WorldWideScience

Sample records for forming planetary systems

  1. Planetary Data System (PDS)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Planetary Data System (PDS) is an archive of data products from NASA planetary missions, which is sponsored by NASA's Science Mission Directorate. We actively...

  2. Influence of stellar duplicity on the form of planetary nebulae

    International Nuclear Information System (INIS)

    Kolesnik, I.G.; Pilyugin, L.S.

    1986-01-01

    Formation of planetary nebulae's spatial structures is considered. Simple expression for angular distribution of density in planetary nebulae is obtained. Bipolar structures are formed effectively in binary systems in which the velocity of the expanding shell around the main star is smaller than the orbital velocity of the satellite. Masses of satellites lie in the range 0.1-0.4Msub(sun). Theoretical isophotal contour map for the model of the planetary nebula NGC 3587 is consistent with observational data. It is shown that central stars of planetary nebulae are usually binary systems

  3. Migration-induced architectures of planetary systems.

    Science.gov (United States)

    Szuszkiewicz, Ewa; Podlewska-Gaca, Edyta

    2012-06-01

    The recent increase in number of known multi-planet systems gives a unique opportunity to study the processes responsible for planetary formation and evolution. Special attention is given to the occurrence of mean-motion resonances, because they carry important information about the history of the planetary systems. At the early stages of the evolution, when planets are still embedded in a gaseous disc, the tidal interactions between the disc and planets cause the planetary orbital migration. The convergent differential migration of two planets embedded in a gaseous disc may result in the capture into a mean-motion resonance. The orbital migration taking place during the early phases of the planetary system formation may play an important role in shaping stable planetary configurations. An understanding of this stage of the evolution will provide insight on the most frequently formed architectures, which in turn are relevant for determining the planet habitability. The aim of this paper is to present the observational properties of these planetary systems which contain confirmed or suspected resonant configurations. A complete list of known systems with such configurations is given. This list will be kept by us updated from now on and it will be a valuable reference for studying the dynamics of extrasolar systems and testing theoretical predictions concerned with the origin and the evolution of planets, which are the most plausible places for existence and development of life.

  4. The fragility of planetary systems

    Science.gov (United States)

    Portegies Zwart, S. F.; Jílková, Lucie

    2015-07-01

    We specify the range to which perturbations penetrate a planetesimal system. Such perturbations can originate from massive planets or from encounters with other stars. The latter can have an origin in the star cluster in which the planetary system was born, or from random encounters once the planetary system has escaped its parental cluster. The probability of a random encounter, either in a star cluster or in the Galactic field depends on the local stellar density, the velocity dispersion and the time spend in that environment. By adopting order of magnitude estimates, we argue that the majority of planetary systems born in open clusters will have a Parking zone, in which planetesimals are affected by encounters in their parental star cluster but remain unperturbed after the star has left the cluster. Objects found in this range of semimajor axis and eccentricity preserve the memory of the encounter that last affected their orbits, and they can therefore be used to reconstruct this encounter. Planetary systems born in a denser environment, such as in a globular cluster are unlikely to have a Parking zone. We further argue that some planetary systems may have a Frozen zone, in which orbits are not affected either by the more inner massive planets or by external influences. Objects discovered in this zone will have preserved information about their formation in their orbital parameters.

  5. Solar planetary systems stardust to terrestrial and extraterrestrial planetary sciences

    CERN Document Server

    Bhattacharya, Asit B

    2017-01-01

    The authors have put forth great efforts in gathering present day knowledge about different objects within our solar system and universe. This book features the most current information on the subject with information acquired from noted scientists in this area. The main objective is to convey the importance of the subject and provide detailed information on the physical makeup of our planetary system and technologies used for research. Information on educational projects has also been included in the Radio Astronomy chapters.This information is a real plus for students and educators considering a career in Planetary Science or for increasing their knowledge about our planetary system

  6. Large-Scale Structures of Planetary Systems

    Science.gov (United States)

    Murray-Clay, Ruth; Rogers, Leslie A.

    2015-12-01

    A class of solar system analogs has yet to be identified among the large crop of planetary systems now observed. However, since most observed worlds are more easily detectable than direct analogs of the Sun's planets, the frequency of systems with structures similar to our own remains unknown. Identifying the range of possible planetary system architectures is complicated by the large number of physical processes that affect the formation and dynamical evolution of planets. I will present two ways of organizing planetary system structures. First, I will suggest that relatively few physical parameters are likely to differentiate the qualitative architectures of different systems. Solid mass in a protoplanetary disk is perhaps the most obvious possible controlling parameter, and I will give predictions for correlations between planetary system properties that we would expect to be present if this is the case. In particular, I will suggest that the solar system's structure is representative of low-metallicity systems that nevertheless host giant planets. Second, the disk structures produced as young stars are fed by their host clouds may play a crucial role. Using the observed distribution of RV giant planets as a function of stellar mass, I will demonstrate that invoking ice lines to determine where gas giants can form requires fine tuning. I will suggest that instead, disk structures built during early accretion have lasting impacts on giant planet distributions, and disk clean-up differentially affects the orbital distributions of giant and lower-mass planets. These two organizational hypotheses have different implications for the solar system's context, and I will suggest observational tests that may allow them to be validated or falsified.

  7. The signatures of the parental cluster on field planetary systems

    Science.gov (United States)

    Cai, Maxwell Xu; Portegies Zwart, Simon; van Elteren, Arjen

    2018-03-01

    Due to the high stellar densities in young clusters, planetary systems formed in these environments are likely to have experienced perturbations from encounters with other stars. We carry out direct N-body simulations of multiplanet systems in star clusters to study the combined effects of stellar encounters and internal planetary dynamics. These planetary systems eventually become part of the Galactic field population as the parental cluster dissolves, which is where most presently known exoplanets are observed. We show that perturbations induced by stellar encounters lead to distinct signatures in the field planetary systems, most prominently, the excited orbital inclinations and eccentricities. Planetary systems that form within the cluster's half-mass radius are more prone to such perturbations. The orbital elements are most strongly excited in the outermost orbit, but the effect propagates to the entire planetary system through secular evolution. Planet ejections may occur long after a stellar encounter. The surviving planets in these reduced systems tend to have, on average, higher inclinations and larger eccentricities compared to systems that were perturbed less strongly. As soon as the parental star cluster dissolves, external perturbations stop affecting the escaped planetary systems, and further evolution proceeds on a relaxation time-scale. The outer regions of these ejected planetary systems tend to relax so slowly that their state carries the memory of their last strong encounter in the star cluster. Regardless of the stellar density, we observe a robust anticorrelation between multiplicity and mean inclination/eccentricity. We speculate that the `Kepler dichotomy' observed in field planetary systems is a natural consequence of their early evolution in the parental cluster.

  8. Dynamics of Planetary Systems in Star Clusters

    Science.gov (United States)

    Spurzem, R.; Giersz, M.; Heggie, D. C.; Lin, D. N. C.

    2009-05-01

    At least 10%-15% of nearby Sunlike stars have known Jupiter-mass planets. In contrast, very few planets are found in mature open and globular clusters such as the Hyades and 47 Tuc. We explore here the possibility that this dichotomy is due to the postformation disruption of planetary systems associated with the stellar encounters in long-lived clusters. One supporting piece of evidence for this scenario is the discovery of freely floating low-mass objects in star forming regions. We use two independent numerical approaches, a hybrid Monte Carlo and a direct N-body method, to simulate the impact of the encounters. We show that the results of numerical simulations are in reasonable agreement with analytical determinations in the adiabatic and impulsive limits. They indicate that distant stellar encounters generally do not significantly modify the compact and nearly circular orbits. However, moderately close stellar encounters, which are likely to occur in dense clusters, can excite planets' orbital eccentricity and induce dynamical instability in systems that are closely packed with multiple planets. The disruption of planetary systems occurs primarily through occasional nearly parabolic, nonadiabatic encounters, though eccentricity of the planets evolves through repeated hyperbolic adiabatic encounters that accumulate small-amplitude changes. The detached planets are generally retained by the potential of their host clusters as free floaters in young stellar clusters such as σ Orionis. We compute effective cross sections for the dissolution of planetary systems and show that, for all initial eccentricities, dissolution occurs on timescales that are longer than the dispersion of small stellar associations, but shorter than the age of typical open and globular clusters. Although it is much more difficult to disrupt short-period planets, close encounters can excite modest eccentricity among them, such that subsequent tidal dissipation leads to orbital decay, tidal

  9. Strategy of Planetary Data Archives in Japanese Missions for Planetary Data System

    Science.gov (United States)

    Yamamoto, Y.; Ishihara, Y.; Murakami, S. Y.

    2017-12-01

    To preserve data acquired by Japanese planetary explorations for a long time, we need a data archiving strategy in a form suitable for resources. Planetary Data System(PDS) developed by NASA is an excellent system for saving data over a long period. Especially for the current version 4 (PDS4), it is possible to create a data archive with high completeness using information technology. Historically, the Japanese planetary missions have archived data by scientists in their ways, but in the past decade, JAXA has been aiming to conform data to PDS considering long term preservation. Hayabusa, Akatsuki are archived in PDS3. Kaguya(SELENE) data have been newly converted from the original format to PDS3. Hayabusa2 and BepiColombo, and future planetary explorations will release data in PDS4. The cooperation of engineers who are familiar with information technology is indispensable to create data archives for scientists. In addition, it is essential to have experience, information sharing, and a system to support it. There is a challenge in Japan about the system.

  10. In-situ Planetary Subsurface Imaging System

    Science.gov (United States)

    Song, W.; Weber, R. C.; Dimech, J. L.; Kedar, S.; Neal, C. R.; Siegler, M.

    2017-12-01

    Geophysical and seismic instruments are considered the most effective tools for studying the detailed global structures of planetary interiors. A planet's interior bears the geochemical markers of its evolutionary history, as well as its present state of activity, which has direct implications to habitability. On Earth, subsurface imaging often involves massive data collection from hundreds to thousands of geophysical sensors (seismic, acoustic, etc) followed by transfer by hard links or wirelessly to a central location for post processing and computing, which will not be possible in planetary environments due to imposed mission constraints on mass, power, and bandwidth. Emerging opportunities for geophysical exploration of the solar system from Venus to the icy Ocean Worlds of Jupiter and Saturn dictate that subsurface imaging of the deep interior will require substantial data reduction and processing in-situ. The Real-time In-situ Subsurface Imaging (RISI) technology is a mesh network that senses and processes geophysical signals. Instead of data collection then post processing, the mesh network performs the distributed data processing and computing in-situ, and generates an evolving 3D subsurface image in real-time that can be transmitted under bandwidth and resource constraints. Seismic imaging algorithms (including traveltime tomography, ambient noise imaging, and microseismic imaging) have been successfully developed and validated using both synthetic and real-world terrestrial seismic data sets. The prototype hardware system has been implemented and can be extended as a general field instrumentation platform tailored specifically for a wide variety of planetary uses, including crustal mapping, ice and ocean structure, and geothermal systems. The team is applying the RISI technology to real off-world seismic datasets. For example, the Lunar Seismic Profiling Experiment (LSPE) deployed during the Apollo 17 Moon mission consisted of four geophone instruments

  11. Planetary ring systems properties, structures, and evolution

    CERN Document Server

    Murray, Carl D

    2018-01-01

    Planetary rings are among the most intriguing structures of our solar system and have fascinated generations of astronomers. Collating emerging knowledge in the field, this volume reviews our current understanding of ring systems with reference to the rings of Saturn, Uranus, Neptune, and more. Written by leading experts, the history of ring research and the basics of ring–particle orbits is followed by a review of the known planetary ring systems. All aspects of ring system science are described in detail, including specific dynamical processes, types of structures, thermal properties and their origins, and investigations using computer simulations and laboratory experiments. The concluding chapters discuss the prospects of future missions to planetary rings, the ways in which ring science informs and is informed by the study of other astrophysical disks, and a perspective on the field's future. Researchers of all levels will benefit from this thorough and engaging presentation.

  12. Tandem planet formation for solar system-like planetary systems

    OpenAIRE

    Yusuke Imaeda; Toshikazu Ebisuzaki

    2017-01-01

    We present a new united theory of planet formation, which includes magneto-rotational instability (MRI) and porous aggregation of solid particles in a consistent way. We show that the “tandem planet formation” regime is likely to result in solar system-like planetary systems. In the tandem planet formation regime, planetesimals form at two distinct sites: the outer and inner edges of the MRI suppressed region. The former is likely to be the source of the outer gas giants, and the latter is th...

  13. Transiting planetary system WASP-17 (Southworth+, 2012)

    DEFF Research Database (Denmark)

    Southworth, J.; Hinse, T. C.; Dominik, M.

    2013-01-01

    A light curve of four transits of the extrasolar planetary system WASP-17 is presented. The data were obtained using the Danish 1.5m telescope and DFOSC camera at ESO La Silla in 2012, with substantial telescope defocussing in order to improve the photometric precision of the observations. A Cous...

  14. Unstable Planetary Systems Emerging Out of Gas Disks

    Science.gov (United States)

    Matsumura, Soko; Thommes, Edward W.; Chatterjee, Sourav; Rasio, Frederic A.

    2010-05-01

    The discovery of over 400 extrasolar planets allows us to statistically test our understanding of the formation and dynamics of planetary systems via numerical simulations. Traditional N-body simulations of multiple-planet systems without gas disks have successfully reproduced the eccentricity (e) distribution of the observed systems by assuming that the planetary systems are relatively closely packed when the gas disk dissipates, so that they become dynamically unstable within the stellar lifetime. However, such studies cannot explain the small semimajor axes a of extrasolar planetary systems, if planets are formed, as the standard planet formation theory suggests, beyond the ice line. In this paper, we numerically study the evolution of three-planet systems in dissipating gas disks, and constrain the initial conditions that reproduce the observed a and e distributions simultaneously. We adopt initial conditions that are motivated by the standard planet formation theory, and self-consistently simulate the disk evolution and planet migration, by using a hybrid N-body and one-dimensional gas disk code. We also take into account eccentricity damping, and investigate the effect of saturation of corotation resonances on the evolution of planetary systems. We find that the a distribution is largely determined in a gas disk, while the e distribution is determined after the disk dissipation. We also find that there may be an optimum disk mass which leads to the observed a-e distribution. Our simulations generate a larger fraction of planetary systems trapped in mean-motion resonances (MMRs) than the observations, indicating that the disk's perturbation to the planetary orbits may be important to explain the observed rate of MMRs. We also find a much lower occurrence of planets on retrograde orbits than the current observations of close-in planets suggest.

  15. Planets and planetarians. A history of theories of the origin of planetary systems

    International Nuclear Information System (INIS)

    Jaki, S.L.

    1978-01-01

    A critical review is presented of theories of the origin of planetary systems. The book deals chronologically with the subject from Greek times to the present. The last of the eight chapters covers the post-war period. Particular attention is paid to theories of the origin of our own planetary system and to the degree of frequency of planetary systems (in particular, the frequency of planets carrying life in some form) in the universe. (U.K.)

  16. Communication System Architecture for Planetary Exploration

    Science.gov (United States)

    Braham, Stephen P.; Alena, Richard; Gilbaugh, Bruce; Glass, Brian; Norvig, Peter (Technical Monitor)

    2001-01-01

    Future human missions to Mars will require effective communications supporting exploration activities and scientific field data collection. Constraints on cost, size, weight and power consumption for all communications equipment make optimization of these systems very important. These information and communication systems connect people and systems together into coherent teams performing the difficult and hazardous tasks inherent in planetary exploration. The communication network supporting vehicle telemetry data, mission operations, and scientific collaboration must have excellent reliability, and flexibility.

  17. Earth-like Habitats in Planetary Systems

    OpenAIRE

    Fritz, Jörg; Bitsch, Bertram; Kührt, Ekkehard; Morbidelli, Alessandro; Tornow, Carmen; Wünnemann, Kai; Fernandes, Vera A.; Grenfell, Lee J.; Rauer, Heike; Wagner, Roland; Werner, Stephanie C.

    2014-01-01

    Understanding the concept of habitability is related to an evolutionary knowledge of the particular planet-in-question. Additional indications so-called "systemic aspects" of the planetary system as a whole governs a particular planet's claim on habitability. Here we focus on such systemic aspects and discuss their relevance to the formation of an 'Earth-like' habitable planet. We summarize our results obtained by lunar sample work and numerical models within the framework of the Research All...

  18. The complex planetary synchronization structure of the solar system

    Science.gov (United States)

    Scafetta, N.

    2014-01-01

    The complex planetary synchronization structure of the solar system, which since Pythagoras of Samos (ca. 570-495 BC) is known as the music of the spheres, is briefly reviewed from the Renaissance up to contemporary research. Copernicus' heliocentric model from 1543 suggested that the planets of our solar system form a kind of mutually ordered and quasi-synchronized system. From 1596 to 1619 Kepler formulated preliminary mathematical relations of approximate commensurabilities among the planets, which were later reformulated in the Titius-Bode rule (1766-1772), which successfully predicted the orbital position of Ceres and Uranus. Following the discovery of the ~ 11 yr sunspot cycle, in 1859 Wolf suggested that the observed solar variability could be approximately synchronized with the orbital movements of Venus, Earth, Jupiter and Saturn. Modern research has further confirmed that (1) the planetary orbital periods can be approximately deduced from a simple system of resonant frequencies; (2) the solar system oscillates with a specific set of gravitational frequencies, and many of them (e.g., within the range between 3 yr and 100 yr) can be approximately constructed as harmonics of a base period of ~ 178.38 yr; and (3) solar and climate records are also characterized by planetary harmonics from the monthly to the millennial timescales. This short review concludes with an emphasis on the contribution of the author's research on the empirical evidences and physical modeling of both solar and climate variability based on astronomical harmonics. The general conclusion is that the solar system works as a resonator characterized by a specific harmonic planetary structure that also synchronizes the Sun's activity and the Earth's climate. The special issue Pattern in solar variability, their planetary origin and terrestrial impacts (Mörner et al., 2013) further develops the ideas about the planetary-solar-terrestrial interaction with the personal contribution of 10

  19. Multiple planetary systems: Properties of the current sample

    Science.gov (United States)

    Hobson, Melissa J.; Gomez, Mercedes

    2017-08-01

    We carry out analyses on stellar and planetary properties of multiple exoplanetary systems in the currently available sample. With regards to the stars, we study their temperature, distance from the Sun, and metallicity distributions, finding that the stars that harbour multiple exoplanets tend to have subsolar metallicities, in contrast to metal-rich Hot Jupiter hosts; while non-Hot Jupiter single planet hosts form an intermediate group between these two, with approximately solar metallicities. With regards to the planetary systems, we select those with four or more planets and analyse their configurations in terms of stability (via Hill radii), compactness, and size variations. We find that most planetary pairs are stable, and that the compactness correlates to the size variation: More compact systems have more similarly sized planets and vice versa. We also investigate the spectral energy distributions of the stars hosting multiple exoplanetary systems, seeking infra-red excesses that could indicate the presence of debris disks. These disks would be leftovers from the planetary formation process, and could be considered as analogues of the Solar System's Asteroid or Kuiper belts. We identify potential candidates for disks that are good targets for far infra-red follow-up observations to confirm their existence.

  20. History of the Planetary Systems

    Science.gov (United States)

    Dreyer, J. L. E.

    2014-10-01

    Introduction. The earliest cosmological ideas; 1. The early Greek philosophers; 2. The Pythagorean school; 3. Plato; 4. The homocentric spheres of Eudoxus; 5. Aristotle; 6. Herakleides and Aristarchus; 7. The theory of Epicycles; 8. The dimensions of the world; 9. The Ptolemaic system; 10. Medieval cosmology; 11. Oriental astronomers; 12. The revival of astronomy in Europe; 13. Copernicus; 14. Tycho Brahe and his contemporaries; 15. Kepler; 16. Conclusion; Index.

  1. A Planetary System with an Escaping Mars

    OpenAIRE

    Süli, Áron; Dvorak, Rudolf

    2005-01-01

    The chaotic behaviour of the motion of the planets in our Solar System is well established. In this work to model a hypothetical extrasolar planetary system our Solar System was modified in such a way that we replaced the Earth by a more massive planet and let the other planets and all the orbital elements unchanged. The major result of former numerical experiments with a modified Solar System was the appearance of a chaotic window at $\\kappa_E \\in (4,6)$, where the dynamical state of the sys...

  2. Long-term evolution and stability of planetary systems

    Science.gov (United States)

    Juric, Mario

    This dissertation studies the dynamical evolution and stability of planetary systems over long time spans (10 8 -10 9 years). I investigated the dynamical evolution of few-planet systems by simulating ensembles of systems consisting of hundreds to thousands of randomly constructed members. I looked at ways to classify the systems according to their dynamical activity, and found the median Hill separation of an ensemble to be a sufficiently good criterion for separation into active (those exhibiting frequent planetary close encounters, collisions or ejections) and inactive ensembles. I examined the evolution of dynamical parameters in active systems. I found that in ensembles of dynamically active (initially unstable) systems the eccentricity distribution evolves towards the same equilibrium form, irrespective of the distribution it began with. Furthermore, this equilibrium distribution is indistinguishable, within observational errors, from the distribution found in extrasolar planets. This is to my knowledge the first successful detailed theoretical reproduction of the form of observed exoplanet eccentricity distribution. I further looked for quantities that can be used as indicators of long-term stability of planetary systems, specifically the angular momentum deficit (AMD) as originally proposed by Laskar. I found that the quantity Q , defined as the ratio of minimum AMD required for a planetary collision to occur in secular theory and the total AMD of the system, may be used to predict the likelihood of decay of a planetary system. Qualitatively, the decay in systems having Q [Special characters omitted.] 1 is highly probable, while systems with Q [Special characters omitted.] 1 were found to be stable. To conduct the above investigations, I developed a new integrator package (VENUS), and the HYBRID/EE integration scheme designed for nearly-symplectic long-term integrations. VENUS implements integration algorithms for few-body planetary system integrations

  3. Studies of the Origin of Compact Planetary Systems

    Science.gov (United States)

    Nesvorny, David

    The majority of planets discovered by the Kepler telescope are super-Earth and miniNeptunes in close-in multiplanet systems. The orbits are often closely packed together, typically non-resonant, and expected to be nearly circular and nearly co-planar. The prevalence of these systems in the Kepler dataset suggests that they may represent the main channel of planetary formation in the Galaxy. It is unsettling that we do not know how these planetary systems form. This is one of the most fundamental unanswered questions in planetary science. Here we propose to study several formation models, including a new model in which planets efficiently form by accretion of small bodies (pebbles, boulders) drifting to the inner parts of the protoplanetary disk by aerodynamic gas drag. Our main goal is to understand the dynamics of growing protoplanets as they gravitationally interact among themselves and with the gas disk. The research will be conducted with a numerical code, FargoSyMBA, that we developed to this purpose. The new code is based on the hydrodynamical code known as Fargo, which we interfaced with an efficient N-body integrator known as SyMBA. The specific result that we will obtain in the work proposed here is how the number, masses and orbits of planets in the assembled systems depend on model parameters, and how these properties compare with observations. The general impact of the proposed work will be significant in that it will help us to better understand how planetary systems form, and what is the role of migration in their assembly. This is one of the central research themes in planetary science. Relevance to NASA Strategic Goals and the Exoplanets Research Program The proposed research is fundamental to understanding the formation and early evolution of exoplanetary systems. This is a central theme of NASA's Strategic Goals and the Exoplanets Research program. Specifically, the NRA for the Exoplanets Research program states that the program "solicits basic

  4. On Some General Regularities of Formation of the Planetary Systems

    Directory of Open Access Journals (Sweden)

    Belyakov A. V.

    2014-01-01

    Full Text Available J.Wheeler’s geometrodynamic concept has been used, in which space continuum is considered as a topologically non-unitary coherent surface admitting the existence of transitions of the input-output kind between distant regions of the space in an additional dimension. This model assumes the existence of closed structures (micro- and macro- contours formed due to the balance between main interactions: gravitational, electric, magnetic, and inertial forces. It is such macrocontours that have been demonstrated to form — independently of their material basis — the essential structure of objects at various levels of organization of matter. On the basis of this concept in this paper basic regularities acting during formation planetary systems have been obtained. The existence of two sharply different types of planetary systems has been determined. The dependencies linking the masses of the planets, the diameters of the planets, the orbital radii of the planet, and the mass of the central body have been deduced. The possibility of formation of Earth-like planets near brown dwarfs has been grounded. The minimum mass of the planet, which may arise in the planetary system, has been defined.

  5. Planetary Systems and the Origins of Life

    Science.gov (United States)

    Pudritz, Ralph; Higgs, Paul; Stone, Jonathon

    2013-01-01

    Preface; Part I. Planetary Systems and the Origins of Life: 1. Observations of extrasolar planetary systems Shay Zucker; 2. The atmospheres of extrasolar planets L. Jeremy Richardson and Sara Seager; 3. Terrestrial planet formation Edward Thommes; 4. Protoplanetary disks, amino acids and the genetic code Paul Higgs and Ralph Pudritz; 5. Emergent phenomena in biology: the origin of cellular life David Deamer; Part II. Life on Earth: 6. Extremophiles: defining the envelope for the search for life in the Universe Lynn Rothschild; 7. Hyperthermophilic life on Earth - and on Mars? Karl Stetter; 8. Phylogenomics: how far back in the past can we go? Henner Brinkmann, Denis Baurain and Hervé Philippe; 9. Horizontal gene transfer, gene histories and the root of the tree of life Olga Zhaxybayeva and J. Peter Gogarten; 10. Evolutionary innovation versus ecological incumbency Adolf Seilacher; 11. Gradual origins for the Metazoans Alexandra Pontefract and Jonathan Stone; Part III. Life in the Solar System?: 12. The search for life on Mars Chris McKay; 13. Life in the dark dune spots of Mars: a testable hypothesis Eörs Szathmary, Tibor Ganti, Tamas Pocs, Andras Horvath, Akos Kereszturi, Szaniszlo Berzci and Andras Sik; 14. Titan: a new astrobiological vision from the Cassini-Huygens data François Raulin; 15. Europa, the Ocean Moon: tides, permeable ice, and life Richard Greenberg; Index.

  6. A Planetary Park system for the Moon and beyond

    Science.gov (United States)

    Cockell, Charles; Horneck, Gerda

    Deutschland International space exploration programs foresee the establishment of human settlements on the Moon and on Mars within the next decades, following a series of robotic precursor missions. These increasing robotic visits and eventual human exploration and settlements may have an environmental impact on scientifically important sites and sites of natural beauty in the form of contamination with microorganisms and spacecraft parts, or even pollution as a consequence of in situ resource use. This concern has already been reflected in the Moon Treaty, "The Agreement Governing the Activities of States on the Moon and Other Celestial Bodies" of the United Nations, which follows the Outer Space Treaty of the UN. However, so far, the Moon Treaty has not been ratified by any nation which engages in human space programs or has plans to do so. Planetary protection guidelines as formulated by the Committee on Space Research (COSPAR) are based on the Outer Space Treaty and follow the objectives: (i) to prevent contamination by terrestrial microorganisms if this might jeopardize scientific investi-gations of possible extraterrestrial life forms, and (ii) to protect the Earth from the potential hazard posed by extraterrestrial material brought back to the Earth. As a consequence, they group exploratory missions according to the type of mission and target body in five different categories, requesting specific means of cleaning and sterilization. However, the protection of extraterrestrial environments might also encompass ethical and other non-instrumental reasons. In order to allow intense scientific research and exploitation, and on the other hand to preserve regions of the Moon for research and use by future generations, we proposed the introduction of a planetary (or lunar) park system, which would protect areas of scientific, historic and intrinsic value under a common scheme. A similar placePlaceNamePlanetary PlaceTypePark system could be established on Mars well

  7. Planetary Protection Considerations in EVA System Design

    Science.gov (United States)

    Eppler, Dean B.; Kosmo, Joseph J.

    2011-01-01

    very little expression of these anomalies. hardware from the human-occupied area may limit (although not likely eliminate) external materials in the human habitat. Definition of design-to requirements is critical to understanding technical feasibility and costs. The definition of Planetary Protection needs in relation to EVA mission and system element development cost impacts should be considered and interpreted in terms of Plausible Protection criteria. Since EVA operations will have the most direct physical interaction with the Martian surface, PP needs should be considered in the terms of mitigating hardware and operations impacts and costs.

  8. Advanced, Compact, Ultraviolet Imaging Spectrometer for Planetary Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced, Compact, Ultraviolet Imaging Spectrometer for Planetary Systems will advance the capabilities of ultraviolet imaging spectrometers by improving the...

  9. The NASA Planetary Data System Roadmap Study for 2017 - 2026

    Science.gov (United States)

    McNutt, R. L., Jr.; Gaddis, L. R.; Law, E.; Beyer, R. A.; Crombie, M. K.; Ebel, D. S. S.; Ghosh, A.; Grayzeck, E.; Morgan, T. H.; Paganelli, F.; Raugh, A.; Stein, T.; Tiscareno, M. S.; Weber, R. C.; Banks, M.; Powell, K.

    2017-12-01

    NASA's Planetary Data System (PDS) is the formal archive of >1.2 petabytes of data from planetary exploration, science, and research. Initiated in 1989 to address an overall lack of attention to mission data documentation, access, and archiving, the PDS has evolved into an online collection of digital data managed and served by a federation of six science discipline nodes and two technical support nodes. Several ad hoc mission-oriented data nodes also provide complex data interfaces and access for the duration of their missions. The recent Planetary Data System Roadmap Study for 2017 to 2026 involved 15 planetary science community members who collectively prepared a report summarizing the results of an intensive examination of the current state of the PDS and its organization, management, practices, and data holdings (https://pds.jpl.nasa.gov/roadmap/PlanetaryDataSystemRMS17-26_20jun17.pdf). The report summarizes the history of the PDS, its functions and characteristics, and how it has evolved to its present form; also included are extensive references and documentary appendices. The report recognizes that as a complex, evolving, archive system, the PDS must constantly respond to new pressures and opportunities. The report provides details on the challenges now facing the PDS, 19 detailed findings, suggested remediations, and a summary of what the future may hold for planetary data archiving. The findings cover topics such as user needs and expectations, data usability and discoverability (i.e., metadata, data access, documentation, and training), tools and file formats, use of current information technologies, and responses to increases in data volume, variety, complexity, and number of data providers. In addition, the study addresses the possibility of archiving software, laboratory data, and measurements of physical samples. Finally, the report discusses the current structure and governance of the PDS and its impact on how archive growth, technology, and new

  10. The Role of NASA's Planetary Data System in the Planetary Spatial Data Infrastructure Initiative

    Science.gov (United States)

    Arvidson, R. E.; Gaddis, L. R.

    2017-12-01

    An effort underway in NASA's planetary science community is the Mapping and Planetary Spatial Infrastructure Team (MAPSIT, http://www.lpi.usra.edu/mapsit/). MAPSIT is a community assessment group organized to address a lack of strategic spatial data planning for space science and exploration. Working with MAPSIT, a new initiative of NASA and USGS is the development of a Planetary Spatial Data Infrastructure (PSDI) that builds on extensive knowledge on storing, accessing, and working with terrestrial spatial data. PSDI is a knowledge and technology framework that enables the efficient discovery, access, and exploitation of planetary spatial data to facilitate data analysis, knowledge synthesis, and decision-making. NASA's Planetary Data System (PDS) archives >1.2 petabytes of digital data resulting from decades of planetary exploration and research. The PDS charter focuses on the efficient collection, archiving, and accessibility of these data. The PDS emphasis on data preservation and archiving is complementary to that of the PSDI initiative because the latter utilizes and extends available data to address user needs in the areas of emerging technologies, rapid development of tailored delivery systems, and development of online collaborative research environments. The PDS plays an essential PSDI role because it provides expertise to help NASA missions and other data providers to organize and document their planetary data, to collect and maintain the archives with complete, well-documented and peer-reviewed planetary data, to make planetary data accessible by providing online data delivery tools and search services, and ultimately to ensure the long-term preservation and usability of planetary data. The current PDS4 information model extends and expands PDS metadata and relationships between and among elements of the collections. The PDS supports data delivery through several node services, including the Planetary Image Atlas (https

  11. Polarimetry of stars and planetary systems

    National Research Council Canada - National Science Library

    Kolokolova, Ludmilla; Hough, James; Levasseur-Regourd, Anny-Chantal

    2015-01-01

    ... fields of polarimetric exploration, including proto-planetary and debris discs, icy satellites, transneptunian objects, exoplanets and the search for extraterrestrial life -- unique results produced...

  12. Tandem planet formation for solar system-like planetary systems

    Directory of Open Access Journals (Sweden)

    Yusuke Imaeda

    2017-03-01

    Full Text Available We present a new united theory of planet formation, which includes magneto-rotational instability (MRI and porous aggregation of solid particles in a consistent way. We show that the “tandem planet formation” regime is likely to result in solar system-like planetary systems. In the tandem planet formation regime, planetesimals form at two distinct sites: the outer and inner edges of the MRI suppressed region. The former is likely to be the source of the outer gas giants, and the latter is the source for the inner volatile-free rocky planets. Our study spans disks with a various range of accretion rates, and we find that tandem planet formation can occur for M˙=10−7.3-10−6.9M⊙yr−1. The rocky planets form between 0.4–2 AU, while the icy planets form between 6–30 AU; no planets form in 2–6 AU region for any accretion rate. This is consistent with the gap in the solid component distribution in the solar system, which has only a relatively small Mars and a very small amount of material in the main asteroid belt from 2–6 AU. The tandem regime is consistent with the idea that the Earth was initially formed as a completely volatile-free planet. Water and other volatile elements came later through the accretion of icy material by occasional inward scattering from the outer regions. Reactions between reductive minerals, such as schreibersite (Fe3P, and water are essential to supply energy and nutrients for primitive life on Earth.

  13. Sustainable food systems for optimal planetary health.

    Science.gov (United States)

    Canavan, Chelsey R; Noor, Ramadhani A; Golden, Christopher D; Juma, Calestous; Fawzi, Wafaie

    2017-06-01

    Sustainable food systems are an important component of a planetary health strategy to reduce the threat of infectious disease, minimize environmental footprint and promote nutrition. Human population trends and dietary transition have led to growing demand for food and increasing production and consumption of meat, amid declining availability of arable land and water. The intensification of livestock production has serious environmental and infectious disease impacts. Land clearing for agriculture alters ecosystems, increases human-wildlife interactions and leads to disease proliferation. Context-specific interventions should be evaluated towards optimizing nutrition resilience, minimizing environmental footprint and reducing animal and human disease risk. © The Author 2017. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene.

  14. Solar system astrophysics planetary atmospheres and the outer solar system

    CERN Document Server

    Milone, Eugene F

    2014-01-01

    The second edition of Solar System Astrophysics: Planetary Atmospheres and the Outer Solar System provides a timely update of our knowledge of planetary atmospheres and the bodies of the outer solar system and their analogs in other planetary systems. This volume begins with an expanded treatment of the physics, chemistry, and meteorology of the atmospheres of the Earth, Venus, and Mars, moving on to their magnetospheres and then to a full discussion of the gas and ice giants and their properties. From here, attention switches to the small bodies of the solar system, beginning with the natural satellites. Then comets, meteors, meteorites, and asteroids are discussed in order, and the volume concludes with the origin and evolution of our solar system. Finally, a fully revised section on extrasolar planetary systems puts the development of our system in a wider and increasingly well understood galactic context. All of the material is presented within a framework of historical importance. This book and its sist...

  15. Planetary rovers robotic exploration of the solar system

    CERN Document Server

    Ellery, Alex

    2016-01-01

    The increasing adoption of terrain mobility – planetary rovers – for the investigation of planetary surfaces emphasises their central importance in space exploration. This imposes a completely new set of technologies and methodologies to the design of such spacecraft – and planetary rovers are indeed, first and foremost, spacecraft. This introduces vehicle engineering, mechatronics, robotics, artificial intelligence and associated technologies to the spacecraft engineer’s repertoire of skills. Planetary Rovers is the only book that comprehensively covers these aspects of planetary rover engineering and more. The book: • discusses relevant planetary environments to rover missions, stressing the Moon and Mars; • includes a brief survey of previous rover missions; • covers rover mobility, traction and control systems; • stresses the importance of robotic vision in rovers for both navigation and science; • comprehensively covers autonomous navigation, path planning and multi-rover formations on ...

  16. The Planetary Data System - A solution to data management for the planetary science community

    Science.gov (United States)

    Dobinson, Elaine R.

    1990-01-01

    An overview of the first release of the Planetary Data System (PDS) is presented, and some of the challenges encountered during development of the system are described. The principal goals of the PDS are to distribute planetary science data and information about these data to NASA, to provide scientific knowledge to users of these data, and to provide for permanent storage. The current architecture and capabilities of the PDS (Version 1.0) are examined, and some of the special challenges encountered and lessons learned during the application are highlighted. Finally, implications for future versions of the PDS as well as for other science data systems are discussed.

  17. The Role of Planetary Data System Archive Standards in International Planetary Data Archives

    Science.gov (United States)

    Guinness, Edward; Slavney, Susan; Beebe, Reta; Crichton, Daniel

    A major objective of NASA's Planetary Data System (PDS) is to efficiently archive and make accessible digital data produced by NASA's planetary missions, research programs, and data analysis programs. The PDS is comprised of a federation of groups known as nodes, with each node focused on archiving and managing planetary data from a given science discipline. PDS nodes include Atmospheres, Geosciences, Small Bodies (asteroids, comets, and dust), Rings, Planetary Plasma Interactions, and Imaging. There are also support nodes for engineering, radio science, and ancillary data, such as geometry information. The PDS archives include space-borne, ground-based, and laboratory experiment data from several decades of NASA exploration of comets, asteroids, moons, and planets. PDS archives are peer-reviewed, welldocumented, and accessible online via web sites, catalogs, and other user-interfaces that provide search and retrieval capabilities. Current holdings within the PDS online repositories total approximately 50 TB of data. Over the next few years, the PDS is planning for a rapid expansion in the volume of data being delivered to its archives. The archive standards developed by the PDS are crucial elements for producing planetary data archives that are consistent across missions and planetary science disciplines and that yield archives that are useable by the planetary research community. These standards encompass the full range of archiving needs. They include standards for the format of data products and the metadata needed to detail how observations were made. They also specify how data products and ancillary information such as documentation, calibration, and geometric information are packaged into data sets. The PDS standards are documented in its Planetary Science Data Dictionary and in its Standards Reference Document and Archive Preparation Guide. The PDS standards are being used to design and implement data archives for current and future NASA planetary missions

  18. Nonlinear time heteronymous damping in nonlinear parametric planetary systems

    Czech Academy of Sciences Publication Activity Database

    Hortel, Milan; Škuderová, Alena

    2014-01-01

    Roč. 225, č. 7 (2014), s. 2059-2073 ISSN 0001-5970 Institutional support: RVO:61388998 Keywords : nonlinear dynamics * planetary systems * heteronymous damping Subject RIV: JT - Propulsion, Motors ; Fuels Impact factor: 1.465, year: 2014

  19. Exoplanetary System Dynamics: Planetary Multiplicity and Mass Effects

    Science.gov (United States)

    Isoe, Mari; Kokubo, Eiichiro; Turner, Edwin

    2015-12-01

    Recently numerous systems consisting of multiple exoplanets have been discovered. Using a dataset of 375 systems (500 planets) discovered by the radial velocity method and 365 systems (899 planets) containing planet candidates found by the Kepler Mission, we investigate the dependence of the dynamical structure of planetary systems on their multiplicity and the masses of the member planets. We classify the planetary system by three parameters: planetary multiplicity, planetary mass, and the evolutionary stage of the central star. We normalize planetary masses by the mass of the central star and divide the planets into small and large categories by a cut at $10^{-4}$. The central star is classified into main-sequence or giant according to its evolutionary stage. We focus on the angular momentum deficit (AMD) of the systems and the orbital separation between adjacent planets normalized by their Hill radii. We find that in all categories the system AMD decreases with increasing multiplicity. This suggests that in order for multiple systems to be stable, each planet's orbit must be relatively circular. In addition, we find that the distribution of orbital eccentricities of the massive planets and low-mass planets differs. In particular, only high-mass planets have eccentricities larger than 0.4. In the low-mass systems around main sequence stars, we find that the orbital separation decreases with increasing multiplicity. In addition, the orbital separation around main-sequence stars is wider than that around giants. Furthermore, the minimum orbital separation is about 6.4 for non-resonant pairs. This paper presents the statistical properties of the dynamical structure of multiple planetary systems and discusses their formation.

  20. Reflection seismology systems for planetary geology : A feasibility study

    NARCIS (Netherlands)

    Batenburg, P.A.W.; Gill, E.K.A.; Drijkoningen, G.G.; Foing, B.H.; Toxopeus, G.

    2009-01-01

    A feasibility study is conducted to determine whether reflection seismology systems can be used for planetary geology research. The focus is on systems with up to 20,000 seismic detectors, such as used today in Earth geological research and energy companies. The study follows a top-down systems

  1. Planetary Data Systems (PDS) Imaging Node Atlas II

    Science.gov (United States)

    Stanboli, Alice; McAuley, James M.

    2013-01-01

    The Planetary Image Atlas (PIA) is a Rich Internet Application (RIA) that serves planetary imaging data to the science community and the general public. PIA also utilizes the USGS Unified Planetary Coordinate system (UPC) and the on-Mars map server. The Atlas was designed to provide the ability to search and filter through greater than 8 million planetary image files. This software is a three-tier Web application that contains a search engine backend (MySQL, JAVA), Web service interface (SOAP) between server and client, and a GWT Google Maps API client front end. This application allows for the search, retrieval, and download of planetary images and associated meta-data from the following missions: 2001 Mars Odyssey, Cassini, Galileo, LCROSS, Lunar Reconnaissance Orbiter, Mars Exploration Rover, Mars Express, Magellan, Mars Global Surveyor, Mars Pathfinder, Mars Reconnaissance Orbiter, MESSENGER, Phoe nix, Viking Lander, Viking Orbiter, and Voyager. The Atlas utilizes the UPC to translate mission-specific coordinate systems into a unified coordinate system, allowing the end user to query across missions of similar targets. If desired, the end user can also use a mission-specific view of the Atlas. The mission-specific views rely on the same code base. This application is a major improvement over the initial version of the Planetary Image Atlas. It is a multi-mission search engine. This tool includes both basic and advanced search capabilities, providing a product search tool to interrogate the collection of planetary images. This tool lets the end user query information about each image, and ignores the data that the user has no interest in. Users can reduce the number of images to look at by defining an area of interest with latitude and longitude ranges.

  2. Solar system astrophysics planetary atmospheres and the outer solar system

    CERN Document Server

    Milone, Eugene F

    2008-01-01

    Solar System Astrophysics opens with coverage of the atmospheres, ionospheres and magnetospheres of the Earth, Venus and Mars and the magnetosphere of Mercury. The book then provides an introduction to meteorology and treating the physics and chemistry of these areas in considerable detail. What follows are the structure, composition, particle environments, satellites, and rings of Jupiter, Saturn, Uranus and Neptune, making abundant use of results from space probes. Solar System Astrophysics follows the history, orbits, structure, origin and demise of comets and the physics of meteors and provides a thorough treatment of meteorites, the asteroids and, in the outer solar system, the Kuiper Belt objects. The methods and results of extrasolar planet searches, the distinctions between stars, brown dwarfs, and planets, and the origins of planetary systems are examined. Historical introductions precede the development and discussion in most chapters. A series of challenges, useful as homework assignments or as foc...

  3. The NASA Planetary Data System's Cartography and Imaging Sciences Node and the Planetary Spatial Data Infrastructure (PSDI) Initiative

    Science.gov (United States)

    Gaddis, L. R.; Laura, J.; Hare, T.; Hagerty, J.

    2017-06-01

    Here we address the role of the PSDI initiative in the context of work to archive and deliver planetary data by NASA’s Planetary Data System, and in particular by the PDS Cartography and Imaging Sciences Discipline Node (aka “Imaging” or IMG).

  4. VLA Reveals a Close Pair of Potential Planetary Systems

    Science.gov (United States)

    1998-09-01

    in Cambridge, MA. "However, we don't think these solar systems would be able to form outer, icy planets like Uranus and Neptune, because of the small size of the dust disks." The new observations "imply that young protoplanetary disks can contain considerably more mass within (a distance equal to Saturn's orbital radius) than astronomers have been willing to contemplate," wrote Alan P. Boss of the Carnegie Institution of Washington in an accompanying Nature article analyzing the results. If the stars were a few times closer together, the researchers point out, the gravitational effects of both would disrupt the disks and prevent any planets from forming. "If these disks form planetary systems, they would be among the closest possible adjacent sets of planets in the universe," said Rodriguez. Boss suggested that a giant planet formed near the edge of one of the disks might be ejected from the system by the gravitational effect of the companion star. This, he says, might explain the possible "runaway planet" shown in a Hubble Space Telescope image released in May. In that result, a planet appears to have been ejected by a binary-star system similar in size to that seen by the VLA. Further observations are required to confirm that result. In addition to Rodriguez and Wilner, the researchers are Paola D'Alessio, Salvador Curiel, Yolanda Gomez, Susana Lizano, Jorge Canto, and Alejandro C. Raga of the National Autonomous University in Mexico City; Paul Ho of the Harvard-Smithsonian Center for Astrophysics; Jose M. Torrelles of the Astrophysical Institute of Andalucia in Spain; and Alan Pedlar of the Jodrell Bank observatory in Britain. The observations of the double-star system were made at a radio wavelength of 7 millimeters, a wavelength at which emission from cosmic dust is readily detected. Astronomers long realized that the VLA had sufficient resolving power - the ability to see fine detail - to make images of the dust disks around young stars that form the building

  5. Small reactor power systems for manned planetary surface bases

    Science.gov (United States)

    Bloomfield, Harvey S.

    1987-12-01

    A preliminary feasibility study of the potential application of small nuclear reactor space power systems to manned planetary surface base missions was conducted. The purpose of the study was to identify and assess the technology, performance, and safety issues associated with integration of reactor power systems with an evolutionary manned planetary surface exploration scenario. The requirements and characteristics of a variety of human-rated modular reactor power system configurations selected for a range of power levels from 25 kWe to hundreds of kilowatts is described. Trade-off analyses for reactor power systems utilizing both man-made and indigenous shielding materials are provided to examine performance, installation and operational safety feasibility issues. The results of this study have confirmed the preliminary feasibility of a wide variety of small reactor power plant configurations for growth oriented manned planetary surface exploration missions. The capability for power level growth with increasing manned presence, while maintaining safe radiation levels, was favorably assessed for nominal 25 to 100 kWe modular configurations. No feasibility limitations or technical barriers were identified and the use of both distance and indigenous planetary soil material for human rated radiation shielding were shown to be viable and attractive options.

  6. Towards a sustainable modular robot system for planetary exploration

    Science.gov (United States)

    Hossain, S. G. M.

    This thesis investigates multiple perspectives of developing an unmanned robotic system suited for planetary terrains. In this case, the unmanned system consists of unit-modular robots. This type of robot has potential to be developed and maintained as a sustainable multi-robot system while located far from direct human intervention. Some characteristics that make this possible are: the cooperation, communication and connectivity among the robot modules, flexibility of individual robot modules, capability of self-healing in the case of a failed module and the ability to generate multiple gaits by means of reconfiguration. To demonstrate the effects of high flexibility of an individual robot module, multiple modules of a four-degree-of-freedom unit-modular robot were developed. The robot was equipped with a novel connector mechanism that made self-healing possible. Also, design strategies included the use of series elastic actuators for better robot-terrain interaction. In addition, various locomotion gaits were generated and explored using the robot modules, which is essential for a modular robot system to achieve robustness and thus successfully navigate and function in a planetary environment. To investigate multi-robot task completion, a biomimetic cooperative load transportation algorithm was developed and simulated. Also, a liquid motion-inspired theory was developed consisting of a large number of robot modules. This can be used to traverse obstacles that inevitably occur in maneuvering over rough terrains such as in a planetary exploration. Keywords: Modular robot, cooperative robots, biomimetics, planetary exploration, sustainability.

  7. NIRCam Coronagraphic Observations of Disks and Planetary Systems

    Science.gov (United States)

    Beichman, Charles A.; Ygouf, Marie; Gaspar, Andras; NIRCam Science Team

    2017-06-01

    The NIRCam coronagraph offers a dramatic increase in sensitivity at wavelengths of 3-5 um where young planets are brightest. While large ground-based telescopes with Extreme Adaptive Optics have an advantage in inner working angle, NIRCam's sensitivity will allow high precision photometry for known planets and searches for planets with masses below that of Saturn. For debris disk science NIRCam observations will address the scattering properties of dust, look for evidence of ices and tholins, and search for planets which affect the structure of the disk itself.The NIRCam team's GTO program includes medium-band filter observations of known young planets having 1-5 Jupiter masses. A collaborative program with the MIRI team will provide coronagraphic observations at longer wavelengths. The combined dataset will yield the exoplanet’s total luminosity and effective temperature, an estimate of the initial entropy of the newly-formed planet, and the retrieval of atmospheric properties.The program will also make deep searches for lower mass planets toward known planetary systems, nearby young M stars and debris disk systems. Achievable mass limits range from ~1 Jupiter mass beyond 20 AU for the brightest A stars to perhaps a Uranus mass within 10 AU for the closest M stars.We will discuss details of the coronagraphic program for both the exoplanet and debris disk cases with an emphasis on using APT to optimize the observations of target and reference stars.

  8. The new view of the irregular planetary satellite systems

    Science.gov (United States)

    Petit, J.-M.; Gladman, B.; Holman, M.; Grav, T.; Kavelaars, J. J.; Nicholson, P.

    2003-04-01

    The giant planets in the Solar System each have two groups of satellites. The regular satellites move along nearly circular orbits in the planet's orbital plane, revolving about it in the same sense as the planet spins. In contrast, the so-called irregular satellites are generally smaller in size and are characterized by large orbits with significant eccentricity, inclination or both. The differences in their characteristics suggest that the regular and irregular satellites formed by different mechanisms. The regular satellites have most certainly formed in an accretion disk extending out to tens of planetary radii, like miniature Solar Systems. Irregular satellites, on the contrary, are believed to be planetesimals captured during the final stages of the planet's formation. Before 1997, the irregular satellite inventories of the gas giants where pourly known (Jupiter: 8, Saturn: 1, Uranus: 2, Neptune: 2). Since then, our team have been conducting a series of systematic and complete searches around the giant planets, discovering 12 confirmed satellites around Saturn, 6 around Uranus and 3 around Neptune plus a handfull of candidates. Sheppard et al. have identifyed 11 new irregular satellites around Jupiter while searching a small fraction of its stable region. These discoveries yield insights into the capture process of the satellites. Our team's tracking efforts have shown that the orbits of the Saturnian and Uranian irregular satellites fall into 'groups' in orbital space, ruling out independent capture and indicating that most of the moons we see today are the `children' of larger bodies that were captured long ago and then collisionally fragmented during the lifetime of the solar system.

  9. Long-Period Planets in Open Clusters and the Evolution of Planetary Systems

    Science.gov (United States)

    Quinn, Samuel N.; White, Russel; Latham, David W.; Stefanik, Robert

    2018-01-01

    Recent discoveries of giant planets in open clusters confirm that they do form and migrate in relatively dense stellar groups, though overall occurrence rates are not yet well constrained because the small sample of giant planets discovered thus far predominantly have short periods. Moreover, planet formation rates and the architectures of planetary systems in clusters may vary significantly -- e.g., due to intercluster differences in the chemical properties that regulate the growth of planetary embryos or in the stellar space density and binary populations, which can influence the dynamical evolution of planetary systems. Constraints on the population of long-period Jovian planets -- those representing the reservoir from which many hot Jupiters likely form, and which are most vulnerable to intracluster dynamical interactions -- can help quantify how the birth environment affects formation and evolution, particularly through comparison of populations possessing a range of ages and chemical and dynamical properties. From our ongoing RV survey of open clusters, we present the discovery of several long-period planets and candidate substellar companions in the Praesepe, Coma Berenices, and Hyades open clusters. From these discoveries, we improve estimates of giant planet occurrence rates in clusters, and we note that high eccentricities in several of these systems support the prediction that the birth environment helps shape planetary system architectures.

  10. Planetary Systems Detection, Formation and Habitability of Extrasolar Planets

    CERN Document Server

    Ollivier, Marc; Casoli, Fabienne; Encrenaz, Thérèse; Selsis, Franck

    2009-01-01

    Over the past ten years, the discovery of extrasolar planets has opened a new field of astronomy, and this area of research is rapidly growing, from both the observational and theoretical point of view. The presence of many giant exoplanets in the close vicinity of their star shows that these newly discovered planetary systems are very different from the solar system. New theoretical models are being developed in order to understand their formation scenarios, and new observational methods are being implemented to increase the sensitivity of exoplanet detections. In the present book, the authors address the question of planetary systems from all aspects. Starting from the facts (the detection of more than 300 extraterrestrial planets), they first describe the various methods used for these discoveries and propose a synthetic analysis of their global properties. They then consider the observations of young stars and circumstellar disks and address the case of the solar system as a specific example, different fr...

  11. A Sample Delivery System for Planetary Missions

    Data.gov (United States)

    National Aeronautics and Space Administration — The project will develop, test and characterize the performance of a prototype /sample delivery system (SDS) implemented as an end effector on a robotic arm capable...

  12. The architecture and formation of the Kepler-30 planetary system

    Science.gov (United States)

    Panichi, F.; Goździewski, K.; Migaszewski, C.; Szuszkiewicz, E.

    2018-04-01

    We study the orbital architecture, physical characteristics of planets, formation and long-term evolution of the Kepler-30 planetary system, detected and announced in 2012 by the KEPLER team. We show that the Kepler-30 system belongs to a particular class of very compact and quasi-resonant, yet long-term stable planetary systems. We re-analyse the light curves of the host star spanning Q1-Q17 quarters of the KEPLER mission. A huge variability of the Transit Timing Variations (TTV) exceeding 2 days is induced by a massive Jovian planet located between two Neptune-like companions. The innermost pair is near to the 2:1 mean motion resonance (MMR), and the outermost pair is close to higher order MMRs, such as 17:7 and 7:3. Our re-analysis of photometric data allows us to constrain, better than before, the orbital elements, planets' radii and masses, which are 9.2 ± 0.1, 536 ± 5, and 23.7 ± 1.3 Earth masses for Kepler-30b, Kepler-30c and Kepler-30d, respectively. The masses of the inner planets are determined within ˜1% uncertainty. We infer the internal structures of the Kepler-30 planets and their bulk densities in a wide range from (0.19 ± 0.01) g.cm-3 for Kepler-30d, (0.96 ± 0.15) g.cm-3 for Kepler-30b, to (1.71 ± 0.13) g.cm-3 for the Jovian planet Kepler-30c. We attempt to explain the origin of this unique planetary system and a deviation of the orbits from exact MMRs through the planetary migration scenario. We anticipate that the Jupiter-like planet plays an important role in determining the present dynamical state of this system.

  13. Stability Limits in Extra-solar Planetary Systems

    OpenAIRE

    Barnes, Rory; Greenberg, Richard

    2006-01-01

    Two types of stability boundaries exist for any planetary system consisting of one star and two planets. Lagrange stability requires that the planets remain bound to the star, conserves the ordering of the distance from the star, and limits the variations of orbital elements like semi-major axis and eccentricity. Hill stability only requires that the ordering of the planets remain constant; the outer planet may escape to infinity. A simple formula defines a region in orbital element space tha...

  14. Searching for stable orbits in the HD 10180 planetary system

    Directory of Open Access Journals (Sweden)

    Laskar J.

    2011-02-01

    Full Text Available A planetary system with at least seven planets has been found around the star HD 10180. However, the traditional Keplerian and n-body fits to the data provide an orbital solution that becomes unstable very quickly, which may quest the reliability of the observations. Here we show that stable orbital configurations can be obtained if general relativity and long-term dissipation raised by tides on the innermost planet are taken into account.

  15. STABILITY OF SATELLITES IN CLOSELY PACKED PLANETARY SYSTEMS

    International Nuclear Information System (INIS)

    Payne, Matthew J.; Holman, Matthew J.; Deck, Katherine M.; Perets, Hagai B.

    2013-01-01

    We perform numerical integrations of four-body (star, planet, planet, satellite) systems to investigate the stability of satellites in planetary systems with tightly packed inner planets (STIPs). We find that the majority of closely spaced stable two-planet systems can stably support satellites across a range of parameter-space which is only slightly decreased compared to that seen for the single-planet case. In particular, circular prograde satellites remain stable out to ∼0.4 R H (where R H is the Hill radius) as opposed to 0.5 R H in the single-planet case. A similarly small restriction in the stable parameter-space for retrograde satellites is observed, where planetary close approaches in the range 2.5-4.5 mutual Hill radii destabilize most satellites orbits only if a ∼ 0.65 R H . In very close planetary pairs (e.g., the 12:11 resonance) the addition of a satellite frequently destabilizes the entire system, causing extreme close approaches and the loss of satellites over a range of circumplanetary semi-major axes. The majority of systems investigated stably harbored satellites over a wide parameter-space, suggesting that STIPs can generally offer a dynamically stable home for satellites, albeit with a slightly smaller stable parameter-space than the single-planet case. As we demonstrate that multi-planet systems are not a priori poor candidates for hosting satellites, future measurements of satellite occurrence rates in multi-planet systems versus single-planet systems could be used to constrain either satellite formation or past periods of strong dynamical interaction between planets

  16. The occurrence of Jovian planets and the habitability of planetary systems

    OpenAIRE

    Lunine, Jonathan I.

    2001-01-01

    Planets of mass comparable to or larger than Jupiter's have been detected around over 50 stars, and for one such object a definitive test of its nature as a gas giant has been accomplished with data from an observed planetary transit. By virtue of their strong gravitational pull, giant planets define the dynamical and collisional environment within which terrestrial planets form. In our solar system, the position and timing of the formation of Jupiter determined the am...

  17. The Planetary Data System--preparing for a New Decade

    Science.gov (United States)

    Morgan, Thomas H.; Knopf, William P.; Grayzeck, Edwin J.

    2015-11-01

    In order to improve NASA’s ability to serve the Planetary Science Community, the Planetary Data System (PDS) has been transformed. NASA has used the highly successful virtual institute model (e.g., for NASA’s Astrobiology Program) to re-compete the Science Nodes within the PDS Structure. The new institute structure will facilitate our efforts within the PDS to improve both archive searchability and product discoverability. We will continue the adaption of the new PDS4 Standard, and enhance our ability to work with other archive/curation activities within NASA and with the community of space faring nations (through the IPDA). PDS science nodes will continue to work with NASA missions from the initial Announcement of Opportunity through the end of mission to define, organize, and document the data. This process includes peer-review of data sets by members of the science community to ensure that the data sets are scientifically useful, effectively organized, and well documented.The Science nodes were selected through a Cooperative Agreement Notice (NNH15ZDA006C) which specifically allowed the community to propose specific archive concepts. The selected nodes are: Cartography and Imaging Sciences, Rings-Moon Systems, Planetary Geosciences, Planetary Plasma Interactions, Atmospheres, and Small Bodies. Other elements of the PDS include an Engineering Node, the Navigation and Ancillary Information Facility, and a small project office.The prime role of the PDS is unchanged. We archive and distribute scientific data from NASA planetary missions, astronomical observations, and laboratory measurements. NASA’s Science Mission Directorate sponsors the PDS. Its purpose is to ensure the long-term usability of NASA data and to stimulate advanced research.In this presentation we discuss recent changes in the PDS, and our future activities to build on the new Institute. Near term efforts include developing a PDS Roadmap for the next decade lead by PDS Chief Scientist, Dr

  18. Conceptual definition of Automated Power Systems Management. [for planetary spacecraft

    Science.gov (United States)

    Imamura, M. S.; Skelly, L.; Weiner, H.

    1977-01-01

    Automated Power Systems Management (APSM) is defined as the capability of a spacecraft power system to automatically perform monitoring, computational, command, and control functions without ground intervention. Power systems for future planetary spacecraft must have this capability because they must perform up to 10 years, and accommodate real-time changes in mission execution autonomously. Specific APSM functions include fault detection, isolation, and correction; system performance and load profile prediction; power system optimization; system checkout; and data storage and transmission control. This paper describes the basic method of implementing these specific functions. The APSM hardware includes a central power system computer and a processor dedicated to each major power system subassembly along with digital interface circuitry. The major payoffs anticipated are in enhancement of spacecraft reliability and life and reduction of overall spacecraft program cost.

  19. A review of the scientific rationale and methods used in the search for other planetary systems

    Science.gov (United States)

    Black, D. C.

    1985-01-01

    Planetary systems appear to be one of the crucial links in the chain leading from simple molecules to living systems, particularly complex (intelligent?) living systems. Although there is currently no observational proof of the existence of any planetary system other than our own, techniques are now being developed which will permit a comprehensive search for other planetary systems. The scientific rationale for and methods used in such a search effort are reviewed here.

  20. An autopsy of dead planetary systems with COS

    Science.gov (United States)

    Debes, John

    2014-10-01

    We propose to use HST/COS to conduct autopsies of dead planetary systems around UV bright hydrogen-white dwarfs (WDs), which have dust disks found via their mid-IR emission in excess of that expected from the photosphere. As part of a WISE survey, and followed up with a combination of NASA Keck HIRES/Magellan MIKE optical spectroscopy, we have identified three new systems that are accreting dust. These WDs are bright in the mid-IR and UV, gold-standard targets for studies with HST/COS and later with JWST. The dusty material is debris resulting from the tidal disruption of exo-asteroids that accrete onto the WD surface. Many atomic elements from the accreted and dissociated dust particles are detectable with COS, enabling abundance determinations of exo-asteroidal material. Moreover, the photospheric abundances of this material can be directly compared with a determination of the dust mineralogy obtained with future JWST mid-IR spectroscopy-our proposed UV observations provide complementary constraints on mineralogical compositions of the accreting dust particles. UV spectroscopy is crucial for cataloging elemental abundances for these exo-asteroids. For the majority of WDs, optical spectroscopy reveals only a couple of lines of Ca or Mg, while UV spectroscopy captures lines from Al, Fe, Si, C, Ni, O, S, Cr, P, and Ti. Obtaining the elemental abundances of exo-asteroids is comparable to the spectroscopic characterization of transiting exoplanets or protoplanetary disks-all of these techniques determine how the chemical diversity of planetary systems translate into planetary architectures and the probability of habitable planets around solar-type stars.

  1. ADVANCED RADIOISOTOPE HEAT SOURCE AND PROPULSION SYSTEMS FOR PLANETARY EXPLORATION

    Energy Technology Data Exchange (ETDEWEB)

    R. C. O' Brien; S. D. Howe; J. E. Werner

    2010-09-01

    The exploration of planetary surfaces and atmospheres may be enhanced by increasing the range and mobility of a science platform. Fundamentally, power production and availability of resources are limiting factors that must be considered for all science and exploration missions. A novel power and propulsion system is considered and discussed with reference to a long-range Mars surface exploration mission with in-situ resource utilization. Significance to applications such as sample return missions is also considered. Key material selections for radioisotope encapsulation techniques are presented.

  2. Journal Bearing Analysis Suite Released for Planetary Gear System Evaluation

    Science.gov (United States)

    Brewe, David E.; Clark, David A.

    2005-01-01

    Planetary gear systems are an efficient means of achieving high reduction ratios with minimum space and weight. They are used in helicopter, aerospace, automobile, and many industrial applications. High-speed planetary gear systems will have significant dynamic loading and high heat generation. Hence, they need jet lubrication and associated cooling systems. For units operating in critical applications that necessitate high reliability and long life, that have very large torque loading, and that have downtime costs that are significantly greater than the initial cost, hydrodynamic journal bearings are a must. Computational and analytical tools are needed for sufficiently accurate modeling to facilitate optimal design of these systems. Sufficient physics is needed in the model to facilitate parametric studies of design conditions that enable optimal designs. The first transient journal bearing code to implement the Jacobsson-Floberg-Olsson boundary conditions, using a mass-conserving algorithm devised by Professor Emeritus Harold Elrod of Columbia University, was written by David E. Brewe of the U.S. Army at the NASA Lewis Research Center1 in 1983. Since then, new features and improved modifications have been built into the code by several contributors supported through Army and NASA funding via cooperative agreements with the University of Toledo (Professor Ted Keith, Jr., and Dr. Desikakary Vijayaraghavan) and National Research Council Programs (Dr. Vijayaraghavan). All this was conducted with the close consultation of Professor Elrod and the project management of David Brewe.

  3. ARCHITECTURE OF PLANETARY SYSTEMS BASED ON KEPLER DATA: NUMBER OF PLANETS AND COPLANARITY

    International Nuclear Information System (INIS)

    Fang, Julia; Margot, Jean-Luc

    2012-01-01

    We investigated the underlying architecture of planetary systems by deriving the distribution of planet multiplicity (number of planets) and the distribution of orbital inclinations based on the sample of planet candidates discovered by the Kepler mission. The scope of our study included solar-like stars and planets with orbital periods less than 200 days and with radii between 1.5 and 30 Earth radii, and was based on Kepler planet candidates detected during Quarters 1-6. We created models of planetary systems with different distributions of planet multiplicity and inclinations, simulated observations of these systems by Kepler, and compared the properties of the transits of detectable objects to actual Kepler planet detections. Specifically, we compared with both the Kepler sample's transit numbers and normalized transit duration ratios in order to determine each model's goodness of fit. We did not include any constraints from radial velocity surveys. Based on our best-fit models, 75%-80% of planetary systems have one or two planets with orbital periods less than 200 days. In addition, over 85% of planets have orbital inclinations less than 3° (relative to a common reference plane). This high degree of coplanarity is comparable to that seen in our solar system. These results have implications for planet formation and evolution theories. Low inclinations are consistent with planets forming in a protoplanetary disk, followed by evolution without significant and lasting perturbations from other bodies capable of increasing inclinations.

  4. Miniaturized electronic system for the Planetary Integrated Camera-Spectrometer

    Science.gov (United States)

    Soll, Stanley L.; Graham, Richard; Ramirez, Luis J.

    1994-09-01

    This paper discusses the design, and implementation of a miniaturized electronic system for the Planetary Integrated Camera Spectrometer (PICS). The PICS electronics demonstrate the application of Field Programmable Gate Arrays (FPGAs) and of analog hybrid technology to space flight multi-spectral systems. A discussion of the electronic system design illustrates how signals from a multi-sensor instrument containing an UV CCD, two visible CCDs, and a near-IR focal plane assembly can be processed through a common set of electronics. Following the system design discussion, the actual electronic design will be presented. Each miniaturized module will be discussed as to functionality and performance. The test setup for bench checkout of a cooled CCD and an IR FPA, including results with breadboard electronics and with the hybrids are also described.

  5. Nonlinear Vibroimpact Characteristics of a Planetary Gear Transmission System

    Directory of Open Access Journals (Sweden)

    Jianxing Zhou

    2016-01-01

    Full Text Available In order to research the vibroimpact characteristics of a planetary gear transmission system under high speed and lightly loaded conditions, a new modeling method is proposed. In the modeling process, linear spring was used to simulate gear mesh elasticity under heavy load cases, and Hertz contact theory was used to calculate the contact force of gear pair under light load cases. Then, effects of the working conditions on the system vibroimpact characteristics are analyzed. The results show that, with input speed growing, the mesh force produced obvious fluctuations on the resonance frequencies of the sun gear and carrier torsion vibration, ring gear’s transverse vibration under the heavy load. Under light load condition, the collision vibration occurs in the gear pair; the changing trend of the contact force shows strongly nonlinear characteristics. The time of mesh-apart in gears pair decreases gradually as the load is increased; until it reaches collision vibration threshold value, the gear pair is no longer mesh-apart. With increasing of the input speed, the time of mesh-apart is decreased gradually; the fluctuation amplitude of contact force shows a linearly increasing trend. The study provides useful theoretical guideline for planetary gear transmission low-noise design.

  6. A possible architecture of the planetary system HR 8799

    Science.gov (United States)

    Reidemeister, M.; Krivov, A. V.; Schmidt, T. O. B.; Fiedler, S.; Müller, S.; Löhne, T.; Neuhäuser, R.

    2009-08-01

    HR 8799 is a nearby A-type star with a debris disk and three planetary candidates, which have been imaged directly. We undertake a coherent analysis of various observational data for all known components of the system, including the central star, imaged companions, and dust. Our goal is to elucidate the architecture and evolutionary status of the system. We try to further constrain the age and orientation of the system, the orbits and masses of the companions, and the location of dust. On the basis of the high luminosity of debris dust and dynamical constraints, we argue for a rather young system's age of ⪉50 Myr. The system must be seen nearly, but not exactly, pole-on. Our analysis of the stellar rotational velocity yields an inclination of 13-30°, whereas i ⪆ 20° is needed for the system to be dynamically stable, which suggests a probable inclination range of 20-30°. The spectral energy distribution, including the Spitzer/IRS spectrum in the mid-infrared as well as IRAS, ISO, JCMT, and IRAM observations, is naturally reproduced by two dust rings associated with two planetesimal belts. The inner “asteroid belt” is located at ~10 AU inside the orbit of the innermost companion and a “Kuiper belt” at ⪆100 AU is just exterior to the orbit of the outermost companion. The dust masses in the inner and outer ring are estimated to be ≈1 × 10-5 and 4 × 10-2 Earth masses, respectively. We show that all three planetary candidates may be stable in the mass range suggested in the discovery paper by Marois et al. (2008) (between 5 and 13 Jupiter masses), but only for some of all possible orientations. For (M_b, M_c, M_d) = (5, 7, 7) Jupiter masses, an inclination i ⪆ 20° is required and the line of nodes of the system's symmetry plane on the sky must lie within between 0° an 50° from north eastward. For higher masses M_b, M_c, Md from (7, 10, 10) to (11, 13, 13), the constraints on both angles are even more stringent. Stable orbits imply a double (4

  7. Polarimetry Microlensing of Close-in Planetary Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sajadian, Sedighe [Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Hundertmark, Markus, E-mail: s.sajadian@cc.iut.ac.ir [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg (ZAH), D-69120 Heidelberg (Germany)

    2017-04-01

    A close-in giant planetary (CGP) system has a net polarization signal whose value varies depending on the orbital phase of the planet. This polarization signal is either caused by the stellar occultation or by reflected starlight from the surface of the orbiting planet. When the CGP system is located in the Galactic bulge, its polarization signal becomes too weak to be measured directly. One method for detecting and characterizing these weak polarization signatures due to distant CGP systems is gravitational microlensing. In this work, we focus on potential polarimetric observations of highly magnified microlensing events of CGP systems. When the lens is passing directly in front of the source star with its planetary companion, the polarimetric signature caused by the transiting planet is magnified. As a result, some distinct features in the polarimetry and light curves are produced. In the same way, microlensing amplifies the reflection-induced polarization signal. While the planet-induced perturbations are magnified whenever these polarimetric or photometric deviations vanish for a moment, the corresponding magnification factor of the polarization component(s) is related to the planet itself. Finding these exact times in the planet-induced perturbations helps us to characterize the planet. In order to evaluate the observability of such systems through polarimetric or photometric observations of high-magnification microlensing events, we simulate these events by considering confirmed CGP systems as their source stars and conclude that the efficiency for detecting the planet-induced signal with the state-of-the-art polarimetric instrument (FORS2/VLT) is less than 0.1%. Consequently, these planet-induced polarimetry perturbations can likely be detected under favorable conditions by the high-resolution and short-cadence polarimeters of the next generation.

