WorldWideScience

Sample records for formal auditory training

  1. Formal auditory training in adult hearing aid users

    Directory of Open Access Journals (Sweden)

    Daniela Gil

    2010-01-01

    Full Text Available INTRODUCTION: Individuals with sensorineural hearing loss are often able to regain some lost auditory function with the help of hearing aids. However, hearing aids are not able to overcome auditory distortions such as impaired frequency resolution and speech understanding in noisy environments. The coexistence of peripheral hearing loss and a central auditory deficit may contribute to patient dissatisfaction with amplification, even when audiological tests indicate nearly normal hearing thresholds. OBJECTIVE: This study was designed to validate the effects of a formal auditory training program in adult hearing aid users with mild to moderate sensorineural hearing loss. METHODS: Fourteen bilateral hearing aid users were divided into two groups: seven who received auditory training and seven who did not. The training program was designed to improve auditory closure, figure-to-ground for verbal and nonverbal sounds and temporal processing (frequency and duration of sounds. Pre- and post-training evaluations included measuring electrophysiological and behavioral auditory processing and administration of the Abbreviated Profile of Hearing Aid Benefit (APHAB self-report scale. RESULTS: The post-training evaluation of the experimental group demonstrated a statistically significant reduction in P3 latency, improved performance in some of the behavioral auditory processing tests and higher hearing aid benefit in noisy situations (p-value < 0,05. No changes were noted for the control group (p-value <0,05. CONCLUSION: The results demonstrated that auditory training in adult hearing aid users can lead to a reduction in P3 latency, improvements in sound localization, memory for nonverbal sounds in sequence, auditory closure, figure-to-ground for verbal sounds and greater benefits in reverberant and noisy environments.

  2. Treinamento auditivo formal em idosos usuários de próteses auditivas Formal auditory training in elderly hearing aid users

    Directory of Open Access Journals (Sweden)

    Elisiane Crestani de Miranda

    2008-12-01

    Full Text Available A implantação de programas de reabilitação para o deficiente auditivo idoso é de grande importância. OBJETIVO: Verificar a eficácia de um programa de treinamento auditivo formal em idosos que receberam próteses auditivas há no mínimo três meses, por meio de testes de reconhecimento de fala e questionário de auto-avaliação. MÉTODO: Estudo de coorte contemporânea longitudinal. Foram selecionados 13 idosos usuários de próteses auditivas intra-aurais em adaptação binaural, de ambos os sexos, com idade média de 65,30 anos. Este grupo foi subdividido aleatoriamente em Grupo Experimental e Grupo Controle, por meio de sorteio. O Grupo Experimental foi submetido a sete sessões de treinamento auditivo formal, visando estimular as habilidades auditivas de fechamento auditivo, memória, atenção, figura-fundo e integração binaural. Os participantes foram avaliados por três testes comportamentais e um questionário de auto-avaliação. RESULTADOS: Os idosos do Grupo Experimental apresentaram desempenho significantemente melhor nas avaliações após o treinamento auditivo e também em relação ao Grupo Controle. CONCLUSÃO: O programa de treinamento auditivo em cabina acústica, associado ao uso de próteses auditivas, melhora o desempenho das habilidades de reconhecimento de fala e reduz a percepção do handicap auditivo de idosos usuários de próteses auditivas intra-aurais.It is of paramount importance to install hearing rehabilitation programs for the elderly. AIM: to check the efficacy of a forma auditory training program for elderly patients fitted with hearing aids for at least three months, by means of speech recognition tests and self-assessment questionnaires. METHODS: longitudinal contemporary cohort study. We selected 13 elderly hearing aid users, using intra-canal hearing aids in both ears, from both genders, with average age of 65.3 years. This group was randomly divided in Experiment Group and Control Group. The

  3. A eficácia do treinamento auditivo formal em indivíduos com transtorno de processamento auditivo Formal auditory training efficacy in individuals with auditory processing disorder

    Directory of Open Access Journals (Sweden)

    Tatiane Eisencraft Zalcman

    2007-12-01

    Full Text Available OBJETIVO: Verificar a eficácia de um programa de Treinamento Auditivo comparando o desempenho inicial, nos testes comportamentais, com o desempenho após o treinamento auditivo aplicado em indivíduos com Transtorno de Processamento Auditivo. MÉTODOS: Participaram do estudo 30 sujeitos com idades entre oito e 16 anos, que passaram por uma avaliação comportamental inicial do processamento auditivo em que foram utilizados dois testes monóticos e dois dicóticos. Posteriormente foram submetidos a um programa de treinamento de auditivo durante oito semanas, a fim de reabilitar as habilidades auditivas encontradas alteradas na avaliação inicial do processamento auditivo e por fim passaram por uma nova avaliação comportamental do processamento auditivo. RESULTADOS: Após o treinamento auditivo houve melhora em todos os testes aplicados. No teste PSI, pré-treinamento auditivo, as crianças, as crianças tinham uma média de acerto de 66,8% que passou para 86,2% após o treinamento auditivo. No teste de fala com ruído, as crianças tinham uma média de acerto de 69,3% pré-treinamento auditivo que passou a ser 80,5% pós-treinamento auditivo. No teste DNV, a média de acerto pré-treinamento auditivo era de 72,6% e passou a ser 91,4%. Finalmente, no teste SSW a treinamento auditivo média de acerto era de 42,2% pré-treinamento auditivo e passou a ser 88,9% pós. CONCLUSÃO: O programa de treinamento auditivo utilizado foi eficaz na reabilitação das habilidades auditivas encontradas alteradas nas crianças com Transtorno de Processamento Auditivo.PURPOSE: To assess the effectiveness of the Auditory Training comparing the performance in the behavioral tests before and after auditory training in individuals with Auditory Processing Disorders. METHODS: Thirty individuals with ages ranging from eight to 16 years were submitted to an auditory processing evaluation, which consisted of two monotic and two dichotic tests. After that, the

  4. Effects of auditory training in individuals with high-frequency hearing loss

    Directory of Open Access Journals (Sweden)

    Renata Beatriz Fernandes Santos

    2014-01-01

    Full Text Available OBJECTIVE: To determine the effects of a formal auditory training program on the behavioral, electrophysiological and subjective aspects of auditory function in individuals with bilateral high-frequency hearing loss. METHOD: A prospective study of seven individuals aged 46 to 57 years with symmetric, moderate high-frequency hearing loss ranging from 3 to 8 kHz was conducted. Evaluations of auditory processing (sound location, verbal and non-verbal sequential memory tests, the speech-in-noise test, the staggered spondaic word test, synthetic sentence identification with competitive ipsilateral and contralateral competitive messages, random gap detection and the standard duration test, auditory brainstem response and long-latency potentials and the administration of the Abbreviated Profile of Hearing Aid Benefit questionnaire were performed in a sound booth before and immediately after formal auditory training. RESULTS: All of the participants demonstrated abnormal pre-training long-latency characteristics (abnormal latency or absence of the P3 component and these abnormal characteristics were maintained in six of the seven individuals at the post-training evaluation. No significant differences were found between ears in the quantitative analysis of auditory brainstem responses or long-latency potentials. However, the subjects demonstrated improvements on all behavioral tests. For the questionnaire, the difference on the background noise subscale achieved statistical significance. CONCLUSION: Auditory training in adults with high-frequency hearing loss led to improvements in figure-background hearing skills for verbal sounds, temporal ordination and resolution, and communication in noisy environments. Electrophysiological changes were also observed because, after the training, some long latency components that were absent pre-training were observed during the re-evaluation.

  5. A efetividade do treinamento auditivo formal em idosos usuários de próteses auditivas no período de aclimatização Formal auditory training efficiency in elderly during the acclimatization period

    Directory of Open Access Journals (Sweden)

    Elisiane de Crestani Miranda

    2007-12-01

    Full Text Available OBJETIVO: Verificar a efetividade de um programa de treinamento auditivo formal em idosos usuários de próteses auditivas intraaurais no período de aclimatização. MÉTODOS: A amostra foi composta por 18 idosos (idade média: 71, 38 anos, de ambos os sexos, adaptados há uma semana com próteses auditivas intra-aurais binaurais. Os participantes foram randomizados em dois grupos: Grupo Experimental (submetidos ao treinamento auditivo e Grupo Controle (não submetidos ao treinamento auditivo. O Grupo Experimental participou de sete sessões de treinamento auditivo em cabina acústica, uma sessão por semana, com duração de 50 minutos cada. Os procedimentos de avaliação incluíram testes de reconhecimento de fala e questionário de auto-avaliação do handicap auditivo. Estes foram aplicados em duas oportunidades, antes (1ª avaliação e depois (2ª avaliação do treinamento auditivo no Grupo Experimental e na avaliação inicial e final do estudo no Grupo Controle. RESULTADOS: No Grupo Experimental, o Índice de Reconhecimento de Fala e Fala com Ruído Branco foram significantemente melhores após o treinamento auditivo (2ª avaliação. Já o estudo das relações sinal/ruído no teste de reconhecimento de sentenças no ruído revelou uma tendência (p-valor próximo a 0,05 de melhora na avaliação pós-treinamento. Observou-se nos idosos do Grupo Experimental que os resultados obtidos na 2ª avaliação não foram significantemente melhores aos obtidos no Grupo Controle em todos os testes. CONCLUSÃO: Pode-se concluir que um programa de reabilitação aural, incluindo treinamento auditivo formal beneficia os idosos no período de adaptação das próteses auditivas, bem como modifica o comportamento auditivo destes indivíduos.PURPOSE: To investigate the efficiency of a formal auditory training program in hearing aid wearers during the acclimatization period. METHODS: Eighteen subjects (mean age of 71.38 years old, male and female

  6. Auditory Integration Training

    Directory of Open Access Journals (Sweden)

    Zahra Jafari

    2002-07-01

    Full Text Available Auditory integration training (AIT is a hearing enhancement training process for sensory input anomalies found in individuals with autism, attention deficit hyperactive disorder, dyslexia, hyperactivity, learning disability, language impairments, pervasive developmental disorder, central auditory processing disorder, attention deficit disorder, depressin, and hyperacute hearing. AIT, recently introduced in the United States, and has received much notice of late following the release of The Sound of a Moracle, by Annabel Stehli. In her book, Mrs. Stehli describes before and after auditory integration training experiences with her daughter, who was diagnosed at age four as having autism.

  7. Review: Auditory Integration Training

    Directory of Open Access Journals (Sweden)

    Zahra Ja'fari

    2003-01-01

    Full Text Available Auditory integration training (AIT is a hearing enhancement training process for sensory input anomalies found in individuals with autism, attention deficit hyperactive disorder, dyslexia, hyperactivity, learning disability, language impairments, pervasive developmental disorder, central auditory processing disorder, attention deficit disorder, depression, and hyper acute hearing. AIT, recently introduced in the United States, and has received much notice of late following the release of the sound of a miracle, by Annabel Stehli. In her book, Mrs. Stehli describes before and after auditory integration training experiences with her daughter, who was diagnosed at age four as having autism.

  8. Rhythm synchronization performance and auditory working memory in early- and late-trained musicians.

    Science.gov (United States)

    Bailey, Jennifer A; Penhune, Virginia B

    2010-07-01

    Behavioural and neuroimaging studies provide evidence for a possible "sensitive" period in childhood development during which musical training results in long-lasting changes in brain structure and auditory and motor performance. Previous work from our laboratory has shown that adult musicians who begin training before the age of 7 (early-trained; ET) perform better on a visuomotor task than those who begin after the age of 7 (late-trained; LT), even when matched on total years of musical training and experience. Two questions were raised regarding the findings from this experiment. First, would this group performance difference be observed using a more familiar, musically relevant task such as auditory rhythms? Second, would cognitive abilities mediate this difference in task performance? To address these questions, ET and LT musicians, matched on years of musical training, hours of current practice and experience, were tested on an auditory rhythm synchronization task. The task consisted of six woodblock rhythms of varying levels of metrical complexity. In addition, participants were tested on cognitive subtests measuring vocabulary, working memory and pattern recognition. The two groups of musicians differed in their performance of the rhythm task, such that the ET musicians were better at reproducing the temporal structure of the rhythms. There were no group differences on the cognitive measures. Interestingly, across both groups, individual task performance correlated with auditory working memory abilities and years of formal training. These results support the idea of a sensitive period during the early years of childhood for developing sensorimotor synchronization abilities via musical training.

  9. SELF-EFFICACY OF FORMALLY AND NON-FORMALLY TRAINED PUBLIC SECTOR TEACHERS

    Directory of Open Access Journals (Sweden)

    Muhammad Nadeem ANWAR

    2009-07-01

    Full Text Available The main objective of the study was to compare the formally and non-formally trained in-service public sector teachers’ Self-efficacy. Five hypotheses were developed describing no difference in the self-efficacy of formally and non-formally trained teachers to influence decision making, influence school resources, instructional self-efficacy, disciplinary self-efficacy and create positive school climate. Teacher Efficacy Instrument (TSES developed by Bandura (2001 consisting of thirty 9-point items was used in the study. 342 formally trained and 255 non-formally trained respondents’ questionnaires were received out of 1500 mailed. The analysis of data revealed that the formally trained public sector teachers are high in their self-efficacy on all the five categories: to influence decision making, to influence school resources, instructional self-efficacy, disciplinary self-efficacy and self-efficacy to create positive school climate.

  10. The efficacy of formal auditory training in children with (central auditory processing disorder: behavioral and electrophysiological evaluation A eficácia do treinamento auditivo formal em crianças com transtorno de processamento auditivo (central: avaliação comportamental e eletrofisiológica

    Directory of Open Access Journals (Sweden)

    Renata Alonso

    2009-10-01

    Full Text Available Long Latency Auditory Evoked Potentials can be used to monitor changes in the Central Auditory Nervous System after Auditory Training. AIM: The aim of this study was to investigate the efficacy of Auditory Training in children with (Central Auditory Processing Disorder, comparing behavioral and electrophysiological findings before and after training. MATERIAL AND METHODS: twenty nine individuals between eight and 16 years of age with (Central Auditory Processing Disorder - diagnosed by behavioral tests - were involved in this research. After evaluation with the P300, the subjects were submitted to an Auditory Training program in acoustic booth and, at the end, a new evaluation of (central auditory processing and a new recording of P300. RESULTS: The comparison between the evaluations made before and after the Auditory Training showed that there was a statistically significant difference among P300 latency values and also among behavioral test mean values in evaluation of (central auditory processing. CONCLUSION: P300 appears to be a useful tool to monitor Central Auditory Nervous System changes after Auditory Training, and this program was effective in the rehabilitation of the auditory skills in children with (Central Auditory Processing Disorder.Os Potenciais Evocados Auditivos de Longa Latência podem ser uma ferramenta útil no monitoramento das mudanças ocorridas no Sistema Nervoso Auditivo Central após Treinamento Auditivo. OBJETIVO: O objetivo deste estudo foi verificar a eficácia do Treinamento Auditivo em crianças com Transtorno de Processamento Auditivo (Central, comparando as medidas comportamentais e eletrofisiológicas antes e após o treinamento. MATERIAL E MÉTODO: Participaram do estudo 29 indivíduos com idades entre oito e 16 anos diagnosticados, por meio de testes comportamentais, com Transtorno de Processamento Auditivo (Central. Após serem submetidos à avaliação do P300, foi realizado com os sujeitos um programa de

  11. The Effect of Working Memory Training on Auditory Stream Segregation in Auditory Processing Disorders Children

    OpenAIRE

    Abdollah Moossavi; Saeideh Mehrkian; Yones Lotfi; Soghrat Faghih zadeh; Hamed Adjedi

    2015-01-01

    Objectives: This study investigated the efficacy of working memory training for improving working memory capacity and related auditory stream segregation in auditory processing disorders children. Methods: Fifteen subjects (9-11 years), clinically diagnosed with auditory processing disorder participated in this non-randomized case-controlled trial. Working memory abilities and auditory stream segregation were evaluated prior to beginning and six weeks after completing the training program...

  12. Auditory Training Effects on the Listening Skills of Children With Auditory Processing Disorder.

    Science.gov (United States)

    Loo, Jenny Hooi Yin; Rosen, Stuart; Bamiou, Doris-Eva

    2016-01-01

    Children with auditory processing disorder (APD) typically present with "listening difficulties,"' including problems understanding speech in noisy environments. The authors examined, in a group of such children, whether a 12-week computer-based auditory training program with speech material improved the perception of speech-in-noise test performance, and functional listening skills as assessed by parental and teacher listening and communication questionnaires. The authors hypothesized that after the intervention, (1) trained children would show greater improvements in speech-in-noise perception than untrained controls; (2) this improvement would correlate with improvements in observer-rated behaviors; and (3) the improvement would be maintained for at least 3 months after the end of training. This was a prospective randomized controlled trial of 39 children with normal nonverbal intelligence, ages 7 to 11 years, all diagnosed with APD. This diagnosis required a normal pure-tone audiogram and deficits in at least two clinical auditory processing tests. The APD children were randomly assigned to (1) a control group that received only the current standard treatment for children diagnosed with APD, employing various listening/educational strategies at school (N = 19); or (2) an intervention group that undertook a 3-month 5-day/week computer-based auditory training program at home, consisting of a wide variety of speech-based listening tasks with competing sounds, in addition to the current standard treatment. All 39 children were assessed for language and cognitive skills at baseline and on three outcome measures at baseline and immediate postintervention. Outcome measures were repeated 3 months postintervention in the intervention group only, to assess the sustainability of treatment effects. The outcome measures were (1) the mean speech reception threshold obtained from the four subtests of the listening in specialized noise test that assesses sentence perception in

  13. [Assessment of the efficiency of the auditory training in children with dyslalia and auditory processing disorders].

    Science.gov (United States)

    Włodarczyk, Elżbieta; Szkiełkowska, Agata; Skarżyński, Henryk; Piłka, Adam

    2011-01-01

    To assess effectiveness of the auditory training in children with dyslalia and central auditory processing disorders. Material consisted of 50 children aged 7-9-years-old. Children with articulation disorders stayed under long-term speech therapy care in the Auditory and Phoniatrics Clinic. All children were examined by a laryngologist and a phoniatrician. Assessment included tonal and impedance audiometry and speech therapists' and psychologist's consultations. Additionally, a set of electrophysiological examinations was performed - registration of N2, P2, N2, P2, P300 waves and psychoacoustic test of central auditory functions: FPT - frequency pattern test. Next children took part in the regular auditory training and attended speech therapy. Speech assessment followed treatment and therapy, again psychoacoustic tests were performed and P300 cortical potentials were recorded. After that statistical analyses were performed. Analyses revealed that application of auditory training in patients with dyslalia and other central auditory disorders is very efficient. Auditory training may be a very efficient therapy supporting speech therapy in children suffering from dyslalia coexisting with articulation and central auditory disorders and in children with educational problems of audiogenic origin. Copyright © 2011 Polish Otolaryngology Society. Published by Elsevier Urban & Partner (Poland). All rights reserved.

