life management

    International Nuclear Information System (INIS)

    Rinckel, M.A.; Young, G.G.

    2002-01-01

    Full text: United States nuclear power plants are initially licensed for a period of 40-years. The 40-year term, which was established by the Atomic Energy Commission in the 1950s, is believed to be based on engineering judgement and is consistent with the typical amortization schedule for purchasing fossil power plants. Under 10 CFR Part 54, the license renewal rule, additional terms of 20-years may be obtained through the preparation of a license renewal application that must be reviewed and approved by the Nuclear Regulatory Commission (NRC). The license renewal rule requires that applicants perform ageing management reviews on passive long-lived structures and components to demonstrate that ageing will be managed during the period of extended operation (i.e., additional 20 years of operation). ageing of active components, which are excluded from 10 CFR Part 54, is accomplished through the Maintenance Rule, 10 CFR Part 65, using performance-based monitoring. The license renewal rule, 10 CFR Part 54, was initially published in 1991. After significant interaction with the nuclear industry from 1991 through 1994, the NRC revised the rule in 1995 to focus on passive long-lived structures and components. In 1998, the first two applications for license renewal were submitted to the NRC by Baltimore Gas and Electric for the two-unit Calvert Cliffs nuclear power plant and by Duke Energy for the three-unit Oconee nuclear power plant. In March 2000, the NRC approved the application for the two-unit Calvert Cliffs nuclear power plant for an additional 20 years. Two months later, the NRC approved the renewal of the operating licenses for the three-unit Oconee nuclear station. The NRC completed these reviews in a timely, predictable, and stable manner. As of February 2002, the NRC has approved renewal of operating licenses for eight nuclear units and has applications under review for 15 more units. Twelve additional companies have notified the NRC of their intention to seek

  2. Nuclear power plant life management and longer-term operation

    International Nuclear Information System (INIS)

    2006-01-01

    This book, prepared by NEA member country experts, contains data and analyses relevant to nuclear power plant life management and the plants' extended, longer-term operation (LTO). It addresses technical, economic and environmental aspects and provides insights into the benefits and challenges of plant life management and LTO. It will be of interest to policy makers and senior managers in the nuclear power sector and governmental bodies involved in nuclear power programme design and management. The data and information on current trends in nuclear power plant life management will be useful to researchers and analysts working in the field of nuclear energy system assessment. (authors)

  3. Reconciling fossil fuel power generation development and climate issues: CCS and CCS-Ready

    Energy Technology Data Exchange (ETDEWEB)

    Paelinck, Philippe; Sonnois, Louis; Leandri, Jean-Francois

    2010-09-15

    This paper intends to analyse how CCS can contribute to reduce CO2 emissions from fossil-fuel power plants and to describe what is its current overall status. Its potential future development is assessed, in both developed and developing countries, and an economical assessment of different investment options highlight the importance of CCS retrofit. The paper analyses then the challenges of the development of fossil fuelled power plants and details case examples to illustrate some technical challenges related to CCS and what are the technical solutions available today to ease and address them: CCS-Ready power plants.

  4. Research on the general analytical method of fossil fuel cycle from a viewpoint of the global environment. 3; Chikyu kankyo kara mita sogoteki kaseki nenryo cycle bunseki hyoka shuho no chosa. 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The general analysis/assessment method of a fossil fuel cycle was studied. Seven kinds of power generation plants such as LNG cycle and coal cycle ones, and four kinds of transport and treatment systems of recovered CO2 such as ocean and underground systems were studied as case studies on life cycle analysis. As data necessary for life cycle analysis, the database was constructed which stores the facilities and operational energy required for a total energy system from mining of fossil fuel to treatment of recovered CO2, and the quantity of environmental waste such as CO2 emission. As a result, the decrease rate of energy balance defined as ratio of input energy to power plant output was estimated to be 14-43% and 20-60% in LNG cycle and coal cycle, respectively. Even if the recovery rate of CO2 in power plants reached 80-90%, reduction of total CO2 emission was limited to only 20-40% because of CO2 emission during mining, liquefaction and transport of fuel. 168 refs., 48 figs., 102 tabs.

  5. {sup 14}C AMS measurements in tree rings to estimate local fossil CO{sub 2} in Bosco Fontana forest (Mantova, Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Capano, Manuela, E-mail: capanomanuela@tiscali.i [CIRCE, Dipartimento di Scienze Ambientali, Seconda Universita di Napoli, and INNOVA, Via Vivaldi, 43 81100 Caserta (Italy); Marzaioli, Fabio; Sirignano, Carmina; Altieri, Simona; Lubritto, Carmine; D' Onofrio, Antonio; Terrasi, Filippo [CIRCE, Dipartimento di Scienze Ambientali, Seconda Universita di Napoli, and INNOVA, Via Vivaldi, 43 81100 Caserta (Italy)

    2010-04-15

    Radiocarbon concentration in atmosphere changes overtime due to anthropogenic and natural factors. Species growth preserves the local atmospheric radiocarbon signature over their life span in the annual tree rings and make it possible to use tree rings for the monitoring of changes in fossil-fuel emissions due to an increase of traffic exhaust, during the last decades. In this paper, the CIRCE AMS system has been used to measure the {sup 14}C concentration in tree rings of plants grown near an industrial area and a very busy State Road, in a forest in north Italy. Preliminary results related to tree rings of several years of plants respectively near and far the emitting sources are displayed, in order to estimate the local pollution effect. It is possible to find a dilution in years 2000 and 2006 in both the trees analysed, but not enough data have been analysed yet in order to distinguish the fossil dilution derived from the street vehicular traffic or that from the industries.

  6. Plant life extensions for German nuclear power plants? Controversial discussion profit taking of nuclear power plant operators

    International Nuclear Information System (INIS)

    Matthes, Felix C.

    2009-10-01

    The discussion on the plant life extensions for German nuclear power plants beyond the residual quantity of electricity particularly focus on three aspects: Effects for the emission of carbon dioxide as a greenhouse gas; Development of the electricity price for which a reduction or attenuation is postulated due to a plant life extension; Skimming of additional profits at operating companies and their use in the safeguarding of the future (development of renewable energies, support of energy efficiency, promotion of the research, consolidation of the public budget, and so on). Under this aspect, the author of the contribution under consideration reports on the profit taking of nuclear power plant operators. The presented analysis considers three aspects: (a) Specification of the quantity structures for the investigated model of plant life extension; (b) The decisive parameter is the revenue situation and thus the price development for electricity at wholesale markets; (c) Determination and evaluation of the course in time of the profit taking.

  7. Non-destructive testing for plant life assessment

    International Nuclear Information System (INIS)

    2005-01-01

    The International Atomic Energy Agency (IAEA) is promoting industrial applications of nondestructive testing (NDT) technology, which includes radiography testing (RT) and related methods, to assure safety and reliability of operation of industrial facilities and processes. NDT technology is essentially needed for improvement of the quality of industrial products, safe performance of equipment and plants, including safety of metallic and concrete structures and constructions. The IAEA is playing an important role in promoting the NDT use and technology support to Member States, in harmonisation for training and certification of NDT personnel, and in establishing national accreditation and certifying bodies. All these efforts have led to a stage of maturity and self sufficiency in numerous countries especially in the field of training and certification of personnel, and in provision of services to industries. This has had a positive impact on the improvement of the quality of industrial goods and services. NDT methods are primarily used for detection, location and sizing of surface and internal defects (in welds, castings, forging, composite materials, concrete and many more). Various NDT methods are applied for preventive maintenance (aircraft, bridge), for the inspection of raw materials, half-finished and finished products, for in-service-inspection and for plant life assessment studies. NDT is essential for quality control of the facilities and products, and for fitness - for purpose assessment (so-called plant life assessment). NDT evaluates remaining operation life of plant components (processing lines, pipes, vessels) providing an accurate diagnosis that allows predicting extended life operation beyond design life. Status and trends on the NDT for plant life assessment have been discussed in many IAEA meetings related with NDT development, training and education. Experts have largely demonstrated that, using NDT methods, a comprehensive assessment of the life

  8. Analysis of integrated plant upgrading/life extension programs

    International Nuclear Information System (INIS)

    McCutchan, D.A.; Massie, H.W. Jr.; McFetridge, R.H.

    1988-01-01

    A present-worth generating cost model has been developed and used to evaluate the economic value of integrated plant upgrading life extension project in nuclear power plants. This paper shows that integrated plant upgrading programs can be developed in which a mix of near-term availability, power rating, and heat rate improvements can be obtained in combination with life extension. All significant benefits and costs are evaluated from the viewpoint of the utility, as measured in discounted revenue requirement differentials between alternative plans which are equivalent in system generating capacity. The near-term upgrading benefits are shown to enhance the benefit picture substantially. In some cases the net benefit is positive, even if the actual life extension proves to be less than expected

  9. Nuclear plant life cycle management implementation guide. Final report

    International Nuclear Information System (INIS)

    Sliter, G.E.; Negin, C.A.

    1998-11-01

    Nuclear power plants, as baseload suppliers of electricity, are major corporate assets. As the nuclear industry enters its fourth decade as a major producer of clean electricity, the structure of the utility industry is undergoing a historical landmark transition from economic deregulation to a competitive, market-driven industry. An integral part of competition is to manage the operation of the key asset, the plant, in the long term, thereby enhancing its long-term profitability. Life cycle management (LCM) is a well-known technical-economic decision-making process for any large industrial facility. LCM optimizes the service life of a facility and maximizes its life-cycle asset value. LCM integrates aging management (maintaining the availability of costly-to-replace components and structures) with asset management (plant valuation and investment strategies that account for economic, performance, regulatory, and environmental uncertainties). LCM involves predicting maintenance, repair, and other capital costs for a nuclear unit far into the future, as well as planning and managing strategic issues such as waste disposal, fuel storage, decommissioning, and public acceptance. This Life Cycle Management Implementation Guide introduces the reader to the LCM concept and its benefits, describes the elements and activities associated with an LCM program (most of which already exist in all plants), gives an overview of asset and aging management, and provides key references related to life cycle management for nuclear power plants. It also summarizes the major elements of life cycle management required for license renewal or, for newer plants, keeping open the option of license renewal

  10. Proceedings of the topical meeting on nuclear power plant life extension

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This book contains the proceedings of the topical meeting on nuclear power plant life extension. The sessions are organized under the following headings: Perspectives on nuclear power plant life extension, the potential for additional years of power production, NRC and industry life extension initiatives, concrete and structures degradation and evaluation of useful remaining life, plant life extension programs, Reactor pressure vessel and intervals degradation and evaluation of useful remaining life, life extension decision making issues and institutions, systems degradation and evaluation of remaining life, monitoring and repair, design records and maintenance activities for life extension, Mechanical and electrical component degradation and evaluation of remaining life, expert systems and other techniques for enhanced and continued operation, life extension aspect of codes, standards, and related technologies, piping and valve degradation and evaluation of useful remaining life

  11. 100 years of discovery of the Burgess Shale 1909-2009 : a celebration of the discovery of the world's most important fossils

    International Nuclear Information System (INIS)

    2009-01-01

    The centennial celebration of the discovery of the Burgess Shale consisted of informative science presentations to the general public. Scientific presenters also participated in guided hikes in Yoho National Park within the Canadian Rockies where the Burgess Shale can be found. The first Burgess Shale fossils were discovered in 1909 by Charles D. Walcott. Thousands of specimens have since been collected from the quarry named after him. The informative science presentations described the burst of biodiversity of marine plants and marine invertebrate animals that lived in a shallow sea in the vicinity of a massive carbonate reef during the Cambrian Period. They described the unusual conditions that allowed for the very rare preservation of the animals in the Burgess Shale. The Burgess Shale fossils merit special interest because they reveal how animal life appeared on Earth better than any other fossil record. In addition to the geological history of the Burgess Shale area, the centennial lectures also addressed topics such as climate and the geological record of climate change; the influence of continental drift on evolution; and fluid geochemistry in the Western Canada Foreland Basin and paleoclimate influence. The Burgess Shale was designated a UNESCO World Heritage Site in 1981 as it provides key information about evolution of life on Earth. refs. figs

  12. Total energy analysis of nuclear and fossil fueled power plants

    International Nuclear Information System (INIS)

    Franklin, W.D.; Mutsakis, M.; Ort, R.G.

    1971-01-01

    The overall thermal efficiencies of electrical power generation were determined for Liquid Metal Fast Breeder, High Temperature Gas Cooled, Boiling Water, and Pressurized Water Reactors and for coal-, oil-, and gas-fired systems. All important energy consuming steps from mining through processing, transporting, and reprocessing the fuels were included in the energy balance along with electrical transmission and thermal losses and energy expenditures for pollution abatement. The results of these studies show that the overall fuel cycle efficiency of the light water nuclear fueled reactors is less than the efficiency of modern fossil fuel cycles. However, the nuclear fuel cycle based on the fast breeder reactors should produce power more efficiently than the most modern supercritical fossil fuel cycles. The high temperature gas cooled reactor has a cycle efficiency comparable to the supercritical coal fuel cycle

  13. Analysis of river Jiu water pollution due to operation of Rovinari, Turceni and Paroseni fossil fuel power plants

    International Nuclear Information System (INIS)

    Constantin, Aurel Ilie; Mitoiu, Corneliu; Constantinescu, Ana Maria; Ghigiu, Nicolae

    1995-01-01

    Important quantities of ash and breeze resulting from combustion of fossil fuels used in Rovinari, Turceni and Paroseni power plants were evacuated by hydraulic transport into decant ponds for the primary treatment. Waste waters resulting from hydrotransport have large suspension concentrations and, occasionally, strong alkaline pH values. Periodically, accidental pollutions affected the river Jiu and large areas of agricultural lands. The paper presents the analysis results of waste water pH, suspensions and fixed residue. The causes of river Jiu pollution are discussed and measures to reduce its effects are suggested. (authors)

  14. Physical model of a floating trash boom to control aquatic weeds at the TVA Widows Creek Fossil Plant

    International Nuclear Information System (INIS)

    Hopping, P.N.

    1991-01-01

    This paper reports that the Tennessee Valley Authority (TVA) Widows Creek Fossil plant seasonally encounters adverse accumulations of aquatic weeds at the intakes of the condenser cooling water pumps. To reduce the accumulations, a floating trash boom has been proposed for the intakes. To evaluate the hydraulic feasibility of a boom, a physical model of the intakes has been built at the TVA Engineering Laboratory. The model was used to determine the boom alignment and depth of skimming needed to successfully deflect weeds away from the intakes and provide self-cleaning

  15. Microalgae Production from Power Plant Flue Gas: Environmental Implications on a Life Cycle Basis

    Energy Technology Data Exchange (ETDEWEB)

    Kadam, K. L.

    2001-06-22

    Power-plant flue gas can serve as a source of CO{sub 2} for microalgae cultivation, and the algae can be cofired with coal. This life cycle assessment (LCA) compared the environmental impacts of electricity production via coal firing versus coal/algae cofiring. The LCA results demonstrated lower net values for the algae cofiring scenario for the following using the direct injection process (in which the flue gas is directly transported to the algae ponds): SOx, NOx, particulates, carbon dioxide, methane, and fossil energy consumption. Carbon monoxide, hydrocarbons emissions were statistically unchanged. Lower values for the algae cofiring scenario, when compared to the burning scenario, were observed for greenhouse potential and air acidification potential. However, impact assessment for depletion of natural resources and eutrophication potential showed much higher values. This LCA gives us an overall picture of impacts across different environmental boundaries, and hence, can help in the decision-making process for implementation of the algae scenario.

  16. Considerations related to plant life management for Cernavoda-1

    International Nuclear Information System (INIS)

    Cojan, Mihail

    2002-01-01

    Cernavoda-1 NPP, the first CANDU 6 Unit in Eastern Europe, is one of the original five CANDU 6 plants and the first CANDU 6 producing over 700 MWe. CANDU Pressurized Heavy Water Reactors (PHWR) continues to play a significant role in electricity supply both in Canada and some offshore countries (Korea, Argentina, Romania). The commercial versions of CANDU reactors were put into service more than 30 years ago. While the first series of CANDU 6 plants (which entered service in the early 1980's) have now reached the middle portion of their 30 years design life, the Cernavoda-1 was put into service on 2 December 1996. However, the Cernavoda-1 Plant Life Management should be an increasingly important program to Utility ('CNE-Prod') in order to protect the investment and the continued success of plant operation. Over the past three years, INR (Institute for Nuclear Research - Romania) has been working with AECL-Canada on R and D Programs to support a comprehensive and integrated Cernavoda-1 Plant Life Management (PLiM) program that will see the Cernavoda-1 NPP successfully and reliably through to design life and beyond. The PLiM program has a focus on critical systems, structures, and components (CSSCs) and will be applied in three phases: Phase 1 - Planning (assessment and recommendations); Phase 2 - Life attainment implementation, and; Phase 3 - Plant Life Extension (PLEx), also known as plant extended operation. The key activities during each phase are shown. The schedule of each Phase are shown using the in service date of 1983 as the basis. This schedule applies to three original CANDU 6 plants with an in-service date of 1983: Point Lepreau, Gentilly-2, Wolsong-1 and shortly thereafter (1984) the 4th original CANDU 6 Embalse NPP was declared in service. Cernavoda-1 is the 5th original CANDU 6 plant and was put into service on 2 December 1996 (on site activities were started in 1980). The paper will describe the elements of an integrated program, the multiphase

  17. Looking for Fossil Bacteria in Martian Materials

    Science.gov (United States)

    Westall, F.; Walsh, M. M.; Mckay, D. D.; Wentworth, S.; Gibson, E. K.; Steele, A.; Toporski, J.; Lindstrom, D.; Martinez, R.; Allen, C. C.

    1999-01-01

    The rationale for looking for prokaryote fossils in Martian materials is based on our present understanding of the environmental evolution of that planet in comparison to the history of the terrestrial environments and the development and evolution of life on Earth. On Earth we have clear, albeit indirect, evidence of life in 3.8 b.y.-old rocks from Greenland and the first morphological fossils in 3.3-3.5 b.y.-old cherts from South Africa and Australia. In comparison, Mars, being smaller, probably cooled down after initial aggregation faster than the Earth. Consequently, there could have been liquid water on its surface earlier than on Earth. With a similar exogenous and endogenous input of organics and life-sustaining nutrients as is proposed for the Earth, life could have arisen on that planet, possibly slightly earlier dm it did on Earth. Whereas on Earth liquid water has remained at the surface of the planet since about 4.4 b.y. (with some possible interregnums caused by planet-sterilising impacts before 3.8. b.y. and perhaps a number of periods of a totally frozen Earth, this was not the case with Mars. Although it is not known exactly when surficial water disappeared from the surface, there would have been sufficient time for life to have developed into something similar to the terrestrial prokaryote stage. However, given the earlier environmental deterioration, it is unlikely that it evolved into the eukaryote stage and even evolution of oxygenic photosynthesis may not have been reached. Thus, the impetus of research is on single celled life simnilar to prokaryotes. We are investigating a number of methods of trace element analysis with respect to the Early Archaean microbial fossils. Preliminary neutron activation analysis of carbonaceous layers in the Early Archaean cherts from South Africa and Australia shows some partitioning of elements such as As, Sb, Cr with an especial enrichment of lanthanides in a carbonaceous-rich banded iron sediment . More

  18. Integrated plant life management (PLiM)-the IAEA contribution

    International Nuclear Information System (INIS)

    Kang, K.-S.; Clark, C.R.; Omoto, A.; )

    2005-01-01

    For the past couple of decades there has been a change of emphasis in the world nuclear power from that of building new Nuclear Power Plants (NPP) to that of taking measures to optimize the life cycle of operational plants. National approaches in many countries showed an increase of interest in Plant Life Management (PLiM), both in terms of plant service life assurance and in optimizing the service or operational life of NPP. A strong convergence of views is emerging from different National approaches, particularly in the area of the economic aspects of NPP operation and in the evolution in the scope of NPP PLIM. The latter can directly affect the cost of electricity from NPP in an increasingly competitive environment. The safety considerations of a NPP are paramount and those requirements have to be met to obtain and to extend/renew the operating license. To achieve the goal of the long term safe, economic and reliable operation of the plant an integrated Plant Life Management Programme (PLiM) is necessary. Some countries already have advanced PLiM Programmes while others still have none. The PLiM objective is to identify all that factors and requirements for the overall plant life cycle. The optimization of these requirements would allow for the minimum period of the investment return and maximum of the revenue from the sell of the produced electricity. Recognizing the importance of this issue and in response to the requests of the Member States the IAEA Division of Nuclear Power implements the Sub-programme on 'Engineering and Management Support for Competitive Nuclear Power'. Four projects within this sub-programme deal with different aspects of the NPP life cycle management with the aim to increase the capabilities of interested Member States in implementing and maintenance of the competitive and sustainable nuclear power. Although all four projects contain certain issues of PLiM there is one specific project on guidance on engineering and management practices

  19. Radioactivity in fossils at the Hagerman Fossil Beds National Monument.

    Science.gov (United States)

    Farmer, C Neal; Kathren, Ronald L; Christensen, Craig

    2008-08-01

    Since 1996, higher than background levels of naturally occurring radioactivity have been documented in both fossil and mineral deposits at Hagerman Fossil Beds National Monument in south-central Idaho. Radioactive fossil sites occur primarily within an elevation zone of 900-1000 m above sea level and are most commonly found associated with ancient river channels filled with sand. Fossils found in clay rich deposits do not exhibit discernable levels of radioactivity. Out of 300 randomly selected fossils, approximately three-fourths exhibit detectable levels of natural radioactivity ranging from 1 to 2 orders of magnitude above ambient background levels when surveyed with a portable hand held Geiger-Muller survey instrument. Mineral deposits in geologic strata also show above ambient background levels of radioactivity. Radiochemical lab analysis has documented the presence of numerous natural radioactive isotopes. It is postulated that ancient groundwater transported radioactive elements through sand bodies containing fossils which precipitated out of solution during the fossilization process. The elevated levels of natural radioactivity in fossils may require special precautions to ensure that exposures to personnel from stored or displayed items are kept as low as reasonably achievable (ALARA).

  20. Life Limiting Issues for Long Term Operation of Nuclear Power Plants

    International Nuclear Information System (INIS)

    Esselman, Thomas; Gaertner, John

    2012-01-01

    This paper reports on a study which identified and characterized life limiting issues for consideration by nuclear plant owners in their decision to extend plant life or seek subsequent license renewal. As nuclear plants operate for longer periods, the risk that a condition in the plant or an event that occurs, at the plant or elsewhere, will cause a plant owner not to extend plant life increases. The Fukushima accident has made this concept concrete. This paper defines 'Life Limiting' concepts for nuclear plants. It identifies the highest risk conditions and events that may limit duration of continued operation in nuclear plants and employs a survey to prioritize these concerns. Methods for evaluating these risks and changing the capability of systems, structures, and components (SSC) to reduce and manage this risk in long term operation are presented. Integrated obsolescence -the existence of an accumulation of events or condition that can threaten long term operation- is discussed. Many of the life limiting conditions or events may be controllable by early identification, recognition, and mitigation of the potential threat. The recognition of conditions may allow measures to be taken to mitigate the condition. Recognition of the potential for events that may be life limiting may allow actions to be taken that will minimize the likelihood or consequences of the event. These actions may include enhanced research on the expected behavior of the SSC, risk assessment and management, and enhanced monitoring and aging management at the plant. (author)

  1. Optimizing power plant cycling operations while reducing generating plant damage and costs

    Energy Technology Data Exchange (ETDEWEB)

    Lefton, S A; Besuner, P H; Grimsrud, P [Aptech Engineering Services, Inc., Sunnyvale, CA (United States); Bissel, A [Electric Supply Board, Dublin (Ireland)

    1999-12-31

    This presentation describes a method for analyzing, quantifying, and minimizing the total cost of fossil, combined cycle, and pumped hydro power plant cycling operation. The method has been developed, refined, and applied during engineering studies at some 160 units in the United States and 8 units at the Irish Electric Supply Board (ESB) generating system. The basic premise of these studies was that utilities are underestimating the cost of cycling operation. The studies showed that the cost of cycling conventional boiler/turbine fossil power plants can range from between $2,500 and $500,000 per start-stop cycle. It was found that utilities typically estimate these costs by factors of 3 to 30 below actual costs and, thus, often significantly underestimate their true cycling costs. Knowledge of the actual, or total, cost of cycling will reduce power production costs by enabling utilities to more accurately dispatch their units to manage unit life expectancies, maintenance strategies and reliability. Utility management responses to these costs are presented and utility cost savings have been demonstrated. (orig.) 7 refs.

  2. Optimizing power plant cycling operations while reducing generating plant damage and costs

    Energy Technology Data Exchange (ETDEWEB)

    Lefton, S.A.; Besuner, P.H.; Grimsrud, P. [Aptech Engineering Services, Inc., Sunnyvale, CA (United States); Bissel, A. [Electric Supply Board, Dublin (Ireland)

    1998-12-31

    This presentation describes a method for analyzing, quantifying, and minimizing the total cost of fossil, combined cycle, and pumped hydro power plant cycling operation. The method has been developed, refined, and applied during engineering studies at some 160 units in the United States and 8 units at the Irish Electric Supply Board (ESB) generating system. The basic premise of these studies was that utilities are underestimating the cost of cycling operation. The studies showed that the cost of cycling conventional boiler/turbine fossil power plants can range from between $2,500 and $500,000 per start-stop cycle. It was found that utilities typically estimate these costs by factors of 3 to 30 below actual costs and, thus, often significantly underestimate their true cycling costs. Knowledge of the actual, or total, cost of cycling will reduce power production costs by enabling utilities to more accurately dispatch their units to manage unit life expectancies, maintenance strategies and reliability. Utility management responses to these costs are presented and utility cost savings have been demonstrated. (orig.) 7 refs.

  3. Plant life history and above–belowground interactions

    NARCIS (Netherlands)

    Deyn, de Gerlinde

    2017-01-01

    The importance of above–belowground interactions for plant growth and community dynamics became clear in the last decades, whereas the numerous studies on plant life history improved our knowledge on eco-evolutionary dynamics. However, surprisingly few studies have linked both research fields

  4. Using Plants to Explore the Nature & Structural Complexity of Life

    Science.gov (United States)

    Howard, Ava R.

    2014-01-01

    Use of real specimens brings the study of biology to life. This activity brings easily acquired plant specimens into the classroom to tackle common alternative conceptions regarding life, size, complexity, the nature of science, and plants as multicellular organisms. The activity occurs after a discussion of the characteristics of life and engages…

  5. BALTICA IV. Plant maintenance for managing life and performance

    Energy Technology Data Exchange (ETDEWEB)

    Hietanen, S; Auerkari, P [eds.; VTT Manufacturing Technology, Espoo (Finland). Operational Reliability

    1999-12-31

    BALTICA IV International Conference on Plant Maintenance Managing Life and performance held on September 7-9, 1998 on board M/S Silja Symphony on its cruise between Helsinki-Stockholm and at Aavaranta in Kirkkonummi. The BALTICA IV conference provides a forum for the transfer of technology from applied research to practice. This is one of the two volumes of the proceedings of the BALTICA IV International Conference on Plant Maintenance Managing Life and Performance. The BALTICA IV conference focuses on new technology, recent experience and applications of condition and life management, and on improvements in maintenance strategies for safe and economical operation of power plants. (orig.)

  6. BALTICA IV. Plant maintenance for managing life and performance

    Energy Technology Data Exchange (ETDEWEB)

    Hietanen, S.; Auerkari, P. [eds.] [VTT Manufacturing Technology, Espoo (Finland). Operational Reliability

    1998-12-31

    BALTICA IV International Conference on Plant Maintenance Managing Life and performance held on September 7-9, 1998 on board M/S Silja Symphony on its cruise between Helsinki-Stockholm and at Aavaranta in Kirkkonummi. The BALTICA IV conference provides a forum for the transfer of technology from applied research to practice. This is one of the two volumes of the proceedings of the BALTICA IV International Conference on Plant Maintenance Managing Life and Performance. The BALTICA IV conference focuses on new technology, recent experience and applications of condition and life management, and on improvements in maintenance strategies for safe and economical operation of power plants. (orig.)

  7. [The evolution of plant life span: facts and hypotheses].

    Science.gov (United States)

    2006-01-01

    There are two different views on the evolution of life forms in Cormophyta: from woody plants to herbaceous ones or in opposite direction - from herbs to trees. In accordance with these views it is supposed that life span in plants changed in the course of evolution from many years (perennials) to few years (annuals, biennials), or went in reverse - from few years to many years. The author discusses the problems of senescence and longevity in Cormophyta in the context of various hypotheses of ageing (programmed death theory, mutation accumulation, antagonistic pleiotropy, disposable soma, genes of ageing, genes of longevity). Special attention is given to bio-morphological aspects of longevity and cases of non-ageing plants ("negative senescence", "potential immortality"). It is proposed to distinguish seven models of simple ontogenesis in Cormophyta that can exemplify the diversity of mechanisms of ageing and longevity. The evolution of life span in plants is considered as an indirect result of natural selection of other characteristics of organisms or as a consequence of fixation of modifications (episelectional evolution). It seems that short life span could emerge several times during evolution of one group of plants, thus favoring its adaptive radiation.

  8. Dental development in living and fossil orangutans.

    Science.gov (United States)

    Smith, Tanya M

    2016-05-01

    Numerous studies have investigated molar development in extant and fossil hominoids, yet relatively little is known about orangutans, the only great ape with an extensive fossil record. This study characterizes aspects of dental development, including cuspal enamel daily secretion rate, long-period line periodicities, cusp-specific molar crown formation times and extension rates, and initiation and completion ages in living and fossil orangutan postcanine teeth. Daily secretion rate and periodicities in living orangutans are similar to previous reports, while crown formation times often exceed published values, although direct comparisons are limited. One wild Bornean individual died at 4.5 years of age with fully erupted first molars (M1s), while a captive individual and a wild Sumatran individual likely erupted their M1s around five or six years of age. These data underscore the need for additional samples of orangutans of known sex, species, and developmental environment to explore potential sources of variation in molar emergence and their relationship to life history variables. Fossil orangutans possess larger crowns than living orangutans, show similarities in periodicities, and have faster daily secretion rate, longer crown formation times, and slower extension rates. Molar crown formation times exceed reported values for other fossil apes, including Gigantopithecus blacki. When compared to African apes, both living and fossil orangutans show greater cuspal enamel thickness values and periodicities, resulting in longer crown formation times and slower extension rates. Several of these variables are similar to modern humans, representing examples of convergent evolution. Molar crown formation does not appear to be equivalent among extant great apes or consistent within living and fossil members of Pongo or Homo. Copyright © 2016 The Author. Published by Elsevier Ltd.. All rights reserved.

  9. Is cumulative fossil energy demand a useful indicator for the environmental performance of products?

    NARCIS (Netherlands)

    Huijbregts, Mark A J; Rombouts, Linda J A; Hellweg, Stefanie; Frischknecht, Rolf; Hendriks, A Jan; Meent, Dik van de; Ragas, Ad M J; Reijnders, Lucas; Struijs, Jaap

    2006-01-01

    The appropriateness of the fossil Cumulative Energy Demand (CED) as an indicator for the environmental performance of products and processes is explored with a regression analysis between the environmental life-cycle impacts and fossil CEDs of 1218 products, divided into the product categories

  10. Reducing the CO2 emissions from fossil fuel power plans by exhaust gas treatment

    International Nuclear Information System (INIS)

    David, Elena

    2007-01-01

    The emission of carbon dioxide (CO 2 ) and other pollutants which result from burning fossil fuels has been identified as the major contributor to global warming and climate change. However, for the short term, at least for the next 10-20 years, the world will continue to rely on fossil fuels as the source of primary energy. The challenge for the fossil the fuel industry is to find cost-effective solutions that will reduce the release of CO 2 and other pollutants into the atmosphere. The focus of this paper is on the ability to treat the exhaust gas from fossil fuel power plants in order to capture and store the CO 2 and remove the other pollutants such as SO x and NO x which are released into the atmosphere. In summary, capture/separation costs represent the largest financial impediment for this type of plants. Hence, efficient, cost-effective capture/separation technologies need to be developed to allow their large-scale use. (author)

  11. FANP concept for plant life management and recent experience

    International Nuclear Information System (INIS)

    Nopper, H.; Daeuwel, W.; Waas, U.

    2002-01-01

    The deregulation of the power generation industry has resulted in increased competitive pressure and is forcing operators to improve plant operating economy while maintaining high levels of plant safety. A key factor to meet this challenge is to apply a comprehensive plant life management (PLIM) approach. The PLIM strategy addresses all relevant ageing and degradation mechanisms, the safety concept and the plant component documentation. In addition, it affects the management of plant personnel, consumables, operations management systems and administrative control procedures. Framatome ANP GmbH has developed an integrated PLIM concept and associated software tools applicable for both new and operating plants. The concept includes procedures and strategies regarding mechanical, electrical and I and C components as well as civil structures. The majority of e.g. mechanical components in a well-kept power plant will experience a technical service life, which is far above the intended design life. In most cases, only a small percentage of mechanical components is subject to significant degradation which may effect the integrity or the function of the component. The intention of an effective PLIM concept is to select safety and availability relevant components, were relevant degradation can not be ruled out. The PLIM concept utilizes a combination of strategies to identify components in a power plant: which are relevant to life management. An integrated safety review identifies components essential to safety, providing a classification of the associated safety levels. Assessment concerning the availability relevance of components is conduced. Components identified to be important to safety and availability are subject to a screening process for further grouping with respect to degradation potential. The selection process provides reasonable prioritisation of ageing relevant components and ensures that efforts are devoted to elements, where ageing is a relevant concern

  12. Fossil Crinoids

    Science.gov (United States)

    Hess, Hans; Ausich, William I.; Brett, Carlton E.; Simms, Michael J.

    2003-01-01

    Crinoids have graced the oceans for more than 500 million years. Among the most attractive fossils, crinoids had a key role in the ecology of marine communities through much of the fossil record, and their remains are prominent rock forming constituents of many limestones. This is the first comprehensive volume to bring together their form and function, classification, evolutionary history, occurrence, preservation and ecology. The main part of the book is devoted to assemblages of intact fossil crinoids, which are described in their geological setting in twenty-three chapters ranging from the Ordovician to the Tertiary. The final chapter deals with living sea lilies and feather stars. The volume is exquisitely illustrated with abundant photographs and line drawings of crinoids from sites around the world. This authoritative account recreates a fascinating picture of fossil crinoids for paleontologists, geologists, evolutionary and marine biologists, ecologists and amateur fossil collectors.

  13. Life management plants at nuclear power plants PWR; Planes de gestion de vida en centrales nucleares PWR

    Energy Technology Data Exchange (ETDEWEB)

    Esteban, G.

    2014-10-01

    Since in 2009 the CSN published the Safety Instruction IS-22 (1) which established the regulatory framework the Spanish nuclear power plants must meet in regard to Life Management, most of Spanish nuclear plants began a process of convergence of their Life Management Plants to practice 10 CFR 54 (2), which is the current standard of Spanish nuclear industry for Ageing Management, either during the design lifetime of the plant, as well as for Long-Term Operation. This article describe how Life Management Plans are being implemented in Spanish PWR NPP. (Author)

  14. Fossils and living taxa agree on patterns of body mass evolution: a case study with Afrotheria.

    Science.gov (United States)

    Puttick, Mark N; Thomas, Gavin H

    2015-12-22

    Most of life is extinct, so incorporating some fossil evidence into analyses of macroevolution is typically seen as necessary to understand the diversification of life and patterns of morphological evolution. Here we test the effects of inclusion of fossils in a study of the body size evolution of afrotherian mammals, a clade that includes the elephants, sea cows and elephant shrews. We find that the inclusion of fossil tips has little impact on analyses of body mass evolution; from a small ancestral size (approx. 100 g), there is a shift in rate and an increase in mass leading to the larger-bodied Paenungulata and Tubulidentata, regardless of whether fossils are included or excluded from analyses. For Afrotheria, the inclusion of fossils and morphological character data affect phylogenetic topology, but these differences have little impact upon patterns of body mass evolution and these body mass evolutionary patterns are consistent with the fossil record. The largest differences between our analyses result from the evolutionary model, not the addition of fossils. For some clades, extant-only analyses may be reliable to reconstruct body mass evolution, but the addition of fossils and careful model selection is likely to increase confidence and accuracy of reconstructed macroevolutionary patterns. © 2015 The Authors.

  15. Economic evaluation of methods to substitute consumption of fossil fuel for nuclear one in power generation

    International Nuclear Information System (INIS)

    Veretennikov, G.A.; Boldyrev, V.M.; Sigal, M.V.

    1986-01-01

    Technical-and-economic indices of separate and combind processes of thermal and electric power production are compared for different energy sources (heat-only nuclear stations power and heat nuclear stations condensation nuclear power plants, fossil-fuel condensation power plants, fossil-fuel power and heat nuclear stations and fossil-fuel boiler houses). The data on capital outlays, fuel expenses and total reduced costs are presented. The analysis has shown that all versions of nuclear energy development with the use of heat-only nuclear stations in different combinations prove to be less preferable than the version of cogeneration of heat and electric power at power and heat nuclear stations

  16. Framatome ANP worldwide experience in ageing and plant life management

    International Nuclear Information System (INIS)

    Daeuwel, W.; Kastner, B.; Nopper, H.

    2004-01-01

    The deregulation of the power generation industry has resulted in increased competitive pressure and is forcing operators to improve plant operating economy while maintaining high levels of plant safety. A key factor to meet this challenge is to apply a comprehensive plant life management (PLIM) approach which addresses all relevant ageing and degradation mechanisms regarding the safety concept, plant components and documentation, plant personnel, consumables, operations management system and administrative controls. For this reason, Framatome ANP has developed an integrated PLIM concept focussing on the safety concept, plant components and documentation. Representative examples for plant wide analyses are described in the following. The results of the analyses support the plant owner for taking the strategic decisions, involved in plant life extension (PLEX). (orig.)

  17. Modelling turbulent fluid flows in nuclear and fossil-fired power plants

    International Nuclear Information System (INIS)

    Viollet, P.L.

    1995-06-01

    The turbulent flows encountered in nuclear reactor thermal hydraulic studies or fossil-fired plant thermo-aerodynamic analyses feature widely varying characteristics, frequently entailing heat transfers and two-phase flows so that modelling these phenomena tends more and more to involve coupling between several branches of engineering. Multi-scale geometries are often encountered, with complex wall shapes, such as a PWR vessel, a reactor coolant pump impeller or a circulating fluidized bed combustion chamber. When it comes to validating physical models of these flows, the analytical process highlights the main descriptive parameters of local flow conditions: tensor characterizing the turbulence anisotropy, characteristic time scales for turbulent flow particle dynamics. Cooperative procedures implemented between national or international working parties can accelerate validation by sharing and exchanging results obtained by the various organizations involved. With this principle accepted, we still have to validate the products themselves, i.e. the software used for the studies. In this context, the ESTET, ASTRID and N3S codes have been subjected to a battery of test cases covering their respective fields of application. These test cases are re-run for each new version, so that the sets of test cases systematically benefit from the gradually upgraded functionalities of the codes. (author). refs., 3 figs., 6 tabs

  18. The ASME Section 11 Special Working Group On Plant Life Extension

    International Nuclear Information System (INIS)

    Katz, L.R.

    1990-01-01

    The codes and standards applicable to plant life extension have not been identified in the U.S. at this time. However, several initiatives have been taken to establish specific codes and standards pertaining to nuclear plant life extension (PLEX). One of these initiatives, sponsored by ASME, is the Section XI Special Working Group on Plant Life Extension (SWG-PLEX). The SWG-PLEX reports to the ASME Section XI Subcommittee and is responsible for recommending or drafting rules and requirements for modifying Section XI to accommodate age-related degradation to support nuclear plant life extension. This paper summarizes the results and reports the activities of the SWG-PLEX during the 1989/1990 period

  19. Perspectives of new fossil-fuelled power plants with CO{sub 2} capture in the liberalised European electricity market; Energiewirtschaftliche Anforderungen an neue fossil befeuerte Kraftwerke mit CO{sub 2}-Abscheidung im liberalisierten europaeischen Elektrizitaetsmarkt

    Energy Technology Data Exchange (ETDEWEB)

    Kober, Tom

    2014-03-15

    Against the background of an increasing importance of climate change mitigation and the liberalization of the European energy supply this study assesses the perspectives of power plants with Carbon dioxide Capture and Storage (CCS). CCS power plants represent one option to reduce CO{sub 2} emissions of fossil energy based electricity production significantly. In this study the deployment of CCS power plants is investigated for the European electricity market until 2050 taking different energy and climate policy framework conditions into consideration. By applying an integrated model-based approach, structural changes of the whole energy system are incorporated, including their implications on costs and emissions. The study addresses uncertainties concerning future CCS power plant invest costs and efficiencies explicitly, and analyses the effects of changes of these parameters with respect to the perspectives of CCS power plants in Europe. Thereby, interdependencies on horizontal level related to competition of different technologies within the electricity sector are examined, but also vertical interdependencies resulting from effects between the upstream and energy demand sectors. In order to reflect the heterogeneity among the national energy systems in Europe, country specific particularities on technical aspects and energy policy are taken into account, such as potentials and costs of CO{sub 2} storage, and national regulations on the use of nuclear power and renewable energy. The results of the analysis reveal a strong influence of the stringency of the EU greenhouse gas reduction target and the policy on the use of nuclear energy on the perspectives of CCS power plants in the European electricity market. Comparing the influence of different policy frameworks analysed in this study with the influences of the variation of the technical and economic CCS power plant parameters shows, that uncertainties concerning energy policy measures can have a stronger

  20. 100 years of discovery of the Burgess Shale 1909-2009 : a celebration of the discovery of the world's most important fossils

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    The centennial celebration of the discovery of the Burgess Shale consisted of informative science presentations to the general public. Scientific presenters also participated in guided hikes in Yoho National Park within the Canadian Rockies where the Burgess Shale can be found. The first Burgess Shale fossils were discovered in 1909 by Charles D. Walcott. Thousands of specimens have since been collected from the quarry named after him. The informative science presentations described the burst of biodiversity of marine plants and marine invertebrate animals that lived in a shallow sea in the vicinity of a massive carbonate reef during the Cambrian Period. They described the unusual conditions that allowed for the very rare preservation of the animals in the Burgess Shale. The Burgess Shale fossils merit special interest because they reveal how animal life appeared on Earth better than any other fossil record. In addition to the geological history of the Burgess Shale area, the centennial lectures also addressed topics such as climate and the geological record of climate change; the influence of continental drift on evolution; and fluid geochemistry in the Western Canada Foreland Basin and paleoclimate influence. The Burgess Shale was designated a UNESCO World Heritage Site in 1981 as it provides key information about evolution of life on Earth. refs. figs.

  1. Life cycle assessment of fossil and biomass power generation chains. An analysis carried out for ALSTOM Power Services

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Ch.

    2008-12-15

    This final report issued by the Technology Assessment Department of the Paul Scherrer Institute (PSI) reports on the results of an analysis carried out on behalf of the Alstom Power Services company. Fossil and biomass chains as well as co-combustion power plants are assessed. The general objective of this analysis is an evaluation of specific as well as overall environmental burdens resulting from these different options for electricity production. The results obtained for fuel chains including hard coal, lignite, wood, natural gas and synthetic natural gas are discussed. An overall comparison is made and the conclusions drawn from the results of the analysis are presented.

  2. Life management of SG for WWER plants

    International Nuclear Information System (INIS)

    Trunov, N. B.; Dragunov, Yu. G.; Banyuk, G. F.