  8. The planetary data system educational CD-ROM

    Science.gov (United States)

    Guinness, E. A.; Arvidson, R. E.; Martin, M.; Dueck, S.

    1993-01-01

    The Planetary Data System (PDS) is producing a special educational CD-ROM that contains samples of PDS datasets and is expected to be released in 1993. The CD-ROM will provide university-level instructors with PDS-compatible materials and information that can be used to construct student problem sets using real datasets. The main purposes of the CD-ROM are to facilitate wide use of planetary data and to introduce a large community to the PDS. To meet these objectives the Educational CD-ROM will also contain software to manipulate the data, background discussions about scientific questions that can be addressed with the data, and a suite of exercises that illustrate analysis techniques. Students will also be introduced to the SPICE concept, which is a new way of maintaining geometry and instrument information. The exercises will be presented at the freshman through graduate student levels. With simplification, some of the material should also be of use at the high school level.

  9. An archiving system for Planetary Mapping Data - Availability of derived information and knowledge in Planetary Science!

    Science.gov (United States)

    Nass, A.

    2017-12-01

    Since the late 1950s a huge number of planetary missions started to explore our solar system. The data resulting from this robotic exploration and remote sensing varies in data type, resolution and target. After data preprocessing, and referencing, the released data are available for the community on different portals and archiving systems, e.g. PDS or PSA. One major usage for these data is mapping, i.e. the extraction and filtering of information by combining and visualizing different kind of base data. Mapping itself is conducted either for mission planning (e.g. identification of landing site) or fundamental research (e.g. reconstruction of surface). The mapping results for mission planning are directly managed within the mission teams. The derived data for fundamental research - also describable as maps, diagrams, or analysis results - are mainly project-based and exclusively available in scientific papers. Within the last year, first steps have been taken to ensure a sustainable use of these derived data by finding an archiving system comparable to the data portals, i.e. reusable, well-documented, and sustainable. For the implementation three tasks are essential. Two tasks have been treated in the past 1. Comparability and interoperability has been made possible by standardized recommendations for visual, textual, and structural description of mapping data. 2. Interoperability between users, information- and graphic systems is possible by templates and guidelines for digital GIS-based mapping. These two steps are adapted e.g. within recent mapping projects for the Dawn mission. The third task hasn`t been implemented thus far: Establishing an easily detectable and accessible platform that holds already acquired information and published mapping results for future investigations or mapping projects. An archive like this would support the scientific community significantly by a constant rise of knowledge and understanding based on recent discussions within

  10. Evolution of Planetary Ice-Ocean Systems: Effects of Salinity

    Science.gov (United States)

    Allu Peddinti, D.; McNamara, A. K.

    2015-12-01

    Planetary oceanography is enjoying renewed attention thanks to not only the detection of several exoplanetary ocean worlds but also due to the expanding family of ocean worlds within our own star system. Our solar system is now believed to host about nine ocean worlds including Earth, some dwarf planets and few moons of Jupiter and Saturn. Amongst them, Europa, like Earth is thought to have an ice Ih-liquid water system. However, the thickness of the Europan ice-ocean system is much larger than that of the Earth. The evolution of this system would determine the individual thicknesses of the ice shell and the ocean. In turn, these thicknesses can alter the course of evolution of the system. In a pure H2O system, the thickness of the ice shell would govern if heat loss occurs entirely by conduction or if the shell begins to convect as it attains a threshold thickness. This switch between conduction-convection regimes could determine the longevity of the subsurface ocean and hence define the astrobiological potential of the planetary body at any given time. In reality, however, the system is not pure water ice. The detected induced magnetic field infers a saline ocean layer. Salts are expected to act as an anti-freeze allowing a subsurface ocean to persist over long periods but the amount of salts would determine the extent of that effect. In our current study, we use geodynamic models to examine the effect of salinity on the evolution of ice-ocean system. An initial ocean with different salinities is allowed to evolve. The effect of salinity on thickness of the two layers at any time is examined. We also track how salinity controls the switch between conductive-convective modes. The study shows that for a given time period, larger salinities can maintain a thick vigorously convecting ocean while the smaller salinities behave similar to a pure H2O system leading to a thick convecting ice-shell. A range of salinities identified can potentially predict the current state

  11. Enviromnental Control and Life Support Systems for Mars Missions - Issues and Concerns for Planetary Protection

    Science.gov (United States)

    Barta, Daniel J.; Anderson, Molly S.; Lange, Kevin

    2015-01-01

    Planetary protection represents an additional set of requirements that generally have not been considered by developers of technologies for Environmental Control and Life Support Systems (ECLSS). Planetary protection guidelines will affect the kind of operations, processes, and functions that can take place during future human planetary exploration missions. Ultimately, there will be an effect on mission costs, including the mission trade space when planetary protection requirements begin to drive vehicle deisgn in a concrete way. Planetary protection requirements need to be considered early in technology development and mission programs in order to estimate these impacts and push back on requirements or find efficient ways to perform necessary functions. It is expected that planetary protection will be a significant factor during technology selection and system architecture design for future missions.

  12. Revised planetary protection policy for solar system exploration

    Science.gov (United States)

    Devincenzi, D. L.; Stabekis, P. D.

    1984-01-01

    In order to control contamination of planets by terrestrial microorganisms and organic constituents, U.S. planetary missions have been governed by a planetary protection (or planetary quarantine) policy which has changed little since 1972. This policy has recently been reviewed in light of new information obtained from planetary exploration during the past decade and because of changes to, or uncertainties in, some parameters used in the existing quantitative approach. On the basis of this analysis, a revised planetary protection policy with the following key features is proposed: deemphasizing the use of mathematical models and quantitative analyses; establishing requirements for target planet/mission type (i.e., Orbiter, Lander, etc.) combinations; considering sample return missions a separate category; simplifying documentation; and imposing implementing procedures (i.e., trajectory biasing, cleanroom assembly, spacecraft sterilization, etc.) by exception, i.e., only if the planet/mission combination warrants such controls.

  13. A COMPREHENSIVE CHARACTERIZATION OF THE 70 VIRGINIS PLANETARY SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Kane, Stephen R.; Hinkel, Natalie R. [Department of Physics and Astronomy, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132 (United States); Boyajian, Tabetha S.; Fischer, Debra A. [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Henry, Gregory W. [Center of Excellence in Information Systems, Tennessee State University, 3500 John A. Merritt Blvd., Box 9501, Nashville, TN 37209 (United States); Feng, Y. Katherina; Wright, Jason T. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Braun, Kaspar von [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, Arizona 86001 (United States); Howard, Andrew W., E-mail: skane@sfsu.edu [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States)

    2015-06-10

    An on-going effort in the characterization of exoplanetary systems is the accurate determination of host star properties. This effort extends to the relatively bright host stars of planets discovered with the radial velocity method. The Transit Ephemeris Refinement and Monitoring Survey (TERMS) is aiding in these efforts as part of its observational campaign for exoplanet host stars. One of the first known systems is that of 70 Virginis, which harbors a jovian planet in an eccentric orbit. Here we present a complete characterization of this system with a compilation of TERMS photometry, spectroscopy, and interferometry. We provide fundamental properties of the host star through direct interferometric measurements of the radius (1.5% uncertainty) and through spectroscopic analysis. We combined 59 new Keck HIRES radial velocity measurements with the 169 previously published from the ELODIE, Hamilton, and HIRES spectrographs, to calculate a refined orbital solution and construct a transit ephemeris for the planet. These newly determined system characteristics are used to describe the Habitable Zone of the system with a discussion of possible additional planets and related stability simulations. Finally, we present 19 years of precision robotic photometry that constrain stellar activity and rule out central planetary transits for a Jupiter-radius planet at the 5σ level, with reduced significance down to an impact parameter of b = 0.95.

  14. Worlds without Moons: Exomoon Constraints for Compact Planetary Systems

    Science.gov (United States)

    Kane, Stephen R.

    2017-04-01

    One of the primary surprises of exoplanet detections has been the discovery of compact planetary systems, whereby numerous planets reside within ∼0.5 au of the host star. Many of these kinds of systems have been discovered in recent years, indicating that they are a fairly common orbital architecture. Of particular interest are those systems for which the host star is low mass, thus potentially enabling one or more of the planets to lie within the habitable zone of the host star. One of the contributors to the habitability of the Earth is the presence of a substantial moon whose tidal effects can stabilize axial tilt variations and increase the rate of tidal pool formation. Here, we explore the constraints on the presence of moons for planets in compact systems based on Hill radii and Roche limit considerations. We apply these constraints to the TRAPPIST-1 system and demonstrate that most of the planets are very likely to be worlds without moons.

  15. Conceptual definition of a 50-100 kWe NEP system for planetary science missions

    Science.gov (United States)

    Friedlander, Alan

    1993-01-01

    The Phase 1 objective of this project is to assess the applicability of a common Nuclear Electric Propulsion (NEP) flight system of the 50-100 kWe power class to meet the advanced transportation requirements of a suite of planetary science (robotic) missions, accounting for differences in mission-specific payloads and delivery requirements. The candidate missions are as follows: (1) Comet Nucleus Sample Return; (2) Multiple Mainbelt Asteroid Rendezvous; (3) Jupiter Grand Tour (Galilean satellites and magnetosphere); (4) Uranus Orbiter/Probe (atmospheric entry and landers); (5) Neptune Orbiter/Probe (atmospheric entry and landers); and (6) Pluto-Charon Orbiter/Lander. The discussion is presented in vugraph form.

  16. Natural fracture systems on planetary surfaces: Genetic classification and pattern randomness

    Science.gov (United States)

    Rossbacher, Lisa A.

    1987-01-01

    One method for classifying natural fracture systems is by fracture genesis. This approach involves the physics of the formation process, and it has been used most frequently in attempts to predict subsurface fractures and petroleum reservoir productivity. This classification system can also be applied to larger fracture systems on any planetary surface. One problem in applying this classification system to planetary surfaces is that it was developed for ralatively small-scale fractures that would influence porosity, particularly as observed in a core sample. Planetary studies also require consideration of large-scale fractures. Nevertheless, this system offers some valuable perspectives on fracture systems of any size.

  17. Agriculture production as a major driver of the Earth system exceeding planetary boundaries

    Directory of Open Access Journals (Sweden)

    Bruce M. Campbell

    2017-12-01

    Full Text Available We explore the role of agriculture in destabilizing the Earth system at the planetary scale, through examining nine planetary boundaries, or "safe limits": land-system change, freshwater use, biogeochemical flows, biosphere integrity, climate change, ocean acidification, stratospheric ozone depletion, atmospheric aerosol loading, and introduction of novel entities. Two planetary boundaries have been fully transgressed, i.e., are at high risk, biosphere integrity and biogeochemical flows, and agriculture has been the major driver of the transgression. Three are in a zone of uncertainty i.e., at increasing risk, with agriculture the major driver of two of those, land-system change and freshwater use, and a significant contributor to the third, climate change. Agriculture is also a significant or major contributor to change for many of those planetary boundaries still in the safe zone. To reduce the role of agriculture in transgressing planetary boundaries, many interventions will be needed, including those in broader food systems.

  18. PLANETARY SYSTEM FORMATION IN THE PROTOPLANETARY DISK AROUND HL TAURI

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Eiji; Hasegawa, Yasuhiro; Hayashi, Masahiko; Iguchi, Satoru, E-mail: eiji.akiyama@nao.ac.jp, E-mail: yasuhiro.hasegawa@nao.ac.jp [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2016-02-20

    We reprocess the Atacama Large Millimeter/Submillimeter Array (ALMA) long-baseline science verification data taken toward HL Tauri. Assuming the observed gaps are opened up by currently forming, unseen bodies, we estimate the mass of such hypothetical bodies based on the following two approaches: the Hill radius analysis and a more elaborate approach developed from the angular momentum transfer analysis in gas disks. For the former, the measured gap widths are used for estimating the mass of the bodies, while for the latter, the measured gap depths are utilized. We show that their masses are comparable to or less than the mass of Jovian planets. By evaluating Toomre’s gravitational instability (GI) condition and cooling effect, we find that the GI might be a mechanism to form the bodies in the outer region of the disk. As the disk might be gravitationally unstable only in the outer region of the disk, inward planetary migration would be needed to construct the current architecture of the observed disk. We estimate the gap-opening mass and show that type II migration might be able to play such a role. Combining GIs with inward migration, we conjecture that all of the observed gaps may be a consequence of bodies that might have originally formed at the outer part of the disk, and have subsequently migrated to the current locations. While ALMA’s unprecedented high spatial resolution observations can revolutionize our picture of planet formation, more dedicated observational and theoretical studies are needed to fully understand the HL Tauri images.

  19. Robo-AO Kepler Survey. IV. The Effect of Nearby Stars on 3857 Planetary Candidate Systems

    Science.gov (United States)

    Ziegler, Carl; Law, Nicholas M.; Baranec, Christoph; Riddle, Reed; Duev, Dmitry A.; Howard, Ward; Jensen-Clem, Rebecca; Kulkarni, S. R.; Morton, Tim; Salama, Maïssa

    2018-04-01

    We present the overall statistical results from the Robo-AO Kepler planetary candidate survey, comprising of 3857 high-angular resolution observations of planetary candidate systems with Robo-AO, an automated laser adaptive optics system. These observations reveal previously unknown nearby stars blended with the planetary candidate host stars that alter the derived planetary radii or may be the source of an astrophysical false positive transit signal. In the first three papers in the survey, we detected 440 nearby stars around 3313 planetary candidate host stars. In this paper, we present observations of 532 planetary candidate host stars, detecting 94 companions around 88 stars; 84 of these companions have not previously been observed in high resolution. We also report 50 more-widely separated companions near 715 targets previously observed by Robo-AO. We derive corrected planetary radius estimates for the 814 planetary candidates in systems with a detected nearby star. If planetary candidates are equally likely to orbit the primary or secondary star, the radius estimates for planetary candidates in systems with likely bound nearby stars increase by a factor of 1.54, on average. We find that 35 previously believed rocky planet candidates are likely not rocky due to the presence of nearby stars. From the combined data sets from the complete Robo-AO KOI survey, we find that 14.5 ± 0.5% of planetary candidate hosts have a nearby star with 4″, while 1.2% have two nearby stars, and 0.08% have three. We find that 16% of Earth-sized, 13% of Neptune-sized, 14% of Saturn-sized, and 19% of Jupiter-sized planet candidates have detected nearby stars.

  20. An Overview of the Planetary Data System Roadmap Study for 2017 - 2026

    Science.gov (United States)

    Morgan, Thomas H.; McNutt, Ralph L.; Gaddis, Lisa; Law, Emily; Beyer, Ross A.; Crombie, Kate; Ebel, Denton; Ghosh, Amitahba; Grayzeck, Edwin J.; Paganelli, Flora; Raugh, Anne C.; Stein, Thomas; Tiscareno, Matthew S.; Weber, Renee; E Banks, Maria; Powell, Kathryn

    2017-10-01

    NASA’s Planetary Data System (PDS) is the formal archive of >1.2 petabytes of data from planetary exploration, science, and research. Initiated in 1989 to address an overall lack of attention to mission data documentation, access, and archiving, the PDS has since evolved into an online collection of digital data managed and served by a federation of 6 science discipline nodes and 2 technical support nodes. Several ad-hoc mission-oriented data nodes also provide complex data interfaces and access for the duration of their missions.The new PDS Roadmap Study for 2017-2026 involved 15 planetary science community members who collectively prepared a report summarizing the results of an intensive examination of the current state of the PDS and its organization, management, practices, and data holdings (https://pds.jpl.nasa.gov/roadmap/PlanetaryDataSystemRMS17-26_20jun17.pdf). The report summarizes PDS history, its functions and characteristics, and its present form; also included are extensive references and documentary appendices. The report recognizes that as a complex evolving system, the PDS must respond to new pressures and opportunities. The report provides details on challenges now facing the PDS, 19 detailed findings and suggested remediations that could be used to respond to these findings, and a summary of the potential future of planetary data archiving. These findings cover topics such as user needs and expectations, data usability and discoverability (i.e., metadata, data access, documentation, and training), tools and file formats, use of current information technologies, and responses to increases in data volume, variety, complexity, and number of data providers. In addition, the study addresses the possibility of archiving software, laboratory data, and physical samples. Finally, the report discusses the current structure and governance of PDS and the impact of this on how archive growth, technology, and new developments are enabled and managed within

  1. Contrast analysis between the trajectory of the planetary system and the periodicity of solar activity

    Science.gov (United States)

    Sun, Wei; Wang, Jian; Chen, JinRu; Wang, Ying; Yu, GuangMing; Xu, XianHai

    2017-05-01

    The relationship between the periodic movement of the planetary system and its influence on solar activity is currently a serious topic in research. The kinematic index of the planet juncture index has been developed to find the track and variation of the Sun around the centroid of the solar system and the periodicity of solar activity. In the present study, the kinematic index of the planetary system's heliocentric longitude, developed based on the orbital elements of planets in the solar system, and it is used to investigate the periodic movement of the planetary system. The kinematic index of the planetary system's heliocentric longitude and that of the planet juncture index are simulated and analyzed. The numerical simulation of the two kinematic indexes shows orderly orbits and disorderly orbits of 49.9 and 129.6 years, respectively. Two orderly orbits or two disorderly orbits show a period change rule of 179.5 years. The contrast analysis between the periodic movement of the planetary system and the periodicity of solar activity shows that the two phenomena exhibit a period change rule of 179.5 years. Moreover, orderly orbits correspond to high periods of solar activity and disorderly orbits correspond to low periods of solar activity. Therefore, the relative movement of the planetary system affects solar activity to some extent. The relationship provides a basis for discussing the movement of the planetary system and solar activity.

  2. Contrast analysis between the trajectory of the planetary system and the periodicity of solar activity

    Directory of Open Access Journals (Sweden)

    W. Sun

    2017-05-01

    Full Text Available The relationship between the periodic movement of the planetary system and its influence on solar activity is currently a serious topic in research. The kinematic index of the planet juncture index has been developed to find the track and variation of the Sun around the centroid of the solar system and the periodicity of solar activity. In the present study, the kinematic index of the planetary system's heliocentric longitude, developed based on the orbital elements of planets in the solar system, and it is used to investigate the periodic movement of the planetary system. The kinematic index of the planetary system's heliocentric longitude and that of the planet juncture index are simulated and analyzed. The numerical simulation of the two kinematic indexes shows orderly orbits and disorderly orbits of 49.9 and 129.6 years, respectively. Two orderly orbits or two disorderly orbits show a period change rule of 179.5 years. The contrast analysis between the periodic movement of the planetary system and the periodicity of solar activity shows that the two phenomena exhibit a period change rule of 179.5 years. Moreover, orderly orbits correspond to high periods of solar activity and disorderly orbits correspond to low periods of solar activity. Therefore, the relative movement of the planetary system affects solar activity to some extent. The relationship provides a basis for discussing the movement of the planetary system and solar activity.

  3. Multi-Robot Systems for Subsurface Planetary Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a heterogeneous multi-robot team developed as a platform for effective subsurface planetary exploration. State-of-art robotic exploration...

  4. A new dataset validation system for the Planetary Science Archive

    Science.gov (United States)

    Manaud, N.; Zender, J.; Heather, D.; Martinez, S.

    2007-08-01

    The Planetary Science Archive is the official archive for the Mars Express mission. It has received its first data by the end of 2004. These data are delivered by the PI teams to the PSA team as datasets, which are formatted conform to the Planetary Data System (PDS). The PI teams are responsible for analyzing and calibrating the instrument data as well as the production of reduced and calibrated data. They are also responsible of the scientific validation of these data. ESA is responsible of the long-term data archiving and distribution to the scientific community and must ensure, in this regard, that all archived products meet quality. To do so, an archive peer-review is used to control the quality of the Mars Express science data archiving process. However a full validation of its content is missing. An independent review board recently recommended that the completeness of the archive as well as the consistency of the delivered data should be validated following well-defined procedures. A new validation software tool is being developed to complete the overall data quality control system functionality. This new tool aims to improve the quality of data and services provided to the scientific community through the PSA, and shall allow to track anomalies in and to control the completeness of datasets. It shall ensure that the PSA end-users: (1) can rely on the result of their queries, (2) will get data products that are suitable for scientific analysis, (3) can find all science data acquired during a mission. We defined dataset validation as the verification and assessment process to check the dataset content against pre-defined top-level criteria, which represent the general characteristics of good quality datasets. The dataset content that is checked includes the data and all types of information that are essential in the process of deriving scientific results and those interfacing with the PSA database. The validation software tool is a multi-mission tool that

  5. Planetary Airplane Extraction System Development and Subscale Testing

    Science.gov (United States)

    Teter, John E., Jr.

    2006-01-01

    The Aerial Regional-scale Environmental Survey (ARES) project will employ an airplane as the science platform from which to collect science data in the previously inaccessible, thin atmosphere of Mars. In order for the airplane to arrive safely in the Martian atmosphere, a number of sequences must occur. A critical element in the entry sequence at Mars is an extraction maneuver to separate the airplane quickly (in less than a second) from its protective backshell to reduce the possibility of re-contact, potentially leading to mission failure. This paper describes the development, testing, and lessons learned from building a 1/3 scale model of this airplane extraction system. This design, based on the successful Mars Exploration Rover (MER) extraction mechanism, employs a series of trucks rolling along tracks located on the surface of the central parachute can. Numerous tests using high speed video were conducted at the Langley Research Center to validate this concept. One area of concern was that that although the airplane released cleanly, a pitching moment could be introduced. While targeted for a Mars mission, this concept will enable environmental surveys by aircraft in other planetary bodies with a sensible atmosphere such as Venus or Saturn's moon, Titan.

  6. Magnetism, planetary rotation and convection in the solar system

    CERN Document Server

    1985-01-01

    On the 6th, 7th' and 8th April 1983, a conference entitled "Magnetism, planetary rotation and convection in the Solar System" was held in the School of Physics at the University of Newcastle upon Tyne. The purpose of the meeting was to celebrate the 60th birthday of Prof. Stanley Keith Runcorn and his, and his students' and associates', several decades of scientific achievement. The social programme, which consisted of excursions in Northumberland and Durham with visits to ancient castles and churches, to Hexham Abbey and Durham Cathedral, and dinners in Newcastle and Durham, was greatly enjoyed by those attending the meeting and by their guests. The success ofthe scientific programme can be judged by this special edition of Geophysical Surveys which is derived mainly from the papers given at the meeting. The story starts in the late 1940s when the question of the origin of the magnetic field of the Earth and such other heavenly bodies as had at that time been discovered as having a magnetic field, was exerci...

  7. The diversity of planetary system from formation/composition population synthesis models

    Science.gov (United States)

    Alibert, Yann; thiabaud, amaury; marboeuf, ulysses; swoboda, david; benz, willy; mezger, klaus; leya, ingo

    2015-12-01

    Extrasolar planetary systems show an extreme diversity in mass and orbital architecture. Explaining this diversity is one of the key challenges for theoretical models and requires understanding the formation, composition and evolution of planetary systems from the stage of the protoplanetary disk up to the full mature planetary system. Such an effort needs the development of end-to-end, necessarily simplified, formation models used in a population synthesis approach. We present in this contribution such planetary system formation and composition models. Our planetary system formation models include the following effects: planetary growth by capture of solids and gas, protoplanetary disk structure and evolution, planet-planet and planet-disk interactions. In addition, we compute the composition of the solids and gas in the protoplanetary disk and their evolution with time. The formation and composition models allow therefore the determination of the composition of planets in terms of refractory elements (Mg, Si, Fe, etc…) as well as volatile compounds (water, CO2, CO, NH3, etc…), in a way that is self-consistent with the formation process of the different members of the planetary system. We will show the results of these formation/composition models, and will compare the diversity of observed and synthetic planetary systems. Considering the solar system, we will show how different formation scenarios translate into different planetary compositions. Finally, we will demonstrate how the simultaneous determination of mass and radius of a statistical number of warm to cold earth to neptune mass bodies at different ages can be used to constrain the composition (in particular the volatile content) of planets, and how the same observations (mass, radius, period) can be used in order to select planets that are best suited for follow-up habitability studies.

  8. Organic materials in planetary and protoplanetary systems: nature or nurture?

    Science.gov (United States)

    Dalle Ore, C. M.; Fulchignoni, M.; Cruikshank, D. P.; Barucci, M. A.; Brunetto, R.; Campins, H.; de Bergh, C.; Debes, J. H.; Dotto, E.; Emery, J. P.; Grundy, W. M.; Jones, A. P.; Mennella, V.; Orthous-Daunay, F. R.; Owen, T.; Pascucci, I.; Pendleton, Y. J.; Pinilla-Alonso, N.; Quirico, E.; Strazzulla, G.

    2011-09-01

    Aims: The objective of this work is to summarize the discussion of a workshop aimed at investigating the properties, origins, and evolution of the materials that are responsible for the red coloration of the small objects in the outer parts of the solar system. Because of limitations or inconsistencies in the observations and, until recently, the limited availability of laboratory data, there are still many questions on the subject. Our goal is to approach two of the main questions in a systematic way: - Is coloring an original signature of materials that are presolar in origin ("nature") or stems from post-formational chemical alteration, or weathering ("nurture")? - What is the chemical signature of the material that causes spectra to be sloped towards the red in the visible? We examine evidence available both from the laboratory and from observations sampling different parts of the solar system and circumstellar regions (disks). Methods: We present a compilation of brief summaries gathered during the workshop and describe the evidence towards a primordial vs. evolutionary origin for the material that reddens the small objects in the outer parts of our, as well as in other, planetary systems. We proceed by first summarizing laboratory results followed by observational data collected at various distances from the Sun. Results: While laboratory experiments show clear evidence of irradiation effects, particularly from ion bombardment, the first obstacle often resides in the ability to unequivocally identify the organic material in the observations. The lack of extended spectral data of good quality and resolution is at the base of this problem. Furthermore, that both mechanisms, weathering and presolar, act on the icy materials in a spectroscopically indistinguishable way makes our goal of defining the impact of each mechanism challenging. Conclusions: Through a review of some of the workshop presentations and discussions, encompassing laboratory experiments as well

  9. THE LINK BETWEEN PLANETARY SYSTEMS, DUSTY WHITE DWARFS, AND METAL-POLLUTED WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Debes, John H. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Walsh, Kevin J. [Southwest Research Institute, Boulder, CO (United States); Stark, Christopher [Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015 (United States)

    2012-03-10

    It has long been suspected that metal-polluted white dwarfs (types DAZ, DBZ, and DZ) and white dwarfs with dusty disks possess planetary systems, but a specific physical mechanism by which planetesimals are perturbed close to a white dwarf has not yet been fully posited. In this paper, we demonstrate that mass loss from a central star during post-main-sequence evolution can sweep planetesimals into interior mean motion resonances with a single giant planet. These planetesimals are slowly removed through chaotic excursions of eccentricity that in time create radial orbits capable of tidally disrupting the planetesimal. Numerical N-body simulations of the solar system show that a sufficient number of planetesimals are perturbed to explain white dwarfs with both dust and metal pollution, provided other white dwarfs have more massive relic asteroid belts. Our scenario requires only one Jupiter-sized planet and a sufficient number of asteroids near its 2:1 interior mean motion resonance. Finally, we show that once a planetesimal is perturbed into a tidal crossing orbit, it will become disrupted after the first pass of the white dwarf, where a highly eccentric stream of debris forms the main reservoir for dust-producing collisions. These simulations, in concert with observations of white dwarfs, place interesting limits on the frequency of planetary systems around main-sequence stars, the frequency of planetesimal belts, and the probability that dust may obscure future terrestrial planet finding missions.

  10. THE LINK BETWEEN PLANETARY SYSTEMS, DUSTY WHITE DWARFS, AND METAL-POLLUTED WHITE DWARFS

    International Nuclear Information System (INIS)

    Debes, John H.; Walsh, Kevin J.; Stark, Christopher

    2012-01-01

    It has long been suspected that metal-polluted white dwarfs (types DAZ, DBZ, and DZ) and white dwarfs with dusty disks possess planetary systems, but a specific physical mechanism by which planetesimals are perturbed close to a white dwarf has not yet been fully posited. In this paper, we demonstrate that mass loss from a central star during post-main-sequence evolution can sweep planetesimals into interior mean motion resonances with a single giant planet. These planetesimals are slowly removed through chaotic excursions of eccentricity that in time create radial orbits capable of tidally disrupting the planetesimal. Numerical N-body simulations of the solar system show that a sufficient number of planetesimals are perturbed to explain white dwarfs with both dust and metal pollution, provided other white dwarfs have more massive relic asteroid belts. Our scenario requires only one Jupiter-sized planet and a sufficient number of asteroids near its 2:1 interior mean motion resonance. Finally, we show that once a planetesimal is perturbed into a tidal crossing orbit, it will become disrupted after the first pass of the white dwarf, where a highly eccentric stream of debris forms the main reservoir for dust-producing collisions. These simulations, in concert with observations of white dwarfs, place interesting limits on the frequency of planetary systems around main-sequence stars, the frequency of planetesimal belts, and the probability that dust may obscure future terrestrial planet finding missions.

  11. A New Hypothesis On The Origin and Formation of The Solar And Extrasolar Planetary Systems

    OpenAIRE

    Yao, Lihong

    2014-01-01

    A new theoretical hypothesis on the origin and formation of the solar and extrasolar planetary systems is summarized and briefly discussed in the light of recent detections of extrasolar planets, and studies of shock wave interaction with molecular clouds, as well as H. Alfven's work on Sun's magnetic field and its effect on the formation of the solar system (1962). We propose that all objects in a planetary system originate from a small group of dense fragments in a giant molecular cloud (GM...

  12. THE INNER DEBRIS STRUCTURE IN THE FOMALHAUT PLANETARY SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Su, Kate Y. L.; Rieke, George H.; Defrére, Denis [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Wang, Kuo-Song; Lee, Chin-Fei [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 106, Taiwan (China); Lai, Shih-Ping [Institute of Astronomy, National Tsing Hua University (NTHU), Hsinchu 30013, Taiwan (China); Wilner, David J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Lieshout, Rik van, E-mail: ksu@as.arizona.edu [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands)

    2016-02-10

    Fomalhaut plays an important role in the study of debris disks and small bodies in other planetary systems. The proximity and luminosity of the star make key features of its debris, like the water ice line, accessible. Here we present ALMA cycle 1, 870 μm (345 GHz) observations targeted at the inner part of the Fomalhaut system with a synthesized beam of 0.″45 × 0.″37 (∼3 AU linear resolution at the distance of Fomalhaut) and an rms of 26 μJy beam{sup −1}. The high angular resolution and sensitivity of the ALMA data enable us to place strong constraints on the nature of the warm excess revealed by Spitzer and Herschel observations. We detect a point source at the star position with a total flux consistent with thermal emission from the stellar photosphere. No structures that are brighter than 3σ are detected in the central 15 AU × 15 AU region. Modeling the spectral energy distribution using parameters expected for a dust-producing planetesimal belt indicates a radial location in the range of ∼8–15 AU. This is consistent with the location where ice sublimates in Fomalhaut, i.e., an asteroid-belt analog. The 3σ upper limit for such a belt is <1.3 mJy at 870 μm. We also interpret the 2 and 8–13 μm interferometric measurements to reveal the structure in the inner 10 AU region as dust naturally connected to this proposed asteroid belt by Poynting–Robertson drag, dust sublimation, and magnetically trapped nanograins.

  13. The Planetary Data System (PDS) Data Dictionary Tool (LDDTool)

    Science.gov (United States)

    Raugh, Anne C.; Hughes, John S.

    2017-10-01

    One of the major design goals of the PDS4 development effort was to provide an avenue for discipline specialists and large data preparers such as mission archivists to extend the core PDS4 Information Model (IM) to include metadata definitions specific to their own contexts. This capability is critical for the Planetary Data System - an archive that deals with a data collection that is diverse along virtually every conceivable axis. Amid such diversity, it is in the best interests of the PDS archive and its users that all extensions to the core IM follow the same design techniques, conventions, and restrictions as the core implementation itself. Notwithstanding, expecting all mission and discipline archivist seeking to define metadata for a new context to acquire expertise in information modeling, model-driven design, ontology, schema formulation, and PDS4 design conventions and philosophy is unrealistic, to say the least.To bridge that expertise gap, the PDS Engineering Node has developed the data dictionary creation tool known as “LDDTool”. This tool incorporates the same software used to maintain and extend the core IM, packaged with an interface that enables a developer to create his contextual information model using the same, open standards-based metadata framework PDS itself uses. Through this interface, the novice dictionary developer has immediate access to the common set of data types and unit classes for defining attributes, and a straight-forward method for constructing classes. The more experienced developer, using the same tool, has access to more sophisticated modeling methods like abstraction and extension, and can define very sophisticated validation rules.We present the key features of the PDS Local Data Dictionary Tool, which both supports the development of extensions to the PDS4 IM, and ensures their compatibility with the IM.

  14. Capture of free-floating planets by planetary systems

    Science.gov (United States)

    Goulinski, Nadav; Ribak, Erez N.

    2018-01-01

    Evidence of exoplanets with orbits that are misaligned with the spin of the host star may suggest that not all bound planets were born in the protoplanetary disc of their current planetary system. Observations have shown that free-floating Jupiter-mass objects can exceed the number of stars in our Galaxy, implying that capture scenarios may not be so rare. To address this issue, we construct a three-dimensional simulation of a three-body scattering between a free-floating planet and a star accompanied by a Jupiter-mass bound planet. We distinguish between three different possible scattering outcomes, where the free-floating planet may get weakly captured after the brief interaction with the binary, remain unbound or 'kick out' the bound planet and replace it. The simulation was performed for different masses of the free-floating planets and stars, as well as different impact parameters, inclination angles and approach velocities. The outcome statistics are used to construct an analytical approximation of the cross-section for capturing a free-floating planet by fitting their dependence on the tested variables. The analytically approximated cross-section is used to predict the capture rate for these kinds of objects, and to estimate that about 1 per cent of all stars are expected to experience a temporary capture of a free-floating planet during their lifetime. Finally, we propose additional physical processes that may increase the capture statistics and whose contribution should be considered in future simulations in order to determine the fate of the temporarily captured planets.

  15. Conceptual design of planetary gearbox system for constant generator speed in hydro power plant

    OpenAIRE

    Bhargav; Parameshwaran M. A.; Sivaraj S.; Venkataram Nithin

    2018-01-01

    Micro Hydro Power Plant (MHPP) is emerging as one of the most clean, renewable and reliable energy technology for harnessing power. In MHPP hydro governors are avoided, that results in turbine speed fluctuation. MHPP requires either speed or torque amplification of generator for constant power generation. To achieve this, planetary gear transmission system is explored for MHPP due to its higher efficiency and compact size. A conceptual planetary gearbox system is developed for MHPP to maintai...

  16. Water in the Solar System: The Development of Science Education Curriculum Focused on Planetary Exploration

    Science.gov (United States)

    Edgar, L. A.; Anderson, R. B.; Gaither, T. A.; Milazzo, M. P.; Vaughan, R. G.; Rubino-Hare, L.; Clark, J.; Ryan, S.

    2017-12-01

    "Water in the Solar System" is an out-of-school time (OST) science education activity for middle school students that was developed as part of the Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) project. The PLANETS project was selected in support of the NASA Science Mission Directorate's Science Education Cooperative Agreement Notice, with the goal of developing and disseminating OST curriculum and related professional development modules that integrate planetary science, technology, and engineering. "Water in the Solar System" is a science activity that addresses the abundance and availability of water in the solar system. The activity consists of three exercises based on the following guiding questions: 1) How much water is there on the Earth? 2) Where can you find water in the solar system? and 3) What properties affect whether or not water can be used by astronauts? The three exercises involve a scaling relationship demonstration about the abundance of useable water on Earth, a card game to explore where water is found in the solar system, and a hands-on exercise to investigate pH and salinity. Through these activities students learn that although there is a lot of water on Earth, most of it is not in a form that is accessible for humans to use. They also learn that most water in the solar system is actually farther from the sun, and that properties such as salinity and pH affect whether water can be used by humans. In addition to content for students, the activity includes background information for educators, and links to in-depth descriptions of the science content. "Water in the Solar System" was developed through collaboration between subject matter experts at the USGS Astrogeology Science Center, and curriculum and professional development experts in the Center for Science Teaching and Learning at Northern Arizona University. Here we describe our process of curriculum development, education objectives of

  17. Planetary Magnetism

    Science.gov (United States)

    Connerney, J. E. P.

    2007-01-01

    The chapter on Planetary Magnetism by Connerney describes the magnetic fields of the planets, from Mercury to Neptune, including the large satellites (Moon, Ganymede) that have or once had active dynamos. The chapter describes the spacecraft missions and observations that, along with select remote observations, form the basis of our knowledge of planetary magnetic fields. Connerney describes the methods of analysis used to characterize planetary magnetic fields, and the models used to represent the main field (due to dynamo action in the planet's interior) and/or remnant magnetic fields locked in the planet's crust, where appropriate. These observations provide valuable insights into dynamo generation of magnetic fields, the structure and composition of planetary interiors, and the evolution of planets.

  18. The occurrence of Jovian planets and the habitability of planetary systems.

    Science.gov (United States)

    Lunine, J

    2001-01-30

    Planets of mass comparable to or larger than Jupiter's have been detected around over 50 stars, and for one such object a definitive test of its nature as a gas giant has been accomplished with data from an observed planetary transit. By virtue of their strong gravitational pull, giant planets define the dynamical and collisional environment within which terrestrial planets form. In our solar system, the position and timing of the formation of Jupiter determined the amount and source of the volatiles from which Earth's oceans and the source elements for life were derived. This paper reviews and brings together diverse observational and modeling results to infer the frequency and distribution of giant planets around solar-type stars and to assess implications for the habitability of terrestrial planets.

  19. A Path to Planetary Protection Requirements for Human Exploration: A Literature Review and Systems Engineering Approach

    Science.gov (United States)

    Johnson, James E.; Conley, Cassie; Siegel, Bette

    2015-01-01

    As systems, technologies, and plans for the human exploration of Mars and other destinations beyond low Earth orbit begin to coalesce, it is imperative that frequent and early consideration is given to how planetary protection practices and policy will be upheld. While the development of formal planetary protection requirements for future human space systems and operations may still be a few years from fruition, guidance to appropriately influence mission and system design will be needed soon to avoid costly design and operational changes. The path to constructing such requirements is a journey that espouses key systems engineering practices of understanding shared goals, objectives and concerns, identifying key stakeholders, and iterating a draft requirement set to gain community consensus. This paper traces through each of these practices, beginning with a literature review of nearly three decades of publications addressing planetary protection concerns with respect to human exploration. Key goals, objectives and concerns, particularly with respect to notional requirements, required studies and research, and technology development needs have been compiled and categorized to provide a current 'state of knowledge'. This information, combined with the identification of key stakeholders in upholding planetary protection concerns for human missions, has yielded a draft requirement set that might feed future iteration among space system designers, exploration scientists, and the mission operations community. Combining the information collected with a proposed forward path will hopefully yield a mutually agreeable set of timely, verifiable, and practical requirements for human space exploration that will uphold international commitment to planetary protection.

  20. A Small Fission Power System for NASA Planetary Science Missions

    Science.gov (United States)

    Mason, Lee; Casani, John; Elliott, John; Fleurial, Jean-Pierre; MacPherson, Duncan; Nesmith, William; Houts, Michael; Bechtel, Ryan; Werner, James; Kapernick, Rick; hide

    2011-01-01

    In March 2010, the Decadal Survey Giant Planets Panel (GPP) requested a short-turnaround study to evaluate the feasibility of a small Fission Power System (FPS) for future unspecified National Aeronautics and Space Administration (NASA) science missions. FPS technology was considered a potential option for power levels that might not be achievable with radioisotope power systems. A study plan was generated and a joint NASA and Department of Energy (DOE) study team was formed. The team developed a set of notional requirements that included 1-kW electrical output, 15-year design life, and 2020 launch availability. After completing a short round of concept screening studies, the team selected a single concept for concentrated study and analysis. The selected concept is a solid block uranium-molybdenum reactor core with heat pipe cooling and distributed thermoelectric power converters directly coupled to aluminum radiator fins. This paper presents the preliminary configuration, mass summary, and proposed development program.

  1. Design of Mobility System for Ground Model of Planetary Exploration Rover

    Directory of Open Access Journals (Sweden)

    Younkyu Kim

    2012-12-01

    Full Text Available In recent years, a number of missions have been planned and conducted worldwide on the planets such as Mars, which involves the unmanned robotic exploration with the use of rover. The rover is an important system for unmanned planetary exploration, performing the locomotion and sample collection and analysis at the exploration target of the planetary surface designated by the operator. This study investigates the development of mobility system for the rover ground model necessary to the planetary surface exploration for the benefit of future planetary exploration mission in Korea. First, the requirements for the rover mobility system are summarized and a new mechanism is proposed for a stable performance on rough terrain which consists of the passive suspension system with 8 wheeled double 4-bar linkage (DFBL, followed by the performance evaluation for the mechanism of the mobility system based on the shape design and simulation. The proposed mobility system DFBL was compared with the Rocker-Bogie suspension system of US space agency National Aeronautics and Space Administration and 8 wheeled mobility system CRAB8 developed in Switzerland, using the simulation to demonstrate the superiority with respect to the stability of locomotion. On the basis of the simulation results, a general system configuration was proposed and designed for the rover manufacture.

  2. CLOSE STELLAR ENCOUNTERS IN YOUNG, SUBSTRUCTURED, DISSOLVING STAR CLUSTERS: STATISTICS AND EFFECTS ON PLANETARY SYSTEMS

    International Nuclear Information System (INIS)

    Craig, Jonathan; Krumholz, Mark R.

    2013-01-01

    Both simulations and observations indicate that stars form in filamentary, hierarchically clustered associations, most of which disperse into their galactic field once feedback destroys their parent clouds. However, during their early evolution in these substructured environments, stars can undergo close encounters with one another that might have significant impacts on their protoplanetary disks or young planetary systems. We perform N-body simulations of the early evolution of dissolving, substructured clusters with a wide range of properties, with the aim of quantifying the expected number and orbital element distributions of encounters as a function of cluster properties. We show that the presence of substructure both boosts the encounter rate and modifies the distribution of encounter velocities compared to what would be expected for a dynamically relaxed cluster. However, the boost only lasts for a dynamical time, and as a result the overall number of encounters expected remains low enough that gravitational stripping is unlikely to be a significant effect for the vast majority of star-forming environments in the Galaxy. We briefly discuss the implications of this result for models of the origin of the solar system, and of free-floating planets. We also provide tabulated encounter rates and orbital element distributions suitable for inclusion in population synthesis models of planet formation in a clustered environment.

  3. CLOSE STELLAR ENCOUNTERS IN YOUNG, SUBSTRUCTURED, DISSOLVING STAR CLUSTERS: STATISTICS AND EFFECTS ON PLANETARY SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Craig, Jonathan; Krumholz, Mark R., E-mail: krumholz@ucolick.org [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2013-06-01

    Both simulations and observations indicate that stars form in filamentary, hierarchically clustered associations, most of which disperse into their galactic field once feedback destroys their parent clouds. However, during their early evolution in these substructured environments, stars can undergo close encounters with one another that might have significant impacts on their protoplanetary disks or young planetary systems. We perform N-body simulations of the early evolution of dissolving, substructured clusters with a wide range of properties, with the aim of quantifying the expected number and orbital element distributions of encounters as a function of cluster properties. We show that the presence of substructure both boosts the encounter rate and modifies the distribution of encounter velocities compared to what would be expected for a dynamically relaxed cluster. However, the boost only lasts for a dynamical time, and as a result the overall number of encounters expected remains low enough that gravitational stripping is unlikely to be a significant effect for the vast majority of star-forming environments in the Galaxy. We briefly discuss the implications of this result for models of the origin of the solar system, and of free-floating planets. We also provide tabulated encounter rates and orbital element distributions suitable for inclusion in population synthesis models of planet formation in a clustered environment.

  4. Close Stellar Encounters in Young, Substructured, Dissolving Star Clusters: Statistics and Effects on Planetary Systems

    Science.gov (United States)

    Craig, Jonathan; Krumholz, Mark R.

    2013-06-01

    Both simulations and observations indicate that stars form in filamentary, hierarchically clustered associations, most of which disperse into their galactic field once feedback destroys their parent clouds. However, during their early evolution in these substructured environments, stars can undergo close encounters with one another that might have significant impacts on their protoplanetary disks or young planetary systems. We perform N-body simulations of the early evolution of dissolving, substructured clusters with a wide range of properties, with the aim of quantifying the expected number and orbital element distributions of encounters as a function of cluster properties. We show that the presence of substructure both boosts the encounter rate and modifies the distribution of encounter velocities compared to what would be expected for a dynamically relaxed cluster. However, the boost only lasts for a dynamical time, and as a result the overall number of encounters expected remains low enough that gravitational stripping is unlikely to be a significant effect for the vast majority of star-forming environments in the Galaxy. We briefly discuss the implications of this result for models of the origin of the solar system, and of free-floating planets. We also provide tabulated encounter rates and orbital element distributions suitable for inclusion in population synthesis models of planet formation in a clustered environment.

  5. Conceptual design of planetary gearbox system for constant generator speed in hydro power plant

    Directory of Open Access Journals (Sweden)

    Bhargav

    2018-01-01

    Full Text Available Micro Hydro Power Plant (MHPP is emerging as one of the most clean, renewable and reliable energy technology for harnessing power. In MHPP hydro governors are avoided, that results in turbine speed fluctuation. MHPP requires either speed or torque amplification of generator for constant power generation. To achieve this, planetary gear transmission system is explored for MHPP due to its higher efficiency and compact size. A conceptual planetary gearbox system is developed for MHPP to maintain constant generator speed. The conceptual gearbox is designed, modelled and analysed using ADAMS software. Simulation results are found to be in close agreement with analytical results. Hence, conceptual design of planetary gearbox can be used to govern constant generator speed. In this paper, a MHPP which generate constant power of 5 kW at constant generator speed of 1490 rpm is analysed and validated

  6. Dynamics of Small Bodies in Planetary System Formation

    Science.gov (United States)

    Silsbee, Kedron

    One of the most exciting astronomical developments of the past two decades has been the wealth and diversity of exoplanetary systems. Among the more exotic discoveries is a collection of planets in tight binary star systems. The first three chapters of this thesis focus on planet formation around binary stars. We assume that cores of giant planets form via collisional agglomeration of small planetesimals. A simple-minded estimate suggests that collision velocities between kilometer-sized planetesimals in some planet-hosting binary systems would be too large by a factor of ˜ 1000 for them to grow in mutual collisions rather than being destroyed. To study this issue in more detail, we developed a model for the dynamics of planetesimals in binary systems. Chapter 1 discusses the gravitational effects of the disk on the planetesimals, and derives an expression for the disturbing function of an eccentric disk. Chapter 2 applies the results of chapter 1, as well as some additional work done by Roman Rafikov and myself incorporating the effect of gas drag from the disk, to the particular case of circumbinary planets. Chapter 3 describes our ongoing efforts to simulate the coagulation process, using the rates and collisional outcomes calculated in our other works. Chapters 4 and 5 address the topic of small bodies in our own solar system. Recent wide-field surveys have discovered a few thousand minor solar-system bodies at tens of AU from the Sun. Upcoming surveys such as LSST should find at least an order of magnitude more. Chapter 4 describes simulations of long-period comet orbits, and predicts the orbital element distribution of the long-period comet population with perihelion between 5 and 45 AU. Chapter 5 investigates what happens if there are several Mars-Earth mass bodies left over after the giant planets are assembled. We find that their influence naturally creates a detached disk (a set of moderately inclined objects with perihelia well beyond the orbit of

  7. The planetary system to KIC 11442793: A compact analogue to the solar system

    International Nuclear Information System (INIS)

    Cabrera, J.; Csizmadia, Sz.; Rauer, H.; Erikson, A.; Dreyer, C.; Eigmüller, Ph.; Lehmann, H.; Hatzes, A.; Dvorak, R.; Gandolfi, D.

    2014-01-01

    We announce the discovery of a planetary system with seven transiting planets around a Kepler target, a current record for transiting systems. Planets b, c, e, and f are reported for the first time in this work. Planets d, g, and h were previously reported in the literature, although here we revise their orbital parameters and validate their planetary nature. Planets h and g are gas giants and show strong dynamical interactions. The orbit of planet g is perturbed in such a way that its orbital period changes by 25.7 hr between two consecutive transits during the length of the observations, which is the largest such perturbation found so far. The rest of the planets also show mutual interactions: planets d, e, and f are super-Earths close to a mean motion resonance chain (2:3:4), and planets b and c, with sizes below 2 Earth radii, are within 0.5% of the 4:5 mean motion resonance. This complex system presents some similarities to our solar system, with small planets in inner orbits and gas giants in outer orbits. It is, however, more compact. The outer planet has an orbital distance around 1 AU, and the relative position of the gas giants is opposite to that of Jupiter and Saturn, which is closer to the expected result of planet formation theories. The dynamical interactions between planets are also much richer.

  8. Comparative Climates of the Trappist-1 Planetary System: Results from a Simple Climate-vegetation Model

    Science.gov (United States)

    Alberti, Tommaso; Carbone, Vincenzo; Lepreti, Fabio; Vecchio, Antonio

    2017-07-01

    The recent discovery of the planetary system hosted by the ultracool dwarf star TRAPPIST-1 could open new paths for investigations of the planetary climates of Earth-sized exoplanets, their atmospheres, and their possible habitability. In this paper, we use a simple climate-vegetation energy-balance model to study the climate of the seven TRAPPIST-1 planets and the climate dependence on various factors: the global albedo, the fraction of vegetation that could cover their surfaces, and the different greenhouse conditions. The model allows us to investigate whether liquid water could be maintained on the planetary surfaces (I.e., by defining a “surface water zone (SWZ)”) in different planetary conditions, with or without the presence of a greenhouse effect. It is shown that planet TRAPPIST-1d seems to be the most stable from an Earth-like perspective, since it resides in the SWZ for a wide range of reasonable values of the model parameters. Moreover, according to the model, outer planets (f, g, and h) cannot host liquid water on their surfaces, even with Earth-like conditions, entering a snowball state. Although very simple, the model allows us to extract the main features of the TRAPPIST-1 planetary climates.

  9. Comparative Climates of the Trappist-1 Planetary System: Results from a Simple Climate-vegetation Model

    Energy Technology Data Exchange (ETDEWEB)

    Alberti, Tommaso; Carbone, Vincenzo; Lepreti, Fabio [Dipartimento di Fisica, Università della Calabria, Ponte P. Bucci, Cubo 31C, I-87036, Rende (CS) (Italy); Vecchio, Antonio, E-mail: tommaso.alberti@unical.it, E-mail: tommasoalberti89@gmail.com [LESIA—Observatoire de Paris, PSL Research University, 5 place Jules Janssen, F-92190, Meudon (France)

    2017-07-20

    The recent discovery of the planetary system hosted by the ultracool dwarf star TRAPPIST-1 could open new paths for investigations of the planetary climates of Earth-sized exoplanets, their atmospheres, and their possible habitability. In this paper, we use a simple climate-vegetation energy-balance model to study the climate of the seven TRAPPIST-1 planets and the climate dependence on various factors: the global albedo, the fraction of vegetation that could cover their surfaces, and the different greenhouse conditions. The model allows us to investigate whether liquid water could be maintained on the planetary surfaces (i.e., by defining a “surface water zone (SWZ)”) in different planetary conditions, with or without the presence of a greenhouse effect. It is shown that planet TRAPPIST-1d seems to be the most stable from an Earth-like perspective, since it resides in the SWZ for a wide range of reasonable values of the model parameters. Moreover, according to the model, outer planets (f, g, and h) cannot host liquid water on their surfaces, even with Earth-like conditions, entering a snowball state. Although very simple, the model allows us to extract the main features of the TRAPPIST-1 planetary climates.

  10. Comets as a possible source of nanodust in the Solar System cloud and in planetary debris discs.

    Science.gov (United States)

    Mann, Ingrid

    2017-07-13

    Comets, comet-like objects and their fragments are the most plausible source for the dust in both the inner heliosphere and planetary debris discs around other stars. The smallest size of dust particles in debris discs is not known and recent observational results suggest that the size distribution of the dust extends down to sizes of a few nanometres or a few tens of nanometres. In the Solar System, electric field measurements from spacecraft observe events that are explained with high-velocity impacts of nanometre-sized dust. In some planetary debris discs an observed mid- to near-infrared emission supposedly results from hot dust located in the vicinity of the star. And the observed emission is characteristic of dust of sizes a few tens of nanometres. Rosetta observations, on the other hand, provide little information on the presence of nanodust near comet 67P/Churyumov-Gerasimenko. This article describes why this is not in contradiction to the observations of nanodust in the heliosphere and in planetary debris discs. The direct ejection of nanodust from the nucleus of the comet would not contribute significantly to the observed nanodust fluxes. We discuss a scenario that nanodust forms in the interplanetary dust cloud through the high-velocity collision process in the interplanetary medium for which the production rates are highest near the Sun. Likewise, fragmentation by collisions occurs near the star in planetary debris discs. The collisional fragmentation process in the inner Solar System occurs at similar velocities to those of the collisional evolution in the interstellar medium. A question for future studies is whether there is a common magic size of the smallest collision fragments and what determines this size.This article is part of the themed issue 'Cometary science after Rosetta'. © 2017 The Author(s).

  11. Advances in metal forming expert system for metal forming

    CERN Document Server

    Hingole, Rahulkumar Shivajirao

    2015-01-01

    This comprehensive book offers a clear account of the theory and applications of advanced metal forming. It provides a detailed discussion of specific forming processes, such as deep drawing, rolling, bending extrusion and stamping. The author highlights recent developments of metal forming technologies and explains sound, new and powerful expert system techniques for solving advanced engineering problems in metal forming. In addition, the basics of expert systems, their importance and applications to metal forming processes, computer-aided analysis of metalworking processes, formability analysis, mathematical modeling and case studies of individual processes are presented.

  12. Physical properties of the planetary systems WASP-45 and WASP-46 from simultaneous multiband photometry

    DEFF Research Database (Denmark)

    Ciceri, S.; Mancini, L.; Southworth, J.

    2016-01-01

    for both planets, in particular in the case of WASP-45 b we found a slightly larger absorption in the redder bands than in the bluer ones. No hints for the presence of an additional planetary companion in the two systems were found either from the photometric or radial velocity measurements....

  13. A Population of planetary systems characterized by short-period, Earth-sized planets

    Science.gov (United States)

    Steffen, Jason H.; Coughlin, Jeffrey L.

    2016-01-01

    We analyze data from the Quarter 1–17 Data Release 24 (Q1–Q17 DR24) planet candidate catalog from NASA’s Kepler mission, specifically comparing systems with single transiting planets to systems with multiple transiting planets, and identify a population of exoplanets with a necessarily distinct system architecture. Such an architecture likely indicates a different branch in their evolutionary past relative to the typical Kepler system. The key feature of these planetary systems is an isolated, Earth-sized planet with a roughly 1-d orbital period. We estimate that at least 24 of the 144 systems we examined (≳17%) are members of this population. Accounting for detection efficiency, such planetary systems occur with a frequency similar to the hot Jupiters. PMID:27790984

  14. Implementation of cartographic symbols for planetary mapping in geographic information systems

    Science.gov (United States)

    Nass, A.; van Gasselt, S.; Jaumann, R.; Asche, H.

    2011-09-01

    The steadily growing international interest in the exploration of planets in our Solar System and many advances in the development of space-sensor technology have led to the launch of a multitude of planetary missions to Mercury, Venus, the Earth's moon, Mars and various Outer-Solar System objects, such as the Jovian and Saturnian satellites. Camera instruments carried along on these missions image surfaces in different wavelength ranges and under different viewing angles, permitting additional data to be derived, such as spectral data or digital terrain models. Such data enable researchers to explore and investigate the development of planetary surfaces by analyzing and interpreting the inventory of surface units and structures. Results of such work are commonly abstracted and represented in thematic, mostly geological and geomorphological, maps. In order to facilitate efficient collaboration among different planetary research disciplines, mapping results need to be prepared, described, managed, archived, and visualized in a uniform way. These tasks have been increasingly carried out by means of computer-based geographic information systems (GIS or GI systems) which have come to be widely employed in the field of planetary research since the last two decades. In this paper we focus on the simplification of mapping processes, putting specific emphasis on a cartographically correct visualization of planetary mapping data using GIS-based environments. We present and discuss the implementation of a set of standardized cartographic symbols for planetary mapping based on the Digital Cartographic Standard for Geologic Map Symbolization as prepared by the United States Geological Survey (USGS) for the Federal Geographic Data Committee (FGDC). Furthermore, we discuss various options to integrate this symbol catalog into generic GI systems, and more specifically into the Environmental Systems Research Institute's (ESRI) ArcGIS environment, and focus on requirements for

  15. Absorbing Gas around the WASP-12 Planetary System

    Science.gov (United States)

    Fossati, L.; Ayres, T. R.; Haswell, C. A.; Bohlender, D.; Kochukhov, O.; Flöer, L.

    2013-04-01

    Near-UV observations of the planet host star WASP-12 uncovered the apparent absence of the normally conspicuous core emission of the Mg II h and k resonance lines. This anomaly could be due either to (1) a lack of stellar activity, which would be unprecedented for a solar-like star of the imputed age of WASP-12 or (2) extrinsic absorption, from the intervening interstellar medium (ISM) or from material within the WASP-12 system itself, presumably ablated from the extreme hot Jupiter WASP-12 b. HIRES archival spectra of the Ca II H and K lines of WASP-12 show broad depressions in the line cores, deeper than those of other inactive and similarly distant stars and similar to WASP-12's Mg II h and k line profiles. We took high-resolution ESPaDOnS and FIES spectra of three early-type stars within 20' of WASP-12 and at similar distances, which show the ISM column is insufficient to produce the broad Ca II depression observed in WASP-12. The EBHIS H I column density map supports and strengthens this conclusion. Extrinsic absorption by material local to the WASP-12 system is therefore the most likely cause of the line core anomalies. Gas escaping from the heavily irradiated planet could form a stable and thick circumstellar disk/cloud. The anomalously low stellar activity index (log R^{{\\prime }}_{HK}) of WASP-12 is evidently a direct consequence of the extra core absorption, so similar HK index deficiencies might signal the presence of translucent circumstellar gas around other stars hosting evaporating planets. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Rechereche Scientifique of France, and the University of Hawaii. Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del

  16. Planetary Magnetism

    International Nuclear Information System (INIS)

    Russell, C.T.

    1980-01-01

    Planetary spacecraft have now probed the magnetic fields of all the terrestrial planets, the moon, Jupiter, and Saturn. These measurements reveal that dynamos are active in at least four of the planets, Mercury, the earth, Jupiter, and Saturn but that Venus and Mars appear to have at most only very weak planetary magnetic fields. The moon may have once possessed an internal dynamo, for the surface rocks are magnetized. The large satellites of the outer solar system are candidates for dynamo action in addition to the large planets themselves. Of these satellites the one most likely to generate its own internal magnetic field is Io

  17. Secular chaos and its application to Mercury, hot Jupiters, and the organization of planetary systems.

    Science.gov (United States)

    Lithwick, Yoram; Wu, Yanqin

    2014-09-02

    In the inner solar system, the planets' orbits evolve chaotically, driven primarily by secular chaos. Mercury has a particularly chaotic orbit and is in danger of being lost within a few billion years. Just as secular chaos is reorganizing the solar system today, so it has likely helped organize it in the past. We suggest that extrasolar planetary systems are also organized to a large extent by secular chaos. A hot Jupiter could be the end state of a secularly chaotic planetary system reminiscent of the solar system. However, in the case of the hot Jupiter, the innermost planet was Jupiter (rather than Mercury) sized, and its chaotic evolution was terminated when it was tidally captured by its star. In this contribution, we review our recent work elucidating the physics of secular chaos and applying it to Mercury and to hot Jupiters. We also present results comparing the inclinations of hot Jupiters thus produced with observations.

  18. A secular model for efficient exploration of mutually-inclined planetary systems

    Science.gov (United States)

    Deitrick, Russell; Barnes, Rory

    2015-01-01

    Dynamical studies of exoplanets largely assume coplanarity because of the lack of inclination information in many cases. However, the multiplanet system Upsilon Andromedae has orbital planes inclined by 30 degrees, models of planet-planet scattering predict large mutual inclinations, and astrometry missions such as Gaia have the power to reveal the 3 dimensional architecture of planetary systems. As the dynamics of systems with non-planar orbits will be key to understanding origins, and ultimately habitability where applicable, we present a computationally efficient model for the orbital evolution of planetary systems with modest inclinations and eccentricities which are not in a mean motion resonance. Specifically, our model is based on the disturbing function and extends to 4th order in eccentricity and inclination. We present comparisons to N-body models for known systems, such as the Solar System and Upsilon Andromedae, and hypothetical systems with a range of orbital configurations. We describe the eccentricity and inclination conditions under which the model is valid. We further calculate the rotational evolution of planets based on the orbital evolution and the stellar torque and find a wide range of obliquity evolution is possible. As obliquity is a key driver of planetary climate, Earth-like planets in non-planar systems may have climates dominated by their orbital evolution.

  19. A Survey For Planetary-mass Brown Dwarfs in the Taurus and Perseus Star-forming Regions

    Energy Technology Data Exchange (ETDEWEB)

    Esplin, T. L.; Luhman, K. L., E-mail: taran.esplin@psu.edu [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2017-10-01

    We present the initial results from a survey for planetary-mass brown dwarfs in the Taurus star-forming region. We have identified brown dwarf candidates in Taurus using proper motions and photometry from several ground- and space-based facilities. Through spectroscopy of some of the more promising candidates, we have found 18 new members of Taurus. They have spectral types ranging from mid-M to early-L, and they include the four faintest known members in extinction-corrected K{sub s}, which should have masses as low as ∼4–5 M {sub Jup} according to evolutionary models. Two of the coolest new members (M9.25, M9.5) have mid-IR excesses that indicate the presence of disks. Two fainter objects with types of M9–L2 and M9–L3 also have red mid-IR colors relative to photospheres at ≤L0, but since the photospheric colors are poorly defined at >L0, it is unclear whether they have excesses from disks. We also have obtained spectra of candidate members of the IC 348 and NGC 1333 clusters in Perseus that were identified by Luhman et al. Eight candidates are found to be probable members, three of which are among the faintest and least-massive known members of the clusters (∼5 M{sub Jup}).

  20. A Survey For Planetary-mass Brown Dwarfs in the Taurus and Perseus Star-forming Regions

    International Nuclear Information System (INIS)

    Esplin, T. L.; Luhman, K. L.

    2017-01-01

    We present the initial results from a survey for planetary-mass brown dwarfs in the Taurus star-forming region. We have identified brown dwarf candidates in Taurus using proper motions and photometry from several ground- and space-based facilities. Through spectroscopy of some of the more promising candidates, we have found 18 new members of Taurus. They have spectral types ranging from mid-M to early-L, and they include the four faintest known members in extinction-corrected K s , which should have masses as low as ∼4–5 M Jup according to evolutionary models. Two of the coolest new members (M9.25, M9.5) have mid-IR excesses that indicate the presence of disks. Two fainter objects with types of M9–L2 and M9–L3 also have red mid-IR colors relative to photospheres at ≤L0, but since the photospheric colors are poorly defined at >L0, it is unclear whether they have excesses from disks. We also have obtained spectra of candidate members of the IC 348 and NGC 1333 clusters in Perseus that were identified by Luhman et al. Eight candidates are found to be probable members, three of which are among the faintest and least-massive known members of the clusters (∼5 M Jup ).

  1. SPICE: A Geometry Information System Supporting Planetary Mapping, Remote Sensing and Data Mining

    Science.gov (United States)

    Acton, C.; Bachman, N.; Semenov, B.; Wright, E.

    2013-01-01

    SPICE is an information system providing space scientists ready access to a wide assortment of space geometry useful in planning science observations and analyzing the instrument data returned therefrom. The system includes software used to compute many derived parameters such as altitude, LAT/LON and lighting angles, and software able to find when user-specified geometric conditions are obtained. While not a formal standard, it has achieved widespread use in the worldwide planetary science community

  2. The development of the human exploration demonstration project (HEDP), a planetary systems testbed

    Science.gov (United States)

    Chevers, Edward S.; Korsmeyer, David J.

    1993-01-01

    The Human Exploration Demonstration Project (HEDP) is an ongoing task at the National Aeronautics and Space Administration's Ames Research Center to address the advanced technology requirements necessary to implement an integrated working and living environment for a planetary surface habitat. The integrated environment will consist of life support systems, physiological monitoring of project crew, a virtual environment workstation, and centralized data acquisition and habitat systems health monitoring. There will be several robotic systems on a simulated planetary landscape external to the habitat environment to provide representative work loads for the crew. This paper describes the status of the HEDP after one year, the major facilities composing the HEDP, the project's role as an Ames Research Center testbed, and the types of demonstration scenarios that will be run to showcase the technologies.

  3. Evolving the Technical Infrastructure of the Planetary Data System for the 21st Century

    Science.gov (United States)

    Beebe, Reta F.; Crichton, D.; Hughes, S.; Grayzeck, E.

    2010-01-01

    The Planetary Data System (PDS) was established in 1989 as a distributed system to assure scientific oversight. Initially the PDS followed guidelines recommended by the National Academies Committee on Data Management and Computation (CODMAC, 1982) and placed emphasis on archiving validated datasets. But overtime user demands, supported by increased computing capabilities and communication methods, have placed increasing demands on the PDS. The PDS must add additional services to better enable scientific analysis within distributed environments and to ensure that those services integrate with existing systems and data. To face these challenges the Planetary Data System (PDS) must modernize its architecture and technical implementation. The PDS 2010 project addresses these challenges. As part of this project, the PDS has three fundamental project goals that include: (1) Providing more efficient client delivery of data by data providers to the PDS (2) Enabling a stable, long-term usable planetary science data archive (3) Enabling services for the data consumer to find, access and use the data they require in contemporary data formats. In order to achieve these goals, the PDS 2010 project is upgrading both the technical infrastructure and the data standards to support increased efficiency in data delivery as well as usability of the PDS. Efforts are underway to interface with missions as early as possible and to streamline the preparation and delivery of data to the PDS. Likewise, the PDS is working to define and plan for data services that will help researchers to perform analysis in cost-constrained environments. This presentation will cover the PDS 2010 project including the goals, data standards and technical implementation plans that are underway within the Planetary Data System. It will discuss the plans for moving from the current system, version PDS 3, to version PDS 4.

  4. Sinplex: a small integrated navigation system for planetary exploration

    NARCIS (Netherlands)

    Laan, E.C.; Esposito, M.; Monna, B.; Silvio Conticello, S.; Stelwagen, F.; Theil, S.; Steffes, S.; Dumke, M.; Heise, D.; Sagliano, M.; Oosterling, J.A.J.; Nijkerk, M.D.; Duivenvoorde, T.; Berkhout, J.; Yanson, Y.; Schulte, J.; Skaborn, D.; Durkut, M.; Söderholm, S.; Samaan, M.A.; Visee, R.

    2013-01-01

    SINPLEX is a sensor suite for spacecraft navigation purposes. This paper addresses the current status of the SINPLEX prototype and the systems engineering process that has led to this status. The SINPLEX prototype is currently being integrated with the aim to demonstrate Technology Readiness Level

  5. The SOAPS project – Spin-orbit alignment of planetary systems

    Directory of Open Access Journals (Sweden)

    Hebb L.

    2013-04-01

    Full Text Available The wealth of information rendered by Kepler planets and planet candidates is indispensable for statistically significant studies of distinct planet populations, in both single and multiple systems. Empirical evidences suggest that Kepler's planet population shows different physical properties as compared to the bulk of known exoplanets. The SOAPS project, aims to shed light on Kepler's planets formation, their migration and architecture. By measuring v sini accurately for Kepler hosts with rotation periods measured from their high-precision light curves, we will assess the alignment of the planetary orbit with respect to the stellar spin axis. This degree of alignment traces the formation history and evolution of the planetary systems, and thus, allows to distinguish between different proposed migration theories. SOAPS will increase by a factor of 2 the number of spin-orbit alignment measurements pushing the parameters space down to the SuperEarth domain. Here we present our preliminary results.

  6. Symmetric and asymmetric librations in extrasolar planetary systems: a global view

    Science.gov (United States)

    Hadjidemetriou, John D.