  14. Promises of formal and informal musical activities in advancing neurocognitive development throughout childhood.

    Science.gov (United States)

    Putkinen, Vesa; Tervaniemi, Mari; Saarikivi, Katri; Huotilainen, Minna

    2015-03-01

    Adult musicians show superior neural sound discrimination when compared to nonmusicians. However, it is unclear whether these group differences reflect the effects of experience or preexisting neural enhancement in individuals who seek out musical training. Tracking how brain function matures over time in musically trained and nontrained children can shed light on this issue. Here, we review our recent longitudinal event-related potential (ERP) studies that examine how formal musical training and less formal musical activities influence the maturation of brain responses related to sound discrimination and auditory attention. These studies found that musically trained school-aged children and preschool-aged children attending a musical playschool show more rapid maturation of neural sound discrimination than their control peers. Importantly, we found no evidence for pretraining group differences. In a related cross-sectional study, we found ERP and behavioral evidence for improved executive functions and control over auditory novelty processing in musically trained school-aged children and adolescents. Taken together, these studies provide evidence for the causal role of formal musical training and less formal musical activities in shaping the development of important neural auditory skills and suggest transfer effects with domain-general implications. © 2015 New York Academy of Sciences.

  15. Biological impact of music and software-based auditory training

    Science.gov (United States)

    Kraus, Nina

    2012-01-01

    Auditory-based communication skills are developed at a young age and are maintained throughout our lives. However, some individuals – both young and old – encounter difficulties in achieving or maintaining communication proficiency. Biological signals arising from hearing sounds relate to real-life communication skills such as listening to speech in noisy environments and reading, pointing to an intersection between hearing and cognition. Musical experience, amplification, and software-based training can improve these biological signals. These findings of biological plasticity, in a variety of subject populations, relate to attention and auditory memory, and represent an integrated auditory system influenced by both sensation and cognition. Learning outcomes The reader will (1) understand that the auditory system is malleable to experience and training, (2) learn the ingredients necessary for auditory learning to successfully be applied to communication, (3) learn that the auditory brainstem response to complex sounds (cABR) is a window into the integrated auditory system, and (4) see examples of how cABR can be used to track the outcome of experience and training. PMID:22789822

  16. Do informal musical activities shape auditory skill development in preschool-age children?

    Science.gov (United States)

    Putkinen, Vesa; Saarikivi, Katri; Tervaniemi, Mari

    2013-08-29

    The influence of formal musical training on auditory cognition has been well established. For the majority of children, however, musical experience does not primarily consist of adult-guided training on a musical instrument. Instead, young children mostly engage in everyday musical activities such as singing and musical play. Here, we review recent electrophysiological and behavioral studies carried out in our laboratory and elsewhere which have begun to map how developing auditory skills are shaped by such informal musical activities both at home and in playschool-type settings. Although more research is still needed, the evidence emerging from these studies suggests that, in addition to formal musical training, informal musical activities can also influence the maturation of auditory discrimination and attention in preschool-aged children.

  17. Auditory training and challenges associated with participation and compliance.

    Science.gov (United States)

    Sweetow, Robert W; Sabes, Jennifer Henderson

    2010-10-01

    When individuals have hearing loss, physiological changes in their brain interact with relearning of sound patterns. Some individuals utilize compensatory strategies that may result in successful hearing aid use. Others, however, are not so fortunate. Modern hearing aids can provide audibility but may not rectify spectral and temporal resolution, susceptibility to noise interference, or degradation of cognitive skills, such as declining auditory memory and slower speed of processing associated with aging. Frequently, these deficits are not identified during a typical "hearing aid evaluation." Aural rehabilitation has long been advocated to enhance communication but has not been considered time or cost-effective. Home-based, interactive adaptive computer therapy programs are available that are designed to engage the adult hearing-impaired listener in the hearing aid fitting process, provide listening strategies, build confidence, and address cognitive changes. Despite the availability of these programs, many patients and professionals are reluctant to engage in and complete therapy. The purposes of this article are to discuss the need for identifying auditory and nonauditory factors that may adversely affect the overall audiological rehabilitation process, to discuss important features that should be incorporated into training, and to examine reasons for the lack of compliance with therapeutic options. Possible solutions to maximizing compliance are explored. Only a small portion of audiologists (fewer than 10%) offer auditory training to patients with hearing impairment, even though auditory training appears to lower the rate of hearing aid returns for credit. Patients to whom auditory training programs are recommended often do not complete the training, however. Compliance for a cohort of home-based auditory therapy trainees was less than 30%. Activities to increase patient compliance to auditory training protocols are proposed. American Academy of Audiology.

  18. Effects of musical training on the auditory cortex in children.

    Science.gov (United States)

    Trainor, Laurel J; Shahin, Antoine; Roberts, Larry E

    2003-11-01

    Several studies of the effects of musical experience on sound representations in the auditory cortex are reviewed. Auditory evoked potentials are compared in response to pure tones, violin tones, and piano tones in adult musicians versus nonmusicians as well as in 4- to 5-year-old children who have either had or not had extensive musical experience. In addition, the effects of auditory frequency discrimination training in adult nonmusicians on auditory evoked potentials are examined. It was found that the P2-evoked response is larger in both adult and child musicians than in nonmusicians and that auditory training enhances this component in nonmusician adults. The results suggest that the P2 is particularly neuroplastic and that the effects of musical experience can be seen early in development. They also suggest that although the effects of musical training on cortical representations may be greater if training begins in childhood, the adult brain is also open to change. These results are discussed with respect to potential benefits of early musical training as well as potential benefits of musical experience in aging.

  19. Using neuroplasticity-based auditory training to improve verbal memory in schizophrenia.

    Science.gov (United States)

    Fisher, Melissa; Holland, Christine; Merzenich, Michael M; Vinogradov, Sophia

    2009-07-01

    Impaired verbal memory in schizophrenia is a key rate-limiting factor for functional outcome, does not respond to currently available medications, and shows only modest improvement after conventional behavioral remediation. The authors investigated an innovative approach to the remediation of verbal memory in schizophrenia, based on principles derived from the basic neuroscience of learning-induced neuroplasticity. The authors report interim findings in this ongoing study. Fifty-five clinically stable schizophrenia subjects were randomly assigned to either 50 hours of computerized auditory training or a control condition using computer games. Those receiving auditory training engaged in daily computerized exercises that placed implicit, increasing demands on auditory perception through progressively more difficult auditory-verbal working memory and verbal learning tasks. Relative to the control group, subjects who received active training showed significant gains in global cognition, verbal working memory, and verbal learning and memory. They also showed reliable and significant improvement in auditory psychophysical performance; this improvement was significantly correlated with gains in verbal working memory and global cognition. Intensive training in early auditory processes and auditory-verbal learning results in substantial gains in verbal cognitive processes relevant to psychosocial functioning in schizophrenia. These gains may be due to a training method that addresses the early perceptual impairments in the illness, that exploits intact mechanisms of repetitive practice in schizophrenia, and that uses an intensive, adaptive training approach.

  20. Music training for the development of auditory skills.

    Science.gov (United States)

    Kraus, Nina; Chandrasekaran, Bharath

    2010-08-01

    The effects of music training in relation to brain plasticity have caused excitement, evident from the popularity of books on this topic among scientists and the general public. Neuroscience research has shown that music training leads to changes throughout the auditory system that prime musicians for listening challenges beyond music processing. This effect of music training suggests that, akin to physical exercise and its impact on body fitness, music is a resource that tones the brain for auditory fitness. Therefore, the role of music in shaping individual development deserves consideration.

  1. Minimal effects of visual memory training on the auditory performance of adult cochlear implant users

    Science.gov (United States)

    Oba, Sandra I.; Galvin, John J.; Fu, Qian-Jie

    2014-01-01

    Auditory training has been shown to significantly improve cochlear implant (CI) users’ speech and music perception. However, it is unclear whether post-training gains in performance were due to improved auditory perception or to generally improved attention, memory and/or cognitive processing. In this study, speech and music perception, as well as auditory and visual memory were assessed in ten CI users before, during, and after training with a non-auditory task. A visual digit span (VDS) task was used for training, in which subjects recalled sequences of digits presented visually. After the VDS training, VDS performance significantly improved. However, there were no significant improvements for most auditory outcome measures (auditory digit span, phoneme recognition, sentence recognition in noise, digit recognition in noise), except for small (but significant) improvements in vocal emotion recognition and melodic contour identification. Post-training gains were much smaller with the non-auditory VDS training than observed in previous auditory training studies with CI users. The results suggest that post-training gains observed in previous studies were not solely attributable to improved attention or memory, and were more likely due to improved auditory perception. The results also suggest that CI users may require targeted auditory training to improve speech and music perception. PMID:23516087

  2. Examination of Individual Differences in Outcomes from a Randomized Controlled Clinical Trial Comparing Formal and Informal Individual Auditory Training Programs

    Science.gov (United States)

    Smith, Sherri L.; Saunders, Gabrielle H.; Chisolm, Theresa H.; Frederick, Melissa; Bailey, Beth A.

    2016-01-01

    Purpose: The purpose of this study was to determine if patient characteristics or clinical variables could predict who benefits from individual auditory training. Method: A retrospective series of analyses were performed using a data set from a large, multisite, randomized controlled clinical trial that compared the treatment effects of at-home…

  3. Music training alters the course of adolescent auditory development

    Science.gov (United States)

    Tierney, Adam T.; Krizman, Jennifer; Kraus, Nina

    2015-01-01

    Fundamental changes in brain structure and function during adolescence are well-characterized, but the extent to which experience modulates adolescent neurodevelopment is not. Musical experience provides an ideal case for examining this question because the influence of music training begun early in life is well-known. We investigated the effects of in-school music training, previously shown to enhance auditory skills, versus another in-school training program that did not focus on development of auditory skills (active control). We tested adolescents on neural responses to sound and language skills before they entered high school (pretraining) and again 3 y later. Here, we show that in-school music training begun in high school prolongs the stability of subcortical sound processing and accelerates maturation of cortical auditory responses. Although phonological processing improved in both the music training and active control groups, the enhancement was greater in adolescents who underwent music training. Thus, music training initiated as late as adolescence can enhance neural processing of sound and confer benefits for language skills. These results establish the potential for experience-driven brain plasticity during adolescence and demonstrate that in-school programs can engender these changes. PMID:26195739

  4. The impact of auditory working memory training on the fronto-parietal working memory network.

    Science.gov (United States)

    Schneiders, Julia A; Opitz, Bertram; Tang, Huijun; Deng, Yuan; Xie, Chaoxiang; Li, Hong; Mecklinger, Axel

    2012-01-01

    Working memory training has been widely used to investigate working memory processes. We have shown previously that visual working memory benefits only from intra-modal visual but not from across-modal auditory working memory training. In the present functional magnetic resonance imaging study we examined whether auditory working memory processes can also be trained specifically and which training-induced activation changes accompany theses effects. It was investigated whether working memory training with strongly distinct auditory materials transfers exclusively to an auditory (intra-modal) working memory task or whether it generalizes to a (across-modal) visual working memory task. We used adaptive n-back training with tonal sequences and a passive control condition. The memory training led to a reliable training gain. Transfer effects were found for the (intra-modal) auditory but not for the (across-modal) visual transfer task. Training-induced activation decreases in the auditory transfer task were found in two regions in the right inferior frontal gyrus. These effects confirm our previous findings in the visual modality and extents intra-modal effects in the prefrontal cortex to the auditory modality. As the right inferior frontal gyrus is frequently found in maintaining modality-specific auditory information, these results might reflect increased neural efficiency in auditory working memory processes. Furthermore, task-unspecific (amodal) activation decreases in the visual and auditory transfer task were found in the right inferior parietal lobule and the superior portion of the right middle frontal gyrus reflecting less demand on general attentional control processes. These data are in good agreement with amodal activation decreases within the same brain regions on a visual transfer task reported previously.

  5. The impact of auditory working memory training on the fronto-parietal working memory network

    Science.gov (United States)

    Schneiders, Julia A.; Opitz, Bertram; Tang, Huijun; Deng, Yuan; Xie, Chaoxiang; Li, Hong; Mecklinger, Axel

    2012-01-01

    Working memory training has been widely used to investigate working memory processes. We have shown previously that visual working memory benefits only from intra-modal visual but not from across-modal auditory working memory training. In the present functional magnetic resonance imaging study we examined whether auditory working memory processes can also be trained specifically and which training-induced activation changes accompany theses effects. It was investigated whether working memory training with strongly distinct auditory materials transfers exclusively to an auditory (intra-modal) working memory task or whether it generalizes to a (across-modal) visual working memory task. We used adaptive n-back training with tonal sequences and a passive control condition. The memory training led to a reliable training gain. Transfer effects were found for the (intra-modal) auditory but not for the (across-modal) visual transfer task. Training-induced activation decreases in the auditory transfer task were found in two regions in the right inferior frontal gyrus. These effects confirm our previous findings in the visual modality and extents intra-modal effects in the prefrontal cortex to the auditory modality. As the right inferior frontal gyrus is frequently found in maintaining modality-specific auditory information, these results might reflect increased neural efficiency in auditory working memory processes. Furthermore, task-unspecific (amodal) activation decreases in the visual and auditory transfer task were found in the right inferior parietal lobule and the superior portion of the right middle frontal gyrus reflecting less demand on general attentional control processes. These data are in good agreement with amodal activation decreases within the same brain regions on a visual transfer task reported previously. PMID:22701418

  6. Minimal effects of visual memory training on auditory performance of adult cochlear implant users.

    Science.gov (United States)

    Oba, Sandra I; Galvin, John J; Fu, Qian-Jie

    2013-01-01

    Auditory training has been shown to significantly improve cochlear implant (CI) users' speech and music perception. However, it is unclear whether posttraining gains in performance were due to improved auditory perception or to generally improved attention, memory, and/or cognitive processing. In this study, speech and music perception, as well as auditory and visual memory, were assessed in 10 CI users before, during, and after training with a nonauditory task. A visual digit span (VDS) task was used for training, in which subjects recalled sequences of digits presented visually. After the VDS training, VDS performance significantly improved. However, there were no significant improvements for most auditory outcome measures (auditory digit span, phoneme recognition, sentence recognition in noise, digit recognition in noise), except for small (but significant) improvements in vocal emotion recognition and melodic contour identification. Posttraining gains were much smaller with the nonauditory VDS training than observed in previous auditory training studies with CI users. The results suggest that posttraining gains observed in previous studies were not solely attributable to improved attention or memory and were more likely due to improved auditory perception. The results also suggest that CI users may require targeted auditory training to improve speech and music perception.

  7. The Impact of Auditory Working Memory Training on the Fronto-Parietal Working Memory Network

    Directory of Open Access Journals (Sweden)

    Julia eSchneiders

    2012-06-01

    Full Text Available Working memory training has been widely used to investigate working memory processes. We have shown previously that visual working memory benefits only from intra-modal visual but not from across-modal auditory working memory training. In the present functional magnetic resonance imaging study we examined whether auditory working memory processes can also be trained specifically and which training-induced activation changes accompany theses effects. It was investigated whether working memory training with strongly distinct auditory materials transfers exclusively to an auditory (intra-modal working memory task or whether it generalizes to an (across-modal visual working memory task. We used an adaptive n-back training with tonal sequences and a passive control condition. The memory training led to a reliable training gain. Transfer effects were found for the (intra-modal auditory but not for the (across-modal visual 2-back task. Training-induced activation changes in the auditory 2-back task were found in two regions in the right inferior frontal gyrus. These effects confirm our previous findings in the visual modality and extends intra-modal effects to the auditory modality. These results might reflect increased neural efficiency in auditory working memory processes as in the right inferior frontal gyrus is frequently found in maintaining modality-specific auditory information. By this, these effects are analogical to the activation decreases in the right middle frontal gyrus for the visual modality in our previous study. Furthermore, task-unspecific (across-modal activation decreases in the visual and auditory 2-back task were found in the right inferior parietal lobule and the superior portion of the right middle frontal gyrus reflecting less demands on general attentional control processes. These data are in good agreement with across-modal activation decreases within the same brain regions on a visual 2-back task reported previously.

  8. Auditory Training for Children with Processing Disorders.

    Science.gov (United States)

    Katz, Jack; Cohen, Carolyn F.

    1985-01-01

    The article provides an overview of central auditory processing (CAP) dysfunction and reviews research on approaches to improve perceptual skills; to provide discrimination training for communicative and reading disorders; to increase memory and analysis skills and dichotic listening; to provide speech-in-noise training; and to amplify speech as…

  9. Statistical learning and auditory processing in children with music training: An ERP study.

    Science.gov (United States)

    Mandikal Vasuki, Pragati Rao; Sharma, Mridula; Ibrahim, Ronny; Arciuli, Joanne

    2017-07-01

    The question whether musical training is associated with enhanced auditory and cognitive abilities in children is of considerable interest. In the present study, we compared children with music training versus those without music training across a range of auditory and cognitive measures, including the ability to detect implicitly statistical regularities in input (statistical learning). Statistical learning of regularities embedded in auditory and visual stimuli was measured in musically trained and age-matched untrained children between the ages of 9-11years. In addition to collecting behavioural measures, we recorded electrophysiological measures to obtain an online measure of segmentation during the statistical learning tasks. Musically trained children showed better performance on melody discrimination, rhythm discrimination, frequency discrimination, and auditory statistical learning. Furthermore, grand-averaged ERPs showed that triplet onset (initial stimulus) elicited larger responses in the musically trained children during both auditory and visual statistical learning tasks. In addition, children's music skills were associated with performance on auditory and visual behavioural statistical learning tasks. Our data suggests that individual differences in musical skills are associated with children's ability to detect regularities. The ERP data suggest that musical training is associated with better encoding of both auditory and visual stimuli. Although causality must be explored in further research, these results may have implications for developing music-based remediation strategies for children with learning impairments. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  10. Robot-assisted laparoscopic skills development: formal versus informal training.

    Science.gov (United States)

    Benson, Aaron D; Kramer, Brandan A; Boehler, Margaret; Schwind, Cathy J; Schwartz, Bradley F

    2010-08-01

    The learning curve for robotic surgery is not completely defined, and ideal training components have not yet been identified. We attempted to determine whether skill development would be accelerated with formal, organized instruction in robotic surgical techniques versus informal practice alone. Forty-three medical students naive to robotic surgery were randomized into two groups and tested on three tasks using the robotic platform. Between the testing sessions, the students were given equally timed practice sessions. The formal training group participated in an organized, formal training session with instruction from an attending robotic surgeon, whereas the informal training group participated in an equally timed unstructured practice session with the robot. The results were compared based on technical score and time to completion of each task. There was no difference between groups in prepractice testing for any task. In postpractice testing, there was no difference between groups for the ring transfer tasks. However, for the suture placement and knot-tying task, the technical score of the formal training group was significantly better than that of the informal training group (p formal training may not be necessary for basic skills, formal instruction for more advanced skills, such as suture placement and knot tying, is important in developing skills needed for effective robotic surgery. These findings may be important in formulating potential skills labs or training courses for robotic surgery.

  11. Do informal musical activities shape auditory skill development in preschool-age children?

    OpenAIRE

    Putkinen, Vesa; Saarikivi, Katri; Tervaniemi, Mari

    2013-01-01

    The influence of formal musical training on auditory cognition has been well established. For the majority of children, however, musical experience does not primarily consist of adult-guided training on a musical instrument. Instead, young children mostly engage in everyday musical activities such as singing and musical play. Here, we review recent electrophysiological and behavioral studies carried out in our laboratory and elsewhere which have begun to map how developing auditory skills are...

