WorldWideScience

Sample records for formation dynamical evolution

  1. The formation and dynamical evolution of young star clusters

    CERN Document Server

    Fujii, Michiko

    2015-01-01

    Recent observations have revealed a variety of young star clusters, including embedded systems, young massive clusters, and associations. We study the formation and dynamical evolution of these clusters using a combination of simulations and theoretical models. Our simulations start with a turbulent molecular cloud that collapses under its own gravity. The stars are assumed to form in the densest regions in the collapsing cloud after an initial free-fall times of the molecular cloud. The dynamical evolution of these stellar distributions are continued by means of direct $N$-body simulations. The molecular clouds typical for the Milky Way Galaxy tend to form embedded clusters which evolve to resemble open clusters. The associations were initially considerably more clumpy, but lost their irregularity in about a dynamical time scale due to the relaxation process. The densest molecular clouds, which are absent in the Milky Way but are typical in starburst galaxies, form massive young star clusters. They indeed ar...

  2. Formation and Dynamical Evolution of the Asteroid Belt

    Science.gov (United States)

    Bottke, William F.

    2015-08-01

    Asteroids are critical to our desire to unravel the origin of the Solar System because they supply unique, relatively pristine snapshots of the environment in which the Earth formed and evolved. This is due to the fact that, although the asteroids and Earth have followed very different evolutionary pathways, they all formed from the same set of physical processes and share a common ancestry. The asteroid belt presents a particular challenge to understanding terrestrial planet formation because of its small mass. Models of the protoplanetary disk suggest the region between 2-3 AU should contain roughly 3 Earth masses, while less than 0.001 of an Earth mass is actually found there.A long-standing explanation for the asteroid belt's small mass is that it is due to the gravitational influence of Jupiter and Saturn. Some have suggested protoplanets grew there before they were dynamically removed from the asteroid belt by resonances with the gas giants. This left the asteroid belt dynamically excited (which is observed) and heavily depleted in mass. More recently, however, detailed models have shown that this process produces an asteroid belt that is inconsistent with observations.Two recent models propose new ways to match asteroid belt constraints. The first, the so-called ‘Grand Tack’ scenario, uses the results of hydrodynamic simulations to show that Jupiter (and Saturn) migrated both inward and outward across the asteroid belt while interacting with the protoplanetary gas disk. The Grand Tack not only reproduces the mass and mixture of spectral types in the asteroid belt, but it also truncates the planetesimal disk from which the terrestrial planets form, potentially explaining why Mars is less massive than Earth. In a second scenario, planetesimals that form directly from cm- to meter-sized objects, known as “pebbles”, are rapidly converted to 100 to 1000 km asteroid-like object that subsequently grow by accreting even more pebbles. Pebble accretion models

  3. Formation and evolution dynamics of bipolarons in conjugated polymers.

    Science.gov (United States)

    Di, B; Meng, Y; Wang, Y D; Liu, X J; An, Z

    2011-02-10

    Combining the one-dimensional tight-binding Su-Schrieffer-Heeger (SSH) model and the extended Hubbard model (EHM), we analyze the scattering and combination in conjugated polymers of two polarons with the same charges and parallel or antiparallel spins using a nonadiabatic evolution method. Results show that collisions between the two same charge polarons with parallel spin are essentially elastic due to strong Pauli repulsion, whereas the two same charge polarons with antiparallel spins can combine into a singlet bipolaronic state. The dynamics of bipolarons on two coupled polymer chains and at the interface of a polymer/polymer heterojunction are discussed in detail. This knowledge will serve to understand the dynamics of the system when many polarons are created in the system, e.g., by electroluminescence.

  4. In Situ Formation and Dynamical Evolution of Hot Jupiter Systems

    Science.gov (United States)

    Batygin, Konstantin; Bodenheimer, Peter H.; Laughlin, Gregory P.

    2016-10-01

    Hot Jupiters, giant extrasolar planets with orbital periods shorter than ˜10 days, have long been thought to form at large radial distances, only to subsequently experience long-range inward migration. Here, we offer the contrasting view that a substantial fraction of the hot Jupiter population formed in situ via the core-accretion process. We show that under conditions appropriate to the inner regions of protoplanetary disks, rapid gas accretion can be initiated by super-Earth-type planets, comprising 10-20 Earth masses of refractory material. An in situ formation scenario leads to testable consequences, including the expectation that hot Jupiters should frequently be accompanied by additional low-mass planets with periods shorter than ˜100 days. Our calculations further demonstrate that dynamical interactions during the early stages of planetary systems’ lifetimes should increase the inclinations of such companions, rendering transits rare. High-precision radial velocity monitoring provides the best prospect for their detection.

  5. In Situ Formation and Dynamical Evolution of Hot Jupiter Systems

    CERN Document Server

    Batygin, Konstantin; Laughlin, Gregory P

    2015-01-01

    Hot Jupiters, giant extrasolar planets with orbital periods shorter than ~10 days, have long been thought to form at large radial distances, only to subsequently experience long-range inward migration. Here, we propose that in contrast with this picture, a substantial fraction of the hot Jupiter population formed in situ via the core accretion process. We show that under conditions appropriate to the inner regions of protoplanetary disks, rapid gas accretion can be initiated by Super-Earth type planets, comprising 10-20 Earth masses of refractory composition material. An in situ formation scenario leads to testable consequences, including the expectation that hot Jupiters should frequently be accompanied by additional low-mass planets with periods shorter than ~100 days. Our calculations further demonstrate that dynamical interactions during the early stages of planetary systems' lifetimes should increase the inclinations of such companions, rendering transits rare. High-precision radial velocity monitoring p...

  6. Structure, dynamics and evolution of disk galaxies in a hierarchical formation scenario

    CERN Document Server

    Firmani, C

    1999-01-01

    Using galaxy evolutionary models in a hierarchical formation scenario, we predict the structure, dynamics and evolution of disk galaxies in a LCDM universe. Our models include star formation and hydrodynamics of the ISM. We find that the Tully-Fisher relation (TFR) in the I and H bands is an imprint of the mass-velocity relation of the cosmological dark halos. The scatter of the TFR originates mainly from the scatter in the dark halo structure and, to a minor extension, from the dispersion of the primordial spin parameter lambda. Our models allow us to explain why low and high surface brightness galaxies have the same TFR. The disk gas fractions predicted agree with the observations. The disks formed within the growing halos have nearly exponential surface brightness and flat rotation curves. Towards high redshifts, the zero-point of the TFR in the H band increases while in the B-band it slightly decreases.

  7. Computational issues in chemo-dynamical modelling of the formation and evolution of galaxies

    CERN Document Server

    Revaz, Yves; Nichols, Matthew; Bonvin, Vivien; Jablonka, Pascale

    2016-01-01

    Chemo-dynamical N-body simulations are an essential tool for understanding the formation and evolution of galaxies. As the number of observationally determined stellar abundances continues to climb, these simulations are able to provide new constraints on the early star formaton history and chemical evolution inside both the Milky Way and Local Group dwarf galaxies. Here, we aim to reproduce the low $\\alpha$-element scatter observed in metal-poor stars. We first demonstrate that as stellar particles inside simulations drop below a mass threshold, increases in the resolution produce an unacceptably large scatter as one particle is no longer a good approximation of an entire stellar population. This threshold occurs at around $10^3\\,\\rm{M_\\odot}$, a mass limit easily reached in current (and future) simulations. By simulating the Sextans and Fornax dwarf spheroidal galaxies we show that this increase in scatter at high resolutions arises from stochastic supernovae explosions. In order to reduce this scatter down...

  8. Dynamical evolution of active detached binaries on log Jo - log M diagram and contact binary formation

    CERN Document Server

    Eker, Z; Bilir, S; Karatas, Y

    2006-01-01

    Orbital angular momentum (Jo), systemic mass (M) and orbital period (P) distributions of chromospherically active binaries (CAB) and W Ursae Majoris (W UMa) systems were investigated. The diagrams of log Jo - log P, log M - log P and log Jo-log M were formed from 119 CAB and 102 W UMa stars. The log Jo-log M diagram is found to be most meaningful in demonstrating dynamical evolution of binary star orbits. A slightly curved borderline (contact border) separating the detached and the contact systems was discovered on the log Jo - log M diagram. Since orbital size (a) and period (P) of binaries are determined by their current Jo, M and mass ratio q, the rates of orbital angular momentum loss (dlog Jo/dt) and mass loss (dlog M/dt) are primary parameters to determine the direction and the speed of the dynamical evolution. A detached system becomes a contact system if its own dynamical evolution enables it to pass the contact border on the log Jo - log M diagram. Evolution of q for a mass loosing detached system is...

  9. Evidences on Secular Dynamical Evolution of Detached Active Binary Orbits and Contact Binary Formation

    CERN Document Server

    Eker, Z; Bilir, S; Karatas, Y

    2006-01-01

    Evidence of secular dynamical evolution for detached active binary orbits are presented. First order decreasing rates of orbital angular momentum (OAM), systemic mass ($M=M_{1}+M_{2}$) and orbital period of detached active binaries have been determined as $\\dot J/J = 3.48 \\times 10^{-10}$yr$^{-1}$, $\\dot M/M = 1.30 \\times 10^{-10}$yr$^{-1}$ and $\\dot P/P = 3.96\\times 10^{-10}$yr$^{-1}$ from the kinematical ages of 62 field detached systems. The ratio of $d \\log J/ d \\log M = 2.68$ implies that either there are mechanisms which amplify AM loss $\\delta=2.68$ times with respect to isotropic AM loss of hypothetical isotropic winds or there exist external causes contributing AM loss in order to produce this mean rate of decrease for orbital periods. Various decreasing rates of OAM ($d \\log J / dt$) and systemic mass ($d \\log M/ dt$) determine various speeds of dynamical evolutions towards a contact configuration. According to average dynamical evolution with $\\delta = 2.68$, the fraction of 10, 22 and 39 per cent ...

  10. Effects of Dynamical Evolution of Giant Planets on the Delivery of Atmophile Elements During Terrestrial Planet Formation

    CERN Document Server

    Matsumura, Soko; Ida, Shigeru

    2015-01-01

    Recent observations started revealing the compositions of protostellar discs and planets beyond the Solar System. In this paper, we explore how the compositions of terrestrial planets are affected by dynamical evolution of giant planets. We estimate the initial compositions of building blocks of these rocky planets by using a simple condensation model, and numerically study the compositions of planets formed in a few different formation models of the Solar System. We find that the abundances of refractory and moderately volatile elements are nearly independent of formation models, and that all the models could reproduce the abundances of these elements of the Earth. The abundances of atmophile elements, on the other hand, depend on the scattering rate of icy planetesimals into the inner disc as well as the mixing rate of the inner planetesimal disc. For the classical formation model, neither of these mechanisms are efficient and the accretion of atmophile elements during the final assembly of terrestrial plan...

  11. Investigation of Vortex Structures in Gas-Discharge Nonneutral Electron Plasma: II. Vortex Formation, Evolution and Dynamics

    CERN Document Server

    Kervalishvili, N A

    2015-01-01

    The results of experimental investigations of inhomogeneities of gas-discharge nonneutral electron plasma obtained by using the nonperturbing experimental methods [N.A. Kervalishvili, arXiv:1502.02516 [physics.plasm-ph] (2015)] have been presented. Inhomogeneities are the dense solitary vortex structures stretched along the magnetic field, the lifetime of which is much greater than the time of electron-neutral collisions. The processes of formation, evolution and dynamics of vortex structures were studied. The periodic sequence of these processes is described for different geometries of discharge device.

  12. Galaxy Formation and Evolution

    Science.gov (United States)

    Nagamine, Kentaro; Reddy, Naveen; Daddi, Emanuele; Sargent, Mark T.

    2016-07-01

    In this chapter, we discuss the current status of observational and computational studies on galaxy formation and evolution. In particular, a joint analysis of star-formation rates (SFRs), stellar masses, and metallicities of galaxies throughout cosmic time can shed light on the processes by which galaxies build up their stellar mass and enrich the environment with heavy elements. Comparison of such observations and the results of numerical simulations can give us insights on the physical importance of various feedback effects by supernovae and active galactic nuclei. In Sect. 1, we first discuss the primary methods used to deduce the SFRs, stellar masses, and (primarily) gas-phase metallicities in high-redshift galaxies. Then, we show how these quantities are related to each other and evolve with time. In Sect. 2, we further examine the distribution of SFRs in galaxies following the `Main Sequence' paradigm. We show how the so-called `starbursts' display higher specific SFRs and SF efficiencies by an order of magnitude. We use this to devise a simple description of the evolution of the star-forming galaxy population since z ˜3 that can successfully reproduce some of the observed statistics in the infrared (IR) wavelength. We also discuss the properties of molecular gas. In Sect. 3, we highlight some of the recent studies of high-redshift galaxy formation using cosmological hydrodynamic simulations. We discuss the physical properties of simulated galaxies such as luminosity function and escape fraction of ionizing photons, which are important statistics for reionization of the Universe. In particular the escape fraction of ionizing photons has large uncertainties, and studying gamma-ray bursts (which is the main topic of this conference) can also set observational constraints on this uncertain physical parameter as well as cosmic star formation rate density.

  13. Molecular anions in circumstellar envelopes, interstellar clouds and planetary atmospheres: quantum dynamics of formation and evolution

    CERN Document Server

    Carelli, Fabio

    2012-01-01

    For decades astronomers and astrophysicists believed that only positively charged ions were worthy of relevance in drawing the networks for possible chemical reactions in the interstellar medium, as well as in modeling the physical conditions in most of astrophysical environments. Thus, molecular negative ions received minor attention until their possible existence was observationally confirmed (discovery of the first interstellar anion, C6H-), about thirty years after the first physically reasonable proposal on their actual detection was theoretically surmised by E.Herbst. In an astrophysical context, their role should be then found in their involvement in the charge balance as well as in the chemical evolution of the considered environment: depending on their amount and on the global gas density, in fact, the possible evolutive scenario could be susceptible of marked variations on the estimated time needed for reaching the steady state, their presence having thus also important repercussions on the final ch...

  14. Formation and Dynamical Evolution of the Neptune Trojans - the Influence of the Initial Solar System Architecture

    CERN Document Server

    Lykawka, P S; Jones, B W; Mukai, T

    2010-01-01

    In this work, we investigate the dynamical stability of pre-formed Neptune Trojans under the gravitational influence of the four giant planets in compact planetary architectures, over 10 Myr. In our modelling, the initial orbital locations of Uranus and Neptune (aN) were varied to produce systems in which those planets moved on non-resonant orbits, or in which they lay in their mutual 1:2, 2:3 and 3:4 mean-motion resonances (MMRs). In total, 420 simulations were carried out, examining 42 different architectures, with a total of 840000 particles across all runs. In the non-resonant cases, the Trojans suffered only moderate levels of dynamical erosion, with the most compact systems (those with aN less than or equal 18 AU) losing around 50% of their Trojans by the end of the integrations. In the 2:3 and 3:4 MMR scenarios, however, dynamical erosion was much higher with depletion rates typically greater than 66% and total depletion in the most compact systems. The 1:2 resonant scenarios featured disruption on lev...

  15. EFFECTS OF DYNAMICAL EVOLUTION OF GIANT PLANETS ON THE DELIVERY OF ATMOPHILE ELEMENTS DURING TERRESTRIAL PLANET FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Soko [School of Engineering, Physics, and Mathematics, University of Dundee, DD1 4HN, Scotland (United Kingdom); Brasser, Ramon; Ida, Shigeru, E-mail: s.matsumura@dundee.ac.uk [Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550 (Japan)

    2016-02-10

    Recent observations started revealing the compositions of protostellar disks and planets beyond the solar system. In this paper, we explore how the compositions of terrestrial planets are affected by the dynamical evolution of giant planets. We estimate the initial compositions of the building blocks of these rocky planets by using a simple condensation model, and numerically study the compositions of planets formed in a few different formation models of the solar system. We find that the abundances of refractory and moderately volatile elements are nearly independent of formation models, and that all the models could reproduce the abundances of these elements of the Earth. The abundances of atmophile elements, on the other hand, depend on the scattering rate of icy planetesimals into the inner disk, as well as the mixing rate of the inner planetesimal disk. For the classical formation model, neither of these mechanisms are efficient and the accretion of atmophile elements during the final assembly of terrestrial planets appears to be difficult. For the Grand Tack model, both of these mechanisms are efficient, which leads to a relatively uniform accretion of atmophile elements in the inner disk. It is also possible to have a “hybrid” scenario where the mixing is not very efficient but the scattering is efficient. The abundances of atmophile elements in this case increase with orbital radii. Such a scenario may occur in some of the extrasolar planetary systems, which are not accompanied by giant planets or those without strong perturbations from giants. We also confirm that the Grand Tack scenario leads to the distribution of asteroid analogues where rocky planetesimals tend to exist interior to icy ones, and show that their overall compositions are consistent with S-type and C-type chondrites, respectively.

  16. Evolution-development congruence in pattern formation dynamics: Bifurcations in gene expression and regulation of networks structures.

    Science.gov (United States)

    Kohsokabe, Takahiro; Kaneko, Kunihiko

    2016-01-01

    Search for possible relationships between phylogeny and ontogeny is important in evolutionary-developmental biology. Here we uncover such relationships by numerical evolution and unveil their origin in terms of dynamical systems theory. By representing developmental dynamics of spatially located cells with gene expression dynamics with cell-to-cell interaction under external morphogen gradient, gene regulation networks are evolved under mutation and selection with the fitness to approach a prescribed spatial pattern of expressed genes. For most numerical evolution experiments, evolution of pattern over generations and development of pattern by an evolved network exhibit remarkable congruence. Both in the evolution and development pattern changes consist of several epochs where stripes are formed in a short time, while for other temporal regimes, pattern hardly changes. In evolution, these quasi-stationary regimes are generations needed to hit relevant mutations, while in development, they are due to some gene expression that varies slowly and controls the pattern change. The morphogenesis is regulated by combinations of feedback or feedforward regulations, where the upstream feedforward network reads the external morphogen gradient, and generates a pattern used as a boundary condition for the later patterns. The ordering from up to downstream is common in evolution and development, while the successive epochal changes in development and evolution are represented as common bifurcations in dynamical-systems theory, which lead to the evolution-development congruence. Mechanism of exceptional violation of the congruence is also unveiled. Our results provide a new look on developmental stages, punctuated equilibrium, developmental bottlenecks, and evolutionary acquisition of novelty in morphogenesis.

  17. The growth of disks and bulges during hierarchical galaxy formation. II: metallicity, stellar populations and dynamical evolution

    CERN Document Server

    Tonini, Chiara; Wyithe, J Stuart B; Croton, Darren J

    2016-01-01

    We investigate the properties of the stellar populations of model galaxies, using the new semi-analytic model presented in Tonini et al. (2016a). This new model follows the angular momentum evolution of gas and stars, providing the base for a new star formation recipe, and treatment of the effects of mergers that depends on the central galaxy dynamical structure. We find that the new recipes have the effect of boosting the efficiency of the baryonic cycle in producing and recycling metals, as well as preventing minor mergers from diluting the metallicity of bulges and ellipticals. The model reproduces the stellar mass - stellar metallicity relation for galaxies above 1e10 solar masses, including Brightest Cluster Galaxies. Model disks, galaxies dominated by instability-driven components, and merger-driven objects each stem from different evolutionary channels. These model galaxies therefore occupy different loci in the galaxy mass - size relation, which we find to be in accord with the Atlas 3D classification...

  18. Understanding Galaxy Formation and Evolution

    CERN Document Server

    Avila-Reese, V

    2006-01-01

    The old dream of integrating into one the study of micro and macrocosmos is now a reality. Cosmology, astrophysics, and particle physics intersect in a scenario (but still not a theory) of cosmic structure formation and evolution called Lambda Cold Dark Matter (LCDM) model. This scenario emerged mainly to explain the origin of galaxies. In these lecture notes, I first present a review of the main galaxy properties, highlighting the questions that any theory of galaxy formation should explain. Then, the cosmological framework and the main aspects of primordial perturbation generation and evolution are pedagogically detached. Next, I focus on the ``dark side'' of galaxy formation, presenting a review on LCDM halo assembling and properties, and on the main candidates for non-baryonic dark matter. It is shown how the nature of elemental particles can influence on the features of galaxies and their systems. Finally, the complex processes of baryon dissipation inside the non-linearly evolving CDM halos, formation o...

  19. Simulating Stellar Cluster Formation and Early Evolution

    Science.gov (United States)

    Wall, Joshua; McMillan, Stephen L. W.; Mac Low, Mordecai-Mark; Ibañez-Mejia, Juan; Portegies Zwart, Simon; Pellegrino, Andrew

    2017-01-01

    We present our current development of a model of stellar cluster formation and evolution in the presence of stellar feedback. We have integrated the MHD code Flash into the Astrophysical Multi-Use Software Environment (AMUSE) and coupled the gas dynamics to an N-body code using a Fujii gravity bridge. Further we have integrated feedback from radiation using the FERVENT module for Flash, supernovae by thermal and kinetic energy injection, and winds by kinetic energy injection. Finally we have developed a method of implementing star formation using the Jeans criterion of the gas. We present initial results from our cluster formation model in a cloud using self-consistent boundary conditions drawn from a model of supernova-driven interstellar turbulence.

  20. Formation and Evolution of Binary Asteroids

    CERN Document Server

    Walsh, Kevin J

    2015-01-01

    Satellites of asteroids have been discovered in nearly every known small body population, and a remarkable aspect of the known satellites is the diversity of their properties. They tell a story of vast differences in formation and evolution mechanisms that act as a function of size, distance from the Sun, and the properties of their nebular environment at the beginning of Solar System history and their dynamical environment over the next 4.5 Gyr. The mere existence of these systems provides a laboratory to study numerous types of physical processes acting on asteroids and their dynamics provide a valuable probe of their physical properties otherwise possible only with spacecraft. Advances in understanding the formation and evolution of binary systems have been assisted by: 1) the growing catalog of known systems, increasing from 33 to nearly 250 between the Merline et al. (2002) Asteroids III chapter and now, 2) the detailed study and long-term monitoring of individual systems such as 1999 KW4 and 1996 FG3, 3...

  1. Formation and Evolution of Protoatmospheres

    Science.gov (United States)

    Massol, H.; Hamano, K.; Tian, F.; Ikoma, M.; Abe, Y.; Chassefière, E.; Davaille, A.; Genda, H.; Güdel, M.; Hori, Y.; Leblanc, F.; Marcq, E.; Sarda, P.; Shematovich, V. I.; Stökl, A.; Lammer, H.

    2016-12-01

    The origin and evolution of planetary protoatmospheres in relation to the protoplanetary disk is discussed. The initial atmospheres of planets can mainly be related via two formation scenarios. If a protoplanetary core accretes mass and grows inside the gas disk, it can capture H2, He and other gases from the disk. When the gas of the disk evaporates, the core that is surrounded by the H2/He gas envelope is exposed to the high X-ray and extreme ultraviolet flux and stellar wind of the young host star. This period can be considered as the onset of atmospheric escape. It is shown that lower mass bodies accrete less gas and depending on the host stars radiation environment can therefore lose the gaseous envelope after tens or hundreds of million years. Massive cores may never get rid of their captured hydrogen envelopes and remain as sub-Neptunes, Neptunes or gas giants for their whole life time. Terrestrial planets which may have lost the captured gas envelope by thermal atmospheric escape, or which accreted after the protoplanetary nebula vanished will produce catastrophically outgassed steam atmospheres during the magma ocean solidification process. These steam atmospheres consist mainly of water and CO2 that was incorporated into the protoplanet during its accretion. Planets, which are formed in the habitable zone, solidify within several million years. In such cases the outgassed steam atmospheres cool fast, which leads to the condensation of water and the formation of liquid oceans. On the other hand, magma oceans are sustained for longer if planets form inside a critical distance, even if they outgassed a larger initial amount of water. In such cases the steam atmosphere could remain 100 million years or for even longer. Hydrodynamic atmospheric escape will then desiccate these planets during the slow solidification process.

  2. Formation and Evolution of Protoatmospheres

    Science.gov (United States)

    Massol, H.; Hamano, K.; Tian, F.; Ikoma, M.; Abe, Y.; Chassefière, E.; Davaille, A.; Genda, H.; Güdel, M.; Hori, Y.; Leblanc, F.; Marcq, E.; Sarda, P.; Shematovich, V. I.; Stökl, A.; Lammer, H.

    2016-09-01

    The origin and evolution of planetary protoatmospheres in relation to the protoplanetary disk is discussed. The initial atmospheres of planets can mainly be related via two formation scenarios. If a protoplanetary core accretes mass and grows inside the gas disk, it can capture H2, He and other gases from the disk. When the gas of the disk evaporates, the core that is surrounded by the H2/He gas envelope is exposed to the high X-ray and extreme ultraviolet flux and stellar wind of the young host star. This period can be considered as the onset of atmospheric escape. It is shown that lower mass bodies accrete less gas and depending on the host stars radiation environment can therefore lose the gaseous envelope after tens or hundreds of million years. Massive cores may never get rid of their captured hydrogen envelopes and remain as sub-Neptunes, Neptunes or gas giants for their whole life time. Terrestrial planets which may have lost the captured gas envelope by thermal atmospheric escape, or which accreted after the protoplanetary nebula vanished will produce catastrophically outgassed steam atmospheres during the magma ocean solidification process. These steam atmospheres consist mainly of water and CO2 that was incorporated into the protoplanet during its accretion. Planets, which are formed in the habitable zone, solidify within several million years. In such cases the outgassed steam atmospheres cool fast, which leads to the condensation of water and the formation of liquid oceans. On the other hand, magma oceans are sustained for longer if planets form inside a critical distance, even if they outgassed a larger initial amount of water. In such cases the steam atmosphere could remain 100 million years or for even longer. Hydrodynamic atmospheric escape will then desiccate these planets during the slow solidification process.

  3. ICM METALLICITY EVOLUTION: EFFECTS OF DYNAMICAL PROCESSES

    Directory of Open Access Journals (Sweden)

    S. Cora

    2009-01-01

    Full Text Available We present a study on the origin of the metallicity evolution of the intracluster medium (ICM by applying a semi-analytic model of galaxy formation to N-Body/SPH non-radiative cosmological simulations of clusters of galaxies. The results obtained for a set of clusters with virial masses of - 1:5 - 1015 h-1M contribute to the theoretical interpretation of recent observational X-ray data, which indicate a decrease of the average iron content of the intracluster gas with increasing redshift, z. We nd that this evolution is mainly due to a progressive increase of the iron content within 15 per cent of the virial radius as a result of dynamical processes. The clusters have been considerably enriched by z - 1 with very low contribution from recent star formation. Low entropy gas that has been enriched at high z sink to the cluster centre contributing to the evolution of the metallicity pro les.

  4. Large scale and cloud scale dynamics and microphysics in the formation and evolution of a TTL cirrus : a case modelling study

    Science.gov (United States)

    Podglajen, Aurélien; Plougonven, Riwal; Hertzog, Albert; Legras, Bernard

    2015-04-01

    Cirrus clouds in the tropical tropopause layer (TTL) control dehydration of air masses entering the stratosphere and strongly contribute to the local radiative heating. In this study, we aim at understanding, through a real case simulation, the dynamics controlling the formation and life cycle of a cirrus cloud event in the TTL. We also aim at quantifying the chemical and radiative impacts of the clouds. To do this, we use the Weather Research and Forecast (WRF) model to simulate a large scale TTL cirrus event happening in January 2009 (27-29) over the Eastern Pacific, which has been extensively described through satellite observations (Taylor et al., 2011). Comparison of simulated and observed high clouds shows a fair agreement, and validates the reference simulation regarding cloud extension, location and life time. The simulation and Lagrangian trajectories within the simulation are then used to characterize the evolution of the cloud : displacement, Lagrangian life time and links with dynamics. The efficiency of dehydration by such clouds is also examined. Sensitivity tests were performed to evaluate the importance of different microphysics schemes and initial and boundary conditions to accurately simulate the cirrus. As expected, both were found to have strong impacts. In particular, there were substantial differences between simulations using different initial and boundary conditions from atmospheric analyses (NCEP CFSR and ECMWF). This illustrates the primordial role of accurate vapour and dynamics for realistic cirrus modelling, on top of the need for appropriate microphysics. Last, we examined the effects of cloud radiative heating. Long wave radiative heating in cirrus clouds has been invoked to induce a cloud scale circulation that would lengthen the cloud lifetime, and increase the size of its dehydration area (Dinh et al. 2010). To try to diagnose this, we have carried out simulations using different radiative schemes, including or suppressing the

  5. Probing Planetary Formation and Evolution Through Occultations

    Science.gov (United States)

    Rodriguez, Joseph E.; KELT Team

    2016-01-01

    The circumstellar environments of young stellar objects (YSOs) involve complex dynamical interactions between dust and gas that directly influence the formation of planets. However, our understanding of the evolution from the material in the circumstellar disk to the thousands of planetary systems discovered to date, is limited. One means to better constrain the size, mass, and composition of this planet-forming material is to observe a YSO being eclipsed by its circumstellar disk. Through this dissertation project, we are discovering and characterizing both disk eclipsing systems and exoplanets using the Kilodegree Extremely Little Telescope (KELT) project. KELT is a photometric survey for transiting planets orbiting bright stars (8 TYC 2505-672-1, the latter now representing the longest-period eclipsing object known (period ~ 69 years). I will describe our results for planet atmosphere characterization and for protoplanetary disk structure and composition, and discuss how to search for these kinds of systems in future surveys such as LSST.

  6. Formation and evolution of compact binaries

    NARCIS (Netherlands)

    Sluijs, Marcel Vincent van der

    2006-01-01

    In this thesis we investigate the formation and evolution of compact binaries. Chapters 2 through 4 deal with the formation of luminous, ultra-compact X-ray binaries in globular clusters. We show that the proposed scenario of magnetic capture produces too few ultra-compact X-ray binaries to explain

  7. Galaxy Formation and Evolution Recent Progress

    CERN Document Server

    Ellis, Richard S

    2001-01-01

    In this series of lectures I review recent observational progress in constraining models of galaxy formation and evolution highlighting the importance advances in addressing questions of the assembly history and origin of the Hubble sequence in the context of modern pictures of structure formation.

  8. Giant Planet Formation, Evolution, and Internal Structure

    CERN Document Server

    Helled, Ravit; Podolak, Morris; Boley, Aaron; Meru, Farzana; Nayakshin, Sergei; Fortney, Jonathan J; Mayer, Lucio; Alibert, Yann; Boss, Alan P

    2013-01-01

    The large number of detected giant exoplanets offers the opportunity to improve our understanding of the formation mechanism, evolution, and interior structure of gas giant planets. The two main models for giant planet formation are core accretion and disk instability. There are substantial differences between these formation models, including formation timescale, favorable formation location, ideal disk properties for planetary formation, early evolution, planetary composition, etc. First, we summarize the two models including their substantial differences, advantages, and disadvantages, and suggest how theoretical models should be connected to available (and future) data. We next summarize current knowledge of the internal structures of solar- and extrasolar- giant planets. Finally, we suggest the next steps to be taken in giant planet exploration.

  9. Early dynamical evolution of young substructured clusters

    Science.gov (United States)

    Dorval, Julien; Boily, Christian

    2017-03-01

    Stellar clusters form with a high level of substructure, inherited from the molecular cloud and the star formation process. Evidence from observations and simulations also indicate the stars in such young clusters form a subvirial system. The subsequent dynamical evolution can cause important mass loss, ejecting a large part of the birth population in the field. It can also imprint the stellar population and still be inferred from observations of evolved clusters. Nbody simulations allow a better understanding of these early twists and turns, given realistic initial conditions. Nowadays, substructured, clumpy young clusters are usually obtained through pseudo-fractal growth and velocity inheritance. We introduce a new way to create clumpy initial conditions through a ''Hubble expansion'' which naturally produces self consistent clumps, velocity-wise. In depth analysis of the resulting clumps shows consistency with hydrodynamical simulations of young star clusters. We use these initial conditions to investigate the dynamical evolution of young subvirial clusters. We find the collapse to be soft, with hierarchical merging leading to a high level of mass segregation. The subsequent evolution is less pronounced than the equilibrium achieved from a cold collapse formation scenario.

  10. Timescales of Disk Evolution and Planet Formation

    CERN Document Server

    Jayawarhana, R

    2000-01-01

    It has been suggested that circumstellar disks evolve from dense, actively accreting structures to low-mass, replenished remnants. During this transition, grains may assemble into planetesimals, or the disk may be cleared by newborn planets. Recently identified nearby groups of young stars provide valuable laboratories for probing disk evolution. I discuss the properties of dust disks in the TW Hydrae Association and the MBM 12 cloud, and compare the results to other studies of disk evolution and planet formation timescales.

  11. Physics, Formation and Evolution of Rotating Stars

    CERN Document Server

    Maeder, André

    2009-01-01

    Rotation is ubiquitous at each step of stellar evolution, from star formation to the final stages, and it affects the course of evolution, the timescales and nucleosynthesis. Stellar rotation is also an essential prerequisite for the occurrence of Gamma-Ray Bursts. In this book the author thoroughly examines the basic mechanical and thermal effects of rotation, their influence on mass loss by stellar winds, the effects of differential rotation and its associated instabilities, the relation with magnetic fields and the evolution of the internal and surface rotation. Further, he discusses the numerous observational signatures of rotational effects obtained from spectroscopy and interferometric observations, as well as from chemical abundance determinations, helioseismology and asteroseismology, etc. On an introductory level, this book presents in a didactical way the basic concepts of stellar structure and evolution in "track 1" chapters. The other more specialized chapters form an advanced course on the gradua...

  12. Dynamics of DNA in vitro evolution

    Institute of Scientific and Technical Information of China (English)

    Xiaojing Yang; Xili Liu; Chunbo Lou; Qi Ouyang

    2009-01-01

    In vitro evolution has become a very important research area in recent years. From a practical point of view, it provides a powerful and reliable tool for engineering functional molecules (DNA, RNA or proteins) in reasonably short periods of time. From a theoretical point of view, since in vitro evolution is analogous to natural evolution in many respects, the study of the dynamic details of in vitro evolution may provide some instructive insights into the process of evolution. In this review, we summarize current theoretical and exper-imental studies, including several efforts made by our group, on the dynamics of DNA in vitro evolution.

  13. Dynamical stability and evolution of the discs of Sc galaxies

    CERN Document Server

    Fuchs, B

    1997-01-01

    We examine the local stability of galactic discs against axisymmetric density perturbations with special attention to the different dynamics of the stellar and gaseous components. In particular the discs of the Milky Way and of NGC 6946 are studied. The Milky Way is shown to be stable, whereas the inner parts of NGC 6946, a typical Sc galaxy from the Kennicutt (1989) sample, are dynamically unstable. The ensuing dynamical evolution of the composite disc is studied by numerical simulations. The evolution is so fierce that the stellar disc heats up dynamically on a short time scale to such a degree, which seems to contradict the morphological appearance of the galaxy. The star formation rate required to cool the disc dynamically is estimated. Even if the star formation rate in NGC 6946 is at present high enough to meet this requirement, it is argued that the discs of Sc galaxies cannot sustain such a high star formation rate for longer periods.

  14. Molecular cloud evolution and star formation

    Science.gov (United States)

    Silk, J.

    1985-01-01

    The present state of knowledge of the relationship between molecular clouds and young stars is reviewed. The determination of physical parameters from molecular line observations is summarized, and evidence for fragmentation of molecular clouds is discussed. Hierarchical fragmentation is reviewed, minimum fragment scales are derived, and the stability against fragmentation of both spherically and anisotropically collapsing clouds is discussed. Observational evidence for high-velocity flows in clouds is summarized, and the effects of winds from pre-main sequence stars on molecular gas are discussed. The triggering of cloud collapse by enhanced pressure is addressed, as is the formation of dense shells by spherical outflows and their subsequent breakup. A model for low-mass star formation is presented, and constraints on star formation from the initial mass function are examined. The properties of giant molecular clouds and massive star formation are described. The implications of magnetic fields for cloud evolution and star formation are addressed.

  15. Tidal current-induced formation——storm-induced change——tidal current-induced recovery——Interpretation of depositional dynamics of formation and evolution of radial sand ridges on the Yellow Sea seafloor

    Institute of Scientific and Technical Information of China (English)

    张长宽; 张东生; 张君伦; 王震

    1999-01-01

    The results of simulated tidal current field, wave field and storm-induced current field are employed to interpret the depositional dynamic mechanism of formation and evolution of the radial sand ridges on the Yellow Sea seafloor. The anticlockwise rotary tidal wave to the south of Shandong Peninsula meets the following progressive tidal wave from the South Yellow Sea, forming a radial current field outside Jianggang. This current field provides a necessary dynamic condition for the formation and existence of the radial sand ridges on the Yellow Sea seafloor. The results of simulated "old current field (holocene)" show that there existed a convergent-divergent tidal zone just outside the palaeo-Yangtze River estuary where a palaeo-underwater accumulation was developed. The calculated results from wave models indicate that the wave impact on the topography, under the condition of high water level and strong winds, is significant. The storm current induced by typhoons landing in the Yangtze River estuary

  16. Dynamical Evolution of Wide Binaries

    Directory of Open Access Journals (Sweden)

    Esmeralda H. Mallada

    2001-01-01

    Full Text Available We simulate numerically encounters of wide binaries with field stars and Giant Molecular Clouds (GMCs by means of the impulse approximation. We analyze the time evolution of the distributions of eccentricities and semimajor axes of wide binaries with given initial conditions, at intervals of 109 yr, up to 1010 yr (assumed age of the Galaxy. We compute the fraction of surviving binaries for stellar encounters, for GMC encounters and for a combination of both, and hence, the dynamical lifetime for different semimajor axes and different masses of binaries (0.5, 1, 1.2, 1.5, 2.5, and 3 Msolar. We find that the dynamical lifetime of wide binaries considering only GMCs is half than that considering only stars. For encounters with GMCs we analyze the influence of the initial inclination of the orbital plane of the binary with respect to the plane perpendicular to the relative velocity vector of the binary and the GMC. We find that the perturbation is maximum when the angle is minimum.

  17. Cosmological Evolution and Hierarchical Galaxy Formation

    CERN Document Server

    Percival, W J

    1999-01-01

    We calculate the rate at which dark matter halos merge to form higher mass systems. Two complementary derivations using Press-Schechter theory are given, both of which result in the same equation for the formation rate. First, a derivation using the properties of the Brownian random walks within the framework of Press-Schechter theory is presented. We then use Bayes' theorem to obtain the same result from the standard Press-Schechter mass function. The rate obtained is shown to be in good agreement with results from Monte-Carlo and N-body simulations. We illustrate the usefulness of this formula by calculating the expected cosmological evolution in the rate of star formation that is due to short-lived, merger-induced starbursts. The calculated evolution is well-matched to the observed evolution in ultraviolet luminosity density, in contrast to the lower rates of evolution that are derived from semi-analytic models that do not include a dominant contribution from starbursts. Hence we suggest that the bulk of t...

  18. Chemical Evolution Library for Galaxy Formation Simulation

    Science.gov (United States)

    Saitoh, Takayuki R.

    2017-02-01

    We have developed a software library for chemical evolution simulations of galaxy formation under the simple stellar population (SSP) approximation. In this library, all of the necessary components concerning chemical evolution, such as initial mass functions, stellar lifetimes, yields from Type II and Type Ia supernovae, asymptotic giant branch stars, and neutron star mergers, are compiled from the literature. Various models are pre-implemented in this library so that users can choose their favorite combination of models. Subroutines of this library return released energy and masses of individual elements depending on a given event type. Since the redistribution manner of these quantities depends on the implementation of users’ simulation codes, this library leaves it up to the simulation code. As demonstrations, we carry out both one-zone, closed-box simulations and 3D simulations of a collapsing gas and dark matter system using this library. In these simulations, we can easily compare the impact of individual models on the chemical evolution of galaxies, just by changing the control flags and parameters of the library. Since this library only deals with the part of chemical evolution under the SSP approximation, any simulation codes that use the SSP approximation—namely, particle-base and mesh codes, as well as semianalytical models—can use it. This library is named “CELib” after the term “Chemical Evolution Library” and is made available to the community.

  19. The Chemical Evolution of Dynamically Hot Galaxies

    Directory of Open Access Journals (Sweden)

    Michael G. Richer

    2001-01-01

    Full Text Available We investigate the chemical properties of M32, the bulges of M31 and the Milky Way, and the dwarf spheroidal galaxies NGC 205, NGC 185, Sagittarius, and Fornax using oxygen abundances for their planetary nebulae. Our principal result is that the mean stellar oxygen abundances correlate very well with thei r mean velocity dispersions, implying that the balance between energy input from type II supernovae and the gravitational potential controls chemical evolution in bulges, ellipticals, and dwarf spheroidals. It appears that chemical evolution ceases once supernovae have injected sufficient energy that a galacti c wind develops. All of the galaxies follow a single relation between oxygen abundance and luminosity, but the dwarf spheroidals have systematically higher [O/Fe] ratios than the other galaxies. Consequently, dynamically hot galaxies do not share a common star formation history nor need to a common chemical evolution, despite attaining similar mean stellar oxygen abundances when formin g similar masses. The oxygen abundances support previous indications that stars in higher luminosity ellipticals and bulges were formed on a shorter time scale than their counterparts in less luminous systems.

  20. Global Models of Planet Formation and Evolution

    CERN Document Server

    Mordasini, C; Dittkrist, K -M; Jin, S; Alibert, Y

    2014-01-01

    Despite the increase in observational data on exoplanets, the processes that lead to the formation of planets are still not well understood. But thanks to the high number of known exoplanets, it is now possible to look at them as a population that puts statistical constraints on theoretical models. A method that uses these constraints is planetary population synthesis. Its key element is a global model of planet formation and evolution that directly predicts observable planetary properties based on properties of the natal protoplanetary disk. To do so, global models build on many specialized models that address one specific physical process. We thoroughly review the physics of the sub-models included in global formation models. The sub-models can be classified as models describing the protoplanetary disk (gas and solids), the (proto)planet (solid core, gaseous envelope, and atmosphere), and finally the interactions (migration and N-body interaction). We compare the approaches in different global models and id...

  1. The dynamics of latifundia formation.

    Science.gov (United States)

    Chaves, Luis Fernando

    2013-01-01

    Land tenure inequity is a major social problem in developing nations worldwide. In societies, where land is a commodity, inequities in land tenure are associated with gaps in income distribution, poverty and biodiversity loss. A common pattern of land tenure inequities through the history of civilization has been the formation of latifundia [Zhuāngyuán in chinese], i.e., a pattern where land ownership is concentrated by a small fraction of the whole population. Here, we use simple Markov chain models to study the dynamics of latifundia formation in a heterogeneous landscape where land can transition between forest, agriculture and recovering land. We systematically study the likelihood of latifundia formation under the assumption of pre-capitalist trade, where trade is based on the average utility of land parcels belonging to each individual landowner during a discrete time step. By restricting land trade to that under recovery, we found the likelihood of latifundia formation to increase with the size of the system, i.e., the amount of land and individuals in the society. We found that an increase of the transition rate for land use changes, i.e., how quickly land use changes, promotes more equitable patterns of land ownership. Disease introduction in the system, which reduced land profitability for infected individual landowners, promoted the formation of latifundia, with an increased likelihood for latifundia formation when there were heterogeneities in the susceptibility to infection. Finally, our model suggests that land ownership reforms need to guarantee an equitative distribution of land among individuals in a society to avoid the formation of latifundia.

  2. The dynamics of latifundia formation.

    Directory of Open Access Journals (Sweden)

    Luis Fernando Chaves

    Full Text Available Land tenure inequity is a major social problem in developing nations worldwide. In societies, where land is a commodity, inequities in land tenure are associated with gaps in income distribution, poverty and biodiversity loss. A common pattern of land tenure inequities through the history of civilization has been the formation of latifundia [Zhuāngyuán in chinese], i.e., a pattern where land ownership is concentrated by a small fraction of the whole population. Here, we use simple Markov chain models to study the dynamics of latifundia formation in a heterogeneous landscape where land can transition between forest, agriculture and recovering land. We systematically study the likelihood of latifundia formation under the assumption of pre-capitalist trade, where trade is based on the average utility of land parcels belonging to each individual landowner during a discrete time step. By restricting land trade to that under recovery, we found the likelihood of latifundia formation to increase with the size of the system, i.e., the amount of land and individuals in the society. We found that an increase of the transition rate for land use changes, i.e., how quickly land use changes, promotes more equitable patterns of land ownership. Disease introduction in the system, which reduced land profitability for infected individual landowners, promoted the formation of latifundia, with an increased likelihood for latifundia formation when there were heterogeneities in the susceptibility to infection. Finally, our model suggests that land ownership reforms need to guarantee an equitative distribution of land among individuals in a society to avoid the formation of latifundia.

  3. Composite wire plasma formation and evolution

    Energy Technology Data Exchange (ETDEWEB)

    Spielman, R.B.

    2000-01-01

    The detailed understanding of the formation and evolution of plasma from rapidly heated metallic wires is a long-standing challenge in the field of plasma physics and in exploding wire engineering. This physical process is made even more complicated if the wire material is composed of a number of individual layers. The authors have successfully developed both optical and x-ray backlighting diagnostics. In particular, the x-ray backlighting technique has demonstrated the capability for quantitative determination of the plasma density over a wide range of densities. This diagnostic capability shows that the process of plasma formation is composed of two separate phases: first, current is passed through a cold wire and the wire is heated ohmically, and, second, the heated wire evolves gases that break down and forms a low-density plasma surrounding the wire.

  4. Monolithic View of Galaxy Formation and Evolution

    Directory of Open Access Journals (Sweden)

    Cesare Chiosi

    2014-07-01

    Full Text Available We review and critically discuss the current understanding of galaxy formation and evolution limited to Early Type Galaxies (ETGs as inferred from the observational data and briefly contrast the hierarchical and quasi-monolithic paradigms of formation and evolution. Since in Cold Dark Matter (CDM cosmogony small scale structures typically collapse early and form low-mass haloes that subsequently can merge to assembly larger haloes, galaxies formed in the gravitational potential well of a halo are also expected to merge thus assembling their mass hierarchically. Mergers should occur all over the Hubble time and large mass galaxies should be in place only recently. However, recent observations of high redshift galaxies tell a different story: massive ETGs are already in place at high redshift. To this aim, we propose here a revision of the quasi-monolithic scenario as an alternative to the hierarchical one, in which mass assembling should occur in early stages of a galaxy lifetime and present recent models of ETGs made of Dark and Baryonic Matter in a Λ-CDM Universe that obey the latter scheme. The galaxies are followed from the detachment from the linear regime and Hubble flow at z ≥ 20 down to the stage of nearly complete assembly of the stellar content (z ∼ 2 − 1 and beyond.  It is found that the total mass (Mh = MDM + MBM and/or initial over-density of the proto-galaxy drive the subsequent star formation histories (SFH. Massive galaxies (Mh ~ _1012M⊙ experience a single, intense burst of star formation (with rates ≥ 103M⊙/yr at early epochs, consistently with observations, with a weak dependence on the initial over-density; intermediate mass haloes (Mh~_ 1010 − 1011M⊙ have star formation histories that strongly depend on their initial over-density; finally, low mass haloes (Mh ~_ 109M⊙ always have erratic, burst-like star forming histories. The present-day properties (morphology, structure, chemistry and photometry of the

  5. Studying the Formation and Evolution of Eruptive Magnetic Flux Ropes

    Science.gov (United States)

    Linton, Mark

    2017-08-01

    Solar magnetic eruptions are dramatic sources of solar activity, and dangerous sources of space weather hazards. Many of these eruptions take the form of magnetic flux ropes, i.e., magnetic fieldlines wrapping around a core magnetic flux tube. Investigating the processes which form these flux ropes both prior to and during eruption, and investigating their evolution after eruption, can give us a critical window into understanding the sources of and processes involved in these eruptions. This presentation will discuss modeling and observational investigations into these various phases of flux rope formation, eruption, and evolution, and will discuss how these different explorations can be used to develop a more complete picture of erupting flux rope dynamics.

  6. Star Formation & Stellar Evolution: Future Surveys & Instrumentation

    CERN Document Server

    Evans, C J

    2015-01-01

    The next generation of multi-object spectrographs (MOS) will deliver comprehensive surveys of the Galaxy, Magellanic Clouds and nearby dwarfs. These will provide us with the vast samples, spanning the full extent of the Hertzsprung-Russell diagram, that are needed to explore the chemistry, history and dynamics of their host systems. Further ahead, the Extremely Large Telescopes (ELTs) will have sufficient sensitivity and angular resolution to extend stellar spectroscopy well beyond the Local Group, opening-up studies of the chemical evolution of galaxies across a broad range of galaxy types and environments. In this contribution I briefly reflect on current and future studies of stellar populations, and introduce plans for the MOSAIC instrument for the European ELT.

  7. Prevolutionary dynamics and the origin of evolution

    OpenAIRE

    Nowak, Martin A.; Ohtsuki, Hisashi

    2008-01-01

    Life is that which replicates and evolves. The origin of life is also the origin of evolution. A fundamental question is when do chemical kinetics become evolutionary dynamics? Here, we formulate a general mathematical theory for the origin of evolution. All known life on earth is based on biological polymers, which act as information carriers and catalysts. Therefore, any theory for the origin of life must address the emergence of such a system. We describe prelife as an alphabet of active m...

  8. Evolution of entanglement under echo dynamics

    Science.gov (United States)

    Prosen, Tomaž; Seligman, Thomas H.; Žnidarič, Marko

    2003-04-01

    Echo dynamics and fidelity are often used to discuss stability in quantum-information processing and quantum chaos. Yet fidelity yields no information about entanglement, the characteristic property of quantum mechanics. We study the evolution of entanglement in echo dynamics. We find qualitatively different behavior between integrable and chaotic systems on one hand and between random and coherent initial states for integrable systems on the other. For the latter the evolution of entanglement is given by a classical time scale. Analytic results are illustrated numerically in a Jaynes-Cummings model.

  9. Time Evolution in Dynamical Spacetimes

    CERN Document Server

    Tiemblo, A

    1996-01-01

    We present a gauge--theoretical derivation of the notion of time, suitable to describe the Hamiltonian time evolution of gravitational systems. It is based on a nonlinear coset realization of the Poincaré group, implying the time component of the coframe to be invariant, and thus to represent a metric time. The unitary gauge fixing of the boosts gives rise to the foliation of spacetime along the time direction. The three supressed degrees of freedom correspond to Goldstone--like fields, whereas the remaining time component is a Higgs--like boson.

  10. The Dynamic Evolution of Young Extragalactic Radio Sources

    CERN Document Server

    An, Tao; 10.1088/0004-637X/760/1/77

    2012-01-01

    The evolution of symmetric extragalactic radio sources can be characterized by four distinct growth stages of the radio luminosity versus size of the source. The interaction of the jet with the ambient medium results in the formation and evolution of sources with non-standard (flaring) morphology. In addition, cessation or restarting of the jet power and obstruction of the jet will also result in distinct morphological structures. The radio source population may thus be classified in morphological types that indicate the prevailing physical processes. Compact symmetric objects (CSOs) occupy the earliest evolutionary phase of symmetric radio sources and their dynamical behavior is fundamental for any further evolution. Analysis of CSO dynamics is presented for a sample of 24 CSOs with known redshift and hotspot separation velocity and with a large range of radio power. Observables such as radio power, separation between two hotspots, hotspot separation velocity, and kinematic age of the source are found to be ...

  11. Thermal evolution and core formation of planetesimals

    Science.gov (United States)

    Suwa, Taichi; Nagahara, Hiroko

    2017-04-01

    Planetesimals did not get an adequate thermal energy by accretion to form large scale magma ocean because of smaller radii, masses, gravity and accretion energy, however, there are various evidences for the presence of core in planetesimals: 4-Vesta has a core and non-magmatic iron meteorites were segregated metal in bodies that did not experience silicate melting. It has been pointed out that accretion time of planetesimals controls melting and differentiation, because short lived nuclides are plausible heat source. Other factors such as radiative cooling from the surface and thermal conductivity, would also affect thermal evolution of planetesimals. Furthermore, percolation of Fe-S melt through silicate matrix is controlled by the porosity and grain size of silicates and dihedral angle between the melt and silicates. Therefore, the interior structure of planetesimals should be considered by taking the accretion, growth, and thermal evolution of the interior simultaneously. We make a numerical simulation with a spherical 1D model on the basis of the model by Neuman, which is a non-stationary heat conduction equation. We specifically pay attention to the process at temperatures between eutectic temperature Fe-FeS (1213K) and silicate solidus (1425K) and the surface tension of the melt that governs percolation. The model contains three free parameters, formation time, accretion duration, and final size of the planetesimals. The results show that the interior structure can be divided to four types: Type A is undifferentiated, Type B is differentiated to core and mantle of which core was formed by Fe-S melt percolation, Type C is partially differentiated to FeS core and mantle, where mantle retains residual Fe metal, and Type D is differentiated to core and mantle by metal separation in silicate magma. Type A would correspond to the parent bodies of chondrites, and Type B (and Type C?) core would be the source of non-magmatic iron meteorites. Type D would be parent

  12. Dynamical Evolution of Young Embedded Clusters: A Parameter Space Survey

    CERN Document Server

    Proszkow, Eva-Marie

    2009-01-01

    This paper investigates the dynamical evolution of embedded stellar clusters from the protocluster stage, through the embedded star-forming phase, and out to ages of 10 Myr -- after the gas has been removed from the cluster. The relevant dynamical properties of young stellar clusters are explored over a wide range of possible star formation environments using N-body simulations. Many realizations of equivalent initial conditions are used to produce robust statistical descriptions of cluster evolution including the cluster bound fraction, radial probability distributions, as well as the distributions of close encounter distances and velocities. These cluster properties are presented as a function of parameters describing the initial configuration of the cluster, including the initial cluster membership N, initial stellar velocities, cluster radii, star formation efficiency, embedding gas dispersal time, and the degree of primordial mass segregation. The results of this parameter space survey, which includes ab...

  13. Formation and evolution of Pluto's small satellites

    CERN Document Server

    Walsh, Kevin J

    2015-01-01

    Pluto's system of 5 known satellites are in a puzzling orbital configuration. Each of the four small satellites are on low-eccentricity and low-inclination orbits situated near a mean motion resonance with the largest satellite Charon. The Pluto-Charon binary likely formed as a result of a giant impact and so the simplest explanation for the small satellites is that they accreted from debris of that collision. The Pluto-Charon binary has evolved outward since its formation due to tidal forces, which drove them into their current doubly synchronous state. Meanwhile, leftover debris from the formation of Charon was not initially distant enough from Pluto-Charon to explain the orbits of the current small satellites. The outstanding problems of the system are the movement of debris outward and the small satellites location near mean motion resonances with Charon. This work explores the dynamical behavior of collisionally interacting debris orbiting the Pluto-Charon system. While this work specifically tests initi...

  14. Evolution of sedimentary rock formation of a rock association level

    Science.gov (United States)

    Kuznetsov, V. G.

    2017-07-01

    The evolution of sedimentary rock formation of a highly organized level (paragenetic rock associations) is more complex than that of a poorly organized level (rocks). Subjacent rock associations are established for the entire geological evolution of the Earth: they varied in time and were obsolescent or, in contrast, nascent and momentary. A certain cyclicity of evolution is identified along with directed changes.

  15. Dynamical evolution of two associated galactic bars

    CERN Document Server

    Garzon, F

    2014-01-01

    We study the dynamical interactions of mass systems in equilibrium under their own gravity that mutually exert and experience gravitational forces. The method we employ is to model the dynamical evolution of two isolated bars, hosted within the same galactic system, under their mutual gravitational interaction. In this study we present an analytical treatment of the secular evolution of two bars that oscillate with respect one another. Two cases of interaction, with and without geometrical deformation, are discussed. In the latter case, the bars are described as modified Jacobi ellipsoids. These triaxial systems are formed by a rotating fluid mass in gravitational equilibrium with its own rotational velocity and the gravitational field of the other bar. The governing equation for the variation of their relative angular separation is then numerically integrated, which also provides the time evolution of the geometrical parameters of the bodies. The case of rigid, non-deformable, bars produces in some cases an ...

  16. Formation and Evolution of Galaxies and the Intergalactic Medium

    Science.gov (United States)

    Cen, Renyue

    Galaxy formation and evolution is one of the most fundamental, unsolved problems in cosmology. This proposed research intends to significantly improve our abilities to make detailed predictions with regard to galaxy formation and evolution in the standard cosmological model, by not only significantly increasing the dynamic range of our simulations using a adaptive mesh refinement code but also including a host of physical processes, all of which are likely to be important at least in some circumstances but many of which have been ignored in current state-of-the-art simulations. It may be that many of the apparent discrepancies between the standard cosmological model and observations are a result of imperfect theoretical calculations. Our simulations should provide a more precise framework to properly interpret the vast observational database of galaxies and IGM from major NASA missions (HST, FUSE, Chandra, XMM-Newton and upcoming Constellation-X, among others) and to maximize scientific returns of major NASA microwave background experiments including WMAP and Planck missions, in conjunction with rich observational data from ground based facilities (Keck, SDSS and others).

  17. A quantitative model for integrating landscape evolution and soil formation

    Science.gov (United States)

    Vanwalleghem, T.; Stockmann, U.; Minasny, B.; McBratney, Alex B.

    2013-06-01

    evolution is closely related to soil formation. Quantitative modeling of the dynamics of soils and landscapes should therefore be integrated. This paper presents a model, named Model for Integrated Landscape Evolution and Soil Development (MILESD), which describes the interaction between pedogenetic and geomorphic processes. This mechanistic model includes the most significant soil formation processes, ranging from weathering to clay translocation, and combines these with the lateral redistribution of soil particles through erosion and deposition. The model is spatially explicit and simulates the vertical variation in soil horizon depth as well as basic soil properties such as texture and organic matter content. In addition, sediment export and its properties are recorded. This model is applied to a 6.25 km2 area in the Werrikimbe National Park, Australia, simulating soil development over a period of 60,000 years. Comparison with field observations shows how the model accurately predicts trends in total soil thickness along a catena. Soil texture and bulk density are predicted reasonably well, with errors of the order of 10%, however, field observations show a much higher organic carbon content than predicted. At the landscape scale, different scenarios with varying erosion intensity result only in small changes of landscape-averaged soil thickness, while the response of the total organic carbon stored in the system is higher. Rates of sediment export show a highly nonlinear response to soil development stage and the presence of a threshold, corresponding to the depletion of the soil reservoir, beyond which sediment export drops significantly.

  18. Massive Black Hole Binaries: Dynamical Evolution and Observational Signatures

    Directory of Open Access Journals (Sweden)

    M. Dotti

    2012-01-01

    Full Text Available The study of the dynamical evolution of massive black hole pairs in mergers is crucial in the context of a hierarchical galaxy formation scenario. The timescales for the formation and the coalescence of black hole binaries are still poorly constrained, resulting in large uncertainties in the expected rate of massive black hole binaries detectable in the electromagnetic and gravitational wave spectra. Here, we review the current theoretical understanding of the black hole pairing in galaxy mergers, with a particular attention to recent developments and open issues. We conclude with a review of the expected observational signatures of massive binaries and of the candidates discussed in literature to date.

  19. Dynamic Current Sheet Formation and Evolution with Application to Inter-(Super)granular Flow Lanes and Quasi-Homologous Jet Activity

    Science.gov (United States)

    Edmondson, Justin K.; Velli, M.

    2011-05-01

    The coronal magnetic field structure is an immensely complex system constantly driven away from equilibrium by global drivers such as photospheric flow, flux emergence/cancellation at the lower boundary, helicity injection and transport, etc. In low-beta plasma systems, such as solar corona, the Maxwell stresses dominate forces and therefore the system dynamics. General Poynting stress injection (i.e., flux injection, helicity injection, translational motions, or any combination thereof) results in (possibly large) geometric deformations of the magnetic field, such that the Maxwell stresses distribute as uniformly as possible, constrained by the distorted geometry and topology of the bounding separatricies. Since the topological connectivity is discontinuous across these separatrix surfaces, the magnetic stresses will be discontinuous there as well, manifesting as current sheets within the field. The solar magnetic field undergoes major geometric expansion passing from the photosphere, through the chromosphere, into the corona. No matter the specific details, a mixed polarity distribution at the lower boundary and the divergence-free condition require invariant topological features such as an X-line and separatricies to exist between fields emanating from separate regions of the photosphere. We present the results of fully-3D numerical simulations of a simplified low-beta model of this field expansion. A symmetric injection of Maxwell stresses into this geometry inflates strongly line-tied fields, generating a region of large current densities and magnetic energy dissipation. Elsewhere the injected stresses accumulate along the existing separatricies. There is no evidence of reconnection dynamics until after the initial left-right parity is broken. Once the symmetry breaks, the X-line deforms explosively into a Syrovatskii-type current sheet, leading to a succession of quasi-homologous jet dynamics. The bursty-oscillations of these jets occur as the stresses within

  20. Extrasolar planets formation, detection and dynamics

    CERN Document Server

    Dvorak, Rudolf

    2008-01-01

    This latest, up-to-date resource for research on extrasolar planets covers formation, dynamics, atmospheres and detection. After a look at the formation of giant planets, the book goes on to discuss the formation and dynamics of planets in resonances, planets in double stars, atmospheres and habitable zones, detection via spectra and transits, and the history and prospects of ESPs as well as satellite projects.Edited by a renowned expert in solar system dynamics with chapters written by the leading experts in the method described -- from the US and Europe -- this is an ideal textbook for g

  1. Formation and evolution of black holes in dense star clusters

    Science.gov (United States)

    Goswami, Sanghamitra

    Using supercomputer simulations combining stellar dynamics and stellar evolution, we have studied various problems related to the existence of black holes in dense star clusters. We consider both stellar and intermediate-mass black holes, and we focus on massive, dense star clusters, such as old globular clusters and young, so called "super star clusters." The first problem concerns the formation of intermediate-mass black holes in young clusters through the runaway collision instability. A promising mechanism to form intermediate-mass black holes (IMBHs) is runaway mergers in dense star clusters, where main-sequence stars collide re- peatedly and form a very massive star (VMS), which then collapses to a black hole (BH). Here we study the effects of primordial mass segregation and the importance of the stellar initial mass function (IMF) on the runaway growth of VMSs using a dynamical Monte Carlo code to model systems with N as high as 10^6 stars. Our Monte Carlo code includes an explicittreatment of all stellar collisions. We place special emphasis on the possibility of top-heavy IMFs, as observed in some very young massive clusters. We find that both primordial mass segregation and the shape of the IMF affect the rate of core collapse of star clusters and thus the time of the runaway. When we include primordial mass segregation we generally see a decrease in core collapse time (tcc). Although for smaller degrees of primordial mass segregation this decrease in tcc is mostly due to the change in the density profile of the cluster, for highly mass-segregated (primordial) clusters, it is the increase in the average mass in the core which reduces the central relaxation time, decreasing tcc. Finally, flatter IMFs generally increase the average mass in the whole cluster, which increases tcc. For the range of IMFs investigated in this thesis, this increase in tcc is to some degree balanced by stellar collisions, which accelerate core collapse. Thus there is no

  2. Dynamical evolution of star forming regions

    CERN Document Server

    Parker, Richard J; Goodwin, Simon P; Meyer, Michael R

    2013-01-01

    We model the dynamical evolution of star forming regions with a wide range of initial properties. We follow the evolution of the regions' substructure using the Q-parameter, we search for dynamical mass segregation using the Lambda_MSR technique, and we also quantify the evolution of local density around stars as a function of mass using the Sigma_LDR method. The amount of dynamical mass segregation measured by Lambda_MSR is generally only significant for subvirial and virialised, substructured regions - which usually evolve to form bound clusters. The Sigma_LDR method shows that massive stars attain higher local densities than the median value in all regions, even those that are supervirial and evolve to form (unbound) associations. We also introduce the Q-Sigma_LDR plot, which describes the evolution of spatial structure as a function of mass-weighted local density in a star forming region. Initially dense (>1000 stars pc^{-2}), bound regions always have Q >1, Sigma_LDR > 2 after 5Myr, whereas dense unbound...

  3. Effective evolution equations from quantum dynamics

    CERN Document Server

    Benedikter, Niels; Schlein, Benjamin

    2016-01-01

    These notes investigate the time evolution of quantum systems, and in particular the rigorous derivation of effective equations approximating the many-body Schrödinger dynamics in certain physically interesting regimes. The focus is primarily on the derivation of time-dependent effective theories (non-equilibrium question) approximating many-body quantum dynamics. The book is divided into seven sections, the first of which briefly reviews the main properties of many-body quantum systems and their time evolution. Section 2 introduces the mean-field regime for bosonic systems and explains how the many-body dynamics can be approximated in this limit using the Hartree equation. Section 3 presents a method, based on the use of coherent states, for rigorously proving the convergence towards the Hartree dynamics, while the fluctuations around the Hartree equation are considered in Section 4. Section 5 focuses on a discussion of a more subtle regime, in which the many-body evolution can be approximated by means of t...

  4. Nanoparticles dynamics on a surface: fractal pattern formation and fragmentation

    DEFF Research Database (Denmark)

    Dick, Veronika V.; Solov'yov, Ilia; Solov'yov, Andrey V.

    2010-01-01

    In this paper we review our recent results on the formation and the post-growth relaxation processes of nanofractals on surface. For this study we developed a method which describes the internal dynamics of particles in a fractal and accounts for their diffusion and detachment. We demonstrate...... that these kinetic processes determine the final shape of the islands on surface after post-growth relaxation. We consider different scenarios of fractal relaxation and analyze the time evolution of the island's morphology....

  5. Nanoparticles dynamics on a surface: fractal pattern formation and fragmentation

    DEFF Research Database (Denmark)

    Dick, Veronika V.; Solov'yov, Ilia; Solov'yov, Andrey V.

    2010-01-01

    In this paper we review our recent results on the formation and the post-growth relaxation processes of nanofractals on surface. For this study we developed a method which describes the internal dynamics of particles in a fractal and accounts for their diffusion and detachment. We demonstrate...... that these kinetic processes determine the final shape of the islands on surface after post-growth relaxation. We consider different scenarios of fractal relaxation and analyze the time evolution of the island's morphology....

  6. Dynamic Origin of Evolution and Social Transformation

    CERN Document Server

    Kirilyuk, Andrei P

    2012-01-01

    We analyse the unreduced, nonperturbative dynamics of an arbitrary many-body interaction process with the help of the generalised effective potential method and reveal the well-specified universal origin of change (emergence), time and evolution in an a priori conservative, time-independent system. It appears together with the universal dynamic complexity definition, where this unified complexity conservation and transformation constitutes the essence of evolution. We then consider the detailed structure of this universal evolutionary process showing its step-wise, "punctuated" character, now provided with the exact mathematical description. Comparing the expected features of a revolutionary complexity transition near a step-like complexity upgrade with the currently observed behaviour of world's social and economic systems, we prove the necessity of complexity revolution towards the superior civilisation level of well-defined nature, the only alternative being an equally dramatic and irreversible degradation...

  7. DYNAMIC BIFURCATION OF NONLINEAR EVOLUTION EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    MA TIAN; WANG SHOUHONG

    2005-01-01

    The authors introduce a notion of dynamic bifurcation for nonlinear evolution equations, which can be called attractor bifurcation. It is proved that as the control parameter crosses certain critical value, the system bifurcates from a trivial steady state solution to an attractor with dimension between m and m + 1, where m + 1 is the number of eigenvalues crossing the imaginary axis. The attractor bifurcation theory presented in this article generalizes the existing steady state bifurcations and the Hopf bifurcations. It provides a unified point of view on dynamic bifurcation and can be applied to many problems in physics and mechanics.