    2004-01-01

    Nowadays, 252 steam generators (SG) of horizontal type are in operation at WWER plants constructed by the Russian designs. In connection with end of the specified service life of the reactor plant equal to 30 years the activities are performed on service life extension of the main equipment including the SG. At some Units, throughout the design service life of SG there were problems resulting in necessity of SG replacement. At the same time the SGs at some Units are in successful operation above the design service life. This report deals with the peculiarities of operation of the horizontal SGs and the problems to be highlighted as the most important for service life extension. The main component to determine possibility for SG service life extension is the SG tubing. As the operating experience shows it is water chemistry of the secondary circuit that is the main factor influencing operability of the SG tubing. Therefore, differences in water chemistry organization leads to significant differences in operability of the SG tubing at various Units and in some cases within one Unit. Owing to the fact that the cases of water chemistry disturbance and the process of tubes fouling with the corrosion products of the main condensate system are not excluded, the damages continue to occur. Tube integrity shall be inspected by eddy current method using the various instrument complexes. This method has certain disadvantages but allows to estimate the degree and direction of degradation processes. The results of eddy current test (ECT) can be used to determine the plugging criterion for defective tubes. The significant number of defective tubes at some Units makes a choice of the plugging criterion to be an important problem, on which solution the SG safety, reliability and service life depends. The report deals with directions of activities in service life management for the SG at WWER plants. Main activities are improvement of water chemistry and non-destructive tests.(author)

  3. Investigation of Fossil Insect Systematics of Specimens Collected at the Clare Quarry Site in the Florissant Fossil Beds, Florissant, Colorado from 1996 to Present

    Science.gov (United States)

    Cancellare, J. A.; Villalobos, J. I.; Lemone, D.

    2012-12-01

    The Clare Quarry is located in the town of Florissant, Teller County, Colorado, approximately 30 miles west of Colorado Springs on State Highway 27. The elevation at the quarry face is 2500 meters ASL. Ar40/Ar39 dating of the upper beds of the Florissant Formation indicates an age of 34.07 +/- 0.10 Ma.An Oreodont fossil jaw and other mammalian fossils place the formation in the Chadronian Age.The basin in which the formation lies is undergirded by Wall Mountain Tuff dated at 37Ma, which sits on Pike's Peak Granite, which is dated at1080 Ma. In the Late Eocene the Florissant region was lacustrine in nature due to the damning of the river valley which runs north into Florissant. The ash and lahars from volcanic eruptions from the Thirty-nine Mile Volcano Field formed impoundments that produced shallow lakes for what is thought to been a period for 5000 years. Repeated ash falls placed plant matter and insect material in the lakes and streams that were formed intermittently during the period. The ash layers in the Florissant Formation are very fine grained, and contain diatomaceous mats that formed on the lake deposited ash layers aiding in the preservation of plant and insects material. Previous work on Florissant Fossils has been done by Lesquereaux (plants) 1878, Scudder (insects) 1890, and Mc Ginitie (plants) 1953. This project began 17 years ago and has consisted of collection trips ranging from one to eight days in the summers at a proprietary quarry owned land adjacent to The Florissant Fossil Beds National Monument. The collection consists of 2700 catalogued plants, insects, and fish fossils. Of this number, 513 are insect fossils (19% of the total collection). Quality of preservation ranges from very poor to very good with the average qualitative evaluation between poor to fair. The largest series identied to family are Tipulids (Craneflies) with 23 specimens in the series. In this series wing venation is often incomplete and smaller characters including

  4. The status and prospects for the fossil-fired and nuclear power industry in Japan

    International Nuclear Information System (INIS)

    Miyahara, S.

    1994-01-01

    Power plant capacity in Japan amounts to about 200 GW, of which 180 GW belong to the electricity supply industry. 60% are installed in fossil-fired power stations, 19% in nuclear power stations and 21% in hydro-electric power stations. Key engineering techniques for power production from fossil fuels are supercritical steam conditions and combined cycle power plant technology. Crucial points for nuclear power generation are the development of the advanced light water reactor, the commericialization of the fast breeder reactor and the installation of a closed nuclear fuel cycle. (orig.) [de

  5. Characterization of in-containment cables for nuclear plant life extension

    International Nuclear Information System (INIS)

    DuCharme, A.R.; Bustard, L.D.

    1988-01-01

    Electrical cable is made by a large number of manufacturers and used for a variety of applications in nuclear plants. cables have been identified in the Monticello and Surry Pilot Plant life extension studies and the NRC Nuclear Plant Aging Research Program as components important to the economic and safety aspects of life extension. Currently, fitness for service is largely determined by preoperational testing. The US Department of Energy is supporting work at Sandia National Laboratories to assess the technical basis for the life extension of cables found inside containment at US nuclear plants. The work is being performed in coordination with the Nuclear Management and Resource Council's (NUMARC) NUPLEX Working Group. The initial task of this effort is to characterize the design attributes of in-containment cables. This has been completed via development of a data base depicting the manufacturer, type, material composition, use, qualification, and relative popularity of cables installed in containment. Other ongoing work is focused on a review of cable operational experience and assessment of the issues affecting cable life extension. In the long term, the work aims to identify the technical criteria and life extension strategies needed to support continued cable qualification by nuclear plant owner/operators. 7 refs., 4 tabs

  6. Fossil fuel power generation within the European Research Area

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-12-10

    The report is the first in a series of three produced by the PowerClean Thematic Network that looks at and defines future requirements for research and development of fossil fuel power generation in the European Union. It makes the case for fossil fuel R & D with emphasis on the need for clean coal technologies (to increased efficiency and other CO{sub 2} capture and storage) For satisfying future energy demands of the enlarged European Union between now and 2030. The report concludes that affirmative R, D and D action is needed to support the EU power industry, working together on a Europe-wide basis, to establish the use of coal and other fossil fuels in near-zero emissions power plant. The role model would be the European Research Area, as in the Sixth Framework Programme (FP6), but with a more comprehensive range of technical objectives recognising the importance of fossil fuels. Section headings are: introduction; current energy use; future needs and requirements; the future for clean fossil fuel energy in Europe; comparison with approaches adopted elsewhere (USA Vision 21 and FutureGen programmes, Japan); and responsibilities for EU coal R, D & D. 14 refs., 9 figs., 4 tabs.

  7. Interrelationships of food safety and plant pathology: the life cycle of human pathogens on plants.

    Science.gov (United States)

    Barak, Jeri D; Schroeder, Brenda K

    2012-01-01

    Bacterial food-borne pathogens use plants as vectors between animal hosts, all the while following the life cycle script of plant-associated bacteria. Similar to phytobacteria, Salmonella, pathogenic Escherichia coli, and cross-domain pathogens have a foothold in agricultural production areas. The commonality of environmental contamination translates to contact with plants. Because of the chronic absence of kill steps against human pathogens for fresh produce, arrival on plants leads to persistence and the risk of human illness. Significant research progress is revealing mechanisms used by human pathogens to colonize plants and important biological interactions between and among bacteria in planta. These findings articulate the difficulty of eliminating or reducing the pathogen from plants. The plant itself may be an untapped key to clean produce. This review highlights the life of human pathogens outside an animal host, focusing on the role of plants, and illustrates areas that are ripe for future investigation.

  8. Role of organizational leadership in plant life management

    International Nuclear Information System (INIS)

    Mohindra, R.K.; Chou, Q.B.

    2007-01-01

    The nuclear power plant (NPP) operational trend shows that the plants of the same design and brought to service about the same time demonstrate a wide range of life time operational performance. Based on years of performance assessment experience from various types of industry audits, it can be seen that there is a strong relationship between organizational leadership and the good performing plants. A review based on this relationship is provided to suggest important characteristics needed in management and leadership team for an organization to have a successful life management program in a NPP. The required characteristics and attributes are discussed in the following three important organizational elements: Environment, People and Process

  9. The Quality of the Fossil Record: Populations, Species, and Communities

    Science.gov (United States)

    Kidwell, Susan M.; Flessa, Karl W.

    Paleontologists have always been concerned about the documentary quality of the fossil record, and this has also become an important issue for biologists, who increasingly look to accumulations of bones, shells, and plant material as possible ways to extend the time-frame of observation on species and community behaviors. Quantitative data on the postmortem behavior of organic remains in modern environments are providing new insights into death and fossil assemblages as sources of biological information. Important findings include: 1. With the exception of a few circumstances, usually recognizable by independent criteria, transport out of the original life habitat affects few individuals. 2. Most species with preservable hard-parts are in fact represented in the local death assemblage, commonly in correct rank importance. Molluscs are the most durable of modern aquatic groups studied so far, and they show highest fidelity to the original community. 3. Time-averaging of remains from successive generations and communities often prevents the detection of short term (seasons, years) variability but provides an excellent record of the natural range of community composition and structure over longer periods. Thus, although a complex array of processes and circumstances influences preservation, death assemblages of resistant skeletal elements are for many major groups good to excellent records of community composition, morphological variation, and environmental and geographic distribution of species, and such assemblages can record dynamics at ecologically and evolutionarily meaningful scales.

  10. Enhanced design, operation and maintenance practices for a longer plant service life

    International Nuclear Information System (INIS)

    Raimondo, E.; Courcoux, A.

    2004-01-01

    Plant service life problems have been under detailed investigation in France and the experience acquired by our company over the past 25 years in the design, construction and maintenance of Pressurized Water Reactors has contributed to develop skills, equipment and capabilities available for efficient plant aging management and component service life extension. The service life of a nuclear power plant is deeply dependant of the provisions made during the design stage, directly linked to good operating conditions and adequate maintenance practices. This paper presents the importance of these three steps (design, operation and maintenance) for plant service life concern. (author)

  11. Fast-slow continuum and reproductive strategies structure plant life-history variation worldwide.

    Science.gov (United States)

    Salguero-Gómez, Roberto; Jones, Owen R; Jongejans, Eelke; Blomberg, Simon P; Hodgson, David J; Mbeau-Ache, Cyril; Zuidema, Pieter A; de Kroon, Hans; Buckley, Yvonne M

    2016-01-05

    The identification of patterns in life-history strategies across the tree of life is essential to our prediction of population persistence, extinction, and diversification. Plants exhibit a wide range of patterns of longevity, growth, and reproduction, but the general determinants of this enormous variation in life history are poorly understood. We use demographic data from 418 plant species in the wild, from annual herbs to supercentennial trees, to examine how growth form, habitat, and phylogenetic relationships structure plant life histories and to develop a framework to predict population performance. We show that 55% of the variation in plant life-history strategies is adequately characterized using two independent axes: the fast-slow continuum, including fast-growing, short-lived plant species at one end and slow-growing, long-lived species at the other, and a reproductive strategy axis, with highly reproductive, iteroparous species at one extreme and poorly reproductive, semelparous plants with frequent shrinkage at the other. Our findings remain consistent across major habitats and are minimally affected by plant growth form and phylogenetic ancestry, suggesting that the relative independence of the fast-slow and reproduction strategy axes is general in the plant kingdom. Our findings have similarities with how life-history strategies are structured in mammals, birds, and reptiles. The position of plant species populations in the 2D space produced by both axes predicts their rate of recovery from disturbances and population growth rate. This life-history framework may complement trait-based frameworks on leaf and wood economics; together these frameworks may allow prediction of responses of plants to anthropogenic disturbances and changing environments.

  12. Nuclear power plant life management. Proceedings of a symposium

    International Nuclear Information System (INIS)

    2003-01-01

    Presently, an area of major interest of the IAEA is the management of the nuclear power plant (NPP) life cycle from concept development to decommissioning and disposal, with the primary objective of maximising the return on investment in nuclear facilities through efficient operation of NPPs. 441 NPPs, with a capacity of about 350GW(e) supplied 16% of global electricity in 2002. Of these, about 300 NPPs have been in operation for 15 years or more and these older units with partially or fully amortized capital costs have proven to be the most profitable. Moreover, there are no significant safety or economic reasons not to continue the operation of well managed NPPs over a longer period and consequently the issues of plant life management and license extension are receiving increasing emphasis in many countries. Forecasts of nuclear power growth over the next two decades range from 350GW(e) in the worst case to 500GW(e) in the best case. This will need additional personnel and expansion of the infrastructure in the developing countries, particularly as much of the new demand growth is forecast to take place outside the countries where most of the existing infrastructure resides. All aspects of NPP life cycle management are addressed by the IAEA and are briefly described in these proceedings. The IAEA Technical Working Group on Life Management of Nuclear Power Plants (TWG-LMNPP) recommended, during its regular meeting in February 1999, that the IAEA should consider holding a symposium on this subject area in 2002. This TWG-LMNPP Proposal was approved and, this symposium was held, attended by 138 participants from 32 Member States and 2 international organizations. The objectives of the symposium were as follows: Emphasise the role of NPP life management programmes in assuring a safe and reliable NPP operating cycle; Identify progress in methodological and technological developments for managing ageing processes and understanding ageing mechanisms; Provide a forum for

  13. The Rhynie Chert, Scotland, and the search for life on Mars.

    Science.gov (United States)

    Preston, Louisa J; Genge, Matthew J

    2010-06-01

    Knowledge of ancient terrestrial hydrothermal systems-how they preserve biological information and how this information can be detected-is important in unraveling the history of life on Earth and, perhaps, that of extinct life on Mars. The Rhynie Chert in Scotland was originally deposited as siliceous sinter from Early Devonian hot springs and contains exceptionally well-preserved fossils of some of the earliest plants and animals to colonize the land. The aim of this study was to identify biomolecules within the samples through Fourier transform infrared (FTIR) spectroscopy and aid current techniques in identification of ancient hot spring deposits and their biological components on Mars. Floral and faunal fossils within the Rhynie Chert are commonly known; but new, FTIR spectroscopic analyses of these fossils has allowed for identification of biomolecules such as aliphatic hydrocarbons and OH molecules that are potentially derived from the fossilized biota and their environment. Gas chromatograph-mass spectrometer (GCMS) data were used to identify n-alkanes; however, this alone cannot be related to the samples' biota. Silicified microfossils are more resistant to weathering or dissolution, which renders them more readily preservable over time. This is of particular interest in astropaleontological research, considering the similarities in the early evolution of Mars and Earth.

  14. UNIRAM modeling for increased nuclear-plant availability and life extension

    International Nuclear Information System (INIS)

    O'Mara, R.L.

    1988-01-01

    At the start of a nuclear-power plant's design life of 40 years, most parts of the plant are effectively brand new, but some subcomponents have already experienced significant wear and aging effects. In short, the spectrum of where each component is in its life cycle at any time is quite broad, and this makes the prediction of the future availability of the plant a complex issue. Predictive models that account for the differential effects of aging, wear, and functional failure on the plant are desirable as a means to represent this complex behavior. This paper addresses the task of using a computer model to account for the relationships between components, systems, and plant availability, in the context of current and future needs, including eventual life extension. The computer model is based on the Electric Power Research Institute's (EPRI) code, UNIRAM, which has a large and growing user base among utilities

  15. Plant/life form considerations in the rangeland hydrology and erosion model (RHEM)

    Science.gov (United States)

    Resilience of rangeland to erosion has largely been attributed to adequate plant cover; however, plant life/growth form, and individual species presence can have a dramatic effect on hydrologic and erosion dynamics on rangelands. Plant life/growth form refers to genetic tendency of a plant to grow i...

  16. The Fossile Episode

    OpenAIRE

    Hassler, John; Sinn, Hans-Werner

    2012-01-01

    We build a two-sector dynamic general equilibrium model with one-sided substitutability between fossil carbon and biocarbon. One shock only, the discovery of the technology to use fossil fuels, leads to a transition from an inital pre-industrial phase to three following phases: a pure fossil carbon phase, a mixed fossil and biocarbon phase and an absorbing biocarbon phase. The increased competition for biocarbon during phase 3 and 4 leads to increasing food prices. We provide closed form expr...

  17. The Fossil Episode

    OpenAIRE

    John Hassler; Hans-Werner Sinn

    2012-01-01

    We build a two-sector dynamic general equilibrium model with one-sided substitutability between fossil carbon and biocarbon. One shock only, the discovery of the technology to use fossil fuels, leads to a transition from an initial pre-industrial phase to three following phases: a pure fossil carbon phase, a mixed fossil and biocarbon phase and an absorbing biocarbon phase. The increased competition for biocarbon during phase 3 and 4 leads to increasing food prices. We provide closed form exp...

  18. Environmental flows and life cycle assessment of associated petroleum gas utilization via combined heat and power plants and heat boilers at oil fields

    International Nuclear Information System (INIS)

    Rajović, Vuk; Kiss, Ferenc; Maravić, Nikola; Bera, Oskar

    2016-01-01

    Highlights: • Environmental impact of associated petroleum gas flaring is discussed. • A modern trend of introducing cogeneration systems to the oil fields is presented. • Three alternative utilization options evaluated with life cycle assessment method. • Producing electricity and/or heat instead of flaring would reduce impacts. - Abstract: Flaring of associated petroleum gas is a major resource waste and causes considerable emissions of greenhouse gases and air pollutants. New environmental regulations are forcing oil industry to implement innovative and sustainable technologies in order to compete in growing energy market. A modern trend of introducing energy-effective cogeneration systems to the oil fields by replacing flaring and existing heat generation technologies powered by associated petroleum gas is discussed through material flow analysis and environmental impact assessment. The environmental assessment is based on the consequential life cycle assessment method and mainly primary data compiled directly from measurements on Serbian oil-fields or company-supplied information. The obtained results confirm that the utilization of associated petroleum gas via combined heat and power plants and heat boilers can provide a significant reduction in greenhouse gas emissions and resource depletion by displacing marginal production of heat and electricity. At the base case scenario, which assumes a 100% heat realization rate, the global warming potential of the combined heat and power plant and heat boiler scenarios were estimated at −4.94 and −0.54 kg CO_2_e_q Sm"−"3, whereas the cumulative fossil energy requirements of these scenarios were −48.7 and −2.1 MJ Sm"−"3, respectively. This is a significant reduction compared to the global warming potential (2.25 kg CO_2_e_q Sm"−"3) and cumulative fossil energy requirements (35.36 MJ Sm"−"3) of flaring. Nevertheless, sensitivity analyses have shown that life cycle assessment results are sensitive

  19. Engineering support for plant life management: the IAEA contribution

    International Nuclear Information System (INIS)

    Kang, K.; Hezoucky, F.; Clark, R. C.; )

    2007-01-01

    For the past couple of decades there has been a change of emphasis in the world nuclear power from that of building new Nuclear Power Plants (NPP) to that of taking measures to optimize the life cycle of operational plants. National approaches in many countries showed an increase of interest in Plant Life Management (PLiM), both in terms of plant service life assurance and in optimizing the service or operational life of NPP. The safety considerations of a NPP are paramount and those requirements have to be met to obtain and to extend/renew the operating license. To achieve the goal of the long term safe, economic and reliable operation of the plant, PLiM programme is essential. Some countries already have advanced PLiM programmes while others still have none. The PLiM objective is to identify all that factors and requirements for the overall plant life cycle. The optimization of these requirements would allow for the minimum period of the investment return and maximum of the revenue from the sell of the produced electricity. Recognizing the importance of this issue and in response to the requests of the Member States the IAEA Division of Nuclear Power implements the Sub-programme on 'Engineering and Management Support for Competitive Nuclear Power'. Three projects within this sub-programme deal with different aspects of the NPP life cycle management with the aim to increase the capabilities of interested Member States in implementing and maintenance of the competitive and sustainable nuclear power. Although all three projects contain certain issues of PLiM, there is one specific project on guidance on engineering and management practices for optimization of NPP service life. This particular project deals with different specific issues of PLiM including aspects of ageing phenomena and their monitoring, issues of control and instrumentation, maintenance and operation issues, economic evaluation of PLiM including guidance on its earlier shut down and decommissioning

  20. Actions concerning nuclear power plant life evaluation

    International Nuclear Information System (INIS)

    Chocron, M.; Fabbri, S.; Mizrahi, R.; Savino, E.J.; Versaci, R.A.

    1998-01-01

    One of the main activities to be undertaken by CNEA will be to provide technological assistance to NASA in problems concerning NPP operation. Works on life extensions of NPP are included in these activities. To fulfill these requirements the Atomic Energy National Commission (CNEA) has constituted a technical committee for Nuclear Power Plants Support (CAPCEN). CAPCEN should be the knowledge reservoir of those issues concerning the performance, safety and life extension of Nuclear Power Plants. One of CAPCEN's most important activities is to promote research work connected with such issues. The main technical areas are: Pressure Vessel and Piping, Heat Exchanges and Fuel Channels and Reactor Inner Components. Efforts are focused on the identification of the main components susceptible of ageing, the study of their ageing mechanisms, the follow-up of their behaviour during operation, and the measures taken to extend their life. (author)

  1. Computerized optimum distribution of loads among the turbogenerators of fossil-fuel electric power plants

    Energy Technology Data Exchange (ETDEWEB)

    Foshko, L S; Zusmanovich, L B; Flos, S L; Pal' chik, V A; Konevskii, B I

    1979-04-01

    The problem of determining the optimum distribution of loads among turbogenerators in a fossil-fuel power plant is considered based on satisfying the following requirements: distribution of electrical and thermal loads to minimize the heat expended on the turbine unit; calculation based on turbogenerator characteristics that most completely describe operating conditions; no constraints on the configuration of turbogenerator performance characteristics; calculation of load distribution based on net characteristics including the internal needs of the turbogenerators; consideration of all operational limitations in turbogenerator working conditions; results should be applicable to any predetermined differential of the load change. A flowchart is given showing the organization of the Optim-76 program complex for solution of this problem. An example is given showing application of the Optim-76 program implemented by a Minsk-32 computer in the case of a heat and electric power station with three turbogenerators. The results show that a dynamic programming method has considerable advantages for this applicaton on third-generation computers.

  2. Advanced maintenance strategies for power plant operators--introducing inter-plant life cycle management

    International Nuclear Information System (INIS)

    Graeber, Ulrich

    2004-01-01

    One of the most important goals of competing power plant operators is to ensure safe operation of their plants, characterized by maximum availability throughout the entire life cycle and minimized specific generating costs. One parameter crucial to the total price of electricity--and one that can be actively influenced by the power plant operators--is maintenance. Up to 30% of all electricity generating costs accrue from maintenance. In the past years maintenance measures have been optimized particularly by the application and continuing development of testing and diagnostic techniques, by the increased level of system and component automation as well as more efficient organization structures. Despite the considerable success of these efforts, the potential for further cost reductions is still far from exhausted. But the risks connected to reliability, availability and safety need to be analyzed in greater detail in order to ensure the sustainability of the savings already achieved as well as those yet to be realized. The systematic application of condition-based maintenance and the implementation of structured life cycle management are essential requirements. An inter-plant approach is recommended to make a quick implementation of maintenance optimization potentials possible. Plant-specific improvement potentials can be established with the help of a best-practice comparison, and measures and priorities can be defined for realizing them. Creating an inter-plant database will allow experience and findings to be analyzed quickly and efficiently by experts and made available to all participants on a neutral platform. Despite--or maybe owing to--the increasingly competitive marketplace, a sustained reduction in the maintenance costs of power plant operators can only be achieved through a structured, inter-plant exchange of experience. The ZES offers the industry a suitable platform for cooperation with its 'Condition-Based Maintenance' research focus. The introduction

  3. Say no to fossil fuels and yes to nuclear energy

    International Nuclear Information System (INIS)

    Raghava Chari, S.

    2011-01-01

    Mistaken notion and wrongful fear of nuclear energy based on the horrors of the second world war bombing of Nagasaki and Hiroshima and accidents at Chernobyl and Three mile island and lately the Fukushima nuclear plant meltdown to earthquake and and tsunami have developed antagonism to nuclear energy (NE) and clouded its usefulness as a practical, clean, environment friendly and affordable alternate source of energy. Such antagonism has slowed down research on NE and its adoption on a much wider scale, the crying need of the day. There is a motivated disinformation campaign against nuclear energy in India as witnessed from the ongoing agitation at Kudankulam in Tamil Nadu and Jaitapur in Maharashtra. In fact nuclear energy is the only practical alternative energy source to meet the ever increasing energy needs of the world particularly the developing nations, and to save the world from the greenhouse ill effects of massive carbon dioxide and other emissions from burning fossil fuels like coal, oil and natural gas. Emissions from fossil fuel burning including radioactive emissions are hundreds of times more in weight and volume and far more hazardous than from an equal capacity nuclear plant. In fact there are no greenhouse gases (CO 2 ), acid rain gases (SO 2 ) or carcinogen emissions (NO x ) from nuclear plants. The accident rates and severity of accidents owing to nuclear plants is much lower as compared to fossil fuel power generation. Last but not the least NE offers economic freedom from the clutches of the few monopolistic oil producing countries, which charge exorbitant oil prices and cripple the finances of developing nations. (author)

  4. Near-term benefits of life extension planning for nuclear power plants

    International Nuclear Information System (INIS)

    Pickens, T.; Gregor, F.E.

    1988-01-01

    Life Extension of Nuclear Power Plants is now viewed as a realistic alternative to construction of new generating facilities. The subject has been under intensive study since 1984 and two comprehensive pilot plant programs have been completed under EPRI, U.S. Department of Energy and utility sponsorship. A major lesson learned from these studies is that planning for life extension must start early and that many activities must be implemented as early in life as possible to enhance the option for life extension through mitigate and preventive actions. It was also determined that achievement of a 40-year licensed life is by no means guaranteed without substantial effort during the remaining plant life. In examining these recommended actions, it becomes obvious that conscientious implementation also leads to realization of significant short-term benefits in the form of availability improvement, outage reduction, maintenance optimization and longer term planning decisions. In addition to the economic benefits, plant safety is also enhanced by reducing challenges to the safety systems and slowly switching from a corrective maintenance to a preventive maintenance program

  5. Uranium concentration in fossils

    International Nuclear Information System (INIS)

    Okano, J.; Uyeda, C.

    1988-01-01

    Recently it is known that fossil bones tend to accumulate uranium. The uranium concentration, C u in fossils has been measured so far by γ ray spectroscopy or by fission track method. The authors applied secondary ion mass spectrometry, SIMS, to detect the uranium in fossil samples. The purpose of this work is to investigate the possibility of semi-quantitative analyses of uranium in fossils, and to study the correlation between C u and the age of fossil bones. The further purpose of this work is to apply SIMS to measure the distribution of C u in fossil teeth

  6. Plant life management of the ACR-1000 Concrete containment structure

    International Nuclear Information System (INIS)

    Abrishami, H.H.; Ricciuti, R.; Elgohary, M.

    2009-01-01

    The Ageing of reinforced concrete structures due to service conditions, aggressive environments, or accidents may cause their strength, serviceability and durability to decrease over time. For a new plant, a Plant Life Management (PLiM) program should start in the design process and then continues through the plant operation and decommissioning. Hence, PLiM must provide not only Ageing Management program (AMP) but also provide requirements on material characteristic and design criteria as well. The purpose of this paper is to present the Plant Life Management (PLiM) strategy for the concrete containment structure of the ACR-10001 (Advanced CANDU Reactor) designed by AECL. The ACR-1000 is designed for a 100-year plant life including 60-year operating life and an additional 40-year decommissioning period. The approach adopted for the PLiM strategy of the concrete containment structure is a preventive one, key areas being: 1) design methodology, 2) material performance and 3) ageing management program. During the design phase, in addition to strength and serviceability, durability, throughout the service life and decommissioning phase of the ACR-1000 structure, is a major consideration. Factors affecting durability design include: a) concrete performance, b) structural application, and c) consideration of environmental conditions. In addition to addressing the design methodology and material performance requirements, a systematic approach for the ageing management program for the concrete containment structure is presented. (authors)

  7. Plant life management study of Japanese nuclear power plants

    International Nuclear Information System (INIS)

    Fukuda, Toshihiko

    1999-01-01

    Already more than twenty-five years have passed since the first commercial LWR plant went into operation in Japan. In this situation, MITI and 3 electric utilities (Tokyo Electric Power Company, Kansai Electric Power Co., Inc, Japan Atomic Power Company) have started a plant life management (PLM) study from 1994 to evaluate the long-term integrity of major systems, structures and components of aged LWR plants and ensure the safe, steady and highly reliable long-term operation. It consists of two phases: part 1 study and part 2 study. The part 1 study started in 1994 and focused on seven typical safety-related components. The part 1 study reports were made public in 1996. The part 2 study started in 1997. In this study we reviewed not only safety-related components but also plant reliability related components. The part 2 study reports were opened to the public in February 1999. This paper shows a summary of the part 2 study and our future PLM program. (author)

  8. Potential of plug-in hybrid electric vehicle for reduction of CO2 emission and role of non-fossil power plant

    International Nuclear Information System (INIS)

    Hiwatari, R.; Okano, K.; Yamamoto, H.

    2009-01-01

    A method to analyze the demand of electricity and the reduction of CO 2 emission and oil consumption by PHEV is established. Using the performance of PHEV optimized by EPRI and an estimation on the pattern of driving and charging in Japan, the following results are obtained. The electric demand for PHEV60(which has 60mile EV range) and PHEV20(which has 20mile EV range) is evaluated at 79.3 billion kWh and 41.2 billion kWh, respectively, in case that all vehicles in Japan (80 million cars) would be replaced by PHEV. The load leveling effect on the Japanese grid, which is hypothetically considered as one electric grid system, is evaluated at about 30 million kW, in case that all vehicles in Japan are replaced by PHEV60 and charged in the midnight. However, when the charge of PHEVs starts in the evening, that effect is not obtained. The reduction of CO 2 emission results in 64 million ton by the averaged CO 2 emissions intensity (emissions per unit of user end electricity) in Japan, and 98 million ton by electricity from the non-fossil power plant such as nuclear energy or renewable one. Those values are equivalent to 25% and 38% of CO 2 emission from the transport sector in Japan in 2003. Hence, non-fossil power plant enhances the reduction of CO 2 emission by the PHEV introduction. (author)

  9. Developing fossil fuel based technologies

    International Nuclear Information System (INIS)

    Manzoori, A.R.; Lindner, E.R.

    1991-01-01

    Some of the undesirable effects of burning fossil fuels in the conventional power generating systems have resulted in increasing demand for alternative technologies for power generation. This paper describes a number of new technologies and their potential to reduce the level of atmospheric emissions associated with coal based power generation, such as atmospheric and pressurized fluid bed combustion systems and fuel cells. The status of their development is given and their efficiency is compared with that of conventional pc fired power plants. 1 tab., 7 figs

  10. Comparative analysis of structural concrete Quality Assurance practices on nine nuclear and three fossil fuel power plant construction projects. Final summary report

    International Nuclear Information System (INIS)

    Willenbrock, J.H.; Thomas, H.R. Jr.; Burati, J.J. Jr.

    1978-12-01

    A summary of two reports, COO/4120-1 and COO/4120-2, is given. A comparative analysis was made of the Quality Assurance practices related to the structural concrete phase on nine nuclear and three fossil fuel power plant projects which are (or have been) under construction in the United States in the past ten years. For the nuclear projects the analysis identified the response of each Quality Assurance program to the applicable criteria of 10 CFR Part 50, Appendix B as well as to the pertinent regulatory requirements and industry standards. For the fossil projects the analysis identified the response of each Quality Assurance program to criteria similar to those which were applicable in the nuclear situation. The major emphasis was placed on the construction aspects of the structural concrete phase of each project. The engineering and design aspects were examined whenever they interfaced with the construction aspects

  11. Trade-off in emissions of acid gas pollutants and of carbon dioxide in fossil fuel power plants with carbon capture

    International Nuclear Information System (INIS)

    Tzimas, Evangelos; Mercier, Arnaud; Cormos, Calin-Cristian; Peteves, Stathis D.

    2007-01-01

    This paper investigates the impact of capture of carbon dioxide (CO 2 ) from fossil fuel power plants on the emissions of nitrogen oxides (NO X ) and sulphur oxides (SO X ), which are acid gas pollutants. This was done by estimating the emissions of these chemical compounds from natural gas combined cycle and pulverized coal plants, equipped with post-combustion carbon capture technology for the removal of CO 2 from their flue gases, and comparing them with the emissions of similar plants without CO 2 capture. The capture of CO 2 is not likely to increase the emissions of acid gas pollutants from individual power plants; on the contrary, some NO X and SO X will also be removed during the capture of CO 2 . The large-scale implementation of carbon capture is however likely to increase the emission levels of NO X from the power sector due to the reduced efficiency of power plants equipped with capture technologies. Furthermore, SO X emissions from coal plants should be decreased to avoid significant losses of the chemicals that are used to capture CO 2 . The increase in the quantity of NO X emissions will be however low, estimated at 5% for the natural gas power plant park and 24% for the coal plants, while the emissions of SO X from coal fired plants will be reduced by as much as 99% when at least 80% of the CO 2 generated will be captured

  12. Materials for Nuclear Plants From Safe Design to Residual Life Assessments

    CERN Document Server

    Hoffelner, Wolfgang

    2013-01-01

    The clamor for non-carbon dioxide emitting energy production has directly  impacted on the development of nuclear energy. As new nuclear plants are built, plans and designs are continually being developed to manage the range of challenging requirement and problems that nuclear plants face especially when managing the greatly increased operating temperatures, irradiation doses and extended design life spans. Materials for Nuclear Plants: From Safe Design to Residual Life Assessments  provides a comprehensive treatment of the structural materials for nuclear power plants with emphasis on advanced design concepts.   Materials for Nuclear Plants: From Safe Design to Residual Life Assessments approaches structural materials with a systemic approach. Important components and materials currently in use as well as those which can be considered in future designs are detailed, whilst the damage mechanisms responsible for plant ageing are discussed and explained. Methodologies for materials characterization, material...

  13. Small global effect on terrestrial net primary production due to increased fossil fuel aerosol emissions from East Asia during the last decade.

    Science.gov (United States)

    O'Sullivan, Michael; Rap, Alex; Reddington, Carly; Spracklen, Dominick; Buermann, Wolfgang

    2016-04-01

    The global terrestrial carbon sink has increased since the start of this century at a time of rapidly growing carbon dioxide emissions from fossil fuel burning. Here we test the hypothesis that increases in atmospheric aerosols from fossil fuel burning have increased the diffuse fraction of incoming solar radiation and the efficiency of photosynthesis leading to increased plant carbon uptake. Using a combination of atmospheric and biospheric models, we find that changes in diffuse light associated with fossil fuel aerosol emission accounts for only 2.8% of the increase in global net primary production (1.221 PgC/yr) over the study period 1998 to 2007. This relatively small global signal is however a result of large regional compensations. Over East Asia, the strong increase in fossil fuel emissions contributed nearly 70% of the increased plant carbon uptake (21 TgC/yr), whereas the declining fossil fuel aerosol emissions in Europe and North America contributed negatively (-16% and -54%, respectively) to increased plant carbon uptake. At global scale, we also find the CO2 fertilization effect on photosynthesis to be the dominant driver of increased plant carbon uptake, in line with previous studies. These results suggest that further research into alternative mechanisms by which fossil fuel emissions could increase carbon uptake, such as nitrogen deposition and carbon-nitrogen interactions, is required to better understand a potential link between the recent changes in fossil fuel emissions and terrestrial carbon uptake.

  14. Plant Life Management of the EC6 Concrete Containment Structure

    Energy Technology Data Exchange (ETDEWEB)

    Abrishami, Homayoun; Ricciuti, Rick; Khan, Azhar [CANDU Energy Inc., Mississauga (Canada)

    2012-03-15

    Aging of reinforced concrete structures due to service conditions, aggressive environments, or accidents may cause their strength, serviceability and durability to decrease over time. Due to the complex nature of safety-related structures in nuclear power plants in comparison to other structures, they possess a number of characteristics that make them comparison to other structures, they possess a number of characteristics that make them unique. These characteristics are: thick concrete cross-sections, heavy reinforcement, often one-side access only, subjected to such ageing stresses as irradiation and elevated temperature, in addition to other typical ageing mechanisms (i. e., exposure to freeze/thaw cycles, aggressive chemicals, etc.) that typically affects other types of non-nuclear structures. For a new plant, the Plant Life Management Program (PLiM) should start in the design process and then continues through construction, plant operation and decommissioning. Hence PLiM must provide not only Ageing Management program (AMP) but also provide requirements on material characteristic and the design criteria as well. The purpose of this paper is to present the Plant Life Management (PLiM) strategy for the concrete containment structure of EC6 (Enhanced CANDU 6) Nuclear Power Plant designed by CANDU Energy Inc. The EC6 is designed for 100-year plant life including a 60-year operating life and an additional 40-year decommissioning period of time. The approach adopted for the PLiM strategy of the concrete containment structure is a preventive one, key areas being: 1) design methodology, 2) material performance and 3) life cycle management and ageing management program. In addition to strength and serviceability, durability is a major consideration during the design phase, service life and up to the completion of decommissioning. Factors affecting durability design include: a) concrete performance, b) structural application, and c) consideration of environmental

  15. Plant Life Management of the EC6 Concrete Containment Structure

    International Nuclear Information System (INIS)

    Abrishami, Homayoun; Ricciuti, Rick; Khan, Azhar

    2012-01-01

    Aging of reinforced concrete structures due to service conditions, aggressive environments, or accidents may cause their strength, serviceability and durability to decrease over time. Due to the complex nature of safety-related structures in nuclear power plants in comparison to other structures, they possess a number of characteristics that make them comparison to other structures, they possess a number of characteristics that make them unique. These characteristics are: thick concrete cross-sections, heavy reinforcement, often one-side access only, subjected to such ageing stresses as irradiation and elevated temperature, in addition to other typical ageing mechanisms (i. e., exposure to freeze/thaw cycles, aggressive chemicals, etc.) that typically affects other types of non-nuclear structures. For a new plant, the Plant Life Management Program (PLiM) should start in the design process and then continues through construction, plant operation and decommissioning. Hence PLiM must provide not only Ageing Management program (AMP) but also provide requirements on material characteristic and the design criteria as well. The purpose of this paper is to present the Plant Life Management (PLiM) strategy for the concrete containment structure of EC6 (Enhanced CANDU 6) Nuclear Power Plant designed by CANDU Energy Inc. The EC6 is designed for 100-year plant life including a 60-year operating life and an additional 40-year decommissioning period of time. The approach adopted for the PLiM strategy of the concrete containment structure is a preventive one, key areas being: 1) design methodology, 2) material performance and 3) life cycle management and ageing management program. In addition to strength and serviceability, durability is a major consideration during the design phase, service life and up to the completion of decommissioning. Factors affecting durability design include: a) concrete performance, b) structural application, and c) consideration of environmental

  16. Fast-slow continuum and reproductive strategies structure plant life-history variation worldwide

    DEFF Research Database (Denmark)

    Salguero-Gómez, Roberto; Jones, Owen R; Jongejans, Eelke

    2016-01-01

    The identification of patterns in life-history strategies across the tree of life is essential to our prediction of population persistence, extinction, and diversification. Plants exhibit a wide range of patterns of longevity, growth, and reproduction, but the general determinants of this enormous...... variation in life history are poorly understood. We use demographic data from 418 plant species in the wild, from annual herbs to supercentennial trees, to examine how growth form, habitat, and phylogenetic relationships structure plant life histories and to develop a framework to predict population...

  17. Integrated production of sugarcane ethanol and soybean biodiesel: Environmental and economic implications of fossil diesel displacement

    International Nuclear Information System (INIS)

    Souza, Simone P.; Seabra, Joaquim E.A.

    2014-01-01

    Highlights: • Sugarcane sector is responsible for around 4% of the diesel consumption in Brazil. • Soybean biodiesel can reduce the fossil diesel demand in the sugarcane sector. • The local use of biodiesel could reduce logistic problems and environmental burdens. • The sugarcane–soybean integration is likely to improve ethanol life cycle performance. • Fiscal incentives could reduce the economic uncertainties of the integration. - Abstract: The sugarcane industry in Brazil has been considered promising for the production of advanced fuels and bio-based products. However, the sugarcane crop requires high volumes of fossil fuel for cultivation and transport. The use of biodiesel as a diesel substitute could reduce the environmental burdens associated with this high consumption. This work performed a stochastic evaluation of the environmental and economic implications of the integrated production of sugarcane bioethanol and soybean biodiesel, in comparison with the traditional sugarcane-to-ethanol process. The analysis was focused on the states of Goiás, Mato Grosso and São Paulo, where this integration would be particularly attractive. The environmental aspects addressed were the fossil energy use and the GHG emissions in a cradle-to-gate approach. The economic analysis comprised the evaluation of the net present value of an incremental cash flow generated by the soybean production and by the adjacent plants of oil extraction and biodiesel. Results indicate that the integrated system is likely to improve the ethanol environmental performance, especially with regard to the fossil energy use. The integration is economically feasible but highly uncertain; however, it could be significantly improved through fiscal incentives to biodiesel producers, founded on the reduction of fossil energy use and on improvements in logistics. In addition, the proposed model may also assist in the design of other integrated systems applied to the sugarcane sector in Brazil

  18. Report on countermeasure to plant life management of the nuclear power plants at three electric power companies

    International Nuclear Information System (INIS)

    1999-01-01

    Three nuclear power reactors of the Fukushima-1 nuclear power plant, the Mihama-1 power plant and the Tsuruga-1 power plant were investigated according to the estimation plan shown in the Fundamental Concept on Plant Life Management of Agency of Natural Resources and Energy, Ministry of International Trade and Industry on April, 1996. Their reports contained the technical evaluation against, the responsive items to and the future examinations of the plant life management. In special, in the responsive items, some items to be added to the present maintenance process and some technical developmental problems are described in details and concretely. (G.K.)

  19. Development of life evaluation technology for nuclear power plant components

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin [Sungkyunkwan Univ., Seoul (Korea, Republic of); Kwon, J. D. [Yeungnam Univ., Gyeongsan (Korea, Republic of); Kang, K. J. [Chonnam National Univ., Gwangju (Korea, Republic of)] (and others)

    2001-03-15

    This research focuses on development of reliable life evaluation technology for nuclear power plant (NPP) components, and is divided into two parts, development of life evaluation systems for pressurized components and evaluation of applicability of emerging technology to operating plants. For the development of life evaluation system for nuclear pressure vessels, the following seven topics are covered: development of expert systems for integrity assessment of pressurized components, development of integrity evaluation systems of steam generator tubes, prediction of failure probability for NPP components based on probabilistic fracture mechanics, development of fatigue damage evaluation technique for plant life extension, domestic round robin analysis for pressurized thermal shock of reactor vessels, domestic round robin analysis of constructing P--T limit curves for reactor vessels, and development of data base for integrity assessment. For evaluation of applicability of emerging technology to operating plants, on the other hand, the following eight topics are covered: applicability of the Leak-Before-Break analysis to Cast S/S piping, collection of aged material tensile and toughness data for aged Cast S/S piping, finite element analyses for load carrying capacity of corroded pipes, development of Risk-based ISI methodology for nuclear piping, collection of toughness data for integrity assessment of bi-metallic joints, applicability of the Master curve concept to reactor vessel integrity assessment, measurement of dynamic fracture toughness, and provision of information related to regulation and plant life extension issues.

  20. Nuclear power plant ageing and life extension: Safety aspects

    International Nuclear Information System (INIS)

    Novak, S.; Podest, M.

    1987-01-01

    Experience with large fossil-fired electrical generating units, as well as in all process industries, shows that plants begin to deteriorate with age after approximately 10 years of operation. Similar phenomena will prevail for nuclear plants, and it is reasonable to postulate that their availability will be affected, as will their safety, if appropriate measures are not taken. It is evident that the average age of power reactors in the IAEA's Member States is increasing. By 2000, more than 50 nuclear plants will have been providing electricity for 25 years or longer. Most nuclear power plants have operating lifetimes of between 20 and 40 years. Ageing is defined as a continuing time-dependent degradation of material due to service conditions, including normal operation and transient conditions. It is common experience that over long periods of time, there is a gradual change in the properties of materials. These changes can affect the capability of engineered components, systems, or structures to perform their required function. Not all changes are deleterious, but it is commonly observed that ageing processes normally involve a gradual reduction in performance capability. All materials in a nuclear power plant can suffer from ageing and can partially or totally lose their designed function. Ageing is not only of concern for active components (for which the probability of malfunction increases with time) but also for passive ones, since the safety margin is being reduced towards the lowest allowable level

  1. Accident prevention in power plants

    International Nuclear Information System (INIS)

    Steyrer, H.