  12. Auditory Perceptual Learning for Speech Perception Can be Enhanced by Audiovisual Training.

    Science.gov (United States)

    Bernstein, Lynne E; Auer, Edward T; Eberhardt, Silvio P; Jiang, Jintao

    2013-01-01

    Speech perception under audiovisual (AV) conditions is well known to confer benefits to perception such as increased speed and accuracy. Here, we investigated how AV training might benefit or impede auditory perceptual learning of speech degraded by vocoding. In Experiments 1 and 3, participants learned paired associations between vocoded spoken nonsense words and nonsense pictures. In Experiment 1, paired-associates (PA) AV training of one group of participants was compared with audio-only (AO) training of another group. When tested under AO conditions, the AV-trained group was significantly more accurate than the AO-trained group. In addition, pre- and post-training AO forced-choice consonant identification with untrained nonsense words showed that AV-trained participants had learned significantly more than AO participants. The pattern of results pointed to their having learned at the level of the auditory phonetic features of the vocoded stimuli. Experiment 2, a no-training control with testing and re-testing on the AO consonant identification, showed that the controls were as accurate as the AO-trained participants in Experiment 1 but less accurate than the AV-trained participants. In Experiment 3, PA training alternated AV and AO conditions on a list-by-list basis within participants, and training was to criterion (92% correct). PA training with AO stimuli was reliably more effective than training with AV stimuli. We explain these discrepant results in terms of the so-called "reverse hierarchy theory" of perceptual learning and in terms of the diverse multisensory and unisensory processing resources available to speech perception. We propose that early AV speech integration can potentially impede auditory perceptual learning; but visual top-down access to relevant auditory features can promote auditory perceptual learning.

  13. Motor Training: Comparison of Visual and Auditory Coded Proprioceptive Cues

    Directory of Open Access Journals (Sweden)

    Philip Jepson

    2012-05-01

    Full Text Available Self-perception of body posture and movement is achieved through multi-sensory integration, particularly the utilisation of vision, and proprioceptive information derived from muscles and joints. Disruption to these processes can occur following a neurological accident, such as stroke, leading to sensory and physical impairment. Rehabilitation can be helped through use of augmented visual and auditory biofeedback to stimulate neuro-plasticity, but the effective design and application of feedback, particularly in the auditory domain, is non-trivial. Simple auditory feedback was tested by comparing the stepping accuracy of normal subjects when given a visual spatial target (step length and an auditory temporal target (step duration. A baseline measurement of step length and duration was taken using optical motion capture. Subjects (n=20 took 20 ‘training’ steps (baseline ±25% using either an auditory target (950 Hz tone, bell-shaped gain envelope or visual target (spot marked on the floor and were then asked to replicate the target step (length or duration corresponding to training with all feedback removed. Visual cues (mean percentage error=11.5%; SD ± 7.0%; auditory cues (mean percentage error = 12.9%; SD ± 11.8%. Visual cues elicit a high degree of accuracy both in training and follow-up un-cued tasks; despite the novelty of the auditory cues present for subjects, the mean accuracy of subjects approached that for visual cues, and initial results suggest a limited amount of practice using auditory cues can improve performance.

  14. Web-based auditory self-training system for adult and elderly users of hearing aids.

    Science.gov (United States)

    Vitti, Simone Virginia; Blasca, Wanderléia Quinhoneiro; Sigulem, Daniel; Torres Pisa, Ivan

    2015-01-01

    Adults and elderly users of hearing aids suffer psychosocial reactions as a result of hearing loss. Auditory rehabilitation is typically carried out with support from a speech therapist, usually in a clinical center. For these cases, there is a lack of computer-based self-training tools for minimizing the psychosocial impact of hearing deficiency. To develop and evaluate a web-based auditory self-training system for adult and elderly users of hearing aids. Two modules were developed for the web system: an information module based on guidelines for using hearing aids; and an auditory training module presenting a sequence of training exercises for auditory abilities along the lines of the auditory skill steps within auditory processing. We built aweb system using PHP programming language and a MySQL database .from requirements surveyed through focus groups that were conducted by healthcare information technology experts. The web system was evaluated by speech therapists and hearing aid users. An initial sample of 150 patients at DSA/HRAC/USP was defined to apply the system with the inclusion criteria that: the individuals should be over the age of 25 years, presently have hearing impairment, be a hearing aid user, have a computer and have internet experience. They were divided into two groups: a control group (G1) and an experimental group (G2). These patients were evaluated clinically using the HHIE for adults and HHIA for elderly people, before and after system implementation. A third web group was formed with users who were invited through social networks for their opinions on using the system. A questionnaire evaluating hearing complaints was given to all three groups. The study hypothesis considered that G2 would present greater auditory perception, higher satisfaction and fewer complaints than G1 after the auditory training. It was expected that G3 would have fewer complaints regarding use and acceptance of the system. The web system, which was named Sis

  15. The impact of auditory working memory training on the fronto-parietal working memory network

    OpenAIRE

    Schneiders, Julia A.; Opitz, Bertram; Tang, Huijun; Deng, Yuan; Xie, Chaoxiang; Li, Hong; Mecklinger, Axel

    2012-01-01

    Working memory training has been widely used to investigate working memory processes. We have shown previously that visual working memory benefits only from intra-modal visual but not from across-modal auditory working memory training. In the present functional magnetic resonance imaging study we examined whether auditory working memory processes can also be trained specifically and which training-induced activation changes accompany theses effects. It was investigated whether working memory ...

  16. Comparison between treadmill training with rhythmic auditory stimulation and ground walking with rhythmic auditory stimulation on gait ability in chronic stroke patients: A pilot study.

    Science.gov (United States)

    Park, Jin; Park, So-yeon; Kim, Yong-wook; Woo, Youngkeun

    2015-01-01

    Generally, treadmill training is very effective intervention, and rhythmic auditory stimulation is designed to feedback during gait training in stroke patients. The purpose of this study was to compare the gait abilities in chronic stroke patients following either treadmill walking training with rhythmic auditory stimulation (TRAS) or over ground walking training with rhythmic auditory stimulation (ORAS). Nineteen subjects were divided into two groups: a TRAS group (9 subjects) and an ORAS group (10 subjects). Temporal and spatial gait parameters and motor recovery ability were measured before and after the training period. Gait ability was measured by the Biodex Gait trainer treadmill system, Timed up and go test (TUG), 6 meter walking distance (6MWD) and Functional gait assessment (FGA). After the training periods, the TRAS group showed a significant improvement in walking speed, step cycle, step length of the unaffected limb, coefficient of variation, 6MWD, and, FGA when compared to the ORAS group (p <  0.05). Treadmill walking training during the rhythmic auditory stimulation may be useful for rehabilitation of patients with chronic stroke.

  17. Cognitive Training Enhances Auditory Attention Efficiency in Older Adults

    Directory of Open Access Journals (Sweden)

    Jennifer L. O’Brien

    2017-10-01

    Full Text Available Auditory cognitive training (ACT improves attention in older adults; however, the underlying neurophysiological mechanisms are still unknown. The present study examined the effects of ACT on the P3b event-related potential reflecting attention allocation (amplitude and speed of processing (latency during stimulus categorization and the P1-N1-P2 complex reflecting perceptual processing (amplitude and latency. Participants completed an auditory oddball task before and after 10 weeks of ACT (n = 9 or a no contact control period (n = 15. Parietal P3b amplitudes to oddball stimuli decreased at post-test in the trained group as compared to those in the control group, and frontal P3b amplitudes show a similar trend, potentially reflecting more efficient attentional allocation after ACT. No advantages for the ACT group were evident for auditory perceptual processing or speed of processing in this small sample. Our results provide preliminary evidence that ACT may enhance the efficiency of attention allocation, which may account for the positive impact of ACT on the everyday functioning of older adults.

  18. [Auditory training with wide-band white noise: effects on the recruitment (III)].

    Science.gov (United States)

    Domínguez Ugidos, L J; Rodríguez Morejón, C; Vallés Varela, H; Iparraguirre Bolinaga, V; Knaster del Olmo, J

    2001-05-01

    The auditory training with wide-band white noise is a methodology for the qualitative recovery of the hearing loss in people suffering from sensorineural hearing loss. It is based on the application of a wide-band white modified noise. In a prospective study, we have assessed the modifications of the recruitment coefficient in a sample of 48 patients who have followed a program of 15 auditory training with wide-band white noise sessions. The average improvement of the recruitment coefficient expressed in percentage is a 7.7498%, which comes up to 23.5249% in the case of a binaural recruitment coefficient. From our results, it can be deduced that the auditory training with wide-band white noise reduces the recruitment. That is to say, the decrease of the recruitment in high intensities both binaurally and in all ears.

  19. Efficacy of individual computer-based auditory training for people with hearing loss: a systematic review of the evidence.

    Directory of Open Access Journals (Sweden)

    Helen Henshaw

    Full Text Available BACKGROUND: Auditory training involves active listening to auditory stimuli and aims to improve performance in auditory tasks. As such, auditory training is a potential intervention for the management of people with hearing loss. OBJECTIVE: This systematic review (PROSPERO 2011: CRD42011001406 evaluated the published evidence-base for the efficacy of individual computer-based auditory training to improve speech intelligibility, cognition and communication abilities in adults with hearing loss, with or without hearing aids or cochlear implants. METHODS: A systematic search of eight databases and key journals identified 229 articles published since 1996, 13 of which met the inclusion criteria. Data were independently extracted and reviewed by the two authors. Study quality was assessed using ten pre-defined scientific and intervention-specific measures. RESULTS: Auditory training resulted in improved performance for trained tasks in 9/10 articles that reported on-task outcomes. Although significant generalisation of learning was shown to untrained measures of speech intelligibility (11/13 articles, cognition (1/1 articles and self-reported hearing abilities (1/2 articles, improvements were small and not robust. Where reported, compliance with computer-based auditory training was high, and retention of learning was shown at post-training follow-ups. Published evidence was of very-low to moderate study quality. CONCLUSIONS: Our findings demonstrate that published evidence for the efficacy of individual computer-based auditory training for adults with hearing loss is not robust and therefore cannot be reliably used to guide intervention at this time. We identify a need for high-quality evidence to further examine the efficacy of computer-based auditory training for people with hearing loss.

  20. Neural correlates of accelerated auditory processing in children engaged in music training.

    Science.gov (United States)

    Habibi, Assal; Cahn, B Rael; Damasio, Antonio; Damasio, Hanna

    2016-10-01

    Several studies comparing adult musicians and non-musicians have shown that music training is associated with brain differences. It is unknown, however, whether these differences result from lengthy musical training, from pre-existing biological traits, or from social factors favoring musicality. As part of an ongoing 5-year longitudinal study, we investigated the effects of a music training program on the auditory development of children, over the course of two years, beginning at age 6-7. The training was group-based and inspired by El-Sistema. We compared the children in the music group with two comparison groups of children of the same socio-economic background, one involved in sports training, another not involved in any systematic training. Prior to participating, children who began training in music did not differ from those in the comparison groups in any of the assessed measures. After two years, we now observe that children in the music group, but not in the two comparison groups, show an enhanced ability to detect changes in tonal environment and an accelerated maturity of auditory processing as measured by cortical auditory evoked potentials to musical notes. Our results suggest that music training may result in stimulus specific brain changes in school aged children. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Learning effects of dynamic postural control by auditory biofeedback versus visual biofeedback training.

    Science.gov (United States)

    Hasegawa, Naoya; Takeda, Kenta; Sakuma, Moe; Mani, Hiroki; Maejima, Hiroshi; Asaka, Tadayoshi

    2017-10-01

    Augmented sensory biofeedback (BF) for postural control is widely used to improve postural stability. However, the effective sensory information in BF systems of motor learning for postural control is still unknown. The purpose of this study was to investigate the learning effects of visual versus auditory BF training in dynamic postural control. Eighteen healthy young adults were randomly divided into two groups (visual BF and auditory BF). In test sessions, participants were asked to bring the real-time center of pressure (COP) in line with a hidden target by body sway in the sagittal plane. The target moved in seven cycles of sine curves at 0.23Hz in the vertical direction on a monitor. In training sessions, the visual and auditory BF groups were required to change the magnitude of a visual circle and a sound, respectively, according to the distance between the COP and target in order to reach the target. The perceptual magnitudes of visual and auditory BF were equalized according to Stevens' power law. At the retention test, the auditory but not visual BF group demonstrated decreased postural performance errors in both the spatial and temporal parameters under the no-feedback condition. These findings suggest that visual BF increases the dependence on visual information to control postural performance, while auditory BF may enhance the integration of the proprioceptive sensory system, which contributes to motor learning without BF. These results suggest that auditory BF training improves motor learning of dynamic postural control. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Does formal research training lead to academic success in otolaryngology?

    Science.gov (United States)

    Bobian, Michael R; Shah, Noor; Svider, Peter F; Hong, Robert S; Shkoukani, Mahdi A; Folbe, Adam J; Eloy, Jean Anderson

    2017-01-01

    To evaluate whether formalized research training is associated with higher researcher productivity, academic rank, and acquisition of National Institutes of Health (NIH) grants within academic otolaryngology departments. Each of the 100 civilian otolaryngology program's departmental websites were analyzed to obtain a comprehensive list of faculty members credentials and characteristics, including academic rank, completion of a clinical fellowship, completion of a formal research fellowship, and attainment of a doctorate in philosophy (PhD) degree. We also recorded measures of scholarly impact and successful acquisition of NIH funding. A total of 1,495 academic physicians were included in our study. Of these, 14.1% had formal research training. Bivariate associations showed that formal research training was associated with a greater h-index, increased probability of acquiring NIH funding, and higher academic rank. Using a linear regression model, we found that otolaryngologists possessing a PhD had an associated h-index of 1.8 points higher, and those who completed a formal research fellowship had an h-index of 1.6 points higher. A PhD degree or completion of a research fellowship was not associated with a higher academic rank; however, a higher h-index and previous acquisition of an NIH grant were associated with a higher academic rank. The attainment of NIH funding was three times more likely for those with a formal research fellowship and 8.6 times more likely for otolaryngologists with a PhD degree. Formalized research training is associated with academic success in otolaryngology. Such dedicated research training accompanies greater scholarly impact, acquisition of NIH funding, and a higher academic rank. NA Laryngoscope, 127:E15-E21, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  3. Auditory Training for Adults Who Have Hearing Loss: A Comparison of Spaced Versus Massed Practice Schedules.

    Science.gov (United States)

    Tye-Murray, Nancy; Spehar, Brent; Barcroft, Joe; Sommers, Mitchell

    2017-08-16

    The spacing effect in human memory research refers to situations in which people learn items better when they study items in spaced intervals rather than massed intervals. This investigation was conducted to compare the efficacy of meaning-oriented auditory training when administered with a spaced versus massed practice schedule. Forty-seven adult hearing aid users received 16 hr of auditory training. Participants in a spaced group (mean age = 64.6 years, SD = 14.7) trained twice per week, and participants in a massed group (mean age = 69.6 years, SD = 17.5) trained for 5 consecutive days each week. Participants completed speech perception tests before training, immediately following training, and then 3 months later. In line with transfer appropriate processing theory, tests assessed both trained tasks and an untrained task. Auditory training improved the speech recognition performance of participants in both groups. Benefits were maintained for 3 months. No effect of practice schedule was found on overall benefits achieved, on retention of benefits, nor on generalizability of benefits to nontrained tasks. The lack of spacing effect in otherwise effective auditory training suggests that perceptual learning may be subject to different influences than are other types of learning, such as vocabulary learning. Hence, clinicians might have latitude in recommending training schedules to accommodate patients' schedules.

  4. Formal training in forensic mental health: psychiatry and psychology.

    Science.gov (United States)

    Sadoff, Robert L; Dattilio, Frank M

    2012-01-01

    The field of forensic mental health has grown exponentially in the past decades to include forensic psychiatrists and psychologists serving as the primary experts to the court systems. However, many colleagues have chosen to pursue the avenue of serving as forensic experts without obtaining formal training and experience. This article discusses the importance of formal education, training and experience for psychiatrists and psychologists working in forensic settings and the ethical implications that befall those who fail to obtain such credentials. Specific aspects of training and supervised experience are discussed in detail. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Visual and kinesthetic locomotor imagery training integrated with auditory step rhythm for walking performance of patients with chronic stroke.

    Science.gov (United States)

    Kim, Jin-Seop; Oh, Duck-Won; Kim, Suhn-Yeop; Choi, Jong-Duk

    2011-02-01

    To compare the effect of visual and kinesthetic locomotor imagery training on walking performance and to determine the clinical feasibility of incorporating auditory step rhythm into the training. Randomized crossover trial. Laboratory of a Department of Physical Therapy. Fifteen subjects with post-stroke hemiparesis. Four locomotor imagery trainings on walking performance: visual locomotor imagery training, kinesthetic locomotor imagery training, visual locomotor imagery training with auditory step rhythm and kinesthetic locomotor imagery training with auditory step rhythm. The timed up-and-go test and electromyographic and kinematic analyses of the affected lower limb during one gait cycle. After the interventions, significant differences were found in the timed up-and-go test results between the visual locomotor imagery training (25.69 ± 16.16 to 23.97 ± 14.30) and the kinesthetic locomotor imagery training with auditory step rhythm (22.68 ± 12.35 to 15.77 ± 8.58) (P kinesthetic locomotor imagery training exhibited significantly increased activation in a greater number of muscles and increased angular displacement of the knee and ankle joints compared with the visual locomotor imagery training, and these effects were more prominent when auditory step rhythm was integrated into each form of locomotor imagery training. The activation of the hamstring during the swing phase and the gastrocnemius during the stance phase, as well as kinematic data of the knee joint, were significantly different for posttest values between the visual locomotor imagery training and the kinesthetic locomotor imagery training with auditory step rhythm (P kinesthetic locomotor imagery training than in the visual locomotor imagery training. The auditory step rhythm together with the locomotor imagery training produces a greater positive effect in improving the walking performance of patients with post-stroke hemiparesis.

  6. Neural Correlates of Selective Attention With Hearing Aid Use Followed by ReadMyQuips Auditory Training Program.

    Science.gov (United States)

    Rao, Aparna; Rishiq, Dania; Yu, Luodi; Zhang, Yang; Abrams, Harvey

    The objectives of this study were to investigate the effects of hearing aid use and the effectiveness of ReadMyQuips (RMQ), an auditory training program, on speech perception performance and auditory selective attention using electrophysiological measures. RMQ is an audiovisual training program designed to improve speech perception in everyday noisy listening environments. Participants were adults with mild to moderate hearing loss who were first-time hearing aid users. After 4 weeks of hearing aid use, the experimental group completed RMQ training in 4 weeks, and the control group received listening practice on audiobooks during the same period. Cortical late event-related potentials (ERPs) and the Hearing in Noise Test (HINT) were administered at prefitting, pretraining, and post-training to assess effects of hearing aid use and RMQ training. An oddball paradigm allowed tracking of changes in P3a and P3b ERPs to distractors and targets, respectively. Behavioral measures were also obtained while ERPs were recorded from participants. After 4 weeks of hearing aid use but before auditory training, HINT results did not show a statistically significant change, but there was a significant P3a reduction. This reduction in P3a was correlated with improvement in d prime (d') in the selective attention task. Increased P3b amplitudes were also correlated with improvement in d' in the selective attention task. After training, this correlation between P3b and d' remained in the experimental group, but not in the control group. Similarly, HINT testing showed improved speech perception post training only in the experimental group. The criterion calculated in the auditory selective attention task showed a reduction only in the experimental group after training. ERP measures in the auditory selective attention task did not show any changes related to training. Hearing aid use was associated with a decrement in involuntary attention switch to distractors in the auditory selective

  7. Intensive gait training with rhythmic auditory stimulation in individuals with chronic hemiparetic stroke: a pilot randomized controlled study.