    2006-05-01

    We present a global view of the resonant structure of the phase space of a planetary system with two planets, moving in the same plane, as obtained from the set of the families of periodic orbits. An important tool to understand the topology of the phase space is to determine the position and the stability character of the families of periodic orbits. The region of the phase space close to a stable periodic orbit corresponds to stable, quasi periodic librations. In these regions it is possible for an extrasolar planetary system to exist, or to be trapped following a migration process due to dissipative forces. The mean motion resonances are associated with periodic orbits in a rotating frame, which means that the relative configuration is repeated in space. We start the study with the family of symmetric periodic orbits with nearly circular orbits of the two planets. Along this family the ratio of the periods of the two planets varies, and passes through rational values, which correspond to resonances. At these resonant points we have bifurcations of families of resonant elliptic periodic orbits. There are three topologically different resonances: (1) the resonances (n + 1):n, (2:1, 3:2, ...), (2) the resonances (2n + 1):(2n-1), (3:1, 5:3, ...) and (3) all other resonances. The topology at each one of the above three types of resonances is studied, for different values of the sum and of the ratio of the planetary masses. Both symmetric and asymmetric resonant elliptic periodic orbits exist. In general, the symmetric elliptic families bifurcate from the circular family, and the asymmetric elliptic families bifurcate from the symmetric elliptic families. The results are compared with the position of some observed extrasolar planetary systems. In some cases (e.g., Gliese 876) the observed system lies, with a very good accuracy, on the stable part of a family of resonant periodic orbits.

  7. System for Packaging Planetary Samples for Return to Earth

    Science.gov (United States)

    Badescu, Mircea; Bar-Cohen, Yoseph; Backes, paul G.; Sherrit, Stewart; Bao, Xiaoqi; Scott, James S.

    2010-01-01

    A system is proposed for packaging material samples on a remote planet (especially Mars) in sealed sample tubes in preparation for later return to Earth. The sample tubes (Figure 1) would comprise (1) tubes initially having open tops and closed bottoms; (2) small, bellows-like collapsible bodies inside the tubes at their bottoms; and (3) plugs to be eventually used to close the tops of the tubes. The top inner surface of each tube would be coated with solder. The side of each plug, which would fit snugly into a tube, would feature a solder-filled ring groove. The system would include equipment for storing, manipulating, filling, and sealing the tubes. The containerization system (see Figure 2) will be organized in stations and will include: the storage station, the loading station, and the heating station. These stations can be structured in circular or linear pattern to minimize the manipulator complexity, allowing for compact design and mass efficiency. The manipulation of the sample tube between stations is done by a simple manipulator arm. The storage station contains the unloaded sample tubes and the plugs before sealing as well as the sealed sample tubes with samples after loading and sealing. The chambers at the storage station also allow for plug insertion into the sample tube. At the loading station the sample is poured or inserted into the sample tube and then the tube is topped off. At the heating station the plug is heated so the solder ring melts and seals the plug to the sample tube. The process is performed as follows: Each tube is filled or slightly overfilled with sample material and the excess sample material is wiped off the top. Then, the plug is inserted into the top section of the tube packing the sample material against the collapsible bellowslike body allowing the accommodation of the sample volume. The plug and the top of the tube are heated momentarily to melt the solder in order to seal the tube.

  8. Planetary Rings

    Science.gov (United States)

    Tiscareno, Matthew S.

    Planetary rings are the only nearby astrophysical disks and the only disks that have been investigated by spacecraft (especially the Cassini spacecraft orbiting Saturn). Although there are significant differences between rings and other disks, chiefly the large planet/ring mass ratio that greatly enhances the flatness of rings (aspect ratios as small as 10- 7), understanding of disks in general can be enhanced by understanding the dynamical processes observed at close range and in real time in planetary rings.We review the known ring systems of the four giant planets, as well as the prospects for ring systems yet to be discovered. We then review planetary rings by type. The A, B, and C rings of Saturn, plus the Cassini Division, comprise our solar system's only dense broad disk and host many phenomena of general application to disks including spiral waves, gap formation, self-gravity wakes, viscous overstability and normal modes, impact clouds, and orbital evolution of embedded moons. Dense narrow rings are found both at Uranus (where they comprise the main rings entirely) and at Saturn (where they are embedded in the broad disk) and are the primary natural laboratory for understanding shepherding and self-stability. Narrow dusty rings, likely generated by embedded source bodies, are surprisingly found to sport azimuthally confined arcs at Neptune, Saturn, and Jupiter. Finally, every known ring system includes a substantial component of diffuse dusty rings.Planetary rings have shown themselves to be useful as detectors of planetary processes around them, including the planetary magnetic field and interplanetary impactors as well as the gravity of nearby perturbing moons. Experimental rings science has made great progress in recent decades, especially numerical simulations of self-gravity wakes and other processes but also laboratory investigations of coefficient of restitution and spectroscopic ground truth. The age of self-sustained ring systems is a matter of

  9. The critical binary star separation for a planetary system origin of white dwarf pollution

    Science.gov (United States)

    Veras, Dimitri; Xu, Siyi; Rebassa-Mansergas, Alberto

    2018-01-01

    The atmospheres of between one quarter and one half of observed single white dwarfs in the Milky Way contain heavy element pollution from planetary debris. The pollution observed in white dwarfs in binary star systems is, however, less clear, because companion star winds can generate a stream of matter which is accreted by the white dwarf. Here, we (i) discuss the necessity or lack thereof of a major planet in order to pollute a white dwarf with orbiting minor planets in both single and binary systems, and (ii) determine the critical binary separation beyond which the accretion source is from a planetary system. We hence obtain user-friendly functions relating this distance to the masses and radii of both stars, the companion wind, and the accretion rate on to the white dwarf, for a wide variety of published accretion prescriptions. We find that for the majority of white dwarfs in known binaries, if pollution is detected, then that pollution should originate from planetary material.

  10. Archiving Spectral Libraries in the Planetary Data System

    Science.gov (United States)

    Slavney, S.; Guinness, E. A.; Scholes, D.; Zastrow, A.

    2017-12-01

    Spectral libraries are becoming popular candidates for archiving in PDS. With the increase in the number of individual investigators funded by programs such as NASA's PDART, the PDS Geosciences Node is receiving many requests for support from proposers wishing to archive various forms of laboratory spectra. To accommodate the need for a standardized approach to archiving spectra, the Geosciences Node has designed the PDS Spectral Library Data Dictionary, which contains PDS4 classes and attributes specifically for labeling spectral data, including a classification scheme for samples. The Reflectance Experiment Laboratory (RELAB) at Brown University, which has long been a provider of spectroscopy equipment and services to the science community, has provided expert input into the design of the dictionary. Together the Geosciences Node and RELAB are preparing the whole of the RELAB Spectral Library, consisting of many thousands of spectra collected over the years, to be archived in PDS. An online interface for searching, displaying, and downloading selected spectra is planned, using the Spectral Library metadata recorded in the PDS labels. The data dictionary and online interface will be extended to include spectral libraries submitted by other data providers. The Spectral Library Data Dictionary is now available from PDS at https://pds.nasa.gov/pds4/schema/released/. It can be used in PDS4 labels for reflectance spectra as well as for Raman, XRF, XRD, LIBS, and other types of spectra. Ancillary data such as images, chemistry, and abundance data are also supported. To help generate PDS4-compliant labels for spectra, the Geosciences Node provides a label generation program called MakeLabels (http://pds-geosciences.wustl.edu/tools/makelabels.html) which creates labels from a template, and which can be used for any kind of PDS4 label. For information, contact the Geosciences Node at geosci@wunder.wustl.edu.

  11. An extrasolar planetary system with three Neptune-mass planets.

    Science.gov (United States)

    Lovis, Christophe; Mayor, Michel; Pepe, Francesco; Alibert, Yann; Benz, Willy; Bouchy, François; Correia, Alexandre C M; Laskar, Jacques; Mordasini, Christoph; Queloz, Didier; Santos, Nuno C; Udry, Stéphane; Bertaux, Jean-Loup; Sivan, Jean-Pierre

    2006-05-18

    Over the past two years, the search for low-mass extrasolar planets has led to the detection of seven so-called 'hot Neptunes' or 'super-Earths' around Sun-like stars. These planets have masses 5-20 times larger than the Earth and are mainly found on close-in orbits with periods of 2-15 days. Here we report a system of three Neptune-mass planets with periods of 8.67, 31.6 and 197 days, orbiting the nearby star HD 69830. This star was already known to show an infrared excess possibly caused by an asteroid belt within 1 au (the Sun-Earth distance). Simulations show that the system is in a dynamically stable configuration. Theoretical calculations favour a mainly rocky composition for both inner planets, while the outer planet probably has a significant gaseous envelope surrounding its rocky/icy core; the outer planet orbits within the habitable zone of this star.

  12. Predicting Instability Timescales in Closely-Packed Planetary Systems

    Science.gov (United States)

    Tamayo, Daniel; Hadden, Samuel; Hussain, Naireen; Silburt, Ari; Gilbertson, Christian; Rein, Hanno; Menou, Kristen

    2018-04-01

    Many of the multi-planet systems discovered around other stars are maximally packed. This implies that simulations with masses or orbital parameters too far from the actual values will destabilize on short timescales; thus, long-term dynamics allows one to constrain the orbital architectures of many closely packed multi-planet systems. A central challenge in such efforts is the large computational cost of N-body simulations, which preclude a full survey of the high-dimensional parameter space of orbital architectures allowed by observations. I will present our recent successes in training machine learning models capable of reliably predicting orbital stability a million times faster than N-body simulations. By engineering dynamically relevant features that we feed to a gradient-boosted decision tree algorithm (XGBoost), we are able to achieve a precision and recall of 90% on a holdout test set of N-body simulations. This opens a wide discovery space for characterizing new exoplanet discoveries and for elucidating how orbital architectures evolve through time as the next generation of spaceborne exoplanet surveys prepare for launch this year.

  13. Planetary systems in polarized light: Debris disk observations and instrumentation

    Science.gov (United States)

    Millar-Blanchaer, Maxwell A.

    Understanding planet formation is one of the major challenges of modern astronomy. Polarimetry is a powerful tool with which we can confront this challenge. In particular, polarimetric observations can be useful for imaging debris disks and characterizing exoplanet atmospheres. With that in mind, this thesis has been constructed with two main aspects: i) observational studies of two debris disk systems, beta Pic and HD 157587, using the Gemini Planet Imager and ii) the characterization and testing of a new type of diffraction grating, called a polarization grating, that we plan to use for future observations of exoplanet atmospheres. The Gemini Planet Imager is a high-contrast imager that includes a polarimetry mode designed to image circumstellar disks. Here we detail the development of new data analysis techniques that reduce systematics and noise in processed GPI data. We apply these techniques to observations of the beta Pic and HD 157587 debris disks and then fit each disk image to a geometric disk model. The beta Pic disk model's morphology cannot be explained by interactions with the planet beta Pic b, and the presence of a second planet could be invoked to explain the discrepancy. In the case of HD 157587, the disk model's geometric centre is offset from the location of the star, which could be explained by a perturbing planet. Characterization of the planets' interactions with their debris disks is a critical method to gain more information about these two systems. The second component of this thesis focuses on polarization gratings, thin film optical devices that can simultaneously act as polarizing beam splitters and as spectral dispersive elements. Moreover, they can be designed for high diffraction efficiency across a broad wavelength range. These features make polarization gratings useful for many types of astronomical observations. We have carried out laboratory and on-sky test observations using a polarization grating optimized for visible

  14. Erosive forms in rivers systems

    International Nuclear Information System (INIS)

    Una Alvarez, E. de; Vidal Romani, J. R.; Rodriguez Martinez-Conde, R.

    2009-01-01

    The purpose of this work is to analyze the geomorphological meaning of the concepts of stability/change and to study its influence on a fluvial erosion system. Different cases of fluvial potholes in Galicia (NW of the Iberian Peninsula) are considered. The work conclusions refer to the nature of the process and its morphological evolution in order to advance towards later contributions with respect of this type of systems. (Author) 14 refs.

  15. VARIATIONAL PRINCIPLE FOR PLANETARY INTERIORS

    International Nuclear Information System (INIS)

    Zeng, Li; Jacobsen, Stein B.

    2016-01-01

    In the past few years, the number of confirmed planets has grown above 2000. It is clear that they represent a diversity of structures not seen in our own solar system. In addition to very detailed interior modeling, it is valuable to have a simple analytical framework for describing planetary structures. The variational principle is a fundamental principle in physics, entailing that a physical system follows the trajectory, which minimizes its action. It is alternative to the differential equation formulation of a physical system. Applying the variational principle to the planetary interior can beautifully summarize the set of differential equations into one, which provides us some insight into the problem. From this principle, a universal mass–radius relation, an estimate of the error propagation from the equation of state to the mass–radius relation, and a form of the virial theorem applicable to planetary interiors are derived.

  16. Study on double-shaft mixing paddle undergoing planetary motion in the laminar flow mixing system

    Directory of Open Access Journals (Sweden)

    Jiaqi Zhang

    2015-06-01

    Full Text Available This article has studied the impact of double-shaft mixing paddle undergoing planetary motion on laminar flow mixing system using flow field visualization experiment and computational fluid dynamics simulation. Digital image processing was conducted to analyze the mixing efficiency of mixing paddle in co-rotating and counter-rotating modes. It was found that the double-shaft mixing paddle undergoing planetary motion would not produce the isolated mixing regions in the laminar flow mixing system, and its mixing efficiency in counter-rotating modes was higher than that in co-rotating modes, especially at low rotating speed. According to the tracer trajectory experiment, it was found that the path line of the tracer in the flow field in co-rotating modes was distributed in the opposite direction to the path line in counter-rotating modes. Planetary motion of mixing paddle had stretching, shearing, and folding effects on the trajectory of the tracer. By means of computational fluid dynamics simulation, it was found that axial flows and tangential flows produced in co-rotating and counter-rotating modes have similar flow velocity but opposite flow directions. It is deduced from the distribution rule of axial flow, radial flow, and tangential flow in the flow field that axial flow is the main reason for causing different mixing efficiencies between co-rotating and counter-rotating modes.

  17. NASA's Solar System Treks: Online Portals for Planetary Mapping and Modeling

    Science.gov (United States)

    Day, Brian

    2017-01-01

    NASA's Solar System Treks are a suite of web-based of lunar and planetary mapping and modeling portals providing interactive visualization and analysis tools enabling mission planners, planetary scientists, students, and the general public to access mapped lunar data products from past and current missions for the Moon, Mars, Vesta, and more. New portals for additional planetary bodies are being planned. This presentation will recap significant enhancements to these toolsets during the past year and look ahead to future features and releases. Moon Trek is a new portal replacing its predecessor, the Lunar Mapping and Modeling Portal (LMMP), that significantly upgrades and builds upon the capabilities of LMMP. It features greatly improved navigation, 3D visualization, fly-overs, performance, and reliability. Additional data products and tools continue to be added. These include both generalized products as well as polar data products specifically targeting potential sites for NASA's Resource Prospector mission as well as for missions being planned by NASA's international partners. The latest release of Mars Trek includes new tools and data products requested by NASA's Planetary Science Division to support site selection and analysis for Mars Human Landing Exploration Zone Sites. Also being given very high priority by NASA Headquarters is Mars Trek's use as a means to directly involve the public in upcoming missions, letting them explore the areas the agency is focusing upon, understand what makes these sites so fascinating, follow the selection process, and get caught up in the excitement of exploring Mars. Phobos Trek, the latest effort in the Solar System Treks suite, is being developed in coordination with the International Phobos/Deimos Landing Site Working Group, with landing site selection and analysis for JAXA's MMX (Martian Moons eXploration) mission as a primary driver.

  18. NASA's Solar System Treks: Online Portals for Planetary Mapping and Modeling

    Science.gov (United States)

    Day, B. H.; Law, E.

    2017-12-01

    NASA's Solar System Treks are a suite of web-based of lunar and planetary mapping and modeling portals providing interactive visualization and analysis tools enabling mission planners, planetary scientists, students, and the general public to access mapped lunar data products from past and current missions for the Moon, Mars, Vesta, and more. New portals for additional planetary bodies are being planned. This presentation will recap significant enhancements to these toolsets during the past year and look ahead to future features and releases. Moon Trek is a new portal replacing its predecessor, the Lunar Mapping and Modeling Portal (LMMP), that significantly upgrades and builds upon the capabilities of LMMP. It features greatly improved navigation, 3D visualization, fly-overs, performance, and reliability. Additional data products and tools continue to be added. These include both generalized products as well as polar data products specifically targeting potential sites for NASA's Resource Prospector mission as well as for missions being planned by NASA's international partners. The latest release of Mars Trek includes new tools and data products requested by NASA's Planetary Science Division to support site selection and analysis for Mars Human Landing Exploration Zone Sites. Also being given very high priority by NASA Headquarters is Mars Trek's use as a means to directly involve the public in upcoming missions, letting them explore the areas the agency is focusing upon, understand what makes these sites so fascinating, follow the selection process, and get caught up in the excitement of exploring Mars. Phobos Trek, the latest effort in the Solar System Treks suite, is being developed in coordination with the International Phobos/Deimos Landing Site Working Group, with landing site selection and analysis for JAXA's MMX mission as a primary driver.

  19. Revolution evolution: tracing angular momentum during star and planetary system formation

    Science.gov (United States)

    Davies, Claire Louise

    2015-04-01

    disc to expand. I used spatially resolved submillimetre detections of the dust and gas components of protoplanetary discs, gathered from the literature, to measure the radial extent of discs around low-mass pre-main sequence stars of ∼ 1-10 Myr and probe their viscous evolution. I find no clear observational evidence for the radial expansion of the dust component. However, I find tentative evidence for the expansion ofthe gas component. This suggests that the evolution of the gas and dust components of protoplanetary discs are likely governed by different astrophysical processes. Observations of jets and outflows emanating from protostars and pre-main sequence stars highlight that it may also be possible to remove angular momentum from the circumstellar material. Using the sample of spatially resolved protoplanetary discs, I find no evidence for angular momentum removal during disc evolution. I also use the spatially resolved debris discs from the Submillimetre Common-User Bolometer Array-2 Observations of Nearby Stars survey to constrain the amount of angular momentum retained within planetary systems. This sample is compared to the protoplanetary disc angular momenta and to the angular momentum contained within pre-stellar cores. I find that significant quantities of angular momentum must be removed during disc formation and disc dispersal. This likely occurs via magnetic braking during the formation of the disc, via the launching of a disc or photo-evaporative wind, and/or via ejection of planetary material following dynamical interactions.

  20. Planetary Society

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    Carl Sagan, Bruce Murray and Louis Friedman founded the non-profit Planetary Society in 1979 to advance the exploration of the solar system and to continue the search for extraterrestrial life. The Society has its headquarters in Pasadena, California, but is international in scope, with 100 000 members worldwide, making it the largest space interest group in the world. The Society funds a var...

  1. On the number density of interstellar comets as a constraint on the formation rate of planetary systems

    International Nuclear Information System (INIS)

    Stern, S.A.

    1990-01-01

    The importance of detecting interstellar comets as an indirect indicator of the rate of planetary formation in the galaxy is discussed. The tie between interstellar comet (ISC) detection and planetary-system detection rests on the assumptions (1) that interstellar comets result from dynamical losses from planetary systems, (2) that comets are a natural product of planetary-system formation, (3) that comets are neither created nor destroyed in the interstellar medium, and (4) that the distribution of comets in interstellar space is approximately homogeneous. It is found that the present constraint on the space density of interstellar comets, if valid, is not far from constraining the statistical frequency and average population of extrasolar Oort clouds. An efficient method for dedicated ISC searches is briefly described. 10 refs

  2. Dust in the planetary system: Dust interactions in space plasmas of the solar system

    Science.gov (United States)

    Mann, Ingrid; Meyer-Vernet, Nicole; Czechowski, Andrzej

    2014-03-01

    Cosmic dust particles are small solid objects observed in the solar planetary system and in many astronomical objects like the surrounding of stars, the interstellar and even the intergalactic medium. In the solar system the dust is best observed and most often found within the region of the orbits of terrestrial planets where the dust interactions and dynamics are observed directly from spacecraft. Dust is observed in space near Earth and also enters the atmosphere of the Earth where it takes part in physical and chemical processes. Hence space offers a laboratory to study dust-plasma interactions and dust dynamics. A recent example is the observation of nanodust of sizes smaller than 10 nm. We outline the theoretical considerations on which our knowledge of dust electric charges in space plasmas are founded. We discuss the dynamics of the dust particles and show how the small charged particles are accelerated by the solar wind that carries a magnetic field. Finally, as examples for the space observation of cosmic dust interactions, we describe the first detection of fast nanodust in the solar wind near Earth orbit and the first bi-static observations of PMSE, the radar echoes that are observed in the Earth ionosphere in the presence of charged dust.

  3. Multidisciplinary Tool for Systems Analysis of Planetary Entry, Descent, and Landing

    Science.gov (United States)

    Samareh, Jamshid A.

    2011-01-01

    Systems analysis of a planetary entry (SAPE), descent, and landing (EDL) is a multidisciplinary activity in nature. SAPE improves the performance of the systems analysis team by automating and streamlining the process, and this improvement can reduce the errors that stem from manual data transfer among discipline experts. SAPE is a multidisciplinary tool for systems analysis of planetary EDL for Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, and Titan. It performs EDL systems analysis for any planet, operates cross-platform (i.e., Windows, Mac, and Linux operating systems), uses existing software components and open-source software to avoid software licensing issues, performs low-fidelity systems analysis in one hour on a computer that is comparable to an average laptop, and keeps discipline experts in the analysis loop. SAPE uses Python, a platform-independent, open-source language, for integration and for the user interface. Development has relied heavily on the object-oriented programming capabilities that are available in Python. Modules are provided to interface with commercial and government off-the-shelf software components (e.g., thermal protection systems and finite-element analysis). SAPE currently includes the following analysis modules: geometry, trajectory, aerodynamics, aerothermal, thermal protection system, and interface for structural sizing.

  4. Trilogy, a planetary geodesy mission concept for measuring the expansion of the solar system

    Science.gov (United States)

    Smith, David E.; Zuber, Maria T.; Mazarico, Erwan; Genova, Antonio; Neumann, Gregory A.; Sun, Xiaoli; Torrence, Mark H.; Mao, Dan-dan

    2018-04-01

    The scale of the solar system is slowly changing, likely increasing as a result of solar mass loss, with additional change possible if there is a secular variation of the gravitational constant, G. The measurement of the change of scale could provide insight into the past and the future of the solar system, and in addition a better understanding of planetary motion and fundamental physics. Estimates for the expansion of the scale of the solar system are of order 1.5 cm year-1 AU-1, which over several years is an observable quantity with present-day laser ranging systems. This estimate suggests that laser measurements between planets could provide an accurate estimate of the solar system expansion rate. We examine distance measurements between three bodies in the inner solar system - Earth's Moon, Mars and Venus - and outline a mission concept for making the measurements. The concept involves placing spacecraft that carry laser ranging transponders in orbit around each body and measuring the distances between the three spacecraft over a period of several years. The analysis of these range measurements would allow the co-estimation of the spacecraft orbit, planetary ephemerides, other geophysical parameters related to the constitution and dynamics of the central bodies, and key geodetic parameters related to the solar system expansion, the Sun, and theoretical physics.

  5. PC Software graphics tool for conceptual design of space/planetary electrical power systems

    Science.gov (United States)

    Truong, Long V.

    1995-01-01

    This paper describes the Decision Support System (DSS), a personal computer software graphics tool for designing conceptual space and/or planetary electrical power systems. By using the DSS, users can obtain desirable system design and operating parameters, such as system weight, electrical distribution efficiency, and bus power. With this tool, a large-scale specific power system was designed in a matter of days. It is an excellent tool to help designers make tradeoffs between system components, hardware architectures, and operation parameters in the early stages of the design cycle. The DSS is a user-friendly, menu-driven tool with online help and a custom graphical user interface. An example design and results are illustrated for a typical space power system with multiple types of power sources, frequencies, energy storage systems, and loads.

  6. PLANET-PLANET SCATTERING IN PLANETESIMAL DISKS. II. PREDICTIONS FOR OUTER EXTRASOLAR PLANETARY SYSTEMS

    International Nuclear Information System (INIS)

    Raymond, Sean N.; Armitage, Philip J.; Gorelick, Noel

    2010-01-01

    We develop an idealized dynamical model to predict the typical properties of outer extrasolar planetary systems, at radii comparable to the Jupiter-to-Neptune region of the solar system. The model is based upon the hypothesis that dynamical evolution in outer planetary systems is controlled by a combination of planet-planet scattering and planetary interactions with an exterior disk of small bodies ('planetesimals'). Our results are based on 5000 long duration N-body simulations that follow the evolution of three planets from a few to 10 AU, together with a planetesimal disk containing 50 M + from 10 to 20 AU. For large planet masses (M ∼> M Sat ), the model recovers the observed eccentricity distribution of extrasolar planets. For lower-mass planets, the range of outcomes in models with disks is far greater than that which is seen in isolated planet-planet scattering. Common outcomes include strong scattering among massive planets, sudden jumps in eccentricity due to resonance crossings driven by divergent migration, and re-circularization of scattered low-mass planets in the outer disk. We present the distributions of the eccentricity and inclination that result, and discuss how they vary with planet mass and initial system architecture. In agreement with other studies, we find that the currently observed eccentricity distribution (derived primarily from planets at a ∼ -1 and periods in excess of 10 years will provide constraints on this regime. Finally, we present an analysis of the predicted separation of planets in two-planet systems, and of the population of planets in mean-motion resonances (MMRs). We show that, if there are systems with ∼ Jupiter-mass planets that avoid close encounters, the planetesimal disk acts as a damping mechanism and populates MMRs at a very high rate (50%-80%). In many cases, resonant chains (in particular the 4:2:1 Laplace resonance) are set up among all three planets. We expect such resonant chains to be common among massive

  7. YOUNG PLANETARY NEBULAE: HUBBLE SPACE TELESCOPE IMAGING AND A NEW MORPHOLOGICAL CLASSIFICATION SYSTEM

    International Nuclear Information System (INIS)

    Sahai, Raghvendra; Villar, Gregory G.; Morris, Mark R.

    2011-01-01

    Using Hubble Space Telescope images of 119 young planetary nebulae (PNs), most of which have not previously been published, we have devised a comprehensive morphological classification system for these objects. This system generalizes a recently devised system for pre-planetary nebulae, which are the immediate progenitors of PNs. Unlike previous classification studies, we have focused primarily on young PNs rather than all PNs, because the former best show the influences or symmetries imposed on them by the dominant physical processes operating at the first and primary stage of the shaping process. Older PNs develop instabilities, interact with the ambient interstellar medium, and are subject to the passage of photoionization fronts, all of which obscure the underlying symmetries and geometries imposed early on. Our classification system is designed to suffer minimal prejudice regarding the underlying physical causes of the different shapes and structures seen in our PN sample, however, in many cases, physical causes are readily suggested by the geometry, along with the kinematics that have been measured in some systems. Secondary characteristics in our system, such as ansae, indicate the impact of a jet upon a slower-moving, prior wind; a waist is the signature of a strong equatorial concentration of matter, whether it be outflowing or in a bound Keplerian disk, and point symmetry indicates a secular trend, presumably precession, in the orientation of the central driver of a rapid, collimated outflow.

  8. Planetary engineering

    Science.gov (United States)

    Pollack, James B.; Sagan, Carl

    1991-01-01

    Assuming commercial fusion power, heavy lift vehicles and major advances in genetic engineering, the authors survey possible late-21st century methods of working major transformations in planetary environments. Much more Earthlike climates may be produced on Mars by generating low freezing point greenhouse gases from indigenous materials; on Venus by biological conversion of CO2 to graphite, by canceling the greenhouse effect with high-altitude absorbing fine particles, or by a sunshield at the first Lagrangian point; and on Titan by greenhouses and/or fusion warming. However, in our present state of ignorance we cannot guarantee a stable endstate or exclude unanticipated climatic feedbacks or other unintended consequences. Moreover, as the authors illustrate by several examples, many conceivable modes of planetary engineering are so wasteful of scarce solar system resources and so destructive of important scientific information as to raise profound ethical issues, even if they were economically feasible, which they are not. Global warming on Earth may lead to calls for mitigation by planetary engineering, e.g., emplacement and replenishment of anti-greenhouse layers at high altitudes, or sunshields in space. But here especially we must be concerned about precision, stability, and inadvertent side-effects. The safest and most cost-effective means of countering global warming - beyond, e.g., improved energy efficiency, CFC bans and alternative energy sources - is the continuing reforestation of approximately 2 times 107 sq km of the Earth's surface. This can be accomplished with present technology and probably at the least cost.

  9. Planetary engineering

    Science.gov (United States)

    Pollack, James B.; Sagan, Carl

    Assuming commercial fusion power, heavy lift vehicles and major advances in genetic engineering, the authors survey possible late-21st century methods of working major transformations in planetary environments. Much more Earthlike climates may be produced on Mars by generating low freezing point greenhouse gases from indigenous materials; on Venus by biological conversion of CO2 to graphite, by canceling the greenhouse effect with high-altitude absorbing fine particles, or by a sunshield at the first Lagrangian point; and on Titan by greenhouses and/or fusion warming. However, in our present state of ignorance we cannot guarantee a stable endstate or exclude unanticipated climatic feedbacks or other unintended consequences. Moreover, as the authors illustrate by several examples, many conceivable modes of planetary engineering are so wasteful of scarce solar system resources and so destructive of important scientific information as to raise profound ethical issues, even if they were economically feasible, which they are not. Global warming on Earth may lead to calls for mitigation by planetary engineering, e.g., emplacement and replenishment of anti-greenhouse layers at high altitudes, or sunshields in space. But here especially we must be concerned about precision, stability, and inadvertent side-effects. The safest and most cost-effective means of countering global warming - beyond, e.g., improved energy efficiency, CFC bans and alternative energy sources - is the continuing reforestation of approximately 2 times 107 sq km of the Earth's surface. This can be accomplished with present technology and probably at the least cost.

  10. Cool DZ white dwarfs II: Compositions and evolution of old remnant planetary systems

    Science.gov (United States)

    Hollands, M. A.; Gänsicke, B. T.; Koester, D.

    2018-03-01

    In a previous study, we analysed the spectra of 230 cool ({T_{eff}} metal contamination, measuring abundances for Ca, Mg, Fe and in some cases Na, Cr, Ti, or Ni. Here we interpret these abundances in terms of the accretion of debris from extrasolar planetesimals, and infer parent body compositions ranging from crust-like (rich in Ca and Ti) to core-like (rich in Fe and Ni). In particular, two white dwarfs, SDSS J0823+0546 and SDSS J0741+3146, which show log[Fe/Ca] > 1.9 dex, and Fe to Ni ratios similar to the bulk Earth, have accreted by far the most core-like exoplanetesimals discovered to date. With cooling ages in the range 1-8 Gyr, these white dwarfs are among the oldest stellar remnants in the Milky Way, making it possible to probe the long-term evolution of their ancient planetary systems. From the decrease in maximum abundances as a function of cooling age, we find evidence that the arrival rate of material on to the white dwarfs decreases by 3 orders of magnitude over a ≃ 6.5 Gyr span in white dwarf cooling ages, indicating that the mass-reservoirs of post-main sequence planetary systems are depleted on a ≃ 1 Gyr e-folding time-scale. Finally, we find that two white dwarfs in our sample are members of wide binaries, and both exhibit atypically high abundances, thus providing strong evidence that distant binary companions can dynamically perturb white dwarf planetary systems.

  11. Geodynamic Modeling of Planetary Ice-Oceans: Evolution of Ice-Shell Thickness in Convecting Two-Phase Systems

    Science.gov (United States)

    Allu Peddinti, D.; McNamara, A. K.

    2016-12-01

    Along with the newly unveiled icy surface of Pluto, several icy planetary bodies show indications of an active surface perhaps underlain by liquid oceans of some size. This augments the interest to explore the evolution of an ice-ocean system and its surface implications. The geologically young surface of the Jovian moon Europa lends much speculation to variations in ice-shell thickness over time. Along with the observed surface features, it suggests the possibility of episodic convection and conduction within the ice-shell as it evolved. What factors would control the growth of the ice-shell as it forms? If and how would those factors determine the thickness of the ice-shell and consequently the heat transfer? Would parameters such as tidal heating or initial temperature affect how the ice-shell grows and to what significance? We perform numerical experiments using geodynamical models of the two-phase ice-water system to study the evolution of planetary ice-oceans such as that of Europa. The models evolve self-consistently from an initial liquid ocean as it cools with time. The effects of presence, absence and magnitude of tidal heating on ice-shell thickness are studied in different models. The vigor of convection changes as the ice-shell continues to thicken. Initial modeling results track changes in the growth rate of the ice-shell as the vigor of the convection changes. The magnitude and temporal location of the rate change varies with different properties of tidal heating and values of initial temperature. A comparative study of models is presented to demonstrate how as the ice-shell is forming, its growth rate and convection are affected by processes such as tidal heating.

  12. Impact delivery and erosion of planetary oceans in the early inner solar system

    Science.gov (United States)

    Chyba, Christopher F.

    1990-01-01

    The terrestrial planets may have acquired oceans of water (and other surface volatiles) as a late-accreting veneer from impacts of comets and carbonaceous asteroids during the period of heavy bombardment 4.5 to 3.5 Gyr ago. On any given body, the efficiency of this mechanism depended on a competition between impact delivery of new volatiles and impact erosion of those already present. For the larger worlds of the inner Solar System, this competition strongly favored the net accumulation of planetary oceans.

  13. System concepts and design examples for optical communication with planetary spacecraft

    Science.gov (United States)

    Lesh, James R.

    1986-01-01

    Systems concepts for optical communication with future deep-space (planetary) spacecraft are described. These include not only the optical transceiver package aboard the distant spacecraft, but the earth-vicinity optical-communications receiving station as well. Both ground-based, and earth-orbiting receivers are considered. Design examples for a number of proposed or potential deep-space missions are then presented. These include an orbital mission to Saturn, a Lander and Rover mission to Mars, and an astronomical mission to a distance of 1000 astronomical units.

  14. TRAPPIST: a robotic telescope dedicated to the study of planetary systems

    Directory of Open Access Journals (Sweden)

    Manfroid J.

    2011-02-01

    Full Text Available We present here a new robotic telescope called TRAPPIST1 (TRAnsiting Planets and PlanetesImals Small Telescope. Equipped with a high-quality CCD camera mounted on a 0.6 meter light weight optical tube, TRAPPIST has been installed in April 2010 at the ESO La Silla Observatory (Chile, and is now beginning its scientific program. The science goal of TRAPPIST is the study of planetary systems through two approaches: the detection and study of exoplanets, and the study of comets. We describe here the objectives of the project, the hardware, and we present some of the first results obtained during the commissioning phase.

  15. Implications for Planetary System Formation from Interstellar Object 1I/2017 U1 (‘Oumuamua)

    Science.gov (United States)

    Trilling, David E.; Robinson, Tyler; Roegge, Alissa; Chandler, Colin Orion; Smith, Nathan; Loeffler, Mark; Trujillo, Chad; Navarro-Meza, Samuel; Glaspie, Lori M.

    2017-12-01

    The recently discovered minor body 1I/2017 U1 (‘Oumuamua) is the first known object in our solar system that is not bound by the Sun’s gravity. Its hyperbolic orbit (eccentricity greater than unity) strongly suggests that it originated outside our solar system; its red color is consistent with substantial space weathering experienced over a long interstellar journey. We carry out a simple calculation of the probability of detecting such an object. We find that the observed detection rate of 1I-like objects can be satisfied if the average mass of ejected material from nearby stars during the process of planetary formation is ˜20 Earth masses, similar to the expected value for our solar system. The current detection rate of such interstellar interlopers is estimated to be 0.2 yr-1, and the expected number of detections over the past few years is almost exactly one. When the Large Synoptic Survey Telescope begins its wide, fast, deep all-sky survey, the detection rate will increase to 1 yr-1. Those expected detections will provide further constraints on nearby planetary system formation through a better estimate of the number and properties of interstellar objects.

  16. Microvax-based data management and reduction system for the regional planetary image facilities

    Science.gov (United States)

    Arvidson, R.; Guinness, E.; Slavney, S.; Weiss, B.

    1987-01-01

    Presented is a progress report for the Regional Planetary Image Facilities (RPIF) prototype image data management and reduction system being jointly implemented by Washington University and the USGS, Flagstaff. The system will consist of a MicroVAX with a high capacity (approx 300 megabyte) disk drive, a compact disk player, an image display buffer, a videodisk player, USGS image processing software, and SYSTEM 1032 - a commercial relational database management package. The USGS, Flagstaff, will transfer their image processing software including radiometric and geometric calibration routines, to the MicroVAX environment. Washington University will have primary responsibility for developing the database management aspects of the system and for integrating the various aspects into a working system.

  17. An explanation of forms of planetary orbits and estimation of angular shift of the Mercury' perihelion using the statistical theory of gravitating spheroidal bodies

    Science.gov (United States)

    Krot, A. M.

    2013-09-01

    This work develops a statistical theory of gravitating spheroidal bodies to calculate the orbits of planets and explore forms of planetary orbits with regard to the Alfvén oscillating force [1] in the Solar system and other exoplanetary systems. The statistical theory of formation of gravitating spheroidal bodies has been proposed in [2]-[5]. Starting the conception for forming a spheroidal body inside a gas-dust protoplanetary nebula, this theory solves the problem of gravitational condensation of a gas-dust protoplanetary cloud with a view to planetary formation in its own gravitational field [3] as well as derives a new law of the Solar system planetary distances which generalizes the wellknown laws [2], [3]. This work also explains an origin of the Alfvén oscillating force modifying forms of planetary orbits within the framework of the statistical theory of gravitating spheroidal bodies [5]. Due to the Alfvén oscillating force moving solid bodies in a distant zone of a rotating spheroidal body have elliptic trajectories. It means that orbits for the enough remote planets from the Sun in Solar system are described by ellipses with focus in the origin of coordinates and with small eccentricities. The nearby planet to Sun named Mercury has more complex trajectory. Namely, in case of Mercury the angular displacement of a Newtonian ellipse is observed during its one rotation on an orbit, i.e. a regular (century) shift of the perihelion of Mercury' orbit occurs. According to the statistical theory of gravitating spheroidal bodies [2]-[5] under the usage of laws of celestial mechanics in conformity to cosmogonic bodies (especially, to stars) it is necessary to take into account an extended substance called a stellar corona. In this connection the stellar corona can be described by means of model of rotating and gravitating spheroidal body [5]. Moreover, the parameter of gravitational compression α of a spheroidal body (describing the Sun, in particular) has been

  18. Machine Learning Algorithms For Predicting the Instability Timescales of Compact Planetary Systems

    Science.gov (United States)

    Tamayo, Daniel; Ali-Dib, Mohamad; Cloutier, Ryan; Huang, Chelsea; Van Laerhoven, Christa L.; Leblanc, Rejean; Menou, Kristen; Murray, Norman; Obertas, Alysa; Paradise, Adiv; Petrovich, Cristobal; Rachkov, Aleksandar; Rein, Hanno; Silburt, Ari; Tacik, Nick; Valencia, Diana

    2016-10-01

    The Kepler mission has uncovered hundreds of compact multi-planet systems. The dynamical pathways to instability in these compact systems and their associated timescales are not well understood theoretically. However, long-term stability is often used as a constraint to narrow down the space of orbital solutions from the transit data. This requires a large suite of N-body integrations that can each take several weeks to complete. This computational bottleneck is therefore an important limitation in our ability to characterize compact multi-planet systems.From suites of numerical simulations, previous studies have fit simple scaling relations between the instability timescale and various system parameters. However, the numerically simulated systems can deviate strongly from these empirical fits.We present a new approach to the problem using machine learning algorithms that have enjoyed success across a broad range of high-dimensional industry applications. In particular, we have generated large training sets of direct N-body integrations of synthetic compact planetary systems to train several regression models (support vector machine, gradient boost) that predict the instability timescale. We find that ensembling these models predicts the instability timescale of planetary systems better than previous approaches using the simple scaling relations mentioned above.Finally, we will discuss how these models provide a powerful tool for not only understanding the current Kepler multi-planet sample, but also for characterizing and shaping the radial-velocity follow-up strategies of multi-planet systems from the upcoming Transiting Exoplanet Survey Satellite (TESS) mission, given its shorter observation baselines.

  19. Geophysical Investigations of Hypersaline Subglacial Water Systems in the Canadian Arctic: A Planetary Analog

    Science.gov (United States)

    Rutishauser, A.; Sharp, M. J.; Blankenship, D. D.; Skidmore, M. L.; Grima, C.; Schroeder, D. M.; Greenbaum, J. S.; Dowdeswell, J. A.; Young, D. A.

    2017-12-01

    Robotic exploration and remote sensing of the solar system have identified the presence of liquid water beneath ice on several planetary bodies, with evidence for elevated salinity in certain cases. Subglacial water systems beneath Earth's glaciers and ice sheets may provide terrestrial analogs for microbial habitats in such extreme environments, especially those with higher salinity. Geological data suggest that several ice caps and glaciers in the eastern Canadian High Arctic are partially underlain by evaporite-rich sedimentary rocks, and subglacial weathering of these rocks is potentially conducive to the formation of hypersaline subglacial waters. Here, we combine airborne geophysical data with geological constraints to identify and characterize hypersaline subglacial water systems beneath ice caps in Canada's Queen Elizabeth Islands. High relative bedrock reflectivity and specularity anomalies that are apparent in radio-echo sounding data indicate multiple locations where subglacial water is present in areas where modeled ice temperatures at the glacier bed are well below the pressure melting point. This suggests that these water systems are hypersaline, with solute concentrations that significantly depress the freezing point of water. From combined interpretations of geological and airborne-magnetic data, we define the geological context within which these systems have developed, and identify possible solute-sources for the inferred brine-rich water systems. We also derive subglacial hydraulic potential gradients using airborne laser altimetry and ice thickness data, and apply water routing models to derive subglacial drainage pathways. These allow us to identify marine-terminating glaciers where outflow of the brine-rich waters may be anticipated. These hypersaline subglacial water systems beneath Canadian Arctic ice caps and glaciers may represent robust microbial habitats, and potential analogs for brines that may exist beneath ice masses on planetary

  20. THE HYADES CLUSTER: IDENTIFICATION OF A PLANETARY SYSTEM AND ESCAPING WHITE DWARFS

    International Nuclear Information System (INIS)

    Zuckerman, B.; Xu, S.; Klein, B.; Jura, M.

    2013-01-01

    Recently, some hot DA-type white dwarfs have been proposed to plausibly be escaping members of the Hyades. We used hydrogen Balmer lines to measure the radial velocities of seven such stars and confirm that three, and perhaps two others, are/were indeed cluster members and one is not. The other candidate Hyad is strongly magnetic and its membership status remains uncertain. The photospheres of at least one quarter of field white dwarf stars are ''polluted'' by elements heavier than helium that have been accreted. These stars are orbited by extended planetary systems that contain both debris belts and major planets. We surveyed the seven classical single Hyades white dwarfs and the newly identified (escaping) Hyades white dwarfs and found calcium in the photosphere of LP 475-242 of type DBA (now DBAZ), thus implying the presence of an orbiting planetary system. The spectrum of white dwarf GD 31, which may be, but probably is not, an escaping member of the Hyades, displays calcium absorption lines; these originate either from the interstellar medium or, less likely, from a gaseous circumstellar disk. If GD 31 was once a Hyades member, then it would be the first identified white dwarf Hyad with a cooling age >340 Myr.

  1. New and misclassified planetary nebulae

    International Nuclear Information System (INIS)

    Kohoutek, L.

    1978-01-01

    Since the 'Catalogue of Galactic Planetary Nebulae' 226 new objects have been classified as planetary nebulae. They are summarized in the form of designations, names, coordinates and the references to the discovery. Further 9 new objects have been added and called 'proto-planetary nebulae', but their status is still uncertain. Only 34 objects have been included in the present list of misclassified planetary nebulae although the number of doubtful cases is much larger. (Auth.)

  2. Self-organizing systems in planetary physics: Harmonic resonances of planet and moon orbits

    Science.gov (United States)

    Aschwanden, Markus J.

    2018-01-01

    The geometric arrangement of planet and moon orbits into a regularly spaced pattern of distances is the result of a self-organizing system. The positive feedback mechanism that operates a self-organizing system is accomplished by harmonic orbit resonances, leading to long-term stable planet and moon orbits in solar or stellar systems. The distance pattern of planets was originally described by the empirical Titius-Bode law, and by a generalized version with a constant geometric progression factor (corresponding to logarithmic spacing). We find that the orbital periods Ti and planet distances Ri from the Sun are not consistent with logarithmic spacing, but rather follow the quantized scaling (Ri + 1 /Ri) =(Ti + 1 /Ti) 2 / 3 =(Hi + 1 /Hi) 2 / 3 , where the harmonic ratios are given by five dominant resonances, namely (Hi + 1 :Hi) =(3 : 2) ,(5 : 3) ,(2 : 1) ,(5 : 2) ,(3 : 1) . We find that the orbital period ratios tend to follow the quantized harmonic ratios in increasing order. We apply this harmonic orbit resonance model to the planets and moons in our solar system, and to the exo-planets of 55 Cnc and HD 10180 planetary systems. The model allows us a prediction of missing planets in each planetary system, based on the quasi-regular self-organizing pattern of harmonic orbit resonance zones. We predict 7 (and 4) missing exo-planets around the star 55 Cnc (and HD 10180). The accuracy of the predicted planet and moon distances amounts to a few percents. All analyzed systems are found to have ≈ 10 resonant zones that can be occupied with planets (or moons) in long-term stable orbits.

  3. Magnetour: Surfing planetary systems on electromagnetic and multi-body gravity fields

    Science.gov (United States)

    Lantoine, Gregory; Russell, Ryan P.; Anderson, Rodney L.; Garrett, Henry B.

    2017-09-01

    A comprehensive tour of the complex outer planet systems is a central goal in space science. However, orbiting multiple moons of the same planet would be extremely prohibitive using traditional propulsion and power technologies. In this paper, a new mission concept, named Magnetour, is presented to facilitate the exploration of outer planet systems and address both power and propulsion challenges. This approach would enable a single spacecraft to orbit and travel between multiple moons of an outer planet, without significant propellant or onboard power source. To achieve this free-lunch 'Grand Tour', Magnetour exploits the unexplored combination of magnetic and multi-body gravitational fields of planetary systems, with a unique focus on using a bare electrodynamic tether for power and propulsion. Preliminary results indicate that the Magnetour concept is sound and is potentially highly promising at Jupiter.

  4. A Multidisciplinary Tool for Systems Analysis of Planetary Entry, Descent, and Landing (SAPE)

    Science.gov (United States)

    Samareh, Jamshid A.

    2009-01-01

    SAPE is a Python-based multidisciplinary analysis tool for systems analysis of planetary entry, descent, and landing (EDL) for Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, and Titan. The purpose of SAPE is to provide a variable-fidelity capability for conceptual and preliminary analysis within the same framework. SAPE includes the following analysis modules: geometry, trajectory, aerodynamics, aerothermal, thermal protection system, and structural sizing. SAPE uses the Python language-a platform-independent open-source software for integration and for the user interface. The development has relied heavily on the object-oriented programming capabilities that are available in Python. Modules are provided to interface with commercial and government off-the-shelf software components (e.g., thermal protection systems and finite-element analysis). SAPE runs on Microsoft Windows and Apple Mac OS X and has been partially tested on Linux.

  5. Topology of sustainable management of dynamical systems with desirable states: from defining planetary boundaries to safe operating spaces in the Earth System

    Science.gov (United States)

    Heitzig, Jobst; Kittel, Tim; Donges, Jonathan; Molkenthin, Nora

    2016-04-01

    To keep the Earth System in a desirable region of its state space, such as defined by the recently suggested "tolerable environment and development window", "guardrails", "planetary boundaries", or "safe (and just) operating space for humanity", one not only needs to understand the quantitative internal dynamics of the system and the available options for influencing it (management), but also the structure of the system's state space with regard to certain qualitative differences. Important questions are: Which state space regions can be reached from which others with or without leaving the desirable region? Which regions are in a variety of senses "safe" to stay in when management options might break away, and which qualitative decision problems may occur as a consequence of this topological structure? In this work, we develop a mathematical theory of the qualitative topology of the state space of a dynamical system with management options and desirable states, as a complement to the existing literature on optimal control which is more focussed on quantitative optimization and is much applied in both the engineering and the integrated assessment literature. We suggest a certain terminology for the various resulting regions of the state space and perform a detailed formal classification of the possible states with respect to the possibility of avoiding or leaving the undesired region. Our results indicate that before performing some form of quantitative optimization such as of indicators of human well-being for achieving certain sustainable development goals, a sustainable and resilient management of the Earth System may require decisions of a more discrete type that come in the form of several dilemmas, e.g., choosing between eventual safety and uninterrupted desirability, or between uninterrupted safety and larger flexibility. We illustrate the concepts and dilemmas drawing on conceptual models from climate science, ecology, coevolutionary Earth System modeling

  6. Planetary geology

    CERN Document Server

    Gasselt, Stephan

    2018-01-01

    This book provides an up-to-date interdisciplinary geoscience-focused overview of solid solar system bodies and their evolution, based on the comparative description of processes acting on them. Planetary research today is a strongly multidisciplinary endeavor with efforts coming from engineering and natural sciences. Key focal areas of study are the solid surfaces found in our Solar System. Some have a direct interaction with the interplanetary medium and others have dynamic atmospheres. In any of those cases, the geological records of those surfaces (and sub-surfaces) are key to understanding the Solar System as a whole: its evolution and the planetary perspective of our own planet. This book has a modular structure and is divided into 4 sections comprising 15 chapters in total. Each section builds upon the previous one but is also self-standing. The sections are:  Methods and tools Processes and Sources  Integration and Geological Syntheses Frontiers The latter covers the far-reaching broad topics of exo...

  7. The Year of the Solar System: An E/PO Community's Approach to Sharing Planetary Science

    Science.gov (United States)

    Shipp, S. S.; Boonstra, D.; Shupla, C.; Dalton, H.; Scalice, D.; Planetary Science E/Po Community

    2010-12-01

    YSS offers the opportunity to raise awareness, build excitement, and make connections with educators, students and the public about planetary science activities. The planetary science education and public outreach (E/PO) community is engaging and educating their audiences through ongoing mission and program activities. Based on discussion with partners, the community is presenting its products in the context of monthly thematic topics that are tied to the big questions of planetary science: how did the Sun’s family of planets and bodies originate and how have they evolved; and how did life begin and evolve on Earth, has it evolved elsewhere in our solar system, and what are characteristics that lead to the origins of life? Each month explores different compelling aspects of the solar system - its formation, volcanism, ice, life. Resources, activities, and events are interwoven in thematic context, and presented with ideas through which formal and informal educators can engage their audiences. The month-to-month themes place the big questions in a logical sequence of deepening learning experiences - and highlight mission milestones and viewing events. YSS encourages active participation and communication with its audiences. It includes nation-wide activities, such as a Walk Through the Solar System, held between October 2010 to March 2011, in which museums, libraries, science centers, schools, planetariums, amateur astronomers, and others are kicking off YSS by creating their own scale models of the solar system and sharing their events through online posting of pictures, video, and stories. YSS offers the E/PO community the opportunity to collaborate with each other and partners. The thematic approach leverages existing products, providing a home and allowing a “shelf life” that can outlast individual projects and missions. The broad themes highlight missions and programs multiple times. YSS also leverages existing online resources and social media. Hosted on

  8. Environmental Control and Life Support Systems for Mars Exploration: Issues and Concerns for Planetary Protection and the Protection of Science

    Science.gov (United States)

    Barta, Daniel J.; Lange, Kevin; Anderson, Molly; Vonau, Walter

    2016-07-01

    Planetary protection represents an additional set of requirements that generally have not been considered by developers of technologies for Environmental Control and Life Support Systems (ECLSS). Forward contamination concerns will affect release of gases and discharge of liquids and solids, including what may be left behind after planetary vehicles are abandoned upon return to Earth. A crew of four using a state of the art ECLSS could generate as much as 4.3 metric tons of gaseous, liquid and solid wastes and trash during a 500-day surface stay. These may present issues and concerns for both planetary protection and planetary science. Certainly, further closure of ECLSS systems will be of benefit by greater reuse of consumable products and reduced generation of waste products. It can be presumed that planetary protection will affect technology development by constraining how technologies can operate: limiting or prohibiting certain kinds of operations or processes (e.g. venting); necessitating that other kinds of operations be performed (e.g. sterilization; filtration of vent lines); prohibiting what can be brought on a mission (e.g. extremophiles); creating needs for new capabilities/ technologies (e.g. containment). Although any planned venting could include filtration to eliminate micro-organisms from inadvertently exiting the spacecraft, it may be impossible to eliminate or filter habitat structural leakage. Filtration will add pressure drops impacting size of lines and ducts, affect fan size and energy requirements, and add consumable mass. Technologies that may be employed to remove biomarkers and microbial contamination from liquid and solid wastes prior to storage or release may include mineralization technologies such as incineration, super critical wet oxidation and pyrolysis. These technologies, however, come with significant penalties for mass, power and consumables. This paper will estimate the nature and amounts of materials generated during Mars

  9. Planetary nebulae

    International Nuclear Information System (INIS)

    Amnuehl', P.R.

    1985-01-01

    The history of planetary nebulae discovery and their origin and evolution studies is discussed in a popular way. The problem of planetary nebulae central star is considered. The connection between the white-draft star and the planetary nebulae formulation is shown. The experimental data available acknowledge the hypothesis of red giant - planetary nebula nucleus - white-draft star transition process. Masses of planetary nebulae white-draft stars and central stars are distributed practically similarly: the medium mass is close to 0.6Msub(Sun) (Msub(Sun) - is the mass of the Sun)

  10. Studying Tidal Effects In Planetary Systems With Posidonius. A N-Body Simulator Written In Rust.

    Science.gov (United States)

    Blanco-Cuaresma, Sergi; Bolmont, Emeline

    2017-10-01

    Planetary systems with several planets in compact orbital configurations such as TRAPPIST-1 are surely affected by tidal effects. Its study provides us with important insight about its evolution. We developed a second generation of a N-body code based on the tidal model used in Mercury-T, re-implementing and improving its functionalities using Rust as programming language (including a Python interface for easy use) and the WHFAST integrator. The new open source code ensures memory safety, reproducibility of numerical N-body experiments, it improves the spin integration compared to Mercury-T and allows to take into account a new prescription for the dissipation of tidal inertial waves in the convective envelope of stars. Posidonius is also suitable for binary system simulations with evolving stars.

  11. Evaluating the biological potential in samples returned from planetary satellites and small solar system bodies: framework for decision making

    National Research Council Canada - National Science Library

    National Research Council Staff; Space Studies Board; Division on Engineering and Physical Sciences; National Research Council; National Academy of Sciences

    ... from Planetary Satellites and Small Solar System Bodies Framework for Decision Making Task Group on Sample Return from Small Solar System Bodies Space Studies Board Commission on Physical Sciences, Mathematics, and Applications National Research Council NATIONAL ACADEMY PRESS Washington, D.C. 1998 i Copyrightthe true use are Please breaks...

  12. Evaluating the biological potential in samples returned from planetary satellites and small solar system bodies: framework for decision making

    National Research Council Canada - National Science Library

    National Research Council Staff

    1998-01-01

    ... from Planetary Satellites and Small Solar System Bodies Framework for Decision Making Task Group on Sample Return from Small Solar System Bodies Space Studies Board Commission on Physical Sciences, Mathematics, and Applications National Research Council NATIONAL ACADEMY PRESS Washington, D.C. 1998 i Copyrightthe true use are Please breaks...

  13. THE DYNAMICAL EVOLUTION OF LOW-MASS HYDROGEN-BURNING STARS, BROWN DWARFS, AND PLANETARY-MASS OBJECTS FORMED THROUGH DISK FRAGMENTATION

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yun; Kouwenhoven, M. B. N. [Department of Astronomy, School of Physics, Peking University, Yiheyuan Lu 5, Haidian Qu, Beijing 100871 (China); Stamatellos, D. [Jeremiah Horrocks Institute for Mathematics, Physics and Astronomy, University of Central Lancashire, Preston, PR1 2HE (United Kingdom); Goodwin, S. P., E-mail: yunli@pku.edu.cn [Department of Physics and Astronomy, The University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)

    2015-06-01

    Theory and simulations suggest that it is possible to form low-mass hydrogen-burning stars, brown dwarfs (BDs), and planetary-mass objects (PMOs) via disk fragmentation. As disk fragmentation results in the formation of several bodies at comparable distances to the host star, their orbits are generally unstable. Here, we study the dynamical evolution of these objects. We set up the initial conditions based on the outcomes of the smoothed-particle hydrodynamics simulations of Stamatellos and Whitworth, and for comparison we also study the evolution of systems resulting from lower-mass fragmenting disks. We refer to these two sets of simulations as set 1 and set 2, respectively. At 10 Myr, approximately half of the host stars have one companion left, and approximately 22% (set 1) to 9.8% (set 2) of the host stars are single. Systems with multiple secondaries in relatively stable configurations are common (about 30% and 44%, respectively). The majority of the companions are ejected within 1 Myr with velocities mostly below 5 km s{sup −1}, with some runaway escapers with velocities over 30 km s{sup −1}. Roughly 6% (set 1) and 2% (set 2) of the companions pair up into very low-mass binary systems, resulting in respective binary fractions of 3.2% and 1.2%. The majority of these pairs escape as very low-mass binaries, while others remain bound to the host star in hierarchical configurations (often with retrograde inner orbits). Physical collisions with the host star (0.43 and 0.18 events per host star for set 1 and set 2, respectively) and between companions (0.08 and 0.04 events per host star for set 1 and set 2, respectively) are relatively common and their frequency increases with increasing disk mass. Our study predicts observable properties of very low-mass binaries, low-mass hierarchical systems, the BD desert, and free-floating BDs and PMOs in and near young stellar groupings, which can be used to distinguish between different formation scenarios of very low

  14. The planetary system host HR8799: on its λ Bootis nature

    Science.gov (United States)

    Moya, A.; Amado, P. J.; Barrado, D.; Hernández, A. García; Aberasturi, M.; Montesinos, B.; Aceituno, F.

    2010-07-01

    HR8799 is a λ Bootis, γ Doradus star hosting a planetary system and a debris disc with two rings. This makes this system a very interesting target for asteroseismic studies. This work is devoted to the determination of the internal metallicity of this star, linked with its λ Bootis nature (i.e. solar surface abundances of light elements and subsolar surface abundances of heavy elements), taking advantage of its γ Doradus pulsations. This is the most accurate way of obtaining this information, and this is the first time that such a study is performed for a planetary-system-host star. We have used the equilibrium code CESAM and the non-adiabatic pulsational code GRACO. We have applied the frequency ratio method (FRM) and the time-dependent convection theory to estimate the mode identification, the Brunt-Vaïsälä frequency integral and the mode instability, making the selection of the models possible. When the non-seismological constraints (i.e. HR8799's position in the Hertzsprung-Russell diagram) are used, the solar abundance models are discarded. This result contradicts one of the main hypotheses for explaining the λ Bootis nature, namely the accretion/diffusion of gas by a star with solar abundance. Therefore, according to this result, a revision of this hypothesis is needed. The inclusion of accurate internal chemical mixing processes seems to be necessary to explain the peculiar abundances observed in the surface of stars with internal subsolar metallicities. The use of the asteroseismological constraints, like those provided by the FRM or the instability analysis, provides a very accurate determination of the physical characteristics of HR8799. However, the dependence of the results on the inclination angle i still remains. The determination of this angle, more accurate multicolour photometric observations and high-resolution spectroscopy can definitively fix the mass and metallicity of this star.

  15. ngVLA Key Science Goal 2: Probing the Initial Conditions for Planetary Systems and Life with Astrochemistry

    Science.gov (United States)

    McGuire, Brett; ngVLA Science Working Group 1

    2018-01-01

    One of the most challenging aspects in understanding the origin and evolution of planets and planetary systems is tracing the influence of chemistry on the physical evolution of a system from a molecular cloud to a solar system. Existing facilities have already shown the stunning degree of molecular complexity present in these systems. The unique combination of sensitivity and spatial resolution offered by the ngVLA will permit the observation of both highly complex and very low-abundance chemical species that are exquisitely sensitive to the physical conditions and evolutionary history of their sources, which are out of reach of current observatories. In turn, by understanding the chemical evolution of these complex molecules, unprecedentedly detailed astrophysical insight can be gleaned from these astrochemical observations.This poster will overview a number of key science goals in astrochemistry which will be enabled by the ngVLA, including:1) imaging of the deepest, densest regions in protoplanetary disks and unveiling the physical history through isotopic ratios2) probing the ammonia snow line in these disks, thought to be the only viable tracer of the water snowline3) observations of the molecular content of giant planet atmospheres4) detections of new, complex molecules, potentially including the simplest amino acids and sugars5) tracing the origin of chiral excess in star-forming regions

  16. Precise masses for the transiting planetary system HD 106315 with HARPS

    Science.gov (United States)

    Barros, S. C. C.; Gosselin, H.; Lillo-Box, J.; Bayliss, D.; Delgado Mena, E.; Brugger, B.; Santerne, A.; Armstrong, D. J.; Adibekyan, V.; Armstrong, J. D.; Barrado, D.; Bento, J.; Boisse, I.; Bonomo, A. S.; Bouchy, F.; Brown, D. J. A.; Cochran, W. D.; Collier Cameron, A.; Deleuil, M.; Demangeon, O.; Díaz, R. F.; Doyle, A.; Dumusque, X.; Ehrenreich, D.; Espinoza, N.; Faedi, F.; Faria, J. P.; Figueira, P.; Foxell, E.; Hébrard, G.; Hojjatpanah, S.; Jackman, J.; Lendl, M.; Ligi, R.; Lovis, C.; Melo, C.; Mousis, O.; Neal, J. J.; Osborn, H. P.; Pollacco, D.; Santos, N. C.; Sefako, R.; Shporer, A.; Sousa, S. G.; Triaud, A. H. M. J.; Udry, S.; Vigan, A.; Wyttenbach, A.

    2017-12-01

    Context. The multi-planetary system HD 106315 was recently found in K2 data. The planets have periods of Pb 9.55 and Pc 21.06 days, and radii of rb = 2.44 ± 0.17 R⊕ and rc = 4.35 ± 0.23 R⊕ . The brightness of the host star (V = 9.0 mag) makes it an excellent target for transmission spectroscopy. However, to interpret transmission spectra it is crucial to measure the planetary masses. Aims: We obtained high precision radial velocities for HD 106315 to determine the mass of the two transiting planets discovered with Kepler K2. Our successful observation strategy was carefully tailored to mitigate the effect of stellar variability. Methods: We modelled the new radial velocity data together with the K2 transit photometry and a new ground-based partial transit of HD 106315c to derive system parameters. Results: We estimate the mass of HD 106315b to be 12.6 ± 3.2 M⊕ and the density to be 4.7 ± 1.7 g cm-3, while for HD 106315c we estimate a mass of 15.2 ± 3.7 M⊕ and a density of 1.01 ± 0.29 g cm-3. Hence, despite planet c having a radius almost twice as large as planet b, their masses are consistent with one another. Conclusions: We conclude that HD 106315c has a thick hydrogen-helium gaseous envelope. A detailed investigation of HD 106315b using a planetary interior model constrains the core mass fraction to be 5-29%, and the water mass fraction to be 10-50%. An alternative, not considered by our model, is that HD 106315b is composed of a large rocky core with a thick H-He envelope. Transmission spectroscopy of these planets will give insight into their atmospheric compositions and also help constrain their core compositions. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 198.C-0168.

  17. Planetary Atmospheric Electricity

    CERN Document Server

    Leblanc, F; Yair, Y; Harrison, R. G; Lebreton, J. P; Blanc, M

    2008-01-01

    This volume presents our contemporary understanding of atmospheric electricity at Earth and in other solar system atmospheres. It is written by experts in terrestrial atmospheric electricity and planetary scientists. Many of the key issues related to planetary atmospheric electricity are discussed. The physics presented in this book includes ionisation processes in planetary atmospheres, charge generation and separation, and a discussion of electromagnetic signatures of atmospheric discharges. The measurement of thunderstorms and lightning, including its effects and hazards, is highlighted by articles on ground and space based instrumentation, and new missions.Theory and modelling of planetary atmospheric electricity complete this review of the research that is undertaken in this exciting field of space science. This book is an essential research tool for space scientists and geoscientists interested in electrical effects in atmospheres and planetary systems. Graduate students and researchers who are new to t...

  18. Slab edge insulating form system and methods

    Science.gov (United States)

    Lee, Brain E [Corral de Tierra, CA; Barsun, Stephan K [Davis, CA; Bourne, Richard C [Davis, CA; Hoeschele, Marc A [Davis, CA; Springer, David A [Winters, CA

    2009-10-06

    A method of forming an insulated concrete foundation is provided comprising constructing a foundation frame, the frame comprising an insulating form having an opening, inserting a pocket former into the opening; placing concrete inside the foundation frame; and removing the pocket former after the placed concrete has set, wherein the concrete forms a pocket in the placed concrete that is accessible through the opening. The method may further comprise sealing the opening by placing a sealing plug or sealing material in the opening. A system for forming an insulated concrete foundation is provided comprising a plurality of interconnected insulating forms, the insulating forms having a rigid outer member protecting and encasing an insulating material, and at least one gripping lip extending outwardly from the outer member to provide a pest barrier. At least one insulating form has an opening into which a removable pocket former is inserted. The system may also provide a tension anchor positioned in the pocket former and a tendon connected to the tension anchor.

  19. OT1_bmatthew_4: Testing Planetary Dynamics and Evolutionary History in the HR 8799 Planet/Disc System

    Science.gov (United States)

    Matthews, B.

    2010-07-01

    We propose to map the debris disc associated with the multi-planet system HR 8799 in order to constrain the current dynamical state of the planetary system and refine models for dust production in the disc, thereby testing models for the origins of the three known giant planets. Herschel's sensitivity and resolution make it possible to image both the cold planetesimal disc (posited to lie between radii of 90-300 AU) as well as the fainter extended halo (300 - 1000 AU radius) at multiple wavelengths. Direct detection of the edges of the cold belt of dust and an independent measure of the system's inclination will provide critical constraints on models of the planetary orbits within the system, particularly for the outer-most planet for which mass and orbit information can be constrained by simultaneous fits to the planet and disc. The combination of three massive, coeval, and spectroscopically characterizable planets, together with the dust disc, makes this system a "Rosetta Stone" for planet formation studies. The disc is also important for differentiating between planet formation scenarios. Models predict variations in resonance structure for migration versus in situ formation, and multi-wavelength variations in observed structure within Herschel's wavelength range in the case of planetary migration. This proposal is at the very heart of Herschel's top science goal of understanding the mechanisms involved in the formation of stars and planetary bodies. The resolution, sensitivity and multi-wavelength imaging of Herschel are crucial to this program.

  20. Richest Planetary System Discovered - Up to seven planets orbiting a Sun-like star

    Science.gov (United States)

    2010-08-01

    Astronomers using ESO's world-leading HARPS instrument have discovered a planetary system containing at least five planets, orbiting the Sun-like star HD 10180. The researchers also have tantalising evidence that two other planets may be present, one of which would have the lowest mass ever found. This would make the system similar to our Solar System in terms of the number of planets (seven as compared to the Solar System's eight planets). Furthermore, the team also found evidence that the distances of the planets from their star follow a regular pattern, as also seen in our Solar System. "We have found what is most likely the system with the most planets yet discovered," says Christophe Lovis, lead author of the paper reporting the result. "This remarkable discovery also highlights the fact that we are now entering a new era in exoplanet research: the study of complex planetary systems and not just of individual planets. Studies of planetary motions in the new system reveal complex gravitational interactions between the planets and give us insights into the long-term evolution of the system." The team of astronomers used the HARPS spectrograph, attached to ESO's 3.6-metre telescope at La Silla, Chile, for a six-year-long study of the Sun-like star HD 10180, located 127 light-years away in the southern constellation of Hydrus (the Male Water Snake). HARPS is an instrument with unrivalled measurement stability and great precision and is the world's most successful exoplanet hunter. Thanks to the 190 individual HARPS measurements, the astronomers detected the tiny back and forth motions of the star caused by the complex gravitational attractions from five or more planets. The five strongest signals correspond to planets with Neptune-like masses - between 13 and 25 Earth masses [1] - which orbit the star with periods ranging from about 6 to 600 days. These planets are located between 0.06 and 1.4 times the Earth-Sun distance from their central star. "We also have

  1. Dynamical models to explain observations with SPHERE in planetary systems with double debris belts

    Science.gov (United States)

    Lazzoni, C.; Desidera, S.; Marzari, F.; Boccaletti, A.; Langlois, M.; Mesa, D.; Gratton, R.; Kral, Q.; Pawellek, N.; Olofsson, J.; Bonnefoy, M.; Chauvin, G.; Lagrange, A. M.; Vigan, A.; Sissa, E.; Antichi, J.; Avenhaus, H.; Baruffolo, A.; Baudino, J. L.; Bazzon, A.; Beuzit, J. L.; Biller, B.; Bonavita, M.; Brandner, W.; Bruno, P.; Buenzli, E.; Cantalloube, F.; Cascone, E.; Cheetham, A.; Claudi, R. U.; Cudel, M.; Daemgen, S.; De Caprio, V.; Delorme, P.; Fantinel, D.; Farisato, G.; Feldt, M.; Galicher, R.; Ginski, C.; Girard, J.; Giro, E.; Janson, M.; Hagelberg, J.; Henning, T.; Incorvaia, S.; Kasper, M.; Kopytova, T.; LeCoroller, H.; Lessio, L.; Ligi, R.; Maire, A. L.; Ménard, F.; Meyer, M.; Milli, J.; Mouillet, D.; Peretti, S.; Perrot, C.; Rouan, D.; Samland, M.; Salasnich, B.; Salter, G.; Schmidt, T.; Scuderi, S.; Sezestre, E.; Turatto, M.; Udry, S.; Wildi, F.; Zurlo, A.