    Large thermal power plants are insured to a great extent at the Industrial Injuries Insurance Institute of Instrument and Electric Engineering. Approximately 4800 employees are registered. The accident frequency according to an evaluation over 12 months lies around 79.8 per year and 1000 employees in fossil-fired power plants, around 34.1 per year and 1000 employees in nuclear power plants, as in nuclear power plants coal handling and ash removal are excluded. Injuries due to radiation were not registered. The crucial points of accidents are mechanical injuries received on solid, sharp-edged and pointed objects (fossil-fired power plants 28.6%, nuclear power plants 41.5%), stumbling, twisting or slipping (fossil-fired power plants 21.8%, nuclear power plants 19.5%) and injuries due to moving machine parts (only nuclear power plants 12.2%). However, accidents due to burns or scalds obtain with 4.2% and less a lower portion than expected. The accident statistics can explain this fact in a way that the typical power plant accident does not exist. (orig./GL) [de

  2. Fossil Flora of the John Day Basin, Oregon

    Science.gov (United States)

    Knowlton, Frank Hall

    1902-01-01

    For a number of years I have been gradually accumulating material for a thorough revision of the Tertiary floras of the Pacific slope. Fossil plants are known to occur at numerous points within this area, and their study and identification has already furnished valuable data bearing on the geological history of the region, and when still further exploited it is confidently expected that they will afford more exact data for the use of geologists. This investigation is progressing satisfactorily, and at no distant day it is hoped to have it in form for final publication. From time to time various members of the United States Geological Survey, as well as others not connected with this organization, have sent in small collections of fossil plants for determination. These have been studied and reported upon as fully as the condition of the problem permitted, so that the determinations could be immediately available to geologists, but with the reservation that none of the questions could be fully settled until all known material had been studied and properly correlated. The rich fossil plant deposits in the John Day Basin, as set forth more fully in the historical account which follows, have been known for a period of nearly fifty years, but their study has been carried on in a more or less desultory manner. There has also been considerable confusion as to the horizons whence these plants came. As various species of plants described originally from the John Day region were detected in various other localities in Oregon, and in surrounding areas, as central Washington, western Idaho, and northern California, it became more than ever apparent that a thorough study of all material obtainable from this type area would be necessary before any definite or satisfactory conclusions could be reached. The immediate incentive for this revision was furnished by the receipt of a considerable collection of plants, made by Dr. John C. Merriam in 1900 while he was in charge of an

  3. Nuclear power plants life extension and decommissioning its economic aspects

    International Nuclear Information System (INIS)

    Watanabe, Yoshiaki

    1994-06-01

    In USA where the development of nuclear power was started early, the life of nuclear power plants expires successively around the turn of century, and the serious hindrance to electric power supply is feared. Therefore, the research for extending 40 year approved period of operation is in progress. By the extension of life of nuclear power plants, huge cost reduction is estimated as compared with the construction of new plants. However, due to the rise of the cost for the life extension, there were the cases of forced decommissioning. In this book, the present state of the life extension of nuclear power stations, the economical assessment and analysis of the life extension by DOE, the economical assessment by MIDAS method of Electric Power Research Institute, the economical assessment by cost-benefit method of Northern States Power Co., the assessment of the long term operation possibility of nuclear power stations, the economical assessment system for the life extension in Japan, the present state of the decommissioning of nuclear power stations and that in USA, Canada and Europe, the assessment of the decommissioning cost by OECD/NEA, and the decommissioning cost for thermal power stations are described. (K.I.)

  4. Exploring the Relationship of Organizational Culture and Implicit Leadership Theory to Performance Differences in the Nuclear and Fossil Energy Industry

    Science.gov (United States)

    Cravey, Kristopher J.

    Notable performance differences exist between nuclear and fossil power generation plants in areas such as safety, outage duration efficiency, and capacity factor. This study explored the relationship of organizational culture and implicit leadership theory to these performance differences. A mixed methods approach consisting of quantitative instruments, namely the Organizational Culture Assessment Instrument and the GLOBE Leadership Scales, and qualitative interviews were used in this study. Subjects were operations middle managers in a U.S. energy company that serves nuclear or fossil power plants. Results from the quantitative instruments revealed no differences between nuclear and fossil groups in regards to organizational culture types and implicit leadership theories. However, the qualitative results did reveal divergence between the two groups in regards to what is valued in the organization and how that drives behaviors and decision making. These organizational phenomenological differences seem to explain why performance differences exist between nuclear and fossil plants because, ultimately, they affect how the organization functions.

  5. Plant life management for long term operation of nuclear power plants

    International Nuclear Information System (INIS)

    2005-01-01

    The world's fleet of Nuclear Power Plants (NPPs) is approximately 20 years old on average, and most plants are believed to be able to operate for 60 years or more. The design life of a NPP is typically 30 to 40 years. This may be extended by 10 to 20 years, or more, provided that the plant can demonstrate by analysis, trending, equipment and system upgrades, increased vigilance, testing, ageing management, and other means that license renewal presents no threat to public health and safety. The basic goal of Plant Life Management (PLiM) is to satisfy requirements for safe long-term supplies of electricity in an economically competitive way. The basic goal of the operating company and the owners to operate as long as economically reasonable and possible from safety point of view. PLiM is a management tool for doing that. PLiM is a system of programmes and procedures to satisfy safety requirements for safe operation and for power production in a competitive way and for time which is rational from technical and economical point of view. PLiM is not only a technical system, it is also an attitude of the operational company to keep the plant in operation as long as possible from safety and business point of view. The common objectives of PLiM assessment is to help and review the pre-conditions for PLiM and long-term operation approaches. PLiM should not be associated with extension of operational life-time of the NPP only. It is an owner's attitude and rational approach of the operating company to run the business economically and safely. The effectiveness of PLiM Programme can be assessed by three complementary kinds of assessment: self-assessment, peer review and comprehensive programme review by the plant owner/ operator. IAEA will provide the assessment service for peer review of PLiM. Preparation for a PLiM Assessment service will be initiated only after the IAEA has been formally approached by a MS and funding (e.g. an existing Technical cooperation project) has

  6. Safe and effective nuclear power plant life cycle management towards decommissioning

    International Nuclear Information System (INIS)

    2002-08-01

    The objective of this publication is to promote and communicate the need for a longer-term perspective among senior managers and policy or strategy makers for decisions that have the potential to affect the life cycle management of a nuclear power plant including decommissioning. The following sections provide practical guidance in the subject areas that might have the potential to have such an impact. The publication should be used as an aid to help strategic planning take place in an informed way through the proper consideration of any longer-term decisions to enforce recognition of the point that decommissioning is a part of the whole life cycle of a nuclear power plant. The guidance contained in this publication is relevant to all life cycle stages of a nuclear power plant, with particular emphasis on how these decisions have the potential to impact effective decommissioning. The intended users of this publication are: Strategic decision makers within a Utility through all the various life cycle stages; The senior representatives of the owners of a nuclear power plant. This publication is divided into two basic sections. Section 2 provides guidance on the topics considered generic inputs to plant life cycle management and Section 3 provides guidance on the topics that contribute to effective decommissioning

  7. Technology and testing for the extension of plant life

    International Nuclear Information System (INIS)

    Blumer, U.R.; Edelmann, X.

    1988-01-01

    This paper describes selected portions of a recommended program for the application of equipment-manufacturing-related technology and testing for the extension of life for operating nuclear power plants. It is appropriate to mention that the Swiss nuclear plants, their staffs, and the supporting Swiss nuclear industry are rightfully proud of their record of performance. Plant staffs have been intimately involved in system and equipment design and engineering from the very beginnings of their plants. Maintenance of the plant systems and equipment is referred to as engineering rather than maintenance, because it is viewed as a technical effort and an extension of the original plant and equipment design and construction effort. Care, competence, cleanliness, and attention to detail have been bywords for the Swiss plants. Success has been demonstrated through enviable availability performance. With operation and availability capability already demonstrated, the Swiss are now turning their attention to the extension of plant life. This summary describes some aspects of this work, which is fundamentally based on the application of technology and testing skills developed for equipment manufacture and the original installation of this equipment in the plants, but has been enhanced by research and development (R and D) and an ongoing effort to serve utilities in their maintenance activities

  8. Computational models for residual creep life prediction of power plant components

    International Nuclear Information System (INIS)

    Grewal, G.S.; Singh, A.K.; Ramamoortry, M.

    2006-01-01

    All high temperature - high pressure power plant components are prone to irreversible visco-plastic deformation by the phenomenon of creep. The steady state creep response as well as the total creep life of a material is related to the operational component temperature through, respectively, the exponential and inverse exponential relationships. Minor increases in the component temperature can thus have serious consequences as far as the creep life and dimensional stability of a plant component are concerned. In high temperature steam tubing in power plants, one mechanism by which a significant temperature rise can occur is by the growth of a thermally insulating oxide film on its steam side surface. In the present paper, an elegantly simple and computationally efficient technique is presented for predicting the residual creep life of steel components subjected to continual steam side oxide film growth. Similarly, fabrication of high temperature power plant components involves extensive use of welding as the fabrication process of choice. Naturally, issues related to the creep life of weldments have to be seriously addressed for safe and continual operation of the welded plant component. Unfortunately, a typical weldment in an engineering structure is a zone of complex microstructural gradation comprising of a number of distinct sub-zones with distinct meso-scale and micro-scale morphology of the phases and (even) chemistry and its creep life prediction presents considerable challenges. The present paper presents a stochastic algorithm, which can be' used for developing experimental creep-cavitation intensity versus residual life correlations for welded structures. Apart from estimates of the residual life in a mean field sense, the model can be used for predicting the reliability of the plant component in a rigorous probabilistic setting. (author)

  9. Impacts of curatorial and research practices on the preservation of fossil hominid remains.

    Science.gov (United States)

    Le Cabec, Adeline; Toussaint, Michel

    2017-12-30

    Fossil remains are the only physical evidence of past forms of life which researchers can use to study the evolutionary biology of a species, especially regarding the human lineage. We review and consider the way in which the conditions surrounding a fossil's discovery and its use for scientific research impacts its long-term preservation. The deterioration of the body starts soon after death, continues in the sediments and only a subsample of the anatomical elements will persist and may finally be unearthed by archeologists. From their recovery onwards, fossil remains are exposed to many sources of further damage: from handling, restoration, measuring to invasive sampling. On the one hand, curators are faced with the inherent challenge of balancing their responsibility to protect fossil specimens with allowing researchers to perform specific analyses or invasive sampling detrimental to the preservation of the fossil. On the other hand, scientists may find their analyses complicated by multiple factors including taphonomy, or restoration techniques (e.g., consolidants, cleaning chemicals). We provide several historical examples illustrating the complex nature of the factors acting on fossil preservation. We discuss concerns about producing and sharing (digital) data from fossils. Finally, we also suggest and support some curatorial practices which maximize the traceability of treatments underwent by a fossil.

  10. Fracture mechanics based life assessment in petrochemical plants

    International Nuclear Information System (INIS)

    Norasiah Ab Kasim; Abd Nassir Ibrahim; Ab Razak Hamzah; Shukri Mohd

    2004-01-01

    The increasing use of thick walled pressure vessels in petrochemical plants operating at high pressure under severe service conditions could lead to catastrophic failure. In the Malaysian Institute for Nuclear Technology Research (MINT), initial efforts are underway to apply fracture mechanics approach for assessment of significance of defects detected during periodic in service inspection (ISI) of industrial plants. This paper outlines the integrity management strategy based on fracture mechanics and proposes a new procedure for life assessment of petrochemical plants based on ASME Boiler and Pressure Vessel Code, Section XI, BSI PD 6493:1991, BSI 6539:1994, BSI Standard 7910:1999 and API 579:2000. Essential relevant data required for the assessment is listed. Several methods available for determination of fracture toughness are reviewed with limitations in their application to petrochemical plants. A new non destructive method for determination of fracture toughness based on hardness testing and normalized key roughness curve is given. Results of fracture mechanics based life assessment conducted for 100 mm thick ammonia converter of Ni r o steel and 70 mm thick plat forming reactor vessel of ASTM A 38 7 grade B steel in operational fertilizer and petroleum refining plants are presented. (Author)

  11. Low-level radioactive waste associated with plant life extension

    International Nuclear Information System (INIS)

    Sciacca, F.; Zigler, G.; Walsh, R.

    1992-01-01

    Many utilities operating nuclear power plants are expected to seek to extend the useful life of their plants through license renewal. These US Nuclear Regulatory Commission (NRC) licensees are expected to implement enhanced inspection, surveillance, testing, and monitoring (ISTM) as needed to detect and mitigate age-related degradation of important structures, systems, and components (SSCs). In addition, utilities may undertake various refurbishment and upgrade activities at these plants to better assure economic and reliable power generation. These activities performed for safety and/or economic reasons can result in radioactive waste generation, which is incremental to that generated in the original licensing term. Work was performed for the NRC to help define and characterize potential environmental impacts associated with nuclear plant license renewal and plant life extension. As part of this work, projections were made of the types and quantities of low-level radioactive waste (LLRW) likely to be generated by licensee programs. These projections were needed to estimate environmental impacts related to the disposal of such wastes

  12. Evaluation of conventional power systems. [emphasizing fossil fuels and nuclear energy

    Science.gov (United States)

    Smith, K. R.; Weyant, J.; Holdren, J. P.

    1975-01-01

    The technical, economic, and environmental characteristics of (thermal, nonsolar) electric power plants are reviewed. The fuel cycle, from extraction of new fuel to final waste management, is included. Emphasis is placed on the fossil fuel and nuclear technologies.

  13. The Fossil Fuel Divestment Movement: An Ethical Dilemma for the Geosciences?

    Science.gov (United States)

    Greene, C. H.; Kammen, D. M.

    2014-12-01

    For over 200 years, fossil fuels have been the basis for an industrial revolution that has delivered a level of prosperity to modern society unimaginable during the previous 5000 years of human civilization. However, society's dependence on fossil fuels is coming to an end for two reasons. The first reason is because our fossil fuel reserves are running out, oil in this century, natural gas during the next century, and coal a few centuries later. The second reason is because fossil fuels are having a devastating impact on the habitability of our planet, disrupting our climate system and acidifying our oceans. So the question is not whether we will discontinue using fossil fuels, but rather whether we will stop using them before they do irreparable damage to the Earth's life-support systems. Within our geoscience community, climate scientists have determined that a majority of existing fossil fuel reserves must remain unburned if dangerous climate change and ocean acidification are to be avoided. In contrast, Exxon-Mobil, Shell, and other members of the fossil fuel industry are pursuing a business model that assumes all of their reserves will be burned and will not become stranded assets. Since the geosciences have had a long and mutually beneficial relationship with the fossil fuel industry, this inherent conflict between climate science and industrial interests presents an ethical dilemma for many geoscientists. This conflict is further heightened by the fossil fuel divestment movement, which is underway at over 400 college and university campuses around the world. This presentation will explore some of the ethical and financial issues being raised by the divestment movement from a geoscientist's perspective.

  14. An early Oligocene fossil demonstrates treeshrews are slowly evolving "living fossils".

    Science.gov (United States)

    Li, Qiang; Ni, Xijun

    2016-01-14

    Treeshrews are widely considered a "living model" of an ancestral primate, and have long been called "living fossils". Actual fossils of treeshrews, however, are extremely rare. We report a new fossil species of Ptilocercus treeshrew recovered from the early Oligocene (~34 Ma) of China that represents the oldest definitive fossil record of the crown group of treeshrews and nearly doubles the temporal length of their fossil record. The fossil species is strikingly similar to the living Ptilocercus lowii, a species generally recognized as the most plesiomorphic extant treeshrew. It demonstrates that Ptilocercus treeshrews have undergone little evolutionary change in their morphology since the early Oligocene. Morphological comparisons and phylogenetic analysis support the long-standing idea that Ptilocercus treeshrews are morphologically conservative and have probably retained many characters present in the common stock that gave rise to archontans, which include primates, flying lemurs, plesiadapiforms and treeshrews. This discovery provides an exceptional example of slow morphological evolution in a mammalian group over a period of 34 million years. The persistent and stable tropical environment in Southeast Asia through the Cenozoic likely played a critical role in the survival of such a morphologically conservative lineage.

  15. FOSSIL2 energy policy model documentation: FOSSIL2 documentation

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-01

    This report discusses the structure, derivations, assumptions, and mathematical formulation of the FOSSIL2 model. Each major facet of the model - supply/demand interactions, industry financing, and production - has been designed to parallel closely the actual cause/effect relationships determining the behavior of the United States energy system. The data base for the FOSSIL2 program is large, as is appropriate for a system dynamics simulation model. When possible, all data were obtained from sources well known to experts in the energy field. Cost and resource estimates are based on DOE data whenever possible. This report presents the FOSSIL2 model at several levels. Volumes II and III of this report list the equations that comprise the FOSSIL2 model, along with variable definitions and a cross-reference list of the model variables. Volume II provides the model equations with each of their variables defined, while Volume III lists the equations, and a one line definition for equations, in a shorter, more readable format.

  16. Operational data collection and analysis for nuclear plant life extension

    International Nuclear Information System (INIS)

    DuCharme, A.R.; Berg, R.M.; Bailey, T.L.

    1989-01-01

    This paper describes initial work undertaken by the US Department of Energy, through Sandia National Laboratories in Albuquerque, New Mexico, to define the operational data necessary for support of nuclear plant life extension (PLEX) programs. This work is being performed in coordination with the Working Group on Plant Life Extension of the US Nuclear Management and Resources Council. The intent of the effort is to use results gained initially from pilot PLEX programs a US BWR and a US PWR to build towards the use of ''PLEX indicators'' by which a plant's readiness for successful life extension can be measured. Another objective of the study was to examine chemistry data in detail to determine how well US plants are collecting, preserving, and trending the chemistry data that is important to PLEX. The methods used to disseminate this data to outside agencies and other utilities were studied. Finally, an analysis was made to determine additional chemistry data needed to support PLEX

  17. Cost savings from extended life nuclear plants

    International Nuclear Information System (INIS)

    Forest, L.R. Jr.; Deutsch, T.R.; Schenler, W.W.

    1988-09-01

    This study assesses the costs and benefits of nuclear power plant life extension (NUPLEX) for the overall US under widely varying economic assumptions and compares these with alternative new coal- fired plants (NEWCOAL). It is found that NUPLEX saves future electricity consumers more than 3 cents/-kwh compared with NEWCOAL. The NUPLEX costs and benefits for existing individual US nuclear power plants under base-line, or most likely, assumptions are assessed to determine the effects of the basic plant design and plant age. While benefits vary widely, virtually all units would have a positive benefit from NUPLEX. The study also presents a cost-benefit analysis of the nuclear industry's planned advanced light water reactor (ALWR). It is concluded that ALWR offers electrical power at a substantially lower cost than NEWCOAL. 9 refs., 6 figs

  18. Fossil Fuels.

    Science.gov (United States)

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  19. Fossil life on Mars

    Science.gov (United States)

    Walter, M. R.

    1989-01-01

    Three major problems beset paleontologists searching for morphological evidence of life on early Earth: selecting a prospective site; finding biogenic structures; and distinguishing biogenic from abiogenic structures. The same problems arise on Mars. Terrestrial experience suggests that, with the techniques that can be employed remotely, ancient springs, including hot springs, are more prospective than lake deposits. If, on the other hand, the search is for chemical evidence, the strategy can be very different, and lake deposits are attractive targets. Lakes and springs frequenly occur in close proximity, and therefore a strategy that combines the two would seem to maximize the chance of success. The strategy for a search for stromatolite on Mars is discussed.

  20. Oldest record of Metrosideros (Myrtaceae): Fossil flowers, fruits, and leaves from Australia.

    Science.gov (United States)

    Tarran, Myall; Wilson, Peter G; Hill, Robert S

    2016-04-01

    Myrtaceous fossil capsular fruits and flowers from the northwest of Tasmania, in the Early Oligocene-aged Little Rapid River (LRR) deposit, are described. The reproductive organs are found in association with Myrtaceous leaves previously thought to belong to a fleshy-fruited genus, Xanthomyrtus at both LRR, and an Eocene Tasmanian site at Hasties, which are reassessed with fresh morphological evidence. Standard Light Microscopy (LM) and Scanning Electron Microscopy (SEM) were used to investigate cuticular characters and an auto-montage camera system was used to take high-resolution images of fossil and extant fruits. Fossils are identified using a nearest living relative (NLR) approach. The fossil fruits and flowers share a number of characters with genera of capsular-fruited Myrtaceae, in particular sharing several synapomorphies with species of Metrosideros subg. Metrosideros (tribe: Metrosidereae). The fossil is here described, and named Metrosideros leunigii, sp. nov. This research establishes the presence of Metrosideros (aff. subg. Metrosideros) in the Eocene-Oligocene (∼40-30 mya) of Tasmania, Australia. This is the first fossil record of Metrosideros in Australia, as well as the oldest conclusive fossil record, and may provide evidence for an Australian origin of the genus. It is also yet another example of extinction in the Tertiary of a group of plants on the Australian mainland that is only found today on nearby Pacific landmasses. © 2016 Botanical Society of America.

  1. Process and plant for obtaining producer gas from fossil fuels. Verfahren und Anlage zur Gewinnung von Generatorgas aus fossilen Brennstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1983-12-01

    In a plant for generating producer gas from fossil fuels with relatively high humidity, there is predrying of the wet material in two drying chambers situated above the actual reactor shaft. The drying air required for this purpose is drawn off via blowers and heat exchangers preheated from the area of the combustion zone. The preparation of the crude gases produced first in the process is done by a socalled bypass gas system, i.e. the reintroduction of the crude gases enriched with tar oil and steam and diverting prepared hot gases via an annular pipe from the area of the reduction zone.

  2. Comparison of Plant Life Management Approaches for Long Term Operations

    International Nuclear Information System (INIS)

    Kang, Kisig

    2012-01-01

    Plant life management can be defined as the integration of ageing and economic planning to maintain a high level of safety and optimize operations. Many Member States have given high priority to long term operation of nuclear power plants beyond the time frame originally anticipated (e. g. 30 or 40 years). Out of a total of 445 (369 GWe) operating nuclear power plants, 349 units (297 GWe) have been in operation for more than 20 years (as of November 2011). The need for engineering support to operation, maintenance, safety review and life management for long term operation as well as education and training in the field is increasingly evident. In addition the Fukushima accident has rendered all stake holders even more attentive to safety concerns and to the provision of beyond safety measures in the preparation and scrutiny of applications for operational design life extensions. In many countries, the safety performance of NPPs is periodically followed and characterized via the periodic safety review (PSR) approach. The regulatory The regulatory review and acceptance of the PSR gives the licensee the permission to operate the plant for up to the end of the next PSR cycle (usually 10 years). In the USA and other countries operating US designed plants, the license renewal application is based on the five pre-requisite requirements and ageing management programme for passive long life system structure and components(SSCs) and active systems is adequately addressed by the maintenance rule (MR) requirements and other established regulatory processes. Other Member States have adopted a combined approach that incorporates elements of both PSR and additional LRA specific requirements primarily focused on time limited ageing analysis. Taking into account this variety of approaches, the international atomic energy agency (IAEA) initiated work for collecting and sharing information among Member States about good practices on plant life management for long term operation in

  3. Water treatment for fossil fuel power generation - technology status report

    International Nuclear Information System (INIS)

    2006-01-01

    This technology status report focuses on the use of water treatment technology in fossil fuel power plants. The use of polymeric ion exchange resins for deionization of water, the currently preferred use of ion exchange for economically treating water containing low dissolved salts, the use of low pressure high-flux membranes, membrane microfiltration, and reverse osmosis are discussed. Details are given of the benefits of the technologies, water use at power plants, the current status of water treatment technologies, and the potential for future developments, along with power plant market trends and potentials, worldwide developments, and UK capabilities in water treatment plant design and manufacturing

  4. Evaluation of the integrity and duration of the Laguna Verde nuclear power plant life- Plant Life Management program (PLIM). TC MEX 04/53 Technical Cooperation Project

    International Nuclear Information System (INIS)

    Arganis J, C.R.; Diaz S, A.; Aguilar T, J.A.

    2006-01-01

    As part of the IAEA TC MEX 04/53 Project 'Evaluation of the integrity and extension of life of the Laguna Verde nuclear power plant Handling Program of plant' whose objective is the one of beginning the actions to apply the methodology of Handling of plant life in the Unit 1 of the Laguna Verde Nucleo electric Central for to obtain the Renovation of License in 2020 the ININ, through the Department of Synthesis and Characterization of materials has carried out more of 20 analysis of susceptibility to the intergranular cracking for corrosion under effort in interns so much of the reactor of the unit 1 like of the unit 2 documenting the current state of components based on the type or types of materials that conform them, to it thermomechanical history, operational and of production, as well as of the particularities associated to its use and operation. For the application of the methodology of life handling of plant 5 structure systems or pilot components were selected, to carry out the programs of handling of the aging and handling of plant life: The encircling of the reactor core (Core Shroud), the reactor pressure vessel (Reactor Pressure Vessel), the primary container (Primary Containment), the recirculation system of feeding water (Reactor Feed Water) and cables. (Author)

  5. Life styles of Colletotrichum species and implications for plant biosecurity

    NARCIS (Netherlands)

    Silva, Dilani D. De; Crous, Pedro W.; Ades, Peter Kevin; Hyde, Kevin D.; Taylor, Paul W. J.

    Colletotrichum is a genus of major plant pathogens causing anthracnose diseases in many plant crops worldwide. The genus comprises a highly diverse group of pathogens that infect a wide range of plant hosts. The life styles of Colletotrichum species can be broadly categorised as necrotrophic,

  6. Pattern-recognition system application to EBR-II plant-life extension

    International Nuclear Information System (INIS)

    King, R.W.; Radtke, W.H.; Mott, J.E.

    1988-01-01

    A computer-based pattern-recognition system, the System State Analyzer (SSA), is being used as part of the EBR-II plant-life extension program for detection of degradation and other abnormalities in plant systems. The SSA is used for surveillance of the EBR-II primary system instrumentation, primary sodium pumps, and plant heat balances. Early results of this surveillance indicate that the SSA can detect instrumentation degradation and system performance degradation over varying time intervals, and can provide derived signal values to replace signals from failed critical sensors. These results are being used in planning for extended-life operation of EBR-II

  7. Nuclear power plant life management in a changing business world

    International Nuclear Information System (INIS)

    2000-01-01

    At the end of 1999, there were 348 nuclear power plants connected to the grid in OECD Member countries, representing a total capacity of 296 GWe and generating some 24% of their electricity. One third of these nuclear power plants had been in operation for over 20 years. The demand for electricity throughout OECD countries is increasing steadily but the construction of new nuclear power plants has become increasingly difficult. Many utilities would like to keep existing nuclear power plants operating for as long as they can continue to function safely and economically because. extending the lifetime of nuclear power plants is a substitute to constructing new plants. Therefore, nuclear plant life management (PLIM) has been carried out in many OECD Member countries and has played a very important role in the nuclear generation field. Nuclear power plant owners seek to economically optimise the output from their plants, taking into consideration internal and external influences, as well as equipment reliability and maintenance workload. Nuclear power plant life management and extension is generally an attractive option for utilities supplying electricity because of its low marginal cost and low investment risk. PLIM has become an important issue in the context of changing business circumstances caused by regulatory reform of the electricity market. Specifically, the economic aspect of PLIM has become an important focus in the competitive electricity market. The international workshop on 'Plant Life Management in a Changing Business World' was hosted by the United States Department of Energy (USDOE) in co-operation with the Electric Power Research Institute (EPRI) and the Nuclear Energy Institute (NEI) in Washington, DC, on 26-27 June 2000. Some 50 senior utility executives and policy makers from 12 Member countries, the International Energy Agency (IEA) and the European Commission (EC) attended the meeting. The objective of the workshop was to examine the status of

  8. Economic evaluation of Kori and Wolsong Unit 1 plant life extension

    International Nuclear Information System (INIS)

    Song, T. H.; Jeong, I. S.

    2002-01-01

    24 years have been passed since Kori Unit 1 began its commercial operation, and 19 years have been passed since Wolsong Unit 1 began its commercial operation. As the end point of design life become closer, plant life extension and periodic safety assessment is paid more and more attention to by the utility company. In this paper, the methodologies and results of plant lifetime management economic evaluations of both units have been presented in comparison with Korean standard nuclear power plant 10, 20 and 30 year life extension cases respectively. In addition to that, sensitivity analysis and break even point analysis results are presented with the variables of capacity factor, operation and maintenance cost, and discount rate

  9. Flow accelerated corrosion and life management of the secondary circuit of the Embalse nuclear power plant

    International Nuclear Information System (INIS)

    Chocron, Mauricio; La Gamma, Ana M.; Fernandez, Narciso; Moyano, Ricardo; Schiersmann, Christian; Ovando, Luis E.; Sainz, Ricardo A.; Keitelman, Alberto

    2003-01-01

    Flow accelerated corrosion is a matter of concern in secondary circuits of nuclear power plants as well as in fossil fired plants. It contributes to the piping wall thinning and to the corrosion products transport to the steam generators. Because it is a generalized corrosion phenomena, could address to extensive failures. In that sense the plants conduct extensive programs of surveillance of piping degradation. Because the problem involves many variables like alloys, water chemistry and hydrodynamics several models have been proposed in the literature. In the present paper the variables have been organized in a spreadsheet which allows the calculation of normalized risk factors. (author)

  10. The reliability of the repair weld joints of aged high temperature components in fossil power boilers

    Energy Technology Data Exchange (ETDEWEB)

    Okamura, Hiroyuki [Science Univ. of Tokyo (Japan); Ohtani, Ryuichi [Kyoto Univ. (Japan); Fujii, Kazuya [Japan Power Engineering and Inspection Corp., Tokyo (Japan); Yokoyama, Tomomitsu; Nishimura, Nobuhiko [Mitsubishi Heavy Industries Ltd., Tokyo (Japan); Suzuki, Komei [Japan Steel Works Ltd., Tokyo (Japan)

    1998-11-01

    It is of fundamental engineering importance to be able to give reliable assessments of the effective service life of the critical components used within fossil power plants, particularly for those operating for prolonged periods. It is common practice for such assessments to have been estimated using destructive tests, typically the stress rupture test, this having been recognized as one of the most reliable evaluation methods available. Its only drawback is that it often does not permit the component to be in use following the sampling of the test specimen without repairing. The current piece of work focuses on the reliability of the repair welds of components for specimens taken from fossil power plants, having been in service for prolonged periods. Several such repairs to welds have been made to an old power boiler, in particular to a superheater header which is fabricated from 2.25Cr-1Mo steel. Under close examination the repairs to the girth weldment showed susceptibilities of weld cracking, similar to that observed in as-manufactured material. Within the repaired region of the welded joint the microstructure, tensile properties and toughness seemed to be unaffected. The hardness attained its minimum value within the heat affected zone, HAZ of the repair weld, overlapping that of original girth weld HAZ. Furthermore, the stress rupture strength achieved its minimum value at the same position taking on the same value as the strength associated with the aged girth welded joint. (orig.)

  11. Technological research and development of fossil fuels; Ricerca e sviluppo tecnologico per lo sfruttamento ottimale dei combustibili fossili

    Energy Technology Data Exchange (ETDEWEB)

    Minghetti, E; Palazzi, G [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dip. Energia

    1995-05-01

    The aim of the present document is to supply general information concerning fossil fuels that represent, today and for the near future, the main energy source of our planet. New fossil fuel technologies are in continual development with two principal goals: to decrease environmental impact and increase transformation process efficiency. Examples of this effort are: (1) gas-steam combined cycles integrated with coal gasification plants, or with pressurized-fluidized-bed combustors; (2) new cycles with humid air or coal direct fired turbine, now under development. In the first part of this document the international and national energy situations and trends are shown. After some brief notes on environment problems and alternative fuels, such as biomasses and municipal wastes, technological aspects, mainly relevant to increasing fossil-fueled power plant performances, are examined in greater depth. Finally the research and technological development activities of ENEA (National Agency for New technologies, Energy and the Environment) Engineering Branch in order to improve fossil fuels energy and environmental use are presented.

  12. A continuum of research projects to improve extraction of oil and proteins in oilseed plants

    Directory of Open Access Journals (Sweden)

    Miquel Martine

    2011-05-01

    Full Text Available A key challenge in the actual context of fossil sources rarefaction, global warming, and of increase of the world global population, is to promote the use of molecules derived from renewable sources such as plants. Among these molecules, lipids and proteins are targets of interest. Plant lipids from oilseeds are attractive substitutes to the use of fossil oil. Till the beginning of the 20th century, numerous products used in the daily life were derived from natural renewable products. For instance, plant oil was commonly used as fuel for vehicles and was entering in the composition of paintings, lubricants etc. Unfortunately, natural oils have been progressively replaced by cheaper fossil oil in the fabrication of these products. Nowadays, fossil oils are becoming increasingly expensive being a finite comodity. It is thus important to reduce our dependence from fossil oil and develop substitution industries. Oilseeds contain important amounts of proteins which are mainly used in feed. As several kilograms of plant protein are needed to obtain one kilogram of animal protein, the interest toward using plant protein in food is reinforced. The developments of the use of plant lipids, as well as proteins are a major stakes for the competitiveness of European agriculture and industry, as well as for sustainable development. Extraction of oil and proteins from rapeseed has a significant cost, in term of energy and solvent uses, and finally affects the ultimate quality of the products (protein digestibility. In order to quantitatively extract seed reserves under mild conditions, it will be necessary to limit the amount of energy needed, and avoid any use of solvents. Ideally, seeds should be processed in a bio refinery. In this paper, we will describe how oilseeds store their reserves, and roadblocks for improving actual oilseed extraction processes. A continuum of research projects aimed at answering targeted questions will be presented, with selected

  13. Plant life management in Belgium: an integrated project

    International Nuclear Information System (INIS)

    Wacquier, W.; Smet, M. de; Hennart, J.C.; Greer, J.L.; Breesch, Ch.; Havard, P.

    2001-01-01

    In Belgium, a specific plant life management project, named ''Continuous Operation of Belgian NPPs'' is currently developing. Its final objective is to centralize all safety and economic aspects of plant life management in order to determine, for each NPP unit, the optimal actions required to maintain their safe and reliable operation. As the lifetime of safety-related active components is permanently controlled by the current maintenance programs, the project focuses only on passive safety-related components and on non-safety components important for the availability of the plants. These structures and components were evaluated and compared on the basis of a set of weighted criteria in order to measure their criticality and to identify those which must be considered in the project. The selection and the ranking of those components is based on the KBM TM methodology (Knowledge Based Maintenance). This methodology facilitates the collection, formalization and exchange of know-how and gives immediate results thanks to a sequential and systematic step by step analysis. (author)

  14. Systems Modeling For The Laser Fusion-Fission Energy (LIFE) Power Plant

    International Nuclear Information System (INIS)

    Meier, W.R.; Abbott, R.; Beach, R.; Blink, J.; Caird, J.; Erlandson, A.; Farmer, J.; Halsey, W.; Ladran, T.; Latkowski, J.; MacIntyre, A.; Miles, R.; Storm, E.

    2008-01-01

    A systems model has been developed for the Laser Inertial Fusion-Fission Energy (LIFE) power plant. It combines cost-performance scaling models for the major subsystems of the plant including the laser, inertial fusion target factory, engine (i.e., the chamber including the fission and tritium breeding blankets), energy conversion systems and balance of plant. The LIFE plant model is being used to evaluate design trade-offs and to identify high-leverage R and D. At this point, we are focused more on doing self consistent design trades and optimization as opposed to trying to predict a cost of electricity with a high degree of certainty. Key results show the advantage of large scale (>1000 MWe) plants and the importance of minimizing the cost of diodes and balance of plant cost

  15. Life-cycle cost assessment of seismically base-isolated structures in nuclear power plants

    International Nuclear Information System (INIS)

    Wang, Hao; Weng, Dagen; Lu, Xilin; Lu, Liang

    2013-01-01

    Highlights: • The life-cycle cost of seismic base-isolated nuclear power plants is modeled. • The change law of life-cycle cost with seismic fortification intensity is studied. • The initial cost of laminated lead rubber bearings can be expressed as the function of volume. • The initial cost of a damper can be expressed as the function of its maximum displacement and tonnage. • The use of base-isolation can greatly reduce the expected damage cost, which leads to the reduction of the life-cycle cost. -- Abstract: Evaluation of seismically base-isolated structural life-cycle cost is the key problem in performance based seismic design. A method is being introduced to address the life-cycle cost of base-isolated reinforced concrete structures in nuclear power plants. Each composition of life-cycle cost is analyzed including the initial construction cost, the isolators cost and the excepted damage cost over life-cycle of the structure. The concept of seismic intensity is being used to estimate the expected damage cost, greatly simplifying the calculation. Moreover, French Cruas nuclear power plant is employed as an example to assess its life-cycle cost, compared to the cost of non-isolated plant at the same time. The results show that the proposed method is efficient and the expected damage cost is enormously reduced because of the application of isolators, which leads to the reduction of the life-cycle cost of nuclear power plants

  16. Aging and Plant Life Management with the Software Tool COMSY

    International Nuclear Information System (INIS)

    Nopper, Helmut; Rossner, Roland; Zander, Andre

    2006-01-01

    Within the scope of PLEX, a systematic and efficient ageing and plant life management system is becoming more and more important to ensure a safe and economical power plant operation in spite of continuous plant ageing. For the methodical implementation of PLIM and PLEX strategies, AREVA NP has developed the software tool COMSY. This knowledge-based program integrates degradation analysis tools with an inspection data management system. COMSY provides the capability to establish a program guided technical documentation by utilizing a virtual plant model which includes information regarding thermal hydraulic operation, water chemical conditions and materials applied for mechanical components. It provides the option to perform a plant-wide screening for identifying system areas, which are sensitive for degradation mechanisms typically experienced in nuclear power plants (FAC, corrosion fatigue, IGSCC, Pitting, etc.). If a system area is identified as being susceptible to degradation, a detailed analysis function enables the condition-oriented service life evaluation of vessels and piping systems in order to localize and conservatively quantify the effect of degradation. Based on these forecasts with COMSY, specific strategies can be developed to mitigate the effect of degradation and inspection activities can be focused on degradation sensitive areas. In addition, a risk-informed assessment tool serves to optimize inspection activities in respect to degradation potential and the associated damage consequence. After an in-service inspection is performed for a distinct location, the inspection data is to be evaluated according to generally accepted procedures. For this purpose an integrated inspection data management system module provides standardized, interactively operated evaluation functions. The key inspection results are transmitted as feedback in respect to the as-is condition of the component. Subsequently, all further life evaluations of the associated

  17. Computer optimization of dry and wet/dry cooling tower systems for large fossil and nuclear power plants

    International Nuclear Information System (INIS)

    Choi, M.; Glicksman, L.R.

    1979-02-01

    This study determined the cost of dry cooling compared to the conventional cooling methods. Also, the savings by using wet/dry instead of all-dry cooling were determined. A total optimization was performed for power plants with dry cooling tower systems using metal-finned-tube heat exchangers and surface condensers. The optimization minimizes the power production cost. The program optimizes the design of the heat exchanger and its air and water flow rates. In the base case study, the method of replacing lost capacity assumes the use of gas turbines. As a result of using dry cooling towers in an 800 MWe fossil plant, the incremental costs with the use of high back pressure turbine and conventional turbine over all-wet cooling are 11 and 15%, respectively. For a 1200 MWe nuclear plant, these are 22 and 25%, respectively. Since the method of making up lost capacity depends on the situation of a utility, considerable effort has been placed on testing the effects of using different methods of replacing lost capacity at high ambient temperatures by purchased energy. The results indicate that the optimization is very sensitive to the method of making up lost capacity. It is, therefore, important to do an accurate representation of all possible methods of making up capacity loss when optimizating power plants with dry cooling towers. A solution for the problem of losing generation capability by a power plant due to the use of a dry cooling tower is to supplement the dry tower during the hours of peak ambient temperatures by a wet tower. A separate wet/dry cooling tower system with series tower arrangement was considered in this study, and proved to be an economic choice over all-dry cooling where some water is available but supplies are insufficient for a totally evaporative cooling tower

  18. Nuclear and thermal power plants and the environment

    International Nuclear Information System (INIS)

    Mejstrik, V.

    1978-01-01

    The growth is briefly outlined of world daily power consumption and the possibilities are discussed of meeting this demand. Coal and nuclear power are of primary importance as energy resources for the present and the near future. Production costs per 1 kWh of electric power in nuclear power plants are already lower in fossil fuel power plants and both types of power plants have an environmental impact. Activities are presented of radioisotopes resulting from nuclear reactor operation and their release and environmental impact are discussed. An analysis is made of emissions from combustion processes and of wastes from fossil-fuel power plant operation. The environmental impacts of nuclear and fossil fuel power plants are compared. (Z.M.)

  19. Nuclear and thermal power plants and the environment

    Energy Technology Data Exchange (ETDEWEB)

    Mejstrik, V [Ceskoslovenska Akademie Ved, Pruhonice. Ustav Krajinne Ekologie

    1978-01-01

    The growth is briefly outlined of world daily power consumption and the possibilities are discussed of meeting this demand. Coal and nuclear power are of primary importance as energy resources for the present and the near future. Production costs per 1 kWh of electric power in nuclear power plants are already lower than in fossil fuel power plants and both types of power plants have an environmental impact. Activities are presented of radioisotopes resulting from nuclear reactor operation and their release and environmental impact are discussed. An analysis is made of emissions from combustion processes and of wastes from fossil-fuel power plant operation. The environmental impacts of nuclear and fossil fuel power plants are compared.

  20. Predicting the residual life of plant equipment - Why worry

    International Nuclear Information System (INIS)

    Jaske, C.E.

    1985-01-01

    Predicting the residual life of plant equipment that has been in service for 20 to 30 years or more is a major concern of many industries. This paper reviews the reasons for increased concern for residual-life assessment and the general procedures used in performing such assessments. Some examples and case histories illustrating procedures for assessing remaining service life are discussed. Areas where developments are needed to improve the technology for remaining-life estimation are pointed out. Then, some of the critical issues involved in residual-life assessment are identified. Finally, the future role of residual-life prediction is addressed

  1. Life cycle inventory analysis of hydrogen production by the steam-reforming process: comparison between vegetable oils and fossil fuels as feedstock

    International Nuclear Information System (INIS)

    Marquevich, M.; Sonnemann, G.W.; Castells, F.; Montane, D.

    2002-01-01

    A life cycle inventory analysis has been conducted to assess the environmental load, specifically CO 2 (fossil) emissions and global warming potential (GWP), associated to the production of hydrogen by the steam reforming of hydrocarbon feedstocks (methane and naphtha) and vegetable oils (rapeseed oil, soybean oil and palm oil). Results show that the GWPs associated with the production of hydrogen by steam reforming in a 100 years time frame are 9.71 and 9.46 kg CO 2 -equivalent/kg H 2 for natural gas and naphtha, respectively. For vegetable oils, the GWP decreases to 6.42 kg CO 2 -equivalent/kg H 2 for rapeseed oil, 4.32 for palm oil and 3.30 for soybean oil. A dominance analysis determined that the part of the process that has the largest effect on the GWP is the steam reforming reaction itself for the fossil fuel-based systems, which accounts for 56.7% and 74% of the total GWP for natural gas and naphtha, respectively. This contribution is zero for vegetable oil-based systems, for which harvesting and oil production are the main sources of CO 2 -eq emissions.(author)

  2. A fossil brain from the Cretaceous of European Russia and avian sensory evolution.

    Science.gov (United States)

    Kurochkin, Evgeny N; Dyke, Gareth J; Saveliev, Sergei V; Pervushov, Evgeny M; Popov, Evgeny V

    2007-06-22

    Fossils preserving traces of soft anatomy are rare in the fossil record; even rarer is evidence bearing on the size and shape of sense organs that provide us with insights into mode of life. Here, we describe unique fossil preservation of an avian brain from the Volgograd region of European Russia. The brain of this Melovatka bird is similar in shape and morphology to those of known fossil ornithurines (the lineage that includes living birds), such as the marine diving birds Hesperornis and Enaliornis, but documents a new stage in avian sensory evolution: acute nocturnal vision coupled with well-developed hearing and smell, developed by the Late Cretaceous (ca 90Myr ago). This fossil also provides insights into previous 'bird-like' brain reconstructions for the most basal avian Archaeopteryx--reduction of olfactory lobes (sense of smell) and enlargement of the hindbrain (cerebellum) occurred subsequent to Archaeopteryx in avian evolution, closer to the ornithurine lineage that comprises living birds. The Melovatka bird also suggests that brain enlargement in early avians was not correlated with the evolution of powered flight.