  8. Simulations of Astrophysical Hydrodynamics: Supernova Remnant Evolution and Star Formation

    Science.gov (United States)

    Truelove, John Kelly

    Many problems in astrophysical hydrodynamics are analytically intractable. In such cases, numerical simulation can provide valuable insight into the nature of the solution. We consider two such problems: the interaction of stellar ejecta and ambient gas in an evolving supernova remnant (SNR), and the collapse and fragmentation of molecular clouds to form stars. We first study the dynamics of SNR evolution from the ejecta-dominated stage through the Sedov-Taylor stage, the stages which precede the onset of dynamically significant radiative losses. We emphasize that all nonradiative SNRs of a given power-law structure evolve according to a unified solution, and we discuss this general property in detail. We present 1-D numerical simulations of the flow and use these to aid the development of approximate analytic solutions for the motions of the SNR shocks. We elucidate the dependence of the evolution on the ejecta power-law index n by developing a general trajectory for all n and explaining its relation to the solutions of Chevalier (1982) & Nadyozhin (1985) for n > 5 and Hamilton & Sarazin (1984) for n = 0. These solutions should be valuable in describing relatively young SNRs at intermediate points of nonradiative evolution. We then turn to 3-D simulation of star formation using adaptive mesh refinement (AMR). We demonstrate that perturbations arising from discretization of the equations of self-gravitational hydrodynamics can grow into artificial fragments. This can be avoided by ensuring the ratio of cell size to Jeans length, which we call the Jeans number, J ≡Δ x/λJ, is kept below 0.25. We refer to the constraint that λJ be resolved as the Jeans condition. We find that it is not possible a priori to have confidence that results of calculations which employ artificial viscosity to halt collapse are relevant to the astrophysical problem. Finally, we describe our new AMR code in detail. This code employs multiple grids at multiple levels of resolution and

  9. Dynamic formation control for autonomous underwater vehicles

    Institute of Scientific and Technical Information of China (English)

    燕雪峰; 古锋; 宋琛; 胡晓琳; 潘毅

    2014-01-01

    Path planning and formation structure forming are two of the most important problems for autonomous underwater vehicles (AUVs) to collaborate with each other. In this work, a dynamic formation model was proposed, in which several algorithms were developed for the complex underwater environment. Dimension changeable particle swarm algorithm was used to find an optimized path by dynamically adjusting the number and the distribution of the path nodes. Position relationship based obstacle avoidance algorithm was designed to detour along the edges of obstacles. Virtual potential point based formation-keeping algorithm was employed by incorporating dynamic strategies which were decided by the current states of the formation. The virtual potential point was used to keep the formation structure when the AUV or the formation was deviated. Simulation results show that an optimal path can be dynamically planned with fewer path nodes and smaller fitness, even with a concave obstacle. It has been also proven that different formation-keeping strategies can be adaptively selected and the formation can change its structure in a narrow area and restore back after passing the obstacle.

  10. Cooling-induced structure formation and evolution in collapsars

    CERN Document Server

    Batta, Aldo

    2013-01-01

    The collapse of massive rotating stellar cores and the associated accretion onto the newborn compact object is thought to power long gamma ray bursts (GRBs). The physical scale and dynamics of the accretion disk are initially set by the angular momentum distribution in the progenitor, and the physical conditions make neutrino emission the main cooling agent in the flow. The formation and evolution of structure in these disks is potentially very relevant for the energy release and its time variability, which ultimately imprint on the observed GRB properties. To begin to characterize these, taking into account the three dimensional nature of the problem, we have carried out an initial set of calculations of the collapse of rotating polytropic cores in three dimensions, making use of a pseudo-relativistic potential and a simplified cooling prescription. We focus on the effects of self gravity and cooling on the overall morphology and evolution of the flow for a given rotation rate in the context of the collapsar...

  11. Brand Equity Evolution: a System Dynamics Model

    Directory of Open Access Journals (Sweden)

    Edson Crescitelli

    2009-04-01

    Full Text Available One of the greatest challenges in brand management lies in monitoring brand equity over time. This paper aimsto present a simulation model able to represent this evolution. The model was drawn on brand equity concepts developed by Aaker and Joachimsthaler (2000, using the system dynamics methodology. The use ofcomputational dynamic models aims to create new sources of information able to sensitize academics and managers alike to the dynamic implications of their brand management. As a result, an easily implementable model was generated, capable of executing continuous scenario simulations by surveying casual relations among the variables that explain brand equity. Moreover, the existence of a number of system modeling tools will allow extensive application of the concepts used in this study in practical situations, both in professional and educational settings

  12. Coupling Dynamical And Collisional Evolution Of Dust In Protoplanetary Disks

    Science.gov (United States)

    Charnoz, Sebastien

    2010-10-01

    Gaseous circumstellar disks are rich in dust and are thought to be both accretionaly and dynamically active. Unfortunately large bodies that could be embedded in these disks are still difficult to observe and their putative properties are indirectly inferred from the observable small dust content. It is why constraining the size distribution coupled with dust-dynamics is so critical. Unfortunately, coupling effects such as a realistic time-dependant dynamics, fragmentation and coagulation, has been recognized as numerically challenging and almost no attempt really succeeded with a generic approach. In these disks, the dust dynamics is driven by a variety of processes (gravity, gas drag, radiation pressure..) inducing a size-dependant dynamics, and, at the same time collisional evolution changes the local size distributions. These two effects are intimately coupled because the local dynamics and size-distribution determines the local collision rates, that, in-turn, determines the size-distribution and modifies the particle's dynamics. Here we report on a new algorithm that overcomes these difficulties by using a hybrid approach extending the work of Charnoz & Morbidelli (Icarus, 2004, 2007). We will briefly present the method and focus on gaseous protoplanetary disks either laminar or turbulent (the time dependant transport and dust evolution will be shown) . We will show how the taking into account of a 3D dynamics helps to determine disantengle the dust size-distribution in the disk's photosphere and in the midplane and thus may provide observational signatures of accretion. We will show how the coupling of turbulence with fragmentation may significantly affect the dust/ratio for the smallest bodies. Finally, we will show that an accurate description of the time dependant dynamics of larger dusts (those with Stokes numbers >= 1) may provide a possible path to the formation of bodies larger than the accretion barrier, through accretion in a transitory regime.

  13. Evolution of cooperation on stochastic dynamical networks.

    Directory of Open Access Journals (Sweden)

    Bin Wu

    Full Text Available Cooperative behavior that increases the fitness of others at a cost to oneself can be promoted by natural selection only in the presence of an additional mechanism. One such mechanism is based on population structure, which can lead to clustering of cooperating agents. Recently, the focus has turned to complex dynamical population structures such as social networks, where the nodes represent individuals and links represent social relationships. We investigate how the dynamics of a social network can change the level of cooperation in the network. Individuals either update their strategies by imitating their partners or adjust their social ties. For the dynamics of the network structure, a random link is selected and breaks with a probability determined by the adjacent individuals. Once it is broken, a new one is established. This linking dynamics can be conveniently characterized by a Markov chain in the configuration space of an ever-changing network of interacting agents. Our model can be analytically solved provided the dynamics of links proceeds much faster than the dynamics of strategies. This leads to a simple rule for the evolution of cooperation: The more fragile links between cooperating players and non-cooperating players are (or the more robust links between cooperators are, the more likely cooperation prevails. Our approach may pave the way for analytically investigating coevolution of strategy and structure.

  14. Genome Size Dynamics and Evolution in Monocots

    Directory of Open Access Journals (Sweden)

    Ilia J. Leitch

    2010-01-01

    Full Text Available Monocot genomic diversity includes striking variation at many levels. This paper compares various genomic characters (e.g., range of chromosome numbers and ploidy levels, occurrence of endopolyploidy, GC content, chromosome packaging and organization, genome size between monocots and the remaining angiosperms to discern just how distinctive monocot genomes are. One of the most notable features of monocots is their wide range and diversity of genome sizes, including the species with the largest genome so far reported in plants. This genomic character is analysed in greater detail, within a phylogenetic context. By surveying available genome size and chromosome data it is apparent that different monocot orders follow distinctive modes of genome size and chromosome evolution. Further insights into genome size-evolution and dynamics were obtained using statistical modelling approaches to reconstruct the ancestral genome size at key nodes across the monocot phylogenetic tree. Such approaches reveal that while the ancestral genome size of all monocots was small (1C=1.9 pg, there have been several major increases and decreases during monocot evolution. In addition, notable increases in the rates of genome size-evolution were found in Asparagales and Poales compared with other monocot lineages.

  15. On the Formation and Evolution of cD Galaxies

    CERN Document Server

    Tovmassian, Hrant

    2008-01-01

    The cannibalism mechanism of formation of cD galaxies in clusters of Bautz-Morgan class I is analyzed. Dependences between absolute magnitude of cD galaxies, and of the clusters in which they reside (richness, redshifts) are considered. Evidences are presented in favor of formation of cD galaxies by cannibalism and their evolution.

  16. Dust Evolution and the Formation of Planetesimals

    CERN Document Server

    Birnstiel, T; Johansen, A

    2016-01-01

    The solid content of circumstellar disks is inherited from the interstellar medium: dust particles of at most a micrometer in size. Protoplanetary disks are the environment where these dust grains need to grow at least 13 orders of magnitude in size. Our understanding of this growth process is far from complete, with different physics seemingly posing obstacles to this growth at various stages. Yet, the ubiquity of planets in our galaxy suggests that planet formation is a robust mechanism. This chapter focuses on the earliest stages of planet formation, the growth of small dust grains towards the gravitationally bound "planetesimals", the building blocks of planets. We will introduce some of the key physics involved in the growth processes and discuss how they are expected to shape the global behavior of the solid content of disks. We will consider possible pathways towards the formation of larger bodies and conclude by reviewing some of the recent observational advances in the field.

  17. Dynamics of sheet nacre formation in bivalves.

    Science.gov (United States)

    Rousseau, Marthe; Meibom, Anders; Gèze, Marc; Bourrat, Xavier; Angellier, Martine; Lopez, Evelyne

    2009-03-01

    Formation of nacre (mother-of-pearl) is a biomineralization process of fundamental scientific as well as industrial importance. However, the dynamics of the formation process is still not understood. Here, we use scanning electron microscopy and high spatial resolution ion microprobe depth-profiling to image the full three-dimensional distribution of organic materials around individual tablets in the top-most layer of forming nacre in bivalves. Nacre formation proceeds by lateral, symmetric growth of individual tablets mediated by a growth-ring rich in organics, in which aragonite crystallizes from amorphous precursors. The pivotal role in nacre formation played by the growth-ring structure documented in this study adds further complexity to a highly dynamical biomineralization process.

  18. Dynamic system evolution and markov chain approximation

    Directory of Open Access Journals (Sweden)

    Roderick V. Nicholas Melnik

    1998-01-01

    Full Text Available In this paper computational aspects of the mathematical modelling of dynamic system evolution have been considered as a problem in information theory. The construction of mathematical models is treated as a decision making process with limited available information.The solution of the problem is associated with a computational model based on heuristics of a Markov Chain in a discrete space–time of events. A stable approximation of the chain has been derived and the limiting cases are discussed. An intrinsic interconnection of constructive, sequential, and evolutionary approaches in related optimization problems provides new challenges for future work.

  19. Dynamical formation of cataclysmic variables in globular clusters

    Science.gov (United States)

    Hong, Jongsuk; Vesperini, Enrico; Belloni, Diogo; Giersz, Mirek

    2017-01-01

    The formation and evolution of X-ray sources in globular clusters is likely to be affected by the cluster internal dynamics and the stellar interactions in the cluster dense environment. Several observational studies have revealed a correlation between the number of X-ray sources and the stellar encounter rate, and provided evidence of the role of dynamics in the formation of X-ray binaries. We have performed a survey of Monte Carlo simulations aimed at exploring the connection between the dynamics and formation of cataclysmic variables (CVs) and the origin of the observed correlation between the number of these objects, Ncv, and the stellar encounter rate, Γ. The results of our simulations show a correlation between Ncv and Γ, as found in observational data, illustrate the essential role played by the dynamics, and shed light on the dynamical history behind this correlation. CVs in our simulations are more centrally concentrated than single stars with masses close to those of turn-off stars, although this trend is stronger for CVs formed from primordial binaries undergoing exchange encounters, which include a population of more massive CVs absent in the group of CVs formed from binaries not suffering any component exchange.

  20. Dynamical Formation of Cataclysmic Variables in Globular Clusters

    CERN Document Server

    Hong, Jongsuk; Belloni, Diogo; Giersz, Mirek

    2016-01-01

    The formation and evolution of X-ray sources in globular clusters is likely to be affected by the cluster internal dynamics and the stellar interactions in the cluster dense environment.Several observational studies have revealed a correlation between the number of X-ray sources and the stellar encounter rate and provided evidence of the role of dynamics in the formation of X-ray binaries. We have performed a survey of Monte-Carlo simulations aimed at exploring the connection between the dynamics and formation of cataclysmic variables (CVs) and the origin of the observed correlation between the number of these objects, $N_{\\rm cv}$, and the stellar encounter rate, $\\Gamma$.The results of our simulations show a correlation between $N_{\\rm cv}$ and $\\Gamma$ as found in observational data, illustrate the essential role played by dynamics, and shed light on the dynamical history behind this correlation. CVs in our simulations are more centrally concentrated than single stars with masses close to those of turn-off...

  1. Analysis of planetary evolution with emphasis on differentiation and dynamics

    Science.gov (United States)

    Kaula, William M.; Newman, William I.

    1987-01-01

    In order to address the early stages of nebula evolution, a three-dimensional collapse code which includes not only hydrodynamics and radiative transfer, but also the effects of ionization and, possibly, magnetic fields is being addressed. As part of the examination of solar system evolution, an N-body code was developed which describes the latter stages of planet formation from the accretion of planetesimals. To test the code for accuracy and run-time efficiency, and to develop a stronger theoretical foundation, problems were studied in orbital dynamics. A regional analysis of the correlation in the gravity and topography fields of Venus was performed in order to determine the small and intermediate scale subsurface structure.

  2. Dynamics of dental evolution in ornithopod dinosaurs

    Science.gov (United States)

    Strickson, Edward; Prieto-Márquez, Albert; Benton, Michael J.; Stubbs, Thomas L.

    2016-01-01

    Ornithopods were key herbivorous dinosaurs in Mesozoic terrestrial ecosystems, with a variety of tooth morphologies. Several clades, especially the ‘duck-billed’ hadrosaurids, became hugely diverse and abundant almost worldwide. Yet their evolutionary dynamics have been disputed, particularly whether they diversified in response to events in plant evolution. Here we focus on their remarkable dietary adaptations, using tooth and jaw characters to examine changes in dental disparity and evolutionary rate. Ornithopods explored different areas of dental morphospace throughout their evolution, showing a long-term expansion. There were four major evolutionary rate increases, the first among basal iguanodontians in the Middle-Late Jurassic, and the three others among the Hadrosauridae, above and below the split of their two major clades, in the middle of the Late Cretaceous. These evolutionary bursts do not correspond to times of plant diversification, including the radiation of the flowering plants, and suggest that dental innovation rather than coevolution with major plant clades was a major driver in ornithopod evolution. PMID:27412496

  3. Dynamics of dental evolution in ornithopod dinosaurs

    Science.gov (United States)

    Strickson, Edward; Prieto-Márquez, Albert; Benton, Michael J.; Stubbs, Thomas L.

    2016-07-01

    Ornithopods were key herbivorous dinosaurs in Mesozoic terrestrial ecosystems, with a variety of tooth morphologies. Several clades, especially the ‘duck-billed’ hadrosaurids, became hugely diverse and abundant almost worldwide. Yet their evolutionary dynamics have been disputed, particularly whether they diversified in response to events in plant evolution. Here we focus on their remarkable dietary adaptations, using tooth and jaw characters to examine changes in dental disparity and evolutionary rate. Ornithopods explored different areas of dental morphospace throughout their evolution, showing a long-term expansion. There were four major evolutionary rate increases, the first among basal iguanodontians in the Middle-Late Jurassic, and the three others among the Hadrosauridae, above and below the split of their two major clades, in the middle of the Late Cretaceous. These evolutionary bursts do not correspond to times of plant diversification, including the radiation of the flowering plants, and suggest that dental innovation rather than coevolution with major plant clades was a major driver in ornithopod evolution.

  4. Formation and Evolution of Binary Systems Containing Collapsed Stars

    Science.gov (United States)

    Rappaport, Saul; West, Donald (Technical Monitor)

    2003-01-01

    This research includes theoretical studies of the formation and evolution of five types of interacting binary systems. Our main focus has been on developing a number of comprehensive population synthesis codes to study the following types of binary systems: (i) cataclysmic variables (#3, #8, #12, #15), (ii) low- and intermediate-mass X-ray binaries (#13, #20, #21), (iii) high-mass X-ray binaries (#14, #17, #22), (iv) recycled binary millisecond pulsars in globular clusters (#5, #10, #ll), and (v) planetary nebulae which form in interacting binaries (#6, #9). The numbers in parentheses refer to papers published or in preparation that are listed in this paper. These codes take a new unified approach to population synthesis studies. The first step involves a Monte Carlo selection of the primordial binaries, including the constituent masses, and orbital separations and eccentricities. Next, a variety of analytic methods are used to evolve the primary star to the point where either a dynamical episode of mass transfer to the secondary occurs (the common envelope phase), or the system evolves down an alternate path. If the residual core of the primary is greater than 2.5 solar mass, it will evolve to Fe core collapse and the production of a neutron star and a supernova explosion. In the case of systems involving neutron stars, a kick velocity is chosen randomly from an appropriate distribution and added to the orbital dynamics which determine the state of the binary system after the supernova explosion. In the third step, all binaries which commence stable mass transfer from the donor star (the original secondary in the binary system) to the compact object, are followed with a detailed binary evolution code. Finally, we include all the relevant dynamics of the binary system. For example, in the case of LMXBs, the binary system, with its recoil velocity from the supernova explosion, is followed in time through its path in the Galactic potential. For our globular cluster

  5. Prevolutionary dynamics and the origin of evolution.

    Science.gov (United States)

    Nowak, Martin A; Ohtsuki, Hisashi

    2008-09-30

    Life is that which replicates and evolves. The origin of life is also the origin of evolution. A fundamental question is when do chemical kinetics become evolutionary dynamics? Here, we formulate a general mathematical theory for the origin of evolution. All known life on earth is based on biological polymers, which act as information carriers and catalysts. Therefore, any theory for the origin of life must address the emergence of such a system. We describe prelife as an alphabet of active monomers that form random polymers. Prelife is a generative system that can produce information. Prevolutionary dynamics have selection and mutation, but no replication. Life marches in with the ability of replication: Polymers act as templates for their own reproduction. Prelife is a scaffold that builds life. Yet, there is competition between life and prelife. There is a phase transition: If the effective replication rate exceeds a critical value, then life outcompetes prelife. Replication is not a prerequisite for selection, but instead, there can be selection for replication. Mutation leads to an error threshold between life and prelife.

  6. FORMATION AND EVOLUTION OF A MULTI-THREADED SOLAR PROMINENCE

    Energy Technology Data Exchange (ETDEWEB)

    Luna, M. [CRESST and Space Weather Laboratory NASA/GSFC, Greenbelt, MD 20771 (United States); Karpen, J. T. [NASA/GSFC, Greenbelt, MD 20771 (United States); DeVore, C. R. [Naval Research Laboratory, Washington, DC 20375 (United States)

    2012-02-10

    We investigate the process of formation and subsequent evolution of prominence plasma in a filament channel and its overlying arcade. We construct a three-dimensional time-dependent model of an intermediate quiescent prominence suitable to be compared with observations. We combine the magnetic field structure of a three-dimensional sheared double arcade with one-dimensional independent simulations of many selected flux tubes, in which the thermal nonequilibrium process governs the plasma evolution. We have found that the condensations in the corona can be divided into two populations: threads and blobs. Threads are massive condensations that linger in the flux tube dips. Blobs are ubiquitous small condensations that are produced throughout the filament and overlying arcade magnetic structure, and rapidly fall to the chromosphere. The threads are the principal contributors to the total mass, whereas the blob contribution is small. The total prominence mass is in agreement with observations, assuming reasonable filling factors of order 0.001 and a fixed number of threads. The motion of the threads is basically horizontal, while blobs move in all directions along the field. We have generated synthetic images of the whole structure in an H{alpha} proxy and in two EUV channels of the Atmospheric Imaging Assembly instrument on board Solar Dynamics Observatory, thus showing the plasma at cool, warm, and hot temperatures. The predicted differential emission measure of our system agrees very well with observations in the temperature range log T = 4.6-5.7. We conclude that the sheared-arcade magnetic structure and plasma behavior driven by thermal nonequilibrium fit the abundant observational evidence well for typical intermediate prominences.

  7. Formation and Evolution of a Multi-Threaded Prominence

    Science.gov (United States)

    Luna, M.; Karpen, J. T.; DeVore, C. R.

    2012-01-01

    We investigate the process of formation and subsequent evolution of prominence plasma in a filament channel and its overlying arcade. We construct a three-dimensional time-dependent model of a filament-channel prominence suitable to be compared with observations. We combine this magnetic field structure with one-dimensional independent simulations of many flux tubes. The magnetic structure is a three-dimensional sheared double arcade, and the thermal non-equilibrium process governs the plasma evolution. We have found that the condensations in the corona can be divided into two populations: threads and blobs. Threads are massive condensations that linger in the field line dips. Blobs are ubiquitous small condensations that are produced throughout the filament and overlying arcade magnetic structure, and rapidly fall to the chromosphere. The total prominence mass is in agreement with observations. The threads are the principal contributors to the total mass, whereas the blob contribution is small. The motion of the threads is basically horizontal, while blobs move in all directions along the field. The peak velocities for both populations are comparable, but there is a weak tendency for the velocity to increase with the inclination, and the blobs with motion near vertical have the largest values of the velocity. We have generated synthetic images of the whole structure in an H proxy and in two EUV channels of the AIA instrument aboard SDO. These images show the plasma at cool, warm and hot temperatures. The theoretical differential emission measure of our system agrees very well with observations in the temperature range log T = 4.6-5.7. We conclude that the sheared-arcade magnetic structure and plasma dynamics fit well the abundant observational evidence.

  8. Formation and Evolution of a Multi-threaded Solar Prominence

    Science.gov (United States)

    Luna, M.; Karpen, J. T.; DeVore, C. R.

    2012-02-01

    We investigate the process of formation and subsequent evolution of prominence plasma in a filament channel and its overlying arcade. We construct a three-dimensional time-dependent model of an intermediate quiescent prominence suitable to be compared with observations. We combine the magnetic field structure of a three-dimensional sheared double arcade with one-dimensional independent simulations of many selected flux tubes, in which the thermal nonequilibrium process governs the plasma evolution. We have found that the condensations in the corona can be divided into two populations: threads and blobs. Threads are massive condensations that linger in the flux tube dips. Blobs are ubiquitous small condensations that are produced throughout the filament and overlying arcade magnetic structure, and rapidly fall to the chromosphere. The threads are the principal contributors to the total mass, whereas the blob contribution is small. The total prominence mass is in agreement with observations, assuming reasonable filling factors of order 0.001 and a fixed number of threads. The motion of the threads is basically horizontal, while blobs move in all directions along the field. We have generated synthetic images of the whole structure in an Hα proxy and in two EUV channels of the Atmospheric Imaging Assembly instrument on board Solar Dynamics Observatory, thus showing the plasma at cool, warm, and hot temperatures. The predicted differential emission measure of our system agrees very well with observations in the temperature range log T = 4.6-5.7. We conclude that the sheared-arcade magnetic structure and plasma behavior driven by thermal nonequilibrium fit the abundant observational evidence well for typical intermediate prominences.

  9. Using Disk Eclipsing Systems to Understand Planet Formation and Evolution

    Science.gov (United States)

    Rodriguez, Joseph E.; Osborn, Hugh P.; Shappee, Benjamin John; KELT Collaboration

    2017-01-01

    The circumstellar environments of young stellar objects (YSOs) involve complex dynamical interactions between dust and gas that directly influence the formation of planets. However, our understanding of the evolution from the material in the circumstellar disk to the thousands of planetary systems discovered to date, is limited. One means to better constrain the size, mass, and composition of this planet-forming material is to observe a YSO being eclipsed by its circumstellar disk. Unfortunately, such events are rare but have already led to such insights as dense planet-forming structures within the tidally disrupted disk of a young binary star system, Saturn-like rings and gaps in the disk surrounding a young planet, stratified dust coagulation within a young protoplanetary disk, and an evolved binary star system with remnant planet-building material. Fortunately, the advent of wide-field time domain surveys provides a ideal tool to search for rare eclipse events. Using time-series photometry from the KELT project we are conducting the Disk Eclipse Search with KELT (DESK) survey to look for disk eclipsing events, specifically in young stellar associations. In addition, we are collaborating with the SuperWASP and ASAS-SN surveys which have already led to additional discoveries. This survey has already doubled the number of “disk eclipsing” systems known and will provide a framework for discovering such systems in future surveys such as LSST. I will describe a few of our recent discoveries and their impact on our understanding of circumstellar evolution.KELT is a joint collaboration between the Ohio State University, Vanderbilt University, and Lehigh University. This work was partially supported by NSF CAREER grant AST-1056524. J.E.R. is supported by a Harvard Future Faculty Leaders Postdoctoral Fellowship.

  10. Formation, Orbital and Internal Evolutions of Young Planetary Systems

    CERN Document Server

    Baruteau, Clément; Mordasini, Christoph; Mollière, Paul

    2016-01-01

    The growing body of observational data on extrasolar planets and protoplanetary disks has stimulated intense research on planet formation and evolution in the past few years. The extremely diverse, sometimes unexpected physical and orbital characteristics of exoplanets lead to frequent updates on the mainstream scenarios for planet formation and evolution, but also to the exploration of alternative avenues. The aim of this review is to bring together classical pictures and new ideas on the formation, orbital and internal evolutions of planets, highlighting the key role of the protoplanetary disk in the various parts of the theory. We begin by briefly reviewing the conventional mechanism of core accretion by the growth of planetesimals, and discuss a relatively recent model of core growth through the accretion of pebbles. We review the basic physics of planet-disk interactions, recent progress in this area, and discuss their role in observed planetary systems. We address the most important effects of planets i...

  11. Disk galaxy formation and evolution models up to intermediate redshifts

    CERN Document Server

    Firmani, C

    1999-01-01

    Making use of a seminumerical method we develop a scenario of disk galaxy formation and evolution in the framework of inflationary cold dark matter (CDM) cosmologies. Within the virializing dark matter halos, disks in centrifugal equilibrium are built-up and their galactic evolution is followed through an approach which considers the gravitational interactions among the galaxy components, the turbulence and energy balance of the ISM, the star formation (SF) process due to disk gravitational instabilities, the stellar evolution and the secular formation of a bulge. We find that the main properties and correlations of disk galaxies are determined by the mass, the hierarchical mass aggregation history and the primordial angular momentum. The models follow the same trends across the Hubble sequence than the observed galaxies. The predicted TF relation is in good agreement with the observations except for the standart CDM. While the slope of this relation remains almost constant up to intermediate redshifts, its z...

  12. Formation and evolution of kinky vortons

    CERN Document Server

    Battye, Richard A; Pike, Simon; Sutcliffe, Paul M

    2009-01-01

    We present field theory simulations of a model with Z_2xU(1) symmetry in (2+1)-dimensions. This model has two discrete vacua, allowing for domain walls, and also a conserved Noether charge. For initial conditions in which the field is placed in one of the vacua and given a homogeneous background charge, we find that the number of walls does not scale in the standard way. We argue that the Noether charge and current become localized on the walls, forming kinky vortons, (2+1) dimensional analogues of cosmic vortons. These loops of wall can be long-lived, or even stable, depending on the precise characteristics. We suggest that our simulations illustrate a possible mechanism for dynamical frustration of domain wall networks and that cosmic vortons will form naturally in U(1)xU(1) models.

  13. The Formation and Evolution of Galaxies

    CERN Document Server

    Ellis, Richard S

    1998-01-01

    Galaxies represent the visible fabric of the Universe and there has been considerable progress recently in both observational and theoretical studies. The underlying goal is to understand the present-day diversity of galaxy forms, masses and luminosities. Popular models predict the bulk of the population assembled recently, in apparent agreement with optical observations. However, numerous uncertainties remain, including the role that dust might play in obscuring star-forming systems. Astronomers now seek more detailed tests to verify that the Hubble sequence of types arises from transformations driven by the dynamical assembly of smaller systems. Multi-wavelength surveys and studies of the resolved internal properties of distant galaxies promise answers to these fundamental questions.

  14. Algebraic dynamics solutions and algebraic dynamics algorithm for nonlinear partial differential evolution equations of dynamical systems

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Using functional derivative technique in quantum field theory, the algebraic dy-namics approach for solution of ordinary differential evolution equations was gen-eralized to treat partial differential evolution equations. The partial differential evo-lution equations were lifted to the corresponding functional partial differential equations in functional space by introducing the time translation operator. The functional partial differential evolution equations were solved by algebraic dynam-ics. The algebraic dynamics solutions are analytical in Taylor series in terms of both initial functions and time. Based on the exact analytical solutions, a new nu-merical algorithm—algebraic dynamics algorithm was proposed for partial differ-ential evolution equations. The difficulty of and the way out for the algorithm were discussed. The application of the approach to and computer numerical experi-ments on the nonlinear Burgers equation and meteorological advection equation indicate that the algebraic dynamics approach and algebraic dynamics algorithm are effective to the solution of nonlinear partial differential evolution equations both analytically and numerically.

  15. Thermodynamic evolution of the cosmological baryonic gas II. Galaxy formation

    CERN Document Server

    Alimi, J M

    2004-01-01

    The problem of galaxy formation and its dependence on thermodynamic properties is addressed by using Eulerian hydrodynamic numerical simulations of large scale structure formation. Global galaxy properties are explored in simulations including gravitation, shock heating and cooling processes, and following self-consistently the chemical evolution of a primordial composition hydrogen-helium plasma without assuming collisional ionization equilibrium. The galaxy formation model is mainly based on the identification of converging dense cold gas regions. We show that the evolution at low redshift of the observed cosmic star formation rate density is reproduced, and that the galaxy-like object mass function is dominated by low-mass objects. The galaxy mass functions are well described by a two power-law Schechter function whose parameters are in good agreement with observational fits of the galaxy luminosity function. The high-mass end of the galaxy mass function includes objects formed at early epochs and residing...

  16. The dynamics of group formation among leeches

    Directory of Open Access Journals (Sweden)

    Giacomo eBisson

    2012-05-01

    Full Text Available Leeches exploring a new environment continuously meet each other and merge in temporary groups. After 2-3 hours, leeches become attracted to each other eventually forming a large and stable group. When their number is reduced, leeches remain solitary, behaving independently. Group formation is facilitated by body injection of serotonin (5-HT and the level of endogenous 5-HT is elevated in leeches forming a large group. In contrast, intravenous injection of 5-HT antagonists prevented injected leeches from joining a large group of conspecifics. When sensilla near the head were ablated or the supraesophageal ganglion disconnected, leeches remained solitary, but explored the environment swimming and crawling. These results suggest that group formation is initiated by a release of 5-HT triggered by sensilla stimulation and its dynamics can be explained by the establishment of a reinforcement dynamics, as observed during human group formation. As 5-HT affects social interactions also in humans, group formation in leeches and humans share a similar dynamics and hormonal control.

  17. Dynamic Evolution of Microscopic Wet Cracking Noises

    CERN Document Server

    Ghaffari, H O; Benson, P M

    2015-01-01

    Characterizing the interaction between water and microscopic defects is one of the long-standing challenges in understanding a broad range of cracking processes. Different physical aspects of microscopic events, driven or influenced by water, have been extensively discussed in atomistic calculations but have not been accessible in microscale experiments. Through the analysis of the emitted noises during the evolution of individual, dynamic microcracking events, we show that the onset of a secondary instability known as hybrid events occurs during the fast healing phase of microcracking, which leads to (local) sudden increase of pore water pressure in the process zone, inducing a secondary instability, which is followed by a fast-locking phase on the microscopic faults (pulse-like rupture).

  18. Ising Ferromagnet: Zero-Temperature Dynamic Evolution

    CERN Document Server

    Murilo-Castro de Oliveira, P; Sidoravicious, V; Stein, D L

    2006-01-01

    The dynamic evolution at zero temperature of a uniform Ising ferromagnet on a square lattice is followed by Monte Carlo computer simulations. The system always eventually reaches a final, absorbing state, which sometimes coincides with a ground state (all spins parallel), and sometimes does not (parallel stripes of spins up and down). We initiate here the numerical study of ``Chaotic Time Dependence'' (CTD) by seeing how much information about the final state is predictable from the randomly generated quenched initial state. CTD was originally proposed to explain how nonequilibrium spin glasses could manifest equilibrium pure state structure, but in simpler systems such as homogeneous ferromagnets it is closely related to long-term predictability and our results suggest that CTD might indeed occur in the infinite volume limit.

  19. Molecular dynamics study of ice structural evolution

    Institute of Scientific and Technical Information of China (English)

    Wang Yan; Dong Shun-Le

    2008-01-01

    Molecular dynamics simulation is employed to study the structural evolution of low density amorphous ice during its compression from one atmosphere to 2.5 GPa. Calculated results show that high density amorphous ice is formed at an intermediate pressure of~1.0GPa; the O-O-O bond angle ranges from 83° to 113°, and the O-H...O bond is bent from 112° to 160°. Very high density amorphous ice is obtained by quenching to 80K and decompressing the ice to ambient pressure from 160 K/1.3 GPa or 160 K/1.7 GPa; and the next-nearest O-O length is found to be 0.310 nm, just 0.035 nm beyond the nearest O-O distance of 0.275 nm.

  20. Dynamic landscapes in human evolution and dispersal

    Science.gov (United States)

    Devès, Maud; King, Geoffrey; Bailey, Geoffrey; Inglis, Robyn; Williams, Matthew; Winder, Isabelle

    2013-04-01

    Archaeological studies of human settlement in its wider landscape setting usually focus on climate change as the principal environmental driver of change in the physical features of the landscape, even on the long time scales of early human evolution. We emphasize that landscapes evolve dynamically due to an interplay of processes occurring over different timescales. Tectonic deformation, volcanism, sea level changes, by acting on the topography, the lithology and on the patterns of erosion-deposition in a given area, can moderate or amplify the influence of climate at the regional and local scale. These processes impose or alleviate physical barriers to movement, and modify the distribution and accessibility of plant and animal resources in ways critical to human ecological and evolutionary success (King and Bailey, JHE 2006; Bailey and King, Antiquity 2011, Winder et al. Antiquity in press). The DISPERSE project, an ERC-funded collaboration between the University of York and the Institut de Physique du Globe de Paris, aims to develop systematic methods for reconstructing landscapes associated with active tectonics, volcanism and sea level change at a variety of scales in order to study their potential impact on patterns of human evolution and dispersal. Examples are shown to illustrate the ways in which changes of significance to human settlement can occur at a range of geographical scales and on time scales that range from lifetimes to tens of millennia, creating and sustaining attractive conditions for human settlement and exercising powerful selective pressures on human development.

  1. Dynamic Evolution Equations for Isolated Smoke Vortexes in Rational Mechanics

    CERN Document Server

    Jianhua, Xiao

    2011-01-01

    Smoke circle vortexes are a typical dynamic phenomenon in nature. The similar circle vortexes phenomenon appears in hurricane, turbulence, and many others. A semi-empirical method is constructed to get some intrinsic understanding about such circle vortex structures. Firstly, the geometrical motion equations for smoke circle is formulated based on empirical observations. Based on them, the mechanic dynamic motion equations are established. Finally, the general dynamic evolution equations for smoke vortex are formulated. They are dynamic evolution equations for exact stress field and dynamic evolution equations for average stress field. For industrial application and experimental data processing, their corresponding approximation equations for viscous fluid are given. Some simple discussions are made.

  2. Algebraic dynamics solutions and algebraic dynamics algorithm for nonlinear partial differential evolution equations of dynamical systems

    Institute of Scientific and Technical Information of China (English)

    WANG Shundin; ZHANG Hua

    2008-01-01

    Using functional derivative technique In quantum field theory,the algebraic dy-namics approach for solution of ordinary differential evolution equations was gen-eralized to treat partial differential evolution equations.The partial differential evo-lution equations were lifted to the corresponding functional partial differential equations in functional space by Introducing the time translation operator.The functional partial differential evolution equations were solved by algebraic dynam-ics.The algebraic dynamics solutions are analytical In Taylor series In terms of both initial functions and time.Based on the exact analytical solutions,a new nu-merical algorithm-algebraic dynamics algorithm was proposed for partial differ-ential evolution equations.The difficulty of and the way out for the algorithm were discussed.The application of the approach to and computer numerical experi-ments on the nonlinear Burgers equation and meteorological advection equation indicate that the algebraic dynamics approach and algebraic dynamics algorithm are effective to the solution of nonlinear partial differential evolution equations both analytically and numerically.

  3. Galaxy Formation and Chemical Evolution in Hierarchical Hydrodynamical Simulations

    CERN Document Server

    Cora, S A; Tissera, P B; Lambas, D G

    2000-01-01

    We report first results of an implementation of a chemical model in a cosmological code, based on the Smoothed Particle Hydrodynamics (SPH) technique. We show that chemical SPH simulations are a promising tool to provide clues for the understanding of the chemical properties of galaxies in relation to their formation and evolution in a cosmological framework.

  4. Formation and Evolution of Vertisols in Huaibei Plain

    Institute of Scientific and Technical Information of China (English)

    LIULIANG-WU

    1991-01-01

    The objectives of the present paper are to restore soil-forming environment of the Vertisols,to reveal their regularities of formation and evolution and to found soil chronology.In regard to formation and evolution of the Vertisols in the Huaibei Plain,they have undergone 3 cycles of deposition-formation during different geologic time (Q33;Q42 and Q43).Therefore,they are considered as the soils developed on heterogeneous parent material.The Vertisols as a paleosol can be divided into relict Vertisols and buried Vertisols.The former is shajiang black soils called by local people,the latter is shajiang black soils underlying Warp soil or warp soil horizon.

  5. Binary Aggregations in Hierarchical Galaxy Formation The Evolution of the Galaxy Luminosity Function

    CERN Document Server

    Menci, N; Fontana, A; Giallongo, E; Poli, F

    2002-01-01

    We develop a semi-analytic model of hierarchical galaxy formation with an improved treatment of the evolution of galaxies inside dark matter haloes. We take into account not only dynamical friction processes building up the central dominant galaxy, but also binary aggregations of satellite galaxies inside a common halo described using the kinetic Smoluchowski equation. The description of gas cooling, star formation and evolution, and Supernova feedback follows the standard prescriptions widely used in semi-analytic modelling. We find that binary aggregations are effective in depleting the number of small/intermediate mass galaxies over the redshift range 1-16. We compare our predicted luminosity functions with those obtained from deep multicolor surveys in the rest-frame B and UV bands for the redshift ranges 01 and even more at z ~ 3 by the effect of binary aggregations. The predictions from our dynamical model are discussed and compared with the effects of complementary processes which may conspire in affec...

  6. Formation, Orbital and Internal Evolutions of Young Planetary Systems

    Science.gov (United States)

    Baruteau, Clément; Bai, Xuening; Mordasini, Christoph; Mollière, Paul

    2016-12-01

    The growing body of observational data on extrasolar planets and protoplanetary disks has stimulated intense research on planet formation and evolution in the past few years. The extremely diverse, sometimes unexpected physical and orbital characteristics of exoplanets lead to frequent updates on the mainstream scenarios for planet formation and evolution, but also to the exploration of alternative avenues. The aim of this review is to bring together classical pictures and new ideas on the formation, orbital and internal evolutions of planets, highlighting the key role of the protoplanetary disk in the various parts of the theory. We begin by briefly reviewing the conventional mechanism of core accretion by the growth of planetesimals, and discuss a relatively recent model of core growth through the accretion of pebbles. We review the basic physics of planet-disk interactions, recent progress in this area, and discuss their role in observed planetary systems. We address the most important effects of planets internal evolution, like cooling and contraction, the mass-luminosity relation, and the bulk composition expressed in the mass-radius and mass-mean density relations.

  7. Environmental Turbulence, Enterprises Strategic Responses and the Formation & Evolution of Dynamic Capabilities:Theoretic Model and Propositions%环境变动、企业战略反应与动态能力的形成演化:理论模型与命题

    Institute of Scientific and Technical Information of China (English)

    曾萍; 宋铁波

    2013-01-01

      当前企业动态能力形成演化的研究更多地关注了影响动态能力形成的直接因素,而缺乏对环境变动影响下企业内在战略反应与动态能力形成演化路径的研究。基于资源基础理论与演化理论视角,对相关文献进行分析与综合,在此基础上构建了一个环境变动、企业战略反应以及动态能力形成演化的理论模型,并提炼出相关命题,从而为动态能力理论的发展以及企业战略管理实践提供了新的洞见。%  Current research on the formation and evolution of dynamic capabilities pays great attention to the direct factors that affect the formation of dynamic capabilities , but there is little research on enterprises strategic responses and the formation and evolvement of dynamic capabilities under the influence of environmental turbulence .Based on the Resource-Based Theory and the Evolution Theory , this article analyzes relevant literature comprehensively , and establishes a theoretical model of environmental turbulence , enterprises strategic responses and the formation and evolvement of dynamic capabilities , and then draws some relevant propositions .The conclusion of this article provides new insights on the development of dynamic capabilities theory and the practice of enterprises manage -ment.

  8. The formation and evolution of massive black holes.

    Science.gov (United States)

    Volonteri, M

    2012-08-03

    The past 10 years have witnessed a change of perspective in the way astrophysicists think about massive black holes (MBHs), which are now considered to have a major role in the evolution of galaxies. This appreciation was driven by the realization that black holes of millions of solar masses and above reside in the center of most galaxies, including the Milky Way. MBHs also powered active galactic nuclei known to exist just a few hundred million years after the Big Bang. Here, I summarize the current ideas on the evolution of MBHs through cosmic history, from their formation about 13 billion years ago to their growth within their host galaxies.

  9. The Formation and Evolution of Massive Black Holes

    CERN Document Server

    Volonteri, Marta

    2012-01-01

    The past 10 years have witnessed a change of perspective in the way astrophysicists think about massive black holes (MBHs), which are now considered to have a major role in the evolution of galaxies. This appreciation was driven by the realization that black holes of millions solar masses and above reside in the center of most galaxies, including the Milky Way. MBHs also powered active galactic nuclei known to exist just a few hundred million years after the Big Bang. Here, I summarize the current ideas on the evolution of MBHs through cosmic history, from their formation about 13 billion years ago to their growth within their host galaxies.

  10. Formation and Evolution of Structure in Loop Cosmology

    CERN Document Server

    Bojowald, M; Kagan, M; Singh, P; Skirzewski, A; Bojowald, Martin; Hernandez, Hector; Kagan, Mikhail; Singh, Parampreet; Skirzewski, Aureliano

    2006-01-01

    Inhomogeneous cosmological perturbation equations are derived in loop quantum gravity, taking into account corrections in particular in gravitational parts. This provides a framework for calculating the evolution of modes in structure formation scenarios related to inflationary or bouncing models. Applications here are corrections to the Newton potential and to the evolution of large scale modes which imply non-conservation of curvature perturbations possibly noticeable in a running spectral index. These effects are sensitive to quantization procedures and test the characteristic behavior of correction terms derived from quantum gravity.

  11. PSEUDOBULGE FORMATION AS A DYNAMICAL RATHER THAN A SECULAR PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Guedes, Javiera; Mayer, Lucio; Carollo, Marcella [Institute for Astronomy, ETH Zuerich, Wolgang-Pauli-Strasse 27, 8093 Zurich (Switzerland); Madau, Piero [Department of Astronomy and Astrophysics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States)

    2013-07-20

    We investigate the formation and evolution of the pseudobulge in 'Eris', a high-resolution N-body + smoothed particle hydrodynamic cosmological simulation that successfully reproduces a Milky-Way-like massive late-type spiral in an cold dark matter universe. At the present epoch, Eris has a virial mass M{sub vir} {approx_equal} 8 Multiplication-Sign 10{sup 11} M{sub Sun }, a photometric stellar mass M{sub *} = 3.2 Multiplication-Sign 10{sup 10} M{sub Sun }, a bulge-to-total ratio B/T = 0.26, and a weak nuclear bar. We find that the bulk of the pseudobulge forms quickly at high redshift via a combination of non-axisymmetric disk instabilities and tidal interactions or mergers, both occurring on dynamical timescales, not through slow secular processes at lower redshift. Its subsequent evolution is not strictly secular either, and is closely intertwined with the evolution of the stellar bar. In fact, the structure that we recognize as a pseudobulge today evolved from a stellar bar that formed at high redshift due to tidal interactions with satellites, was destroyed by minor mergers at z {approx} 3, re-formed shortly after, and weakened again following a steady gas inflow at z {approx}< 1. The gradual dissolution of the bar ensued at z {approx} 1 and continues until the present without increasing the stellar velocity dispersion in the inner regions. In this scenario, the pseudobulge is not a separate component from the inner disk in terms of formation path; rather, it is the first step in the inside-out formation of the baryonic disk, in agreement with the fact that pseudobulges of massive spiral galaxies typically have a dominant old stellar population. If our simulations do indeed reproduce the formation mechanisms of massive spirals, then the progenitors of late-type galaxies should have strong bars and small photometric pseudobulges at high redshift.

  12. Cosmic Star Formation History from Local Observations and an Outline for Galaxy Formation and Evolution

    CERN Document Server

    Hartwick, F D A

    2004-01-01

    The goal of this investigation is to reconstruct the cosmic star formation rate density history from local observations and in doing so to gain insight into how galaxies might have formed and evolved. A new chemical evolution model is described which accounts for the formation of globular clusters as well as the accompanying field stars. When this model is used in conjunction with the observed age metallicity relations for the clusters and with input which allows for the formation of the nearly universally observed bimodal distribution of globular clusters, star formation rates are obtained. By confining attention to a representative volume of the local universe, these rates allow a successful reconstruction of the Madau plot while complementary results similtaneously satisfy many local cosmological constraints. A physical framework for galaxy formation is presented which incorporates the results from this chemical evolution model and assumes an anisotropic collapse. In addition to providing the `classical' h...

  13. Spacecraft formation flying: Dynamics, control and navigation

    Science.gov (United States)

    Alfriend, Kyle Terry; Vadali, Srinivas Rao; Gurfil, Pini; How, Jonathan; Breger, Louis S.

    2009-12-01

    Space agencies are now realizing that much of what has previously been achieved using hugely complex and costly single platform projects - large unmanned and manned satellites (including the present International Space Station) - can be replaced by a number of smaller satellites networked together. The key challenge of this approach, namely ensuring the proper formation flying of multiple craft, is the topic of this second volume in Elsevier's Astrodynamics Series, Spacecraft Formation Flying: Dynamics, control and navigation. In this unique text, authors Alfriend et al. provide a coherent discussion of spacecraft relative motion, both in the unperturbed and perturbed settings, explain the main control approaches for regulating relative satellite dynamics, using both impulsive and continuous maneuvers, and present the main constituents required for relative navigation. The early chapters provide a foundation upon which later discussions are built, making this a complete, standalone offering. Intended for graduate students, professors and academic researchers in the fields of aerospace and mechanical engineering, mathematics, astronomy and astrophysics, Spacecraft Formation Flying is a technical yet accessible, forward-thinking guide to this critical area of astrodynamics.

  14. Network Generation Model Based on Evolution Dynamics To Generate Benchmark Graphs

    CERN Document Server

    Pasta, Muhammad Qasim

    2016-01-01

    Network generation models provide an understanding of the dynamics behind the formation and evolution of different networks including social networks, technological networks and biological networks. Two important applications of these models are to study the evolution dynamics of network formation and to generate benchmark networks with known community structures. Research has been conducted in both these directions relatively independent of the other application area. This creates a disjunct between real world networks and the networks generated to study community detection algorithms. In this paper, we propose to study both these application areas together i.e.\\ introduce a network generation model based on evolution dynamics of real world networks and generate networks with community structures that can be used as benchmark graphs to study community detection algorithms. The generated networks possess tunable modular structures which can be used to generate networks with known community structures. We stud...

  15. Modeling Dynamic Evolution of Online Friendship Network

    Institute of Scientific and Technical Information of China (English)

    吴联仁; 闫强

    2012-01-01

    In this paper,we study the dynamic evolution of friendship network in SNS (Social Networking Site).Our analysis suggests that an individual joining a community depends not only on the number of friends he or she has within the community,but also on the friendship network generated by those friends.In addition,we propose a model which is based on two processes:first,connecting nearest neighbors;second,strength driven attachment mechanism.The model reflects two facts:first,in the social network it is a universal phenomenon that two nodes are connected when they have at least one common neighbor;second,new nodes connect more likely to nodes which have larger weights and interactions,a phenomenon called strength driven attachment (also called weight driven attachment).From the simulation results,we find that degree distribution P(k),strength distribution P(s),and degree-strength correlation are all consistent with empirical data.

  16. SPH code for dynamical and chemical evolution of disk galaxies

    CERN Document Server

    Berczik, P

    1998-01-01

    The problem of chemical and dynamical evolution of galaxies is one of the most attracting and complex problems of modern astrophysics. Within the framework of the given work the standard dynamic Smoothed Particle Hydrodynamics (SPH) code (Monaghan J.J. 1992, ARAA, 30, 543) is noticeably expanded. Our investigation concernes with the changes and incorporation of new ideas into the algorithmic inclusion of Star Formation (SF) and Super Novae (SN) explosions in SPH (Berczik P. & Kravchuk S.G., 1996, ApSpSci, 245, 27). The proposed energy criterion for definition of a place and efficiency of SF results in the successfully explain Star Formation History (SFH) in isolated galaxies of different types. On the base of original ideas we expand a code in a more realistic way of the description of effects of return of a hot, chemical enriched gas in Interstellar Matter (ISM). In addition to the account of SNII, we offer the self-agreed account of SNIa and PN. This allows to describe not only the ISM content of $ O^{1...

  17. The dynamics of travertine terrace formation

    CERN Document Server

    Hammer, O; Jamtveit, B; Dysthe, Dag K.; Hammer, Oyvind; Jamtveit, Bjorn

    2006-01-01

    Travertine (limestone) terraces are common in caves, springs and rivers worldwide, and represent one of the most striking examples of geological pattern formation on the Earth's surface. The terraces form over a wide range of scales, from millimeters to tens of meters. Their origin has been poorly understood, but most likely involves a coupling between the precipitation rate and hydrodynamics. Microbial activity may also play a role. Here we present a minimal model based on shallow water flow and an empirical positive correlation between the flow velocity and precipitation rate. The resulting selforganizing pattern formation process displays rich and unusual dynamics, consistent with field observations. Terraces coarsen with time, fold into lobes and migrate downstream with differential rates, resulting in striking patterns. This model, in which topography grows rather than erodes in response to rapid flow, produces patterns that are completely different from those generated by flow driven erosion.

  18. Dynamics of gradient formation by intracellular shuttling

    Energy Technology Data Exchange (ETDEWEB)

    Berezhkovskii, Alexander M. [Mathematical and Statistical Computing Laboratory, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20892 (United States); Shvartsman, Stanislav Y. [Department of Chemical and Biological Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544 (United States)

    2015-08-21

    A number of important cellular functions rely on the formation of intracellular protein concentration gradients. Experimental studies discovered a number of mechanisms for the formation of such gradients. One of the mechanisms relies on the intracellular shuttling of a protein that interconverts between the two states with different diffusivities, under the action of two enzymes, one of which is localized to the plasma membrane, whereas the second is uniformly distributed in the cytoplasm. Recent work reported an analytical solution for the steady state gradient in this mechanism, obtained in the framework of a one-dimensional reaction-diffusion model. Here, we study the dynamics in this model and derive analytical expressions for the Laplace transforms of the time-dependent concentration profiles in terms of elementary transcendental functions. Inverting these transforms numerically, one can obtain time-dependent concentration profiles of the two forms of the protein.

  19. Dynamics of gradient formation by intracellular shuttling

    Science.gov (United States)

    Berezhkovskii, Alexander M.; Shvartsman, Stanislav Y.

    2015-08-01

    A number of important cellular functions rely on the formation of intracellular protein concentration gradients. Experimental studies discovered a number of mechanisms for the formation of such gradients. One of the mechanisms relies on the intracellular shuttling of a protein that interconverts between the two states with different diffusivities, under the action of two enzymes, one of which is localized to the plasma membrane, whereas the second is uniformly distributed in the cytoplasm. Recent work reported an analytical solution for the steady state gradient in this mechanism, obtained in the framework of a one-dimensional reaction-diffusion model. Here, we study the dynamics in this model and derive analytical expressions for the Laplace transforms of the time-dependent concentration profiles in terms of elementary transcendental functions. Inverting these transforms numerically, one can obtain time-dependent concentration profiles of the two forms of the protein.

  20. Dynamical Models of Terrestrial Planet Formation

    CERN Document Server

    Lunine, Jonathan I; Raymond, Sean N; Morbidelli, Alessandro; Quinn, Thomas; Graps, Amara

    2009-01-01

    We review the problem of the formation of terrestrial planets, with particular emphasis on the interaction of dynamical and geochemical models. The lifetime of gas around stars in the process of formation is limited to a few million years based on astronomical observations, while isotopic dating of meteorites and the Earth-Moon system suggest that perhaps 50-100 million years were required for the assembly of the Earth. Therefore, much of the growth of the terrestrial planets in our own system is presumed to have taken place under largely gas-free conditions, and the physics of terrestrial planet formation is dominated by gravitational interactions and collisions. The earliest phase of terrestrial-planet formation involve the growth of km-sized or larger planetesimals from dust grains, followed by the accumulations of these planetesimals into ~100 lunar- to Mars-mass bodies that are initially gravitationally isolated from one-another in a swarm of smaller planetesimals, but eventually grow to the point of sig...

  1. The role of black holes in galaxy formation and evolution.

    Science.gov (United States)

    Cattaneo, A; Faber, S M; Binney, J; Dekel, A; Kormendy, J; Mushotzky, R; Babul, A; Best, P N; Brüggen, M; Fabian, A C; Frenk, C S; Khalatyan, A; Netzer, H; Mahdavi, A; Silk, J; Steinmetz, M; Wisotzki, L

    2009-07-09

    Virtually all massive galaxies, including our own, host central black holes ranging in mass from millions to billions of solar masses. The growth of these black holes releases vast amounts of energy that powers quasars and other weaker active galactic nuclei. A tiny fraction of this energy, if absorbed by the host galaxy, could halt star formation by heating and ejecting ambient gas. A central question in galaxy evolution is the degree to which this process has caused the decline of star formation in large elliptical galaxies, which typically have little cold gas and few young stars, unlike spiral galaxies.

  2. Formation and Evolution of Exoplanets in Different Environments

    Science.gov (United States)

    Adibekyan, V.

    2017-07-01

    The ultimate goal of exoplanetologists is to discover life outside our Earth and to fully understand our place in the Universe. Even though we have never been closer to attaining this goal, we still need to understand how and where the planets (efficiently) form. In this manuscript I briefly discuss the important role of stellar metallicity and chemistry on the formation and evolution of exoplanets.

  3. Dynamical complexity in the perception-based network formation model

    Science.gov (United States)

    Jo, Hang-Hyun; Moon, Eunyoung

    2016-12-01

    Many link formation mechanisms for the evolution of social networks have been successful to reproduce various empirical findings in social networks. However, they have largely ignored the fact that individuals make decisions on whether to create links to other individuals based on cost and benefit of linking, and the fact that individuals may use perception of the network in their decision making. In this paper, we study the evolution of social networks in terms of perception-based strategic link formation. Here each individual has her own perception of the actual network, and uses it to decide whether to create a link to another individual. An individual with the least perception accuracy can benefit from updating her perception using that of the most accurate individual via a new link. This benefit is compared to the cost of linking in decision making. Once a new link is created, it affects the accuracies of other individuals' perceptions, leading to a further evolution of the actual network. As for initial actual networks, we consider both homogeneous and heterogeneous cases. The homogeneous initial actual network is modeled by Erdős-Rényi (ER) random networks, while we take a star network for the heterogeneous case. In any cases, individual perceptions of the actual network are modeled by ER random networks with controllable linking probability. Then the stable link density of the actual network is found to show discontinuous transitions or jumps according to the cost of linking. As the number of jumps is the consequence of the dynamical complexity, we discuss the effect of initial conditions on the number of jumps to find that the dynamical complexity strongly depends on how much individuals initially overestimate or underestimate the link density of the actual network. For the heterogeneous case, the role of the highly connected individual as an information spreader is also discussed.

  4. Evolution of solids in the Jovian subnebula: Implications for the formation of the Galilean satellites

    Science.gov (United States)

    Ronnet, T.; Mousis, O.; Vernazza, P.

    2016-12-01

    The four Galilean satellites are thought to have formed within an accretion disk surrounding Jupiter during the late stages of its formation. Here we investigate the fate of solids of different sizes in the accretion disk. The dynamics of the solids is followed along with their thermodynamic evolution. This allows us to track the water ice-to-rock mass fraction of the planetesimals as they sublimate and lose mass when heated in the disk. We then compare our results to the known bulk composition of the Jovian moons and draw some conclusions as regards their formation.

  5. EVALUATION OF LOCAL STRAIN EVOLUTION FROM METALLIC WHISKER FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, E.; Lam, P.

    2011-05-11

    Evolution of local strain on electrodeposited tin films upon aging has been monitored by digital image correlation (DIC) for the first time. Maps of principal strains adjacent to whisker locations were constructed via comparing pre- and post-growth scanning electron microscopy (SEM) images. Results showed that the magnitude of the strain gradient plays an important role in whisker growth. DIC visualized the dynamic growth process in which the alteration of strain field has been identified to cause growth of subsequent whiskers.

  6. The Dynamics of Coalition Formation on Complex Networks

    Science.gov (United States)

    Auer, S.; Heitzig, J.; Kornek, U.; Schöll, E.; Kurths, J.

    2015-08-01

    Complex networks describe the structure of many socio-economic systems. However, in studies of decision-making processes the evolution of the underlying social relations are disregarded. In this report, we aim to understand the formation of self-organizing domains of cooperation (“coalitions”) on an acquaintance network. We include both the network’s influence on the formation of coalitions and vice versa how the network adapts to the current coalition structure, thus forming a social feedback loop. We increase complexity from simple opinion adaptation processes studied in earlier research to more complex decision-making determined by costs and benefits, and from bilateral to multilateral cooperation. We show how phase transitions emerge from such coevolutionary dynamics, which can be interpreted as processes of great transformations. If the network adaptation rate is high, the social dynamics prevent the formation of a grand coalition and therefore full cooperation. We find some empirical support for our main results: Our model develops a bimodal coalition size distribution over time similar to those found in social structures. Our detection and distinguishing of phase transitions may be exemplary for other models of socio-economic systems with low agent numbers and therefore strong finite-size effects.

  7. Construction of a state evolution for Kawasaki dynamics in continuum

    Science.gov (United States)

    Berns, Christoph; Kondratiev, Yuri; Kutoviy, Oleksandr

    2013-06-01

    We consider conservative, non-equilibrium stochastic jump dynamics of interacting particles in continuum. These dynamics have a (grand canonical) Gibbs measure as invariant measure. The problem of existence of these dynamics is studied. The corresponding time evolution of correlation functions is constructed.

  8. Dynamics of actin evolution in dinoflagellates.

    Science.gov (United States)

    Kim, Sunju; Bachvaroff, Tsvetan R; Handy, Sara M; Delwiche, Charles F

    2011-04-01

    Dinoflagellates have unique nuclei and intriguing genome characteristics with very high DNA content making complete genome sequencing difficult. In dinoflagellates, many genes are found in multicopy gene families, but the processes involved in the establishment and maintenance of these gene families are poorly understood. Understanding the dynamics of gene family evolution in dinoflagellates requires comparisons at different evolutionary scales. Studies of closely related species provide fine-scale information relative to species divergence, whereas comparisons of more distantly related species provides broad context. We selected the actin gene family as a highly expressed conserved gene previously studied in dinoflagellates. Of the 142 sequences determined in this study, 103 were from the two closely related species, Dinophysis acuminata and D. caudata, including full length and partial cDNA sequences as well as partial genomic amplicons. For these two Dinophysis species, at least three types of sequences could be identified. Most copies (79%) were relatively similar and in nucleotide trees, the sequences formed two bushy clades corresponding to the two species. In comparisons within species, only eight to ten nucleotide differences were found between these copies. The two remaining types formed clades containing sequences from both species. One type included the most similar sequences in between-species comparisons with as few as 12 nucleotide differences between species. The second type included the most divergent sequences in comparisons between and within species with up to 93 nucleotide differences between sequences. In all the sequences, most variation occurred in synonymous sites or the 5' UnTranslated Region (UTR), although there was still limited amino acid variation between most sequences. Several potential pseudogenes were found (approximately 10% of all sequences depending on species) with incomplete open reading frames due to frameshifts or early stop

  9. Pore Scale Dynamics of Microemulsion Formation.

    Science.gov (United States)

    Unsal, Evren; Broens, Marc; Armstrong, Ryan T

    2016-07-19

    Experiments in various porous media have shown that multiple parameters come into play when an oleic phase is displaced by an aqueous solution of surfactant. In general, the displacement efficiency is improved when the fluids become quasi-miscible. Understanding the phase behavior oil/water/surfactant systems is important because microemulsion has the ability to generate ultralow interfacial tension (formation and the resulting properties under equilibrium conditions. However, the majority of applications where microemulsion is present also involve flow, which has received relatively less attention. It is commonly assumed that the characteristics of an oil/water/surfactant system under flowing conditions are identical to the one under equilibrium conditions. Here, we show that this is not necessarily the case. We studied the equilibrium phase behavior of a model system consisting of n-decane and an aqueous solution of olefin sulfonate surfactant, which has practical applications for enhanced oil recovery. The salt content of the aqueous solution was varied to provide a range of different microemulsion compositions and oil-water interfacial tensions. We then performed microfluidic flow experiments to study the dynamic in situ formation of microemulsion by coinjecting bulk fluids of n-decane and surfactant solution into a T-junction capillary geometry. A solvatochromatic fluorescent dye was used to obtain spatially resolved compositional information. In this way, we visualized the microemulsion formation and the flow of it along with the excess phases. A complex interaction between the flow patterns and the microemulsion properties was observed. The formation of microemulsion influenced the flow regimes, and the flow regimes affected the characteristics of the microemulsion formation. In particular, at low flow rates, slug flow was observed, which had profound consequences on the pore scale mixing behavior and resulting microemulsion properties.

  10. Eventful Evolution of Giant Molecular Clouds in Dynamically Evolving Spiral Arms

    CERN Document Server

    Baba, Junichi; Saitoh, Takayuki R

    2016-01-01

    The formation and evolution of giant molecular clouds (GMCs) in spiral galaxies have been investigated in the traditional framework of the combined quasi-stationary density wave and galactic shock model. However, our understanding of the dynamics of spiral arms is changing from the traditional spiral model to a dynamically evolving spiral model. In this study, we investigate the structure and evolution of GMCs in a dynamically evolving spiral arm using a three-dimensional N-body/hydrodynamic simulation of a barred spiral galaxy at parsec-scale resolution. This simulation incorporated self-gravity, molecular hydrogen formation, radiative cooling, heating due to interstellar far-ultraviolet radiation, and stellar feedback by both HII regions and Type-II supernovae. In contrast to a simple expectation based on the traditional spiral model, the GMCs exhibited no systematic evolutionary sequence across the spiral arm. Our simulation showed that the GMCs behaved as highly dynamic objects with eventful lives involvi...

  11. Filamentary Star Formation: Observing the Evolution toward Flattened Envelopes

    CERN Document Server

    Lee, Katherine; Johnstone, Doug; Tobin, John

    2012-01-01

    Filamentary structures are ubiquitous from large-scale molecular clouds (few parsecs) to small-scale circumstellar envelopes around Class 0 sources (~1000 AU to ~0.1 pc). In particular, recent observations with the Herschel Space Observatory emphasize the importance of large-scale filaments (few parsecs) and star formation. The small-scale flattened envelopes around Class 0 sources are reminiscent of the large-scale filaments. We propose an observationally derived scenario for filamentary star formation that describes the evolution of filaments as part of the process for formation of cores and circumstellar envelopes. If such a scenario is correct, small-scale filamentary structures (0.1 pc in length) with higher densities embedded in starless cores should exist, although to date almost all the interferometers have failed to observe such structures. We perform synthetic observations of filaments at the prestellar stage by modeling the known Class 0 flattened envelope in L1157 using both the Combined Array for...

  12. Pseudobulge Formation as a Dynamical Rather than a Secular Process

    CERN Document Server

    Guedes, Javiera; Carollo, Marcella; Madau, Piero

    2012-01-01

    We investigate the formation and evolution of the pseudobulge in "Eris", a high-resolution N-body + smoothed particle hydrodynamics (SPH) cosmological simulation that successfully reproduces a Milky Way-like massive late-type spiral in a cold dark matter (LCDM) universe. At the present epoch, Eris has a virial mass Mvir=8x10^11 Msun, a photometric stellar mass M*=3.2x10^10 Msun, a bulge-to-total ratio B/T = 0.26, and a weak nuclear bar. We find that the bulk of the pseudobulge forms quickly at high redshift via a combination of non-axisymmetric disk instabilities and tidal interactions or mergers both occurring on dynamical timescales, not through slow secular processes at lower redshift. Its subsequent evolution is not strictly secular either, and is closely intertwined with the evolution of the stellar bar. In fact, the structure that we recognize as a pseudobulge today evolves from a stellar bar that formed at high redshift, was destroyed by minor mergers at z~3, reformed shortly after, and weakened again ...

  13. Star-planet interactions and dynamical evolution of exoplanetary systems

    Directory of Open Access Journals (Sweden)

    Damiani Cilia

    2015-01-01

    Full Text Available The dynamical evolution of planetary systems, after the evaporation of the accretion disk, is the result of the competition between tidal dissipation and the net angular momentum loss of the system. The description of the diversity of orbital configurations, and correlations between parameters of the observed system (e.g. in the case of hot jupiters, is still limited by our understanding of the transport of angular momentum within the stars, and its effective loss by magnetic braking. After discussing the challenges of modelling tidal evolution for exoplanets, I will review recent results showing the importance of tidal interactions to test models of planetary formation. This kind of studies rely on the determination of stellar radii, masses and ages. Major advances will thus be obtained with the results of the PLATO 2.0 mission, selected as the next M-class mission of ESA’s Cosmic Vision plan, that will allow the complete characterisation of host stars using asteroseismology.

  14. Time dependent couplings in the dark sector: from background evolution to nonlinear structure formation

    CERN Document Server

    Baldi, Marco

    2010-01-01

    We present a complete numerical study of cosmological models with a time dependent coupling between the dark energy component driving the present accelerated expansion of the Universe and the Cold Dark Matter (CDM) fluid. Depending on the functional form of the coupling strength, these models show a range of possible intermediate behaviors between the standard LCDM background evolution and the widely studied case of interacting dark energy models with a constant coupling. These different background evolutions play a crucial role in the growth of cosmic structures, and determine strikingly different effects of the coupling on the internal dynamics of nonlinear objects. By means of a suitable modification of the cosmological N-body code GADGET-2 we have performed a series of high-resolution N-body simulations of structure formation in the context of interacting dark energy models with variable couplings. Depending on the type of background evolution, the halo density profiles are found to be either less or more...

  15. Fluvial transport on Titan: formation and evolution of river deltas

    Science.gov (United States)

    Witek, Piotr Przemyslaw; Czechowski, Leszek

    2016-10-01

    The Cassini-Huygens mission provided numerous observations indicating that processes of sediment transport are currently operating on the surface of Titan. We performed numerical simulations of flow and sediment transport on Titan with particular emphasis on formation of sedimentary landforms in Titan's lakes. We compared the morphology and evolution of landforms formed in Titanian and terrestrial conditions, under various discharges and with different dominant grain sizes. The processes are similar in both environments; in some cases we observed bifurcation of the flow and switching of the active distributaries. Such processes may lead to abandonment of some delta lobes, as hypothesized for the delta observed in Ontario Lacus on Titan. The lower gravity of Titan and higher buoyancy of the most plausible kinds of sediment result in higher efficiency of transport and generally faster evolution of the deltaic deposits. Our results suggest also that the flat, lobate river deltas may form in narrower range of parameters than on Earth.