    2018-03-01

    circular or eccentric orbit. We then consider multi-planetary systems: two and three equal-mass planets on circular orbits and two equal-mass planets on eccentric orbits in a packed configuration. As a final step, we compare each couple of values (Mp, ap), derived from the dynamical analysis of single and multiple planetary models, with the detection limits obtained with SPHERE. Results: For one single planet on a circular orbit we obtain conclusive results that allow us to exclude such a hypothesis since in most cases this configuration requires massive planets which should have been detected by our observations. Unsatisfactory is also the case of one single planet on an eccentric orbit for which we obtained high masses and/or eccentricities which are still at odds with observations. Introducing multi planetary architectures is encouraging because for the case of three packed equal-mass planets on circular orbits we obtain quite low masses for the perturbing planets which would remain undetected by our SPHERE observations. The case of two equal-mass planets on eccentric orbits is also of interest since it suggests the possible presence of planets with masses lower than the detection limits and with moderate eccentricity. Our results show that the apparent lack of planets in gaps between double belts could be explained by the presence of a system of two or more planets possibly of low mass and on eccentric orbits whose sizes are below the present detection limits. Based on observations collected at Paranal Observatory, ESO (Chile) Program ID: 095.C-0298, 096.C-0241, 097.C-0865, and 198.C-0209.

  2. SP-100 planetary mission/system preliminary design study. Final report, technical information report

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R.M. [ed.

    1986-02-01

    This report contains a discussion on many aspects of a nuclear electric propulsion planetary science mission and spacecraft using the proposed SP-100 nuclear power subsystem. A review of the science rationale for such missions is included. A summary of eleven nuclear electric propulsion planetary missions is presented. A conceptual science payload, mission design, and spacecraft design is included for the Saturn Ring Rendezvous mission. Spacecraft and mission costs have been estimated for two potential sequences of nuclear electric propulsion planetary missions. The integration issues and requirements on the proposed SP-100 power subsystems are identified.

  3. An obstacle detection system using binocular stereo fisheye lenses for planetary rover navigation

    Science.gov (United States)

    Liu, L.; Jia, J.; Li, L.

    In this paper we present an implementation of an obstacle detection system using binocular stereo fisheye lenses for planetary rover navigation The fisheye lenses can improve image acquisition efficiency and handle minimal clearance recovery problem because they provide a large field of view However the fisheye lens introduces significant distortion in the image and this will make it much more difficult to find a one-to-one correspondence In addition we have to improve the system accuracy and efficiency for robot navigation To compute dense depth maps accurately in real time the following five key issues are considered 1 using lookup tables for a tradeoff between time and space in fisheye distortion correction and correspondence matching 2 using an improved incremental calculation scheme for algorithmic optimization 3 multimedia instruction set MMX implementation 4 consistency check to remove wrong stereo matching problems suffering from occlusions or mismatches 5 constraints of the recovery space To realize obstacle detection robustly we use the following three steps 1 extracting the ground plane parameters using Randomized Hough Transform 2 filtering the ground and background 3 locating the obstacles by using connected region detection Experimental results show the system can run at 3 2fps in 2 0GHz PC with 640X480 pixels

  4. STABILITY OF ADDITIONAL PLANETS IN AND AROUND THE HABITABLE ZONE OF THE HD 47186 PLANETARY SYSTEM

    International Nuclear Information System (INIS)

    Kopparapu, Ravi Kumar; Raymond, Sean N.; Barnes, Rory

    2009-01-01

    We study the dynamical stability of an additional, potentially habitable planet in the HD 47186 planetary system. Two planets are currently known in this system: a 'hot Neptune' with a period of 4.08 days and a Saturn-mass planet with a period of 3.7 years. Here we consider the possibility that one or more undetected planets exist between the two known planets and possibly within the habitable zone (HZ) in this system. Given the relatively low masses of the known planets, additional planets could have masses ∼ + , and hence be terrestrial-like and further improving potential habitability. We perform N-body simulations to identify the stable zone between planets b and c and find that much of the inner HZ can harbor a 10 M + planet. With the current radial velocity threshold of ∼1 m s -1 , an additional planet should be detectable if it lies at the inner edge of the habitable zone at 0.8 AU. We also show that the stable zone could contain two additional planets of 10 M + each if their eccentricities are lower than ∼0.3.

  5. Regolith Derived Heat Shield for Planetary Body Entry and Descent System with In Situ Fabrication

    Science.gov (United States)

    Hogue, Michael D.; Mueller, Robert P.; Sibille, Laurent; Hintze, Paul E.; Rasky, Daniel J.

    2013-01-01

    This NIAC project investigated an innovative approach to provide heat shield protection to spacecraft after launch and prior to each EDL thus potentially realizing significant launch mass savings. Heat shields fabricated in situ can provide a thermal-protection system for spacecraft that routinely enter a planetary atmosphere. By fabricating the heat shield with space resources from materials available on moons and asteroids, it is possible to avoid launching the heat-shield mass from Earth. Regolith has extremely good insulating properties and the silicates it contains can be used in the fabrication and molding of thermal-protection materials. Such in situ developed heat shields have been suggested before by Lewis. Prior research efforts have shown that regolith properties can be compatible with very-high temperature resistance. Our project team is highly experienced in regolith processing and thermal protection systems (TPS). Routine access to space and return from any planetary surface requires dealing with heat loads experienced by the spacecraft during reentry. Our team addresses some of the key issues with the EDL of human-scale missions through a highly innovative investigation of heat shields that can be fabricated in space by using local resources on asteroids and moons. Most space missions are one-way trips, dedicated to placing an asset in space for economical or scientific gain. However, for human missions, a very-reliable heat-shield system is necessary to protect the crew from the intense heat experienced at very high entry velocities of approximately 11 km/s at approximately Mach 33 (Apollo). For a human mission to Mars, the return problem is even more difficult, with predicted velocities of up to 14 km/s, at approximately Mach 42 at the Earth-atmosphere entry. In addition to human return, it is very likely that future space-travel architecture will include returning cargo to the Earth, either for scientific purposes or for commercial reasons

  6. The Planetary Data System - A Case Study in the Development and Management of Meta-Data for a Scientific Digital Library

    Science.gov (United States)

    Hughes, J.

    1998-01-01

    The Planetary Data System (PDS) is an active science data archive managed by scientists for NASA's planetary science community. With the advent of the World Wide Web the majority of the archive has been placed on-line as a science digital libraty for access by scientists, the educational community, and the general public.

  7. Mobile based optical form evaluation system

    Directory of Open Access Journals (Sweden)

    Asım Sinan YÜKSEL

    2016-05-01

    Full Text Available Optical forms that contain multiple-choice answers are widely used both for electing students and evaluating student achievements in education systems in our country and worldwide. Optical forms are evaluated by employing optical mark recognition techniques through optical readers. High cost of these machines, limited access to them, long waiting time for evaluation results make the process hard for educationists working in cities or countries. In this study, a mobile application was developed for the educationists who own mobile phones or tablets for the purpose of evaluating students' answer sheets quickly and independent of location and optical readers. Optical form recognition, reading and evaluation processes are done on the image of student's answer sheet that is taken with the mobile phone or tablet of educationist. The Android based mobile application that we developed has a user-friendly interface, high success rate and is the first of our knowledge application that operates on mobile platforms in this field.

  8. A Planetary System Exploration Project for Introductory Astronomy and Astrobiology Courses

    Science.gov (United States)

    Rees, Richard F.

    2015-01-01

    I have created three-part projects for the introductory astronomy and astrobiology courses at Westfield State University which simulate the exploration of a fictional planetary system. The introductory astronomy project is an initial reconnaissance of the system by a robotic spacecraft, culminating in close flybys of two or three planets. The astrobiology project is a follow-up mission concluding with the landing of a roving lander on a planet or moon. Student responses in earlier parts of each project can be used to determine which planets are targeted for closer study in later parts. Highly realistic views of the planets from space and from their surfaces can be created using programs such as Celestia and Terragen; images and video returned by the spacecraft are thus a highlight of the project. Although designed around the particular needs and mechanics of the introductory astronomy and astrobiology courses for non-majors at WSU, these projects could be adapted for use in courses at many different levels.

  9. Unstable low-mass planetary systems as drivers of white dwarf pollution

    Science.gov (United States)

    Mustill, Alexander J.; Villaver, Eva; Veras, Dimitri; Gänsicke, Boris T.; Bonsor, Amy

    2018-02-01

    At least 25% of white dwarfs show atmospheric pollution by metals, sometimes accompanied by detectable circumstellar dust/gas discs or (in the case of WD 1145+017) transiting disintegrating asteroids. Delivery of planetesimals to the white dwarf by orbiting planets is a leading candidate to explain these phenomena. Here, we study systems of planets and planetesimals undergoing planet-planet scattering triggered by the star's post-main sequence mass loss, and test whether this can maintain high rates of delivery over the several Gyr that they are observed. We find that low-mass planets (Earth to Neptune mass) are efficient deliverers of material and can maintain the delivery for Gyr. Unstable low-mass planetary systems reproduce the observed delayed onset of significant accretion, as well as the slow decay in accretion rates at late times. Higher-mass planets are less efficient, and the delivery only lasts a relatively brief time before the planetesimal populations are cleared. The orbital inclinations of bodies as they cross the white dwarf's Roche limit are roughly isotropic, implying that significant collisional interactions of asteroids, debris streams and discs can be expected. If planet-planet scattering is indeed responsible for the pollution of white dwarfs, many such objects, and their main-sequence progenitors, can be expected to host (currently undetectable) super-Earth planets on orbits of several au and beyond.

  10. The distribution of mass in the planetary system and solar nebulae

    International Nuclear Information System (INIS)

    Weidenschilling, S.J.

    1977-01-01

    A model 'solar nebula' is constructed by adding the solar complement of light elements to each planet, using recent models of planetary compositions. Uncertainties in this approach are estimated. The computed surface density varies approximately as rsup(-3/2). Mercury, Mars and the asteroid belt are anomalously low in mass, but processes exist which would preferentially remove matter from these regions. Planetary masses and compositions are generally consistent with a monotonic density distribution in the primordial solar nebula. (Auth.)

  11. Properties of planetary ices in the NH3 + CO2 ± H2O ternary system using neutron diffraction and ab initio calculations

    Science.gov (United States)

    Howard, C. M.; Wood, I. G.; Fortes, A. D.; Vocadlo, L.

    2016-12-01

    BackgroundInteractions between simple molecules are of fundamental interest across diverse areas of the physical sciences, and the ternary system NH3 + CO2 ± H2O is no exception. In the outer solar system, interaction of CO2 with aqueous ammonia is likely to occur, synthesizing `rock-forming' minerals [1], with CO2 perhaps playing a role in ammonia-water oceans and cryomagmas inside icy planetary bodies - the discovery of ammonium carbonates in a crater of Pluto's moon Charon [2] adds weight to CO2 occuring in these planetary environments. In the same context, ammonium carbonates may have some astrobiological relevance, since removal of water leads to the formation of urea. On Earth, combination of CO2 with aqueous ammonia has relevance to carbon capture schemes [3], and there is interest in using such materials for hydrogen storage in fuel cells [4]. Consequently, from earthly matters of climate change to the study of extraterrestrial ices, understanding the structures and properties of ammonium carbonates are important. Despite this, our knowledge of ammonium carbonates is limited under ambient conditions of pressure and temperature and is entirely absent at the higher pressures, severely limiting our ability to model the behaviour of NH3 + CO2 ± H2O solids and fluids in planetary environments. ResultsWe report the results of several experiments using variable pressure and temperature neutron diffraction work on ammonium carbonate monohydrate, ammonium bicarbonate and ammonium carbamate, with complementary Density Functional Theory (DFT) calculations. The excellent agreement between experiments and DFT calculations obtained so far adds weight to the accuracy of calculated material properties of ammonium sesquicarbonate monohydrate and several polymorphs of urea where little empirical data exists. These experimental and computational studies provide the structural, thermoelastic and vibrational information required for accurate planetary modelling and remote

  12. THE THREE-DIMENSIONAL ARCHITECTURE OF THE υ ANDROMEDAE PLANETARY SYSTEM

    International Nuclear Information System (INIS)

    Deitrick, Russell; Barnes, Rory; Quinn, Thomas R.; Luger, Rodrigo; Antonsen, Adrienne; McArthur, Barbara; Fritz Benedict, G.

    2015-01-01

    The υ Andromedae system is the first exoplanetary system to have the relative inclination of two planets' orbital planes directly measured, and therefore offers our first window into the three-dimensional configurations of planetary systems. We present, for the first time, full three-dimensional, dynamically stable configurations for the three planets of the system consistent with all observational constraints. While the outer two planets, c and d, are inclined by ∼30°, the inner planet's orbital plane has not been detected. We use N-body simulations to search for stable three-planet configurations that are consistent with the combined radial velocity and astrometric solution. We find that only 10 trials out of 1000 are robustly stable on 100 Myr timescales, or ∼8 billion orbits of planet b. Planet b's orbit must lie near the invariable plane of planets c and d, but can be either prograde or retrograde. These solutions predict that b's mass is in the range of 2-9 M Jup and has an inclination angle from the sky plane of less than 25°. Combined with brightness variations in the combined star/planet light curve ( p hase curve ) , our results imply that planet b's radius is ∼1.8 R Jup , relatively large for a planet of its age. However, the eccentricity of b in several of our stable solutions reaches >0.1, generating upward of 10 19 W in the interior of the planet via tidal dissipation, possibly inflating the radius to an amount consistent with phase curve observations

  13. Spin–Orbit Misalignment and Precession in the Kepler-13Ab Planetary System

    Science.gov (United States)

    Herman, Miranda K.; de Mooij, Ernst J. W.; Huang, Chelsea X.; Jayawardhana, Ray

    2018-01-01

    Gravity darkening induced by rapid stellar rotation provides us with a unique opportunity to characterize the spin–orbit misalignment of a planetary system through analysis of its photometric transit. We use the gravity-darkened transit modeling code simuTrans to reproduce the transit light curve of Kepler-13Ab by separately analyzing phase-folded transits for 12 short-cadence Kepler quarters. We verify the temporal change in impact parameter indicative of spin–orbit precession identified by Szabó et al. and Masuda, reporting a rate of change {db}/{dt}=(-4.1+/- 0.2)× {10}-5 day‑1. We further investigate the effect of light dilution on the fitted impact parameter and find that less than 1% of additional light is sufficient to explain the seasonal variation seen in the Kepler quarter data. We then extend our precession analysis to the phase curve data from which we report a rate of change {db}/{dt}=(-3.2+/- 1.3)× {10}-5 day‑1. This value is consistent with that of the transit data at a lower significance and provides the first evidence of spin–orbit precession based solely on the temporal variation of the secondary eclipse.

  14. Alternatives to the Laplace Nebular Hypothesis-Gas Giants First, Hoops, Jets, Gravitational Capture, Capture, Planetary Child of Sun Form Reasonable Laplace Alternatives

    Science.gov (United States)

    Struck, J.-T.

    2012-05-01

    Gas Giants first, Jets forming alignment, hoops at Neptune and at gas giants, gravitational capture, capture form alternatives to the Laplace Nebular Hypothesis. The Nebular Hypothesis can be replaced by each of these solar system development ideas.

  15. AN INCREASE IN THE MASS OF PLANETARY SYSTEMS AROUND LOWER-MASS STARS

    International Nuclear Information System (INIS)

    Mulders, Gijs D.; Pascucci, Ilaria; Apai, Dániel

    2015-01-01

    Trends in the planet population with host star mass provide an avenue to constrain planet formation theories. We derive the planet radius distribution function for Kepler stars of different spectral types, sampling a range in host star masses. We find that M dwarf stars have 3.5 times more small planets (1.0–2.8 R ⨁ ) than main-sequence FGK stars, but two times fewer Neptune-sized and larger (>2.8 R ⨁ ) planets. We find no systematic trend in the planet size distribution between spectral types F, G, and K to explain the increasing occurrence rates. Taking into account the mass–radius relationship and heavy-element mass of observed exoplanets, and assuming those are independent of spectral type, we derive the inventory of the heavy-element mass locked up in exoplanets at short orbits. The overall higher planet occurrence rates around M stars are not consistent with the redistribution of the same mass into more, smaller planets. At the orbital periods and planet radii where Kepler observations are complete for all spectral types, the average heavy-element mass locked up in exoplanets increases roughly inversely with stellar mass from 4 M ⨁ in F stars to 5 M ⨁ in G and K stars to 7 M ⨁ in M stars. This trend stands in stark contrast with observed protoplanetary disk masses that decrease toward lower mass stars, and provides a challenge for current planet formation models. Neither models of in situ formation nor migration of fully formed planets are consistent with these results. Instead, these results are indicative of large-scale inward migration of planetary building blocks—either through type-I migration or radial drift of dust grains—that is more efficient for lower mass stars, but does not result in significantly larger or smaller planets

  16. AN INCREASE IN THE MASS OF PLANETARY SYSTEMS AROUND LOWER-MASS STARS

    Energy Technology Data Exchange (ETDEWEB)

    Mulders, Gijs D.; Pascucci, Ilaria; Apai, Dániel, E-mail: mulders@lpl.arizona.edu [Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721 (United States)

    2015-12-01

    Trends in the planet population with host star mass provide an avenue to constrain planet formation theories. We derive the planet radius distribution function for Kepler stars of different spectral types, sampling a range in host star masses. We find that M dwarf stars have 3.5 times more small planets (1.0–2.8 R{sub ⨁}) than main-sequence FGK stars, but two times fewer Neptune-sized and larger (>2.8 R{sub ⨁}) planets. We find no systematic trend in the planet size distribution between spectral types F, G, and K to explain the increasing occurrence rates. Taking into account the mass–radius relationship and heavy-element mass of observed exoplanets, and assuming those are independent of spectral type, we derive the inventory of the heavy-element mass locked up in exoplanets at short orbits. The overall higher planet occurrence rates around M stars are not consistent with the redistribution of the same mass into more, smaller planets. At the orbital periods and planet radii where Kepler observations are complete for all spectral types, the average heavy-element mass locked up in exoplanets increases roughly inversely with stellar mass from 4 M{sub ⨁} in F stars to 5 M{sub ⨁} in G and K stars to 7 M{sub ⨁} in M stars. This trend stands in stark contrast with observed protoplanetary disk masses that decrease toward lower mass stars, and provides a challenge for current planet formation models. Neither models of in situ formation nor migration of fully formed planets are consistent with these results. Instead, these results are indicative of large-scale inward migration of planetary building blocks—either through type-I migration or radial drift of dust grains—that is more efficient for lower mass stars, but does not result in significantly larger or smaller planets.

  17. OSS (Outer Solar System): A fundamental and planetary physics mission to Neptune, Triton and the Kuiper Belt

    OpenAIRE

    Christophe, Bruno; Spilker, Linda J.; Anderson, John D.; André, Nicolas; Asmar, Sami W.; Aurnou, Jonathan; Banfield, Don; Barucci, Antonella; Bertolami, Orfeu; Bingham, Robert; Brown, Patrick; Cecconi, Baptiste; Courty, Jean-Michel; Dittus, Hansjörg; Fletcher, Leigh N.

    2011-01-01

    The present OSS mission continues a long and bright tradition by associating the communities of fundamental physics and planetary sciences in a single mission with ambitious goals in both domains. OSS is an M-class mission to explore the Neptune system almost half a century after flyby of the Voyager 2 spacecraft. Several discoveries were made by Voyager 2, including the Great Dark Spot (which has now disappeared) and Triton's geysers. Voyager 2 revealed the dynamics of Neptune's atmosphere a...

  18. A Comparison of the Dynamical Evolution of Planetary Systems Proceedings of the Sixth Alexander von Humboldt Colloquium on Celestial Mechanics Bad Hofgastein (Austria), 21–27 March 2004

    CERN Document Server

    Dvorak, Rudolf

    2005-01-01

    The papers in this volume cover a wide range of subjects covering the most recent developments in Celestial Mechanics from the theoretical point of nonlinear dynamical systems to the application to real problems. We emphasize the papers on the formation of planetary systems, their stability and also the problem of habitable zones in extrasolar planetary systems. A special topic is the stability of Trojans in our planetary system, where more and more realistic dynamical models are used to explain their complex motions: besides the important contribution from the theoretical point of view, the results of several numerical experiments unraveled the structure of the stable zone around the librations points. This volume will be of interest to astronomers and mathematicians interested in Hamiltonian mechanics and in the dynamics of planetary systems.

  19. Reconfigurable Autonomy for Future Planetary Rovers

    Science.gov (United States)

    Burroughes, Guy

    Extra-terrestrial Planetary rover systems are uniquely remote, placing constraints in regard to communication, environmental uncertainty, and limited physical resources, and requiring a high level of fault tolerance and resistance to hardware degradation. This thesis presents a novel self-reconfiguring autonomous software architecture designed to meet the needs of extraterrestrial planetary environments. At runtime it can safely reconfigure low-level control systems, high-level decisional autonomy systems, and managed software architecture. The architecture can perform automatic Verification and Validation of self-reconfiguration at run-time, and enables a system to be self-optimising, self-protecting, and self-healing. A novel self-monitoring system, which is non-invasive, efficient, tunable, and autonomously deploying, is also presented. The architecture was validated through the use-case of a highly autonomous extra-terrestrial planetary exploration rover. Three major forms of reconfiguration were demonstrated and tested: first, high level adjustment of system internal architecture and goal; second, software module modification; and third, low level alteration of hardware control in response to degradation of hardware and environmental change. The architecture was demonstrated to be robust and effective in a Mars sample return mission use-case testing the operational aspects of a novel, reconfigurable guidance, navigation, and control system for a planetary rover, all operating in concert through a scenario that required reconfiguration of all elements of the system.

  20. Immune system changes during simulated planetary exploration on Devon Island, high arctic

    Directory of Open Access Journals (Sweden)

    Effenhauser Rainer

    2007-05-01

    following spaceflight. Conclusion The immune system changes described during the HMP field deployment validate the use of the HMP as a ground-based spaceflight/planetary exploration analog for some aspects of human physiology. The sample processing protocol developed for this study may have applications for immune studies in remote terrestrial field locations. Elements of this protocol could possibly be adapted for future in-flight immunology studies conducted during space missions.

  1. BIRDY - Interplanetary CubeSat for planetary geodesy of Small Solar System Bodies (SSSB).

    Science.gov (United States)

    Hestroffer, D.; Agnan, M.; Segret, B.; Quinsac, G.; Vannitsen, J.; Rosenblatt, P.; Miau, J. J.

    2017-12-01

    We are developing the Birdy concept of a scientific interplanetary CubeSat, for cruise, or proximity operations around a Small body of the Solar System (asteroid, comet, irregular satellite). The scientific aim is to characterise the body's shape, gravity field, and internal structure through imaging and radio-science techniques. Radio-science is now of common use in planetary science (flybys or orbiters) to derive the mass of the scientific target and possibly higher order terms of its gravity field. Its application to a nano-satellite brings the advantage of enabling low orbits that can get closer to the body's surface, hence increasing the SNR for precise orbit determination (POD), with a fully dedicated instrument. Additionally, it can be applied to two or more satellites, on a leading-trailing trajectory, to improve the gravity field determination. However, the application of this technique to CubeSats in deep space, and inter-satellite link has to be proven. Interplanetary CubeSats need to overcome a few challenges before reaching successfully their deep-space objectives: link to ground-segment, energy supply, protection against radiation, etc. Besides, the Birdy CubeSat — as our basis concept — is designed to be accompanying a mothercraft, and relies partly on the main mission for reaching the target, as well as on data-link with the Earth. However, constraints to the mothercraft needs to be reduced, by having the CubeSat as autonomous as possible. In this respect, propulsion and auto-navigation are key aspects, that we are studying in a Birdy-T engineering model. We envisage a 3U size CubeSat with radio link, object-tracker and imaging function, and autonomous ionic propulsion system. We are considering two case studies for autonomous guidance, navigation and control, with autonomous propulsion: in cruise and in proximity, necessitating ΔV up to 2m/s for a total budget of about 50m/s. In addition to the propulsion, in-flight orbit determination (IFOD

  2. Physical properties of the WASP-67 planetary system from multi-colour photometry

    Science.gov (United States)

    Mancini, L.; Southworth, J.; Ciceri, S.; Calchi Novati, S.; Dominik, M.; Henning, Th.; Jørgensen, U. G.; Korhonen, H.; Nikolov, N.; Alsubai, K. A.; Bozza, V.; Bramich, D. M.; D'Ago, G.; Figuera Jaimes, R.; Galianni, P.; Gu, S.-H.; Harpsøe, K.; Hinse, T. C.; Hundertmark, M.; Juncher, D.; Kains, N.; Popovas, A.; Rabus, M.; Rahvar, S.; Skottfelt, J.; Snodgrass, C.; Street, R.; Surdej, J.; Tsapras, Y.; Vilela, C.; Wang, X.-B.; Wertz, O.

    2014-08-01

    Context. The extrasolar planet WASP-67 b is the first hot Jupiter definitively known to undergo only partial eclipses. The lack of the second and third contact points in this planetary system makes it difficult to obtain accurate measurements of its physical parameters. Aims: By using new high-precision photometric data, we confirm that WASP-67 b shows grazing eclipses and compute accurate estimates of the physical properties of the planet and its parent star. Methods: We present high-quality, multi-colour, broad-band photometric observations comprising five light curves covering two transit events, obtained using two medium-class telescopes and the telescope-defocusing technique. One transit was observed through a Bessel-R filter and the other simultaneously through filters similar to Sloan g'r'i'z'. We modelled these data using jktebop. The physical parameters of the system were obtained from the analysis of these light curves and from published spectroscopic measurements. Results: All five of our light curves satisfy the criterion for being grazing eclipses. We revise the physical parameters of the whole WASP-67 system and, in particular, significantly improve the measurements of the planet's radius (Rb = 1.091 ± 0.046 RJup) and density (ρb = 0.292 ± 0.036 ρJup), as compared to the values in the discovery paper (Rb = 1.4 -0.2+0.3 RJup and ρb = 0.16 ± 0.08 ρJup). The transit ephemeris was also substantially refined. We investigated the variation of the planet's radius as a function of the wavelength, using the simultaneous multi-band data, finding that our measurements are consistent with a flat spectrum to within the experimental uncertainties. Based on data collected with GROND at the MPG 2.2 m telescope and DFOSC at the Danish 1.54 m telescope.Full Table 2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/568/A127

  3. Masses of the Planetary Nebula Central Stars in the Galactic Globular Cluster System from HST Imaging and Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jacoby, George H. [Lowell Observatory, Flagstaff, AZ 86001 (United States); Marco, Orsola De [Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109 (Australia); Davies, James [Space Telescope Science Institute, Baltimore MD 21218 (United States); Lotarevich, I. [American Museum of Natural History, New York, NY (United States); Bond, Howard E. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Harrington, J. Patrick [University of Maryland, College Park, MD (United States); Lanz, Thierry, E-mail: gjacoby@lowell.edu, E-mail: orsola.demarco@mq.edu.au, E-mail: jdavies@stsci.edu, E-mail: heb11@psu.edu, E-mail: jph@astro.umd.edu, E-mail: thierry.lanz@oca.eu [Laboratoire Lagrange, Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, F-06304 Nice (France)

    2017-02-10

    The globular cluster (GC) system of our Galaxy contains four planetary nebulae (PNe): K 648 (or Ps 1) in M15, IRAS 18333-2357 in M22, JaFu 1 in Pal 6, and JaFu 2 in NGC 6441. Because single-star evolution at the low stellar mass of present-epoch GCs was considered incapable of producing visible PNe, their origin presented a puzzle. We imaged the PN JaFu 1 with the Hubble Space Telescope (HST) to obtain photometry of its central star (CS) and high-resolution morphological information. We imaged IRAS 18333-2357 with better depth and resolution, and we analyzed its archival HST spectra to constrain its CS temperature and luminosity. All PNe in Galactic GCs now have quality HST data, allowing us to improve CS mass estimates. We find reasonably consistent masses between 0.53 and 0.58 M {sub ⊙} for all four objects, though estimates vary when adopting different stellar evolutionary calculations. The CS mass of IRAS 18333-2357, though, depends strongly on its temperature, which remains elusive due to reddening uncertainties. For all four objects, we consider their CS and nebula masses, their morphologies, and other incongruities to assess the likelihood that these objects formed from binary stars. Although generally limited by uncertainties (∼0.02 M {sub ⊙}) in post-AGB tracks and core mass versus luminosity relations, the high-mass CS in K 648 indicates a binary origin. The CS of JaFu 1 exhibits compact, bright [O iii] and H α emission, like EGB 6, suggesting a binary companion or disk. Evidence is weaker for a binary origin of JaFu 2.

  4. Exploration of Icy Moons in the Outer Solar System: Updated Planetary Protection Requirements for Missions to Enceladus and Europa

    Science.gov (United States)

    Rummel, J. D.; Race, M. S.

    2016-12-01

    Enceladus and Europa are bodies with icy/watery environments and potential habitable conditions for life, making both of great interest in astrobiological studies of chemical evolution and /or origin of life. They are also of significant planetary protection concern for spacecraft missions because of the potential for harmful contamination during exploration. At a 2015 COSPAR colloquium in Bern Switzerland, international scientists identified an urgent need to establish planetary protection requirements for missions proposing to return samples to Earth from Saturn's moon Enceladus. Deliberations at the meeting resulted in recommended policy updates for both forward and back contamination requirements for missions to Europa and Enceladus, including missions sampling plumes originating from those bodies. These recently recommended COSPAR policy revisions and biological contamination requirements will be applied to future missions to Europa and Encealadus, particularly noticeable in those with plans for in situ life detection and sample return capabilities. Included in the COSPAR policy are requirementsto `break the chain of contact' with Europa or Enceladus, to keep pristine returned materials contained, and to complete required biohazard analyses, testing and/or sterilization upon return to Earth. Subsequent to the Bern meeting, additional discussions of Planetary Protection of Outer Solar System bodies (PPOSS) are underway in a 3-year study coordinated by the European Science Foundation and involving multiple international partners, including Japan, China and Russia, along with a US observer. This presentation will provide science and policy updates for those whose research or activities will involve icy moon missions and exploration.

  5. Access to the Online Planetary Research Literature

    Science.gov (United States)

    Henneken, E. A.; Accomazzi, A.; Kurtz, M. J.; Grant, C. S.; Thompson, D.; Di Milia, G.; Bohlen, E.; Murray, S. S.

    2009-12-01

    The SAO/NASA Astrophysics Data System (ADS) provides various free services for finding, accessing, and managing bibliographic data, including a basic search form, the myADS notification service, and private library capabilities (a useful tool for building bibliographies), plus access to scanned pages of published articles. The ADS also provides powerful search capabilities, allowing users to find e.g. the most instructive or most important articles on a given subject . For the Planetary Sciences, the citation statistics of the ADS have improved considerably with the inclusion of the references from Elsevier journals, including Icarus, Planetary and Space Science, and Earth and Planetary Science Letters. We currently have about 78 journals convering the planetary and space sciences (Advances in Space Research, Icarus, Solar Physics, Astrophusics and Space Science, JGRE, Meteoritics, to name a few). Currently, this set of journals represents about 180,000 articles and 1.1 million references. Penetration into the Solar Physics, Planetary Sciences and Geophysics community has increased significantly. During the period 2004-2008, user access to JGR and Icarus increased by a factor of 4.4, while e.g. access to the Astrophysical Journal "only" increased by a factor of 1.8.

  6. Asteroseismic inference on rotation, gyrochronology and planetary system dynamics of 16 Cygni

    DEFF Research Database (Denmark)

    Davies, G. R.; Chaplin, W. J.; Farr, W. M.

    2014-01-01

    The solar analogs 16 Cyg A and 16 Cyg B are excellent asteroseismic targets in the \\Kepler field of view and together with a red dwarf and a Jovian planet form an interesting system. For these more evolved Sun-like stars we cannot detect surface rotation with the current \\Kepler data but instead...

  7. Ballistic transport in planetary ring systems due to particle erosion mechanisms. I - Theory, numerical methods, and illustrative examples

    Science.gov (United States)

    Durisen, Richard H.; Murphy, Brian W.; Cramer, Nichael Lynn; Cuzzi, Jeffrey N.; Mullikin, Thomas L.

    1989-01-01

    Ballistic transport, defined as the net radial transport of mass and angular momentum due to exchanges of meteoroid hypersonic-impact ejecta by neighboring planetary ring regions on time-scales orders-of-magnitude shorter than the age of the solar system, is presently considered as a problem in mathematical physics. The preliminary results of a numerical scheme for following the combined effects of ballistic transport and viscous diffusion demonstrate that ballistic transport generates structure near sharp edges already present in the ring-mass distribution; the entire ring system ultimately develops an undulatory structure whose length scale is typically of the order of the radial excursion of the impact ejecta.

  8. Tribo-systems for Sheet Metal Forming

    DEFF Research Database (Denmark)

    Bay, Niels

    2009-01-01

    The present paper gives an overview of more than 10 years work by the author’s research group through participation in national as well as international framework programmes on developing and testing environmentally friendly lubricants and tool materials and coatings inhibiting galling. Partners ......’s research group has especially been involved in the development of a system of tribo-tests for sheet metal forming and in testing and modelling of friction and limits of lubrication of new, environmentally friendly lubricants and tool materials.......The present paper gives an overview of more than 10 years work by the author’s research group through participation in national as well as international framework programmes on developing and testing environmentally friendly lubricants and tool materials and coatings inhibiting galling. Partners...... in the programmes come from Germany, United Kingdom, Finland, Poland, Slovenia, Spain and Denmark. They represent lubricant developers, testing experts and industrial end users as well as numerical modelling experts simulating fundamental lubrication mechanisms and computing basic process parameters. The author...

  9. Japanese Exploration to Solar System Small Bodies: Rewriting a Planetary Formation Theory with Astromaterial Connection (Invited)

    Science.gov (United States)

    Yano, H.

    2013-12-01

    space probe with hybrid propulsion of solar photon sail and ion engine system that will enable Japan to reach out deep interplanetary space beyond the main asteroid belt. Since 2002, Japanese scientists and engineers have been investigating the solar power sail mission to Jupiter Trojans and interdisciplinary cruising science, such as infrared observation of zodiacal light due to cosmic dust, which at the same time hit a large cross section of the solar sail membrane dust detector, concentrating inside the main asteroid belt. Now the mission design has extended from cruising and fly-by only to rendezvous and sample return options from Jupiter Trojan asteroids. Major scientific goal of Jupiter Trojan exploration is to constrain its origin between two competing hypothesis such as remnants of building blocks the Jovian system as the classic model and the second generation captured EKBOs as the planetary migration models, in which several theories are in deep discussion. Also important is to better understand mixing process of material and structure of the early Solar System just beyond snow line. The current plan involves its launch and both solar photon and IES accelerations combined with Earth and Jupiter gravity assists in 2020's, detailed rendezvous investigation of a few 10-km sized D-type asteroid among Jupiter Trojans in early 2030's and an optional sample return of its surface materials to the Earth in late 2030's.

  10. Uncertainty analysis of a stereo system performing ego-motion measurements in a simulated planetary environment

    International Nuclear Information System (INIS)

    Pertile, M; Debei, S; Lorenzini, E

    2013-01-01

    In planetary exploration space missions, motion measurement of a vehicle on the surface of a planet is a very important task. In this work, a non linear vision-based algorithm for ego-motion measurement is described and calibrated using telephoto lenses. Several motion types, including displacement, rotation and their combination, are considered and the evaluated uncertainties are compared, pointing out strengths and weaknesses of employing telephoto lenses for motion measurement

  11. On Aryabhata's Planetary Constants

    OpenAIRE

    Kak, Subhash

    2001-01-01

    This paper examines the theory of a Babylonian origin of Aryabhata's planetary constants. It shows that Aryabhata's basic constant is closer to the Indian counterpart than to the Babylonian one. Sketching connections between Aryabhata's framework and earlier Indic astronomical ideas on yugas and cyclic calendar systems, it is argued that Aryabhata's system is an outgrowth of an earlier Indic tradition.

  12. The planetary scientist's companion

    CERN Document Server

    Lodders, Katharina

    1998-01-01

    A comprehensive and practical book of facts and data about the Sun, planets, asteroids, comets, meteorites, the Kuiper belt and Centaur objects in our solar system. Also covered are properties of nearby stars, the interstellar medium, and extra-solar planetary systems.

  13. DISK-PLANETS INTERACTIONS AND THE DIVERSITY OF PERIOD RATIOS IN KEPLER'S MULTI-PLANETARY SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Baruteau, Clement; Papaloizou, John C. B., E-mail: C.Baruteau@damtp.cam.ac.uk, E-mail: J.C.B.Papaloizou@damtp.cam.ac.uk [Department of Applied Mathematics and Theoretical Physics (DAMTP), University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)

    2013-11-20

    The Kepler mission is dramatically increasing the number of planets known in multi-planetary systems. Many adjacent planets have orbital period ratios near resonant values, with a tendency to be larger than required for exact first-order mean-motion resonances. This feature has been shown to be a natural outcome of orbital circularization of resonant planetary pairs due to star-planet tidal interactions. However, this feature holds in multi-planetary systems with periods longer than 10 days, in which tidal circularization is unlikely to provide efficient divergent evolution of the planets' orbits to explain these orbital period ratios. Gravitational interactions between planets and their parent protoplanetary disk may instead provide efficient divergent evolution. For a planet pair embedded in a disk, we show that interactions between a planet and the wake of its companion can reverse convergent migration and significantly increase the period ratio from a near-resonant value. Divergent evolution due to wake-planet interactions is particularly efficient when at least one of the planets opens a partial gap around its orbit. This mechanism could help account for the diversity of period ratios in Kepler's multiple systems from super-Earth to sub-Jovian planets with periods greater than about 10 days. Diversity is also expected for pairs of planets massive enough to merge their gap. The efficiency of wake-planet interactions is then much reduced, but convergent migration may stall with a variety of period ratios depending on the density structure in the common gap. This is illustrated for the Kepler-46 system, for which we reproduce the period ratio of Kepler-46b and c.

  14. The role of impact cratering in planetary environmental change and implications for the search for life in the solar system (Invited)

    Science.gov (United States)

    Osinski, G. R.

    2013-12-01

    particular planetary habitat. But the news is not all bad. Impact events can redistribute viable planetary habitats instantly - and regionally to globally depending on the size of the impact event. They can bring material from depths of many km in the form of ejecta deposits and central uplifts in so-called complex impact structures. Importantly, much of the material excavated and/or redistributed by impact events is shocked to such low pressures and temperatures that habitats, bioessential elements (e.g., C, N, O), and even organisms can remain intact. In recent years, it has also become apparent that impact events can also create new planetary habitats where none previously existed, including hydrothermal systems, endolithic habitats in shocked rocks and impact glasses, and impact crater lakes. Finally, impact events can also generate conditions conducive for the origin of life (e.g., clays, which form catalysts for organic reactions, and hot spring environments). Thus, far from being the agents of destruction that they were once thought to be, impact events can also be viewed as a favourable agent of rapid environmental change. This may have important implications for our understanding of the origin and evolution of early life on Earth, and possibly other planets such as Mars.

  15. A Balloon-Borne Telescope System for Planetary Atmosphere and Plasma Studies

    Science.gov (United States)

    Taguchi, M.; Yoshida, K.; Sakamoto, Y.; Kanazawa, T.; Shoji, Y.; Sawakami, T.; Takahashi, Y.; Hoshino, N.; Sato, T.; Sakanoi, T.

    2007-12-01

    A telescope floating in the polar stratosphere can continuously monitor planets for more than 24 hours. Thin, clear and stable air of the stratosphere makes it possible to observe planets in a condition free from cloud with fine seeing and high atmospheric transmittance. Moreover, a balloon-borne telescope system is less expensive compared with a huge terrestrial telescope or a direct planetary probe mission. Targets of a balloon-borne telescope system will extend over various atmospheric and plasma phenomena on almost all the planets, i.e., a sodium tail of Mercury, lightning, airglow and aurora in the atmospheres of Venus, Jupiter and Saturn, escaping atmospheres of the Earth-type planets, satellite-induced luminous events in the Jovian atmosphere, etc. The first target is global dynamics of the Venusian atmosphere by detecting cloud motion in UV and NIR imagery. A decoupling mechanism and a pair of control moment gyros (CMGs) are mounted at the top of the gondola. The decoupling mechanism isolates the gondola from a balloon and also transfers an excess angular momentum of the CMGs to the balloon. The attitude of the gondola is stabilized at a constant sun azimuthal angle so that a solar cell panel faces to the sun. A 300 mm F30 Schmidt-Cassegrain telescope is installed at the bottom of the gondola. DC/DC converters, a PC, a high voltage power supply for a piezo-electrically moving mirror and digital video recorders are contained in a sealed cell. The azimuthal angle is detected by a sun-sensor. A PC processes sensor output to control DC motors used in the decoupling mechanism and CMGs with an accuracy in azimuthal attitude of about 0.5 deg. The two-axis gimbal mount of the telescope is controlled by the same PC, guiding an object within a field-of-view of a guide telescope. Residual tracking error is detected by a position sensitive photomultiplier tube and corrected by the two-axis moving mirror installed in the optical system. The optical path is divided into

  16. Planetary Landscape Geography

    Science.gov (United States)

    Hargitai, H.

    INTRODUCTION Landscape is one of the most often used category in physical ge- ography. The term "landshap" was introduced by Dutch painters in the 15-16th cen- tury. [1] The elements that build up a landscape (or environment) on Earth consists of natural (biogenic and abiogenic - lithologic, atmospheric, hydrologic) and artificial (antropogenic) factors. Landscape is a complex system of these different elements. The same lithology makes different landscapes under different climatic conditions. If the same conditions are present, the same landscape type will appear. Landscapes build up a hierarchic system and cover the whole surface. On Earth, landscapes can be classified and qualified according to their characteristics: relief forms (morphology), and its potential economic value. Aesthetic and subjective parameters can also be considered. Using the data from landers and data from orbiters we can now classify planetary landscapes (these can be used as geologic mapping units as well). By looking at a unknown landscape, we can determine the processes that created it and its development history. This was the case in the Pathfinder/Sojourner panoramas. [2]. DISCUSSION Planetary landscape evolution. We can draw a raw landscape develop- ment history by adding the different landscape building elements to each other. This has a strong connection with the planet's thermal evolution (age of the planet or the present surface materials) and with orbital parameters (distance from the central star, orbit excentricity etc). This way we can build a complex system in which we use differ- ent evolutional stages of lithologic, atmospheric, hydrologic and biogenic conditions which determine the given - Solar System or exoplanetary - landscape. Landscape elements. "Simple" landscapes can be found on asteroids: no linear horizon is present (not differentiated body, only impact structures), no atmosphere (therefore no atmospheric scattering - black sky as part of the landscape) and no

  17. 77 FR 20851 - NASA Advisory Council; Science Committee; Planetary Protection Subcommittee; Meeting

    Science.gov (United States)

    2012-04-06

    ... Needs for Planetary Protection --Planetary Protection for Icy Bodies in the Solar System --Current... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Planetary Protection Subcommittee... and Space Administration (NASA) announces a meeting of the Planetary Protection Subcommittee of the...

  18. Planetary quarantine in the solar system. Survival rates of some terrestrial organisms under simulated space conditions by proton irradiation

    Science.gov (United States)

    Koike, J.; Oshima, T.

    We have been studying the survival rates of some species of terrestrial unicellular and multicellular organism (viruses, bacteria, yeasts, fungi, algae, etc.) under simulated interstellar conditions, in connection with planetary quarantine. The interstellar environment in the solar system has been simulated by low temperature, high vacuum (77 K, 4 × 10 -8 torr), and proton irradiation from a Van de Graaff generator. After exposure to a barrage of protons corresponding to about 250 years of irradiation in solar space, tobacco mosaic virus, Bacillus subtilis spores, Staphylococcus aureus, Micrococcus flavus, Aspergillus niger spores, and Clostridium mangenoti spores showed survival rates of 82, 45, 74, 13, 28, and 25%, respectively.

  19. Implementing planetary protection on the Atlas V fairing and ground systems used to launch the Mars Science Laboratory.

    Science.gov (United States)

    Benardini, James N; La Duc, Myron T; Ballou, David; Koukol, Robert

    2014-01-01

    On November 26, 2011, the Mars Science Laboratory (MSL) launched from Florida's Cape Canaveral Air Force Station aboard an Atlas V 541 rocket, taking its first step toward exploring the past habitability of Mars' Gale Crater. Because microbial contamination could profoundly impact the integrity of the mission, and compliance with international treaty was a necessity, planetary protection measures were implemented on all MSL hardware to verify that bioburden levels complied with NASA regulations. The cleanliness of the Atlas V payload fairing (PLF) and associated ground support systems used to launch MSL were also evaluated. By applying proper recontamination countermeasures early and often in the encapsulation process, the PLF was kept extremely clean and was shown to pose little threat of recontaminating the enclosed MSL flight system upon launch. Contrary to prelaunch estimates that assumed that the interior PLF spore burden ranged from 500 to 1000 spores/m², the interior surfaces of the Atlas V PLF were extremely clean, housing a mere 4.65 spores/m². Reported here are the practices and results of the campaign to implement and verify planetary protection measures on the Atlas V launch vehicle and associated ground support systems used to launch MSL. All these facilities and systems were very well kept and exceeded the levels of cleanliness and rigor required in launching the MSL payload.

  20. Statistics of Long Period Gas Giant Planets in Known Planetary Systems

    Science.gov (United States)

    Bryan, Marta

    2017-06-01

    The presence of a substantial population of volatile-rich planets on orbits interior to 1AU poses a challenge to models of planet formation and migration. There is currently an ongoing debate as to whether these planets could have formed in situ or instead migrated inward from a more distant formation location. While it has generally been assumed that gas giant planets formed out beyond the ice line and migrated inwards, more recent work has suggested that even these relatively massive planets may be able to form in situ. To constrain possible formation and migration scenarios, we searched for massive, long-period gas giant companions in known exoplanet systems by looking for long-term trends in the RV data. In addition to estimating the total occurrence rate of long-period gas giant companions in known exoplanet systems, we found that hot gas giants inside 1 AU are more likely to have an outer companion than cold gas giants. We also found that planets with an outer companion have higher than average eccentricities than their single counterparts, suggesting that dynamical interactions between planets may play an important role in these systems.

  1. Exploration Consequences of Particle Radiation Environments at Airless Planetary Surfaces: Lessons Learned at the Moon by LRO/CRaTER and Scaling to Other Solar System Objects

    Science.gov (United States)

    Spence, H. E.

    2017-12-01

    We examine and compare the energetic particle ionizing radiation environments at airless planetary surfaces throughout the solar system. Energetic charged particles fill interplanetary space and bathe the environments of planetary objects with a ceaseless source of sometimes powerful yet ever-present ionizing radiation. In turn, these charged particles interact with planetary bodies in various ways, depending upon the properties of the body as well as upon the nature of the charged particles themselves. The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaisance Orbiter (LRO), launched in 2009, continues to provide new insights into the ways by which the lunar surface is influenced by these energetic particles. In this presentation, we briefly review some of these mechanisms and how they operate at the Moon, and then compare and contrast the radiation environments at other atmospherereless planetary objects within our solar system that are potential future human exploration targets. In particular, we explore two primary sources of ionizing radiation, galactic cosmic rays (GCR) and solar energetic particles (SEP), in the environments of planetary objects that have weak or absent atmospheres and intrinsic magnetic fields. We motivate the use of simplified scaling relationships with heliocentric distance to estimate their intensity, which then serves as a basis for estimating the relative importance of various energetic particle and planetary surface physical interactions, in the context of humankind's expanding explorations beyond low-Earth orbit.

  2. Airships for Planetary Exploration

    Science.gov (United States)

    Colozza, Anthony

    2004-01-01

    The feasibility of utilizing an airship for planetary atmospheric exploration was assessed. The environmental conditions of the planets and moons within our solar system were evaluated to determine their applicability for airship flight. A station-keeping mission of 50 days in length was used as the baseline mission. Airship sizing was performed utilizing both solar power and isotope power to meet the baseline mission goal at the selected planetary location. The results show that an isotope-powered airship is feasible within the lower atmosphere of Venus and Saturn s moon Titan.

  3. Planetary atomspheres

    International Nuclear Information System (INIS)

    Lal, D.; Rao, M.N.

    1986-01-01

    Salient features of the atmosheres of Venus and Mars are described and compared with those of the earth. Their temperature profiles are given. Degassing of planetary interiors by volcanic and plate tectonic processes is described. Noble gas abundances in the atmospheres of these planets are compared. Information provided by Pioneer, Venera space probes and the Viking-landers on Mars is studied. (B.G.W.)

  4. Calibration of a vision-based system for displacement measurement in planetary exploration space missions

    International Nuclear Information System (INIS)

    Pertile, M; Magnabosco, M; Debei, S

    2010-01-01

    In planetary exploration space missions, motion measurement of a vehicle on the surface of a planet is a very important task. In this work a visual-odometry solution is analyzed. Particularly, a vision-based displacement instrument is described and calibrated using a simulated rocky scene. The most significant uncertainty sources are found out by experimental tests. Particular attention is dedicated to the uncertainty contributions of the feature detector and of lighting conditions. Two different motion directions are considered and the evaluated uncertainty are compared.

  5. Lowland river systems - processes, form and function

    DEFF Research Database (Denmark)

    Pedersen, M. L.; Kronvang, B.; Sand-Jensen, K.

    2006-01-01

    to answer two fundamental questions: How has anthropogenic disturbance of rivers changed the fundamental form and physical processes in river valleys? Can we use our understanding of fl uvial patterns to restore the dynamic nature of channelised rivers and drained fl oodplains in river valleys?...

  6. Planetary Sciences: American and Soviet Research

    Science.gov (United States)

    Donahue, Thomas M. (Editor); Trivers, Kathleen Kearney (Editor); Abramson, David M. (Editor)

    1991-01-01

    Papers presented at the US-USSR Workshop on Planetary Sciences are compiled. The purpose of the workshop was to examine the current state of theoretical understanding of how the planets were formed and how they evolved to their present state. The workshop assessed the types of observations and experiments that are needed to advance understanding of the formation and evolution of the solar system based on the current theoretical framework.

  7. Planetary imaging with amateur astronomical instruments

    Science.gov (United States)

    Papathanasopoulos, k.; Giannaris, G.

    2017-09-01

    Planetary imaging can be varied by the types and size of instruments and processing. With basic amateur telescopes and software, can be captured images of our planetary system, mainly Jupiter, Saturn and Mars, but also solar eclipses, solar flares, and many more. Planetary photos can be useful for professional astronomers, and how amateur astronomers can play a role on that field.

  8. Collisional stripping of planetary crusts

    Science.gov (United States)

    Carter, Philip J.; Leinhardt, Zoë M.; Elliott, Tim; Stewart, Sarah T.; Walter, Michael J.

    2018-02-01

    Geochemical studies of planetary accretion and evolution have invoked various degrees of collisional erosion to explain differences in bulk composition between planets and chondrites. Here we undertake a full, dynamical evaluation of 'crustal stripping' during accretion and its key geochemical consequences. Crusts are expected to contain a significant fraction of planetary budgets of incompatible elements, which include the major heat producing nuclides. We present smoothed particle hydrodynamics simulations of collisions between differentiated rocky planetesimals and planetary embryos. We find that the crust is preferentially lost relative to the mantle during impacts, and we have developed a scaling law based on these simulations that approximates the mass of crust that remains in the largest remnant. Using this scaling law and a recent set of N-body simulations of terrestrial planet formation, we have estimated the maximum effect of crustal stripping on incompatible element abundances during the accretion of planetary embryos. We find that on average approximately one third of the initial crust is stripped from embryos as they accrete, which leads to a reduction of ∼20% in the budgets of the heat producing elements if the stripped crust does not reaccrete. Erosion of crusts can lead to non-chondritic ratios of incompatible elements, but the magnitude of this effect depends sensitively on the details of the crust-forming melting process on the planetesimals. The Lu/Hf system is fractionated for a wide range of crustal formation scenarios. Using eucrites (the products of planetesimal silicate melting, thought to represent the crust of Vesta) as a guide to the Lu/Hf of planetesimal crust partially lost during accretion, we predict the Earth could evolve to a superchondritic 176Hf/177Hf (3-5 parts per ten thousand) at present day. Such values are in keeping with compositional estimates of the bulk Earth. Stripping of planetary crusts during accretion can lead to

  9. Challenges in forming the solar system's giant planet cores via pebble accretion

    International Nuclear Information System (INIS)

    Kretke, K. A.; Levison, H. F.

    2014-01-01

    Though ∼10 M ⊕ mass rocky/icy cores are commonly held as a prerequisite for the formation of gas giants, theoretical models still struggle to explain how these embryos can form within the lifetimes of gaseous circumstellar disks. In recent years, aerodynamic-aided accretion of 'pebbles', objects ranging from centimeters to meters in size, has been suggested as a potential solution to this long-standing problem. While pebble accretion has been demonstrated to be extremely effective in local simulations that look at the detailed behavior of these pebbles in the vicinity of a single planetary embryo, to date there have been no global simulations demonstrating the effectiveness of pebble accretion in a more complicated, multi-planet environment. Therefore, we have incorporated the aerodynamic-aided accretion physics into LIPAD, a Lagrangian code that can follow the collisional/accretional/dynamical evolution of a protoplanetary system, to investigate how pebble accretion manifests itself in the larger planet formation picture. We find that under generic circumstances, pebble accretion naturally leads to an 'oligarchic' type of growth in which a large number of planetesimals grow to similar-sized planets. In particular, our simulations tend to form hundreds of Mars- and Earth-mass objects between 4 and 10 AU. While merging of some oligarchs may grow massive enough to form giant planet cores, leftover oligarchs lead to planetary systems that cannot be consistent with our own solar system. We investigate various ideas presented in the literature (including evaporation fronts and planet traps) and find that none easily overcome this tendency toward oligarchic growth.

  10. Future planetary X-ray and gamma-ray remote sensing system and in situ requirements for room temperature solid state detectors

    CERN Document Server

    Trombka, J I; Starr, R; Clark, P E; Floyd, S R

    1999-01-01

    X-Ray and gamma-ray remote sensing observations find important applications in the study of the development of the planets. Orbital measurements can be carried out on solar-system bodies whose atmospheres and trapped radiation environments do not interfere significantly with the emissions. Elemental compositions can be inferred from observations of these line emissions. Future planetary missions also will involve landing both stationery and roving probes on planetary surfaces. Both X-ray and gamma-ray spectrometers will be used for performing elemental analysis of surface samples. These future planetary missions will impose a number of constraints: the flight instruments must be significantly reduced in weight from those previously flown; for many missions, gravity assist will be required, greatly increasing mission duration, resulting in the passage of several years before the first scientific measurement of a solar system body. The detector systems must operate reliably after years of cosmic-ray irradiation...

  11. Sciences for Exoplanets and Planetary Systems : web sites and E-learning

    Science.gov (United States)

    Roques, F.; Balança, C.; Bénilan, Y.; Griessmeier, J. M.; Marcq, E.; Navarro, T.; Renner, S.; Schneider, J.; Schott, C.

    2015-10-01

    The websites « Sciences pour les Exoplanètes et les Systèmes Planétaires » (SESP) and « Exoplanètes » have been created in the context of the LabEx ESEP (Laboratoire d'excellence Exploration Spatiale des Environnements Planétaires) [1]. They present planetary and exoplanetary sciences with courses, interactive tools, and a didactic catalogue connected to the Encyclopedia http://exoplanet.eu [2]. These resources are directed towards undergraduate level. They will be used as support for face-to-face courses and self-training. In the future, we will translate some contents into English and create e-learning degree courses.

  12. Long Term Evolution of Planetary Systems with a Terrestrial Planet and a Giant Planet

    Science.gov (United States)

    Georgakarakos, Nikolaos; Dobbs-Dixon, Ian; Way, Michael J.

    2016-01-01

    We study the long term orbital evolution of a terrestrial planet under the gravitational perturbations of a giant planet. In particular, we are interested in situations where the two planets are in the same plane and are relatively close. We examine both possible configurations: the giant planet orbit being either outside or inside the orbit of the smaller planet. The perturbing potential is expanded to high orders and an analytical solution of the terrestrial planetary orbit is derived. The analytical estimates are then compared against results from the numerical integration of the full equations of motion and we find that the analytical solution works reasonably well. An interesting finding is that the new analytical estimates improve greatly the predictions for the timescales of the orbital evolution of the terrestrial planet compared to an octupole order expansion. Finally, we briefly discuss possible applications of the analytical estimates in astrophysical problems.

  13. The European standard on planetary protection requirements.

    Science.gov (United States)

    Debus, André

    2006-01-01

    Since the beginning of solar system exploration, numerous spacecrafts have been sent towards others worlds, and one of the main goals of such missions is the search for extraterrestrial forms of life. It is known that, under certain conditions, some terrestrial entities are able to survive during cruises in space and that they may contaminate other planets (forward contamination). At another level, possible extraterrestrial life forms are unknown and their ability to contaminate the Earth's biosphere (back contamination) in the frame of sample return missions cannot be excluded. Article IX of the Outer Space Treaty (London/Washington, January 27, 1967) requires the preservation of planets and the Earth from contamination. All nations taking part in this Treaty must prevent forward and back contamination during missions exploring our solar system. Consequently, the United Nations (UN-COPUOS) has delegated COSPAR (Committee of Space Research) to take charge of planetary protection and, at present, all space-faring nations must comply with COSPAR policy and consequently with COSPAR planetary protection recommendations. Starting from these recommendations and the "CNES Planetary Protection Standard" document, a working group has been set up in the framework of the "European Cooperation for Space Standardization" (ECSS) to establish the main specifications for preventing cross-contamination between target bodies within the solar system and the Earth-moon system.

  14. Free-Form Kinetic Reciprocal System

    DEFF Research Database (Denmark)

    Parigi, Dario; Sassone, Mario

    2011-01-01

    Kinetic Reciprocal System (KRS) are innovative moveable structures based on the principle of reciprocity [1] with internal pin-slot constraints [2]. The analysis of KRS kinematic and static determinacy is developed through the construction of kinematic matrices, accordingly with [3...... of the required kinetic behaviour and its validity has been tested on physical models. A set of case studies and possible applications are described, focusing on the morphologic variety of results and on the efficiency of the kinetic performance....

  15. System and method for incremental forming

    Energy Technology Data Exchange (ETDEWEB)

    Beltran, Michael; Cao, Jian; Roth, John T.

    2015-12-29

    A system includes a frame configured to hold a workpiece and first and second tool positioning assemblies configured to be opposed to each other on opposite sides of the workpiece. The first and second tool positioning assemblies each include a toolholder configured to secure a tool to the tool positioning assembly, a first axis assembly, a second axis assembly, and a third axis assembly. The first, second, and third axis assemblies are each configured to articulate the toolholder along a respective axis. Each axis assembly includes first and second guides extending generally parallel to the corresponding axis and disposed on opposing sides of the toolholder with respect to the corresponding axis. Each axis assembly includes first and second carriages articulable along the first and second guides of the axis assembly, respectively, in the direction of the corresponding axis.

  16. Importance of the Lu-Hf isotopic system in studies of planetary chronology and chemical evolution

    Science.gov (United States)

    Patchett, P.J.

    1983-01-01

    The 176Lu-176Hf isotope method and its applications in earth sciences are discussed. Greater fractionation of Lu/Hf than Sm/Nd in planetary magmatic processes makes 176Hf 177Hf a powerful geochemical tracer. In general, proportional variations of 176Hf 177Hf exceed those of 143Nd l44Nd by factors of 1.5-3 in terrestrial and lunar materials. Lu-Hf studies therefore have a major contribution to make in understanding of terrestrial and other planetary evolution through time, and this is the principal importance of Lu-Hf. New data on basalts from oceanic islands show unequivocally that whereas considerable divergences occur in 176Hf 177Hf- 87Sr 86Sr and 143Nd l44Nd- 87Sr 86Sr diagrams, 176Hf 177Hf and 143Nd 144Nd display a single, linear isotopic variation in the suboceanic mantle. These discordant 87Sr 86Sr relationships may allow, with the acquisition of further Hf-Nd-Sr isotopic data, a distinction between processes such as mantle metasomatism, influence of seawater-altered material in the magma source, or recycling of sediments into the mantle. In order to evaluate the Hf-Nd isotopic correlation in terms of mantle fractionation history, there is a need for measurements of Hf distribution coefficients between silicate minerals and liquids, and specifically for a knowledge of Hf behavior in relation to rareearth elements. For studying ancient terrestrial Hf isotopic variations, the best quality Hf isotope data are obtained from granitoid rocks or zircons. New data show that very U-Pb discordant zircons may have upwardly-biased 176Hf 177Hf, but that at least concordant to slightly discordant zircons appear to be reliable carriers of initial 176Hf 177Hf. Until the controls on addition of radiogenic Hf to zircon are understood, combined zircon-whole rock studies are recommended. Lu-Hf has been demonstrated as a viable tool for dating of ancient terrestrial and extraterrestrial samples, but because it offers little advantage over existing methods, is unlikely to find

  17. Shaping of planetary nebulae

    International Nuclear Information System (INIS)

    Balick, B.

    1987-01-01

    The phases of stellar evolution and the development of planetary nebulae are examined. The relation between planetary nebulae and red giants is studied. Spherical and nonspherical cases of shaping planetaries with stellar winds are described. CCD images of nebulae are analyzed, and it is determined that the shape of planetary nebulae depends on ionization levels. Consideration is given to calculating the distances of planetaries using radio images, and molecular hydrogen envelopes which support the wind-shaping model of planetary nebulae

  18. Non-planetary Science from Planetary Missions

    Science.gov (United States)

    Elvis, M.; Rabe, K.; Daniels, K.

    2015-12-01

    Planetary science is naturally focussed on the issues of the origin and history of solar systems, especially our own. The implications of an early turbulent history of our solar system reach into many areas including the origin of Earth's oceans, of ores in the Earth's crust and possibly the seeding of life. There are however other areas of science that stand to be developed greatly by planetary missions, primarily to small solar system bodies. The physics of granular materials has been well-studied in Earth's gravity, but lacks a general theory. Because of the compacting effects of gravity, some experiments desired for testing these theories remain impossible on Earth. Studying the behavior of a micro-gravity rubble pile -- such as many asteroids are believed to be -- could provide a new route towards exploring general principles of granular physics. These same studies would also prove valuable for planning missions to sample these same bodies, as techniques for anchoring and deep sampling are difficult to plan in the absence of such knowledge. In materials physics, first-principles total-energy calculations for compounds of a given stoichiometry have identified metastable, or even stable, structures distinct from known structures obtained by synthesis under laboratory conditions. The conditions in the proto-planetary nebula, in the slowly cooling cores of planetesimals, and in the high speed collisions of planetesimals and their derivatives, are all conditions that cannot be achieved in the laboratory. Large samples from comets and asteroids offer the chance to find crystals with these as-yet unobserved structures as well as more exotic materials. Some of these could have unusual properties important for materials science. Meteorites give us a glimpse of these exotic materials, several dozen of which are known that are unique to meteorites. But samples retrieved directly from small bodies in space will not have been affected by atmospheric entry, warmth or

  19. Planetary compositions

    International Nuclear Information System (INIS)

    Taylor, S.R.

    1988-01-01

    The present study of the density, major-element and trace-element compositions, oxygen isotopes, and noble gases of the metal, sulfide, and silicate components of meteorites shows that these properties do not match those of the terrestrial planets, and thereby suggests that there was not much lateral mixing in the solar nebula during planetary accretion. The planets would then have accumulated from narrow concentric zones, and the current zonal structure of the asteroid belt may be analogous to the structure of the inner portions of the solar nebula during the terrestrial planets' accretion. Localized heating during the material's infall to the median plane of the nebula is suggested to have occurred. 64 references

  20. The fundamental role of the Oort cloud in determining the flux of comets through the planetary system

    Science.gov (United States)

    Emel'Yanenko, V. V.; Asher, D. J.; Bailey, M. E.

    2007-10-01

    A model of the Oort cloud has been developed by accounting for planetary, stellar and Galactic perturbations using numerical symplectic integrations covering 4.5 Gyr. The model is consistent with the broad dynamical characteristics of the observed cometary populations injected from the Oort cloud into different regions of the Solar system. We show that the majority of observed high-eccentricity trans-Neptunian objects, Centaurs and short-period comets have visited the Oort cloud (a > 1000au) during their dynamical history. Assuming from observations that the near-parabolic flux from the Oort cloud with absolute magnitudes H10 104au is approximately 1 comet per year, our calculations imply a present Oort cloud population of ~5 × 1011 comets with H10 104au. The number of comets reaching the planetary region from the Oort cloud (a > 1000au) is more than an order of magnitude higher per unit perihelion distance immediately beyond Neptune than in the observable zone q observable zone. The present number of high-eccentricity trans-Neptunian objects (q > 30au and 60 200au and/or q > 40au, and they are found mostly to originate from initial orbits with 25 60au. Objects that have visited the Oort cloud represent a substantial fraction of the Jupiter-family comet population, achieving short-period orbits by a process of gradual dynamical transfer, including a Centaur stage, from the outer Solar system to near-Earth space. A similar mechanism produces Halley-type comets, in addition to the well-known diffusion process operating at small perihelion distances.

  1. Interdisciplinary Research Produces Results in the Understanding of Planetary Dunes

    Science.gov (United States)

    Titus, Timothy N.; Hayward, Rosalyn Kay; Bourke, Mary C.

    2010-08-01

    Second International Planetary Dunes Workshop: Planetary Analogs—Integrating Models, Remote Sensing, and Field Data; Alamosa, Colorado, 18-21 May 2010; Dunes and other eolian bed forms are prominent on several planetary bodies in our solar system. Despite 4 decades of study, many questions remain regarding the composition, age, and origins of these features, as well as the climatic conditions under which they formed. Recently acquired data from orbiters and rovers, together with terrestrial analogs and numerical models, are providing new insights into Martian sand dunes, as well as eolian bed forms on other terrestrial planetary bodies (e.g., Titan). As a means of bringing together terrestrial and planetary researchers from diverse backgrounds with the goal of fostering collaborative interdisciplinary research, the U.S. Geological Survey (USGS), the Carl Sagan Center for the Study of Life in the Universe, the Desert Research Institute, and the U.S. National Park Service held a workshop in Colorado. The small group setting facilitated intensive discussion of problems and issues associated with eolian processes on Earth, Mars, and Titan.

  2. From red giants to planetary nebulae

    International Nuclear Information System (INIS)

    Kwok, S.

    1982-01-01

    The transition from red giants to planetary nebulae is studied by comparing the spectral characteristics of red giant envelopes and planetary nebulae. Observational and theoretical evidence both suggest that remnants of red giant envelopes may still be present in planetary nebula systems and should have significant effects on their formation. The dynamical effects of the interaction of stellar winds from central stars of planetary nebulae with the remnant red giant envelopes are evaluated and the mechanism found to be capable of producing the observed masses and momenta of planetary nebulae. The observed mass-radii relation of planetary nebulae may also be best explained by the interacting winds model. The possibility that red giant mass loss, and therefore the production of planetary nebulae, is different between Population I and II systems is also discussed

  3. Planetary Space Weather Services for the Europlanet 2020 Research Infrastructure

    Science.gov (United States)

    André, Nicolas; Grande, Manuel

    2016-04-01

    Under Horizon 2020, the Europlanet 2020 Research Infrastructure (EPN2020-RI) will include an entirely new Virtual Access Service, WP5 VA1 "Planetary Space Weather Services" (PSWS) that will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. VA1 will make five entirely new 'toolkits' accessible to the research community and to industrial partners planning for space missions: a general planetary space weather toolkit, as well as three toolkits dedicated to the following key planetary environments: Mars (in support ExoMars), comets (building on the expected success of the ESA Rosetta mission), and outer planets (in preparation for the ESA JUICE mission to be launched in 2022). This will give the European planetary science community new methods, interfaces, functionalities and/or plugins dedicated to planetary space weather in the tools and models available within the partner institutes. It will also create a novel event-diary toolkit aiming at predicting and detecting planetary events like meteor showers and impacts. A variety of tools (in the form of web applications, standalone software, or numerical models in various degrees of implementation) are available for tracing propagation of planetary and/or solar events through the Solar System and modelling the response of the planetary environment (surfaces, atmospheres, ionospheres, and magnetospheres) to those events. But these tools were not originally designed for planetary event prediction and space weather applications. So WP10 JRA4 "Planetary Space Weather Services" (PSWS) will provide the additional research and tailoring required to apply them for these purposes. The overall objectives of this Joint Research Aactivities will be to review, test, improve and adapt methods and tools available within the partner institutes in order to make prototype planetary event and space weather services operational in

  4. Galactic planetary science.

    Science.gov (United States)

    Tinetti, Giovanna

    2014-04-28

    Planetary science beyond the boundaries of our Solar System is today in its infancy. Until a couple of decades ago, the detailed investigation of the planetary properties was restricted to objects orbiting inside the Kuiper Belt. Today, we cannot ignore that the number of known planets has increased by two orders of magnitude nor that these planets resemble anything but the objects present in our own Solar System. Whether this fact is the result of a selection bias induced by the kind of techniques used to discover new planets--mainly radial velocity and transit--or simply the proof that the Solar System is a rarity in the Milky Way, we do not know yet. What is clear, though, is that the Solar System has failed to be the paradigm not only in our Galaxy but even 'just' in the solar neighbourhood. This finding, although unsettling, forces us to reconsider our knowledge of planets under a different light and perhaps question a few of the theoretical pillars on which we base our current 'understanding'. The next decade will be critical to advance in what we should perhaps call Galactic planetary science. In this paper, I review highlights and pitfalls of our current knowledge of this topic and elaborate on how this knowledge might arguably evolve in the next decade. More critically, I identify what should be the mandatory scientific and technical steps to be taken in this fascinating journey of remote exploration of planets in our Galaxy.