  3. The contribution of enzymes and process chemicals to the life cycle of ethanol

    International Nuclear Information System (INIS)

    MacLean, Heather L; Spatari, Sabrina

    2009-01-01

    Most life cycle studies of biofuels have not examined the impact of process chemicals and enzymes, both necessary inputs to biochemical production and which vary depending upon the technology platform (feedstock, pretreatment and hydrolysis system). We examine whether this omission is warranted for sugar-platform technologies. We develop life cycle ('well-to-tank') case studies for a corn dry-mill and for one 'mature' and two near-term lignocellulosic ethanol technologies. Process chemical and enzyme inputs contribute only 3% of fossil energy use and greenhouse gas (GHG) emissions for corn ethanol. Assuming considerable improvement compared to current enzyme performance, the inputs for the near-term lignocellulosic technologies studied are found to be responsible for 30%-40% of fossil energy use and 30%-35% of GHG emissions, not an insignificant fraction given that these models represent technology developers' nth plant performance. Mature technologies which assume lower chemical and enzyme loadings, high enzyme specific activity and on-site production utilizing renewable energy would significantly improve performance. Although the lignocellulosic technologies modeled offer benefits over today's corn ethanol through reducing life cycle fossil energy demand and GHG emissions by factors of three and six, achieving those performance levels requires continued research into and development of the manufacture of low dose, high specific activity enzyme systems. Realizing the benefits of low carbon fuels through biological conversion will otherwise not be possible. Tracking the technological performance of process conversion materials remains an important step in measuring the life cycle performance of biofuels.

  4. Creep-fatigue monitoring system for header ligaments of fossil power plants

    International Nuclear Information System (INIS)

    Chen, K.L.; Deardorf, A.F.; Copeland, J.F.; Pflasterer, R.; Beckerdite, G.

    1993-01-01

    The cracking of headers (primary and secondary superheater outlet, and reheater outlet headers) at ligament locations is an important issue for fossil power plants. A model for crack initiation and growth has been developed, based on creep-fatigue damage mechanisms. This cracking model is included in a creep-fatigue monitoring system to assess header structural integrity under high temperature operating conditions. The following principal activities are required to achieve this goal: (1) the development of transfer functions and (2) the development of a ligament cracking model. The first task is to develop stress transfer functions to convert measured (monitored) temperatures, pressures and flow rates into stresses to be used to compute damage. Elastic three-dimensional finite element analyses were performed to study transient thermal stress behavior. The sustained pressure stress redistribution due to high temperature creep was studied by nonlinear finite element analyses. The preceding results are used to derive Green's functions and pressure stress gradient transfer functions for monitoring at the juncture of the tube with the header inner surface, and for crack growth at the ligaments. The virtual crack closure method is applied to derive a stress intensity factor K solution for a corner crack at the tube/header juncture. Similarly, using the reference stress method, the steady state creep crack growth parameter C * is derived for a header corner crack. The C * solution for a small corner crack in a header can be inserted directed into the available C t solution, along with K to provide the complete transient creep solution

  5. Nuclear power plant life extension in the United Kingdom

    International Nuclear Information System (INIS)

    Goodison, D.; Seddon, J.W.; Pape, E.M.

    1991-01-01

    The safety cases for the United Kingdom's older nuclear power plant have been reviewed by their utilities in order to justify continued operation of the reactors up to an age of at least 30 year. These 'long term safety reviews' have identified worthwhile plant modifications and aspects where further studies or plant inspections are required. As the plants approach the age of 30 years, 'life extension reviews' are now being undertaken, concentrating on management of ageing, to support operation to at least 40 years. (author)

  6. Environmentally Clean Mitigation of Undesirable Plant Life Using Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Rubenchik, A M; McGrann, T J; Yamamoto, R M; Parker, J M

    2009-07-01

    This concept comprises a method for environmentally clean destruction of undesirable plant life using visible or infrared radiation. We believe that during the blossom stage, plant life is very sensitive to electromagnetic radiation, with an enhanced sensitivity to specific spectral ranges. Small doses of irradiation can arrest further plant growth, cause flower destruction or promote plant death. Surrounding plants, which are not in the blossoming stage, should not be affected. Our proposed mechanism to initiate this effect is radiation produced by a laser. Tender parts of the blossom possess enhanced absorptivity in some spectral ranges. This absorption can increase the local tissue temperature by several degrees, which is sufficient to induce bio-tissue damage. In some instances, the radiation may actually stimulate plant growth, as an alternative for use in increased crop production. This would be dependent on factors such as plant type, the wavelength of the laser radiation being used and the amount of the radiation dose. Practical, economically viable realization of this concept is possible today with the advent of high efficiency, compact and powerful laser diodes. The laser diodes provide an efficient, environmentally clean source of radiation at a variety of power levels and radiation wavelengths. Figure 1 shows the overall concept, with the laser diodes mounted on a movable platform, traversing and directing the laser radiation over a field of opium poppies.

  7. Practical standard for nuclear power plant life management programs: 2007

    International Nuclear Information System (INIS)

    2006-03-01

    The standard specifies the method of implementing nuclear power plant life management programs. The plant life management programs evaluate the integrity of the plant structures, systems and components, assessing if appropriate measures are taken against existing aging phenomena, if there are possibilities of occurrence and development of aging phenomena and if a sufficient level of margin is maintained to assure the integrity throughout the future operating period. The programs also assess the validity of the current maintenance activities, such as trend monitoring, walkdowns, periodic tests and inspections, repair and replacement work for the purpose of preventive maintenance, and utilization of lessons learned from past trouble experience, in order to newly identify maintenance measures. The technical evaluation on aging phenomena is conducted to establish the 10 year maintenance program for nuclear power plants until the plant reaches 30 years of service. The standard was established and issued by the Atomic Energy Society of Japan (AESJ) through the discussion of experts in the associated fields. (T. Tanaka)

  8. Plant maintenance and plant life extension issue, 2008

    International Nuclear Information System (INIS)

    Agnihotri, Newal

    2008-01-01

    The focus of the March-April issue is on plant maintenance and plant life extension. Major articles include the following: Exciting time to be at the U.S. NRC, by Dale Klein, Nuclear Regulatory Commission; Extraordinary steps to ensure a minimal environmental impact, by George Vanderheyden, UniStar Nuclear Energy, LLC.; Focused on consistent reduction of outages, by Kevin Walsh, GE Hitachi Nuclear Energy; On the path towards operational excellence, by Ricardo Perez, Westinghouse Electric Company; Ability to be refuelled on-line, by Ian Trotman, CANDU Services, Atomic Energy of Canada, Ltd.; ASCA Application for maintenance of SG secondary side, by Patrick Wagner, Wolf Creek Nuclear Operating Corporation, Phillip Battaglia and David Selfridge, Westinghouse Electric Company; and, An integral part of the landscape and lives, by Tyler Lamberts, Entergy Nuclear Operations, Inc. The Industry Innovation article is titled Steam generator bowl drain repairs, by John Makar and Richard Gimple, Wolf Creek Nuclear Operating Corporation

  9. IGT calculates world reserves of fossil fuels

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The Institute of Gas Technology has published the IGT World Reserves Survey, giving their latest tabulation of world reserves of fossil fuels and uranium. The report contains 120 Tables and 41 Figures. Estimates are provided for proved reserves, resources, current production, and life indexes of the non-renewable energy sources of the US and of the world as a whole. World regional data are also provided in many cases. The data are summarized here. 2 figures, 5 tables

  10. Life Cycle Management Managing the Aging of Critical Nuclear Plant Components

    International Nuclear Information System (INIS)

    Meyer, Theodore A.; Elder, G. Gary; Llovet, Ricardo

    2002-01-01

    Life Cycle Management is a structured process to manage equipment aging and long-term equipment reliability for nuclear plant Systems, Structures and Components (SSCs). The process enables the identification of effective repair, replace, inspect, test and maintenance activities and the optimal timing of the activities to maximize the economic value to the nuclear plant. This paper will provide an overview of the process and some of the tools that can be used to implement the process for the SSCs deemed critical to plant safety and performance objectives. As nuclear plants strive to reduce costs, extend life and maximize revenue, the LCM process and the supporting tools summarized in this paper can enable development of a long term, cost efficient plan to manage the aging of the plant SSCs. (authors)

  11. COMSY - A Software Tool for Aging and Plant Life Management

    International Nuclear Information System (INIS)

    Zander, Andre; Nopper, Helmut

    2012-01-01

    A Plant-wide and systematic Aging and Plant Life Management is essential for the safe operation and/or availability of nuclear power plants. The Aging Management (AM) has the objective to monitor and control degradation effects for safety relevant Systems, Structures and Components (SSCs) which may compromise safety functions of the plant. The Plant Life Management (PLM) methodology also includes aging surveillance for availability relevant SSCs. AM and PLM cover mechanical components, electrical and I and C systems and civil structures All Aging and Plant Life Management rules call for a comprehensive approach, requiring the systematic collection of various aging and safety relevant data on a plant-wide basis. This data needs to be serviced and periodically evaluated. Due to the complexity of the process, this activity needs to be supported by a qualified software tool for the management of aging relevant data and associated documents (approx. 30 000 SSCs). In order to support the power plant operators AREVA NP has developed the software tool COMSY. The COMSY software with its integrated AM modules enables the design and setup of a knowledge-based power plant model compatible to the requirements of international and national rules (e.g. IAEA Safety Guide NS-G-2.12, KTA 1403). In this process, a key task is to identify and monitor degradation mechanisms. For this purpose the COMSY tool provides prognosis and trending functions, which are based on more than 30 years of experience in the evaluation of degradation effects and numerous experimental studies. Since 1998 COMSY has been applied successfully in more than fifty reactor units in this field. The current version 3.0 was revised completely and offers additional AM functions. All aging-relevant component data are compiled and allocated via an integrated power plant model. Owing to existing interfaces to other software solutions and flexible import functions, COMSY is highly compatible with already existing data

  12. Development of life evaluation technology for nuclear power plant components

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Kim, Yun Jae; Choi, Jae Boong [Sungkyunkwan Univ., Seoul (Korea, Republic of)] (and others)

    2002-03-15

    This project focuses on developing reliable life evaluation technology for nuclear power plant components, and is divided into two parts, development of a life evaluation system for nuclear pressure vessels and evaluation of applicability of emerging technology to operating plants. For the development of life evaluation system for nuclear pressure vessels, the following seven topics are covered in this project: defect assessment method for steam generator tubes, development of fatigue monitoring system, assessment of corroded pipes, domestic round robin analysis for constructing P-T limit curve for RPV, development of probabilistic integrity assessment technique, effect of aging on strength of dissimilar welds, applicability of LBB to cast stainless steel, and development of probabilistic piping fracture mechanics.

  13. Digital viscosity controller for fossil power plants; Controlador digital de viscosidad para plantas termoelectricas

    Energy Technology Data Exchange (ETDEWEB)

    Bautista B, Amberto; Ocampo P, Carlos; Gutierrez A, Ruben; Madinaveitia V, Miguel [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1990-12-31

    Upon the need of increasing the efficiency of the existing fossil power plants in Mexico, the Instrumentation and Control Department of the Instituto de Investigaciones Electricas (IIE) designed and built a viscosity controller to enhance the fuel oil heating process. The system strategy, that allows the control either by temperature or viscosity considers, as an important element, the changing characteristics of the supplied fuels. The equipment that is utilized forms apart of the line Acquisition and Control System (ACS) developed at the same Institute, that has been successfully applied in other systems. [Espanol] Ante la necesidad de aumentar la eficiencia de las plantas termoelectricas existentes en Mexico, el Departamento de Instrumentacion y Control, del Instituto de Investigaciones Electricas (IIE), diseno y construyo un controlador de viscosidad para mejorar el proceso de calentamiento del aceite combustible. La estrategia del sistema, que permite controlar ya sea por viscosidad o por temperatura, considera como elemento importante las caracteristicas cambiantes de los combustibles suministrados. El equipo que se utiliza forma parte de la linea SAC (sistema de adquisicion y control), desarrollada en el mismo Instituto, que se ha aplicado satisfactoriamente en otros sistemas.

  14. Digital viscosity controller for fossil power plants; Controlador digital de viscosidad para plantas termoelectricas

    Energy Technology Data Exchange (ETDEWEB)

    Bautista B, Amberto; Ocampo P, Carlos; Gutierrez A, Ruben; Madinaveitia V, Miguel [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1989-12-31

    Upon the need of increasing the efficiency of the existing fossil power plants in Mexico, the Instrumentation and Control Department of the Instituto de Investigaciones Electricas (IIE) designed and built a viscosity controller to enhance the fuel oil heating process. The system strategy, that allows the control either by temperature or viscosity considers, as an important element, the changing characteristics of the supplied fuels. The equipment that is utilized forms apart of the line Acquisition and Control System (ACS) developed at the same Institute, that has been successfully applied in other systems. [Espanol] Ante la necesidad de aumentar la eficiencia de las plantas termoelectricas existentes en Mexico, el Departamento de Instrumentacion y Control, del Instituto de Investigaciones Electricas (IIE), diseno y construyo un controlador de viscosidad para mejorar el proceso de calentamiento del aceite combustible. La estrategia del sistema, que permite controlar ya sea por viscosidad o por temperatura, considera como elemento importante las caracteristicas cambiantes de los combustibles suministrados. El equipo que se utiliza forma parte de la linea SAC (sistema de adquisicion y control), desarrollada en el mismo Instituto, que se ha aplicado satisfactoriamente en otros sistemas.

  15. Integration of plant life management in operation and maintenance

    International Nuclear Information System (INIS)

    Hutin, Jean-Pierre

    2002-01-01

    Full text: 1 - INTRODUCTION. Electricite de France is now operating 58 PWR nuclear power plants which produce 75% of french electricity. Besides maintaining safety and availability on a routine basis, it is outmost important to protect the investment. Indeed, such an asset is a tremendous advantage just as the company is going to face the new european electricity market. That is the reason why EDF is devoting important effort to implement ageing management as an integral part of operation and maintenance programs. But it must be recognized that NPP lifetime is not threatened only by component-related problems: other less technical issues must be seriously considered like industrial support, information system, skilled people, public acceptance, etc. 2 - LIFE MANAGEMENT POLICY. In France, there is no limited licensing period for NPPs. The life management policy of nuclear power plants is based on three principles: - safe and cost-effective operation, looking for excellence in daily activities, with an effective experience feedback organisation taking advantage of the high level of standardization of the units, - every ten years, a new set of safety standards, a complete review of each facility and an upgrading of its safety level through appropriate modifications while maintaining unit standardization in all the fleet, - a Life Management Program, at corporate level, which permanently scrutinizes operation and maintenance activities to identify decisions which could impair plant lifetime and which surveys research and development programs related to ageing phenomenon understanding. 3 - INTEGRATION OF LIFETIME CONCERN IN O and M ACTIVITIES. It is outmost important to take in account lifetime concern in daily operation and maintenance activities and this must be done as early as possible in plant life. Even though sophisticated assessments require engineering capacity, many good ideas may arise from plant staff. For that reason, increasing lifetime awareness of plant

  16. Microaerobic steroid biosynthesis and the molecular fossil record of Archean life

    OpenAIRE

    Waldbauer, Jacob R.; Newman, Dianne K.; Summons, Roger E.

    2011-01-01

    The power of molecular oxygen to drive many crucial biogeochemical processes, from cellular respiration to rock weathering, makes reconstructing the history of its production and accumulation a first-order question for understanding Earth’s evolution. Among the various geochemical proxies for the presence of O_2 in the environment, molecular fossils offer a unique record of O_2 where it was first produced and consumed by biology: in sunlit aquatic habitats. As steroid biosynthesis requires mo...

  17. EPRI/DOE nuclear plant life extension overview

    International Nuclear Information System (INIS)

    Carey, J.J.; Lapides, M.E.; Harrison, D.; Ducharme, A.

    1987-01-01

    Recognizing the major investment in current U.S. nuclear capacity and the excellent prospects that these units have a useful life substantially in excess of their 40 year license term, EPRI and DOE have jointly undertaken a comprehensive, multiyear, nuclear plant life extension program. The program, which has its antecedents in EPRI studies of 1978-9, aims to support U.S. utilities, first in verifying the requirements of extended operation and then in implementing a plan for achieving extended service and license renewal. The effort, begun in 1985, has already yielded numerous benefits and is expected to further aid in improving near-term performance of nuclear units. A utility LWR Plant Life Extension Committee has been established to provide overview and guidance to the DOE/EPRI research and development activities and also to develop and integrate utility responses to licensing and codes and standards issues. Pilot study projects, performed by Virginia Power and Northern States Power, were the initial EPRI/DOE focus. This base has gradually expanded to incorporate other utilities and generating units, as well as a broad base of technology support. The latter includes: a) economic and financial analysis methods applicable at the unit, region and national level, b) long-term materials deterioration analysis and sampling, c) component life prediction methods and d) refurbishment and repair evaluations. This paper presents the history and status of the overall EPRI/DOE program

  18. International comparison of fossil power efficiency and CO2 intensity. Update 2011

    Energy Technology Data Exchange (ETDEWEB)

    Klaassen, E.

    2011-08-15

    This study is an update of the 2010 study and aims to compare fossil-fired power generation efficiency and CO2-intensity (coal, oil and gas) for Australia, China (including Hong Kong), France, Germany, India, Japan, Nordic countries (Denmark, Finland, Sweden and Norway aggregated), South Korea, United Kingdom and Ireland, and United States. This selection of countries and regions is based on discussions with the client. United Kingdom and Ireland, and the Nordic countries are aggregated, because of the interconnection between their electricity grids. Although all electricity grids in Europe are interconnected, there are a number of markets that operate fairly independent. These are the Nordic market (Denmark, Finland, Sweden and Norway), the Iberian market (Spain and Portugal), Central (Eastern European countries) and United Kingdom and Ireland. Only public power plants are taken into account, including public CHP plants. For the latter a correction for heat extraction has been applied. This chapter gives an overview of the fuel mix for power generation for the included countries and of the amount of fossil-fired power generation. The methodology for this study is described in Chapter 2. Chapter 3 gives an overview of the efficiency of fossil-fired power generation by fuel source. Chapter 4 gives the conclusions.

  19. Cost drivers for the assessment of nuclear power plant life extension

    International Nuclear Information System (INIS)

    2002-09-01

    In the period of the nineteen-sixties to eighties, nuclear power had rapidly expanded in many countries of the world. The nuclear power plants built in this period, will reach the end of their planned life in the near future. Statistics drawn from IAEA's Power Reactor Information System (PRIS) indicate that, by the end of 2001, there were 175 nuclear power units (NPPs) with about 122 GWe of net electrical capacity, having 21 to 45 years of operation. This represents about 34% of the total installed nuclear capacity in the world. Since these plants were initially designed for 30-40 years of operation, utilities operating such NPPs will now have to consider whether they will shutdown, decommission, and replace the plants reaching the end of their planned life, or refurbish the plants and extend their original design life. This decision is quite complex, involving a number of political, technical and economic issues. Finally, the utilities involved should manage their assets in a manner that is as close as practicable to the best possible economic optimum scenario. Well before the end of the plant life, NPP operators must evaluate the technical and economic feasibility for PLEX options, seek and obtain regulatory approvals, and implement PLEX schemes that are justified. Often they also have to substantiate the planned life extension, including the economic viability to the relevant governmental bodies, as well as to assure the general public acceptance. Economic feasibility analysis requires cost data that are not readily available. A recent IAEA review of published information on costs of PLEX revealed the scarcity of published information, while the estimated costs of NPP decommissioning are widely available. This is due in part to the reluctance by NPP operators to divulge the cost data that are considered commercial/confidential, as more plant operators are being privatised, and in part to the absence of a common framework and methodology to account for the

  20. Safety aspects of nuclear power plant ageing

    International Nuclear Information System (INIS)

    1990-01-01

    The nuclear community is facing new challenges as commercial nuclear power plants (NPPs) of the first generation get older. At present, some of the plants are approaching or have even exceeded the end of their nominal design life. Experience with fossil fired power plants and in other industries shows that reliability of NPP components, and consequently general plant safety and reliability, may decline in the middle and later years of plant life. Thus, the task of maintaining operational safety and reliability during the entire plant life and especially, in its later years, is of growing importance. Recognizing the potential impact of ageing on plant safety, the IAEA convened a Working Group in 1985 to draft a report to stimulate relevant activities in the Member States. This report provided the basis for the preparation of the present document, which included a review in 1986 by a Technical Committee and the incorporation of relevant results presented at the 1987 IAEA Symposium on the Safety Aspects of the Ageing and Maintenance of NPPs and in available literature. The purpose of the present document is to increase awareness and understanding of the potential impact of ageing on plant safety; of ageing processes; and of the approach and actions needed to manage the ageing of NPP components effectively. Despite the continuing growth in knowledge on the subject during the preparation of this report it nevertheless contains much that will be of interest to a wide technical and managerial audience. Furthermore, more specific technical publications on the evaluation and management of NPP ageing and service life are being developed under the Agency's programme, which is based on the recommendations of its 1988 Advisory Group on NPP ageing. Refs, figs and tabs

  1. Retrofitting for fossil fuel flexibility

    International Nuclear Information System (INIS)

    Newell, J.; Trueblood, R.C.; Lukas, R.W.; Worster, C.M.; Marx, P.D.

    1991-01-01

    Described in this paper are two fossil plant retrofits recently completed by the Public Service Company of New Hampshire that demonstrate the type of planning and execution required for a successful project under the current regulatory and budget constraints. Merrimack Units 1 and 2 are 120 MW and 338 MW nominal cyclone-fired coal units in Bow, New Hampshire. The retrofits recently completed at these plants have resulted in improved particulate emissions compliance, and the fuel flexibility to allow switching to lower sulphur coals to meet current and future SO 2 emission limits. Included in this discussion are the features of each project including the unique precipitator procurement approach for the Unit 1 Retrofit, and methods used to accomplish both retrofits within existing scheduled maintenance outages through careful planning and scheduling, effective use of pre-outage construction, 3-D CADD modeling, modular construction and early procurement. Operating experience while firing various coals in the cyclone fired boilers is also discussed

  2. Life Cycle Cost Analysis of Ready Mix Concrete Plant

    Science.gov (United States)

    Topkar, V. M.; Duggar, A. R.; Kumar, A.; Bonde, P. P.; Girwalkar, R. S.; Gade, S. B.

    2013-11-01

    India, being a developing nation is experiencing major growth in its infrastructural sector. Concrete is the major component in construction. The requirement of good quality of concrete in large quantities can be fulfilled by ready mix concrete batching and mixing plants. The paper presents a technique of applying the value engineering tool life cycle cost analysis to a ready mix concrete plant. This will help an investor or an organization to take investment decisions regarding a ready mix concrete facility. No economic alternatives are compared in this study. A cost breakdown structure is prepared for the ready mix concrete plant. A market survey has been conducted to collect realistic costs for the ready mix concrete facility. The study establishes the cash flow for the ready mix concrete facility helpful in investment and capital generation related decisions. Transit mixers form an important component of the facility and are included in the calculations. A fleet size for transit mixers has been assumed for this purpose. The life cycle cost has been calculated for the system of the ready mix concrete plant and transit mixers.

  3. Are viroids molecular fossils of the RNA world?

    International Nuclear Information System (INIS)

    Chela Flores, J.

    1993-07-01

    We discuss a difficulty that may be raised against the Diener hypothesis that viroids may be interpreted as molecular fossils of the RNA world. We provide a possible way of removing such a difficulty (hence supporting the Diener hypothesis). Our reasoning entails further work by plant pathologists on a proposed search for a well defined molecular process. It is shown that such process would be of biological and evolutionary significance. (author). 23 refs

  4. Plant life extensions for German nuclear power plants? Controversial discussion on potential electricity price effects

    International Nuclear Information System (INIS)

    Matthes, Felix C.; Hermann, Hauke

    2009-06-01

    The discussions on electricity price effects in case of the plant life extension of German nuclear power plants covers the following topics: (1) Introduction and methodology. (2) Electricity generation in nuclear power plants and electricity price based on an empirical view: electricity generation in nuclear power plants and final consumption price for households and industry in the European Union; electricity generation in nuclear power plants and electricity wholesale price in case of low availability of nuclear power plants in Germany; comparison of electricity wholesale prices in Germany and France. (3) Model considerations in relation to electricity prices and nuclear phase-out. (4) Concluding considerations.

  5. Fossil Record of Precambrian Life on Land

    Science.gov (United States)

    Knauth, Paul

    2000-01-01

    The argument that the earth's early ocean was up to two times modern salinity was published in 'Nature' and presented at the 1998 Annual Meeting of the Geological Society of America in Toronto. The argument is bolstered by chemical data for fluid inclusions in Archean black smokers. The inclusions were 1.7 times the modern salinity causing the authors to interpret the parent fluids as evaporite brines (in a deep marine setting). I reinterpreted the data in terms of the predicted value of high Archean salinities. If the arguments I presented are on track, early life was either halophilic or non-marine. Halophiles are not among the most primitive organisms based on RNA sequencing, so here is an a priori argument that non-marine environments may have been the site of most early biologic evolution. This result carries significant implications for the issue of past life on Mars or current life on the putative sub-ice oceans on Europa and possibly Callisto. If the Cl/H2O ratio on these objects is similar to that of the earth, then oceans and oceanic sediments are probably not the preferred sites for early life. On Mars, this means that non-marine deposits such as caliche in basalt may be an overlooked potential sample target.

  6. Current activities in support of CANDU plant life management: an industry perspective

    International Nuclear Information System (INIS)

    Shalaby, B.A.; Price, E.G.; Hopkins, J.; Charlebois, P.

    1998-01-01

    The current focus of the CANDU industry is to position the nuclear option as a cost competitive, safe and reliable means of electricity production. To achieve its goal the CANDU industry as a whole is undertaking steps to improve further its performance and safety of its nuclear power plants. A number of programs have been planned and implemented particularly for plants in the mid-life range. Some of these programs include life assessment studies of critical systems, Structures and Components (SSCS), refurbishment and upgrading programs and monitoring and periodic inspection programs. Some elements of the programs have been in place from station start up and some are being instituted as part of the aging management and performance improvement program. The industry recognizes that the key to sustaining high performance over the life of the plant is the implementation of an integrated aging management program that encompasses all elements of plant operation and maintenance. A systematically implemented program on optimized maintenance and inspection strategy, standardized work processes, component rehabilitation programs, and applying lessons learned are some of the elements of a sustainable high performance and an effective plant life assurance program. The paper will describe the elements of an integrated program, the multiphase approach defined for CANDU PLIM and some of the activities undertaken by the industry to further improve and sustain plant safety, reliability and performance. (author)

  7. An approach to nuclear-power-plant life management

    International Nuclear Information System (INIS)

    Vojvodic Tuma, J.; Celin, R.; Udovc, M.; Bundara, B.; Zabric, I.

    2007-01-01

    The plant life of a nuclear power plant (NPP) depends on degradation processes and ageing. Degradation is a deterioration phenomenon that can lead to component failure or limit the life of a component or the NPP itself. Ageing describes a continuous time or operational degradation of materials due to operational conditions, which include both normal and operating conditions. As a result of ageing degradation the state of the NPP or component can vary throughout the operating life. The degradation mechanisms for metallic components are general and local corrosion, erosion/corrosion, fatigue, corrosion fatigue, material changes due to irradiation and temperature, creep and wear. All the components of an NPP are subject to ageing, which may lead to the degradation of the physical barriers and redundant components, resulting in an increased probability of common-cause failures. The aims of NPP ageing management are to ensure that the necessary safety margins, adequate reliability and unforeseen and uncontrolled ageing of critical components do not shorten the NPP's lifetime. For the reasons stated above, plans are necessary to maintain the NPP in a state of high reliability. These are plans for an assessment of the life of the components that cannot be readily replaced, plans for operating life assessment or the planned replacement of major components where economic considerations will largely condition whether replacement or decommissioning should be pursued and plans for maintenance and replacements so that outages and delays can be minimised. In this paper some aspects of the process of NPP life management will be presented. (author)

  8. Contextualizing avian mortality: A preliminary appraisal of bird and bat fatalities from wind, fossil-fuel, and nuclear electricity

    International Nuclear Information System (INIS)

    Sovacool, Benjamin K.

    2009-01-01

    This article explores the threats that wind farms pose to birds and bats before briefly surveying the recent literature on avian mortality and summarizing some of the problems with it. Based on operating performance in the United States and Europe, this study offers an approximate calculation for the number of birds killed per kWh generated for wind electricity, fossil-fuel, and nuclear power systems. The study estimates that wind farms and nuclear power stations are responsible each for between 0.3 and 0.4 fatalities per gigawatt-hour (GWh) of electricity while fossil-fueled power stations are responsible for about 5.2 fatalities per GWh. While this paper should be respected as a preliminary assessment, the estimate means that wind farms killed approximately seven thousand birds in the United States in 2006 but nuclear plants killed about 327,000 and fossil-fueled power plants 14.5 million. The paper concludes that further study is needed, but also that fossil-fueled power stations appear to pose a much greater threat to avian wildlife than wind and nuclear power technologies.

  9. Contextualizing avian mortality: A preliminary appraisal of bird and bat fatalities from wind, fossil-fuel, and nuclear electricity

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K. [Energy Governance Program, Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore, Singapore 259772 (Singapore)], E-mail: bsovacool@nus.edu.sg

    2009-06-15

    This article explores the threats that wind farms pose to birds and bats before briefly surveying the recent literature on avian mortality and summarizing some of the problems with it. Based on operating performance in the United States and Europe, this study offers an approximate calculation for the number of birds killed per kWh generated for wind electricity, fossil-fuel, and nuclear power systems. The study estimates that wind farms and nuclear power stations are responsible each for between 0.3 and 0.4 fatalities per gigawatt-hour (GWh) of electricity while fossil-fueled power stations are responsible for about 5.2 fatalities per GWh. While this paper should be respected as a preliminary assessment, the estimate means that wind farms killed approximately seven thousand birds in the United States in 2006 but nuclear plants killed about 327,000 and fossil-fueled power plants 14.5 million. The paper concludes that further study is needed, but also that fossil-fueled power stations appear to pose a much greater threat to avian wildlife than wind and nuclear power technologies.

  10. Contextualizing avian mortality. A preliminary appraisal of bird and bat fatalities from wind, fossil-fuel, and nuclear electricity

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K. [Energy Governance Program, Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore, Singapore 259772 (Singapore)

    2009-06-15

    This article explores the threats that wind farms pose to birds and bats before briefly surveying the recent literature on avian mortality and summarizing some of the problems with it. Based on operating performance in the United States and Europe, this study offers an approximate calculation for the number of birds killed per kWh generated for wind electricity, fossil-fuel, and nuclear power systems. The study estimates that wind farms and nuclear power stations are responsible each for between 0.3 and 0.4 fatalities per gigawatt-hour (GWh) of electricity while fossil-fueled power stations are responsible for about 5.2 fatalities per GWh. While this paper should be respected as a preliminary assessment, the estimate means that wind farms killed approximately seven thousand birds in the United States in 2006 but nuclear plants killed about 327,000 and fossil-fueled power plants 14.5 million. The paper concludes that further study is needed, but also that fossil-fueled power stations appear to pose a much greater threat to avian wildlife than wind and nuclear power technologies. (author)

  11. Status of fossil fuel reserves; Etat des reserves des combustibles fossiles

    Energy Technology Data Exchange (ETDEWEB)

    Laherrere, J

    2005-07-01

    Reserves represent the sum of past and future productions up to the end of production. In most countries the reserve data of fields are confidential. Therefore, fossil fuel reserves are badly known because the published data are more political than technical and many countries make a confusion between resources and reserves. The cumulated production of fossil fuels represents only between a third and a fifth of the ultimate reserves. The production peak will take place between 2020 and 2050. In the ultimate reserves, which extrapolate the past, the fossil fuels represent three thirds of the overall energy. This document analyses the uncertainties linked with fossil fuel reserves: reliability of published data, modeling of future production, comparison with other energy sources, energy consumption forecasts, reserves/production ratio, exploitation of non-conventional hydrocarbons (tar sands, extra-heavy oils, bituminous shales, coal gas, gas shales, methane in overpressure aquifers, methane hydrates), technology impacts, prices impact, and reserves growth. (J.S.)

  12. Replacement of major nuclear power plant components for service life extension

    International Nuclear Information System (INIS)

    Novak, S.

    1987-01-01

    Problems are discussed associated with replacement of nuclear power plant components with the aim to extend their original scheduled life. The existing foreign experience shows that it is technically feasible to replace practically all basic components for which the necessity of replacement is established. Data is summed up on the replacement of steam generators in US and West German nuclear power plants showing the duration of the job, the total consumption of manhours, the collective dose equivalent and the cost. Attention is also focused on implemented and projected replacements of circulation pipes in nuclear power plants abroad. Based on these figures, the cost is estimated of the replacement of the reactor vessel and the steam generators for WWER-440 nuclear power plants. The conclusion is arrived at that even based on a conservative estimate, the extension by 20 years of the service life of a nuclear power plant is economically more effective than the construction of a new plant. (Z.M.) 2 tabs., 15 refs., 3 figs

  13. Environmental impact efficiency of natural gas combined cycle power plants: A combined life cycle assessment and dynamic data envelopment analysis approach.

    Science.gov (United States)

    Martín-Gamboa, Mario; Iribarren, Diego; Dufour, Javier

    2018-02-15

    The energy sector is still dominated by the use of fossil resources. In particular, natural gas represents the third most consumed resource, being a significant source of electricity in many countries. Since electricity production in natural gas combined cycle (NGCC) plants provides some benefits with respect to other non-renewable technologies, it is often seen as a transitional solution towards a future low‑carbon power generation system. However, given the environmental profile and operational variability of NGCC power plants, their eco-efficiency assessment is required. In this respect, this article uses a novel combined Life Cycle Assessment (LCA) and dynamic Data Envelopment Analysis (DEA) approach in order to estimate -over the period 2010-2015- the environmental impact efficiencies of 20 NGCC power plants located in Spain. A three-step LCA+DEA method is applied, which involves data acquisition, calculation of environmental impacts through LCA, and the novel estimation of environmental impact efficiency (overall- and term-efficiency scores) through dynamic DEA. Although only 1 out of 20 NGCC power plants is found to be environmentally efficient, all plants show a relatively good environmental performance with overall eco-efficiency scores above 60%. Regarding individual periods, 2011 was -on average- the year with the highest environmental impact efficiency (95%), accounting for 5 efficient NGCC plants. In this respect, a link between high number of operating hours and high environmental impact efficiency is observed. Finally, preliminary environmental benchmarks are presented as an additional outcome in order to further support decision-makers in the path towards eco-efficiency in NGCC power plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Trace Fossil Evidence of Trematode-Bivalve Parasite-Host Interactions in Deep Time.

    Science.gov (United States)

    Huntley, John Warren; De Baets, Kenneth

    2015-01-01

    Parasitism is one of the most pervasive phenomena amongst modern eukaryotic life and yet, relative to other biotic interactions, almost nothing is known about its history in deep time. Digenean trematodes (Platyhelminthes) are complex life cycle parasites, which have practically no body fossil record, but induce the growth of characteristic malformations in the shells of their bivalve hosts. These malformations are readily preserved in the fossil record, but, until recently, have largely been overlooked by students of the fossil record. In this review, we present the various malformations induced by trematodes in bivalves, evaluate their distribution through deep time in the phylogenetic and ecological contexts of their bivalve hosts and explore how various taphonomic processes have likely biased our understanding of trematodes in deep time. Trematodes are known to negatively affect their bivalve hosts in a number of ways including castration, modifying growth rates, causing immobilization and, in some cases, altering host behaviour making the host more susceptible to their own predators. Digeneans are expected to be significant agents of natural selection. To that end, we discuss how bivalves may have adapted to their parasites via heterochrony and suggest a practical methodology for testing such hypotheses in deep time. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Leaf and life history traits predict plant growth in a green roof ecosystem.

    Directory of Open Access Journals (Sweden)

    Jeremy Lundholm

    Full Text Available Green roof ecosystems are constructed to provide services such as stormwater retention and urban temperature reductions. Green roofs with shallow growing media represent stressful conditions for plant survival, thus plants that survive and grow are important for maximizing economic and ecological benefits. While field trials are essential for selecting appropriate green roof plants, we wanted to determine whether plant leaf traits could predict changes in abundance (growth to provide a more general framework for plant selection. We quantified leaf traits and derived life-history traits (Grime's C-S-R strategies for 13 species used in a four-year green roof experiment involving five plant life forms. Changes in canopy density in monocultures and mixtures containing one to five life forms were determined and related to plant traits using multiple regression. We expected traits related to stress-tolerance would characterize the species that best grew in this relatively harsh setting. While all species survived to the end of the experiment, canopy species diversity in mixture treatments was usually much lower than originally planted. Most species grew slower in mixture compared to monoculture, suggesting that interspecific competition reduced canopy diversity. Species dominant in mixture treatments tended to be fast-growing ruderals and included both native and non-native species. Specific leaf area was a consistently strong predictor of final biomass and the change in abundance in both monoculture and mixture treatments. Some species in contrasting life-form groups showed compensatory dynamics, suggesting that life-form mixtures can maximize resilience of cover and biomass in the face of environmental fluctuations. This study confirms that plant traits can be used to predict growth performance in green roof ecosystems. While rapid canopy growth is desirable for green roofs, maintenance of species diversity may require engineering of conditions that

  16. Leaf and life history traits predict plant growth in a green roof ecosystem.

    Science.gov (United States)

    Lundholm, Jeremy; Heim, Amy; Tran, Stephanie; Smith, Tyler

    2014-01-01

    Green roof ecosystems are constructed to provide services such as stormwater retention and urban temperature reductions. Green roofs with shallow growing media represent stressful conditions for plant survival, thus plants that survive and grow are important for maximizing economic and ecological benefits. While field trials are essential for selecting appropriate green roof plants, we wanted to determine whether plant leaf traits could predict changes in abundance (growth) to provide a more general framework for plant selection. We quantified leaf traits and derived life-history traits (Grime's C-S-R strategies) for 13 species used in a four-year green roof experiment involving five plant life forms. Changes in canopy density in monocultures and mixtures containing one to five life forms were determined and related to plant traits using multiple regression. We expected traits related to stress-tolerance would characterize the species that best grew in this relatively harsh setting. While all species survived to the end of the experiment, canopy species diversity in mixture treatments was usually much lower than originally planted. Most species grew slower in mixture compared to monoculture, suggesting that interspecific competition reduced canopy diversity. Species dominant in mixture treatments tended to be fast-growing ruderals and included both native and non-native species. Specific leaf area was a consistently strong predictor of final biomass and the change in abundance in both monoculture and mixture treatments. Some species in contrasting life-form groups showed compensatory dynamics, suggesting that life-form mixtures can maximize resilience of cover and biomass in the face of environmental fluctuations. This study confirms that plant traits can be used to predict growth performance in green roof ecosystems. While rapid canopy growth is desirable for green roofs, maintenance of species diversity may require engineering of conditions that favor less

  17. Framatome ANP GmbH concept of Plant Life Management (PLIM)

    International Nuclear Information System (INIS)

    Daeuwel, W.; Biemann, W.; Danisch, R.; Kastner, B.; Meyer, W.; Nopper, H.; Waas, U.; Warnken, L.

    2002-01-01

    The deregulation of the power generation industry has resulted in increased competitive pressure and is forcing operators to improve plant operating economy while maintaining high levels of plant safety. A key factor to meeting this challenge is to apply a comprehensive plant life management (PLIM) approach which addresses all relevant ageing and degradation mechanisms regarding the safety concept, plant component structures and documentation, plant personnel, consumables, operations management system and administrative controls. For this reason, Framatome ANP GmbH has developed an integrated PLIM concept applicable for both new and operating plants and focusing on the safety concept, plant component structures and documentation. (orig.)

  18. Fossil biogeography: a new model to infer dispersal, extinction and sampling from palaeontological data.

    Science.gov (United States)

    Silvestro, Daniele; Zizka, Alexander; Bacon, Christine D; Cascales-Miñana, Borja; Salamin, Nicolas; Antonelli, Alexandre

    2016-04-05

    Methods in historical biogeography have revolutionized our ability to infer the evolution of ancestral geographical ranges from phylogenies of extant taxa, the rates of dispersals, and biotic connectivity among areas. However, extant taxa are likely to provide limited and potentially biased information about past biogeographic processes, due to extinction, asymmetrical dispersals and variable connectivity among areas. Fossil data hold considerable information about past distribution of lineages, but suffer from largely incomplete sampling. Here we present a new dispersal-extinction-sampling (DES) model, which estimates biogeographic parameters using fossil occurrences instead of phylogenetic trees. The model estimates dispersal and extinction rates while explicitly accounting for the incompleteness of the fossil record. Rates can vary between areas and through time, thus providing the opportunity to assess complex scenarios of biogeographic evolution. We implement the DES model in a Bayesian framework and demonstrate through simulations that it can accurately infer all the relevant parameters. We demonstrate the use of our model by analysing the Cenozoic fossil record of land plants and inferring dispersal and extinction rates across Eurasia and North America. Our results show that biogeographic range evolution is not a time-homogeneous process, as assumed in most phylogenetic analyses, but varies through time and between areas. In our empirical assessment, this is shown by the striking predominance of plant dispersals from Eurasia into North America during the Eocene climatic cooling, followed by a shift in the opposite direction, and finally, a balance in biotic interchange since the middle Miocene. We conclude by discussing the potential of fossil-based analyses to test biogeographic hypotheses and improve phylogenetic methods in historical biogeography. © 2016 The Author(s).

  19. Pythium invasion of plant-based life support systems: biological control and sources

    Science.gov (United States)

    Jenkins, D. G.; Cook, K. L.; Garland, J. L.; Board, K. F.; Sager, J. C. (Principal Investigator)

    2000-01-01

    Invasion of plant-based life support systems by plant pathogens could cause plant disease and disruption of life support capability. Root rot caused by the fungus, Pythium, was observed during tests of prototype plant growth systems containing wheat at the Kennedy Space Center (KSC). We conducted experiments to determine if the presence of complex microbial communities in the plant root zone (rhizosphere) resisted invasion by the Pythium species isolated from the wheat root. Rhizosphere inocula of different complexity (as assayed by community-level physiological profile: CLPP) were developed using a dilution/extinction approach, followed by growth in hydroponic rhizosphere. Pythium growth on wheat roots and concomitant decreases in plant growth were inversely related to the complexity of the inocula during 20-day experiments in static hydroponic systems. Pythium was found on the seeds of several different wheat cultivars used in controlled environmental studies, but it is unclear if the seed-borne fungal strain(s) were identical to the pathogenic strain recovered from the KSC studies. Attempts to control pathogens and their effects in hydroponic life support systems should include early inoculation with complex microbial communities, which is consistent with ecological theory.