  16. Formation and evolution of a multi-threaded prominence

    CERN Document Server

    Luna, M; DeVore, C R

    2012-01-01

    We investigate the process of formation and subsequent evolution of prominence plasma in a filament channel and its overlying arcade. We construct a three-dimensional time-dependent model of an intermediate quiescent prominence. We combine the magnetic field structure with one-dimensional independent simulations of many flux tubes, of a three-dimensional sheared double arcade, in which the thermal nonequilibrium process governs the plasma evolution. We have found that the condensations in the corona can be divided into two populations: threads and blobs. Threads are massive condensations that linger in the field line dips. Blobs are ubiquitous small condensations that are produced throughout the filament and overlying arcade magnetic structure, and rapidly fall to the chromosphere. The threads are the principal contributors to the total mass. The total prominence mass is in agreement with observations, assuming a reasonable filling factor. The motion of the threads is basically horizontal, while blobs move in...

  17. Formation and water environmental evolution of the Nansihu Lake

    Institute of Scientific and Technical Information of China (English)

    ZHANGZulu; SHENJi; LIUEnfeng; SUNQingyi; JIANGLuguang

    2003-01-01

    Through high-resolution research of sedimental chronology and the sediment environmental indexes,such as graininess ,minerals,magnetic parameters,pigment content organic carbon and chronology in Ds-core and Ws-core in Nansihu Lake,the authors analyze the formation cause of the Nansihu Lake and its water environmental changes,Historical documents are also analyzed here in order to reach the conclusion .Researches indicate that the Nansihu Lake came into being about 2500 aBP and its evolution succession can be divided into four stages.In this evolution process ,several scattered lakes merge into one large lake in the east of China,This process is distinctively affected by the overflow of the Yellow River,the excavation of the Grand Canal and other human activities.

  18. The Formation and Dynamics of Super-Earth Planets

    CERN Document Server

    Haghighipour, Nader

    2013-01-01

    Super-Earths, objects slightly larger than Earth and slightly smaller than Uranus, have found a special place in exoplanetary science. As a new class of planetary bodies, these objects have challenged models of planet formation at both ends of the spectrum and have triggered a great deal of research on the composition and interior dynamics of rocky planets in connection to their masses and radii. Being relatively easier to detect than an Earth-sized planet at 1 AU around a G star, super-Earths have become the focus of worldwide observational campaigns to search for habitable planets. With a range of masses that allows these objects to retain moderate atmospheres and perhaps even plate tectonics, super-Earths may be habitable if they maintain long-term orbits in the habitable zones of their host stars. Given that in the past two years a few such potentially habitable super-Earths have in fact been discovered, it is necessary to develop a deep understanding of the formation and dynamical evolution of these obje...

  19. The formation and evolution of high-redshift dusty galaxies

    Science.gov (United States)

    Ma, Jingzhe; Gonzalez, Anthony H.; Ge, Jian; Vieira, Joaquin D.; Prochaska, Jason X.; Spilker, Justin; Strandet, Maria; Ashby, Matthew; Noterdaeme, Pasquier; Lundgren, Britt; Zhao, Yinan; Ji, Tuo; Zhang, Shaohua; Caucal, Paul; SPT SMG Collaboration

    2017-01-01

    Star formation and chemical evolution are among the biggest questions in galaxy formation and evolution. High-redshift dusty galaxies are the best sites to investigate mass assembly and growth, star formation rates, star formation history, chemical enrichment, and physical conditions. My thesis is based on two populations of high-redshift dusty galaxies, submillimeter galaxies (SMGs) and quasar 2175 Å dust absorbers, which are selected by dust emission and dust absorption, respectively.For the SMG sample, I have worked on the gravitationally lensed dusty, star-forming galaxies (DSFGs) at 2.8 thesis is focused on the stellar masses and star formation rates of these objects by means of multi-wavelength spectral energy distribution (SED) modelling. The data include HST/WFC3, Spitzer/IRAC, Herschel/PACS, Herschel/SPIRE, APEX/Laboca and SPT. Compared to the star-forming main sequence (MS), these DSFGs have specific SFRs that lie above the MS, suggesting that we are witnessing ongoing strong starburst events that may be driven by major mergers. SPT0346-52 at z = 5.7, the most extraordinary source in the SPT survey for which we obtained Chandra X-ray and ATCA radio data, was confirmed to have the highest star formation surface density of any known galaxy at high-z.The other half of my thesis is focused on a new population of quasar absorption line systems, 2175 Å dust absorbers, which are excellent probes of gas and dust properties, chemical evolution and physical conditions in the absorbing galaxies. This sample was selected from the SDSS and BOSS surveys and followed up with the Echelle Spectrographs and Imager on the Keck-II telescope, the Red & Blue Channel Spectrograph on the Multiple Mirror Telescope, and the Ultraviolet and Visible Echelle Spectrograph onboard the Very Large Telescope. We found a correlation between the presence of the 2175 Å bump and other ingredients including high metallicity, high depletion level, overall low ionization state of gas, neutral

  20. The Formation and Early Evolution of Young Massive Clusters

    CERN Document Server

    Longmore, Steven N; Bastian, Nate; Bally, John; Rathborne, Jill; Testi, Leonardo; Stolte, Andrea; Dale, James; Bressert, Eli; Alves, Joao

    2014-01-01

    We review the formation and early evolution of the most massive and dense young stellar clusters, focusing on the role they can play in our understanding of star and planet formation as a whole. Young massive cluster (YMC) progenitor clouds in the Galactic Center can accumulate to a high enough density without forming stars that the initial protostellar densities are close to the final stellar density. For this to hold in the disk, the time scale to accumulate the gas to such high densities must be much shorter than the star formation timescale. Otherwise the gas begins forming stars while it is being accumulated to high density. The distinction between the formation regimes in the two environments is consistent with the predictions of environmentally-dependent density thresholds for star formation. This implies that stars in YMCs of similar total mass and radius can have formed at widely different initial protostellar densities. The fact that no systematic variations in fundamental properties are observed be...

  1. Event Normalization Through Dynamic Log Format Detection

    Institute of Scientific and Technical Information of China (English)

    Christoph Meinel

    2014-01-01

    The analytical and monitoring capabilities of central event re-positories, such as log servers and intrusion detection sys-tems, are limited by the amount of structured information ex-tracted from the events they receive. Diverse networks and ap-plications log their events in many different formats, and this makes it difficult to identify the type of logs being received by the central repository. The way events are logged by IT systems is problematic for developers of host-based intrusion-detection systems (specifically, host-based systems), develop-ers of security-information systems, and developers of event-management systems. These problems preclude the develop-ment of more accurate, intrusive security solutions that obtain results from data included in the logs being processed. We propose a new method for dynamically normalizing events into a unified super-event that is loosely based on the Common Event Expression standard developed by Mitre Corporation. We explain how our solution can normalize seemingly unrelat-ed events into a single, unified format.

  2. The eastern Central Asian Orogenic Belt: formation and evolution

    Science.gov (United States)

    Xu, Bei; Xu, Wenliang

    2017-08-01

    The Central Asian Orogenic Belt (CAOB) extends from the northern Eurasian continent in the west via Mongolia, Inner Mongolia and northeast part of China to the Russia Far East in the east. It is characterized by complex trench-arc-basin subduction system, exotic terrane (microcontinents) accretion, massive generation of juvenile crust during the Neoproterozoic-Phanerozoic (e.g., Jahn et al., 2000, 2004; Sengör et al., 1993). A lot of papers about formation and evolution of the CAOB have been published and new field observations and geochemical data for key areas of the CAOB challenge to previous assessments. Several areas previously defined as juvenile are now shown to have mixed crustal compositions. For example, Kröner et al. (2014, in press) estimated that the distribution of various crustal provinces is truly juvenile crustal material ca. 20%, mixed crust ca. 30%, old crust ca. 50%,respectively, in the CAOB, similar to those in other accretionary orogens through Earth history. A two-stage model for the evolution of the CAOB has been suggested based on recent data from the Eastern Tianshan and Beishan (Gao et al., 2011; Su et al., 2011; Chen et al., 2016; Wang et al., 2017), which suggests the process of the formation and evolution of the CAOB includes closure of the Paleo Asian ocean (PAO), formation of orogenic belt before the late Paleozoic and crustal extension and magmatism resulted from plume upon the young orogenic belt after the late Paleozoic. This new model changes previous concept that the CAOB developed through the Paleozoic and is supported by recent researches on the eastern CAOB.

  3. Thermal simulation of the formation and evolution of coalbed gas

    Institute of Scientific and Technical Information of China (English)

    DUAN Yi; WU Baoxiang; ZHENG Chaoyang; WANG Chuanyuan

    2005-01-01

    Thermal simulation experiment of gas generation from the peat and the coals were performed using the high temperature and pressure apparatus, at temperature ranging from 336.8-600℃, a pressure of 50MPa and two heating rates of 20℃/h and 2℃/h, and the evolution and formation of coalbed gas components were studied. Results show that for the coals, the gaseous products are mainly composed of hydrocarbon gases. However, for the peat the content of hydrocarbon gases in gaseous products is lower than that of non-hydrocarbon components. In the generated hydrocarbon gases methane is predominant and heavy hydrocarbon gases (C2-5) are present in small amount.Meanwhile, carbon dioxide (CO2) predominates the generated non-hydrocarbon gases, and hydrogen (H2) and sulfurated hydrogen (H2S) are existent in trace amount. It is also observed that temperature is the main factor controlling the evolution of coalbed gas generation. With increasing vitrinite reflectance, methane rapidly increases, CO2 sightly increases, and C2-5 hydrocarbons first increase and then decrease. The peat and Shanxi formation coal have a higher generative potential of coalbed gases than coals and Taiyuan formation coal, respectively, reflecting the effect of the property of organic matter on the characteristics of coalbed gas component generation. In this study, it is found that low heating rate is favorable for the generation of methane, H2and CO2, and the decomposition of C2-5 hydrocarbons. This shows that heating time plays an important controlling role in the generation and evolution of coalbed gases. The results obtained from the simulation experiment in the study of coalbed gases in natural system are also discussed.

  4. Dynamical Evolution of the Earth-Moon Progenitors - Whence Theia?

    CERN Document Server

    Quarles, Billy

    2014-01-01

    We present integrations of a model Solar System with five terrestrial planets (beginning ~30-50 Myr after the formation of primitive Solar System bodies) in order to determine the preferred regions of parameter space leading to a giant impact that resulted in the formation of the Moon. Our results indicate which choices of semimajor axes and eccentricities for Theia (the proto-Moon) at this epoch can produce a late Giant Impact, assuming that Mercury, Venus, and Mars are near the current orbits. We find that the likely semimajor axis of Theia, at the epoch when our simulations begin, depends on the assumed mass ratio of Earth-Moon progenitors (8/1, 4/1, or 1/1). The low eccentricities of the terrestrial planets are most commonly produced when the progenitors have similar semimajor axes at the epoch when our integrations commence. Additionally, we show that mean motion resonances among the terrestrial planets and perturbations from the giant planets can affect the dynamical evolution of the system leading to a...

  5. Dynamical evolution of high velocity clouds in the intergalactic medium

    CERN Document Server

    Konz, C; Birk, G T

    2002-01-01

    HI observations of high-velocity clouds (HVCs) indicate, that they are interacting with their ambient medium. Even clouds located in the very outer Galactic halo or the intergalactic space seem to interact with their ambient medium. In this paper, we investigate the dynamical evolution of high velocity neutral gas clouds moving through a hot magnetized ambient plasma by means of two-dimensional magnetohydrodynamic plasma-neutral gas simulations. This situation is representative for the fast moving dense neutral gas cloudlets in the Magellanic Stream as well as for high velocity clouds in general. The question on the dynamical and thermal stabilization of a cold dense neutral cloud in a hot thin ambient halo plasma is numerically investigated. The simulations show the formation of a comet-like head-tail structure combined with a magnetic barrier of increased field strength which exerts a stabilizing pressure on the cloud and hinders hot plasma from diffusing into the cloud. The simulations can explain both the...

  6. Phylogenomics and the dynamic genome evolution of the genus Streptococcus.

    Science.gov (United States)

    Richards, Vincent P; Palmer, Sara R; Pavinski Bitar, Paulina D; Qin, Xiang; Weinstock, George M; Highlander, Sarah K; Town, Christopher D; Burne, Robert A; Stanhope, Michael J

    2014-04-01

    The genus Streptococcus comprises important pathogens that have a severe impact on human health and are responsible for substantial economic losses to agriculture. Here, we utilize 46 Streptococcus genome sequences (44 species), including eight species sequenced here, to provide the first genomic level insight into the evolutionary history and genetic basis underlying the functional diversity of all major groups of this genus. Gene gain/loss analysis revealed a dynamic pattern of genome evolution characterized by an initial period of gene gain followed by a period of loss, as the major groups within the genus diversified. This was followed by a period of genome expansion associated with the origins of the present extant species. The pattern is concordant with an emerging view that genomes evolve through a dynamic process of expansion and streamlining. A large proportion of the pan-genome has experienced lateral gene transfer (LGT) with causative factors, such as relatedness and shared environment, operating over different evolutionary scales. Multiple gene ontology terms were significantly enriched for each group, and mapping terms onto the phylogeny showed that those corresponding to genes born on branches leading to the major groups represented approximately one-fifth of those enriched. Furthermore, despite the extensive LGT, several biochemical characteristics have been retained since group formation, suggesting genomic cohesiveness through time, and that these characteristics may be fundamental to each group. For example, proteolysis: mitis group; urea metabolism: salivarius group; carbohydrate metabolism: pyogenic group; and transcription regulation: bovis group.

  7. Phylogenomics and the Dynamic Genome Evolution of the Genus Streptococcus

    Science.gov (United States)

    Richards, Vincent P.; Palmer, Sara R.; Pavinski Bitar, Paulina D.; Qin, Xiang; Weinstock, George M.; Highlander, Sarah K.; Town, Christopher D.; Burne, Robert A.; Stanhope, Michael J.

    2014-01-01

    The genus Streptococcus comprises important pathogens that have a severe impact on human health and are responsible for substantial economic losses to agriculture. Here, we utilize 46 Streptococcus genome sequences (44 species), including eight species sequenced here, to provide the first genomic level insight into the evolutionary history and genetic basis underlying the functional diversity of all major groups of this genus. Gene gain/loss analysis revealed a dynamic pattern of genome evolution characterized by an initial period of gene gain followed by a period of loss, as the major groups within the genus diversified. This was followed by a period of genome expansion associated with the origins of the present extant species. The pattern is concordant with an emerging view that genomes evolve through a dynamic process of expansion and streamlining. A large proportion of the pan-genome has experienced lateral gene transfer (LGT) with causative factors, such as relatedness and shared environment, operating over different evolutionary scales. Multiple gene ontology terms were significantly enriched for each group, and mapping terms onto the phylogeny showed that those corresponding to genes born on branches leading to the major groups represented approximately one-fifth of those enriched. Furthermore, despite the extensive LGT, several biochemical characteristics have been retained since group formation, suggesting genomic cohesiveness through time, and that these characteristics may be fundamental to each group. For example, proteolysis: mitis group; urea metabolism: salivarius group; carbohydrate metabolism: pyogenic group; and transcription regulation: bovis group. PMID:24625962

  8. Mercury's Thermal Evolution, Dynamical Topography and Geoid

    Science.gov (United States)

    Ziethe, Ruth; Benkhoff, Johannes

    stagnant lid comprises roughly half the mantle after only 0.5Ga. Since the rigid lithosphere does not take part in the convection anymore, the heat coming from the interior (due to the cooling of the large core) can only be transported through the lithosphere by thermal conduction. This is a significantly less effective mechanism of heat transport than convection and hence the lithosphere forms an insulating layer. As a result, the interior is kept relatively warm.Because the mantle is relatively shallow compared to the planet's radius, and additionally the thick stagnant lid is formed relatively rapid, the convection is confined to a layer of only about 200km to 300km. Convection structures are therefore relatively small structured. The flow patterns in the early evolution show that mantle convection is characterized by numerous upwelling plumes, which are fed by the heat flow from the cooling core. These upwellings are relatively stable regarding their spatial position. As the core cools down the temperature anomalies become colder and less pronounced but not less numerous. In our calculations, a region of partial melt in the mantle forms immediately after the start of the model at a depths of roughly 220km. While in the entire lower mantle the temperature exceeds the solidus, the highest melt degrees can be found in the upwelling plumes. The partial molten region persists a significant time (up to 2.5Ga). How long the partial molten zone actually survives depends strongly on the initial conditions of the model. For instance, an outer layer with a reduced thermal conductivity would keep the lower mantle significantly warmer and a molten layer survives longer. The hot upwellings cause a surface deformation (dynamical topography) which itself causes a gravity anomaly. Due to the weak constraints of important parameters (e.g. sulfur content of the core, mantle rheology, amount and distribution of radiogenic heat sources, planetary contraction, thermal conductivity, etc

  9. Core formation, evolution, and convection - A geophysical model

    Science.gov (United States)

    Ruff, L.; Anderson, D. L.

    1980-01-01

    A model for the formation and evolution of the earth's core, which provides an adequate energy source for maintaining the geodynamo, is proposed. A modified inhomogeneous accretion model is proposed which leads to initial iron and refractory enrichment at the center of the planet. The probable heat source for melting of the core is the decay of Al-26. The refractory material is emplaced irregularly in the lowermost mantle with uranium and thorium serving as a long-lived heat source. Fluid motions in the core are driven by the differential heating from above and the resulting cyclonic motions may be the source of the geodynamo.

  10. Core formation, evolution, and convection: A geophysical model

    Science.gov (United States)

    Ruff, L.; Anderson, D. L.

    1978-01-01

    A model is proposed for the formation and evolution of the Earth's core which provides an adequate energy source for maintaining the geodynamo. A modified inhomogeneous accretion model is proposed which leads to initial iron and refractory enrichment at the center of the planet. The probable heat source for melting of the core is the decay of Al. The refractory material is emplaced irregularly in the lowermost mantle with uranium and thorium serving as a long lived heat source. Fluid motions in the core are driven by the differential heating from above and the resulting cyclonic motions may be the source of the geodynamo.

  11. Galactic evolution. I - Single-zone models. [encompassing stellar evolution and gas-star dynamic theories

    Science.gov (United States)

    Thuan, T. X.; Hart, M. H.; Ostriker, J. P.

    1975-01-01

    The two basic approaches of physical theory required to calculate the evolution of a galactic system are considered, taking into account stellar evolution theory and the dynamics of a gas-star system. Attention is given to intrinsic (stellar) physics, extrinsic (dynamical) physics, and computations concerning the fractionation of an initial mass of gas into stars. The characteristics of a 'standard' model and its variants are discussed along with the results obtained with the aid of these models.

  12. Formation, Evolution and Properties of Isolated Field Elliptical Galaxies

    CERN Document Server

    Niemi, Sami-Matias; Nurmi, Pasi; Saar, Enn

    2010-01-01

    [Abridged] We study the properties, evolution and formation mechanisms of isolated field elliptical galaxies. We create a mock catalogue of isolated field elliptical galaxies from the Millennium Simulation Galaxy Catalogue, and trace their merging histories. The formation, identity and assembly redshifts of simulated isolated and non-isolated elliptical galaxies are studied and compared. Observational and numerical data are used to compare age, mass, and the colour-magnitude relation. Our results, based on simulation data, show that almost seven per cent of all elliptical galaxies brighter than -19mag in B-band can be classified as isolated field elliptical galaxies. Isolated field elliptical galaxies show bluer colours than non-isolated elliptical galaxies and they appear younger, in a statistical sense, according to their mass weighted age. Isolated field elliptical galaxies also form and assemble at lower redshifts compared to non-isolated elliptical galaxies. About 46 per cent of isolated field elliptical...

  13. Functional evolutions for homogeneous stationary death-immigration spatial dynamics

    CERN Document Server

    Finkelshtein, Dmitri

    2011-01-01

    We discover death-immigration non-equilibrium stochastic dynamics in the continuum also known as the Surgailis process. Explicit expression for the correlation functions is presented. Dynamics of states and their generating functionals are studied. Ergodic properties for the evolutions are considered.

  14. The initiation, temporal evolution and dynamics of deep mantle heterogeneities

    Science.gov (United States)

    Bull-Aller, Abigail; Torsvik, Trond; Domeier, Mathew; Doubrovine, Pavel

    2013-04-01

    Understanding the first-order dynamical structure and temporal evolution of Earth's mantle is a fundamental goal in solid-earth geophysics. Recent tomographic observations reveal a lower mantle characterised by higher-than-average shear-wave speeds beneath Asia and encircling the Pacific, consistent with cold slabs of descending lithosphere beneath regions of ancient subduction, and lower-than-average shear-wave speeds in broad regional areas beneath Africa and the Central Pacific (LLSVPs). The LLSVPs, although not as easily understood from a dynamical perspective, are inferred to be broad upwelling centres between Mesozoic and Cenozoic subduction zones. Heterogeneous mantle models place these anomalies into the context of thermochemical piles, characterised by an anomalously dense component, with their location and geometry being controlled by the movement of subducting slabs. The origin and temporal evolution of the LLSVPs remain enigmatic. Recent numerical studies propose that the LLSVP beneath Africa formed as a result of return flow in the mantle due to circum-Pacific subduction beneath the Pangean supercontinent. This suggests that prior to the formation of Pangea, the lower mantle was dominated by a degree-1 convection pattern, with a major upwelling centred close to the present-day Pacific LLSVP and subduction concentrated in the antipodal hemisphere. The African LLSVP would thus have developed within the time frame of the Pangean supercontinent (i.e., 300Ma-180Ma), in contrast to a much older Pacific LLSVP. It is further proposed that a cyclic alternation between a degree-1 pattern and a degree-2 pattern of mantle convection may accompany the supercontinent cycle and characterise the temporal convective evolution of Earth's mantle. In contrast, a more long-term persistence for both the African and Pacific LLSVPs, and thus for the planform of mantle convection within the Earth as a whole, is suggested by recent palaeomagnetic studies, which show that over

  15. The statistical dynamics of epochal evolution

    OpenAIRE

    Nimwegen, Erik Jan van

    2001-01-01

    In this thesis, a new mathematical formalism for analyzing evolutionary dynamics is developed. This formalism combines ideas and methods from statistical mechanics, mathematical population genetics, and dynamical systems theory to describe the dynamics of evolving populations. In particular, the work shows how the maximum entropy formalism of statistical mechanics can be extended to apply to simple evolutionary systems, such that "macroscopic" equations of motion can be constructed from an un...

  16. Characterization of exoplanets from their formation I: Models of combined planet formation and evolution

    CERN Document Server

    Mordasini, C; Klahr, H; Henning, T

    2012-01-01

    A first characterization of many exoplanets has recently been achieved by the observational determination of their radius. For some planets, a measurement of the luminosity has also been possible, with many more directly imaged planets expected in the future. The statistical characterization of exoplanets through their mass-radius and mass-luminosity diagram is thus becoming possible. This is for planet formation and evolution theory of similar importance as the mass-distance diagram. Our aim in this and a companion paper is to extend our formation model into a coupled formation and evolution model. We want to calculate in a self-consistent way all basic characteristics (M,a,R,L) of a planet and use the model for population synthesis calculations. Here we show how we solve the structure equations describing the gaseous envelope not only during the early formation phase, but also during gas runaway accretion, and during the evolutionary phase at constant mass on Gyr timescales. We then study the in situ format...

  17. Subsystem's dynamics under random Hamiltonian evolution

    CERN Document Server

    Vinayak,

    2011-01-01

    We study time evolution of a subsystem's density matrix under a unitary evolution, generated by a sufficiently complex, say quantum chaotic, Hamiltonian. We exactly calculate all coherences, purity and fluctuations. The reduced density matrix is described in terms of a noncentral correlated Wishart ensemble. Our description accounts for a transition from an arbitrary initial state towards a random state at large times, enabling us to determine the convergence time after which random states are reached. We identify and describe a number of other interesting features, like a series of collisions between the largest eigenvalue and the bulk, accompanied by a phase transition in its distribution function.

  18. On learning dynamics underlying the evolution of learning rules.

    OpenAIRE

    Dridi, S; Lehmann, L.

    2014-01-01

    In order to understand the development of non-genetically encoded actions during an animal's lifespan, it is necessary to analyze the dynamics and evolution of learning rules producing behavior. Owing to the intrinsic stochastic and frequency-dependent nature of learning dynamics, these rules are often studied in evolutionary biology via agent-based computer simulations. In this paper, we show that stochastic approximation theory can help to qualitatively understand learning dynamics and form...

  19. Dynamic Evolution Equations for Isolated Smoke Vortexes in Rational Mechanics

    OpenAIRE

    2011-01-01

    Smoke circle vortexes are a typical dynamic phenomenon in nature. The similar circle vortexes phenomenon appears in hurricane, turbulence, and many others. A semi-empirical method is constructed to get some intrinsic understanding about such circle vortex structures. Firstly, the geometrical motion equations for smoke circle is formulated based on empirical observations. Based on them, the mechanic dynamic motion equations are established. Finally, the general dynamic evolution equations for ...

  20. Predicting the evolution of complex networks via similarity dynamics

    Science.gov (United States)

    Wu, Tao; Chen, Leiting; Zhong, Linfeng; Xian, Xingping

    2017-01-01

    Almost all real-world networks are subject to constant evolution, and plenty of them have been investigated empirically to uncover the underlying evolution mechanism. However, the evolution prediction of dynamic networks still remains a challenging problem. The crux of this matter is to estimate the future network links of dynamic networks. This paper studies the evolution prediction of dynamic networks with link prediction paradigm. To estimate the likelihood of the existence of links more accurate, an effective and robust similarity index is presented by exploiting network structure adaptively. Moreover, most of the existing link prediction methods do not make a clear distinction between future links and missing links. In order to predict the future links, the networks are regarded as dynamic systems in this paper, and a similarity updating method, spatial-temporal position drift model, is developed to simulate the evolutionary dynamics of node similarity. Then the updated similarities are used as input information for the future links' likelihood estimation. Extensive experiments on real-world networks suggest that the proposed similarity index performs better than baseline methods and the position drift model performs well for evolution prediction in real-world evolving networks.

  1. Evolution of Acid Mine Drainage Formation in Sulphidic Mine Tailings

    Directory of Open Access Journals (Sweden)

    Bernhard Dold

    2014-07-01

    Full Text Available Sulphidic mine tailings are among the largest mining wastes on Earth and are prone to produce acid mine drainage (AMD. The formation of AMD is a sequence of complex biogeochemical and mineral dissolution processes. It can be classified in three main steps occurring from the operational phase of a tailings impoundment until the final appearance of AMD after operations ceased: (1 During the operational phase of a tailings impoundment the pH-Eh regime is normally alkaline to neutral and reducing (water-saturated. Associated environmental problems include the presence of high sulphate concentrations due to dissolution of gypsum-anhydrite, and/or effluents enriched in elements such as Mo and As, which desorbed from primary ferric hydroxides during the alkaline flotation process. (2 Once mining-related operations of the tailings impoundment has ceased, sulphide oxidation starts, resulting in the formation of an acidic oxidation zone and a ferrous iron-rich plume below the oxidation front, that re-oxidises once it surfaces, producing the first visible sign of AMD, i.e., the precipitation of ferrihydrite and concomitant acidification. (3 Consumption of the (reactive neutralization potential of the gangue minerals and subsequent outflow of acidic, heavy metal-rich leachates from the tailings is the final step in the evolution of an AMD system. The formation of multi-colour efflorescent salts can be a visible sign of this stage.

  2. Area evolution, bulk viscosity and entropy principles for dynamical horizons

    CERN Document Server

    Gourgoulhon, E; Gourgoulhon, Eric; Jaramillo, Jose Luis

    2006-01-01

    We derive from Einstein equation an evolution law for the area of a trapping or dynamical horizon. The solutions to this differential equation show a causal behavior. Moreover, in a viscous fluid analogy, the equation can be interpreted as an energy balance law, yielding to a positive bulk viscosity. These two features contrast with the event horizon case, where the non-causal evolution of the area and the negative bulk viscosity require teleological boundary conditions. This reflects the local character of trapping horizons as opposed to event horizons. Interpreting the area as the entropy, we propose to use an area/entropy evolution principle to select a unique dynamical horizon and time slicing in the Cauchy evolution of an initial marginally trapped surface.

  3. Formation and evolution of the Chinese marine basins

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    There are plenty of petroleum resources in the Chinese marine basins, which will be the potential exploration regions of petroleum in the 21 st century. The formation and evolution of the Chinese marine basins have mainly undergone two major tectonic epochs and five tectonic evolution stages. The first major tectonic epoch is the early Paleozoic plate divergence and drifting epoch during which the marine basins were formed, and the second one is the late Paleozoic plate convergence and collision epoch during which the pre-existent marine basins were superimposed and modified. The five tectonic northward collage and convergence of continental plates and the development of the paralic sedimencollage and the superimposition of lacustrine basins controlled by the inland subsidence during Late erosion or breakage of marine basins influenced by the plate tectonic activities of Neo-Tethys Ocean sion and basin-range coupling in the margin of the marine basins caused by the collision between India and Eurasia Plates and its long-distance effect since Neocene. The process of the tectonic evolution has controlled the petroleum geologic characteristics of Chinese marine basins, and a material foundation for the formation of oil and gas reservoirs has been built up via the formation of Paleozoic marine basins, and the Mesozoic-Cenozoic tectonic superimposition and modification have controlled the key conditions of hydrocarbon accumulation and preservation. From the Late Proterozoic to the Early Paleozoic, the stratigraphic sequences of the deep-water shale and continental margin marine carbonate rocks in the ancient plate floating in the oceans have developed high-quality marine source rocks and reef-shoal reservoirs. In Late Paleozoic, the crustal plates converged and uplifted into continent and the paleouplifts in the intra-cratonic basins have become good reservoirs of hydrocarbon migration and accumulation, and paralic coal beds have formed regional cap rocks. The Mesozoic

  4. Dynamical Evolution of Modified Chaplygin Gas

    Institute of Scientific and Technical Information of China (English)

    FU Ming-Hui; WU Ya-Bo; HE Jing

    2008-01-01

    Based our previous work [Mod.Phys.Lett.A 22 (2007) 783,Gen.Relat.Grav.39 (2007) 653],some properties of modified Chaplygin gas (MCG) as a dark energy model continue to be studied mainly in two aspects: one is the change rates of the energy density and energy transfer,and the other is the evolution of the growth index.It is pointed that the density of dark energy undergoes the change from decrease to increase no matter whether the interaction between dark energy and dark matter exists or not,but the corresponding transformation points are different from each other.Furthermore,it is stressed that the MCG model even supports the existence of interaction between dark energy and dark matter,and the energy of transfer flows from dark energy to dark matter.The evolution of the interaction term with an ansatz 3Hc2p is discussed with the MCG model.Moreover,the evolution of the growth index f in the MCG model without interaction is illustrated,from which we find that the evolutionary trajectory of f overlaps with that of the ACDM model when α> 0.7 and its theoretical value f≈0.566 given by us at z=0.15 is consistent with the observations.

  5. Dynamics of alliance formation and the egalitarian revolution.

    Directory of Open Access Journals (Sweden)

    Sergey Gavrilets

    Full Text Available BACKGROUND: Arguably the most influential force in human history is the formation of social coalitions and alliances (i.e., long-lasting coalitions and their impact on individual power. Understanding the dynamics of alliance formation and its consequences for biological, social, and cultural evolution is a formidable theoretical challenge. In most great ape species, coalitions occur at individual and group levels and among both kin and non-kin. Nonetheless, ape societies remain essentially hierarchical, and coalitions rarely weaken social inequality. In contrast, human hunter-gatherers show a remarkable tendency to egalitarianism, and human coalitions and alliances occur not only among individuals and groups, but also among groups of groups. These observations suggest that the evolutionary dynamics of human coalitions can only be understood in the context of social networks and cognitive evolution. METHODOLOGY/PRINCIPAL FINDINGS: Here, we develop a stochastic model describing the emergence of networks of allies resulting from within-group competition for status or mates between individuals utilizing dyadic information. The model shows that alliances often emerge in a phase transition-like fashion if the group size, awareness, aggressiveness, and persuasiveness of individuals are large and the decay rate of individual affinities is small. With cultural inheritance of social networks, a single leveling alliance including all group members can emerge in several generations. CONCLUSIONS/SIGNIFICANCE: We propose a simple and flexible theoretical approach for studying the dynamics of alliance emergence applicable where game-theoretic methods are not practical. Our approach is both scalable and expandable. It is scalable in that it can be generalized to larger groups, or groups of groups. It is expandable in that it allows for inclusion of additional factors such as behavioral, genetic, social, and cultural features. Our results suggest that a rapid

  6. Star formation in isolated AMIGA galaxies: dynamical influence of bars

    CERN Document Server

    Verley, S; Verdes-Montenegro, L; Bergond, G; Leon, S

    2007-01-01

    Star formation depends strongly both on the local environment of galaxies, and on the internal dynamics of the interstellar medium. To disentangle the two effects, we obtained, in the framework of the AMIGA project, Ha and Gunn r photometric data for more than 200 spiral galaxies lying in very low-density regions of the local Universe. We characterise the Ha emission, tracing current star formation, of the 45 largest and less inclined galaxies observed for which we estimate the torques between the gas and the bulk of the optical matter. We could subsequently study the Ha morphological aspect of these isolated spiral galaxies. Using Fourier analysis, we focus on the modes of the spiral arms and also on the strength of the bars, computing the torques between the gas and newly formed stars (Ha) and the bulk of the optical matter (Gunn r). We interpret the various bar/spiral morphologies observed in terms of the secular evolution experienced by galaxies in isolation. We also classify the different spatial distrib...

  7. METALS IN THE ICM: WITNESSES OF CLUSTER FORMATION AND EVOLUTION

    Directory of Open Access Journals (Sweden)

    Lorenzo Lovisari

    2013-12-01

    Full Text Available The baryonic composition of galaxy clusters and groups is dominated by a hot, X-ray emitting Intra-Cluster Medium (ICM. The mean metallicity of the ICM has been found to be roughly 0.3 ÷ 0.5 times the solar value, therefore a large fraction of this gas cannot be of purely primordial origin. Indeed, the distribution and amount of metals in the ICM is a direct consequence of the past history of star formation in the cluster galaxies and of the processes responsible for the injection of enriched material into the ICM. We here shortly summarize the current views on the chemical enrichment, focusing on the observational evidence in terms of metallicity measurements in clusters, spatial metallicity distribution and evolution, and expectations from future missions.

  8. FILAMENTARY STAR FORMATION: OBSERVING THE EVOLUTION TOWARD FLATTENED ENVELOPES

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Katherine; Looney, Leslie [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green St, Urbana, IL 61801 (United States); Johnstone, Doug [Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, STN CSC, Victoria, BC V8W 3P6 (Canada); Tobin, John, E-mail: ijlee9@illinois.edu, E-mail: lwl@illinois.edu, E-mail: Douglas.Johnstone@nrc-cnrc.gc.ca, E-mail: jtobin@nrao.edu [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States)

    2012-12-20

    Filamentary structures are ubiquitous from large-scale molecular clouds (a few parsecs) to small-scale circumstellar envelopes around Class 0 sources ({approx}1000 AU to {approx}0.1 pc). In particular, recent observations with the Herschel Space Observatory emphasize the importance of large-scale filaments (a few parsecs) and star formation. The small-scale flattened envelopes around Class 0 sources are reminiscent of the large-scale filaments. We propose an observationally derived scenario for filamentary star formation that describes the evolution of filaments as part of the process for formation of cores and circumstellar envelopes. If such a scenario is correct, small-scale filamentary structures (0.1 pc in length) with higher densities embedded in starless cores should exist, although to date almost all the interferometers have failed to observe such structures. We perform synthetic observations of filaments at the prestellar stage by modeling the known Class 0 flattened envelope in L1157 using both the Combined Array for Research in Millimeter-wave Astronomy (CARMA) and the Atacama Large Millimeter/Submillimeter Array (ALMA). We show that with reasonable estimates for the column density through the flattened envelope, the CARMA D array at 3 mm wavelengths is not able to detect such filamentary structure, so previous studies would not have detected them. However, the substructures may be detected with the CARMA D+E array at 3 mm and the CARMA E array at 1 mm as a result of more appropriate resolution and sensitivity. ALMA is also capable of detecting the substructures and showing the structures in detail compared to the CARMA results with its unprecedented sensitivity. Such detection will confirm the new proposed paradigm of non-spherical star formation.

  9. Dynamic landscapes: a model of context and contingency in evolution.

    Science.gov (United States)

    Foster, David V; Rorick, Mary M; Gesell, Tanja; Feeney, Laura M; Foster, Jacob G

    2013-10-01

    Although the basic mechanics of evolution have been understood since Darwin, debate continues over whether macroevolutionary phenomena are driven by the fitness structure of genotype space or by ecological interaction. In this paper we propose a simple model capturing key features of fitness-landscape and ecological models of evolution. Our model describes evolutionary dynamics in a high-dimensional, structured genotype space with interspecies interaction. We find promising qualitative similarity with the empirical facts about macroevolution, including broadly distributed extinction sizes and realistic exploration of the genotype space. The abstraction of our model permits numerous applications beyond macroevolution, including protein and RNA evolution.

  10. Codification dynamics and R&D subsidiary evolution

    DEFF Research Database (Denmark)

    Søberg, Peder Veng

    2010-01-01

    The paper contributes to the subsidiary evolution literature by providing new evidence of location quality in emerging markets, as well as it opens the “black box” of industry effects on subsidiary evolution. The paper illustrates that industrial characteristics are likely to influence subsidiary...... evolution within newly established foreign invested R&D units in emerging markets. The findings of the paper further suggest that dynamics, at company and industry level, which nurtures codification of innovation related knowledge, make it easier for foreign invested R&D subsidiaries in distant emerging...... markets to develop capabilities - and gain charters....

  11. Star Formation and Stellar Evolution: Future Surveys and Instrumentation

    Science.gov (United States)

    Evans, C. J.

    2016-10-01

    The next generation of multi-object spectrographs (MOS) will deliver comprehensive surveys of the Galaxy, Magellanic Clouds and nearby dwarfs. These will provide us with the vast samples, spanning the full extent of the Hertzsprung-Russell diagram, that are needed to explore the chemistry, history and dynamics of their host systems. Further ahead, the Extremely Large Telescopes (ELTs) will have sufficient sensitivity and angular resolution to extend stellar spectroscopy well beyond the Local Group, opening-up studies of the chemical evolution of galaxies across a broad range of galaxy types and environments. In this contribution I briefly reflect on current and future studies of stellar populations, and introduce plans for the MOSAIC instrument for the European ELT.

  12. The evolution of star formation activity in galaxy groups

    CERN Document Server

    Erfanianfar, G; Finoguenov, A; Wuyts, S; Wilman, D; Biviano, A; Ziparo, F; Salvato, M; Nandra, K; Lutz, D; Elbaz, D; Dickinson, M; Tanaka, M; Mirkazemi, M; Balogh, M L; Altieri, M B; Aussel, H; Bauer, F; Berta, S; Bielby, R M; Brandt, N; Cappelluti, N; Cimatti, A; Cooper, M; Fadda, D; Ilbert, O; Floch, E Le; Magnelli, B; Mulchaey, J S; Nordon, R; Newman, J A; Poglitsch, A; Pozzi, F

    2014-01-01

    We study the evolution of the total star formation (SF) activity, total stellar mass and halo occupation distribution in massive halos by using one of the largest X-ray selected sample of galaxy groups with secure spectroscopic identification in the major blank field surveys (ECDFS, CDFN, COSMOS, AEGIS). We provide an accurate measurement of SFR for the bulk of the star-forming galaxies using very deep mid-infrared Spitzer MIPS and far-infrared Herschel PACS observations. For undetected IR sources, we provide a well-calibrated SFR from SED fitting. We observe a clear evolution in the level of SF activity in galaxy groups. The total SF activity in the high redshift groups (0.5

  13. Evolution of Gas Giant Entropy During Formation by Runaway Accretion

    CERN Document Server

    Berardo, David; Marleau, Gabriel-Dominique

    2016-01-01

    We calculate the evolution of gas giant planets during the runaway gas accretion phase of formation, to understand how the luminosity of young giant planets depends on the accretion conditions. We construct steady-state envelope models, and run time-dependent simulations of accreting planets with the Modules for Experiments in Stellar Astrophysics (MESA) code. We show that the evolution of the internal entropy depends on the contrast between the internal adiabat and the entropy of the accreted material, parametrized by the shock temperature $T_0$ and pressure $P_0$. At low temperatures ($T_0\\lesssim 300$--$1000\\ {\\rm K}$, depending on model parameters), the accreted material has a lower entropy than the interior. The convection zone extends to the surface and can drive a large luminosity, leading to rapid cooling and cold starts. For higher temperatures, the accreted material has a larger entropy than the interior, giving a radiative zone that stalls cooling. For $T_0\\gtrsim 2000\\ {\\rm K}$, the surface--inter...

  14. Thermal Evolution And Core Formation In Planetesimals And Planetary Embryos

    Science.gov (United States)

    Sramek, O.; Labrosse, S.; Ricard, Y. R.; milelli, L.

    2011-12-01

    Recent dating of iron meteorites shows that they were formed almost as early as the oldest known objects of the solar system, the CAIs. Moreover, several meteorites show a magnetization that is thought to originate from the action of a dynamo at the early stages of the planetesimals evolution. Core formation requires melting of the metal which then can percolate toward the center, providing the solid matrix deforms and compacts. The energy source for melting of the metal comes from a combination of short lived radionuclides, mostly 26Al, and accretion energy for bodies larger than about 1000 km. We considered a suite of numerical calculations solving for the coupled problem of thermal evolution, melt percolation and matrix compaction, systematically exploring the different accretion histories, final body size and initial concentration in 26Al. Our model handles simultaneously metal and silicates in both solid and liquid states. Depending on the accretion rate, melting occurs from the center outward, in a shallow outer shell progressing inward, or in the two locations. Segregation of the protocore decreases the efficiency of radiogenic heating by confining the 26Al in the outer silicate shell. Various types of planetesimals partly differentiated and sometimes differentiated in multiple metal-silicate layers can be obtained. We discuss the thermal profiles of the accreted bodies in relation to possible early dynamo action as evidenced by remanent magnetization observed on some meteorite samples.

  15. Formation, tidal evolution and habitability of the Kepler-186 system

    CERN Document Server

    Bolmont, Emeline; von Paris, Philip; Selsis, Franck; Hersant, Franck; Quintana, Elisa V; Barclay, Thomas

    2014-01-01

    The Kepler-186 system consists of five planets orbiting an early-M dwarf. The planets have physical radii of 1.0-1.50 R$_\\oplus$ and orbital periods of 4 to 130 days. The $1.1~$R$_\\oplus$ Kepler-186f with a period of 130 days is of particular interest. Its insolation of roughly $0.32~S_\\odot$places it within the liquid water habitable zone. We present a multi-faceted study of the Kepler-186 system. First, we show that the distribution of planet masses can be roughly reproduced if the planets accreted from a high-surface density disk presumably sculpted by an earlier phase of migration. However, our simulations predict the existence of 1-2 undetected planets between planets e and f. Next, we present a dynamical analysis of the system including the effect of tides. The timescale for tidal evolution is short enough that the four inner planets must have small obliquities and near-synchronous rotation rates. Tidal evolution of Kepler-186f is slow enough that its current spin state depends on a combination of its d...

  16. Dynamics of hydrofracturing and permeability evolution in layered reservoirs

    Science.gov (United States)

    Ghani, Irfan; Koehn, Daniel; Toussaint, Renaud; Passchier, Cees

    2015-09-01

    A coupled hydro-mechanical model is presented to model fluid driven fracturing in layered porous rocks. In the model the solid elastic continuum is described by a discrete element approach coupled with a fluid continuum grid that is used to solve Darcy based pressure diffusion. The model assumes poro-elasto-plastic effects and yields real time dynamic aspects of the fracturing and effective stress evolution under the influence of excess fluid pressure gradients. We show that the formation and propagation of hydrofractures are sensitive to mechanical and tectonic conditions of the system. In cases where elevated fluid pressure is the sole driving agent in a stable tectonic system, sealing layers induce permutations between the principal directions of the local stress tensor, which regulate the growth of vertical fractures and may result in irregular pattern formation or sub-horizontal failure below the seal. Stiffer layers tend to concentrate differential stresses and lead to vertical fracture growth, whereas the layer-contact tends to fracture if the strength of the neighboring rock is comparably high. If the system has remained under extension for a longer time period, the developed hydrofractures propagate by linking up confined tensile fractures in competent layers. This leads to the growth of large-scale normal faults in the layered systems, so that subsequently the effective permeability is highly variable over time and the faults drain the system. The simulation results are shown to be consistent with some of the field observations carried out in the Oman Mountains, where abnormal fluid pressure is reported to be a significant factor in the development of several generations of local and regional fracture and fault sets.

  17. Evolution of dwarf galaxies : A dynamical perspective

    NARCIS (Netherlands)

    Lelli, Federico; Fraternali, Filippo; Verheijen, Marc

    2014-01-01

    For a rotating galaxy, the inner circular-velocity gradient dRV(0) provides a direct estimate of the central dynamical mass density, including gas, stars, and dark matter. We consider 60 low-mass galaxies with high-quality H I and/or stellar rotation curves (including starbursting dwarfs, irregulars

  18. Evolution of dwarf galaxies: a dynamical perspective

    NARCIS (Netherlands)

    Lelli, Federico; Fraternali, Filippo; Verheijen, Marc

    2014-01-01

    For a rotating galaxy, the inner circular-velocity gradient dRV(0) provides a direct estimate of the central dynamical mass density, including gas, stars, and dark matter. We consider 60 low-mass galaxies with high-quality H I and/or stellar rotation curves (including starbursting dwarfs, irregulars

  19. Dynamics in genome evolution of Vibrio cholerae.

    Science.gov (United States)

    Banerjee, Rachana; Das, Bhabatosh; Balakrish Nair, G; Basak, Surajit

    2014-04-01

    Vibrio cholerae, the etiological agent of the acute secretary diarrheal disease cholera, is still a major public health concern in developing countries. In former centuries cholera was a permanent threat even to the highly developed populations of Europe, North America, and the northern part of Asia. Extensive studies on the cholera bug over more than a century have made significant advances in our understanding of the disease and ways of treating patients. V. cholerae has more than 200 serogroups, but only few serogroups have caused disease on a worldwide scale. Until the present, the evolutionary relationship of these pandemic causing serogroups was not clear. In the last decades, we have witnessed a shift involving genetically and phenotypically varied pandemic clones of V. cholerae in Asia and Africa. The exponential knowledge on the genome of several representatives V. cholerae strains has been used to identify and analyze the key determinants for rapid evolution of cholera pathogen. Recent comparative genomic studies have identified the presence of various integrative mobile genetic elements (IMGEs) in V. cholerae genome, which can be used as a marker of differentiation of all seventh pandemic clones with very similar core genome. This review attempts to bring together some of the important researches in recent times that have contributed towards understanding the genetics, epidemiology and evolution of toxigenic V. cholerae strains.

  20. Boundedness of Formation Configuration for Nonlinear Three-body Dynamics

    Institute of Scientific and Technical Information of China (English)

    LI Peng; SONG Yongduan

    2011-01-01

    The configuration boundedness of the three-body model dynamics is studied for Sun-Earth formation flying missions. The three-body formation flying model is built up with considering the lunar gravitational acceleration and solar radiation pressure. Because traditional linearized dynamics based method has relatively lower accuracy, a modified nonlinear formation configuration analysis method is proposed in this paper. Comparative studies are carried out from three aspects, i.e., natural formation configuration with arbitrary departure time, initialization time and formation configuration boundedness, and specific initialization time for bounded formation configuration. Simulations demonstrate the differences between the two schemes,and indicate that the nonlinear dynamic method reduces the error caused by the model linearization and disturbance approximation, and thus provides higher accuracy for boundedness analysis, which is of value to initial parameters selection for natural three-body formation flying.

  1. Dynamics of lane formation in driven binary complex plasmas

    NARCIS (Netherlands)

    Sutterlin, K. R.; Wysocki, A.; Ivlev, A. V.; Rath, C.; Thomas, H. M.; Rubin-Zuzic, M.; W. J. Goedheer,; Fortov, V. E.; Lipaev, A. M.; Molotkov, V. I.; Petrov, O. F.; Morfill, G. E.; Lowen, H.

    2009-01-01

    The dynamical onset of lane formation is studied in experiments with binary complex plasmas under microgravity conditions. Small microparticles are driven and penetrate into a cloud of big particles, revealing a strong tendency towards lane formation. The observed time-resolved lane-formation proces

  2. The Effects of Stellar Dynamics on the Evolution of Young, Dense Stellar Systems

    Science.gov (United States)

    Belkus, H.; van Bever, J.; Vanbeveren, D.

    In this paper, we report on first results of a project in Brussels in which we study the effects of stellar dynamics on the evolution of young dense stellar systems using 3 decades of expertise in massive-star evolution and our population (number and spectral) synthesis code. We highlight an unconventionally formed object scenario (UFO-scenario) for Wolf Rayet binaries and study the effects of a luminous blue variable-type instability wind mass-loss formalism on the formation of intermediate-mass black holes.

  3. Dynamical evolution of the Cybele asteroids

    CERN Document Server

    Carruba, Valerio; Aljbaae, Safwan; Huaman, Mariela Espinoza

    2015-01-01

    The Cybele region, located between the 2J:-1A and 5J:-3A mean-motion resonances, is adjacent and exterior to the asteroid main belt. An increasing density of three-body resonances makes the region between the Cybele and Hilda populations dynamically unstable, so that the Cybele zone could be considered the last outpost of an extended main belt. The presence of binary asteroids with large primaries and small secondaries suggested that asteroid families should be found in this region, but only relatively recently the first dynamical groups were identified in this area. Among these, the Sylvia group has been proposed to be one of the oldest families in the extended main belt. In this work we identify families in the Cybele region in the context of the local dynamics and non-gravitational forces such as the Yarkovsky and stochastic YORP effects. We confirm the detection of the new Helga group at $\\simeq$3.65~AU, that could extend the outer boundary of the Cybele region up to the 5J:-3A mean-motion resonance. We o...

  4. THE EVOLUTION OF THE ELECTRIC CURRENT DURING THE FORMATION AND ERUPTION OF ACTIVE-REGION FILAMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jincheng; Yan, Xiaoli; Qu, Zhongquan; Xue, Zhike; Xiang, Yongyuan; Li, Hao, E-mail: egnever@ynao.ac.cn [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China)

    2016-02-01

    We present a comprehensive study of the electric current related to the formation and eruption of active region filaments in NOAA AR 11884. The vertical current on the solar surface was investigated by using vector magnetograms (VMs) observed by HMI on board the Solar Dynamics Observatory. To obtain the electric current along the filament's axis, we reconstructed the magnetic fields above the photosphere by using nonlinear force-free field extrapolation based on photospheric VMs. Spatio-temporal evolutions of the vertical current on the photospheric surface and the horizontal current along the filament's axis were studied during the long-term evolution and eruption-related period, respectively. The results show that the vertical currents of the entire active region behaved with a decreasing trend and the magnetic fields also kept decreasing during the long-term evolution. For the eruption-related evolution, the mean transverse field strengths decreased before two eruptions and increased sharply after two eruptions in the vicinity of the polarity inversion lines underneath the filament. The related vertical current showed different behaviors in two of the eruptions. On the other hand, a very interesting feature was found: opposite horizontal currents with respect to the current of the filament's axis appeared and increased under the filament before the eruptions and disappeared after the eruptions. We suggest that these opposite currents were carried by the new flux emerging from the photosphere bottom and might be the trigger mechanism for these filament eruptions.

  5. The Evolution of the Electric Current during the Formation and Eruption of Active-region Filaments

    Science.gov (United States)

    Wang, Jincheng; Yan, Xiaoli; Qu, Zhongquan; Xue, Zhike; Xiang, Yongyuan; Li, Hao

    2016-02-01

    We present a comprehensive study of the electric current related to the formation and eruption of active region filaments in NOAA AR 11884. The vertical current on the solar surface was investigated by using vector magnetograms (VMs) observed by HMI on board the Solar Dynamics Observatory. To obtain the electric current along the filament's axis, we reconstructed the magnetic fields above the photosphere by using nonlinear force-free field extrapolation based on photospheric VMs. Spatio-temporal evolutions of the vertical current on the photospheric surface and the horizontal current along the filament's axis were studied during the long-term evolution and eruption-related period, respectively. The results show that the vertical currents of the entire active region behaved with a decreasing trend and the magnetic fields also kept decreasing during the long-term evolution. For the eruption-related evolution, the mean transverse field strengths decreased before two eruptions and increased sharply after two eruptions in the vicinity of the polarity inversion lines underneath the filament. The related vertical current showed different behaviors in two of the eruptions. On the other hand, a very interesting feature was found: opposite horizontal currents with respect to the current of the filament's axis appeared and increased under the filament before the eruptions and disappeared after the eruptions. We suggest that these opposite currents were carried by the new flux emerging from the photosphere bottom and might be the trigger mechanism for these filament eruptions.

  6. Dynamic structure evolution of time-dependent network

    Science.gov (United States)

    Zhang, Beibei; Zhou, Yadong; Xu, Xiaoyan; Wang, Dai; Guan, Xiaohong

    2016-08-01

    In this paper, we research the long-voided problem of formulating the time-dependent network structure evolution scheme, it focus not only on finding new emerging vertices in evolving communities and new emerging communities over the specified time range but also formulating the complex network structure evolution schematic. Previous approaches basically applied to community detection on time static networks and thus failed to consider the potentially crucial and useful information latently embedded in the dynamic structure evolution process of time-dependent network. To address these problems and to tackle the network non-scalability dilemma, we propose the dynamic hierarchical method for detecting and revealing structure evolution schematic of the time-dependent network. In practice and specificity, we propose an explicit hierarchical network evolution uncovering algorithm framework originated from and widely expanded from time-dependent and dynamic spectral optimization theory. Our method yields preferable results compared with previous approaches on a vast variety of test network data, including both real on-line networks and computer generated complex networks.

  7. Time evolution of the autocorrelation function in dynamical replica theory

    Science.gov (United States)

    Sakata, A.

    2013-04-01

    Asynchronous dynamics given by the master equation in the Sherrington-Kirkpatrick (SK) spin-glass model is studied based on dynamical replica theory (DRT) with an extension to take into account the autocorrelation function. The dynamical behaviour of the system is approximately described by dynamical equations of the macroscopic quantities: magnetization, energy contributed by randomness and the autocorrelation function. The dynamical equations under the replica symmetry assumption are derived by introducing the subshell equipartitioning assumption and exploiting the replica method. The obtained dynamical equations are compared with Monte Carlo simulations, and it is demonstrated that the proposed formula describes well the time evolution of the autocorrelation function in some parameter regions. The study offers a reasonable description of the autocorrelation function in the SK spin-glass system.

  8. Thermodynamics and dynamics of the formation of spherical lipidic vesicles

    CERN Document Server

    Zapata, E Hernandez; Santamaría-Holek, I

    2009-01-01

    We propose a free energy expression accounting for the formation of spherical vesicles from planar lipidic membranes and derive a Fokker-Planck equation for the probability distribution describing the dynamics of vesicle formation. We found that formation may occur as an activated process for small membranes and as a transport process for sufficiently large membranes. We give explicit expressions for the transition rates and the characteristic time of vesicle formation in terms of the relevant physical parameters.

  9. Formation, Evolution, and Revolution of Galaxies by SKA: Activities of SKA-Japan Galaxy Evolution Sub-SWG

    CERN Document Server

    Takeuchi, Tsutomu T; Iono, Daisuke; Hirashita, Hiroyuki; Tee, Wei Leong; Wang, Wei-Hao; Momose, Rieko

    2016-01-01

    Formation and evolution of galaxies have been a central driving force in the studies of galaxies and cosmology. Recent studies provided a global picture of cosmic star formation history. However, what drives the evolution of star formation activities in galaxies has long been a matter of debate. The key factor of the star formation is the transition of hydrogen from atomic to molecular state, since the star formation is associated with the molecular phase. This transition is also strongly coupled with chemical evolution, because dust grains, i.e., tiny solid particles of heavy elements, play a critical role in molecular formation. Therefore, a comprehensive understanding of neutral-molecular gas transition, star formation and chemical enrichment is necessary to clarify the galaxy formation and evolution. Here we present the activity of SKA-JP galaxy evolution sub-science working group (subSWG) Our activity is focused on three epochs: z \\sim 0, 1, and z > 3. At z \\sim 0, we try to construct a unified picture o...

  10. Gas Price Formation, Structure and Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Davoust, R.

    2008-07-01

    Our study, focused on gas prices in importing economies, describes wholesale prices and retail prices, their evolution for the last one or two decades, the economic mechanisms of price formation. While an international market for oil has developed thanks to moderate storage and transportation charges, these costs are much higher in the case of natural gas, which involves that this energy is still traded inside continental markets. There are three regional gas markets around the world: North America (the United States, importing mainly from Canada and Mexico), Europe (importing mainly from Russia, Algeria and Norway) and Asia (Japan, Korea, Taiwan, China and India, importing mainly from Indonesia, Malaysia and Australia). A market for gas has also developed in South America, but it will not be covered by our paper. In Europe and the US, due to large domestic resources and strong grids, natural gas is purchased mostly through pipelines. In Northeast Asia, there is a lack of such infrastructures, so imported gas takes mainly the form of Liquefied Natural Gas (LNG), shipped on maritime tankers. Currently, the LNG market is divided into two zones: the Atlantic Basin (Europe and US) and the Pacific Basin (Asia and the Western Coast of America). For the past few years, the Middle East and Africa have tended to be crucial suppliers for both LNG zones. Gas price formation varies deeply between regional markets, depending on several structural factors (regulation, contracting practises, existence of a spot market, liquidity, share of imports). Empirically, the degree of market opening (which corresponds to the seniority in the liberalization process) seems to be the primary determinant of pricing patterns. North America has the most liberalized and well-performing natural gas industry in the world. Gas pricing is highly competitive and is based on supply/demand balances. Spot and futures markets are developed. The British gas sector is also deregulated and thus follows a

  11. Dynamic Actin Gene Family Evolution in Primates

    Directory of Open Access Journals (Sweden)

    Liucun Zhu

    2013-01-01

    Full Text Available Actin is one of the most highly conserved proteins and plays crucial roles in many vital cellular functions. In most eukaryotes, it is encoded by a multigene family. Although the actin gene family has been studied a lot, few investigators focus on the comparison of actin gene family in relative species. Here, the purpose of our study is to systematically investigate characteristics and evolutionary pattern of actin gene family in primates. We identified 233 actin genes in human, chimpanzee, gorilla, orangutan, gibbon, rhesus monkey, and marmoset genomes. Phylogenetic analysis showed that actin genes in the seven species could be divided into two major types of clades: orthologous group versus complex group. Codon usages and gene expression patterns of actin gene copies were highly consistent among the groups because of basic functions needed by the organisms, but much diverged within species due to functional diversification. Besides, many great potential pseudogenes were found with incomplete open reading frames due to frameshifts or early stop codons. These results implied that actin gene family in primates went through “birth and death” model of evolution process. Under this model, actin genes experienced strong negative selection and increased the functional complexity by reproducing themselves.

  12. Formation, tidal evolution, and habitability of the Kepler-186 system

    Energy Technology Data Exchange (ETDEWEB)

    Bolmont, Emeline; Raymond, Sean N.; Selsis, Franck; Hersant, Franck [Univ. Bordeaux, Laboratoire d' Astrophysique de Bordeaux, UMR 5804, F-33270 Floirac (France); Von Paris, Philip [Institut für Planetenforschung, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Rutherfordstrasse 2, D-12489 Berlin (Germany); Quintana, Elisa V. [SETI Institute, 189 Bernardo Avenue, Suite 100, Mountain View, CA 94043 (United States); Barclay, Thomas, E-mail: bolmont@obs.u-bordeaux1.fr [NASA Ames Research Center, Moffett Field, CA 94035 (United States)

    2014-09-20

    The Kepler-186 system consists of five planets orbiting an early M dwarf. The planets have physical radii of 1.0-1.50 R {sub ⊕} and orbital periods of 4-130 days. The 1.1 R {sub ⊕} Kepler-186f with a period of 130 days is of particular interest. Its insolation of roughly 0.32 S {sub ⊕} places it within the surface liquid water habitable zone (HZ). We present a multifaceted study of the Kepler-186 system, using two sets of parameters which are consistent with the data and also self-consistent. First, we show that the distribution of planet masses can be roughly reproduced if the planets were accreted from a high surface density disk presumably sculpted by an earlier phase of migration. However, our simulations predict the existence of one to two undetected planets between planets e and f. Next, we present a dynamical analysis of the system including the effect of tides. The timescale for tidal evolution is short enough that the four inner planets must have small obliquities and near-synchronous rotation rates. The tidal evolution of Kepler-186f is slow enough that its current spin state depends on a combination of its initial spin state, its dissipation rate, and the stellar age. Finally, we study the habitability of Kepler-186f with a one-dimensional climate model. The planet's surface temperature can be raised above 273 K with 0.5-5 bars of CO{sub 2}, depending on the amount of N{sub 2} present. Kepler-186f represents a case study of an Earth-sized planet in the cooler regions of the HZ of a cool star.

  13. Halo formation and evolution: unifying physical properties with structure

    Science.gov (United States)

    Ernest, Alllan David; Collins, Matthew P.

    2015-08-01

    The assembly of matter in the universe proliferates a variety of structures with diverse properties. For example, massive halos of clusters of galaxies have temperatures often an order of magnitude or more higher than the individual galaxy halos within the cluster, or the temperatures of isolated galaxy halos. Giant spiral galaxies contain large quantities of both dark matter and hot gas while other structures like globular clusters appear to have little or no dark matter or gas. Still others, like the dwarf spheroidal galaxies have low gravity and little hot gas, but ironically contain some of the largest fractions of dark matter in the universe. Star forming rates (SFRs) also vary: compare for example the SFRs of giant elliptical galaxies, globular clusters, spiral and starburst galaxies. Furthermore there is evidence that the various structure types have existed over a large fraction of cosmic history. How can this array of variation in properties be reconciled with galaxy halo formation and evolution?We propose a model of halo formation [1] and evolution [2] that is consistent with both primordial nucleosynthesis (BBN) and the isotropies in the cosmic microwave background (CMB). The model uses two simple parameters, the total mass and size of a structure, to (1) explain why galaxies have the fractions of dark matter that they do (including why dwarf spheroidals are so dark matter dominated despite their weak gravity), (2) enable an understanding of the black hole-bulge/black hole-dark halo relations, (3) explain how fully formed massive galaxies can occur so early in cosmic history, (4) understand the connection between spiral and elliptical galaxies (5) unify the nature of globular clusters, dwarf spheroidal galaxies and bulges and (6) predict the temperatures of hot gas halos and understand how cool galaxy halos can remain stable in the hot environments of cluster-galaxy halos.[1] Ernest, A. D., 2012, in Prof. Ion Cotaescu (Ed) Advances in Quantum Theory, pp

  14. Eventful evolution of giant molecular clouds in dynamically evolving spiral arms

    Science.gov (United States)

    Baba, Junichi; Morokuma-Matsui, Kana; Saitoh, Takayuki R.

    2017-01-01

    The formation and evolution of giant molecular clouds (GMCs) in spiral galaxies have been investigated in the traditional framework of the combined quasi-stationary density wave and galactic shock model. In this study, we investigate the structure and evolution of GMCs in a dynamically evolving spiral arm using a three-dimensional N-body/hydrodynamic simulation of a barred spiral galaxy at parsec-scale resolution. This simulation incorporated self-gravity, molecular hydrogen formation, radiative cooling, heating due to interstellar far-ultraviolet radiation, and stellar feedback by both H II regions and Type II supernovae. In contrast to a simple expectation based on the traditional spiral model, the GMCs exhibited no systematic evolutionary sequence across the spiral arm. Our simulation showed that the GMCs behaved as highly dynamic objects with eventful lives involving collisional build-up, collision-induced star formation, and destruction via stellar feedback. The GMC lifetimes were predicted to be short, only a few tens of millions years. We also found that at least at the resolutions and with the feedback models used in this study, most of the GMCs without H II regions were collapsing, but half of the GMCs with H II regions were expanding owing to the H II-region feedback from stars within them. Our results support the dynamic and feedback-regulated GMC evolution scenario. Although the simulated GMCs were converging rather than virial equilibrium, they followed the observed scaling relationship well. We also analysed the effects of galactic tides and external pressure on GMC evolution and suggested that GMCs cannot be regarded as isolated systems since their evolution in disc galaxies is complicated because of these environmental effects.

  15. Eventful Evolution of Giant Molecular Clouds in Dynamically Evolving Spiral Arms

    Science.gov (United States)

    Baba, Junichi; Morokuma-Matsui, Kana; Saitoh, Takayuki R.

    2016-09-01

    The formation and evolution of giant molecular clouds (GMCs) in spiral galaxies have been investigated in the traditional framework of the combined quasi-stationary density wave and galactic shock model. In this study, we investigate the structure and evolution of GMCs in a dynamically evolving spiral arm using a three-dimensional N-body/hydrodynamic simulation of a barred spiral galaxy at parsec-scale resolution. This simulation incorporated self-gravity, molecular hydrogen formation, radiative cooling, heating due to interstellar far-ultraviolet radiation, and stellar feedback by both HII regions and Type-II supernovae. In contrast to a simple expectation based on the traditional spiral model, the GMCs exhibited no systematic evolutionary sequence across the spiral arm. Our simulation showed that the GMCs behaved as highly dynamic objects with eventful lives involving collisional build-up, collision-induced star formation, and destruction via stellar feedback. The GMC lifetimes were predicted to be short, only a few tens of millions years. We also found that, at least at the resolutions and with the feedback models used in this study, most of the GMCs without HII regions were collapsing, but half of the GMCs with HII regions were expanding owing to the HII-region feedback from stars within them. Our results support the dynamic and feedback-regulated GMC evolution scenario. Although the simulated GMCs were converging rather than virial equilibrium, they followed the observed scaling relationship well. We also analysed the effects of galactic tides and external pressure on GMC evolution and suggested that GMCs cannot be regarded as isolated systems since their evolution in disc galaxies is complicated because of these environmental effects.

  16. Neutral evolution: A null model for language dynamics

    CERN Document Server

    Blythe, R A

    2011-01-01

    We review the task of aligning simple models for language dynamics with relevant empirical data, motivated by the fact that this is rarely attempted in practice despite an abundance of abstract models. We propose that one way to meet this challenge is through the careful construction of null models. We argue in particular that rejection of a null model must have important consequences for theories about language dynamics if modelling is truly to be worthwhile. Our main claim is that the stochastic process of neutral evolution (also known as genetic drift or random copying) is a viable null model for language dynamics. We survey empirical evidence in favour and against neutral evolution as a mechanism behind historical language changes, highlighting the theoretical implications in each case.

  17. Network evolution driven by dynamics applied to graph coloring

    Institute of Scientific and Technical Information of China (English)

    Wu Jian-She; Li Li-Guang; Wang Xiao-Hua; Yu Xin; Jiao Li-Cheng

    2013-01-01

    An evolutionary network driven by dynamics is studied and applied to the graph coloring problem.From an initial structure,both the topology and the coupling weights evolve according to the dynamics.On the other hand,the dynamics of the network are determined by the topology and the coupling weights,so an interesting structure-dynamics co-evolutionary scheme appears.By providing two evolutionary strategies,a network described by the complement of a graph will evolve into several clusters of nodes according to their dynamics.The nodes in each cluster can be assigned the same color and nodes in different clusters assigned different colors.In this way,a co-evolution phenomenon is applied to the graph coloring problem.The proposed scheme is tested on several benchmark graphs for graph coloring.