  5. OSS (Outer Solar System): a fundamental and planetary physics mission to Neptune, Triton and the Kuiper Belt

    Science.gov (United States)

    Christophe, B.; Spilker, L. J.; Anderson, J. D.; André, N.; Asmar, S. W.; Aurnou, J.; Banfield, D.; Barucci, A.; Bertolami, O.; Bingham, R.; Brown, P.; Cecconi, B.; Courty, J.-M.; Dittus, H.; Fletcher, L. N.; Foulon, B.; Francisco, F.; Gil, P. J. S.; Glassmeier, K. H.; Grundy, W.; Hansen, C.; Helbert, J.; Helled, R.; Hussmann, H.; Lamine, B.; Lämmerzahl, C.; Lamy, L.; Lehoucq, R.; Lenoir, B.; Levy, A.; Orton, G.; Páramos, J.; Poncy, J.; Postberg, F.; Progrebenko, S. V.; Reh, K. R.; Reynaud, S.; Robert, C.; Samain, E.; Saur, J.; Sayanagi, K. M.; Schmitz, N.; Selig, H.; Sohl, F.; Spilker, T. R.; Srama, R.; Stephan, K.; Touboul, P.; Wolf, P.

    2012-10-01

    The present OSS (Outer Solar System) mission continues a long and bright tradition by associating the communities of fundamental physics and planetary sciences in a single mission with ambitious goals in both domains. OSS is an M-class mission to explore the Neptune system almost half a century after the flyby of the Voyager 2 spacecraft. Several discoveries were made by Voyager 2, including the Great Dark Spot (which has now disappeared) and Triton's geysers. Voyager 2 revealed the dynamics of Neptune's atmosphere and found four rings and evidence of ring arcs above Neptune. Benefiting from a greatly improved instrumentation, a mission as OSS would result in a striking advance in the study of the farthest planet of the solar system. Furthermore, OSS would provide a unique opportunity to visit a selected Kuiper Belt object subsequent to the passage of the Neptunian system. OSS would help consolidate the hypothesis of the origin of Triton as a Kuiper Belt object captured by Neptune, and to improve our knowledge on the formation of the solar system. The OSS probe would carry instruments allowing precise tracking of the spacecraft during the cruise. It would facilitate the best possible tests of the laws of gravity in deep space. These objectives are important for fundamental physics, as they test General Relativity, our current theoretical description of gravitation, but also for cosmology, astrophysics and planetary science, as General Relativity is used as a tool in all these domains. In particular, the models of solar system formation uses General Relativity to describe the crucial role of gravity. OSS is proposed as an international cooperation between ESA and NASA, giving the capability for ESA to launch an M-class mission towards the farthest planet of the solar system, and to a Kuiper Belt object. The proposed mission profile would allow to deliver a 500 kg class spacecraft. The design of the probe is mainly constrained by the deep space gravity test in order

  6. Development of LIDAR sensor systems for autonomous safe landing on planetary bodies

    Science.gov (United States)

    Amzajerdian, F.; Pierrottet, D.; Petway, L.; Vanek, M.

    2017-11-01

    Future NASA exploratory missions to the Moon and Mars will require safe soft-landings at the designated sites with a high degree of precision. These sites may include areas of high scientific value with relatively rough terrain with little or no solar illumination and possibly areas near pre-deployed assets. The ability of lidar technology to provide three-dimensional elevation maps of the terrain, high precision distance to the ground, and approach velocity can enable safe landing of large robotic and manned vehicles with a high degree of precision. Currently, NASA-LaRC is developing novel lidar sensors aimed at meeting NASA's objectives for future planetary landing missions under the Autonomous Landing and Hazard Avoidance (ALHAT) project. These lidar sensors are 3-Dimensional Imaging Flash Lidar, Doppler Lidar, and Laser Altimeter. The Flash Lidar is capable of generating elevation maps of the terrain identifying hazardous features such as rocks, craters, and steep slopes. The elevation maps collected during the approach phase between 1000 m to 500 m above the ground can be used to determine the most suitable safe landing site. The Doppler Lidar provides highly accurate ground velocity and distance data allowing for precision navigation to the selected landing site. Prior to the approach phase at altitudes of over 15 km, the Laser Altimeter can provide sufficient data for updating the vehicle position and attitude data from the Inertial Measurement Unit. At these higher altitudes, either the Laser Altimeter or the Flash Lidar can be used for generating a contour map of the terrain below for identifying known surface features such as craters for further reducing the vehicle relative position error.

  7. Suppressed Far-UV Stellar Activity and Low Planetary Mass Loss in the WASP-18 System

    Science.gov (United States)

    Fossati, L.; Koskinen, T.; France, K.; Cubillos, P. E.; Haswell, C. A.; Lanza, A. F.; Pillitteri, I.

    2018-03-01

    WASP-18 hosts a massive, very close-in Jupiter-like planet. Despite its young age (energy distribution, we infer the extinction (E(B-V) ≈ 0.01 mag) and then the interstellar medium (ISM) column density for a number of ions, concluding that ISM absorption is not the origin of the anomaly. We measure the flux of the four stellar emission features detected in the COS spectrum (C II, C III, C IV, Si IV). Comparing the C II/C IV flux ratio measured for WASP-18 with that derived from spectra of nearby stars with known age, we see that the far-UV spectrum of WASP-18 resembles that of old (>5 Gyr), inactive stars, in stark contrast with its young age. We conclude that WASP-18 has an intrinsically low activity level, possibly caused by star–planet tidal interaction, as suggested by previous studies. Re-scaling the solar irradiance reference spectrum to match the flux of the Si IV line, yields an XUV integrated flux at the planet orbit of 10.2 erg s‑1 cm‑2. We employ the rescaled XUV solar fluxes to models of the planetary upper atmosphere, deriving an extremely low thermal mass-loss rate of 10‑20 M J Gyr‑1. For such high-mass planets, thermal escape is not energy limited, but driven by Jeans escape. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from MAST at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program #13859. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 092.D-0587.

  8. Planetary Sciences Literature - Access and Discovery

    Science.gov (United States)

    Henneken, Edwin A.; ADS Team

    2017-10-01

    The NASA Astrophysics Data System (ADS) has been around for over 2 decades, helping professional astronomers and planetary scientists navigate, without charge, through the increasingly complex environment of scholarly publications. As boundaries between disciplines dissolve and expand, the ADS provides powerful tools to help researchers discover useful information efficiently. In its new form, code-named ADS Bumblebee (https://ui.adsabs.harvard.edu), it may very well answer questions you didn't know you had! While the classic ADS (http://ads.harvard.edu) focuses mostly on searching basic metadata (author, title and abstract), today's ADS is best described as a an "aggregator" of scholarly resources relevant to the needs of researchers in astronomy and planetary sciences, and providing a discovery environment on top of this. In addition to indexing content from a variety of publishers, data and software archives, the ADS enriches its records by text-mining and indexing the full-text articles (about 4.7 million in total, with 130,000 from planetary science journals), enriching its metadata through the extraction of citations and acknowledgments. Recent technology developments include a new Application Programming Interface (API), a new user interface featuring a variety of visualizations and bibliometric analysis, and integration with ORCID services to support paper claiming. The new ADS provides powerful tools to help you find review papers on a given subject, prolific authors working on a subject and who they are collaborating with (within and outside their group) and papers most read by by people who read recent papers on the topic of your interest. These are just a couple of examples of the capabilities of the new ADS. We currently index most journals covering the planetary sciences and we are striving to include those journals most frequently cited by planetary science publications. The ADS is operated by the Smithsonian Astrophysical Observatory under NASA

  9. System of marketing: principles of forming, functioning and development

    OpenAIRE

    Mazko, T.

    2010-01-01

    Initial positions of system marketing forming, functioning and development are examined as a component subsystem to the enterprise. Principles are offered in relation to the certain states of the system of marketing for enterprise

  10. Validation of a Rapid Bacteria Endospore Enumeration System for Planetary Protection Application

    Science.gov (United States)

    Chen, Fei; Kern, Roger; Kazarians, Gayane; Venkateswaran, Kasthuri

    NASA monitors spacecraft surfaces to assure that the presence of bacterial endospores meets strict criteria at launch, to minimize the risk of inadvertent contamination of the surface of Mars. Currently, the only approved method for enumerating the spores is a culture based assay that requires three days to produce results. In order to meet the demanding schedules of spacecraft assembly, a more rapid spore detection assay is being considered as an alternate method to the NASA standard culture-based assay. The Millipore Rapid Microbiology Detection System (RMDS) has been used successfully for rapid bioburden enumeration in the pharmaceutical and food industries. The RMDS is rapid and simple, shows high sensitivity (to 1 colony forming unit [CFU]/sample), and correlates well with traditional culture-based methods. It combines membrane filtration, adenosine triphosphate (ATP) bioluminescence chemistry, and image analysis based on photon detection with a Charge Coupled Device (CCD) camera. In this study, we have optimized the assay conditions and evaluated the use of the RMDS as a rapid spore detection tool for NASA applications. In order to select for spores, the samples were subjected to a heat shock step before proceeding with the RMDS incubation protocol. Seven species of Bacillus (nine strains) that have been repeatedly isolated from clean room environments were assayed. All strains were detected by the RMDS in 5 hours and these assay times were repeatedly demonstrated along with low image background noise. Validation experiments to compare the Rapid Sore Assay (RSA) and NASA standard assay (NSA) were also performed. The evaluation criteria were modeled after the FDA Guideline of Process Validation, and Analytical Test Methods. This body of research demonstrates that the Rapid Spore Assay (RSA) is quick, and of equivalent sensitivity to the NASA standard assay, potentially reducing the assay time for bacterial endospores from over 72 hours to less than 8 hours

  11. Influence of system considerations on waste form design

    International Nuclear Information System (INIS)

    Bauer, A.A.; Matthews, S.C.; Peterson, R.W.

    1979-01-01

    The design of waste forms is constrained by waste management system considerations imposed during generation, treatment, packaging, transportation, storage, and isolation. In the isolation phase, the waste form provides one of the barriers to release in a multibarrier system that includes the natural geologic and hydrologic barriers as well as other engineered barriers

  12. Interstellar and Planetary Analogs in the Laboratory

    Science.gov (United States)

    Salama, Farid

    2013-01-01

    We present and discuss the unique capabilities of the laboratory facility, COSmIC, that was developed at NASA Ames to investigate the interaction of ionizing radiation (UV, charged particles) with molecular species (neutral molecules, radicals and ions) and carbonaceous grains in the Solar System and in the Interstellar Medium (ISM). COSmIC stands for Cosmic Simulation Chamber, a laboratory chamber where interstellar and planetary analogs are generated, processed and analyzed. It is composed of a pulsed discharge nozzle (PDN) expansion that generates a free jet supersonic expansion in a plasma cavity coupled to two ultrahigh-sensitivity, complementary in situ diagnostics: a cavity ring down spectroscopy (CRDS) system for photonic detection and a Reflectron time-of-flight mass spectrometer (ReTOF-MS) for mass detection. This setup allows the study of molecules, ions and solids under the low temperature and high vacuum conditions that are required to simulate some interstellar, circumstellar and planetary physical environments providing new fundamental insights on the molecular level into the processes that are critical to the chemistry in the ISM, circumstellar and planet forming regions, and on icy objects in the Solar System. Recent laboratory results that were obtained using COSmIC will be discussed, in particular the progress that have been achieved in monitoring in the laboratory the formation of solid particles from their gas-phase molecular precursors in environments as varied as circumstellar outflow and planetary atmospheres.

  13. Kinematics of galactic planetary nebulae

    International Nuclear Information System (INIS)

    Kiosa, M.I.; Khromov, G.S.

    1979-01-01

    The classical method of determining the components of the solar motion relative to the centroid of the system of planetary nebulae with known radial velocities is investigated. It is shown that this method is insensitive to random errors in the radial velocities and that low accuracy in determining the coordinates of the solar apex and motion results from the insufficient number of planetaries with measured radial velocities. The planetary nebulae are found not to satisfy well the law of differential galactic rotation with circular orbits. This is attributed to the elongation of their galactic orbits. A method for obtaining the statistical parallax of planetary nebulae is considered, and the parallax calculated from the tau components of their proper motion is shown to be the most reliable

  14. Solar System Exploration Augmented by In-Situ Resource Utilization: Human Planetary Base Issues for Mercury and Saturn

    Science.gov (United States)

    Palaszewski, Bryan A.

    2017-01-01

    Human and robotic missions to Mercury and Saturn are presented and analyzed with a range of propulsion options. Historical studies of space exploration, planetary spacecraft, and astronomy, in-situ resource utilization (ISRU), and industrialization all point to the vastness of natural resources in the solar system. Advanced propulsion benefitted from these resources in many ways. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal and nuclear pulse propulsion as well as advanced chemical propulsion can significantly enhance these scenarios. Updated analyses based on these historical visions are presented. Nuclear thermal propulsion and ISRU enhanced chemical propulsion landers are assessed for Mercury missions. At Saturn, nuclear pulse propulsion with alternate propellant feed systems and Saturn moon exploration with chemical propulsion and nuclear electric propulsion options are discussed. Issues with using in-situ resource utilization on Mercury missions are discussed. At Saturn, the best locations for exploration and the use of the moons Titan and Enceladus as central locations for Saturn moon exploration is assessed.

  15. Influence of Planetary Protection Guidelines on Waste Management Operations

    Science.gov (United States)

    Hogan, John A.; Fisher, John W.; Levri, Julie A.; Wignarajah, Kanapathipi; Race, Margaret S.; Stabekis, Perry D.; Rummel, John D.

    2005-01-01

    Newly outlined missions in the Space Exploration Initiative include extended human habitation on Mars. During these missions, large amounts of waste materials will be generated in solid, liquid and gaseous form. Returning these wastes to Earth will be extremely costly, and will therefore likely remain on Mars. Untreated, these wastes are a reservoir of live/dead organisms and molecules considered to be "biomarkers" i.e., indicators of life). If released to the planetary surface, these materials can potentially confound exobiology experiments and disrupt Martian ecology indefinitely (if existent). Waste management systems must therefore be specifically designed to control release of problematic materials both during the active phase of the mission, and for any specified post-mission duration. To effectively develop waste management requirements for Mars missions, planetary protection guidelines must first be established. While previous policies for Apollo lunar missions exist, it is anticipated that the increased probability of finding evidence of life on Mars, as well as the lengthy mission durations will initially lead to more conservative planetary protection measures. To facilitate the development of overall requirements for both waste management and planetary protection for future missions, a workshop was conducted to identify how these two areas interface, and to establish a preliminary set of planetary protection guidelines that address waste management operations. This paper provides background regarding past and current planetary protection and waste management issues, and their interactions. A summary of the recommended planetary protection guidelines, anticipated ramifications and research needs for waste management system design for both forward (Mars) and backward (Earth) contamination is also provided.

  16. Autonomous Trans-Antartic expeditions: an initiative for advancing planetary mobility system technology while addressing Earth science objectives in Antartica

    Science.gov (United States)

    Carsey, F.; Schenker, P.; Blamont, J.

    2001-01-01

    A workshop on Antartic Autonomous Scientific Vehicles and Traverses met at the National Geographic Society in February to discuss scientific objectives and benefits of the use of rovers such as are being developed for use in planetary exploration.

  17. Maximizing Science Return on Astrobiology and Planetary Missions Using Integrated Liquid-Handling Chemical Analysis Systems - A Status Report

    Science.gov (United States)

    Willis, P. A.; Mora, M. F.; Creamer, J. S.; Kehl, F.

    2016-10-01

    Our team has been developing all components required for liquid-based analysis on planetary missions. Here we summarize our progress in this area, and highlight enhancements to science return on NASA missions that these technologies could provide.

  18. Regolith Derived Heat Shield for a Planetary Body Entry and Descent System with In-Situ Fabrication Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High-mass planetary surface access is one of NASA’s Grand Challenges involving entry, descent and landing (EDL). During the entry and descent phase,...

  19. Exponential law as a more compatible model to describe orbits of planetary systems

    Directory of Open Access Journals (Sweden)

    M Saeedi

    2012-12-01

    Full Text Available   According to the Titus-Bode law, orbits of planets in the solar system obey a geometric progression. Many investigations have been launched to improve this law. In this paper, we apply square and exponential models to planets of solar system, moons of planets, and some extra solar systems, and compare them with each other.

  20. Near-Earth Objects: Targets for Future Human Exploration, Solar System Science, Resource Utilization, and Planetary Defense

    Science.gov (United States)

    Abell, Paul A.

    2011-01-01

    U.S. President Obama stated on April 15, 2010 that the next goal for human spaceflight will be to send human beings to a near-Earth asteroid by 2025. Given this direction from the White House, NASA has been involved in studying various strategies for near-Earth object (NEO) exploration in order to follow U.S. Space Exploration Policy. This mission would be the first human expedition to an interplanetary body beyond the Earth-Moon system and would prove useful for testing technologies required for human missions to Mars and other Solar System destinations. Missions to NEOs would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting in-depth scientific investigations of these primitive objects. In addition, the resulting scientific investigations would refine designs for future extraterrestrial resource extraction and utilization, and assist in the development of hazard mitigation techniques for planetary defense. This presentation will discuss some of the physical characteristics of NEOs and review some of the current plans for NEO research and exploration from both a human and robotic mission perspective.

  1. Europlanet Research Infrastructure: Planetary Simulation Facilities

    Science.gov (United States)

    Davies, G. R.; Mason, N. J.; Green, S.; Gómez, F.; Prieto, O.; Helbert, J.; Colangeli, L.; Srama, R.; Grande, M.; Merrison, J.

    2008-09-01

    physical properties of ice samples formed under planetary conditions to assess how rheology varies with pressure and temperature and grain size to gain a far better understanding of how tectonics may operate on icy moons. Hot planetary surfaces simulation chamber at DLR The planetary simulation chamber is to study the behaviour of planetary analogue materials on the surface of hot (airless) bodies in the solar system. Samples can be heated up to temperatures of 500°C simulating conditions found on the surface of Mercury and Venus. This enables highly accurate thermal emission measurements using the integrated infrared spectrometer and calibrated sources. Thermal gradients can be applied to samples to simulate diurnal thermal cycles and examine thermal stresses in materials. The chamber can be placed under vacuum or purged with gas. In addition, to the high temperature chamber a number of further planetary simulation chambers are available equipped with LIBS and Raman-spectroscopy equipment. Dust analogue simulation chamber at INAF/OACN This facility produces and characterises dust analogues (arc discharge, laser ablation, grinding of minerals, ices) in a variety of simulation chambers under variable pressure (10-6 - 10-3 mbar), temperature (80 - 330 K) and gas composition. Dust and analogues are characterised by a variety of Spectroscopic (absorption, transmission, diffuse-specular reflectance) and imaging techniques (SEM) and can be subjected to thermal annealing, ion bombardment and UV irradiation. Dust accelerator facility at Max Planck Institüt Nuclear Physics, Heidelberg. This facility allows the investigation of hypervelocity dust impacts onto various materials. Dust grain materials from nano to micron sizes are accelerated using a 2 MV Vande- Graaff to velocities between 1 and 60 km/s comparable to the planetary rings of the giant gas planets and impact ejecta processes on the surface of small bodies (asteroids, comets) as well as moons and planetary surfaces

  2. (abstract) The Distribution of Carbon in the Outer Solar System: New Constraints on Planetary Formation Mechanisms from Groundbased Spectroscopic Observations of Uranus and Neptune

    Science.gov (United States)

    Baines, Kevin H.; Mickelson, M. E.; Larson, L. E.

    1994-01-01

    New limits on the methane mixing ratio within the well-mixed tropospheres of Uranus and Neptune place significant constraints on planetary formation mechanisms within the outer solar system. Our results support the conclusion of other researchers that a nontrivial amount of methane in the outer solar system was incorporated into the planets by dissolution of carbon-bearing planetesimals during the early evolutionary stages of both Uranus and Neptune.

  3. Towards the first generation micro bulk forming system

    DEFF Research Database (Denmark)

    Arentoft, Mogens; Eriksen, Rasmus Solmer; Hansen, Hans Nørgaard

    2011-01-01

    The industrial demand for micro mechanical components has surged in the later years with the constant introduction of more integrated products. The micro bulk forming process holds a promising pledge of delivering high quality micro mechanical components at low cost and high production rates. Thi...... press. The system is demonstrated on an advanced micro forming case where a dental component is formed in medical grade Titanium....

  4. Lunar and Planetary Science XXXV: Special Session: Oxygen in the Solar System, I

    Science.gov (United States)

    2004-01-01

    The Special Session: Oxygen in the Solar System, I, included the following reports:Oxygen in the Solar System: Origins of Isotopic and Redox Complexity; The Origin of Oxygen Isotope Variations in the Early Solar System; Solar and Solar-Wind Oxygen Isotopes and the Genesis Mission; Solar 18O/17O and the Setting for Solar Birth; Oxygen Isotopes in Early Solar System Materials: A Perspective Based on Microbeam Analyses of Chondrules from CV Carbonaceous Chondrites; Insight into Primordial Solar System Oxygen Reservoirs from Returned Cometary Samples; Tracing Meteorites to Their Sources Through Asteroid Spectroscopy; Redox Conditions Among the Terrestrial Planets; Redox Complexity in Martian Meteorites: Implications for Oxygen in the Terrestrial Planets; Implications of Sulfur Isotopes for the Evolution of Atmospheric Oxygen; Oxygen in the Outer Solar System; and On the Oxidation States of the Galilean Satellites: Implications for Internal Structures.

  5. The International Planetary Data Alliance

    Science.gov (United States)

    Stein, T.; Arviset, C.; Crichton, D. J.

    2017-12-01

    The International Planetary Data Alliance (IPDA) is an association of partners with the aim of improving the quality of planetary science data and services to the end users of space based instrumentation. The specific mission of the IPDA is to facilitate global access to, and exchange of, high quality scientific data products managed across international boundaries. Ensuring proper capture, accessibility and availability of the data is the task of the individual member space agencies. The IPDA was formed in 2006 with the purpose of adopting standards and developing collaborations across agencies to ensure data is captured in common formats. Member agencies include: Armenian Astronomical Society, China National Space Agency (CNSA), European Space Agency (ESA), German Aerospace Center (DLR), Indian Space Research Organization (ISRO), Italian Space Agency (ASI), Japanese Aerospace Exploration Agency (JAXA), National Air and Space Administration (NASA), National Centre for Space Studies (CNES), Space Research Institute (IKI), UAE Space Agency, and UK Space Agency. The IPDA Steering Committee oversees the execution of projects and coordinates international collaboration. The IPDA conducts a number of focused projects to enable interoperability, construction of compatible archives, and the operation of the IPDA as a whole. These projects have helped to establish the IPDA and to move the collaboration forward. A key project that is currently underway is the implementation of the PDS4 data standard. Given the international focus, it has been critical that the PDS and the IPDA collaborate on its development. Also, other projects have been conducted successfully, including developing the IPDA architecture and corresponding requirements, developing shared registries for data and tools across international boundaries, and common templates for supporting agreements for archiving and sharing data for international missions. Several projects demonstrating interoperability across

  6. Environmentally Benign Tribo-systems for Metal Forming

    DEFF Research Database (Denmark)

    Bay, Niels; Azushima, A.; Groche, P.

    2010-01-01

    The growing awareness of environmental issues and the requirements to establish solutions diminishing the impact on working environment as well as external environment has initiated ever increasing efforts to develop new, environmentally benign tribological systems for metal forming. The present ...

  7. High-resolution Imaging of Transiting Extrasolar Planetary systems (HITEP). II. Lucky Imaging results from 2015 and 2016

    Science.gov (United States)

    Evans, D. F.; Southworth, J.; Smalley, B.; Jørgensen, U. G.; Dominik, M.; Andersen, M. I.; Bozza, V.; Bramich, D. M.; Burgdorf, M. J.; Ciceri, S.; D'Ago, G.; Figuera Jaimes, R.; Gu, S.-H.; Hinse, T. C.; Henning, Th.; Hundertmark, M.; Kains, N.; Kerins, E.; Korhonen, H.; Kokotanekova, R.; Kuffmeier, M.; Longa-Peña, P.; Mancini, L.; MacKenzie, J.; Popovas, A.; Rabus, M.; Rahvar, S.; Sajadian, S.; Snodgrass, C.; Skottfelt, J.; Surdej, J.; Tronsgaard, R.; Unda-Sanzana, E.; von Essen, C.; Wang, Yi-Bo; Wertz, O.

    2018-02-01

    Context. The formation and dynamical history of hot Jupiters is currently debated, with wide stellar binaries having been suggested as a potential formation pathway. Additionally, contaminating light from both binary companions and unassociated stars can significantly bias the results of planet characterisation studies, but can be corrected for if the properties of the contaminating star are known. Aim. We search for binary companions to known transiting exoplanet host stars, in order to determine the multiplicity properties of hot Jupiter host stars. We also search for and characterise unassociated stars along the line of sight, allowing photometric and spectroscopic observations of the planetary system to be corrected for contaminating light. Methods: We analyse lucky imaging observations of 97 Southern hemisphere exoplanet host stars, using the Two Colour Instrument on the Danish 1.54 m telescope. For each detected companion star, we determine flux ratios relative to the planet host star in two passbands, and measure the relative position of the companion. The probability of each companion being physically associated was determined using our two-colour photometry. Results: A catalogue of close companion stars is presented, including flux ratios, position measurements, and estimated companion star temperature. For companions that are potential binary companions, we review archival and catalogue data for further evidence. For WASP-77AB and WASP-85AB, we combine our data with historical measurements to determine the binary orbits, showing them to be moderately eccentric and inclined to the line of sight (and hence planetary orbital axis). Combining our survey with the similar Friends of Hot Jupiters survey, we conclude that known hot Jupiter host stars show a deficit of high mass stellar companions compared to the field star population; however, this may be a result of the biases in detection and target selection by ground-based surveys. Based on data collected by

  8. A regression-based Kansei engineering system based on form feature lines for product form design

    Directory of Open Access Journals (Sweden)

    Yan Xiong

    2016-06-01

    Full Text Available When developing new products, it is important for a designer to understand users’ perceptions and develop product form with the corresponding perceptions. In order to establish the mapping between users’ perceptions and product design features effectively, in this study, we presented a regression-based Kansei engineering system based on form feature lines for product form design. First according to the characteristics of design concept representation, product form features–product form feature lines were defined. Second, Kansei words were chosen to describe image perceptions toward product samples. Then, multiple linear regression and support vector regression were used to construct the models, respectively, that predicted users’ image perceptions. Using mobile phones as experimental samples, Kansei prediction models were established based on the front view form feature lines of the samples. From the experimental results, these two predict models were of good adaptability. But in contrast to multiple linear regression, the predict performance of support vector regression model was better, and support vector regression is more suitable for form regression prediction. The results of the case showed that the proposed method provided an effective means for designers to manipulate product features as a whole, and it can optimize Kansei model and improve practical values.

  9. Exploring the Solar System Activities Outline: Hands-On Planetary Science for Formal Education K-14 and Informal Settings

    Science.gov (United States)

    Allen, J. S.; Tobola, K. W.; Lindstrom, M. L.

    2003-01-01

    Activities by NASA scientists and teachers focus on integrating Planetary Science activities with existing Earth science, math, and language arts curriculum. The wealth of activities that highlight missions and research pertaining to the exploring the solar system allows educators to choose activities that fit a particular concept or theme within their curriculum. Most of the activities use simple, inexpensive techniques that help students understand the how and why of what scientists are learning about comets, asteroids, meteorites, moons and planets. With these NASA developed activities students experience recent mission information about our solar system such as Mars geology and the search for life using Mars meteorites and robotic data. The Johnson Space Center ARES Education team has compiled a variety of NASA solar system activities to produce an annotated thematic outline useful to classroom educators and informal educators as they teach space science. An important aspect of the outline annotation is that it highlights appropriate science content information and key science and math concepts so educators can easily identify activities that will enhance curriculum development. The outline contains URLs for the activities and NASA educator guides as well as links to NASA mission science and technology. In the informal setting educators can use solar system exploration activities to reinforce learning in association with thematic displays, planetarium programs, youth group gatherings, or community events. Within formal education at the primary level some of the activities are appropriately designed to excite interest and arouse curiosity. Middle school educators will find activities that enhance thematic science and encourage students to think about the scientific process of investigation. Some of the activities offered are appropriate for the upper levels of high school and early college in that they require students to use and analyze data.

  10. CONSTRAINING THE MOVEMENT OF THE SPIRAL FEATURES AND THE LOCATIONS OF PLANETARY BODIES WITHIN THE AB AUR SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Lomax, Jamie R.; Wisniewski, John P.; Hashimoto, Jun [Homer L. Dodge Department of Physics, University of Oklahoma, Norman, OK 73071 (United States); Grady, Carol A. [Exoplanets and Stellar Astrophysics Laboratory, Code 667, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); McElwain, Michael W. [NASA Goddard Space Flight Center, Code 6681, Greenbelt, MD 20771 (United States); Kudo, Tomoyuki; Currie, Thayne M; Egner, Sebastian; Guyon, Olivier; Hayano, Yutaka [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A’ohoku Place, Hilo, HI 96720 (United States); Kusakabe, Nobuhiko; Hayashi, Masahiko [National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan); Okamoto, Yoshiko K. [Institute of Astrophysics and Planetary Sciences, Faculty of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512 (Japan); Fukagawa, Misato [Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Abe, Lyu [Laboratoire Lagrange (UMR 7293), Universite de Nice-Sophia Antipolis, CNRS, Observatoire de la Cote d’Azur, 28 avenue Valrose, F-06108 Nice Cedex 2 (France); Brandner, Wolfgang; Feldt, Markus [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Brandt, Timothy D. [Astrophysics Department, Institute for Advanced Study, Princeton, NJ 08540 (United States); Carson, Joseph C. [Department of Physics and Astronomy, College of Charleston, 58 Coming Street, Charleston, SC 29424 (United States); Goto, Miwa, E-mail: Jamie.R.Lomax@ou.edu, E-mail: wisniewski@ou.edu, E-mail: carol.a.grady@nasa.gov [Universitäts-Sternwarte München, Ludwig-Maximilians-Universität, Scheinerstr. 1, D-81679 München (Germany); and others

    2016-09-01

    We present a new analysis of multi-epoch, H -band, scattered light images of the AB Aur system. We use a Monte Carlo radiative transfer code to simultaneously model the system’s spectral energy distribution (SED) and H -band polarized intensity (PI) imagery. We find that a disk-dominated model, as opposed to one that is envelope-dominated, can plausibly reproduce AB Aur’s SED and near-IR imagery. This is consistent with previous modeling attempts presented in the literature and supports the idea that at least a subset of AB Aur’s spirals originate within the disk. In light of this, we also analyzed the movement of spiral structures in multi-epoch H -band total light and PI imagery of the disk. We detect no significant rotation or change in spatial location of the spiral structures in these data, which span a 5.8-year baseline. If such structures are caused by disk–planet interactions, the lack of observed rotation constrains the location of the orbit of planetary perturbers to be >47 au.

  11. Constraint on Additional Planets in Planetary Systems Discovered Through the Channel of High-magnification Gravitational Microlensing Events

    Science.gov (United States)

    Shin, I.-G.; Han, C.; Choi, J.-Y.; Hwang, K.-H.; Jung, Y.-K.; Park, H.

    2015-04-01

    High-magnification gravitational microlensing events provide an important channel of detecting planetary systems with multiple giants located at their birth places. In order to investigate the potential existence of additional planets, we reanalyze the light curves of the eight high-magnification microlensing events, for each of which a single planet was previously detected. The analyzed events include OGLE-2005-BLG-071, OGLE-2005-BLG-169, MOA-2007-BLG-400, MOA-2008-BLG-310, MOA-2009-BLG-319, MOA-2009-BLG-387, MOA-2010-BLG-477, and MOA-2011-BLG-293. We find that including an additional planet improves fits with {Δ }{{χ }2}\\lt 80 for seven out of eight analyzed events. For MOA-2009-BLG-319, the improvement is relatively big with {Δ }{{χ }2}∼ 143. From inspection of the fits, we find that the improvement of the fits is attributed to systematics in data. Although no clear evidence of additional planets is found, it is still possible to constrain the existence of additional planets in the parameter space. For this purpose, we construct exclusion diagrams showing the confidence levels excluding the existence of an additional planet as a function of its separation and mass ratio. We also present the exclusion ranges of additional planets with 90% confidence level for Jupiter-, Saturn-, and Uranus-mass planets.

  12. Comparison of dynamic isotope power systems for distributed planetary surface applications

    International Nuclear Information System (INIS)

    Bents, D.J.; McKissock, B.I.; Withrow, C.A.; Hanlon, J.C.; Schmitz, P.C.

    1991-01-01

    To support the Space Exploration Initiative, a study was performed to investigate and characterize dynamic isotope power system (DIPS) alternatives for the surface mission elements associated with a lunar base and subsequent manned Mars expedition

  13. Complex Organics in the Icy Bodies in Planetary Systems — Accepted Notions and New Ideas

    Science.gov (United States)

    Simonia, I.; Cruikshank, D. P.

    2017-11-01

    We considered physical properties of frozen hydrocarbon substance and refractory organic of icy bodies of the solar system. We proposed main physical properties of potential self-organized substance of icy bodies. Obtained results are presented.

  14. K-U-Th systematics for the planetary matter of the Solar system

    International Nuclear Information System (INIS)

    Bazilevskij, A.T.

    1985-01-01

    K, U, Th content in the Earth, Moon, Venus, Mars rocks and in certain types of meteorites are considered. All data on U asnd Th content perfectly conform to united direct linear dependence with Th/U ratio approximately 3. In the analysis of K-U correlation it has been found that the considered data totality is divided into three parallel successions distinctive by K content, each of which corresponds to direct power dependence with power exponent approximately 0.7. The richest potassium succession is formed by the data on Earth and Venus - the greatest planet bodies of earth-type. The K poorest succession is formed by the data on small planet bodies - Moon and others. It is concluded that the initial silicate matter of planet bodies of earth type (at least up to generation depths of basalt magms) has been close to the matter of carbonaceous or usual chon drifes. The observed potassium leaning of the matter of small planet bodies, probably, is the result of their loss of relatively volatile potassium (and other volatiles) in the course of impact differentiation at accretion

  15. The Goldstone solar system radar: A science instrument for planetary research

    Science.gov (United States)

    Dvorsky, J. D.; Renzetti, N. A.; Fulton, D. E.

    1992-01-01

    The Goldstone Solar System Radar (GSSR) station at NASA's Deep Space Communications Complex in California's Mojave Desert is described. A short chronological account of the GSSR's technical development and scientific discoveries is given. This is followed by a basic discussion of how information is derived from the radar echo and how the raw information can be used to increase understanding of the solar system. A moderately detailed description of the radar system is given, and the engineering performance of the radar is discussed. The operating characteristics of the Arcibo Observatory in Puerto Rico are briefly described and compared with those of the GSSR. Planned and in-process improvements to the existing radar, as well as the performance of a hypothetical 128-m diameter antenna radar station, are described. A comprehensive bibliography of referred scientific and engineering articles presenting results that depended on data gathered by the instrument is provided.

  16. Near-Earth Objects: Targets for Future Human Exploration, Solar System Science, and Planetary Defense

    Science.gov (United States)

    Abell, Paul A.

    2011-01-01

    Human exploration of near-Earth objects (NEOs) beginning circa 2025 - 2030 is one of the stated objectives of U.S. National Space Policy. Piloted missions to these bodies would further development of deep space mission systems and technologies, obtain better understanding of the origin and evolution of our Solar System, and support research for asteroid deflection and hazard mitigation strategies. This presentation will discuss some of the physical characteristics of NEOs and review some of the current plans for NEO research and exploration from both a human and robotic mission perspective.

  17. Mathematical models of non-linear phenomena, processes and systems: from molecular scale to planetary atmosphere

    CERN Document Server

    2013-01-01

    This book consists of twenty seven chapters, which can be divided into three large categories: articles with the focus on the mathematical treatment of non-linear problems, including the methodologies, algorithms and properties of analytical and numerical solutions to particular non-linear problems; theoretical and computational studies dedicated to the physics and chemistry of non-linear micro-and nano-scale systems, including molecular clusters, nano-particles and nano-composites; and, papers focused on non-linear processes in medico-biological systems, including mathematical models of ferments, amino acids, blood fluids and polynucleic chains.

  18. Fluvial geomorphology on Earth-like planetary surfaces: A review.

    Science.gov (United States)

    Baker, Victor R; Hamilton, Christopher W; Burr, Devon M; Gulick, Virginia C; Komatsu, Goro; Luo, Wei; Rice, James W; Rodriguez, J A P

    2015-09-15

    Morphological evidence for ancient channelized flows (fluvial and fluvial-like landforms) exists on the surfaces of all of the inner planets and on some of the satellites of the Solar System. In some cases, the relevant fluid flows are related to a planetary evolution that involves the global cycling of a volatile component (water for Earth and Mars; methane for Saturn's moon Titan). In other cases, as on Mercury, Venus, Earth's moon, and Jupiter's moon Io, the flows were of highly fluid lava. The discovery, in 1972, of what are now known to be fluvial channels and valleys on Mars sparked a major controversy over the role of water in shaping the surface of that planet. The recognition of the fluvial character of these features has opened unresolved fundamental questions about the geological history of water on Mars, including the presence of an ancient ocean and the operation of a hydrological cycle during the earliest phases of planetary history. Other fundamental questions posed by fluvial and fluvial-like features on planetary bodies include the possible erosive action of large-scale outpourings of very fluid lavas, such as those that may have produced the remarkable canali forms on Venus; the ability of exotic fluids, such as methane, to create fluvial-like landforms, as observed on Saturn's moon, Titan; and the nature of sedimentation and erosion under different conditions of planetary surface gravity. Planetary fluvial geomorphology also illustrates fundamental epistemological and methodological issues, including the role of analogy in geomorphological/geological inquiry.

  19. STEM Engagement with NASA's Solar System Treks Portals for Lunar and Planetary Mapping and Modeling

    Science.gov (United States)

    Law, E. S.; Day, B. H.

    2018-01-01

    This presentation will provide an overview of the uses and capabilities of NASA's Solar System Treks family of online mapping and modeling portals. While also designed to support mission planning and scientific research, this presentation will focus on the Science, Technology, Engineering, and Math (STEM) engagement and public outreach capabilities of these web based suites of data visualization and analysis tools.

  20. MODEL-INDEPENDENT STELLAR AND PLANETARY MASSES FROM MULTI-TRANSITING EXOPLANETARY SYSTEMS

    International Nuclear Information System (INIS)

    Montet, Benjamin T.; Johnson, John Asher

    2013-01-01

    Precise exoplanet characterization requires precise classification of exoplanet host stars. The masses of host stars are commonly estimated by comparing their spectra to those predicted by stellar evolution models. However, spectroscopically determined properties are difficult to measure accurately for stars that are substantially different from the Sun, such as M-dwarfs and evolved stars. Here, we propose a new method to dynamically measure the masses of transiting planets near mean-motion resonances and their host stars by combining observations of transit timing variations with radial velocity (RV) measurements. We derive expressions to analytically determine the mass of each member of the system and demonstrate the technique on the Kepler-18 system. We compare these analytic results to numerical simulations and find that the two are consistent. We identify eight systems for which our technique could be applied if follow-up RV measurements are collected. We conclude that this analysis would be optimal for systems discovered by next-generation missions similar to TESS or PLATO, which will target bright stars that are amenable to efficient RV follow-up.

  1. Planetary maps - Passports for the mind

    International Nuclear Information System (INIS)

    Anderson, C.M.

    1990-01-01

    The various types of planetary maps are reviewed. Included are basic descriptions of planimetric, topographic, geologic, and digital maps. It is noted that planimetric maps are pictorial representations of a planet's round surface flattened into a plane, such as controlled photomosaic maps and shaded relief maps. Topographic maps, those usually made with data from altimeters and stereoscopic images, have contour lines indicating the shapes and elevations of landforms. Geologic maps carry additional information about landforms, such as rock types, the processes that formed them, and their relative ages. The International Astronomical Union nomenclature system is briefly discussed, pointing out that the Union often assigns themes to areas to be mapped

  2. Compact Planetary Systems Perturbed by an Inclined Companion. II. Stellar Spin-Orbit Evolution

    Science.gov (United States)

    Boué, Gwenaël; Fabrycky, Daniel C.

    2014-07-01

    The stellar spin orientation relative to the orbital planes of multiplanet systems is becoming accessible to observations. Here, we analyze and classify different types of spin-orbit evolution in compact multiplanet systems perturbed by an inclined outer companion. Our study is based on classical secular theory, using a vectorial approach developed in a separate paper. When planet-planet perturbations are truncated at the second order in eccentricity and mutual inclination, and the planet-companion perturbations are developed at the quadrupole order, the problem becomes integrable. The motion is composed of a uniform precession of the whole system around the total angular momentum, and in the rotating frame, the evolution is periodic. Here, we focus on the relative motion associated with the oscillations of the inclination between the planet system and the outer orbit and of the obliquities of the star with respect to the two orbital planes. The solution is obtained using a powerful geometric method. With this technique, we identify four different regimes characterized by the nutation amplitude of the stellar spin axis relative to the orbital plane of the planets. In particular, the obliquity of the star reaches its maximum when the system is in the Cassini regime where planets have more angular momentum than the star and where the precession rate of the star is similar to that of the planets induced by the companion. In that case, spin-orbit oscillations exceed twice the inclination between the planets and the companion. Even if the mutual inclination is only ~= 20°, this resonant case can cause the spin-orbit angle to oscillate between perfectly aligned and retrograde values.

  3. A planetary-scale disturbance in a long living three vortex coupled system in Saturn's atmosphere

    Science.gov (United States)

    del Río-Gaztelurrutia, T.; Sánchez-Lavega, A.; Antuñano, A.; Legarreta, J.; García-Melendo, E.; Sayanagi, K. M.; Hueso, R.; Wong, M. H.; Pérez-Hoyos, S.; Rojas, J. F.; Simon, A. A.; de Pater, I.; Blalock, J.; Barry, T.

    2018-03-01

    The zonal wind profile of Saturn has a unique structure at 60°N with a double-peaked jet that reaches maximum zonal velocities close to 100 ms-1. In this region, a singular group of vortices consisting of a cyclone surrounded by two anticyclones was active since 2012 until the time of this report. Our observation demonstrates that vortices in Saturn can be long-lived. The three-vortex system drifts at u = 69.0 ± 1.6 ms-1, similar to the speed of the local wind. Local motions reveal that the relative vorticity of the vortices comprising the system is ∼2-3 times the ambient zonal vorticity. In May 2015, a disturbance developed at the location of the triple vortex system, and expanded eastwards covering in two months a third of the latitudinal circle, but leaving the vortices essentially unchanged. At the time of the onset of the disturbance, a fourth vortex was present at 55°N, south of the three vortices and the evolution of the disturbance proved to be linked to the motion of this vortex. Measurements of local motions of the disturbed region show that cloud features moved essentially at the local wind speeds, suggesting that the disturbance consisted of passively advecting clouds generated by the interaction of the triple vortex system with the fourth vortex to the south. Nonlinear simulations are able to reproduce the stability and longevity of the triple vortex system under low vertical wind shear and high static stability in the upper troposphere of Saturn.

  4. Planetary Geologic Mapping Handbook - 2009

    Science.gov (United States)

    Tanaka, K. L.; Skinner, J. A.; Hare, T. M.

    2009-01-01

    . Terrestrial geologic maps published by the USGS now are primarily digital products using geographic information system (GIS) software and file formats. GIS mapping tools permit easy spatial comparison, generation, importation, manipulation, and analysis of multiple raster image, gridded, and vector data sets. GIS software has also permitted the development of project-specific tools and the sharing of geospatial products among researchers. GIS approaches are now being used in planetary geologic mapping as well (e.g., Hare and others, 2009). Guidelines or handbooks on techniques in planetary geologic mapping have been developed periodically (e.g., Wilhelms, 1972, 1990; Tanaka and others, 1994). As records of the heritage of mapping methods and data, these remain extremely useful guides. However, many of the fundamental aspects of earlier mapping handbooks have evolved significantly, and a comprehensive review of currently accepted mapping methodologies is now warranted. As documented in this handbook, such a review incorporates additional guidelines developed in recent years for planetary geologic mapping by the NASA Planetary Geology and Geophysics (PGG) Program s Planetary Cartography and Geologic Mapping Working Group s (PCGMWG) Geologic Mapping Subcommittee (GEMS) on the selection and use of map bases as well as map preparation, review, publication, and distribution. In light of the current boom in planetary exploration and the ongoing rapid evolution of available data for planetary mapping, this handbook is especially timely.

  5. Methods of Celestial Mechanics Volume II: Application to Planetary System, Geodynamics and Satellite Geodesy

    CERN Document Server

    Beutler, Gerhard

    2005-01-01

    G. Beutler's Methods of Celestial Mechanics is a coherent textbook for students as well as an excellent reference for practitioners. Volume II is devoted to the applications and to the presentation of the program system CelestialMechanics. Three major areas of applications are covered: (1) Orbital and rotational motion of extended celestial bodies. The properties of the Earth-Moon system are developed from the simplest case (rigid bodies) to more general cases, including the rotation of an elastic Earth, the rotation of an Earth partly covered by oceans and surrounded by an atmosphere, and the rotation of an Earth composed of a liquid core and a rigid shell (Poincaré model). (2) Artificial Earth Satellites. The oblateness perturbation acting on a satellite and the exploitation of its properties in practice is discussed using simulation methods (CelestialMechanics) and (simplified) first order perturbation methods. The perturbations due to the higher-order terms of the Earth's gravitational potential and reso...

  6. Climate, ecosystems, and planetary futures: The challenge to predict life in Earth system models.

    Science.gov (United States)

    Bonan, Gordon B; Doney, Scott C

    2018-02-02

    Many global change stresses on terrestrial and marine ecosystems affect not only ecosystem services that are essential to humankind, but also the trajectory of future climate by altering energy and mass exchanges with the atmosphere. Earth system models, which simulate terrestrial and marine ecosystems and biogeochemical cycles, offer a common framework for ecological research related to climate processes; analyses of vulnerability, impacts, and adaptation; and climate change mitigation. They provide an opportunity to move beyond physical descriptors of atmospheric and oceanic states to societally relevant quantities such as wildfire risk, habitat loss, water availability, and crop, fishery, and timber yields. To achieve this, the science of climate prediction must be extended to a more multifaceted Earth system prediction that includes the biosphere and its resources. Copyright © 2018, American Association for the Advancement of Science.

  7. Investigating Extra-solar Planetary System Qatar-1 through Transit Observations

    Science.gov (United States)

    Thakur, Parijat; Mannaday, Vineet Kumar; Jiang, Ing-Guey; Sahu, Devendra Kumar; Chand, Swadesh

    2018-04-01

    We report the results of the transit timing variation (TTV) analysis of the extra-solar planet Qatar-1b using thirty eight light curves. Our analysis combines thirty five previously available transit light curves with three new transits observed by us between June 2016 and September 2016 using the 2-m Himalayan Chandra Telescope (HCT) at the Indian Astronomical Observatory (Hanle, India). From these transit data, the physical and orbital parameters of the Qatar-1 system are determined. In addition to this, the ephemeris for the orbital period and mid-transit time are refined to investigate the possible TTV. We find that the null-TTV model provides the better fit to the (O-C) data. This indicates that there is no evidence for TTVs to confirm the presence of additional planets in the Qatar-1 system. The use of the 3.6-m Devasthal Optical Telescope (DOT) operated by the Aryabhatta Research Institute of Observational Sciences (ARIES, Nainital, India) could improve the photometric precision to examine the signature of TTVs in this system with a greater accuracy than in the present work.

  8. Robotic Planetary Drill Tests

    Science.gov (United States)

    Glass, Brian J.; Thompson, S.; Paulsen, G.

    2010-01-01

    Several proposed or planned planetary science missions to Mars and other Solar System bodies over the next decade require subsurface access by drilling. This paper discusses the problems of remote robotic drilling, an automation and control architecture based loosely on observed human behaviors in drilling on Earth, and an overview of robotic drilling field test results using this architecture since 2005. Both rotary-drag and rotary-percussive drills are targeted. A hybrid diagnostic approach incorporates heuristics, model-based reasoning and vibration monitoring with neural nets. Ongoing work leads to flight-ready drilling software.

  9. Lay and Expert Perceptions of Planetary Protection

    Science.gov (United States)

    Race, Margaret S.; MacGregor, Donald G.; Slovic, Paul

    2000-01-01

    As space scientists and engineers plan new missions to Mars and other planets in our solar system, they will face critical questions about the potential for biological contamination of planetary surfaces. In a society that places ever-increasing importance on the role of public involvement in science and technology policy, questions about risks of biological contamination will be examined and debated in the media, and will lead to the formation of public perceptions of planetary-contamination risks. These perceptions will, over time, form an important input to the development of space policy. Previous research in public and expert perceptions of technological risks and hazards has shown that many of the problems faced by risk-management organizations are the result of differing perceptions of risk (and risk management) between the general public and scientific and technical experts. These differences manifest themselves both as disagreements about the definition (and level) of risk associated with a scientific, technological or industrial enterprise, and as distrust about the ability of risk-management organizations (both public and private) to adequately protect people's health and safety. This report presents the results of a set of survey studies designed to reveal perceptions of planetary exploration and protection from a wide range of respondents, including both members of the general public and experts in the life sciences. The potential value of this research lies in what it reveals about perceptions of risk and benefit that could improve risk-management policies and practices. For example, efforts to communicate with the public about Mars sample return missions could benefit from an understanding of the specific concerns that nonscientists have about such a mission by suggesting areas of potential improvement in public education and information. Assessment of both public and expert perceptions of risk can also be used to provide an advanced signal of

  10. Moon formation and orbital evolution in extrasolar planetary systems - A literature review

    Directory of Open Access Journals (Sweden)

    Lewis K.

    2011-02-01

    Full Text Available With over 450 extrasolar planets detected, the possibility of searching for moons of these planets is starting to be investigated. In order to make efficient use of limited observing resources, it would be useful if the types of moons that a given planet is likely to host was known prior to detection. Fortunately, informed by simulations of moon formation in our own solar system, as well as more general theoretical investigations of moon orbital evolution, such information is now available. I present a review of literature results concerning the likely physical and orbital properties of extra-solar moons, and how these properties are predicted to vary with the properties of their host planet.

  11. Sustainable Development within Planetary Boundaries: A Functional Revision of the Definition Based on the Thermodynamics of Complex Social-Ecological Systems

    Directory of Open Access Journals (Sweden)

    Bart Muys

    2013-05-01

    Full Text Available The dominant paradigm of sustainable development (SD where the environment is just the third pillar of SD has proven inadequate to keep humanity within the safe operational space determined by biophysical planetary boundaries. This implies the need for a revised definition compatible with a nested model of sustainable development, where humanity forms part of the overall social-ecological system, and that would allow more effective sustainable development goals and indicators. In this paper an alternative definition is proposed based on the thermodynamics of open systems applied to ecosystems and human systems. Both sub- systems of the global social-ecological system show in common an increased capability of buffering against disturbances as a consequence of an internal increase of order. Sustainable development is considered an optimization exercise at different scales in time and space based on monitoring the change in the exergy content and exergy dissipation of these two sub- systems of the social-ecological system. In common language it is the increase of human prosperity and well-being without loss of the structure and functioning of the ecosystem. This definition is functional as it allows the straightforward selection of quantitative indicators, discerning sustainable development from unsustainable development, unsustainable stagnation and sustainable retreat. The paper shows that the new definition is compatible with state of the art thinking on ecosystem services, the existence of regime shifts and societal transitions, and resilience. One of the largest challenges in applying the definition is our insufficient understanding of the change in ecosystem structure and function as an endpoint indicator of human action, and its effect on human prosperity and well-being. This implies the continued need to use midpoint indicators of human impact and related thresholds defining the safe operating space of the present generation with respect to

  12. DIRECT IMAGING OF AN ASYMMETRIC DEBRIS DISK IN THE HD 106906 PLANETARY SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Kalas, Paul G.; Wang, Jason J.; Duchene, Gaspard; Dong, Ruobing; Graham, James R.; Rosa, Robert J. De [Astronomy Department, University of California, Berkeley CA 94720-3411 (United States); Rajan, Abhijith; Patience, Jennifer [School of Earth and Space Exploration, Arizona State University, P.O. Box 871404, Tempe, AZ 85287 (United States); Millar-Blanchaer, Maxwell A.; Chilcote, Jeffrey [Department of Astronomy and Astrophysics, University of Toronto, Toronto ON M5S 3H4 (Canada); Chen, Christine [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Fitzgerald, Michael P. [Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095 (United States); Macintosh, Bruce [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305 (United States); Murray-Clay, Ruth [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Matthews, Brenda; Marois, Christian; Draper, Zachary H.; Lawler, Samantha [National Research Council of Canada Herzberg, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Rameau, Julien; Doyon, René [Institut de Recherche sur les Exoplanetes, Département de Physique, Université de Montréal, Montréal QC H3C 3J7 (Canada); and others

    2015-11-20

    We present the first scattered light detections of the HD 106906 debris disk using the Gemini/Gemini Planet Imager in the infrared and Hubble Space Telescope (HST)/Advanced Camera for Surveys in the optical. HD 106906 is a 13 Myr old F5V star in the Sco–Cen association, with a previously detected planet-mass candidate HD 106906b projected 650 AU from the host star. Our observations reveal a near edge-on debris disk that has a central cleared region with radius ∼50 AU, and an outer extent >500 AU. The HST data show that the outer regions are highly asymmetric, resembling the “needle” morphology seen for the HD 15115 debris disk. The planet candidate is oriented ∼21° away from the position angle of the primary’s debris disk, strongly suggesting non-coplanarity with the system. We hypothesize that HD 106906b could be dynamically involved in the perturbation of the primary’s disk, and investigate whether or not there is evidence for a circumplanetary dust disk or cloud that is either primordial or captured from the primary. We show that both the existing optical properties and near-infrared colors of HD 106906b are weakly consistent with this possibility, motivating future work to test for the observational signatures of dust surrounding the planet.

  13. Characterization of the planetary system Kepler-101 with HARPS-N

    DEFF Research Database (Denmark)

    Bonomo, A. S.; Sozzetti, A.; Lovis, C.

    2014-01-01

    -101b, and an Earth-sized planet, Kepler-101c. These two planets orbit the slightly evolved and metal-rich G-type star in 3.49 and 6.03 days, respectively. With mass Mp = 51.1-4.7+ 5.1 M⊕, radius Rp = 5.77-0.79+ 0.85 R⊕, and density ρp = 1.45-0.48+ 0.83 g cm-3, Kepler-101b is the first fully...... characterized super-Neptune, and its density suggests that heavy elements make up a significant fraction of its interior; more than 60% of its total mass. Kepler-101c has a radius of 1.25-0.17+ 0.19 R⊕, which implies the absence of any H/He envelope, but its mass could not be determined because of the relative......-in giant planet and an outer Earth-sized planet with a period ratio slightly larger than the 3:2 resonance − is certainly of interest for scenarios of planet formation and evolution. This system does not follow thepreviously reported trend that the larger planet has the longer period in the majority...

  14. Beam-Forming Concentrating Solar Thermal Array Power Systems

    Science.gov (United States)

    Cwik, Thomas A. (Inventor); Dimotakis, Paul E. (Inventor); Hoppe, Daniel J. (Inventor)

    2016-01-01

    The present invention relates to concentrating solar-power systems and, more particularly, beam-forming concentrating solar thermal array power systems. A solar thermal array power system is provided, including a plurality of solar concentrators arranged in pods. Each solar concentrator includes a solar collector, one or more beam-forming elements, and one or more beam-steering elements. The solar collector is dimensioned to collect and divert incoming rays of sunlight. The beam-forming elements intercept the diverted rays of sunlight, and are shaped to concentrate the rays of sunlight into a beam. The steering elements are shaped, dimensioned, positioned, and/or oriented to deflect the beam toward a beam output path. The beams from the concentrators are converted to heat at a receiver, and the heat may be temporarily stored or directly used to generate electricity.

  15. The Highland Terrain Hopper: a new locomotion system for exploration of Mars and other low-gravity planetary bodies

    Science.gov (United States)

    Gurgurewicz, Joanna; Grygorczuk, Jerzy; Wisniewski, Lukasz; Mege, Daniel; Rickman, Hans

    Field geoscientists need to collect three-dimensional data in order characterise the lithologic succession and structure of terrains, reconstruct their evolution, and eventually reveal the history of a portion of the planet. This is achieved by walking up and down mountains and valleys, conducting and interpreting geological and geophysical traverses, and reading measures made at station located at key sites on mountain peaks or rocky promontories. These activities have been denied to conventional planetary exploration rovers because engineering constraints for landing are strong, especially in terms of allowed terrain roughness and slopes. There are few limitations in the type of scientific payload conventional exploration rovers can carry, from geology and geophysics to geochemistry and exobiology. They lack two skills, however: the ability of working on rugged or unstable terrain, like in canyons and mountains, and on solid bodies having gravity too low for the friction between the wheels and the ground to generate robot displacement. ASTRONIKA Ltd. and the Space Research Centre of the Polish Academy of Sciences are designing Galago, the Highland Terrain Hopper, a small (Ø~50-100 cm), light (5-10 kg), and robust locomotion system, which addresses the challenge of accessing most areas on low-gravity planetary body for performing scientific observations and measurements, alone or as part of a commando. Galago is symmetric and can jump accurately to a height of 4.5 m on Mars, 9 m on the Moon, and much more on Phobos and other small bodies. For one Galago, a nominal horizontal travel distance of 5 km (1000 jumps) is currently planned with the considered energy source, a battery reloaded by solar panels. Galago may assist other types of robots, or humans, in accessing difficult terrain, or even replace them for specific measurements or campaigning. Its three independent legs make possible several types of motions: accurate jumping (to any place identified in advance

  16. An empirically derived three-dimensional Laplace resonance in the Gliese 876 planetary system

    Science.gov (United States)

    Nelson, Benjamin E.; Robertson, Paul M.; Payne, Matthew J.; Pritchard, Seth M.; Deck, Katherine M.; Ford, Eric B.; Wright, Jason T.; Isaacson, Howard T.

    2016-01-01

    We report constraints on the three-dimensional orbital architecture for all four planets known to orbit the nearby M dwarf Gliese 876 based solely on Doppler measurements and demanding long-term orbital stability. Our data set incorporates publicly available radial velocities taken with the ELODIE and CORALIE spectrographs, High Accuracy Radial velocity Planet Searcher (HARPS), and Keck HIgh Resolution Echelle Spectrometer (HIRES) as well as previously unpublished HIRES velocities. We first quantitatively assess the validity of the planets thought to orbit GJ 876 by computing the Bayes factors for a variety of different coplanar models using an importance sampling algorithm. We find that a four-planet model is preferred over a three-planet model. Next, we apply a Newtonian Markov chain Monte Carlo algorithm to perform a Bayesian analysis of the planet masses and orbits using an N-body model in three-dimensional space. Based on the radial velocities alone, we find that a 99 per cent credible interval provides upper limits on the mutual inclinations for the three resonant planets (Φcb the {c} and {b} pair and Φbe the {b} and {e} pair). Subsequent dynamical integrations of our posterior sample find that the GJ 876 planets must be roughly coplanar (Φcb the amount of planet-planet scattering in the system has been low. We investigate the distribution of the respective resonant arguments of each planet pair and find that at least one argument for each planet pair and the Laplace argument librate. The libration amplitudes in our three-dimensional orbital model support the idea of the outer three planets having undergone significant past disc migration.

  17. PROSPECTS FOR CHARACTERIZING HOST STARS OF THE PLANETARY SYSTEM DETECTIONS PREDICTED FOR THE KOREAN MICROLENSING TELESCOPE NETWORK

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Calen B., E-mail: henderson@astronomy.ohio-state.edu [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States)

    2015-02-10

    I investigate the possibility of constraining the flux of the lens (i.e., host star) for the types of planetary systems the Korean Microlensing Telescope Network is predicted to find. I examine the potential to obtain lens flux measurements by (1) imaging the lens once it is spatially resolved from the source, (2) measuring the elongation of the point-spread function of the microlensing target (lens+source) when the lens and source are still unresolved, and (3) taking prompt follow-up photometry. In each case I simulate the observing programs for a representative example of current ground-based adaptive optics (AO) facilities (specifically NACO on the Very Large Telescope), future ground-based AO facilities (GMTIFS on the Giant Magellan Telescope, GMT), and future space telescopes (NIRCAM on the James Webb Space Telescope, JWST). Given the predicted distribution of relative lens-source proper motions, I find that the lens flux could be measured to a precision of σ{sub H{sub ℓ}}≤0.1 for ≳60% of planet detections ≥5 yr after each microlensing event for a simulated observing program using GMT, which images resolved lenses. NIRCAM on JWST would be able to carry out equivalently high-precision measurements for ∼28% of events Δt = 10 yr after each event by imaging resolved lenses. I also explore the effects various blend components would have on the mass derived from prompt follow-up photometry, including companions to the lens, companions to the source, and unassociated interloping stars. I find that undetected blend stars would cause catastrophic failures (i.e., >50% fractional uncertainty in the inferred lens mass) for ≲ (16 · f {sub bin})% of planet detections, where f {sub bin} is the binary fraction, with the majority of these failures occurring for host stars with mass ≲0.3 M {sub ☉}.

  18. Herschel's "Cold Debris Disks": Background Galaxies or Quiescent Rims of Planetary Systems?

    Science.gov (United States)

    Krivov, A. V.; Eiroa, C.; Loehne, T.; Marshall, J. P.; Montesinos, B.; DelBurgo, C.; Absil, O.; Ardila, D.; Augereau, J.-C.; Bayo, A.; hide

    2013-01-01

    smaller than a few kilometers in size. If larger planetesimals were present, then they would stir the disk, triggering a collisional cascade and thus causing production of small debris, which is not seen. Thus, planetesimal formation, at least in the outer regions of the systems, has stopped before "cometary" or "asteroidal" sizes were reached.

  19. An Empirically Derived Three-Dimensional Laplace Resonance in the GJ 876 Planetary System

    Science.gov (United States)

    Nelson, Benjamin Earl; Robertson, Paul; Pritchard, Seth

    2015-08-01

    We report constraints on the three-dimensional orbital architecture for all four planets known to orbit the nearby M dwarf Gliese 876 (=GJ 876) based solely on Doppler measurements and demanding long-term orbital stability. Our dataset incorporates publicly available radial velocities taken with the ELODIE and CORALIE spectrographs, HARPS, and Keck HIRES as well as previously unpublished HIRES RVs. We first quantitatively assess the validity of the planets thought to orbit GJ 876 by computing the Bayes factors for a variety of different coplanar models using an importance sampling algorithm. We confirm that a four-planet model is indeed preferred over a three-planet model. Next, we apply a Newtonian MCMC algorithm (RUN DMC, B. Nelson et al. 2014) to perform a Bayesian analysis of the planet masses and orbits using an n-body model that allows each planet to take on its own orbit in three-dimensional space. Based on the radial velocities alone, the mutual inclinations for the outer three resonant planets are constrained to Φcb = 2.8±1.71.3 degrees for the "c" and "b" pair and Φbe = 10.3±6.35.1 degrees for the "b" and "e" pair. We integrate the equations of motion of a sample of initial conditions drawn from our posterior for 107 years. We identify dynamically unstable models and find that the GJ 876 planets must be roughly coplanar (Φcb = 1.41±0.620.57 degrees) and (Φbe = 3.9±2.01.9 degrees), indicating the amount of planet-planet scattering in the system has been low. We investigate the distribution of the respective resonant arguments of each planet pair and find that at least one resonant argument for each planet pair and the Laplace argument librate. The libration amplitudes in our three-dimensional orbital model supports the idea of the outer-three planets having undergone significant past disk migration.

  20. Supercritical CO2 Cleaning System for Planetary Protection and Contamination Control Applications

    Science.gov (United States)

    Lin, Ying; Zhong, Fang; Aveline, David C.; Anderson, Mark S.

    2012-01-01

    Current spacecraft-compatible cleaning protocols involve a vapor degreaser, liquid sonication, and alcohol wiping. These methods are not very effective in removing live and dead microbes from spacecraft piece parts of slightly complicated geometry, such as tubing and loosely fitted nuts and bolts. Contamination control practices are traditionally focused on cleaning and monitoring of particulate and oily residual. Vapor degreaser and outgassing bakeout have not been proven to be effective in removing some less volatile, hydrophilic biomolecules of significant relevance to life detection. A precision cleaning technology was developed using supercritical CO2 (SCC). SCC is used as both solvent and carrier for removing organic and particulate contaminants. Supercritical fluid, like SCC, is characterized by physical and thermal properties that are between those of the pure liquid and gas phases. The fluid density is a function of the temperature and pressure. Its solvating power can be adjusted by changing the pressure or temperature, or adding a secondary solvent such as alcohol or water. Unlike a regular organic solvent, SCC has higher diffusivities, lower viscosity, and lower surface tension. It readily penetrates porous and fibrous solids and can reach hard-to-reach surfaces of the parts with complex geometry. Importantly, the CO2 solvent does not leave any residue. The results using this new cleaning device demonstrated that both supercritical CO2 with 5% water as a co-solvent can achieve cleanliness levels of 0.01 mg/cm2 or less for contaminants of a wide range of hydrophobicities. Experiments under the same conditions using compressed Martian air mix, which consists of 95% CO2, produced similar cleaning effectiveness on the hydrophobic compounds. The main components of the SCC cleaning system are a high-pressure cleaning vessel, a boil-off vessel located downstream from the cleaning vessel, a syringe-type high-pressure pump, a heat exchanger, and a back pressure

  1. From Planetary Mapping to Map Production: Planetary Cartography as integral discipline in Planetary Sciences

    Science.gov (United States)

    Nass, Andrea; van Gasselt, Stephan; Hargitai, Hendrik; Hare, Trent; Manaud, Nicolas; Karachevtseva, Irina; Kersten, Elke; Roatsch, Thomas; Wählisch, Marita; Kereszturi, Akos

    2016-04-01

    Cartography is one of the most important communication channels between users of spatial information and laymen as well as the open public alike. This applies to all known real-world objects located either here on Earth or on any other object in our Solar System. In planetary sciences, however, the main use of cartography resides in a concept called planetary mapping with all its various attached meanings: it can be (1) systematic spacecraft observation from orbit, i.e. the retrieval of physical information, (2) the interpretation of discrete planetary surface units and their abstraction, or it can be (3) planetary cartography sensu strictu, i.e., the technical and artistic creation of map products. As the concept of planetary mapping covers a wide range of different information and knowledge levels, aims associated with the concept of mapping consequently range from a technical and engineering focus to a scientific distillation process. Among others, scientific centers focusing on planetary cartography are the United State Geological Survey (USGS, Flagstaff), the Moscow State University of Geodesy and Cartography (MIIGAiK, Moscow), Eötvös Loránd University (ELTE, Hungary), and the German Aerospace Center (DLR, Berlin). The International Astronomical Union (IAU), the Commission Planetary Cartography within International Cartographic Association (ICA), the Open Geospatial Consortium (OGC), the WG IV/8 Planetary Mapping and Spatial Databases within International Society for Photogrammetry and Remote Sensing (ISPRS) and a range of other institutions contribute on definition frameworks in planetary cartography. Classical cartography is nowadays often (mis-)understood as a tool mainly rather than a scientific discipline and an art of communication. Consequently, concepts of information systems, mapping tools and cartographic frameworks are used interchangeably, and cartographic workflows and visualization of spatial information in thematic maps have often been

  2. Concept selection for a planetary reflection-seismology system with multiple end-user requirements and mission constraints

    NARCIS (Netherlands)

    Batenburg, P.A.W.; Gill, E.K.A.; Drijkoningen, G.G.; Toxopeus, G.J.

    2010-01-01

    A study was performed to determine the feasibility of reflection seismology for planetary geology taking into account present-day technology advances. An approach based on end-user requirements was applied to assure the scientific usefulness of the results. Thirty applications of a

  3. Circumstellar Gas in Young Planetary Debris Disks

    Science.gov (United States)

    Roberge, A.

    Circumstellar (CS) disks orbiting young stars fall into two categories: primordial disks, composed of unprocessed interstellar dust and gas, and debris disks, produced by the destruction of solid planetary bodies. In the first class, the most abundant gas is H_2; in the second, it appears that the H_2 gas has disappeared, possibly through incorporation into gas giant planets. The lifetime of H_2 gas in a CS disk is therefore of great importance, as it dictates the timescale for the formation of giant planets. FUSE observations of H_2 in CS disk systems have shown that FUV absorption spectroscopy may sensitively probe for small amounts of gas along the line of sight to the star. Most importantly, the FUSE non-detection of H_2 gas in the Beta Pictoris disk suggests that the primordial gas lifetime is less than about 12 Myr, and that gas giant planets must form very quickly. However, this suggestion is based on one system, and needs to be tested in additional systems with a range of ages, especially since there are indications that age is not the only factor in the evolution of a CS disk. We propose for FUSE observations of 3 additional debris disk systems, Fomalhaut, HD3003, and HD2884. Fomalhaut is an intermediate age debris disk, one of the Fabulous Four CS disks first discovered in 1984. The other two disks are younger, with ages similar to that of Beta Pic. All three stars are brighter in the FUV than Beta Pic, permitting us to sensitively probe for traces of H_2 gas. We will also measure the amount of secondary atomic gas produced from planetary bodies in these disks, in an effort to understand the entire evolution of CS gas in young planetary systems.

  4. Simultaneous Localization and Mapping for Planetary Surface Mobility, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ProtoInnovations, LLC and Carnegie Mellon University have formed a partnership to commercially develop localization and mapping technologies for planetary rovers....