    Science.gov (United States)

    Cha, Yuri; Kim, Young; Hwang, Sujin; Chung, Yijung

    2014-01-01

    Motor relearning protocols should involve task-oriented movement, focused attention, and repetition of desired movements. To investigate the effect of intensive gait training with rhythmic auditory stimulation on postural control and gait performance in individuals with chronic hemiparetic stroke. Twenty patients with chronic hemiparetic stroke participated in this study. Subjects in the Rhythmic auditory stimulation training group (10 subjects) underwent intensive gait training with rhythmic auditory stimulation for a period of 6 weeks (30 min/day, five days/week), while those in the control group (10 subjects) underwent intensive gait training for the same duration. Two clinical measures, Berg balance scale and stroke specific quality of life scale, and a 2-demensional gait analysis system, were used as outcome measure. To provide rhythmic auditory stimulation during gait training, the MIDI Cuebase musical instrument digital interface program and a KM Player version 3.3 was utilized for this study. Intensive gait training with rhythmic auditory stimulation resulted in significant improvement in scores on the Berg balance scale, gait velocity, cadence, stride length and double support period in affected side, and stroke specific quality of life scale compared with the control group after training. Findings of this study suggest that intensive gait training with rhythmic auditory stimulation improves balance and gait performance as well as quality of life, in individuals with chronic hemiparetic stroke.

  8. Music training relates to the development of neural mechanisms of selective auditory attention.

    Science.gov (United States)

    Strait, Dana L; Slater, Jessica; O'Connell, Samantha; Kraus, Nina

    2015-04-01

    Selective attention decreases trial-to-trial variability in cortical auditory-evoked activity. This effect increases over the course of maturation, potentially reflecting the gradual development of selective attention and inhibitory control. Work in adults indicates that music training may alter the development of this neural response characteristic, especially over brain regions associated with executive control: in adult musicians, attention decreases variability in auditory-evoked responses recorded over prefrontal cortex to a greater extent than in nonmusicians. We aimed to determine whether this musician-associated effect emerges during childhood, when selective attention and inhibitory control are under development. We compared cortical auditory-evoked variability to attended and ignored speech streams in musicians and nonmusicians across three age groups: preschoolers, school-aged children and young adults. Results reveal that childhood music training is associated with reduced auditory-evoked response variability recorded over prefrontal cortex during selective auditory attention in school-aged child and adult musicians. Preschoolers, on the other hand, demonstrate no impact of selective attention on cortical response variability and no musician distinctions. This finding is consistent with the gradual emergence of attention during this period and may suggest no pre-existing differences in this attention-related cortical metric between children who undergo music training and those who do not. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Speech comprehension training and auditory and cognitive processing in older adults.

    Science.gov (United States)

    Pichora-Fuller, M Kathleen; Levitt, Harry

    2012-12-01

    To provide a brief history of speech comprehension training systems and an overview of research on auditory and cognitive aging as background to recommendations for future directions for rehabilitation. Two distinct domains were reviewed: one concerning technological and the other concerning psychological aspects of training. Historical trends and advances in these 2 domains were interrelated to highlight converging trends and directions for future practice. Over the last century, technological advances have influenced both the design of hearing aids and training systems. Initially, training focused on children and those with severe loss for whom amplification was insufficient. Now the focus has shifted to older adults with relatively little loss but difficulties listening in noise. Evidence of brain plasticity from auditory and cognitive neuroscience provides new insights into how to facilitate perceptual (re-)learning by older adults. There is a new imperative to complement training to increase bottom-up processing of the signal with more ecologically valid training to boost top-down information processing based on knowledge of language and the world. Advances in digital technologies enable the development of increasingly sophisticated training systems incorporating complex meaningful materials such as music, audiovisual interactive displays, and conversation.

  10. The importance of training in formal methods in Software Engineering

    Directory of Open Access Journals (Sweden)

    John Polansky

    2014-12-01

    Full Text Available The paradigm of formal methods provides systematic techniques and rigorous to software develop and, due the crescent complexity and quality requirements of current products, is necessary introduce them in curriculum of software engineer. In this article is analyzed the importance of train in formal methods and described specific techniques to achieved it efficiently. This techniques are the result of an experimental process in the class room of more than fifteen years in undergraduate and graduate programs, the same as company training. Also are presented a proposal a curriculum to systematic introduction of this paradigm and description of a program in training methods that has been success to industry. Results shows that students gain confidence in formal methods just when found out of the benefits of this in the context of software engineer.

  11. Learning to listen again: the role of compliance in auditory training for adults with hearing loss.

    Science.gov (United States)

    Chisolm, Theresa Hnath; Saunders, Gabrielle H; Frederick, Melissa T; McArdle, Rachel A; Smith, Sherri L; Wilson, Richard H

    2013-12-01

    To examine the role of compliance in the outcomes of computer-based auditory training with the Listening and Communication Enhancement (LACE) program in Veterans using hearing aids. The authors examined available LACE training data for 5 tasks (i.e., speech-in-babble, time compression, competing speaker, auditory memory, missing word) from 50 hearing-aid users who participated in a larger, randomized controlled trial designed to examine the efficacy of LACE training. The goals were to determine: (a) whether there were changes in performance over 20 training sessions on trained tasks (i.e., on-task outcomes); and (b) whether compliance, defined as completing all 20 sessions, vs. noncompliance, defined as completing less than 20 sessions, influenced performance on parallel untrained tasks (i.e., off-task outcomes). The majority, 84% of participants, completed 20 sessions, with maximum outcome occurring with at least 10 sessions of training for some tasks and up to 20 sessions of training for others. Comparison of baseline to posttest performance revealed statistically significant improvements for 4 of 7 off-task outcome measures for the compliant group, with at least small (0.2 compliance in the present study may be attributable to use of systematized verbal and written instructions with telephone follow-up. Compliance, as expected, appears important for optimizing the outcomes of auditory training. Methods to improve compliance in clinical populations need to be developed, and compliance data are important to report in future studies of auditory training.

  12. The listening cube: a three dimensional auditory training program

    NARCIS (Netherlands)

    De Raeve, L.; Anderson, I.; Bammens, M.; Jans, J.; Haesevoets, M.; Pans, R.; Vandistel, H.; Vrolix, Y.

    2012-01-01

    OBJECTIVES: Here we present the Listening Cube, an auditory training program for children and adults receiving cochlear implants, developed during the clinical practice at the KIDS Royal Institute for the Deaf in Belgium. We provide information on the content of the program as well as guidance as to

  13. Acquisition of Formal Operations: The Effects of Two Training Procedures.

    Science.gov (United States)

    Rosenthal, Doreen A.

    1979-01-01

    A study of 11- and 12-year-old girls indicates that either of two training procedures, method training or dimension training, can aid in the transition from concrete operational to formal operational thought by promoting a hypothesis-testing attitude. (BH)

  14. Investigating the Impact of Hearing Aid Use and Auditory Training on Cognition, Depressive Symptoms, and Social Interaction in Adults With Hearing Loss: Protocol for a Crossover Trial.

    Science.gov (United States)

    Nkyekyer, Joanna; Meyer, Denny; Blamey, Peter J; Pipingas, Andrew; Bhar, Sunil

    2018-03-23

    Sensorineural hearing loss is the most common sensory deficit among older adults. Some of the psychosocial consequences of this condition include difficulty in understanding speech, depression, and social isolation. Studies have shown that older adults with hearing loss show some age-related cognitive decline. Hearing aids have been proven as successful interventions to alleviate sensorineural hearing loss. In addition to hearing aid use, the positive effects of auditory training-formal listening activities designed to optimize speech perception-are now being documented among adults with hearing loss who use hearing aids, especially new hearing aid users. Auditory training has also been shown to produce prolonged cognitive performance improvements. However, there is still little evidence to support the benefits of simultaneous hearing aid use and individualized face-to-face auditory training on cognitive performance in adults with hearing loss. This study will investigate whether using hearing aids for the first time will improve the impact of individualized face-to-face auditory training on cognition, depression, and social interaction for adults with sensorineural hearing loss. The rationale for this study is based on the hypothesis that, in adults with sensorineural hearing loss, using hearing aids for the first time in combination with individualized face-to-face auditory training will be more effective for improving cognition, depressive symptoms, and social interaction rather than auditory training on its own. This is a crossover trial targeting 40 men and women between 50 and 90 years of age with either mild or moderate symmetric sensorineural hearing loss. Consented, willing participants will be recruited from either an independent living accommodation or via a community database to undergo a 6-month intensive face-to-face auditory training program (active control). Participants will be assigned in random order to receive hearing aid (intervention) for

  15. Investigating the Impact of Hearing Aid Use and Auditory Training on Cognition, Depressive Symptoms, and Social Interaction in Adults With Hearing Loss: Protocol for a Crossover Trial

    Science.gov (United States)

    Meyer, Denny; Blamey, Peter J; Pipingas, Andrew; Bhar, Sunil

    2018-01-01

    Background Sensorineural hearing loss is the most common sensory deficit among older adults. Some of the psychosocial consequences of this condition include difficulty in understanding speech, depression, and social isolation. Studies have shown that older adults with hearing loss show some age-related cognitive decline. Hearing aids have been proven as successful interventions to alleviate sensorineural hearing loss. In addition to hearing aid use, the positive effects of auditory training—formal listening activities designed to optimize speech perception—are now being documented among adults with hearing loss who use hearing aids, especially new hearing aid users. Auditory training has also been shown to produce prolonged cognitive performance improvements. However, there is still little evidence to support the benefits of simultaneous hearing aid use and individualized face-to-face auditory training on cognitive performance in adults with hearing loss. Objective This study will investigate whether using hearing aids for the first time will improve the impact of individualized face-to-face auditory training on cognition, depression, and social interaction for adults with sensorineural hearing loss. The rationale for this study is based on the hypothesis that, in adults with sensorineural hearing loss, using hearing aids for the first time in combination with individualized face-to-face auditory training will be more effective for improving cognition, depressive symptoms, and social interaction rather than auditory training on its own. Methods This is a crossover trial targeting 40 men and women between 50 and 90 years of age with either mild or moderate symmetric sensorineural hearing loss. Consented, willing participants will be recruited from either an independent living accommodation or via a community database to undergo a 6-month intensive face-to-face auditory training program (active control). Participants will be assigned in random order to receive

  16. Formal and Informal Continuing Education Activities and Athletic Training Professional Practice

    Science.gov (United States)

    Armstrong, Kirk J.; Weidner, Thomas G.

    2010-01-01

    Abstract Context: Continuing education (CE) is intended to promote professional growth and, ultimately, to enhance professional practice. Objective: To determine certified athletic trainers' participation in formal (ie, approved for CE credit) and informal (ie, not approved for CE credit) CE activities and the perceived effect these activities have on professional practice with regard to improving knowledge, clinical skills and abilities, attitudes toward patient care, and patient care itself. Design: Cross-sectional study. Setting: Athletic training practice settings. Patients or Other Participants: Of a geographic, stratified random sample of 1000 athletic trainers, 427 (42.7%) completed the survey. Main Outcome Measure(s): The Survey of Formal and Informal Athletic Training Continuing Education Activities was developed and administered electronically. The survey consisted of demographic characteristics and Likert-scale items regarding CE participation and perceived effect of CE on professional practice. Internal consistency of survey items was determined using the Cronbach α (α  =  0.945). Descriptive statistics were computed for all items. An analysis of variance and dependent t tests were calculated to determine differences among respondents' demographic characteristics and their participation in, and perceived effect of, CE activities. The α level was set at .05. Results: Respondents completed more informal CE activities than formal CE activities. Participation in informal CE activities included reading athletic training journals (75.4%), whereas formal CE activities included attending a Board of Certification–approved workshop, seminar, or professional conference not conducted by the National Athletic Trainers' Association or affiliates or committees (75.6%). Informal CE activities were perceived to improve clinical skills or abilities and attitudes toward patient care. Formal CE activities were perceived to enhance knowledge. Conclusions: More

  17. Engagement with the auditory processing system during targeted auditory cognitive training mediates changes in cognitive outcomes in individuals with schizophrenia.

    Science.gov (United States)

    Biagianti, Bruno; Fisher, Melissa; Neilands, Torsten B; Loewy, Rachel; Vinogradov, Sophia

    2016-11-01

    Individuals with schizophrenia who engage in targeted cognitive training (TCT) of the auditory system show generalized cognitive improvements. The high degree of variability in cognitive gains maybe due to individual differences in the level of engagement of the underlying neural system target. 131 individuals with schizophrenia underwent 40 hours of TCT. We identified target engagement of auditory system processing efficiency by modeling subject-specific trajectories of auditory processing speed (APS) over time. Lowess analysis, mixed models repeated measures analysis, and latent growth curve modeling were used to examine whether APS trajectories were moderated by age and illness duration, and mediated improvements in cognitive outcome measures. We observed significant improvements in APS from baseline to 20 hours of training (initial change), followed by a flat APS trajectory (plateau) at subsequent time-points. Participants showed interindividual variability in the steepness of the initial APS change and in the APS plateau achieved and sustained between 20 and 40 hours. We found that participants who achieved the fastest APS plateau, showed the greatest transfer effects to untrained cognitive domains. There is a significant association between an individual's ability to generate and sustain auditory processing efficiency and their degree of cognitive improvement after TCT, independent of baseline neurocognition. APS plateau may therefore represent a behavioral measure of target engagement mediating treatment response. Future studies should examine the optimal plateau of auditory processing efficiency required to induce significant cognitive improvements, in the context of interindividual differences in neural plasticity and sensory system efficiency that characterize schizophrenia. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  18. The Efficacy of Short-term Gated Audiovisual Speech Training for Improving Auditory Sentence Identification in Noise in Elderly Hearing Aid Users

    Science.gov (United States)

    Moradi, Shahram; Wahlin, Anna; Hällgren, Mathias; Rönnberg, Jerker; Lidestam, Björn

    2017-01-01

    This study aimed to examine the efficacy and maintenance of short-term (one-session) gated audiovisual speech training for improving auditory sentence identification in noise in experienced elderly hearing-aid users. Twenty-five hearing aid users (16 men and 9 women), with an average age of 70.8 years, were randomly divided into an experimental (audiovisual training, n = 14) and a control (auditory training, n = 11) group. Participants underwent gated speech identification tasks comprising Swedish consonants and words presented at 65 dB sound pressure level with a 0 dB signal-to-noise ratio (steady-state broadband noise), in audiovisual or auditory-only training conditions. The Hearing-in-Noise Test was employed to measure participants’ auditory sentence identification in noise before the training (pre-test), promptly after training (post-test), and 1 month after training (one-month follow-up). The results showed that audiovisual training improved auditory sentence identification in noise promptly after the training (post-test vs. pre-test scores); furthermore, this improvement was maintained 1 month after the training (one-month follow-up vs. pre-test scores). Such improvement was not observed in the control group, neither promptly after the training nor at the one-month follow-up. However, no significant between-groups difference nor an interaction between groups and session was observed. Conclusion: Audiovisual training may be considered in aural rehabilitation of hearing aid users to improve listening capabilities in noisy conditions. However, the lack of a significant between-groups effect (audiovisual vs. auditory) or an interaction between group and session calls for further research. PMID:28348542

  19. A call for formal telemedicine training during stroke fellowship

    Science.gov (United States)

    Jia, Judy; Gildersleeve, Kasey; Ankrom, Christy; Cai, Chunyan; Rahbar, Mohammad; Savitz, Sean I.; Wu, Tzu-Ching

    2016-01-01

    During the 20 years since US Food and Drug Administration approval of IV tissue plasminogen activator for acute ischemic stroke, vascular neurology consultation via telemedicine has contributed to an increased frequency of IV tissue plasminogen activator administration and broadened geographic access to the drug. Nevertheless, a growing demand for acute stroke coverage persists, with the greatest disparity found in rural communities underserved by neurologists. To provide efficient and consistent acute care, formal training in telemedicine during neurovascular fellowship is warranted. Herein, we describe our experiences incorporating telestroke into the vascular neurology fellowship curriculum and propose recommendations on integrating formal telemedicine training into the Accreditation Council for Graduate Medical Education vascular neurology fellowship. PMID:27016522

  20. IMPLEMENTASI MODEL PEMBELAJARAN INQUIRY TRAINING DALAM PEMBELAJARAN FISIKA UNTUK MENINGKATKAN KEMAMPUAN BERPIKIR FORMAL SISWA

    Directory of Open Access Journals (Sweden)

    D. Nasution

    2015-07-01

    Full Text Available Low ability of formal thinking students caused the learning outcomes they get too low. This study aims to determine the effectiveness of the inquiry learning model training in improving students' ability to think formal. The design was used quasi-experimental "non-equivalent groups pretest-posttest design". Implementation  experimental class learning with inquiry learning model training, control class learning with direct instruction. Data obtained through a formal thinking ability test thinking ability. Learning model efectivity in improving formal thinking ability is determined based on the gain score average which normalized by average difference test of statistic, namely t test. The results of the reasearch found that the inquiry training learning model is more effective in improving students formal thinking ability compared with the direct instruction learning model. The N-gain percentage of formal thinking ability of students in the experiment class in the indicators of hypothetical deductive thinking, combination thinking and reflection thinking are in the medium category, just proportional thinking is the high category. N-gain average percentage of control class for the hypothesis deductive thinking is just in the low category, while the proportional thinking, combination thinking and reflection thinking are in the medium category.Rendahnya kemampuan berpikir formal siswa menyebabkan hasil belajar yang mereka peroleh juga rendah. Penelitian ini bertujuan untuk mengetahui efektivitas  model pembelajaran inquiry training dalam meningkatkan kemampuan berpikir formal  siswa. Disain yang digunakan adalah kuasi eksperimen “non-equivalent groups pretest-posttest design”. Implementasi pembelajaran kelas eksperimen dibelajarkan dengan model pembelajaran inquiry training, kelas kontrol dengan model pembelajaran direct instruction.  Data kemampuan berpikir formal diperoleh melalui tes kemampuan berpikir formal. Efektivitas

  1. Auditory training changes temporal lobe connectivity in 'Wernicke's aphasia': a randomised trial.

    Science.gov (United States)

    Woodhead, Zoe Vj; Crinion, Jennifer; Teki, Sundeep; Penny, Will; Price, Cathy J; Leff, Alexander P

    2017-07-01

    Aphasia is one of the most disabling sequelae after stroke, occurring in 25%-40% of stroke survivors. However, there remains a lack of good evidence for the efficacy or mechanisms of speech comprehension rehabilitation. This within-subjects trial tested two concurrent interventions in 20 patients with chronic aphasia with speech comprehension impairment following left hemisphere stroke: (1) phonological training using 'Earobics' software and (2) a pharmacological intervention using donepezil, an acetylcholinesterase inhibitor. Donepezil was tested in a double-blind, placebo-controlled, cross-over design using block randomisation with bias minimisation. The primary outcome measure was speech comprehension score on the comprehensive aphasia test. Magnetoencephalography (MEG) with an established index of auditory perception, the mismatch negativity response, tested whether the therapies altered effective connectivity at the lower (primary) or higher (secondary) level of the auditory network. Phonological training improved speech comprehension abilities and was particularly effective for patients with severe deficits. No major adverse effects of donepezil were observed, but it had an unpredicted negative effect on speech comprehension. The MEG analysis demonstrated that phonological training increased synaptic gain in the left superior temporal gyrus (STG). Patients with more severe speech comprehension impairments also showed strengthening of bidirectional connections between the left and right STG. Phonological training resulted in a small but significant improvement in speech comprehension, whereas donepezil had a negative effect. The connectivity results indicated that training reshaped higher order phonological representations in the left STG and (in more severe patients) induced stronger interhemispheric transfer of information between higher levels of auditory cortex.Clinical trial registrationThis trial was registered with EudraCT (2005-004215-30, https

  2. Can you hear me now? Musical training shapes functional brain networks for selective auditory attention and hearing speech in noise

    Directory of Open Access Journals (Sweden)

    Dana L Strait

    2011-06-01

    Full Text Available Even in the quietest of rooms, our senses are perpetually inundated by a barrage of sounds, requiring the auditory system to adapt to a variety of listening conditions in order to extract signals of interest (e.g., one speaker’s voice amidst others. Brain networks that promote selective attention are thought to sharpen the neural encoding of a target signal, suppressing competing sounds and enhancing perceptual performance. Here, we ask: does musical training benefit cortical mechanisms that underlie selective attention to speech? To answer this question, we assessed the impact of selective auditory attention on cortical auditory-evoked response variability in musicians and nonmusicians. Outcomes indicate strengthened brain networks for selective auditory attention in musicians in that musicians but not nonmusicians demonstrate decreased prefrontal response variability with auditory attention. Results are interpreted in the context of previous work from our laboratory documenting perceptual and subcortical advantages in musicians for the hearing and neural encoding of speech in background noise. Musicians’ neural proficiency for selectively engaging and sustaining auditory attention to language indicates a potential benefit of music for auditory training. Given the importance of auditory attention for the development of language-related skills, musical training may aid in the prevention, habilitation and remediation of children with a wide range of attention-based language and learning impairments.