  18. The Dynamical Evolution of the Asteroid Belt

    CERN Document Server

    Morbidelli, Alessandro; O'Brien, David P; Minton, David A; Bottke, William F

    2015-01-01

    The asteroid belt is the leftover of the original planetesimal population in the inner solar system. However, currently the asteroids have orbits with all possible values of eccentricities and inclinations compatible with long-term dynamical stability, whereas the initial planetesimal orbits should have been quasi-circular and almost co-planar. The total mass in the asteroid population is a small fraction of that existing primordially. Also, asteroids with different chemical/mineralogical properties are not ranked in an orderly manner with mean heliocentric distance as one could expect from the existence of a radial gradient of the temperature in the proto-planetary disk, but they are partially mixed. These properties show that the asteroid belt has been severely sculpted by one or a series of processes during its lifetime. This paper reviews the processes that have been proposed so far, discussing the properties that they explain and the problems that they are confronted with. Emphasis is paid to the interpl...

  19. The formation and evolution of star clusters in interacting galaxies

    CERN Document Server

    Maji, Moupiya; Li, Yuexing; Charlton, Jane; Hernquist, Lars; Knebe, Alexander

    2016-01-01

    Observations of globular clusters show that they have universal lognormal mass functions with a characteristic peak at $\\sim 2\\times 10^{5}\\, {\\rm{M_{\\odot}}}$, but the origin of this peaked distribution is highly debated. Here we investigate the formation and evolution of star clusters in interacting galaxies using high-resolution hydrodynamical simulations performed with two different codes in order to mitigate numerical artifacts. We find that massive star clusters in the range of $\\sim 10^{5.5} - 10^{7.5}\\, {\\rm{M_{\\odot}}}$ form preferentially in the highly-shocked regions produced by galaxy interactions. The nascent cluster-forming clouds have high gas pressures in the range of $P/k \\sim 10^8 - 10^{12}\\, \\rm{K}\\,\\rm{cm^{-3}}$, which is $\\sim 10^4 - 10^8$ times higher than the typical pressure of the interstellar medium but consistent with recent observations of a pre-super star cluster cloud in the Antennae Galaxies. Furthermore, these massive star clusters have quasi-lognormal initial mass functions wi...

  20. The Formation and Evolution of Ordinary Chondrite Parent Bodies

    CERN Document Server

    Vernazza, Pierre; Nakamura, Tomoki; Scott, Edward; Russell, Sara

    2016-01-01

    Ordinary chondrites (OCs) are by far the most abundant meteorites (80% of all falls). Their origin has long been the matter of a heated debate. About thirty years ago (e.g., Pellas 1988), it was proposed that OCs should originate from S-type bodies (the most abundant asteroid spectral types in the inner part of the asteroid belt), but the apparent discrepancy between S-type asteroid and OC reflectance spectra generated what was known as the S-type--OC conundrum. This paradox has gradually been resolved over the years. It is now understood that space weathering processes are responsible for the spectral mismatch between S-type bodies and OCs. Furthermore, both telescopic observations and the first asteroid sample return mission (Hayabusa) indicate that most S-type bodies have mineralogies similar to those of OCs. Importantly, the S-type/OC link, which has remained sterile for more than 30 years, has been delivering fundamental constraints on the formation and evolution of planetesimals over the recent years.

  1. Dynamical Evolution of Globular Clusters in the Galaxy

    Institute of Scientific and Technical Information of China (English)

    武振宇; 束成钢; 陈文屏

    2003-01-01

    Given the initial conditions of spatial density distribution, velocity distribution and mass function, the dynamical evolution of globular clusters in the Milky Way is investigated in details by means of Monte Carlo simulations.Four dynamic mechanisms are considered: stellar evaporation, stellar evolution, tidal shocks due to both the disc and bulge, and dynamical friction. It is found that stellar evaporation dominates the evolution of low-mass clusters and all four are important for massive ones. For both the power-law and lognormal initial clusters mass functions, we can find the best-fitting models which can match the present-day observations with their main features of the mass function almost unchanged after evolution of several Gyr. This implies that it is not possible to determine the initial mass function only based on the observed mass function today. The dispersion of the modelled mass functions mainly depends on the potential wells of host galaxies with the almost constant peaks,which is consistent with current observations

  2. Evolution properties of the community members for dynamic networks

    Science.gov (United States)

    Yang, Kai; Guo, Qiang; Li, Sheng-Nan; Han, Jing-Ti; Liu, Jian-Guo

    2017-03-01

    The collective behaviors of community members for dynamic social networks are significant for understanding evolution features of communities. In this Letter, we empirically investigate the evolution properties of the new community members for dynamic networks. Firstly, we separate data sets into different slices, and analyze the statistical properties of new members as well as communities they joined in for these data sets. Then we introduce a parameter φ to describe community evolution between different slices and investigate the dynamic community properties of the new community members. The empirical analyses for the Facebook, APS, Enron and Wiki data sets indicate that both the number of new members and joint communities increase, the ratio declines rapidly and then becomes stable over time, and most of the new members will join in the small size communities that is s ≤ 10. Furthermore, the proportion of new members in existed communities decreases firstly and then becomes stable and relatively small for these data sets. Our work may be helpful for deeply understanding the evolution properties of community members for social networks.

  3. Formation and Evolution of Blue Stragglers in 47 Tucanae

    CERN Document Server

    Parada, Javiera; Heyl, Jeremy; Kalirai, Jason; Goldsbury, Ryan

    2016-01-01

    Blue stragglers (BSS) are stars whose position in the Color-Magnitude Diagram (CMD) places them above the main sequence turn-off (TO) point of a star cluster. Using data from the core of 47 Tuc in the ultraviolet (UV), we have identified various stellar populations in the CMD, and used their radial distributions to study the evolution and origin of BSS, and obtain a dynamical estimate of the mass of BSS systems. When we separate the BSS into two samples by their magnitude, we find that the bright BSS show a much more centrally concentrated radial distribution and thus higher mass estimate (over twice the TO mass for these BSS systems), suggesting an origin involving triple or multiple stellar systems. In contrast, the faint BSS are less concentrated, with a radial distribution similar to the main sequence (MS) binaries, pointing to the MS binaries as the likely progenitors of these BSS. Putting our data together with available photometric data in the visible and using MESA evolutionary models, we calculate th...

  4. DYNAMICAL FORMATION OF CAVITY IN TRANSVERSELY ISOTROPIC HYPER-ELASTIC SPHERES

    Institute of Scientific and Technical Information of China (English)

    任九生; 程昌钧

    2003-01-01

    The cavity formation in a radial transversely isotropic hyper-elastic sphere of an incompressible Ogden material, subjected to a suddenly applied uniform radial tensile boundary deadload, is studied following the theory of finite deformation dynamics. A cavity forms at the center of the sphere when the tensile load is greater than its critical value. It is proved that the evolution of the cavity radius with time follows that of nonlinear periodic oscillations.

  5. He cluster dynamics in W in the presence of cluster induced formation of He traps

    Science.gov (United States)

    Krasheninnikov, S. I.; Smirnov, R. D.

    2016-02-01

    The theoretical model describing spatiotemporal dynamics of He clusters in tungsten, which takes into account He trap generation associated with the growth of He clusters, is presented. Application of this model to the formation of the layer of nano-bubbles underneath of the surface of thick He irradiated sample, before surface morphology starts to change, gives very good agreement with currently available experimental data. The role of thermophoresis in a long-term evolution of nano-bubble containing structures is discussed.

  6. Surface morphology evolution during plasma etching of silicon: roughening, smoothing and ripple formation

    Science.gov (United States)

    Ono, Kouichi; Nakazaki, Nobuya; Tsuda, Hirotaka; Takao, Yoshinori; Eriguchi, Koji

    2017-10-01

    Atomic- or nanometer-scale roughness on feature surfaces has become an important issue to be resolved in the fabrication of nanoscale devices in industry. Moreover, in some cases, smoothing of initially rough surfaces is required for planarization of film surfaces, and controlled surface roughening is required for maskless fabrication of organized nanostructures on surfaces. An understanding, under what conditions plasma etching results in surface roughening and/or smoothing and what are the mechanisms concerned, is of great technological as well as fundamental interest. In this article, we review recent developments in the experimental and numerical study of the formation and evolution of surface roughness (or surface morphology evolution such as roughening, smoothing, and ripple formation) during plasma etching of Si, with emphasis being placed on a deeper understanding of the mechanisms or plasma–surface interactions that are responsible for. Starting with an overview of the experimental and theoretical/numerical aspects concerned, selected relevant mechanisms are illustrated and discussed primarily on the basis of systematic/mechanistic studies of Si etching in Cl-based plasmas, including noise (or stochastic roughening), geometrical shadowing, surface reemission of etchants, micromasking by etch inhibitors, and ion scattering/chanelling. A comparison of experiments (etching and plasma diagnostics) and numerical simulations (Monte Carlo and classical molecular dynamics) indicates a crucial role of the ion scattering or reflection from microscopically roughened feature surfaces on incidence in the evolution of surface roughness (and ripples) during plasma etching; in effect, the smoothing/non-roughening condition is characterized by reduced effects of the ion reflection, and the roughening-smoothing transition results from reduced ion reflections caused by a change in the predominant ion flux due to that in plasma conditions. Smoothing of initially rough

  7. Comparisons of cirrus cloud formation and evolution lifetime between five field campaigns

    Science.gov (United States)

    Diao, M.; Zondlo, M. A.; DiGangi, J. P.; O'Brien, A.; Heymsfield, A.; Rogers, D. C.; Beaton, S. P.

    2013-12-01

    In order to understand the microphysical properties of cirrus clouds, it is important to understand the formation and evolution of the environments where ice crystals form and reside on the microscale (~100 m). Uncertainties remain in simulating/parameterizing the evolution of ice crystals, which require more analyses in the Lagrangian view. However, most in situ observations are in the Eulerian view and are restricted from examining the lifecycle of cirrus clouds. In this work, a new method of Diao et al. GRL (2013)* is used to separate out five phases of ice crystal evolution, using the horizontal spatial relationships between ice supersaturated regions (ISSRs) and ice crystal regions (ICRs). In-situ, aircraft-based observations from five flight campaigns are used to compare the evolution processes of ISSRs and ICRs, which include the National Science Foundation HIAPER Pole-to-Pole Observations (HIPPO) Global campaign (2009-2011 Arctic to Antarctic over the central Pacific Ocean), the Stratosphere Troposphere Analyses Regional Transport 2008 (START08) campaign (2008 North America), the Pre-Depression Investigation of Cloud-Systems in the Tropics (PREDICT) campaign (2010 tropical western Atlantic), the Tropical Ocean Troposphere Exchange of Reactive Halogen Species and Oxygenated VOC (2012 Costa Rica), and the Deep Convection, Clouds, and Chemistry (DC3) campaign (2011 Interior North America). To understand the evolution of ICRs and ISSRs on the microscale, we compare the microphysical evolution processes inside ISSRs and ICRs in terms of relative humidity with respect to ice (RHi), ice crystal mean diameter (Dc) and ice crystal number density (Nc) at different meteorological and dynamical backgrounds during these five campaigns. Different phases of ice nucleation and evolution are contrasted to understand how cirrus clouds evolve from clear-sky ISS into fully developed clouds, and finally into sedimentation/evaporation phase. The results show that the ratios of

  8. Quantum Dynamics in Classical Time Evolution of Correlation Functions

    CERN Document Server

    Wetterich, C

    1997-01-01

    The time-dependence of correlation functions under the influence of cla= ssical equations of motion is described by an exact evolution equation. For conservative systems thermodynamic equilibrium is a fixed point of these equations. We show that this fixed point is not universally stable, since infinitely many conserved correlation functions obstruct the approach to equilibrium. Equilibrium can therefore be reached at most for suitably av= eraged quantities or for subsystems, similar to quantum statistics. The classica= l time evolution of correlation functions shows many dynamical features of quant= um mechanics.

  9. Rapid contemporary evolution and clonal food web dynamics.

    Science.gov (United States)

    Jones, Laura E; Becks, Lutz; Ellner, Stephen P; Hairston, Nelson G; Yoshida, Takehito; Fussmann, Gregor F

    2009-06-12

    Character evolution that affects ecological community interactions often occurs contemporaneously with temporal changes in population size, potentially altering the very nature of those dynamics. Such eco-evolutionary processes may be most readily explored in systems with short generations and simple genetics. Asexual and cyclically parthenogenetic organisms such as microalgae, cladocerans and rotifers, which frequently dominate freshwater plankton communities, meet these requirements. Multiple clonal lines can coexist within each species over extended periods, until either fixation occurs or a sexual phase reshuffles the genetic material. When clones differ in traits affecting interspecific interactions, within-species clonal dynamics can have major effects on the population dynamics. We first consider a simple predator-prey system with two prey genotypes, parametrized with data from a well-studied experimental system, and explore how the extent of differences in defence against predation within the prey population determine dynamic stability versus instability of the system. We then explore how increased potential for evolution affects the community dynamics in a more general community model with multiple predator and multiple prey genotypes. These examples illustrate how microevolutionary 'details' that enhance or limit the potential for heritable phenotypic change can have significant effects on contemporaneous community-level dynamics and the persistence and coexistence of species.

  10. Evolution and selection of river networks: statics, dynamics, and complexity.

    Science.gov (United States)

    Rinaldo, Andrea; Rigon, Riccardo; Banavar, Jayanth R; Maritan, Amos; Rodriguez-Iturbe, Ignacio

    2014-02-18

    Moving from the exact result that drainage network configurations minimizing total energy dissipation are stationary solutions of the general equation describing landscape evolution, we review the static properties and the dynamic origins of the scale-invariant structure of optimal river patterns. Optimal channel networks (OCNs) are feasible optimal configurations of a spanning network mimicking landscape evolution and network selection through imperfect searches for dynamically accessible states. OCNs are spanning loopless configurations, however, only under precise physical requirements that arise under the constraints imposed by river dynamics--every spanning tree is exactly a local minimum of total energy dissipation. It is remarkable that dynamically accessible configurations, the local optima, stabilize into diverse metastable forms that are nevertheless characterized by universal statistical features. Such universal features explain very well the statistics of, and the linkages among, the scaling features measured for fluvial landforms across a broad range of scales regardless of geology, exposed lithology, vegetation, or climate, and differ significantly from those of the ground state, known exactly. Results are provided on the emergence of criticality through adaptative evolution and on the yet-unexplored range of applications of the OCN concept.

  11. Formation and evolution of the two 4/3 resonant giants planets in HD 200946

    CERN Document Server

    Santos, M Tadeu dos; Michtchenko, T A; Ferraz-Mello, S

    2014-01-01

    It has been suggested that HD 200964 is the first exoplanetary system with two Jovian planets evolving in the 4/3 mean- motion resonance. Previous scenarios to simulate the formation of two giant planets in the stable 4/3 resonance configuration have failed. Moreover, the orbital parameters available in the literature point out an unstable configuration of the planetary pair. The purpose of this paper is i) to determine the orbits of the planets from the RV measurements and update the value of the stellar mass (1.57 M), ii) to analyse the stability of the planetary evolution in the vicinity and inside the 4/3 MMR, and iii) to elaborate a possible scenario for the formation of systems in the 4/3 MMR. The results of the formation simulations are able to very closely reproduce the 4/3 resonant dynamics of the best-fit config- uration obtained in this paper. Moreover, the confidence interval of the fit matches well with the very narrow stable region of the 4/3 mean-motion resonance. The formation process of the H...

  12. Dynamics of Perceived Parenting and Identity Formation in Late Adolescence

    Science.gov (United States)

    Beyers, Wim; Goossens, Luc

    2008-01-01

    Identity formation is a dynamic process of person-context interactions, and part of this context are parents, even in late adolescence. Several theories on parent-adolescent relationships share the idea that parents influence the process of identity formation. However, up to now, empirical evidence, particularly longitudinal evidence for this link…

  13. Formation and evolution of vortices in a collisional strongly coupled dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Jana, Sayanee [Saha Institute of Nuclear Physics, a/AF Bidhannagar, Kolkata 700 064 (India); Banerjee, Debabrata, E-mail: debu@ustc.edu.cn [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Chakrabarti, Nikhil [Saha Institute of Nuclear Physics, a/AF Bidhannagar, Kolkata 700 064 (India)

    2016-07-29

    Formation and evolution of vortices are studied in a collisional strongly coupled dusty plasma in the framework of a Generalized Hydrodynamic model (GH). Here we mainly present the nonlinear dynamical response of this strongly coupled system in presence of dust-neutral collisional drag. It is shown that the interplay between the nonlinear elastic stress and the dust-neutral collisional drag results in the generation of non-propagating monopole vortex for some duration before it starts to propagate like transverse shear wave. It is also found that the interaction between two unshielded monopole vortices having both same (co-rotating) and opposite (counter rotating) rotations result in the formation of two propagating dipole vortices of equal and unequal strength respectively. These results will provide some new understanding on the transport properties in such a strongly coupled system. The numerical simulation is carried out using a de-aliased doubly periodic pseudo-spectral code with Runge–Kutta–Gill time integrator. - Highlights: • A numerical study of vortex evolution in strongly coupled dusty plasma is presented. • Dust-neutral drag is first time considered with the Generalized Hydrodynamic model (GH). • Dust-neutral drag force balances the nonlinear effect of elastic stress. • Localized non-propagating monopole structure is generated for some duration. • Dipole vortices are produced after interaction between two monopole vortices.

  14. Dynamical evolution and molecular abundances of interstellar clouds

    Science.gov (United States)

    Prasad, Sheo S.; Heere, Karen R.; Tarafdar, Shankar P.

    1991-01-01

    Dynamical models are presented that start with interstellar gas in an initial diffuse state and consider their gravitational collapse and the formation of dense cores. Frozen-in tangled magnetic fields are included to mimic forces that might oppose gravitational contraction and whose effectiveness may increase with increasing core densities. Results suggest the possibility that dense cloud cores may be dynamically evolving ephemeral objects, such that their lifespan at a given core density decreases as that density increases.

  15. Adaptive Network Dynamics and Evolution of Leadership in Collective Migration

    CERN Document Server

    Pais, Darren

    2013-01-01

    The evolution of leadership in migratory populations depends not only on costs and benefits of leadership investments but also on the opportunities for individuals to rely on cues from others through social interactions. We derive an analytically tractable adaptive dynamic network model of collective migration with fast timescale migration dynamics and slow timescale adaptive dynamics of individual leadership investment and social interaction. For large populations, our analysis of bifurcations with respect to investment cost explains the observed hysteretic effect associated with recovery of migration in fragmented environments. Further, we show a minimum connectivity threshold above which there is evolutionary branching into leader and follower populations. For small populations, we show how the topology of the underlying social interaction network influences the emergence and location of leaders in the adaptive system. Our model and analysis can describe other adaptive network dynamics involving collective...

  16. Formation and Evolution of the Junggar basin basement

    Science.gov (United States)

    He, D.

    2015-12-01

    Junggar Basin is located in the central part of the Central Asian Orogenic Belt (CAOB). Its basement nature is a highly controversial scientific topic, involving the basic style and processes of crustal growth.Based on the borehole data from over 300 wells drilled into the Carboniferous System, together with the high-resolution gravity and magnetic data (in a 1:50,000 scale), we made a detailed analysis of the basement structure, formation timing and process and later evolution on basis of core geochemical and isotopic analysis. Firstly, we defined the Mahu Precambrian micro-continental block in the juvenile crust of Junggar Basin according to the Hf isotopic analysis of the Carboniferous volcanic rocks. Secondly, the results of the tectonic setting and basin analysis suggest that the Junggar area incorporates three approximately E-W trending island arc belts (from north to south: Yemaquan-Wulungu-Chingiz, Jiangjunmiao-Luliang-Darbut and Zhongguai-Mosuowan-Baijiahai-Qitai respectively) and intervened three approximately E-W trending retro-arc or inter-arc basin belts from north to south, such as Santanghu-Suosuoquan-Emin, Wucaiwan-Dongdaohaizi-Mahu (Mahu block sunk as a bathyal basin during this phase) and Fukang-western well Pen1 accordingly. Thirdly, the closure of these retro-arc or inter-arc basins gradually toward the south led to the occurrence of collision and amalgamation of the above-mentioned island arcs during the Carboniferous, constituting the basic framework of the Junggar "block". Fourthly, the emplacement of large-scale mantle-derived magmas occurred in the latest Carboniferous or Early Permian. For instance, the well Mahu 5 penetrate the latest Carboniferous basalts with a thickness of over 20m, and these mantle-derived magmas concreted the above-mentioned island arc-collaged body. Therefore, the Junggar basin basement mainly comprises pre-Carboniferous collaged basement, and its formation is characterized by two-stage growth model, involving the

  17. Dynamical transitions in the evolution of learning algorithms by selection

    CERN Document Server

    Neirotti, J P; Neirotti, Juan Pablo; Caticha, Nestor

    2002-01-01

    We study the evolution of artificial learning systems by means of selection. Genetic programming is used to generate a sequence of populations of algorithms which can be used by neural networks for supervised learning of a rule that generates examples. In opposition to concentrating on final results, which would be the natural aim while designing good learning algorithms, we study the evolution process and pay particular attention to the temporal order of appearance of functional structures responsible for the improvements in the learning process, as measured by the generalization capabilities of the resulting algorithms. The effect of such appearances can be described as dynamical phase transitions. The concepts of phenotypic and genotypic entropies, which serve to describe the distribution of fitness in the population and the distribution of symbols respectively, are used to monitor the dynamics. In different runs the phase transitions might be present or not, with the system finding out good solutions, or ...

  18. Quasi-satellite dynamics in formation flight

    CERN Document Server

    Mikkola, Seppo

    2016-01-01

    The quasi-satellite (QS) phenomenon makes two celestial bodies to fly near each other (Mikkola et al. 2006) and that effect can be used also to make artificial satellites move in tandem. We consider formation flight of two or three satellites in low eccentricity near Earth orbits. With the help of weak ion thrusters it is possible to accomplish tandem flight. With ion thrusters it is also possible to mimic many kinds of mutual force laws between the satellites. We found that both a constant repulsive force or an attractive force that decreases with the distance are able to preserve the formation in which the eccentricities cause the actual relative motion and the weak thrusters keep the mean longitude difference small. Initial values are important for the formation flight but very exact adjustment of orbital elements is not important. Simplicity is one of our goals in this study and this result is achieved at least in the way that, when constant force thrusters are used, the satellites only need to detect the...

  19. Violent Relaxation, Dynamical Instabilities and the Formation of Elliptical Galaxies

    Science.gov (United States)

    Aguilar, L. A.

    1990-11-01

    RESUMEN: El problema de la formaci6n de galaxias elfpticas por medjo de colapso gravitacional sin disipaci6n de energfa es estudiado usando un gran numero de simulaciones numericas. Se muestra que este tipo de colapsos, partiendo de condiciones iniciales frfas donde la energfa cinetica inicial representa s6lo un 5%, 0 , de a potencial inicial, produce sistemas relajados de forma triaxial muy similares a las galaxias elfpticas reales en sus formas y perfiles de densidad en proyecci6i . La forina triaxial resulta de la acci6n de una inestabilidad dinamica que aparece en sistemas 'inicos dominados por movimientos radiales, mientras que el perfil de densidad final Cs debido al llamado relajamiento violento que tiende a producir una distribuci6n en espacio fase unica. Estos dos fen6menos tienden a borrar los detalles particulares sobre las condiciones iniciales y dan lugar a una evoluci6n convergente hacia sistemas realistas, esto innecesario el uso de condiciones iniciales especiales (excepto por Ia condici6i de que estas deben ser frfas). Las condiciones iniciales frfas producen los movimientos radiales y fluctuaciones de la energfa potencial requeridos por ambos fen6menos. ABSTRACT: The problem of formation of elliptical galaxies via dissipationless collapse is studied using a large set of numerical simulations. It is shown that dissipationless collapses from cold initial conditions, where the total initial kinetic energy is less than 5% ofthe initial potential energy, lead to relaxed triaxial systems ery similar to real elliptical galaxies ii projected shape and density profiles. The triaxial shape is due to the of a dynamical instability that appears on systems dominated by radial orbits, while final density profile is due to violent relaxation that tends to produce a unique distribution iii space. These two phenomena erase memory of the initial prodtice a convergent evolution toward realistic systems, thus making unnecessary use o[special initial conditions (other

  20. Bioattractors: dynamical systems theory and the evolution of regulatory processes.

    Science.gov (United States)

    Jaeger, Johannes; Monk, Nick

    2014-06-01

    In this paper, we illustrate how dynamical systems theory can provide a unifying conceptual framework for evolution of biological regulatory systems. Our argument is that the genotype-phenotype map can be characterized by the phase portrait of the underlying regulatory process. The features of this portrait--such as attractors with associated basins and their bifurcations--define the regulatory and evolutionary potential of a system. We show how the geometric analysis of phase space connects Waddington's epigenetic landscape to recent computational approaches for the study of robustness and evolvability in network evolution. We discuss how the geometry of phase space determines the probability of possible phenotypic transitions. Finally, we demonstrate how the active, self-organizing role of the environment in phenotypic evolution can be understood in terms of dynamical systems concepts. This approach yields mechanistic explanations that go beyond insights based on the simulation of evolving regulatory networks alone. Its predictions can now be tested by studying specific, experimentally tractable regulatory systems using the tools of modern systems biology. A systematic exploration of such systems will enable us to understand better the nature and origin of the phenotypic variability, which provides the substrate for evolution by natural selection.

  1. Habitable Planets: Interior Dynamics and Long-Term Evolution

    Science.gov (United States)

    Tackley, Paul J.; Ammann, Michael M.; Brodholt, John P.; Dobson, David P.; Valencia, Diana

    2014-04-01

    Here, the state of our knowledge regarding the interior dynamics and evolution of habitable terrestrial planets including Earth and super-Earths is reviewed, and illustrated using state-of-the-art numerical models. Convection of the rocky mantle is the key process that drives the evolution of the interior: it causes plate tectonics, controls heat loss from the metallic core (which generates the magnetic field) and drives long-term volatile cycling between the atmosphere/ocean and interior. Geoscientists have been studying the dynamics and evolution of Earth's interior since the discovery of plate tectonics in the late 1960s and on many topics our understanding is very good, yet many first-order questions remain. It is commonly thought that plate tectonics is necessary for planetary habitability because of its role in long-term volatile cycles that regulate the surface environment. Plate tectonics is the surface manifestation of convection in the 2900-km deep rocky mantle, yet exactly how plate tectonics arises is still quite uncertain; other terrestrial planets like Venus and Mars instead have a stagnant lithosphere- essentially a single plate covering the entire planet. Nevertheless, simple scalings as well as more complex models indicate that plate tectonics should be easier on larger planets (super-Earths), other things being equal. The dynamics of terrestrial planets, both their surface tectonics and deep mantle dynamics, change over billions of years as a planet cools. Partial melting is a key process influencing solid planet evolution. Due to the very high pressure inside super-Earths' mantles the viscosity would normally be expected to be very high, as is also indicated by our density function theory (DFT) calculations. Feedback between internal heating, temperature and viscosity leads to a superadiabatic temperature profile and self-regulation of the mantle viscosity such that sluggish convection still occurs.

  2. Evolution of geometrically necessary dislocation density from computational dislocation dynamics

    Science.gov (United States)

    Guruprasad, P. J.; Benzerga, A. A.

    2009-07-01

    This paper presents a method for calculating GND densities in dislocation dynamics simulations. Evolution of suitably defined averages of GND density as well as maps showing the spatial nonuniform distribution of GNDs are analyzed under uniaxial loading. Focus is laid on the resolution dependence of the very notion of GND density, its dependence upon physical dimensions of plastically deformed specimens and its sensitivity to initial conditions. Acknowledgments Support from the National Science Foundation (CMMI-0748187) is gratefully acknowledged.

  3. Fertility Island Formation and Evolution in Dryland Ecosystems

    Directory of Open Access Journals (Sweden)

    Luca Ridolfi

    2008-06-01

    Full Text Available Vast dryland regions around the world are affected by the encroachment of woody vegetation, with important environmental and economical implications. Grassland-to-shrubland conversions are often triggered by disturbance of grassland vegetation, and the consequent formation of barren areas prone to erosion-induced nutrient losses. Inhibition of encroachment by erosion-induced depletion of soil nutrients contributes to the emergence of highly heterogeneous landscapes with shrub-dominated fertility islands surrounded by nutrient-poor bare soil. Here, we develop a process-based simplistic model thataccounts for the two competing processes of resource depletion and shrub encroachment by a non-linear diffusion mechanism. The proposed model is able to generate stable vegetation patterns with the same statistical properties as those observed in areas with well-developed fertility islands. We also show how a subsequent disturbance of shrubland vegetation can shift the dynamics toward states with smaller vegetation biomass. The process of land degradation may then occur through a number of irreversible intermediate transitions associated with losses in ecosystem function.

  4. The Romulus Cosmological Simulations: A Physical Approach to the Formation, Dynamics and Accretion Models of SMBHs

    CERN Document Server

    Tremmel, Michael; Governato, Fabio; Volonteri, Marta; Quinn, Tom; Pontzen, Andrew; Anderson, Lauren

    2016-01-01

    We present a novel implementation of supermassive black hole (SMBH) formation, dynamics, and accretion in the massively parallel tree+SPH code, ChaNGa. This approach improves the modeling of SMBHs in fully cosmological simulations, allowing for a more detailed analysis of SMBH-galaxy co-evolution throughout cosmic time. Our scheme includes novel, physically motivated models for SMBH formation, dynamics and sinking timescales within galaxies, and SMBH accretion of rotationally supported gas. The sub-grid parameters that regulate star formation (SF) and feedback from SMBHs and SNe are optimized against a comprehensive set of z = 0 galaxy scaling relations using a novel, multi-dimensional parameter search. We have incorporated our new SMBH implementation and parameter optimization onto a new set of high resolution, large-scale cosmological simulations called Romulus. We present initial results from our flagship simulation, Romulus25, showing that our SMBH model results in SF efficiency, SMBH masses, and global c...

  5. Hamiltonian Dynamics of Protein Filament Formation.

    Science.gov (United States)

    Michaels, Thomas C T; Cohen, Samuel I A; Vendruscolo, Michele; Dobson, Christopher M; Knowles, Tuomas P J

    2016-01-22

    We establish the Hamiltonian structure of the rate equations describing the formation of protein filaments. We then show that this formalism provides a unified view of the behavior of a range of biological self-assembling systems as diverse as actin, prions, and amyloidogenic polypeptides. We further demonstrate that the time-translation symmetry of the resulting Hamiltonian leads to previously unsuggested conservation laws that connect the number and mass concentrations of fibrils and allow linear growth phenomena to be equated with autocatalytic growth processes. We finally show how these results reveal simple rate laws that provide the basis for interpreting experimental data in terms of specific mechanisms controlling the proliferation of fibrils.

  6. Star formation in the first galaxies - III. Formation, evolution, and characteristics of the first stellar cluster

    CERN Document Server

    Safranek-Shrader, Chalence; Milosavljevic, Milos; Bromm, Volker

    2015-01-01

    We simulate the formation of a low metallicity (0.01 Zsun) stellar cluster in a dwarf galaxy at redshift z~14. Beginning with cosmological initial conditions, the simulation utilizes adaptive mesh refinement and sink particles to follow the collapse and evolution of gas past the opacity limit for fragmentation, thus resolving the formation of individual protostellar cores. A time- and location-dependent protostellar radiation field, which heats the gas by absorption on dust, is computed by integration of protostellar evolutionary tracks with the MESA code. The simulation also includes a robust non-equilibrium chemical network that self-consistently treats gas thermodynamics and dust-gas coupling. The system is evolved for 18 kyr after the first protostellar source has formed. In this time span, 30 sink particles representing protostellar cores form with a total mass of 81 Msun. Their masses range from ~0.1 Msun to 14.4 Msun with a median mass ~0.5-1 Msun. Massive protostars grow by competitive accretion while...

  7. THE DYNAMICAL EVOLUTION OF STELLAR BLACK HOLES IN GLOBULAR CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Morscher, Meagan; Pattabiraman, Bharath; Rodriguez, Carl; Rasio, Frederic A.; Umbreit, Stefan, E-mail: m.morscher@u.northwestern.edu [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Northwestern University, Evanston, IL (United States)

    2015-02-10

    Our current understanding of the stellar initial mass function and massive star evolution suggests that young globular clusters (GCs) may have formed hundreds to thousands of stellar-mass black holes (BHs), the remnants of stars with initial masses from ∼20-100 M {sub ☉}. Birth kicks from supernova explosions may eject some BHs from their birth clusters, but most should be retained. Using a Monte Carlo method we investigate the long-term dynamical evolution of GCs containing large numbers of stellar BHs. We describe numerical results for 42 models, covering a broad range of realistic initial conditions, including up to 1.6 × 10{sup 6} stars. In almost all models we find that significant numbers of BHs (up to ∼10{sup 3}) are retained all the way to the present. This is in contrast to previous theoretical expectations that most BHs should be ejected dynamically within a few gigayears The main reason for this difference is that core collapse driven by BHs (through the Spitzer {sup m}ass segregation instability{sup )} is easily reverted through three-body processes, and involves only a small number of the most massive BHs, while lower-mass BHs remain well-mixed with ordinary stars far from the central cusp. Thus the rapid segregation of stellar BHs does not lead to a long-term physical separation of most BHs into a dynamically decoupled inner core, as often assumed previously. Combined with the recent detections of several BH X-ray binary candidates in Galactic GCs, our results suggest that stellar BHs could still be present in large numbers in many GCs today, and that they may play a significant role in shaping the long-term dynamical evolution and the present-day dynamical structure of many clusters.

  8. Formation and evolution of planetary systems: the impact of high angular resolution optical techniques

    CERN Document Server

    Absil, Olivier; 10.1007/s00159-009-0028-y

    2009-01-01

    The direct images of giant extrasolar planets recently obtained around several main sequence stars represent a major step in the study of planetary systems. These high-dynamic range images are among the most striking results obtained by the current generation of high angular resolution instruments, which will be superseded by a new generation of instruments in the coming years. It is therefore an appropriate time to review the contributions of high angular resolution visible/infrared techniques to the rapidly growing field of extrasolar planetary science. During the last 20 years, the advent of the Hubble Space Telescope, of adaptive optics on 4- to 10-m class ground-based telescopes, and of long-baseline infrared stellar interferometry has opened a new viewpoint on the formation and evolution of planetary systems. By spatially resolving the optically thick circumstellar discs of gas and dust where planets are forming, these instruments have considerably improved our models of early circumstellar environments...

  9. Star formation and turbulent dissipation in models of disk galaxy evolution

    CERN Document Server

    Avila-Reese, V; Vázquez-Semadeni, E

    2003-01-01

    The kinetic energy dissipation rate in the turbulent ISM of disk galaxies is a key ingredient in galaxy evolution models since it determines the effectiveness of large-scale star formation (SF) feedback. Using magneto-hydro-dynamic simulations, we find that the ISM dissipates efficiently the turbulent kinetic energy injected by sources of stellar nature. Thus, the SF process may be self-regulated by an energy balance only at the level of the disk ISM. The use of the self-regulation SF mechanism in galaxy evolutionary models, where disks form inside growing Cold Dark Matter halos, allows to predict the SF history of disk galaxies, including the Milky Way and the solar neighborhood, as well as the contribution of the whole population of disk galaxies to the cosmic SF history. The results are encouraging.

  10. CFD-DEM Simulations of Current-Induced Dune Formation and Morphological Evolution

    CERN Document Server

    Sun, Rui

    2015-01-01

    Understanding the fundamental mechanisms of sediment transport, particularly those during the formation and evolution of bedforms, is of critical scientific importance and has engineering relevance. Traditional approaches of sediment transport simulations heavily rely on empirical models, which are not able to capture the physics-rich, regime-dependent behaviors of the process. With the increase of available computational resources in the past decade, CFD-DEM (computational fluid dynamics-discrete element method) has emerged as a viable high-fidelity method for the study of sediment transport. However, a comprehensive, quantitative study of the generation and migration of different sediment bed patterns using CFD-DEM is still lacking. In this work, current-induced sediment transport problems in a wide range of regimes are simulated, including 'flat bed in motion', `small dune', `vortex dune' and suspended transport. Simulations are performed by using SediFoam, an open-source, massively parallel CFD-DEM solver...

  11. Cryptic population dynamics: rapid evolution masks trophic interactions.

    Directory of Open Access Journals (Sweden)

    Takehito Yoshida

    2007-09-01

    Full Text Available Trophic relationships, such as those between predator and prey or between pathogen and host, are key interactions linking species in ecological food webs. The structure of these links and their strengths have major consequences for the dynamics and stability of food webs. The existence and strength of particular trophic links has often been assessed using observational data on changes in species abundance through time. Here we show that very strong links can be completely missed by these kinds of analyses when changes in population abundance are accompanied by contemporaneous rapid evolution in the prey or host species. Experimental observations, in rotifer-alga and phage-bacteria chemostats, show that the predator or pathogen can exhibit large-amplitude cycles while the abundance of the prey or host remains essentially constant. We know that the species are tightly linked in these experimental microcosms, but without this knowledge, we would infer from observed patterns in abundance that the species are weakly or not at all linked. Mathematical modeling shows that this kind of cryptic dynamics occurs when there is rapid prey or host evolution for traits conferring defense against attack, and the cost of defense (in terms of tradeoffs with other fitness components is low. Several predictions of the theory that we developed to explain the rotifer-alga experiments are confirmed in the phage-bacteria experiments, where bacterial evolution could be tracked. Modeling suggests that rapid evolution may also confound experimental approaches to measuring interaction strength, but it identifies certain experimental designs as being more robust against potential confounding by rapid evolution.

  12. Star Formation and Cloud Dynamics in the Galactic Bar Region

    Science.gov (United States)

    Tolls, Volker

    The Inner Galaxy (IG) that is the Galactic Bar Region (GBR) and the Central Molecular Zone (CMZ) including the Galactic Center (GC) are, despite being the sites of dramatic processes and unique sources, still only incompletely understood. Detailed new datasets from the Herschel Space Observatory can be systematically combined with older archival material to enable a new and more complete analysis of the region, its large-scale dynamics, its unusual giant molecular clouds, and the likely influences of its bar and its supermassive black hole. Such a study is both timely and important: the region has affected the structure and evolution of the galaxy; its individual sources are opportunities to examine star formation (for example) under extreme conditions; the processes feeding the CMZ and, subsequently, its black hole are important; and not least, it is a nearby template for the inner regions of other galaxies. The Herschel Space Observatory has provided us with exciting new datasets including full FIR photometric maps and highand low-resolution far-infrared/submillimeter spectra of key sources and lines of the locations of dynamical importance. All these datasets are publicly available from the Herschel Science Archive. Our experienced team has already developed preliminary models, and we propose a thorough investigation to combine the Herschel datasets with Spitzer and WISE datasets. We will supplement them with ground-based observations in cases when it will improve the results. We will then analyze the data and use the results to refine the models and improve our understanding of this key region. Our specific goal is to characterize and model the 3 giant high-velocity molecular cloud clumps in the Galaxy Bar Region (GBR) in detail and to combine the conclusions to produce an improved model of the IG. We have seven tasks: (1) identify all smaller scale gas and dust cores using archival Herschel FIR photometric observations and obtain their physical characteristics

  13. On the Nonlinear Evolution of Cosmic Web: Lagrangian Dynamics Revisited

    CERN Document Server

    Wang, Xin

    2014-01-01

    We investigate the nonlinear evolution of cosmic morphologies of the large-scale structure by examining the Lagrangian dynamics of various tensors of a cosmic fluid element, including the velocity gradient tensor, the Hessian matrix of the gravitational potential as well as the deformation tensor. Instead of the eigenvalue representation, the first two tensors, which associate with the "kinematic" and "dynamical" cosmic web classification algorithm respectively, are studied in a more convenient parameter space. These parameters are defined as the rotational invariant coefficients of the characteristic equation of the tensor. In the nonlinear local model (NLM) where the magnetic part of Weyl tensor vanishes, these invariants are fully capable of characterizing the dynamics. Unlike the Zeldovich approximation (ZA), where various morphologies do not change before approaching a one-dimensional singularity, the sheets in NLM are unstable for both overdense and underdense perturbations. While it has long been known...

  14. Dynamics and evolution of galactic nuclei (princeton series in astrophysics)

    CERN Document Server

    Merritt, David

    2013-01-01

    Deep within galaxies like the Milky Way, astronomers have found a fascinating legacy of Einstein's general theory of relativity: supermassive black holes. Connected to the evolution of the galaxies that contain these black holes, galactic nuclei are the sites of uniquely energetic events, including quasars, stellar tidal disruptions, and the generation of gravitational waves. This textbook is the first comprehensive introduction to dynamical processes occurring in the vicinity of supermassive black holes in their galactic environment. Filling a critical gap, it is an authoritative resource for astrophysics and physics graduate students, and researchers focusing on galactic nuclei, the astrophysics of massive black holes, galactic dynamics, and gravitational wave detection. It is an ideal text for an advanced graduate-level course on galactic nuclei and as supplementary reading in graduate-level courses on high-energy astrophysics and galactic dynamics. David Merritt summarizes the theoretical work of the las...

  15. Visualization of the evolution of charged droplet formation and jet transition in electrostatic atomization

    Energy Technology Data Exchange (ETDEWEB)

    Huo, Yuanping, E-mail: huoyuanping@gmail.com; Wang, Junfeng, E-mail: wangjunfeng@ujs.edu.cn; Zuo, Ziwen; Fan, Yajun [School of Energy and Power Engineering, Jiangsu University, 212013 Zhenjiang (China)

    2015-11-15

    A detailed experimental study on the evolution of charged droplet formation and jet transition from a capillary is reported. By means of high-speed microscopy, special attention has been paid to the dynamics of the liquid thread and satellite droplets in the dripping mode, and a method for calculating the surface charge on the satellite droplet is proposed. Jet transition behavior based on the electric Bond number has been visualized, droplet sizes and velocities are measured to obtain the ejection characteristic of the spray plume, and the charge and hydrodynamic relaxation are linked to give explanations for ejection dynamics with different properties. The results show that the relative length is very sensitive to the hydrodynamic relaxation time. The magnitude of the electric field strength dominates the behavior of coalescence and noncoalescence, with the charge relationship between the satellite droplet and the main droplet being clear for every noncoalescence movement. Ejection mode transitions mainly depend on the magnitude of the electric Bond number, and the meniscus dynamics is determined by the ratio of the charge relaxation time to the hydrodynamic relaxation time.

  16. Time rescaling and pattern formation in biological evolution.

    Science.gov (United States)

    Igamberdiev, Abir U

    2014-09-01

    Biological evolution is analyzed as a process of continuous measurement in which biosystems interpret themselves in the environment resulting in changes of both. This leads to rescaling of internal time (heterochrony) followed by spatial reconstructions of morphology (heterotopy). The logical precondition of evolution is the incompleteness of biosystem's internal description, while the physical precondition is the uncertainty of quantum measurement. The process of evolution is based on perpetual changes in interpretation of information in the changing world. In this interpretation the external biospheric gradients are used for establishment of new features of organization. It is concluded that biological evolution involves the anticipatory epigenetic changes in the interpretation of genetic symbolism which cannot generally be forecasted but can provide canalization of structural transformations defined by the existing organization and leading to predictable patterns of form generation.

  17. DYNAMICAL EVOLUTION OF VISCOUS DISKS AROUND Be STARS. I. PHOTOMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Haubois, X.; Carciofi, A. C. [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Rua do Matao 1226, Cidade Universitaria, Sao Paulo, SP 05508-900 (Brazil); Rivinius, Th. [European Organisation for Astronomical Research in the Southern Hemisphere, Casilla 19001, Santiago 19 (Chile); Okazaki, A. T. [Faculty of Engineering, Hokkai-Gakuen University, Toyohira-ku, Sapporo 062-8605 (Japan); Bjorkman, J. E., E-mail: xhaubois@astro.iag.usp.br [Ritter Observatory, Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606 (United States)

    2012-09-10

    Be stars possess gaseous circumstellar disks that modify in many ways the spectrum of the central B star. Furthermore, they exhibit variability at several timescales and for a large number of observables. Putting the pieces together of this dynamical behavior is not an easy task and requires a detailed understanding of the physical processes that control the temporal evolution of the observables. There is an increasing body of evidence that suggests that Be disks are well described by standard {alpha}-disk theory. This paper is the first of a series that aims at studying the possibility of inferring several disk and stellar parameters through the follow-up of various observables. Here we study the temporal evolution of the disk density for different dynamical scenarios, including the disk build-up as a result of a long and steady mass injection from the star, the disk dissipation that occurs after mass injection is turned off, as well as scenarios in which active periods are followed by periods of quiescence. For those scenarios, we investigate the temporal evolution of continuum photometric observables using a three-dimensional non-LTE radiative transfer code. We show that light curves for different wavelengths are specific of a mass loss history, inclination angle, and {alpha} viscosity parameter. The diagnostic potential of those light curves is also discussed.

  18. Complexity of gold nanoparticle formation disclosed by dynamics study

    DEFF Research Database (Denmark)

    Engelbrekt, Christian; Jensen, Palle Skovhus; Sørensen, Karsten

    2013-01-01

    Although chemically synthesized gold nanoparticles (AuNPs) from gold salt (HAuCl4) are among the most studied nanomaterials, understanding the formation mechanisms is a challenge mainly due to limited dynamics information. A range of in situ methods with down to millisecond (ms) time resolution...... have been employed in the present report to monitor time-dependent physical and chemical properties in aqueous solution during the chemical synthesis. Chemical synthesis of AuNPs is a reduction process accompanied by release of ions and protons, and formation of solid particles. Dynamic information......]- to form Au atoms during the early stage of the synthesis process. pH- and conductivity-dynamics point further clearly to formation of coating layers on AuNPs and adsorbate exchange between MES and starch. © 2013 American Chemical Society....

  19. Predictive modeling of multicellular structure formation by using Cellular Particle Dynamics simulations

    Science.gov (United States)

    McCune, Matthew; Shafiee, Ashkan; Forgacs, Gabor; Kosztin, Ioan

    2014-03-01

    Cellular Particle Dynamics (CPD) is an effective computational method for describing and predicting the time evolution of biomechanical relaxation processes of multicellular systems. A typical example is the fusion of spheroidal bioink particles during post bioprinting structure formation. In CPD cells are modeled as an ensemble of cellular particles (CPs) that interact via short-range contact interactions, characterized by an attractive (adhesive interaction) and a repulsive (excluded volume interaction) component. The time evolution of the spatial conformation of the multicellular system is determined by following the trajectories of all CPs through integration of their equations of motion. CPD was successfully applied to describe and predict the fusion of 3D tissue construct involving identical spherical aggregates. Here, we demonstrate that CPD can also predict tissue formation involving uneven spherical aggregates whose volumes decrease during the fusion process. Work supported by NSF [PHY-0957914]. Computer time provided by the University of Missouri Bioinformatics Consortium.

  20. The Romulus cosmological simulations: a physical approach to the formation, dynamics and accretion models of SMBHs

    Science.gov (United States)

    Tremmel, M.; Karcher, M.; Governato, F.; Volonteri, M.; Quinn, T. R.; Pontzen, A.; Anderson, L.; Bellovary, J.

    2017-09-01

    We present a novel implementation of supermassive black hole (SMBH) formation, dynamics and accretion in the massively parallel tree+SPH code, ChaNGa. This approach improves the modelling of SMBHs in fully cosmological simulations, allowing for a more detailed analysis of SMBH-galaxy co-evolution throughout cosmic time. Our scheme includes novel, physically motivated models for SMBH formation, dynamics and sinking timescales within galaxies and SMBH accretion of rotationally supported gas. The sub-grid parameters that regulate star formation (SF) and feedback from SMBHs and SNe are optimized against a comprehensive set of z = 0 galaxy scaling relations using a novel, multidimensional parameter search. We have incorporated our new SMBH implementation and parameter optimization into a new set of high-resolution, large-scale cosmological simulations called Romulus. We present initial results from our flagship simulation, Romulus25, showing that our SMBH model results in SF efficiency, SMBH masses and global SF and SMBH accretion histories at high redshift that are consistent with observations. We discuss the importance of SMBH physics in shaping the evolution of massive galaxies and show how SMBH feedback is much more effective at regulating SF compared to SNe feedback in this regime. Further, we show how each aspect of our SMBH model impacts this evolution compared to more common approaches. Finally, we present a science application of this scheme studying the properties and time evolution of an example dual active galactic nucleus system, highlighting how our approach allows simulations to better study galaxy interactions and SMBH mergers in the context of galaxy-BH co-evolution.

  1. Formation and evolution of heavy sub-structures in the centre of galaxy clusters: the local effect of dark energy

    CERN Document Server

    Sedda, Manuel Arca; Merafina, Marco

    2016-01-01

    We discuss how the centres of galaxy clusters evolve in time, showing the results of a series of direct N-body simulations. In particular, we followed the evolution of a galaxy cluster with a mass $M_{clus} \\simeq 10^{14} $M$_{\\odot}$ in different configurations. The dynamical evolution of the system leads in all the cases to the formation of dense and massive sub-structures in the cluster centre, that form in consequence of a series of collisions and merging among galaxies travelling in the cluster core. We investigate how the structural properties of the main merging product depends on the characteristics of those galaxies that contributed to its formation.

  2. Structure, dynamics, assembly, and evolution of protein complexes.

    Science.gov (United States)

    Marsh, Joseph A; Teichmann, Sarah A

    2015-01-01

    The assembly of individual proteins into functional complexes is fundamental to nearly all biological processes. In recent decades, many thousands of homomeric and heteromeric protein complex structures have been determined, greatly improving our understanding of the fundamental principles that control symmetric and asymmetric quaternary structure organization. Furthermore, our conception of protein complexes has moved beyond static representations to include dynamic aspects of quaternary structure, including conformational changes upon binding, multistep ordered assembly pathways, and structural fluctuations occurring within fully assembled complexes. Finally, major advances have been made in our understanding of protein complex evolution, both in reconstructing evolutionary histories of specific complexes and in elucidating general mechanisms that explain how quaternary structure tends to evolve. The evolution of quaternary structure occurs via changes in self-assembly state or through the gain or loss of protein subunits, and these processes can be driven by both adaptive and nonadaptive influences.

  3. Star clusters as laboratories for stellar and dynamical evolution

    CERN Document Server

    Kalirai, Jason S

    2009-01-01

    Open and globular star clusters have served as benchmarks for the study of stellar evolution due to their supposed nature as simple stellar populations of the same age and metallicity. After a brief review of some of the pioneering work that established the importance of imaging stars in these systems, we focus on several recent studies that have challenged our fundamental picture of star clusters. These new studies indicate that star clusters can very well harbour multiple stellar populations, possibly formed through self-enrichment processes from the first-generation stars that evolved through post-main-sequence evolutionary phases. Correctly interpreting stellar evolution in such systems is tied to our understanding of both chemical-enrichment mechanisms, including stellar mass loss along the giant branches, and the dynamical state of the cluster. We illustrate recent imaging, spectroscopic and theoretical studies that have begun to shed new light on the evolutionary processes that occur within star cluste...

  4. Virus Dynamics and Evolution: Bridging Scales and Disciplines

    Directory of Open Access Journals (Sweden)

    Mary Poss

    2011-08-01

    Full Text Available Viruses have attracted the interest of researchers from multiple disciplines and have nucleated many productive and innovative collaborations. In part, this is because viruses so intimately associate with their hosts that decoupling host and virus biology is difficult, and virus-host interactions occur at multiple scales, from within cells to populations, each of which is intrinsically complex. As a consequence, ecologists, population biologists, evolutionary biologists, and researchers from quantitative fields, including mathematics, statistics, physics and computer science, make significant contributions to the field of virology. Our understanding of virus dynamics and evolution has substantially benefited from these multidisciplinary efforts. It is now common to see advanced phylogenetic reconstruction methods used to determine the origins of emergent viruses, to estimate the effect of natural selection on virus populations, and to assess virus population dynamics. Mathematical and statistical models that elucidate complex virus and host interactions in time and space at the molecular and population level are appearing more regularly in virology and biomedical journals. Massive quantities of data now available due to technological innovation in imaging, increased disease surveillance efforts, and novel approaches to determine social contact structure are changing approaches to study the dynamics and evolution of viral infections in heterogeneous environments. The next decade presents exciting new opportunities and challenges for the expanding field of researchers investigating dynamics of viral infections that will lead to innovation and new insight on virus interactions in both individual hosts and in populations. The compilation of articles in this Special Issue on “Virus Dynamics and Evolution” is comprised of reviews and primary research, summarized below, that provide new perspectives on virus interactions with host organisms through

  5. Assessing the role of oxygen on ring current formation and evolution through numerical experiments

    Science.gov (United States)

    Ilie, R.; Liemohn, M. W.; Toth, G.; Yu Ganushkina, N.; Daldorff, L. K. S.

    2015-06-01

    We address the effect of ionospheric outflow and magnetospheric ion composition on the physical processes that control the development of the 5 August 2011 magnetic storm. Simulations with the Space Weather Modeling Framework are used to investigate the global dynamics and energization of ions throughout the magnetosphere during storm time, with a focus on the formation and evolution of the ring current. Simulations involving multifluid (with variable H+/O+ ratio in the inner magnetosphere) and single-fluid (with constant H+/O+ ratio in the inner magnetosphere) MHD for the global magnetosphere with inner boundary conditions set either by specifying a constant ion density or by physics-based calculations of the ion fluxes reveal that dynamical changes of the ion composition in the inner magnetosphere alter the total energy density of the magnetosphere, leading to variations in the magnetic field as well as particle drifts throughout the simulated domain. A low oxygen to hydrogen ratio and outflow resulting from a constant ion density boundary produced the most disturbed magnetosphere, leading to a stronger ring current but misses the timing of the storm development. Conversely, including a physics-based solution for the ionospheric outflow to the magnetosphere system leads to a reduction in the cross-polar cap potential (CPCP). The increased presence of oxygen in the inner magnetosphere affects the global magnetospheric structure and dynamics and brings the nightside reconnection point closer to the Earth. The combination of reduced CPCP together with the formation of the reconnection line closer to the Earth yields less adiabatic heating in the magnetotail and reduces the amount of energetic plasma that has access to the inner magnetosphere.

  6. Origin and Dynamical Evolution of Neptune Trojans - II: Long Term Evolution

    CERN Document Server

    Lykawka, Patryk Sofia; Jones, Barrie W; Mukai, Tadashi

    2010-01-01

    We present results examining the fate of the Trojan clouds produced in our previous work. We find that the stability of Neptunian Trojans seems to be strongly correlated to their initial post-migration orbital elements, with those objects that survive as Trojans for billions of years displaying negligible orbital evolution. The great majority of these survivors began the integrations with small eccentricities (e 20{\\deg}. Dynamical integrations of the currently observed Trojans show that five out of the seven are dynamically stable on 4 Gyr timescales, while 2001 QR322, exhibits significant dynamical instability. The seventh Trojan object, 2008 LC18, has such large orbital uncertainties that only future studies will be able to determine its stability.

  7. Dynamics and gravitational wave signature of collapsar formation.

    Science.gov (United States)

    Ott, C D; Reisswig, C; Schnetter, E; O'Connor, E; Sperhake, U; Löffler, F; Diener, P; Abdikamalov, E; Hawke, I; Burrows, A

    2011-04-22

    We perform 3+1 general relativistic simulations of rotating core collapse in the context of the collapsar model for long gamma-ray bursts. We employ a realistic progenitor, rotation based on results of stellar evolution calculations, and a simplified equation of state. Our simulations track self-consistently collapse, bounce, the postbounce phase, black hole formation, and the subsequent early hyperaccretion phase. We extract gravitational waves from the spacetime curvature and identify a unique gravitational wave signature associated with the early phase of collapsar formation.

  8. Formation and evolution mechanisms of large-clusters during rapid solidification process of liquid metal Al

    Institute of Scientific and Technical Information of China (English)

    LIU Rangsu; DONG Kejun; LIU Fengxiang; ZHENG Caixing; LIU Hairong; LI Jiyong

    2005-01-01

    A molecular dynamics simulation study has been performed for the formation and evolution characteristics of nano-clusters in a large-scale system consisting of 400000 atoms of liquid metal Al. The center-atom method combined with pair-bond analysis technique and cluster-type index method (CTIM) has been applied here to describe the structural configurations of various basic clusters. It is demonstrated that both the 1551 bond-type and the icosahedral cluster (12 0 12 0) constructed by 1551 bond-types are dominant among all the bond-types and cluster-types, respectively, in the system and play a critical role in the microstructure transitions of liquid metal Al. The nano-clusters (containing up to 150 atoms) are formed by the combination of some middle and small clusters with distinctly different sizes, through mutual competition by unceasing annex and evolution in a seesaw manner (in turn of obtaining and losing),which do not occur as the multi-shell structures accumulated with an atom as the center and the surrounding atoms are arranged according to a certain rule. This is the essential distinction of nano-cluster in liquid metal from those obtained by gaseous deposition, ionic spray methods, and so on. Though the nano-clusters differ from each other in shape and size, all of them possess protruding corners that could become the starting points of various dendrite structures in the solidification processes of liquid metals.

  9. Stellar evolution on the borderline of white dwarf and neutron star formation

    NARCIS (Netherlands)

    Poelarends, A.J.T.

    2007-01-01

    This thesis is about the evolution of stars, specifically about the final fate of stars at the borderline between the formation of white dwarfs and neutron stars. It is well known that the mass and the metallicity are the two determining factors in stellar evolution, and for a given initial chemical

  10. On learning dynamics underlying the evolution of learning rules.

    Science.gov (United States)

    Dridi, Slimane; Lehmann, Laurent

    2014-02-01

    In order to understand the development of non-genetically encoded actions during an animal's lifespan, it is necessary to analyze the dynamics and evolution of learning rules producing behavior. Owing to the intrinsic stochastic and frequency-dependent nature of learning dynamics, these rules are often studied in evolutionary biology via agent-based computer simulations. In this paper, we show that stochastic approximation theory can help to qualitatively understand learning dynamics and formulate analytical models for the evolution of learning rules. We consider a population of individuals repeatedly interacting during their lifespan, and where the stage game faced by the individuals fluctuates according to an environmental stochastic process. Individuals adjust their behavioral actions according to learning rules belonging to the class of experience-weighted attraction learning mechanisms, which includes standard reinforcement and Bayesian learning as special cases. We use stochastic approximation theory in order to derive differential equations governing action play probabilities, which turn out to have qualitative features of mutator-selection equations. We then perform agent-based simulations to find the conditions where the deterministic approximation is closest to the original stochastic learning process for standard 2-action 2-player fluctuating games, where interaction between learning rules and preference reversal may occur. Finally, we analyze a simplified model for the evolution of learning in a producer-scrounger game, which shows that the exploration rate can interact in a non-intuitive way with other features of co-evolving learning rules. Overall, our analyses illustrate the usefulness of applying stochastic approximation theory in the study of animal learning.

  11. Massive Quantum Memories by Periodically Inverted Dynamic Evolutions

    CERN Document Server

    Giampaolo, S M; Lisi, A D; Mazzarella, G

    2005-01-01

    We introduce a general scheme to realize perfect quantum state reconstruction and storage in systems of interacting qubits. This novel approach is based on the idea of controlling the residual interactions by suitable external controls that, acting on the inter-qubit couplings, yield time-periodic inversions in the dynamical evolution, thus cancelling exactly the effects of quantum state diffusion. We illustrate the method for spin systems on closed rings with XY residual interactions, showing that it enables the massive storage of arbitrarily large numbers of local states, and we demonstrate its robustness against several realistic sources of noise and imperfections.

  12. Dynamical Phase Transition in a Model for Evolution with Migration

    Science.gov (United States)

    Waclaw, Bartłomiej; Allen, Rosalind J.; Evans, Martin R.

    2010-12-01

    We study a simple quasispecies model for evolution in two different habitats, with different fitness landscapes, coupled through one-way migration. Our key finding is a dynamical phase transition at a critical value of the migration rate, at which the time to reach the steady state diverges. The genetic composition of the population is qualitatively different above and below the transition. Using results from localization theory, we show that the critical migration rate may be very small—demonstrating that evolutionary outcomes can be very sensitive to even a small amount of migration.

  13. Molecular dynamical modelling of endohedral fullerenes formation in plasma

    Science.gov (United States)

    Fedorov, A. S.; Kovaleva, E. A.; Lubkova, T. A.; Popov, Z. I.; Kuzubov, A. A.; Visotin, M. A.; Irle, S.

    2016-02-01

    The initial stages of fullerene and endohedral metallofullerene (EMF) synthesis in carbon-helium plasma at 1500 K and 2500 K have been simulated with quantum chemical molecular dynamics (MD) based on density-functional tight-binding (DFTB). The cases of formation of large (>100 atoms) sp2-carbon clusters with scandium atoms inside were observed. These clusters are considered as precursors of fullerenes or EMFs, and thus it is shown that formation of EMFs can be explained within the framework of "shrinking hot giant" mechanism. Also, the dependence of formation rates on plasma parameters, including temperature, buffer gas and metal atoms concentrations, has been studied.

  14. Supernova Feedback in Molecular Clouds: Global Evolution and Dynamics

    CERN Document Server

    Körtgen, Bastian; Banerjee, Robi; Vázquez-Semadeni, Enrique; Zamora-Avilés, Manuel

    2016-01-01

    We use magnetohydrodynamical simulations of converging warm neutral medium flows to analyse the formation and global evolution of magnetised and turbulent molecular clouds subject to supernova feedback from massive stars. We show that supernova feedback alone fails to disrupt entire, gravitationally bound, molecular clouds, but is able to disperse small--sized (~10 pc) regions on timescales of less than 1 Myr. Efficient radiative cooling of the supernova remnant as well as strong compression of the surrounding gas result in non-persistent energy and momentum input from the supernovae. However, if the time between subsequent supernovae is short and they are clustered, large hot bubbles form that disperse larger regions of the parental cloud. On longer timescales, supernova feedback increases the amount of gas with moderate temperatures (T~300-3000 K). Despite its inability to disrupt molecular clouds, supernova feedback leaves a strong imprint on the star formation process. We find an overall reduction of the ...

  15. Dynamical Models Explaining Social Balance and Evolution of Cooperation

    CERN Document Server

    Traag, V A; De Leenheer, P

    2013-01-01

    In social networks with positive and negative links the dominant theory of explaining its structure is that of social balance. The theory states that a network is balanced if its triads are balanced. Such a balanced network can be split into (at most) two opposing factions with positive links within a faction and negative links between them. Although inherently dynamical, the theory has long remained static, with a focus on finding such partitions. Recently however, a dynamical model was introduced which was shown to converge to a socially balanced state for certain symmetric initial conditions. Here we show this does not hold for general (non-symmetric) initial conditions. We propose an alternative model and show that it does converge to a socially balanced state generically. Moreover, in a basic model of evolution of cooperation of indirect reciprocity, the alternative model has an evolutionary advantage compared to the earlier model. The principal difference between the two models can be understood in term...

  16. On the dynamical evolution of the Orion Trapezium

    Science.gov (United States)

    Allen, Christine.; Costero, Rafael; Ruelas-Mayorga, Alex; Sánchez, L. J.

    2017-01-01

    We discuss recent observational data on the transverse and radial velocities, as well as on the masses of the main components of the Orion Trapezium. Based on the most reliable values of these quantities we study the dynamical evolution of ensembles of multiple systems mimicking the Orion Trapezium. To this end we conduct numerical N -body integrations using the observed masses, planar positions and velocities, radial velocities, and random line-of-sight (z) positions for all components. We include perturbations in these quantities compatible with the observational errors. We find the dynamical lifetimes of such systems to be quite short, of the order of 10 to 50 thousand years. The end result of the simulations is usually a tight binary, or sometimes a hierarchical triple. The properties of the evolved systems are studied at different values of the crossing times. The frequency distributions of the major semiaxes and eccentricities of the resulting binaries are discussed and compared with observations.

  17. Evolution in Mind: Evolutionary Dynamics, Cognitive Processes, and Bayesian Inference.

    Science.gov (United States)

    Suchow, Jordan W; Bourgin, David D; Griffiths, Thomas L

    2017-07-01

    Evolutionary theory describes the dynamics of population change in settings affected by reproduction, selection, mutation, and drift. In the context of human cognition, evolutionary theory is most often invoked to explain the origins of capacities such as language, metacognition, and spatial reasoning, framing them as functional adaptations to an ancestral environment. However, evolutionary theory is useful for understanding the mind in a second way: as a mathematical framework for describing evolving populations of thoughts, ideas, and memories within a single mind. In fact, deep correspondences exist between the mathematics of evolution and of learning, with perhaps the deepest being an equivalence between certain evolutionary dynamics and Bayesian inference. This equivalence permits reinterpretation of evolutionary processes as algorithms for Bayesian inference and has relevance for understanding diverse cognitive capacities, including memory and creativity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Formation and temporal evolution of the Lamb-dipole

    DEFF Research Database (Denmark)

    Nielsen, A.H.; Juul Rasmussen, J.

    1997-01-01

    of the evolving dipoles depend on the initial condition. However, the gross properties of their evolution are only weakly dependent on the detailed structure and can be well-described by the so-called Lamb-dipole solution. The viscous decay of the Lamb-dipole, leading to an expansion and a decreasing velocity...

  19. A Fault Evolution Model Including the Rupture Dynamic Simulation

    Science.gov (United States)

    Wu, Y.; Chen, X.

    2011-12-01

    We perform a preliminary numerical simulation of seismicity and stress evolution along a strike-slip fault in a 3D elastic half space. Following work of Ben-Zion (1996), the fault geometry is devised as a vertical plane which is about 70 km long and 17 km wide, comparable to the size of San Andreas Fault around Parkfield. The loading mechanism is described by "backslip" method. The fault failure is governed by a static/kinetic friction law, and induced stress transfer is calculated with Okada's static solution. In order to track the rupture propagation in detail, we allow induced stress to propagate through the medium at the shear wave velocity by introducing a distance-dependent time delay to responses to stress changes. Current simulation indicates small to moderate earthquakes following the Gutenberg-Richter law and quasi-periodical characteristic large earthquakes, which are consistent with previous work by others. Next we will consider introducing a more realistic friction law, namely, the laboratory-derived rate- and state- dependent law, which can simulate more realistic and complicated sliding behavior such as the stable and unstable slip, the aseismic sliding and the slip nucleation process. In addition, the long duration of aftershocks is expected to be reproduced due to this time-dependent friction law, which is not available in current seismicity simulation. The other difference from previous work is that we are trying to include the dynamic ruptures in this study. Most previous study on seismicity simulation is based on the static solution when dealing with failure induced stress changes. However, studies of numerical simulation of rupture dynamics have revealed lots of important details which are missing in the quasi-static/quasi- dynamic simulation. For example, dynamic simulations indicate that the slip on the ground surface becomes larger if the dynamic rupture process reaches the free surface. The concentration of stress on the propagating crack

  20. Formation Dynamics and Quantitative Prediction of Hydrocarbons of the Superpressure System in the Dongying Sag

    Institute of Scientific and Technical Information of China (English)

    SUI Fenggui; HAO Xuefeng; LIU Qing; ZHUO Qingong; ZHANG Shouchun

    2008-01-01

    Based on the theory of formation dynamics of oil/gas pools, the Dongying sag can be divided into three dynamic systems regarding the accumulation of oil and gas: the superpressure closed system,the semi-closed system and the normal pressure open system. Based on the analysis of genesis of superpressure in the superpressure closed system and the rule of hydrocarbon expulsion,it is found that hydrocarbon generation is related to superpressure, which is the main driving factor of hydrocarbon migration. Micro fractures formed by superpressure are the main channels for hydrocarbon migration. There are three dynamic patterns for hydrocarbon expulsion: free water drainage, hydrocarbon accumulation and drainage through micro fissures. In the superpressure closed system, the oil-driving-water process and oil/gas accumulation were completed in lithologic traps by way of such two dynamic patterns as episodic evolution of superpressure systems and episodic pressure release of faults. The oil-bearing capacity of lithologic traps is intimately related to reservoir-forming dynamic force. Quantitative evaluation of dynamic conditions for pool formation can effectively predict the oil-bearing capability of traps.