  5. An extreme planetary system around HD 219828. One long-period super Jupiter to a hot-Neptune host star

    Science.gov (United States)

    Santos, N. C.; Santerne, A.; Faria, J. P.; Rey, J.; Correia, A. C. M.; Laskar, J.; Udry, S.; Adibekyan, V.; Bouchy, F.; Delgado-Mena, E.; Melo, C.; Dumusque, X.; Hébrard, G.; Lovis, C.; Mayor, M.; Montalto, M.; Mortier, A.; Pepe, F.; Figueira, P.; Sahlmann, J.; Ségransan, D.; Sousa, S. G.

    2016-07-01

    Context. With about 2000 extrasolar planets confirmed, the results show that planetary systems have a whole range of unexpected properties. This wide diversity provides fundamental clues to the processes of planet formation and evolution. Aims: We present a full investigation of the HD 219828 system, a bright metal-rich star for which a hot Neptune has previously been detected. Methods: We used a set of HARPS, SOPHIE, and ELODIE radial velocities to search for the existence of orbiting companions to HD 219828. The spectra were used to characterise the star and its chemical abundances, as well as to check for spurious, activity induced signals. A dynamical analysis is also performed to study the stability of the system and to constrain the orbital parameters and planet masses. Results: We announce the discovery of a long period (P = 13.1 yr) massive (m sini = 15.1 MJup) companion (HD 219828 c) in a very eccentric orbit (e = 0.81). The same data confirms the existence of a hot Neptune, HD 219828 b, with a minimum mass of 21 M⊕ and a period of 3.83 days. The dynamical analysis shows that the system is stable, and that the equilibrium eccentricity of planet b is close to zero. Conclusions: The HD 219828 system is extreme and unique in several aspects. First, ammong all known exoplanet systems it presents an unusually high mass ratio. We also show that systems like HD 219828, with a hot Neptune and a long-period massive companion are more frequent than similar systems with a hot Jupiter instead. This suggests that the formation of hot Neptunes follows a different path than the formation of their hot jovian counterparts. The high mass, long period, and eccentricity of HD 219828 c also make it a good target for Gaia astrometry as well as a potential target for atmospheric characterisation, using direct imaging or high-resolution spectroscopy. Astrometric observations will allow us to derive its real mass and orbital configuration. If a transit of HD 219828 b is detected

  6. Planetary CubeSats Come of Age

    Science.gov (United States)

    Sherwood, Brent; Spangelo, Sara; Frick, Andreas; Castillo-Rogez, Julie; Klesh, Andrew; Wyatt, E. Jay; Reh, Kim; Baker, John

    2015-01-01

    Jet Propulsion Laboratory initiatives in developing and formulating planetary CubeSats are described. Six flight systems already complete or underway now at JPL for missions to interplanetary space, the Moon, a near-Earth asteroid, and Mars are described at the subsystem level. Key differences between interplanetary nanospacecraft and LEO CubeSats are explained, as well as JPL's adaptation of vendor components and development of system solutions to meet planetary-mission needs. Feasible technology-demonstration and science measurement objectives are described for multiple modes of planetary mission implementation. Seven planetary-science demonstration mission concepts, already proposed to NASA by Discovery-2014 PIs partnered with JPL, are described for investigations at Sun-Earth L5, Venus, NEA 1999 FG3, comet Tempel 2, Phobos, main-belt asteroid 24 Themis, and metal asteroid 16 Psyche. The JPL staff and facilities resources available to PIs for analysis, design, and development of planetary nanospacecraft are catalogued.

  7. Planetary spectroscopy

    International Nuclear Information System (INIS)

    Fink, U.

    1988-01-01

    The main goal of the research is charge coupled device (CCD) spectroscopic and imaging studies of the solar system in support of spacecraft investigations. Studies include the physical behavior of comets, the atmosphere of the gaseous planets, and the solid surfaces of satellites and asteroids. The major observing program consisted of approximately 50 nights of photometry of Comet Halley in order to resolve the controversy over this comet's rotation period. This data is presently being analyzed. Additional observing projects included the spectroscopic occultation of Charon by Pluto, reflection spectroscopy of Mercury, and a spectrum of the satellite Oberon. Mercury data does not corroborate the Fe(++) absorption feature reported by McCord and Clark at 8800 A but instead potentially shows a weaker feature at longer wavelengths. This position is in much closer accord with expectations for Mercury since a band center near 8800 A implies too little Fe(++) on Mercury, especially if band shifts with temperature are considered. The Pluto project proved that the deep methane absorptions visible in their combined specta are due soley to Pluto with Charon showing a flat and featureless spectrum. It appears that if Charon ever contained a substantial methane component, the satellite's low surface gravity could not hold it and the methane evaporated and escaped

  8. Gravitational effects on planetary neutron flux spectra

    Science.gov (United States)

    Feldman, W. C.; Drake, D. M.; O'Dell, R. D.; Brinkley, F. W., Jr.; Anderson, R. C.

    1989-01-01

    The effects of gravity on the planetary neutron flux spectra for planet Mars, and the lifetime of the neutron, were investigated using a modified one-dimensional diffusion accelerated neutral-particle transport code, coupled with a multigroup cross-section library tailored specifically for Mars. The results showed the presence of a qualitatively new feature in planetary neutron leakage spectra in the form of a component of returning neutrons with kinetic energies less than the gravitational binding energy (0.132 eV for Mars). The net effect is an enhancement in flux at the lowest energies that is largest at and above the outermost layer of planetary matter.

  9. Planetary climates (princeton primers in climate)

    CERN Document Server

    Ingersoll, Andrew

    2013-01-01

    This concise, sophisticated introduction to planetary climates explains the global physical and chemical processes that determine climate on any planet or major planetary satellite--from Mercury to Neptune and even large moons such as Saturn's Titan. Although the climates of other worlds are extremely diverse, the chemical and physical processes that shape their dynamics are the same. As this book makes clear, the better we can understand how various planetary climates formed and evolved, the better we can understand Earth's climate history and future.

  10. Proto-planetary nebulae

    International Nuclear Information System (INIS)

    Zuckerman, B.

    1978-01-01

    A 'proto-planetary nebula' or a 'planetary nebula progenitor' is the term used to describe those objects that are losing mass at a rate >approximately 10 -5 Msolar masses/year (i.e. comparable to mass loss rates in planetary nebulae with ionized masses >approximately 0.2 Msolar masses) and which, it is believed, will become planetary nebulae themselves within 5 years. It is shown that most proto-planetary nebulae appear as very red objects although a few have been 'caught' near the middle of the Hertzsprung-Russell diagram. The precursors of these proto-planetaries are the general red giant population, more specifically probably Mira and semi-regular variables. (Auth.)end

  11. Synchronization of complex chaotic systems in series expansion form

    International Nuclear Information System (INIS)

    Ge Zhengming; Yang Chenghsiung

    2007-01-01

    This paper studies the synchronization of complex chaotic systems in series expansion form by Lyapunov asymptotical stability theorem. A sufficient condition is given for the asymptotical stability of an error dynamics, and is applied to guiding the design of the secure communication. Finally, numerical results are studied for the Quantum-CNN oscillators synchronizing with unidirectional/bidirectional linear coupling to show the effectiveness of the proposed synchronization strategy

  12. Planetary protection in the framework of the Aurora exploration program

    Science.gov (United States)

    Kminek, G.

    The Aurora Exploration Program will give ESA new responsibilities in the field of planetary protection. Until now, ESA had only limited exposure to planetary protection from its own missions. With the proposed ExoMars and MSR missions, however, ESA will enter the realm of the highest planetary protection categories. As a consequence, the Aurora Exploration Program has initiated a number of activities in the field of planetary protection. The first and most important step was to establish a Planetary Protection Working Group (PPWG) that is advising the Exploration Program Advisory Committee (EPAC) on all matters concerning planetary protection. The main task of the PPWG is to provide recommendations regarding: Planetary protection for robotic missions to Mars; Planetary protection for a potential human mission to Mars; Review/evaluate standards & procedures for planetary protection; Identify research needs in the field of planetary protection. As a result of the PPWG deliberations, a number of activities have been initiated: Evaluation of the Microbial Diversity in SC Facilities; Working paper on legal issues of planetary protection and astrobiology; Feasibility study on a Mars Sample Return Containment Facility; Research activities on sterilization procedures; Training course on planetary protection (May, 2004); Workshop on sterilization techniques (fall 2004). In parallel to the PPWG, the Aurora Exploration Program has established an Ethical Working Group (EWG). This working group will address ethical issues related to astrobiology, planetary protection, and manned interplanetary missions. The recommendations of the working groups and the results of the R&D activities form the basis for defining planetary protection specification for Aurora mission studies, and for proposing modification and new inputs to the COSPAR planetary protection policy. Close cooperation and free exchange of relevant information with the NASA planetary protection program is strongly

  13. Form of Government and Political System: Conditions of Impossibility

    Directory of Open Access Journals (Sweden)

    Bogdan Iancu

    2012-12-01

    Full Text Available Successful constitutions manage to predetermine in juridical frame the political life of a country, by imposing a durable core equilibrium, i.e., a specific political system. The integrative function of the constitution derives from a reflexive political decision, at the constitution-making moment, for a specific form. The current theoretical difficulty in characterizing with precision the political system established by the Constitution of 1991 reflects the syncopated constitutional conflicts of recent years. The instability can be traced back to the continued absence of the preconditions for a genuine constitutional foundation. The initial indecision has been reinforced by later influences, including the EU accession process.

  14. Introduction to the special issue: Planetary geomorphology

    Science.gov (United States)

    Burr, Devon M.; Howard, Alan D.

    2015-07-01

    Planetary geomorphology is the study of extraterrestrial landscapes. In recognition of the promise for productive interaction between terrestrial and planetary geomorphologists, the 45th annual Binghamton Geomorphology Symposium (BGS) focused on Planetary Geomorphology. The aim of the symposium was to bring planetary and terrestrial geomorphologists together for symbiotic and synthetic interactions that would enrich both subdisciplines. In acknowledgment of the crucial role of terrestrial field work in planetary geomorphology and of the BGS tradition, the symposium began with a field trip to the Appalachian Mountains, followed by a dinner talk of recent results from the Mars Surface Laboratory. On Saturday and Sunday, the symposium was organized around major themes in planetary geomorphology, starting with the geomorphic processes that are most common in our Solar System-impact cratering, tectonism, volcanism-to set the stage for other geomorphic processes, including aeolian, fluvial, lacustrine, and glacial/polar. On Saturday evening, the banquet talk provided an historical overview of planetary geomorphology, including its roots in the terrestrial geosciences. The symposium concluded with a full-afternoon tutorial on planetary geomorphologic datasets. This special issue of Geomorphology consists of papers by invited authors from the 2014 BGS, and this introduction provides some context for these papers.

  15. Planetary Space Weather Service: Part of the the Europlanet 2020 Research Infrastructure

    Science.gov (United States)

    Grande, Manuel; Andre, Nicolas

    2016-07-01

    Over the next four years the Europlanet 2020 Research Infrastructure will set up an entirely new European Planetary Space Weather service (PSWS). Europlanet RI is a part of of Horizon 2020 (EPN2020-RI, http://www.europlanet-2020-ri.eu). The Virtual Access Service, WP5 VA1 "Planetary Space Weather Services" will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. VA1 will make five entirely new 'toolkits' accessible to the research community and to industrial partners planning for space missions: a general planetary space weather toolkit, as well as three toolkits dedicated to the following key planetary environments: Mars (in support ExoMars), comets (building on the expected success of the ESA Rosetta mission), and outer planets (in preparation for the ESA JUICE mission to be launched in 2022). This will give the European planetary science community new methods, interfaces, functionalities and/or plugins dedicated to planetary space weather in the tools and models available within the partner institutes. It will also create a novel event-diary toolkit aiming at predicting and detecting planetary events like meteor showers and impacts. A variety of tools (in the form of web applications, standalone software, or numerical models in various degrees of implementation) are available for tracing propagation of planetary and/or solar events through the Solar System and modelling the response of the planetary environment (surfaces, atmospheres, ionospheres, and magnetospheres) to those events. But these tools were not originally designed for planetary event prediction and space weather applications. So WP10 JRA4 "Planetary Space Weather Services" (PSWS) will provide the additional research and tailoring required to apply them for these purposes. The overall objectives of this Joint Research Aactivities will be to review, test, improve and adapt methods and tools

  16. Operation of radiation monitoring system in radwaste form test facility

    International Nuclear Information System (INIS)

    Ryu, Young Gerl; Kim, Ki Hong; Lee, Jae Won; Kwac, Koung Kil

    1998-08-01

    RWFTF (RadWaste Form Test Facility) must have a secure radiation monitoring system (RMS) because of having a hot-cell capable of handling high radioactive materials. And then in controlled radiation zone, which is hot-cell and its maintenance and operation / control room, area dose rate, radioactivities in air-bone particulates and stack, and surface contamination are monitored continuously. For the effective management such as higher utilization, maintenance and repair, the status of this radiation monitoring system, the operation and characteristics of all kinds of detectors and other parts of composing this system, and signal treatment and its evaluation were described in this technical report. And to obtain the accuracy detection results and its higher confidence level, the procedure such as maintenance, functional check and system calibration were established and appended to help the operation of RMS. (author). 6 tabs., 30 figs

  17. AFOCAL SYSTEMS FORMED BY MIRROR OFF-AXIS PARABOLOID

    Directory of Open Access Journals (Sweden)

    N. K. Artiukhina

    2017-01-01

    Full Text Available Mirror systems make it possible to reduce device dimensions and its weight while preserving high input aperture and these systems are characterized by a number of other advantages. Their significant disadvantage is a central screening of an entrance pupil that leads to lower image quality. The paper contains description of the investigations on afocal systems formed by eccentrically cut-out mirror paraboloids (off-axis mirrors where aperture diaphragm is displaced in the meridian plane for a defined value and a central field point is located on the optical axis. The canonic Mersenne systems are accepted as base schemas (modules for these compositions. The paper considers two types of such systems: visible increases – Г > 0 and Г < 0. Algorithms for calculation of centered afocal systems with two and four reflections have been written in the paper and the systems are free from spherical aberration, coma, astigmatism when an input pupil is located in superimposed focal planes of all parabolic mirrors. An aberration in curvature image has been additionally corrected in three-mirror quart-parabolic scheme which is a combination of two classical telescopic Mersenne systems. The paper presents schemes and calculation results. Two-mirror schemes with non-screened input pupil have been studied in the paper and in this case all the system remains centered and an aperture diaphragm is decentered for the distance Cm which is commensurable with the diaphragm size. The paper contains description of the investigated afocal schemes with four reflections from off-axis mirror paraboloids, a prepared algorithm for calculation, the obtained formulas for making combination of canonic afocal systems formed by two mirrors. Computer simulation in software environment Opal and Zemax has been carried out in the paper. Basic description has been prepared while using two alternative methods for the class of decentered systems and aberration characteristics and

  18. NASA's "Eyes On The Solar System:" A Real-time, 3D-Interactive Tool to Teach the Wonder of Planetary Science

    Science.gov (United States)

    Hussey, K.

    2014-12-01

    NASA's Jet Propulsion Laboratory is using video game technology to immerse students, the general public and mission personnel in our solar system and beyond. "Eyes on the Solar System," a cross-platform, real-time, 3D-interactive application that can run on-line or as a stand-alone "video game," is of particular interest to educators looking for inviting tools to capture students interest in a format they like and understand. (eyes.nasa.gov). It gives users an extraordinary view of our solar system by virtually transporting them across space and time to make first-person observations of spacecraft, planetary bodies and NASA/ESA missions in action. Key scientific results illustrated with video presentations, supporting imagery and web links are imbedded contextually into the solar system. Educators who want an interactive, game-based approach to engage students in learning Planetary Science will see how "Eyes" can be effectively used to teach its principles to grades 3 through 14.The presentation will include a detailed demonstration of the software along with a description/demonstration of how this technology is being adapted for education. There will also be a preview of coming attractions. This work is being conducted by the Visualization Technology Applications and Development Group at NASA's Jet Propulsion Laboratory, the same team responsible for "Eyes on the Earth 3D," and "Eyes on Exoplanets," which can be viewed at eyes.nasa.gov/earth and eyes.nasa.gov/exoplanets.

  19. Acquisition of an Electron Back Scatter Diffraction (EBSD) system for the Zeiss Sigma SEM at Portland State University -- Planetary Major Equipment

    Science.gov (United States)

    Ruzicka, Alex

    To build on our parent Origins program award, entitled "Shock histories of chondrites as revealed by combined microstructural (TEM), petrographic, and X-ray microtomographic (micro-CT) analysis", we are requesting as Planetary Major Equipment the acquisition of an Electron Back Scatter Diffraction (EBSD) system, which will integrate with a Zeiss Sigma SEM that was installed at Portland State University last year (2010). This EBSD system will greatly augment the science return of the parent grant by allowing quantitative measurements of strain and textural fabrics in grains of all sizes and types across an entire thin section. Such measurements will help link data that are already being obtained with optical light microscopy, transmission electron microscopy, and micro- tomography methods. More generally, the EBSD system will augment the PI's research on the petrology of extraterrestrial materials by providing an additional tool for petrographic analyses, with data that can be used to evaluate strain, grain orientations, grain size distributions, phase proportions, and mineralogy. The equipment will enable quantitative characterization of the crystallography of primitive extraterrestrial materials, which will contribute to a better understanding of the formation and evolution of planetary systems, a major goal of NASA.

  20. Acquisition of an Electron Back Scatter Diffraction (EBSD) system for the Zeiss Sigma SEM at Portland State University Planetary Major Equipment

    Science.gov (United States)

    Ruzicka, Alex

    To build on our parent Origins program award, entitled "Shock histories of chondrites as revealed by combined microstructural (TEM), petrographic, and X-ray microtomographic (micro-CT) analysis", we are requesting as Planetary Major Equipment the acquisition of an Electron Back Scatter Diffraction (EBSD) system, which will integrate with a Zeiss Sigma SEM that was installed at Portland State University last year (2010). This EBSD system will greatly augment the science return of the parent grant by allowing quantitative measurements of strain and textural fabrics in grains of all sizes and types across an entire thin section. Such measurements will help link data that are already being obtained with optical light microscopy, transmission electron microscopy, and micro- tomography methods. More generally, the EBSD system will augment the PI's research on the petrology of extraterrestrial materials by providing an additional tool for petrographic analyses, with data that can be used to evaluate strain, grain orientations, grain size distributions, phase proportions, and mineralogy. The equipment will enable quantitative characterization of the crystallography of primitive extraterrestrial materials, which will contribute to a better understanding of the formation and evolution of planetary systems, a major goal of NASA.

  1. Understanding Global Change: A New Conceptual Framework To Guide Teaching About Planetary Systems And Both The Causes And Effects Of Changes In Those Systems

    Science.gov (United States)

    Levine, J.; Bean, J. R.

    2016-12-01

    Goals of the Next Generation Science Standards include understanding climate change and learning about ways to moderate the causes and mitigate the consequences of planetary-scale anthropogenic activities that interact synergistically to affect ecosystems and societies. The sheer number and scale of both causes and effects of global change can be daunting for teachers, and the lack of a clear conceptual framework for presenting this material usually leads educators (and textbooks) to present these phenomenon as a disjointed "laundry list." But an alternative approach is in the works. The Understanding Global Change web resource, currently under development at the UC Berkeley Museum of Paleontology, will provide educators with a conceptual framework, graphic models, lessons, and assessment templates for teaching NGSS-aligned, interdisciplinary, global change curricula. The core of this resource is an original informational graphic that presents and relates Earth's global systems, human and non-human factors that produce changes in those systems, and the effects of those changes that scientists can measure.

  2. [Introduction of an accreditation system for hospital informed consent forms].

    Science.gov (United States)

    López-Picazo, J J; Tomás-Garcia, N; Calle-Urra, J E; Parra-Hidalgo, P; Valverde-Iniesta, J J

    2015-01-01

    To describe an accreditation system for informed consent forms (ICF) in a tertiary hospital, as an intervention to improve their quality, and to check the improvements achieved. Following an external evaluation of the ICF quality in a public hospital in Murcia (Spain), an accreditation committee set the ICF requirements and associated procedures. Effectiveness is assessed by comparing two external evaluations carried out by the EMCA Program (2011 and 2013) and based on 19 criteria and a sample of 60 ICF for every public hospital in Murcia Region. To be accredited, every ICF must meet the 19 external criteria plus 5 based on legibility, readability and scientific and technical validity. A form to fill in the contents of every ICF was agreed, which would be reviewed, approved and validated for five years. Before the implementation, 8.2 defects/ICF were detected. The accreditation system obtained an 89% improvement (0.9 defects/ICF) and achieved significant improvements in 18 criteria, 16 of which are benchmarked. The accreditation system achieved a substantial improvement in the ICF (obtaining a better result in external evaluations) and guarantees their contents, legibility and readability. This system needs to be extended to other hospitals, since it is not clear whether common ICFs would be suitable. However, this improvement is structural and does not guarantee that the overall information/consent procedure is done properly, thus complementary strategies for measurement and improvement are required. Copyright © 2014 SECA. Published by Elsevier Espana. All rights reserved.

  3. Control and monitoring method and system for electromagnetic forming process

    Science.gov (United States)

    Kunerth, Dennis C.; Lassahn, Gordon D.

    1990-01-01

    A process, system, and improvement for a process for electromagnetic forming of a workpiece in which characteristics of the workpiece such as its geometry, electrical conductivity, quality, and magnetic permeability can be determined by monitoring the current and voltage in the workcoil. In an electromagnet forming process in which a power supply provides current to a workcoil and the electromagnetic field produced by the workcoil acts to form the workpiece, the dynamic interaction of the electromagnetic fields produced by the workcoil with the geometry, electrical conductivity, and magnetic permeability of the workpiece, provides information pertinent to the physical condition of the workpiece that is available for determination of quality and process control. This information can be obtained by deriving in real time the first several time derivatives of the current and voltage in the workcoil. In addition, the process can be extended by injecting test signals into the workcoil during the electromagnetic forming and monitoring the response to the test signals in the workcoil.

  4. Analysis of image plane's Illumination in Image-forming System

    International Nuclear Information System (INIS)

    Duan Lihua; Zeng Yan'an; Zhang Nanyangsheng; Wang Zhiguo; Yin Shiliang

    2011-01-01

    In the detection of optical radiation, the detecting accuracy is affected by optic power distribution of the detector's surface to a large extent. In addition, in the image-forming system, the quality of the image is greatly determined by the uniformity of the image's illumination distribution. However, in the practical optical system, affected by the factors such as field of view, false light and off axis and so on, the distribution of the image's illumination tends to be non uniform, so it is necessary to discuss the image plane's illumination in image-forming systems. In order to analyze the characteristics of the image-forming system at a full range, on the basis of photometry, the formulas to calculate the illumination of the imaging plane have been summarized by the numbers. Moreover, the relationship between the horizontal offset of the light source and the illumination of the image has been discussed in detail. After that, the influence of some key factors such as aperture angle, off-axis distance and horizontal offset on illumination of the image has been brought forward. Through numerical simulation, various theoretical curves of those key factors have been given. The results of the numerical simulation show that it is recommended to aggrandize the diameter of the exit pupil to increase the illumination of the image. The angle of view plays a negative role in the illumination distribution of the image, that is, the uniformity of the illumination distribution can be enhanced by compressing the angle of view. Lastly, it is proved that telecentric optical design is an effective way to advance the uniformity of the illumination distribution.

  5. Beam forming system modernization at the MMF linac proton injector

    CERN Document Server

    Derbilov, V I; Nikulin, E S; Frolov, O T

    2001-01-01

    The isolation improvements of the beam forming system (BFS) of the MMF linac proton injector ion source are reported. The mean beam current and,accordingly, BFS electrode heating were increased when the MMF linac has began to operate regularly in long beam sessions with 50 Hz pulse repetition rate. That is why the BFS electrode high-voltage isolation that was made previously as two consequently and rigidly glued solid cylinder insulators has lost mechanical and electric durability. The substitution of large (160 mm) diameter cylinder insulator for four small diameter (20 mm) tubular rods has improved vacuum conditions in the space of beam forming and has allowed to operate without failures when beam currents being up to 250 mA and extraction and focusing voltage being up to 25 and 40 kV respectively. Moreover,the construction provides the opportunity of electrode axial move. The insulators are free from electrode thermal expansion mechanical efforts in a transverse direction.

  6. Planetary science: Haze cools Pluto's atmosphere

    Science.gov (United States)

    West, Robert A.

    2017-11-01

    Modelling suggests that Pluto's atmospheric temperature is regulated by haze, unlike the other planetary bodies in the Solar System. The finding has implications for our understanding of exoplanetary atmospheres. See Letter p.352

  7. Observatory for Planetary Investigations from the Stratosphere

    Data.gov (United States)

    National Aeronautics and Space Administration — The Observatory for Planetary Investigation from the Stratosphere (OPIS) project demonstrated the ability of the Wallops Arc Second Pointing (WASP) system to provide...

  8. Planetary Impacts by Clustered Quark Matter Strangelets

    OpenAIRE

    Labun, Lance; Rafelski, Jan

    2011-01-01

    We propose a model of clustered u-d-s quark matter that leads to stable bulk strange quark matter. We discuss qualitatively consequences of impacts by sub-planetary mass strangelets on rocky solar system bodies.

  9. Soft x-ray Planetary Imager

    Data.gov (United States)

    National Aeronautics and Space Administration — The project is to prototype a soft X-ray Imager for planetary applications that has the sensitivity to observe solar system sources of soft  X-ray emission. A strong...

  10. Gender Diversity in Planetary Volcanology: Encouraging Equality

    Science.gov (United States)

    Gregg, T. K.; Lopes, R. M.

    2004-12-01

    We have brought together a group of respected and well-known female planetary volcanologists to create a book designed to encourage young women to pursue scientific careers. The book, entitled "Volcanic Worlds: Exploring the Solar System's Volcanoes," published by Praxis, is written for undergraduates who may have no background in geology or planetary sciences. Each chapter covers a different Solar System body or volcanic process, and is authored by a woman who is an expert in her field. Subjects covered include: the relation of plate tectonics to volcanism on Earth; the study of Mars' volcanoes from space and using rovers; geysers on Neptune's moon Triton and on Earth; eruptions on Io; and studying submarine lava flows from a submarine. Each chapter is written in a comfortable, readily accessible tone, with authors presenting not only science, but also some of the unique challenges faced by women conducting volcanological research today-and how these are overcome. Although not intended to be a textbook, this work could easily form the basis of an undergraduate geology seminar, honors course, or as a valuable accessory to an introductory geology course. In addition, it could be used in courses that would be cross-listed between geology departments and sociology departments. We will present more information on the book, and suggestions of how it could be used in the classroom to enhance gender diversity in the Earth and Space Sciences.

  11. Escape from planetary neighbourhoods

    NARCIS (Netherlands)

    Waalkens, H.; Burbanks, A.; Wiggins, S.

    2005-01-01

    In this paper we use recently developed phase-space transport theory coupled with a so-called classical spectral theorem to develop a dynamically exact and computationally efficient procedure for studying escape from a planetary neighbourhood. The ‘planetary neighbourhood’ is a bounded region of

  12. Preparing Graduate Students for Solar System Science and Exploration Careers: Internships and Field Training Courses led by the Lunar and Planetary Institute

    Science.gov (United States)

    Shaner, A. J.; Kring, D. A.

    2015-12-01

    To be competitive in 21st century science and exploration careers, graduate students in planetary science and related disciplines need mentorship and need to develop skills not always available at their home university, including fieldwork, mission planning, and communicating with others in the scientific and engineering communities in the U.S. and internationally. Programs offered by the Lunar and Planetary Institute (LPI) address these needs through summer internships and field training programs. From 2008-2012, LPI hosted the Lunar Exploration Summer Intern Program. This special summer intern program evaluated possible landing sites for robotic and human exploration missions to the lunar surface. By the end of the 2012 program, a series of scientifically-rich landing sites emerged, some of which had never been considered before. Beginning in 2015 and building on the success of the lunar exploration program, a new Exploration Science Summer Intern Program is being implemented with a broader scope that includes both the Moon and near-Earth asteroids. Like its predecessor, the Exploration Science Summer Intern Program offers graduate students a unique opportunity to integrate scientific input with exploration activities in a way that mission architects and spacecraft engineers can use. The program's activities may involve assessments and traverse plans for a particular destination or a more general assessment of a class of possible exploration targets. Details of the results of these programs will be discussed. Since 2010 graduate students have participated in field training and research programs at Barringer (Meteor) Crater and the Sudbury Impact Structure. Skills developed during these programs prepare students for their own thesis studies in impact-cratered terrains, whether they are on the Earth, the Moon, Mars, or other solar system planetary surface. Future field excursions will take place at these sites as well as the Zuni-Bandera Volcanic Field. Skills

  13. Dust in planetary nebulae

    International Nuclear Information System (INIS)

    Kwok, S.

    1980-01-01

    A two-component dust model is suggested to explain the infrared emission from planetary nebulae. A cold dust component located in the extensive remnant of the red-giant envelope exterior to the visible nebula is responsible for the far-infrared emission. A ward dust component, which is condensed after the formation of the planetary nebula and confined within the ionized gas shell, emits most of the near- and mid-infrared radiation. The observations of NGC 7027 are shown to be consisten with such a model. The correlation of silicate emission in several planetary nebulae with an approximately +1 spectral index at low radio frequencies suggests that both the silicate and radio emissions originate from the remnant of the circumstellar envelope of th precursor star and are observable only while the planetary nebula is young. It is argued that oxygen-rich stars as well as carbon-rich stars can be progenitors of planetary nebulae

  14. Planetary Nomenclature: An Overview and Update for 2017

    Science.gov (United States)

    Gaither, Tenielle; Hayward, Rose; IAU Working GroupPlanetary System Nomenclature

    2017-10-01

    The task of naming planetary surface features, rings, and natural satellites is managed by the International Astronomical Union’s (IAU) Working Group for Planetary System Nomenclature (WGPSN). There are currently 15,361 IAU-approved surface feature names on 41 planetary bodies, including moons and asteroids. The members of the WGPSN and its task groups have worked since the early 1970s to provide a clear, unambiguous system of planetary nomenclature that represents cultures and countries from all regions of Earth. WGPSN members include Rita Schulz (Chair) and 9 other members representing countries around the globe. The participation of knowledgeable scientists and experts in this process is vital to its success of the IAU WGPSN . Planetary nomenclature is a tool used to uniquely identify features on the surfaces of planets or satellites so they can be located, described, and discussed in publications, including peer-review journals, maps and conference presentations. Approved names are listed in the Transactions of the IAU and on the Gazetteer of Planetary Nomenclature website. Any names currently in use that are not listed the Gazetteer are not official. Planetary names must adhere to rules and conventions established by the IAU WGPSN (see http://planetarynames.wr.usgs.gov/Page/Rules for the complete list). The gazetteer includes an online Name Request Form (http://planetarynames.wr.usgs.gov/FeatureNameRequest) that can be used by members of the professional science community. Name requests are first reviewed by one of six task groups (Mercury, Venus, Moon, Mars, Outer Solar System, and Small Bodies). After a task group has reviewed a proposal, it is submitted to the WGPSN. Allow four to six weeks for the review and approval process. Upon WGPSN approval, names are considered formally approved and it is then appropriate to use them in publications. Approved names are immediately entered into the database and shown on the website. Questions about the nomenclature

  15. Planetary heat flow measurements.

    Science.gov (United States)

    Hagermann, Axel

    2005-12-15

    The year 2005 marks the 35th anniversary of the Apollo 13 mission, probably the most successful failure in the history of manned spaceflight. Naturally, Apollo 13's scientific payload is far less known than the spectacular accident and subsequent rescue of its crew. Among other instruments, it carried the first instrument designed to measure the flux of heat on a planetary body other than Earth. The year 2005 also should have marked the launch of the Japanese LUNAR-A mission, and ESA's Rosetta mission is slowly approaching comet Churyumov-Gerasimenko. Both missions carry penetrators to study the heat flow from their target bodies. What is so interesting about planetary heat flow? What can we learn from it and how do we measure it?Not only the Sun, but all planets in the Solar System are essentially heat engines. Various heat sources or heat reservoirs drive intrinsic and surface processes, causing 'dead balls of rock, ice or gas' to evolve dynamically over time, driving convection that powers tectonic processes and spawns magnetic fields. The heat flow constrains models of the thermal evolution of a planet and also its composition because it provides an upper limit for the bulk abundance of radioactive elements. On Earth, the global variation of heat flow also reflects the tectonic activity: heat flow increases towards the young ocean ridges, whereas it is rather low on the old continental shields. It is not surprising that surface heat flow measurements, or even estimates, where performed, contributed greatly to our understanding of what happens inside the planets. In this article, I will review the results and the methods used in past heat flow measurements and speculate on the targets and design of future experiments.

  16. The Anthropocene: A Planetary Perspective

    Science.gov (United States)

    Anbar, A. D.; Hartnett, H. E.; York, A.; Selin, C.

    2016-12-01

    The Anthropocene is a new planetary epoch defined by the emergence of human activity as one of the most important driving forces on Earth, rivaling and also stressing the other systems that govern the planet's habitability. Public discussions and debates about the challenges of this epoch tend to be polarized. One extreme denies that humans have a planetary-scale impact, while the other wishes that this impact could disappear. The tension between these perspectives is often paralyzing. Effective adaptation and mitigation requires a new perspective that reframes the conversation. We propose a planetary perspective according to which this epoch is the result of a recent major innovation in the 4 ­billion ­year history of life on Earth: the emergence of an energy-intensive planetary civilization. The rate of human energy use is already within an order of magnitude of that of the rest of the biosphere, and rising rapidly, and so this innovation is second only to the evolution of photosynthesis in terms of energy capture and utilization by living systems. Such energy use has and will continue to affect Earth at planetary scale. This reality cannot be denied nor wished away. From this pragmatic perspective, the Anthropocene is not an unnatural event that can be reversed, as though humanity is separate from the Earth systems with which we are co-evolving. Rather, it is an evolutionary transition to be managed. This is the challenge of turning a carelessly altered planet into a carefully designed and managed world, maintaining a "safe operating space" for human civilization (Steffen et al., 2011). To do so, we need an integrated approach to Earth systems science that considers humans as a natural and integral component of Earth's systems. Insights drawn from the humanities and the social sciences must be integrated with the natural sciences in order to thrive in this new epoch. This type of integrated perspective is relatively uncontroversial on personal, local, and even

  17. The International Planetary Data Alliance (IPDA)

    Science.gov (United States)

    Stein, Thomas; Gopala Krishna, Barla; Crichton, Daniel J.

    2016-07-01

    The International Planetary Data Alliance (IPDA) is a close association of partners with the aim of improving the quality of planetary science data and services to the end users of space based instrumentation. The specific mission of the IPDA is to facilitate global access to, and exchange of, high quality scientific data products managed across international boundaries. Ensuring proper capture, accessibility and availability of the data is the task of the individual member space agencies. The IPDA is focused on developing an international standard that allows discovery, query, access, and usage of such data across international planetary data archive systems. While trends in other areas of space science are concentrating on the sharing of science data from diverse standards and collection methods, the IPDA concentrates on promoting governing data standards that drive common methods for collecting and describing planetary science data across the international community. This approach better supports the long term goal of easing data sharing across system and agency boundaries. An initial starting point for developing such a standard will be internationalization of NASA's Planetary Data System's (PDS) PDS4 standard. The IPDA was formed in 2006 with the purpose of adopting standards and developing collaborations across agencies to ensure data is captured in common formats. It has grown to a dozen member agencies represented by a number of different groups through the IPDA Steering Committee. Member agencies include: Armenian Astronomical Society, China National Space Agency (CNSA), European Space Agency (ESA), German Aerospace Center (DLR), Indian Space Research Organization (ISRO), Italian Space Agency (ASI), Japanese Aerospace Exploration Agency (JAXA), National Air and Space Administration (NASA), National Centre for Space Studies (CNES), Space Research Institute (IKI), UAE Space Agency, and UK Space Agency. The IPDA Steering Committee oversees the execution of

  18. A large planetary body inferred from diamond inclusions in a ureilite meteorite.

    Science.gov (United States)

    Nabiei, Farhang; Badro, James; Dennenwaldt, Teresa; Oveisi, Emad; Cantoni, Marco; Hébert, Cécile; El Goresy, Ahmed; Barrat, Jean-Alix; Gillet, Philippe

    2018-04-17

    Planetary formation models show that terrestrial planets are formed by the accretion of tens of Moon- to Mars-sized planetary embryos through energetic giant impacts. However, relics of these large proto-planets are yet to be found. Ureilites are one of the main families of achondritic meteorites and their parent body is believed to have been catastrophically disrupted by an impact during the first 10 million years of the solar system. Here we studied a section of the Almahata Sitta ureilite using transmission electron microscopy, where large diamonds were formed at high pressure inside the parent body. We discovered chromite, phosphate, and (Fe,Ni)-sulfide inclusions embedded in diamond. The composition and morphology of the inclusions can only be explained if the formation pressure was higher than 20 GPa. Such pressures suggest that the ureilite parent body was a Mercury- to Mars-sized planetary embryo.

  19. Fluvial geomorphology on Earth-like planetary surfaces: A review

    Science.gov (United States)

    Baker, Victor R.; Hamilton, Christopher W.; Burr, Devon M.; Gulick, Virginia C.; Komatsu, Goro; Luo, Wei; Rice, James W.; Rodriguez, J.A.P.

    2017-01-01

    Morphological evidence for ancient channelized flows (fluvial and fluvial-like landforms) exists on the surfaces of all of the inner planets and on some of the satellites of the Solar System. In some cases, the relevant fluid flows are related to a planetary evolution that involves the global cycling of a volatile component (water for Earth and Mars; methane for Saturn’s moon Titan). In other cases, as on Mercury, Venus, Earth’s moon, and Jupiter’s moon Io, the flows were of highly fluid lava. The discovery, in 1972, of what are now known to be fluvial channels and valleys on Mars sparked a major controversy over the role of water in shaping the surface of that planet. The recognition of the fluvial character of these features has opened unresolved fundamental questions about the geological history of water on Mars, including the presence of an ancient ocean and the operation of a hydrological cycle during the earliest phases of planetary history. Other fundamental questions posed by fluvial and fluvial-like features on planetary bodies include the possible erosive action of large-scale outpourings of very fluid lavas, such as those that may have produced the remarkable canali forms on Venus; the ability of exotic fluids, such as methane, to create fluvial-like landforms, as observed on Saturn’s moon, Titan; and the nature of sedimentation and erosion under different conditions of planetary surface gravity. Planetary fluvial geomorphology also illustrates fundamental epistemological and methodological issues, including the role of analogy in geomorphological/geological inquiry. PMID:29176917

  20. International Planetary Data Alliance (IPDA) Information Model

    Science.gov (United States)

    Hughes, John Steven; Beebe, R.; Guinness, E.; Heather, D.; Huang, M.; Kasaba, Y.; Osuna, P.; Rye, E.; Savorskiy, V.

    2007-01-01

    This document is the third deliverable of the International Planetary Data Alliance (IPDA) Archive Data Standards Requirements Identification project. The goal of the project is to identify a subset of the standards currently in use by NASAs Planetary Data System (PDS) that are appropriate for internationalization. As shown in the highlighted sections of Figure 1, the focus of this project is the Information Model component of the Data Architecture Standards, namely the object models, a data dictionary, and a set of data formats.

  1. Evolution of planetary nebula nuclei

    International Nuclear Information System (INIS)

    Shaw, R.A.

    1985-01-01

    The evolution of planetary nebula nuclei (PNNs) is examined with the aid of the most recent available stellar evolution calculations and new observations of these objects. Their expected distribution in the log L-log T plane is calculated based upon the stellar evolutionary models of Paczynski, Schoenberner and Iben, the initial mass function derived by Miller and Scalo, and various assumptions concerning mass loss during post-main sequence evolution. The distribution is found to be insensitive both to the assumed range of main-sequence progenitor mass and to reasonable variations in the age and the star forming history of the galactic disk. Rather, the distribution is determined by the strong dependence of the rate of stellar evolution upon core mass, the steepness of the initial mass function, and to a lesser extent the finite lifetime of an observable planetary nebula. The theoretical distributions are rather different than any of those inferred from earlier observations. Possible observational selection effects that may be responsible are examined, as well as the intrinsic uncertainties associated with the theoretical model predictions. An extensive photometric and smaller photographic survey of southern hemisphere planetary nebulae (PNs) is presented

  2. A pneumatic transfer system for special form 252Cf

    International Nuclear Information System (INIS)

    Gehrke, R.J.; Berry, S.M.; Grafwallner, E.G.; Hoggan, J.M.

    1996-09-01

    A pneumatic transfer system has been developed for use with series 100 Special Form 252 Cf. It was developed to reduce the exposure to personnel handling sources of 252 Cf with masses up to 150 microg by permitting remotely activated two-way transfer between the storage container and the irradiation position. The pneumatic transfer system also permits transfers for reproducible repetitive irradiation periods. In addition to the storage container equipped with quick-release fittings, the transfer system consists of an irradiation station, a control box with momentary contact switches to activate the air-pressure control valves and indicators to identify the location of the source, and connecting air hose and electrical wire. A source of 20 psig air and 110 volt electrical power are required for operation of the transfer system which can be easily moved and set up by one individual in 5 to 10 minutes. Tests have shown that rarely does a source become lodged in the transfer tubing, but two methods have been developed to handle incomplete transfers of the 252 Cf source. The first method consists of closing one air vent to allow a pressure impulse to propel the source to the opposite side. The second method applies to those 252 Cf capsules with a threaded or tapped end to which a small ferromagnetic piece can be attached; an incompletely transferred source in the transfer tube can then be guided to a position of safety by surrounding the transfer tubing containing the capsule with a horseshoe magnet attached to the end of a long pole

  3. Gazetteer of Planetary Nomenclature

    Data.gov (United States)

    National Aeronautics and Space Administration — Planetary nomenclature, like terrestrial nomenclature, is used to uniquely identify a feature on the surface of a planet or satellite so that the feature can be...

  4. Spice Tools Supporting Planetary Remote Sensing

    Science.gov (United States)

    Acton, C.; Bachman, N.; Semenov, B.; Wright, E.

    2016-06-01

    NASA's "SPICE"* ancillary information system has gradually become the de facto international standard for providing scientists the fundamental observation geometry needed to perform photogrammetry, map making and other kinds of planetary science data analysis. SPICE provides position and orientation ephemerides of both the robotic spacecraft and the target body; target body size and shape data; instrument mounting alignment and field-of-view geometry; reference frame specifications; and underlying time system conversions. SPICE comprises not only data, but also a large suite of software, known as the SPICE Toolkit, used to access those data and subsequently compute derived quantities-items such as instrument viewing latitude/longitude, lighting angles, altitude, etc. In existence since the days of the Magellan mission to Venus, the SPICE system has continuously grown to better meet the needs of scientists and engineers. For example, originally the SPICE Toolkit was offered only in Fortran 77, but is now available in C, IDL, MATLAB, and Java Native Interface. SPICE calculations were originally available only using APIs (subroutines), but can now be executed using a client-server interface to a geometry engine. Originally SPICE "products" were only available in numeric form, but now SPICE data visualization is also available. The SPICE components are free of cost, license and export restrictions. Substantial tutorials and programming lessons help new users learn to employ SPICE calculations in their own programs. The SPICE system is implemented and maintained by the Navigation and Ancillary Information Facility (NAIF)-a component of NASA's Planetary Data System (PDS). * Spacecraft, Planet, Instrument, Camera-matrix, Events

  5. A high energy photon detector system in compact form

    International Nuclear Information System (INIS)

    Kato, Sadayuki; Sugano, Katsuhito; Yoshioka, Masakazu.

    1975-01-01

    The development of a high energy photon detector system in compact form for use in experiments of high energy physics is described, and the results of its characteristics calibrated using converted electron beams and a pair spectrometer are reported. This system consists of a total absorption lead glass Cerenkov counter, twenty hodoscope arrays for the vertical and the horizontal directions respectively, a lead plate for the conversion of γ-rays into electron-positron pairs, veto counters, photon hardener, and lead blocks for shieldings and collimation. The spatial resolution of the hodoscope is 15 mm for each direction, covering 301 x 301 mm 2 area. The energy resolution of the total absorption lead glass Cerenkov counter, whose volume is 30 x 30 x 30 cm 3 , is typically 18 % (FWHM) for the incident electron energy of 500 MeV, and it can be expressed with a relation of ΔE/E = 3.94 Esup(-1/2). (E in MeV). (auth.)

  6. Planetary magnetospheres: the in situ astrophysical laboratories

    International Nuclear Information System (INIS)

    Krimigis, S.M.

    1982-01-01

    The magnetosphere of Earth is described first because it represents the one most extensively studied to date, and serve as the baseline for characterizing the phenomena to be observed in other planetary magnetospheres. The magnetospheres of the inner planets (Mercury, Venus and Mars) are examined next and then a description of the magnetospheres of the outer planets are presented. The description of the magnetosphere of Jupiter form the bulk of the paper, not only because of its enormous size and rich variety of physical phenomena within, but because it may represent the closest analog to the many astrophysical objects thought to possess magnetospheres. Several properties characteristic of magnetospheres in general will then be pointed out, and the significance of the findings is discussed in the context of solar system and astrophysical plasmas

  7. Lunar Science Conference, 8th, Houston, Tex., March 14-18, 1977, Proceedings. Volume 1 - The moon and the inner solar system. Volume 2 - Petrogenetic studies of mare and highland rocks. Volume 3 - Planetary and lunar surfaces

    Science.gov (United States)

    Merril, R. B.

    1977-01-01

    Solar system processes are considered along with the origin and evolution of the moon, planetary geophysics, lunar basins and crustal layering, lunar magnetism, the lunar surface as a planetary probe, remote observations of lunar and planetary surfaces, earth-based measurements, integrated studies, physical properties of lunar materials, and asteroids, meteorites, and the early solar system. Attention is also given to studies of mare basalts, the kinetics of basalt crystallization, topical studies of mare basalts, highland rocks, experimental studies of highland rocks, geochemical studies of highland rocks, studies of materials of KREEP composition, a consortium study of lunar breccia 73215, topical studies on highland rocks, Venus, and regional studies of the moon. Studies of surface processes, are reported, taking into account cratering mechanics and fresh crater morphology, crater statistics and surface dating, effects of exposure and gardening, and the chemistry of surfaces.

  8. Planetary Transmission Diagnostics

    Science.gov (United States)

    Lewicki, David G. (Technical Monitor); Samuel, Paul D.; Conroy, Joseph K.; Pines, Darryll J.

    2004-01-01

    This report presents a methodology for detecting and diagnosing gear faults in the planetary stage of a helicopter transmission. This diagnostic technique is based on the constrained adaptive lifting algorithm. The lifting scheme, developed by Wim Sweldens of Bell Labs, is a time domain, prediction-error realization of the wavelet transform that allows for greater flexibility in the construction of wavelet bases. Classic lifting analyzes a given signal using wavelets derived from a single fundamental basis function. A number of researchers have proposed techniques for adding adaptivity to the lifting scheme, allowing the transform to choose from a set of fundamental bases the basis that best fits the signal. This characteristic is desirable for gear diagnostics as it allows the technique to tailor itself to a specific transmission by selecting a set of wavelets that best represent vibration signals obtained while the gearbox is operating under healthy-state conditions. However, constraints on certain basis characteristics are necessary to enhance the detection of local wave-form changes caused by certain types of gear damage. The proposed methodology analyzes individual tooth-mesh waveforms from a healthy-state gearbox vibration signal that was generated using the vibration separation (synchronous signal-averaging) algorithm. Each waveform is separated into analysis domains using zeros of its slope and curvature. The bases selected in each analysis domain are chosen to minimize the prediction error, and constrained to have the same-sign local slope and curvature as the original signal. The resulting set of bases is used to analyze future-state vibration signals and the lifting prediction error is inspected. The constraints allow the transform to effectively adapt to global amplitude changes, yielding small prediction errors. However, local wave-form changes associated with certain types of gear damage are poorly adapted, causing a significant change in the

  9. A bibliography of planetary geology principal investigators and their associates, 1976--1978

    International Nuclear Information System (INIS)

    1978-05-01

    This bibliography cites publications submitted by 484 principal investigators and their associates who were supported through NASA's Office of Space Sciences Planetary Geology Program. Subject classifications include solar system formation, comets, and asteroids; planetary satellites, planetary interiors, geological and geochemical constraints on planetary evolution; impact crater studies, volcanism, eolian studies, fluvian studies, Mars geological mapping; Mercury geological mapping; planetary cartography; and instrument development and techniques. An author/editor index is provided

  10. Form and toxicity of copper released into marine systems from ...

    Science.gov (United States)

    The fate and effects of pristine engineered nanomaterials (ENMs) in simplified systems have been widely studied; however, little is known about the potential release and impact of ENMs from consumer goods, especially lumber that has been treated with micronized copper. Micronized copper solutions contain copper complexes predominately in the 10-700 nm size range, and are used in lumber to prevent microbial degradation and fouling. In this work, the goal was to determine the rate, concentration, and form of copper released from commercially available pressure treated lumber samples (blocks and sawdust) exposed to an aqueous system. Lumber tested included Southern Yellow Pine (SYP) treated with micronized copper azole (MCA) at 0.96 and 2.4 Kg/m3, alkaline copper quaternary (ACQ) at 0.30 and 9.6 Kg/m3, and chromated copper arsenate (CCA) at 40 Kg/m3. Of the different chemical treatments, only MCA included nano- and micro-sized copper complexes. The experimental system included wood cubes cut from the outer 2 cm surface of the lumber or the equivalent mass (4 g) of sawdust submerged in 250 mL of media (0, 1, 10, and 30 ppt filtered natural seawater) in polyethylene bottles, and mixed on a shaker table at 120 rpm. Water samples were taken at 8 hours, and on days 1, 2, 7, 14, and 28 for the blocks and days 1, 2, 3, 7, 17, and 28 for the sawdust. Subsamples included unfiltered water (defined as 0.45 µm - filtered water for the sawdust), and water filtered through a 0.

  11. An Improved Instrument for Angular Scattering Measurements of Candidate Planetary Surface Regolith Materials at Extremely Small Phase Angles: Relevance to the Outer Solar System

    Science.gov (United States)

    Nelson, R. M.; Boryta, M. D.; Hapke, B. W.; Manatt, K.; Kroner, D. O.; Smythe, W. D.

    2014-12-01

    The reflection variation and the polarization change with phase angle of radiation scattered from particulate materials has been studied for a century in efforts to understand the nature of clouds, aerosols, planetary ring systems and planetary regolith materials. The increase in reflectance as phase angle decreases, the 'Opposition Effect', has been well documented in astronomical observations and laboratory studies. Variations in linear polarization near small phase angles have also been well studied (e.g. Shkuratov et al.,2002, Rosenbush et al. 2015). While the phenomena have been well documented, a generally accepted physical explanation is still lacking despite many excellent theoretical modeling efforts. We have undertaken a reductionist approach in deconstructing the process. We have fabricated a goniometer which permits us to present samples with discrete wavelengths of monochromatic light that is linearly polarized in and perpendicular to the scattering plane. We also can illuminate our samples with both right handed and left handed circular polarization senses. Silicon Avalanche Photodiodes record the reflected radiation from the sample after it has passed through linear and circular polarizing analyzers(Kroner et al.). This reductionist approach permits us to measure the reflectance and polarization phase curves and the change in linear and circular polarization ratio (LPR and CPR) with phase angle between 0.056 and 17 degrees. LPR and CPR are found to be important indicators of the amount of multiple scattering in the medium (Hapke, 1990, Nelson et al, 1998, 2000;Hapke, 2012). This approach provides a way to distinguish between suggested models and to gain greater insight into the process of the scattering of electromagnetic radiation in a variety of media. This work was supported by NASA's Cassini Science Program Hapke, B. (1990), Icarus, 88, 407-217. Hapke, B. (2012). Theory of Reflectance and Emittance Spectroscopy, Cambridge U. Press, New York

  12. Urey Prize Lecture - Planetary evolution and the origin of life

    Science.gov (United States)

    Mckay, Christopher P.

    1991-01-01

    One of the principal questions concerning planetary evolution and life's origins relates to the early-earth organic material's origination in situ, outer solar system importation, or simple irrelevance to the emergence of organisms. Additional considerations encompass the character of interstellar organic material and its relationship to outer solar system organic compounds, and the possibility of life's emergence in the early Mars. Attention is given to the essentiality of liquid water for life-forms, in the role not only of a reaction medium among molecules but that of a basis for hydrophylic and hydrophobic groups' bonding.

  13. CHARACTERIZING THE COOL KOIs. IV. KEPLER-32 AS A PROTOTYPE FOR THE FORMATION OF COMPACT PLANETARY SYSTEMS THROUGHOUT THE GALAXY

    International Nuclear Information System (INIS)

    Swift, Jonathan J.; Johnson, John Asher; Morton, Timothy D.; Montet, Benjamin T.; Muirhead, Philip S.; Crepp, Justin R.; Fabrycky, Daniel C.

    2013-01-01

    The Kepler space telescope has opened new vistas in exoplanet discovery space by revealing populations of Earth-sized planets that provide a new context for understanding planet formation. Approximately 70% of all stars in the Galaxy belong to the diminutive M dwarf class, several thousand of which lie within Kepler's field of view, and a large number of these targets show planet transit signals. The Kepler M dwarf sample has a characteristic mass of 0.5 M ☉ representing a stellar population twice as common as Sun-like stars. Kepler-32 is a typical star in this sample that presents us with a rare opportunity: five planets transit this star, giving us an expansive view of its architecture. All five planets of this compact system orbit their host star within a distance one-third the size of Mercury's orbit, with the innermost planet positioned a mere 4.3 stellar radii from the stellar photosphere. New observations limit possible false positive scenarios, allowing us to validate the entire Kepler-32 system making it the richest known system of transiting planets around an M dwarf. Based on considerations of the stellar dust sublimation radius, a minimum mass protoplanetary nebula, and the near period commensurability of three adjacent planets, we propose that the Kepler-32 planets formed at larger orbital radii and migrated inward to their present locations. The volatile content inferred for the Kepler-32 planets and order of magnitude estimates for the disk migration rates suggest that these planets may have formed beyond the snow line and migrated in the presence of a gaseous disk. If true, then this would place an upper limit on their formation time of ∼10 Myr. The Kepler-32 planets are representative of the full ensemble of planet candidates orbiting the Kepler M dwarfs for which we calculate an occurrence rate of 1.0 ± 0.1 planet per star. The formation of the Kepler-32 planets therefore offers a plausible blueprint for the formation of one of the largest

  14. Characterizing the X-ray Radiation Field in the Earth-like Planet Forming ExoSystem HD 113766

    Science.gov (United States)

    Lisse, Carey

    2010-09-01

    We propose a 100 ksec ACIS-S observation of the 12 Myr old system HD 113766, the site of on-going terrestrial planet formation (Lisse et al. 2008), in order to determine the spectrum of x-ray radiation in the fledgling system, its origin in the stellar coronae and proto-planetary disk, and its potential impact on the nascent planet.

  15. ARCHITECTONICS - A SYSTEM OF EXPLORING ARCHITECTURAL FORMS IN SPATIAL CATEGORIES

    Directory of Open Access Journals (Sweden)

    Andrzej M. Niezabitowski

    2009-07-01

    Full Text Available Comparative researches based on visual analyses of different architectural objects enable separation of the small number of basic recurrent units defining spatial aspects of architectural form independently of when and in which cultural circle the object was created. These basic units of spatial structure can be termed spatial universals. Using them in accordance with some basic and universal rules of assembling into larger wholes makes possible creating any spatial objects as well as transforming them into different ones. At the same time words of natural languages contained in dictionaries give us important clues how people think about space. Another important clues are included in some recent theories of perception. All these findings taken together have been the basis to create the system of notions and terms regarding space in architecture. It is founded on basic and universal spatial elements (units and rules of their composing into larger wholes. The paper is the trial of presenting such a notional system which was termed architectonics (or morphotectonics. Basic notions enabling description and analysis of spatial structure of any architectural object have been introduced. Fundamental spatial units have been also distinguished based on the principle of hierarchical structure – from elementary ones, through more and more complex up to largest ones playing decisive role in defining the whole architectural object. Basic spatial morphological features called also cardinal ones have been differentiated. Primary kinds of articulation have been discussed dealing with the empty space (internal or external, line, surface and volume and their elementary units had been distinguished. Besides morphological features characterizing composing elements the rules of their assembling have been specified, which have been termed syntax or relational features, characterizing spatial wholes composed of elements. Both morphological and syntax features may be

  16. Nature-aligned approaches to form students’ system motivation

    Directory of Open Access Journals (Sweden)

    Marina V. Ulyanova

    2017-01-01

    -affirmation, independence, self-efficacy, self-leadership, and self-government are initiated and realized. Only the system model of motivation, organized in such a way, forms life potential of personality in the process of education,  beginning with primary school and until post-graduate education, that is able to ensure good health and satisfy one’s vanity, without which he/she will not feel happy and assist sustainable development of the society on the whole. Only observing laws of harmony in the educational process provides formation of personalities with a high level of harmony that will determine the level of harmony in the society, as well. The philosophical, managerial, psychological and pedagogical aspects of individual self-perfection processes are considered in the paper. Special attention is paid to the questions of forming common educational abilities and skills in the process of teaching academic disciplines according to the nature-aligned methodology. The key mechanisms of object-subject transformation in the process of education are described, that provide an individual with energy for passing to the next level of his/her personality development. It is shown how nature-aligned methodology of noospheric pedagogics enables to make the process of the student’s personality growth self-regulated in the process of education.   

  17. The PSA: Planetary Science Archive

    Science.gov (United States)

    Barthelemy, M.; Martinez, S.; Heather, D.; Vazquez, J. L.; Arviset, C.; Osuna, P.; PSA development Team

    2012-04-01

    through to validation and ingestion of the products into the archive. All data in the PSA are compatible with the Planetary Data System (PDS) Standard of NASA, and the PSA staff work in close collaboration with the PDS staff. To ensure a common archiving approach for all of ESA's planetary missions as well as to provide a similar data quality and standard for end users, a tool has been developed supporting the instrument teams in syntactically validating their datasets before delivering to the PSA. This tool, and the overall archiving process is being streamlined in line with the re-development of the science ground segment for Rosetta. This will be very important for the efficient handling and release of data during Rosetta's encounter with the comet Churyamov-Gerasimenko. A PSA advisory body has been established in order to assess the continuing development of the PSA. The advisory panel aims to meet regularly, reviewing the progress on defined requirements and providing feedback on our activities. New areas of data exploitation include attempts to standardize the way in which planetary data sets are constructed internationally. This is driving towards 'interoperability' of the data systems maintained at all Agencies archiving planetary data, and it is hoped that in the long-run any data can be obtained from any of the co-operating archives using the same protocol. Representatives from most major archiving agencies are members of the International Planetary Data Alliance (IPDA), and regular meetings are now taking place as standards are discussed.

  18. Can planetary nebulae rotate

    International Nuclear Information System (INIS)

    Grinin, V.P.

    1982-01-01

    It is shown that the inclination of spectral lines observed in a number of planetary nebulae when the spectrograph slit is placed along the major axis, which is presently ascribed to nonuniform expansion of the shells, actually may be due to rotation of the nebulae about their minor axes, as Campbell and Moore have suggested in their reports. It is assumed that the rotation of the central star (or, if the core is a binary system, circular motions of gas along quasi-Keplerian orbits) serves as the source of the original rotation of a protoplanetary nebula. The mechanism providing for strengthening of the original rotation in the process of expansion of the shell is the tangential pressure of L/sub α/ radiation due to the anisotropic properties of the medium and radiation field. The dynamic effect produced by them is evidently greatest in the epoch when the optical depth of the nebula in the L/sub c/ continuum becomes on the order of unity in the course of its expansion

  19. Pediatric Scleroderma –Systemic and Localized Forms

    Science.gov (United States)

    Torok, Kathryn S.

    2012-01-01

    Synopsis statement Pediatric scleroderma includes two major groups of clinical entities, systemic sclerosis (SSc) and localized scleroderma (LS). Although both share a common pathophysiology, with an initial inflammatory phase associated with endothelial activation, and a later fibrotic phase evidenced by collagenization of tissue and appreciable skin thickness, their clinical manifestations differ. LS is typically confined to the skin and underlying subcutis, and though not fatal like SSc, up to a quarter of the patients may have extracutaneous disease manifestations, such as arthritis and uveitis. While any organ may be affected in SSc, vascular (Raynaud’s phenomenon), cutaneous (skin thickening), GI, pulmonary and musculoskeletal involvement are most commonly seen in children. Auto-antibody profiles in childhood onset SSc can assist in predicting internal organ involvement. Treatment for both forms of scleroderma targets the active inflammatory stage and halts disease progression; however, progress still needs to be made towards the development of a more effective anti-fibrotic therapy to help reverse disease damage. PMID:22560576

  20. Redox Variations in Early Solar System Materials and Implications for Late Stage Planetary Accretion and Planet Formation

    Science.gov (United States)

    Righter, K.

    2017-01-01

    Oxygen fugacity plays an important role in determining the detailed physical and chemical aspects of planets and their building blocks. Basic chemical properties such as the amount of oxidized Fe in a mantle (as FeO), the nature of alloying elements in the core (S, C, H, O, Si), and the solubility of various volatile elements in the silicate and metallic portions of embryos and planets can influence physical properties such as the size of the core, the liquidus and solidus of the mantle and core, and the speciation of volatile compounds contributing to atmospheres. This paper will provide an overview of the range of fO2 variation observed in primitive and differentiated materials that may have participated in accretion (cosmic dust, Star-dust and meteorites), a comparison to observations of planetary fO2 (Mercury, Mars and Earth), and a discus-sion of timing of variation of fO2 within both early and later accreted materials. This overview is meant to promote discussion and interaction between students of these two stages of planet formation to identify areas where more work is needed.

  1. Turning Planetary Theory Upside Down

    Science.gov (United States)

    2010-04-01

    The discovery of nine new transiting exoplanets is announced today at the RAS National Astronomy Meeting (NAM2010). When these new results were combined with earlier observations of transiting exoplanets astronomers were surprised to find that six out of a larger sample of 27 were found to be orbiting in the opposite direction to the rotation of their host star - the exact reverse of what is seen in our own Solar System. The new discoveries provide an unexpected and serious challenge to current theories of planet formation. They also suggest that systems with exoplanets of the type known as hot Jupiters are unlikely to contain Earth-like planets. "This is a real bomb we are dropping into the field of exoplanets," says Amaury Triaud, a PhD student at the Geneva Observatory who, with Andrew Cameron and Didier Queloz, leads a major part of the observational campaign. Planets are thought to form in the disc of gas and dust encircling a young star. This proto-planetary disc rotates in the same direction as the star itself, and up to now it was expected that planets that form from the disc would all orbit in more or less the same plane, and that they would move along their orbits in the same direction as the star's rotation. This is the case for the planets in the Solar System. After the initial detection of the nine new exoplanets [1] with the Wide Angle Search for Planets (WASP, [2]), the team of astronomers used the HARPS spectrograph on the 3.6-metre ESO telescope at the La Silla observatory in Chile, along with data from the Swiss Euler telescope, also at La Silla, and data from other telescopes to confirm the discoveries and characterise the transiting exoplanets [3] found in both the new and older surveys. Surprisingly, when the team combined the new data with older observations they found that more than half of all the hot Jupiters [4] studied have orbits that are misaligned with the rotation axis of their parent stars. They even found that six exoplanets in this

  2. How systems form and how systems break a beginner’s guide for studying the world

    CERN Document Server

    Ren, Chiang H

    2017-01-01

    Our world is composed of systems within systems—the machines we build, the information we share, the organizations we form, and elements of nature that surround us. Therefore, nearly every field of study and practice embodies behaviors stemming from system dynamics. Yet the study of systems has remained somewhat fragmented based on philosophies, methodologies, and intentions. Many methodologies for analyzing complex systems extend far beyond the traditional framework of deduction evaluation and may, thus, appear mysterious to the uninitiated. This book seeks to dispel the mysteries of systems analysis by holistically explaining the philosophies, methodologies, and intentions in the context of understanding how all types of systems in our world form and how these systems break. This presentation is made at the level of conceptual understanding, with plenty of figures but no mathematical formulas, for the beginning student and interested readers new to studying systems. Through the conceptual understanding pr...

  3. Gazetteer of planetary nomenclature 1994

    Science.gov (United States)

    Batson, Raymond M.; Russell, Joel F.

    1995-01-01

    Planetary nomenclature, like terrestrial nomenclature, is used to uniquely identify a feature on the surface of a planet or satellite so that the feature can be easily located, described, and discussed. This volume contains detailed information about all names of topographic and albedo features on planets and satellites (and some planetary ring and ring-gap systems) that the International Astronomical Union has named and approved from its founding in 1919 through its triennial meeting in 1994.This edition of the Gazetteer of Planetary Nomenclature supersedes an earlier informal volume distributed by the U.S. Geological Survey in 1986 as Open-File Report 84-692 (Masursky and others, 1986). Named features are depicted on maps of the Moon published first by the U.S. Defense Mapping Agency or the Aeronautical Chart and Information Center and more recently by the U.S. Geological Survey; on maps of Mercury, Venus, Mars, and the satellites of Jupiter, Saturn, and Uranus published by the U.S. Geological Survey; and on maps of the Moon, Venus, and Mars produced by the U.S.S.R.Although we have attempted to check the accuracy of all data in this volume, we realize that some errors will remain in a work of this size. Readers noting errors or omissions are urged to communicate them to the U.S. Geological Survey, Branch of Astrogeology, Rm. 409, 2255 N. Gemini Drive, Flagstaff, AZ 86001.

  4. Did a stellar fly-by shape the planetary system around Pr 0211 in the cluster M44?

    Science.gov (United States)

    Pfalzner, Susanne; Bhandare, Asmita; Vincke, Kirsten

    2018-02-01

    Out of the 3000 exoplanets detected so far, only 14 planets are members of open clusters: one of them is the exoplanet system around Pr 0211 in the cluster M44. The system consists of at least 2 planets, and the outer planet moves on a highly eccentric orbit at 5.5 AU. One hypothesis is that a close fly-by of a neighbouring star was responsible for the eccentric orbit. We test this hypothesis. First we determined the type of fly-by that would lead to the observed parameters, and then we used this result to determine the history of such fly-bys in simulations of the early dynamics in an M44-like environment. We find that although very close fly-bys are required to obtain the observed properties of Pr 0211c, such fly-bys are relatively common as a result of the high stellar density and longevity of the cluster. Such close fly-bys are most frequent during the first 1‑2 Myr after cluster formation, corresponding to a cluster age ≤3 Myr. During the first 2 to 3 Myr, about 6.5% of stars experience a fly-by that would lead to such a small system-size as observed for Pr 0211 or even smaller. It is unclear whether planets generally form on such short timescales. However, after this time, the close fly-by rate is still 0.2‑0.5 Myr‑1, which means that 12‑20% of stars would experience such close fly-bys over this time span when we extrapolate the situation to the age of M44. Our simulations show that the fly-by scenario is a realistic option for the formation of eccentricity orbits of the planets in M44 (Wang et al. 2015). The occurrence of such events is relatively high, leading to the expectation that similar systems are likely common in open clusters in general.

  5. The Dynamics of Tightly-packed Planetary Systems in the Presence of an Outer Planet: Case Studies Using Kepler-11 and Kepler-90

    Science.gov (United States)

    Granados Contreras, A. P.; Boley, A. C.

    2018-03-01

    We explore the effects of an undetected outer giant planet on the dynamics, observability, and stability of Systems with Tightly-packed Inner Planets (STIPs). We use direct numerical simulations along with secular theory and synthetic secular frequency spectra to analyze how analogues of Kepler-11 and Kepler-90 behave in the presence of a nearly co-planar, Jupiter-like outer perturber with semimajor axes between 1 and 5.2 au. Most locations of the outer perturber do not affect the evolution of the inner planetary systems, apart from altering precession frequencies. However, there are locations at which an outer planet causes system instability due to, in part, secular eccentricity resonances. In Kepler-90, there is a range of orbital distances for which the outer perturber drives planets b and c, through secular interactions, onto orbits with inclinations that are ∼16° away from the rest of the planets. Kepler-90 is stable in this configuration. Such secular resonances can thus affect the observed multiplicity of transiting systems. We also compare the synthetic apsidal and nodal precession frequencies with the secular theory and find some misalignment between principal frequencies, indicative of strong interactions between the planets (consistent with the system showing TTVs). First-order libration angles are calculated to identify MMRs in the systems, for which two near-MMRs are shown in Kepler-90, with a 5:4 between b and c, as well as a 3:2 between g and h.

  6. The Planetary Data System— Archiving Planetary Data for the use of the Planetary Science Community

    Science.gov (United States)

    Morgan, Thomas H.; McLaughlin, Stephanie A.; Grayzeck, Edwin J.; Vilas, Faith; Knopf, William P.; Crichton, Daniel J.