  3. Effects of training and motivation on auditory P300 brain-computer interface performance.

    Science.gov (United States)

    Baykara, E; Ruf, C A; Fioravanti, C; Käthner, I; Simon, N; Kleih, S C; Kübler, A; Halder, S

    2016-01-01

    Brain-computer interface (BCI) technology aims at helping end-users with severe motor paralysis to communicate with their environment without using the natural output pathways of the brain. For end-users in complete paralysis, loss of gaze control may necessitate non-visual BCI systems. The present study investigated the effect of training on performance with an auditory P300 multi-class speller paradigm. For half of the participants, spatial cues were added to the auditory stimuli to see whether performance can be further optimized. The influence of motivation, mood and workload on performance and P300 component was also examined. In five sessions, 16 healthy participants were instructed to spell several words by attending to animal sounds representing the rows and columns of a 5 × 5 letter matrix. 81% of the participants achieved an average online accuracy of ⩾ 70%. From the first to the fifth session information transfer rates increased from 3.72 bits/min to 5.63 bits/min. Motivation significantly influenced P300 amplitude and online ITR. No significant facilitative effect of spatial cues on performance was observed. Training improves performance in an auditory BCI paradigm. Motivation influences performance and P300 amplitude. The described auditory BCI system may help end-users to communicate independently of gaze control with their environment. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  4. The effect of auditory perception training on reading performance of the 8-9-year old female students with dyslexia: A preliminary study

    Directory of Open Access Journals (Sweden)

    Nafiseh Vatandoost

    2014-01-01

    Full Text Available Background and Aim: Dyslexia is the most common learning disability. One of the main factors have role in this disability is auditory perception imperfection that cause a lot of problems in education. We aimed to study the effect of auditory perception training on reading performance of female students with dyslexia at the third grade of elementary school.Methods: Thirty-eight female students at the third grade of elementary schools of Khomeinishahr City, Iran, were selected by multistage cluster random sampling of them, 20 students which were diagnosed dyslexic by Reading test and Wechsler test, devided randomly to two equal groups of experimental and control. For experimental group, during ten 45-minute sessions, auditory perception training were conducted, but no intervention was done for control group. An participants were re-assessed by Reading test after the intervention (pre- and post- test method. Data were analyed by covariance test.Results: The effect of auditory perception training on reading performance (81% was significant (p<0.0001 for all subtests execpt the separate compound word test.Conclusion: Findings of our study confirm the hypothesis that auditory perception training effects on students' functional reading. So, auditory perception training seems to be necessary for the students with dyslexia.

  5. Computer-Based Auditory Training Programs for Children with Hearing Impairment - A Scoping Review.

    Science.gov (United States)

    Nanjundaswamy, Manohar; Prabhu, Prashanth; Rajanna, Revathi Kittur; Ningegowda, Raghavendra Gulaganji; Sharma, Madhuri

    2018-01-01

    Introduction  Communication breakdown, a consequence of hearing impairment (HI), is being fought by fitting amplification devices and providing auditory training since the inception of audiology. The advances in both audiology and rehabilitation programs have led to the advent of computer-based auditory training programs (CBATPs). Objective  To review the existing literature documenting the evidence-based CBATPs for children with HIs. Since there was only one such article, we also chose to review the commercially available CBATPs for children with HI. The strengths and weaknesses of the existing literature were reviewed in order to improve further researches. Data Synthesis  Google Scholar and PubMed databases were searched using various combinations of keywords. The participant, intervention, control, outcome and study design (PICOS) criteria were used for the inclusion of articles. Out of 124 article abstracts reviewed, 5 studies were shortlisted for detailed reading. One among them satisfied all the criteria, and was taken for review. The commercially available programs were chosen based on an extensive search in Google. The reviewed article was well-structured, with appropriate outcomes. The commercially available programs cover many aspects of the auditory training through a wide range of stimuli and activities. Conclusions  There is a dire need for extensive research to be performed in the field of CBATPs to establish their efficacy, also to establish them as evidence-based practices.

  6. Speech perception enhancement in elderly hearing aid users using an auditory training program for mobile devices.

    Science.gov (United States)

    Yu, Jyaehyoung; Jeon, Hanjae; Song, Changgeun; Han, Woojae

    2017-01-01

    The goal of the present study was to develop an auditory training program using a mobile device and to test its efficacy by applying it to older adults suffering from moderate-to-severe sensorineural hearing loss. Among the 20 elderly hearing-impaired listeners who participated, 10 were randomly assigned to a training group (TG) and 10 were assigned to a non-training group (NTG) as a control. As a baseline, all participants were measured by vowel, consonant and sentence tests. In the experiment, the TG had been trained for 4 weeks using a mobile program, which had four levels and consisted of 10 Korean nonsense syllables, with each level completed in 1 week. In contrast, traditional auditory training had been provided for the NTG during the same period. To evaluate whether a training effect was achieved, the two groups also carried out the same tests as the baseline after completing the experiment. The results showed that performance on the consonant and sentence tests in the TG was significantly increased compared with that of the NTG. Also, improved scores of speech perception were retained at 2 weeks after the training was completed. However, vowel scores were not changed after the 4-week training in both the TG and the NTG. This result pattern suggests that a moderate amount of auditory training using the mobile device with cost-effective and minimal supervision is useful when it is used to improve the speech understanding of older adults with hearing loss. Geriatr Gerontol Int 2017; 17: 61-68. © 2015 Japan Geriatrics Society.

  7. Structured Activities in Perceptual Training to Aid Retention of Visual and Auditory Images.

    Science.gov (United States)

    Graves, James W.; And Others

    The experimental program in structured activities in perceptual training was said to have two main objectives: to train children in retention of visual and auditory images and to increase the children's motivation to learn. Eight boys and girls participated in the program for two hours daily for a 10-week period. The age range was 7.0 to 12.10…

  8. Assessment of long-term impact of formal certified cardiopulmonary resuscitation training program among nurses.

    Science.gov (United States)

    Saramma, P P; Raj, L Suja; Dash, P K; Sarma, P S

    2016-04-01

    Cardiopulmonary resuscitation (CPR) and emergency cardiovascular care guidelines are periodically renewed and published by the American Heart Association. Formal training programs are conducted based on these guidelines. Despite widespread training CPR is often poorly performed. Hospital educators spend a significant amount of time and money in training health professionals and maintaining basic life support (BLS) and advanced cardiac life support (ACLS) skills among them. However, very little data are available in the literature highlighting the long-term impact of these training. To evaluate the impact of formal certified CPR training program on the knowledge and skill of CPR among nurses, to identify self-reported outcomes of attempted CPR and training needs of nurses. Tertiary care hospital, Prospective, repeated-measures design. A series of certified BLS and ACLS training programs were conducted during 2010 and 2011. Written and practical performance tests were done. Final testing was undertaken 3-4 years after training. The sample included all available, willing CPR certified nurses and experience matched CPR noncertified nurses. SPSS for Windows version 21.0. The majority of the 206 nurses (93 CPR certified and 113 noncertified) were females. There was a statistically significant increase in mean knowledge level and overall performance before and after the formal certified CPR training program (P = 0.000). However, the mean knowledge scores were equivalent among the CPR certified and noncertified nurses, although the certified nurses scored a higher mean score (P = 0.140). Formal certified CPR training program increases CPR knowledge and skill. However, significant long-term effects could not be found. There is a need for regular and periodic recertification.

  9. Neurofeedback-Based Enhancement of Single-Trial Auditory Evoked Potentials: Treatment of Auditory Verbal Hallucinations in Schizophrenia.

    Science.gov (United States)

    Rieger, Kathryn; Rarra, Marie-Helene; Diaz Hernandez, Laura; Hubl, Daniela; Koenig, Thomas

    2018-03-01

    Auditory verbal hallucinations depend on a broad neurobiological network ranging from the auditory system to language as well as memory-related processes. As part of this, the auditory N100 event-related potential (ERP) component is attenuated in patients with schizophrenia, with stronger attenuation occurring during auditory verbal hallucinations. Changes in the N100 component assumingly reflect disturbed responsiveness of the auditory system toward external stimuli in schizophrenia. With this premise, we investigated the therapeutic utility of neurofeedback training to modulate the auditory-evoked N100 component in patients with schizophrenia and associated auditory verbal hallucinations. Ten patients completed electroencephalography neurofeedback training for modulation of N100 (treatment condition) or another unrelated component, P200 (control condition). On a behavioral level, only the control group showed a tendency for symptom improvement in the Positive and Negative Syndrome Scale total score in a pre-/postcomparison ( t (4) = 2.71, P = .054); however, no significant differences were found in specific hallucination related symptoms ( t (7) = -0.53, P = .62). There was no significant overall effect of neurofeedback training on ERP components in our paradigm; however, we were able to identify different learning patterns, and found a correlation between learning and improvement in auditory verbal hallucination symptoms across training sessions ( r = 0.664, n = 9, P = .05). This effect results, with cautious interpretation due to the small sample size, primarily from the treatment group ( r = 0.97, n = 4, P = .03). In particular, a within-session learning parameter showed utility for predicting symptom improvement with neurofeedback training. In conclusion, patients with schizophrenia and associated auditory verbal hallucinations who exhibit a learning pattern more characterized by within-session aptitude may benefit from electroencephalography neurofeedback

  10. Auditory Reserve and the Legacy of Auditory Experience

    Directory of Open Access Journals (Sweden)

    Erika Skoe

    2014-11-01

    Full Text Available Musical training during childhood has been linked to more robust encoding of sound later in life. We take this as evidence for an auditory reserve: a mechanism by which individuals capitalize on earlier life experiences to promote auditory processing. We assert that early auditory experiences guide how the reserve develops and is maintained over the lifetime. Experiences that occur after childhood, or which are limited in nature, are theorized to affect the reserve, although their influence on sensory processing may be less long-lasting and may potentially fade over time if not repeated. This auditory reserve may help to explain individual differences in how individuals cope with auditory impoverishment or loss of sensorineural function.

  11. Familiar auditory sensory training in chronic traumatic brain injury: a case study.

    Science.gov (United States)

    Sullivan, Emily Galassi; Guernon, Ann; Blabas, Brett; Herrold, Amy A; Pape, Theresa L-B

    2018-04-01

    The evaluation and treatment for patients with prolonged periods of seriously impaired consciousness following traumatic brain injury (TBI), such as a vegetative or minimally conscious state, poses considerable challenges, particularly in the chronic phases of recovery. This blinded crossover study explored the effects of familiar auditory sensory training (FAST) compared with a sham stimulation in a patient seven years post severe TBI. Baseline data were collected over 4 weeks to account for variability in status with neurobehavioral measures, including the Disorders of Consciousness scale (DOCS), Coma Near Coma scale (CNC), and Consciousness Screening Algorithm. Pre-stimulation neurophysiological assessments were completed as well, namely Brainstem Auditory Evoked Potentials (BAEP) and Somatosensory Evoked Potentials (SSEP). Results revealed that a significant improvement in the DOCS neurobehavioral findings after FAST, which was not maintained during the sham. BAEP findings also improved with maintenance of these improvements following sham stimulation as evidenced by repeat testing. The results emphasize the importance for continued evaluation and treatment of individuals in chronic states of seriously impaired consciousness with a variety of tools. Further study of auditory stimulation as a passive treatment paradigm for this population is warranted. Implications for Rehabilitation Clinicians should be equipped with treatment options to enhance neurobehavioral improvements when traditional treatment methods fail to deliver or maintain functional behavioral changes. Routine assessment is crucial to detect subtle changes in neurobehavioral function even in chronic states of disordered consciousness and determine potential preserved cognitive abilities that may not be evident due to unreliable motor responses given motoric impairments. Familiar Auditory Stimulation Training (FAST) is an ideal passive stimulation that can be supplied by families, allied health

  12. Multisensory training can promote or impede visual perceptual learning of speech stimuli: visual-tactile vs. visual-auditory training.

    Science.gov (United States)

    Eberhardt, Silvio P; Auer, Edward T; Bernstein, Lynne E

    2014-01-01

    In a series of studies we have been investigating how multisensory training affects unisensory perceptual learning with speech stimuli. Previously, we reported that audiovisual (AV) training with speech stimuli can promote auditory-only (AO) perceptual learning in normal-hearing adults but can impede learning in congenitally deaf adults with late-acquired cochlear implants. Here, impeder and promoter effects were sought in normal-hearing adults who participated in lipreading training. In Experiment 1, visual-only (VO) training on paired associations between CVCVC nonsense word videos and nonsense pictures demonstrated that VO words could be learned to a high level of accuracy even by poor lipreaders. In Experiment 2, visual-auditory (VA) training in the same paradigm but with the addition of synchronous vocoded acoustic speech impeded VO learning of the stimuli in the paired-associates paradigm. In Experiment 3, the vocoded AO stimuli were shown to be less informative than the VO speech. Experiment 4 combined vibrotactile speech stimuli with the visual stimuli during training. Vibrotactile stimuli were shown to promote visual perceptual learning. In Experiment 5, no-training controls were used to show that training with visual speech carried over to consonant identification of untrained CVCVC stimuli but not to lipreading words in sentences. Across this and previous studies, multisensory training effects depended on the functional relationship between pathways engaged during training. Two principles are proposed to account for stimulus effects: (1) Stimuli presented to the trainee's primary perceptual pathway will impede learning by a lower-rank pathway. (2) Stimuli presented to the trainee's lower rank perceptual pathway will promote learning by a higher-rank pathway. The mechanisms supporting these principles are discussed in light of multisensory reverse hierarchy theory (RHT).

  13. Computer-Based Auditory Training Programs for Children with Hearing Impairment – A Scoping Review

    Science.gov (United States)

    Nanjundaswamy, Manohar; Prabhu, Prashanth; Rajanna, Revathi Kittur; Ningegowda, Raghavendra Gulaganji; Sharma, Madhuri

    2018-01-01

    Introduction  Communication breakdown, a consequence of hearing impairment (HI), is being fought by fitting amplification devices and providing auditory training since the inception of audiology. The advances in both audiology and rehabilitation programs have led to the advent of computer-based auditory training programs (CBATPs). Objective  To review the existing literature documenting the evidence-based CBATPs for children with HIs. Since there was only one such article, we also chose to review the commercially available CBATPs for children with HI. The strengths and weaknesses of the existing literature were reviewed in order to improve further researches. Data Synthesis  Google Scholar and PubMed databases were searched using various combinations of keywords. The participant, intervention, control, outcome and study design (PICOS) criteria were used for the inclusion of articles. Out of 124 article abstracts reviewed, 5 studies were shortlisted for detailed reading. One among them satisfied all the criteria, and was taken for review. The commercially available programs were chosen based on an extensive search in Google. The reviewed article was well-structured, with appropriate outcomes. The commercially available programs cover many aspects of the auditory training through a wide range of stimuli and activities. Conclusions  There is a dire need for extensive research to be performed in the field of CBATPs to establish their efficacy, also to establish them as evidence-based practices. PMID:29371904

  14. Auditory Association Cortex Lesions Impair Auditory Short-Term Memory in Monkeys

    Science.gov (United States)

    Colombo, Michael; D'Amato, Michael R.; Rodman, Hillary R.; Gross, Charles G.

    1990-01-01

    Monkeys that were trained to perform auditory and visual short-term memory tasks (delayed matching-to-sample) received lesions of the auditory association cortex in the superior temporal gyrus. Although visual memory was completely unaffected by the lesions, auditory memory was severely impaired. Despite this impairment, all monkeys could discriminate sounds closer in frequency than those used in the auditory memory task. This result suggests that the superior temporal cortex plays a role in auditory processing and retention similar to the role the inferior temporal cortex plays in visual processing and retention.

  15. Cognitive factors shape brain networks for auditory skills: spotlight on auditory working memory

    Science.gov (United States)

    Kraus, Nina; Strait, Dana; Parbery-Clark, Alexandra

    2012-01-01

    Musicians benefit from real-life advantages such as a greater ability to hear speech in noise and to remember sounds, although the biological mechanisms driving such advantages remain undetermined. Furthermore, the extent to which these advantages are a consequence of musical training or innate characteristics that predispose a given individual to pursue music training is often debated. Here, we examine biological underpinnings of musicians’ auditory advantages and the mediating role of auditory working memory. Results from our laboratory are presented within a framework that emphasizes auditory working memory as a major factor in the neural processing of sound. Within this framework, we provide evidence for music training as a contributing source of these abilities. PMID:22524346

  16. Trait aspects of auditory mismatch negativity predict response to auditory training in individuals with early illness schizophrenia.