  20. Beyond fossil calibrations: Realities of molecular clock practices in evolutionary biology

    Directory of Open Access Journals (Sweden)

    Christy Anna Hipsley

    2014-05-01

    Full Text Available Molecular-based divergence dating methods, or molecular clocks, are the primary neontological tool for estimating the temporal origins of clades. While the appropriate use of vertebrate fossils as external clock calibrations has stimulated heated discussions in the paleontological community, less attention has been given to the quality and implementation of other calibration types. In lieu of appropriate fossils, many studies rely on alternative sources of age constraints based on geological events, substitution rates and heterochronous sampling, as well as dates secondarily derived from previous analyses. To illustrate the breadth and frequency of calibration types currently employed, we conducted a literature survey of over 600 articles published from 2007 to 2013. Over half of all analyses implemented one or more fossil dates as constraints, followed by geological events and secondary calibrations (15% each. Vertebrate taxa were subjects of nearly half of all studies, while invertebrates and plants together accounted for 43%, followed by viruses, protists and fungi (3% each. Current patterns in calibration practices were disproportionate to the number of discussions on their proper use, particularly regarding plants and secondarily derived dates, which are both relatively neglected. Based on our survey, we provide a comprehensive overview of the latest approaches in clock calibration, and outline strengths and weaknesses associated with each. This critique should serve as a call to action for researchers across multiple communities, particularly those working on clades for which fossil records are poor, to develop their own guidelines regarding selection and implementation of alternative calibration types. This issue is particularly relevant now, as time-calibrated phylogenies are used for more than dating evolutionary origins, but often serve as the backbone of investigations into biogeography, diversity dynamics and rates of phenotypic

  1. Subseafloor fluid mixing and fossilized microbial life in a Cretaceous 'Lost City'-type hydrothermal system at the Iberian Margin

    Science.gov (United States)

    Klein, F.; Humphris, S. E.; Guo, W.; Schubotz, F.; Schwarzenbach, E. M.; Orsi, W.

    2015-12-01

    Subseafloor mixing of reduced hydrothermal fluids with seawater is believed to provide the energy and substrates needed to support autotrophic microorganisms in the hydrated oceanic mantle (serpentinite). Despite the potentially significant implications for the distribution of microbial life on Earth and other water-bearing planetary bodies, our understanding of such environments remains elusive. In the present study we examined fossilized microbial communities and fluid mixing processes in the subseafloor of a Cretaceous 'Lost City'-type hydrothermal system at the passive Iberia Margin (ODP Leg 149, Hole 897D). Brucite and calcite co-precipitated from mixed fluids ca. 65m below the Cretaceous palaeo-seafloor at temperatures of 32±4°C within steep chemical gradients (fO2, pH, CH4, SO4, ΣCO2, etc) between weathered, carbonate-rich serpentinite breccia and serpentinite. Mixing of oxidized seawater and strongly reducing hydrothermal fluid at moderate temperatures created conditions capable of supporting microbial activity within the oceanic basement. Dense microbial colonies are fossilized in brucite-calcite veins that are strongly enriched in organic carbon but depleted in 13C. We detected a combination of bacterial diether lipid biomarkers, archaeol and archaeal tetraethers analogous to those found in brucite-carbonate chimneys at the active Lost City hydrothermal field. The exposure of mantle rocks to seawater during the breakup of Pangaea fueled chemolithoautotrophic microbial communities at the Iberia Margin during the Cretaceous, possibly before the onset of seafloor spreading in the Atlantic. 'Lost City'-type serpentinization systems have been discovered at mid-ocean ridges, in forearc settings of subduction zones and at continental margins. It appears that, wherever they occur, they can support microbial life, even in deep subseafloor environments as demonstrated in the present study. Because equivalent systems have likely existed throughout most of Earth

  2. A study on the optimization of plant life extension and decommissioning for the improvement of economy in nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jae In; Jung, K. J.; Chung, U. S.; Baik, S. T.; Park, S. K.; Lee, D. G.; Kim, H. R.; Park, B. Y

    2000-01-01

    Fundamentals on the plan, the national policy, the safety securities for the life extension of the nuclear power plant was established from the domestic/abroad documents and case studies in relation with the life extension and decommissioning of the nuclear power plant. Concerning the decommissioning of the nuclear power plant, the management according to decommissioning stages was analyzed by the investigation of the domestic/abroad standard of the decommissioning (decontamination. dismantling) technology and regulation. Moreover, the study on the cost estimation method has been carried out for the decommissioning of the nuclear power plant. (author)

  3. Plant life management for long term operation of light water reactors. Principles and guidelines

    International Nuclear Information System (INIS)

    2006-01-01

    The subject of this report was originally suggested by the IAEA Technical Working Group on Life Management of Nuclear Power Plants. It was then approved by the IAEA for work to begin in 2004. The participants in the group felt that it was time to address plant life management and ageing issues from the point of view of long term operation and licence renewal. It is believed that the nuclear power industry will only be able to survive if plant economics are favourable and safety is maintained. Therefore, the issue of ageing and obsolescence has to be addressed from an operational and safety standpoint, but also in the context of plant economics in terms of the cost of electricity production, including initial and recurring capital costs. Use of new technologies, such as advanced in-service inspection and condition based maintenance, should be considered, not only to predict the consequences of ageing and guard against them, but also to monitor equipment performance throughout the lifetime of the plant and to help establish replacement schedules for critical systems, structures and components, and to better estimate the optimum end of the operating licence, which means the end of the nuclear power plant's lifetime. The importance of nuclear power plant life management in facilitating the technical and economic goals of long term operation is presented in this report in terms of the requirement to ensure safe long term supplies of electricity in the most economically competitive way. Safe and reliable operation is discussed in terms of the overall economic benefits when plant life management is implemented. Preconditions for plant life management for long term operation are identified and approaches are reviewed. Plant life management should not be associated only with the extension of the operational lifetime of the nuclear power plant, but with an owner's attitude and a rational approach of the operating company towards running the business economically and safely

  4. Fossil Energy Advanced Research and Technology Development (AR TD) Materials Program semiannual progress report for the period ending September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.; Cole, N.C. (comps.)

    1992-04-01

    The objective of the Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The Program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Research is outlined in four areas: Ceramics, New Alloys, Corrosion and Erosion Research, and Technology Development and Transfer. (VC)

  5. Life cycle assessment of biofuels from an integrated Brazilian algae-sugarcane biorefinery

    International Nuclear Information System (INIS)

    Souza, Simone P.; Gopal, Anand R.; Seabra, Joaquim E.A.

    2015-01-01

    Sugarcane ethanol biorefineries in Brazil produce carbon dioxide, electricity and heat as byproducts. These are essential inputs for algae biodiesel production. In this paper, we assessed ethanol's life cycle greenhouse gas emissions and fossil energy use produced in an integrated sugarcane and algae biorefinery where biodiesel replaces petroleum diesel for all agricultural operations. Carbon dioxide from cane juice fermentation is used as the carbon source for algae cultivation, and sugarcane bagasse is the sole source of energy for the entire facility. Glycerin produced from the biodiesel plant is consumed by algae during the mixotrophic growth phase. We assessed the uncertainties through a detailed Monte-Carlo analysis. We found that this integrated system can improve both the life cycle greenhouse gas emissions and the fossil energy use of sugarcane ethanol by around 10% and 50%, respectively, compared to a traditional Brazilian sugarcane ethanol distillery. - Highlights: • A high diesel consumption is associated to the ethanol sugarcane life-cycle. • Sugarcane industry can provide sources of carbon and energy for the algae growing. • The sugarcane-algae integration can improve the ethanol life-cycle performance. • This integration is a promising pathway for the deployment of algae biodiesel. • There are still significant techno-economic barriers associated with algae biodiesel

  6. Decision support systems for power plants impact on the living standard

    International Nuclear Information System (INIS)

    Chatzimouratidis, Athanasios I.; Pilavachi, Petros A.

    2012-01-01

    Highlights: ► Ten major types of power plant are evaluated as to their impact on living standard. ► Uncertainty in both criteria performance and criteria weighting is considered. ► PROMETHEE II method, 12 criteria and 13 scenarios are used. ► Results are presented per scenario and per type of power plant. ► Optimal solution depends on scenario assumptions of the decision maker. - Abstract: In developed countries, the quality of life is of first priority and an overall assessment of power plant impact on the living standard requires a multicriteria analysis of both positive and negative factors incorporating uncertainty in criteria performance and probability assessment of weighting factors. This study incorporates PROMETHEE II to assess 10 major types of power plant under 12 criteria, 13 fixed and infinite customized probability assessed weight set scenarios. The power plants considered are coal/lignite, oil, natural gas turbine, natural gas combined cycle, nuclear, hydro, wind, photovoltaic, biomass and geothermal. Geothermal, wind and photovoltaic power plants are excellent choices in most of the cases and biomass and hydro should also be preferred to nuclear and fossil fuel. Among nuclear and fossil fuel the choice is based on the specific parameters of each case examined while natural gas technologies have specific advantages. The motivation of this study was to provide a tool for the decision-maker to evaluate all major types of power plant incorporating multicriteria and customized probability assessment of weighting factors.

  7. Children's Ideas about Fossils and Foundational Concepts Related to Fossils

    Science.gov (United States)

    Borgerding, Lisa A.; Raven, Sara

    2018-01-01

    Many standards documents and learning progressions recommend evolution learning in elementary grades. Given young children's interest in dinosaurs and other fossils, fossil investigations can provide a rich entry into evolutionary biology for young learners. Educational psychology literature has addressed children's reasoning about foundational…

  8. Nuclear Power Plants (Rev.)

    Energy Technology Data Exchange (ETDEWEB)

    Lyerly, Ray L.; Mitchell III, Walter [Southern Nuclear Engineering, Inc.

    1973-01-01

    Projected energy requirements for the future suggest that we must employ atomic energy to generate electric power or face depletion of our fossil-fuel resources—coal, oil, and gas. In short, both conservation and economic considerations will require us to use nuclear energy to generate the electricity that supports our civilization. Until we reach the time when nuclear power plants are as common as fossil-fueled or hydroelectric plants, many people will wonder how the nuclear plants work, how much they cost, where they are located, and what kinds of reactors they use. The purpose of this booklet is to answer these questions. In doing so, it will consider only central station plants, which are those that provide electric power for established utility systems.

  9. Introduction of nuclear power plant for mitigating the impact of global warming

    International Nuclear Information System (INIS)

    Ida Nuryatin Finahari

    2008-01-01

    Energy utilization for power plants in Indonesia is still highly depending on the burning of fossil fuel like coal, oil, and gas. From the combustion of fossil fuel, greenhouse gases such as CO 2 and N 2 O are produced. An increase of CO 2 gas emission to the atmosphere can block the heat loss from the earth surface and will increase the greenhouse effect that results in the temperature increase of the earth surface (global warming). Global warming can cause a very extreme climate change on earth. One of the solutions to reduce CO 2 gas emission produced by fossil fuel power plants is to utilize the plants with flue gas treatment facility. At such facility, CO 2 gas is reacted with certain mineral based substances thus can be used as base material in food-, pharmaceutical-, construction-, and cosmetic industry. Another alternative to reduce CO 2 gas emission is by replacing fossil fuel power plants with nuclear power plants. Considering the environmental and economic aspects, the nuclear power plant does not emit CO 2 gas, so that the use of nuclear power plant can mitigate the impact of global warming. Based on the operational experience of nuclear power plants in advanced countries, the cost of generating electricity from nuclear power plants is more competitive than that of fossil fuel power plant. (author)

  10. A model for detailed evaluation of fossil-energy saving by utilizing unused but possible energy-sources on a city scale

    International Nuclear Information System (INIS)

    Mori, Yasuhumi; Kikegawa, Yukihiro; Uchida, Hiroyuki

    2007-01-01

    There is growing interest in the utilization of unused, but possible, energy sources to reduce carbon-dioxide emissions and fossil-energy consumption, and especially to comply with the Kyoto Protocol which came into effect in 2005. Detailed considerations of plant location, land use and life cycle analysis, however, have not yet been fully estimated with a view to confirming the advantages of the new energy-source usage. A model for heat energy from river water and treated sewage water, and waste-heat energy from municipal solid-waste incineration plants was built and applied to the Tokyo urban area in Japan, considering the spatial and time-related distribution of demands and supplies, the shapes of buildings in the demand area, and life-cycle analysis. The model selected areas were those which should use these energies without prejudice, and sometimes the areas were far from the energy-source point. The reduction of carbon-dioxide emissions resulting from new energy-sources was about 8% of the reduction target for Tokyo in 1990. The model was able to precisely evaluate the new energy-usage, using data from both supply and demand sides. (author)

  11. Strategies and policies for nuclear power plant life management. Proceedings of the IAEA specialists meeting. Working document

    International Nuclear Information System (INIS)

    1998-01-01

    The purpose of the Specialists Meeting organized by the IAEA was to provide an international forum for discussing of recent results in national and utility experience in development of nuclear power plant life management programmes and their technical, regulatory and economic assessments. Plant life management requires detailed knowledge of ageing degradation of the components and the results of mitigation technologies. The basic conclusion includes the need of Guide on NPP Life management which should encompass: plant safety; plant availability; plant operating life extension; human resources policy; research and development needs

  12. Planning of the district heating system in copenhagen from an economic perspective comparing energy-savings versus fossil-free supply

    DEFF Research Database (Denmark)

    Harrestrup, Maria; Svendsen, Svend

    geothermal heating plants, may lead to oversized heating plants that are too expensive to build compared to implementing energy savings. Therefore reducing heat demand of existing buildings before investing in supply capacity will save society half the investment, indicating the importance of carrying out......The Danish government has adopted a long-term energy policy of being independent of fossil fuels by 2050, and that the energy supply for buildings should be independent of fossil fuels by 2035. Therefore, urgent action is needed to meet the requirements for the future energy system. One way...... of becoming independent of fossil fuels is to energy upgrade the existing building stock and change the energy supply to renewable energy sources. A sustainable way of providing space heating (SH) and domestic hot water (DHW) to buildings in densely populated areas is through the use of district heating (DH...

  13. R and D in support of CANDU plant life management

    International Nuclear Information System (INIS)

    Tapping, R.L.; Holt, R.A.

    1999-01-01

    One of the keys to the long-term success of CANDUs is a high capacity factor over the station design life. Considerable R and D in underway at AECL to develop technologies for assessing, monitoring and mitigating the effect of plant ageing and for improving plant performance and extending plant life. To achieve longer service life and to realize high capacity factor from CANDU stations, AECL is developing new technologies to enhance fuel channel and steam generator inspection capabilities, to monitor system health, and to allow preventive maintenance and cleaning (e.g., on-line chemical cleaning processes that produce small volumes of wastes). The life management strategy for fuel channels and steam generators requires a program to inspect components on a routine basis to identify mechanisms that could potentially affect fitness-for-service. In the case of fuel channels, the strategy includes inspections for dimensional changes, flaw detection, and deuterium concentration. New techniques are been developed to enhance these inspection capabilities; examples include accurate measurement of the gap between a pressure tube and its calandria tube and rapid full-length inspections of steam generator tubes for all known flaw types. Central to life management of components are Fitness-for-Service Guidelines (FFSG) that have been developed with the CANDU Owners Group (COG) that provide a standardized method to assess the potential for propagation of flaws detected during in-service inspections, and assessment of any change in fracture characteristics of the material. FFSG continue to be improved with the development of new technologies such as the capability to credit relaxation of stresses due to creep and non-rejectable flaws in pressure tubes. Effective management of plant systems throughout their lifetime requires much more than data acquisition and display - it requires that system health is continually monitored and managed. AECL has developed a system Health Monitor

  14. Reliability Centered Maintenance as a tool for plant life extension

    International Nuclear Information System (INIS)

    Elliott, J.O.; Mulay, J.N.; Nakahara, Y.

    1991-01-01

    Currently in the nuclear industry there is a growing interest in lowering the cost and complexity of maintenance activities while at the same time improving plant reliability and safety in an effort to prepare for the technical and regulatory challenges of life extension. This seemingly difficult task is being aided by the introduction of a maintenance philosophy developed originally by the airline industry and subsequently applied with great success both in that industry and the U.S. military services. Reliability Centered Maintenance (RCM), in its basic form, may be described as a consideration of reliability and maintenance problems from a systems level approach, allowing a focus on preservation of system function as the aim of a maintenance program optimized for both safety and economics. It is this systematic view of plant maintenance, with the emphasis on overall functions rather than individual parts and components which sets RCM apart from past nuclear plant maintenance philosophies. It is also the factor which makes application of RCM an ideal first step in development of strategies for life extension, both for aging plants, and for plants just beginning their first license term. (J.P.N.)

  15. Right-handed fossil humans.

    Science.gov (United States)

    Lozano, Marina; Estalrrich, Almudena; Bondioli, Luca; Fiore, Ivana; Bermúdez de Castro, José-Maria; Arsuaga, Juan Luis; Carbonell, Eudald; Rosas, Antonio; Frayer, David W

    2017-11-01

    Fossil hominids often processed material held between their upper and lower teeth. Pulling with one hand and cutting with the other, they occasionally left impact cut marks on the lip (labial) surface of their incisors and canines. From these actions, it possible to determine the dominant hand used. The frequency of these oblique striations in an array of fossil hominins documents the typically modern pattern of 9 right- to 1 left-hander. This ratio among living Homo sapiens differs from that among chimpanzees and bonobos and more distant primate relatives. Together, all studies of living people affirm that dominant right-handedness is a uniquely modern human trait. The same pattern extends deep into our past. Thus far, the majority of inferred right-handed fossils come from Europe, but a single maxilla from a Homo habilis, OH-65, shows a predominance of right oblique scratches, thus extending right-handedness into the early Pleistocene of Africa. Other studies show right-handedness in more recent African, Chinese, and Levantine fossils, but the sample compiled for non-European fossil specimens remains small. Fossil specimens from Sima del los Huesos and a variety of European Neandertal sites are predominately right-handed. We argue the 9:1 handedness ratio in Neandertals and the earlier inhabitants of Europe constitutes evidence for a modern pattern of handedness well before the appearance of modern Homo sapiens. © 2017 Wiley Periodicals, Inc.

  16. Two fossil species of Metrosideros (Myrtaceae) from the Oligo-Miocene Golden Fleece locality in Tasmania, Australia.

    Science.gov (United States)

    Tarran, Myall; Wilson, Peter G; Macphail, Michael K; Jordan, Greg J; Hill, Robert S

    2017-06-01

    The capsular-fruited genus Metrosideros (Myrtaceae) is one of the most widely distributed flowering plant genera in the Pacific but is extinct in Australia today. The center of geographic origin for the genus and the reason for and timing of its extinction in Australia remain uncertain. We identify fossil Metrosideros fruits from the newly discovered Golden Fleece fossil flora in the Oligo-Miocene of Tasmania, Australia, shedding further light on these problems. Standard paleopalynological techniques were used to date the fossil-bearing sediments. Scanning electron microscopy and an auto-montage camera system were used to take high-resolution images of fossil and extant fruits taken from herbarium specimens. Fossils are identified using a nearest-living-relative approach. The fossil-bearing sediments are palynostratigraphically dated as being Proteacidites tuberculatus Zone Equivalent (ca. 33-16 Ma) in age and provide a confident Oligo-Miocene age for the macrofossils. Two new fossil species of Metrosideros are described and are here named Metrosideros dawsonii sp. nov. and Metrosideros wrightii sp. nov. These newly described fossil species of Metrosideros provide a second record of the genus in the Cenozoic of Australia, placing them in the late Early Oligocene to late Early Miocene. It is now apparent not only that Metrosideros was present in Australia, where the genus is now extinct, but that at least several Metrosideros species were present during the Cenozoic. These fossils further strengthen the case for an Australian origin of the genus. © 2017 Botanical Society of America.

  17. Geologic History of Eocene Stonerose Fossil Beds, Republic, Washington, USA

    Directory of Open Access Journals (Sweden)

    George E. Mustoe

    2015-07-01

    Full Text Available Eocene lakebed sediments at Stonerose Interpretive Center in Republic, Washington, USA are one of the most important Cenozoic fossil sites in North America, having gained international attention because of the abundance and diversity of plant, insect, and fish fossils. This report describes the first detailed geologic investigation of this unusual lagerstätten. Strata are gradationally divided into three units: Siliceous shale that originated as diatomite, overlain by laminated mudstone, which is in turn overlain by massive beds of lithic sandstone. The sedimentary sequence records topographic and hydrologic changes that caused a deep lake to become progressively filled with volcaniclastic detritus from earlier volcanic episodes. The location of the ancient lake within an active graben suggests that displacements along the boundary faults were the most likely trigger for changes in depositional processes.

  18. The rediscovered Hula painted frog is a living fossil.

    Science.gov (United States)

    Biton, Rebecca; Geffen, Eli; Vences, Miguel; Cohen, Orly; Bailon, Salvador; Rabinovich, Rivka; Malka, Yoram; Oron, Talya; Boistel, Renaud; Brumfeld, Vlad; Gafny, Sarig

    2013-01-01

    Amphibian declines are seen as an indicator of the onset of a sixth mass extinction of life on earth. Because of a combination of factors such as habitat destruction, emerging pathogens and pollutants, over 156 amphibian species have not been seen for several decades, and 34 of these were listed as extinct by 2004. Here we report the rediscovery of the Hula painted frog, the first amphibian to have been declared extinct. We provide evidence that not only has this species survived undetected in its type locality for almost 60 years but also that it is a surviving member of an otherwise extinct genus of alytid frogs, Latonia, known only as fossils from Oligocene to Pleistocene in Europe. The survival of this living fossil is a striking example of resilience to severe habitat degradation during the past century by an amphibian.

  19. Fossil wood flora from the Siwalik Group of Arunachal Pradesh, India and its climatic and phytogeographic significance

    Science.gov (United States)

    Srivastava, Gaurav; Mehrotra, R. C.; Srikarni, C.

    2018-02-01

    The plant fossil records from the Siwalik Group of Arunachal Pradesh, India are far from satisfactory due to remoteness and dense vegetation of the area. We report seven fossil woods of which three belong to the Middle Siwalik (Subansiri Formation), while the rest are from the Upper Siwalik (Kimin Formation). The modern analogues of the fossils from the Middle Siwalik are Lophopetalum littorale (Celastraceae), Afzelia-Intsia and Sindora siamensis (Fabaceae) and from the Upper Siwalik are Miliusa velutina (Annonaceae), Calophyllum tomentosum and Kayea (Calophyllaceae) and Diospyros melanoxylon (Ebenaceae). The dominance of diffuse porosity in the fossil woods indicates a tropical climate with low seasonality (little variation) in temperature, while a high proportion of large vessels and simple perforation plates in the assemblage infer high precipitation during the deposition of the sediments. The aforesaid inference is in strong agreement with the previous quantitative reconstruction based on fossil leaves. Several modern analogues of the fossil taxa are now growing in low latitudes possibly due to an increase in seasonality (increased variation) in temperature caused by the rising Himalaya.

  20. Fossil fuel savings, carbon emission reduction and economic attractiveness of medium-scale integrated biomass gasification combined cycle cogeneration plants

    Directory of Open Access Journals (Sweden)

    Kalina Jacek

    2012-01-01

    Full Text Available The paper theoretically investigates the system made up of fluidized bed gasifier, SGT-100 gas turbine and bottoming steam cycle. Different configurations of the combined cycle plant are examined. A comparison is made between systems with producer gas (PG and natural gas (NG fired turbine. Supplementary firing of the PG in a heat recovery steam generator is also taken into account. The performance of the gas turbine is investigated using in-house built Engineering Equation Solver model. Steam cycle is modeled using GateCycleTM simulation software. The results are compared in terms of electric energy generation efficiency, CO2 emission and fossil fuel energy savings. Finally there is performed an economic analysis of a sample project. The results show relatively good performance in the both alternative configurations at different rates of supplementary firing. Furthermore, positive values of economic indices were obtained. [Acknowledgements. This work was carried out within the frame of research project no. N N513 004036, titled: Analysis and optimization of distributed energy conversion plants integrated with gasification of biomass. The project is financed by the Polish Ministry of Science.

  1. Japanese plant life extension program

    International Nuclear Information System (INIS)

    Yoshitsugu, M.

    1988-01-01

    As one of the main items of up-grading light water reactor program in Japan, plant life extension has been recommended by Advisory Committee of Ministry of International trade and Industry and the practical work has begun to be carried out. It is overviewed here. After preliminary works, including investigation on the state of the arts through a entrusted survey work, participation in international meetings and exchange of informations with related organizations, actual work has just started. So-called critical components based on our experience during the past 17 years have been listed up and some experimental works inaugurated as from 1987

  2. Mechanistic modelling of Middle Eocene atmospheric carbon dioxide using fossil plant material

    Science.gov (United States)

    Grein, Michaela; Roth-Nebelsick, Anita; Wilde, Volker; Konrad, Wilfried; Utescher, Torsten

    2010-05-01

    Various proxies (such as pedogenic carbonates, boron isotopes or phytoplankton) and geochemical models were applied in order to reconstruct palaeoatmospheric carbon dioxide, partially providing conflicting results. Another promising proxy is the frequency of stomata (pores on the leaf surface used for gaseous exchange). In this project, fossil plant material from the Messel Pit (Hesse, Germany) is used to reconstruct atmospheric carbon dioxide concentration in the Middle Eocene by analyzing stomatal density. We applied the novel mechanistic-theoretical approach of Konrad et al. (2008) which provides a quantitative derivation of the stomatal density response (number of stomata per leaf area) to varying atmospheric carbon dioxide concentration. The model couples 1) C3-photosynthesis, 2) the process of diffusion and 3) an optimisation principle providing maximum photosynthesis (via carbon dioxide uptake) and minimum water loss (via stomatal transpiration). These three sub-models also include data of the palaeoenvironment (temperature, water availability, wind velocity, atmospheric humidity, precipitation) and anatomy of leaf and stoma (depth, length and width of stomatal porus, thickness of assimilation tissue, leaf length). In order to calculate curves of stomatal density as a function of atmospheric carbon dioxide concentration, various biochemical parameters have to be borrowed from extant representatives. The necessary palaeoclimate data are reconstructed from the whole Messel flora using Leaf Margin Analysis (LMA) and the Coexistence Approach (CA). In order to obtain a significant result, we selected three species from which a large number of well-preserved leaves is available (at least 20 leaves per species). Palaeoclimate calculations for the Middle Eocene Messel Pit indicate a warm and humid climate with mean annual temperature of approximately 22°C, up to 2540 mm mean annual precipitation and the absence of extended periods of drought. Mean relative air

  3. Life prediction study of reactor pressure vessel as essential technical foundation for plant life extension

    International Nuclear Information System (INIS)

    Nakajima, H.; Nakajima, N.; Kondo, T.

    1987-01-01

    The life of a LWR plant is determined essentially by the limit of reliable performance of the components which are difficult to replace without high economic and/or safety risks. Typical of such a component is the reactor pressure vessel (RPV). The engineering life of a RPV of a given quality of steel is considered to be a complex function of factors such as the resistance to fracture, which has deteriorated due to neutron irradiation and thermal aging, and generation of surface flaws by environmental effects such as corrosion and their growth under operational load that varies during steady state operation and transients. In an attempt to evaluate the engineering life of a RPV of a LWR, a preliminary survey was made by applying a set of knowledge accumulated primarily in the field of subcritical crack growth behavior of RPV steels in reactor water environments. The major conclusions drawn are: (1) the life of a RPV is dependent on the quality of steel used, particularly with respect to any minor impurities it contains. (2) The issue of plant life extension in RPV aspect is found to be optimistic for cases where the steels used satisfy a reasonable level of quality control. (3) The importance of providing sound scientific foundation is stressed for the implementation of a practicable life extension scheme: this can be established through intensified studies of flaw growth and fracture behaviours in well defined testings under reasonably simulated service conditions

  4. Ageing and plant life management software Comsy

    Energy Technology Data Exchange (ETDEWEB)

    Nopper, H.; Daeuwel, W.; Kastner, W. [Siemens Nuclear Power GmbH (SNP), Erlangen (Germany)

    2001-07-01

    Cost-effective power generation is becoming more important as the prices charged by power producers in the energy market continue to fall. To ease the cost situation there is a growing demand for innovative maintenance management methods which allow power plants to be economically operated over their entire lifetime. The purpose of a systematic ageing and plant life management program is to allow the lifetime of plant components to be planned, and to indicate when a component has reached the end of its effective lifetime before it fails. Another important function of such programs is to increase the availability of power plants as they age, and to enable implementation of a targeted maintenance strategy in terms of its economic and technical effect. Implementation of such programs requires the existence of detailed information concerning the status of the components as well as their operating conditions. Based on this information, an understanding of how the relevant ageing and degradation mechanisms work enables a prediction to be made concerning component lifetime. Advanced software programs provide such predictions at reasonable cost across all systems. (author)

  5. Ageing and plant life management software Comsy

    International Nuclear Information System (INIS)

    Nopper, H.; Daeuwel, W.; Kastner, W.

    2001-01-01

    Cost-effective power generation is becoming more important as the prices charged by power producers in the energy market continue to fall. To ease the cost situation there is a growing demand for innovative maintenance management methods which allow power plants to be economically operated over their entire lifetime. The purpose of a systematic ageing and plant life management program is to allow the lifetime of plant components to be planned, and to indicate when a component has reached the end of its effective lifetime before it fails. Another important function of such programs is to increase the availability of power plants as they age, and to enable implementation of a targeted maintenance strategy in terms of its economic and technical effect. Implementation of such programs requires the existence of detailed information concerning the status of the components as well as their operating conditions. Based on this information, an understanding of how the relevant ageing and degradation mechanisms work enables a prediction to be made concerning component lifetime. Advanced software programs provide such predictions at reasonable cost across all systems. (author)

  6. Plant life extension program for Indian PHWR power plants - Actual experience and future plans

    International Nuclear Information System (INIS)

    Sharma, M.B.; Ghoshal, B.; Shirolkar, K.M.; Ahmad, S.N.

    2002-01-01

    Full text: The Nuclear Power Corporation of India Limited (NPCIL) is responsible for design, construction and operation for all nuclear power plants in India. Currently, it has fourteen (14) reactor units under operation and another eight units are under various stages of planning and construction. India has adopted Pressurised Heavy Water Reactors (PHWRs) for the initial phase of its nuclear power program. In the earlier PHWRs zircaloy-2 has been used as coolant tube material. Subsequent studies and experience have shown their life to be considerably lower (about 10 full power years) than originally estimated. This meant that reactors at Rajasthan - 1 and 2 Madras - 1 and 2 Narora - 1 and 2 and Kakrapara-1 would require en-masse coolant channel replacement at least once in their lifetime. Subsequent reactors from Kakrapara-2 onwards would not need this en-masse coolant channel replacement as the coolant tube material has been upgraded to Zr 2.5% Nb. En-masse coolant channel replacement and other life extension work have been carried out successfully in Rajasthan Unit-2 (RAPS-2). Madras unit-2 (MAPS-2) has been shutdown since January 2002 and preparatory work for en-masse coolant channel replacement and plant life extension is in progress. This paper discusses in brief the experience of RAPS-2 in carrying out the above jobs as well as the strategies being adopted for MAPS-2. Since the coolant channel replacement work requires a plant outage of about 18 months, this opportunity is used to extend life of existing systems as well as upgradation work. This life extension and upgradation program is based on the results of detailed in service inspection, evaluation of performance of critical equipment, obsolescence and other strategic reasons. This paper discusses in detail some of the major areas of work done, for example introduction of supplementary control room, process control, computer based plant information and event analysis systems, provision of enhanced

  7. Multiple Threats to Child Health from Fossil Fuel Combustion: Impacts of Air Pollution and Climate Change.

    Science.gov (United States)

    Perera, Frederica P

    2017-02-01

    Approaches to estimating and addressing the risk to children from fossil fuel combustion have been fragmented, tending to focus either on the toxic air emissions or on climate change. Yet developing children, and especially poor children, now bear a disproportionate burden of disease from both environmental pollution and climate change due to fossil fuel combustion. This commentary summarizes the robust scientific evidence regarding the multiple current and projected health impacts of fossil fuel combustion on the young to make the case for a holistic, child-centered energy and climate policy that addresses the full array of physical and psychosocial stressors resulting from fossil fuel pollution. The data summarized here show that by sharply reducing our dependence on fossil fuels we would achieve highly significant health and economic benefits for our children and their future. These benefits would occur immediately and also play out over the life course and potentially across generations. Going beyond the powerful scientific and economic arguments for urgent action to reduce the burning of fossil fuels is the strong moral imperative to protect our most vulnerable populations. Citation: Perera FP. 2017. Multiple threats to child health from fossil fuel combustion: impacts of air pollution and climate change. Environ Health Perspect 125:141-148; http://dx.doi.org/10.1289/EHP299.

  8. Miocene Fossils Reveal Ancient Roots for New Zealand's Endemic Mystacina (Chiroptera and Its Rainforest Habitat.

    Directory of Open Access Journals (Sweden)

    Suzanne J Hand

    Full Text Available The New Zealand endemic bat family Mystacinidae comprises just two Recent species referred to a single genus, Mystacina. The family was once more diverse and widespread, with an additional six extinct taxa recorded from Australia and New Zealand. Here, a new mystacinid is described from the early Miocene (19-16 Ma St Bathans Fauna of Central Otago, South Island, New Zealand. It is the first pre-Pleistocene record of the modern genus and it extends the evolutionary history of Mystacina back at least 16 million years. Extant Mystacina species occupy old-growth rainforest and are semi-terrestrial with an exceptionally broad omnivorous diet. The majority of the plants inhabited, pollinated, dispersed or eaten by modern Mystacina were well-established in southern New Zealand in the early Miocene, based on the fossil record from sites at or near where the bat fossils are found. Similarly, many of the arthropod prey of living Mystacina are recorded as fossils in the same area. Although none of the Miocene plant and arthropod species is extant, most are closely related to modern taxa, demonstrating potentially long-standing ecological associations with Mystacina.

  9. The greenhouse gas emissions and fossil energy requirement of bioplastics from cradle to gate of a biomass refinery.

    Science.gov (United States)

    Yu, Jian; Chen, Lilian X L

    2008-09-15

    Polyhydroxyalkanoates (PHA) are promising eco-friendly bioplastics that can be produced from cellulosic ethanol biorefineries as value-added coproducts. A cradle-to-factory-gate life cycle assessment is performed with two important categories: the greenhouse gas (GHG)emissions and fossil energy requirement per kg of bioplastics produced. The analysis indicates that PHA bioplastics contribute clearly to the goal of mitigating GHG emissions with only 0.49 kg CO(2-e) being emitted from production of 1 kg of resin. Compared with 2-3 kg CO(2-e) of petrochemical counterparts, it is about 80% reduction of the global warming potential. The fossil energy requirement per kg of bioplastics is 44 MJ, lowerthan those of petrochemical counterparts (78-88 MJ/kg resin). About 62% of fossil energy is used for processing utilities and wastewater treatment, and the rest is required for raw materials in different life cycle stages.

  10. The original colours of fossil beetles.

    Science.gov (United States)

    McNamara, Maria E; Briggs, Derek E G; Orr, Patrick J; Noh, Heeso; Cao, Hui

    2012-03-22

    Structural colours, the most intense, reflective and pure colours in nature, are generated when light is scattered by complex nanostructures. Metallic structural colours are widespread among modern insects and can be preserved in their fossil counterparts, but it is unclear whether the colours have been altered during fossilization, and whether the absence of colours is always real. To resolve these issues, we investigated fossil beetles from five Cenozoic biotas. Metallic colours in these specimens are generated by an epicuticular multi-layer reflector; the fidelity of its preservation correlates with that of other key cuticular ultrastructures. Where these other ultrastructures are well preserved in non-metallic fossil specimens, we can infer that the original cuticle lacked a multi-layer reflector; its absence in the fossil is not a preservational artefact. Reconstructions of the original colours of the fossils based on the structure of the multi-layer reflector show that the preserved colours are offset systematically to longer wavelengths; this probably reflects alteration of the refractive index of the epicuticle during fossilization. These findings will allow the former presence, and original hue, of metallic structural colours to be identified in diverse fossil insects, thus providing critical evidence of the evolution of structural colour in this group.

  11. Radiation exposures due to fossil fuel combustion

    Science.gov (United States)

    Beck, Harold L.

    The current consensus regarding the potential radiation exposures resulting from the combustion of fossil fuels is examined. Sources, releases and potential doses to humans are discussed, both for power plants and waste materials. It is concluded that the radiation exposure to most individuals from any pathway is probably insignificant, i.e. only a tiny fraction of the dose received from natural sources in soil and building materials. Any small dose that may result from power-plant emissions will most likely be from inhalation of the small insoluble ash particles from the more poorly controlled plants burning higher than average activity fuel, rather than from direct or indirect ingestion of food grown on contaminated soil. One potentially significant pathway for exposure to humans that requires further evaluation is the effect on indoor external γ-radiation levels resulting from the use of flyash in building materials. The combustion of natural gas in private dwellings is also discussed, and the radiological consequences are concluded to be generally insignificant, except under certain extraordinary circumstances.

  12. Life cycle evaluation of an intercooled gas turbine plant used in conjunction with renewable energy

    Directory of Open Access Journals (Sweden)

    Thank-God Isaiah

    2016-09-01

    Full Text Available The life cycle estimation of power plants is important for gas turbine operators. With the introduction of wind energy into the grid, gas turbine operators now operate their plants in Load–Following modes as back-ups to the renewable energy sources which include wind, solar, etc. The motive behind this study is to look at how much life is consumed when an intercooled power plant with 100 MW power output is used in conjunction with wind energy. This operation causes fluctuations because the wind energy is unpredictable and overtime causes adverse effects on the life of the plant – The High Pressure Turbine Blades. Such fluctuations give rise to low cycle fatigue and creep failure of the blades depending on the operating regime used. A performance based model that is capable of estimating the life consumed of an intercooled power plant has been developed. The model has the capability of estimating the life consumed based on seasonal power demands and operations. An in-depth comparison was undertaken on the life consumed during the seasons of operation and arrives at the conclusion that during summer, the creep and low cycle life is consumed higher than the rest periods. A comparison was also made to determine the life consumed between Load–Following and stop/start operating scenarios. It was also observed that daily creep life consumption in summer was higher than the winter period in-spite of having lower average daily operating hours in a Start–Stop operating scenario.

  13. A methodology for on-line fatigue life monitoring of Indian nuclear power plant components

    International Nuclear Information System (INIS)

    Mukhopadhyay, N.K.; Dutta, B.K.; Kushawaha, H.S.

    1992-01-01

    Fatigue is one of the most important aging effects of nuclear power plant components. Information about accumulation of fatigue helps in assessing structural degradation of the components. This assists in-service inspection and maintenance and may also support future life extension program of a plant. In the present report a methodology is being proposed for monitoring on line fatigue life of nuclear power plant components using available plant instrumentations. Major factors affecting fatigue life of a nuclear power plant components are the fluctuations of temperature, pressure and flow rate. Green's function technique is used in on line fatigue monitoring as computation time is much less than finite element method. A code has been developed which computes temperature and stress Green's functions in 2-D and axisymmetric structure by finite element method due to unit change in various fluid parameters. A post processor has also been developed which computes the temperature and stress responses using corresponding Green's functions and actual fluctuation in fluid parameters. In this post processor, the multiple site problem is solved by superimposing single site Green's function technique. It is also shown that Green's function technique is best suited for on line fatigue life monitoring of nuclear power plant components. (author). 6 refs., 43 figs

  14. Relative economic incentives for hydrogen from nuclear, renewable, and fossil energy sources

    International Nuclear Information System (INIS)

    Gorensek, Maximilian B.; Forsberg, Charles W.

    2009-01-01

    The specific hydrogen market determines the value of hydrogen from different sources. Each hydrogen production technology has its own distinct characteristics. For example, steam reforming of natural gas produces only hydrogen. In contrast, nuclear and solar hydrogen production facilities produce hydrogen together with oxygen as a by-product or co-product. For a user who needs both oxygen and hydrogen, the value of hydrogen from nuclear and solar plants is higher than that from a fossil plant because ''free'' oxygen is produced as a by-product. Six factors that impact the relative economics of fossil, nuclear, and solar hydrogen production to the customer are identified: oxygen by-product, avoidance of carbon dioxide emissions, hydrogen transport costs, storage costs, availability of low-cost heat, and institutional factors. These factors imply that different hydrogen production technologies will be competitive in different markets and that the first markets for nuclear and solar hydrogen will be those markets in which they have a unique competitive advantage. These secondary economic factors are described and quantified in terms of dollars per kilogram of hydrogen. (author)

  15. Fossil evidence for open, Proteaceae-dominated heathlands and fire in the Late Cretaceous of Australia.

    Science.gov (United States)

    Carpenter, Raymond J; Macphail, Michael K; Jordan, Gregory J; Hill, Robert S

    2015-12-01

    The origin of biomes is of great interest globally. Molecular phylogenetic and pollen evidence suggest that several plant lineages that now characterize open, burnt habitats of the sclerophyll biome, became established during the Late Cretaceous of Australia. However, whether this biome itself dates to that time is problematic, fundamentally because of the near-absence of relevant, appropriately aged, terrestrial plant macro- or mesofossils. We recovered, identified, and interpreted the ecological significance of fossil pollen, foliar and other remains from a section of core drilled in central Australia, which we dated as Late Campanian-Maastrichtian. The sediments contain plant fossils that indicate nutrient-limited, open, sclerophyllous vegetation and abundant charcoal as evidence of fire. Most interestingly, >30 pollen taxa and at least 12 foliage taxa are attributable to the important Gondwanan family Proteaceae, including several minute, amphistomatic, and sclerophyllous foliage forms consistent with subfamily Proteoideae. Microfossils, including an abundance of Sphagnales and other wetland taxa, provided strong evidence of a fenland setting. The local vegetation also included diverse Ericaceae and Liliales, as well as a range of ferns and gymnosperms. The fossils provide strong evidence in support of hypotheses of great antiquity for fire and open vegetation in Australia, point to extraordinary persistence of Proteaceae that are now emblematic of the Mediterranean-type climate southwestern Australian biodiversity hotspot and raise the profile of open habitats as centers of ancient lineages. © 2015 Botanical Society of America.

  16. Site-specific analysis of hybrid geothermal/fossil power plants

    Energy Technology Data Exchange (ETDEWEB)

    1977-06-01

    A preliminary economic analysis of a hybrid geothermal/coal power plant was completed for four geothermal resource areas: Roosevelt Hot Springs, Coso Hot Springs, East Mesa, and Long Valley. A hybrid plant would be economically viable at Roosevelt Hot Springs and somewhat less so at Coso Hot Springs. East Mesa and Long Valley show no economic promise. A well-designed hybrid plant could use geothermal energy for boiler feedwater heating, auxiliary power, auxiliary heating, and cooling water. Construction and operation of a hybrid plant at either Roosevelt Hot Springs or Coso Hot Springs is recommended. A modified version of the Lawrence Berkeley Livermore GEOTHM Program is the major analytical tool used in the analysis. The Intermountain Power Project is the reference all coal-fired plant.

  17. Planning study and economic feasibility for extended life operation of light water reactor plants

    International Nuclear Information System (INIS)

    Negin, C.A.; Goudarzi, L.A.; Kenworthy, L.U.; Lapides, M.E.

    1980-01-01

    The purpose of this planning study was to perform an assessment of the engineering and economic feasibility of extended life operation of present nuclear power plant units and to recommend future programs that may be warranted by the feasibility assessments. This effort concludes, essentially, that there is sufficient economic motivation for refurbishment to warrant more extensive examination for present plants and to identify possible design modifications that would facilitate extended service life in future plants. The costs of replacing the deterioration-prone equipment in a nuclear power plant appear to represent a small portion of the total plant costs, provided downtime is not excessive. A refurbishment and economic analysis is presented

  18. A Reliability-Based Determination of Economic Life of Marine power plants

    International Nuclear Information System (INIS)

    Atua, K.

    1999-01-01

    The reliability-based life approach is utilized. Selective failure modes of marine power plants are used for illustration. A case study of the Egyptian Commercial Fleet owned by the Public Sector Company was analyzed and used to establish a demonstration of the expected economic life based on local operating and maintenance conditions. The data acquired is analyzed and failure trend is derived for each failure mode. Probabilistic techniques are used to randomly generate numbers and times of occurrence of different failure modes. The reliability analysis is performed on the life span expected by the manufacture to predict the total number of failures, dependent failures, and cost of failures. Total expenditure due to random failure and cost of scheduled maintenance together with the annual income are utilized (using the time value of money) to determine the economic life of the plant. Conclusions are derived and recommendations for the enhancement of this work in the future are made

  19. Analysis of environmental impact phase in the life cycle of a nuclear power plant

    International Nuclear Information System (INIS)

    Hernandez del M, C.