    2014-11-01

    NASA’s Planetary Data System (PDS) archives, curates, and distributes digital data from NASA’s planetary missions. PDS provides the planetary science community convenient online access to data from NASA’s missions so that they can continue to mine these rich data sets for new discoveries. The PDS is a federated system consisting of nodes for specific discipline areas ranging from planetary geology to space physics. Our federation includes an engineering node that provides systems engineering support to the entire PDS.In order to adequately capture complete mission data sets containing not only raw and reduced instrument data, but also calibration and documentation and geometry data required to interpret and use these data sets both singly and together (data from multiple instruments, or from multiple missions), PDS personnel work with NASA missions from the initial AO through the end of mission to define, organize, and document the data. This process includes peer-review of data sets by members of the science community to ensure that the data sets are scientifically useful, effectively organized, and well documented. PDS makes the data in PDS easily searchable so that members of the planetary community can both query the archive to find data relevant to specific scientific investigations and easily retrieve the data for analysis. To ensure long-term preservation of data and to make data sets more easily searchable with the new capabilities in Information Technology now available (and as existing technologies become obsolete), the PDS (together with the COSPAR sponsored IPDA) developed and deployed a new data archiving system known as PDS4, released in 2013. The LADEE, MAVEN, OSIRIS REx, InSight, and Mars2020 missions are using PDS4. ESA has adopted PDS4 for the upcoming BepiColumbo mission. The PDS is actively migrating existing data records into PDS4 and developing tools to aid data providers and users. The PDS is also incorporating challenge

  7. Planetary Geophysics and Tectonics

    Science.gov (United States)

    Zuber, Maria

    2005-01-01

    The broad objective of this work is to improve understanding of the internal structures and thermal and stress histories of the solid planets by combining results from analytical and computational modeling, and geophysical data analysis of gravity, topography and tectonic surface structures. During the past year we performed two quite independent studies in the attempt to explain the Mariner 10 magnetic observations of Mercury. In the first we revisited the possibility of crustal remanence by studying the conditions under which one could break symmetry inherent in Runcorn's model of a uniformly magnetized shell to produce a remanent signal with a dipolar form. In the second we applied a thin shell dynamo model to evaluate the range of intensity/structure for which such a planetary configuration can produce a dipole field consistent with Mariner 10 results. In the next full proposal cycle we will: (1) develop numerical and analytical and models of thin shell dynamos to address the possible nature of Mercury s present-day magnetic field and the demise of Mars magnetic field; (2) study the effect of degree-1 mantle convection on a core dynamo as relevant to the early magnetic field of Mars; (3) develop models of how the deep mantles of terrestrial planets are perturbed by large impacts and address the consequences for mantle evolution; (4) study the structure, compensation, state of stress, and viscous relaxation of lunar basins, and address implications for the Moon s state of stress and thermal history by modeling and gravity/topography analysis; and (5) use a three-dimensional viscous relaxation model for a planet with generalized vertical viscosity distribution to study the degree-two components of the Moon's topography and gravity fields to constrain the primordial stress state and spatial heterogeneity of the crust and mantle.

  8. A System of Test Methods for Sheet Metal Forming Tribology

    DEFF Research Database (Denmark)

    Bay, Niels; Olsson, David Dam; Andreasen, Jan Lasson

    2007-01-01

    Sheet metal forming of tribologically difficult materials such as stainless steel, Al-alloys and Ti-alloys or forming in tribologically difficult operations like ironing, punching or deep drawing of thick plate requires often use of environmentally hazardous lubricants such as chlorinated paraffin...

  9. Die Deformation Measurement System during Sheet Metal Forming

    Science.gov (United States)

    Funada, J.; Takahashi, S.; Fukiharu, H.

    2011-08-01

    In order to reduce affection to the earth environment, it is necessary to lighten the vehicles. For this purpose, high tensile steels are applied. Because of high strength, high forming force is required for producing automotive sheet metal parts. In this situation, since the dies are elastic, they are deformed during forming parts. For reducing die developing period, sheet metal forming simulation is widely applied. In the numerical simulation, rigid dies are usually used for shortening computing time. It means that the forming conditions in the actual forming and the simulation are different. It will make large errors in the results between actual forming and simulation. It can be said that if contact pressure between dies and a sheet metal in the simulation can be reproduced in the actual forming, the differences of forming results between them can also been reduced. The basic idea is to estimate die shape which can produce the same distribution as computed from simulation with rigid dies. In this study, die deformation analyses with Finite Element Method as basic technologies are evaluated. For example, simple shape and actual dies elastic contact problems were investigated. The contact width between simple shape dies was investigated. The computed solutions were in good agreement with experimental results. The one case of the actual dies in two cases was also investigated. Bending force was applied to the blank holder with a mechanical press machine. The methodology shown with applying inductive displacement sensor for measuring die deformation during applying force was also proposed.

  10. The Planetary Science Archive (PSA): Exploration and discovery of scientific datasets from ESA's planetary missions

    Science.gov (United States)

    Vallat, C.; Besse, S.; Barbarisi, I.; Arviset, C.; De Marchi, G.; Barthelemy, M.; Coia, D.; Costa, M.; Docasal, R.; Fraga, D.; Heather, D. J.; Lim, T.; Macfarlane, A.; Martinez, S.; Rios, C.; Vallejo, F.; Said, J.

    2017-09-01

    The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific datasets through various interfaces at http://psa.esa.int. All datasets are scientifically peer-reviewed by independent scientists, and are compliant with the Planetary Data System (PDS) standards. The PSA has started to implement a number of significant improvements, mostly driven by the evolution of the PDS standards, and the growing need for better interfaces and advanced applications to support science exploitation.

  11. RAPID FREEFORM SHEET METAL FORMING: TECHNOLOGY DEVELOPMENT AND SYSTEM VERIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Kiridena, Vijitha [Ford Scientific Research Lab., Dearborn, MI (United States); Verma, Ravi [Boeing Research and Technology (BR& T), Seattle, WA (United States); Gutowski, Timothy [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Roth, John [Pennsylvania State Univ., University Park, PA (United States)

    2018-03-31

    The objective of this project is to develop a transformational RApid Freeform sheet metal Forming Technology (RAFFT) in an industrial environment, which has the potential to increase manufacturing energy efficiency up to ten times, at a fraction of the cost of conventional technologies. The RAFFT technology is a flexible and energy-efficient process that eliminates the need for having geometry-specific forming dies. The innovation lies in the idea of using the energy resource at the local deformation area which provides greater formability, process control, and process flexibility relative to traditional methods. Double-Sided Incremental Forming (DSIF), the core technology in RAFFT, is a new concept for sheet metal forming. A blank sheet is clamped around its periphery and gradually deformed into a complex 3D freeform part by two strategically aligned stylus-type tools that follow a pre-described toolpath. The two tools, one on each side of the blank, can form a part with sharp features for both concave and convex shapes. Since deformation happens locally, the forming force at any instant is significantly decreased when compared to traditional methods. The key advantages of DSIF are its high process flexibility, high energy-efficiency, low capital investment, and the elimination of the need for massive amounts of die casting and machining. Additionally, the enhanced formability and process flexibility of DSIF can open up design spaces and result in greater weight savings.

  12. Newly Discovered Silicate Features in the Spectra of Young Warm Debris Disks: Probing Terrestrial Regions of Planetary Systems

    Science.gov (United States)

    Ballering, N.; Rieke, G.

    2014-03-01

    Terrestrial planets form by the collisional accretion of planetesimals during the first 100 Myr of a system’s lifetime. For most systems, the terrestrial regions are too near their host star to be directly seen with high-contrast imaging (e.g. with HST, MagAO, or LBTI) and too warm to be imaged with submillimeter interferometers (e.g. ALMA). Mid-infrared excess spectra—originating from the thermal emission of the circumstellar dust leftover from these collisions—remain the best data to constrain the properties of the debris in these regions. The spectra of most debris disks are featureless, taking the shape of (modified) blackbodies. Determining the properties of debris disks with featureless spectra is complicated by a degeneracy between the grain size and location (large grains near the star and small grains farther from the star may be indistinguishable). Debris disk spectra that exhibit solid state emission features allow for a more accurate determination of the dust size and location (e.g. Chen et al. 2006; Olofsson et al. 2012). Such features probe small, warm dust grains in the inner regions of these systems where terrestrial planet formation may be proceeding (Lisse et al. 2009). We report here a successful search for such features. We identified our targets with a preliminary search for signs of emission features in the Spitzer IRS spectra of a number of young early type stars known to harbor warm debris disks. We fit to each target a physically-motivated model spectrum consisting of the sum of the stellar photosphere (modeled as a blackbody) and thermal emission from two dust belts. Each belt was defined by 6 parameters: the inner and outer orbital radii (rin and rout), the index of the radial surface density power law (rexp), the minimum and maximum grain sizes (amin and amax), and the index of the grain size distribution power law (aexp). aexp was fixed to -3.65 and amax was fixed to 1000 μm for all models; all other parameters were allowed to

  13. Planetary perspective. Report of Working Group Number 4

    Science.gov (United States)

    Rossbacher, L. A.

    1985-01-01

    The study of global megageomorphology from a planetary perspective requires that, philosophically, we view the Earth as a planet like any other; one among a number of bodies of varied size and composition which, together with the Sun, form the Solar System. A first step in the study of the Earth from the planetary perspective is the development of global distribution maps of surface factors as landforms, tectonics, and of key processes operating on Earth. Data of other types, such as gravity and magnetism, should also be included and, so far as possible, multiple data sets should be developed. The compilation of maps would serve as a catalyst for research and a basis for interpretation. They could be used scientifically to document changes such as glacial variations and their relationships to climate, volcanic eruptions and their effects, and coastal alterations. Slow and rapid changes should be studied together with the relationships between scale and the rapidity of change. A study of the relationship of geomorphology (i.e., surficial processes) to lithology and structure is needed. The planetary perspective can also help in the identification and investigation of exotic features such as suspect terrains.

  14. Virtual Planetary Space Weather Services offered by the Europlanet H2020 Research Infrastructure

    Science.gov (United States)

    André, N.; Grande, M.; Achilleos, N.; Barthélémy, M.; Bouchemit, M.; Benson, K.; Blelly, P.-L.; Budnik, E.; Caussarieu, S.; Cecconi, B.; Cook, T.; Génot, V.; Guio, P.; Goutenoir, A.; Grison, B.; Hueso, R.; Indurain, M.; Jones, G. H.; Lilensten, J.; Marchaudon, A.; Matthiä, D.; Opitz, A.; Rouillard, A.; Stanislawska, I.; Soucek, J.; Tao, C.; Tomasik, L.; Vaubaillon, J.

    2018-01-01

    Under Horizon 2020, the Europlanet 2020 Research Infrastructure (EPN2020-RI) will include an entirely new Virtual Access Service, "Planetary Space Weather Services" (PSWS) that will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. PSWS will make twelve new services accessible to the research community, space agencies, and industrial partners planning for space missions. These services will in particular be dedicated to the following key planetary environments: Mars (in support of the NASA MAVEN and European Space Agency (ESA) Mars Express and ExoMars missions), comets (building on the outstanding success of the ESA Rosetta mission), and outer planets (in preparation for the ESA JUpiter ICy moon Explorer mission), and one of these services will aim at predicting and detecting planetary events like meteor showers and impacts in the Solar System. This will give the European planetary science community new methods, interfaces, functionalities and/or plugins dedicated to planetary space weather as well as to space situational awareness in the tools and models available within the partner institutes. A variety of tools (in the form of web applications, standalone software, or numerical models in various degrees of implementation) are available for tracing propagation of planetary and/or solar events through the Solar System and modelling the response of the planetary environment (surfaces, atmospheres, ionospheres, and magnetospheres) to those events. But these tools were not originally designed for planetary event prediction and space weather applications. PSWS will provide the additional research and tailoring required to apply them for these purposes. PSWS will be to review, test, improve and adapt methods and tools available within the partner institutes in order to make prototype planetary event and space weather services operational in Europe at the end

  15. The CARMENES search for exoplanets around M dwarfs . First visual-channel radial-velocity measurements and orbital parameter updates of seven M-dwarf planetary systems

    Science.gov (United States)

    Trifonov, T.; Kürster, M.; Zechmeister, M.; Tal-Or, L.; Caballero, J. A.; Quirrenbach, A.; Amado, P. J.; Ribas, I.; Reiners, A.; Reffert, S.; Dreizler, S.; Hatzes, A. P.; Kaminski, A.; Launhardt, R.; Henning, Th.; Montes, D.; Béjar, V. J. S.; Mundt, R.; Pavlov, A.; Schmitt, J. H. M. M.; Seifert, W.; Morales, J. C.; Nowak, G.; Jeffers, S. V.; Rodríguez-López, C.; del Burgo, C.; Anglada-Escudé, G.; López-Santiago, J.; Mathar, R. J.; Ammler-von Eiff, M.; Guenther, E. W.; Barrado, D.; González Hernández, J. I.; Mancini, L.; Stürmer, J.; Abril, M.; Aceituno, J.; Alonso-Floriano, F. J.; Antona, R.; Anwand-Heerwart, H.; Arroyo-Torres, B.; Azzaro, M.; Baroch, D.; Bauer, F. F.; Becerril, S.; Benítez, D.; Berdiñas, Z. M.; Bergond, G.; Blümcke, M.; Brinkmöller, M.; Cano, J.; Cárdenas Vázquez, M. C.; Casal, E.; Cifuentes, C.; Claret, A.; Colomé, J.; Cortés-Contreras, M.; Czesla, S.; Díez-Alonso, E.; Feiz, C.; Fernández, M.; Ferro, I. M.; Fuhrmeister, B.; Galadí-Enríquez, D.; Garcia-Piquer, A.; García Vargas, M. L.; Gesa, L.; Gómez Galera, V.; González-Peinado, R.; Grözinger, U.; Grohnert, S.; Guàrdia, J.; Guijarro, A.; de Guindos, E.; Gutiérrez-Soto, J.; Hagen, H.-J.; Hauschildt, P. H.; Hedrosa, R. P.; Helmling, J.; Hermelo, I.; Hernández Arabí, R.; Hernández Castaño, L.; Hernández Hernando, F.; Herrero, E.; Huber, A.; Huke, P.; Johnson, E.; de Juan, E.; Kim, M.; Klein, R.; Klüter, J.; Klutsch, A.; Lafarga, M.; Lampón, M.; Lara, L. M.; Laun, W.; Lemke, U.; Lenzen, R.; López del Fresno, M.; López-González, M. J.; López-Puertas, M.; López Salas, J. F.; Luque, R.; Magán Madinabeitia, H.; Mall, U.; Mandel, H.; Marfil, E.; Marín Molina, J. A.; Maroto Fernández, D.; Martín, E. L.; Martín-Ruiz, S.; Marvin, C. J.; Mirabet, E.; Moya, A.; Moreno-Raya, M. E.; Nagel, E.; Naranjo, V.; Nortmann, L.; Ofir, A.; Oreiro, R.; Pallé, E.; Panduro, J.; Pascual, J.; Passegger, V. M.; Pedraz, S.; Pérez-Calpena, A.; Pérez Medialdea, D.; Perger, M.; Perryman, M. A. C.; Pluto, M.; Rabaza, O.; Ramón, A.; Rebolo, R.; Redondo, P.; Reinhardt, S.; Rhode, P.; Rix, H.-W.; Rodler, F.; Rodríguez, E.; Rodríguez Trinidad, A.; Rohloff, R.-R.; Rosich, A.; Sadegi, S.; Sánchez-Blanco, E.; Sánchez Carrasco, M. A.; Sánchez-López, A.; Sanz-Forcada, J.; Sarkis, P.; Sarmiento, L. F.; Schäfer, S.; Schiller, J.; Schöfer, P.; Schweitzer, A.; Solano, E.; Stahl, O.; Strachan, J. B. P.; Suárez, J. C.; Tabernero, H. M.; Tala, M.; Tulloch, S. M.; Veredas, G.; Vico Linares, J. I.; Vilardell, F.; Wagner, K.; Winkler, J.; Wolthoff, V.; Xu, W.; Yan, F.; Zapatero Osorio, M. R.

    2018-02-01

    Context. The main goal of the CARMENES survey is to find Earth-mass planets around nearby M-dwarf stars. Seven M dwarfs included in the CARMENES sample had been observed before with HIRES and HARPS and either were reported to have one short period planetary companion (GJ 15 A, GJ 176, GJ 436, GJ 536 and GJ 1148) or are multiple planetary systems (GJ 581 and GJ 876). Aims: We aim to report new precise optical radial velocity measurements for these planet hosts and test the overall capabilities of CARMENES. Methods: We combined our CARMENES precise Doppler measurements with those available from HIRES and HARPS and derived new orbital parameters for the systems. Bona-fide single planet systems were fitted with a Keplerian model. The multiple planet systems were analyzed using a self-consistent dynamical model and their best fit orbits were tested for long-term stability. Results: We confirm or provide supportive arguments for planets around all the investigated stars except for GJ 15 A, for which we find that the post-discovery HIRES data and our CARMENES data do not show a signal at 11.4 days. Although we cannot confirm the super-Earth planet GJ 15 Ab, we show evidence for a possible long-period (Pc = 7030-630+970 d) Saturn-mass (mcsini = 51.8M⊕) planet around GJ 15 A. In addition, based on our CARMENES and HIRES data we discover a second planet around GJ 1148, for which we estimate a period Pc = 532.6 days, eccentricity ec = 0.342 and minimum mass mcsini = 68.1M⊕. Conclusions: The CARMENES optical radial velocities have similar precision and overall scatter when compared to the Doppler measurements conducted with HARPS and HIRES. We conclude that CARMENES is an instrument that is up to the challenge of discovering rocky planets around low-mass stars. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 072.C-0488, 072.C-0513, 074.C-0012, 074.C-0364, 075.D-0614, 076.C-0878, 077.C

  16. Planetary Geologic Mapping Handbook - 2010. Appendix

    Science.gov (United States)

    Tanaka, K. L.; Skinner, J. A., Jr.; Hare, T. M.

    2010-01-01

    the USGS now are primarily digital products using geographic information system (GIS) software and file formats. GIS mapping tools permit easy spatial comparison, generation, importation, manipulation, and analysis of multiple raster image, gridded, and vector data sets. GIS software has also permitted the development of projectspecific tools and the sharing of geospatial products among researchers. GIS approaches are now being used in planetary geologic mapping as well. Guidelines or handbooks on techniques in planetary geologic mapping have been developed periodically. As records of the heritage of mapping methods and data, these remain extremely useful guides. However, many of the fundamental aspects of earlier mapping handbooks have evolved significantly, and a comprehensive review of currently accepted mapping methodologies is now warranted. As documented in this handbook, such a review incorporates additional guidelines developed in recent years for planetary geologic mapping by the NASA Planetary Geology and Geophysics (PGG) Program's Planetary Cartography and Geologic Mapping Working Group's (PCGMWG) Geologic Mapping Subcommittee (GEMS) on the selection and use of map bases as well as map preparation, review, publication, and distribution. In light of the current boom in planetary exploration and the ongoing rapid evolution of available data for planetary mapping, this handbook is especially timely.

  17. Planetary Nebulae Beyond the Milky Way

    CERN Document Server

    Stanghellini, L; Douglas, N. G; Proceedings of the ESO Workshop held at Garching, Germany, 19-21 May, 2004

    2006-01-01

    In the last decade extra-galactic planetary nebulae (PNe) have gained increasing importance. Improved observational capabilities have allowed fainter and fainter PNe to be studied in galaxies well beyond the Milky Way. Planetary nebulae can be detected to at least 30Mpc. They are found in galaxies of all types and also between the galaxies in nearby galaxy clusters. They are valuable as probes, both for providing the velocity of their host stars and also the evolutionary status and relation to the stellar population from which they formed. This book contains the proceedings of a workshop held at ESO headquarters in Garching in 2004, the first meeting devoted entirely to Extra-galactic Planetary Nebulae. A wide range of topics is covered, from stellar and nebular astrophysics to galactic dynamics and galaxy clusters, making this volume a unique and timely reference of broad astrophysical interest.

  18. Novel measurement and monitoring system for forming processes based on piezoresistive thin film systems

    Science.gov (United States)

    Biehl, Saskia; Staufenbiel, Sebastian; Hauschild, Frank

    2009-05-01

    The investigation of a novel sensor system, integrated in the main load region of forming machines, is the challenge. Therefore it is important that the thin film system is multifunctional. It has an excellent tribological quality in combination with a piezoresistive behaviour. The layer system is deposited on the polished surface of a steel substrate. It has such geometries that it can be easily integrated in the drawing cushion of a deep drawing machine. The thin film sensor system exists out of a piezoresistive hydrogenated carbon layer, deposited in a PACVD process. Onto this layer arrays of chromium structures are deposited in a PVD process. The structures are protected against wear by an insulating silicon doped hydrogenated carbon layer. The whole thin film system has a thickness of about 9 μm. During the forming process the steel plate is in direct touch with the sensor system and moves over it. The position of the steel and the load distribution is measured in dependence on the forming stadium. The sensor system works as a control system to ensure that the shape of the product is perfect and without any cracks or creases.

  19. Modeling of the process of gear shifting in planetary gear trains of motor vehicles

    Directory of Open Access Journals (Sweden)

    Aleksandar R. Grkić

    2011-04-01

    scheme of the gear train. The gears are presented as a solid body defined by mass, moment of inertia, position with respect to the system and the center of gravity. Subsystem for monitoring the simulation results Measuring and recording the simulation results are simulated with the simulation tracking subsystem. The simulation results are described through the torque and the angular velocity as a function of time. Analysis of the simulation model Forming a simulation model enables virtual testing of the planetary gear and the analysis of the impact of certain parameters on the behavior of the gear during gear changes. In other words, an opportunity has been created to examine the behavior of the model while simulating different conditions. Conclusion This paper presents the modeling of the gear change process in a planetary gear using computers in the Matlab / Simulink environment. Computer-aided modeling of the gear change process enables the generation of different versions of virtual gear models with relevant data about their characteristics thus helping designers in their decision making in the iterative process of design, i. e. in making appropriate decisions in the early stages of design.

  20. Teaching, learning, and planetary exploration

    Science.gov (United States)

    Brown, Robert A.

    1992-01-01

    The progress accomplished in the first five months of the three-year grant period of Teaching, Learning, and Planetary Exploration is presented. The objectives of this project are to discover new education products and services based on space science, particularly planetary exploration. An Exploration in Education is the umbrella name for the education projects as they are seen by teachers and the interested public. As described in the proposal, our approach consists of: (1) increasing practical understanding of the potential role and capabilities of the research community to contribute to basic education using new discoveries; (2) developing an intellectual framework for these contributions by supplying criteria and templates for the teacher's stories; (3) attracting astronomers, engineers, and technical staff to the project and helping them form productive education partnerships for the future, (4) exploring relevant technologies and networks for authoring and communicating the teacher's stories; (5) enlisting the participation of potential user's of the teacher's stories in defining the products; (6) actually producing and delivering many educationally useful teacher's stories; and (7) reporting the pilot study results with critical evaluation. Technical progress was made by assembling our electronic publishing stations, designing electronic publications based on space science, and developing distribution approaches for electronic products. Progress was made addressing critical issues by developing policies and procedures for securing intellectual property rights and assembling a focus group of teachers to test our ideas and assure the quality of our products. The following useful materials are being produced: the TOPS report; three electronic 'PictureBooks'; one 'ElectronicArticle'; three 'ElectronicReports'; ten 'PrinterPosters'; and the 'FaxForum' with an initial complement of printed materials. We have coordinated with planetary scientists and astronomers

  1. Dust in planetary nebulae

    International Nuclear Information System (INIS)

    Mathis, J.S.

    1978-01-01

    The author's review concentrates on theoretical aspects of dust in planetary nebulae (PN). He considers the questions: how much dust is there is PN; what is its composition; what effects does it have on the ionization structure, on the dynamics of the nebula. (Auth.)

  2. Bond forms of methane in porous system of coal II

    Czech Academy of Sciences Publication Activity Database

    Weishauptová, Zuzana; Medek, Jiří; Kovář, Lukáš

    2004-01-01

    Roč. 83, č. 13 (2004), s. 1759-1764 ISSN 0016-2361 R&D Projects: GA AV ČR IAA2046101; GA AV ČR KSK2067107 Institutional research plan: CEZ:AV0Z3046908 Keywords : coal-bed methane * absorption * fifth bond form Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.368, year: 2004

  3. Transparent form-active system with structural glass

    NARCIS (Netherlands)

    Nikolaou, M.S.N.; Veer, F.A.; Eigenraam, P.

    2015-01-01

    Free-form transparent wide-span spatial structures which have being constructed so far, are based on the concept of three sets of components, the structural components, usually steel elements to ensure both compressive and tensional capacity; the glass cladding elements for expressing transparency;

  4. Cosmic Education: Formation of a Planetary and Cosmic Personality

    Directory of Open Access Journals (Sweden)

    Bazaluk Oleg

    2012-04-01

    Full Text Available The major stages of development of cosmic pedagogy have been researched. Based on the achievements of the modern neurosciences as well as of psychology, cosmology, and philosophy, the authors provide their reasoning for the cosmic education and its outlooks for the educational systems of the world. Through the studies of how important human mind is for the Earth and the cosmos and by researching the evolution of human mind within the structure of the Universe, the authors create a more advanced scientific and philosophic basis for the cosmic education where the subject is a comprehensive process of formation and directed progress of both an individual mind and a conglomerate of minds called the "psychospace". The cosmic education researches the permanent progress of the intelligent matter of the Earth. The purpose of the cosmic education has been determined as formation of a planetary and cosmic personality. According to the authors, a planetary and cosmic personality is a harmony of mind, soul, and body, and such harmony is directed to use the internal creative potential of mind to the benefit of the intelligent matter of the entire Earth and the cosmos. The properties of such a planetary and cosmic personality are being improved continuously; they are a sample (the ideal of the cosmic pedagogy and the image of a human being of the future. Through the usage of the entire potential and art of upbringing and educating, the cosmic pedagogy is called to embody the major properties of the image of a human being of the future in the new generations of minds and to form a planetary and cosmic personality capable of self-actualization to the benefit of the permanent progress of the intelligent matter.

  5. Fourier transform spectroscopy for future planetary missions

    Science.gov (United States)

    Brasunas, John C.; Hewagama, Tilak; Kolasinski, John R.; Kostiuk, Theodor

    2015-11-01

    Thermal-emission infrared spectroscopy is a powerful tool for exploring the composition, temperature structure, and dynamics of planetary atmospheres; and the temperature of solid surfaces. A host of Fourier transform spectrometers (FTS) such as Mariner IRIS, Voyager IRIS, and Cassini CIRS from NASA Goddard have made and continue to make important new discoveries throughout the solar system.Future FTS instruments will have to be more sensitive (when we concentrate on the colder, outer reaches of the solar system), and less massive and less power-hungry as we cope with decreasing resource allotments for future planetary science instruments. With this in mind, NASA Goddard was funded via the Planetary Instrument Definition and Development Progrem (PIDDP) to develop CIRS-lite, a smaller version of the CIRS FTS for future planetary missions. Following the initial validation of CIRS-lite operation in the laboratory, we have been acquiring atmospheric data in the 8-12 micron window at the 1.2 m telescope at the Goddard Geophysical and Astronomical Observatory (GGAO) in Greenbelt, MD. Targets so far have included Earth's atmosphere (in emission, and in absorption against the moon), and Venus.We will present the roadmap for making CIRS-lite a viable candidate for future planetary missions.

  6. Accounting for planet-shaped planetary nebulae

    Science.gov (United States)

    Sabach, Efrat; Soker, Noam

    2018-01-01

    By following the evolution of several observed exoplanetary systems, we show that by lowering the mass-loss rate of single solar-like stars during their two giant branches, these stars will swallow their planets at the tip of their asymptotic giant branch (AGB) phase. This will most likely lead the stars to form elliptical planetary nebulae (PNe). Under the traditional mass-loss rate these stars will hardly form observable PNe. Stars with a lower mass-loss rate as we propose, about 15 per cent of the traditional mass-loss rate of single stars, leave the AGB with much higher luminosities than what traditional evolution produces. Hence, the assumed lower mass-loss rate might also account for the presence of bright PNe in old stellar populations. We present the evolution of four exoplanetary systems that represent stellar masses in the range of 0.9-1.3 M⊙. The justification for this low mass-loss rate is our assumption that the stellar samples that were used to derive the traditional average single-star mass-loss rate were contaminated by stars that suffer binary interaction.

  7. PSUP: A Planetary SUrface Portal

    Science.gov (United States)

    Poulet, F.; Quantin-Nataf, C.; Ballans, H.; Dassas, K.; Audouard, J.; Carter, J.; Gondet, B.; Lozac'h, L.; Malapert, J.-C.; Marmo, C.; Riu, L.; Séjourné, A.

    2018-01-01

    The large size and complexity of planetary data acquired by spacecraft during the last two decades create a demand within the planetary community for access to the archives of raw and high level data and for the tools necessary to analyze these data. Among the different targets of the Solar System, Mars is unique as the combined datasets from the Viking, Mars Global Surveyor, Mars Odyssey, Mars Express and Mars Reconnaissance Orbiter missions provide a tremendous wealth of information that can be used to study the surface of Mars. The number and the size of the datasets require an information system to process, manage and distribute data. The Observatories of Paris Sud (OSUPS) and Lyon (OSUL) have developed a portal, called PSUP (Planetary SUrface Portal), for providing users with efficient and easy access to data products dedicated to the Martian surface. The objectives of the portal are: 1) to allow processing and downloading of data via a specific application called MarsSI (Martian surface data processing Information System); 2) to provide the visualization and merging of high level (image, spectral, and topographic) products and catalogs via a web-based user interface (MarsVisu), and 3) to distribute some of these specific high level data with an emphasis on products issued by the science teams of OSUPS and OSUL. As the MarsSI service is extensively described in a companion paper (Quantin-Nataf et al., companion paper, submitted to this special issue), the present paper focus on the general architecture and the functionalities of the web-based user interface MarsVisu. This service provides access to many data products for Mars: albedo, mineral and thermal inertia global maps from spectrometers; mosaics from imagers; image footprints and rasters from the MarsSI tool; high level specific products (defined as catalogs or vectors). MarsVisu can be used to quickly assess the visualized processed data and maps as well as identify areas that have not been mapped yet

  8. Planetary Radars Operating Centre PROC

    Science.gov (United States)

    Catallo, C.; Flamini, E.; Seu, R.; Alberti, G.

    2007-12-01

    Planetary exploration by means of radar systems, mainly using Ground Penetrating Radars (GPR) plays an important role in Italy. Numerous scientific international space programs are currently carried out jointly with ESA and NASA by Italian Space Agency, the scientific community and the industry. Three important experiments under Italian leadership ( designed and manufactured by the Italian industry), provided by ASI either as contribution to ESA programs either within a NASA/ASI joint venture framework, are now operating: MARSIS on-board Mars Express, SHARAD on-board Mars Reconnaissance Orbiter and CASSINI Radar on-board Cassini spacecraft. In order to support all the scientific communities, institutional customers and experiment teams operation three Italian dedicated operational centers have been realized, namely SHOC, (Sharad Operating Centre), MOC (Marsis Operating Center) and CASSINI PAD ( Processing Altimetry Data). Each center is dedicated to a single instrument management and control, data processing and distribution. Although they had been conceived to operate autonomously and independently one from each other, synergies and overlaps have been envisaged leading to the suggestion of a unified center, the Planetary Radar Processing Center (PROC). PROC is conceived in order to include the three operational centers, namely SHOC, MOC and CASSINI PAD, either from logistics point of view and from HW/SW capabilities point of view. The Planetary Radar Processing Center shall be conceived as the Italian support facility to the scientific community for on-going and future Italian planetary exploration programs. Therefore, scalability, easy use and management shall be the design drivers. The paper describes how PROC is designed and developed, to allow SHOC, MOC and CASSINI PAD to operate as before, and to offer improved functionalities to increase capabilities, mainly in terms of data exchange, comparison, interpretation and exploitation. Furthermore, in the frame of

  9. Planetary life: why and how?

    Science.gov (United States)

    Pratt, Andy; Kerr, William

    2012-07-01

    Understanding life in an astrobiological context requires that we understand why and how life emerged on earth. We report on the elaboration and preliminary testing of our recent model for the origin of life (Pratt, 2011). This model identifies key components, including availability of chemicals and geochemical energy sources, required for the emergence of planetary life. The model is based on the theory (Russell and Kanik, 2010) that life emerged as a mechanism for the dissipation of the intrinsic geochemical energy gradient of the planet. It proposes that life is founded on an ongoing chemical energy flux that can be harnessed more efficiently by autocatalytic networks of reactions than by direct chemical processes. Feedback and selection mechanisms are required to foster the apparently irreducible complexity found in cells. We posit that selective solubilisation in a hydrothermal flow system was a key mechanism that underpinned the emergence of life. Amongst other things, earthly cells are dependent on a combination of organic molecules, iron (for electron-transfer and catalysis) and phosphate (e.g. for digital information). Soluble aqueous systems that include all these components are constrained by precipitation chemistry (de Zwart et al., 2004). We propose that in situ abiological carbon fixation produced organic molecules that, in turn, led to more active carbon fixation catalysts and hence more efficient reduction of carbon oxides. By encapsulating free iron ions, these organic molecules also facilitated the solubilisation of phosphate species which thereby became integrated within this expanding autocatalytic network. We have evaluated the competitive solubility of phosphate species in the presence of iron and organic moieties to test this theory and provide evidence that this could act as positive feedback loop for a form of prebiological evolution that underpinned the emergence of complex cells. References, Pratt, A. J. (2011) Prebiological Evolution and

  10. Planetary Image Geometry Library

    Science.gov (United States)

    Deen, Robert C.; Pariser, Oleg

    2010-01-01

    The Planetary Image Geometry (PIG) library is a multi-mission library used for projecting images (EDRs, or Experiment Data Records) and managing their geometry for in-situ missions. A collection of models describes cameras and their articulation, allowing application programs such as mosaickers, terrain generators, and pointing correction tools to be written in a multi-mission manner, without any knowledge of parameters specific to the supported missions. Camera model objects allow transformation of image coordinates to and from view vectors in XYZ space. Pointing models, specific to each mission, describe how to orient the camera models based on telemetry or other information. Surface models describe the surface in general terms. Coordinate system objects manage the various coordinate systems involved in most missions. File objects manage access to metadata (labels, including telemetry information) in the input EDRs and RDRs (Reduced Data Records). Label models manage metadata information in output files. Site objects keep track of different locations where the spacecraft might be at a given time. Radiometry models allow correction of radiometry for an image. Mission objects contain basic mission parameters. Pointing adjustment ("nav") files allow pointing to be corrected. The object-oriented structure (C++) makes it easy to subclass just the pieces of the library that are truly mission-specific. Typically, this involves just the pointing model and coordinate systems, and parts of the file model. Once the library was developed (initially for Mars Polar Lander, MPL), adding new missions ranged from two days to a few months, resulting in significant cost savings as compared to rewriting all the application programs for each mission. Currently supported missions include Mars Pathfinder (MPF), MPL, Mars Exploration Rover (MER), Phoenix, and Mars Science Lab (MSL). Applications based on this library create the majority of operational image RDRs for those missions. A

  11. PVOL2 (The Planetary Virtual Observatory and Laboratory): An improved database of amateur observations of Solar system planets

    Science.gov (United States)

    Hueso, R.; Juaristi, J.; Legarreta, J.; Sánchez-Lavega, A.; Erard, S.; Cecconi, B.; Le Sidaner, P.

    2017-09-01

    We present a database of amateur observations of Solar System planets and other major objects. The database is used by different research teams as an important resource for their scientific research. Publications partially based on amateur data available in this database encompass a large range of topics typically related with the temporal evolution of atmospherics systems in solar system planets.

  12. PHENOMENAL FORMS OF FRAUD IN SYSTEM OF INDIRECT TAXATION

    Directory of Open Access Journals (Sweden)

    Elvir Sačić

    2011-12-01

    Full Text Available This work could be summarized by unique description: it is phenomenological analysis designed to determine and analyze the concept of crimes against financial interests, i.e. budgetary funds of Bosnia and Herzegovina as well as of the European Union. Through a syn- thetic and casuistic description of individual phenomenological forms of criminal actions and the systematisation of them according to given criminological characteristics, an endeavour is made to delve into the complex fiscal, financial, economic and legal context in which these deeds arise, and to associate them more closely with the practical reality. In order to bring to light the multidimensional importance and throw light on crime against the budget of the Bosnia and Herzegovina and the EU from several aspects, in this paper a phenomenological analysis is carried out at several levels and is based on main criteria: the phenomenological forms considering the kind of legally protected good – the revenues and/or expendituresof the budget.

  13. A Search for Technosignatures from 14 Planetary Systems in the Kepler Field with the Green Bank Telescope at 1.15–1.73 GHz

    Science.gov (United States)

    Margot, Jean-Luc; Greenberg, Adam H.; Pinchuk, Pavlo; Shinde, Akshay; Alladi, Yashaswi; Prasad MN, Srinivas; Bowman, M. Oliver; Fisher, Callum; Gyalay, Szilard; McKibbin, Willow; Miles, Brittany; Nguyen, Donald; Power, Conor; Ramani, Namrata; Raviprasad, Rashmi; Santana, Jesse; Lynch, Ryan S.

    2018-05-01

    Analysis of Kepler mission data suggests that the Milky Way includes billions of Earth-sized planets in the habitable zone of their host stars. Current technology enables the detection of technosignatures emitted from a large fraction of the Galaxy. We describe a search for technosignatures that is sensitive to Arecibo-class transmitters located within ∼420 ly of Earth and transmitters that are 1000 times more effective than Arecibo within ∼13000 ly of Earth. Our observations focused on 14 planetary systems in the Kepler field and used the L-band receiver (1.15–1.73 GHz) of the 100 m diameter Green Bank Telescope. Each source was observed for a total integration time of 5 minutes. We obtained power spectra at a frequency resolution of 3 Hz and examined narrowband signals with Doppler drift rates between ±9 Hz s‑1. We flagged any detection with a signal-to-noise ratio in excess of 10 as a candidate signal and identified approximately 850,000 candidates. Most (99%) of these candidate signals were automatically classified as human-generated radio-frequency interference (RFI). A large fraction (>99%) of the remaining candidate signals were also flagged as anthropogenic RFI because they have frequencies that overlap those used by global navigation satellite systems, satellite downlinks, or other interferers detected in heavily polluted regions of the spectrum. All 19 remaining candidate signals were scrutinized and none were attributable to an extraterrestrial source.

  14. Planetary Simulation Chambers bring Mars to laboratory studies

    Energy Technology Data Exchange (ETDEWEB)

    Mateo-Marti, E.

    2016-07-01

    Although space missions provide fundamental and unique knowledge for planetary exploration, they are always costly and extremely time-consuming. Due to the obvious technical and economical limitations of in-situ planetary exploration, laboratory simulations are among the most feasible research options for making advances in planetary exploration. Therefore, laboratory simulations of planetary environments are a necessary and complementary option to expensive space missions. Simulation chambers are economical, more versatile, and allow for a higher number of experiments than space missions. Laboratory-based facilities are able to mimic the conditions found in the atmospheres and on the surfaces of a majority of planetary objects. Number of relevant applications in Mars planetary exploration will be described in order to provide an understanding about the potential and flexibility of planetary simulation chambers systems: mainly, stability and presence of certain minerals on Mars surface; and microorganisms potential habitability under planetary environmental conditions would be studied. Therefore, simulation chambers will be a promising tools and necessary platform to design future planetary space mission and to validate in-situ measurements from orbital or rover observations. (Author)

  15. Significant achievements in the Planetary Geology Program, 1981

    International Nuclear Information System (INIS)

    Holt, H.E.

    1981-09-01

    Recent developments in planetology research as reported at the 1981 NASA Planetary Geology Principal Investigators meeting are summarized. The evolution of the solar system, comparative planetology, and geologic processes active on other planets are considered. Galilean satellites and small bodies, Venus, geochemistry and regoliths, volcanic and aeolian processes and landforms, fluvial and periglacial processes, and planetary impact cratering, remote sensing, and cartography are discussed

  16. Planetary boundaries: exploring the safe operating space for humanity

    Science.gov (United States)

    Johan Rockström; Will Steffen; Kevin Noone; Asa Persson; F. Stuart Chapin; Eric Lambin; Timothy M. Lenton; Marten Scheffer; Carl Folke; Hans Joachim Schellnhuber; Björn Nykvist; Cynthia A. de Wit; Terry Hughes; Sander van der Leeuw; Henning Rodhe; Sverker Sörlin; Peter K. Snyder; Robert Costanza; Uno Svedin; Malin Falkenmark; Louise Karlberg; Robert W. Corell; Victoria J. Fabry; James Hansen; Brian Walker; Diana Liverman; Katherine Richardson; Paul Crutzen; Jonathan. Foley

    2009-01-01

    Anthropogenic pressures on the Earth System have reached a scale where abrupt global environmental change can no longer be excluded. We propose a new approach to global sustainability in which we define planetary boundaries within which we expect that humanity can operate safely. Transgressing one or more planetary boundaries may be deleterious or even catastrophic due...

  17. First-order systems of linear partial differential equations: normal forms, canonical systems, transform methods

    Directory of Open Access Journals (Sweden)

    Heinz Toparkus

    2014-04-01

    Full Text Available In this paper we consider first-order systems with constant coefficients for two real-valued functions of two real variables. This is both a problem in itself, as well as an alternative view of the classical linear partial differential equations of second order with constant coefficients. The classification of the systems is done using elementary methods of linear algebra. Each type presents its special canonical form in the associated characteristic coordinate system. Then you can formulate initial value problems in appropriate basic areas, and you can try to achieve a solution of these problems by means of transform methods.

  18. Characterizing K2 Candidate Planetary Systems Orbiting Low-Mass Stars. I. Classifying Low-Mass Host Stars Observed During Campaigns 1-7

    Science.gov (United States)

    Dressing, Courtney D.; Newton, Elisabeth R.; Schlieder, Joshua E.; Charbomeau, David; Krutson, Heather A.; Vanderburg, Andrew; Sinukoff, Evan

    2017-01-01

    We present near-infrared spectra for 144 candidate planetary systems identified during Campaigns 1-7 of the NASA K2 Mission. The goal of the survey was to characterize planets orbiting low-mass stars, but our Infrared Telescope Facility/SpeX and Palomar/TripleSpec spectroscopic observations revealed that 49% of our targets were actually giant stars or hotter dwarfs reddened by interstellar extinction. For the 72 stars with spectra consistent with classification as cool dwarfs (spectral types K3-M4), we refined their stellar properties by applying empirical relations based on stars with interferometric radius measurements. Although our revised temperatures are generally consistent with those reported in the Ecliptic Plane Input Catalog (EPIC), our revised stellar radii are typically 0.13 solar radius (39%) larger than the EPIC values, which were based on model isochrones that have been shown to underestimate the radii of cool dwarfs. Our improved stellar characterizations will enable more efficient prioritization of K2 targets for follow-up studies.

  19. The origin and early history of the sun and the planetary system in the context of stellar evolution

    International Nuclear Information System (INIS)

    Herbig, G.H.

    1983-01-01

    Scenarios for the early history of the sun are constructed by combining the results of stellar astronomy with lunar and meteoritic chronologies. The meteorites apparently contain material exposed to two nucleosynthetic events. These are associated with supernovae occurring in star clusters in molecular clouds that formed during passage through successive galactic arm shocks. This is related to circumstellar activity still in progress around some young stars in the solar vicinity. The observed time decay of axial rotation and surface activity in solar-type stars can be extended backwards, and indicates that the ultraviolet radiation of the young sun would have had major photochemical consequences upon the primitive earth. (Auth.)

  20. Energy Balance Models and Planetary Dynamics

    Science.gov (United States)

    Domagal-Goldman, Shawn

    2012-01-01

    We know that planetary dynamics can have a significant affect on the climate of planets. Planetary dynamics dominate the glacial-interglacial periods on Earth, leaving a significant imprint on the geological record. They have also been demonstrated to have a driving influence on the climates of other planets in our solar system. We should therefore expect th.ere to be similar relationships on extrasolar planets. Here we describe a simple energy balance model that can predict the growth and thickness of glaciers, and their feedbacks on climate. We will also describe model changes that we have made to include planetary dynamics effects. This is the model we will use at the start of our collaboration to handle the influence of dynamics on climate.

  1. Miniaturisation of imaging spectrometer for planetary exploration

    Science.gov (United States)

    Drossart, Pierre; Sémery, Alain; Réess, Jean-Michel; Combes, Michel

    2017-11-01

    Future planetary exploration on telluric or giant planets will need a new kind of instrumentation combining imaging and spectroscopy at high spectral resolution to achieve new scientific measurements, in particular for atmospheric studies in nadir configuration. We present here a study of a Fourier Transform heterodyne spectrometer, which can achieve these objectives, in the visible or infrared. The system is composed of a Michelson interferometer, whose mirrors have been replaced by gratings, a configuration studied in the early days of Fourier Transform spectroscopy, but only recently reused for space instrumentation, with the availability of large infrared mosaics. A complete study of an instrument is underway, with optical and electronic tests, as well as data processing analysis. This instrument will be proposed for future planetary missions, including ESA/Bepi Colombo Mercury Planetary Orbiter or Earth orbiting platforms.

  2. New Indivisible Planetary Science Paradigm: Consequence of Questioning Popular Paradigms

    Science.gov (United States)

    Marvin Herndon, J.

    2014-05-01

    Progress in science involves replacing less precise understanding with more precise understanding. In science and in science education one should always question popular ideas; ask "What's wrong with this picture?" Finding limitations, conflicts or circumstances that require special ad hoc consideration sometimes is the key to making important discoveries. For example, from thermodynamic considerations, I found that the 'standard model of solar system formation' leads to insufficiently massive planetary cores. That understanding led me to discover a new indivisible planetary science paradigm. Massive-core planets formed by condensing and raining-out from within giant gaseous protoplanets at high pressures and high temperatures, accumulating heterogeneously on the basis of volatility with liquid core-formation preceding mantle-formation; the interior states of oxidation resemble that of the Abee enstatite chondrite. Core-composition was established during condensation based upon the relative solubilities of elements, including uranium, in liquid iron in equilibrium with an atmosphere of solar composition at high pressures and high temperatures. Uranium settled to the central region and formed planetary nuclear fission reactors, producing heat and planetary magnetic fields. Earth's complete condensation included a ~300 Earth-mass gigantic gas/ice shell that compressed the rocky kernel to about 66% of Earth's present diameter. T-Tauri eruptions, associated with the thermonuclear ignition of the Sun, stripped the gases away from the Earth and the inner planets. The T-Tauri outbursts stripped a portion of Mercury's incompletely condensed protoplanet and transported it to the region between Mars and Jupiter where it fused with in-falling oxidized condensate from the outer regions of the Solar System, forming the parent matter of ordinary chondrite meteorites, the main-Belt asteroids, and veneer for the inner planets, especially Mars. With its massive gas/ice shell

  3. Mission Implementation Constraints on Planetary Muon Radiography

    Science.gov (United States)

    Jones, Cathleen E.; Kedar, Sharon; Naudet, Charles; Webb, Frank

    2011-01-01

    Cost: Use heritage hardware, especially use a tested landing system to reduce cost (Phoenix or MSL EDL stage). The sky crane technology delivers higher mass to the surface and enables reaching targets at higher elevation, but at a higher mission cost. Rover vs. Stationary Lander: Rover-mounted instrument enables tomography, but the increased weight of the rover reduces the allowable payload weight. Mass is the critical design constraint for an instrument for a planetary mission. Many factors that are minor factors or do not enter into design considerations for terrestrial operation are important for a planetary application. (Landing site, diurnal temperature variation, instrument portability, shock/vibration)

  4. Micro-Sample Extraction System for In-Situ Missions to Planets, Planetary Satellites, and Primitive Bodies

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a proof-of-concept Micro-Sample Extraction System (µSES) to enable microfluidic instruments, currently under development at NASA Goddard Space...

  5. Finite Horizon MPC for Systems in Innovation Form

    DEFF Research Database (Denmark)

    Jørgensen, John Bagterp; Huusom, Jakob Kjøbsted; Rawlings, James B.

    2011-01-01

    System identification and model predictive control have largely developed as two separate disciplines. Nevertheless, the major part of industrial MPC commissioning is generation of data and identification of models. In this contribution we attempt to bridge this gap by contributing some of the mi...

  6. Public Participation in Planetary Exploration

    Science.gov (United States)

    Friedman, Louis

    2000-07-01

    In the past several years The Planetary Society has created several innovative opportunities for general public participation in the exploration of the solar system and the search for extraterrestrial life. The conduct of such exploration has traditionally been the province of a few thousand, at most, of professionally involved scientists and engineers. Yet the rationale for spending resources required by broad and far-reaching exploration involves a greater societal interest - it frequently being noted that the rationale cannot rely on science alone. This paper reports on the more notable of the opportunities for general public participation, in particular: 1) Visions of Mars: a CD containing the works of science fiction about Mars, designed to be placed on Mars as the first library to be found by eventual human explorers; 2) MAPEX: a Microelectronics And Photonics Experiment, measuring the radiation environment for future human explorers of Mars, and containing a electron beam lithograph of names of all the members of The Planetary Society at a particular time; 3) Naming of spacecraft: Involvement in the naming of spacecraft: Magellan, Sojourner; 4) The Mars Microphone: the first privately funded instrument to be sent to another world; 5) Red Rover Goes to Mars: the first commercial-education partnership on a planetary mission; 6) Student designed nanoexperiments: to fly on a Mars lander; and 7) SETI@home: a tool permitting millions to contribute to research and data processing in the search for extraterrestrial intelligence. A brief description of each of the projects will be given, and the opportunity it provided for public participation described. The evolving complexity of these projects suggest that more opportunities will be found, and that the role of public participation can increase at the same time as making substantive contributions to the flight missions. It will be suggested that these projects presage the day that planetary exploration will be truly

  7. Planetary Protection Bioburden Analysis Program

    Science.gov (United States)

    Beaudet, Robert A.

    2013-01-01

    is programmed in Visual Basic for Applications for installation as a simple add-in for Microsoft Excel. The user is directed to a graphical user interface (GUI) that requires user inputs and provides solutions directly in Microsoft Excel workbooks. This work was done by Shannon Ryan of the USRA Lunar and Planetary Institute for Johnson Space Center. Further information is contained in a TSP (see page 1). MSC- 24582-1 Micrometeoroid and Orbital Debris (MMOD) Shield Ballistic Limit Analysis Program Lyndon B. Johnson Space Center, Houston, Texas Commercially, because it is so generic, Enigma can be used for almost any project that requires engineering visualization, model building, or animation. Models in Enigma can be exported to many other formats for use in other applications as well. Educationally, Enigma is being used to allow university students to visualize robotic algorithms in a simulation mode before using them with actual hardware. This work was done by David Shores and Sharon P. Goza of Johnson Space Center; Cheyenne McKeegan, Rick Easley, Janet Way, and Shonn Everett of MEI Technologies; Mark Manning of PTI; and Mark Guerra, Ray Kraesig, and William Leu of Tietronix Software, Inc. For further information, contact the JSC Innovation Partnerships Office at (281) 483-3809. MSC-24211-1 Spitzer Telemetry Processing System NASA's Jet Propulsion Laboratory, Pasadena, California The Spitzer Telemetry Processing System (SirtfTlmProc) was designed to address objectives of JPL's Multi-mission Image Processing Lab (MIPL) in processing spacecraft telemetry and distributing the resulting data to the science community. To minimize costs and maximize operability, the software design focused on automated error recovery, performance, and information management. The system processes telemetry from the Spitzer spacecraft and delivers Level 0 products to the Spitzer Science Center. SirtfTlmProc is a unique system with automated error notification and recovery, with a real

  8. Planetary seismology and interiors

    Science.gov (United States)

    Toksoz, M. N.

    1979-01-01

    This report briefly summarizes knowledge gained in the area of planetary seismology in the period 1969-1979. Attention is given to the seismic instruments, the seismic environment (noise, characteristics of seismic wave propagation, etc.), and the seismicity of the moon and Mars as determined by the Apollo missions and Viking Lander experiments, respectively. The models of internal structures of the terrestrial planets are discussed, with the earth used for reference.

  9. Improving accessibility and discovery of ESA planetary data through the new planetary science archive

    Science.gov (United States)

    Macfarlane, A. J.; Docasal, R.; Rios, C.; Barbarisi, I.; Saiz, J.; Vallejo, F.; Besse, S.; Arviset, C.; Barthelemy, M.; De Marchi, G.; Fraga, D.; Grotheer, E.; Heather, D.; Lim, T.; Martinez, S.; Vallat, C.

    2018-01-01

    The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific data sets through various interfaces at http://psa.esa.int. Mostly driven by the evolution of the PDS standards which all new ESA planetary missions shall follow and the need to update the interfaces to the archive, the PSA has undergone an important re-engineering. In order to maximise the scientific exploitation of ESA's planetary data holdings, significant improvements have been made by utilising the latest technologies and implementing widely recognised open standards. To facilitate users in handling and visualising the many products stored in the archive which have spatial data associated, the new PSA supports Geographical Information Systems (GIS) by implementing the standards approved by the Open Geospatial Consortium (OGC). The modernised PSA also attempts to increase interoperability with the international community by implementing recognised planetary science specific protocols such as the PDAP (Planetary Data Access Protocol) and EPN-TAP (EuroPlanet-Table Access Protocol). In this paper we describe some of the methods by which the archive may be accessed and present the challenges that are being faced in consolidating data sets of the older PDS3 version of the standards with the new PDS4 deliveries into a single data model mapping to ensure transparent access to the data for users and services whilst maintaining a high performance.

  10. 'Planetary boundaries’ — exploring the challenges for global environmental governance

    NARCIS (Netherlands)

    Galaz, V.; Biermann, F.; Crona, B.; Loorbach, D.; Folke, C.; Olsson, P.; Nilsson, M.; Allouche, J.; Persson, Å.; Reischl, G.

    2012-01-01

    A range of studies from Earth system scientists argue that human activities drive multiple, interacting effects that cascade through the Earth system. Recent contributions state and quantify nine, interacting 'planetary boundaries' with possible threshold effects. This article provides an overview

  11. Methods of forming thermal management systems and thermal management methods

    Science.gov (United States)

    Gering, Kevin L.; Haefner, Daryl R.

    2012-06-05

    A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.

  12. Function and form in the developing cardiovascular system

    Czech Academy of Sciences Publication Activity Database

    Sedmera, David

    2011-01-01

    Roč. 91, č. 2 (2011), s. 252-259 ISSN 0008-6363 R&D Projects: GA ČR(CZ) GA304/08/0615; GA ČR(CZ) GAP302/11/1308 Institutional research plan: CEZ:AV0Z50110509 Keywords : myocardium * conduction system * embryonic heart * ontogenesis * phylogenesis Subject RIV: EA - Cell Biology Impact factor: 6.064, year: 2011

  13. TECHNOLOGY FORMING PRICE DISTRIBUTION OF FINISHED GOODS OF LOGISTICS SYSTEM

    Directory of Open Access Journals (Sweden)

    Novikova T. V.

    2015-12-01

    Full Text Available Modern economics has developed a number of areas of the system for controlling the distribution of finished products. However, in domestic and foreign economic literature the mechanisms of logistics approach are not sufficient to provide higher sales of enterprise-producers, that have sales in remote areas. In this study, first, the importance of company-producers and end-users the methods of rational delivery of finished products is considered, and secondly, the approaches to defining the essence and content of the concept of «distribution» are given, in the third, the logistics processes of the distribution system ready products of a particular company-producer are described, fourthly, the technology of one price product delivery was developed and it was shown the economic efficiency (the possible results of the solution of the problem of distribution logistics of its application in the target company. The study showed that there is an opportunity, based on the development and implementation of technologies to reduce the final price of the goods, to develop the company and increase its competitiveness by minimizing costs and increasing return on investment. The results of research extend the knowledge of methodology of system logistics management in the enterprise.

  14. The inclination of the planetary system relative to the solar equator may be explained by the presence of Planet 9

    OpenAIRE

    Gomes, Rodney; Deienno, Rogerio; Morbidelli, Alessandro

    2016-01-01

    We evaluate the effects of a distant planet, commonly known as planet 9, on the dynamics of the giant planets of the Solar System. We find that, given the large distance of planet 9, the dynamics of the inner giant planets can be decomposed into a classic Lagrange-Laplace dynamics relative to their own invariant plane (the plane orthogonal to their total angular momentum vector) and a slow precession of said plane relative to the total angular momentum vector of the Solar System, including pl...

  15. Planetary boundaries : Governing emerging risks and opportunities

    NARCIS (Netherlands)

    Galaz, V.; de Zeeuw, Aart; Shiroyama, Hideaki; Tripley, Debbie

    The climate, ecosystems and species, ozone layer, acidity of the oceans, the flow of energy and elements through nature, landscape change, freshwater systems, aerosols, and toxins—these constitute the planetary boundaries within which humanity must find a safe way to live and prosper. These are

  16. Advances in planetary geology, volume 2

    International Nuclear Information System (INIS)

    1986-07-01

    This publication is a continuation of volume 1; it is a compilation of reports focusing on research into the origin and evolution of the solar system with emphasis on planetary geology. Specific reports include a multispectral and geomorphic investigation of the surface of Europa and a geologic interpretation of remote sensing data for the Martian volcano Ascreaus Mons

  17. MExLab Planetary Geoportal: 3D-access to planetary images and results of spatial data analysis

    Science.gov (United States)

    Karachevtseva, I.; Garov, A.

    2015-10-01

    MExLab Planetary Geoportal was developed as Geodesy and Cartography Node which provide access to results of study of celestial bodies such as DEM and orthoimages, as well as basemaps, crater catalogues and derivative products: slope, roughness, crater density (http://cartsrv.mexlab.ru/geoportal). The main feature of designed Geoportal is the ability of spatial queries and access to the contents selecting from the list of available data set (Phobos, Mercury, Moon, including Lunokhod's archive data). Prior version of Geoportal has been developed using Flash technology. Now we are developing new version which will use 3D-API (OpenGL, WebGL) based on shaders not only for standard 3D-functionality, but for 2D-mapping as well. Users can obtain quantitative and qualitative characteristics of the objects in graphical, tabular and 3D-forms. It will bring the advantages of unification of code and speed of processing and provide a number of functional advantages based on GIS-tools such as: - possibility of dynamic raster transform for needed map projection; - effective implementation of the co-registration of planetary images by combining spatial data geometries; - presentation in 3D-form different types of data, including planetary atmospheric measurements, subsurface radar data, ect. The system will be created with a new software architecture, which has a potential for development and flexibility in reconfiguration based on cross platform solution: - an application for the three types of platforms: desktop (Windows, Linux, OSX), web platform (any HTML5 browser), and mobile application (Android, iOS); - a single codebase shared between platforms (using cross compilation for Web); - a new telecommunication solution to connect between modules and external system like PROVIDE WebGIS (http://www.provide-space.eu/progis/). The research leading to these result was partly supported by the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n

  18. Entropy of the system formed in heavy ion collision

    International Nuclear Information System (INIS)

    Gudima, K.K.; Schulz, H.; Toneev, V.D.

    1985-01-01

    In frames of a cascade model the entropy evolution in a system producted in heavy ion collisions is investigated. Entropy calculation is based on smoothing of the distribution function over the momentum space by the temperature field introduction. The resulting entropy per one nucleon is shown to be rather sensitive to phase space subdivision into cells at the stage of free scattering of reaction products. Compared to recent experimental results for specific entropy values inferred from the composite particle yield of 4π measurements, it is found that cascade calculations do not favour some particular entropy model treatments and suggest smaller entropy values than following from consideration within equilibrium statistics

  19. Visual lunar and planetary astronomy

    CERN Document Server

    Abel, Paul G

    2013-01-01

    With the advent of CCDs and webcams, the focus of amateur astronomy has to some extent shifted from science to art. The object of many amateur astronomers is now to produce “stunning images” that, although beautiful, are not intended to have scientific merit. Paul Abel has been addressing this issue by promoting visual astronomy wherever possible – at talks to astronomical societies, in articles for popular science magazines, and on BBC TV’s The Sky at Night.   Visual Lunar and Planetary Astronomy is a comprehensive modern treatment of visual lunar and planetary astronomy, showing that even in the age of space telescopes and interplanetary probes it is still possible to contribute scientifically with no more than a moderately priced commercially made astronomical telescope.   It is believed that imaging and photography is somehow more objective and more accurate than the eye, and this has led to a peculiar “crisis of faith” in the human visual system and its amazing processing power. But by anal...

  20. Carbon Dioxide: The Other Planetary Fluid

    Science.gov (United States)

    Glaser, S.; Gamez, D.; Shock, E.

    2016-12-01

    Cometary and interstellar ices have carbon dioxide to water mole ratios of up to 0.3. When melted, such high levels of carbon dioxide cannot all be dissolved in the aqueous phase and instead partition into a CO2-rich (carbonic) fluid. This implies that during the accretion and formation of planetary systems carbonic fluids are not only possible, but common. In fact, they make up the atmosphere of Venus, are found bubbling out of Champagne Vent in the Pacific Ocean, and are documented by metamorphic fluid inclusions. Examination of phase diagrams reveals the conditions where carbonic fluids will exist or predominate. Carbonic fluids are predicted to exist in Earth's subduction zones and under the ice of small ocean worlds. CO2 had previously been shown to completely dissolve into NH­­3­-H­­2O oceans on small icy bodies by forming ammonium carbonate, but the newer measurements of CO2­ abundances indicate that not all of the CO2 can partition into the aqueous fluid as ammonium carbonate. The remaining CO2 would necessarily form a separate carbonic fluid making it likely that liquid CO2 would be a major oceanic component on some small icy bodies. The enhanced solubility of nonpolar and slightly polar organic compounds in carbonic fluids relative to aqueous fluids means that generation, transport, and deposition processes can be greatly enhanced in those cases where carbonic fluids occur. As an example, the solubility of benzoic acid, a polar compound, is about an order of magnitude greater in carbonic than in aqueous fluids, which is surprising given that water is a polar solvent and carbon dioxide is a nonpolar solvent. Anthracene, a nonpolar compound, has an even greater solubility difference between carbonic and aqueous fluids at approximately four orders of magnitude. Highly polar compounds, including most of the building blocks of life, are more soluble in aqueous fluids than in carbonic fluids. The solubility difference of organic molecules in carbonic

  1. Overview study of the analytical analysis of the internal dynamics of nonlinear time heteronymous planetary differential systems

    Czech Academy of Sciences Publication Activity Database

    Hortel, Milan; Škuderová, Alena

    2016-01-01

    Roč. 821, č. 2016 (2016), s. 213-220 ISSN 1662-7482. [Engineering Mechanics 2015. Svratka, 11.05.2015-14.05.2015] R&D Projects: GA TA ČR(CZ) TA04011656 Institutional support: RVO:61388998 Keywords : nonlinear dynamics * time heteronymous systems * damping in gear mesh Subject RIV: JT - Propulsion, Motors ; Fuels http://www. scientific .net/AMM.821.213

  2. FORMING MANAGEMENT IMPACTS IN AVIATION COMPANIES ECONOMIC DEVELOPMENT ADMINISTRATION SYSTEM

    Directory of Open Access Journals (Sweden)

    Victoria Prokhorova

    2016-06-01

    Full Text Available Purpose: Oriented reflective approach to management involves restructuring of goal, ideal and pragmatic, creating a program of action, organizing, correcting, control the definition of the new strategy. This process is only possible with multidimensional analysis and reflection of all the administrative restructuring process and its elements in determining and planning activities, creating conditions of restructuring, predicting outcomes and consequences of making a choice of ways to solve problems means to achieve the goal of information called ' bonds with participants restructuring process and correction flow management process based on continuous reflection. Methods: Development of the system of economic development now requires the use of mechanisms for continuous monitoring of internal and external environment to identify factors that threaten businesses. Rest of this is possible through the use of diagnostic tests: static analysis, expert diagnosis, linear and dynamic programming. Results: Built as part of the study economic and mathematical models can determine the status and level of economic development potential of aerospace companies that were investigated, confirming the need for action to manage economic development. To develop the mechanism of competition in the aircraft building sector must: implementation in practice of management motivation mechanisms to ensure the appropriate level of interest in the functioning of airlines on the basis of private property; formation of economic market institutions in the field of aircraft construction, affecting the creation of a competitive environment. Discussion: Stipulates that in difficult economic crisis positive results can be achieved managers who are constantly looking for original approaches to inclusion in the development process by aligning internal external opportunities generated by market. It is concluded that aviation business management in times of economic instability or

  3. Stellar and Planetary Parameters for K2 's Late-type Dwarf Systems from C1 to C5

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Arturo O. [Department of Astronomy, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182 (United States); Crossfield, Ian J. M.; Peacock, Sarah [Lunar and Planetary Laboratory, University of Arizona, 1629 E. University Blvd, Tucson, AZ 85721 (United States); Schlieder, Joshua E. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Dressing, Courtney D. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Obermeier, Christian [Max Planck Institut für Astronomie, Heidelberg (Germany); Livingston, John; Petigura, Erik A. [Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-0033 (Japan); Ciceri, Simona [Department of Astronomy, Stockholm University, SE-106 91 Stockholm (Sweden); Beichman, Charles A. [NASA Exoplanet Science Institute, California Institute of Technology, Pasadena, CA 91125 (United States); Lépine, Sébastien [Department of Physics and Astronomy, Georgia State University, 25 Park Pl NE #605, Atlanta, GA 30303 (United States); Aller, Kimberly M. [Institute for Astronomy, University of Hawai’i at Mānoa, 2680 Woodlawn Dr., Honolulu, HI 96822 (United States); Chance, Quadry A. [Steward Observatory, University of Arizona, 933 N. Cherry Ave, Tucson, AZ 85719 (United States); Howard, Andrew W. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Werner, Michael W. [Jet Propulsion Laboratory, 4800 Oak Grove Dr., Pasadena, CA 91109 (United States)

    2017-03-01

    The NASA K2 mission uses photometry to find planets transiting stars of various types. M dwarfs are of high interest since they host more short-period planets than any other type of main-sequence star and transiting planets around M dwarfs have deeper transits compared to other main-sequence stars. In this paper, we present stellar parameters from K and M dwarfs hosting transiting planet candidates discovered by our team. Using the SOFI spectrograph on the European Southern Observatory’s New Technology Telescope, we obtained R ≈ 1000 J -, H -, and K -band (0.95–2.52 μ m) spectra of 34 late-type K2 planet and candidate planet host systems and 12 bright K4–M5 dwarfs with interferometrically measured radii and effective temperatures. Out of our 34 late-type K2 targets, we identify 27 of these stars as M dwarfs. We measure equivalent widths of spectral features, derive calibration relations using stars with interferometric measurements, and estimate stellar radii, effective temperatures, masses, and luminosities for the K2 planet hosts. Our calibrations provide radii and temperatures with median uncertainties of 0.059 R {sub ⊙} (16.09%) and 160 K (4.33%), respectively. We then reassess the radii and equilibrium temperatures of known and candidate planets based on our spectroscopically derived stellar parameters. Since a planet’s radius and equilibrium temperature depend on the parameters of its host star, our study provides more precise planetary parameters for planets and candidates orbiting late-type stars observed with K2 . We find a median planet radius and an equilibrium temperature of approximately 3 R {sub ⊕} and 500 K, respectively, with several systems (K2-18b and K2-72e) receiving near-Earth-like levels of incident irradiation.

  4. The ADS Abstract Service: A Free Search System for Literature in Astronomy, Planetary Sciences, Physics, Geophysics, and Instrumentation.

    Science.gov (United States)

    Eichhorn, G.; Accomazzi, A.; Grant, C. S.; Kurtz, M. J.; Rey Bacaicoa, V.; Murray, S. S.

    2002-05-01

    The Astrophysics Data System (ADS) provides access to the astronomical literature through the World Wide Web. It is a NASA funded project and access to all the ADS services is free to everybody world-wide. The ADS Abstract Service allows searching of four databases with abstracts in Astronomy, Instrumentation, Physics/Geophysics, and the astro-ph Preprints with a total of almost 2.5 million references in the databases. The system also provides access to reference and citation information, links to on-line data and other on-line information, and to on-line electronic journals. In addition the ADS has 1.9 million scanned article pages from about 250,000 articles, dating back as far as 1829. The ADS Article Service contains the full articles for most of the astronomical literature back to volume 1. It contains the scanned pages of all the major journals in Astronomy (Astrophysical Journal, Astronomical Journal, Astronomy & Astrophysics, Monthly Notices of the Royal Astronomical Society, and Solar Physics), as well as most smaller journals back to volume 1 for each of these journals. One important aspect of the ADS is the system of links to other data systems. We have currently more than 6 million links to other on-line resources, including on-line data and on-line journal articles. There are currently more than 10,000 regular users (more than 10 queries/month). The total number of users is greater than 50,000 per month. They issue almost 1 million queries per month and receive more than 30 million records and 1.2 million scanned article pages per month. The ADS is accessed from almost 100 countries. Approximately 1/3 of the use is from the USA, 1/3 from Europe, and 1/3 from the rest of the world. Usage depends primarily on the number of astronomers in each country, but also on the Gross Domestic Product of that country. In order to improve access from different parts of the world, we maintain 9 mirror sites of the ADS in Brazil, Chile, China, England, France, Germany

  5. Using Primary Literature for Teaching Undergraduate Planetary Sciences

    Science.gov (United States)

    Levine, J.