  1. Formation of ultra-compact blue dwarf galaxies and their evolution into nucleated dwarfs

    CERN Document Server

    Bekki, Kenji

    2015-01-01

    We propose that there is an evolutionary link between ultra-compact blue dwarf galaxies (UCBDs) with active star formation and nucleated dwarfs based on the results of numerical simulations of dwarf-dwarf merging. We consider the observational fact that low-mass dwarfs can be very gas-rich, and thereby investigate the dynamical and chemical evolution of very gas-rich, dissipative dwarf-dwarf mergers. We find that the remnants of dwarf-dwarf mergers can be dominated by new stellar populations formed from the triggered starbursts and consequently can have blue colors and higher metallicities (Z~[0.2-1]Z_sun). We also find that the remnants of these mergers can have rather high mass-densities (10^4 M_sun pc^-3) within the central 10 pc and small half-light radii (40-100 pc). The radial stellar structures of some merger remnants are similar to those of nucleated dwarfs. Star formation can continue in nuclear gas disks (R<100 pc) surrounding stellar galactic nuclei (SGNs) so that the SGNs can finally have multi...

  2. FORMATION OF ULTRA-COMPACT BLUE DWARF GALAXIES AND THEIR EVOLUTION INTO NUCLEATED DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Bekki, Kenji [ICRAR, M468, The University of Western Australia 35 Stirling Highway, Crawley Western Australia, 6009 (Australia)

    2015-10-10

    We propose that there is an evolutionary link between ultra-compact blue dwarf galaxies (UCBDs) with active star formation and nucleated dwarfs based on the results of numerical simulations of dwarf–dwarf merging. We consider the observational fact that low-mass dwarfs can be very gas-rich, and thereby investigate the dynamical and chemical evolution of very gas-rich, dissipative dwarf–dwarf mergers. We find that the remnants of dwarf–dwarf mergers can be dominated by new stellar populations formed from the triggered starbursts and consequently can have blue colors and higher metallicities (Z ∼ [0.2–1]Z{sub ⊙}). We also find that the remnants of these mergers can have rather high mass densities (10{sup 4} M{sub ⊙} pc{sup −3}) within the central 10 pc and small half-light radii (40−100 pc). The radial stellar structures of some merger remnants are similar to those of nucleated dwarfs. Star formation can continue in nuclear gas disks (R < 100 pc) surrounding stellar galactic nuclei (SGNs) so that the SGNs can finally have multiple stellar populations with different ages and metallicities. These very compact blue remnants can be identified as UCBDs soon after merging and as nucleated dwarfs after the young stars fade. We discuss these results in the context of the origins of metal-rich ultra-compact dwarfs and SGNs.

  3. Evolution and formation of shear layers in a developing turbulent boundary layer

    Science.gov (United States)

    Lee, Junghoon; Monty, Jason; Hutchins, Nicholas

    2016-11-01

    The evolution and formation mechanism of shear layers in the outer region of a turbulent boundary layer are investigated using time-resolved PIV datasets of a developing turbulent boundary layer from inception at the trip up to Reτ = 3000 . An analysis of a sequence of instantaneous streamwise velocity fluctuation fields reveals that strong streamwise velocity gradients are prevalent along interfaces where low- and high-speed regions interact. To provide an insight on how such regions are associated with the formation of shear layers in the outer regions, we compute conditional averages of streamwise velocity fluctuations based on a strong shear layer. Our results reveal that one possible mechanism for the generation of shear layers in the outer region is due to the mismatch in the convection velocities between low- and high-speed regions. The results also indicate that the angle of the inclined shear layer is developing in time. In addition, the conditionally averaged velocity fluctuations exhibit a local instability along these shear layers, leading to a shear layer roll-up event as the layers evolve in time. Based on these findings, we propose a conceptual model which describes dynamic interactions of shear layers and their associated large-scale coherent motions. The authors wish to acknowledge the financial support of the Australian Research Council.

  4. Memory formation: from network structure to neural dynamics.

    Science.gov (United States)

    Feldt, Sarah; Wang, Jane X; Hetrick, Vaughn L; Berke, Joshua D; Zochowski, Michal

    2010-05-13

    Understanding the neural correlates of brain function is an extremely challenging task, since any cognitive process is distributed over a complex and evolving network of neurons that comprise the brain. In order to quantify observed changes in neuronal dynamics during hippocampal memory formation, we present metrics designed to detect directional interactions and the formation of functional neuronal ensembles. We apply these metrics to both experimental and model-derived data in an attempt to link anatomical network changes with observed changes in neuronal dynamics during hippocampal memory formation processes. We show that the developed model provides a consistent explanation of the anatomical network modifications that underlie the activity changes observed in the experimental data.

  5. Network evolution induced by the dynamical rules of two populations

    Science.gov (United States)

    Platini, Thierry; Zia, R. K. P.

    2010-10-01

    We study the dynamical properties of a finite dynamical network composed of two interacting populations, namely extrovert (a) and introvert (b). In our model, each group is characterized by its size (Na and Nb) and preferred degree (κa and \\kappa_b\\ll \\kappa_a ). The network dynamics is governed by the competing microscopic rules of each population that consist of the creation and destruction of links. Starting from an unconnected network, we give a detailed analysis of the mean field approach which is compared to Monte Carlo simulation data. The time evolution of the restricted degrees langkbbrang and langkabrang presents three time regimes and a non-monotonic behavior well captured by our theory. Surprisingly, when the population sizes are equal Na = Nb, the ratio of the restricted degree θ0 = langkabrang/langkbbrang appears to be an integer in the asymptotic limits of the three time regimes. For early times (defined by t introverts remains constant while the number of connections increases linearly in the extrovert population. Finally, due to the competing dynamics, the network presents a frustrated stationary state characterized by a ratio θ0 = 3.

  6. Molecular Dynamics Simulation of Amyloid Beta Dimer Formation

    CERN Document Server

    Urbanc, B; Ding, F; Sammond, D; Khare, S; Buldyrev, S V; Stanley, H E; Dokholyan, N V

    2004-01-01

    Recent experiments with amyloid-beta (Abeta) peptide suggest that formation of toxic oligomers may be an important contribution to the onset of Alzheimer's disease. The toxicity of Abeta oligomers depends on their structure, which is governed by assembly dynamics. Due to limitations of current experimental techniques, a detailed knowledge of oligomer structure at the atomic level is missing. We introduce a molecular dynamics approach to study Abeta dimer formation: (1) we use discrete molecular dynamics simulations of a coarse-grained model to identify a variety of dimer conformations, and (2) we employ all-atom molecular mechanics simulations to estimate the thermodynamic stability of all dimer conformations. Our simulations of a coarse-grained Abeta peptide model predicts ten different planar beta-strand dimer conformations. We then estimate the free energies of all dimer conformations in all-atom molecular mechanics simulations with explicit water. We compare the free energies of Abeta(1-42) and Abeta(1-40...

  7. Radiation Recoil Effects on the Dynamical Evolution of Asteroids

    Science.gov (United States)

    Cotto-Figueroa, Desiree

    The Yarkovsky effect is a radiation recoil force that results in a semimajor axis drift in the orbit that can cause Main Belt asteroids to be delivered to powerful resonances from which they could be transported to Earth-crossing orbits. This force depends on the spin state of the object, which is modified by the YORP effect, a variation of the Yarkovsky effect that results in a torque that changes the spin rate and the obliquity. Extensive analyses of the basic behavior of the YORP effect have been previously conducted in the context of the classical spin state evolution of rigid bodies (YORP cycle). However, the YORP effect has an extreme sensitivity to the topography of the asteroids and a minor change in the shape of an aggregate asteroid can stochastically change the YORP torques. Here we present the results of the first simulations that self-consistently model the YORP effect on the spin states of dynamically evolving aggregates. For these simulations we have developed several algorithms and combined them with two codes, TACO and pkdgrav. TACO is a thermophysical asteroid code that models the surface of an asteroid using a triangular facet representation and which can compute the YORP torques. The code pkdgrav is a cosmological N-body tree code modified to simulate the dynamical evolution of asteroids represented as aggregates of spheres using gravity and collisions. The continuous changes in the shape of an aggregate result in a different evolution of the YORP torques and therefore aggregates do not evolve through the YORP cycle as a rigid body would. Instead of having a spin evolution ruled by long periods of rotational acceleration and deceleration as predicted by the classical YORP cycle, the YORP effect is self-limiting and stochastic on aggregate asteroids. We provide a statistical description of the spin state evolution which lays out the foundation for new simulations of a coupled Yarkovsky/YORP evolution. Both self-limiting YORP and to a lesser

  8. On the Relationship Between CAI Evolution and Chondrule Formation

    OpenAIRE

    Housley, R M

    1986-01-01

    The relationship in time and space between CAl formation on the one hand, and chondrule formation on the other is not well understood. It appears that at least compact, coarse-grained CAl were once largely molten. They must have been very depleted in volatiles at that time. However, as now found in Allende they show extensive alteration to volatile rich minerals such as nepheline and sodalite. I have previously argued, partly on the basis of the ubiquitous presence of these vol...

  9. Satellite formation flying relative dynamics, formation design, fuel optimal maneuvers and formation maintenance

    CERN Document Server

    Wang, Danwei; Poh, Eng Kee

    2017-01-01

    This book systematically describes the concepts and principles for multi-satellite relative motion, passive and near passive formation designs, trajectory planning and control for fuel optimal formation maneuvers, and formation flying maintenance control design. As such, it provides a sound foundation for researchers and engineers in this field to develop further theories and pursue their implementations. Though satellite formation flying is widely considered to be a major advance in space technology, there are few systematic treatments of the topic in the literature. Addressing that gap, the book offers a valuable resource for academics, researchers, postgraduate students and practitioners in the field of satellite science and engineering.

  10. Dynamic reconstruction of heterogeneous materials and microstructure evolution.

    Science.gov (United States)

    Chen, Shaohua; Li, Hechao; Jiao, Yang

    2015-08-01

    Reconstructing heterogeneous materials from limited structural information has been a topic that attracts extensive research efforts and still poses many challenges. The Yeong-Torquato procedure is one of the most popular reconstruction techniques, in which the material reconstruction problem based on a set of spatial correlation functions is formulated as a constrained energy minimization (optimization) problem and solved using simulated annealing [Yeong and Torquato, Phys. Rev. E 57, 495 (1998)]. The standard two-point correlation function S2 has been widely used in reconstructions, but can also lead to large structural degeneracy for certain nearly percolating systems. To improve reconstruction accuracy and reduce structural degeneracy, one can successively incorporate additional morphological information (e.g., nonconventional or higher-order correlation functions), which amounts to reshaping the energy landscape to create a deep (local) energy minimum. In this paper, we present a dynamic reconstruction procedure that allows one to use a series of auxiliary S2 to achieve the same level of accuracy as those incorporating additional nonconventional correlation functions. In particular, instead of randomly sampling the microstructure space as in the simulated annealing scheme, our procedure utilizes a series of auxiliary microstructures that mimic a physical structural evolution process (e.g., grain growth). This amounts to constructing a series auxiliary energy landscapes that bias the convergence of the reconstruction to a favored (local) energy minimum. Moreover, our dynamic procedure can be naturally applied to reconstruct an actual microstructure evolution process. In contrast to commonly used evolution reconstruction approaches that separately generate individual static configurations, our procedure continuously evolves a single microstructure according to a time-dependent correlation function. The utility of our procedure is illustrated by successfully

  11. Infalling clouds on to supermassive black hole binaries - I. Formation of discs, accretion and gas dynamics

    Science.gov (United States)

    Goicovic, F. G.; Cuadra, J.; Sesana, A.; Stasyszyn, F.; Amaro-Seoane, P.; Tanaka, T. L.

    2016-01-01

    There is compelling evidence that most - if not all - galaxies harbour a supermassive black hole (SMBH) at their nucleus; hence binaries of these massive objects are an inevitable product of the hierarchical evolution of structures in the Universe, and represent an important but thus-far elusive phase of galaxy evolution. Gas accretion via a circumbinary disc is thought to be important for the dynamical evolution of SMBH binaries, as well as in producing luminous emission that can be used to infer their properties. One plausible source of the gaseous fuel is clumps of gas formed due to turbulence and gravitational instabilities in the interstellar medium, that later fall towards and interact with the binary. In this context, we model numerically the evolution of turbulent clouds in near-radial infall on to equal-mass SMBH binaries, using a modified version of the SPH (smoothed particle hydrodynamics) code GADGET-3. We present a total of 12 simulations that explore different possible pericentre distances and relative inclinations, and show that the formation of circumbinary discs and discs around each SMBH (`mini-discs') depend on those parameters. We also study the dynamics of the formed discs, and the variability of the feeding rate on to the SMBHs in the different configurations.

  12. Dynamical evolution of viscous disks around be stars. II. Polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Haubois, X. [LESIA, Observatoire de Paris, CNRS UMR 8109, UPMC, Université Paris Diderot, 5 place Jules Janssen, F-92195 Meudon (France); Mota, B. C.; Carciofi, A. C.; Bednarski, D. [Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, Rua do Matão 1226, Cidade Universitária, São Paulo, SP 05508-090 (Brazil); Draper, Z. H. [Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2 (Canada); Wisniewski, J. P. [H. L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 West Brooks St Norman, OK 73019 (United States); Rivinius, Th., E-mail: xavier.haubois@obspm.fr [European Organisation for Astronomical Research in the Southern Hemisphere, Casilla 19001, Santiago 19 (Chile)

    2014-04-10

    Be stars exhibit variability for a great number of observables. Putting the pieces of the disk dynamics together is not an easy task and requires arduous modeling before achieving a good fit to the observational data. In order to guide the modeling process and make it more efficient, it is very instructive to investigate reference dynamical cases. This paper focuses on continuum polarimetric quantities and is the second of a series that aims to demonstrate the capacity of deriving the dynamical history and fundamental parameters of a classical Be star through follow-up of various observables. After a detailed study of the different opacities at play in the formation of polarized spectra, we investigate predictions of polarimetric observables in the continuum for different dynamical scenarios. Our models are based on a coupling of a hydrodynamic viscous decretion simulations in a disk and a three-dimensional non-LTE radiative transfer code. Through introduction of the polarization color diagram (PCD), we show that certain combinations of polarimetric observables exhibit features that are characteristic of a mass-loss history. This diagram also enables estimates of fundamental parameters such as the inclination angle, disk density scale, and the α viscous diffusion parameter. We present the PCD as a powerful diagnosis tool to track the dynamical phases of a Be star, such as disk build-up, dissipation, periodic, and episodic outbursts. Finally, we confront our models with observations of four Be stars that exhibited long-term polarimetric activity.

  13. An Empirical Model for Halo Evolution and Global Gas Dynamics of the Fornax Dwarf Spheroidal Galaxy

    CERN Document Server

    Yuan, Zhen; Jing, Y P

    2015-01-01

    We present an empirical model for the halo evolution and global gas dynamics of Fornax, the brightest Milky Way (MW) dwarf spheroidal galaxy (dSph). Assuming a global star formation rate psi(t)=lambda_*[M_g(t)/M_sun]^alpha consistent with observations of star formation in nearby galaxies and using the data on Fornax's psi(t), we derive the evolution of the total mass M_g(t) for cold gas in Fornax's star-forming disk and the rate Delta F(t) of net gas flow to or from the disk. We identify the onset of the transition in Delta F(t) from a net inflow to a net outflow as the time t_sat at which the Fornax halo became an MW satellite and estimate the evolution of its total mass M_h(t) at t

  14. Application of Gas Dynamical Friction for Planetesimals. II. Evolution of Binary Planetesimals

    Science.gov (United States)

    Grishin, Evgeni; Perets, Hagai B.

    2016-04-01

    One of the first stages of planet formation is the growth of small planetesimals and their accumulation into large planetesimals and planetary embryos. This early stage occurs long before the dispersal of most of the gas from the protoplanetary disk. At this stage gas-planetesimal interactions play a key role in the dynamical evolution of single intermediate-mass planetesimals (mp ˜ 1021-1025 g) through gas dynamical friction (GDF). A significant fraction of all solar system planetesimals (asteroids and Kuiper-belt objects) are known to be binary planetesimals (BPs). Here, we explore the effects of GDF on the evolution of BPs embedded in a gaseous disk using an N-body code with a fiducial external force accounting for GDF. We find that GDF can induce binary mergers on timescales shorter than the disk lifetime for masses above mp ≳ 1022 g at 1 au, independent of the binary initial separation and eccentricity. Such mergers can affect the structure of merger-formed planetesimals, and the GDF-induced binary inspiral can play a role in the evolution of the planetesimal disk. In addition, binaries on eccentric orbits around the star may evolve in the supersonic regime, where the torque reverses and the binary expands, which would enhance the cross section for planetesimal encounters with the binary. Highly inclined binaries with small mass ratios, evolve due to the combined effects of Kozai-Lidov (KL) cycles with GDF which lead to chaotic evolution. Prograde binaries go through semi-regular KL evolution, while retrograde binaries frequently flip their inclination and ˜50% of them are destroyed.

  15. APPLICATION OF GAS DYNAMICAL FRICTION FOR PLANETESIMALS. II. EVOLUTION OF BINARY PLANETESIMALS

    Energy Technology Data Exchange (ETDEWEB)

    Grishin, Evgeni; Perets, Hagai B. [Physics Department, Technion—Israel Institute of Technology, Haifa, 3200003 (Israel)

    2016-04-01

    One of the first stages of planet formation is the growth of small planetesimals and their accumulation into large planetesimals and planetary embryos. This early stage occurs long before the dispersal of most of the gas from the protoplanetary disk. At this stage gas–planetesimal interactions play a key role in the dynamical evolution of single intermediate-mass planetesimals (m{sub p} ∼ 10{sup 21}–10{sup 25} g) through gas dynamical friction (GDF). A significant fraction of all solar system planetesimals (asteroids and Kuiper-belt objects) are known to be binary planetesimals (BPs). Here, we explore the effects of GDF on the evolution of BPs embedded in a gaseous disk using an N-body code with a fiducial external force accounting for GDF. We find that GDF can induce binary mergers on timescales shorter than the disk lifetime for masses above m{sub p} ≳ 10{sup 22} g at 1 au, independent of the binary initial separation and eccentricity. Such mergers can affect the structure of merger-formed planetesimals, and the GDF-induced binary inspiral can play a role in the evolution of the planetesimal disk. In addition, binaries on eccentric orbits around the star may evolve in the supersonic regime, where the torque reverses and the binary expands, which would enhance the cross section for planetesimal encounters with the binary. Highly inclined binaries with small mass ratios, evolve due to the combined effects of Kozai–Lidov (KL) cycles with GDF which lead to chaotic evolution. Prograde binaries go through semi-regular KL evolution, while retrograde binaries frequently flip their inclination and ∼50% of them are destroyed.

  16. Shock Dynamics in Stellar Outbursts. I. Shock Formation

    Science.gov (United States)

    Ro, Stephen; Matzner, Christopher D.

    2017-05-01

    Wave-driven outflows and non-disruptive explosions have been implicated in pre-supernova outbursts, supernova impostors, luminous blue variable eruptions, and some narrow-line and superluminous supernovae. To model these events, we investigate the dynamics of stars set in motion by strong acoustic pulses and wave trains, focusing on nonlinear wave propagation, shock formation, and an early phase of the development of a weak shock. We identify the shock formation radius, showing that a heuristic estimate based on crossing characteristics matches an exact expansion around the wave front and verifying both with numerical experiments. Our general analytical condition for shock formation applies to one-dimensional motions within any static environment, including both eruptions and implosions. We also consider the early phase of shock energy dissipation. We find that waves of super-Eddington acoustic luminosity always create shocks, rather than damping by radiative diffusion. Therefore, shock formation is integral to super-Eddington outbursts.

  17. Evolution of galaxy stellar masses and star formation rates in the EAGLE simulations

    CERN Document Server

    Furlong, M; Theuns, T; Schaye, J; Crain, R A; Schaller, M; Vecchia, C Dalla; Frenk, C S; McCarthy, I G; Helly, J; Jenkins, A; Rosas-Guevara, Y M

    2014-01-01

    We investigate the evolution of galaxy masses and star formation rates in the Evolution and Assembly of Galaxies and their Environment (EAGLE) simulations. These comprise a suite of hydrodynamical simulations in a $\\Lambda$CDM cosmogony with subgrid models for radiative cooling, star formation, stellar mass loss, and feedback from stars and accreting black holes. The subgrid feedback was calibrated to reproduce the observed present-day galaxy stellar mass function and galaxy sizes. Here we demonstrate that the simulations reproduce the observed growth of the stellar mass density to within 20 per cent. The simulation also tracks the observed evolution of the galaxy stellar mass function out to redshift z = 7, with differences comparable to the plausible uncertainties in the interpretation of the data. Just as with observed galaxies, the specific star formation rates of simulated galaxies are bimodal, with distinct star forming and passive sequences. The specific star formation rates of star forming galaxies ar...

  18. Galaxy Evolution: Effects of Stellar Feedback on the Halo Formation

    Science.gov (United States)

    Myers, J. M.; Hartmann, D. H.; The, L.-S.

    2003-05-01

    Recent reviews of Milky Way globular cluster formation indicate three groups associated with the formation of the bulge, disk and halo, and one group associated with accretion processes (van den Bergh 2000). Malinie et al. (1991) showed that the metallicity distribution of the halo globular clusters can be reproduced in the ELS scenario if the initial density profile is nonuniform and kinetic feedback from supernovae is taken into account. Their simulations were performed in 1D and did not include dark matter. In this study, using an N-body/SPH simulation, we attempt to explain the effect of stellar feedback on the formation and distribution of the halo globular clusters. We present 3D simulations of a rotating homogeneous collapse including dark matter, cooling gas, and stars. Three formulations of supernova feedback are considered.

  19. Insights into Planet Formation from Debris Disks: I. The Solar System as an Archetype for Planetesimal Evolution

    Science.gov (United States)

    Matthews, Brenda C.; Kavelaars, JJ

    2016-12-01

    Circumstellar disks have long been regarded as windows into planetary systems. The advent of high sensitivity, high resolution imaging in the submillimeter where both the solid and gas components of disks can be detected opens up new possibilities for understanding the dynamical histories of these systems and therefore, a better ability to place our own solar system, which hosts a highly evolved debris disk, in context. Comparisons of dust masses from protoplanetary and debris disks have revealed a stark downturn in mass in millimeter-sized grains around a stellar age of 10 Myr, ostensibly in the "transition disk" phase, suggesting a period of rapid accretion of such grains onto planetesimals. This rapid formation phase is in keeping with radionucleide studies of Kuiper Belt Objects in the solar system. Importantly, this suggests that any thermal gradients in the gas of disks of this era will be "frozen in" to the planetesimals as they rapidly accrete from the solids and ices in their vicinity. Measurements of radial gradients in thermal tracers such as DHO, DCN and other tracers can therefore provide insight into the nascent solar system's abundances. In studies of dynamical evolution of the solar system, it is tacitly assumed that such abundances can reveal the location of formation for bodies now found in the asteroid belt and Kuiper belt. Similarly, evidence of gas detected from collisional evolution in young debris disks could potentially reveal how rapidly objects have dynamically evolved in those systems, most of which will be significantly younger than the solar system.

  20. Galactic Halo Formation and the Evolution of Bias

    Directory of Open Access Journals (Sweden)

    Pedro Colín

    2001-01-01

    Full Text Available We study the evolution of bias in four cosmological models (LambdaCDM, OCDM, tauCDM, and SCDM. The use of very high-resolution simulations, achieved with the AP3M code, produces dozens of galaxy-size halos inside groups. The groups look like real groups of galaxies. The bias decreases monotonically with redshift for all models and varies from 2 to 3 at z=3.0 on 1 Mpc/h scale for halos with a number density of 0.02 h3 Mpc-3. All models are anti-biased (b<1 at z<1.

  1. Evolution in action : host race formation in Galerucella nymphaeae

    NARCIS (Netherlands)

    Pappers, Stephanie Maria

    2001-01-01

    A host race is a population which is partially reproductively isolated as a direct consequence of adaptation to a certain host. For host race formation to occur five conditions should be met. First of all, the populations should occur in sympatry, which means that they co-occur within the normal cru

  2. Dynamics of Quantum Adiabatic Evolution Algorithm for Number Partitioning

    Science.gov (United States)

    Smelyanskiy, Vadius; vonToussaint, Udo V.; Timucin, Dogan A.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    We have developed a general technique to study the dynamics of the quantum adiabatic evolution algorithm applied to random combinatorial optimization problems in the asymptotic limit of large problem size n. We use as an example the NP-complete Number Partitioning problem and map the algorithm dynamics to that of an auxiliary quantum spin glass system with the slowly varying Hamiltonian. We use a Green function method to obtain the adiabatic eigenstates and the minimum exitation gap, gmin = O(n2(sup -n/2)), corresponding to the exponential complexity of the algorithm for Number Partitioning. The key element of the analysis is the conditional energy distribution computed for the set of all spin configurations generated from a given (ancestor) configuration by simultaneous flipping of a fixed number of spins. For the problem in question this distribution is shown to depend on the ancestor spin configuration only via a certain parameter related to the energy of the configuration. As the result, the algorithm dynamics can be described in terms of one-dimensional quantum diffusion in the energy space. This effect provides a general limitation of a quantum adiabatic computation in random optimization problems. Analytical results are in agreement with the numerical simulation of the algorithm.

  3. Network Evolution Induced by the Dynamical Rules of Two Populations

    CERN Document Server

    Platini, T

    2010-01-01

    We study the dynamical properties of a finite dynamical network composed of two interacting populations, namely; extrovert ($a$) and introvert ($b$). In our model, each group is characterized by its size ($N_a$ and $N_b$) and preferred degree ($\\kappa_a$ and $\\kappa_b\\ll\\kappa_a$). The network dynamics is governed by the competing microscopic rules of each population that consist of the creation and destruction of links. Starting from an unconnected network, we give a detailed analysis of the mean field approach which is compared to Monte Carlo simulation data. The time evolution of the restricted degrees $\\moyenne{k_{bb}}$ and $\\moyenne{k_{ab}}$ presents three time regimes and a non monotonic behavior well captured by our theory. Surprisingly, when the population size are equal $N_a=N_b$, the ratio of the restricted degree $\\theta_0=\\moyenne{k_{ab}}/\\moyenne{k_{bb}}$ appears to be an integer in the asymptotic limits of the three time regimes. For early times (defined by $t

  4. Player guild dynamics and evolution in massively multiplayer online games.

    Science.gov (United States)

    Chen, Chien-Hsun; Sun, Chuen-Tsai; Hsieh, Jilung

    2008-06-01

    In the latest versions of massively multiplayer online games (MMOGs), developers have purposefully made guilds part of game environments. Guilds represent a powerful method for giving players a sense of online community, but there is little quantitative data on guild dynamics. To address this topic, we took advantage of a feature found in one of today's most popular MMOGs (World of Warcraft) to collect in-game data: user interfaces that players can modify and refine. In addition to collecting data on in-game player activities, we used this feature to observe and investigate how players join and leave guilds. Data were analyzed for the purpose of identifying factors that propel game-world guild dynamics and evolution. After collecting data for 641,805 avatars on 62 Taiwanese World of Warcraft game servers between February 10 and April 10, 2006, we created five guild type categories (small, large, elite, newbie, and unstable) that have different meanings in terms of in-game group dynamics. By viewing players as the most important resource affecting guild life cycles, it is possible to analyze game worlds as ecosystems consisting of evolving guilds and to study how guild life cycles reflect game world characteristics.

  5. Game dynamics with learning and evolution of universal grammar.

    Science.gov (United States)

    Mitchener, W Garrett

    2007-04-01

    We investigate a model of language evolution, based on population game dynamics with learning. First, we examine the case of two genetic variants of universal grammar (UG), the heart of the human language faculty, assuming each admits two possible grammars. The dynamics are driven by a communication game. We prove using dynamical systems techniques that if the payoff matrix obeys certain constraints, then the two UGs are stable against invasion by each other, that is, they are evolutionarily stable. Then, we prove a similar theorem for an arbitrary number of disjoint UGs. In both theorems, the constraints are independent of the learning process. Intuitively, if a mutation in UG results in grammars that are incompatible with the established languages, then the mutation will die out because mutants will be unable to communicate and therefore unable to realize any potential benefit of the mutation. An example for which these theorems do not apply shows that compatible mutations may or may not be able to invade, depending on the population's history and the learning process. These results suggest that the genetic history of language is constrained by the need for compatibility and that mutations in the language faculty may have died out or taken over due more to historical accident than to any straightforward notion of relative fitness.

  6. Perspective: network-guided pattern formation of neural dynamics.

    Science.gov (United States)

    Hütt, Marc-Thorsten; Kaiser, Marcus; Hilgetag, Claus C

    2014-10-05

    The understanding of neural activity patterns is fundamentally linked to an understanding of how the brain's network architecture shapes dynamical processes. Established approaches rely mostly on deviations of a given network from certain classes of random graphs. Hypotheses about the supposed role of prominent topological features (for instance, the roles of modularity, network motifs or hierarchical network organization) are derived from these deviations. An alternative strategy could be to study deviations of network architectures from regular graphs (rings and lattices) and consider the implications of such deviations for self-organized dynamic patterns on the network. Following this strategy, we draw on the theory of spatio-temporal pattern formation and propose a novel perspective for analysing dynamics on networks, by evaluating how the self-organized dynamics are confined by network architecture to a small set of permissible collective states. In particular, we discuss the role of prominent topological features of brain connectivity, such as hubs, modules and hierarchy, in shaping activity patterns. We illustrate the notion of network-guided pattern formation with numerical simulations and outline how it can facilitate the understanding of neural dynamics. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  7. Dynamics of formation of ferromanganese nodules in the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Mukhopadhyay, R.; Ghosh, A.K.

    stream_size 27400 stream_content_type text/plain stream_name J_Asian_Earth_Sci_37_394a.pdf.txt stream_source_info J_Asian_Earth_Sci_37_394a.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset=UTF-8 Author..., and the model should bring about a predictive estimate of other nodule bearing areas in the world oceans. Key Words: Ferromanganese nodules, Indian Ocean Nodule Field, influencing parameters, Nodule formation and dynamics, Model of nodule formation...

  8. Dynamical Models of the Solar System Formation and Evolution

    Science.gov (United States)

    Stewart, Glen R.

    2002-01-01

    Mark Lewis has extended his them is work by completing a series of N-body simulations of a narrow ring that: is in the location of Saturn's F-ring and is perturbed by a single satellite comparable to Prometheus, but on a circular orbit. We had previously shown how the satellite perturbations can cause a broadly distributed sparse population of ring particles to become concentrated into narrow rings that can be maintained outside of any resonance location. For low optical depths, the collisions between ring particles are highly localized in the peaks of the satellite wakes. The inelastic collisions therefore occur at a particular orbital phase angle so as to damp the azimuthal component of the relative velocities. Since particle positions are not changed by collisions, the semimajor axes of the particles are shifted toward the actual particle positions where the collisions occur. Thus, negative radial diffusion can occur while conserving orbital angular momentum so long as the forced eccentricity is continually re-excited by the satellite. We speculated that the separation between the final ringlets was largely determined by the magnitude of the forced eccentricities induced by the satellite at closest approach. We carried out a series of simulations with a variety of different satellite masses in order to vary the magnitude of the forced eccentricity. We found that indeed the final spacing of the ringlets does increase with the magnitude of the forced eccentricity (Lewis and Stewart 2002). This occurs because neighboring eccentric ringlets drift out of phase with one another due to Keplerian shear and eventually collide with one another, leading to a smaller number of more widely spaced ringlets, The time scale required to form narrow ringlets in these simulations is much shorter than one would expect from standard theories based upon the orbit-averaged torque produced by multiple passes by the satellite. We find that the initial ringlets form in less than two synodic periods and the final state is typically reached in 10 to 20 synodic periods. These studies move us closer to understanding the significantly more complex system of Saturn's F ring, where the perturbation magnitude varies over short temporal and spatial time scales due to the orbital eccentricities of the perturbing satellite. We are currently extending the simulation to allow for an eccentric orbit of the satellite.

  9. Formation and post-formation dynamics of bacterial biofilm streamers as highly viscous liquid jets

    CERN Document Server

    Das, Siddhartha

    2013-01-01

    It has been recently reported that in presence of low Reynolds number (Re<<1) transport, preformed bacterial biofilms, several hours after their formation, may degenerate in form of filamentous structures, known as streamers. In this letter, we explain that such streamers form as the highly viscous liquid states of the intrinsically viscoelastic biofilms. Such "viscous liquid" state can be hypothesized by noting that the time of appearance of the streamers is substantially larger than the viscoelastic relaxation time scale of the biofilms, and this appearance is explained by the inability of a viscous liquid to withstand an external shear. Further, by identifying the post formation dynamics of the streamers as that of a viscous liquid jet in a surrounding flow field, we can interpret several unexplained issues associated with the post-formation dynamics of streamers, such as the clogging of the flow passage or the exponential time growth of streamer dimensions.

  10. The evolution of galaxy star formation activity in massive halos

    CERN Document Server

    Popesso, P; Finoguenov,; Wilman, D; Salvato, M; Magnelli, B; Gruppioni, C; Pozzi, F; Rodighiero, G; Ziparo, F; Berta, S; Elbaz, D; Dickinson, M; Lutz, D; Altieri, B; Aussel, H; Cimatti, A; Fadda, D; Ilbert, O; Floch, E Le; Nordon, R; Poglitsch, A; Xu, C K

    2014-01-01

    There is now a large consensus that the current epoch of the Cosmic Star Formation History (CSFH) is dominated by low mass galaxies while the most active phase at 1~1, the most IR-luminous galaxies (LIRGs and ULIRGs) are preferentially located in groups, and this is consistent with a reversal of the star-formation rate vs .density anti-correlation observed in the nearby Universe. At these redshifts, group galaxies contribute 60-80% of the CSFH, i.e. much more than at lower redshifts. Below z~1, the comoving number and SFR densities of IR-emitting galaxies in groups decline significantly faster than those of all IR-emitting galaxies. Our results are consistent with a "halo downsizing" scenario and highlight the significant role of "environment" quenching in shaping the CSFH.

  11. The Formation and Evolution of Mixed Morphology Supernova Remnants

    Science.gov (United States)

    Smith, Randall

    Supernovae inject metals at high velocities into the interstellar medium (ISM), leading to shocks, plasma heating, and dust destruction and creation in addition to host of other processes. Supernova remnants (SNR) themselves are generally categorized as shell-type, center-filled, or ``mixed morphology.'' These categories, which encapsulate both the structure and evolution of the remnant, seem to depend critically on the precursor star and the surrounding ISM. Mixed morphology remnants, in particular, show a radio shell with a central region that emits primarily thermal X-rays. Observations show that these SNR are typically found near or in molecular clouds and, since they usually contain compact objects, arise from high-mass precursors. However, our theoretical understanding of these remnants lags far behind our observational data. There are at least four distinct models for their appearance, usually explaining observations from one or at most a few of the remnants, but there is no general solution. However, there has been a recent breakthrough in mixed morphology remnants. Suzaku observations of three remnants show that a significant fraction of the thermal X-rays are from a non-equilibrium recombining plasma, a surprising result since SNR are expected to generate ionizing, not recombining, plasmas. This new discovery should severely constrains theoretical predictions. We propose a combined semi-analytic and computational approach to understanding how these remnants develop and evolve. A number of observational studies have already cataloged the emission characteristics and sizes of these remnants. Our study will therefore begin with an exploration of simple 1-D spherically symmetric hydrodynamic plasma models that can generate the observed emission in X-ray and other bandpasses as well as the approximate size of a range of mixed morphology remnants. We will expand these studies using both 2-D and 3-D magnetohydrodynamic explosion models combined with a non

  12. Formation and evolution of X-ray binaries

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We review recent progress in theoretical understanding of X-ray binaries,which has largely been driven by new observations.We select several topics including formation of compact low-mass X-ray binaries,the evolutionary connection between low-mass X-ray binaries and binary and millisecond radio pulsars,and ultraluminous X-ray sources,to illustrate the interplay between theories and observations.

  13. Cosmic evolution of star formation properties of galaxies

    Science.gov (United States)

    Kim, Sungeun

    2014-01-01

    Development of bolometer array and camera at submillimeter wavelength has played an important role in detecting submillimeter bright galaxies, so called submillimeter galaxies. These galaxies seem to be progenitors of present-day massive galaxies and account for their considerable contributions to the light from the early universe and their expected high star formation rates if there is a close link between the submillimeter galaxies and the star formation activities, and the interstellar dust in galaxies is mainly heated by the star light. We review assembly of submillimeter galaxies chosen from the AzTEC and the Herschel SPIRE/PACS data archives, and investigate their spectral energy distribution fits including the data at other wavelengths to deduce details about stellar parameters including star formation rates and parameters yielding the metallicity, composition and abundance in dust, and disc structure of these galaxies. This work has been supported in part by Mid-career Researcher Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology 2011-0028001.

  14. Dynamic Trap Formation and Elimination in Colloidal Quantum Dots

    KAUST Repository

    Voznyy, O.

    2013-03-21

    Using first-principles simulations on PbS and CdSe colloidal quantum dots, we find that surface defects form in response to electronic doping and charging of the nanoparticles. We show that electronic trap states in nanocrystals are dynamic entities, in contrast with the conventional picture wherein traps are viewed as stable electronic states that can be filled or emptied, but not created or destroyed. These traps arise from the formation or breaking of atomic dimers at the nanoparticle surface. The dimers\\' energy levels can reside within the bandgap, in which case a trap is formed. Fortunately, we are also able to identify a number of shallow-electron-affinity cations that stabilize the surface, working to counter dynamic trap formation and allowing for trap-free doping. © 2013 American Chemical Society.

  15. Ice Formation on Kaolinite: Insights from Molecular Dynamics Simulations

    CERN Document Server

    Sosso, Gabriele C; Zen, Andrea; Pedevilla, Philipp; Michaelides, Angelos

    2016-01-01

    The formation of ice affects many aspects of our everyday life as well as technologies such as cryotherapy and cryopreservation. Foreign substances almost always aid water freezing through heterogeneous ice nucleation, but the molecular details of this process remain largely unknown. In fact, insight into the microscopic mechanism of ice formation on different substrates is difficult to obtain even via state-of-the-art experimental techniques. At the same time, atomistic simulations of heterogeneous ice nucleation frequently face extraordinary challenges due to the complexity of the water-substrate interaction and the long timescales that characterize nucleation events. Here, we have investigated several aspects of molecular dynamics simulations of heterogeneous ice nucleation considering as a prototypical ice nucleating material the clay mineral kaolinite, which is of relevance in atmospheric science. We show via seeded molecular dynamics simulations that ice nucleation on the hydroxylated (001) face of kaol...

  16. Evolution of Secondary Software Businesses: Understanding Industry Dynamics

    Science.gov (United States)

    Tyrväinen, Pasi; Warsta, Juhani; Seppänen, Veikko

    Primary software industry originates from IBM's decision to unbundle software-related computer system development activities to external partners. This kind of outsourcing from an enterprise internal software development activity is a common means to start a new software business serving a vertical software market. It combines knowledge of the vertical market process with competence in software development. In this research, we present and analyze the key figures of the Finnish secondary software industry, in order to quantify its interaction with the primary software industry during the period of 2000-2003. On the basis of the empirical data, we present a model for evolution of a secondary software business, which makes explicit the industry dynamics. It represents the shift from internal software developed for competitive advantage to development of products supporting standard business processes on top of standardized technologies. We also discuss the implications for software business strategies in each phase.

  17. Dynamic evolution of venom proteins in squamate reptiles.

    Science.gov (United States)

    Casewell, Nicholas R; Huttley, Gavin A; Wüster, Wolfgang

    2012-01-01

    Phylogenetic analyses of toxin gene families have revolutionised our understanding of the origin and evolution of reptile venoms, leading to the current hypothesis that venom evolved once in squamate reptiles. However, because of a lack of homologous squamate non-toxin sequences, these conclusions rely on the implicit assumption that recruitments of protein families into venom are both rare and irreversible. Here we use sequences of homologous non-toxin proteins from two snake species to test these assumptions. Phylogenetic and ancestral-state analyses revealed frequent nesting of 'physiological' proteins within venom toxin clades, suggesting early ancestral recruitment into venom followed by reverse recruitment of toxins back to physiological roles. These results provide evidence that protein recruitment into venoms from physiological functions is not a one-way process, but dynamic, with reversal of function and/or co-expression of toxins in different tissues. This requires a major reassessment of our previous understanding of how animal venoms evolve.

  18. Kinematical fingerprints of star cluster early dynamical evolution

    CERN Document Server

    Vesperini, Enrico; McMillan, Stephen L W; Zepf, Stephen E

    2014-01-01

    We study the effects of the external tidal field on the violent relaxation phase of star clusters dynamical evolution, with particular attention to the kinematical properties of the equilibrium configurations emerging at the end of this phase.We show that star clusters undergoing the process of violent relaxation in the tidal field of their host galaxy can acquire significant internal differential rotation and are characterized by a distinctive radial variation of the velocity anisotropy. These kinematical properties are the result of the symmetry breaking introduced by the external tidal field in the collapse phase and of the action of the Coriolis force on the orbit of the stars. The resulting equilibrium configurations are characterized by differential rotation, with a peak located between one and two half-mass radii. As for the anisotropy, similar to clusters evolving in isolation, the systems explored in this Letter are characterized by an inner isotropic core, followed by a region of increasing radial a...

  19. Cooperative Bacterial Growth Dynamics Predict the Evolution of Antibiotic Resistance

    Science.gov (United States)

    Artemova, Tatiana; Gerardin, Ylaine; Hsin-Jung Li, Sophia; Gore, Jeff

    2011-03-01

    Since the discovery of penicillin, antibiotics have been our primary weapon against bacterial infections. Unfortunately, bacteria can gain resistance to penicillin by acquiring the gene that encodes beta-lactamase, which inactivates the antibiotic. However, mutations in this gene are necessary to degrade the modern antibiotic cefotaxime. Understanding the conditions that favor the spread of these mutations is a challenge. Here we show that bacterial growth in beta-lactam antibiotics is cooperative and that the nature of this growth determines the conditions in which resistance evolves. Quantitative analysis of the growth dynamics predicts a peak in selection at very low antibiotic concentrations; competition between strains confirms this prediction. We also find significant selection at higher antibiotic concentrations, close to the minimum inhibitory concentrations of the strains. Our results argue that an understanding of the evolutionary forces that lead to antibiotic resistance requires a quantitative understanding of the evolution of cooperation in bacteria.

  20. Track-etched membrane: dynamics of pore formation

    Science.gov (United States)

    Ferain, E.; Legras, R.

    1994-02-01

    The dynamics of pore formation during etching of heavy ion (Ar 9+ - 4.5 MeV/amu) irradiated bisphenol-A polycarbonate (PC) and polyethylene terephthalate (PET) films is determined by a conductivity cell. This work presents the theoretical basis of this method and describes the experimental procedure. The obtained results allow the determination of the track ( Vt) and bulk ( Vg) etch rates, and an estimate of the damage zone diameter in PC before etching.

  1. Phylogenomic Analysis and Dynamic Evolution of Chloroplast Genomes in Salicaceae

    Directory of Open Access Journals (Sweden)

    Yuan Huang

    2017-06-01

    Full Text Available Chloroplast genomes of plants are highly conserved in both gene order and gene content. Analysis of the whole chloroplast genome is known to provide much more informative DNA sites and thus generates high resolution for plant phylogenies. Here, we report the complete chloroplast genomes of three Salix species in family Salicaceae. Phylogeny of Salicaceae inferred from complete chloroplast genomes is generally consistent with previous studies but resolved with higher statistical support. Incongruences of phylogeny, however, are observed in genus Populus, which most likely results from homoplasy. By comparing three Salix chloroplast genomes with the published chloroplast genomes of other Salicaceae species, we demonstrate that the synteny and length of chloroplast genomes in Salicaceae are highly conserved but experienced dynamic evolution among species. We identify seven positively selected chloroplast genes in Salicaceae, which might be related to the adaptive evolution of Salicaceae species. Comparative chloroplast genome analysis within the family also indicates that some chloroplast genes are lost or became pseudogenes, infer that the chloroplast genes horizontally transferred to the nucleus genome. Based on the complete nucleus genome sequences from two Salicaceae species, we remarkably identify that the entire chloroplast genome is indeed transferred and integrated to the nucleus genome in the individual of the reference genome of P. trichocarpa at least once. This observation, along with presence of the large nuclear plastid DNA (NUPTs and NUPTs-containing multiple chloroplast genes in their original order in the chloroplast genome, favors the DNA-mediated hypothesis of organelle to nucleus DNA transfer. Overall, the phylogenomic analysis using chloroplast complete genomes clearly elucidates the phylogeny of Salicaceae. The identification of positively selected chloroplast genes and dynamic chloroplast-to-nucleus gene transfers in

  2. Dynamics of fingering convection II: The formation of thermohaline staircases

    CERN Document Server

    Stellmach, S; Garaud, P; Brummell, N; Radko, T

    2010-01-01

    Regions of the ocean's thermocline unstable to salt fingering are often observed to host thermohaline staircases, stacks of deep well-mixed convective layers separated by thin stably-stratified interfaces. Decades after their discovery, however, their origin remains controversial. In this paper we use 3D direct numerical simulations to shed light on the problem. We study the evolution of an analogous double-diffusive system, starting from an initial statistically homogeneous fingering state and find that it spontaneously transforms into a layered state. By analysing our results in the light of the mean-field theory developed in Paper I, a clear picture of the sequence of events resulting in the staircase formation emerges. A collective instability of homogeneous fingering convection first excites a field of gravity waves, with a well-defined vertical wavelength. However, the waves saturate early through regular but localized breaking events, and are not directly responsible for the formation of the staircase....

  3. Ice formation on kaolinite: Insights from molecular dynamics simulations

    Science.gov (United States)

    Sosso, Gabriele C.; Tribello, Gareth A.; Zen, Andrea; Pedevilla, Philipp; Michaelides, Angelos

    2016-12-01

    The formation of ice affects many aspects of our everyday life as well as important technologies such as cryotherapy and cryopreservation. Foreign substances almost always aid water freezing through heterogeneous ice nucleation, but the molecular details of this process remain largely unknown. In fact, insight into the microscopic mechanism of ice formation on different substrates is difficult to obtain even if state-of-the-art experimental techniques are used. At the same time, atomistic simulations of heterogeneous ice nucleation frequently face extraordinary challenges due to the complexity of the water-substrate interaction and the long time scales that characterize nucleation events. Here, we have investigated several aspects of molecular dynamics simulations of heterogeneous ice nucleation considering as a prototypical ice nucleating material the clay mineral kaolinite, which is of relevance in atmospheric science. We show via seeded molecular dynamics simulations that ice nucleation on the hydroxylated (001) face of kaolinite proceeds exclusively via the formation of the hexagonal ice polytype. The critical nucleus size is two times smaller than that obtained for homogeneous nucleation at the same supercooling. Previous findings suggested that the flexibility of the kaolinite surface can alter the time scale for ice nucleation within molecular dynamics simulations. However, we here demonstrate that equally flexible (or non flexible) kaolinite surfaces can lead to very different outcomes in terms of ice formation, according to whether or not the surface relaxation of the clay is taken into account. We show that very small structural changes upon relaxation dramatically alter the ability of kaolinite to provide a template for the formation of a hexagonal overlayer of water molecules at the water-kaolinite interface, and that this relaxation therefore determines the nucleation ability of this mineral.

  4. Evolution of the SOL plasma background at density shoulder formation

    Energy Technology Data Exchange (ETDEWEB)

    D' Isa, Federico Antonio; Carralero, Daniel; Lunt, Tilmann; Collaboration: ASDEX Upgrade Team

    2016-12-15

    One of the main problems of our age is the ever increasing demand of energy. This prompts the search for new energy sources which should have the advantages of being nearly inexhaustible and usable to produce a predictable amount of energy. A possible solution is to build a reactor based on nuclear fusion. ITER will be the first divertor Tokamak to reach fusion break even and it will pave the way to a commercial use of fusion to produce sustainable and clean energy. One of the biggest obstacles to the construction of a commercial fusion reactor is represented by the heat and particle flux toward the main chamber plasma facing components and the divertor targets. A fusion reactor will likely experience power loads and erosion on the verge of the technical limits of available plasma facing materials. To predict properly the distribution of those fluxes between the divertor and the main chamber, a better understanding of the physics in the open field lines region (called Scrape-off layer or SOL) is required. This thesis, being developed in partnership with the Max-Planck-institut fuer Plasmaphysik (Garching bei Muenchen, DE), is framed in this context. In the SOL of L-mode (low confinement) discharges, qualitatively two kinds of density profiles can be distinguished. The first one is characterized by a strong density gradient in the vicinity of the separatrix, followed by a flat region towards the far SOL. The second profile lacks such a strong gradient and displays an almost linear decay in the whole SOL. The latter kind of density profile is characterized by stronger fluxes toward the first wall with respect to the first kind. This my be a threat for the ITER unlike the divertor targets which are made of tungsten, the first wall will be made beryllium which can suffer damage from sputtering. This work is focused on understanding the physics behind the transition between those two profiles, the so-called density shoulder formation. After the shoulder formation it is

  5. Coupling protoplanetary disk formation with early protostellar evolution: influence on planet traps

    Science.gov (United States)

    Baillie, Kevin; Piau, Laurent

    2016-10-01

    Protoplanetary disk structures are known to be shaped by various thermal and compositional effects such as (though not limited to) shadowed regions, sublimation lines, density bumps... The resulting irregularities in the surface mass density and temperature profiles are key elements to determine the location where planetary embryos can be trapped. These traps provide hints of which planets are most likely to survive, at what distance from the star, and potentially with what composition (Baillié, Charnoz, Pantin, 2015, A&A 577, A65; Baillié, Charnoz, Pantin, 2016, A&A 590, A60). These structures are determined by the viscous spreading of the disk, that is initially formed by the collapse of the molecular cloud.Starting from the numerical hydrodynamical model detailed in Baillié & Charnoz., 2014, ApJ 786, 35 which couples the disk thermodynamics, its photosphere geometry, its dynamics and its dust composition in order to follow its long-term evolution, we now consider the early stages of the central star. We model the joint formation of the disk and the star: their mass are directly derived from the collapse of the molecular cloud while the star temperature, radius and brightness are interpolated over pre-calculated stellar evolutions. Therefore, our simulations no longer depend on the initial profile of the "Minimum Mass Solar Nebula", and allow us to model the influence of the forming star on the protoplanetary disk. In particular, we will present the resulting distribution of the sublimation lines of the main dust species, as well as the locations of the planet traps at various disk ages. In the longer term, we intend to investigate the influence of the star properties on the selection of the surviving planets.

  6. Statistical characteristics of formation and evolution of structure in the universe

    OpenAIRE

    Demianski, M.; Doroshkevich, A.

    1999-01-01

    An approximate statistical description of the formation and evolution of structure of the universe based on the Zel'dovich theory of gravitational instability is proposed. It is found that the evolution of DM structure shows features of self-similarity and the main structure characteristics can be expressed through the parameters of initial power spectrum and cosmological model. For the CDM-like power spectrum and suitable parameters of the cosmological model the effective matter compression ...

  7. Oligomer formation within secondary organic aerosol: equilibrium and dynamic considerations

    Directory of Open Access Journals (Sweden)

    E. R. Trump

    2013-09-01

    Full Text Available We present a model based on the volatility basis set to consider the potential influence of oligomer content on volatility-driven SOA yields. The implications for aerosol evaporation studies, including dilution, chamber thermo-equilibration, and thermodenuder studies are also considered. A simplified description of oligomer formation reproduces essentially all of the broad classes of equilibrium and dynamical observations related to SOA formation and evaporation: significant oligomer content may be consistent with mass yields that increase with organic aerosol mass concentration; reversible oligomerization can explain the hysteresis between the rate of SOA formation and its evaporation rate upon dilution; and the model is consistent with both chamber thermo-equilibration studies and thermodenuder studies of SOA evaporation.

  8. A Dynamical Study of the Formation of Peculiar Galaxies

    Science.gov (United States)

    Chatterjee, T. K.

    1990-11-01

    RESUMEN. Un estudlo de la formaci6n de diferentes tipos de galaxias peculiares (interactuantes) es conducido en base de la dina'mioa de la colisi6n lievando a su formaci6n usando la aproximaci6n impulsiva. Los resultados indican la existencia de una relaci6n caracteristica en base del camblo de la energia interna durante la colisi6n, cual determina el tipo de la galaxia peculiar formado. La relacion es analisada y valores criticos del camblo de Ia energia interna, ilevando a la interacci6n entre galaxias de varias intensidades y la formaci6n consecuente de varios tipos de sistemas peculiares es discutido. ABSTRACT. A study of the formation of different types of peculiar (interacting) galaxies is conducted based on the dynamics of the collision leading to their formation, using the impulsive approximation. Results indicate the existance of a characteristic relationship, based on the internal energy changes during the collision, governing the type of peculiar galaxy formed. The relationship is analysed and critical values of internal energy changes, leading to galaxy interaction of varying intensities and consequent formation of different types of peculiar galaxies is discussed. Key words: GALAXIES-DYNAMICS -- GALAXIES-FORMATION

  9. Formation and evolution of an active region filament

    CERN Document Server

    Kuckein, C; Pillet, V Martínez

    2013-01-01

    Several scenarios explaining how filaments are formed can be found in literature. In this paper, we analyzed the observations of an active region filament and critically evaluated the observed properties in the context of current filament formation models. This study is based on multi-height spectropolarimetric observations. The inferred vector magnetic field has been extrapolated starting either from the photosphere or from the chromosphere. The line-of-sight motions of the filament, which was located near disk center, have been analyzed inferring the Doppler velocities. We conclude that a part of the magnetic structure emerged from below the photosphere.

  10. Effects of grain size evolution on mantle dynamics

    Science.gov (United States)

    Schulz, Falko; Tosi, Nicola; Plesa, Ana-Catalina; Breuer, Doris

    2016-04-01

    The rheology of planetary mantle materials is strongly dependent on temperature, pressure, strain-rate, and grain size. In particular, the rheology of olivine, the most abundant mineral of the Earth's upper mantle, has been extensively studied in the laboratory (e.g., Karato and Wu, 1993; Hirth and Kohlstedt, 2003). Two main mechanisms control olivine's deformation: dislocation and diffusion creep. While the former implies a power-law dependence of the viscosity on the strain-rate that leads to a non-Newtonian behaviour, the latter is sensitively dependent on the grain size. The dynamics of planetary interiors is locally controlled by the deformation mechanism that delivers the lowest viscosity. Models of the dynamics and evolution of planetary mantles should thus be capable to self-consistently distinguish which of the two mechanisms dominates at given conditions of temperature, pressure, strain-rate and grain size. As the grain size can affect the viscosity associated with diffusion creep by several orders of magnitude, it can strongly influence the dominant deformation mechanism. The vast majority of numerical, global-scale models of mantle convection, however, are based on the use of a linear diffusion-creep rheology with constant grain-size. Nevertheless, in recent studies, a new equation has been proposed to properly model the time-dependent evolution of the grain size (Austin and Evens, 2007; Rozel et al., 2010). We implemented this equation in our mantle convection code Gaia (Hüttig et al., 2013). In the framework of simple models of stagnant lid convection, we compared simulations based on the fully time-dependent equation of grain-size evolution with simulations based on its steady-state version. In addition, we tested a number of different parameters in order to identify those that affects the grain size to the first order and, in turn, control the conditions at which mantle deformation is dominated by diffusion or dislocation creep. References Austin

  11. The Dynamical Evolution of Stellar-Mass Black Holes in Dense Star Clusters

    Science.gov (United States)

    Morscher, Maggie

    Globular clusters are gravitationally bound systems containing up to millions of stars, and are found ubiquitously in massive galaxies, including the Milky Way. With densities as high as a million stars per cubic parsec, they are one of the few places in the Universe where stars interact with one another. They therefore provide us with a unique laboratory for studying how gravitational interactions can facilitate the formation of exotic systems, such as X-ray binaries containing black holes, and merging double black hole binaries, which are produced much less efficiently in isolation. While telescopes can provide us with a snapshot of what these dense clusters look like at present, we must rely on detailed numerical simulations to learn about their evolution. These simulations are quite challenging, however, since dense star clusters are described by a complicated set of physical processes occurring on many different length and time scales, including stellar and binary evolution, weak gravitational scattering encounters, strong resonant binary interactions, and tidal stripping by the host galaxy. Until very recently, it was not possible to model the evolution of systems with millions of stars, the actual number contained in the largest clusters, including all the relevant physics required describe these systems accurately. The Northwestern Group's Henon Monte Carlo code, CMC, which has been in development for over a decade, is a powerful tool that can be used to construct detailed evolutionary models of large star clusters. With its recent parallelization, CMC is now capable of addressing a particularly interesting unsolved problem in astrophysics: the dynamical evolution of stellar black holes in dense star clusters. Our current understanding of the stellar initial mass function and massive star evolution suggests that young globular clusters may have formed hundreds to thousands of stellar-mass black holes, the remnants of stars with initial masses from 20 - 100

  12. Dynamically Multivalued Self-Organisation and Probabilistic Structure Formation Processes

    CERN Document Server

    Kirilyuk, A P

    2004-01-01

    The unreduced, universally nonperturbative analysis of arbitrary many-body interaction process reveals the irreducible, purely dynamic source of randomness. It leads to the universal definition of real system complexity (physics/9806002), where the internally chaotic self-organisation emerges as a limiting case of complex interaction dynamics (physics/0211071). It extends also the concept of "self-organised criticality" and corresponds to formation of distinct enough (but always internally chaotic) structures occurring if the system is far from characteristic frequency resonances. Transition to the opposite limiting regime of multivalued interaction dynamics, that of uniform (global) chaos, takes place around the main frequency resonance(s), which provides the absolutely universal criterion of global chaos onset, applicable to any kind of system, as well as the new, extended interpretation of the phenomenon of resonance itself. As a result, one obtains the causally complete description of world structure emer...

  13. Core Formation and Evolution of Asteroid 4 Vesta

    Science.gov (United States)

    Kiefer, Walter S.; Mittlefehldt, David W.

    2014-01-01

    The howardites, eucrites, and diogenites (HEDs) are a suite of related meteorite types that formed by igneous and impact processes on the same parent body. Multiple lines of evidence, including infrared spectroscopy of the asteroid belt and the petrology and geochemistry of the HEDs, suggest that the asteroid 4 Vesta is the parent body for the HEDs. Observations by NASA's Dawn spacecraft mission strongly support the conclusion that the HEDs are from Vesta. The abundances of the moderately siderophile elements Ni, Co, Mo, W, and P in eucrites require that most or all of the metallic phase in Vesta segregated to form a core prior to eucrite solidification. These observations place important constraints on the mode and timescale of core formation on Vesta. Possible core formation mechanisms include porous flow, which potentially could occur prior to initiation of silicate melting, and metallic rain in a largely molten silicate magma ocean. Once the core forms, convection within the core could possible sustain a magnetic dynamo for a period of time. We consider each process in turn.

  14. The Dynamical and Chemical Evolution of Dwarf Spheroidal Galaxies

    CERN Document Server

    Revaz, Y; Sawala, T; Hill, V; Letarte, B; Irwin, M; Battaglia, G; Helmi, A; Shetrone, M D; Tolstoy, E; Venn, K A

    2009-01-01

    We present a large sample of fully self-consistent hydrodynamical Nbody/Tree-SPH simulations of isolated dwarf spheroidal galaxies (dSphs). It has enabled us to identify the key physical parameters and mechanisms at the origin of the observed variety in the Local Group dSph properties. The initial total mass (gas + dark matter) of these galaxies is the main driver of their evolution. Star formation (SF) occurs in series of short bursts. In massive systems, the very short intervals between the SF peaks mimic a continuous star formation rate, while less massive systems exhibit well separated SF bursts, as identified observationally. The delay between the SF events is controlled by the gas cooling time dependence on galaxy mass. The observed global scaling relations, luminosity-mass and luminosity-metallicity, are reproduced with low scatter. We take advantage of the unprecedentedly large sample size and data homogeneity of the ESO Large Programme DART, and add to it a few independent studies, to constrain the s...

  15. Bedrock Channel and Cave Evolution Models Based on Computational Fluid Dynamics

    Science.gov (United States)

    Perne, M.; Covington, M. D.; Cooper, M.

    2014-12-01

    Models of bedrock channel cross-section evolution typically rely on simple approximations of boundary shear stress to calculate erosion rates across the channel. While such models provide a useful tool for gaining general insight into channel dynamics, they also exhibit a narrower range of behaviors than seen in nature and scale experiments. Recent computational advances enable use of computational fluid dynamics (CFD) to relax many of the assumptions used in these simple models by simulating the full 3D flow field and resulting erosion. We have developed a model of bedrock channel evolution at the reach scale, using CFD, that alternates flow simulation steps with channel evolution steps and evolves the channel in time according to shear stresses calculated from the CFD runs. Caves provide an ideal field setting for studying bedrock channel dynamics, because long records of incision are often preserved in the form of channel widths, meander patterns, and sculpted forms, such as scallops, that indicate flow velocity and direction. However, most existing numerical models of cave formation investigate processes on larger scales, treat conduits as simple shapes, such as cylinders, and deal with the early stages of speleogenesis when sediment transport and erosion mechanisms other than dissolution do not have to be taken into account. Therefore, initial applications of the CFD model focus on the dynamics of cave channels, and particularly on the controls of channel width. While discharge, base level, sediment supply, and the ratio of dissolution to mechanical erosion, are likely to play important roles in determining channel width, we lack a quantitative understanding for the importance of these various factors. Notches in passage walls are thought to result from lateral erosion during periods of increased sediment load when the bed is armored. Modeling is used to check the plausibility of this explanation, and examine whether other mechanisms may also produce notches

  16. The evolution of galaxies at constant number density: a less biased view of star formation, quenching, and structural formation

    Science.gov (United States)

    Ownsworth, Jamie R.; Conselice, Christopher J.; Mundy, Carl J.; Mortlock, Alice; Hartley, William G.; Duncan, Kenneth; Almaini, Omar

    2016-09-01

    Due to significant galaxy contamination and impurity in stellar mass selected samples (up to 95 per cent from z = 0-3), we examine the star formation history, quenching time-scales, and structural evolution of galaxies using a constant number density selection with data from the United Kingdom Infra-Red Deep Sky Survey Ultra-Deep Survey field. Using this methodology, we investigate the evolution of galaxies at a variety of number densities from z = 0-3. We find that samples chosen at number densities ranging from 3 × 10-4 to 10-5 galaxies Mpc-3 (corresponding to z ˜ 0.5 stellar masses of M* = 1010.95-11.6 M0) have a star-forming blue fraction of ˜50 per cent at z ˜ 2.5, which evolves to a nearly 100 per cent quenched red and dead population by z ˜ 1. We also see evidence for number density downsizing, such that the galaxies selected at the lowest densities (highest masses) become a homogeneous red population before those at higher number densities. Examining the evolution of the colours for these systems furthermore shows that the formation redshift of galaxies selected at these number densities is zform > 3. The structural evolution through size and Sérsic index fits reveal that while there remains evolution in terms of galaxies becoming larger and more concentrated in stellar mass at lower redshifts, the magnitude of the change is significantly smaller than for a mass-selected sample. We also find that changes in size and structure continues at z < 1, and is coupled strongly to passivity evolution. We conclude that galaxy structure is driving the quenching of galaxies, such that galaxies become concentrated before they become passive.

  17. Thiol-catalyzed formation of lactate and glycerate from glyceraldehyde. [significance in molecular evolution

    Science.gov (United States)

    Weber, A. L.

    1983-01-01

    The rate of lactate formation from glyceraldehyde, catalyzed by N-acetyl-cysteine at ambient temperature in aqueous sodium phosphate (pH 7.0), is more rapid at higher sodium phosphate concentrations and remains essentially the same in the presence and absence of oxygen. The dramatic increase in the rate of glycerate formation that is brought about by this thiol, N-acetylcysteine, is accompanied by commensurate decreases in the rates of glycolate and formate production. It is suggested that the thiol-dependent formation of lactate and glycerate occurs by way of their respective thioesters. Attention is given to the significance of these reactions in the context of molecular evolution.

  18. Sex speeds adaptation by altering the dynamics of molecular evolution.

    Science.gov (United States)

    McDonald, Michael J; Rice, Daniel P; Desai, Michael M

    2016-03-10

    Sex and recombination are pervasive throughout nature despite their substantial costs. Understanding the evolutionary forces that maintain these phenomena is a central challenge in biology. One longstanding hypothesis argues that sex is beneficial because recombination speeds adaptation. Theory has proposed several distinct population genetic mechanisms that could underlie this advantage. For example, sex can promote the fixation of beneficial mutations either by alleviating interference competition (the Fisher-Muller effect) or by separating them from deleterious load (the ruby in the rubbish effect). Previous experiments confirm that sex can increase the rate of adaptation, but these studies did not observe the evolutionary dynamics that drive this effect at the genomic level. Here we present the first, to our knowledge, comparison between the sequence-level dynamics of adaptation in experimental sexual and asexual Saccharomyces cerevisiae populations, which allows us to identify the specific mechanisms by which sex speeds adaptation. We find that sex alters the molecular signatures of evolution by changing the spectrum of mutations that fix, and confirm theoretical predictions that it does so by alleviating clonal interference. We also show that substantially deleterious mutations hitchhike to fixation in adapting asexual populations. In contrast, recombination prevents such mutations from fixing. Our results demonstrate that sex both speeds adaptation and alters its molecular signature by allowing natural selection to more efficiently sort beneficial from deleterious mutations.

  19. Non-equilibrium evolution of a "Tsunami" Dynamical Symmetry Breaking

    CERN Document Server

    Boyanovsky, D; Holman, R; Kumar, S P; Pisarski, R D; Boyanovsky, Daniel; Vega, Hector J. de; Holman, Richard; Pisarski, Robert D.

    1998-01-01

    We propose to study the non-equilibrium features of heavy-ion collisions by following the evolution of an initial state with a large number of quanta with a distribution around a momentum |\\vec k_0| corresponding to a thin spherical shell in momentum space, a `tsunami'. An O(N); ({\\vec \\Phi}^2)^2 model field theory in the large N limit is used as a framework to study the non-perturbative aspects of the non-equilibrium dynamics including a resummation of the effects of the medium (the initial particle distribution). In a theory where the symmetry is spontaneously broken in the absence of the medium, when the initial number of particles per correlation volume is chosen to be larger than a critical value the medium effects can restore the symmetry of the initial state. We show that if one begins with such a symmetry-restored, non-thermal, initial state, non-perturbative effects automatically induce spinodal instabilities leading to a dynamical breaking of the symmetry. As a result there is explosive particle pro...

  20. Exploring the evolution of node neighborhoods in Dynamic Networks

    Science.gov (United States)

    Orman, Günce Keziban; Labatut, Vincent; Naskali, Ahmet Teoman

    2017-09-01

    Dynamic Networks are a popular way of modeling and studying the behavior of evolving systems. However, their analysis constitutes a relatively recent subfield of Network Science, and the number of available tools is consequently much smaller than for static networks. In this work, we propose a method specifically designed to take advantage of the longitudinal nature of dynamic networks. It characterizes each individual node by studying the evolution of its direct neighborhood, based on the assumption that the way this neighborhood changes reflects the role and position of the node in the whole network. For this purpose, we define the concept of neighborhood event, which corresponds to the various transformations such groups of nodes can undergo, and describe an algorithm for detecting such events. We demonstrate the interest of our method on three real-world networks: DBLP, LastFM and Enron. We apply frequent pattern mining to extract meaningful information from temporal sequences of neighborhood events. This results in the identification of behavioral trends emerging in the whole network, as well as the individual characterization of specific nodes. We also perform a cluster analysis, which reveals that, in all three networks, one can distinguish two types of nodes exhibiting different behaviors: a very small group of active nodes, whose neighborhood undergo diverse and frequent events, and a very large group of stable nodes.