    2015-01-01

    The life-cycle analysis covers the environmental aspects of a product throughout its life cycle. The focus of this study was to apply a methodology of life-cycle analysis for the environmental impact assessment of a nuclear power plant by analyzing international standards ISO 14040 and 14044. The methodology of life-cycle analysis established by the ISO 14044 standard was analyzed, as well as the different impact assessment methodologies of life cycle in order to choose the most appropriate for a nuclear power plant; various tools for the life-cycle analysis were also evaluated, as is the use of software and the use of databases to feed the life cycle inventory. The functional unit chosen was 1 KWh of electricity, the scope of analysis ranging from the construction and maintenance, disposal of spent fuel to the decommissioning of the plant, the manufacturing steps of the fuel were excluded because in Mexico is not done this stage. For environmental impact assessment was chosen the Recipe methodology which evaluates up to 18 impact categories depending on the project. In the case of a nuclear power plant were considered only categories of depletion of the ozone layer, climate change, ionizing radiation and formation of particulate matter. The different tools for life-cycle analysis as the methodologies of impact assessment of life cycle, different databases or use of software have been taken according to the modeling of environmental sensitivities of different regions, because in Mexico the methodology for life-cycle analysis has not been studied and still do not have all the tools necessary for the evaluation, so the uncertainty of the data supplied and results could be higher. (Author)

  20. Transcriptional responses to sucrose mimic the plant-associated life style of the plant growth promoting endophyte Enterobacter sp. 638.

    Science.gov (United States)

    Taghavi, Safiyh; Wu, Xiao; Ouyang, Liming; Zhang, Yian Biao; Stadler, Andrea; McCorkle, Sean; Zhu, Wei; Maslov, Sergei; van der Lelie, Daniel

    2015-01-01

    Growth in sucrose medium was previously found to trigger the expression of functions involved in the plant associated life style of the endophytic bacterium Enterobacter sp. 638. Therefore, comparative transcriptome analysis between cultures grown in sucrose or lactate medium was used to gain insights in the expression levels of bacterial functions involved in the endophytic life style of strain 638. Growth on sucrose as a carbon source resulted in major changes in cell physiology, including a shift from a planktonic life style to the formation of bacterial aggregates. This shift was accompanied by a decrease in transcription of genes involved in motility (e.g., flagella biosynthesis) and an increase in the transcription of genes involved in colonization, adhesion and biofilm formation. The transcription levels of functions previously suggested as being involved in endophytic behavior and functions responsible for plant growth promoting properties, including the synthesis of indole-acetic acid, acetoin and 2,3-butanediol, also increased significantly for cultures grown in sucrose medium. Interestingly, despite an abundance of essential nutrients transcription levels of functions related to uptake and processing of nitrogen and iron became increased for cultures grown on sucrose as sole carbon source. Transcriptome data were also used to analyze putative regulatory relationships. In addition to the small RNA csrABCD regulon, which seems to play a role in the physiological adaptation and possibly the shift between free-living and plant-associated endophytic life style of Enterobacter sp. 638, our results also pointed to the involvement of rcsAB in controlling responses by Enterobacter sp. 638 to a plant-associated life style. Targeted mutagenesis was used to confirm this role and showed that compared to wild-type Enterobacter sp. 638 a ΔrcsB mutant was affected in its plant growth promoting ability.

  1. Transcriptional responses to sucrose mimic the plant-associated life style of the plant growth promoting endophyte Enterobacter sp. 638.

    Directory of Open Access Journals (Sweden)

    Safiyh Taghavi

    Full Text Available Growth in sucrose medium was previously found to trigger the expression of functions involved in the plant associated life style of the endophytic bacterium Enterobacter sp. 638. Therefore, comparative transcriptome analysis between cultures grown in sucrose or lactate medium was used to gain insights in the expression levels of bacterial functions involved in the endophytic life style of strain 638. Growth on sucrose as a carbon source resulted in major changes in cell physiology, including a shift from a planktonic life style to the formation of bacterial aggregates. This shift was accompanied by a decrease in transcription of genes involved in motility (e.g., flagella biosynthesis and an increase in the transcription of genes involved in colonization, adhesion and biofilm formation. The transcription levels of functions previously suggested as being involved in endophytic behavior and functions responsible for plant growth promoting properties, including the synthesis of indole-acetic acid, acetoin and 2,3-butanediol, also increased significantly for cultures grown in sucrose medium. Interestingly, despite an abundance of essential nutrients transcription levels of functions related to uptake and processing of nitrogen and iron became increased for cultures grown on sucrose as sole carbon source. Transcriptome data were also used to analyze putative regulatory relationships. In addition to the small RNA csrABCD regulon, which seems to play a role in the physiological adaptation and possibly the shift between free-living and plant-associated endophytic life style of Enterobacter sp. 638, our results also pointed to the involvement of rcsAB in controlling responses by Enterobacter sp. 638 to a plant-associated life style. Targeted mutagenesis was used to confirm this role and showed that compared to wild-type Enterobacter sp. 638 a ΔrcsB mutant was affected in its plant growth promoting ability.

  2. Fossil mega- and microflora from the Březno Beds s.s. (Bohemian Cretaceous Basin, Coniacian)

    Czech Academy of Sciences Publication Activity Database

    Halamski, A. T.; Kvaček, J.; Svobodová, Marcela

    2018-01-01

    Roč. 253, June 2018 (2018), s. 123-138 ISSN 0034-6667 Institutional support: RVO:67985831 Keywords : fossil plant * Cretaceous * taxonomy * paleobotany * Coniacian * Czech Republic Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Paleontology Impact factor: 1.817, year: 2016

  3. Soft-Bodied Fossils Are Not Simply Rotten Carcasses - Toward a Holistic Understanding of Exceptional Fossil Preservation: Exceptional Fossil Preservation Is Complex and Involves the Interplay of Numerous Biological and Geological Processes.

    Science.gov (United States)

    Parry, Luke A; Smithwick, Fiann; Nordén, Klara K; Saitta, Evan T; Lozano-Fernandez, Jesus; Tanner, Alastair R; Caron, Jean-Bernard; Edgecombe, Gregory D; Briggs, Derek E G; Vinther, Jakob

    2018-01-01

    Exceptionally preserved fossils are the product of complex interplays of biological and geological processes including burial, autolysis and microbial decay, authigenic mineralization, diagenesis, metamorphism, and finally weathering and exhumation. Determining which tissues are preserved and how biases affect their preservation pathways is important for interpreting fossils in phylogenetic, ecological, and evolutionary frameworks. Although laboratory decay experiments reveal important aspects of fossilization, applying the results directly to the interpretation of exceptionally preserved fossils may overlook the impact of other key processes that remove or preserve morphological information. Investigations of fossils preserving non-biomineralized tissues suggest that certain structures that are decay resistant (e.g., the notochord) are rarely preserved (even where carbonaceous components survive), and decay-prone structures (e.g., nervous systems) can fossilize, albeit rarely. As we review here, decay resistance is an imperfect indicator of fossilization potential, and a suite of biological and geological processes account for the features preserved in exceptional fossils. © 2017 The Authors. BioEssays Published by WILEY Periodicals, Inc.

  4. Uranium concentrations in fossils measured by SIMS

    International Nuclear Information System (INIS)

    Uyeda, Chiaki; Okano, Jun

    1988-01-01

    Semiquantitative analyses of uranium in fossil bones and teeth were carried out by SIMS. The results show a tendency that uranium concentrations in the fossils increase with the ages of the fossils. It is noticed that fossil bones and teeth having uranium concentration of more than several hundred ppm are not rare. (author)

  5. CANDU steam generator life management: laboratory data and plant experience

    International Nuclear Information System (INIS)

    Tapping, R.L.; Nickerson, J.H.; Subash, N.; Wright, M.D.

    2001-10-01

    As CANDU reactors enter middle age, and the potential value of the plants in a deregulated market is realized, life management and life extension issues become increasingly important. An accurate assessment of critical components, such as the CANDU 6 steam generators (SGs), is crucial for successful life extension, and in this context, material issues are a key factor. For example, service experience with Alloy 900 tubing indicates very low levels of degradation within CANDU SGs; the same is also noted worldwide. With little field data for extrapolation, life management and life extension decisions for the tube bundles rely heavily on laboratory data. Similarly, other components of the SGs, in particular the secondary side internals, have only limited inspection data upon which to base a condition assessment. However, in this case there are also relatively little laboratory data. Decisions on life management and life extension are further complicated--not only is inspection access often restricted, but repair or replacement options for internal components are, by definition, also limited. The application of CANDU SG life management and life extension requires a judicious blend of in-service data, laboratory research and development (R and D) and materials and engineering judgment. For instance, the available laboratory corrosion and fretting wear data for Alloy 800 SG tubing have been compared with plant experience (with all types of tubing), and with crevice chemistry simulations, in order to provide an appropriate inspection guide for a 50-year SG life. A similar approach has been taken with other SG components, where the emphasis has been on known degradation mechanisms worldwide. This paper provides an outline of the CANDU SG life management program, including the results to date, a summary of the supporting R and D program showing the integration with condition assessment and life management activities, and the approach taken to life extension for a typical

  6. CANDU plant life management - An integrated approach

    International Nuclear Information System (INIS)

    Hopkins, J.R.

    1998-01-01

    An integrated approach to plant life management has been developed for CANDU reactors. Strategies, methods, and procedures have been developed for assessment of critical systems structures and components and for implementing a reliability centred maintenance program. A Technology Watch program is being implemented to eliminate 'surprises'. Specific work has been identified for 1998. AECL is working on the integrated program with CANDU owners and seeks participation from other CANDU owners

  7. Robust optimisation for self-scheduling and bidding strategies of hybrid CSP-fossil power plants

    DEFF Research Database (Denmark)

    Pousinho, H.M.I.; Contreras, J.; Pinson, P.

    2015-01-01

    between the molten-salt thermal energy storage (TES) and a fossil-fuel backup to overcome solar irradiation insufficiency, but with emission allowances constrained in the backup system to mitigate carbon footprint. A robust optimisation-based approach is proposed to provide the day-ahead self...

  8. Life Cycle Assessment to Municipal Wastewater Treatment Plant

    International Nuclear Information System (INIS)

    Garcia, J. s.; Herrera, I.; Rodriguez, A.

    2011-01-01

    The evaluation was done at a Municipal Wastewater Treatment Plant (MWTP), through the application of the methodology of Life Cycle Assessment (LCA) performed by using a commercial tool called SIMAPRO. The objective of this study was to apply Life Cycle Assessment (LCA) in two systems: municipal wastewater effluent without treatment and Wastewater Treatment Plant (WTP) that is operating in poor condition and has a direct discharge to a natural body, which is a threat to the environment. A LCA was done using SIMAPRO 7, in order to determine the environmental impact in each scenery was assessed, a comparison of the impacts and propose improvements to decrease, following the steps this methodology and according to the respective standardized normative (ISO 14040/ ISO 14044). In this study, most of used data have been reported by the plant from early 2010 and some data from literature. We identified the environmental impacts generated by the treatment, making emphasis on those related to the subsequent use of the water body receiving the discharge, such as eutrophication (near to 15% reduction). Likewise, a comparative analysis between the impacts in the two systems, with and without treatment by analyzing the variation in the impact categories studied. Finally within this work, alternatives of improvements, in order to reduce the identified and quantified impacts are proposed. (Author) 33 refs.

  9. Multiple Threats to Child Health from Fossil Fuel Combustion: Impacts of Air Pollution and Climate Change

    Science.gov (United States)

    Perera, Frederica P.

    2016-01-01

    Background: Approaches to estimating and addressing the risk to children from fossil fuel combustion have been fragmented, tending to focus either on the toxic air emissions or on climate change. Yet developing children, and especially poor children, now bear a disproportionate burden of disease from both environmental pollution and climate change due to fossil fuel combustion. Objective: This commentary summarizes the robust scientific evidence regarding the multiple current and projected health impacts of fossil fuel combustion on the young to make the case for a holistic, child-centered energy and climate policy that addresses the full array of physical and psychosocial stressors resulting from fossil fuel pollution. Discussion: The data summarized here show that by sharply reducing our dependence on fossil fuels we would achieve highly significant health and economic benefits for our children and their future. These benefits would occur immediately and also play out over the life course and potentially across generations. Conclusion: Going beyond the powerful scientific and economic arguments for urgent action to reduce the burning of fossil fuels is the strong moral imperative to protect our most vulnerable populations. Citation: Perera FP. 2017. Multiple threats to child health from fossil fuel combustion: impacts of air pollution and climate change. Environ Health Perspect 125:141–148; http://dx.doi.org/10.1289/EHP299 PMID:27323709

  10. Fossils mollusc asemblage found at Zagarzazu, marine Pleistocene, Uruguay

    International Nuclear Information System (INIS)

    Rojas, A. . E mail: alejandra@fcien.edu.uy

    2004-01-01

    There are presented the results of the paleoecological analysis of the mollusc assemblage found at Zagarzazu, Colonia department. The fossils are well preserved, arranged in thin shell-beds with some specimens in life position. The assemblage is indicative of higher temperatures than present, and a strong marine influence. It is important to stress that new thermophilic molluscs for the marine Quaternary were found and that this locality represents a new Pleistocene marine record in Uruguay [es

  11. Life extension for German nuclear power plants

    International Nuclear Information System (INIS)

    Heller, W.

    2005-01-01

    The Federation of German Industries (BDI) commissioned a study of the ''Economic Effects of Alternative Lifetimes of Nuclear Power Plants in Germany.'' The expert organizations invited as authors were the Power Economy Institute of the University of Cologne (EWI) and Energy Environment Forecast Analysis GmbH (EEFA), Berlin. The reasons for commissioning the Study include the changed framework conditions (deregulation, CO 2 emission certificate trading, worldwide competition for resources), which have altered the energy supply situation in Europe. The findings of the Study were presented to the public by the BDI on October 26, 2005. The study deals with two scenarios of extended lifetimes for German nuclear power plants of 40 and 60 years as against the existing regulations with plant lifetimes limited to approx. 32 years. The longer service lives of plants are reflected in reduced electricity generation costs and thus may have a positive influence on electricity prices. Moreover, there would be additional growth of production together with additional jobs, all of which would add up to nearly 42,000 persons for all sectors of the economy as compared to the basic scenario. Also, CO 2 emissions could be curbed by up to 50 million tons of carbon dioxide. The Study offers ample and valid reasons in favor of extending the lifetimes of nuclear power plants. In the interest of general welfare, politics would be well advised to relax the restrictions on plant life in the course of this legislative term. (orig.)

  12. Trend in foreign countries of life extension for nuclear power plants

    International Nuclear Information System (INIS)

    Kusanagi, Hideo

    1992-01-01

    When the nuclear power generation in the world is converted to oil burning thermal power generation, the required quantity of oil is twice as much as the oil production in Saudi Arabia. This represents the size of the role that nuclear power generation plays. More than 30 years have already elapsed since the start of nuclear power generation, and the number of nuclear power plants in operation in the world was 426 as of the end of 1990, and their capacity of about 344 million kW is about 17% of the total generated electric power in the world. Though circumstances are different in respective countries, the construction of new nuclear power plants is not always advancing smoothly, and the possibility of operating existing nuclear power plants as long as possible has been investigated. In USA, the approved term of operation of nuclear power plants is 40 years, and the trend of the research and development of the plant life extension is described. In France, the life of nuclear power plants is not stipulated by the law. In U.K., also it is not stipulated by the law. The trend in these countries is reported. IAEA also has carried out the activities on this problem. (K.I.)

  13. Elucidating the consumption and CO_2 emissions of fossil fuels and low-carbon energy in the United States using Lotka–Volterra models

    International Nuclear Information System (INIS)

    Tsai, Bi-Huei; Chang, Chih-Jen; Chang, Chun-Hsien

    2016-01-01

    By using the Lotka–Volterra model, this work examines for the first time the feasibility of using low-carbon energy to reduce fossil fuel consumption in the United States and, ultimately, to decrease CO_2 emissions. The research sample in this work consists of data on energy consumption and CO_2 emissions in the United States. Parameter estimation results reveal that although the consumption of low-carbon energy increases the consumption of fossil fuels, the latter does not affect the former. Low-carbon energy usage, including nuclear energy and solar photovoltaic power, increases fossil fuel consumption because the entire lifetime of a nuclear or solar energy facility, from the construction of electricity plants to decommissioning, consumes tremendous amounts of fossil fuels. This result verifies the infeasibility of low-carbon energy to replace fossil fuels under the current mining technology, electricity generation skills and governmental policy in the United States and explains why the United States refused to become a signatory of the Kyoto Protocol. Equilibrium analysis results indicate that the annual consumption of fossil fuels will ultimately exceed that of low-carbon energy by 461%. Since our proposed Lotka–Volterra model accurately predicts the consumption and CO_2 emission of different energy sources, this work contributes to the energy policies. - Highlights: • Our Lotka–Volterra model accurately predicts consumption of different energy sources. • We find the current infeasibility of using low-carbon energy to reduce fossil fuels. • The set-up of nuclear and solar plants increases fossil fuel usage in the U.S. • The consumption of fossil fuels will exceed that of low-carbon energy by 435%. • United States government prefers economic development over environmental protection.

  14. Comparative Life Cycle Assessment of Lignocellulosic Ethanol Production: Biochemical Versus Thermochemical Conversion

    Science.gov (United States)

    Mu, Dongyan; Seager, Thomas; Rao, P. Suresh; Zhao, Fu

    2010-10-01

    Lignocellulosic biomass can be converted into ethanol through either biochemical or thermochemical conversion processes. Biochemical conversion involves hydrolysis and fermentation while thermochemical conversion involves gasification and catalytic synthesis. Even though these routes produce comparable amounts of ethanol and have similar energy efficiency at the plant level, little is known about their relative environmental performance from a life cycle perspective. Especially, the indirect impacts, i.e. emissions and resource consumption associated with the production of various process inputs, are largely neglected in previous studies. This article compiles material and energy flow data from process simulation models to develop life cycle inventory and compares the fossil fuel consumption, greenhouse gas emissions, and water consumption of both biomass-to-ethanol production processes. The results are presented in terms of contributions from feedstock, direct, indirect, and co-product credits for four representative biomass feedstocks i.e., wood chips, corn stover, waste paper, and wheat straw. To explore the potentials of the two conversion pathways, different technological scenarios are modeled, including current, 2012 and 2020 technology targets, as well as different production/co-production configurations. The modeling results suggest that biochemical conversion has slightly better performance on greenhouse gas emission and fossil fuel consumption, but that thermochemical conversion has significantly less direct, indirect, and life cycle water consumption. Also, if the thermochemical plant operates as a biorefinery with mixed alcohol co-products separated for chemicals, it has the potential to achieve better performance than biochemical pathway across all environmental impact categories considered due to higher co-product credits associated with chemicals being displaced. The results from this work serve as a starting point for developing full life cycle

  15. Carbon Capture and Water Emissions Treatment System (CCWESTRS) at Fossil-Fueled Electric Generating Plants

    Energy Technology Data Exchange (ETDEWEB)

    P. Alan Mays; Bert R. Bock; Gregory A. Brodie; L. Suzanne Fisher; J. Devereux Joslin; Donald L. Kachelman; Jimmy J. Maddox; N. S. Nicholas; Larry E. Shelton; Nick Taylor; Mark H. Wolfe; Dennis H. Yankee; John Goodrich-Mahoney

    2005-08-30

    The Tennessee Valley Authority (TVA), the Electric Power Research Institute (EPRI), and the Department of Energy-National Energy Technologies Laboratory (DOE-NETL) are evaluating and demonstrating integration of terrestrial carbon sequestration techniques at a coal-fired electric power plant through the use of Flue Gas Desulfurization (FGD) system gypsum as a soil amendment and mulch, and coal fly ash pond process water for periodic irrigation. From January to March 2002, the Project Team initiated the construction of a 40 ha Carbon Capture and Water Emissions Treatment System (CCWESTRS) near TVA's Paradise Fossil Plant on marginally reclaimed surface coal mine lands in Kentucky. The CCWESTRS is growing commercial grade trees and cover crops and is expected to sequester 1.5-2.0 MT/ha carbon per year over a 20-year period. The concept could be used to meet a portion of the timber industry's needs while simultaneously sequestering carbon in lands which would otherwise remain non-productive. The CCWESTRS includes a constructed wetland to enhance the ability to sequester carbon and to remove any nutrients and metals present in the coal fly ash process water runoff. The CCWESTRS project is a cooperative effort between TVA, EPRI, and DOE-NETL, with a total budget of $1,574,000. The proposed demonstration project began in October 2000 and has continued through December 2005. Additional funding is being sought in order to extend the project. The primary goal of the project is to determine if integrating power plant processes with carbon sequestration techniques will enhance carbon sequestration cost-effectively. This goal is consistent with DOE objectives to provide economically competitive and environmentally safe options to offset projected growth in U.S. baseline emissions of greenhouse gases after 2010, achieve the long-term goal of $10/ton of avoided net costs for carbon sequestration, and provide half of the required reductions in global greenhouse gases by

  16. New Optical Sensor Suite for Ultrahigh Temperature Fossil Fuel Application

    Energy Technology Data Exchange (ETDEWEB)

    John Coggin; Tom Flynn; Jonas Ivasauskas; Daniel Kominsky; Carrie Kozikowski; Russell May; Michael Miller; Tony Peng; Gary Pickrell; Raymond Rumpf; Kelly Stinson-Bagby; Dan Thorsen; Rena Wilson

    2007-12-31

    Accomplishments of a program to develop and demonstrate photonic sensor technology for the instrumentation of advanced powerplants and solid oxide fuel cells are described. The goal of this project is the research and development of advanced, robust photonic sensors based on improved sapphire optical waveguides, and the identification and demonstration of applications of the new sensors in advanced fossil fuel power plants, where the new technology will contribute to improvements in process control and monitoring.

  17. Current status of technology for plant life management

    International Nuclear Information System (INIS)

    Roche, B.

    2000-01-01

    In most developed countries of the world, deregulation of electricity markets has been established: competition is fierce, and utilities have to improve the competitiveness of their plants. It is an important challenge for nuclear power plants: a smart way to deal with this problem is life extension of existing units. The financial stakes associated with maintaining or extending the lifetime of nuclear power stations are very high; thus, if their lifetime is shortened by about ten years, dismantling and renewal would be brought forward which would increase their costs by several tens of billions of French francs. Furthermore, every extra year of operation of a 900 MWe unit should save about 500 million French francs per year on financial charges that would be necessary for a new investment, provided that maintenance costs do not become excessive. In order to succeed, utilities must improve their knowledge of ageing mechanisms, demonstrate to safety authorities the feasibility of life extension (especially taking into account critical components), operate existing units in an exemplary way, manage and master the long-term evolution of the safety reference state. (author)

  18. Regulatory considerations for extending the life of nuclear plants

    International Nuclear Information System (INIS)

    Feinroth, H.; Rowden, M.

    1987-01-01

    This study provides the nuclear industry with its first systematic evaluation of the regulatory implications of nuclear plant life extension. The report recommends courses of action that might be followed by the industry and its regulators to ensure the development of a process that is both reasonable and predictable. The study holds that ''license renewal should be a reaffirmation of the ongoing and continuous process of hardware renewal that is already an integral part of every nuclear power plant's operating program.'' The report's findings can be used by the new AIF Subcommittee on License Renewal, by other industry groups, and by individual licensees in making constructive recommendations to NRC for the development of a workable license renewal policy. No such policy now exists, and the establishment of one is preferable to allowing the consideration of life extension matters on a case-by-case basis

  19. Bayesian phylogenetic estimation of fossil ages.

    Science.gov (United States)

    Drummond, Alexei J; Stadler, Tanja

    2016-07-19

    Recent advances have allowed for both morphological fossil evidence and molecular sequences to be integrated into a single combined inference of divergence dates under the rule of Bayesian probability. In particular, the fossilized birth-death tree prior and the Lewis-Mk model of discrete morphological evolution allow for the estimation of both divergence times and phylogenetic relationships between fossil and extant taxa. We exploit this statistical framework to investigate the internal consistency of these models by producing phylogenetic estimates of the age of each fossil in turn, within two rich and well-characterized datasets of fossil and extant species (penguins and canids). We find that the estimation accuracy of fossil ages is generally high with credible intervals seldom excluding the true age and median relative error in the two datasets of 5.7% and 13.2%, respectively. The median relative standard error (RSD) was 9.2% and 7.2%, respectively, suggesting good precision, although with some outliers. In fact, in the two datasets we analyse, the phylogenetic estimate of fossil age is on average less than 2 Myr from the mid-point age of the geological strata from which it was excavated. The high level of internal consistency found in our analyses suggests that the Bayesian statistical model employed is an adequate fit for both the geological and morphological data, and provides evidence from real data that the framework used can accurately model the evolution of discrete morphological traits coded from fossil and extant taxa. We anticipate that this approach will have diverse applications beyond divergence time dating, including dating fossils that are temporally unconstrained, testing of the 'morphological clock', and for uncovering potential model misspecification and/or data errors when controversial phylogenetic hypotheses are obtained based on combined divergence dating analyses.This article is part of the themed issue 'Dating species divergences using

  20. Determination of a CO sub 2 rating formula for fossil-fired, electricity-generating power plants. Zur Festlegung einer CO sub 2 -Steuerformel fuer fossil-befeuerte, stromerzeugende Kraftwerke

    Energy Technology Data Exchange (ETDEWEB)

    Seifritz, W [Stuttgart Univ. (Germany). Inst. fuer Energiewirtschaft und Rationelle Energieanwendung

    1991-12-01

    Dr. Martin Proske was right in Ref (1) to point to the fact that a CO{sub 2}-tax has to take into account the quality of the secondary energy carrier, too. In the opinion of the author, however, the tax-formula of M. Proske has still to be modified if CO{sub 2}-free fossil power stations were introduced. Failing this, the development of CO{sub 2}-free power stations with the necessary removal and disposal of CO{sub 2} would be not attractive although this future type of a power station could substantially contribute to the climate-neutrality of fossil fuels. A corresponding modification of the tax-formula is proposed. (orig.).

  1. Greenhouse gas emissions reduction from fossil fuels: options and prospects

    International Nuclear Information System (INIS)

    McDonald, M.M.

    1999-01-01

    If levels of carbon dioxide in the atmosphere are to be stabilized over the next 50 years, net emissions from the use of fossil fuels have to be reduced. One concept worth exploring is the removal of carbon dioxide from plant flue gases and disposing of it in a manner that sequesters it from the atmosphere. A number of technologies, which are either commercially available or under development, promise to make this concept viable. The question of where to dispose of the carbon dioxide removed is not the limiting factor, given the potential for use in enhanced hydrocarbon production as well as other geological disposal options. In the longer term, fossil fuel use will significantly decline, but these extraction and sequestration technologies can provide the time for the transition to take place in a manner which causes least impact to the economies of the world. (author)

  2. Brain surgery breathes new life into aging plants

    Energy Technology Data Exchange (ETDEWEB)

    Makansi, J. [Pearl Street Inc. (United States)

    2006-04-15

    Unlike managing the human aging process, extending the life of a power plant often includes brain surgery, modernizing its control and automation system. Lately, such retrofits range from wholesale replacing of existing controls to the addition of specific control elements that help optimize performance. Pending revisions to safety codes and cybersecurity issues also need to be considered. 4 figs.

  3. Nuclear plant life cycle costs

    International Nuclear Information System (INIS)

    Durante, R.W.

    1994-01-01

    Life cycle costs of nuclear power plants in the United States are discussed. The author argues that these costs have been mishandled or neglected. Decommissioning costs have escalated, e.g. from $328 per unit in 1991 to $370 in 1993 for the Sacramento Municipal Utility District, though they still only amount to less than 0.1 cent per kWh. Waste management has been complicated in the U.S. by the decision to abandon civilian reprocessing; by the year 2000, roughly 30 U.S. nuclear power units will have filled their storage pools; dry storage has been delayed, and will be an expense not originally envisaged. Some examples of costs of major component replacement are provided. No single component has caused as much operational disruption and financial penalties as the steam generator. Operation and maintenance costs have increased steadily, and now amount to more than 70% of production costs. A strategic plan by the Nuclear Power Oversight Committee (of U.S. utilities) will ensure that the ability to correctly operate and maintain a nuclear power plant is built into the original design. 6 figs

  4. Herbivore-mediated ecological costs of reproduction shape the life history of an iteroparous plant.

    Science.gov (United States)

    Miller, Tom E X; Tenhumberg, Brigitte; Louda, Svata M

    2008-02-01

    Plant reproduction yields immediate fitness benefits but can be costly in terms of survival, growth, and future fecundity. Life-history theory posits that reproductive strategies are shaped by trade-offs between current and future fitness that result from these direct costs of reproduction. Plant reproduction may also incur indirect ecological costs if it increases susceptibility to herbivores. Yet ecological costs of reproduction have received little empirical attention and remain poorly integrated into life-history theory. Here, we provide evidence for herbivore-mediated ecological costs of reproduction, and we develop theory to examine how these costs influence plant life-history strategies. Field experiments with an iteroparous cactus (Opuntia imbricata) indicated that greater reproductive effort (proportion of meristems allocated to reproduction) led to greater attack by a cactus-feeding insect (Narnia pallidicornis) and that damage by this herbivore reduced reproductive success. A dynamic programming model predicted strongly divergent optimal reproductive strategies when ecological costs were included, compared with when these costs were ignored. Meristem allocation by cacti in the field matched the optimal strategy expected under ecological costs of reproduction. The results indicate that plant reproductive allocation can strongly influence the intensity of interactions with herbivores and that associated ecological costs can play an important selective role in the evolution of plant life histories.

  5. Habitat Fragmentation Drives Plant Community Assembly Processes across Life Stages

    Science.gov (United States)

    Hu, Guang; Feeley, Kenneth J.; Yu, Mingjian

    2016-01-01

    Habitat fragmentation is one of the principal causes of biodiversity loss and hence understanding its impacts on community assembly and disassembly is an important topic in ecology. We studied the relationships between fragmentation and community assembly processes in the land-bridge island system of Thousand Island Lake in East China. We focused on the changes in species diversity and phylogenetic diversity that occurred between life stages of woody plants growing on these islands. The observed diversities were compared with the expected diversities from random null models to characterize assembly processes. Regression tree analysis was used to illustrate the relationships between island attributes and community assembly processes. We found that different assembly processes predominate in the seedlings-to-saplings life-stage transition (SS) vs. the saplings-to-trees transition (ST). Island area was the main attribute driving the assembly process in SS. In ST, island isolation was more important. Within a fragmented landscape, the factors driving community assembly processes were found to differ between life stage transitions. Environmental filtering had a strong effect on the seedlings-to-saplings life-stage transition. Habitat isolation and dispersal limitation influenced all plant life stages, but had a weaker effect on communities than area. These findings add to our understanding of the processes driving community assembly and species coexistence in the context of pervasive and widespread habitat loss and fragmentation. PMID:27427960

  6. Overview of plant life management for long term operation in nuclear power plants

    International Nuclear Information System (INIS)

    Kang, K.S.; Vincze, P.; Bychkov, A.

    2014-01-01

    Many IAEA member states have given high priority to licensing their nuclear power plants to operate for terms longer than the time frame originally anticipated (generally 40 years). The task of managing plant ageing is assigned in most member states to an engineering specialty called 'plant life management' (PLiM) applying a systematic analysis methodology to System Structure Components (SSCs) ageing. In many countries, the safety performance of nuclear power plants is periodically assessed and characterized via the periodic safety review (PSR) process. Regulatory review and acceptance of PSRs constitutes for these countries the licensing requirement for continued operation of the plant to the following PSR cycle (usually 10 years). In the USA and in other countries operating US designed plants, instead of PSR process, a license renewal application (LRA) process is followed, which requires certain prerequisites such as ageing management programs, particularly for passive irreplaceable SSCs. Active components are normally addressed via the maintenance rule (MR) requirements and other established regulatory processes. A third group of member states have adopted a combined approach that incorporates elements of both the PSR process and selected LRA specific requirements, such as time limited ageing analysis. The article ends with some IAEA recommendations for the implementation of national PLiM programs

  7. NULIFE - the European NoE 'Nuclear Plant Life Prediction'

    International Nuclear Information System (INIS)

    Cojan, Mihail

    2008-01-01

    INR Pitesti become on the 29th September 2006 a partner in the European Network of Excellence Nuclear Plant Life Prediction (NULIFE) coordinated by Technical Research Centre of Finland (VTT). The EU's Network of Excellence NULIFE has been launched under the EURATOM FP6 Program with a clear focus on integrating safety-oriented research on materials, structures and systems and exploiting the results of this integration through the production of harmonized lifetime assessment methods. NULIFE will help provide a better common understanding of, and information on, the factors affecting the lifetime of nuclear power plants which, together with associated management methods, will help facilitate extensions to the safe and economic lifetime of existing nuclear power plants. (author)

  8. Sustainability of Fossil Fuels

    Science.gov (United States)

    Lackner, K. S.

    2002-05-01

    For a sustainable world economy, energy is a bottleneck. Energy is at the basis of a modern, technological society, but unlike materials it cannot be recycled. Energy or more precisely "negentropy" (the opposite of entropy) is always consumed. Thus, one either accepts the use of large but finite resources or must stay within the limits imposed by dilute but self-renewing resources like sunlight. The challenge of sustainable energy is exacerbated by likely growth in world energy demand due to increased population and increased wealth. Most of the world still has to undergo the transition to a wealthy, stable society with the near zero population growth that characterizes a modern industrial society. This represents a huge unmet demand. If ten billion people were to consume energy like North Americans do today, world energy demand would be ten times higher. In addition, technological advances while often improving energy efficiency tend to raise energy demand by offering more opportunity for consumption. Energy consumption still increases at close to the 2.3% per year that would lead to a tenfold increase over the course of the next century. Meeting future energy demands while phasing out fossil fuels appears extremely difficult. Instead, the world needs sustainable or nearly sustainable fossil fuels. I propose the following definition of sustainable under which fossil fuels would well qualify: The use of a technology or resource is sustainable if the intended and unintended consequences will not force its abandonment within a reasonable planning horizon. Of course sustainable technologies must not be limited by resource depletion but this is only one of many concerns. Environmental impacts, excessive land use, and other constraints can equally limit the use of a technology and thus render it unsustainable. In the foreseeable future, fossil fuels are not limited by resource depletion. However, environmental concerns based on climate change and other environmental

  9. Ageing of materials and methods for the assessment and extension of lifetimes of engineering plant

    International Nuclear Information System (INIS)

    Stumpf, W.E.

    1994-01-01

    Life-extension (LIFEX) strategies for engineering plant are discussed against the background of the decline in the level of sustainability of the global environment. By directing LIFEX strategies towards better energy efficiency, better pollution control and higher quality throughputs, a significant contribution can be made to establishing more acceptable limits of sustainability. The decision-making process and implementation management of life extension are briefly examined. The question as to whether LIFEX programmes can contribute to the creation of wealth within acceptable limits of sustainability is addressed by considering past trends and future developments in both the fossil-fuelled and nuclear power industries. (UK)

  10. Extending the fossil record of Polytrichaceae: Early Cretaceous Meantoinea alophosioides gen. et sp. nov., permineralized gametophytes with gemma cups from Vancouver Island.

    Science.gov (United States)

    Bippus, Alexander C; Stockey, Ruth A; Rothwell, Gar W; Tomescu, Alexandru M F

    2017-04-01

    Diverse in modern ecosystems, mosses are dramatically underrepresented in the fossil record. Furthermore, most pre-Cenozoic mosses are known only from compression fossils, lacking detailed anatomical information. When preserved, anatomy vastly improves resolution in the systematic placement of fossils. Lower Cretaceous deposits at Apple Bay (Vancouver Island, British Columbia, Canada) contain a diverse anatomically preserved flora that includes numerous bryophytes, many of which have yet to be characterized. Among them is a polytrichaceous moss that is described here. Fossil moss gametophytes preserved in four carbonate concretions were studied in serial sections prepared using the cellulose acetate peel technique. We describe Meantoinea alophosioides gen. et sp. nov., a polytrichaceous moss with terminal gemma cups containing stalked, lenticular gemmae. Leaves with characteristic costal anatomy, differentiated into sheathing base and free lamina and bearing photosynthetic lamellae, along with a conducting strand in the stem, place Meantoinea in family Polytrichaceae. The bistratose leaf lamina with an adaxial layer of mamillose cells, short photosynthetic lamellae restricted to the costa, and presence of gemma cups indicate affinities with basal members of the Polytrichaceae, such as Lyellia , Bartramiopsis , and Alophosia . Meantoinea alophosioides enriches the documented moss diversity of an already-diverse Early Cretaceous plant fossil assemblage. This is the third moss described from the Apple Bay plant fossil assemblage and represents the first occurrence of gemma cups in a fossil moss. It is also the oldest unequivocal record of Polytrichaceae, providing a hard minimum age for the group of 136 million years. © 2017 Botanical Society of America.

  11. Power plant chemical technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    17 contributions covering topies of fossil fuel combustion, flue gas cleaning, power plant materials, corrosion, water/steam cycle chemistry, monitoring and control were presented at the annual meeting devoted to Power Plant Chemical Technology 1996 at Kolding (Denmark) 4-6 September 1996. (EG)

  12. Direct and indirect fossil records of megachilid bees from the Paleogene of Central Europe (Hymenoptera: Megachilidae)

    Science.gov (United States)

    Wedmann, Sonja; Wappler, Torsten; Engel, Michael S.

    2009-06-01

    Aside from pollen and nectar, bees of the subfamily Megachilinae are closely associated with plants as a source of materials for nest construction. Megachilines use resins, masticated leaves, trichomes and other plant materials sometimes along with mud to construct nests in cavities or in soil. Among these, the leafcutter bees ( Megachile s.l.) are the most famous for their behaviour to line their brood cells with discs cut from various plants. We report on fossil records of one body fossil of a new non-leafcutting megachiline and of 12 leafcuttings from three European sites—Eckfeld and Messel, both in Germany (Eocene), and Menat, France (Paleocene). The excisions include the currently earliest record of probable Megachile activity and suggest the presence of such bees in the Paleocene European fauna. Comparison with extant leafcuttings permits the interpretation of a minimal number of species that produced these excisions. The wide range of size for the leafcuttings indirectly might suggest at least two species of Megachile for the fauna of Messel in addition to the other megachiline bee described here. The presence of several cuttings on most leaves from Eckfeld implies that the preferential foraging behaviour of extant Megachile arose early in megachiline evolution. These results demonstrate that combined investigation of body and trace fossils complement each other in understanding past biodiversity, the latter permitting the detection of taxa not otherwise directly sampled and inferences on behavioural evolution.

  13. Environmental analysis of natural gas life cycle

    International Nuclear Information System (INIS)

    Riva, A.; D'Angelosante, S.; Trebeschi, C.

    2000-01-01

    Life Cycle Assessment is a method aimed at identifying the environmental effects connected with a given product, process or activity during its whole life cycle. The evaluation of published studies and the application of the method to electricity production with fossil fuels, by using data from published databases and data collected by the gas industry, demonstrate the importance and difficulties to have reliable and updated data required for a significant life cycle assessment. The results show that the environmental advantages of natural gas over the other fossil fuels in the final use stage increase still further if the whole life cycle of the fuels, from production to final consumption, is taken into account [it

  14. Plant life management processes and practices for heavy water reactors

    International Nuclear Information System (INIS)

    Kang, K.-S.; Cleveland, J.; Clark, C.R.

    2006-01-01

    In general, heavy water reactor (HWR) nuclear power plant (NPP) owners would like to keep their NPPs in service as long as they can be operated safely and economically. Their decisions are depending on essentially business model. They involve the consideration of a number of factors, such as the material condition of the plant, comparison with current safety standards, the socio-political climate and asset management/ business planning considerations. Continued plant operation, including operation beyond design life, called 'long term operation, depends, among other things, on the material condition of the plant. This is influenced significantly by the effectiveness of ageing management. Key attributes of an effective plant life management program include a focus on important systems, structure and components (SSCs) which are susceptible to ageing degradation, a balance of proactive and reactive ageing management programmes, and a team approach that ensures the co-ordination of and communication between all relevant nuclear power plant and external programmes. Most HWR NPP owners/operators use a mix of maintenance, surveillance and inspection (MSI) programs as the primary means of managing ageing. Often these programs are experienced-based and/or time-based and may not be optimised for detecting and/or managing ageing effects. From time-to-time, operational history has shown that this practice can be too reactive, as it leads to dealing with ageing effects (degradation of SSCs) after they have been detected. In many cases premature and/or undetected ageing cannot be traced back to one specific reason or an explicit error. The root cause is often a lack of communication, documentation and/or co-ordination between design, commissioning, operation or maintenance organizations. This lack of effective communication and interfacing frequently arises because, with the exception of major SSCs, such as the fuel channels or steam generators, there is a lack of explicit

  15. Advanced Researech and Technology Development fossil energy materials program: Semiannual progress report for the period ending September 30, 1988

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The objective of the ARandTD Fossil Energy Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. The ORNL Fossil Energy Materials Program Office compiles and issues this combined semiannual progress report from camera-ready copies submitted by each of the participating subcontractor organizations. This report of activities on the program is organized in accordance with a work breakdown structure in which projects are organized according to materials research thrust areas. These areas are (1) Structural Ceramics, (2) Alloy Development and Mechanical Properties, (3) Corrosion and Erosion of Alloys, and (4) Assessments and Technology Transfer. Individual projects are processed separately for the data bases.

  16. Fast–slow continuum and reproductive strategies structure plant life-history variation worldwide

    NARCIS (Netherlands)

    Salguero-Gómez, Roberto; Jones, Owen R.; Jongejans, Eelke; Blomberg, Simon; Hodgson, D.; Zuidema, P.A.; Kroon, de Hans; Buckley, Yvonne M.

    2016-01-01

    The identification of patterns in life-history strategies across the tree of life is essential to our prediction of population persistence, extinction, and diversification. Plants exhibit a wide range of patterns of longevity, growth, and reproduction, but the general determinants of this enormous

  17. Plant life extensions for German nuclear power plants? Controversial discussion profit taking of nuclear power plant operators; Laufzeitverlaengerungen fuer die deutschen Kernkaftwerke? Kurzanalyse zu den Gewinnmitnahmen der KKW-Betreiber

    Energy Technology Data Exchange (ETDEWEB)

    Matthes, Felix C.

    2009-10-15

    The discussion on the plant life extensions for German nuclear power plants beyond the residual quantity of electricity particularly focus on three aspects: Effects for the emission of carbon dioxide as a greenhouse gas; Development of the electricity price for which a reduction or attenuation is postulated due to a plant life extension; Skimming of additional profits at operating companies and their use in the safeguarding of the future (development of renewable energies, support of energy efficiency, promotion of the research, consolidation of the public budget, and so on). Under this aspect, the author of the contribution under consideration reports on the profit taking of nuclear power plant operators. The presented analysis considers three aspects: (a) Specification of the quantity structures for the investigated model of plant life extension; (b) The decisive parameter is the revenue situation and thus the price development for electricity at wholesale markets; (c) Determination and evaluation of the course in time of the profit taking.

  18. A new commelinid monocot seed fossil from the early Eocene previously identified as Solanaceae.

    Science.gov (United States)

    Särkinen, Tiina; Kottner, Sören; Stuppy, Wolfgang; Ahmed, Farah; Knapp, Sandra

    2018-01-01

    Fossils provide minimum age estimates for extant lineages. Here we critically evaluate Cantisolanum daturoides Reid & Chandler and two other early putative seed fossils of Solanaceae, an economically important plant family in the Asteridae. Three earliest seed fossil taxa of Solanaceae from the London Clay Formation (Cantisolanum daturoides) and the Poole and Branksome Sand Formations (Solanum arnense Chandler and Solanispermum reniforme Chandler) were studied using x-ray microcomputed tomography (MCT) and scanning electron microscopy (SEM). The MCT scans of Cantisolanum daturoides revealed a high level of pyrite preservation at the cellular level. Cantisolanum daturoides can be clearly excluded from Solanaceae and has more affinities to the commelinid monocots based on a straight longitudinal axis, a prominent single layer of relatively thin-walled cells in the testa, and a clearly differentiated micropyle surrounded by radially elongated and inwardly curved testal cells. While the MCT scans show no internal preservation in Solanum arnense and Solanispermum reniforme, SEM images show the presence of several characteristics that allow the placement of these taxa at the stem node of Solanaceae. Cantisolanum daturoides is likely a member of commelinid monocots and not Solanaceae as previously suggested. The earliest fossil record of Solanaceae is revised to consist of fruit fossil with inflated calyces from the early Eocene of Patagonia (52 Ma) and fossilized seeds from the early to mid-Eocene of Europe (48-46 Ma). The new identity for Cantisolanum daturoides does not alter a late Cretaceous minimum age for commelinids. © 2018 Botanical Society of America.