    2013-05-01

    Articles from the primary scientific literature can be a valuable teaching tool in undergraduate classrooms. At Colgate University, I emphasize selected research articles in an upper-level undergraduate course in planetary sciences. In addition to their value for conveying specific scientific content, I find that they also impart larger lessons which are especially apt in planetary sciences and allied fields. First, because of the interdisciplinary nature of planetary sciences, students discover that contributions to outstanding problems may arrive from unexpected directions, so they need to be aware of the multi-faceted nature of scientific problems. For instance, after millennia of astrometric attempts, the scale of the Solar System was determined with extraordinary precision with emerging radar technology in the 1960's. Second, students learn the importance of careful work, with due attention to detail. After all, the timescales of planetary formation are encoded in systematic isotopic variations of a few parts in 10,000; in students' own experiences with laboratory data they might well overlook such a small effect. Third, students identify the often-tortuous connections between measured and inferred quantities, which corrects a common student misconception that all quantities of interest (e.g., the age of a meteorite) can be measured directly. Fourth, research articles provide opportunities for students to practice the interpretation of graphical data, since figures often represent a large volume of data in succinct form. Fifth, and perhaps of greatest importance, by considering the uncertainties inherent in reported data, students come to recognize the limits of scientific understanding, the extent to which scientific conclusions are justified (or not), and the lengths to which working scientists go to mitigate their uncertainties. These larger lessons are best mediated by students' own encounters with the articles they read, but require instructors to make

  6. Conformal Ablative Thermal Protection System for Planetary and Human Exploration Missions: Overview of the Technology Maturation Efforts Funded by NASA's Game Changing Development Program

    Science.gov (United States)

    Beck, Robin A.; Arnold, James O.; Gasch, Matthew J.; Stackpoole, Margaret M.; Fan, Wendy; Szalai, Christine E.; Wercinski, Paul F.; Venkatapathy, Ethiraj

    2012-01-01

    The Office of Chief Technologist (OCT), NASA has identified the need for research and technology development in part from NASA's Strategic Goal 3.3 of the NASA Strategic Plan to develop and demonstrate the critical technologies that will make NASA's exploration, science, and discovery missions more affordable and more capable. Furthermore, the Game Changing Development Program (GCDP) is a primary avenue to achieve the Agency's 2011 strategic goal to "Create the innovative new space technologies for our exploration, science, and economic future." In addition, recently released "NASA space Technology Roadmaps and Priorities," by the National Research Council (NRC) of the National Academy of Sciences stresses the need for NASA to invest in the very near term in specific EDL technologies. The report points out the following challenges (Page 2-38 of the pre-publication copy released on February 1, 2012): Mass to Surface: Develop the ability to deliver more payload to the destination. NASA's future missions will require ever-greater mass delivery capability in order to place scientifically significant instrument packages on distant bodies of interest, to facilitate sample returns from bodies of interest, and to enable human exploration of planets such as Mars. As the maximum mass that can be delivered to an entry interface is fixed for a given launch system and trajectory design, the mass delivered to the surface will require reduction in spacecraft structural mass; more efficient, lighter thermal protection systems; more efficient lighter propulsion systems; and lighter, more efficient deceleration systems. Surface Access: Increase the ability to land at a variety of planetary locales and at a variety of times. Access to specific sites can be achieved via landing at a specific location (s) or transit from a single designated landing location, but it is currently infeasible to transit long distances and through extremely rugged terrain, requiring landing close to the

  7. Novel Space Exploration Technique for Analysing Planetary Atmospheres

    OpenAIRE

    Dekoulis, George

    2010-01-01

    The chapter presents a new reconfigurable wide-beam radio interferometer system for analysing planetary atmospheres. The system operates at frequencies, where the ionisation of the planetary plasma regions induces strong attenuation. For Earth, the attenuation is undistinguishable from the CMB at frequencies over 50 MHz. The system introduces a set of advanced specifications to this field of science, previously unseen in similar suborbital experiments. The reprogrammable dynamic range of the ...

  8. Influencia del movimiento tridimensional sobre los engranajes planetarios tipo 2KH-A en aerogeneradores. // Influence of tridimensional movement in planetary gears type 2KH-A used in gearboxes for wind turbine generator systems.

    Directory of Open Access Journals (Sweden)

    J. Wellesley-Bourke Funcasta

    2007-09-01

    Full Text Available En el trabajo se desarrolla el basamento matemático para establecer el análisis del efecto nocivo que se produce sobre losrodamientos de los mecanismos planetarios empleados en los aerogeneradores, dado esto por las condiciones variables delviento en cuanto a su velocidad y dirección.Palabras claves: Efecto giroscópico, engranajes planetarios, cargas dinámicas, energía eólica.______________________________________________________________________________AbstractIn this paper is presented the mathematical base useful to establish the analysis that deals with the noxious effect producedon the planetary mechanisms in the gearboxes for wind turbine generator systems, given by the variable conditions of thevelocity and direction of the wind.Key words: Gyroscopic effect, planetary gears, dynamic loads, wind turbine, wind energy.

  9. Quartz-like Crystals Found in Planetary Disks

    Science.gov (United States)

    2008-01-01

    NASA's Spitzer Space Telescope has, for the first time, detected tiny quartz-like crystals sprinkled in young planetary systems. The crystals, which are types of silica minerals called cristobalite and tridymite, can be seen close-up in the black-and-white insets (cristobalite is on the left, and tridymite on the right). The main picture is an artist's concept of a young star and its swirling disk of planet-forming materials. Cristobalite and tridymite are thought to be two of many planet ingredients. On Earth, they are normally found as tiny crystals in volcanic lava flows and meteorites from space. These minerals are both related to quartz. For example, if you were to heat the familiar quartz crystals often sold as mystical tokens, the quartz would transform into cristobalite and tridymite. Because cristobalite and tridymite require rapid heating and cooling to form, astronomers say they were most likely generated by shock waves traveling through the planetary disks. The insets are Scanning Electron Microscope pictures courtesy of George Rossman of the California Institute of Technology, Pasadena, Calif.

  10. SDSS-III: Massive Spectroscopic Surveys of the Distant Universe, the Milky Way Galaxy, and Extra-Solar Planetary Systems

    International Nuclear Information System (INIS)

    Eisenstein, Daniel J.; Weinberg, David H.; Agol, Eric; Aihara, Hiroaki; Prieto, Carlos Allende; Anderson, Scott F.; Arns, James A.; Aubourg, Eric; Bailey, Stephen; Balbinot, Eduardo; Barkhouser, Robert

    2011-01-01

    Building on the legacy of the Sloan Digital Sky Survey (SDSS-I and II), SDSS-III is a program of four spectroscopic surveys on three scientific themes: dark energy and cosmological parameters, the history and structure of the Milky Way, and the population of giant planets around other stars. The Baryon Oscillation Spectroscopic Survey (BOSS) will measure redshifts of 1.5 million massive galaxies and Lyα forest spectra of 150,000 quasars, using the baryon acoustic oscillation (BAO) feature of large scale structure to obtain percent-level determinations of the distance scale and Hubble expansion rate at z 5 evolved, late-type stars, measuring separate abundances for ∼ 15 elements per star and creating the first high-precision spectroscopic survey of all Galactic stellar populations (bulge, bar, disks, halo) with a uniform set of stellar tracers and spectral diagnostics. The Multi-object APO Radial Velocity Large-area Survey (MARVELS) will monitor radial velocities of more than 8000 FGK stars with the sensitivity and cadence (10-40 m s -1 , ∼ 24 visits per star) needed to detect giant planets with periods up to two years, providing an unprecedented data set for understanding the formation and dynamical evolution of giant planet systems. As of January 2011, SDSS-III has obtained spectra of more than 240,000 galaxies, 29,000 z (ge) 2.2 quasars, and 140,000 stars, including 74,000 velocity measurements of 2580 stars for MARVELS. In keeping with SDSS tradition, SDSS-III will provide regular public releases of all its data, beginning with SDSS Data Release 8 (DR8) in January 2011.

  11. SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS

    International Nuclear Information System (INIS)

    Eisenstein, Daniel J.; Weinberg, David H.; Agol, Eric; Anderson, Scott F.; Aihara, Hiroaki; Allende Prieto, Carlos; Arns, James A.; Aubourg, Eric; Bailey, Stephen; Balbinot, Eduardo; Barkhouser, Robert; Beers, Timothy C.; Berlind, Andreas A.; Bickerton, Steven J.; Bizyaev, Dmitry; Blanton, Michael R.; Bochanski, John J.; Bolton, Adam S.

    2011-01-01

    Building on the legacy of the Sloan Digital Sky Survey (SDSS-I and II), SDSS-III is a program of four spectroscopic surveys on three scientific themes: dark energy and cosmological parameters, the history and structure of the Milky Way, and the population of giant planets around other stars. In keeping with SDSS tradition, SDSS-III will provide regular public releases of all its data, beginning with SDSS Data Release 8 (DR8), which was made public in 2011 January and includes SDSS-I and SDSS-II images and spectra reprocessed with the latest pipelines and calibrations produced for the SDSS-III investigations. This paper presents an overview of the four surveys that comprise SDSS-III. The Baryon Oscillation Spectroscopic Survey will measure redshifts of 1.5 million massive galaxies and Lyα forest spectra of 150,000 quasars, using the baryon acoustic oscillation feature of large-scale structure to obtain percent-level determinations of the distance scale and Hubble expansion rate at z 5 evolved, late-type stars, measuring separate abundances for ∼15 elements per star and creating the first high-precision spectroscopic survey of all Galactic stellar populations (bulge, bar, disks, halo) with a uniform set of stellar tracers and spectral diagnostics. The Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS) will monitor radial velocities of more than 8000 FGK stars with the sensitivity and cadence (10-40 m s -1 , ∼24 visits per star) needed to detect giant planets with periods up to two years, providing an unprecedented data set for understanding the formation and dynamical evolution of giant planet systems. As of 2011 January, SDSS-III has obtained spectra of more than 240,000 galaxies, 29,000 z ≥ 2.2 quasars, and 140,000 stars, including 74,000 velocity measurements of 2580 stars for MARVELS.

  12. MARVELS-1: A FACE-ON DOUBLE-LINED BINARY STAR MASQUERADING AS A RESONANT PLANETARY SYSTEM AND CONSIDERATION OF RARE FALSE POSITIVES IN RADIAL VELOCITY PLANET SEARCHES

    International Nuclear Information System (INIS)

    Wright, Jason T.; Roy, Arpita; Mahadevan, Suvrath; Wang, Sharon X.; Fleming, Scott W.; Ford, Eric B.; Payne, Matt; Lee, Brian L.; Ge, Jian; Wang, Ji; Crepp, Justin R.; Gaudi, B. Scott; Eastman, Jason; Pepper, Joshua; Cargile, Phillip; Stassun, Keivan G.; Ghezzi, Luan; González-Hernández, Jonay I.; Wisniewski, John; Dutra-Ferreira, Leticia

    2013-01-01

    We have analyzed new and previously published radial velocity (RV) observations of MARVELS-1, known to have an ostensibly substellar companion in a ∼6 day orbit. We find significant (∼100 m s –1 ) residuals to the best-fit model for the companion, and these residuals are naïvely consistent with an interior giant planet with a P = 1.965 days in a nearly perfect 3:1 period commensurability (|P b /P c – 3| –4 ). We have performed several tests for the reality of such a companion, including a dynamical analysis, a search for photometric variability, and a hunt for contaminating stellar spectra. We find many reasons to be critical of a planetary interpretation, including the fact that most of the three-body dynamical solutions are unstable. We find no evidence for transits, and no evidence of stellar photometric variability. We have discovered two apparent companions to MARVELS-1 with adaptive optics imaging at Keck; both are M dwarfs, one is likely bound, and the other is likely a foreground object. We explore false-alarm scenarios inspired by various curiosities in the data. Ultimately, a line profile and bisector analysis lead us to conclude that the ∼100 m s –1 residuals are an artifact of spectral contamination from a stellar companion contributing ∼15%-30% of the optical light in the system. We conclude that origin of this contamination is the previously detected RV companion to MARVELS-1, which is not, as previously reported, a brown dwarf, but in fact a G dwarf in a face-on orbit.

  13. SDSS-III: Massive Spectroscopic Surveys of the Distant Universe, the Milky Way Galaxy, and Extra-Solar Planetary Systems

    Energy Technology Data Exchange (ETDEWEB)

    Eisenstein, Daniel J.; /Arizona U., Astron. Dept. - Steward Observ. /Harvard U., Phys. Dept.; Weinberg, David H.; /Ohio State U.; Agol, Eric; /Washington U., Seattle, Astron. Dept.; Aihara, Hiroaki; /Tokyo U.; Prieto, Carlos Allende; /Laguna U., Tenerife; Anderson, Scott F.; /Washington U., Seattle, Astron. Dept.; Arns, James A.; /Michigan U.; Aubourg, Eric; /APC, Paris /DAPNIA, Saclay; Bailey, Stephen; /LBL, Berkeley; Balbinot, Eduardo; /Rio Grande do Sul U. /Rio de Janeiro Observ.; Barkhouser, Robert; /Johns Hopkins U. /Michigan State U.

    2011-01-01

    Building on the legacy of the Sloan Digital Sky Survey (SDSS-I and II), SDSS-III is a program of four spectroscopic surveys on three scientific themes: dark energy and cosmological parameters, the history and structure of the Milky Way, and the population of giant planets around other stars. The Baryon Oscillation Spectroscopic Survey (BOSS) will measure redshifts of 1.5 million massive galaxies and Ly{alpha} forest spectra of 150,000 quasars, using the baryon acoustic oscillation (BAO) feature of large scale structure to obtain percent-level determinations of the distance scale and Hubble expansion rate at z < 0.7 and at z {approx} 2.5. SEGUE-2, a now-completed continuation of the Sloan Extension for Galactic Understanding and Exploration, measured medium-resolution (R = {lambda}/{Delta}{lambda} 1800) optical spectra of 118,000 stars in a variety of target categories, probing chemical evolution, stellar kinematics and substructure, and the mass profile of the dark matter halo from the solar neighborhood to distances of 100 kpc. APOGEE, the Apache Point Observatory Galactic Evolution Experiment, will obtain high-resolution (R {approx} 30,000), high signal-to-noise ratio (S/N {ge} 100 per resolution element), H-band (1.51 {micro}m < {lambda} < 1.70 {micro}m) spectra of 10{sup 5} evolved, late-type stars, measuring separate abundances for {approx} 15 elements per star and creating the first high-precision spectroscopic survey of all Galactic stellar populations (bulge, bar, disks, halo) with a uniform set of stellar tracers and spectral diagnostics. The Multi-object APO Radial Velocity Large-area Survey (MARVELS) will monitor radial velocities of more than 8000 FGK stars with the sensitivity and cadence (10-40 m s{sup -1}, {approx} 24 visits per star) needed to detect giant planets with periods up to two years, providing an unprecedented data set for understanding the formation and dynamical evolution of giant planet systems. As of January 2011, SDSS-III has obtained

  14. GIS Technologies For The New Planetary Science Archive (PSA)

    Science.gov (United States)

    Docasal, R.; Barbarisi, I.; Rios, C.; Macfarlane, A. J.; Gonzalez, J.; Arviset, C.; De Marchi, G.; Martinez, S.; Grotheer, E.; Lim, T.; Besse, S.; Heather, D.; Fraga, D.; Barthelemy, M.

    2015-12-01

    Geographical information system (GIS) is becoming increasingly used for planetary science. GIS are computerised systems for the storage, retrieval, manipulation, analysis, and display of geographically referenced data. Some data stored in the Planetary Science Archive (PSA), for instance, a set of Mars Express/Venus Express data, have spatial metadata associated to them. To facilitate users in handling and visualising spatial data in GIS applications, the new PSA should support interoperability with interfaces implementing the standards approved by the Open Geospatial Consortium (OGC). These standards are followed in order to develop open interfaces and encodings that allow data to be exchanged with GIS Client Applications, well-known examples of which are Google Earth and NASA World Wind as well as open source tools such as Openlayers. The technology already exists within PostgreSQL databases to store searchable geometrical data in the form of the PostGIS extension. An existing open source maps server is GeoServer, an instance of which has been deployed for the new PSA, uses the OGC standards to allow, among others, the sharing, processing and editing of data and spatial data through the Web Feature Service (WFS) standard as well as serving georeferenced map images through the Web Map Service (WMS). The final goal of the new PSA, being developed by the European Space Astronomy Centre (ESAC) Science Data Centre (ESDC), is to create an archive which enables science exploitation of ESA's planetary missions datasets. This can be facilitated through the GIS framework, offering interfaces (both web GUI and scriptable APIs) that can be used more easily and scientifically by the community, and that will also enable the community to build added value services on top of the PSA.

  15. Employing Geodatabases for Planetary Mapping Conduct - Requirements, Concepts and Solutions

    Science.gov (United States)

    vanGasselt, Stephan; Nass, A.

    2010-01-01

    Planetary geologic mapping has become complex in terms of merging and co-registering a variety of different datasets for analysis and mapping. But it has also become more convenient when it comes to conducting actual (geoscientific) mapping with the help of desktop Geographic Information Systems (GIS). The complexity and variety of data, however, are major issues that need to be taken care of in order to provide mappers with a consistent and easy-to-use mapping basis. Furthermore, a high degree of functionality and interoperability of various commercial and open-source GIS and remote sensing applications allow mappers to organize map data, map components and attribute data in a more sophisticated and intuitional way when compared to workflows 15 years ago. Integration of mapping results of different groups becomes an awkward task as each mapper follows his/her own style, especially if mapping conduct is not coordinated and organized programmatically. Problems of data homogenization start with various interpretations and implementations of planetary map projections and reference systems which form the core component of any mapping and analysis work. If the data basis is inconsistent, mapping results in terms of objects georeference become hard to integrate. Apart from data organization and referencing issues, which are important on the mapping as well as the data-processing side of every project, the organization of planetary geologic map units and attributes, as well as their representation within a common GIS environment, are key components that need to be taken care of in a consistent and persistent way.

  16. Ups and downs in planetary science

    Science.gov (United States)

    Shoemaker, Carolyn S.

    1999-01-01

    The field of planetary science as it developed during the lifetimes of Gene and Carolyn Shoemaker has sustained a period of exciting growth. Surveying the skies for planet-crossing asteroids and comets and studying the results of their impact upon the planets, especially the Earth, was for Gene and Carolyn an intense and satisfying quest for knowledge. It all started when Gene envisioned man going to the Moon, especially himself. After that, one thing led to another: the study of nuclear craters and a comparison with Meteor Crater, Arizona; the Apollo project and a succession of unmanned space missions to the inner and outer planets; an awareness of cratering throughout our solar system; the search for near-Earth asteroids and comets; a study of ancient craters in Australia; and the impact of Shoemaker-Levy 9 on Jupiter. The new paradigm of impact cratering as a cause for mass extinction and the opening of space for the development of new life forms have been causes to champion.

  17. MAGELLAN AO SYSTEM z ′, Y{sub S}, AND L ′ OBSERVATIONS OF THE VERY WIDE 650 AU HD 106906 PLANETARY SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ya-Lin; Close, Laird M.; Males, Jared R.; Morzinski, Katie M.; Hinz, Philip M. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Bailey, Vanessa P.; Follette, Katherine B. [Kavli Institute of Particle Astrophysics and Cosmology, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305 (United States); Rodigas, Timothy J. [Department of Terrestrial Magnetism, Carnegie Institute of Washington, 5241 Broad Branch Road, NW, Washington, DC 20015 (United States); Puglisi, Alfio; Briguglio, Runa; Xompero, Marco, E-mail: yalinwu@email.arizona.edu [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy)

    2016-05-20

    We analyze archival data from Bailey and co-workers from the Magellan adaptive optics system and present the first 0.9 μ m detection ( z ′ = 20.3 ± 0.4 mag; Δ z ′ = 13.0 ± 0.4 mag) of the 11 M {sub Jup} circumbinary planet HD 106906AB b, as well as 1 and 3.8 μ m detections of the debris disk around the binary. The disk has an east–west asymmetry in length and surface brightness, especially at 3.8 μ m where the disk appears to be one-sided. The spectral energy distribution of b, when scaled to the K{sub S} -band photometry, is consistent with 1800 K atmospheric models without significant dust reddening, unlike some young, very red, low-mass companions such as CT Cha B and 1RXS 1609 B. Therefore, the suggested circumplanetary disk of Kalas and co-workers might not contain much material, or might be closer to face-on. Finally, we suggest that the widest ( a ≳ 100 AU) low mass ratio ( M {sub p}/ M {sub ⋆} ≡ q ≲ 0.01) companions may have formed inside protoplanetary disks but were later scattered by binary/planet interactions. Such a scattering event may have occurred for HD 106906AB b with its central binary star, but definitive proof at this time is elusive.

  18. Detection of transient events on planetary bodies .

    Science.gov (United States)

    Di Martino, M.; Carbognani, A.

    Transient phenomena on planetary bodies are defined as luminous events of different intensities, which occur in planetary atmospheres and surfaces, their duration spans from about 0.1 s to some hours. They consist of meteors, bolides, lightning, impact flashes on solid surfaces, auroras, etc. So far, the study of these phenomena has been very limited, due to the lack of an ad hoc instrumentation, and their detection has been performed mainly on a serendipitous basis. Recently, ESA has issued an announcement of opportunity for the development of systems devoted to the detection of transient events in the Earth atmosphere and/or on the dark side of other planetary objects. One of such a detector as been designed and a prototype (\\textit{Smart Panoramic Optical Sensor Head}, SPOSH) has been constructed at Galileo Avionica S.p.A (Florence, Italy). For sake of clarity, in what follows, we classify the transient phenomena in ``Earth phenomena'' and ``Planetary phenomena'', even though some of them originate in a similar physical context.

  19. TRANSIENT CHAOS AND FRACTAL STRUCTURES IN PLANETARY FEEDING ZONES

    Energy Technology Data Exchange (ETDEWEB)

    Kovács, T. [Also at University of Applied Sciences, Nagy Lajos kir. útja 1-9, H-1148 Budapest, Hungary. (Hungary); Regály, Zs. [Konkoly Observatory of the Hungarian Academy of Sciences, P.O. Box 67, H-1525 Budapest (Hungary)

    2015-01-01

    The circular restricted three-body problem is investigated in the context of accretion and scattering processes. In our model, a large number of identical non-interacting mass-less planetesimals are considered in the planar case orbiting a star-planet system. This description allows us to investigate the gravitational scattering and possible capture of the particles by the forming planetary embryo in a dynamical systems approach. Although the problem serves a large variety of complex motions, the results can be easily interpreted because of the low dimensionality of the phase space. We show that initial conditions define isolated regions of the disk, where planetesimals accrete or escape, which have, in fact, a fractal structure. The fractal geometry of these ''basins'' implies that the dynamics is very complex. Based on the calculated escape rates and escape times, it is also demonstrated that the planetary accretion rate is exponential for short times and follows a power law for longer integration. A new numerical calculation of the maximum mass that a planet can reach (described by the expression of the isolation mass) is also derived.

  20. Factor Structure of the BASC-2 Behavioral and Emotional Screening System Student Form

    Science.gov (United States)

    Dowdy, Erin; Twyford, Jennifer M.; Chin, Jenna K.; DiStefano, Christine A.; Kamphaus, Randy W.; Mays, Kristen L.

    2011-01-01

    The BASC-2 Behavioral and Emotional Screening System (BESS) Student Form (Kamphaus & Reynolds, 2007) is a recently developed youth self-report rating scale designed to identify students at risk for behavioral and emotional problems. The BESS Student Form was derived from the Behavior Assessment System for Children-Second Edition Self-Report of…

  1. Planetary Sciences and Exploration Programme

    Indian Academy of Sciences (India)

    The Indian Space Research Organisation (ISRO) has taken a number of initiatives to plan for a National. Research Programme in the area of planetary science and exploration. This announcement solicits proposals in the field of planetary science. Universities, research and educational institutions may submit proposals ...

  2. Planetary Science Education - Workshop Concepts for Classrooms and Internships

    Science.gov (United States)

    Musiol, S.; Rosenberg, H.; Rohwer, G.; Balthasar, H.; van Gasselt, S.

    2014-12-01

    In Germany, education in astronomy and planetary sciences is limited to very few schools or universities and is actively pursued by only selected research groups. Our group is situated at the Freie Universität Berlin and we are actively involved in space missions such as Mars Express, Cassini in the Saturnian system, and DAWN at Vesta and Ceres. In order to enhance communication and establish a broader basis for building up knowledge on our solar-system neighborhood, we started to offer educational outreach in the form of workshops for groups of up to 20 students from primary/middle schools to high schools. Small group sizes guarantee practical, interactive, and dialog-based working environments as well as a high level of motivation. Several topical workshops have been designed which are targeted at different age groups and which consider different educational background settings. One workshop called "Impact craters on planets and moons" provides a group-oriented setting in which 3-4 students analyze spacecraft images showing diverse shapes of impact craters on planetary surfaces. It is targeted not only at promoting knowledge about processes on planetary surfaces but it also stimulates visual interpretation skills, 3D viewing and reading of map data. A second workshop "We plan a manned mission to Mars" aims at fostering practical team work by designing simple space mission scenarios which are solved within a team by collaboration and responsibility. A practical outdoor activity called "Everything rotates around the Sun" targets at developing a perception of absolute - but in particular relative - sizes, scales and dimensions of objects in our solar system. Yet another workshop "Craters, volcanoes and co. - become a geologist on Mars" was offered at the annual national "Girls' Day" aiming at motivating primary to middle school girls to deal with topics in classical natural sciences. Small groups investigated and interpreted geomorphologic features in image data of

  3. OT1_tueta_2: Far-IR Emission from Planetary Nebulae: Simultaneous Mapping and Spectral Probing of the Multi-Phased Dusty Gaseous System

    Science.gov (United States)

    Ueta, T.

    2010-07-01

    We propose to undertake an ambitious Herschel large survey of planetary nebulae (PNs), mustering the full strengths of Herschel's broadband mapping, spectral mapping, and spatio-spectroscopic capabilities. Our proposed PN survey will exploit Herschel's unprecedented spatial-resolving power in the far-IR wavelengths to its fullest potential. We will perform (1) deep PACS/SPIRE broadband mapping to account for the coldest dust component of the nebulae in the target PNs and determine the spatial distribution of the dusty PN haloes, (2) exhaustive PACS/SPIRE line mapping in far-IR fine-structure and CO transition lines in two representative PNs to diagnose the energetics of the nebulae as a function of location in the nebulae, and (3) PACS/SPIRE spectral-energy-distribution spectroscopy at several positions in the target PNs to understand variations in the physical conditions as a function of location in the nebulae. This PN survey is distinguished from the existing MESS KPGT program by the extra dimension added by spectral mapping and spatio-spectroscopy that permit simultaneous probing of the gas and dust component in the target PNs. Through these investigations, we will consider the energetics of the entire gas-dust system as a function of location in the nebulae. Herschel will allow us to take this novel approach which has rarely been taken previously. The proposed Herschel survey will be conducted in collaboration with the recently-approved Chandra X-ray Observatory Large Project to furnish substantial PN data resources that would allow us - a community of PN astronomers - to tackle a multitude of unanswered issues in PN physics, from the shaping mechanisms of the nebulae to the energetics of the multi-phased gas-dust system surrounding the central white dwarf. The proposed Herschel survey and the approved Chandra survey, combined with the community assets from optical to mid-IR, will provide an extremely valuable and comprehensive compilation of PN resource that

  4. HM Sagittae as a young planetary nebula

    International Nuclear Information System (INIS)

    Kwok, S.; Purton, C.R.

    1979-01-01

    HM Sagittae is suggested to be a very young planetary nebula recently transformed from a red-giant star through continuous mass loss. The observational data for HM Sge have been analyzed in terms of the interacting stellar wind model of planetary nebula formation. The model is in accord with virtually all the spectral data available--radio, optical, and infrared--as well as with the remarkable brightening of HM Sge observed in 1975. In particular, all three gaseous components predicted by the model are observed in the optical spectrum. The density in the newly formed shell is found to be at least 5 x 10 7 cm -3 , a value considerably higher than that found by the conventional analysis, which assumes a single-component homogeneous nebula. The radio spectrum is dominated by free-free emission from the remnant red-giant wind. The infrared spectrum suggests the presence of two dust components, one consisting of silicate grains left over from the red-giant stage and the other of grains newly formed after the 1975 brightening. The low observed shell mass is consistent with the interacting stellar wind model but is not consistent with the conventional sudden-ejection model of planetary nebula formation

  5. Public communication strategy for NASA's planetary protection program

    Science.gov (United States)

    Billings, L.

    The U.S. National Aeronautics and Space Administration (NASA) Planetary Protection Office, in the Office of Space Science, has a long-term initiative under way in communication research and planning. The possibility of extraterrestrial life and efforts to search for evidence of it is one of NASA's key missions, and of great interest to the public. Planetary protection plays a key role in the search for signs of life elsewhere, and as NASA expands its solar system exploration efforts, communication planning for planetary protection must expand to meet growing needs. NASA's Clearly Protection Office has long recognized the importance of communications in accomplishing its goals and objectives. With solar system exploration missions advancing into the era of sample return and with the science of astrobiology changing assumptions about the nature and boundaries of life, the Planetary Protection office is expanding its communication planning efforts and taking first steps toward implementation of a long-term strategy. For the past 10 years, communication research sponsored by the NASA planetary protection program has focused on reaching members of the science community and addressing legal and ethical concerns. In 2003, the program expanded its communication research efforts, initiating the development of a communication strategy based on a participatory model and intended to address the needs of a broad range of extra audiences. The Planetary Protection Office aims to ensure that its scientific, bureaucratic, and other constituencies are fully informed about planetary protection policies and procedures and prepared to communicate with a variety of public audiences about issues relating to planetary protection. This paper will describe NASA's ongoing planetary protection communication research efforts, focusing on development of a participatory communication strategy to enable broadest possible public participation in planning and development of solar system sample

  6. Stability of linear systems in second-order form based on structure preserving similarity transformations

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Pommer, Christian; Kliem, Wolfhard

    2015-01-01

    of the transformation parameters into a new system (I, B 1, C 1) with a symmetrizable matrix C 1. This procedure facilitates stability investigations. We also consider systems with a Hamiltonian spectrum which discloses marginal stability after a Jordan form preserving transformation.......This paper deals with two stability aspects of linear systems of the form Ix¨+Bx˙+Cx=0 given by the triple (I, B, C). A general transformation scheme is given for a structure and Jordan form preserving transformation of the triple. We investigate how a system can be transformed by suitable choices...

  7. N-body simulations of planetary formation

    Science.gov (United States)

    Beauge, C.; Aarseth, S. J.

    1990-07-01

    Numerical simulations of the last stage of terrestrial planetary formation are performed using an N-body code similar to that of Lecar and Aarseth (1986). An improved treatment of collisions has been applied, which allows fragmentation and cratering, as well as accretion. Initial models consist of 200 bodies of total mass 2.3 x 10 to the 28th g, distributed in a two-dimensional ring of size 1 AU with initial circular orbits about the sun. Planetary embryos begin to form by accretion in the early stages when the relative velocities are small. Eventually, a small number of massive embryos emerge, and subsequently accrete nearly all the fragments. Final configurations of three different models yield four principal bodies with moderate eccentricities on a time-scale of 500,000 yr.

  8. Technology under Planetary Protection Research (PPR)

    Data.gov (United States)

    National Aeronautics and Space Administration — Planetary protection involves preventing biological contamination on both outbound and sample return missions to other planetary bodies. Numerous areas of research...

  9. Chaos synchronization and chaotization of complex chaotic systems in series form by optimal control

    International Nuclear Information System (INIS)

    Ge Zhengming; Yang, C.-H.

    2009-01-01

    By the method of quadratic optimum control, a quadratic optimal regulator is used for synchronizing two complex chaotic systems in series form. By this method the least error with less control energy is achieved, and the optimization on both energy and error is realized synthetically. The simulation results of two Quantum-CNN chaos systems in series form prove the effectiveness of this method. Finally, chaotization of the system is given by optimal control.

  10. INVITED TALK: Dynamics Of Planetary Rings

    Science.gov (United States)

    Tiscareno, Matthew S.

    2011-04-01

    Planetary rings are the only nearby astrophysical disks, and the only disks that have been investigated by spacecraft (especially the Cassini spacecraft orbiting Saturn). Although there are significant differences between rings and other disks, chiefly the large planet/ring mass ratio that greatly enhances the flatness of rings (aspect ratios as small as 1e-7), understanding of disks in general can be enhanced by understanding the dynamical processes observed at close-range and in real-time in planetary rings. We will review the known ring systems of the four giant planets, as well as the prospects for ring systems yet to be discovered. We will then review planetary rings by type. The A, B, and C rings of Saturn, plus the Cassini Division, comprise our solar system's only dense broad disk and host many phenomena of general application to disks including spiral waves, gap formation, self-gravity wakes, viscous overstability and normal modes, impact clouds, and orbital evolution of embedded moons. Dense narrow rings are found both at Uranus (where they comprise the main rings entirely) and at Saturn (where they are embedded in the broad disk), and are the primary natural laboratory for understanding shepherding and self-stability. Narrow dusty rings, likely generated by embedded source bodies, are surprisingly found to sport azimuthally-confined arcs both at Saturn, Jupiter, and Neptune. Finally, every known ring system includes a substantial component of diffuse dusty rings.

  11. Planet heating prevents inward migration of planetary cores.

    Science.gov (United States)

    Benítez-Llambay, Pablo; Masset, Frédéric; Koenigsberger, Gloria; Szulágyi, Judit

    2015-04-02

    Planetary systems are born in the disks of gas, dust and rocky fragments that surround newly formed stars. Solid content assembles into ever-larger rocky fragments that eventually become planetary embryos. These then continue their growth by accreting leftover material in the disk. Concurrently, tidal effects in the disk cause a radial drift in the embryo orbits, a process known as migration. Fast inward migration is predicted by theory for embryos smaller than three to five Earth masses. With only inward migration, these embryos can only rarely become giant planets located at Earth's distance from the Sun and beyond, in contrast with observations. Here we report that asymmetries in the temperature rise associated with accreting infalling material produce a force (which gives rise to an effect that we call 'heating torque') that counteracts inward migration. This provides a channel for the formation of giant planets and also explains the strong planet-metallicity correlation found between the incidence of giant planets and the heavy-element abundance of the host stars.

  12. NASA's Planetary Science Missions and Participations

    Science.gov (United States)

    Daou, Doris; Green, James L.

    2017-04-01

    NASA's Planetary Science Division (PSD) and space agencies around the world are collaborating on an extensive array of missions exploring our solar system. Planetary science missions are conducted by some of the most sophisticated robots ever built. International collaboration is an essential part of what we do. NASA has always encouraged international participation on our missions both strategic (ie: Mars 2020) and competitive (ie: Discovery and New Frontiers) and other Space Agencies have reciprocated and invited NASA investigators to participate in their missions. NASA PSD has partnerships with virtually every major space agency. For example, NASA has had a long and very fruitful collaboration with ESA. ESA has been involved in the Cassini mission and, currently, NASA funded scientists are involved in the Rosetta mission (3 full instruments, part of another), BepiColombo mission (1 instrument in the Italian Space Agency's instrument suite), and the Jupiter Icy Moon Explorer mission (1 instrument and parts of two others). In concert with ESA's Mars missions NASA has an instrument on the Mars Express mission, the orbit-ground communications package on the Trace Gas Orbiter (launched in March 2016) and part of the DLR/Mars Organic Molecule Analyzer instruments going onboard the ExoMars Rover (to be launched in 2018). NASA's Planetary Science Division has continuously provided its U.S. planetary science community with opportunities to include international participation on NASA missions too. For example, NASA's Discovery and New Frontiers Programs provide U.S. scientists the opportunity to assemble international teams and design exciting, focused planetary science investigations that would deepen the knowledge of our Solar System. The PSD put out an international call for instruments on the Mars 2020 mission. This procurement led to the selection of Spain and Norway scientist leading two instruments and French scientists providing a significant portion of another

  13. Development of an interfacial model for forming of a metal-composite material system

    Science.gov (United States)

    Kalyanasundaram, Shankar; Compston, Paul; Mosse, Luke

    2013-12-01

    This work presents a finite element model for the stamp forming simulation of Fiber-Metal laminate system consisting of glass fiber reinforced composite material layer sandwiched between two aluminium layers. A novel interfacial model was developed to analyze the role of the interface between the metal and composite layers. A one way coupled thermo mechanical model was used to study the effect of pre heating the material system to improve the formability. Comparison between the simulation and experiments were carried out for forming of rectangular cups. The results indicate that the interfacial model is effective in predicting the forming behavior of this advanced light weight material system.

  14. Robots and humans: synergy in planetary exploration

    Science.gov (United States)

    Landis, Geoffrey A.

    2004-01-01

    How will humans and robots cooperate in future planetary exploration? Are humans and robots fundamentally separate modes of exploration, or can humans and robots work together to synergistically explore the solar system? It is proposed that humans and robots can work together in exploring the planets by use of telerobotic operation to expand the function and usefulness of human explorers, and to extend the range of human exploration to hostile environments. Published by Elsevier Ltd.

  15. Search for binary nuclei in planetary nebulae

    International Nuclear Information System (INIS)

    Jasniewicz, G.

    1987-01-01

    Two planetary nebulae with central stars of late spectral type were observed: LT 5 and Abell 35. The variation of the systemic velocity of the G-binary in HD 112313 gives strong support to the idea of a third body in the nucleus of LT 5. In addition, it is concluded that observed photometric variations of BD -22 deg 3467 (the central star of Abell 35) can best be explained by the binary nature of the star. 9 references

  16. Search for binary nuclei in planetary nebulae

    Science.gov (United States)

    Jasniewicz, G.

    Two planetary nebulae with central stars of late spectral type were observed: LT 5 and Abell 35. The variation of the systemic velocity of the G-binary in HD 112313 gives strong support to the idea of a third body in the nucleus of LT 5. In addition, it is concluded that observed photometric variations of BD -22 deg 3467 (the central star of Abell 35) can best be explained by the binary nature of the star.

  17. Planetary Magnetic Fields: Planetary Interiors and Habitability W. M. Keck Institute for Space Studies Report

    Science.gov (United States)

    Lazio, T. Joseph; Shkolnik, Evgenya; Hallinan, Gregg

    2017-05-01

    The W. M. Keck Institute for Space Studies (KISS) sponsored the "Planetary Magnetic Fields: Planetary Interiors and Habitability" study to review the state of knowledge of extrasolar planetary magnetic fields and the prospects for their detection.There were multiple motivations for this Study. Planetary-scale magnetic fields are a window to a planet's interior and provide shielding of the planet's atmosphere. The Earth, Mercury, Ganymede, and the giant planets of the solar system all contain internal dynamo currents that generate planetary-scale magnetic fields. In turn, these internal dynamo currents arise from differential rotation, convection, compositional dynamics, or a combination of these in objects' interiors. If coupled to an energy source, such as the incident kinetic or magnetic energy from the solar wind or an orbiting satellite, a planet's magnetic field can produce intense electron cyclotron masers in its magnetic polar regions. The most well known example of this process in the solar system is the Jovian decametric emission, but all of the giant planets and the Earth contain similar electron cyclotron masers within their magnetospheres. Extrapolated to extrasolar planets, the remote detection of the magnetic field of an extrasolar planet would provide a means of obtaining constraints on the thermal state, composition, and dynamics of its interior--all of which will be difficult to determine by other means--as well as improved understanding of the basic planetary dynamo process.We review the findings from the Study, including potential mission concepts that emerged and recent developments toward one of the mission concepts, a space-based radio wavelength array. There was an identification of that radio wavelength observations would likely be key to making significant progress in this field.We acknowledge ideas and advice from the participants in the "Planetary Magnetic Fields: Planetary Interiors and Habitability" study organized by the W. M. Keck

  18. Budgeting for Exploration: the History and Political Economy of Planetary Science

    Science.gov (United States)

    Callahan, Jason

    2013-10-01

    The availability of financial resources continues to be one of the greatest limiting factors to NASA’s planetary science agenda. Historians and members of the space science community have offered many explanations for the scientific, political, and economic actions that combine to form NASA’s planetary science efforts, and this essay will use budgetary and historical analysis to examine how each of these factors have impacted the funding of U.S. exploration of the solar system. This approach will present new insights into how the shifting fortunes of the nation’s economy or the changing priorities of political leadership have affected government investment in science broadly, and space science specifically. This paper required the construction of a historical NASA budget data set displaying layered fiscal information that could be compared equivalently over time. This data set was constructed with information collected from documents located in NASA’s archives, the Library of Congress, and at the Office of Management and Budget at the White House. The essay will examine the effects of the national gross domestic product, Federal debt levels, the budgets of other Federal agencies engaged in science and engineering research, and party affiliation of leadership in Congress and the White House on the NASA budget. It will also compare historic funding levels of NASA’s astrophysics, heliophysics, and Earth science efforts to planetary science funding. By examining the history of NASA’s planetary science efforts through the lens of the budget, this essay will provide a clearer view of how effectively the planetary science community has been able to align its goals with national science priorities.

  19. Planetary Science with Balloon-Borne Telescopes

    Science.gov (United States)

    Kremic, Tibor; Cheng, Andy; Hibbitts, Karl; Young, Eliot

    2015-01-01

    The National Aeronautics and Space Administration (NASA) and the planetary science community have recently been exploring the potential contributions of stratospheric balloons to the planetary science field. A study that was recently concluded explored the roughly 200 or so science questions raised in the Planetary Decadal Survey report and found that about 45 of those questions are suited to stratospheric balloon based observations. In September of 2014, a stratospheric balloon mission called BOPPS (which stands for Balloon Observation Platform for Planetary Science) was flown out of Fort Sumner, New Mexico. The mission had two main objectives, first, to observe a number of planetary targets including one or more Oort cloud comets and second, to demonstrate the applicability and performance of the platform, instruments, and subsystems for making scientific measurements in support planetary science objectives. BOPPS carried two science instruments, BIRC and UVVis. BIRC is a cryogenic infrared multispectral imager which can image in the.6-5 m range using an HgCdTe detector. Narrow band filters were used to allow detection of water and CO2 emission features of the observed targets. The UVVis is an imager with the science range of 300 to 600 nm. A main feature of the UVVis instrument is the incorporation of a guide camera and a Fine Steering Mirror (FSM) system to reduce image jitter to less than 100 milliarcseconds. The BIRC instrument was used to image targets including Oort cloud comets Siding Spring and Jacques, and the dwarf planet 1 Ceres. BOPPS achieved the first ever earth based CO2 observation of a comet and the first images of water and CO2 of an Oort cloud comet (Jacques). It also made the first ever measurement of 1Ceres at 2.73 m to refine the shape of the infrared water absorption feature on that body. The UVVis instrument, mounted on its own optics bench, demonstrated the capability for image correction both from atmospheric disturbances as well as some

  20. Planetary Protection Constraints For Planetary Exploration and Exobiology

    Science.gov (United States)

    Debus, A.; Bonneville, R.; Viso, M.

    According to the article IX of the OUTER SPACE TREATY (London / Washington January 27., 1967) and in the frame of extraterrestrial missions, it is required to preserve planets and Earth from contamination. For ethical, safety and scientific reasons, the space agencies have to comply with the Outer Space Treaty and to take into account the related planetary protection Cospar recommendations. Planetary protection takes also into account the protection of exobiological science, because the results of life detection experimentations could have impacts on planetary protection regulations. The validation of their results depends strongly of how the samples have been collected, stored and analyzed, and particularly of their biological and organic cleanliness. Any risk of contamination by organic materials, chemical coumpounds and by terrestrial microorganisms must be avoided. A large number of missions is presently scheduled, particularly on Mars, in order to search for life or traces of past life. In the frame of such missions, CNES is building a planetary protection organization in order handle and to take in charge all tasks linked to science and engineering concerned by planetary protection. Taking into account CNES past experience in planetary protection related to the Mars 96 mission, its planned participation in exobiological missions with NASA as well as its works and involvement in Cospar activities, this paper will present the main requirements in order to avoid celestial bodies biological contamination, focussing on Mars and including Earth, and to protect exobiological science.

  1. Exploring How Technology Mediates the Types of Relationships Formed in Sociotechnical Systems

    Science.gov (United States)

    Chu, Kar-Hai

    2012-01-01

    This work presents an exploratory study of how technology mediates the different types of relationships that are formed in sociotechnical systems. More people each day are connecting with each other through social networks, online communities, and other forms of virtual environments. Whether for education, information seeking, friendship,…

  2. Work Organisation, Forms of Employee Learning and National Systems of Education and Training

    Science.gov (United States)

    Lorenz, Edward; Lundvall, Bengt-Åke; Kraemer-Mbula, Erika; Rasmussen, Palle

    2016-01-01

    This article uses a multi-level framework to investigate for 17 European nations the links between forms of work organisation and style of employee learning at the workplace on the one hand, and the characteristics of national educational and training systems on the other. The analysis shows that forms of work organisation characterised by…

  3. Degassing of reduced carbon from planetary basalts.

    Science.gov (United States)

    Wetzel, Diane T; Rutherford, Malcolm J; Jacobsen, Steven D; Hauri, Erik H; Saal, Alberto E

    2013-05-14

    Degassing of planetary interiors through surface volcanism plays an important role in the evolution of planetary bodies and atmospheres. On Earth, carbon dioxide and water are the primary volatile species in magmas. However, little is known about the speciation and degassing of carbon in magmas formed on other planets (i.e., Moon, Mars, Mercury), where the mantle oxidation state [oxygen fugacity (fO2)] is different from that of the Earth. Using experiments on a lunar basalt composition, we confirm that carbon dissolves as carbonate at an fO2 higher than -0.55 relative to the iron wustite oxygen buffer (IW-0.55), whereas at a lower fO2, we discover that carbon is present mainly as iron pentacarbonyl and in smaller amounts as methane in the melt. The transition of carbon speciation in mantle-derived melts at fO2 less than IW-0.55 is associated with a decrease in carbon solubility by a factor of 2. Thus, the fO2 controls carbon speciation and solubility in mantle-derived melts even more than previous data indicate, and the degassing of reduced carbon from Fe-rich basalts on planetary bodies would produce methane-bearing, CO-rich early atmospheres with a strong greenhouse potential.

  4. High Cycle Life, Low Temperature Lithium Ion Battery for Earth Orbiting and Planetary Missions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA requires development of advanced rechargeable electrochemical battery systems for lithium ion batteries to support orbiting spacecraft and planetary missions....

  5. The Stinger: A Geotechnical Sensing Package for Robotic Scouting on a Small Planetary Rover, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Flawless operation of planetary mobility systems, excavation, mining and ISRU operations, regolith transport and many others depend on knowledge of geotechnical...

  6. CCR Certification Form for Wyoming or EPA R8 Tribal Community Water Systems

    Science.gov (United States)

    The CCR Certification Form can be used to certify that community water systems in Wyoming or on Tribal Lands in EPA Region 8 have completed and distributed their annual Consumer Confidence Report (CCR) or water quality report.

  7. In Situ Planetary Geochronology Technology

    Data.gov (United States)

    National Aeronautics and Space Administration — This project's purpose was to determine whether a Pulsed Neutron Generator (PNG) could be used in an instrument that could perform in situ age dating of planetary...

  8. Feb 2008 - Feb 2009 Progress Report and Final Report for NA26215: Experimental Studies of High-Energy Processing of Proto-Planetary and Planetary Materials in the Early Solar System

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, Stein B.

    2009-05-28

    The results of this project are the first experimental data on the behavior of metal-silicate mixtures under very high pressures and temperatures comparable to those of the putative Moon-forming impact experienced by Earth in its early history. Probably the most important outcome of this project was the discovery that metal-silicate interaction and equilibration during highly energetic transient events like impacts may be extremely fast and effective on relatively large scale that was not appreciated before. During the course of this project we have developed a technique for trapping supercritical melts produced in our experiments that allows studying chemical phenomena taking place on a nanosecond timescales. Our results shed new light on the processes and conditions existed in the early Earth history, a subject of perennial interest of the humankind. The results of this project also provide important experimental constraints essential for development of the strategy and technology to mitigate imminent asteroid hazard.

  9. Sonar equations for planetary exploration.

    Science.gov (United States)

    Ainslie, Michael A; Leighton, Timothy G

    2016-08-01

    The set of formulations commonly known as "the sonar equations" have for many decades been used to quantify the performance of sonar systems in terms of their ability to detect and localize objects submerged in seawater. The efficacy of the sonar equations, with individual terms evaluated in decibels, is well established in Earth's oceans. The sonar equations have been used in the past for missions to other planets and moons in the solar system, for which they are shown to be less suitable. While it would be preferable to undertake high-fidelity acoustical calculations to support planning, execution, and interpretation of acoustic data from planetary probes, to avoid possible errors for planned missions to such extraterrestrial bodies in future, doing so requires awareness of the pitfalls pointed out in this paper. There is a need to reexamine the assumptions, practices, and calibrations that work well for Earth to ensure that the sonar equations can be accurately applied in combination with the decibel to extraterrestrial scenarios. Examples are given for icy oceans such as exist on Europa and Ganymede, Titan's hydrocarbon lakes, and for the gaseous atmospheres of (for example) Jupiter and Venus.

  10. Extraterrestrial life in light of recent planetary science

    Science.gov (United States)

    Stanley, Matthew

    2016-03-01

    Since at least the time of the Greeks, we have wondered whether the universe cares about us. Is the universe friendly to life, with fecund planets scattered through the heavens? Or is it indifferent, with our green globe a fluke among barren rocks? Modern scientists articulate this puzzle in the form of the anthropic principle, and try to quantify it with the Drake equation. Both seek to link the science we find in our corner of the universe to truly cosmological claims about life and the laws of nature. Until very recently, these questions have been accessible only to speculation. But the amazing progress in planetary science of the last two decades has finally given us an opportunity to begin to test these ideas. This paper will examine how our recent studies of planets within and beyond our solar system may help us grapple with the riddles of the anthropic principle and how life fits into a universe of natural laws.

  11. Waste form performance assessment in the YUCCA Mountain engineered barrier system, American Nuclear Society

    International Nuclear Information System (INIS)

    Morris, E. E.; Fanning, T. H.; Wigeland, R. A.

    2000-01-01

    This work demonstrates a technique for comparing the performance of waste forms in a repository environment when one or more of the waste forms constitute a small part of the total amount of waste planned for the repository. In applying the technique, it is important to identify radionuclides that are highly soluble in the transport fluid since it is only for these that the release is controlled by the dissolution rate of the waste form matrix. The techniques presented here have been applied to an evaluation of the performance of waste forms from the electrometallurgical treatment of spent fuel in the proposed Yucca Mountain Repository Engineered Barrier System (EBS)

  12. The Next Generation of Planetary Atmospheric Probes

    Science.gov (United States)

    Houben, Howard

    2005-01-01

    Entry probes provide useful insights into the structures of planetary atmospheres, but give only one-dimensional pictures of complex four-dimensional systems that vary on all temporal and spatial scales. This makes the interpretation of the results quite challenging, especially as regards atmospheric dynamics. Here is a planetary meteorologist's vision of what the next generation of atmospheric entry probe missions should be: Dedicated sounding instruments get most of the required data from orbit. Relatively simple and inexpensive entry probes are released from the orbiter, with low entry velocities, to establish ground truth, to clarify the vertical structure, and for adaptive observations to enhance the dataset in preparation for sensitive operations. The data are assimilated onboard in real time. The products, being immediately available, are of immense benefit for scientific and operational purposes (aerobraking, aerocapture, accurate payload delivery via glider, ballooning missions, weather forecasts, etc.).

  13. Laser Mass Spectrometry in Planetary Science

    International Nuclear Information System (INIS)

    Wurz, P.; Whitby, J. A.; Managadze, G. G.

    2009-01-01

    Knowing the chemical, elemental, and isotopic composition of planetary objects allows the study of their origin and evolution within the context of our solar system. Exploration plans in planetary research of several space agencies consider landing spacecraft for future missions. Although there have been successful landers in the past, more landers are foreseen for Mars and its moons, Venus, the jovian moons, and asteroids. Furthermore, a mass spectrometer on a landed spacecraft can assist in the sample selection in a sample-return mission and provide mineralogical context, or identify possible toxic soils on Mars for manned Mars exploration. Given the resources available on landed spacecraft mass spectrometers, as well as any other instrument, have to be highly miniaturised.

  14. Europa Planetary Protection for Juno Jupiter Orbiter

    Science.gov (United States)

    Bernard, Douglas E.; Abelson, Robert D.; Johannesen, Jennie R.; Lam, Try; McAlpine, William J.; Newlin, Laura E.

    2010-01-01

    NASA's Juno mission launched in 2011 and will explore the Jupiter system starting in 2016. Juno's suite of instruments is designed to investigate the atmosphere, gravitational fields, magnetic fields, and auroral regions. Its low perijove polar orbit will allow it to explore portions of the Jovian environment never before visited. While the Juno mission is not orbiting or flying close to Europa or the other Galilean satellites, planetary protection requirements for avoiding the contamination of Europa have been taken into account in the Juno mission design.The science mission is designed to conclude with a deorbit burn that disposes of the spacecraft in Jupiter's atmosphere. Compliance with planetary protection requirements is verified through a set of analyses including analysis of initial bioburden, analysis of the effect of bioburden reduction due to the space and Jovian radiation environments, probabilistic risk assessment of successful deorbit, Monte-Carlo orbit propagation, and bioburden reduction in the event of impact with an icy body.

  15. Magnetic dynamos in accreting planetary bodies

    Science.gov (United States)

    Golabek, Gregor; Labrosse, Stéphane; Gerya, Taras; Morishima, Ryuji; Tackley, Paul

    2013-04-01

    Laboratory measurements revealed ancient remanent magnetization in meteorites [1] indicating the activity of magnetic dynamos in the corresponding meteorite parent body. To study under which circumstances dynamo activity is possible, we use a new methodology to simulate the internal evolution of a planetary body during accretion and differentiation. Using the N-body code PKDGRAV [2] we simulate the accretion of planetary embryos from an initial annulus of several thousand planetesimals. The growth history of the largest resulting planetary embryo is used as an input for the thermomechanical 2D code I2ELVIS [3]. The thermomechanical model takes recent parametrizations of impact processes [4] and of the magnetic dynamo [5] into account. It was pointed out that impacts can not only deposit heat deep into the target body, which is later buried by ejecta of further impacts [6], but also that impacts expose in the crater region originally deep-seated layers, thus cooling the interior [7]. This combination of impact effects becomes even more important when we consider that planetesimals of all masses contribute to planetary accretion. This leads occasionally to collisions between bodies with large ratios between impactor and target mass. Thus, all these processes can be expected to have a profound effect on the thermal evolution during the epoch of planetary accretion and may have implications for the magnetic dynamo activity. Results show that late-formed planetesimals do not experience silicate melting and avoid thermal alteration, whereas in early-formed bodies accretion and iron core growth occur almost simultaneously and a highly variable magnetic dynamo can operate in the interior of these bodies. [1] Weiss, B.P. et al., Science, 322, 713-716, 2008. [2] Richardson, D. C. et al., Icarus, 143, 45-59, 2000. [3] Gerya, T.V and Yuen, D.J., Phys. Earth Planet. Int., 163, 83-105, 2007. [4] Monteux, J. et al., Geophys. Res. Lett., 34, L24201, 2007. [5] Aubert, J. et al

  16. Testing the chondrule-rich accretion model for planetary embryos using calcium isotopes

    Science.gov (United States)

    Amsellem, Elsa; Moynier, Frédéric; Pringle, Emily A.; Bouvier, Audrey; Chen, Heng; Day, James M. D.

    2017-07-01

    Understanding the composition of raw materials that formed the Earth is a crucial step towards understanding the formation of terrestrial planets and their bulk composition. Calcium is the fifth most abundant element in terrestrial planets and, therefore, is a key element with which to trace planetary composition. However, in order to use Ca isotopes as a tracer of Earth's accretion history, it is first necessary to understand the isotopic behavior of Ca during the earliest stages of planetary formation. Chondrites are some of the oldest materials of the Solar System, and the study of their isotopic composition enables understanding of how and in what conditions the Solar System formed. Here we present Ca isotope data for a suite of bulk chondrites as well as Allende (CV) chondrules. We show that most groups of carbonaceous chondrites (CV, CI, CR and CM) are significantly enriched in the lighter Ca isotopes (δ 44 / 40 Ca = + 0.1 to + 0.93 ‰) compared with bulk silicate Earth (δ 44 / 40 Ca = + 1.05 ± 0.04 ‰, Huang et al., 2010) or Mars, while enstatite chondrites are indistinguishable from Earth in Ca isotope composition (δ 44 / 40 Ca = + 0.91 to + 1.06 ‰). Chondrules from Allende are enriched in the heavier isotopes of Ca compared to the bulk and the matrix of the meteorite (δ 44 / 40 Ca = + 1.00 to + 1.21 ‰). This implies that Earth and Mars have Ca isotope compositions that are distinct from most carbonaceous chondrites but that may be like chondrules. This Ca isotopic similarity between Earth, Mars, and chondrules is permissive of recent dynamical models of planetary formation that propose a chondrule-rich accretion model for planetary embryos.

  17. Predicting glass-forming compositions in the Al-La and Al-La-Ni systems

    International Nuclear Information System (INIS)

    Gargarella, P.; de Oliveira, M.F.; Kiminami, C.S.; Pauly, S.; Kuehn, U.; Bolfarini, C.; Botta, W.J.; Eckert, J.

    2011-01-01

    Research highlights: → The glass-forming ability of the Al-La and Al-La-Ni systems was studied using the λ* and the λ.Δe criteria. → Both criteria predicted with just 1% at. of error the best glass-former verified so far in the Al-La system. → Four new glass-former compositions could be predicted in the Al-La-Ni system using the λ.Δe criterion. → The best glass-former reported so far in the Al-La-Ni system was found. - Abstract: In this work, a criterion considering the topological instability (λ) and the differences in the electronegativity of the constituent elements (Δe) was applied to the Al-La and Al-Ni-La systems in order to predict the best glass-forming compositions. The results were compared with literature data and with our own experimental data for the Al-La-Ni system. The alloy described in the literature as the best glass former in the Al-La system is located near the point with local maximum for the λ.Δe criterion. A good agreement was found between the predictions of the λ.Δe criterion and literature data in the Al-La-Ni system, with the region of the best glass-forming ability (GFA) and largest supercooled liquid region (ΔT x ) coinciding with the best compositional region for amorphization indicated by the λ.Δe criterion. Four new glassy compositions were found in the Al-La-Ni system, with the best predicted composition presenting the best glass-forming ability observed so far for this system. Although the λ.Δe criterion needs further refinements for completely describe the glass-forming ability in the Al-La and Al-La-Ni systems, the results demonstrated that this criterion is a good tool to predict new glass-forming compositions.

  18. The contribution of the ARIEL space mission to the study of planetary formation

    Science.gov (United States)

    Turrini, D.; Miguel, Y.; Zingales, T.; Piccialli, A.; Helled, R.; Vazan, A.; Oliva, F.; Sindoni, G.; Panić, O.; Leconte, J.; Min, M.; Pirani, S.; Selsis, F.; Coudé du Foresto, V.; Mura, A.; Wolkenberg, P.

    2018-01-01

    The study of extrasolar planets and of the Solar System provides complementary pieces of the mosaic represented by the process of planetary formation. Exoplanets are essential to fully grasp the huge diversity of outcomes that planetary formation and the subsequent evolution of the planetary systems can produce. The orbital and basic physical data we currently possess for the bulk of the exoplanetary population, however, do not provide enough information to break the intrinsic degeneracy of their histories, as different evolutionary tracks can result in the same final configurations. The lessons learned from the Solar System indicate us that the solution to this problem lies in the information contained in the composition of planets. The goal of the Atmospheric Remote-Sensing Infrared Exoplanet Large-survey (ARIEL), one of the three candidates as ESA M4 space mission, is to observe a large and diversified population of transiting planets around a range of host star types to collect information on their atmospheric composition. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres, which should show minimal condensation and sequestration of high-Z materials and thus reveal their bulk composition across all main cosmochemical elements. In this work we will review the most outstanding open questions concerning the way planets form and the mechanisms that contribute to create habitable environments that the compositional information gathered by ARIEL will allow to tackle.

  19. Cognitive testing to evaluate revisions to the Vaccine Adverse Event Reporting System (VAERS) reporting form.

    Science.gov (United States)

    Suragh, Tiffany A; Miller, Elaine R; Hibbs, Beth F; Winiecki, Scott K; Zinderman, Craig; Shimabukuro, Tom T

    2017-04-25

    The Vaccine Adverse Event Reporting System (VAERS) is the spontaneous (passive) reporting system CDC and FDA use to monitor vaccine safety. We used cognitive testing to evaluate proposed revisions to the current VAERS form. We conducted in-person cognitive interviews with 22 volunteers to evaluate proposed revisions in a prototype VAERS 2.0 form (new VAERS form). We analyzed data using thematic analysis. Repeating themes included preferences for: brevity, simplicity and clarity; features to minimize time requirements and facilitate ease of completion; logical ordering of questions by topic and importance; and visual cues like color-coded highlighting. Interviews identified instances of discordance between the intended meaning questions (from the perspective of CDC and FDA) and interpretation by volunteers. Cognitive testing yielded useful information to guide further revisions of the VAERS form. Cognitive testing can be an effective tool for public health programs interested in developing surveys and reporting forms. Published by Elsevier Ltd.

  20. Is Student Performance on the Information Systems Analyst Certification Exam Affected by Form of Delivery of Information Systems Coursework?

    Science.gov (United States)

    Haga, Wayne; Moreno, Abel; Segall, Mark

    2012-01-01

    In this paper, we compare the performance of Computer Information Systems (CIS) majors on the Information Systems Analyst (ISA) Certification Exam. The impact that the form of delivery of information systems coursework may have on the exam score is studied. Using a sample that spans three years, we test for significant differences between scores…

  1. NASA Planetary Visualization Tool

    Science.gov (United States)

    Hogan, P.; Kim, R.

    2004-12-01

    NASA World Wind allows one to zoom from satellite altitude into any place on Earth, leveraging the combination of high resolution LandSat imagery and SRTM elevation data to experience Earth in visually rich 3D, just as if they were really there. NASA World Wind combines LandSat 7 imagery with Shuttle Radar Topography Mission (SRTM) elevation data, for a dramatic view of the Earth at eye level. Users can literally fly across the world's terrain from any location in any direction. Particular focus was put into the ease of usability so people of all ages can enjoy World Wind. All one needs to control World Wind is a two button mouse. Additional guides and features can be accessed though a simplified menu. Navigation is automated with single clicks of a mouse as well as the ability to type in any location and automatically zoom to it. NASA World Wind was designed to run on recent PC hardware with the same technology used by today's 3D video games. NASA World Wind delivers the NASA Blue Marble, spectacular true-color imagery of the entire Earth at 1-kilometer-per-pixel. Using NASA World Wind, you can continue to zoom past Blue Marble resolution to seamlessly experience the extremely detailed mosaic of LandSat 7 data at an impressive 15-meters-per-pixel resolution. NASA World Wind also delivers other color bands such as the infrared spectrum. The NASA Scientific Visualization Studio at Goddard Space Flight Center (GSFC) has produced a set of visually intense animations that demonstrate a variety of subjects such as hurricane dynamics and seasonal changes across the globe. NASA World Wind takes these animations and plays them directly on the world. The NASA Moderate Resolution Imaging Spectroradiometer (MODIS) produces a set of time relevant planetary imagery that's updated every day. MODIS catalogs fires, floods, dust, smoke, storms and volcanic activity. NASA World Wind produces an easily customized view of this information and marks them directly on the globe. When one

  2. The OpenPlanetary initiative

    Science.gov (United States)

    Manaud, Nicolas; Rossi, Angelo Pio; Hare, Trent; Aye, Michael; Galluzzi, Valentina; van Gasselt, Stephan; Martinez, Santa; McAuliffe, Jonathan; Million, Chase; Nass, Andrea; Zinzi, Angelo

    2016-10-01

    "Open" has become attached to several concepts: science, data, and software are some of the most obvious. It is already common practice within the planetary science community to share spacecraft missions data freely and openly [1]. However, this is not historically the case for software tools, source code, and derived data sets, which are often reproduced independently by multiple individuals and groups. Sharing data, tools and overall knowledge would increase scientific return and benefits [e.g. 2], and recent projects and initiatives are helping toward this goal [e.g. 3,4,5,6].OpenPlanetary is a bottom-up initiative to address the need of the planetary science community for sharing ideas and collaborating on common planetary research and data analysis problems, new challenges, and opportunities. It started from an initial participants effort to stay connected and share information related to and beyond the ESA's first Planetary GIS Workshop [7]. It then continued during the 2nd (US) Planetary Data Workshop [8], and aggregated more people.Our objective is to build an online distributed framework enabling open collaborations within the planetary science community. We aim to co-create, curate and publish resource materials and data sets; to organise online events, to support community-based projects development; and to offer a real-time communication channel at and between conferences and workshops.We will present our current framework and resources, developing projects and ideas, and solicit for feedback and participation. OpenPlanetary is intended for research and education professionals: scientists, engineers, designers, teachers and students, as well as the general public that includes enthusiasts and citizen scientists. All are welcome to join and contribute at openplanetary.co[1] International Planetary Data Alliance, planetarydata.org. [2] Nosek et al (2015), dx.doi.org/10.1126/science.aab2374. [3] Erard S. et al. (2016), EGU2016-17527. [4] Proposal for a PDS

  3. 75 FR 4101 - Enterprise Income Verification (EIV) System User Access Authorization Form and Rules of Behavior...

    Science.gov (United States)

    2010-01-26

    ... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR-5376-N-05] Enterprise Income Verification (EIV) System User Access Authorization Form and Rules of Behavior and User Agreement AGENCY... lists the following information: Title of Proposal: Enterprise Income Verification (EIV) System User...

  4. Phenomenological description of internal friction spectra in glass-forming and glassy systems

    International Nuclear Information System (INIS)

    Lomovskij, V.A.

    1999-01-01

    Dissipative events in different by chemical nature glass-forming systems, including B 2 O 3 , are studied. It is established from the spectra of internal friction of these systems that the maxima of the energy dissipation of the external power impact are positioned both in the area of viscous flow metastable structural liquid state and in the area of solid elastic state

  5. Artificial Intelligence in planetary spectroscopy

    Science.gov (United States)

    Waldmann, Ingo

    2017-10-01

    The field of exoplanetary spectroscopy is as fast moving as it is new. Analysing currently available observations of exoplanetary atmospheres often invoke large and correlated parameter spaces that can be difficult to map or constrain. This is true for both: the data analysis of observations as well as the theoretical modelling of their atmospheres.Issues of low signal-to-noise data and large, non-linear parameter spaces are nothing new and commonly found in many fields of engineering and the physical sciences. Recent years have seen vast improvements in statistical data analysis and machine learning that have revolutionised fields as diverse as telecommunication, pattern recognition, medical physics and cosmology.In many aspects, data mining and non-linearity challenges encountered in other data intensive fields are directly transferable to the field of extrasolar planets. In this conference, I will discuss how deep neural networks can be designed to facilitate solving said issues both in exoplanet atmospheres as well as for atmospheres in our own solar system. I will present a deep belief network, RobERt (Robotic Exoplanet Recognition), able to learn to recognise exoplanetary spectra and provide artificial intelligences to state-of-the-art atmospheric retrieval algorithms. Furthermore, I will present a new deep convolutional network that is able to map planetary surface compositions using hyper-spectral imaging and demonstrate its uses on Cassini-VIMS data of Saturn.

  6. Toward predictive scenarios of planetary migration

    International Nuclear Information System (INIS)

    Baruteau, Clement

    2008-01-01

    The recent detection of extra-solar planets has provided an exciting opportunity to test our theories of planet formation and evolution. An impressive result is the significant proportion of giant planets located much closer to their star than Mercury is from our own Sun. These planets should have formed further out in the protoplanetary disc, thus one needs to explain how they could move closer to their host star. Remarkably enough, such an explanation was proposed well before the discovery of the first exo-planet. It considered the interaction between a planet and the protoplanetary disc, which leads to a decrease of the planet's semi-major axis. This is known as planetary migration. Many studies have shown that the migration timescale of low-mass planets is much shorter than the lifetime of the disc. All planets should therefore have migrated to the vicinity of their host star. This is at least in contradiction with the locations of the planets in our Solar System. In order to elaborate predictive scenarios of planet formation and evolution, it is of primary interest to refine our understanding of disc-planet interactions. The inclusion of the disc self-gravity is an illustration of this. With analytical and numerical arguments, I show that discarding the self-gravity leads to a significant overestimate of the differential Lindblad torque for migrating low-mass planets. Another aspect explored in this thesis is the impact of the gas thermodynamics on migration. I show that the thermodynamic evolution of the disc induces an additional contribution to the corotation torque, which may dramatically slow down or even reverse the migration of low-mass planets. (author) [fr

  7. Physics and chemistry of the solar system

    CERN Document Server

    Lewis, John S

    2004-01-01

    Physics and Chemistry of the Solar System, 2nd Edition, is a comprehensive survey of the planetary physics and physical chemistry of our own solar system. It covers current research in these areas and the planetary sciences that have benefited from both earth-based and spacecraft-based experimentation. These experiments form the basis of this encyclopedic reference, which skillfully fuses synthesis and explanation. Detailed chapters review each of the major planetary bodies as well as asteroids, comets, and other small orbitals. Astronomers, physicists, and planetary scientists can use this state-of-the-art book for both research and teaching. This Second Edition features extensive new material, including expanded treatment of new meteorite classes, spacecraft findings from Mars Pathfinder through Mars Odyssey 2001, recent reflections on brown dwarfs, and descriptions of planned NASA, ESA, and Japanese planetary missions.* New edition features expanded treatment of new meteorite classes, the latest spacecraft...

  8. HESS Opinions: A planetary boundary on freshwater use is misleading

    Science.gov (United States)

    Heistermann, Maik

    2017-07-01

    In 2009, a group of prominent Earth scientists introduced the planetary boundaries (PB) framework: they suggested nine global control variables, and defined corresponding thresholds which, if crossed, could generate unacceptable environmental change. The concept builds on systems theory, and views Earth as a complex adaptive system in which anthropogenic disturbances may trigger non-linear, abrupt, and irreversible changes at the global scale, and push the Earth system outside the stable environmental state of the Holocene. While the idea has been remarkably successful in both science and policy circles, it has also raised fundamental concerns, as the majority of suggested processes and their corresponding planetary boundaries do not operate at the global scale, and thus apparently lack the potential to trigger abrupt planetary changes. This paper picks up the debate with specific regard to the planetary boundary on global freshwater use. While the bio-physical impacts of excessive water consumption are typically confined to the river basin scale, the PB proponents argue that water-induced environmental disasters could build up to planetary-scale feedbacks and system failures. So far, however, no evidence has been presented to corroborate that hypothesis. Furthermore, no coherent approach has been presented to what extent a planetary threshold value could reflect the risk of regional environmental disaster. To be sure, the PB framework was revised in 2015, extending the planetary freshwater boundary with a set of basin-level boundaries inferred from environmental water flow assumptions. Yet, no new evidence was presented, either with respect to the ability of those basin-level boundaries to reflect the risk of regional regime shifts or with respect to a potential mechanism linking river basins to the planetary scale. So while the idea of a planetary boundary on freshwater use appears intriguing, the line of arguments presented so far remains speculative and

  9. HESS Opinions: A planetary boundary on freshwater use is misleading

    Directory of Open Access Journals (Sweden)

    M. Heis