  1. Dynamical Formation of the GW150914 Binary Black Hole

    CERN Document Server

    Rodriguez, Carl L; Chatterjee, Sourav; Kalogera, Vicky; Rasio, Frederic A

    2016-01-01

    We explore the possibility that GW150914, the binary black hole merger recently detected by Advanced LIGO, was formed by gravitational interactions in the core of a dense star cluster. Using models of globular clusters with detailed $N$-body dynamics and stellar evolution, we show that a typical cluster with a mass of $3\\times10^5M_{\\odot}$ to $6\\times10^5M_{\\odot}$ is optimal for forming GW150914-like binary black holes that will merge in the local universe. We identify the most likely dynamical processes for forming GW150914 in such a cluster, and we show that the detection of GW150914 is consistent with the masses and merger rates expected for binary black hole mergers from globular clusters. Our results show that dynamical processes provide a significant and well-understood pathway for forming binary black hole mergers in the local universe. Understanding the contribution of dynamics to the binary black hole merger problem is a critical step in unlocking the full potential of gravitational-wave astronomy.

  2. Principles of scientific research team formation and evolution.

    Science.gov (United States)

    Milojević, Staša

    2014-03-18

    Research teams are the fundamental social unit of science, and yet there is currently no model that describes their basic property: size. In most fields, teams have grown significantly in recent decades. We show that this is partly due to the change in the character of team size distribution. We explain these changes with a comprehensive yet straightforward model of how teams of different sizes emerge and grow. This model accurately reproduces the evolution of empirical team size distribution over the period of 50 y. The modeling reveals that there are two modes of knowledge production. The first and more fundamental mode employs relatively small, "core" teams. Core teams form by a Poisson process and produce a Poisson distribution of team sizes in which larger teams are exceedingly rare. The second mode employs "extended" teams, which started as core teams, but subsequently accumulated new members proportional to the past productivity of their members. Given time, this mode gives rise to a power-law tail of large teams (10-1,000 members), which features in many fields today. Based on this model, we construct an analytical functional form that allows the contribution of different modes of authorship to be determined directly from the data and is applicable to any field. The model also offers a solid foundation for studying other social aspects of science, such as productivity and collaboration.

  3. Principles of scientific research team formation and evolution

    CERN Document Server

    Milojević, Staša

    2014-01-01

    Research teams are the fundamental social unit of science, and yet there is currently no model that describes their basic property: size. In most fields teams have grown significantly in recent decades. We show that this is partly due to the change in the character of team-size distribution. We explain these changes with a comprehensive yet straightforward model of how teams of different sizes emerge and grow. This model accurately reproduces the evolution of empirical team-size distribution over the period of 50 years. The modeling reveals that there are two modes of knowledge production. The first and more fundamental mode employs relatively small, core teams. Core teams form by a Poisson process and produce a Poisson distribution of team sizes in which larger teams are exceedingly rare. The second mode employs extended teams, which started as core teams, but subsequently accumulated new members proportional to the past productivity of their members. Given time, this mode gives rise to a power-law tail of l...

  4. Evolutionarily stable disequilibrium: endless dynamics of evolution in a stationary population

    NARCIS (Netherlands)

    Takeuchi, Nobuto; Kaneko, Kunihiko; Hogeweg, P

    2016-01-01

    Evolution is often conceived as changes in the properties of a population over generations. Does this notion exhaust the possible dynamics of evolution? Life is hierarchically organized, and evolution can operate at multiple levels with conflicting tendencies. Using a minimal model of such conflicti

  5. Galaxy Formation and Evolution; 1, The Padua TreeSPH code (PD-SPH)

    CERN Document Server

    Carraro, G; Chiosi, C; Carraro, Giovanni; Lia, Cesario; Chiosi, Cesare

    1997-01-01

    In this paper we report on PD-SPH the new tree-sph code developed in Padua. The main features of the code are described and the results of a new and independent series of 1-D and 3-D tests are shown. The paper is mainly dedicated to the presentation of the code and to the critical discussion of its performances. In particular great attention is devoted to the convergency analysis. The code is highly adaptive in space and time by means of individual smoothing lengths and individual time steps. At present it contains both dark and baryonic matter, this latter in form of gas and stars, cooling, thermal conduction, star formation, and feed-back from Type I and II supernovae, stellar winds, and ultraviolet flux from massive stars, and finally chemical enrichment. New cooling rates that depend on the metal abundance of the interstellar medium are employed, and the differences with respect to the standard ones are outlined. Finally, we show the simulation of the dynamical and chemical evolution of a disk-like galaxy...

  6. Formation and evolution properties of clusters in liquid metal copper during rapid cooling processes

    Institute of Scientific and Technical Information of China (English)

    YI Xue-hua; LIU Rang-su; TIAN Ze-an; HOU Zhao-yang; LI Xiao-yang; ZHOU Qun-yi

    2008-01-01

    Based on the quantum Sutton-Chen many-body potential, a molecular dynamics simulation was performed to investigate the formation and evolution properties of clusters in liquid Cu with 50 000 atoms. The cluster-type index method(CTIM) was used to describe the complex microstructure transitions. It is demonstrated that the amorphous structures are mainly formed with the three bond-types of 1551, 1541 and 1431 in the system, and the icosahedral cluster (12 0 12 0) and other basic polyhedron clusters of (12 2 8 2), (13 1 10 2), (13 3 6 4), (14 1 10 3), (14 2 8 4) and (14 3 6 5) play a critical and leading role in the transition from liquid to glass. The nano-clusters formed in the system consist of some basic clusters and middle cluster configurations by connecting to each other, and distinguish from those obtained by gaseous deposition and ionic spray. From the results of structural parameter pair distribution function g(r), bond-types and basic cluster-types, it is found that the glass transition temperature Tg for liquid metal Cu is about 673 K at the cooling rate of 1.0×1014 K/s.

  7. Group impressions as dynamic configurations: the tensor product model of group impression formation and change.

    Science.gov (United States)

    Kashima, Y; Woolcock, J; Kashima, E S

    2000-10-01

    Group impressions are dynamic configurations. The tensor product model (TPM), a connectionist model of memory and learning, is used to describe the process of group impression formation and change, emphasizing the structured and contextualized nature of group impressions and the dynamic evolution of group impressions over time. TPM is first shown to be consistent with algebraic models of social judgment (the weighted averaging model; N. Anderson, 1981) and exemplar-based social category learning (the context model; E. R. Smith & M. A. Zárate, 1992), providing a theoretical reduction of the algebraic models to the present connectionist framework. TPM is then shown to describe a common process that underlies both formation and change of group impressions despite the often-made assumption that they constitute different psychological processes. In particular, various time-dependent properties of both group impression formation (e.g., time variability, response dependency, and order effects in impression judgments) and change (e.g., stereotype change and group accentuation) are explained, demonstrating a hidden unity beneath the diverse array of empirical findings. Implications of the model for conceptualizing stereotype formation and change are discussed.

  8. Studies on Dynamic Damage Evolution for Pp/pa Polymer Blends Under High Strain Rates

    Science.gov (United States)

    Sun, Zi-Jian; Wang, Li-Li

    The dynamic damage evolution for PP/PA blends with different compatibilizers is studied in high strain rates from two different approaches, namely by determining the unloading elastic modulus of specimen experienced impact deformation and by combining the split Hopkinson pressure bar (SHPB) experimental technique with the back-propagation (BP) neural network. The results obtained by both approaches consistently show that a threshold strain ɛth exists for dynamic damage evolution, and both the damage evolution and ɛth are dependent on strain and strain rate. For non-linear visco-elastic materials, the damage evolution determined by the unloading elastic modulus provides an underestimation of real damage evolution.

  9. Halo formation and evolution: unification of structure and physical properties

    Science.gov (United States)

    Ernest, Allan D.; Collins, Matthew P.

    2016-08-01

    The assembly of matter in the universe proliferates a wide variety of halo structures, often with enigmatic consequences. Giant spiral galaxies, for example, contain both dark matter and hot gas, while dwarf spheroidal galaxies, with weaker gravity, contain much larger fractions of dark matter, but little gas. Globular clusters, superficially resembling these dwarf spheroidals, have little or no dark matter. Halo temperatures are also puzzling: hot cluster halos contain cooler galaxy halos; dwarf galaxies have no hot gas at all despite their similar internal processes. Another mystery is the origin of the gas that galaxies require to maintain their measured star formation rates (SFRs). We outline how gravitational quantum theory solves these problems, and enables baryons to function as weakly-interacting-massive-particles (WIMPs) in Lambda Cold Dark Matter (LCDM) theory. Significantly, these dark-baryon ensembles may also be consistent with primordial nucleosynthesis (BBN) and cosmic microwave background (CMB) anisotropies.

  10. Siderophile Elements in Tracing Planetary Formation and Evolution

    Science.gov (United States)

    Walker, R. J.

    2016-12-01

    The siderophile elements have many applications in the Earth and planetary sciences. In primitive meteorites, differences in the relative abundances of these elements are likely due to both nebular and parent body processes. In addition, some siderophile elements are also characterized by isotopically distinctive nucleosynthetic signatures. Thus, the relative abundances and isotopic compositions of these elements can be used to trace the genetics of planetary building blocks. Although the siderophile elements are largely concentrated in the metallic cores of differentiated planetary bodies, their absolute and relative abundances, as well as their isotopic compositions can also reveal important information regarding conditions of core formation and subsequent late stages of accretion. For example, the chondritic 187Os/188Os and 186Os/188Os estimated for the bulk silicate Earth require long-term, precisely chondritic Re/Os and Pt/Os, chemical characteristics that are seemingly most easily imposed by late accretion. The lithophile-siderophile nature of the radiogenic 182Hf-182W system allows it to be used to place chronologic constraints on planetary core formation. The differing incompatibilities of the two elements in the silicate portions of planets also means that the system can also be used to study early differentiation processes and efficiency of subsequent convective mixing. Positive and negative 182W anomalies present in rocks throughout the terrestrial rock record indicate the long-term survivability of mantle domains formed within the first 30 to 100 Ma of Solar System history. When matched with other short- and long-lived isotope systems, tungsten isotopes can potentially be used to identify mantle domains created by early magma ocean processes, as well as possible core-mantle interactions.

  11. DYNAMICAL FORMATION OF CAVITY IN A COMPOSED HYPER-ELASTIC SPHERE

    Institute of Scientific and Technical Information of China (English)

    任九生; 程昌钧

    2004-01-01

    The dynamical formation of cavity in a hyper-elastic sphere composed of two materials with the incompressible strain energy function, subjected to a suddenly applied uniform radial tensile boundary dead-load, was studied following the theory of finite deformation dynamics. Besides a trivial solution corresponding to the homogeneous static state, a cavity forms at the center of the sphere when the tensile load is larger than its critical value. An exact differential relation between the cavity radius and the tensile land was obtained. It is proved that the evolution of cavity radius with time displays nonlinear periodic oscillations. The phase diagram for oscillation, the maximum amplitude, the approximate period and the critical load were all discussed.

  12. Holocene formation and evolution of coastal dunes ridges, Brittany (France)

    Science.gov (United States)

    Van Vliet-Lanoë, Brigitte; Goslin, Jérôme; Hénaff, Alain; Hallégouët, Bernard; Delacourt, Christophe; Le Cornec, Erwan; Meurisse-Fort, Murielle

    2016-07-01

    Holocene coastal dune formation under a continuously rising sea level (SL) is an abnormal response to increasing storm frequency. The aim of this work is to understand the coastal sedimentary budget and the present-day sand starvation, controlled by climate and man. Dating in Brittany shows that Aeolian deposition initiated from ca. 4000 cal BP, with the slowing down of the SL rise. Pre-historical dunes appeared here from ca. 3000 cal BP, without SL regression. After, further building phases recycled the same stock of sands. Historical dunes I developed from ca. 350 AD. Major storms between 900 and 1200 AD resulted in the construction of washover coastal ridges, the Historical dunes II. A part of the sand was evacuated offshore. From ca. 1350 AD, the pre-existing ridges are reworked forming the Historical dunes III, leading to rapid coastal erosion and inland drift. Holocene dunes with a rising SL constitute a temporary anomaly, mostly forced by man, soon erased by storms in Brittany.

  13. The evolution of star formation histories of quiescent galaxies

    CERN Document Server

    Pacifici, Camilla; Weiner, Benjamin J; Holden, Bradford; Gardner, Jonathan P; Faber, Sandra M; Ferguson, Henry C; Koo, David C; Primack, Joel R; Bell, Eric F; Dekel, Avishai; Gawiser, Eric; Giavalisco, Mauro; Rafelski, Marc; Simons, Raymond C; Barro, Guillermo; Croton, Darren J; Dave, Romeel; Fontana, Adriano; Grogin, Norman A; Koekemoer, Anton M; Lee, Seong-Kook; Salmon, Brett; Somerville, Rachel; Behroozi, Peter

    2016-01-01

    Although there has been much progress in understanding how galaxies evolve, we still do not understand how and when they stop forming stars and become quiescent. We address this by applying our galaxy spectral energy distribution models, which incorporate physically motivated star formation histories (SFHs) from cosmological simulations, to a sample of quiescent galaxies at $0.2

  14. Cell state switching factors and dynamical patterning modules: complementary mediators of plasticity in development and evolution

    Indian Academy of Sciences (India)

    Stuart A Newman; Ramray Bhat; Nadejda V Mezentseva

    2009-10-01

    Ancient metazoan organisms arose from unicellular eukaryotes that had billions of years of genetic evolution behind them. The transcription factor networks present in single-celled ancestors at the origin of the Metazoa (multicellular animals) were already capable of mediating the switching of the unicellular phenotype among alternative states of gene activity in response to environmental conditions. Cell differentiation, therefore, had its roots in phenotypic plasticity, with the ancient regulatory proteins acquiring new targets over time and evolving into the ``developmental transcription factors” (DTFs) of the ``developmental-genetic toolkit.” In contrast, the emergence of pattern formation and morphogenesis in the Metazoa had a different trajectory. Aggregation of unicellular metazoan ancestors changed the organisms’ spatial scale, leading to the first ``dynamical patterning module” (DPM): cell-cell adhesion. Following this, other DPMs (defined as physical forces and processes pertinent to the scale of the aggregates mobilized by a set of toolkit gene products distinct from the DTFs), transformed simple cell aggregates into hollow, multilayered, segmented, differentiated and additional complex structures, with minimal evolution of constituent genes. Like cell differentiation, therefore, metazoan morphologies also originated from plastic responses of cells and tissues. Here we describe examples of DTFs and most of the important DPMs, discussing their complementary roles in the evolution of developmental mechanisms. We also provide recently characterized examples of DTFs in cell type switching and DPMs in morphogenesis of avian limb bud mesenchyme, an embryo-derived tissue that retains a high degree of developmental plasticity.

  15. Formal Definitions of Unbounded Evolution and Innovation Reveal Universal Mechanisms for Open-Ended Evolution in Dynamical Systems.

    Science.gov (United States)

    Adams, Alyssa; Zenil, Hector; Davies, Paul C W; Walker, Sara Imari

    2017-04-20

    Open-ended evolution (OEE) is relevant to a variety of biological, artificial and technological systems, but has been challenging to reproduce in silico. Most theoretical efforts focus on key aspects of open-ended evolution as it appears in biology. We recast the problem as a more general one in dynamical systems theory, providing simple criteria for open-ended evolution based on two hallmark features: unbounded evolution and innovation. We define unbounded evolution as patterns that are non-repeating within the expected Poincare recurrence time of an isolated system, and innovation as trajectories not observed in isolated systems. As a case study, we implement novel variants of cellular automata (CA) where the update rules are allowed to vary with time in three alternative ways. Each is capable of generating conditions for open-ended evolution, but vary in their ability to do so. We find that state-dependent dynamics, regarded as a hallmark of life, statistically out-performs other candidate mechanisms, and is the only mechanism to produce open-ended evolution in a scalable manner, essential to the notion of ongoing evolution. This analysis suggests a new framework for unifying mechanisms for generating OEE with features distinctive to life and its artifacts, with broad applicability to biological and artificial systems.

  16. Formation and early evolution of massive black holes

    Science.gov (United States)

    Madau, Piero

    2007-04-01

    I review scenarios for the assembly of massive black holes (MBHs) at the center of galaxies that trace their hierarchical build-up far up in the dark halo merger tree. The first active galactic nuclei likely formed 150 Myr after the big bang in 1e6 Msun minihaloes. X-ray photons from such miniquasars may have permeated the universe more uniformly than EUV radiation, made the low-density diffuse intergalactic medium shine at 21-cm prior to the epoch of reionization, and changed the chemistry of primordial gas. I'll discuss the conditions under which massive black holes become incorporated through a series of mergers into larger and larger halos, sink to the center owing to dynamical friction, accrete a fraction of the gas in the merger remnant to become supermassive, form a binary system, and eventually coalesce. The spin distribution of MBHs is determined by gas accretion, and is predicted to be heavily skewed towards fast-rotating Kerr holes, already in place at early epochs, and not to change significantly below redshift 5. Decaying MBH binaries may shape the innermost central regions of galaxies and should be detected in significant numbers by LISA.

  17. Application of Gas Dynamical Friction for Planetesimals: II. Evolution of Binary Planetesimals

    CERN Document Server

    Grishin, Evgeni

    2015-01-01

    One of first the stages of planet formation is the growth of small planetesimals and their accumulation into large planetesimals and planetary embryos. This early stage occurs much before the dispersal of most of the gas from the protoplanetary disk. At this stage gas-planetesimal interactions play a key role in the dynamical evolution of \\emph{single} intermediate-mass planetesimals ($m_{p}\\sim10^{21}-10^{25}g$) \\emph{through gas dynamical friction} (GDF). A significant fraction of all Solar system planetesimals (asteroids and Kuiper-belt objects) are known to be binary planetesimals (BPs). Here, we explore the effects of GDF on the evolution of \\emph{binary} planetesimals embedded in a gaseous disk using an N-body code with a fiducial external force accounting for GDF. We find that GDF can induce binary mergers on timescales shorter than the disk lifetime for masses above $m_{p}\\gtrsim10^{22}g$ at 1AU, independent of the binary initial separation and eccentricity. Such mergers can affect the structure of me...

  18. Langevin dynamics for the chiral transition and DCC formation

    Energy Technology Data Exchange (ETDEWEB)

    Kroff, Daniel; Fraga, Eduardo S. [Universidade Federal do Rio de Janeiro (IF/UFRJ), RJ (Brazil). Inst. de Fisica

    2011-07-01

    Full text: The theory of the strong interactions allows for the formation of metastable exotic configurations of the vacuum. Such metastable states can, in principle, be produced in high-energy heavy ion collisions taking place in accelerators like the LHC and in cosmic rays in the atmosphere. In this work, we consider disoriented chiral condensates (DCC), treating them through an effective field theory - the linear-sigma model couple to quarks - and consider possible consequences for ultra-energetic cosmic ray observations performed by the Pierre Auger observatory. After a high-energy collision, the state of the system can be chirally rotated from its true vacuum orientation. Later, this disoriented state (DCC) will relax into the ordinary vacuum configuration, emitting pions. This leads to an asymmetry between charged and neutral pions. This is especially interesting in the context of cosmic rays, where the primary collision in the atmosphere presents favorable conditions for the formation of DCCs. Such exotics might be related to the Centauro and Anti-Centauro events observed by Lattes and collaborators in high-energy cosmic rays experiments. We consider the possibility of DCC formation during a first-order chiral transition, studying the order parameter evolution in a Langevin description. We analyse the DCC influence on the typical time scales of transition and also calculate the pion production rate. (author)

  19. Molecular Dynamic Simulation of Thin Film Growth Stress Evolution

    Science.gov (United States)

    Zheng, Haifeng

    2011-12-01

    With the increasing demand for thin films across a wide range of technology, especially in electronic and magnetic applications, controlling the stresses in deposited thin films has become one of the more important challenges in modern engineering. It is well known that large intrinsic stress---in the magnitude of several gigapascals---can result during the thin film preparation. The magnitude of stress depends on the deposition technique, film thickness, types and structures of materials used as films and substrates, as well as other factors. Such large intrinsic stress may lead to film cracking and peeling in case of tensile stress, and delamination and blistering in case of compression. However it may also have beneficial effects on optoelectronics and its applications. For example, intrinsic stresses can be used to change the electronic band gap of semiconducting materials. The far-reaching fields of microelectronics and optoelectronics depend critically on the properties, behavior, and reliable performance of deposited thin films. Thus, understanding and controlling the origins and behavior of such intrinsic stresses in deposited thin films is a highly active field of research. In this study, on-going tensile stress evolution during Volmer-Weber growth mode was analyzed through numerical methods. A realistic model with semi-cylinder shape free surfaces was used and molecular dynamics simulations were conducted. Simulations were at room temperature (300 K), and 10 nanometer diameter of islands were used. A deposition rate that every 3 picoseconds deposit one atom was chosen for simulations. The deposition energy was and lattice orientation is [0 0 1]. Five different random seeds were used to ensure average behaviors. In the first part of this study, initial coalescence stress was first calculated by comparing two similar models, which only differed in the distance between two neighboring islands. Three different substrate thickness systems were analyzed to

  20. Insights into the Formation and Evolution of Individual Compounds in the Particulate Phase during Aromatic Photo-Oxidation.

    Science.gov (United States)

    Pereira, Kelly L; Hamilton, Jacqueline F; Rickard, Andrew R; Bloss, William J; Alam, Mohammed S; Camredon, Marie; Ward, Martyn W; Wyche, Kevin P; Muñoz, Amalia; Vera, Teresa; Vázquez, Mónica; Borrás, Esther; Ródenas, Milagros

    2015-11-17

    Secondary organic aerosol (SOA) is well-known to have adverse effects on air quality and human health. However, the dynamic mechanisms occurring during SOA formation and evolution are poorly understood. The time-resolved SOA composition formed during the photo-oxidation of three aromatic compounds, methyl chavicol, toluene and 4-methyl catechol, were investigated at the European Photoreactor. SOA was collected using a particle into liquid sampler and analyzed offline using state-of-the-art mass spectrometry to produce temporal profiles of individual photo-oxidation products. In the photo-oxidation of methyl chavicol, 70 individual compounds were characterized and three distinctive temporal profile shapes were observed. The calculated mass fraction (Ci,aer/COA) of the individual SOA compounds showed either a linear trend (increasing/decreasing) or exponential decay with time. Substituted nitrophenols showed an exponential decay, with the nitro-group on the aromatic ring found to control the formation and loss of these species in the aerosol phase. Nitrophenols from both methyl chavicol and toluene photo-oxidation experiments showed a strong relationship with the NO2/NO (ppbv/ppbv) ratio and were observed during initial SOA growth. The location of the nitrophenol aromatic substitutions was found to be critically important, with the nitrophenol in the photo-oxidation of 4-methyl catechol not partitioning into the aerosol phase until irradiation had stopped; highlighting the importance of studying SOA formation and evolution at a molecular level.

  1. Disentangling Morphology, Star Formation, Stellar Mass, and Environment in Galaxy Evolution

    CERN Document Server

    Christlein, D; Christlein, Daniel; Zabludoff, Ann

    2004-01-01

    We present a study of the spectroscopic and photometric properties of galaxies in six nearby clusters. We perform a partial correlation analysis on our dataset to investigate whether the correlation between star formation rates in galaxies and their environment is merely another aspect of correlations of morphology, stellar mass, or mean stellar age with environment, or whether star formation rates vary independently of these other correlations. We find a residual correlation of ongoing star formation with environment, indicating that even galaxies with similar morphologies, stellar masses, and mean stellar ages have lower star formation rates in denser environments. Thus, the current star formation gradient in clusters is not just another aspect of the morphology-density, stellar mass-density, or mean stellar age-density relations. Furthermore, the star formation gradient cannot be solely the result of initial conditions, but must partly be due to subsequent evolution through a mechanism (or mechanisms) sens...

  2. A STUDY ON THE EVOLUTION OF GROUNDWATER POLLUTANTS AND CAUSES OF FORMATION IN MANZHOULI

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Studying the evolution of groundwater pollutants and the causes of formation in Manzhouli is important and necessitous as the present water source of the production and living in Manzhouli is just groundwater and the water crisis is staring Manzhouli people in the face. The evolution of pollutants in groundwater in Manzhouli was derived based on the continuously monitoring between 1989 and 1999. In total, the quality of groundwater in Manzhouli is good except that the content of F is exceeding the standard. The quality of groundwater varies seasonally. The content of pollutants in high water is higher than in the low water except pH and As. The yearly evolution shows the regime like the damp surge. The evolution of pH is inverse to NO3-N and F after 1999. The courses of formation of the evolution of the content of the pollutants in groundwater in Manzhouli are the supply of runoff, the feature of rock, the time the water being stayed in the layers and the chemical field. Being affected by the supply of ground surface and hydrogeology condition, the contents of pollutant are higher in the May than in September and the yearly evolution is undulance. In total, the pollutants in the deeper layers are less than in the upper layers. Explosion water in the deeper layers, using the techniques of cutting F and minifying the pollutants caused by human being are the sound countermeasures in Manzhouli.

  3. Studies on the formation, evolution, and destruction of massive star clusters

    NARCIS (Netherlands)

    Bastian, Nathan John

    2005-01-01

    This thesis presents the results of mainly observational studies on the formation, evolution, and destruction of massive star clusters. We show, using a variety of observational techniques, that globular clusters which were once thought to only be able to form in the early universe are in fact still

  4. Star formation and aging at cosmic noon : the spectral evolution of galaxies from z=2

    NARCIS (Netherlands)

    Fumagalli, Mattia

    2015-01-01

    Ten billion years ago the Universe was at the peak of its star formation activity, which has been declining since then. This thesis investigates, with novel spectroscopic data from Hubble Space Telescope, the evolution of the galaxy population from that particular period, the so-called "Cosmic Noon"

  5. Pattern formation and coexistence domains for a nonlocal population dynamics

    CERN Document Server

    da Cunha, J A R; Oliveira, F A

    2011-01-01

    In this communication we propose a most general equation to study pattern formation for one-species population and their limit domains in systems of length L. To accomplish this we include non-locality in the growth and competition terms where the integral kernels are now depend on characteristic length parameters alpha and beta. Therefore, we derived a parameter space (alpha,beta) where it is possible to analyze a coexistence curve alpha*=alpha*(\\beta) which delimits domains for the existence (or not) of pattern formation in population dynamics systems. We show that this curve has an analogy with coexistence curve in classical thermodynamics and critical phenomena physics. We have successfully compared this model with experimental data for diffusion of Escherichia coli populations.

  6. Finite size effects in the dynamics of opinion formation

    CERN Document Server

    Toral, R; Tessone, Claudio J.; Toral, Raul

    2006-01-01

    For some models of relevance in the social sciences we review some examples in which system size plays an important role in the final outcome of the dynamics. We discuss the conditions under which changes of behavior can appear only when the number of agents in the model takes a finite value. Those changes of behavior can be related to the apparent phase transitions that appear in some physical models. We show examples in the Galam's model of opinion transmission and the Axelrod's model of culture formation stressing the role that the network of interactions has on the main results of both models. Finally, we present the phenomenon of system-size stochastic resonance by which a forcing signal (identified as an advertising agent) is optimally amplified by a population of the right (intermediate) size. Our work stresses the role that the system size has in the dynamics of social systems and the inappropriateness of taking the thermodynamic limit for these systems.

  7. Evolution of the Granular Dynamics and Energy Transport

    Science.gov (United States)

    Nesis, A.; Hammer, R.; Schleicher, H.

    2003-05-01

    Based on series of excellent spectrograms taken at the German Vacuum Tower Telescope (VTT) at the Observatorio del Teide (Tenerife), we study the temporal evolution of the granular dynamics and the energy transport in the photospheric layers. We consider the ensemble of the granules cut by the spectrograph slit as a complex system. We describe this ensemble by the rms of the fluctuations of the granular observables along the slit: continuum intensity I, Doppler velocity v, and line width w. The history of the rms of the observables v and w reflects the dynamical change of the system over the 20 minutes observation time. We find for both observables a quasi-periodical change. However, the history of the cross-correlation between I and v remains virtually constant, with the exception of two gaps. We measure the rms of v in the deep photospheric layers for six lines of different strength included in the spectrograms. Using a model velocity variation based on our previous publications, we assign photospheric heights to the velocity measurements. These heights agree with those calculated by other means. On the basis of this v variation we calculate the kinetic energy flux as a function of the height in the photosphere for different times during the observation. The form of the variation with height turns out to be constant in time. The convective energy flux, finally, is calculated from the measured velocity and the temperature variations of our earlier models. Again we find practically the same variation form over the time of the observation. Taken together, these results quantify the different roles that the lower and higher photospheric layers play for the energetics of the convective overshoot at the upper boundary of the superadiabatic region of the Sun. A.N. acknowledges travel support from the German science foundation DFG.

  8. Evol and ProDy for bridging protein sequence evolution and structural dynamics

    OpenAIRE

    Bakan, Ahmet; Dutta, Anindita; Mao, Wenzhi; Liu, Ying; Chennubhotla, Chakra; Lezon, Timothy R.; Bahar, Ivet

    2014-01-01

    Correlations between sequence evolution and structural dynamics are of utmost importance in understanding the molecular mechanisms of function and their evolution. We have integrated Evol, a new package for fast and efficient comparative analysis of evolutionary patterns and conformational dynamics, into ProDy, a computational toolbox designed for inferring protein dynamics from experimental and theoretical data. Using information-theoretic approaches, Evol coanalyzes conservation and coevolu...

  9. Building better oscillators using nonlinear dynamics and pattern formation

    Indian Academy of Sciences (India)

    M C Cross; Eyal Kenig; John-Mark A Allen

    2015-03-01

    Frequency and time references play an essential role in modern technology and in living systems. The precision of self-sustained oscillations is limited by the effects of noise, which becomes evermore important as the sizes of the devices become smaller. In this paper, we review our recent theoretical results on using nonlinear dynamics and pattern formation to reduce the effects of noise and improve the frequency precision of oscillators, with particular reference to ongoing experiments on oscillators based on nanomechanical resonators. We discuss using resonator nonlinearity, novel oscillator architectures and the synchronization of arrays of oscillators, to improve the frequency precision.

  10. Nonlinear dynamic theory for photorefractive phase hologram formation

    Science.gov (United States)

    Kim, D. M.; Shah, R. R.; Rabson, T. A.; Tittle, F. K.

    1976-01-01

    A nonlinear dynamic theory is developed for the formation of photorefractive volume phase holograms. A feedback mechanism existing between the photogenerated field and free-electron density, treated explicitly, yields the growth and saturation of the space-charge field in a time scale characterized by the coupling strength between them. The expression for the field reduces in the short-time limit to previous theories and approaches in the long-time limit the internal or photovoltaic field. Additionally, the phase of the space charge field is shown to be time-dependent.

  11. Dynamic Cell Formation based on Multi-objective Optimization Model

    Directory of Open Access Journals (Sweden)

    Guozhu Jia

    2013-08-01

    Full Text Available In this paper, a multi-objective model is proposed to address the dynamic cellular manufacturing (DCM formation problem. This model considers four conflicting objectives: relocation cost, machine utilization, material handling cost and maintenance cost. The model also considers the situation that some machines could be shared by more than one cell at the same period. A genetic algorithm is applied to get the solution of this mathematical model. Three numerical examples are simulated to evaluate the validity of this model.  

  12. Mechanical compaction directly modulates the dynamics of bile canaliculi formation.

    Science.gov (United States)

    Wang, Yan; Toh, Yi-Chin; Li, Qiushi; Nugraha, Bramasta; Zheng, Baixue; Lu, Thong Beng; Gao, Yi; Ng, Mary Mah Lee; Yu, Hanry

    2013-02-01

    Homeostatic pressure-driven compaction is a ubiquitous mechanical force in multicellular organisms and is proposed to be important in the maintenance of multicellular tissue integrity and function. Previous cell-free biochemical models have demonstrated that there are cross-talks between compaction forces and tissue structural functions, such as cell-cell adhesion. However, its involvement in physiological tissue function has yet to be directly demonstrated. Here, we use the bile canaliculus (BC) as a physiological example of a multicellular functional structure in the liver, and employ a novel 3D microfluidic hepatocyte culture system to provide an unprecedented opportunity to experimentally modulate the compaction states of primary hepatocyte aggregates in a 3D physiological-mimicking environment. Mechanical compaction alters the physical attributes of the hepatocyte aggregates, including cell shape, cell packing density and cell-cell contact area, but does not impair the hepatocytes' remodeling and functional capabilities. Characterization of structural and functional polarity shows that BC formation in compact hepatocyte aggregates is accelerated to as early as 12 hours post-seeding; whereas non-compact control requires 48 hours for functional BC formation. Further dynamic immunofluorescence imaging and gene expression profiling reveal that compaction accelerated BC formation is accompanied by changes in actin cytoskeleton remodeling dynamics and transcriptional levels of hepatic nuclear factor 4α and Annexin A2. Our report not only provides a novel strategy of modeling BC formation for in vitro hepatology research, but also shows a first instance that homeostatic pressure-driven compaction force is directly coupled to the higher-order multicellular functions.

  13. Dynamic approaches of mixed species biofilm formation using modern technologies.

    Science.gov (United States)

    Doiron, Kim; Linossier, Isabelle; Fay, Fabienne; Yong, Julius; Abd Wahid, Effendy; Hadjiev, Dimitre; Bourgougnon, Nathalie

    2012-07-01

    Bacteria and diatoms exist in sessile communities and develop as biofilm on all surfaces in aqueous environments. The interaction between these microorganisms in biofilm was investigated with a bacterial genus Pseudoalteromonas sp. (strain 3J6) and two benthic diatoms Amphora coffeaeformis and Cylindrotheca closterium. Each biofilm was grown for 22 days. Images from the confocal microscopy show a difference of adhesion between Pseudoalteromonas 3J6 and diatoms. Indeed, a stronger adhesion is found with C. closterium suggesting cohabitation between Pseudoalteromonas 3J6 and C. closterium compared at an adaptation for bacteria and A. coffeaeformis. The cellular attachment and the growth evolution in biofilm formation depend on each species of diatoms in the biofilm. Behaviour of microalgae in presence of bacteria demonstrates the complexity of the marine biofilm.

  14. Dynamical Evidence for a Late Formation of Saturn's Moons

    CERN Document Server

    Ćuk, Matija; Nesvorný, David

    2016-01-01

    We explore the past evolution of Saturn's moons using direct numerical integrations. We find that the past Tethys-Dione 3:2 orbital resonance predicted in standard models likely did not occur, implying that the system is less evolved than previously thought. On the other hand, the orbital inclinations of Tethys, Dione and Rhea suggest that the system did cross the Dione-Rhea 5:3 resonance, which is closely followed by a Tethys-Dione secular resonance. A clear implication is that either the moons are significantly younger than the planet, or that their tidal evolution must be extremely slow (Q > 80,000). As an extremely slow-evolving system is incompatible with intense tidal heating of Enceladus, we conclude that the moons interior to Titan are not primordial, and we present a plausible scenario for the system's recent formation. We propose that the mid-sized moons re-accreted from a disk about 100 Myr ago, during which time Titan acquired its significant orbital eccentricity. We speculate that this disk has f...

  15. Dynamical evolution of supernova remnants breaking through molecular clouds

    CERN Document Server

    Cho, Wankee; Koo, Bon-Chul

    2015-01-01

    We carry out three-dimensional hydrodynamic simulations of the supernova remnants (SNRs) produced inside molecular clouds (MCs) near their surface using the HLL code (Harten et al. 1983). We explore the dynamical evolution and the X-ray morphology of SNRs after breaking through the MC surface for ranges of the explosion depths below the surface and the density ratios of the clouds to the intercloud media (ICM). We find that if an SNR breaks out through an MC surface in its Sedov stage, the outermost dense shell of the remnant is divided into several layers. The divided layers are subject to the Rayleigh-Taylor instability and fragmented. On the other hand, if an SNR breaks through an MC after the remnant enters the snowplow phase, the radiative shell is not divided to layers. We also compare the predictions of previous analytic solutions for the expansion of SNRs in stratified media with our onedimensional simulations. Moreover, we produce synthetic X-ray surface brightness in order to research the center-bri...

  16. Microstructure evolution of polycrystalline silicon by molecular dynamics simulation

    Science.gov (United States)

    Chen, Xiao; Ding, Jianning; Jiang, Cunhua; Liu, Zunfeng; Yuan, Ningyi

    2017-06-01

    Polycrystalline silicon is the dominant material in solar cells and plays an important role in photovoltaic industry. It is important for not only the conventional production of silicon ingots but also the direct growth of silicon wafers to control crystallization for obtaining the desired polycrystalline silicon. To the best of our knowledge, few studies have systematically reported about the effects of crystalline planes on the solidification behavior of liquid silicon and the analysis of the microstructural features of the polysilicon structure. In this study, molecular dynamics simulations were employed to investigate the solidification and microstructure evolution of polysilicon, with focus on the effects of the seed distribution and cooling rate on the growth of polycrystalline silicon. The (110), (111), and (112) planes were extruded by the (100) plane and formed the inclusion shape. The crystallization of silicon consisted of diamond-type structures is relatively high at a low cooling rate. The simulations provide substantial information regarding microstructures and serve as guidance for the growth of polycrystalline silicon.

  17. Microstructure evolution of polycrystalline silicon by molecular dynamics simulation

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2017-06-01

    Full Text Available Polycrystalline silicon is the dominant material in solar cells and plays an important role in photovoltaic industry. It is important for not only the conventional production of silicon ingots but also the direct growth of silicon wafers to control crystallization for obtaining the desired polycrystalline silicon. To the best of our knowledge, few studies have systematically reported about the effects of crystalline planes on the solidification behavior of liquid silicon and the analysis of the microstructural features of the polysilicon structure. In this study, molecular dynamics simulations were employed to investigate the solidification and microstructure evolution of polysilicon, with focus on the effects of the seed distribution and cooling rate on the growth of polycrystalline silicon. The (110, (111, and (112 planes were extruded by the (100 plane and formed the inclusion shape. The crystallization of silicon consisted of diamond-type structures is relatively high at a low cooling rate. The simulations provide substantial information regarding microstructures and serve as guidance for the growth of polycrystalline silicon.

  18. Dynamical evolution of star forming regions - II. Basic kinematics

    CERN Document Server

    Parker, Richard J

    2016-01-01

    We follow the dynamical evolution of young star-forming regions with a wide range of initial conditions and examine how the radial velocity dispersion, $\\sigma$, evolves over time. We compare this velocity dispersion to the theoretically expected value for the velocity dispersion if a region were in virial equilibrium, $\\sigma_{\\rm vir}$ and thus assess the virial state ($\\sigma / \\sigma_{\\rm vir}$) of these systems. We find that in regions that are initially subvirial, or in global virial equilibrium but subvirial on local scales, the system relaxes to virial equilibrium within several million years, or roughly 25 - 50 crossing times, according to the measured virial ratio. However, the measured velocity dispersion, $\\sigma$, appears to be a bad diagnostic of the current virial state of these systems as it suggests that they become supervirial when compared to the velocity dispersion estimated from the virial mass, $\\sigma_{\\rm vir}$. We suggest that this discrepancy is caused by the fact that the regions ar...

  19. Dynamic evolution process of turbulent channel flow after opposition control

    Science.gov (United States)

    Ge, Mingwei; Tian, De; Yongqian, Liu

    2017-02-01

    Dynamic evolution of turbulent channel flow after application of opposition control (OC), together with the mechanism of drag reduction, is studied through direct numerical simulation (DNS). In the simulation, the pressure gradient is kept constant, and the flow rate increases due to drag reduction. In the transport of mean kinetic energy (MKE), one part of the energy from the external pressure is dissipated by the mean shear, and the other part is transported to the turbulent kinetic energy (TKE) through a TKE production term (TKP). It is found that the increase of MKE is mainly induced by the reduction of TKP that is directly affected by OC. Further analysis shows that the suppression of the redistribution term of TKE in the wall normal direction plays a key role in drag reduction, which represses the wall normal velocity fluctuation and then reduces TKP through the attenuation of its main production term. When OC is suddenly applied, an acute imbalance of energy in space is induced by the wall blowing and suction. Both the skin-friction and TKP terms exhibit a transient growth in the initial phase of OC, which can be attributed to the local effect of and in the viscous sublayer. Project supported by the National Natural Science Foundation of China (Grant No. 11402088 and Grant No. 51376062) , State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (Grant No. LAPS15005), and ‘the Fundamental Research Funds for the Central Universities’ (Grant No.2014MS33).

  20. The orbit and dynamical evolution of the Chelyabinsk object

    CERN Document Server

    Emel'yanenko, Vacheslav V; Jenniskens, Peter; Popova, Olga P

    2014-01-01

    The orbit of the Chelyabinsk object is calculated, applying the least-squares method directly to astrometric positions. The dynamical evolution of this object in the past is studied by integrating equations of motion for particles with orbits from the confidence region. It is found that the majority of the Chelyabinsk clones reach the near-Sun state. 67 percent of these objects have collisions with the Sun for 15 Myr in our numerical simulations. The distribution of minimum solar distances shows that the most probable time for the encounters of the Chelyabinsk object with the Sun lies in the interval from -0.8 Myr to -2 Myr. This is consistent with the estimate of a cosmic ray exposure age of 1.2 Myr (Popova et al 2013). A parent body of the Chelyabinsk object should experience strong tidal and thermal effects at this time. The possible association of the Chelyabinsk object with 86039 (1999 NC43) and 2008 DJ is discussed.

  1. Hydrogen partitioning in pure cast aluminum as determined by dynamic evolution rate measurements

    Science.gov (United States)

    Outlaw, R. A.; Peterson, D. T.; Schmidt, F. A.

    1981-01-01

    Hydrogen in pure aluminum can be found in two different states. One is related to a presence in gas-filled pores, while the other state involves the formation of a solid solution between hydrogen and aluminum. The considered investigation is concerned with the distribution of the hydrogen between various states. A dynamic technique is employed to measure the evolution of hydrogen from commercially available samples of polycrystalline pure aluminum under ultrahigh vacuum conditions. The obtained data are compared with the results of a statistical analysis concerning the porosity in the cast aluminum. It was found that more than 99 pct of the hydrogen in the aluminum is located in large pores. Less than 1 pct of the hydrogen is partitioned between the solid solution and the small pores.

  2. Co-Evolution of Opinion and Strategy in Persuasion Dynamics:. AN Evolutionary Game Theoretical Approach

    Science.gov (United States)

    Ding, Fei; Liu, Yun; Li, Yong

    In this paper, a new model of opinion formation within the framework of evolutionary game theory is presented. The model simulates strategic situations when people are in opinion discussion. Heterogeneous agents adjust their behaviors to the environment during discussions, and their interacting strategies evolve together with opinions. In the proposed game, we take into account payoff discount to join a discussion, and the situation that people might drop out of an unpromising game. Analytical and emulational results show that evolution of opinion and strategy always tend to converge, with utility threshold, memory length, and decision uncertainty parameters influencing the convergence time. The model displays different dynamical regimes when we set differently the rule when people are at a loss in strategy.

  3. Dynamics of magnetic flux tubes in close binary stars II. Nonlinear evolution and surface distributions

    CERN Document Server

    Holzwarth, V R

    2003-01-01

    Observations of magnetically active close binaries with orbital periods of a few days reveal the existence of starspots at preferred longitudes (with respect to the direction of the companion star). We numerically investigate the non-linear dynamics and evolution of magnetic flux tubes in the convection zoneof a fast-rotating component of a close binary system and explore whether the tidal effects are able to generate non-uniformities in the surface distribution of erupting flux tubes. Assuming a synchronised system with a rotation period of two days and consisting of two solar-type components, both the tidal force and the deviation of the stellar structure from spherical shape are considered in lowest-order perturbation theory. The magnetic field is initially stored in the form of toroidal magnetic flux rings within the stably stratified overshoot region beneath the convection zone. Once the field has grown sufficiently strong, instabilities initiate the formation of rising flux loops, which rise through the...

  4. Dynamical Formation of Low-mass Merging Black Hole Binaries like GW151226

    Science.gov (United States)

    Chatterjee, Sourav; Rodriguez, Carl L.; Kalogera, Vicky; Rasio, Frederic A.

    2017-02-01

    Using numerical models for star clusters spanning a wide range in ages and metallicities (Z) we study the masses of binary black holes (BBHs) produced dynamically and merging in the local universe (z ≲ 0.2). After taking into account cosmological constraints on star formation rate and metallicity evolution, which realistically relate merger delay times obtained from models with merger redshifts, we show here for the first time that while old, metal-poor globular clusters can naturally produce merging BBHs with heavier components, as observed in GW150914, lower-mass BBHs like GW151226 are easily formed dynamically in younger, higher-metallicity clusters. More specifically, we show that the mass of GW151226 is well within 1σ of the mass distribution obtained from our models for clusters with Z/Z⊙ ≳ 0.5. Indeed, dynamical formation of a system like GW151226 likely requires a cluster that is younger and has a higher metallicity than typical Galactic globular clusters. The LVT151012 system, if real, could have been created in any cluster with Z/Z⊙ ≲ 0.25. On the other hand, GW150914 is more massive (beyond 1σ) than typical BBHs from even the lowest-metallicity (Z/Z⊙ = 0.005) clusters we consider, but is within 2σ of the intrinsic mass distribution from our cluster models with Z/Z⊙ ≲ 0.05 of course, detection biases also push the observed distributions toward higher masses.

  5. Chemo -- dynamical, multi -- fragmented SPH code for evolution of star forming disk galaxies

    Science.gov (United States)

    Berczik, P.

    The problem of chemical and dynamical evolution of galaxies is one of the most attracting and complex problems of modern astrophysics. Within the framework of the given paper the standard dynamic Smoothed Particle Hydrodynamics (SPH) code (Monaghan J.J. 1992, ARAA, 30, 543) is noticeably expanded. Our work concernes with the changes and incorporation of new ideas into the algorithmic inclusion of Star Formation (SF) and Super Novae (SN) explosions in SPH (Berczik P. & Kravchuk S.G., 1996, ApSpSci, 245, 27). The proposed energy criterion for definition of a place and efficiency of SF results in the successfully explain Star Formation History (SFH) in isolated galaxies of different types. On the base of original ideas we expand a code in a more realistic way of the description of effects of return of a hot, chemical enriched gas in Interstellar Matter (ISM). In addition to the account of SNII, we offer the self-agreed account of SNIa and PN. This allows to describe not only the ISM content of O^16 but also the content of Fe^56 . This model will allow to investigate adequately also a well known G - dwarf problem.

  6. Effects of Dynamic Changes in Ultrasound Attenuation and Blood Perfusion on Lesion Formation of Multiple focus Pattern during Ultrasound Surgery

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chen-xi; BAI Jing-feng; CHEN Ya-zhu

    2007-01-01

    A nonlinear finite-element program was developed to simulate the dynamic evolution of coagulation in tissue considering temperature and thermal-dose dependence of the ultrasound attenuation and blood perfusion rate.The effects of these dynamic parameters on the lesion formation were investigated in the particular case of ultrasound hepatic ablation with bi-focus intensity pattern.The results of simulations were compared that incorporate dynamic changes of ultrasound attenuation and perfusion and results that neglect these effects.The result shows that thermal-dose-dependent ultrasound attenuation is the dominating factor in the full dynamic model.If the dynamic ultrasound attenuation is ignored, a relatively significant underestimation of the temperature rise appears in the focal plane and the region next to the focal plane, resulting in an underestimation in predicting diameter of coagulation.Higher heating intensity leads to greater underestimation.

  7. Molecular dynamics study of the primary ferrofluid aggregate formation

    Energy Technology Data Exchange (ETDEWEB)

    Tanygin, B.M., E-mail: b.m.tanygin@gmail.com [Radiophysics Department, Taras Shevchenko Kyiv National University, 4G, Acad. Glushkov Ave., Kyiv UA-03127 (Ukraine); Kovalenko, V.F.; Petrychuk, M.V.; Dzyan, S.A. [Radiophysics Department, Taras Shevchenko Kyiv National University, 4G, Acad. Glushkov Ave., Kyiv UA-03127 (Ukraine)

    2012-11-15

    Investigations of the phase transitions and self-organization in the magnetic aggregates are of the fundamental and applied interest. The long-range ordering structures described in the Tomanek's systematization (M. Yoon, and D. Tomanek, 2010 ) are not yet obtained in the direct molecular dynamics simulations. The resulted structures usually are the linear chains or circles, or, else, amorphous (liquid) formations. In the present work, it was shown, that the thermodynamically equilibrium primary ferrofluid aggregate has either the long-range ordered or liquid phase. Due to the unknown steric layer force and other model idealizations, the clear experimental verification of the real equilibrium phase is still required. The predicted long-range ordered (crystallized) phase produces the faceting shape of the primary ferrofluid aggregate, which can be recognized experimentally. The medical (antiviral) application of the crystallized aggregates has been suggested. Dynamic formation of all observed ferrofluid nanostructures conforms to the Tomanek's systematization. - Highlights: Black-Right-Pointing-Pointer Primary ferrofluid aggregate has either the long-range ordered or liquid phase. Black-Right-Pointing-Pointer Simulation of ferrofluid nanostructures conforms to the Tomanek's systematization. Black-Right-Pointing-Pointer Long-range ordered phase produces the faceting shape. Black-Right-Pointing-Pointer The medical (antiviral) application is possible.

  8. Dynamics of exciplex formation in rare gas media

    Energy Technology Data Exchange (ETDEWEB)

    Rojas-Lorenzo, German, E-mail: grojas37@gmail.com [Departamento de Fisica General y Matematicas, Instituto Superior de Tecnologias y Ciencias Aplicadas, La Habana (Cuba)] [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 123, 28006 Madrid (Spain); Rubayo-Soneira, Jesus [Departamento de Fisica General y Matematicas, Instituto Superior de Tecnologias y Ciencias Aplicadas, La Habana (Cuba); Alberti, Sebastian Fernandez [Centro de Estudios e Investigaciones, Universidad Nacional de Quilmes, Roque Saenz Pena 180, Bernal B1876BXD (Argentina)

    2009-07-30

    A hopping-surface algorithm has been used to simulate the dynamics induced in rare gas matrices due to the photoexcitation ({sup 1}S{sub 0} {yields} {sup 3}P{sub 1}) of atomic mercury embedded in them. Especially, the study of the dynamics of an exciplex formation in a model system consisting of solid xenon doped with atomic mercury. The process starts upon the photoexcitation of the Hg atom to its {sup 3}P{sub 1} electronic excited state. Diatomics-in-Molecule approach has been used for constructing the adiabatic potential surfaces. In all trajectories we show that a triatomic Xe-Hg{sup *}-Xe complex is formed, but in two conformations: bent and linear. The mechanisms leading to the formation of one or the other are identified. Mainly, are noted the thermal fluctuations of the Hg impurity and the shape of the potential surfaces. Furthermore, we show that non-radiative intrastate relaxation occurs via a conical intersection between the excited state surfaces. The simulated spectra are in very good agreement with the experimental data.

  9. Dynamics of polymer film formation during spin coating

    Energy Technology Data Exchange (ETDEWEB)

    Mouhamad, Y.; Clarke, N.; Jones, R. A. L.; Geoghegan, M., E-mail: geoghegan@sheffield.ac.uk [Department of Physics and Astronomy, The University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Mokarian-Tabari, P. [Materials Research Group, Department of Chemistry and the Tyndall National Institute, University College Cork, Cork (Ireland)

    2014-09-28

    Standard models explaining the spin coating of polymer solutions generally fail to describe the early stages of film formation, when hydrodynamic forces control the solution behavior. Using in situ light scattering alongside theoretical and semi-empirical models, it is shown that inertial forces (which initially cause a vertical gradient in the radial solvent velocity within the film) play a significant role in the rate of thinning of the solution. The development of thickness as a function of time of a solute-free liquid (toluene) and a blend of polystyrene and poly(methyl methacrylate) cast from toluene were fitted to different models as a function of toluene partial pressure. In the case of the formation of the polymer blend film, a concentration-dependent (Huggins) viscosity formula was used to account for changes in viscosity during spin coating. A semi-empirical model is introduced, which permits calculation of the solvent evaporation rate and the temporal evolution of the solute volume fraction and solution viscosity.

  10. Dynamics of Pre-3 Ga Crust-Mantle Evolution

    Science.gov (United States)

    Patchett, P. J.; Chase, C. G.; Vervoort, J. D.

    2004-05-01

    During 3.0 to 2.7 Ga, the Earth's crust underwent a non-uniformitarian change from a pre-3.0 Ga environment where long-term preservation of cratons was rare and difficult, to post-2.7 Ga conditions where cratons were established and new continental crust generation took place largely at craton margins. Many models view the Earth's surface during pre-3 Ga time as broadly equivalent to the post 2.7 Ga regime. Any such uniformitarian or gradual evolution cannot explain the conundrum that only a tiny amount of pre-3 Ga crust is preserved today coupled with the fact that very little pre-3 Ga crust was incorporated into the large amount of new craton that came into existence during 3.0-2.7 Ga. If large volumes of pre-3 Ga continental crust existed, it disappeared either just prior to 3 Ga, or during 3.0-2.7 Ga. To explain sudden appearance of surviving but dominantly juvenile continental crust in a model where continents were large prior to 3 Ga, it would be necessary either that pre-3 Ga continent was recycled into the mantle at sites systematically different from those where new 3.0-2.7 Ga crust was made, or that widespread continent destruction preceded the 3.0-2.7 Ga crustal genesis. From expected mantle overturn in response to the heat budget, it is likely that most pre-3 Ga crust was both more mafic and shorter-lived than after 3 Ga. Although Nd and Hf ratios for pre-3 Ga rocks are uncertain due to polymetamorphism, it appears that depleted upper mantle was widespread by 2.7 Ga, even pre-3 Ga. Depletion may have been largely achieved by formation, subduction and storage of mafic crust for periods of 200-500 m.y. The rapid change to large surviving continents during 3.0-2.7 Ga was due to declining mantle overturn, and particularly to development of the ability to maintain subduction in one zone of the earth's surface for the time needed to allow evolution to felsic igneous rock compositions. In as much as storage of subducted slabs is probably occurring today, and

  11. Venom Down Under: Dynamic Evolution of Australian Elapid Snake Toxins

    Directory of Open Access Journals (Sweden)

    Timothy N. W. Jackson

    2013-12-01

    Full Text Available Despite the unparalleled diversity of venomous snakes in Australia, research has concentrated on a handful of medically significant species and even of these very few toxins have been fully sequenced. In this study, venom gland transcriptomes were sequenced from eleven species of small Australian elapid snakes, from eleven genera, spanning a broad phylogenetic range. The particularly large number of sequences obtained for three-finger toxin (3FTx peptides allowed for robust reconstructions of their dynamic molecular evolutionary histories. We demonstrated that each species preferentially favoured different types of α-neurotoxic 3FTx, probably as a result of differing feeding ecologies. The three forms of α-neurotoxin [Type I (also known as (aka: short-chain, Type II (aka: long-chain and Type III] not only adopted differential rates of evolution, but have also conserved a diversity of residues, presumably to potentiate prey-specific toxicity. Despite these differences, the different α-neurotoxin types were shown to accumulate mutations in similar regions of the protein, largely in the loops and structurally unimportant regions, highlighting the significant role of focal mutagenesis. We theorize that this phenomenon not only affects toxin potency or specificity, but also generates necessary variation for preventing/delaying prey animals from acquiring venom-resistance. This study also recovered the first full-length sequences for multimeric phospholipase A2 (PLA2 ‘taipoxin/paradoxin’ subunits from non-Oxyuranus species, confirming the early recruitment of this extremely potent neurotoxin complex to the venom arsenal of Australian elapid snakes. We also recovered the first natriuretic peptides from an elapid that lack the derived C-terminal tail and resemble the plesiotypic form (ancestral character state found in viper venoms. This provides supporting evidence for a single early recruitment of natriuretic peptides into snake venoms. Novel

  12. Dynamic mixtures and combinatorial libraries: imines as probes for molecular evolution at the interface between chemistry and biology.

    Science.gov (United States)

    Herrmann, Andreas

    2009-08-21

    In analogy to evolution in biological processes, "molecular evolution", based on the reversible formation of imines, has successfully been explored for drug discovery, receptor design and as a controlled-release vehicle. Multicomponent systems composed of amines and carbonyl compounds generate structural diversity by reversible reaction of the different components to form equilibrated dynamic mixtures or combinatorial libraries (DCLs). Under thermodynamic control and in the presence of an external factor which influences the equilibrium, these systems evolve by selective adaptation to the changing external conditions. This concept allows the casting of biologically or catalytically active substrates and the molding of receptors from DCLs which are composed of smaller non-active amine and carbonyl moieties. Similarly, if the amine or carbonyl compounds are the biologically active compounds of interest, the corresponding dynamic mixtures are found to be efficient delivery systems, allowing their controlled release over time.

  13. Dynamics of biofilm formation during anaerobic digestion of organic waste.

    Science.gov (United States)

    Langer, Susanne; Schropp, Daniel; Bengelsdorf, Frank R; Othman, Maazuza; Kazda, Marian

    2014-10-01

    Biofilm-based reactors are effectively used for wastewater treatment but are not common in biogas production. This study investigated biofilm dynamics on biofilm carriers incubated in batch biogas reactors at high and low organic loading rates for sludge from meat industry dissolved air flotation units. Biofilm formation and dynamics were studied using various microscopic techniques. Resulting micrographs were analysed for total cell numbers, thickness of biofilms, biofilm-covered surface area, and the area covered by extracellular polymeric substances (EPS). Cell numbers within biofilms (10(11) cells ml(-1)) were up to one order of magnitude higher compared to the numbers of cells in the fluid reactor content. Further, biofilm formation and structure mainly correlated with the numbers of microorganisms present in the fluid reactor content and the organic loading. At high organic loading (45 kg VS m(-3)), the thickness of the continuous biofilm layer ranged from 5 to 160 μm with an average of 51 μm and a median of 26 μm. Conversely, at lower organic loading (15 kg VS m(-3)), only microcolonies were detectable. Those microcolonies increased in their frequency of occurrence during ongoing fermentation. Independently from the organic loading rate, biofilms were embedded completely in EPS within seven days. The maturation and maintenance of biofilms changed during the batch fermentation due to decreasing substrate availability. Concomitant, detachment of microorganisms within biofilms was observed simultaneously with the decrease of biogas formation. This study demonstrates that biofilms of high cell densities can enhance digestion of organic waste and have positive effects on biogas production.

  14. Features in chemical kinetics. I. Signatures of self-emerging dimensional reduction from a general format of the evolution law

    Science.gov (United States)

    Nicolini, Paolo; Frezzato, Diego

    2013-06-01

    Simplification of chemical kinetics description through dimensional reduction is particularly important to achieve an accurate numerical treatment of complex reacting systems, especially when stiff kinetics are considered and a comprehensive picture of the evolving system is required. To this aim several tools have been proposed in the past decades, such as sensitivity analysis, lumping approaches, and exploitation of time scales separation. In addition, there are methods based on the existence of the so-called slow manifolds, which are hyper-surfaces of lower dimension than the one of the whole phase-space and in whose neighborhood the slow evolution occurs after an initial fast transient. On the other hand, all tools contain to some extent a degree of subjectivity which seems to be irremovable. With reference to macroscopic and spatially homogeneous reacting systems under isothermal conditions, in this work we shall adopt a phenomenological approach to let self-emerge the dimensional reduction from the mathematical structure of the evolution law. By transforming the original system of polynomial differential equations, which describes the chemical evolution, into a universal quadratic format, and making a direct inspection of the high-order time-derivatives of the new dynamic variables, we then formulate a conjecture which leads to the concept of an "attractiveness" region in the phase-space where a well-defined state-dependent rate function ω has the simple evolution dot{ω }= - ω ^2 along any trajectory up to the stationary state. This constitutes, by itself, a drastic dimensional reduction from a system of N-dimensional equations (being N the number of chemical species) to a one-dimensional and universal evolution law for such a characteristic rate. Step-by-step numerical inspections on model kinetic schemes are presented. In the companion paper [P. Nicolini and D. Frezzato, J. Chem. Phys. 138, 234102 (2013)], 10.1063/1.4809593 this outcome will be naturally

  15. Connecting Gas Dynamics and Star Formation Histories in Nearby Galaxies: The VLA-ANGST Survey

    CERN Document Server

    Ott, Juergen; Dalcanton, Julianne; Walter, Fabian; Stilp, Adrienne; Koribalski, Baerbel; West, Andrew; Warren, Steven

    2008-01-01

    In recent years, HST revolutionized the field of star formation in nearby galaxies. Due to its high angular resolution it has now become possible to construct star formation histories of individual stellar populations on scales of a few arcseconds spanning a range of up to ~600 Myr. This method will be applied to the ANGST galaxies, a large HST volume limited survey to map galaxies up to distances of 3.5-4.0 Mpc (excluding the Local Group). The ANGST sample is currently followed--up by high, ~6'' resolution VLA observations of neutral, atomic hydrogen (HI) in the context of VLA-ANGST, an approved Large VLA Project. The VLA resolution is well matched to that of the spatially resolved star formation history maps. The combination of ANGST and VLA-ANGST data will provide a new, promising approach to study essential fields of galaxy evolution such as the triggering of star formation, the feedback of massive stars into the interstellar medium, and the structure and dynamics of the interstellar medium.

  16. The Formation and Early Evolution of a CME and the Associated Shock on 2014 January 8

    Science.gov (United States)

    Wan, Linfeng; Cheng, Xin; Shi, Tong; Su, Wei; Ding, Mingde

    2017-08-01

    We study the formation and early evolution of a limb coronal mass ejection (CME) and its associated shock wave that occurred on 2014 January 8. The extreme ultraviolet (EUV) images provided by AIA on board \\textit{Solar Dynamics Observatory} disclose that the CME first appears as a bubble-like structure. Subsequently, its expansion forms the CME and causes a quasi-circular EUV wave. Both the CME and the wave front are clearly visible at all of the AIA EUV passbands. Through a detailed kinematical analysis, it is found that the expansion of the CME undergoes two phases: a first phase with a strong but transient lateral over-expansion followed by a second phase with a self-similar expansion. The temporal evolution of the expansion velocity coincides very well with the variation of the 25--50 keV hard X-ray (HXR) flux of the associated flare, which indicates that magnetic reconnection most likely plays an important role in driving the expansion. Moreover, we find that, when the velocity of the CME reaches $\\sim$600 km s$^{-1}$, the EUV wave starts to evolve into a shock wave, which is evidenced by the appearance of a type II radio burst. Interestingly, we also notice an unusual solar radio signal at $\\sim$4 GHz that is similar to the pattern of a type II radio burst but drifts to higher frequencies at a rate of $\\sim$0.3 MHz per second during about 7 minutes. Its derived density is $\\sim$5$\\times$10$^{10}$ cm$^{-3}$ and increases slowly with time. Joint imaging observations of HXR and EUV help to locate the loop-top region and calculate its thermal proprieties, including slowly increasing densities ($\\sim$5$\\times$10$^{10}$ cm$^{-3}$) and temperatures ($\\sim$14 MK). The similar results obtained from two different ways above imply the possibility of this scenario: plasma blobs that are ejected along the current sheet via magnetic reconnection collide with underlying flare loops that are undergoing chromospheric evaporation. Finally, we also study the thermal

  17. CFD-DEM simulations of current-induced dune formation and morphological evolution

    Science.gov (United States)

    Sun, Rui; Xiao, Heng

    2016-06-01

    Understanding the fundamental mechanisms of sediment transport, particularly those during the formation and evolution of bedforms, is of critical scientific importance and has engineering relevance. Traditional approaches of sediment transport simulations heavily rely on empirical models, which are not able to capture the physics-rich, regime-dependent behaviors of the process. With the increase of available computational resources in the past decade, CFD-DEM (computational fluid dynamics-discrete element method) has emerged as a viable high-fidelity method for the study of sediment transport. However, a comprehensive, quantitative study of the generation and migration of different sediment bed patterns using CFD-DEM is still lacking. In this work, current-induced sediment transport problems in a wide range of regimes are simulated, including 'flat bed in motion', 'small dune', 'vortex dune' and suspended transport. Simulations are performed by using SediFoam, an open-source, massively parallel CFD-DEM solver developed by the authors. This is a general-purpose solver for particle-laden flows tailed for particle transport problems. Validation tests are performed to demonstrate the capability of CFD-DEM in the full range of sediment transport regimes. Comparison of simulation results with experimental and numerical benchmark data demonstrates the merits of CFD-DEM approach. In addition, the improvements of the present simulations over existing studies using CFD-DEM are presented. The present solver gives more accurate prediction of sediment transport rate by properly accounting for the influence of particle volume fraction on the fluid flow. In summary, this work demonstrates that CFD-DEM is a promising particle-resolving approach for probing the physics of current-induced sediment transport.

  18. Bore formation, evolution and disintegration into solitons in shallow inhomogeneous channels

    Directory of Open Access Journals (Sweden)

    J.-G. Caputo

    2003-01-01

    Full Text Available The propagation of nonlinear surface waves in channels of smoothly variable in space cross section is studied theoretically and by means of numerical computations. The mathematical model describing wave evolution is based on the generalized Korteweg-de Vries equation with additional terms due to spatial inhomogeneity and energy dissipation. Specifically we consider channels of variable depth and width. The breaking of Riemann waves and the disintegration of hydraulic jumps into trains of solitons have been examined. The results obtained can be useful in particular for the understanding some peculiarities of bore (mascaret formation, viscous evolution and disintegration into solitons in inhomogeneous channels or rivers.

  19. Abundances as Tracers of the Formation and Evolution of (Dwarf) Galaxies

    CERN Document Server

    Tolstoy, E

    2004-01-01

    This aims to be an overview of what detailed observations of individual stars in nearby dwarf galaxies may teach us about galaxy evolution. This includes some early results from the DART (Dwarf Abundances and Radial velocity Team) Large Programme at ESO. This project has used 2.2m/WFI and VLT/FLAMES to obtain spectra of large samples of individual stars in nearby dwarf spheroidal galaxies and determine accurate abundances and kinematics. These results can be used to trace the formation and evolution of nearby galaxies from the earliest times to the present.

  20. A SEMI-ANALYTICAL DESCRIPTION FOR THE FORMATION AND GRAVITATIONAL EVOLUTION OF PROTOPLANETARY DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Sanemichi Z.; Inutsuka, Shu-ichiro [Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602 (Japan); Machida, Masahiro N., E-mail: takahashi.sanemichi@a.mbox.nagoya-u.ac.jp, E-mail: inutsuka@nagoya-u.jp, E-mail: sanemichi@tap.scphys.kyoto-u.ac.jp, E-mail: machida.masahiro.018@m.kyushu-u.ac.jp [Department of Earth and Planetary Science, Kyushu University, Higashi-ku, Fukuoka 812-8581 (Japan)

    2013-06-10

    We investigate the formation process of self-gravitating protoplanetary disks in unmagnetized molecular clouds. The angular momentum is redistributed by the action of gravitational torques in the massive disk during its early formation. We develop a simplified one-dimensional accretion disk model that takes into account the infall of gas from the envelope onto the disk and the transfer of angular momentum in the disk with an effective viscosity. First we evaluate the gas accretion rate from the cloud core onto the disk by approximately estimating the effects of gas pressure and gravity acting on the cloud core. We formulate the effective viscosity as a function of the Toomre Q parameter that measures the local gravitational stability of the rotating thin disk. We use a function for viscosity that changes sensitively with Q when the disk is gravitationally unstable. We find a strong self-regulation mechanism in the disk evolution. During the formation stage of protoplanetary disks, the evolution of the surface density does not depend on the other details of the modeling of effective viscosity, such as the prefactor of the viscosity coefficient. Next, to verify our model, we compare the time evolution of the disk calculated with our formulation with that of three-dimensional hydrodynamical simulations. The structures of the resultant disks from the one-dimensional accretion disk model agree well with those of the three-dimensional simulations. Our model is a useful tool for the further modeling of chemistry, radiative transfer, and planet formation in protoplanetary disks.