    Science.gov (United States)

    Biagianti, Bruno; Roach, Brian J; Fisher, Melissa; Loewy, Rachel; Ford, Judith M; Vinogradov, Sophia; Mathalon, Daniel H

    2017-01-01

    Individuals with schizophrenia have heterogeneous impairments of the auditory processing system that likely mediate differences in the cognitive gains induced by auditory training (AT). Mismatch negativity (MMN) is an event-related potential component reflecting auditory echoic memory, and its amplitude reduction in schizophrenia has been linked to cognitive deficits. Therefore, MMN may predict response to AT and identify individuals with schizophrenia who have the most to gain from AT. Furthermore, to the extent that AT strengthens auditory deviance processing, MMN may also serve as a readout of the underlying changes in the auditory system induced by AT. Fifty-six individuals early in the course of a schizophrenia-spectrum illness (ESZ) were randomly assigned to 40 h of AT or Computer Games (CG). Cognitive assessments and EEG recordings during a multi-deviant MMN paradigm were obtained before and after AT and CG. Changes in these measures were compared between the treatment groups. Baseline and trait-like MMN data were evaluated as predictors of treatment response. MMN data collected with the same paradigm from a sample of Healthy Controls (HC; n = 105) were compared to baseline MMN data from the ESZ group. Compared to HC, ESZ individuals showed significant MMN reductions at baseline ( p = .003). Reduced Double-Deviant MMN was associated with greater general cognitive impairment in ESZ individuals ( p = .020). Neither ESZ intervention group showed significant change in MMN. We found high correlations in all MMN deviant types (rs = .59-.68, all ps < .001) between baseline and post-intervention amplitudes irrespective of treatment group, suggesting trait-like stability of the MMN signal. Greater deficits in trait-like Double-Deviant MMN predicted greater cognitive improvements in the AT group ( p = .02), but not in the CG group. In this sample of ESZ individuals, AT had no effect on auditory deviance processing as assessed by MMN. In ESZ individuals, baseline MMN

  17. Treinamento auditivo para transtorno do processamento auditivo: uma proposta de intervenção terapêutica Auditory training for auditory processing disorder: a proposal for therapeutic intervention

    Directory of Open Access Journals (Sweden)

    Alessandra Giannella Samelli

    2010-04-01

    Full Text Available OBJETIVO: verificar a eficácia de um programa informal de treinamento auditivo específico para transtornos do Processamento Auditivo, em um grupo de pacientes com esta alteração, por meio da comparação de pré e pós-testes. MÉTODOS: participaram deste estudo 10 indivíduos de ambos os sexos, da faixa etária entre sete e 20 anos. Todos realizaram avaliação audiológica completa e do processamento auditivo (testes: Fala com Ruído, Sttagered Spondaic Word - SSW, Dicótico de Dígitos, Padrão de Frequência. Após 10 sessões individuais de treinamento auditivo, nas quais foram trabalhadas diretamente as habilidades auditivas alteradas, a avaliação do processamento auditivo foi refeita. RESULTADOS: as porcentagens médias de acertos nas situações pré e pós-treinamento auditivo demonstraram diferenças estatisticamente significantes em todos os testes realizados. CONCLUSÃO: o programa de treinamento auditivo informal empregado mostrou-se eficaz em um grupo de pacientes com transtorno do processamento auditivo, uma vez que determinou diferença estatisticamente significante entre o desempenho pré e pós-testes na avaliação do processamento auditivo, indicando melhora das habilidades auditivas alteradas.PURPOSE: to check the auditory training efficacy in patients with (central auditory processing disorder, by comparing pre and post results. METHODS: ten male and female subjects, from 7 to 20-year old, took part in this study. All participants were submitted to audiological and (central auditory processing evaluations, which included Speech Recognition under in Noise, Staggered Spondaic Word, Dichotic Digits and Frequency Pattern Discrimination tests. Evaluation was carried out after 10 auditory training sessions. RESULTS: statistical differences were verified comparing pre and post results concerning the mean percentage for all tests. CONCLUSION: the informal auditory training program used showed to be efficient for patients with

  18. Pre-Training Reversible Inactivation of the Basal Amygdala (BA Disrupts Contextual, but Not Auditory, Fear Conditioning, in Rats.

    Directory of Open Access Journals (Sweden)

    Elisa Mari Akagi Jordão

    Full Text Available The basolateral amygdala complex (BLA, including the lateral (LA, basal (BA and accessory basal (AB nuclei, is involved in acquisition of contextual and auditory fear conditioning. The BA is one of the main targets for hippocampal information, a brain structure critical for contextual learning, which integrates several discrete stimuli into a single configural representation. Congruent with the hodology, selective neurotoxic damage to the BA results in impairments in contextual, but not auditory, fear conditioning, similarly to the behavioral impairments found after hippocampal damage. This study evaluated the effects of muscimol-induced reversible inactivation of the BA during a simultaneous contextual and auditory fear conditioning training on later fear responses to both the context and the tone, tested separately, without muscimol administration. As compared to control rats micro-infused with vehicle, subjects micro-infused with muscimol before training exhibited, during testing without muscimol, significant reduction of freezing responses to the conditioned context, but not to the conditioned tone. Therefore, reversible inactivation of the BA during training impaired contextual, but not auditory fear conditioning, thus confirming and extending similar behavioral observations following selective neurotoxic damage to the BA and, in addition, revealing that this effect is not related to the lack of a functional BA during testing.

  19. Efficacy of the LiSN & Learn auditory training software: randomized blinded controlled study

    Directory of Open Access Journals (Sweden)

    Sharon Cameron

    2012-09-01

    Full Text Available Children with a spatial processing disorder (SPD require a more favorable signal-to-noise ratio in the classroom because they have difficulty perceiving sound source location cues. Previous research has shown that a novel training program - LiSN & Learn - employing spatialized sound, overcomes this deficit. Here we investigate whether improvements in spatial processing ability are specific to the LiSN & Learn training program. Participants were ten children (aged between 6;0 [years;months] and 9;9 with normal peripheral hearing who were diagnosed as having SPD using the Listening in Spatialized Noise - Sentences test (LiSN-S. In a blinded controlled study, the participants were randomly allocated to train with either the LiSN & Learn or another auditory training program - Earobics - for approximately 15 min per day for twelve weeks. There was a significant improvement post-training on the conditions of the LiSN-S that evaluate spatial processing ability for the LiSN & Learn group (P=0.03 to 0.0008, η 2=0.75 to 0.95, n=5, but not for the Earobics group (P=0.5 to 0.7, η 2=0.1 to 0.04, n=5. Results from questionnaires completed by the participants and their parents and teachers revealed improvements in real-world listening performance post-training were greater in the LiSN & Learn group than the Earobics group. LiSN & Learn training improved binaural processing ability in children with SPD, enhancing their ability to understand speech in noise. Exposure to non-spatialized auditory training does not produce similar outcomes, emphasizing the importance of deficit-specific remediation.

  20. Efficacy of the LiSN & Learn Auditory Training Software: randomized blinded controlled study

    Directory of Open Access Journals (Sweden)

    Sharon Cameron

    2012-01-01

    Full Text Available Background: Children with a spatial processing disorder (SPD require a more favorable signal-to-noise ratio in the classroom because they have difficulty perceiving sound source location cues. Previous research has shown that a novel training program - LiSN & Learn - employing spatialized sound, overcomes this deficit. Here we investigate whether improvements in spatial processing ability are specific to the LiSN & Learn training program. Materials and methods: Participants were ten children (aged between 6;0 [years;months] and 9;9 with normal peripheral hearing who were diagnosed as having SPD using the Listening in Spatialized Noise – Sentences Test (LISN-S. In a blinded controlled study, the participants were randomly allocated to train with either the LiSN & Learn or another auditory training program – Earobics - for approximately 15 minutes per day for twelve weeks. Results: There was a significant improvement post-training on the conditions of the LiSN-S that evaluate spatial processing ability for the LiSN & Learn group (p=0.03 to 0.0008, η2=0.75 to 0.95, n=5, but not for the Earobics group (p=0.5 to 0.7, η2=0.1 to 0.04, n=5. Results from questionnaires completed by the participants and their parents and teachers revealed improvements in real-world listening performance post-training were greater in the LiSN & Learn group than the Earobics group. Conclusions: LiSN & Learn training improved binaural processing ability in children with SPD, enhancing their ability to understand speech in noise. Exposure to non-spatialized auditory training does not produce similar outcomes, emphasizing the importance of deficit-specific remediation.

  1. Computer-based auditory phoneme discrimination training improves speech recognition in noise in experienced adult cochlear implant listeners.

    Science.gov (United States)

    Schumann, Annette; Serman, Maja; Gefeller, Olaf; Hoppe, Ulrich

    2015-03-01

    Specific computer-based auditory training may be a useful completion in the rehabilitation process for cochlear implant (CI) listeners to achieve sufficient speech intelligibility. This study evaluated the effectiveness of a computerized, phoneme-discrimination training programme. The study employed a pretest-post-test design; participants were randomly assigned to the training or control group. Over a period of three weeks, the training group was instructed to train in phoneme discrimination via computer, twice a week. Sentence recognition in different noise conditions (moderate to difficult) was tested pre- and post-training, and six months after the training was completed. The control group was tested and retested within one month. Twenty-seven adult CI listeners who had been using cochlear implants for more than two years participated in the programme; 15 adults in the training group, 12 adults in the control group. Besides significant improvements for the trained phoneme-identification task, a generalized training effect was noted via significantly improved sentence recognition in moderate noise. No significant changes were noted in the difficult noise conditions. Improved performance was maintained over an extended period. Phoneme-discrimination training improves experienced CI listeners' speech perception in noise. Additional research is needed to optimize auditory training for individual benefit.

  2. Partial maintenance of auditory-based cognitive training benefits in older adults

    Science.gov (United States)

    Anderson, Samira; White-Schwoch, Travis; Choi, Hee Jae; Kraus, Nina

    2014-01-01

    The potential for short-term training to improve cognitive and sensory function in older adults has captured the public’s interest. Initial results have been promising. For example, eight weeks of auditory-based cognitive training decreases peak latencies and peak variability in neural responses to speech presented in a background of noise and instills gains in speed of processing, speech-in-noise recognition, and short-term memory in older adults. But while previous studies have demonstrated short-term plasticity in older adults, we must consider the long-term maintenance of training gains. To evaluate training maintenance, we invited participants from an earlier training study to return for follow-up testing six months after the completion of training. We found that improvements in response peak timing to speech in noise and speed of processing were maintained, but the participants did not maintain speech-in-noise recognition or memory gains. Future studies should consider factors that are important for training maintenance, including the nature of the training, compliance with the training schedule, and the need for booster sessions after the completion of primary training. PMID:25111032

  3. Musical experience, auditory perception and reading-related skills in children.

    Science.gov (United States)

    Banai, Karen; Ahissar, Merav

    2013-01-01

    The relationships between auditory processing and reading-related skills remain poorly understood despite intensive research. Here we focus on the potential role of musical experience as a confounding factor. Specifically we ask whether the pattern of correlations between auditory and reading related skills differ between children with different amounts of musical experience. Third grade children with various degrees of musical experience were tested on a battery of auditory processing and reading related tasks. Very poor auditory thresholds and poor memory skills were abundant only among children with no musical education. In this population, indices of auditory processing (frequency and interval discrimination thresholds) were significantly correlated with and accounted for up to 13% of the variance in reading related skills. Among children with more than one year of musical training, auditory processing indices were better, yet reading related skills were not correlated with them. A potential interpretation for the reduction in the correlations might be that auditory and reading-related skills improve at different rates as a function of musical training. Participants' previous musical training, which is typically ignored in studies assessing the relations between auditory and reading related skills, should be considered. Very poor auditory and memory skills are rare among children with even a short period of musical training, suggesting musical training could have an impact on both. The lack of correlation in the musically trained population suggests that a short period of musical training does not enhance reading related skills of individuals with within-normal auditory processing skills. Further studies are required to determine whether the associations between musical training, auditory processing and memory are indeed causal or whether children with poor auditory and memory skills are less likely to study music and if so, why this is the case.

  4. Musical experience, auditory perception and reading-related skills in children.

    Directory of Open Access Journals (Sweden)

    Karen Banai

    Full Text Available BACKGROUND: The relationships between auditory processing and reading-related skills remain poorly understood despite intensive research. Here we focus on the potential role of musical experience as a confounding factor. Specifically we ask whether the pattern of correlations between auditory and reading related skills differ between children with different amounts of musical experience. METHODOLOGY/PRINCIPAL FINDINGS: Third grade children with various degrees of musical experience were tested on a battery of auditory processing and reading related tasks. Very poor auditory thresholds and poor memory skills were abundant only among children with no musical education. In this population, indices of auditory processing (frequency and interval discrimination thresholds were significantly correlated with and accounted for up to 13% of the variance in reading related skills. Among children with more than one year of musical training, auditory processing indices were better, yet reading related skills were not correlated with them. A potential interpretation for the reduction in the correlations might be that auditory and reading-related skills improve at different rates as a function of musical training. CONCLUSIONS/SIGNIFICANCE: Participants' previous musical training, which is typically ignored in studies assessing the relations between auditory and reading related skills, should be considered. Very poor auditory and memory skills are rare among children with even a short period of musical training, suggesting musical training could have an impact on both. The lack of correlation in the musically trained population suggests that a short period of musical training does not enhance reading related skills of individuals with within-normal auditory processing skills. Further studies are required to determine whether the associations between musical training, auditory processing and memory are indeed causal or whether children with poor auditory and

  5. Training leads to increased auditory brain-computer interface performance of end-users with motor impairments.

    Science.gov (United States)

    Halder, S; Käthner, I; Kübler, A

    2016-02-01

    Auditory brain-computer interfaces are an assistive technology that can restore communication for motor impaired end-users. Such non-visual brain-computer interface paradigms are of particular importance for end-users that may lose or have lost gaze control. We attempted to show that motor impaired end-users can learn to control an auditory speller on the basis of event-related potentials. Five end-users with motor impairments, two of whom with additional visual impairments, participated in five sessions. We applied a newly developed auditory brain-computer interface paradigm with natural sounds and directional cues. Three of five end-users learned to select symbols using this method. Averaged over all five end-users the information transfer rate increased by more than 1800% from the first session (0.17 bits/min) to the last session (3.08 bits/min). The two best end-users achieved information transfer rates of 5.78 bits/min and accuracies of 92%. Our results show that an auditory BCI with a combination of natural sounds and directional cues, can be controlled by end-users with motor impairment. Training improves the performance of end-users to the level of healthy controls. To our knowledge, this is the first time end-users with motor impairments controlled an auditory brain-computer interface speller with such high accuracy and information transfer rates. Further, our results demonstrate that operating a BCI with event-related potentials benefits from training and specifically end-users may require more than one session to develop their full potential. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Self-supervised, mobile-application based cognitive training of auditory attention: A behavioral and fMRI evaluation

    Directory of Open Access Journals (Sweden)

    Josef J. Bless

    2014-07-01

    Full Text Available Emerging evidence of the validity of collecting data in natural settings using smartphone applications has opened new possibilities for psychological assessment, treatment, and research. In this study we explored the feasibility and effectiveness of using a mobile application for self-supervised training of auditory attention. In addition, we investigated the neural underpinnings of the training procedure with functional magnetic resonance imaging (fMRI, as well as possible transfer effects to untrained cognitive interference tasks. Subjects in the training group performed the training task on an iPod touch two times a day (morning/evening for three weeks; subjects in the control group received no training, but were tested at the same time interval as the training group. Behavioral responses were measured before and after the training period in both groups, together with measures of task-related neural activations by fMRI. The results showed an expected performance increase after training that corresponded to activation decreases in brain regions associated with selective auditory processing (left posterior temporal gyrus and executive functions (right middle frontal gyrus, indicating more efficient processing in task-related neural networks after training. Our study suggests that cognitive training delivered via mobile applications is feasible and improves the ability to focus attention with corresponding effects on neural plasticity. Future research should focus on the clinical benefits of mobile cognitive training. Limitations of the study are discussed including reduced experimental control and lack of transfer effects.

  7. Experience and information loss in auditory and visual memory.

    Science.gov (United States)

    Gloede, Michele E; Paulauskas, Emily E; Gregg, Melissa K

    2017-07-01

    Recent studies show that recognition memory for sounds is inferior to memory for pictures. Four experiments were conducted to examine the nature of auditory and visual memory. Experiments 1-3 were conducted to evaluate the role of experience in auditory and visual memory. Participants received a study phase with pictures/sounds, followed by a recognition memory test. Participants then completed auditory training with each of the sounds, followed by a second memory test. Despite auditory training in Experiments 1 and 2, visual memory was superior to auditory memory. In Experiment 3, we found that it is possible to improve auditory memory, but only after 3 days of specific auditory training and 3 days of visual memory decay. We examined the time course of information loss in auditory and visual memory in Experiment 4 and found a trade-off between visual and auditory recognition memory: Visual memory appears to have a larger capacity, while auditory memory is more enduring. Our results indicate that visual and auditory memory are inherently different memory systems and that differences in visual and auditory recognition memory performance may be due to the different amounts of experience with visual and auditory information, as well as structurally different neural circuitry specialized for information retention.

  8. Neural plasticity expressed in central auditory structures with and without tinnitus

    Directory of Open Access Journals (Sweden)

    Larry E Roberts

    2012-05-01

    Full Text Available Sensory training therapies for tinnitus are based on the assumption that, notwithstanding neural changes related to tinnitus, auditory training can alter the response properties of neurons in auditory pathways. To address this question, we investigated whether brain changes induced by sensory training in tinnitus sufferers and measured by EEG are similar to those induced in age and hearing loss matched individuals without tinnitus trained on the same auditory task. Auditory training was given using a 5 kHz 40-Hz amplitude-modulated sound that was in the tinnitus frequency region of the tinnitus subjects and enabled extraction of the 40-Hz auditory steady-state response (ASSR and P2 transient response known to localize to primary and nonprimary auditory cortex, respectively. P2 amplitude increased with training equally in participants with tinnitus and in control subjects, suggesting normal remodeling of nonprimary auditory regions in tinnitus. However, training-induced changes in the ASSR differed between the tinnitus and control groups. In controls ASSR phase advanced toward the stimulus waveform by about ten degrees over training, in agreement with previous results obtained in young normal hearing individuals. However, ASSR phase did not change significantly with training in the tinnitus group, although some participants showed phase shifts resembling controls. On the other hand, ASSR amplitude increased with training in the tinnitus group, whereas in controls this response (which is difficult to remodel in young normal hearing subjects did not change with training. These results suggest that neural changes related to tinnitus altered how neural plasticity was expressed in the region of primary but not nonprimary auditory cortex. Auditory training did not reduce tinnitus loudness although a small effect on the tinnitus spectrum was detected.

  9. Enabling Labour Market Entry for Adults through Non-Formal Education and Training for Employment in South Africa

    Science.gov (United States)

    Mayombe, Celestin

    2016-01-01

    Adult non-formal education and training (NFET) in South Africa was adopted in 1990 to address the problem of unemployment of non-educated and unskilled adults. Public and private NFET centres aim to meet the training needs of adults who were deprived of formal education that would foster access to opportunities for employment. The paper reports on…

  10. Auditory agnosia due to long-term severe hydrocephalus caused by spina bifida - specific auditory pathway versus nonspecific auditory pathway.