  19. The thematic plant life assessment network (PLAN)

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, R C; McGarry, D [EC/JRC Institute for Advanced Materials, Petten (Netherlands); Pedersen, H H [Brite Euram DG XII, Brussels (Belgium)

    1999-12-31

    The Plant Life Assessment Network (PLAN) is a Brite Euram Type II Thematic Network, initiated by the European Commission to facilitate structured co-operation between all cost shared action projects already funded by the Commission which fall under this common technical theme. The projects involved address a multiplicity of problems associated with plant life assessment and are drawn from Brite-Euram, Standards, Measurement and Testing, Nuclear Fission Safety and Esprit EC programmes. The main aim of the Network is to initiate, maintain and monitor a fruitful co-operation process between completed, ongoing and future EC R and D projects, thereby promoting improved cross fertilization and enhanced industrial exploitation of R and D results. As the project is in its infancy, this presentation covers the background to the initiative in some detail. In particular two key aspects are highlighted, namely, the requirement of the EC to launch such a network in the area of plant life assessment including its evolution from two small Thematic Research Actions and, secondly, the mechanism for structuring the Network in an ordered and proven way along the lines of the EC/JRC European Networks, PISC, NESC, AMES, ENIQ, ENAIS and EPERC. The operating and financial structure of the Network is detailed with reference made to the role of the executive Steering Committee, The Network Project Leader and the Network Financial Co-ordinator. Each of the 58 projects involved in the Network, representing a wide range of industrial sectors and disciplines, is distributed in terms of their efforts between 4 disciplinary Clusters covering Inspection, Instrumentation and Monitoring, Structural Mechanics and Maintenance. For each of these Clusters, an expert has been appointed as a Project Technical Auditor to support the elected Cluster Co-ordinator to define Cluster Tasks, which contribute to the overall objectives of the project. From the Project Representatives, Cluster Task Leaders and

  20. The thematic plant life assessment network (PLAN)

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, R.C.; McGarry, D. [EC/JRC Institute for Advanced Materials, Petten (Netherlands); Pedersen, H.H. [Brite Euram DG XII, Brussels (Belgium)

    1998-12-31

    The Plant Life Assessment Network (PLAN) is a Brite Euram Type II Thematic Network, initiated by the European Commission to facilitate structured co-operation between all cost shared action projects already funded by the Commission which fall under this common technical theme. The projects involved address a multiplicity of problems associated with plant life assessment and are drawn from Brite-Euram, Standards, Measurement and Testing, Nuclear Fission Safety and Esprit EC programmes. The main aim of the Network is to initiate, maintain and monitor a fruitful co-operation process between completed, ongoing and future EC R and D projects, thereby promoting improved cross fertilization and enhanced industrial exploitation of R and D results. As the project is in its infancy, this presentation covers the background to the initiative in some detail. In particular two key aspects are highlighted, namely, the requirement of the EC to launch such a network in the area of plant life assessment including its evolution from two small Thematic Research Actions and, secondly, the mechanism for structuring the Network in an ordered and proven way along the lines of the EC/JRC European Networks, PISC, NESC, AMES, ENIQ, ENAIS and EPERC. The operating and financial structure of the Network is detailed with reference made to the role of the executive Steering Committee, The Network Project Leader and the Network Financial Co-ordinator. Each of the 58 projects involved in the Network, representing a wide range of industrial sectors and disciplines, is distributed in terms of their efforts between 4 disciplinary Clusters covering Inspection, Instrumentation and Monitoring, Structural Mechanics and Maintenance. For each of these Clusters, an expert has been appointed as a Project Technical Auditor to support the elected Cluster Co-ordinator to define Cluster Tasks, which contribute to the overall objectives of the project. From the Project Representatives, Cluster Task Leaders and

  1. Modernization of turbines in fossil and nuclear power plants

    International Nuclear Information System (INIS)

    Harig, T.; Oeynhausen, H.

    2004-01-01

    Steam turbine power plants have a big share in power generation world-wide. In view of their age structure, they offer the biggest potential for increasing power plant performance, availability and environmental protection. Modernisation and replacement of key components by improved components will reduce fuel consumption and improve power plant performance by higher capacity, higher power, shorter start-up and shutdown times, and reduced standstill times. Modern steam turbine bladings will result in further improvements without additional fuel consumption. (orig.)

  2. Progress in ESR dating of fossils

    International Nuclear Information System (INIS)

    Ikeya, M.

    1983-01-01

    In this review the progress of ESR dating is briefly described together with its historical development. Examples of fossil dating include shells and corals in geological sediments, fossil bones and teeth in anthropology and fossil woods in geology. The total dose of natural radiation (TD) equivalent to the archaeological dose in TL dating was obtained by the additive dose method. Initially, the TDs were plotted against the known ages; using the apparent annual dose-rate thus obtained gives the ESR age within a factor of 2 or 3 for a fossil. Precise assessment of the radiation environment was made later taking the disequilibrium of uranium series disintegration into account. ESR ages of corals agreed well with those obtained by radiocarbon and uranium-thorium methods. The time-independent accumulation rate or a linear accumulation or uranium was adopted as a first sensible model for the opensystem fossil bones: the relation between the TD and the age explains the ages of anthropologically important bones. Lastly, geological assessment of fossil woods was made by ESR based on the organic radicals and electron traps in the silicified part. (author)

  3. Life-cycle assessment of a Waste-to-Energy plant in central Norway: Current situation and effects of changes in waste fraction composition.

    Science.gov (United States)

    Lausselet, Carine; Cherubini, Francesco; Del Alamo Serrano, Gonzalo; Becidan, Michael; Strømman, Anders Hammer

    2016-12-01

    Waste-to-Energy (WtE) plants constitute one of the most common waste management options to deal with municipal solid waste. WtE plants have the dual objective to reduce the amount of waste sent to landfills and simultaneously to produce useful energy (heat and/or power). Energy from WtE is gaining steadily increasing importance in the energy mix of several countries. Norway is no exception, as energy recovered from waste currently represents the main energy source of the Norwegian district heating system. Life-cycle assessments (LCA) of WtE systems in a Norwegian context are quasi-nonexistent, and this study assesses the environmental performance of a WtE plant located in central Norway by combining detailed LCA methodology with primary data from plant operations. Mass transfer coefficients and leaching coefficients are used to trace emissions over the various life-cycle stages from waste logistics to final disposal of the ashes. We consider different fractions of input waste (current waste mix, insertion of 10% car fluff, 5% clinical waste and 10% and 50% wood waste), and find a total contribution to Climate Change Impact Potential ranging from 265 to 637gCO 2 eq/kg of waste and 25 to 61gCO 2 eq/MJ of heat. The key drivers of the environmental performances of the WtE system being assessed are the carbon biogenic fraction and the lower heating value of the incoming waste, the direct emissions at the WtE plant, the leaching of the heavy metals at the landfill sites and to a lesser extent the use of consumables. We benchmark the environmental performances of our WtE systems against those of fossil energy systems, and we find better performance for the majority of environmental impact categories, including Climate Change Impact Potential, although some trade-offs exist (e.g. higher impacts on Human Toxicity Potential than natural gas, but lower than coal). Also, the insertion of challenging new waste fractions is demonstrated to be an option both to cope with the

  4. Determination of the remaining operational life of power plant components

    International Nuclear Information System (INIS)

    Eiden, H.; Vorwerk, K.; Graeff, D.; Hoff, E.

    1983-01-01

    The proceedings volume presents, in full wording, eight papers read at a TUEV Rheinland meeting in Johannesburg, South Africa, in August 1982. Subjects: Layout, quality assurance, service life analysis etc. of power plant components. (RW) [de

  5. Declaration of the rights of animal and plant life

    NARCIS (Netherlands)

    Jacobs, M.

    1977-01-01

    i Each living creature on earth has the right to exist, independent of its usefulness to humans. ii Every effort should be made to preserve all species of animal and plant life from premature extinction. Special protection should be afforded to those species whose survival is already threatened.

  6. Ancient wet aeolian environments on Earth: clues to presence of fossil/live microorganisms on Mars

    Science.gov (United States)

    Mahaney, William C.; Milner, Michael W.; Netoff, D. I.; Malloch, David; Dohm, James M.; Baker, Victor R.; Miyamoto, Hideaki; Hare, Trent M.; Komatsu, Goro

    2004-09-01

    Ancient wet aeolian (wet-sabkha) environments on Earth, represented in the Entrada and Navajo sandstones of Utah, contain pipe structures considered to be the product of gas/water release under pressure. The sediments originally had considerable porosity allowing the ingress of living plant structures, microorganisms, clay minerals, and fine-grained primary minerals of silt and sand size from the surface downward in the sedimentary column. Host rock material is of a similar size and porosity and presumably the downward migration of fine-grained material would have been possible prior to lithogenesis and final cementation. Recent field emission scanning electron microscopy (FESEM) and EDS (energy-dispersive spectrometry) examination of sands from fluidized pipes in the Early Jurassic Navajo Sandstone reveal the presence of fossil forms resembling fungal filaments, some bearing hyphopodium-like structures similar to those produced by modern tropical leaf parasites. The tropical origin of the fungi is consistent with the paleogeography of the sandstone, which was deposited in a tropical arid environment. These fossil fungi are silicized, with minor amounts of CaCO 3 and Fe, and in some cases a Si/Al ratio similar to smectite. They exist as pseudomorphs, totally depleted in nitrogen, adhering to the surfaces of fine-grained sands, principally quartz and orthoclase. Similar wet aeolian paleoenvironments are suspected for Mars, especially following catastrophic sediment-charged floods of enormous magnitudes that are believed to have contributed to rapid formation of large water bodies in the northern plains, ranging from lakes to oceans. These events are suspected to have contributed to a high frequency of constructional landforms (also known as pseudocraters) related to trapped volatiles and water-enriched sediment underneath a thick blanket of materials that were subsequently released to the martian surface, forming piping structures at the near surface and

  7. The fossil history of pseudoscorpions (Arachnida: Pseudoscorpiones

    Directory of Open Access Journals (Sweden)

    D. Harms

    2017-08-01

    Full Text Available Pseudoscorpions, given their resemblance to scorpions, have attracted human attention since the time of Aristotle, although they are much smaller and lack the sting and elongated tail. These arachnids have a long evolutionary history but their origins and phylogenetic affinities are still being debated. Here, we summarise their fossil record based on a comprehensive review of the literature and data contained in other sources. Pseudoscorpions are one of the oldest colonisers of the land, with fossils known since the Middle Devonian (ca. 390 Ma. The only arachnid orders with an older fossil record are scorpions, harvestmen and acariform mites, plus two extinct groups. Pseudoscorpions do not fossilise easily, and records from the Mesozoic and Cenozoic consist almost exclusively of amber inclusions. Most Mesozoic fossils come from Archingeay and Burmese ambers (Late Cretaceous and those from the Cenozoic are primarily from Eocene Baltic amber, although additional fossils from, for example, Miocene Dominican and Mexican ambers, are known. Overall, 16 of the 26 families of living pseudoscorpions have been documented from fossils and 49 currently valid species are recognised in the literature. Pseudoscorpions represent a case of morphological stasis and even the Devonian fossils look rather modern. Indeed, most amber fossils are comparable to Recent groups despite a major gap in the fossil record of almost 250 Myr. Baltic amber inclusions indicate palaeofauna inhabiting much warmer climates than today and point to climatic shifts in central Europe since the Eocene. They also indicate that some groups (e.g. Feaellidae and Pseudogarypidae had much wider Eocene distributions. Their present-day occurrence is relictual and highlights past extinction events. Faunas from younger tropical amber deposits (e.g. Dominican and Mexican amber are comparable to Recent ones. Generally, there is a strong bias in the amber record towards groups that live under tree

  8. Advanced research and technology development fossil energy materials program. Quarterly progress report for the period ending September 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, R.A. (comp.)

    1981-12-01

    This is the fourth combined quarterly progress report for those projects that are part of the Advanced Research and Technology Development Fossil Energy Materials Program. The objective is to conduct a program of research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Work performed on the program generally falls into the Applied Research and Exploratory Development categories as defined in the DOE Technology Base Review, although basic research and engineering development are also conducted. A substantial portion of the work on the AR and TD Fossil Energy Materials Program is performed by participating cntractor organizations. All subcontractor work is monitored by Program staff members at ORNL and Argonne National Laboratory. This report is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FY 1981 in which projects are organized according to fossil energy technologies. We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program.

  9. Evaluation of hard fossil fuel

    International Nuclear Information System (INIS)

    Zivkovic, S.; Nuic, J.

    1999-01-01

    Because of its inexhaustible supplies hard fossil fuel will represent the pillar of the power systems of the 21st century. Only high-calorie fossil fuels have the market value and participate in the world trade. Low-calorie fossil fuels ((brown coal and lignite) are fuels spent on the spot and their value is indirectly expressed through manufactured kWh. For the purpose of determining the real value of a tonne of low-calorie coal, the criteria that help in establishing the value of a tonne of hard coal have to be corrected and thus evaluated and assessed at the market. (author)

  10. Environmental life cycle assessment of high temperature nuclear fission and fusion biomass gasification plants

    International Nuclear Information System (INIS)

    Takeda, Shutaro; Sakurai, Shigeki; Kasada, Ryuta; Konishi, Satoshi

    2017-01-01

    The authors propose nuclear biomass gasification plant as an advancement of conventional gasification plants. Environmental impacts of both fission and fusion plants were assessed through life cycle assessment. The result suggested the reduction of green-house gas emissions would be as large as 85.9% from conventional plants, showing a potential for the sustainable future for both fission and fusion plants. (author)

  11. South African Regulatory Framework for Nuclear Power Plant Life Management

    International Nuclear Information System (INIS)

    Mbebe, B.Z.

    2012-01-01

    The paper presents the regulatory approach to plant life management (PLiM) adopted by the National Nuclear Regulator (NNR) in South Africa, the licensing basis and regulatory requirements for Koeberg Nuclear Power Station (KNPS),operational programmes ensuring continued safe operation, issues related to the ageing of the plant, and the requirements for spent fuel as well as radioactive waste management. The paper will further present insights from the Periodic Safety Review (PSR) and Long Term Asset Management. (author)

  12. Fossil energy use and the environment

    International Nuclear Information System (INIS)

    Sage, P.W.

    1994-01-01

    Energy demand projections indicate that fossil energy will provide some ninety per cent of global primary energy demand for the foreseeable future. This paper considers the principal environmental impacts associated with fossil energy use and describes approaches to minimise them. Technologies are now available to reduce significantly pollutant emissions from fossil fuel use. Emerging technologies offer higher conversion efficiencies to reduce still further specific emissions per unit of energy output. It is essential, particularly in those areas of rapid growth in energy use, that best practice and technology are deployed. Technology transfer and training will help to achieve this and enable fossil energy use to be fully compatible with increasingly stringent environmental requirements. (author) 4 figs., 12 refs

  13. Biomass - alternative renewable energy source to the fossil fuels

    Directory of Open Access Journals (Sweden)

    Koruba Dorota

    2017-01-01

    Full Text Available The article presents the fossil fuels combustion effects in terms of the dangers of increasing CO2 concentration in the atmosphere. Based on the bibliography review the negative impact of increased carbon dioxide concentration on the human population is shown in the area of the external environment, particularly in terms of the air pollution and especially the impact on human health. The paper presents biomass as the renewable energy alternative source to fossil fuels which combustion gives a neutral CO2 emissions and therefore should be the main carrier of primary energy in Poland. The paper presents the combustion heat results and humidity of selected dry wood pellets (pellets straw, energy-crop willow pellets, sawdust pellets, dried sewage sludge from two sewage treatment plants of the Holly Cross province pointing their energy potential. In connection with the results analysis of these studies the standard requirements were discussed (EN 14918:2010 “Solid bio-fuels-determination of calorific value” regarding the basic parameters determining the biomass energy value (combustion heat, humidity.

  14. Late Palaeozoic plants.

    Science.gov (United States)

    Feng, Zhuo

    2017-09-11

    Land plants are one of the major constituents of terrestrial ecosystems on Earth, and play an irreplaceable role in human activities today. If we are to understand the extant plants, it is imperative that we have some understanding of the fossil plants from the deep geological past, particularly those that occurred during their early evolutionary history, in the late Palaeozoic. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Status of fossil fuel reserves

    International Nuclear Information System (INIS)

    Laherrere, J.

    2005-01-01

    Reserves represent the sum of past and future productions up to the end of production. In most countries the reserve data of fields are confidential. Therefore, fossil fuel reserves are badly known because the published data are more political than technical and many countries make a confusion between resources and reserves. The cumulated production of fossil fuels represents only between a third and a fifth of the ultimate reserves. The production peak will take place between 2020 and 2050. In the ultimate reserves, which extrapolate the past, the fossil fuels represent three thirds of the overall energy. This document analyses the uncertainties linked with fossil fuel reserves: reliability of published data, modeling of future production, comparison with other energy sources, energy consumption forecasts, reserves/production ratio, exploitation of non-conventional hydrocarbons (tar sands, extra-heavy oils, bituminous shales, coal gas, gas shales, methane in overpressure aquifers, methane hydrates), technology impacts, prices impact, and reserves growth. (J.S.)

  16. International symposium on nuclear power plant life management. Book of extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    A number of nuclear power plants in operation are meeting the problems of aging. Besides maintaining safety and reliability many NPP owners are concerned with service life extension, life management policy, and reactor maintenance procedures. The topics covered in this report are devoted to: NPP life management, economics and technical aspects of service life extension, reactor licensing procedures; aging of reactor components; physical radiation effects on reactor materials; corrosion; mechanical properties of reactor materials; reactor control systems; reactor safety systems.

  17. International symposium on nuclear power plant life management. Book of extended synopses

    International Nuclear Information System (INIS)

    2002-01-01

    A number of nuclear power plants in operation are meeting the problems of aging. Besides maintaining safety and reliability many NPP owners are concerned with service life extension, life management policy, and reactor maintenance procedures. The topics covered in this report are devoted to: NPP life management, economics and technical aspects of service life extension, reactor licensing procedures; aging of reactor components; physical radiation effects on reactor materials; corrosion; mechanical properties of reactor materials; reactor control systems; reactor safety systems

  18. EPRI research on component aging and nuclear plant life extension

    International Nuclear Information System (INIS)

    Sliter, G.E.; Carey, J.J.

    1985-01-01

    This paper first describes several research efforts sponsored by the Electric Power Research Institute (EPRI) that examine the aging degradation of organic materials and the nuclear plant equipment in which they appear. This research includes a compendium of material properties characterizing the effects of thermal and radiation aging, shake table testing to evaluate the effects of aging on the seismic performance of electrical components, and a review of condition monitoring techniques applicable to electrical equipment. Also described is a long-term investigation of natural versus artificial aging using reactor buildings as test beds. The paper then describes how the equipment aging research fits into a broad-scoped EPRI program on nuclear plant life extension. The objective of this program is to provide required information, technology, and guidelines to enable utilities to significantly extend operating life beyond the current 40-year licensed term

  19. International requirements for life extension of nuclear power plants

    International Nuclear Information System (INIS)

    Wernicke, Robert

    2009-01-01

    Lifetime extension or long-term operation of nuclear facilities are topics of great international significance against the backdrop of a fleet of nuclear power plants of which many have reached 2/3 of their planned life. The article deals with the conditions for, and the specific requirements of, seeking long-term operation of nuclear power plants as established internationally and on the basis of IAEA collections. Technically, long-term operation is possible for many of the nuclear power plants in the world because, normally, they were built on the basis of conservative rules and regulations and, as a consequence, incorporate significant additional safety. Application of requirements to specific plants implies assessments of technical safety which show that conservative design philosophies created reserves and, as a consequence, there is an adequate level of safety also in long-term plant operation. For this purpose, the technical specifications must be revised, necessary additions made, and (international) operating experience taken into account and management of aging established. Two examples are presented to show how the approach to long-term plant operation is put into practice on a national level. (orig.)

  20. Overview of German R and D activities relevant to life management of nuclear power plants

    International Nuclear Information System (INIS)

    Gillot, R.

    1998-01-01

    Life management issues of German NPPs include measures for qualifying continuous operation of NPPs and research activities related to materials behaviour under operating conditions. Plant management for life extension demand use of on-line monitoring systems for load (mechanical and thermal); vibration; leakage; water chemistry; neutron irradiation as well as replacement of systems, structures and components. The main goals to be achieved under international cooperation are increased safety, increased plant availability, extension of operating lifetime and improvement of plant economics

  1. First fossil insectivores from Flores

    NARCIS (Netherlands)

    Hoek Ostende, van den L.W.; Berch, van der G.; Awe Due, R.

    2006-01-01

    The hominid bearing strata from the Liang Bua cave on Flores have yielded a large amount of microvertebrate remains. Among these are three mandibles of shrews, the first record of fossil insectivores from the island. The fossils, representing two different species, are not referable to any of the

  2. Life cycle assessment of biomass-to-liquid fuels - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jungbluth, N.; Buesser, S.; Frischknecht, R.; Tuchschmid, M.

    2008-02-15

    This study elaborates a life cycle assessment of using of BTL-fuels (biomass-to-liquid). This type of fuel is produced in synthesis process from e.g. wood, straw or other biomass. The life cycle inventory data of the fuel provision with different types of conversion concepts are based on the detailed life cycle assessment compiled and published within a European research project. The inventory of the fuel use emissions is based on information published by automobile manufacturers on reductions due to the use of BTL-fuels. Passenger cars fulfilling the EURO3 emission standards are the basis for the comparison. The life cycle inventories of the use of BTL-fuels for driving in passenger cars are investigated from cradle to grave. The full life cycle is investigated with the transportation of one person over one kilometre (pkm) as a functional unit. This includes all stages of the life cycle of a fuel (biomass and fuel production, distribution, combustion) and the necessary infrastructure (e.g. tractors, conversion plant, cars and streets). The use of biofuels is mainly promoted for the reason of reducing the climate change impact and the use of scarce non-renewable resources e.g. crude oil. The possible implementation of BTL-fuel production processes would potentially help to achieve this goal. The emissions of greenhouse gases due to transport services could be reduced by 28% to 69% with the BTL-processes using straw, forest wood or short-rotation wood as a biomass input. The reduction potential concerning non-renewable energy resources varies between 37% und 61%. A previous study showed that many biofuels cause higher environmental impacts than fossil fuels if several types of ecological problems are considered. The study uses two single score impact assessment methods for the evaluation of the overall environmental impacts, namely the Eco-indicator 99 (H,A) and the Swiss ecological scarcity 2006 method. The transportation with the best BTL-fuel from short

  3. Uranium in fossil bones

    International Nuclear Information System (INIS)

    Koul, S.L.

    1978-01-01

    An attempt has been made to determine the uranium content and thus the age of certain fossil bones Haritalyangarh (Himachal Pradesh), India. The results indicate that bones rich in apatite are also rich in uranium, and that the radioactivity is due to radionuclides in the uranium series. The larger animals apparently have a higher concentration of uranium than the small. The dating of a fossil jaw (elephant) places it in the Pleistocene. (Auth.)

  4. Controlled ecological life support systems: Development of a plant growth module

    Science.gov (United States)

    Averner, Mel M.; Macelroy, Robert D.; Smernoff, David T.

    1987-01-01

    An effort was made to begin defining the scientific and technical requirements for the design and construction of a ground-based plant growth facility. In particular, science design criteria for the Plant Growth Module (PGM) of the Controlled Ecological Life Support System (CELSS) were determined in the following areas: (1) irradiation parameters and associated equipment affecting plant growth; (2) air flow; (3) planting, culture, and harvest techniques; (4) carbon dioxide; (5) temperature and relative humidity; (6) oxygen; (7) construction materials and access; (8) volatile compounds; (9) bacteria, sterilization, and filtration; (10) nutrient application systems; (11) nutrient monitoring; and (12) nutrient pH and conductivity.

  5. Fire-Side Corrosion: A Case Study of Failed Tubes of a Fossil Fuel Boiler

    OpenAIRE

    Asnavandi, Majid; Kahram, Mohaddeseh; Rezaei, Milad; Rezakhani, Davar

    2017-01-01

    The failures of superheater and reheater boiler tubes operating in a power plant utilizing natural gas or mazut as a fuel have been analysed and the fire-side corrosion has been suggested as the main reason for the failure in boiler tubes. The tubes have been provided by a fossil fuel power plant in Iran and optical and electron microscopy investigations have been performed on the tubes as well as the corrosion products on their surfaces. The results showed that the thickness of the failed tu...

  6. Near-term benefits of the plant life extension program

    International Nuclear Information System (INIS)

    Kaushansky, M.M.

    1987-01-01

    The aging process can be expected to reduce the availability and increase the production costs of nuclear power plants over time. To mitigate this process and recover or enhance plant availability, capacity, thermal efficiency, and maintenance expenditures, the utility must dedicate increased attention and commitment to a comprehensive plant life extension (PLEX) program. Improvements must be justified by balancing the cost of the recommended modifications with the economic value of benefits obtained from its implementation. It is often extremely difficult for utility management to make an optimal selection from among hundreds of proposed projects, most of which are cost-effective. A properly structured PLEX program with an emphasis on near-term benefits should provide the utility with a means of evaluating proposed projects, thus determining the optimum combination for authorization and implementation

  7. Bias and sensitivity in the placement of fossil taxa resulting from interpretations of missing data.

    Science.gov (United States)

    Sansom, Robert S

    2015-03-01

    The utility of fossils in evolutionary contexts is dependent on their accurate placement in phylogenetic frameworks, yet intrinsic and widespread missing data make this problematic. The complex taphonomic processes occurring during fossilization can make it difficult to distinguish absence from non-preservation, especially in the case of exceptionally preserved soft-tissue fossils: is a particular morphological character (e.g., appendage, tentacle, or nerve) missing from a fossil because it was never there (phylogenetic absence), or just happened to not be preserved (taphonomic loss)? Missing data have not been tested in the context of interpretation of non-present anatomy nor in the context of directional shifts and biases in affinity. Here, complete taxa, both simulated and empirical, are subjected to data loss through the replacement of present entries (1s) with either missing (?s) or absent (0s) entries. Both cause taxa to drift down trees, from their original position, toward the root. Absolute thresholds at which downshift is significant are extremely low for introduced absences (two entries replaced, 6% of present characters). The opposite threshold in empirical fossil taxa is also found to be low; two absent entries replaced with presences causes fossil taxa to drift up trees. As such, only a few instances of non-preserved characters interpreted as absences will cause fossil organisms to be erroneously interpreted as more primitive than they were in life. This observed sensitivity to coding non-present morphology presents a problem for all evolutionary studies that attempt to use fossils to reconstruct rates of evolution or unlock sequences of morphological change. Stem-ward slippage, whereby fossilization processes cause organisms to appear artificially primitive, appears to be a ubiquitous and problematic phenomenon inherent to missing data, even when no decay biases exist. Absent characters therefore require explicit justification and taphonomic

  8. Butterfly Larval Host Plant use in a Tropical Urban Context: Life History Associations, Herbivory, and Landscape Factors

    Science.gov (United States)

    Tiple, Ashish D.; Khurad, Arun M.; Dennis, Roger L. H.

    2011-01-01

    This study examines butterfly larval host plants, herbivory and related life history attributes within Nagpur City, India. The larval host plants of 120 butterfly species are identified and their host specificity, life form, biotope, abundance and perennation recorded; of the 126 larval host plants, most are trees (49), with fewer herbs (43), shrubs (22), climbers (7) and stem parasites (2). They include 89 wild, 23 cultivated, 11 wild/cultivated and 3 exotic plant species; 78 are perennials, 43 annuals and 5 biannuals. Plants belonging to Poaceae and Fabaceae are most widely used by butterfly larvae. In addition to distinctions in host plant family affiliation, a number of significant differences between butterfly families have been identified in host use patterns: for life forms, biotopes, landforms, perennation, host specificity, egg batch size and ant associations. These differences arising from the development of a butterfly resource database have important implications for conserving butterfly species within the city area. Differences in overall butterfly population sizes within the city relate mainly to the number of host plants used, but other influences, including egg batch size and host specificity are identified. Much of the variation in population size is unaccounted for and points to the need to investigate larval host plant life history and strategies as population size is not simply dependent on host plant abundance. PMID:21864159

  9. In situ dating of the oldest morphological traces of life on Earth

    Science.gov (United States)

    Fliegel, D.; McLoughlin, N.; Simonetti, A.; de Wit, M.; Furnes, H.

    2008-12-01

    Sea floor pillow basalts contain tubular and granular bioalteration micro textures in their glassy margins1,2 created by microbes etching the rock3,4, hypothetically to get access to nutrients and electrons donors5. The etched pits in the rock can be regarded as trace fossils6 that later become mineralized by titanite (CaTiSiO5). Such trace fossils are known from recent oceanic crust to some of the oldest preserved Archean ocean floor, in the Barberton greenstone belt (BGB), in S-Africa7. However, the antiquity of BGB trace fossils has been questioned by some since only the host rock was dated until now8. Here, we report for the first time in situ U-Pb radiometric dating of titanite mineralizing the BGB trace fossils using LA-MC-ICPMS. An U-Pb date of of approx. 3.15 ± 0.05 Ga (95.4 % confidence) for the titanite demonstrates the antiquity of the BGB trace fossils. This result confirms the BGB trace fossils as the oldest directly dated morphological trace of life on Earth. We will present addition data to reveal the mineralization of trace fossils by titanite, comparing the BGB trace fossils to other similar tubular titanite mineralized textures from different locations and younger ages. Our data confirms that a sub-oceanic biosphere was already established in the early Archean by at least 3.2 Ga. Further the results highlight the importance of the sub-ocean habitats for the development and possibly refuge for life on (early) Earth. 1. Furnes, H. et al. Bioalteration of basaltic glass in the oceanic crust. Geochemistry Geophysics Geosystems 2, (2001). 2. Staudigel, H. et al. 3.5 billion years of glass bioalteration: vulcanic rocks as a basis for microbial life. Earth-Science Reviews 89, 156-176 (2008). 3. Furnes, H. et al. Links Between Geological Processes, Microbial Activeties and Evolution of Life. Dilek, Y., Furnes, H. and Muehlenbachs, K. (eds.), pp. 1-68 (Springer,2008). 4. McLoughlin, N. et al. Current Developments in Bioerosion (Erlangen Earth Conference

  10. Plant life management and modernisation: Research challenges in the EU

    International Nuclear Information System (INIS)

    Rintamaa, R.; Aho-Mantila, I.

    2010-01-01

    The NULIFE (Nuclear plant life prediction) European network of excellence is described in detail. The following topics are highlighted: Vision; Consortium; Organization and working methods; Research and development planning; Research project portfolio (pilot projects, umbrella projects); Strategic research planning; and Conclusions. (P.A.)

  11. Development of procedural requirements for life extension of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Hoon; Son, Moon Kyu [Korea Association for Nuclear Technology, Taejon (Korea, Republic of); Jeong, Ji Hwan [Baekseok College, Cheonan (Korea, Republic of); Chang, Keun Sun [Sunmoon Univ., Asan (Korea, Republic of); Ham, Chul Hoon [The Catholic University of Korea, Seoul (Korea, Republic of); Chang, Soon Hong [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    2002-03-15

    Technical issues relevant to life extension of NPP were investigated. The GALL report, domestic PSR and periodic inspection rules were reviewed. Technical issues appearing in the safety evaluation reports related to license renewal of Calvert Ciffs 1 and 2 and Qconee 1,2 and 3 NPPs were reviewed. Preliminary study on PSA usage in NPP life extension assessment was performed and further works were suggested. The environment of rules and regulations was analyzed from the viewpoint of plant life extension. Two alternatives are suggested to revise the current domestic nuclear acts.

  12. Development of procedural requirements for life extension of nuclear power plants

    International Nuclear Information System (INIS)

    Lee, Sang Hoon; Son, Moon Kyu; Jeong, Ji Hwan; Chang, Keun Sun; Ham, Chul Hoon; Chang, Soon Hong

    2002-03-01

    Technical issues relevant to life extension of NPP were investigated. The GALL report, domestic PSR and periodic inspection rules were reviewed. Technical issues appearing in the safety evaluation reports related to license renewal of Calvert Ciffs 1 and 2 and Qconee 1,2 and 3 NPPs were reviewed. Preliminary study on PSA usage in NPP life extension assessment was performed and further works were suggested. The environment of rules and regulations was analyzed from the viewpoint of plant life extension. Two alternatives are suggested to revise the current domestic nuclear acts

  13. Fossil and non-fossil source contributions to atmospheric carbonaceous aerosols during extreme spring grassland fires in Eastern Europe

    Science.gov (United States)

    Ulevicius, Vidmantas; Byčenkienė, Steigvilė; Bozzetti, Carlo; Vlachou, Athanasia; Plauškaitė, Kristina; Mordas, Genrik; Dudoitis, Vadimas; Abbaszade, Gülcin; Remeikis, Vidmantas; Garbaras, Andrius; Masalaite, Agne; Blees, Jan; Fröhlich, Roman; Dällenbach, Kaspar R.; Canonaco, Francesco; Slowik, Jay G.; Dommen, Josef; Zimmermann, Ralf; Schnelle-Kreis, Jürgen; Salazar, Gary A.; Agrios, Konstantinos; Szidat, Sönke; El Haddad, Imad; Prévôt, André S. H.

    2016-05-01

    In early spring the Baltic region is frequently affected by high-pollution events due to biomass burning in that area. Here we present a comprehensive study to investigate the impact of biomass/grass burning (BB) on the evolution and composition of aerosol in Preila, Lithuania, during springtime open fires. Non-refractory submicron particulate matter (NR-PM1) was measured by an Aerodyne aerosol chemical speciation monitor (ACSM) and a source apportionment with the multilinear engine (ME-2) running the positive matrix factorization (PMF) model was applied to the organic aerosol fraction to investigate the impact of biomass/grass burning. Satellite observations over regions of biomass burning activity supported the results and identification of air mass transport to the area of investigation. Sharp increases in biomass burning tracers, such as levoglucosan up to 683 ng m-3 and black carbon (BC) up to 17 µg m-3 were observed during this period. A further separation between fossil and non-fossil primary and secondary contributions was obtained by coupling ACSM PMF results and radiocarbon (14C) measurements of the elemental (EC) and organic (OC) carbon fractions. Non-fossil organic carbon (OCnf) was the dominant fraction of PM1, with the primary (POCnf) and secondary (SOCnf) fractions contributing 26-44 % and 13-23 % to the total carbon (TC), respectively. 5-8 % of the TC had a primary fossil origin (POCf), whereas the contribution of fossil secondary organic carbon (SOCf) was 4-13 %. Non-fossil EC (ECnf) and fossil EC (ECf) ranged from 13-24 and 7-13 %, respectively. Isotope ratios of stable carbon and nitrogen isotopes were used to distinguish aerosol particles associated with solid and liquid fossil fuel burning.

  14. Evolution of complex life cycles

    NARCIS (Netherlands)

    ten Brink, J.A.

    2018-01-01

    The majority of all animal species have a metamorphosis, even though fossil evidence suggests that this life-history strategy only evolved a few times. It is thought that ontogenetic niche shifts, where individuals change their diet, habitat, and/or behaviour during their life, have been the first

  15. Are forestation, bio-char and landfilled biomass adequate offsets for the climate effects of burning fossil fuels?

    International Nuclear Information System (INIS)

    Reijnders, L.

    2009-01-01

    Forestation and landfilling purpose-grown biomass are not adequate offsets for the CO 2 emission from burning fossil fuels. Their permanence is insufficiently guaranteed and landfilling purpose-grown biomass may even be counterproductive. As to permanence, bio-char may do better than forests or landfilled biomass, but there are major uncertainties about net greenhouse gas emissions linked to the bio-char life cycle, which necessitate suspension of judgement about the adequacy of bio-char addition to soils as an offset for CO 2 emissions from burning fossil fuels.

  16. Fossil Groups as Cosmological Labs

    Science.gov (United States)

    D'Onghia, Elena

    Optical and X-ray measurements of fossil groups (FGs) suggest that they are old and relaxed systems. If FGs are assembled at higher redshift, there is enough time for intermediate-luminosity galaxies to merge, resulting in the formation of the brightest group galaxy (BGG). We carry out the first, systematic study of a large sample of FGs, the "FOssil Group Origins'' (FOGO) based on an International Time Project at the Roque de los Muchachos Observatory. For ten FOGO FGs we have been awarded time at SUZAKU Telescope to measure the temperature of the hot intragroup gas (IGM). For these systems we plan to evaluate and correlate their X-ray luminosity and X-ray temperature, Lx-Tx, optical luminosity and X-ray temperature, Lopt-Tx, and group velocity dispersion with their X-ray temperature, sigma V-Tx, as compared to the non fossil systems. By combining these observations with state-of-art cosmological hydrodynamical simulations we will open a new window into the study of the IGM and the nature of fossil systems. Our proposed work will be of direct relevance for the understanding and interpretation of data from several NASA science missions. Specifically, the scaling relations obtained from these data combined with our predictions obtained using state-of-the-art hydrodynamical simulation numerical adopting a new hydrodynamical scheme will motivate new proposal on CHANDRA X-ray telescope for fossil groups and clusters. We will additionally create a public Online Planetarium Show. This will be an educational site, containing an interactive program called: "A Voyage to our Universe''. In the show we will provide observed images of fossil groups and similar images and movies obtained from the numerical simulations showing their evolution. The online planetarium show will be a useful reference and an interactive educational tool for both students and the public.

  17. Concept of a HTR modular plant for generation of process heat in a chemical plant

    International Nuclear Information System (INIS)

    1991-07-01

    This final report summarizes the results of a preliminary study on behalf of Buna AG and Leunawerke AG. With regard to the individual situations the study investigated the conditions for modular HTR-2 reactors to cover on-site process heat and electric power demands. HTR-2 reactor erection and operation were analyzed for their economic efficiency compared with fossil-fuel power plants. Considering the prospective product lines, the technical and economic conditions were developed in close cooperation with Buna AG and Leunawerke AG. The study focused on the technical integration of modular HTR reactors into plants with regard to safety concepts, on planning, acceptance and erection concepts which largely exclude uncalculable scheduling and financial risks, and on comparative economic analyses with regard to fossil-fuel power plants. (orig.) [de

  18. Preliminary results of Physiological plant growth modelling for human life support in space

    Science.gov (United States)

    Sasidharan L, Swathy; Dussap, Claude-Gilles; Hezard, Pauline

    2012-07-01

    Human life support is fundamental and crucial in any kind of space explorations. MELiSSA project of European Space Agency aims at developing a closed, artificial ecological life support system involving human, plants and micro organisms. Consuming carbon dioxide and water from the life support system, plants grow in one of the chambers and convert it into food and oxygen along with potable water. The environmental conditions, nutrient availability and its consumption of plants should be studied and necessarily modeled to predict the amount of food, oxygen and water with respect to the environmental changes and limitations. The reliability of a completely closed system mainly depends on the control laws and strategies used. An efficient control can occur, only if the system to control is itself well known, described and ideally if the responses of the system to environmental changes are predictable. In this aspect, the general structure of plant growth model has been designed together with physiological modelling.The physiological model consists of metabolic models of leaves, stem and roots, of which concern specific metabolisms of the associated plant parts. On the basis of the carbon source transport (eg. sucrose) through stem, the metabolic models (leaf and root) can be interconnected to each other and finally coupled to obtain the entire plant model. For the first step, leaf metabolic model network was built using stoichiometric, mass and energy balanced metabolic equations under steady state approach considering all necessary plant pathways for growth and maintenance of leaves. As the experimental data for lettuce plants grown in closed and controlled environmental chambers were available, the leaf metabolic model has been established for lettuce leaves. The constructed metabolic network is analyzed using known stoichiometric metabolic technique called metabolic flux analysis (MFA). Though, the leaf metabolic model alone is not sufficient to achieve the

  19. PLEXFIN a computer model for the economic assessment of nuclear power plant life extension. User's manual

    International Nuclear Information System (INIS)

    2007-01-01

    The IAEA developed PLEXFIN, a computer model analysis tool aimed to assist decision makers in the assessment of the economic viability of a nuclear power plant life/licence extension. This user's manual was produced to facilitate the application of the PLEXFIN computer model. It is widely accepted in the industry that the operational life of a nuclear power plant is not limited to a pre-determined number of years, sometimes established on non-technical grounds, but by the capability of the plant to comply with the nuclear safety and technical requirements in a cost effective manner. The decision to extend the license/life of a nuclear power plant involves a number of political, technical and economic issues. The economic viability is a cornerstone of the decision-making process. In a liberalized electricity market, the economics to justify a nuclear power plant life/license extension decision requires a more complex evaluation. This user's manual was elaborated in the framework of the IAEA's programmes on Continuous process improvement of NPP operating performance, and on Models for analysis and capacity building for sustainable energy development, with the support of four consultants meetings

  20. Life form succession in plant communities on colliery waste tips

    Energy Technology Data Exchange (ETDEWEB)

    Down, C G

    1973-01-01

    Five disused colliery waste tips in the Somerset Coalfield, 12, 15, 21, 55 and 98 years old, respectively, were examined to determine the life forms of the naturally-occurring vascular plant species. Hemicryptophytes comprised between 68 and 79% of the number of species on each tip. Rosette hemicryptophytes comprised 31.8% of the species on the 12-year tip, declining to 11.8% on the 98-year tip. It is suggested that artificial planting of rosette hemicryptophytes may be beneficial in reclamation schemes. 3 tables.

  1. Life cycle analysis of geothermal power generation with supercritical carbon dioxide

    International Nuclear Information System (INIS)

    Frank, Edward D; Sullivan, John L; Wang, Michael Q

    2012-01-01

    Life cycle analysis methods were employed to model the greenhouse gas emissions and fossil energy consumption associated with geothermal power production when supercritical carbon dioxide (scCO 2 ) is used instead of saline geofluids to recover heat from below ground. Since a significant amount of scCO 2 is sequestered below ground in the process, a constant supply is required. We therefore combined the scCO 2 geothermal power plant with an upstream coal power plant that captured a portion of its CO 2 emissions, compressed it to scCO 2 , and transported the scCO 2 by pipeline to the geothermal power plant. Emissions and energy consumption from all operations spanning coal mining and plant construction through power production were considered, including increases in coal use to meet steam demand for the carbon capture. The results indicated that the electricity produced by the geothermal plant more than balanced the increase in energy use resulting from carbon capture at the coal power plant. The effective heat rate (BTU coal per total kW h of electricity generated, coal plus geothermal) was comparable to that of traditional coal, but the ratio of life cycle emissions from the combined system to that of traditional coal was 15% when 90% carbon capture efficiency was assumed and when leakage from the surface was neglected. Contributions from surface leakage were estimated with a simple model for several hypothetical surface leakage rates. (letter)

  2. A novel approach for treatment of CO{sub 2} from fossil fired power plants, Part A: The integrated systems ITRPP

    Energy Technology Data Exchange (ETDEWEB)

    Minutillo, M.; Perna, A. [Department of Industrial Engineering, University of Cassino, Via G. di Biasio, 43, 03043 Cassino, Frosinone (Italy)

    2009-05-15

    The environmental issues, due to the global warming caused by the rising concentration of greenhouse gases in the atmosphere, require new strategies aimed to increase power plants efficiencies and to reduce CO{sub 2} emissions. This two-paper work focuses on a different approach for capture and reduction of CO{sub 2} from flue gases of fossil fired power plant, with respect to conventional post-combustion technologies. This approach consists of flue gases utilization as co-reactants in a catalytic process, the tri-reforming process, to generate a synthesis gas suitable in chemical and energy industries (methanol, DME, etc.). In fact, the further conversion of syngas to a transportation fuel, such as methanol, is an attractive solution to introduce near zero-emission technologies (i.e. fuel cells) in vehicular applications. In this Part A, integrated systems for co-generation of electrical power and synthesis gas useful for methanol production have been defined and their performance has been investigated considering different flue gases compositions. In Part B, in order to verify the environmental advantages and energy suitability of these systems, their comparison with conventional technology for methanol production is carried out. The integrated systems (ITRPP, Integrated Tri-Reforming Power Plant) consist of a power island, based on a thermal power plant, and a methane tri-reforming island in which the power plants' exhausts react with methane to produce a synthesis gas used for methanol synthesis. As power island, a steam turbine power plant fuelled with coal and a gas turbine combined cycle fuelled with natural gas have been considered. The energy and environmental analysis of ITRPP systems (ITRPP-SC and ITRPP-CC) has been carried out by using thermochemical and thermodynamic models which have allowed to calculate the syngas composition, to define the energy and mass balances and to estimate the CO{sub 2} emissions for each ITRPP configuration. The

  3. Alectorioid Morphologies in Paleogene Lichens: New Evidence and Re-Evaluation of the Fossil Alectoria succini Mägdefrau

    Science.gov (United States)

    Kaasalainen, Ulla; Heinrichs, Jochen; Krings, Michael; Myllys, Leena; Grabenhorst, Heinrich; Rikkinen, Jouko; Schmidt, Alexander R.