  1. Rapid formation and evolution of an extreme haze episode in Northern China during winter 2015.

    Science.gov (United States)

    Sun, Yele; Chen, Chen; Zhang, Yingjie; Xu, Weiqi; Zhou, Libo; Cheng, Xueling; Zheng, Haitao; Ji, Dongsheng; Li, Jie; Tang, Xiao; Fu, Pingqing; Wang, Zifa

    2016-05-31

    We investigate the rapid formation and evolutionary mechanisms of an extremely severe and persistent haze episode that occurred in northern China during winter 2015 using comprehensive ground and vertical measurements, along with receptor and dispersion model analysis. Our results indicate that the life cycle of a severe winter haze episode typically consists of four stages: (1) rapid formation initiated by sudden changes in meteorological parameters and synchronous increases in most aerosol species, (2) persistent evolution with relatively constant variations in secondary inorganic aerosols and secondary organic aerosols, (3) further evolution associated with fog processing and significantly enhanced sulfate levels, and (4) clearing due to dry, cold north-northwesterly winds. Aerosol composition showed substantial changes during the formation and evolution of the haze episode but was generally dominated by regional secondary aerosols (53-67%). Our results demonstrate the important role of regional transport, largely from the southwest but also from the east, and of coal combustion emissions for winter haze formation in Beijing. Also, we observed an important downward mixing pathway during the severe haze in 2015 that can lead to rapid increases in certain aerosol species.

  2. Disentangling the Dynamical Mechanisms for Cluster Galaxy Evolution

    Science.gov (United States)

    2008-02-01

    explanation of the nature of the color-magnitude relation as effectively an age -mass relation resolves the dilemma faced by the conventional explanation, that...in-fallers from the field region. The existence of the morphology-density relation over several orders-of-magnitude variation of local sur- face ...color evolution of the BO galaxies in their sample is much faster than the morphologial evolution. In the secular evolution scenario, these two

  3. Evolution in functional complexity of heart rate dynamics: a measure of cardiac allograft adaptability.

    Science.gov (United States)

    Kresh, J Y; Izrailtyan, I

    1998-09-01

    The capacity of self-organized systems to adapt is embodied in the functional organization of intrinsic control mechanisms. Evolution in functional complexity of heart rate variability (HRV) was used as measure of the capacity of the transplanted heart to express newly emergent regulatory order. In a cross-sectional study of 100 patients after (0-10 yr) heart transplantation (HTX), heart rate dynamics were assessed using pointwise correlation dimension (PD2) analysis. A new observation is that, commencing with the acute event of allograft transplantation, the dynamics of rhythm formation proceed through complex phase transitions. At implantation, the donor heart manifested metronome-like chronotropic behavior (PD2 approximately 1.0). At 11-100 days, dimensional complexity of HRV reached a peak (PD2 approximately 2.0) associated with resurgence in the high-frequency component (0.15-0.5 Hz) of the power spectral density. Subsequent dimensional loss to PD2 approximately 1.0 at 20-30 mo after HTX was followed by a progressive near-linear gain in system complexity, reaching PD2 approximately 3.0 7-10 yr after HTX. The "dynamic reorganization" in the allograft rhythm-generating system, seen in the first 100 days, is a manifestation of the adaptive capacity of intrinsic control mechanisms. The loss of HRV 2 yr after HTX implies a withdrawal of intrinsic autonomic control and/or development of an entrained dynamic pattern characteristic of extrinsic sympathetic input. The subsequent long-term progressive rise in dimensional complexity of HRV can be attributed to the restoration of a functional order patterning parasympathetic control. The recognition that the decentralized heart can restitute the multidimensional state space of HR generator dynamics independent of external autonomic signaling may provide a new perspective on principles that constitute homeodynamic regulation.

  4. Information Mining of Spatio-Temporal Evolution of Lakes Based on Multiple Dynamic Measurements

    Science.gov (United States)

    Feng, W.; Chen, J.

    2017-09-01

    Lakes are important water resources and integral parts of the natural ecosystem, and it is of great significance to study the evolution of lakes. The area of each lake increased and decreased at the same time in natural condition, only but the net change of lakes' area is the result of the bidirectional evolution of lakes. In this paper, considering the effects of net fragmentation, net attenuation, swap change and spatial invariant part in lake evolution, a comprehensive evaluation indexes of lake dynamic evolution were defined,. Such degree contains three levels of measurement: 1) the swap dynamic degree (SDD) reflects the space activity of lakes in the study period. 2) the attenuation dynamic degree (ADD) reflects the net attenuation of lakes into non-lake areas. 3) the fragmentation dynamic degree (FDD) reflects the trend of lakes to be divided and broken into smaller lakes. Three levels of dynamic measurement constitute the three-dimensional "Swap - attenuation - fragmentation" dynamic evolution measurement system of lakes. To show its effectiveness, the dynamic measurement was applied to lakes in Jianghan Plain, the middle Yangtze region of China for a more detailed analysis of lakes from 1984 to 2014. In combination with spatial-temporal location characteristics of lakes, the hidden information in lake evolution in the past 30 years can be revealed.

  5. Dynamical evolution of primordial dark matter haloes through mergers

    Science.gov (United States)

    Ogiya, Go; Nagai, Daisuke; Ishiyama, Tomoaki

    2016-09-01

    Primordial dark matter (DM) haloes are the smallest gravitationally bound DM structures from which the first stars, black holes and galaxies form and grow in the early universe. However, their structures are sensitive to the free streaming scale of DM, which in turn depends on the nature of DM particles. In this work, we test the hypothesis that the slope of the central cusps in primordial DM haloes near the free streaming scale depends on the nature of merging process. By combining and analysing data from a cosmological simulation with the cutoff in the small-scale matter power spectrum as well as a suite of controlled, high-resolution simulations of binary mergers, we find that (1) the primordial DM haloes form preferentially through major mergers in radial orbits; (2) their central DM density profile is more susceptible to a merging process compared to that of galaxy- and cluster-sized DM haloes; (3) consecutive major mergers drive the central density slope to approach the universal form characterized by the Navarro-Frenk-White profile, which is shown to be robust to the impacts of mergers and serves an attractor solution for the density structure of DM haloes. Our work highlights the importance of dynamical processes on the structure formation during the Dark Ages.

  6. The Evolution of Galaxies at Constant Number Density: A Less Biased View of Star Formation, Quenching, and Structural Formation

    CERN Document Server

    Ownsworth, Jamie R; Mundy, Carl J; Mortlock, Alice; Hartley, William G; Duncan, Kenneth; Almaini, Omar

    2016-01-01

    Due to significant galaxy contamination and impurity in stellar mass selected samples (up to 95% from z=0-3), we examine the star formation history, quenching time-scales, and structural evolution of galaxies using a constant number density selection with data from the UKIDSS Ultra-Deep Survey field. Using this methodology we investigate the evolution of galaxies at a variety of number densities from $z=0-3$. We find that samples chosen at number densities ranging from $3\\times10^{-4}$ to 10$^{-5}$ galaxies Mpc$^{-3}$ (corresponding to $z\\sim0.5$ stellar masses of M$_{*}= 10^{10.95-11.6}$ M$_{0}$) have a star forming blue fraction of $\\sim50$\\% at $z\\sim2.5$, which evolves to a nearly $100$\\% quenched red and dead population by $z\\sim 1$. We also see evidence for number density downsizing, such that the galaxies selected at the lowest densities (highest masses) become a homogeneous red population before those at higher number densities. Examining the evolution of the colours for these systems furthermore show...

  7. Star Formation in Disk Galaxies. I. Formation and Evolution of Giant Molecular Clouds via Gravitational Instability and Cloud Collisions

    CERN Document Server

    Tasker, Elizabeth J

    2008-01-01

    We investigate the formation and evolution of giant molecular clouds (GMCs) in a Milky-Way-like disk galaxy with a flat rotation curve. We perform a series of 3D adaptive mesh refinement (AMR) numerical simulations that follow both the global evolution on scales of ~20kpc and resolve down to scales ~=100cm^-3 and track the evolution of individual clouds as they orbit through the galaxy from their birth to their eventual destruction via merger or via destructive collision with another cloud. After ~140Myr a large fraction of the gas in the disk has fragmented in clouds, with typical masses ~10^6Msun, similar to Galactic GMCs. The disk settles into a quasi steady state in which gravitational scattering of clouds keeps the disk near the threshold of global gravitational instability. The cloud collision time is found to be a small fraction, ~1/5, of the orbital time, and this is an efficient mechanism to inject turbulence into the clouds. This keeps the clouds only moderately gravitationally bound, with virial pa...

  8. The long-term dynamical evolution of disc-fragmented multiple systems in the Solar Neighborhood

    CERN Document Server

    Li, Yun; Stamatellos, D; Goodwin, S P

    2016-01-01

    The origin of very low-mass hydrogen-burning stars, brown dwarfs, and planetary-mass objects at the low-mass end of the initial mass function is not yet fully understood. Gravitational fragmentation of circumstellar discs provides a possible mechanism for the formation of such low-mass objects. The kinematic and binary properties of very low-mass objects formed through disc fragmentation at early times (< 10 Myr) were discussed in Li et al. (2015). In this paper we extend the analysis by following the long-term evolution of disc-fragmented systems, up to an age of 10 Gyr, covering the ages of the stellar and substellar population in the Galactic field. We find that the systems continue to decay, although the rates at which companions escape or collide with each other are substantially lower than during the first 10 Myr, and that dynamical evolution is limited beyond 1 Gyr. By t = 10 Gyr, about one third of the host stars is single, and more than half have only one companion left. Most of the other systems ...

  9. Industry evolution, submarket dynamics and strategic behavior among firms in offshore wind energy

    DEFF Research Database (Denmark)

    Andersen, Poul Houman; Drejer, Ina; Gjerding, Allan Næs

    2017-01-01

    integration, overlap and disintegration across submarkets. This balance depends on how strategic intent and behaviour influence submarket dynamics, leading to the conclusion that effects of agency and managerial intent should play a more prominent role in studies of industry evolution....

  10. A Descriptive Model of Robot Team and the Dynamic Evolution of Robot Team Cooperation

    National Research Council Canada - National Science Library

    Zhen-min Tang; Xian-yi Cheng; Lan Shuai; Shu-qin Li; Jing-yu Yang

    2008-01-01

    At present, the research on robot team cooperation is still in qualitative analysis phase and lacks the description model that can quantitatively describe the dynamical evolution of team cooperative...

  11. A Descriptive Model of Robot Team and the Dynamic Evolution of Robot Team Cooperation

    National Research Council Canada - National Science Library

    Li, Shu-qin; Shuai, Lan; Cheng, Xian-yi; Tang, Zhen-min; Yang, Jing-yu

    2005-01-01

    At present, the research on robot team cooperation is still in qualitative analysis phase and lacks the description model that can quantitatively describe the dynamical evolution of team cooperative...

  12. Evol and ProDy for bridging protein sequence evolution and structural dynamics

    Science.gov (United States)

    Mao, Wenzhi; Liu, Ying; Chennubhotla, Chakra; Lezon, Timothy R.; Bahar, Ivet

    2014-01-01

    Correlations between sequence evolution and structural dynamics are of utmost importance in understanding the molecular mechanisms of function and their evolution. We have integrated Evol, a new package for fast and efficient comparative analysis of evolutionary patterns and conformational dynamics, into ProDy, a computational toolbox designed for inferring protein dynamics from experimental and theoretical data. Using information-theoretic approaches, Evol coanalyzes conservation and coevolution profiles extracted from multiple sequence alignments of protein families with their inferred dynamics. Availability and implementation: ProDy and Evol are open-source and freely available under MIT License from http://prody.csb.pitt.edu/. Contact: bahar@pitt.edu PMID:24849577

  13. Constraints on galaxy formation models from the galaxy stellar mass function and its evolution

    CERN Document Server

    Rodrigues, Luiz Felippe S; Bower, Richard

    2016-01-01

    We explore the parameter space of the semi-analytic galaxy formation model GALFORM, studying the constraints imposed by measurements of the galaxy stellar mass function (GSMF) and its evolution. We use the Bayesian Emulator method to quickly eliminate vast implausible volumes of the parameter space and zoom in on the most interesting regions, allowing us to identify a set of models that match the observational data within the model uncertainties. We find that the GSMF strongly constrains parameters related to the quiescent star formation in discs, stellar and AGN feedback and the threshold for disc instabilities, but more weakly restricts other parameters. Constraining the model using the local data alone does not usually select models that match the evolution of the mass function well. Nevertheless, we show that a small subset of models provides an acceptable match to GSMF data out to redshift 1.5, without introducing an explicit redshift dependence of feedback parameters. We explore the physical significanc...

  14. Early Star Formation and Chemical Evolution in Proto-Galactic Clouds

    CERN Document Server

    Saleh, L; Mathews, G J; Saleh, Lamya; Beers, Timothy C.; Mathews, Grant J.

    2004-01-01

    We present numerical simulations to describe the evolution of pre-Galactic clouds in a model which is motivated by cold dark matter simulations of hierarchical galaxy formation. We adopt a SN-induced star-formation mechanism within a model that follows the evolution of chemical enrichment and energy input to the clouds by Type II and Type Ia supernovae. We utilize metallicity-dependent yields for all elements at all times, and include effects of finite stellar lifetimes. We derive the metallicity distribution functions for stars in the clouds, their age-metallicity relation, and relative elemental abundances for a number of alpha- and Fe-group elements. The stability of these clouds against destruction is discussed, and results are compared for different initial mass functions. We find that the dispersion of the metallicity distribution function observed in the outer halo is naturally reproduced by contributions from many clouds with different initial conditions. The predicted relative abundances of some alph...

  15. Astrocladistics: a phylogenetic analysis of galaxy evolution II. Formation and diversification of galaxies

    CERN Document Server

    Fraix-Burnet, D; Choler, P; Verhamme, A; Fraix-Burnet, Didier; Douzery, Emmanuel J.P.; Choler, Philippe; Verhamme, Anne

    2006-01-01

    This series of papers is intended to evaluate astrocladistics in reconstructing phylogenies of galaxies. The objective of this second paper is to formalize the concept of galaxy formation and to identify the processes of diversification. We show that galaxy diversity can be expected to organize itself in a hierarchy. In order to better understand the role of mergers, we have selected a sample of 43 galaxies from the GALICS database built from simulations with a hybrid model for galaxy formation studies. These simulated galaxies, described by 119 characters and considered as representing still undefined classes, have experienced different numbers of merger events during evolution. Our cladistic analysis yields a robust tree that proves the existence of a hierarchy. Mergers, like interactions (not taken into account in the GALICS simulations), are probably a strong driver for galaxy diversification. Our result shows that mergers participate in a branching type of evolution, but do not seem to play the role of a...

  16. Formation and evolution of tweed structures on high-purity aluminum polycrystalline foils under cyclic tension

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, P. V., E-mail: kpv@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Vlasov, I. V. [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Sklyarova, E. A.; Smekalina, T. V. [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    Peculiarities of formation and evolution of tweed structures on the surface of high-purity aluminum polycrystalline foils under cyclic tension were studied using an atom force microscope and a white light interferometer. Tweed structures of micron and submicron sizes were found on the foils at different number of cycles. In the range of 42,000 < N < 95,000 cycles destruction of tweed patterns is observed, which leads to their disappearance from the surface of the foils. Formation of tweed structures of various scales is discussed in terms of the Grinfeld instability.

  17. Formation and evolution of tweed structures on high-purity aluminum polycrystalline foils under cyclic tension

    Science.gov (United States)

    Kuznetsov, P. V.; Vlasov, I. V.; Sklyarova, E. A.; Smekalina, T. V.

    2015-10-01

    Peculiarities of formation and evolution of tweed structures on the surface of high-purity aluminum polycrystalline foils under cyclic tension were studied using an atom force microscope and a white light interferometer. Tweed structures of micron and submicron sizes were found on the foils at different number of cycles. In the range of 42,000 < N < 95,000 cycles destruction of tweed patterns is observed, which leads to their disappearance from the surface of the foils. Formation of tweed structures of various scales is discussed in terms of the Grinfeld instability.

  18. Formation and dynamics of "waterproof" photoluminescent complexes of rare earth ions in crowded environment.

    Science.gov (United States)

    Ignatova, Tetyana; Blades, Michael; Duque, Juan G; Doorn, Stephen K; Biaggio, Ivan; Rotkin, Slava V

    2014-12-28

    Understanding behavior of rare-earth ions (REI) in crowded environments is crucial for several nano- and bio-technological applications. Evolution of REI photoluminescence (PL) in small compartments inside a silica hydrogel, mimic to a soft matter bio-environment, has been studied and explained within a solvation model. The model uncovered the origin of high PL efficiency to be the formation of REI complexes, surrounded by bile salt (DOC) molecules. Comparative study of these REI-DOC complexes in bulk water solution and those enclosed inside the hydrogel revealed a strong correlation between an up to 5×-longer lifetime of REIs and appearance of the DOC ordered phase, further confirmed by dynamics of REI solvation shells, REI diffusion experiments and morphological characterization of microstructure of the hydrogel.

  19. First-principles molecular dynamics simulations of (sulfuric acid)1(dimethylamine)1 cluster formation

    Science.gov (United States)

    Loukonen, Ville; Bork, Nicolai; Vehkamäki, Hanna

    2013-05-01

    The clustering process (sulfuric acid) + (base)→(sulfuric acid)1(base)1 is of fundamental importance in the atmospheric new-particle formation. Especially interesting are the collisions where a proton transfer reaction can happen, as the reaction often leads to relatively strongly bound clusters. Here, we studied the clustering process of (sulfuric acid) + (dimethylamine) → (sulfuric acid)1(dimethylamine)1 using first-principles molecular dynamics simulations. The collision of the two molecules was simulated starting with various spatial orientations and the evolution of the cluster was followed in the NVE ensemble. The simulations suggest that the proton transfer reaction takes place regardless of the intial collision orientation. However, due to the energy released in the process, the newly-formed cluster is not able to reach the minimun energy configuration, which might affect the following growth processes.

  20. Dark-ages Reionization & Galaxy Formation Simulation I: The dynamical lives of high redshift galaxies

    CERN Document Server

    Poole, Gregory B; Mutch, Simon J; Power, Chris; Duffy, Alan R; Geil, Paul M; Mesinger, Andrei; Wyithe, Stuart B

    2015-01-01

    We present the Dark-ages Reionization and Galaxy-formation Observables from Numerical Simulations (DRAGONS) program and Tiamat, the collisionless N-body simulation program upon which DRAGONS is built. The primary trait distinguishing Tiamat from other large simulation programs is its density of outputs at high redshift (100 from z=35 to z=5; roughly one every 10 Myr) enabling the construction of very accurate merger trees at an epoch when galaxy formation is rapid and mergers extremely frequent. We find that the friends-of-friends halo mass function agrees well with the prediction of Watson et al. at high masses, but deviates at low masses, perhaps due to our use of a different halo finder or perhaps indicating a break from "universal" behaviour. We then analyse the dynamical evolution of galaxies during the Epoch of Reionization finding that only a small fraction (~20%) of galactic halos are relaxed. We illustrate this using standard relaxation metrics to establish two dynamical recovery time-scales: i) halo...

  1. The GRB Redshift Distribution: Implications for Abundance Evolution, Star Formation, and Cosmology

    CERN Document Server

    Wei, Jun-Jie; Melia, Fulvio; Wei, Da-Ming; Feng, Long-Long

    2013-01-01

    It has been claimed that the \\emph{Swift} long gamma-ray bursts (LGRBs) do not trace the star formation history (SFH) in $\\Lambda$CDM. In this paper, we confirm that the latest \\emph{Swift} sample of GRBs reveals an increasing evolution in the GRB rate relative to the star formation rate (SFR) at high redshifts. One may eliminate the observed discrepancy between the GRB rate and the SFR by assuming a modest evolution, parameterized as $(1+z)^{0.5}$---an effect that perhaps implies a cosmic evolution in metallicity. However, we find a relatively higher metallicity cut of $Z=0.68Z_{\\odot}$ than was seen in previous studies, which suggested that LGRBs occur preferentially in metal poor environments, i.e., $Z\\sim0.1-0.3Z_{\\odot}$. Here, we use a simple power-law approximation to the high-\\emph{z} ($\\ga 3.8$) SFH, i.e., $R_{\\rm SF}\\propto[(1+z)/4.8]^{\\alpha}$, to examine how the high-\\emph{z} SFR may be impacted by a possible abundance evolution in the \\emph{Swift} GRB sample. For an expansion history consistent w...

  2. Evolution of CO lines in time-dependent models of protostellar disk formation

    CERN Document Server

    Harsono, Daniel; Bruderer, Simon; van Dishoeck, Ewine F; Kristensen, Lars E

    2013-01-01

    (Abridged) Star and planet formation theories predict an evolution in the density, temperature, and velocity structure as the envelope collapses and forms an accretion disk. The aim of this work is to model the evolution of the molecular excitation, line profiles, and related observables during low-mass star formation. Specifically, the signatures of disks during the deeply embedded stage are investigated. Semi-analytic 2D axisymmetric models have been used to describe the evolution of the density, stellar mass, and luminosity from the pre-stellar to the T-Tauri phase. A full radiative transfer calculation is carried out to accurately determine the time-dependent dust temperatures and CO abundance structure. We present non-LTE near-IR, FIR, and submm lines of CO have been simulated at a number of time steps. In contrast to the dust temperature, the CO excitation temperature derived from submm/FIR lines does not vary during the protostellar evolution, consistent with C18O observations obtained with Herschel an...

  3. The Formation and Evolution of Galaxies Perspectives on the Origin of the Hubble Sequence

    CERN Document Server

    Ellis, Richard S

    1998-01-01

    I review recent observational progress concerning the evolution of the morphological distribution of galaxies in the rich cluster environment and in the faint field population. By coupling HST imagery with ground-based spectroscopic diagnostics, evidence accumulates that galaxy morphology can be a transient phenomenon reflecting various changes in the star formation rate. Possible physical processes responsible for these changes are discussed. Future progress in understanding them will depend on securing 2-D spectroscopic data for representative systems.

  4. Molecular Dynamics Simulations of CO2 Formation in Interstellar Ices

    CERN Document Server

    Arasa, Carina; van Dishoeck, Ewine F; Kroes, Geert-Jan

    2013-01-01

    CO2 ice is one of the most abundant components in ice-coated interstellar ices besides H2O and CO, but the most favorable path to CO2 ice is still unclear. Molecular dynamics calculations on the ultraviolet photodissociation of different kinds of CO-H2O ice systems have been performed at 10 K in order to demonstrate that the reaction between CO and an OH molecule resulting from H2O photodissociation through the first excited state is a possible route to form CO2 ice. However, our calculations, which take into account different ice surface models, suggest that there is another product with a higher formation probability ((3.00+-0.07)x10-2), which is the HOCO complex, whereas the formation of CO2 has a probability of only (3.6+-0.7)x10-4. The initial location of the CO is key to obtain reaction and form CO2: the CO needs to be located deep into the ice. The HOCO complex becomes trapped in the cold ice surface in the trans-HOCO minimum because it quickly loses its internal energy to the surrounding ice, preventi...

  5. Phase separation like dynamics during Myxococcus xanthus fruiting body formation

    Science.gov (United States)

    Liu, Guannan; Thutupalli, Shashi; Wigbers, Manon; Shaevitz, Joshua

    2015-03-01

    Collective motion exists in many living organisms as an advantageous strategy to help the entire group with predation, forage, and survival. However, the principles of self-organization underlying such collective motions remain unclear. During various developmental stages of the soil-dwelling bacterium, Myxococcus xanthus, different types of collective motions are observed. In particular, when starved, M. xanthus cells eventually aggregate together to form 3-dimensional structures (fruiting bodies), inside which cells sporulate in response to the stress. We study the fruiting body formation process as an out of equilibrium phase separation process. As local cell density increases, the dynamics of the aggregation M. xanthus cells switch from a spatio-temporally random process, resembling nucleation and growth, to an emergent pattern formation process similar to a spinodal decomposition. By employing high-resolution microscopy and a video analysis system, we are able to track the motion of single cells within motile collective groups, while separately tuning local cell density, cell velocity and reversal frequency, probing the multi-dimensional phase space of M. xanthus development.

  6. A dynamic model for tumour growth and metastasis formation.

    Science.gov (United States)

    Haustein, Volker; Schumacher, Udo

    2012-07-05

    A simple and fast computational model to describe the dynamics of tumour growth and metastasis formation is presented. The model is based on the calculation of successive generations of tumour cells and enables one to describe biologically important entities like tumour volume, time point of 1st metastatic growth or number of metastatic colonies at a given time. The model entirely relies on the chronology of these successive events of the metastatic cascade. The simulation calculations were performed for two embedded growth models to describe the Gompertzian like growth behaviour of tumours. The initial training of the models was carried out using an analytical solution for the size distribution of metastases of a hepatocellular carcinoma. We then show the applicability of our models to clinical data from the Munich Cancer Registry. Growth and dissemination characteristics of metastatic cells originating from cells in the primary breast cancer can be modelled thus showing its ability to perform systematic analyses relevant for clinical breast cancer research and treatment. In particular, our calculations show that generally metastases formation has already been initiated before the primary can be detected clinically.

  7. Gravity effects on thick brane formation from scalar field dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Andrianov, Alexander A. [Saint-Petersburg State University, V.A. Fock Department of Theoretical Physics, St. Petersburg (Russian Federation); Universitat de Barcelona, Institut de Ciencies del Cosmos, Barcelona (Spain); Andrianov, Vladimir A.; Novikov, Oleg O. [Saint-Petersburg State University, V.A. Fock Department of Theoretical Physics, St. Petersburg (Russian Federation)

    2013-12-15

    The formation of a thick brane in five-dimensional space-time is investigated when warp geometries of AdS{sub 5} type are induced by scalar matter dynamics and triggered by a thin-brane defect. The scalar matter is taken to consist of two fields with O(2) symmetric self-interaction and with manifest O(2) symmetry breaking by terms quadratic in fields. One of them serves as a thick brane formation mode around a kink background and another one is of a Higgs-field type which may develop a classical background as well. Scalar matter interacts with gravity in the minimal form and gravity effects on (quasi)localized scalar fluctuations are calculated with usage of gauge invariant variables suitable for perturbation expansion. The calculations are performed in the vicinity of the critical point of spontaneous breaking of the combined parity symmetry where a non-trivial v.e.v. of the Higgs-type scalar field is generated. The non-perturbative discontinuous gravitational effects in the mass spectrum of light localized scalar states are studied in the presence of a thin-brane defect. The thin brane with negative tension happens to be the most curious case when the singular barriers form a potential well with two infinitely tall walls and the discrete spectrum of localized states arises completely isolated from the bulk. (orig.)

  8. Do dynamic effects play a significant role in enzymatic catalysis? A theoretical analysis of formate dehydrogenase.

    Science.gov (United States)

    Roca, Maite; Oliva, Mónica; Castillo, Raquel; Moliner, Vicente; Tuñón, Iñaki

    2010-10-04

    A theoretical study of the protein dynamic effects on the hydride transfer between the formate anion and nicotinamide adenine dinucleotide (NAD(+)), catalyzed by formate dehydrogenase (FDH), is presented in this paper. The analysis of free downhill molecular dynamic trajectories, performed in the enzyme and compared with the reaction in aqueous solution, has allowed the study of the dynamic coupling between the reacting fragments and the protein or the solvent water molecules, as well as an estimation of the dynamic effect contribution to the catalytic effect from calculation of the transmission coefficient in the enzyme and in solution. The obtained transmission coefficients for the enzyme and in solution were 0.46±0.04 and 0.20±0.03, respectively. These values represent a contribution to catalysis of 0.5 kcal mol(-1), which, although small, is not negligible keeping in mind the low efficiency of FDH. The analysis of the reactive trajectories also reveals how the relative movements of some amino acids, mainly His332 and Arg284, precede and promote the chemical reaction. In spite of these movements, the time-dependent evolution of the electric field created by the enzyme on the key atoms of the reaction reveals a permanent field, which reduces the work required to reach the transition state, with a concomitant polarization of the cofactor. Finally, application of Grote-Hynes theory has allowed the identification of the modes responsible for the substrate-environment coupling, showing how some protein motions take place simultaneously with the reaction. Thus, the equilibrium approach would provide, in this case, an overestimation of the catalyzed rate constant.

  9. Connections Between Jet Formation and Multiwavelength Spectral Evolution in Black Hole Transients

    Science.gov (United States)

    Kakemci, Emrah; Chun, Yoon-Young; Dincer, Tolga; Buxton, Michelle; Tomsick, John A.; Corbel, Stephane; Kaaret, Philip

    2011-01-01

    Multiwavelength observations are the key to understand conditions of jet formation in Galactic black hole transient (GBHT) systems. By studying radio and optical-infrared evolution of such systems during outburst decays, the compact jet formation can be traced. Comparing this with X-ray spectral and timing evolution we can obtain physical and geometrical conditions for jet formation, and study the contribution of jets to X-ray emission. In this work, first X-ray evolution - jet relation for XTE J1752-223 will be discussed. This source had very good coverage in X-rays, optical, infrared and radio. A long exposure with INTEGRAL also allowed us to study gamma-ray behavior after the jet turns on. We will also show results from the analysis of data from GX 339-4 in the hard state with SUZAKU at low flux levels. The fits to iron line fluorescence emission show that the inner disk radius increases by a factor of greater than 27 with respect to radii in bright states. This result, along with other disk radius measurements in the hard state will be discussed within the context of conditions for launching and sustaining jets.

  10. Connections between jet formation and multiwavelength spectral evolution in black hole transients

    Science.gov (United States)

    Kalemci, Emrah; Chun, Yoon-Young; Dinçer, Tolga; Buxton, Michelle; Tomsick, John A.; Corbel, Stephane; Kaaret, Philip

    2011-02-01

    Multiwavelength observations are the key to understand conditions of jet formation in Galactic black hole transient (GBHT) systems. By studying radio and optical-infrared evolution of such systems during outburst decays, the compact jet formation can be traced. Comparing this with X-ray spectral and timing evolution we can obtain physical and geometrical conditions for jet formation, and study the contribution of jets to X-ray emission. In this work, first X-ray evolution - jet relation for XTE J1752-223 will be discussed. This source had very good coverage in X-rays, optical, infrared and radio. A long exposure with INTEGRAL also allowed us to study gamma-ray behavior after the jet turns on. We will also show results from the analysis of data from GX 339-4 in the hard state with SUZAKU at low flux levels. The fits to iron line fluorescence emission show that the inner disk radius increases by a factor of >27 with respect to radii in bright states. This result, along with other disk radius measurements in the hard state will be discussed within the context of conditions for launching and sustaining jets.

  11. Analog modeling of pressurized subglacial water flow: Implications for tunnel valley formation and ice flow dynamics

    Science.gov (United States)

    Lelandais, Thomas; Ravier, Edouard; Mourgues, Régis; Pochat, Stéphane; Strzerzynski, Pierre; Bourgeois, Olivier

    2017-04-01

    Tunnel valleys are elongated and overdeepened depressions up to hundreds of kilometers long, several kilometers wide and hundreds of meters deep, found in formerly glaciated areas. These drainage features are interpreted as the result of subglacial meltwater erosion beneath ice sheets and constitute a major component of the subglacial drainage system. Although tunnel valleys have been described worldwide in the past decades, their formation is still a matter of debate. Here, we present an innovative experimental approach simulating pressurized water flow in a subglacial environment in order to study the erosional processes occurring at the ice-bed interface. We use a sandbox partially covered by a circular, viscous and transparent lid (silicon putty), simulating an impermeable ice cap. Punctual injection of pressurized water in the substratum at the center of the lid simulates meltwater production beneath the ice cap. Surface images collected by six synchronized cameras allow to monitor the evolution of the experiment through time, using photogrammetry methods and DEM generation. UV markers placed in the silicon are used to follow the silicon flow during the drainage of water at the substratum-lid interface, and give the unique opportunity to simultaneously follow the formation of tunnel valleys and the evolution of ice dynamics. When the water pressure is low, groundwater circulates within the substratum only and no drainage landforms appear at the lid-substratum interface. By contrast, when the water pressure exceeds a threshold that is larger than the sum of glaciostatic and lithostatic pressures, additional water circulation occurs at the lid-substratum interface and drainage landforms develop from the lid margin. These landforms share numerous morphological criteria with tunnel valleys such as undulating longitudinal profiles, U-shaped cross-sectional profiles with flat floors, constant widths and abrupt flanks. Continuous generation of DEMs and flow velocity

  12. Chemo-dynamical evolution model: Enrichment of r-process elements in the Local Group dwarf galaxies

    Science.gov (United States)

    Hirai, Yutaka; Ishimaru, Yuhri; Saitoh, Takayuki R.; Fujii, Michiko S.; Hidaka, Jun; Kajino, Toshitaka

    2016-08-01

    Neutron star mergers are one of the candidate astrophysical site(s) of r-process. Several chemical evolution studies however pointed out that the observed abundance of r-process is difficult to reproduce by neutron star mergers. In this study, we aim to clarify the enrichment of r-process elements in the Local Group dwarf galaxies. We carry out numerical simulations of galactic chemo-dynamical evolution using an N-body/smoothed particle hydrodynamics code, ASURA. We construct a chemo-dynamical evolution model for dwarf galaxies assuming that neutron star mergers are the major source of r-process elements. Our models reproduce the observed dispersion in [Eu/Fe] as a function of [Fe/H] with neutron star mergers with a merger time of 100 Myr. We find that star formation efficiency and metal mixing processes during the first <~ 300 Myr of galaxy evolution are important to reproduce the observations. This study supports that neutron star mergers are a major site of r-process.

  13. Parallel dynamics and evolution: Protein conformational fluctuations and assembly reflect evolutionary changes in sequence and structure.

    Science.gov (United States)

    Marsh, Joseph A; Teichmann, Sarah A

    2014-02-01

    Protein structure is dynamic: the intrinsic flexibility of polypeptides facilitates a range of conformational fluctuations, and individual protein chains can assemble into complexes. Proteins are also dynamic in evolution: significant variations in secondary, tertiary and quaternary structure can be observed among divergent members of a protein family. Recent work has highlighted intriguing similarities between these structural and evolutionary dynamics occurring at various levels. Here we review evidence showing how evolutionary changes in protein sequence and structure are often closely related to local protein flexibility and disorder, large-scale motions and quaternary structure assembly. We suggest that these correspondences can be largely explained by neutral evolution, while deviations between structural and evolutionary dynamics can provide valuable functional insights. Finally, we address future prospects for the field and practical applications that arise from a deeper understanding of the intimate relationship between protein structure, dynamics, function and evolution.

  14. Chemo-Dynamical Evolution of Disk Galaxies, Smoothed Particles Hydrodynamics Approach

    Science.gov (United States)

    Berczik, P.

    In this paper I present, the new Chemo-Dynamical code, incorporated to the standard Smoothed Particle Hydrodynamics (CD-SPH). This code used to modelling the complex evolution of disk galaxy systems. The more detailed description of SPH code and the Star Formation (SF) and Super Novae (SN) algorithms you can find in our earlier work Berczik P. & Kravchuk S.G., 1996, ApSpSci, 245, 27. The galaxy presented via tree component system. The Dark Matter Halo described as an external gravitational potential with distribution of Dark Matter density (Burkert A. 1995, ApJ, 447, L25): ρDM (r) = frac ρ0 (1 + r / r0) cdot (1 + r / r0)2. The total mass of Dark Matter Halo is 1012 Modot. The second component is a hot coronal gas, with Thot ~106 K. This component presented as a uniformly distributed SPH gas with initial solid body rotation and with additisional random velocity component Δ V ~100 km/sec. The total mass of this component is 5 cdot 1010 Modot. The last component is a cold gas (Tcold ~104 K). This component presented also as a uniformly distributed SPH gas with initial solid body rotation and with additional random velocity component Δ V ~10 km/sec. The total mass of this component also is 5 cdot 1010 Modot. In the paper presented a more complex and may be more realistic incorporation of SF & SN in the SPH code. The presented calculation is clearly show, what the some interestiong and important properties of isolated disk galaxies we can explain using this simple, tree component "collapsing" model. In the frame of this approach we are able to reproduce the presently observed kinematics of star and gaseous components as well as their distributions and heavy element abundances. The developed model provide the realystic description of dynamics and chemical evolution of typical disk galaxies over the Hubble timescale.

  15. Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation.

    Science.gov (United States)

    Shiraiwa, Manabu; Yee, Lindsay D; Schilling, Katherine A; Loza, Christine L; Craven, Jill S; Zuend, Andreas; Ziemann, Paul J; Seinfeld, John H

    2013-07-16

    Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process.

  16. Coupling dynamical and collisional evolution of small bodies II Forming the Kuiper Belt, the Scattered Disk and the Oort Cloud

    CERN Document Server

    Morbidelli, S C A

    2006-01-01

    The Oort Cloud, the Kuiper Belt and the Scattered Disk are dynamically distinct populations of small bodies evolving in the outer regions of the Solar System. Whereas their collisional activity is now quiet, gravitational interactions with giant planets may have shaped these populations both dynamically and collisionally during their formation. Using a hybrid approach (Charnoz & Morbidelli 2003), the present paper tries to couple the primordial collisional and dynamical evolution of these three populations in a self-consistent way. A critical parameter is the primordial size-distribution. We show that the initial planetesimal size distribution that allows an effective mass depletion of the Kuiper belt by collisional grinding, would decimate also the population of comet-size bodies that end in the Oort Cloud and, in particular, in the Scattered Disk. As a consequence, the Scattered Disk and the Oort Cloud would be too anemic, by a factor 20 to 100, relative to the estimates achieved from the observation of...

  17. Dynamics of altered surface layer formation on dissolving silicates

    Science.gov (United States)

    Daval, Damien; Bernard, Sylvain; Rémusat, Laurent; Wild, Bastien; Guyot, François; Micha, Jean Sébastien; Rieutord, François; Magnin, Valérie; Fernandez-Martinez, Alejandro

    2017-07-01

    The extrapolation of mineral dissolution kinetics experiments to geological timescales has frequently been challenged by the observation that mineral dissolution rates decrease with time. In the present study, we report a detailed investigation of the early stages of wollastonite dissolution kinetics, linking time-resolved measurements of wollastonite dissolution rate as a function of crystallographic orientation to the evolution of physicochemical properties (i.e., diffusivity, density, and thickness) of amorphous silica-rich layers (ASSLs) that developed on each surface. Batch dissolution experiments conducted at room temperature and at far-from-equilibrium conditions revealed that the initial (i.e., ASSL-free) dissolution rate of wollastonite (R(hkl)) based on Ca release observe the following trend: R(010) ≈R(100) >R(101) >R(001) . A gradual decrease of the dissolution rate of some faces by up to one order of magnitude resulted in a modification of this trend after two days: R(010) ≫R(100) ⩾R(101) ≈R(001) . In parallel, the diffusivity of ASSLs developed on each face was estimated based on the measurement of the concentration profile of a conservative tracer (methylene blue) across the ASSL using nanoSIMS. The apparent diffusion coefficients of methylene blue as a function of the crystallographic orientation (Dapp(hkl)) observe the following trend: Dapp(010) ⩾Dapp(100) >Dapp(101) ≫Dapp(001) , and decreases as a function of time for the (1 0 0) and (1 0 1) faces. Finally, the density of ASSL was estimated based on the modeling of X-ray reflectivity patterns acquired as a function of time. The density of ASSLs developed on the (0 1 0) faces remains low and constant, whereas it increases for the ASSLs developed on the (0 0 1) faces. On the whole, our results suggest that the impact of the formation of ASSLs on the wollastonite dissolution rate is anisotropic: while some crystal faces are weakly affected by the formation of non-passivating ASSLs (e

  18. The Dynamical and Chemical Evolution of Dwarf Spheroidal Galaxies with GEAR

    CERN Document Server

    Revaz, Yves

    2011-01-01

    We present a fully parallel chemo-dynamical Tree/SPH code, GEAR, which allows to perform high resolution simulations with detailed chemical diagnostics. Starting from the public version of Gadget-2, we included the complex treatment of the baryon physics: gas cooling, star formation law, chemical evolution and supernovae feedback. We qualified the performances of GEAR with the case of dSph galaxies. GEAR conserves the total energy budget of the systems to better than 5% over 14Gyr and proved excellent convergence of the results with numerical resolution. We showed that models of dSphs in a static Euclidean space, where the expansion of the universe is neglected are valid. In addition, we tackled some of the existing open questions in the field, like the stellar mass fraction of dSphs and its link with the predicted dark matter halo mass function, the effect of the supernova feedback, the spatial distribution of the stellar populations, and the origin of the diversity in star formation histories and chemical a...

  19. The dynamical masses, densities, and star formation scaling relations of Lyα galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Rhoads, James E.; Malhotra, Sangeeta; Richardson, Mark L. A.; McLinden, Emily M. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Finkelstein, Steven L. [Department of Astronomy, University of Texas at Austin, 1 University Station C1400, Austin, TX 78712 (United States); Fynbo, Johan P. U. [DARK Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen Ø (Denmark); Tilvi, Vithal S., E-mail: James.Rhoads@asu.edu [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics, Texas A and M University, College Station, TX 77843 (United States)

    2014-01-01

    We present the first dynamical mass measurements for Lyα galaxies at high redshift, based on velocity dispersion measurements from rest-frame optical emission lines and size measurements from Hubble Space Telescope imaging, for nine galaxies drawn from four surveys. We use these measurements to study Lyα galaxies in the context of galaxy scaling relations. The resulting dynamical masses range from 10{sup 9} to 10{sup 10} M {sub ☉}. We also fit stellar population models to our sample and use them to place the Lyα sample on a stellar mass versus line width relation. The Lyα galaxies generally follow the same scaling relation as star-forming galaxies at lower redshift, although, lower stellar mass fits are also acceptable in ∼1/3 of the Lyα galaxies. Using the dynamical masses as an upper limit on gas mass, we show that Lyα galaxies have unusually active star formation for their gas mass surface density. This behavior is consistent with what is observed in starburst galaxies, despite the typically smaller masses and sizes of the Lyα galaxy population. Finally, we examine the mass densities of these galaxies and show that their future evolution likely requires dissipational ('wet') merging. In short, we find that Lyα galaxies are low-mass cousins of larger starbursts.

  20. Language evolution and population dynamics in a system of two interacting species

    Science.gov (United States)

    Kosmidis, Kosmas; Halley, John M.; Argyrakis, Panos

    2005-08-01

    We use Monte Carlo simulations and assumptions from evolutionary game theory in order to study the evolution of words and the population dynamics of a system made of two interacting species which initially speak two different languages. The species are characterized by their identity, vocabulary, and have different initial fitness, i.e. reproduction capability. We investigate how different initial fitness affects the vocabulary of the species or the population dynamics by leading to a permanent populational advantage. We further find that the spatial distributions of the species may cause the system to exhibit pattern formation or segregation. We show that an initial fitness advantage, even though very quickly balanced, leads to better spatial arrangement and enhances survival probabilities of the species. In most cases the system will arrive at a final state where both languages coexist. However, in cases where one species greatly outnumbers the other in population and fitness, then only one species survives with its “final” language having a slightly richer vocabulary than its initial language. Thus, our results offer an explanation for the existence and origin of synonyms in spoken languages.

  1. The effects of supernovae on the dynamical evolution of binary stars and star clusters

    CERN Document Server

    Parker, Richard J

    2016-01-01

    In this chapter I review the effects of supernovae explosions on the dynamical evolution of (1) binary stars and (2) star clusters. (1) Supernovae in binaries can drastically alter the orbit of the system, sometimes disrupting it entirely, and are thought to be partially responsible for `runaway' massive stars - stars in the Galaxy with large peculiar velocities. The ejection of the lower-mass secondary component of a binary occurs often in the event of the more massive primary star exploding as a supernova. The orbital properties of binaries that contain massive stars mean that the observed velocities of runaway stars (10s - 100s km s$^{-1}$) are consistent with this scenario. (2) Star formation is an inherently inefficient process, and much of the potential in young star clusters remains in the form of gas. Supernovae can in principle expel this gas, which would drastically alter the dynamics of the cluster by unbinding the stars from the potential. However, recent numerical simulations, and observational e...

  2. Formation and long-term evolution of 3D vortices in protoplanetary discs

    CERN Document Server

    Meheut, H; Casse, F; Benz, W

    2012-01-01

    In the context of planet formation, anticyclonic vortices have recently received lots of attention for the role they can play in planetesimals formation. Radial migration of intermediate size solids toward the central star may prevent their growth to larger solid grains. On the other hand, vortices can trap the dust and accelerate this growth, counteracting fast radial transport. Multiple effects have been shown to affect this scenario, such as vortex migration or decay. The aim of this paper is to study the formation of vortices by the Rossby wave instability and their long term evolution in a full three dimensional protoplanetary disc. We use a robust numerical scheme combined with adaptive mesh refinement in cylindrical coordinates, allowing to affordably compute long term 3D evolutions. We consider a full disc stratified both radially and vertically that is prone to formation of vortices by the Rossby wave instability. We show that the 3D Rossby vortices grow and survive over hundreds of years without mig...

  3. An approach of community evolution based on gravitational relationship refactoring in dynamic networks

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Guisheng; Chi, Kuo, E-mail: chik89769@hrbeu.edu.cn; Dong, Yuxin; Dong, Hongbin

    2017-04-25

    In this paper, an approach of community evolution based on gravitational relationship refactoring between the nodes in a dynamic network is proposed, and it can be used to simulate the process of community evolution. A static community detection algorithm and a dynamic community evolution algorithm are included in the approach. At first, communities are initialized by constructing the core nodes chains, the nodes can be iteratively searched and divided into corresponding communities via the static community detection algorithm. For a dynamic network, an evolutionary process is divided into three phases, and behaviors of community evolution can be judged according to the changing situation of the core nodes chain in each community. Experiments show that the proposed approach can achieve accuracy and availability in the synthetic and real world networks. - Highlights: • The proposed approach considers both the static community detection and dynamic community evolution. • The approach of community evolution can identify the whole 6 common evolution events. • The proposed approach can judge the evolutionary events according to the variations of the core nodes chains.

  4. Evolution of star-forming dwarf galaxies: characterizing the star formation scenarios

    Science.gov (United States)

    Martín-Manjón, M. L.; Mollá, M.; Díaz, A. I.; Terlevich, R.

    2012-02-01

    We use the self-consistent model technique developed by Martín-Manjón et al. that combines the chemical evolution with stellar population synthesis and photoionization codes, to study the star formation scenarios capable of reproducing the observed properties of star-forming galaxies. The comparison of our model results with a data base of H II galaxies shows that the observed spectra and colours of the present burst and the older underlying population are reproduced by models in a bursting scenario with star formation efficiency involving close to 20 per cent of the total mass of gas, and interburst times longer than 100 Myr, and more probably around 1 Gyr. Other modes like gasping and continuous star formation are not favoured.

  5. Galaxy Collisions, Gas Stripping and Star Formation in the Evolution of Galaxies

    CERN Document Server

    Palous, J

    2004-01-01

    A review of gravitational and hydrodynamical processes during formation of clusters and evolution of galaxies is given. Early, at the advent of N-body computer simulations, the importance of tidal fields in galaxy encounters has been recognized. Orbits are crowded due to tides along spiral arms, where the star formation is enhanced. Low relative velocity encounters lead to galaxy mergers. The central dominating galaxies in future clusters form before the clusters in a merging process in galaxy groups. Galaxy clusters are composed in a hierarchical scenario due to relaxation processes between galaxies and galaxy groups. As soon as the overall cluster gravitational potential is built, high speed galaxy versus galaxy encounters start to play a role. These harassment events gradually thicken and shorten spiral galaxy disks leading to the formation of S0 galaxies and ellipticals. Another aspect of the high speed motion in the hot and diluted Intracluster Medium (ICM) is the ram pressure exerted on the Interstellar...

  6. A predator-2 prey fast-slow dynamical system for rapid predator evolution

    DEFF Research Database (Denmark)

    Piltz, Sofia Helena; Veerman, Frits; Maini, Philip K.

    2017-01-01

    We consider adaptive change of diet of a predator population that switches its feeding between two prey populations. We develop a novel 1 fast-3 slow dynamical system to describe the dynamics of the three populations amidst continuous but rapid evolution of the predator's diet choice. The two ext...

  7. Star formation in the first galaxies - III. Formation, evolution, and characteristics of the first metal-enriched stellar cluster

    Science.gov (United States)

    Safranek-Shrader, Chalence; Montgomery, Michael H.; Milosavljević, Miloš; Bromm, Volker

    2016-01-01

    We simulate the formation of a low-metallicity (10-2 Z⊙) stellar cluster at redshift z ˜ 14. Beginning with cosmological initial conditions, the simulation utilizes adaptive mesh refinement and sink particles to follow the collapse and evolution of gas past the opacity limit for fragmentation, thus resolving the formation of individual protostellar cores. A time- and location-dependent protostellar radiation field, which heats the gas by absorption on dust, is computed by integration of protostellar evolutionary tracks. The simulation also includes a robust non-equilibrium chemical network that self-consistently treats gas thermodynamics and dust-gas coupling. The system is evolved for 18 kyr after the first protostellar source has formed. In this time span, 30 sink particles representing protostellar cores form with a total mass of 81 M⊙. Their masses range from ˜0.1 to 14.4 M⊙ with a median mass ˜0.5-1 M⊙. Massive protostars grow by competitive accretion while lower mass protostars are stunted in growth by close encounters and many-body ejections. In the regime explored here, the characteristic mass scale is determined by the cosmic microwave background temperature floor and the onset of efficient dust-gas coupling. It seems unlikely that host galaxies of the first bursts of metal-enriched star formation will be detectable with the James Webb Space Telescope or other next-generation infrared observatories. Instead, the most promising access route to the dawn of cosmic star formation may lie in the scrutiny of metal-poor, ancient stellar populations in the Galactic neighbourhood. The observable targets corresponding to the system simulated here are ultra-faint dwarf satellite galaxies such as Boötes II and Willman I.

  8. Biological Dynamics Markup Language (BDML): an open format for representing quantitative biological dynamics data.

    Science.gov (United States)

    Kyoda, Koji; Tohsato, Yukako; Ho, Kenneth H L; Onami, Shuichi

    2015-04-01

    Recent progress in live-cell imaging and modeling techniques has resulted in generation of a large amount of quantitative data (from experimental measurements and computer simulations) on spatiotemporal dynamics of biological objects such as molecules, cells and organisms. Although many research groups have independently dedicated their efforts to developing software tools for visualizing and analyzing these data, these tools are often not compatible with each other because of different data formats. We developed an open unified format, Biological Dynamics Markup Language (BDML; current version: 0.2), which provides a basic framework for representing quantitative biological dynamics data for objects ranging from molecules to cells to organisms. BDML is based on Extensible Markup Language (XML). Its advantages are machine and human readability and extensibility. BDML will improve the efficiency of development and evaluation of software tools for data visualization and analysis. A specification and a schema file for BDML are freely available online at http://ssbd.qbic.riken.jp/bdml/. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.

  9. Dynamics of Drop Formation in an Electric Field.

    Science.gov (United States)

    Notz; Basaran

    1999-05-01

    The effect of an electric field on the formation of a drop of an inviscid, perfectly conducting liquid from a capillary which protrudes from the top plate of a parallel-plate capacitor into a surrounding dynamically inactive, insulating gas is studied computationally. This free boundary problem which is comprised of the surface Bernoulli equation for the transient drop shape and the Laplace equation for the velocity potential inside the drop and the electrostatic potential outside the drop is solved by a method of lines incorporating the finite element method for spatial discretization. The finite element algorithm employed relies on judicious use of remeshing and element addition to a two-region adaptive mesh to accommodate large domain deformations, and allows the computations to proceed until the thickness of the neck connecting an about to form drop to the rest of the liquid in the capillary is less than 0.1% of the capillary radius. The accuracy of the computations is demonstrated by showing that in the absence of an electric field predictions made with the new algorithm are in excellent agreement with boundary integral calculations (Schulkes, R. M. S. M. J. Fluid Mech. 278, 83 (1994)) and experimental measurements on water drops (Zhang, X., and Basaran, O. A. Phys. Fluids 7(6), 1184 (1995)). In the presence of an electric field, the algorithm predicts that as the strength of the applied field increases, the mode of drop formation changes from simple dripping to jetting to so-called microdripping, in accordance with experimental observations (Cloupeau, M., and Prunet-Foch, B. J. Aerosol Sci. 25(6), 1021 (1994); Zhang, X., and Basaran, O. A. J. Fluid Mech. 326, 239 (1996)). Computational predictions of the primary drop volume and drop length at breakup are reported over a wide range of values of the ratios of electrical, gravitational, and inertial forces to surface tension force. In contrast to previously mentioned cases where both the flow rate in the tube

  10. Game equilibrium models I evolution and game dynamics

    CERN Document Server

    1991-01-01

    There are two main approaches towards the phenotypic analysis of frequency dependent natural selection. First, there is the approach of evolutionary game theory, which was introduced in 1973 by John Maynard Smith and George R. Price. In this theory, the dynamical process of natural selection is not modeled explicitly. Instead, the selective forces acting within a population are represented by a fitness function, which is then analysed according to the concept of an evolutionarily stable strategy or ESS. Later on, the static approach of evolutionary game theory has been complemented by a dynamic stability analysis of the replicator equations. Introduced by Peter D. Taylor and Leo B. Jonker in 1978, these equations specify a class of dynamical systems, which provide a simple dynamic description of a selection process. Usually, the investigation of the replicator dynamics centers around a stability analysis of their stationary solutions. Although evolutionary stability and dynamic stability both intend to charac...

  11. Aerosol processing of materials: Aerosol dynamics and microstructure evolution

    Science.gov (United States)

    Gurav, Abhijit Shankar

    Spray pyrolysis is an aerosol process commonly used to synthesize a wide variety of materials in powder or film forms including metals, metal oxides and non-oxide ceramics. It is capable of producing high purity, unagglomerated, and micrometer to submicron-size powders, and scale-up has been demonstrated. This dissertation deals with the study of aerosol dynamics during spray pyrolysis of multicomponent systems involving volatile phases/components, and aspects involved with using fuel additives during spray processes to break apart droplets and particles in order to produce powders with smaller sizes. The gas-phase aerosol dynamics and composition size distributions were measured during spray pyrolysis of (Bi, Pb)-Sr-Ca-Cu-O, and Sr-Ru-O and Bi-Ru-O at different temperatures. A differential mobility analyzer (DMA) was used in conjunction with a condensation particle counter (CPC) to monitor the gas-phase particle size distributions, and a Berner-type low-pressure impactor was used to obtain mass size distributions and size-classified samples for chemical analysis. (Bi, Pb)-Sr-Ca-Cu-O powders made at temperatures up to 700sp°C maintained their initial stoichiometry over the whole range of particle sizes monitored, however, those made at 800sp°C and above were heavily depleted in lead in the size range 0.5-5.0 mum. When the reactor temperature was raised from 700 and 800sp°C to 900sp°C, a large number ({˜}10sp7\\ #/cmsp3) of new ultrafine particles were formed from PbO vapor released from the particles and the reactor walls at the beginning of high temperature runs (at 900sp°C). The metal ruthenate systems showed generation of ultrafine particles (measurements were also used to monitor the gas-phase particle size distributions during the generation of fullerene (Csb{60}) nano-particles (30 to 50 nm size) via vapor condensation at 400-650sp°C using Nsb2 carrier gas. In general, during laboratory-scale aerosol processing of materials containing a volatile

  12. Towards investigation of evolution of dynamical systems with independence of time accuracy: more classes of systems

    Energy Technology Data Exchange (ETDEWEB)

    Gurzadyan, V.G. [SIA, Sapienza University of Rome (Italy); Alikhanian National Laboratory and Yerevan State University, Center for Cosmology and Astrophysics, Yerevan (Armenia); Kocharyan, A.A. [Alikhanian National Laboratory and Yerevan State University, Center for Cosmology and Astrophysics, Yerevan (Armenia); Monash University, School of Mathematical Sciences, Clayton (Australia)

    2015-07-15

    The recently developed method (Paper 1) enabling one to investigate the evolution of dynamical systems with an accuracy not dependent on time is developed further. The classes of dynamical systems which can be studied by that method are much extended, now including systems that are: (1) non-Hamiltonian, conservative; (2) Hamiltonian with time-dependent perturbation; (3) non-conservative (with dissipation). These systems cover various types of N-body gravitating systems of astrophysical and cosmological interest, such as the orbital evolution of planets, minor planets, artificial satellites due to tidal, non-tidal perturbations and thermal thrust, evolving close binary stellar systems, and the dynamics of accretion disks. (orig.)

  13. Matching the Evolution of the Stellar Mass Function Using Log-normal Star Formation Histories

    CERN Document Server

    Abramson, Louis E; Dressler, Alan; Oemler, Augustus; Poggianti, Bianca; Vulcani, Benedetta

    2014-01-01

    We show that a model consisting of individual, log-normal star formation histories for a volume-limited sample of $z\\approx0$ galaxies reproduces the evolution of the total and quiescent stellar mass functions at $z\\lesssim2.5$ and stellar masses $M_*\\geq10^{10}\\,{\\rm M_\\odot}$. This model has previously been shown to reproduce the star formation rate/stellar mass relation (${\\rm SFR}$--$M_*$) over the same interval, is fully consistent with the observed evolution of the cosmic ${\\rm SFR}$ density at $z\\leq8$, and entails no explicit "quenching" prescription. We interpret these results/features in the context of other models demonstrating a similar ability to reproduce the evolution of (1) the cosmic ${\\rm SFR}$ density, (2) the total/quiescent stellar mass functions, and (3) the ${\\rm SFR}$--$M_*$ relation, proposing that the key difference between modeling approaches is the extent to which they stress/address diversity in the (starforming) galaxy population. Finally, we suggest that observations revealing t...

  14. Behavior of intermetallics formation and evolution in Ag–8Au–3Pd alloy wire bonds

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Rui [State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai (China); Hang, Tao, E-mail: hangtao@sjtu.edu.cn [State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai (China); Mao, Dali [State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai (China); Li, Ming, E-mail: mingli90@sjtu.edu.cn [State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai (China); Qian, Kaiyou; Lv, Zhong; Chiu, Hope [Packaging RnD and Advanced MFG Engineering, SanDisk Semiconductor (Shanghai) Co., Ltd., Shanghai (China)

    2014-03-05

    Highlights: • Two IMC layers formed between Ag–8Au–3Pd alloy wire and Al pad were identified. • IMCs growth during annealing was discussed by diffusion kinetics. • Ag diffusion controls voids filling at bonding interface during thermal aging. -- Abstract: Ag–8Au–3Pd alloy wire has shown promise as an economical substitute for gold wire interconnects from integrated circuits to substrates. This work is undertaken to gain a better understanding on the intermetallic compounds (IMC) formation and evolution at the interface between Ag–8Au–3Pd wire and Al metallization pad. Longitudinal cross-section of bond interface was prepared by dual-beam focused ion beam (FIB) micro-machining for transmission electron microscopy (TEM) analysis. Two intermetallic regions formed at interface were crystallochemically identified as AuAl{sub 2} + (Au, Ag){sub 4}Al and Ag{sub 2}Al respectively. Interface evolution tracking by back scattered electron (BSE) imaging showed that IMC initially formed at periphery of bonding area. After short-term annealing treatment (175 °C for 24 h), the voids in the center of the bonding interface shrank and vanished, due to the Ag diffusion played dominant part in IMC growing. The mechanism of IMC formation and evolution at interface was finally elaborated on the basis of thermodynamics and diffusion kinetics respectively.

  15. Understanding the process of social network evolution: Online-offline integrated analysis of social tie formation

    Science.gov (United States)

    Kwak, Doyeon

    2017-01-01

    It is important to consider the interweaving nature of online and offline social networks when we examine social network evolution. However, it is difficult to find any research that examines the process of social tie formation from an integrated perspective. In our study, we quantitatively measure offline interactions and examine the corresponding evolution of online social network in order to understand the significance of interrelationship between online and offline social factors in generating social ties. We analyze the radio signal strength indicator sensor data from a series of social events to understand offline interactions among the participants and measure the structural attributes of their existing online Facebook social networks. By monitoring the changes in their online social networks before and after offline interactions in a series of social events, we verify that the ability to develop an offline interaction into an online friendship is tied to the number of social connections that participants previously had, while the presence of shared mutual friends between a pair of participants disrupts potential new connections within the pre-designed offline social events. Thus, while our integrative approach enables us to confirm the theory of preferential attachment in the process of network formation, the common neighbor theory is not supported. Our dual-dimensional network analysis allows us to observe the actual process of social network evolution rather than to make predictions based on the assumption of self-organizing networks. PMID:28542367

  16. Evolution of wheat gliadins conformation during film formation: a fourier transform infrared study.

    Science.gov (United States)

    Mangavel, C; Barbot, J; Popineau, Y; Guéguen, J

    2001-02-01

    The secondary structures of wheat gliadins (a major storage protein fraction from gluten) in film-forming solutions and their evolution during film formation were investigated by Fourier transform infrared spectroscopy. In the film-forming solution, wheat gliadins presented a mixture of different secondary structures, with an important contribution of beta-turns induced by proline residues. The presence of plasticizer did not have any influence on protein secondary structure in the film-forming solution. The evolution of protein conformation was followed during drying; the major feature of this evolution was a clear growing of the infrared band at 1622 cm(-1), characteristic of intermolecular hydrogen-bonded beta-sheets. This revealed the formation of protein aggregates during film drying. The influence of the drying temperature on film properties and gliadin secondary structures was also investigated. Higher drying temperatures induced an increase of both the tensile strength of the films and the amount of beta-sheets aggregates. Although the appearance of heat-induced disulfide bridge cross-links has already been described, there is clear evidence that hydrogen-bonded beta-sheets aggregates are also induced by thermal treatment. It was not possible, however, to determine whether there is a direct relationship between the occurrence of these aggregates and the increase of the tensile strength of the films.

  17. Bulges versus disks: the evolution of angular momentum in cosmological simulations of galaxy formation

    CERN Document Server

    Zavala, J; Frenk, Carlos S

    2007-01-01

    We investigate the evolution of angular momentum in simulations of galaxy formation in a cold dark matter universe. We analyse two model galaxies produced in the N-body/hydrodynamic simulations of Okamoto et al. Starting from identical initial conditions, but using different assumptions for the baryonic physics, one of the simulations produced a bulge-dominated galaxy and the other one a disk-dominated galaxy. The main difference is the treatment of star formation and feedback, both of which were designed to be more efficient in the disk-dominated object. We find that the specific angular momentum of the disk-dominated galaxy tracks the evolution of the angular momentum of the dark matter halo very closely: the angular momentum grows as predicted by linear theory until the epoch of maximum expansion and remains constant thereafter. By contrast, the evolution of the angular momentum of the bulge-dominated galaxy resembles that of the central, most bound halo material: it also grows at first according to linear...

  18. Evolution of Galaxies and the Star Formation Rate in the Infrared

    Science.gov (United States)

    Pahre, Michael A.; Oliversen, Ronald J. (Technical Monitor)

    2005-01-01

    A central goal of extragalactic observational astronomy is to understand how normal galaxies evolve with redshift, and particularly when galaxies formed their stars. While optical and rest-frame UV observations have begun to address these issues, the interpretation of such data is particularly challenging because of the sensitivity to dust obscuration (at optical and UV wavelengths). The absorbed light is re-radiated at IR wavelengths, hence the optimal indicators of the star formation rate (SFR) is at a rest-frame wavelength of approx. 60 microns. The Spitzer Space Telescope mission is revolutionizing the study of the global properties and evolution of galaxies. Spitzer reaches nearly two orders of magnitude more sensitivity than previous IR space missions. This research program is to study the SFR using statistical samples of galaxies in the local universe, at intermediate redshifts, and set the stage for continuing studies up to z=5. The overall research program is divided into three main investigations: A Mid-IR Hubble Atlas and SFR estimators in the local universe, Evolution of the SFR at 0 formation and evolution at 1 < z < 5. The first papers from Spitzer were published during the last year, including ten refereed journal papers where the PI was first or co-author.

  19. The Evolution of Damped Lyman-alpha Absorbers: Metallicities and Star Formation Rates

    CERN Document Server

    Kulkarni, V P; Lauroesch, J T; Fall, S M; Khare, P; Woodgate, B E; Palunas, P; Meiring, J; Thatte, D G; Welty, D E; Truran, J W; Kulkarni, Varsha P.; York, Donald G.; Lauroesch, James T.; Khare, Pushpa; Woodgate, Bruce E.; Palunas, Povilas; Meiring, Joseph; Thatte, Deepashri G.; Welty, Daniel E.; Truran, James W.

    2005-01-01

    The damped Lyman-alpha (DLA) and sub-DLA quasar absorption lines provide powerful probes of the evolution of metals, gas, and stars in galaxies. One major obstacle in trying to understand the evolution of DLAs and sub-DLAs has been the small number of metallicity measurements at z < 1.5, an epoch spanning \\~70 % of the cosmic history. In recent surveys with the Hubble Space Telescope and Multiple Mirror Telescope, we have doubled the DLA Zn sample at z < 1.5. Combining our results with those at higher redshifts from the literature, we find that the global mean metallicity of DLAs does not rise to the solar value at low redshifts. These surprising results appear to contradict the near-solar mean metallicity observed for nearby (z ~ 0) galaxies and the predictions of cosmic chemical evolution models based on the global star formation history. Finally, we discuss direct constraints on the star formation rates (SFRs) in the absorber galaxies from our deep Fabry-Perot Ly-alpha imaging study and other emissio...

  20. Earth Evolution and Dynamics (Arthur Holmes Medal Lecture)

    Science.gov (United States)

    Torsvik, Trond H.

    2016-04-01

    While physicists are fantasizing about a unified theory that can explain just about everything from subatomic particles (quantum mechanics) to the origin of the Universe (general relativity), Darwin already in 1858 elegantly unified the biological sciences with one grand vision. In the Earth Sciences, the description of the movement and deformation of the Earth's outer layer has evolved from Continental Drift (1912) into Sea-Floor Spreading (1962) and then to the paradigm of Plate Tectonics in the mid-to-late 1960s. Plate Tectonics has been extremely successful in providing a framework for understanding deformation and volcanism at plate boundaries, allowed us to understand how continent motions through time are a natural result of heat escaping from Earth's deep interior, and has granted us the means to conduct earthquake and volcanic hazard assessments and hydrocarbon exploration, which have proven indispensable for modern society. Plate Tectonics is as fundamentally unifying to the Earth Sciences as Darwin's Theory of Evolution is to the Life Sciences, but it is an incomplete theory that lacks a clear explanation of how plate tectonics, mantle convection and mantle plumes interact. Over the past decade, however, we have provided compelling evidence that plumes rise from explicit plume generation zones at the margins of two equatorial and antipodal large low shear-wave velocity provinces (Tuzo and Jason). These thermochemical provinces on the core-mantle boundary have been stable for at least the last 300 million years, possibly the last 540 million years, and their edges are the dominant sources of the plumes that generate large igneous provinces, hotspots and kimberlites. Linking surface and lithospheric processes to the mantle is extremely challenging and is only now becoming feasible due to breakthroughs in the estimation of ancient longitudes before the Cretaceous, greatly improved seismic tomography, recent advances in mineral physics, and new developments

  1. Dynamic Evolution of Financial Network and its Relation to Economic Crises

    Science.gov (United States)

    Gao, Ya-Chun; Wei, Zong-Wen; Wang, Bing-Hong

    2013-02-01

    The static topology properties of financial networks have been widely investigated since the work done by Mantegna, yet their dynamic evolution with time is little considered. In this paper, we comprehensively study the dynamic evolution of financial network by a sliding window technique. The vertices and edges of financial network are represented by the stocks from S&P500 components and correlations between pairs of daily returns of price fluctuation, respectively. Furthermore, the duration of stock price fluctuation, spanning from January 4, 1985 to September 14, 2009, makes us to carefully observe the relation between the dynamic topological properties and big financial crashes. The empirical results suggest that the financial network has the robust small-world property when the time evolves, and the topological structure drastically changes when the big financial crashes occur. This correspondence between the dynamic evolution of financial network and big financial crashes may provide a novel view to understand the origin of economic crisis.