    Science.gov (United States)

    Zhang, Qing; Kaga, Kimitaka; Hayashi, Akimasa

    2011-07-01

    A 27-year-old female showed auditory agnosia after long-term severe hydrocephalus due to congenital spina bifida. After years of hydrocephalus, she gradually suffered from hearing loss in her right ear at 19 years of age, followed by her left ear. During the time when she retained some ability to hear, she experienced severe difficulty in distinguishing verbal, environmental, and musical instrumental sounds. However, her auditory brainstem response and distortion product otoacoustic emissions were largely intact in the left ear. Her bilateral auditory cortices were preserved, as shown by neuroimaging, whereas her auditory radiations were severely damaged owing to progressive hydrocephalus. Although she had a complete bilateral hearing loss, she felt great pleasure when exposed to music. After years of self-training to read lips, she regained fluent ability to communicate. Clinical manifestations of this patient indicate that auditory agnosia can occur after long-term hydrocephalus due to spina bifida; the secondary auditory pathway may play a role in both auditory perception and hearing rehabilitation.

  11. A efetividade do treinamento auditivo na desordem do processamento auditivo central: estudo de caso The effectiveness of the auditory training in the central auditory processing disorder: a case study

    Directory of Open Access Journals (Sweden)

    Lorena Kozlowski

    2004-06-01

    Full Text Available O objetivo deste trabalho é a apresentação de um caso de um indivíduo de 9 anos de idade, do sexo masculino, com queixa de distúrbio de aprendizagem, para o qual a efetividade da fonoterapia pôde ser avaliada através de testes objetivos e comportamentais, compreendendo audiometria tonal, imitanciometria, potenciais auditivos evocados de tronco encefálico, P300 e Avaliação do Processamento Auditivo Central. Foram encontrados resultados normais nos exames otorrinolaringológico e audiológico. O P300 foi realizado mostrando tempo de latência aumentada. A avaliação do Processamento Auditivo Central revelou uma desordem em grau severo, caracterizada por alterações nos processos de codificação, organização e memória, assim como dificuldade significativa para atenção seletiva e fechamento auditivo. Foi diagnosticado Desordem do Processamento Auditivo Central, sendo que o indivíduo foi encaminhado para acompanhamento fonoaudiológico com o objetivo de desenvolvimento das habilidades auditivas alteradas. Após um período de 4 meses de fonoterapia, repetidos os exames acima descritos, observou-se melhora nas latências do P300, a desordem permaneceu em grau moderado, com prejuízo mais significativo no processo de organização e não apresentou dificuldade para o fechamento auditivo. Podemos concluir com este estudo a efetividade da terapia fonoaudiológica para o desenvolvimento das habilidades auditivas, podendo ser verificada através da avaliação objetiva e comportamental.The objective of this study is to present the effectiveness of auditory training in the evaluation of a 9 year-old individual with a learning disorder, which have been evaluated through objective and behavioral tests, including audiometric test, imitanciometry, auditory brain response, P300 and central auditory processing evaluation. The diagnosis of Central Auditory Processing Disorder (CAPD was confirmed by a normal performance on an audiometric test

  12. An evaluation of training with an auditory P300 brain-computer interface for the Japanese Hiragana syllabary

    Directory of Open Access Journals (Sweden)

    Sebastian Halder

    2016-09-01

    Full Text Available Gaze-independent brain-computer interfaces (BCIs are a possible communication channel for persons with paralysis. We investigated if it is possible to use auditory stimuli to create a BCI for the Japanese Hiragana syllabary, which has 46 Hiragana characters. Additionally, we investigated if training has an effect on accuracy despite the high amount of different stimuli involved. Able-bodied participants (N=6 were asked to select 25 syllables (out of fifty possible choices using a two step procedure: first the consonant (ten choices and then the vowel (five choices. This was repeated on three separate days. Additionally, a person with spinal cord injury (SCI participated in the experiment. Four out of six healthy participants reached Hiragana syllable accuracies above 70% and the information transfer rate increased from 1.7 bits/min in the first session to 3.2 bits/min in the third session. The accuracy of the participant with SCI increased from 12% (0.2 bits/min to 56% (2 bits/min in session three. Reliable selections from a 10×5 matrix using auditory stimuli were possible and performance is increased by training. We were able to show that auditory P300 BCIs can be used for communication with up to fifty symbols. This enables the use of the technology of auditory P300 BCIs with a variety of applications.

  13. An Evaluation of Training with an Auditory P300 Brain-Computer Interface for the Japanese Hiragana Syllabary.

    Science.gov (United States)

    Halder, Sebastian; Takano, Kouji; Ora, Hiroki; Onishi, Akinari; Utsumi, Kota; Kansaku, Kenji

    2016-01-01

    Gaze-independent brain-computer interfaces (BCIs) are a possible communication channel for persons with paralysis. We investigated if it is possible to use auditory stimuli to create a BCI for the Japanese Hiragana syllabary, which has 46 Hiragana characters. Additionally, we investigated if training has an effect on accuracy despite the high amount of different stimuli involved. Able-bodied participants ( N = 6) were asked to select 25 syllables (out of fifty possible choices) using a two step procedure: First the consonant (ten choices) and then the vowel (five choices). This was repeated on 3 separate days. Additionally, a person with spinal cord injury (SCI) participated in the experiment. Four out of six healthy participants reached Hiragana syllable accuracies above 70% and the information transfer rate increased from 1.7 bits/min in the first session to 3.2 bits/min in the third session. The accuracy of the participant with SCI increased from 12% (0.2 bits/min) to 56% (2 bits/min) in session three. Reliable selections from a 10 × 5 matrix using auditory stimuli were possible and performance is increased by training. We were able to show that auditory P300 BCIs can be used for communication with up to fifty symbols. This enables the use of the technology of auditory P300 BCIs with a variety of applications.

  14. Mixed messages in learning communication skills? Students comparing role model behaviour in clerkships with formal training.

    Science.gov (United States)

    Essers, Geurt; Van Weel-Baumgarten, Evelyn; Bolhuis, Sanneke

    2012-01-01

    Medical students learn professional communication through formal training and in clinical practice. Physicians working in clinical practice have a powerful influence on student learning. However, they may demonstrate communication behaviours not aligning with recommendations in training programs. This study aims to identify more precisely what differences students perceive between role model communication behaviour during clerkships and formal training. In a cross-sectional study, data were collected about physicians' communication performance as perceived by students. Students filled out a questionnaire in four different clerkships in their fourth and fifth year. Just over half of the students reported communication similar to formal training. This was especially true for students in the later clerkships (paediatrics and primary care). Good examples were seen in providing information corresponding to patients' needs and in shared decision making, although students often noted that in fact the doctor made the decision. Bad examples were observed in exploring cognitions and emotions, and in providing information meeting patient's pace. Further study is needed on actual physician behaviour in clinical practice. From our results, we conclude that students need help in reflecting on and learning from the gap in communication patterns they observe in training versus clinical practice.

  15. Preferences for and Barriers to Formal and Informal Athletic Training Continuing Education Activities

    Science.gov (United States)

    Armstrong, Kirk J.; Weidner, Thomas G.

    2011-01-01

    Context: Our previous research determined the frequency of participation and perceived effect of formal and informal continuing education (CE) activities. However, actual preferences for and barriers to CE must be characterized. Objective: To determine the types of formal and informal CE activities preferred by athletic trainers (ATs) and barriers to their participation in these activities. Design: Cross-sectional study. Setting: Athletic training practice settings. Patients or Other Participants: Of a geographically stratified random sample of 1000 ATs, 427 ATs (42.7%) completed the survey. Main Outcome Measure(s): As part of a larger study, the Survey of Formal and Informal Athletic Training Continuing Education Activities (FIATCEA) was developed and administered electronically. The FIATCEA consists of demographic characteristics and Likert scale items (1 = strongly disagree, 5 = strongly agree) about preferred CE activities and barriers to these activities. Internal consistency of survey items, as determined by Cronbach α, was 0.638 for preferred CE activities and 0.860 for barriers to these activities. Descriptive statistics were computed for all items. Differences between respondent demographic characteristics and preferred CE activities and barriers to these activities were determined via analysis of variance and dependent t tests. The α level was set at .05. Results: Hands-on clinical workshops and professional networking were the preferred formal and informal CE activities, respectively. The most frequently reported barriers to formal CE were the cost of attending and travel distance, whereas the most frequently reported barriers to informal CE were personal and job-specific factors. Differences were noted between both the cost of CE and travel distance to CE and all other barriers to CE participation (F1,411 = 233.54, P formal CE activities. The same barriers (eg, cost, travel distance) to formal CE appeared to be universal to all ATs. Informal CE was

  16. Predicting the threshold of pulse-train electrical stimuli using a stochastic auditory nerve model: the effects of stimulus noise.

    Science.gov (United States)

    Xu, Yifang; Collins, Leslie M

    2004-04-01

    The incorporation of low levels of noise into an electrical stimulus has been shown to improve auditory thresholds in some human subjects (Zeng et al., 2000). In this paper, thresholds for noise-modulated pulse-train stimuli are predicted utilizing a stochastic neural-behavioral model of ensemble fiber responses to bi-phasic stimuli. The neural refractory effect is described using a Markov model for a noise-free pulse-train stimulus and a closed-form solution for the steady-state neural response is provided. For noise-modulated pulse-train stimuli, a recursive method using the conditional probability is utilized to track the neural responses to each successive pulse. A neural spike count rule has been presented for both threshold and intensity discrimination under the assumption that auditory perception occurs via integration over a relatively long time period (Bruce et al., 1999). An alternative approach originates from the hypothesis of the multilook model (Viemeister and Wakefield, 1991), which argues that auditory perception is based on several shorter time integrations and may suggest an NofM model for prediction of pulse-train threshold. This motivates analyzing the neural response to each individual pulse within a pulse train, which is considered to be the brief look. A logarithmic rule is hypothesized for pulse-train threshold. Predictions from the multilook model are shown to match trends in psychophysical data for noise-free stimuli that are not always matched by the long-time integration rule. Theoretical predictions indicate that threshold decreases as noise variance increases. Theoretical models of the neural response to pulse-train stimuli not only reduce calculational overhead but also facilitate utilization of signal detection theory and are easily extended to multichannel psychophysical tasks.

  17. Musical experience shapes top-down auditory mechanisms: evidence from masking and auditory attention performance.

    Science.gov (United States)

    Strait, Dana L; Kraus, Nina; Parbery-Clark, Alexandra; Ashley, Richard

    2010-03-01

    A growing body of research suggests that cognitive functions, such as attention and memory, drive perception by tuning sensory mechanisms to relevant acoustic features. Long-term musical experience also modulates lower-level auditory function, although the mechanisms by which this occurs remain uncertain. In order to tease apart the mechanisms that drive perceptual enhancements in musicians, we posed the question: do well-developed cognitive abilities fine-tune auditory perception in a top-down fashion? We administered a standardized battery of perceptual and cognitive tests to adult musicians and non-musicians, including tasks either more or less susceptible to cognitive control (e.g., backward versus simultaneous masking) and more or less dependent on auditory or visual processing (e.g., auditory versus visual attention). Outcomes indicate lower perceptual thresholds in musicians specifically for auditory tasks that relate with cognitive abilities, such as backward masking and auditory attention. These enhancements were observed in the absence of group differences for the simultaneous masking and visual attention tasks. Our results suggest that long-term musical practice strengthens cognitive functions and that these functions benefit auditory skills. Musical training bolsters higher-level mechanisms that, when impaired, relate to language and literacy deficits. Thus, musical training may serve to lessen the impact of these deficits by strengthening the corticofugal system for hearing. 2009 Elsevier B.V. All rights reserved.

  18. In-house training, formal education and public outreach

    International Nuclear Information System (INIS)

    Willis, Y.A.

    1992-01-01

    This paper assumes that a stronger national commitment to public education on nuclear energy and, most particularly radioactive waste management, it needed to overcome public resistance to nuclear projects. Effective public education must become the superordinate goal uniting industry, government, professional societies, national laboratories and the educational community. Since instruction is labor intensive, we must search for more cost effective ways of achieving results. Therefore, this paper proposes: Collaborative training and educational strategies involving as many of the stakeholders as possible; and Innovative tools to improve the credibility, quality and cost effectiveness of education. This win-win approach can reduce the collective expenditures through cost-sharing, as well as the sharing of resources and products. It can close gaps in both in-house training and formal education. Finally, in public outreach, the joint approach addresses the politics of sponsorship by providing checks and balances, and thus improving credibility and public acceptance

  19. The effects of noise exposure and musical training on suprathreshold auditory processing and speech perception in noise.

    Science.gov (United States)

    Yeend, Ingrid; Beach, Elizabeth Francis; Sharma, Mridula; Dillon, Harvey

    2017-09-01

    Recent animal research has shown that exposure to single episodes of intense noise causes cochlear synaptopathy without affecting hearing thresholds. It has been suggested that the same may occur in humans. If so, it is hypothesized that this would result in impaired encoding of sound and lead to difficulties hearing at suprathreshold levels, particularly in challenging listening environments. The primary aim of this study was to investigate the effect of noise exposure on auditory processing, including the perception of speech in noise, in adult humans. A secondary aim was to explore whether musical training might improve some aspects of auditory processing and thus counteract or ameliorate any negative impacts of noise exposure. In a sample of 122 participants (63 female) aged 30-57 years with normal or near-normal hearing thresholds, we conducted audiometric tests, including tympanometry, audiometry, acoustic reflexes, otoacoustic emissions and medial olivocochlear responses. We also assessed temporal and spectral processing, by determining thresholds for detection of amplitude modulation and temporal fine structure. We assessed speech-in-noise perception, and conducted tests of attention, memory and sentence closure. We also calculated participants' accumulated lifetime noise exposure and administered questionnaires to assess self-reported listening difficulty and musical training. The results showed no clear link between participants' lifetime noise exposure and performance on any of the auditory processing or speech-in-noise tasks. Musical training was associated with better performance on the auditory processing tasks, but not the on the speech-in-noise perception tasks. The results indicate that sentence closure skills, working memory, attention, extended high frequency hearing thresholds and medial olivocochlear suppression strength are important factors that are related to the ability to process speech in noise. Crown Copyright © 2017. Published by

  20. 78 FR 18325 - Intent To Prepare an Environmental Impact Statement (EIS) for the Formal Training Unit (FTU) and...

    Science.gov (United States)

    2013-03-26

    ... Statement (EIS) for the Formal Training Unit (FTU) and Main Operating Base 1 (MOB 1) for the Beddown of KC... Statement (EIS) for the Formal Training Unit (FTU) and Main Operating Base 1 (MOB 1) for the Beddown of KC...-46A tanker aircraft, associated infrastructure and manpower of the FTU and MOB 1 at existing active...

  1. European Train Control System: A Case Study in Formal Verification

    Science.gov (United States)

    Platzer, André; Quesel, Jan-David

    Complex physical systems have several degrees of freedom. They only work correctly when their control parameters obey corresponding constraints. Based on the informal specification of the European Train Control System (ETCS), we design a controller for its cooperation protocol. For its free parameters, we successively identify constraints that are required to ensure collision freedom. We formally prove the parameter constraints to be sharp by characterizing them equivalently in terms of reachability properties of the hybrid system dynamics. Using our deductive verification tool KeYmaera, we formally verify controllability, safety, liveness, and reactivity properties of the ETCS protocol that entail collision freedom. We prove that the ETCS protocol remains correct even in the presence of perturbation by disturbances in the dynamics. We verify that safety is preserved when a PI controlled speed supervision is used.

  2. Does Formal Research Training Lead to Academic Success in Plastic Surgery? A Comprehensive Analysis of U.S. Academic Plastic Surgeons.

    Science.gov (United States)

    Lopez, Joseph; Ameri, Afshin; Susarla, Srinivas M; Reddy, Sashank; Soni, Ashwin; Tong, J W; Amini, Neda; Ahmed, Rizwan; May, James W; Lee, W P Andrew; Dorafshar, Amir

    2016-01-01

    It is currently unknown whether formal research training has an influence on academic advancement in plastic surgery. The purpose of this study was to determine whether formal research training was associated with higher research productivity, academic rank, and procurement of extramural National Institutes of Health (NIH) funding in plastic surgery, comparing academic surgeons who completed said research training with those without. This was a cross-sectional study of full-time academic plastic surgeons in the United States. The main predictor variable was formal research training, defined as completion of a postdoctoral research fellowship or attainment of a Doctor of Philosophy (PhD). The primary outcome was scientific productivity measured by the Hirsh-index (h-index, the number of publications, h that have at least h citations each). The secondary outcomes were academic rank and NIH funding. Descriptive, bivariate, and multiple regression statistics were computed. A total of 607 academic surgeons were identified from 94 Accreditation Council for Graduate Medical Education-accredited plastic surgery training programs. In all, 179 (29.5%) surgeons completed formal research training. The mean h-index was 11.7 ± 9.9. And, 58 (9.6%) surgeons successfully procured NIH funding. The distribution of academic rank was the following: endowed professor (5.4%), professor (23.9%), associate professor (23.4%), assistant professor (46.0%), and instructor (1.3%). In a multiple regression analysis, completion of formal research training was significantly predictive of a higher h-index and successful procurement of NIH funding. Current evidence demonstrates that formal research training is associated with higher scientific productivity and increased likelihood of future NIH funding. Copyright © 2016 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  3. Effects of acoustic noise on the auditory nerve compound action potentials evoked by electric pulse trains.

    Science.gov (United States)

    Nourski, Kirill V; Abbas, Paul J; Miller, Charles A; Robinson, Barbara K; Jeng, Fuh-Cherng

    2005-04-01

    This study investigated the effects of acoustic noise on the auditory nerve compound action potentials in response to electric pulse trains. Subjects were adult guinea pigs, implanted with a minimally invasive electrode to preserve acoustic sensitivity. Electrically evoked compound action potentials (ECAP) were recorded from the auditory nerve trunk in response to electric pulse trains both during and after the presentation of acoustic white noise. Simultaneously presented acoustic noise produced a decrease in ECAP amplitude. The effect of the acoustic masker on the electric probe was greatest at the onset of the acoustic stimulus and it was followed by a partial recovery of the ECAP amplitude. Following cessation of the acoustic noise, ECAP amplitude recovered over a period of approximately 100-200 ms. The effects of the acoustic noise were more prominent at lower electric pulse rates (interpulse intervals of 3 ms and higher). At higher pulse rates, the ECAP adaptation to the electric pulse train alone was larger and the acoustic noise, when presented, produced little additional effect. The observed effects of noise on ECAP were the greatest at high electric stimulus levels and, for a particular electric stimulus level, at high acoustic noise levels.

  4. Selective increase of auditory cortico-striatal coherence during auditory-cued Go/NoGo discrimination learning.

    Directory of Open Access Journals (Sweden)

    Andreas L. Schulz

    2016-01-01

    Full Text Available Goal directed behavior and associated learning processes are tightly linked to neuronal activity in the ventral striatum. Mechanisms that integrate task relevant sensory information into striatal processing during decision making and learning are implicitly assumed in current reinforcementmodels, yet they are still weakly understood. To identify the functional activation of cortico-striatal subpopulations of connections during auditory discrimination learning, we trained Mongolian gerbils in a two-way active avoidance task in a shuttlebox to discriminate between falling and rising frequency modulated tones with identical spectral properties. We assessed functional coupling by analyzing the field-field coherence between the auditory cortex and the ventral striatum of animals performing the task. During the course of training, we observed a selective increase of functionalcoupling during Go-stimulus presentations. These results suggest that the auditory cortex functionally interacts with the ventral striatum during auditory learning and that the strengthening of these functional connections is selectively goal-directed.