    2015-01-01

    One of the most important issues in molecular dating studies concerns the incorporation of reliable fossil taxa into the phylogenies reconstructed from DNA sequence variation in extant taxa. Lichens are symbiotic associations between fungi and algae and/or cyanobacteria. Several lichen fossils have been used as minimum age constraints in recent studies concerning the diversification of the Ascomycota. Recent evolutionary studies of Lecanoromycetes, an almost exclusively lichen-forming class in the Ascomycota, have utilized the Eocene amber inclusion Alectoria succinic as a minimum age constraint. However, a re-investigation of the type material revealed that this inclusion in fact represents poorly preserved plant remains, most probably of a root. Consequently, this fossil cannot be used as evidence of the presence of the genus Alectoria (Parmeliaceae, Lecanorales) or any other lichens in the Paleogene. However, newly discovered inclusions from Paleogene Baltic and Bitterfeld amber verify that alectorioid morphologies in lichens were in existence by the Paleogene. The new fossils represent either a lineage within the alectorioid group or belong to the genus Oropogon. PMID:26053106

  4. Fossil and non-fossil sources of organic carbon (OC and elemental carbon (EC in Göteborg, Sweden

    Directory of Open Access Journals (Sweden)

    S. Szidat

    2009-03-01

    Full Text Available Particulate matter was collected at an urban site in Göteborg (Sweden in February/March 2005 and in June/July 2006. Additional samples were collected at a rural site for the winter period. Total carbon (TC concentrations were 2.1–3.6 μg m−3, 1.8–1.9 μg m−3, and 2.2–3.0 μg m−3 for urban/winter, rural/winter, and urban/summer conditions, respectively. Elemental carbon (EC, organic carbon (OC, water-insoluble OC (WINSOC, and water-soluble OC (WSOC were analyzed for 14C in order to distinguish fossil from non-fossil emissions. As wood burning is the single major source of non-fossil EC, its contribution can be quantified directly. For non-fossil OC, the wood-burning fraction was determined independently by levoglucosan and 14C analysis and combined using Latin-hypercube sampling (LHS. For the winter period, the relative contribution of EC from wood burning to the total EC was >3 times higher at the rural site compared to the urban site, whereas the absolute concentrations of EC from wood burning were elevated only moderately at the rural compared to the urban site. Thus, the urban site is substantially more influenced by fossil EC emissions. For summer, biogenic emissions dominated OC concentrations most likely due to secondary organic aerosol (SOA formation. During both seasons, a more pronounced fossil signal was observed for Göteborg than has previously been reported for Zurich, Switzerland. Analysis of air mass origin using back trajectories suggests that the fossil impact was larger when local sources dominated, whereas long-range transport caused an enhanced non-fossil signal. In comparison to other European locations, concentrations of levoglucosan and other monosaccharide anhydrides were low for the urban and the rural site in the area of Göteborg during winter.

  5. Energy Balance of Nuclear Power Generation. Life Cycle Analyses of Nuclear Power

    International Nuclear Information System (INIS)

    Wallner, A.; Wenisch, A.; Baumann, M.; Renner, S.

    2011-01-01

    The accident at the Japanese nuclear power plant Fukushima in March 2011 triggered a debate about phasing out nuclear energy and the safety of nuclear power plants. Several states are preparing to end nuclear power generation. At the same time the operational life time of many nuclear power plants is reaching its end. Governments and utilities now need to take a decision to replace old nuclear power plants or to use other energy sources. In particular the requirement of reducing greenhouse gas emissions (GHG) is used as an argument for a higher share of nuclear energy. To assess the contribution of nuclear power to climate protection, the complete life cycle needs to be taken into account. Some process steps are connected to high CO2 emissions due to the energy used. While the processes before and after conventional fossil-fuel power stations can contribute up to 25% of direct GHG emission, it is up to 90 % for nuclear power (Weisser 2007). This report aims to produce information about the energy balance of nuclear energy production during its life cycle. The following key issues were examined: How will the forecasted decreasing uranium ore grades influence energy intensity and greenhouse emissions and from which ore grade on will no energy be gained anymore? In which range can nuclear energy deliver excess energy and how high are greenhouse gas emissions? Which factors including ore grade have the strongest impact on excess energy? (author)

  6. Environmental costs of fossil fuel energy production

    International Nuclear Information System (INIS)

    Riva, A.; Trebeschi, C.

    1997-01-01

    The costs of environmental impacts caused by fossil fuel energy production are external to the energy economy and normally they are not reflected in energy prices. To determine the environmental costs associated with an energy source a detailed analysis of all environmental impacts of the complete energy cycle is required. The economic evaluation of environmental damages is presented caused by atmospheric emissions produced by fossil fuel combustion for different uses. Considering the emission factors of sulphur oxides, nitrogen oxides, dust and carbon dioxide and the economic evaluation of their environmental damages reported in literature, a range of environmental costs associated with different fossil fuels and technologies is presented. A comparison of environmental costs resulting from atmospheric emissions produced by fossil-fuel combustion for energy production shows that natural gas has a significantly higher environmental value than other fossil fuels. (R.P.)

  7. Molecular fossils in Cretaceous condensate from western India

    Science.gov (United States)

    Bhattacharya, Sharmila; Dutta, Suryendu; Dutta, Ratul

    2014-06-01

    The present study reports the biomarker distribution of condensate belonging to the early Cretaceous time frame using gas chromatography-mass spectrometry (GC-MS). The early Cretaceous palaeoenvironment was inscribed into these molecular fossils which reflected the source and conditions of deposition of the condensate. The saturate fraction of the condensate is characterized by normal alkanes ranging from n-C9 to n-C29 (CPI-1.13), cycloalkanes and C14 and C15 sesquiterpanes. The aromatic fraction comprises of naphthalene, phenanthrene, their methylated derivatives and cyclohexylbenzenes. Isohexylalkylnaphthalenes, a product of rearrangement process of terpenoids, is detected in the condensate. Several aromatic sesquiterpenoids and diterpenoids have been recorded. Dihydro- ar-curcumene, cadalene and ionene form the assemblage of sesquiterpenoids which are indicative of higher plant input. Aromatic diterpenoid fraction comprises of simonellite and retene. These compounds are also indicative of higher plants, particularly conifer source which had been a predominant flora during the Cretaceous time.

  8. Fossil and non-fossil source contributions to atmospheric carbonaceous aerosols during extreme spring grassland fires in Eastern Europe

    Directory of Open Access Journals (Sweden)

    V. Ulevicius

    2016-05-01

    Full Text Available In early spring the Baltic region is frequently affected by high-pollution events due to biomass burning in that area. Here we present a comprehensive study to investigate the impact of biomass/grass burning (BB on the evolution and composition of aerosol in Preila, Lithuania, during springtime open fires. Non-refractory submicron particulate matter (NR-PM1 was measured by an Aerodyne aerosol chemical speciation monitor (ACSM and a source apportionment with the multilinear engine (ME-2 running the positive matrix factorization (PMF model was applied to the organic aerosol fraction to investigate the impact of biomass/grass burning. Satellite observations over regions of biomass burning activity supported the results and identification of air mass transport to the area of investigation. Sharp increases in biomass burning tracers, such as levoglucosan up to 683 ng m−3 and black carbon (BC up to 17 µg m−3 were observed during this period. A further separation between fossil and non-fossil primary and secondary contributions was obtained by coupling ACSM PMF results and radiocarbon (14C measurements of the elemental (EC and organic (OC carbon fractions. Non-fossil organic carbon (OCnf was the dominant fraction of PM1, with the primary (POCnf and secondary (SOCnf fractions contributing 26–44 % and 13–23 % to the total carbon (TC, respectively. 5–8 % of the TC had a primary fossil origin (POCf, whereas the contribution of fossil secondary organic carbon (SOCf was 4–13 %. Non-fossil EC (ECnf and fossil EC (ECf ranged from 13–24 and 7–13 %, respectively. Isotope ratios of stable carbon and nitrogen isotopes were used to distinguish aerosol particles associated with solid and liquid fossil fuel burning.

  9. Traversing the mountaintop: world fossil fuel production to 2050.

    Science.gov (United States)

    Nehring, Richard

    2009-10-27

    During the past century, fossil fuels--petroleum liquids, natural gas and coal--were the dominant source of world energy production. From 1950 to 2005, fossil fuels provided 85-93% of all energy production. All fossil fuels grew substantially during this period, their combined growth exceeding the increase in world population. This growth, however, was irregular, providing for rapidly growing per capita production from 1950 to 1980, stable per capita production from 1980 to 2000 and rising per capita production again after 2000. During the past half century, growth in fossil fuel production was essentially limited by energy demand. During the next half century, fossil fuel production will be limited primarily by the amount and characteristics of remaining fossil fuel resources. Three possible scenarios--low, medium and high--are developed for the production of each of the fossil fuels to 2050. These scenarios differ primarily by the amount of ultimate resources estimated for each fossil fuel. Total fossil fuel production will continue to grow, but only slowly for the next 15-30 years. The subsequent peak plateau will last for 10-15 years. These production peaks are robust; none of the fossil fuels, even with highly optimistic resource estimates, is projected to keep growing beyond 2050. World fossil fuel production per capita will thus begin an irreversible decline between 2020 and 2030.

  10. Field dodder life cycle and interaction with host plants

    Directory of Open Access Journals (Sweden)

    Sarić-Krsmanović Marija

    2017-01-01

    Full Text Available Field dodder is a parasitic plant that attaches to stems and leaves of broadleaf plants, including weeds, field crops, vegetables and ornamentals, across most agricultural regions of the world. Effective field dodder control is extremely difficult to achieve due to the nature of attachment and close association between the host and the parasite, which require a highly effective and selective herbicide to destroy the parasite without damaging its host. To establish a strategy for controlling parasite growth and restricting the spread of field dodder in crop fields, it is important to learn more about this weed, its life cycle and development.

  11. It is never too early to start planning for plant life extension

    International Nuclear Information System (INIS)

    Neils, G.H.

    1987-01-01

    This paper outlines some of the reasons why the subject of plant life extension (PLEX) deserves the attention it is receiving and describes some of the work that is currently being conducted in order to make PLEX a reality for U.S. nuclear power plants. One such major effort is a pilot program at the Monticello Nuclear Generating plant. This program, as well as other programs, have already produced some valuable lessons from which other plant owners can benefit. The Monticelle pilot program and the lessons learned thereof are described in some detail in this paper. (Liu)

  12. Plant life management and modernisation: Research challenges in the EU

    International Nuclear Information System (INIS)

    Rintamaa, R.; Aho-Mantila, I.

    2011-01-01

    The European network of excellence NULIFE (nuclear plant life prediction) has been launched with a clear focus on integrating safety-oriented research on materials, structures and systems and exploiting the results of this integration through the production of harmonised lifetime assessment methods. NULIFE will help provide a better common understanding of the factors affecting the lifetime of nuclear power plants which, together with associated management methods, will help facilitate safe and economic long-term operation of existing nuclear power plants. In addition, NULIFE will help in the development of design criteria for future generations of nuclear power plant. NULIFE was kicked-off in October 2006 and will work over a 5-year period to create a single organization structure, capable of providing harmonised research and development (R and D) at European level to the nuclear power industry and the related safety authorities. Led by VTT (Technical Research Centre of Finland), the project has a total budget in excess of 8 million euros, with over 40 partners drawn from leading research institutions, technical support organizations, electric power utilities and manufacturers throughout Europe. NULIFE also involves many industrial organizations and, in addition to their R and D contributions, these take part in a dedicated End User Group. Over the last 15 years the European Commission has sponsored a significant number of R and D projects under the Euratom Framework Programme and its Joint Research Centre has developed co-operative European Networks for mutual benefits on specific topics related to plant life management. However, their overall impact has been reduced due to fragmentation. These networks are considered forerunners to NULIFE. The importance of the long-term operation of the plants has been recognized at European level, in the strategic research agenda of SNETP (Sustainable Nuclear Energy Technology Platform). In NULIFE, the joint EU

  13. Regulatory issues for nuclear power plant life management

    International Nuclear Information System (INIS)

    Roe, J.

    2000-01-01

    The workshop of 26-27 june 2000, on nuclear power Plant LIfe Management (PLIM), also included working groups in which major issues facing PLIM activities for nuclear power plants were identified and discussed. The second group was on Regulation. The Regulatory Working Group will attempt to identify some of the more pertinent issues affecting nuclear plant regulation in a changing PLIM environment, to identify some possible actions to be taken to address these issues, and to identify some of the parties responsible for taking these actions. Some preliminary regulatory issues are noted below. This is not intended to be a comprehensive list of such issues but rather is intended to stimulate discussion among the experts attending this Workshop. One of the concerns in the regulatory arena is how the structural integrity of the plants can be assured for an extended lifetime. Technological advances directed toward the following are likely to be important factors in the regulatory process of life extension. - Preventive and corrective maintenance (e.g., water chemistry control, pressure vessel annealing, and replacement of core internals). - Ageing and degradation mechanisms and evaluation (e.g., embrittlement, wear, corrosion/erosion, fatigue, and stress corrosion). - Monitoring, surveillance, and inspection (e.g., fatigue monitoring and non-destructive testing). - Optimisation of maintenance (e.g., using risk-based analysis). On the business side, there is concern about technical support by manufacturers, fuel companies, and construction companies. Maintaining a strong technical base and skilled workers in a potentially declining environment is another concern in the regulatory community. Waste management and decommissioning remain significant issue regarding PLIM. These issues affect all three areas of concern - technology, business, and regulation. It is against this background, that the issues put forth in this paper are presented. The objective of presenting these

  14. Fossil fuel support mechanisms in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Lampinen, Ari

    2013-10-15

    Fossil fuel subsidies and other state support for fossil fuels are forbidden by the Kyoto Protocol and other international treaties. However, they are still commonly used. This publication presents and analyses diverse state support mechanisms for fossil fuels in Finland in 2003-2010. Total of 38 support mechanisms are covered in quantitative analysis and some other mechanisms are mentioned qualitatively only. For some mechanisms the study includes a longer historical perspective. This is the case for tax subsidies for crude oil based traffic fuels that have been maintained in Finland since 1965.

  15. Nuclear power plant life management: flow accelerated corrosion and chemical control. Application to Embalse Nuclear power plant

    International Nuclear Information System (INIS)

    Chocron, Mauricio; Saucedo, Ramona E.; Sainz, Ricardo A.; Ovando, Luis E.

    2006-01-01

    The chemistry of a water-steam cycle is one of the main aspects of the Plant Life Management of a Nuclear Power Plant and it is important for the preservation, efficiency and availability of the whole system. In that sense this aspect has to be prioritized in any study whose aim is the life extension of the plant. In particular, the flow-assisted -corrosion or FAC is a problem that worldwide has been considered important due to the piping wall thinning that in some occasions has led to severe accidents. The FAC phenomena is not easy to be interpreted and addressed although nowadays there are some accepted models to understand and predict sensitive areas of the cycle. The objectives of the present paper have been: a) The construction of an integrated code that involves all the aspects that have influence on FAC, i.e., materials, composition, geometry, temperature and flow rate, quality, chemistry, etc.; b) Establish or adapting current models to the circuit of Embalse PHWR NPP; c) Identify new locations for inspection and wall thickness measurement in order to predict residual life; d) Compare different chemistries and e) handle large sets of inspection data. Among the results, new lines have been incorporated to the inspection schedule of the 2005' programmed outage. Also, the evaluation is part of the PLIM-PLEX programme at Embalse-N.A.S.A. in collaboration with C.N.E.A. is being carried out. (author)

  16. Long-term capital planning considering nuclear plant life-cycle management

    International Nuclear Information System (INIS)

    Negin, C.A.; Simpson, J.M.; Hostetler, D.R.

    1992-09-01

    The creation of a Life Cycle Management (LCM) group at utilities to evaluate the long term capital refurbishment needs is gaining favor. Among the functions of such groups can be the responsibility for recommending long term capital planning projects based on results of evaluations of systems, structures, and components that are not only essential to achieving the full current license term of operation, but also to extend the service life of the plant. Making such recommendations, in content and timing, requires the ability to view all recommendations in the context of an overall capital budget and long range outage impacts. This report illustrates an approach for creating a Long-Term Capital Plan with methods for deciding on, compiling, integrating, and presenting projects from the perspective of an LCM program for a nuclear power plant. It also addresses a rationale for capitalization of LCM program activities that would not be allowed under current accounting treatment

  17. Synergistic production of hydrogen using fossil fuels and nuclear energy application of nuclear-heated membrane reformer

    International Nuclear Information System (INIS)

    Hori, M.; Matsui, K.; Tashimo, M.; Yasuda, I.

    2004-01-01

    Processes and technologies to produce hydrogen synergistically by the steam reforming reaction using fossil fuels and nuclear heat are reviewed. Formulas of chemical reactions, required heats for reactions, saving of fuel consumption or reduction of carbon dioxide emission, possible processes and other prospects are examined for such fossil fuels as natural gas, petroleum and coal. The 'membrane reformer' steam reforming with recirculation of reaction products in a closed loop configuration is considered to be the most advantageous among various synergistic hydrogen production methods. Typical merits of this method are: nuclear heat supply at medium temperature below 600 deg. C, compact plant size and membrane area for hydrogen production, efficient conversion of feed fuel, appreciable reduction of carbon dioxide emission, high purity hydrogen without any additional process, and ease of separating carbon dioxide for future sequestration requirements. With all these benefits, the synergistic production of hydrogen by membrane reformer using fossil fuels and nuclear energy can be an effective solution in this century for the world which has to use. fossil fuels any way to some extent while reducing carbon dioxide emission. For both the fossil fuels industry and the nuclear industry, which are under constraint of resource, environment and economy, this production method will be a viable symbiosis strategy for the coming hydrogen economy era. (author)

  18. The iPlant collaborative: cyberinfrastructure for enabling data to discovery for the life sciences

    Science.gov (United States)

    The iPlant Collaborative provides life science research communities access to comprehensive, scalable, and cohesive computational infrastructure for data management; identify management; collaboration tools; and cloud, high-performance, high-throughput computing. iPlant provides training, learning m...

  19. Reactor pressure vessel life cycle management at the Calvert Cliffs Nuclear Power Plant

    International Nuclear Information System (INIS)

    Doroshuk, B.W.; Bowman, M.E.; Henry, S.A.; Pavinich, W.A.; Lapides, M.E.

    1993-01-01

    Life Cycle Management (LCM) seeks to manage the aging process of important systems, structures, and components during licensed operation. The goal of Baltimore Gas and Electric Company's (BG and E) Life Cycle Management Program is to assure attainment of 40 years of operation and to preserve the option of an additional 20 years of operation for the Calvert Cliffs Nuclear Power Plant (CCNPP). Since the reactor pressure vessel (RPV) has been identified as one of the most critical components with regard to long-term operation of a nuclear power plant, BG and E initiated actions to manage life limiting or aging issues for the CCNPP RPVs. To achieve long-term operation, technical RPV issues must be effectively managed. This paper describes methods BG and E uses for managing RPV age-related degradation. (author)

  20. Availability of thermal power plants 1981-1990

    International Nuclear Information System (INIS)

    Nitsch, D.; Schmitz, H.

    1991-01-01

    The present volume covers the period of 1981 to 1990 and contains availability data of power plants in Germany and abroad. Data are presented on fossil-fuelled units, units with a combined gas/steam cycle, nuclear power plants and gas turbines. The fossil-fuelled units are broken down by unit size, years of operation, fuel, type of combustion (dry, melt) and type (mono, duo units, subcritical and supercritical systems). Nuclear power stations are arranged by type of reactor (PWR, BWR), unit size and years of operation. Combined cycle power plants are listed separately due to their different technical concepts. Apart from availability and utilisation values of gas turbines there are data on reliability and the number of successful and unsuccessful starts. In general the data are first given for all plants and then for the German plants in particular. Performance values are gross values measured at generator terminals and, as the number of plants, they are end-of-the-year figures [de

  1. Life extension of nuclear power plants: world situation and the Usa case

    International Nuclear Information System (INIS)

    Leon, P.T.; Cuesta, L.; Serra, E.; Yague, L.

    2010-01-01

    Life extension of nuclear power plants above 40 years of operation is an important issue in many countries. The Kyoto limits for CO 2 emissions, the security of supply, the costs of renewable energies and the economic crisis have pushed governments to continue operation of nuclear plants over the 40 years design life. In the Usa 59 units have obtained the extension of operation license from 40 to 60 years, and currently 19 units are in the reviewing process. The situation in the rest of the world is different. A list of countries, where nuclear units with a service life over 30 years, are still operating has been drawn up. A few countries like Belgium, Germany, Spain and Sweden are opposed to life extension. Some countries like Finland, the Netherlands, Switzerland, India, Japan and Usa, have adopted a life extension policy for their nuclear fleet. Other countries like France, Russia, United-Kingdom, Pakistan, South-Korea and Argentina have not yet taken any final decision. United-Kingdom and France have a case by case policy. In some countries like Japan, Indian or Pakistan, the legislation makes no reference to a maximum operating time but the reactors are allowed to continue operating as long as they comply with established safety conditions. (A.C.)

  2. Fruits and wood of Parinari from the early Miocene of Panama and the fossil record of Chrysobalanaceae.

    Science.gov (United States)

    Jud, Nathan A; Nelson, Chris W; Herrera, Fabiany

    2016-02-01

    Chrysobalanaceae are woody plants with over 500 species in 20 genera. They are among the most common trees in tropical forests, but a sparse fossil record has limited our ability to test evolutionary and biogeographic hypotheses, and several previous reports of Chrysobalanaceae megafossils are doubtful. We prepared fossil endocarps and wood collected from the lower Miocene beds along the Panama Canal using the cellulose acetate peel technique and examined them using light microscopy. We compared the fossil endocarps with previously published fossils and with fruits from herbarium specimens. We compared the fossil wood with photographs and descriptions of extant species. Parinari endocarps can be distinguished from other genera within Chrysobalanaceae by a suite of features, i.e., thick wall, a secondary septum, seminal cavities lined with dense, woolly trichomes, and two ovate to lingulate basal germination plugs. Fossil endocarps from the Cucaracha, Culebra, and La Boca Formations confirm that Parinari was present in the neotropics by the early Miocene. The earliest unequivocal evidence of crown-group Chrysobalanaceae is late Oligocene-early Miocene, and the genus Parinari was distinct by at least 19 million years ago. Parinari and other Chrysobalanaceae likely reached the neotropics via long-distance dispersal rather than vicariance. The presence of Parinari in the Cucaracha flora supports the interpretation of a riparian, moist tropical forest environment. Parinari was probably a canopy-dominant tree in the Cucaracha forest and took advantage of the local megafauna for seed dispersal. © 2016 Botanical Society of America.

  3. Guide for decontamination in P.W.R. power plants

    International Nuclear Information System (INIS)

    Herisson, J.; Glorennec, C.

    1992-01-01

    Nuclear power plant components or equipment often need to be more ore less decontaminated before maintenance. In order to coordinate the activities of the various maintenance specialists belonging to the corporate or Site Organizations, the Management of EDF/Nuclear and Fossil Division has created a 'Decontamination Task Force'. The first objective of this Task Force was to prepare this 'Decontamination Guide for Nuclear Power Plants'. This document is the result of a close collaboration, within a specific working group, between representatives of Nuclear Fossil Division (from Nuclear Power Plants and Corporate Departments) and EDF Project and Construction Group. It will provide assistance to Nuclear Plants Operators in the very specific field of decontamination. (author)

  4. Progress of fossil fuel science

    Energy Technology Data Exchange (ETDEWEB)

    Demirbas, M.F.

    2007-07-01

    Coal is the most abundant and widely distributed fossil fuel. More than 45% of the world's electricity is generated from coal, and it is the major fuel for generating electricity worldwide. The known coal reserves in the world are enough for more than 215 years of consumption, while the known oil reserves are only about 39 times of the world's consumption and the known natural gas reserves are about 63 times of the world's consumption level in 1998. In recent years, there have been effective scientific investigations on Turkish fossil fuels, which are considerable focused on coal resources. Coal is a major fossil fuel source for Turkey. Turkish coal consumption has been stable over the past decade and currently accounts for about 24% of the country's total energy consumption. Lignite coal has had the biggest share in total fossil fuel production, at 43%, in Turkey. Turkish researchers may investigate ten broad pathways of coal species upgrading, such as desulfurization and oxydesulfurization, pyrolysis and hydropyrolysis, liquefaction and hydroliquefaction, extraction and supercritical fluid extraction, gasification, oxidation, briquetting, flotation, and structure identification.

  5. Fossil energy and food security

    International Nuclear Information System (INIS)

    Folke, G.

    2001-01-01

    To fulfil the basic goal of delivering food for the tables of the citizens, modern Western agriculture is extremely dependent on supporting material flows, infrastructure, and fossil energy. According to several observers, fossil fuel production is about to peak, i.e., oil extraction is no longer capable of keeping pace with the increasing demand. This situation may trigger an unprecedented increase in fossil energy prices, which may make the current highly energy dependent food production-distribution system highly vulnerable. The paper starts with a survey of this vulnerability. Also, the supply of phosphorus, a key factor in agriculture, may be at stake under such circumstances. The paper analyses this situation and discusses settlement structures integrated with agriculture that might increase food security by reducing energy demands. In the proposed ideal societal structure, agriculture is integrated with settlements and most of the food needed by the population is produced locally, and the nutrients for food production are recycled from households and animals by means of biological processes demanding considerably less mechanical investment and fossil support energy than the conventional type of agriculture. The vulnerability of this structure would be considerably lower, than that of the current system. (author)

  6. A review of assessment and retrofitting of structures for plant life extension (PLEX) programme

    International Nuclear Information System (INIS)

    Samota, A.; Verma, U.S.P.; Tilak, M.M.

    1994-01-01

    Assessment of the life of existing civil engineering structures for the plant life extension programme has to be made considering various factors such as strength, deterioration, environmental impact particularly with regard to radiation field, etc. which need to be evaluated very carefully. Generally, it is considered that initial design usually caters for a period of around 40 years, though structural failures have been reported even at a much younger stage due to deficiency in design and construction. In the context of nuclear power plant when the initial license is given for a period 30-40 years, it becomes necessary to evaluate the health of the various structures particularly while applying for a license for the extension of plant life. The present paper discuss the various issues connected with the evaluation of the future life of an existing structure in terms of strength and change in its property particularly when the structure is exposed to radiation. The various effects with regard to ageing and radiation exposure and the destructive and non-destructive tests which need to be carried out are discussed in detail. (author). 8 refs., 4 figs

  7. Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies.

    Science.gov (United States)

    Hertwich, Edgar G; Gibon, Thomas; Bouman, Evert A; Arvesen, Anders; Suh, Sangwon; Heath, Garvin A; Bergesen, Joseph D; Ramirez, Andrea; Vega, Mabel I; Shi, Lei

    2015-05-19

    Decarbonization of electricity generation can support climate-change mitigation and presents an opportunity to address pollution resulting from fossil-fuel combustion. Generally, renewable technologies require higher initial investments in infrastructure than fossil-based power systems. To assess the tradeoffs of increased up-front emissions and reduced operational emissions, we present, to our knowledge, the first global, integrated life-cycle assessment (LCA) of long-term, wide-scale implementation of electricity generation from renewable sources (i.e., photovoltaic and solar thermal, wind, and hydropower) and of carbon dioxide capture and storage for fossil power generation. We compare emissions causing particulate matter exposure, freshwater ecotoxicity, freshwater eutrophication, and climate change for the climate-change-mitigation (BLUE Map) and business-as-usual (Baseline) scenarios of the International Energy Agency up to 2050. We use a vintage stock model to conduct an LCA of newly installed capacity year-by-year for each region, thus accounting for changes in the energy mix used to manufacture future power plants. Under the Baseline scenario, emissions of air and water pollutants more than double whereas the low-carbon technologies introduced in the BLUE Map scenario allow a doubling of electricity supply while stabilizing or even reducing pollution. Material requirements per unit generation for low-carbon technologies can be higher than for conventional fossil generation: 11-40 times more copper for photovoltaic systems and 6-14 times more iron for wind power plants. However, only two years of current global copper and one year of iron production will suffice to build a low-carbon energy system capable of supplying the world's electricity needs in 2050.

  8. Hawaii energy strategy project 2: Fossil energy review. Task 1: World and regional fossil energy dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Breazeale, K. [ed.; Isaak, D.T.; Yamaguchi, N.; Fridley, D.; Johnson, C.; Long, S.

    1993-12-01

    This report in the Hawaii Energy Strategy Project examines world and regional fossil energy dynamics. The topics of the report include fossil energy characteristics, the world oil industry including reserves, production, consumption, exporters, importers, refining, products and their uses, history and trends in the global oil market and the Asia-Pacific market; world gas industry including reserves, production, consumption, exporters, importers, processing, gas-based products, international gas market and the emerging Asia-Pacific gas market; the world coal industry including reserves, classification and quality, utilization, transportation, pricing, world coal market, Asia-Pacific coal outlook, trends in Europe and the Americas; and environmental trends affecting fossil fuels. 132 figs., 46 tabs.

  9. Nutritional and cultural aspects of plant species selection for a controlled ecological life support system

    Science.gov (United States)

    Hoff, J. E.; Howe, J. M.; Mitchell, C. A.

    1982-01-01

    The feasibility of using higher plants in a controlled ecological life support system is discussed. Aspects of this system considered important in the use of higher plants include: limited energy, space, and mass, and problems relating to cultivation and management of plants, food processing, the psychological impact of vegetarian diets, and plant propagation. A total of 115 higher plant species are compared based on 21 selection criteria.

  10. Fossil and nonfossil carbon in fine particulate matter: A study of five European cities

    Science.gov (United States)

    Glasius, Marianne; La Cour, Agnete; Lohse, Christian

    2011-06-01

    Fossil carbon in particulate matter comes from anthropogenic use and combustion of fossil fuels, while nonfossil carbon may originate from both biogenic (e.g., pollen, plant debris, fungal spores, and biogenic secondary organic aerosol (SOA)) and anthropogenic sources (e.g., cooking and residential wood combustion). We investigated the relative contributions of fossil and nonfossil sources to fine carbonaceous aerosols in five European cities by radiocarbon analysis of aerosol samples collected at four types of sites in 2002-2004. The average fraction of nonfossil carbon was 43 ± 11%, with the lowest fraction, 36 ± 7%, at urban curbside sites and the highest fraction, 54 ± 11%, at rural background sites, farthest away from the impact of man-made emissions. Generally, fossil carbon concentrations at urban curbside sites are elevated in comparison to background sites, which is expected because of their proximity to vehicular emissions. Contrary to what might be expected, the concentration of nonfossil carbon is also higher at curbside than at background sites. This may be attributable to differences between site categories in levels of primary biological aerosols, brake and tire wear in resuspended road dust, biofuels, emissions from cooking and residential wood combustion, or processes such as anthropogenic enhancement of biogenic SOA and increased partitioning of semivolatile compounds into the aerosol phase at urban sites. The exact causes should be investigated by future detailed source analyses.

  11. Supply of fossil heating and motor fuels

    International Nuclear Information System (INIS)

    Kaegi, W.; Siegrist, S.; Schaefli, M.; Eichenberger, U.

    2003-01-01

    This comprehensive study made for the Swiss Federal Office of Energy (SFOE) within the framework of the Energy Economics Fundamentals research programme examines if it can be guaranteed that Swiss industry can be supplied with fossil fuels for heating and transport purposes over the next few decades. The results of a comprehensive survey of literature on the subject are presented, with a major focus being placed on oil. The study examines both pessimistic and optimistic views and also presents an overview of fossil energy carriers and the possibilities of substituting them. Scenarios and prognoses on the availability of fossil fuels and their reserves for the future are presented. Also, new technologies for exploration and the extraction of fossil fuels are discussed, as are international interdependencies that influence supply. Market and price scenarios are presented that take account of a possible increasing scarcity of fossil fuels. The implications for industry and investment planning are examined

  12. Management of fossil natural resources: the impossible challenge?

    International Nuclear Information System (INIS)

    Loubens, Audrey

    2013-10-01

    A set of articles addresses various issues related to fossil energies and resources. A first set addresses the general context of fossil resources: the forced wedding between fossil energies and the environment (discussion of an annual report by the IEA on coal reserves), the availability of fossil fuels (discussion about the high share of fossil fuel in an always more renewable world). A second set addresses how to transform resources into reserves: discussion of the annual IEA report on conventional oil and gas reserves, on unconventional oil and gas reserves, and on coal reserves. The next set is a prospective one, and addresses the question of a scenario by 2040: the extremely high tension between fossil resources and geopolitical reality, and the question of the possibility of a world energy transition (discussions of the World Energy Outlook published by the IEA). Other issues are addressed by the last set of articles: the abundance of fossil energies obscures the potential of renewable energies, the evolution of the chemical industry towards alternative solutions in order to limit the use of hydrocarbons, and the territorial claims by Russia in the Arctic region

  13. Fossil evidence of the zygomycetous fungi

    NARCIS (Netherlands)

    Krings, M.; Taylor, T.N.; Dotzler, N.

    2013-01-01

    Molecular clock data indicate that the first zygomycetous fungi occurred on Earth during the Precambrian, however, fossil evidence of these organisms has been slow to accumulate. In this paper, the fossil record of the zygomycetous fungi is compiled, with a focus on structurally preserved

  14. NanoSIMS analysis of Archean fossils and biomarkers

    International Nuclear Information System (INIS)

    Kilburn, M.R.; Wacey, D.

    2008-01-01

    The study of fossils and biomarkers from Archean rocks is of vital importance to reveal how life arose on Earth and what we might expect to find on other planets such as Mars. The Cameca NanoSIMS 50 has the unique ability to measure stable isotopes and map biologically relevant elements at the micron-scale, in situ. This makes it the perfect tool for testing the biogenicity of a range of putative biomarkers from early Archean rocks (∼3.50 billion-year-old). NanoSIMS has been used to investigate ambient inclusion trails (AITs) in a 3.43 Ga beach sand deposit from the Pilbara craton, Western Australia. Chemical maps of the light elements necessary for life (C, N and O) and several transition metals commonly associated with biological processing (Ni, Zn and Fe), coupled with 13 C/ 12 C isotope ratios from carbonaceous linings, strongly suggest a biological component in the formation of AITs

  15. Fossil fuel usage and the environment

    International Nuclear Information System (INIS)

    Klass, D.L.

    1991-01-01

    The Greenhouse Effect and global warming, ozone formation in the troposphere, ozone destruction in the stratosphere, and acid rain are important environmental issues. The relationship of fossil fuel usage to some of these issues is discussed. Data on fossil fuel consumption and the sources and sinks of carbon dioxide, carbon monoxide, methane, nitrogen and sulfur oxides, and ozone indicate that natural gas provides lower emissions of carbon dioxide, carbon monoxide, and nitrogen and sulfur oxides than other fossil fuels. Global emissions of methane from the gas industry are significantly less than those from other anthropogenic activities and natural sources, and methane plays an important role along with carbon monoxide and nitric oxide in tropospheric ozone formation. Reductions in any or all of these air pollutants would reduce ozone in the lower atmosphere. Several remedial measures have been or are being implemented in certain countries to reduce fossil fuel emissions. These include removal of emissions from the atmosphere by new biomass growth, fuel substitution by use of cleaner burning fuels for stationary and mobile sources, and fossil fuel combustion at higher efficiencies. It is unlikely that concerted environmental action by all governments of the world will occur soon, but much progress has been made to achieve clean air

  16. Climate mitigation comparison of woody biomass systems with the inclusion of land-use in the reference fossil system

    International Nuclear Information System (INIS)

    Haus, S.; Gustavsson, L.; Sathre, R.

    2014-01-01

    While issues of land-use have been considered in many direct analyses of biomass systems, little attention has heretofore been paid to land-use in reference fossil systems. Here we address this limitation by comparing forest biomass systems to reference fossil systems with explicit consideration of land-use in both systems. We estimate and compare the time profiles of greenhouse gas (GHG) emission and cumulative radiative forcing (CRF) of woody biomass systems and reference fossil systems. A life cycle perspective is used that includes all significant elements of both systems, including GHG emissions along the full material and energy chains. We consider the growth dynamics of forests under different management regimes, as well as energy and material substitution effects of harvested biomass. We determine the annual net emissions of CO 2 , N 2 O and CH 4 for each system over a 240-year period, and then calculate time profiles of CRF as a proxy measurement of climate change impact. The results show greatest potential for climate change mitigation when intensive forest management is applied in the woody biomass system. This methodological framework provides a tool to help determine optimal strategies for managing forests so as to minimize climate change impacts. The inclusion of land-use in the reference system improves the accuracy of quantitative projections of climate benefits of biomass-based systems. - Highlights: • We analyze the dynamics of GHG emissions from woody biomass and fossil systems. • With a life cycle perspective, we account for forest land-use in both systems. • Replacing more carbon intensive fossil fuels gives greater climate benefit. • Increasing the intensity of forest management gives greater climate benefit. • Methodological choices in defining temporal system boundaries are important

  17. Environmental sustainability assessment of hydropower plant in Europe using life cycle assessment

    Science.gov (United States)

    Mahmud, M. A. P.; Huda, N.; Farjana, S. H.; Lang, C.

    2018-05-01

    Hydropower is the oldest and most common type of renewable source of electricity available on this planet. The end of life process of hydropower plant have significant environmental impacts, which needs to be identified and minimized to ensure an environment friendly power generation. However, identifying the environmental impacts and health hazards are very little explored in the hydropower processing routes despite a significant quantity of production worldwide. This paper highlight the life-cycle environmental impact assessment of the reservoir based hydropower generation system located in alpine and non-alpine region of Europe, addressing their ecological effects by the ReCiPe and CML methods under several impact-assessment categories such as human health, ecosystems, global warming potential, acidification potential, etc. The Australasian life-cycle inventory database and SimaPro software are utilized to accumulate life-cycle inventory dataset and to evaluate the impacts. The results reveal that plants of alpine region offer superior environmental performance for couple of considered categories: global warming and photochemical oxidation, whilst in the other cases the outcomes are almost similar. Results obtained from this study will take part an important role in promoting sustainable generation of hydropower, and thus towards environment friendly energy production.

  18. Wildfire Activity Across the Triassic-Jurassic Boundary in the Polish Basin: Evidence from New Fossil Charcoal & Carbon-isotope Data

    Science.gov (United States)

    Pointer, R.; Belcher, C.; Hesselbo, S. P.; Hodbod, M.; Pieńkowski, G.

    2017-12-01

    New fossil charcoal abundance and carbon-isotope data from two sedimentary cores provide new evidence of extreme environmental conditions in the Polish Basin during the Latest Triassic to Earliest Jurassic. Sedimentary cores from the Polish Basin provide an excellent record of terrestrial environmental conditions across the Triassic-Jurassic Boundary, a time of climatic extremes. Previous work has shown that the marine realm was affected by a large perturbation to the carbon cycle across the Triassic-Jurassic Boundary (manifested by large negative and positive carbon-isotope excursions) and limited records of charcoal abundance and organic geochemistry have indicated important changes in fire regime in the coeval ecosystems. Here we present two new carbon-isotope records generated from fossil plant matter across the Triassic-Jurassic boundary, and present new charcoal records. The charcoal abundance data confirm that there was variation in wildfire activity during the Late Triassic-Early Jurassic in the Polish Basin. Peaks in the number of fossil charcoal fragments present occur in both sedimentary cores, and increases in fossil charcoal abundance are linked to wildfires, signalling a short-lived rise in wildfire activity. Fossil charcoal abundance does not appear to be fully controlled by total organic matter content, depositional environment or bioturbation. We argue that increased wildfire activity is likely caused by an increase in ignition of plant material as a result of an elevated number of lightning strikes. Global warming (caused by a massive input of carbon into the atmosphere, as indicated by carbon-isotope data) can increase storm activity, leading to increased numbers of lightning strikes. Previous Triassic-Jurassic Boundary wildfire studies have found fossil charcoal abundance peaks at other northern hemisphere sites (Denmark & Greenland), and concluded that they represent increases in wildfire activity in the earliest Jurassic. Our new charcoal and

  19. Nuclear heat generating plants - technical concepts and market potentials. Chapter 8

    International Nuclear Information System (INIS)

    Thoene, E.

    1988-01-01

    To determine the advantages and disadvantages of different heat generating systems, a comparison is made between nuclear heat generating plants and competing heat generating systems. Nuclear heat generating plant concepts in practice have to compete with a wide range of existing and new fossil heat generating technologies of the most different capacities, ranging from combined heat and power generation to individual heating in one-family houses. Heat generation costs are calculated by means of a dynamic annuity method from an economic point of view. The development of real prices of fossil energy sources is based on two scenarios characterized as follows: scenario I - insignificant price increase by the year 2000, then stagnant; scenario II - moderate price increase by the year 2010, then stagnant. As a result of that systems comparison it can be stated that the considered nuclear heat generating plants may be an interesting competitive heat generation option, provided the assumptions on which the study is based can be implemented. This applies especially to investment costs. At the same time those plants contribute to a diversification of energy source options on the heat market. Their use leads to a reduction of fossil fuel imports, increasing at the same time short- and long-term supply guarantees. If nuclear heat generating plants substitute fossil heat generating plants, or render the construction of new ones superfluous, they contribute to avoiding chemical air pollutants. (orig./UA) [de

  20. Update on the status of life extension in U.S. Nuclear Power Plants

    International Nuclear Information System (INIS)

    Hevia Ruperez, F.; Lehnert, D.F.; Gregor, F.E.

    1997-01-01

    The purpose of this paper is to provide an update on the status of key activities that may affect the plant life extension option for U.S. nuclear power plants and to explain how the progress on the regulatory and technical developments may affect the world-wide nuclear industry. Establishing a predictable and stable regulatory process is the final piece that is needed by U.S. utilities to confidently consider the plant life extension option in their strategic planning. Certain technical issues were also identified in the previous studies where additional investigation would benedict the U.S. nuclear power industry's understanding of an aging effect and/or capability to demonstrate that the aging effect can be effectively managed. It is concluded that the lessons learned from the U.S. industry activities and the associated interactions with the NRC are leading to a positive indication that U.S. utilities believe the differences between the NRC and industry on the implementation of the amended license renewal rule can be successfully resolved and the that many utilities generally are interested in pursuing the life extension option as part of their strategic planning. The methodology and guidance developed in the U.S. for performing integrated plant assessments and evaluating time-limited aging analyses will be of significant interest to utilities and regulators in other countries. They will undoubtedly lay the foundation for an acceptable approach for demonstrating that aging processes are being processes are being effectively managed by plant programs and that safety margins or bases will be maintained during an extended operating period. (Author)