  2. Sharing Gravity's Microscope: Star Formation and Galaxy Evolution for Underserved Arizonans

    Science.gov (United States)

    Knierman, Karen A.; Monkiewicz, Jacqueline A.; Bowman, Catherine DD; Taylor, Wendy

    2016-01-01

    Learning science in a community is important for children of all levels and especially for many underserved populations. This project combines HST research of galaxy evolution using gravitationally lensed galaxies with hands-on activities and the Starlab portable planetarium to link astronomy with families, teachers, and students. To explore galaxy evolution, new activities were developed and evaluated using novel evaluation techniques. A new set of galaxy classification cards enable inquiry-based learning about galaxy ages, evolution, and gravitational lensing. Activities using new cylinder overlays for the Starlab transparent cylinder will enable the detailed examination of star formation and galaxy evolution as seen from the viewpoint inside of different types of galaxies. These activities were presented in several Arizona venues that enable family and student participation including ASU Earth and Space Open House, Arizona Museum of Natural History Homeschooling Events, on the Salt River Pima-Maricopa Indian Community, and inner city Phoenix schools serving mainly Hispanic populations. Additional events targeted underserved families at the Phoenix Zoo, in Navajo County, and for the Pascua Yaqui Tribe. After evaluation, the activities and materials will also be shared with local teachers and nationally.

  3. River dynamics and landscape evolution in La Réunion Island: insights from luminescence dating

    Science.gov (United States)

    Farvacque, Manon; Valla, Pierre

    2016-04-01

    Tropical volcanic islands are natural laboratories to investigate the competition between volcanic construction (lava eruptions) and erosional destruction (extreme climatic events) in long-term landscape evolution. In La Réunion Island (Indian Ocean), the present day topography of the Piton des Neiges results from these competing processes. It presents three large-scale excavations called "cirques" that have been significantly eroded since the latest eruptive events but whose origin and formation time are still unclear. Indeed, the morphologic evolution of the Piton des Neiges is mostly known from K-Ar dating of lava flows and associated reconstructions of post-eruption eroded volumes. However, involved erosion processes and their rates through time remain poorly constrained, making it difficult to understand the geomorphic response to volcanic activity in this setting. Here, we focus on the "Bras de Cilaos" river that drains the "Cilaos cirque" (southern part of the Piton des Neiges). The Cilaos cirque has been first excavated between 140-180 ka [1], and it has been filled again during a late-stage eruptive event at ~145 ka [2] that also entirely filled the Bras de Cilaos valley. Alternatively, some studies have proposed that the Cilaos cirque and the Bras de Cilaos have been more recently filled by an eruption event at ~70 ka [3]. The Bras de Cilaos river is characterized by high relief (400-650 m) with no remaining evidence for these late eruptive events, showing significant incision and efficient fluvial erosion/transport processes after lava emplacement. In its downstream part, it presents thick alluvial deposits preserved along its riverbanks. The presence of such deposits may provide important constraints on the river dynamics and especially its response to the latest eruption events. However this requires establishing a tight temporal framework for these sediment archives. We thus sampled five different sedimentary sequences along the river to date their

  4. The dynamics of Bax channel formation: influence of ionic strength.

    Science.gov (United States)

    Ganesan, Vidyaramanan; Walsh, Timothy; Chang, Kai-Ti; Colombini, Marco

    2012-08-08

    Mitochondrial outer membrane permeabilization (MOMP) is a complex multistep process. Studies of MOMP in vivo are limited by the stochastic variability of MOMP between cells and rapid completion of IMS protein release within single cells. In vitro models have provided useful insights into MOMP. We have investigated the dynamics of Bax-mediated MOMP in isolated mitochondria using ionic strength as a tool to control the rate of MOMP. We find that Bax can induce both transient permeabilization, detected by protein release, and more substantial long-lasting permeabilization, measured by the rate of oxidation of added cytochrome c. We found that higher ionic strength causes Bax to form small channels quickly but the expansion of these early channels is impeded. This inhibitory effect of ionic strength is independent of tBid. Channels formed under low ionic strength are not destabilized by raising the ionic strength. Increase in ionic strength also increases the ability of Bcl-xL to inhibit Bax-mediated MOMP. Ionic strength does not affect Bax insertion into mitochondria. Thus, ionic strength influences the assembly of Bax molecules already in membrane into channels. Ionic strength can be used as an effective biophysical tool to study Bax-mediated channel formation.

  5. Extracellular matrix proteins and the dynamics of dentin formation.

    Science.gov (United States)

    Butler, William T; Brunn, Jan C; Qin, Chunlin; McKee, Marc D

    2002-01-01

    Dentinogenesis involves controlled reactions that result in conversion of unmineralized predentin to dentin when apatite crystals are formed. This process is dynamic: Maturation events occur within predentin beginning at the proximal layer and progressing to the predentin-dentin (PD) border. One type of controlled reaction is the proteolytic processing of dentin sialophosphoprotein (DSPP) to dentin sialoprotein (DSP) and dentin phosphoprotein (DPP), by cleavage of at least three highly conserved peptide bonds. We postulate that this processing event represents an activation step, resulting in release of DPP, which is active in its effects on formation and growth of apatite crystals. Dentin matrix protein 1 (DPM1), present as a processed fragment (57-kD protein) in bone, is seen in dentin on sodium dodecyl sulfate polyacrylamide gel electrophoresis as one intact protein of 150-200 kD. Anti-57-kD antibodies elicit immunoreactivity in bone, dentin, and cellular cementum. In bone, the reactivity is associated with osteocytes and their cell processes. Similarly, dentin shows reactivity in odontoblasts, predentin, and the odontoblast processes. In summary, the processing of large sialic acid-rich proteins into smaller fragments may be an important part of the controlled conversion of predentin to dentin and osteoid to bone.

  6. The Formation and Early Evolution of a Coronal Mass Ejection and its Associated Shock Wave on 2014 January 8

    CERN Document Server

    Wan, Linfeng; Shi, Tong; Su, Wei; Ding, M D

    2016-01-01

    In this paper, we study the formation and early evolution of a limb coronal mass ejection (CME) and its associated shock wave that occurred on 2014 January 8. The extreme ultraviolet (EUV) images provided by the Atmospheric Imaging Assembly (AIA) on board \\textit{Solar Dynamics Observatory} disclose that the CME first appears as a bubble-like structure. Subsequently, its expansion forms the CME and causes a quasi-circular EUV wave. Interestingly, both the CME and the wave front are clearly visible at all of the AIA EUV passbands. Through a detailed kinematical analysis, it is found that the expansion of the CME undergoes two phases: a first phase with a strong but transient lateral over-expansion followed by a second phase with a self-similar expansion. The temporal evolution of the expansion velocity coincides very well with the variation of the 25--50 keV hard X-ray flux of the associated flare, which indicates that magnetic reconnection most likely plays an important role in driving the expansion. Moreover...

  7. Some problems on the studies of the late Pleistocene human evolution and formation of modern human populations

    Institute of Scientific and Technical Information of China (English)

    LIU Wu

    2006-01-01

    For the past two decades, studies and debates on the modern human origins around the world have attracted attentions to the late Pleistocene human evolution and formation of modern human populations, and some controversial hypotheses and problems have been proposed. In the present paper, some problems on the late Pleistocene human evolution, and the formation and differentiations of modern human populations in China are studied with a brief description and comments on the research advances in this field.

  8. GECO: Galaxy Evolution COde - A new semi-analytical model of galaxy formation

    CERN Document Server

    Ricciardelli, E

    2010-01-01

    We present a new semi-analytical model of galaxy formation, GECO (Galaxy Evolution COde), aimed at a better understanding of when and how the two processes of star formation and galaxy assembly have taken place. Our model is structured into a Monte Carlo algorithm based on the Extended Press-Schechter theory, for the representation of the merging hierarchy of dark matter halos, and a set of analytic algorithms for the treatment of the baryonic physics, including classical recipes for the gas cooling, the star formation time-scales, galaxy mergers and SN feedback. Together with the galaxies, the parallel growth of BHs is followed in time and their feedback on the hosting galaxies is modelled. We set the model free parameters by matching with data on local stellar mass functions and the BH-bulge relation at z=0. Based on such local boundary conditions, we investigate how data on the high-redshift universe constrain our understanding of the physical processes driving the evolution, focusing in particular on the ...

  9. The COSMOS [OII] Survey: Evolution of Electron Density with Star Formation Rate

    CERN Document Server

    Kaasinen, Melanie; Groves, Brent; Kewley, Lisa; Gupta, Anshu

    2016-01-01

    Star-forming galaxies at $z > 1$ exhibit significantly different properties to local galaxies of equivalent stellar mass. Not only are high-redshift star-forming galaxies characterized by higher star formation rates and gas fractions than their local counterparts, they also appear to host star-forming regions with significantly different physical conditions, including greater electron densities. To understand what physical mechanisms are responsible for the observed evolution of star-forming conditions we have assembled the largest sample of star-forming galaxies at $z\\sim 1.5$ with emission-line measurements of the $\\mathrm{[OII]} \\lambda \\lambda 3726,3729$ doublet. By comparing our $z\\sim 1.5$ sample to local galaxy samples with equivalent distributions of stellar mass, star formation rate and specific star formation rate we investigate the proposed evolution in electron density and its dependence on global properties. We measure an average electron density of $114_{-27}^{+28} \\, \\mathrm {cm}^{-3} $ for our...

  10. Interaction-Triggered Star Formation in Distant Galaxies and the Role of Mergers in Galaxy Evolution

    CERN Document Server

    Lin, Lihwai

    2009-01-01

    The evolution of galaxy merger rates and its impact on galaxy properties have been studied intensively over the last decade. It becomes clear now that various types of mergers, i.e. gas-rich (wet), gas-poor (dry), or mixed mergers, affect the merger products in different ways. The epoch when each type of merger dominates also differs. In this talk, I review the recent progress on the measurements of galaxy merger rates out to z ~ 3 and the level of interaction-triggered star formation using large samples from various redshift surveys. These results provide insights to the importance of mergers in the mass assembly history of galaxies and in the evolution of galaxy properties. I also present new results in characterizing the environment of galaxy mergers, and discuss their implications in the built up of red-sequence galaxies.

  11. Planetary Formation and Evolution Revealed with a Saturn Entry Probe: The Importance of Noble Gases

    CERN Document Server

    Fortney, Jonathan J; Baraffe, Isabelle; Burrows, Adam; Dodson-Robinson, Sarah E; Chabrier, Gilles; Guillot, Tristan; Helled, Ravit; Hersant, Franck; Hubbard, William B; Lissauer, Jack J; Marley, Mark S

    2009-01-01

    The determination of Saturn's atmospheric noble gas abundances are critical to understanding the formation and evolution of Saturn, and giant planets in general. These measurements can only be performed with an entry probe. A Saturn probe will address whether enhancement in heavy noble gases, as was found in Jupiter, are a general feature of giant planets, and their ratios will be a powerful constraint on how they form. The helium abundance will show the extent to which helium has phase separated from hydrogen in the planet's deep interior. Jupiter's striking neon depletion may also be tied to its helium depletion, and must be confirmed or refuted in Saturn. Together with Jupiter's measured atmospheric helium abundance, a consistent evolutionary theory for both planets, including "helium rain" will be possible. We will then be able to calibrate the theory of the evolution of all giant planets, including exoplanets. In addition, high pressure H/He mixtures under giant planet conditions are an important area of...

  12. Formation and evolution of the hardening precipitates in a Mg-Y-Nd alloy

    Energy Technology Data Exchange (ETDEWEB)

    Barucca, G. [Dipartimento di Fisica e Ingegneria dei Materiali e del Territorio, Universita Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona (Italy); Ferragut, R. [Dipartimento di Fisica, LNESS and CNISM, Politecnico di Milano, Via Anzani 42, I-22100 Como (Italy); Fiori, F. [Dipartimento SAIFET, Sezione di Scienze Fisiche, Universita Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona (Italy); Lussana, D. [Dipartimento di Chimica IFM and NIS Centre, Universita di Torino, Via P. Giuria 9, I-10125 Torino (Italy); Mengucci, P., E-mail: p.mengucci@univpm.it [Dipartimento di Fisica e Ingegneria dei Materiali e del Territorio, Universita Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona (Italy); Moia, F. [Dipartimento di Fisica, LNESS and CNISM, Politecnico di Milano, Via Anzani 42, I-22100 Como (Italy); Riontino, G. [Dipartimento di Chimica IFM and NIS Centre, Universita di Torino, Via P. Giuria 9, I-10125 Torino (Italy)

    2011-06-15

    The formation and evolution of hardening precipitates in a Mg-Y-Nd (WE43) alloy during artificial ageing at 150 and 210 deg. C is followed by small angle X-ray scattering (SAXS) measurements, Vickers microhardness tests and transmission electron microscopy (TEM) observations. A quantitative description of the alloy studied during the early and advanced stages of the precipitation sequence is presented. In situ SAXS evolution at 210 deg. C of the size, volume fraction and number density of the subnanometer and nanometer particles that evolve in the {beta}'' phase was obtained. TEM and microhardness results indicate that the hardening mechanism is based on {beta}'' transformation of pre-precipitates and their growth at 150 deg. C, while at 210 deg. C hardening is mainly associated with {beta}'' {yields} {beta}' transformation.

  13. Revisiting Hele-Shaw dynamics to better understand beach evolution

    NARCIS (Netherlands)

    Bokhove, Onno; van der Horn, Avraham/Bram; van der Horn, A.J.; van der Meer, Roger M.; Gagarina, Elena; Zweers, W.; Thornton, Anthony Richard

    2013-01-01

    Wave action, particularly during storms, drives the evo lution of beaches. Beach evolution by non-linear break ing waves is poorly understood due to its three-dimensional character, the range of scales involved, and our limited understanding of particle-wave interactions. We show how a novel, three-

  14. Evolution dynamics modeling and simulation of logistics enterprise's core competence based on service innovation

    Science.gov (United States)

    Yang, Bo; Tong, Yuting

    2017-04-01

    With the rapid development of economy, the development of logistics enterprises in China is also facing a huge challenge, especially the logistics enterprises generally lack of core competitiveness, and service innovation awareness is not strong. Scholars in the process of studying the core competitiveness of logistics enterprises are mainly from the perspective of static stability, not from the perspective of dynamic evolution to explore. So the author analyzes the influencing factors and the evolution process of the core competence of logistics enterprises, using the method of system dynamics to study the cause and effect of the evolution of the core competence of logistics enterprises, construct a system dynamics model of evolution of core competence logistics enterprises, which can be simulated by vensim PLE. The analysis for the effectiveness and sensitivity of simulation model indicates the model can be used as the fitting of the evolution process of the core competence of logistics enterprises and reveal the process and mechanism of the evolution of the core competence of logistics enterprises, and provide management strategies for improving the core competence of logistics enterprises. The construction and operation of computer simulation model offers a kind of effective method for studying the evolution of logistics enterprise core competence.

  15. Protoplanetary disk formation and evolution models: DM Tau and GM Aur

    Science.gov (United States)

    Hueso, R.; Guillot, T.

    2002-09-01

    We study the formation and evolution of protoplanetary disks using an axisymmetric turbulent disk model. We compare model results with observational parameters derived for the DM Tau and GM Aur systems. These are relatively old T Tauri stars with large and massive protoplanetary disks. Early disk formation is studied in the standard scenario of slowly rotating isothermal collapsing spheres and is strongly dependent on the initial angular momentum and the collapse accretion rate. The viscous evolution of the disk is integrated in time using the classical Alpha prescription of turbulence. We follow the temporal evolution of the disks until their characteristics fit the observed characteristics of DM Tau and GM Aur. We therefore obtain the set of model parameters that are able to explain the present state of these disks. We also study the disk evolution under the Beta parameterization of turbulence, recently proposed for sheared flows on protoplanetary disks. Both parameterizations allow explaining the present state of both DM Tau and GM Aur. We infer a value of Alpha between 5x10-3 to 0.02 for DM Tau and one order of magnitude smaller for GM Aur. Values of the Beta parameter are in accordance with theoretical predictions of Beta around 2x10-5 but with a larger dispersion on other model parameters, which make us favor the Alpha parameterization of turbulence. Implications for planetary system development in these systems are presented. In particular, GM Aur is a massive and slowly evolving disk where conditions are very favorable for planetesimal growth. The large value of present disk mass and the relatively small observed accretion rate of this system may also be indicative of the presence of an inner gas giant planet. Acknowledgements: This work has been supported by Programme Nationale de Planetologie. R. Hueso acknowledges a post-doctoral fellowship from Gobierno Vasco.

  16. Constraints on galaxy formation models from the galaxy stellar mass function and its evolution

    Science.gov (United States)

    Rodrigues, Luiz Felippe S.; Vernon, Ian; Bower, Richard G.

    2017-04-01

    We explore the parameter space of the semi-analytic galaxy formation model GALFORM, studying the constraints imposed by measurements of the galaxy stellar mass function (GSMF) and its evolution. We use the Bayesian emulator method to quickly eliminate vast implausible volumes of the parameter space and zoom in on the most interesting regions, allowing us to identify a set of models that match the observational data within model uncertainties. We find that the GSMF strongly constrains parameters related to quiescent star formation in discs, stellar and active galactic nucleus feedback and threshold for disc instabilities, but weakly restricts other parameters. Constraining the model using local data alone does not usually select models that match the evolution of the GSMF well. Nevertheless, we show that a small subset of models provides acceptable match to GSMF data out to redshift 1.5. We explore the physical significance of the parameters of these models, in particular exploring whether the model provides a better description if the mass loading of the galactic winds generated by starbursts (β0,burst) and quiescent discs (β0,disc) is different. Performing a principal component analysis of the plausible volume of the parameter space, we write a set of relations between parameters obeyed by plausible models with respect to GSMF evolution. We find that while β0,disc is strongly constrained by GSMF evolution data, constraints on β0,burst are weak. Although it is possible to find plausible models for which β0,burst = β0,disc, most plausible models have β0,burst > β0,disc, implying - for these - larger stellar feedback efficiency at higher redshifts.

  17. Galaxy Evolution in Cosmological Simulations With Outflows I: Stellar Masses and Star Formation Rates

    CERN Document Server

    Davé, Romeel; Finlator, Kristian

    2011-01-01

    We examine the growth of the stellar content of galaxies from z=3-0 in cosmological hydrodynamic simulations incorporating parameterised galactic outflows. Without outflows, galaxies overproduce stellar masses (M*) and star formation rates (SFRs) compared to observations. Winds introduce a three-tier form for the galaxy stellar mass and star formation rate functions, where the middle tier depends on differential (i.e. mass-dependent) recycling of ejected wind material back into galaxies. A tight M*-SFR relation is a generic outcome of all these simulations, and its evolution is well-described as being powered by cold accretion, although current observations at z>2 suggest that star formation in small early galaxies must be highly suppressed. Roughly one-third of z=0 galaxies at masses below M^* are satellites, and star formation in satellites is not much burstier than in centrals. All models fail to suppress star formation and stellar mass growth in massive galaxies at z<2, indicating the need for an exter...

  18. Star Formation in the LMC: Gravitational Instability and Dynamical Triggering

    CERN Document Server

    Chu, Y H; Yang, C C

    2007-01-01

    Evidence for triggered star formation is difficult to establish because energy feedback from massive stars tend to erase the interstellar conditions that led to the star formation. Young stellar objects (YSOs) mark sites of {\\it current} star formation whose ambient conditions have not been significantly altered. Spitzer observations of the Large Magellanic Cloud (LMC) effectively reveal massive YSOs. The inventory of massive YSOs, in conjunction with surveys of interstellar medium, allows us to examine the conditions for star formation: spontaneous or triggered. We examine the relationship between star formation and gravitational instability on a global scale, and we present evidence of triggered star formation on local scales in the LMC.

  19. Dynamics of protein aggregation and oligomer formation governed by secondary nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Michaels, Thomas C. T., E-mail: tctm3@cam.ac.uk; Lazell, Hamish W.; Arosio, Paolo; Knowles, Tuomas P. J., E-mail: tpjk2@cam.ac.uk [Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (United Kingdom)

    2015-08-07

    The formation of aggregates in many protein systems can be significantly accelerated by secondary nucleation, a process where existing assemblies catalyse the nucleation of new species. In particular, secondary nucleation has emerged as a central process controlling the proliferation of many filamentous protein structures, including molecular species related to diseases such as sickle cell anemia and a range of neurodegenerative conditions. Increasing evidence suggests that the physical size of protein filaments plays a key role in determining their potential for deleterious interactions with living cells, with smaller aggregates of misfolded proteins, oligomers, being particularly toxic. It is thus crucial to progress towards an understanding of the factors that control the sizes of protein aggregates. However, the influence of secondary nucleation on the time evolution of aggregate size distributions has been challenging to quantify. This difficulty originates in large part from the fact that secondary nucleation couples the dynamics of species distant in size space. Here, we approach this problem by presenting an analytical treatment of the master equation describing the growth kinetics of linear protein structures proliferating through secondary nucleation and provide closed-form expressions for the temporal evolution of the resulting aggregate size distribution. We show how the availability of analytical solutions for the full filament distribution allows us to identify the key physical parameters that control the sizes of growing protein filaments. Furthermore, we use these results to probe the dynamics of the populations of small oligomeric species as they are formed through secondary nucleation and discuss the implications of our work for understanding the factors that promote or curtail the production of these species with a potentially high deleterious biological activity.

  20. Formation and metamorphic evolution of the Douling Complex from the East Qinling Mountains

    Institute of Scientific and Technical Information of China (English)

    张寿广; 魏春景; 赵子然; 沈洁

    1996-01-01

    The Douling Complex occurs as a Precambrian tectonic block distributed between the North China and Yangtze plates and has a protracted evolutional history. It is composed of various metamorpnic intrusives and supracrustal rocks. According to the studies on geology and geochronology, it can be concluded that the complex may have been formed in the early Proterozoic, about 2000 Ma ago and experienced two phases of regional metamorphism during the Jinningian and late Caledonian-early Hercynian. It can be correlated with the Qinling Complex from the North Qinling Mountains in lithic assemblage, formation age, tectonic setting and metamorphism, and is probably a thrust nappe split from the Qinling Complex.

  1. The Chemical Evolution of Narrow Emission Line Galaxies: the Key to their Formation Processes

    CERN Document Server

    Torres-Papaqui, J P; Ortega-Minakata, R A

    2011-01-01

    Using the largest sample of narrow emission line galaxies available so far, we show that their spectral characteristics are correlated with different physical parameters, like the chemical abundances, the morphologies, the masses of the bulge and the mean stellar age of the stellar populations of the host galaxies. It suggests that the spectral variations observed in standard spectroscopic diagnostic diagrams are not due solely to variations of ionization parameters or structures but reflect also the chemical evolution of the galaxies, which in turn can be explained by different galaxy formation processes.

  2. Evolution Methods of Formation of Neuronet Models of Complex Economic Systems

    Directory of Open Access Journals (Sweden)

    Khemelyov Oleksandr H.

    2014-01-01

    Full Text Available The article analyses principles of formation of neuronet models of complex economic systems. It justifies prospectiveness of use of artificial intellect methods when modelling complex economic systems. It shows a possibility of use of evolution methods when forming neuronet models of complex economic systems for ensuring invariance of their generalising properties. It offers an algorithm with a genome from operons of fixed length. It considers all operons from the point of view of functional positions. It notes a specific feature of the algorithm, which allows excluding anthropogenic factors when selecting the neuronet models architecture. It proves adequacy of the formed neuronet models of complex economic systems.

  3. Evolution of collisionless systems of gravitating masses, and the formation of galaxies and galaxy clusters

    Energy Technology Data Exchange (ETDEWEB)

    Doroshkevich, A.G.; Klypin, A.A.

    1981-03-01

    A series of dissipation-free models are investigated for the formation of structure in elliptical galaxies or rich clusters of galaxies by the rapid relaxation process. Using the method of macroparticles, the evolution of two types of systems comprising approx.10/sup 4/ particles is computed numerically: a) a system of superposed homogeneous oblate ellipsoids differing widely in mass and initial density; b) successive accretion of a set of low-density envelopes. In all cases an extended, flattened power-law surface-density profile develops, in good agreement with the profiles observed. The relationship between the parameters of the initial and final distributions is discussed.

  4. Probing the Formation and Evolution of Galaxies via HOD/CLF Models

    Institute of Scientific and Technical Information of China (English)

    YANG Xiaohu

    2011-01-01

    1. General framework of galaxy formation and evolution Galaxies are the building blocks of the universe, and we mankind live in the Milky Way which itself is a typical spiral galaxy. If one takes a look at an image photographed by a big telescope, e.g. the Hubble Space Telescope (HST) or the Sloan Digital Sky Survey (SDSS), except for a small fraction of stars in our Milky Way, most of the sources are galaxies. Therefore it is pivotal to understand how galaxies are formed and evolved either to probe the nature of our universe, or to probe the origin of mankind.

  5. MODEL OF GEOMEDIA CONTAINING DEFECTS: COLLECTIVE EFFECTS OF DEFECTS EVOLUTION DURING FORMATION OF POTENTIAL EARTHQUAKE FOCI

    Directory of Open Access Journals (Sweden)

    I. A. Panteleev

    2015-09-01

    Full Text Available This paper describes the statistical thermo-dynamical evolution of an ensemble of defects in the geomedium in the field of externally applied stresses. The authors introduce ‘tensor structural’ variables associated with two specific types of defects, fractures and localized shear faults (Fig. 1. Based on the procedure for averaging of the structural variables by statistical ensembles of defects, a self-consistency equation is developed; it determines the dependence of the macroscopic tensor of defects-induced strain on values of external stresses, the original pattern and interaction of defects. In the dimensionless case, the equation contains only the parameter of structural scaling, i.e. the ratio of specific structural scales, including the size of defects and an average distance between the defects.The self-consistency equation yields three typical responds of the geomedium containing defects to the increasing external stress (Fig. 2. The responses are determined from values of the structural scaling parameter. The concept of non-equilibrium free energy for a medium containing defects, given similar to the Ginzburg-Landau decomposition, allowed to construct evolutionary equations for the introduced parameters of order (deformation due to defects, and the structural scaling parameter and to explore their solutions (Fig. 3.It is shown that the first response corresponds to stable quasi-plastic deformation of the geomedium, which occurs in regularly located areas characterized by the absence of collective orientation effects. Reducing the structural scaling parameter leads to the second response characterized by the occurrence of an area of meta-stability in the behavior of the medium containing defects, when, at a certain critical stress, the orientation transition takes place in the ensemble of interacting defects, which is accompanied by an abrupt increase of deformation (Fig. 2. Under the given observation/averaging scale, this

  6. The role of reconsolidation and the dynamic process of long-term memory formation and storage

    Directory of Open Access Journals (Sweden)

    Cristina M Alberini

    2011-03-01

    Full Text Available It is becoming increasingly clear that the processes of memory formation and storage are exquisitely dynamic. Elucidating the nature and temporal evolution of the biological changes that accompany encoding, storage and retrieval is key to understand memory formation. For explicit or medial temporal lobe-dependent memories that form after a discrete event and are stored for a long time, the physical changes underlying the encoding and processing of the information (memory trace or engram remain in a fragile state for some time. However, over time, the new memory becomes increasingly resistant to disruption until it is consolidated. Retrieval or reactivation of an apparently consolidated memory can render the memory labile again, and reconsolidation is the process that occurs to mediate its restabilization. Reconsolidation also evolves with the age of the memory: Young memories are sensitive to postreactivation disruption, but older memories are more resistant. Why does a memory become labile again if it is retrieved or reactivated? Here I suggest that the main function of reconsolidation is to contribute to the lingering consolidation process and mediate memory strengthening. I also discuss the literature and results regarding the influence of the passage of time on the reconsolidation of memory. These points have important implications for the use of reconsolidation in therapeutic settings.

  7. Evolution of taxis responses in virtual bacteria: non-adaptive dynamics.

    Directory of Open Access Journals (Sweden)

    Richard A Goldstein

    2008-05-01

    Full Text Available Bacteria are able to sense and respond to a variety of external stimuli, with responses that vary from stimuli to stimuli and from species to species. The best-understood is chemotaxis in the model organism Escherichia coli, where the dynamics and the structure of the underlying pathway are well characterised. It is not clear, however, how well this detailed knowledge applies to mechanisms mediating responses to other stimuli or to pathways in other species. Furthermore, there is increasing experimental evidence that bacteria integrate responses from different stimuli to generate a coherent taxis response. We currently lack a full understanding of the different pathway structures and dynamics and how this integration is achieved. In order to explore different pathway structures and dynamics that can underlie taxis responses in bacteria, we perform a computational simulation of the evolution of taxis. This approach starts with a population of virtual bacteria that move in a virtual environment based on the dynamics of the simple biochemical pathways they harbour. As mutations lead to changes in pathway structure and dynamics, bacteria better able to localise with favourable conditions gain a selective advantage. We find that a certain dynamics evolves consistently under different model assumptions and environments. These dynamics, which we call non-adaptive dynamics, directly couple tumbling probability of the cell to increasing stimuli. Dynamics that are adaptive under a wide range of conditions, as seen in the chemotaxis pathway of E. coli, do not evolve in these evolutionary simulations. However, we find that stimulus scarcity and fluctuations during evolution results in complex pathway dynamics that result both in adaptive and non-adaptive dynamics depending on basal stimuli levels. Further analyses of evolved pathway structures show that effective taxis dynamics can be mediated with as few as two components. The non-adaptive dynamics

  8. Statistical behavior of time dynamics evolution of HIV infection

    Science.gov (United States)

    González, Ramón E. R.; Santos, Iury A. X.; Nunes, Marcos G. P.; de Oliveira, Viviane M.; Barbosa, Anderson L. R.

    2017-09-01

    We use the tools of the random matrix theory (RMT) to investigate the statistical behavior of the evolution of human immunodeficiency virus (HIV) infection. By means of the nearest-neighbor spacing distribution we have identified four distinct regimes of the evolution of HIV infection. We verified that at the beginning of the so-called clinical latency phase the concentration of infected cells grows slowly and evolves in a correlated way. This regime is followed by another one in which the correlation is lost and that in turn leads the system to a regime in which the increase of infected cells is faster and correlated. In the final phase, the one in which acquired immunodeficiency syndrome (AIDS) is stablished, the system presents maximum correlation as demonstrated by GOE distribution.

  9. Dynamic evolution of bitter taste receptor genes in vertebrates

    OpenAIRE

    Jones Gareth; Dong Dong; Zhang Shuyi

    2009-01-01

    Abstract Background Sensing bitter tastes is crucial for many animals because it can prevent them from ingesting harmful foods. This process is mainly mediated by the bitter taste receptors (T2R), which are largely expressed in the taste buds. Previous studies have identified some T2R gene repertoires, and marked variation in repertoire size has been noted among species. However, the mechanisms underlying the evolution of vertebrate T2R genes remain poorly understood. Results To better unders...

  10. Dynamic evolution of bitter taste receptor genes in vertebrates

    Directory of Open Access Journals (Sweden)

    Jones Gareth

    2009-01-01

    Full Text Available Abstract Background Sensing bitter tastes is crucial for many animals because it can prevent them from ingesting harmful foods. This process is mainly mediated by the bitter taste receptors (T2R, which are largely expressed in the taste buds. Previous studies have identified some T2R gene repertoires, and marked variation in repertoire size has been noted among species. However, the mechanisms underlying the evolution of vertebrate T2R genes remain poorly understood. Results To better understand the evolutionary pattern of these genes, we identified 16 T2R gene repertoires based on the high coverage genome sequences of vertebrates and studied the evolutionary changes in the number of T2R genes during birth-and-death evolution using the reconciled-tree method. We found that the number of T2R genes and the fraction of pseudogenes vary extensively among species. Based on the results of phylogenetic analysis, we showed that T2R gene families in teleost fishes are more diverse than those in tetrapods. In addition to the independent gene expansions in teleost fishes, frogs and mammals, lineage-specific gene duplications were also detected in lizards. Furthermore, extensive gains and losses of T2R genes were detected in each lineage during their evolution, resulting in widely differing T2R gene repertoires. Conclusion These results further support the hypotheses that T2R gene repertoires are closely related to the dietary habits of different species and that birth-and-death evolution is associated with adaptations to dietary changes.

  11. Examining the Dynamics and Evolution of Scientist-Teacher Partnerships Using Case Studies

    Science.gov (United States)

    Walker, B. A.; Hall, M. K.

    2004-12-01

    Partnerships between scientists and teachers bring individuals from different work cultures together to share information, make mutual decisions, achieve common goals, and contribute resources and skills (Gomez et al., 1990.) Because of differences between the cultures of science and teaching, building productive, durable partnerships is a challenge. CATTS (Collaboration to Advance Teaching Technology and Science) is an NSF GK-12 fellowship program that establishes partnerships between graduate and undergraduate CATTS fellows and K-12 teachers. Ideally, these sustainable relationships will increase each partner's knowledge and skill in inquiry-based teaching, the quality and quantity of math and science taught, and the likelihood of initiating future partnerships. We used a case study approach to investigate the dynamics of partnership development in the context of CATTS and why some partnerships evolve successfully and others do not. Data were obtained using classroom observations, journals, surveys, and interviews with fellows and teachers. We found commonalities among case studies that allowed us to identify patterns in partnership evolution, attributes of successful and unsuccessful partnerships, and barriers to their formation. Specific shared goals and expectations were essential, but flexibility was also important as the goals and expectations evolved over time. Role definition was an iterative process that required frequent communication and feedback between partners. Establishing hierarchical roles resulted in intimidation and breakdown of communication. The best partnerships involved a division of labor in the classroom and in planning and collaboration in which each partner's strengths were utilized to supply scientific and pedagogical resources. Investment in the partnership varied as the partnership progressed but was strongest when both partners felt as though their individual contributions were welcomed and appreciated. Successful partnership

  12. The formation and early evolution of stars from dust to stars and planets

    CERN Document Server

    Schulz, Norbert S

    2012-01-01

    Starburst regions in nearby and distant galaxies have a profound impact on our understanding of the early universe. This new, substantially updated and extended edition of Norbert Schulz’s unique book "From Dust to Stars" describes complex physical processes involved in the creation and early evolution of stars. It illustrates how these processes reveal themselves from radio wavelengths to high energy X-rays and gamma–rays, with special reference towards high energy signatures. Several sections devoted to key analysis techniques demonstrate how modern research in this field is pursued and new chapters are introduced on massive star formation, proto-planetary disks and observations of young exoplanets. Recent advances and contemporary research on the theory of star formation are explained, as are new observations, specifically from the three great observatories of the Spitzer Space Telescope, the Hubble Space Telescope and the Chandra X-Ray Observatory which all now operate at the same time and make high r...

  13. AOT-microemulsions-based formation and evolution of PbWO$_{4}$ crystals

    CERN Document Server

    Chen, D; Tang Kai Bin; Liang Zhen Hua; Zheng Hua Gui

    2004-01-01

    Anionic surfactant-AOT-microemulsions-assisted formation and evolution of PbWO//4 nanostructures with bundles rodlike, ellipsoidlike, and spherelike prepared at different media conditions were studied by powder X-ray diffraction pattern, field emission scanning electron microscopy, and transmission electron microscopy. The possible mechanisms for the formation of PbWO//4 samples in series of microemulsion systems were discussed. Various comparison experiments show that several experimental parameters, such as the AOT concentration, the water content, and reaction temperature play important roles in the morphological control of PbWO//4 nanostructures. Room-temperature photoluminescence of PbWO//4 samples with different morphologies has also been investigated and the results reveal that all these samples showed similar features with emissions at 480 similar to 510 nm but different luminescence intensity. 40 Refs.

  14. Evolution of M81 with Exponentially Decreasing Star Formation Rate of PEGASE

    Institute of Scientific and Technical Information of China (English)

    Jiu-Li Li; Xu Zhou; Jun Ma; Jian-Sheng Chen

    2004-01-01

    Based on the large field multicolor observations of Beijing-Arizona-Taiwan-Connecticut (BATC) program, we obtain the spectral energy distribution (SED) for individual regions of M81. We study the structure and evolution of MS1 with an evolutionary population synthesis (EPS) model, PEGASE. We find that the exponentially deceasing star formation rate (SFR) with star formation scale 3 Gyr (hereafter Exp, τ = 3 Gyr) gives the best agreement between the model predictions and the observed SEDs. We then obtain the structure, age distribution and evolutionary history of M81. There is a clear age gradient between the central and outer regions. The populations in the central regions are older than 7 Gyr,those in the outer regions are younger, at about 4.5 Gyr. The youngest components in the spiral arms have ages of about 2.5 Gyr or less.

  15. Formation and evolution of coronal rain observed by SDO/AIA on February 22, 2012

    CERN Document Server

    Vashalomidze, Z; Zaqarashvili, T V; Oliver, R; Shergelashvili, B; Ramishvili, G; Poedts, S; De Causmaecker, P

    2015-01-01

    The formation and dynamics of coronal rain are currently not fully understood. Coronal rain is the fall of cool and dense blobs formed by thermal instability in the solar corona towards the solar surface with acceleration smaller than gravitational free fall. We aim to study the observational evidence of the formation of coronal rain and to trace the detailed dynamics of individual blobs. We used time series of the 171 \\AA\\, and 304 \\AA\\, spectral lines obtained by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO) above active region AR 11420 on February 22, 2012. Observations show that a coronal loop disappeared in the 171 \\AA\\ channel and appeared in the 304 \\AA\\ line$\\text{}\\text{}$ more than one hour later, which indicates a rapid cooling of the coronal loop from 1 MK to 0.05 MK. An energy estimation shows that the radiation is higher than the heat input, which indicates so-called catastrophic cooling. The cooling was accompanied by the formation of coronal rain in the fo...

  16. The Chemical Evolution of Narrow Emission Line Galaxies: the Key to their Formation Processes The Chemical Evolution of Narrow Emission Line Galaxies: the Key to their Formation Processes

    Directory of Open Access Journals (Sweden)

    R. A. Ortega-Minakata

    2012-02-01

    Full Text Available Utilizando la mayor muestra de galaxias con líneas de emisión angostas disponible hasta el momento, se muestra que sus características espectrales están correlacionadas con diferentes parámetros físicos, como las abundancias químicas, las morfologías, las masas del bulbo, y la edad estelar promedio de las poblaciones estelares de la galaxia anfitriona. Por lo tanto, se sugiere que las variaciones espectrales observadas en diagramas de diagnóstico estándares no se deben únicamente a las variaciones de los parámetros o las estructuras de ionización, sino que reflejan también la evolución química de las galaxias, relacionada con diferentes procesos de formación.  Using the largest sample of narrow emission line galaxies available so far, we show that their spectral characteristics are correlated with different physical parameters, like the chemical abundances, the morphologies, the masses of the bulge and the mean stellar age of the stellar populations of the host galaxies. It suggests that the spectral variations observed in standard spectroscopic diagnostic diagrams are not due solely to variations of ionization parameters or structures but reflect also the chemical evolution of the galaxies, which in turn can be explained by different galaxy formation processes.

  17. 2D pattern evolution constrained by complex network dynamics

    CERN Document Server

    Rocha, L E C; Costa, Luciano da Fontoura; Rocha, Luis Enrique Correa da

    2006-01-01

    Complex networks have established themselves along the last years as being particularly suitable and flexible for representing and modeling several complex natural and human-made systems. At the same time in which the structural intricacies of such networks are being revealed and understood, efforts have also been directed at investigating how such connectivity properties define and constrain the dynamics of systems unfolding on such structures. However, lesser attention has been focused on hybrid systems, \\textit{i.e.} involving more than one type of network and/or dynamics. Because several real systems present such an organization (\\textit{e.g.} the dynamics of a disease coexisting with the dynamics of the immune system), it becomes important to address such hybrid systems. The current paper investigates a specific system involving a diffusive (linear and non-linear) dynamics taking place in a regular network while interacting with a complex network of defensive agents following Erd\\"os-R\\'enyi and Barab\\'a...

  18. Social Judgment Theory Based Model On Opinion Formation, Polarization And Evolution

    CERN Document Server

    Chau, H F; Chow, F K; Fung, C -H F

    2013-01-01

    The dynamical origin of opinion polarization in the real world is an interesting topic physical scientists may help to understand. To properly model the dynamics, the theory must be fully compatible with the social judgment theory (SJT) of microscopic opinion change. Here we introduce a generic SJT-based model of opinion formation with homogeneous agents by extending a similar model proposed by Jager and Amblard. The agents' opinions will eventually cluster around extreme and/or moderate opinions forming three phases in a two-dimensional parameter space that describes the microscopic opinion response of the agents. The dynamics of this model can be qualitatively understood by mean-field analysis. More importantly, first-order phase transition in opinion distribution is observed by evolving the system under a slow change in the system parameters, showing that punctuated equilibria in public opinion can occur even in a fully connected social network.

  19. Plasma Formation and Evolution on Cu, Al, Ti, and Ni Surfaces Driven by a Mega-Ampere Current Pulse

    Science.gov (United States)

    Yates, Kevin C.

    conductor. When photodiode signals of visible light surface emission reach values indicating temperatures consistent with plasma formation, a sharp increase in signal is observed, which can be interpreted as related to an abrupt increase in conductivity when plasma forms, as has been observed experimentally as well as in Quantum Molecular Dynamic simulations. The increase in conductivity, in the context of an overall rising current, causes an abrupt increase in current density in the plasma-forming layer, leading to an increase in temperature that reinforces the increase in conductivity. Laser shadowgaphy images allow for the observation of expansion as well as the development and evolution of surface instabilities. The sudden expansion of the surface of a heated conductor is not sufficient to claim plasma formation. The development of late-time surface instabilities does indicate surface plasma formed, although it does not pinpoint the moment of plasma formation. The self-emission images captured by ICCD cameras provide a third indicator of plasma formation. The images first show non-uniform dots begin to glow, then show bright filaments in the direction of current flow, and eventually show a uniform surface emission. The early dots are believed to be plasma; however, the filamentation occurs near the time of the abrupt increase in the visible diode signal. The filaments are likely caused by electrothermal instabilities a formation attributed to a plasma. The interplay between an ohmically heated conductor and a magnetic field is important for the field of Magnetized Target Fusion (MTF). MTF compresses a magnetized fuel by imploding a flux-conserving metal liner. During compression, fields reach several megagauss, with a fraction of the flux diffusing into the metal liner. The magnetic field induces eddy currents in the metal, leading to ionization and potential mixing of metal contaminant into the fusion fuel.

  20. Spatio-temporal dynamics induced by competing instabilities in two asymmetrically coupled nonlinear evolution equations

    Energy Technology Data Exchange (ETDEWEB)

    Schüler, D.; Alonso, S.; Bär, M. [Physikalisch-Technische Bundesanstalt, Abbestrasse 2-12, 10587 Berlin (Germany); Torcini, A. [CNR-Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi - Via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy); INFN Sez. Firenze, via Sansone 1, I-50019 Sesto Fiorentino (Italy)

    2014-12-15

    Pattern formation often occurs in spatially extended physical, biological, and chemical systems due to an instability of the homogeneous steady state. The type of the instability usually prescribes the resulting spatio-temporal patterns and their characteristic length scales. However, patterns resulting from the simultaneous occurrence of instabilities cannot be expected to be simple superposition of the patterns associated with the considered instabilities. To address this issue, we design two simple models composed by two asymmetrically coupled equations of non-conserved (Swift-Hohenberg equations) or conserved (Cahn-Hilliard equations) order parameters with different characteristic wave lengths. The patterns arising in these systems range from coexisting static patterns of different wavelengths to traveling waves. A linear stability analysis allows to derive a two parameter phase diagram for the studied models, in particular, revealing for the Swift-Hohenberg equations, a co-dimension two bifurcation point of Turing and wave instability and a region of coexistence of stationary and traveling patterns. The nonlinear dynamics of the coupled evolution equations is investigated by performing accurate numerical simulations. These reveal more complex patterns, ranging from traveling waves with embedded Turing patterns domains to spatio-temporal chaos, and a wide hysteretic region, where waves or Turing patterns coexist. For the coupled Cahn-Hilliard equations the presence of a weak coupling is sufficient to arrest the coarsening process and to lead to the emergence of purely periodic patterns. The final states are characterized by domains with a characteristic length, which diverges logarithmically with the coupling amplitude.

  1. DYNAMIC DUCTILE EVOLUTION AND TENSILE FRACTURE: NEW EXPERIMENTAL INSIGHTS FOR MODELS EVALUATION

    Energy Technology Data Exchange (ETDEWEB)

    A. ZUREK

    2000-08-01

    Under dynamic loading conditions, the rapid nature of the fracture process may simultaneously activate a considerable number of nucleation sites for void formation at the region of the tensile stress field. The growth and coalescence of these voids forms the deformation plane and eventually the fracture surface. Attempts to quantify damage evolution during fracture using microstructural observations, specifically for spallation, were pioneered by Seaman and his coworkers. They performed incipient spallation experiments in which they imposed a peak stress below the spall strength of the material, thereby developing an incipient spallation zone rather than complete separation. When this experimental methodology is applied, recovery techniques are utilized to recover the deformed samples without introducing any additional damage. Seaman and his coworkers, and later Lacomme, et al., developed damage quantification techniques based on area measurements of incipient fracture. However, measuring the area of a fracture opening with a certain degree of precision from a two dimensional image can be extremely inaccurate due to the irregular shape of the image. In recent years several techniques have been developed, or improved, that may allow a better and more accurate quantification of image features observed in metallographic analyses in incipient damage of fracture surfaces. Many of these measured quantities are essential towards developing a solid, robust understanding necessary for a good constitutive model.

  2. Origin and evolution of palaeokarst within the Lower Ordovician (Ibexian) Goodwin Formation (Pogonip Group)

    Institute of Scientific and Technical Information of China (English)

    Robert; J.; Kervin; Adam; D.; Woods

    2012-01-01

    Palaeokarst within the Lower to Middle Ordovician Goodwin Formation, Pogonip Group (upper Ibexian-lower Whiterockian) was examined in detail at Meiklejohn Peak, Nevada USA in order to determine its origin, evolution, and relationship to sea level change. Detailed outcrop and petrographic examination of dolostone breccias and host rock reveals that palaeokarst was formed and affected by two distinct cycles of sea level change. A relative transgression resulted in deposition of lagoonal, ooid shoal, and shallow subtidal facies as sea level rose. Exposure of the carbonate platform led to the formation of multiple phreatic caves below the water table, as well as the development of numerous vadose conduits from the downward percolation of meteoric waters. Vadose water flow through early cave-wall and cave-roof collapse breccias resulted in rounding of smaller breccias clasts via physical transport and corrosion, while subsidence of subsurface karst led to the formation of a palaeodoline at the exposure surface. A second relative transgression deposited lagoonal sediments over the older karst; subsequent re-exposure of the carbonate platform resulted in the development of small breccia pockets as well as grikes within the youngest lagoonal sediments, and may have led to further corrosion of the older, deeper subsurface karst. The distal location of the study area within the carbonate platform suggests karst formation was the result of a substantial drop in relative sea level; the presence of multiple generations of palaeokarst imply that at least two higher-frequency cycles of sea-level change overprint the larger regression.

  3. Evolution and Dynamics of a Solar Active Prominence

    CERN Document Server

    Magara, Tetsuya

    2015-01-01

    The life of a solar active prominence, one of the most remarkable objects on the Sun, is full of dynamics; after first appearing on the Sun the prominence continuously evolves with various internal motions and eventually produces a global eruption toward the interplane- tary space. Here we report that the whole life of an active prominence is successfully re- produced by performing as long-term a magnetohydrodynamic simulation of a magnetized prominence plasma as was ever done. The simulation reveals underlying dynamic processes that give rise to observed properties of an active prominence: invisible subsurface flows self- consistently produce the cancellation of magnetic flux observed at the photosphere, while observed and somewhat counterintuitive strong upflows are driven against gravity by en- hanced gas pressure gradient force along a magnetic field line locally standing vertical. The most highlighted dynamic event, transition into an eruptive phase, occurs as a natural con- sequence of the self-consiste...

  4. Metamorphic sole formation, emplacement and blueschist overprint: early obduction dynamics witnessed by W. Turkey ophiolites

    Science.gov (United States)

    Plunder, Alexis; Agard, Philippe; Chopin, Christian; Soret, Mathieu; Okay, Aral; Whitechurch, Hubert

    2016-04-01

    Western Turkey, with a >200 km long-belt of unmetamorphosed ophiolite overlying continental lithosphere is one or even the largest obducted ophiolite on Earth and therefore a key example to study obduction and early subduction dynamics. All Western Turkish ophiolite fragments are considered as part of the same Neotethyan branch resulting of a long-lived continental subduction (or underthrusting). Synchronous (ca. ~ 93 Ma) metamorphic sole formation and preservation at the base of most of the Turkish ophiolite fragments support this single event and place a strong constraint on the age of subduction initiation. Metamorphic soles are indeed generally considered to have formed during the early and hot subduction zone at 25 ± 10 km depths and welded to the overriding oceanic lithosphere. In Western Turkey however (as for most places worldwide) a systematic study of the pressure-temperature conditions with modern thermobarometric tools is generally lacking, and fundamental mechanisms of formation or accretion to the upper plate are poorly (if at all) constrained. We herein reappraise Western Turkish metamorphic soles focusing on the following points and issues: (i) detailed structures of metamorphic sole and other subduction derived units, petrological evolution and refined pressure-temperature conditions; peak pressure-temperature conditions of metamorphic sole were estimated using garnet, clinopyroxene, amphibole and plagioclase as the peak paragenesis at 10.5 ± 2 kbar and 800 ± 50°C based on pseudosections using the Theriak/Domino package (ii) the rather unique (and enigmatic) blueschist facies overprint found in places was investigated in terms of structural position and pressure-temperature conditions. Conditions of overprint were estimated around 12 kbar and 425 °C from the presence of glaucophane, lawsonite, jadeite and garnet overgrowing the amphibolite-facies assemblage. This field-based study provides clues to mechanisms of metamorphic sole underplating

  5. Formation and Evolution of the Dust in Galaxies. II. The Solar Neighbourhood

    CERN Document Server

    Piovan, L; Merlin, E; Grassi, T; Tantalo, R; Buonomo, U; Cassarà, L P

    2011-01-01

    Over the past decade a new generation of chemical models have included the dust in the treatment of the ISM. This major accomplishment has been spurred by the growing amounts of data on the highly obscured high-z Universe and the intriguing local properties of the Solar Neighbourhood (SoNE). We present here a new model able to simulate the formation and evolution of dust in the ISM. The model follows the evolution of 16 elemental species, with particular attention to those that are simultaneously present in form of gas and dust, e.g. C, N, O, Mg, Si, S, Ca and Fe. In this study we focus on the SoNe and the MW Disk as a whole which are considered as laboratories to test the physical ingredients governing the dust evolution. Infall of primordial gas, birth and death of stars, radial flows of matter between contiguous shells, presence of a central bar, star-dust emission by SNae and AGB stars, dust destruction and accretion are taken into account. The model reproduces the local depletion of the elements in the g...

  6. Dynamic evolution of cross-correlations in the Chinese stock market.

    Science.gov (United States)

    Ren, Fei; Zhou, Wei-Xing

    2014-01-01

    The analysis of cross-correlations is extensively applied for the understanding of interconnections in stock markets and the portfolio risk estimation. Current studies of correlations in Chinese market mainly focus on the static correlations between return series, and this calls for an urgent need to investigate their dynamic correlations. Our study aims to reveal the dynamic evolution of cross-correlations in the Chinese stock market, and offer an exact interpretation for the evolution behavior. The correlation matrices constructed from the return series of 367 A-share stocks traded on the Shanghai Stock Exchange from January 4, 1999 to December 30, 2011 are calculated over a moving window with a size of 400 days. The evolutions of the statistical properties of the correlation coefficients, eigenvalues, and eigenvectors of the correlation matrices are carefully analyzed. We find that the stock correlations are significantly increased in the periods of two market crashes in 2001 and 2008, during which only five eigenvalues significantly deviate from the random correlation matrix, and the systemic risk is higher in these volatile periods than calm periods. By investigating the significant contributors of the deviating eigenvectors in different time periods, we observe a dynamic evolution behavior in business sectors such as IT, electronics, and real estate, which lead the rise (drop) before (after) the crashes. Our results provide new perspectives for the understanding of the dynamic evolution of cross-correlations in the Chines stock markets, and the result of risk estimation is valuable for the application of risk management.

  7. Supermassive Black Hole Seed Formation at High Redshifts: Long-Term Evolution of the Direct Collapse

    CERN Document Server

    Shlosman, Isaac; Begelman, Mitchell C; Nagamine, Kentaro

    2015-01-01

    We use cosmological adaptive mesh refinement (AMR) code Enzo zoom-in simulations to study the long term evolution of the collapsing gas within dark matter (DM) halos at high redshifts. This direct collapse process is a leading candidate for rapid formation of supermassive black hole (SMBH) seeds at high z. To circumvent the Courant condition at small radii, we have used the sink particle method, and focus on the evolution on scales ~0.01-10 pc. The collapse proceeds in two stages, with the secondary runaway happening within the central 10 pc, and with no detected fragmentation. The sink particles form when the collapsing gas requires additional refinement of the grid size at the highest refinement level. Their mass never exceeds ~10^3 Mo, with the sole exception of the central seed which grows dramatically to ~ 2 x 10^6 Mo in ~2 Myr, confirming the feasibility of this path to the SMBH. The time variability of angular momentum axis in the accreted gas results in the formation of two misaligned disks --- a smal...

  8. A QCD space-time analysis of quarkonium formation and evolution in hadronic collisions

    CERN Document Server

    Kinder-Geiger, Klaus

    1998-01-01

    The production of heavy quarkonium as QQbar bound-states in hadron-hadron collisions is considered within the framework of a space-time description, combining parton-cascade evolution with a coalescence model for bound-state formation. The `hard' production of the initial QQbar, directly or via gluon fragmentation and including both color-singlet and color-octet contributions, is calculated from the PQCD cross-sections. The subsequent development of the QQbar system is described within a space-time generalization of the DGLAP parton-evolution formalism in position- and momentum-space. The actual formation of the bound-states is accomplished through overlap of the QQbar pair and a spectrum of quarkonium wave-functions. This coalescence can only occur after sufficent gluon radiation reduces the QQbar relative velocity to a value commensurate with the non-relativistic kinematics of these bound systems. The presence of gluon participants in the cascade then is both necessary and leads to the natural inclusion of ...

  9. Temperature perturbations evolution as a possible mechanism of exothermal reaction kernels formation in shock tubes

    Science.gov (United States)

    Drakon, A. V.; Kiverin, A. D.; Yakovenko, I. S.

    2016-11-01

    The basic question raised in the paper concerns the origins of exothermal reaction kernels and the mechanisms of detonation onset behind the reflected shock wave in shock-tube experiments. Using the conventional experimental technique, it is obtained that in the certain diapason of conditions behind the reflected shocks a so-called “mild ignition” arises which is characterized by the detonation formation from the kernel distant from the end-wall. The results of 2-D and 3-D simulations of the flow evolution behind the incident and reflected shocks allow formulation of the following scenario of ignition kernels formation. Initial stage during and after the diaphragm rupture is characterized by a set of non-steady gasdynamical processes. As a result, the flow behind the incident shock occurs to be saturated with temperature perturbations. Further evolution of these perturbations provides generating of the shear stresses in the flow accompanied with intensification of velocity and temperature perturbations. After reflection the shock wave interacts with the formed kernels of higher temperature and more pronounced kernels arise on the background of reactivity profile determined by moving reflected shock. Exothermal reaction starts inside such kernels and propagates into the ambient medium as a spontaneous ignition wave with minimum initial speed equal to the reflected shock wave speed.

  10. Galaxy Evolution and Star Formation Efficiency at 0.2 < z < 0.6

    CERN Document Server

    Combes, F; Braine, J; Schinnerer, E; Walter, F; Colina, L

    2010-01-01

    We present the results of a CO line survey of 30 galaxies at moderate redshift (z ~ 0.2-0.6), with the IRAM 30m telescope, with the goal to follow galaxy evolution and in particular the star formation efficiency (SFE) as defined by the ratio between far-infrared luminosity and molecular gas mass (L_FIR/M(H2)). The sources are selected to be ultra-luminous infrared galaxies (ULIRGs), with L_ FIR larger than 2.8 10^{12} Lo, experiencing starbursts: their gas consumption time-scale is lower than 10^8 yr. To date only very few CO observations exist in this redshift range that spans nearly 25\\% of the universe's age. In addition, considerable evolution of the star formation rate is already observed during this period. 18 galaxies out of our sample of 30 are detected (of which 16 are new detections), corresponding to a detection rate of 60\\%. The average CO luminosity for the 18 galaxies detected is L'_CO = 2 10^{10} Lo, corresponding to an average H2 mass of 1.6 10^{10} Mo. The FIR luminosity correlates well with ...

  11. Can AGN feedback-driven star formation explain the size evolution of massive galaxies?

    CERN Document Server

    Ishibashi, W; Canning, R E A

    2013-01-01

    Observations indicate that massive galaxies at z~2 are more compact than galaxies of comparable mass at z~0, with effective radii evolving by a factor of ~3-5. This implies that galaxies grow significantly in size but relatively little in mass over the past ~10 Gyr. Two main physical models have been proposed in order to explain the observed evolution of massive galaxies: "mergers" and "puffing-up" scenarios. Here we introduce another possibility, and discuss the potential role of the central active galactic nucleus (AGN) feedback on the evolution of its host galaxy. We consider triggering of star formation, due to AGN feedback, with radiation pressure on dusty gas as the driving feedback mechanism. In this picture, stars are formed in the feedback-driven outflow at increasingly larger radii and build up the outer regions of the host galaxy. The resulting increase in size and stellar mass can be compared with the observed growth of massive galaxies. Star formation in the host galaxy is likely obscured due to ...

  12. Chemical spots and their dynamical evolution on HgMn stars

    CERN Document Server

    Korhonen, Heidi; Briquet, Maryline; Gonzalez, Federico; Savanov, Igor

    2010-01-01

    Our recent studies of late B-type stars with HgMn peculiarity revealed for the first time the presence of fast dynamical evolution of chemical spots on their surfaces. These observations suggest a hitherto unknown physical process operating in the stars with radiative outer envelopes. Furthermore, we have also discovered existence of magnetic fields on these stars that have up to now been thought to be non-magnetic. Here we will discuss the dynamical spot evolution on HD 11753 and our new results on magnetic fields on AR Aur.

  13. Stochastic evolutions of dynamic traffic flow modeling and applications

    CERN Document Server

    Chen, Xiqun (Michael); Shi, Qixin

    2015-01-01

    This book reveals the underlying mechanisms of complexity and stochastic evolutions of traffic flows. Using Eulerian and Lagrangian measurements, the authors propose lognormal headway/spacing/velocity distributions and subsequently develop a Markov car-following model to describe drivers’ random choices concerning headways/spacings, putting forward a stochastic fundamental diagram model for wide scattering flow-density points. In the context of highway onramp bottlenecks, the authors present a traffic flow breakdown probability model and spatial-temporal queuing model to improve the stability and reliability of road traffic flows. This book is intended for researchers and graduate students in the fields of transportation engineering and civil engineering.

  14. Do group dynamics play a role in the evolution of member galaxies?

    CERN Document Server

    Hou, Annie; Balogh, Michael L; McGee, Sean L; Wilman, David J; Connelly, Jennifer L; Harris, William E; Mok, Angus; Mulchaey, John S; Bower, Richard G; Finoguenov, Alexis

    2013-01-01

    We examine galaxy groups from the present epoch to z = 1 to explore the impact of group dynamics on galaxy evolution. We use group catalagues from the Sloan Digital Sky Survey (SDSS), the Group Environment and Evolution Collaboration (GEEC) and the high redshift GEEC2 sample to study how the observed member properties depend on galaxy stellar mass, group dynamical mass and dynamical state of the host group. We find a strong correlation between the fraction of non-star-forming (quiescent) galaxies and galaxy stellar mass, but do not detect a significant difference in the quiescent fraction with group dynamical mass, within our sample halo mass range of 10^13-10^14.5 M_sun, or with dynamical sate. However, at a redshift of approximately 0.4 we do see some evidence that the quiescent fraction in low mass galaxies (log(M_star/M_sun) 10.5), evolution is most strongly correlated to the stellar mass of a galaxy with little or no additional effect related to either the group dynamical mass or dynamical state. For lo...

  15. Diagenesis and porosity evolution of tight sand reservoirs in Carboniferous Benxi Formation, Southeast Ordos Basin

    Science.gov (United States)

    Hu, Peng; Yu, Xinghe; Shan, Xin; Su, Dongxu; Wang, Jiao; Li, Yalong; Shi, Xin; Xu, Liqiang

    2016-04-01

    The Ordos Basin, situated in west-central China, is one of the oldest and most important fossil-fuel energy base, which contains large reserves of coal, oil and natural gas. The Upper Palaeozoic strata are widely distributed with rich gas-bearing and large natural gas resources, whose potential is tremendous. Recent years have witnessed a great tight gas exploration improvement of the Upper Paleozoic in Southeastern Ordos basin. The Carboniferous Benxi Formation, mainly buried more than 2,500m, is the key target strata for hydrocarbon exploration, which was deposited in a barrier island and tidal flat environment. The sandy bars and flats are the favorable sedimentary microfacies. With an integrated approach of thin-section petrophysics, constant velocity mercury injection test, scanning electron microscopy and X-ray diffractometry, diagenesis and porosity evolution of tight sand reservoirs of Benxi Formation were analyzed in detail. The result shows that the main lithology of sandstone in this area is dominated by moderately to well sorted quartz sandstone. The average porosity and permeability is 4.72% and 1.22mD. The reservoirs of Benxi Formation holds a variety of pore types and the pore throats, with obvious heterogeneity and poor connection. Based on the capillary pressure curve morphological characteristics and parameters, combined with thin section and phycical property data, the reservoir pore structure of Benxi Formation can be divided into 4 types, including mid pore mid throat type(I), mid pore fine throat type(II), small pore fine throat type(III) and micro pro micro throat type(Ⅳ). The reservoirs primarily fall in B-subsate of middle diagenesis and late diagenesis, which mainly undergo compaction, cmentation, dissolution and fracturing process. Employing the empirical formula of different sorting for unconsolideated sandstone porosity, the initial sandstone porosity is 38.32% on average. Quantitative evaluation of the increase and decrease of

  16. Long-term dynamical evolution of dusty ejecta from Deimos

    Science.gov (United States)

    Makuch, Martin; Krivov, Alexander V.; Spahn, Frank

    2005-04-01

    We re-assess expected properties of the presumed dust belt of Mars formed by impact ejecta from Deimos. Previous studies have shown that dynamics of Deimos particles are dominated by two perturbing forces: radiation pressure (RP) and Mars' oblateness (J2). At the same time, they have demonstrated that lifetimes of particles, especially of grains about ten of micrometers in size, may reach more than 104 years. On such timescales, the Poynting-Robertson drag (PR) becomes important. Here we provide a study of the dynamics under the combined action of all three perturbing forces. We show that a PR decay of the semimajor axes leads to an adiabatic decrease of amplitudes and periods of oscillations in orbital inclinations predicted in the framework of the underlying RP+J2 problem. Furthermore, we show that smallest of the long-lived Deimos grains (radius≈5- 10μm) may reach a chaotic regime, resulting in unpredictable and abrupt changes of their dynamics. The particles just above that size ( ≈10- 15μm) should be the most abundant in the Deimos torus. Our dynamical analysis, combined with a more accurate study of the particle lifetimes, provides corrections to earlier predictions about the dimensions and geometry of the Deimos torus. In addition to a population, appreciably inclined and shifted towards the Sun, the torus should contain a more contracted, less asymmetric, and less tilted component between the orbits of Phobos and Deimos.

  17. Dynamic evolution of Rht-1 homologous regions in grass genomes

    Science.gov (United States)

    Bread wheat contains A, B, and D subgenomes with its well characterized ancestral genomes that exist at the diploid and tetraploid levels. Therefore, the wheat genome system acts as a model specie for studying genome evolutionary dynamics. Here, we performed intra- and inter-species comparative ana...

  18. Dark-ages Reionization and Galaxy formation simulation - I. The dynamical lives of high-redshift galaxies

    Science.gov (United States)

    Poole, Gregory B.; Angel, Paul W.; Mutch, Simon J.; Power, Chris; Duffy, Alan R.; Geil, Paul M.; Mesinger, Andrei; Wyithe, Stuart B.

    2016-07-01

    We present the Dark-ages Reionization and Galaxy formation Observables from Numerical Simulations (DRAGONS) programme and Tiamat, the collisionless N-body simulation programme upon which DRAGONS is built. The primary trait distinguishing Tiamat from other large simulation programme is its density of outputs at high redshift (100 from z = 35 to z = 5; roughly one every 10 Myr) enabling the construction of very accurate merger trees at an epoch when galaxy formation is rapid and mergers extremely frequent. We find that the friends-of-friends halo mass function agrees well with the prediction of Watson et al. at high masses, but deviates at low masses, perhaps due to our use of a different halo finder or perhaps indicating a break from `universal' behaviour. We then analyse the dynamical evolution of galaxies during the Epoch of Reionization finding that only a small fraction (˜20 per cent) of galactic haloes are relaxed. We illustrate this using standard relaxation metrics to establish two dynamical recovery time-scales: (i) haloes need ˜1.5 dynamical times following formation, and (ii) ˜2 dynamical times following a major (3:1) or minor (10:1) merger to be relaxed. This is remarkably consistent across a wide mass range. Lastly, we use a phase-space halo finder to illustrate that major mergers drive long-lived massive phase-space structures which take many dynamical times to dissipate. This can yield significant differences in the inferred mass build-up of galactic haloes and we suggest that care must be taken to ensure a physically meaningful match between the galaxy formation physics of semi-analytic models and the halo finders supplying their input.

  19. Sensitivity of train stochastic dynamics to long-term evolution of track irregularities

    Science.gov (United States)

    Lestoille, N.; Soize, C.; Funfschilling, C.

    2016-05-01

    The influence of the track geometry on the dynamic response of the train is of great concern for the railway companies, because they have to guarantee the safety of the train passengers in ensuring the stability of the train. In this paper, the long-term evolution of the dynamic response of the train on a stretch of the railway track is studied with respect to the long-term evolution of the track geometry. The characterisation of the long-term evolution of the train response allows the railway companies to start off maintenance operations of the track at the best moment. The study is performed using measurements of the track geometry, which are carried out very regularly by a measuring train. A stochastic model of the studied stretch of track is created in order to take into account the measurement uncertainties in the track geometry. The dynamic response of the train is simulated with a multibody software. A noise is added in output of the simulation to consider the uncertainties in the computational model of the train dynamics. Indicators on the dynamic response of the train are defined, allowing to visualize the long-term evolution of the stability and the comfort of the train, when the track geometry deteriorates.

  20. Scenarios of giant planet formation and evolution and their impact on the formation of habitable terrestrial planets.

    Science.gov (United States)

    Morbidelli, Alessandro

    2014-04-28

    In our Solar System, there is a clear divide between the terrestrial and giant planets. These two categories of planets formed and evolved separately, almost in isolation from each other. This was possible because Jupiter avoided migrating into the inner Solar System, most probably due to the presence of Saturn, and never acquired a large-eccentricity orbit, even during the phase of orbital instability that the giant planets most likely experienced. Thus, the Earth formed on a time scale of several tens of millions of years, by collision of Moon- to Mars-mass planetary embryos, in a gas-free and volatile-depleted environment. We do not expect, however, that this clear cleavage between the giant and terrestrial planets is generic. In many extrasolar planetary systems discovered to date, the giant planets migrated into the vicinity of the parent star and/or acquired eccentric orbits. In this way, the evolution and destiny of the giant and terrestrial planets become intimately linked. This paper discusses several evolutionary patterns for the giant planets, with an emphasis on the consequences for the formation and survival of habitable terrestrial planets. The conclusion is that we should not expect Earth-like planets to be typical in terms of physical and orbital properties and accretion history. Most habitable worlds are probably different, exotic worlds.