  5. How Useful Are Skills Acquired at Adult Non-Formal Education and Training Centres for Finding Employment in South Africa?

    Science.gov (United States)

    Mayombe, Celestin; Lombard, Antoinette

    2015-01-01

    Non-formal adult education and training (NFET) in South Africa is instrumental in breaking the high level of poverty and decreasing the social inequality the country continues to face as a post-apartheid democracy. Public and private NFET centres in South Africa aim to meet the training needs of adults who have been deprived of formal education…

  6. The Importance of Material Resources and Qualified Trainers in Adult Non-Formal Education and Training Centres in South Africa

    Science.gov (United States)

    Mayombe, Celestin; Lombard, Antoinette

    2016-01-01

    Non-formal education and training (NFET) programmes in public and private centres in South Africa aim to meet the training needs of adults who have been deprived of formal education which would have fostered skills acquisition and access to employment earlier in their lives. The concern which informs this paper is that adults who face long-term…

  7. Auditory and visual memory in musicians and nonmusicians.

    Science.gov (United States)

    Cohen, Michael A; Evans, Karla K; Horowitz, Todd S; Wolfe, Jeremy M

    2011-06-01

    Numerous studies have shown that musicians outperform nonmusicians on a variety of tasks. Here we provide the first evidence that musicians have superior auditory recognition memory for both musical and nonmusical stimuli, compared to nonmusicians. However, this advantage did not generalize to the visual domain. Previously, we showed that auditory recognition memory is inferior to visual recognition memory. Would this be true even for trained musicians? We compared auditory and visual memory in musicians and nonmusicians using familiar music, spoken English, and visual objects. For both groups, memory for the auditory stimuli was inferior to memory for the visual objects. Thus, although considerable musical training is associated with better musical and nonmusical auditory memory, it does not increase the ability to remember sounds to the levels found with visual stimuli. This suggests a fundamental capacity difference between auditory and visual recognition memory, with a persistent advantage for the visual domain.

  8. Educators in non-formal vocational education and training in Mozambique : A plea for recognition and professionalisation

    NARCIS (Netherlands)

    Manuel, Alzira; van der Linden, Josje; Popov, Oleg

    2017-01-01

    Interest in vocational education and training (VET) is growing. This can be attributed to global socio-economic developments requiring continuously changing knowledge and skills. Adult education and training, particularly in non-formal education (NFE) contributes to provide these skills and

  9. Task-irrelevant auditory feedback facilitates motor performance in musicians

    Directory of Open Access Journals (Sweden)

    Virginia eConde

    2012-05-01

    Full Text Available An efficient and fast auditory–motor network is a basic resource for trained musicians due to the importance of motor anticipation of sound production in musical performance. When playing an instrument, motor performance always goes along with the production of sounds and the integration between both modalities plays an essential role in the course of musical training. The aim of the present study was to investigate the role of task-irrelevant auditory feedback during motor performance in musicians using a serial reaction time task (SRTT. Our hypothesis was that musicians, due to their extensive auditory–motor practice routine during musical training, have a superior performance and learning capabilities when receiving auditory feedback during SRTT relative to musicians performing the SRTT without any auditory feedback. Here we provide novel evidence that task-irrelevant auditory feedback is capable to reinforce SRTT performance but not learning, a finding that might provide further insight into auditory-motor integration in musicians on a behavioral level.

  10. Multichannel auditory search: toward understanding control processes in polychotic auditory listening.

    Science.gov (United States)

    Lee, M D

    2001-01-01

    Two experiments are presented that serve as a framework for exploring auditory information processing. The framework is referred to as polychotic listening or auditory search, and it requires a listener to scan multiple simultaneous auditory streams for the appearance of a target word (the name of a letter such as A or M). Participants' ability to scan between two and six simultaneous auditory streams of letter and digit names for the name of a target letter was examined using six loudspeakers. The main independent variable was auditory load, or the number of active audio streams on a given trial. The primary dependent variables were target localization accuracy and reaction time. Results showed that as load increased, performance decreased. The performance decrease was evident in reaction time, accuracy, and sensitivity measures. The second study required participants to practice the same task for 10 sessions, for a total of 1800 trials. Results indicated that even with extensive practice, performance was still affected by auditory load. The present results are compared with findings in the visual search literature. The implications for the use of multiple auditory displays are discussed. Potential applications include cockpit and automobile warning displays, virtual reality systems, and training systems.

  11. Influence of visual and auditory biofeedback on partial body weight support treadmill training of individuals with chronic hemiparesis: a randomized controlled clinical trial.

    Science.gov (United States)

    Brasileiro, A; Gama, G; Trigueiro, L; Ribeiro, T; Silva, E; Galvão, É; Lindquist, A

    2015-02-01

    Stroke is an important causal factor of deficiency and functional dependence worldwide. To determine the immediate effects of visual and auditory biofeedback, combined with partial body weight supported (PBWS) treadmill training on the gait of individuals with chronic hemiparesis. Randomized controlled trial. Outpatient rehabilitation hospital. Thirty subjects with chronic hemiparesis and ability to walk with some help. Participants were randomized to a control group that underwent only PBWS treadmill training; or experimental I group with visual biofeedback from the display monitor, in the form of symbolic feet as the subject took a step; or experimental group II with auditory biofeedback associated display, using a metronome at 115% of the individual's preferred cadence. They trained for 20 minutes and were evaluated before and after training. Spatio-temporal and angular gait variables were obtained by kinematics from the Qualisys Motion Analysis system. Increases in speed and stride length were observed for all groups over time (speed: F=25.63; Phemiparesis, in short term. Additional studies are needed to determine whether, in long term, the biofeedback will promote additional benefit to the PBWS treadmill training. The findings of this study indicate that visual and auditory biofeedback does not bring immediate benefits on PBWS treadmill training of individuals with chronic hemiparesis. This suggest that, for additional benefits are achieved with biofeedback, effects should be investigated after long-term training, which may determine if some kind of biofeedback is superior to another to improve the hemiparetic gait.

  12. Formal on-the-job training programs at power generating stations

    Energy Technology Data Exchange (ETDEWEB)

    Hoch, R.R. [HGS, Inc., Ellicott City, MD (United States)

    1996-11-01

    On-the-Job Training (OJT) should be utilized for all posts in the stations. OJT for entry level positions should include training in many mundane areas that are often overlooked such as record keeping (log sheets and log books), proper communications and how to conduct himself or herself on the watch, during either emergency or routine situations. A separate OJT Program should be provided to prepare personnel to qualify for promotion to the next level. (Depending on any common agreements or bargaining unit contracts, OJT Programs can also be used to pre-qualify candidates for promotion to the next level.) By allowing the trainee to retain all OJT Program materials, it will also be available to him or her for continued reference or remedial training. (When an OJT Program is first instituted, it may be validated by issuing it to incumbent personnel and, subsequent, incorporating their comments or corrections.) This paper describes a formal OJT program.

  13. Effect of Auditory Training on Reading Comprehension of Children with Hearing Impairment in Enugu State

    Science.gov (United States)

    Ugwuanyi, L. T.; Adaka, T. A.

    2015-01-01

    The paper focused on the effect of auditory training on reading comprehension of children with hearing impairment in Enugu State. A total of 33 children with conductive, sensory neural and mixed hearing loss were sampled for the study in the two schools for the Deaf in Enugu State. The design employed for the study was a quasi experiment (pre-test…

  14. The effects of context and musical training on auditory temporal-interval discrimination.

    Science.gov (United States)

    Banai, Karen; Fisher, Shirley; Ganot, Ron

    2012-02-01

    Non sensory factors such as stimulus context and musical experience are known to influence auditory frequency discrimination, but whether the context effect extends to auditory temporal processing remains unknown. Whether individual experiences such as musical training alter the context effect is also unknown. The goal of the present study was therefore to investigate the effects of stimulus context and musical experience on auditory temporal-interval discrimination. In experiment 1, temporal-interval discrimination was compared between fixed context conditions in which a single base temporal interval was presented repeatedly across all trials and variable context conditions in which one of two base intervals was randomly presented on each trial. Discrimination was significantly better in the fixed than in the variable context conditions. In experiment 2 temporal discrimination thresholds of musicians and non-musicians were compared across 3 conditions: a fixed context condition in which the target interval was presented repeatedly across trials, and two variable context conditions differing in the frequencies used for the tones marking the temporal intervals. Musicians outperformed non-musicians on all 3 conditions, but the effects of context were similar for the two groups. Overall, it appears that, like frequency discrimination, temporal-interval discrimination benefits from having a fixed reference. Musical experience, while improving performance, did not alter the context effect, suggesting that improved discrimination skills among musicians are probably not an outcome of more sensitive contextual facilitation or predictive coding mechanisms. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Differential Recruitment of Auditory Cortices in the Consolidation of Recent Auditory Fearful Memories.

    Science.gov (United States)

    Cambiaghi, Marco; Grosso, Anna; Renna, Annamaria; Sacchetti, Benedetto

    2016-08-17

    Memories of frightening events require a protracted consolidation process. Sensory cortex, such as the auditory cortex, is involved in the formation of fearful memories with a more complex sensory stimulus pattern. It remains controversial, however, whether the auditory cortex is also required for fearful memories related to simple sensory stimuli. In the present study, we found that, 1 d after training, the temporary inactivation of either the most anterior region of the auditory cortex, including the primary (Te1) cortex, or the most posterior region, which included the secondary (Te2) component, did not affect the retention of recent memories, which is consistent with the current literature. However, at this time point, the inactivation of the entire auditory cortices completely prevented the formation of new memories. Amnesia was site specific and was not due to auditory stimuli perception or processing and strictly related to the interference with memory consolidation processes. Strikingly, at a late time interval 4 d after training, blocking the posterior part (encompassing the Te2) alone impaired memory retention, whereas the inactivation of the anterior part (encompassing the Te1) left memory unaffected. Together, these data show that the auditory cortex is necessary for the consolidation of auditory fearful memories related to simple tones in rats. Moreover, these results suggest that, at early time intervals, memory information is processed in a distributed network composed of both the anterior and the posterior auditory cortical regions, whereas, at late time intervals, memory processing is concentrated in the most posterior part containing the Te2 region. Memories of threatening experiences undergo a prolonged process of "consolidation" to be maintained for a long time. The dynamic of fearful memory consolidation is poorly understood. Here, we show that 1 d after learning, memory is processed in a distributed network composed of both primary Te1 and

  16. Rapid Auditory System Adaptation Using a Virtual Auditory Environment

    Directory of Open Access Journals (Sweden)

    Gaëtan Parseihian

    2011-10-01

    Full Text Available Various studies have highlighted plasticity of the auditory system from visual stimuli, limiting the trained field of perception. The aim of the present study is to investigate auditory system adaptation using an audio-kinesthetic platform. Participants were placed in a Virtual Auditory Environment allowing the association of the physical position of a virtual sound source with an alternate set of acoustic spectral cues or Head-Related Transfer Function (HRTF through the use of a tracked ball manipulated by the subject. This set-up has the advantage to be not being limited to the visual field while also offering a natural perception-action coupling through the constant awareness of one's hand position. Adaptation process to non-individualized HRTF was realized through a spatial search game application. A total of 25 subjects participated, consisting of subjects presented with modified cues using non-individualized HRTF and a control group using individual measured HRTFs to account for any learning effect due to the game itself. The training game lasted 12 minutes and was repeated over 3 consecutive days. Adaptation effects were measured with repeated localization tests. Results showed a significant performance improvement for vertical localization and a significant reduction in the front/back confusion rate after 3 sessions.

  17. Tactile feedback improves auditory spatial localization

    Directory of Open Access Journals (Sweden)

    Monica eGori

    2014-10-01

    Full Text Available Our recent studies suggest that congenitally blind adults have severely impaired thresholds in an auditory spatial-bisection task, pointing to the importance of vision in constructing complex auditory spatial maps (Gori et al., 2014. To explore strategies that may improve the auditory spatial sense in visually impaired people, we investigated the impact of tactile feedback on spatial auditory localization in 48 blindfolded sighted subjects. We measured auditory spatial bisection thresholds before and after training, either with tactile feedback, verbal feedback or no feedback. Audio thresholds were first measured with a spatial bisection task: subjects judged whether the second sound of a three sound sequence was spatially closer to the first or the third sound. The tactile-feedback group underwent two audio-tactile feedback sessions of 100 trials, where each auditory trial was followed by the same spatial sequence played on the subject’s forearm; auditory spatial bisection thresholds were evaluated after each session. In the verbal-feedback condition, the positions of the sounds were verbally reported to the subject after each feedback trial. The no-feedback group did the same sequence of trials, with no feedback. Performance improved significantly only after audio-tactile feedback. The results suggest that direct tactile feedback interacts with the auditory spatial localization system, possibly by a process of cross-sensory recalibration. Control tests with the subject rotated suggested that this effect occurs only when the tactile and acoustic sequences are spatially coherent. Our results suggest that the tactile system can be used to recalibrate the auditory sense of space. These results encourage the possibility of designing rehabilitation programs to help blind persons establish a robust auditory sense of space, through training with the tactile modality.

  18. Formal auditory training efficacy in individuals with auditory processing disorder

    OpenAIRE

    Zalcman, Tatiane Eisencraft; Schochat, Eliane

    2007-01-01

    OBJETIVO: Verificar a eficácia de um programa de Treinamento Auditivo comparando o desempenho inicial, nos testes comportamentais, com o desempenho após o treinamento auditivo aplicado em indivíduos com Transtorno de Processamento Auditivo. MÉTODOS: Participaram do estudo 30 sujeitos com idades entre oito e 16 anos, que passaram por uma avaliação comportamental inicial do processamento auditivo em que foram utilizados dois testes monóticos e dois dicóticos. Posteriormente foram submetidos a u...

  19. Preattentive cortical-evoked responses to pure tones, harmonic tones, and speech: influence of music training.

    Science.gov (United States)

    Nikjeh, Dee A; Lister, Jennifer J; Frisch, Stefan A

    2009-08-01

    Cortical auditory evoked potentials, including mismatch negativity (MMN) and P3a to pure tones, harmonic complexes, and speech syllables, were examined across groups of trained musicians and nonmusicians. Because of the extensive formal and informal auditory training received by musicians throughout their lifespan, it was predicted that these electrophysiological indicators of preattentive pitch discrimination and involuntary attention change would distinguish musicians from nonmusicians and provide insight regarding the influence of auditory training and experience on central auditory function. A total of 102 (67 trained musicians, 35 nonmusicians) right-handed young women with normal hearing participated in three auditory stimulus conditions: pure tones (25 musicians/15 nonmusicians), harmonic tones (42 musicians/20 nonmusicians), and speech syllables (26 musicians/15 nonmusicians). Pure tone and harmonic tone stimuli were presented in multideviant oddball paradigms designed to elicit MMN and P3a. Each paradigm included one standard and two infrequently occurring deviants. For the pure tone condition, the standard pure tone was 1000 Hz, and the two deviant tones differed in frequency from the standard by either 1.5% (1015 Hz) or 6% (1060 Hz). The harmonic tone complexes were digitally created and contained a fundamental frequency (F0) and three harmonics. The amplitude of each harmonic was divided by its harmonic number to create a natural amplitude contour in the frequency spectrum. The standard tone was G4 (F0 = 392 Hz), and the two deviant tones differed in fundamental frequency from the standard by 1.5% (F0 = 386 Hz) or 6% (F0 = 370 Hz). The fundamental frequencies of the harmonic tones occur within the average female vocal range. The third condition to elicit MMN and P3a was designed for the presentation of speech syllables (/ba/ and /da/) and was structured as a traditional oddball paradigm (one standard/one infrequent deviant). Each speech stimulus was

  20. Educators in Non-Formal Vocational Education and Training in Mozambique: A Plea for Recognition and Professionalisation

    Science.gov (United States)

    Manuel, Alzira; van der Linden, Josje; Popov, Oleg

    2017-01-01

    Interest in vocational education and training (VET) is growing. This can be attributed to global socio-economic developments requiring continuously changing knowledge and skills. Adult education and training, particularly in non-formal education (NFE) contributes to provide these skills and knowledge for youth and adults. This puts pressure not…

  1. Auditory temporal processing skills in musicians with dyslexia.

    Science.gov (United States)

    Bishop-Liebler, Paula; Welch, Graham; Huss, Martina; Thomson, Jennifer M; Goswami, Usha

    2014-08-01

    The core cognitive difficulty in developmental dyslexia involves phonological processing, but adults and children with dyslexia also have sensory impairments. Impairments in basic auditory processing show particular links with phonological impairments, and recent studies with dyslexic children across languages reveal a relationship between auditory temporal processing and sensitivity to rhythmic timing and speech rhythm. As rhythm is explicit in music, musical training might have a beneficial effect on the auditory perception of acoustic cues to rhythm in dyslexia. Here we took advantage of the presence of musicians with and without dyslexia in musical conservatoires, comparing their auditory temporal processing abilities with those of dyslexic non-musicians matched for cognitive ability. Musicians with dyslexia showed equivalent auditory sensitivity to musicians without dyslexia and also showed equivalent rhythm perception. The data support the view that extensive rhythmic experience initiated during childhood (here in the form of music training) can affect basic auditory processing skills which are found to be deficient in individuals with dyslexia. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Interconnected growing self-organizing maps for auditory and semantic acquisition modeling

    Directory of Open Access Journals (Sweden)

    Mengxue eCao

    2014-03-01

    Full Text Available Based on the incremental nature of knowledge acquisition, in this study we propose a growing self-organizing neural network approach for modeling the acquisition of auditory and semantic categories. We introduce an Interconnected Growing Self-Organizing Maps (I-GSOM algorithm, which takes associations between auditory information and semantic information into consideration, in this paper. Direct phonetic--semantic association is simulated in order to model the language acquisition in early phases, such as the babbling and imitation stages, in which no phonological representations exist. Based on the I-GSOM algorithm, we conducted experiments using paired acoustic and semantic training data. We use a cyclical reinforcing and reviewing training procedure to model the teaching and learning process between children and their communication partners; a reinforcing-by-link training procedure and a link-forgetting procedure are introduced to model the acquisition of associative relations between auditory and semantic information. Experimental results indicate that (1 I-GSOM has good ability to learn auditory and semantic categories presented within the training data; (2 clear auditory and semantic boundaries can be found in the network representation; (3 cyclical reinforcing and reviewing training leads to a detailed categorization as well as to a detailed clustering, while keeping the clusters that have already been learned and the network structure that has already been developed stable; and (4 reinforcing-by-link training leads to well-perceived auditory--semantic associations. Our I-GSOM model suggests that it is important to associate auditory information with semantic information during language acquisition. Despite its high level of abstraction, our I-GSOM approach can be interpreted as a biologically-inspired neurocomputational model.

  3. Integrated Non-Formal Education and Training Programs and Centre Linkages for Adult Employment in South Africa

    Science.gov (United States)

    Mayombe, Celestin

    2017-01-01

    This article outlines the results of a qualitative study, which investigated the adult non-formal education and training (NFET) centre linkages with external role-players in providing post-training support for the employment of graduates. The concern that informed this article is that adults who face long-term unemployment remain unemployed after…

  4. Stepping to the Beat: Feasibility and Potential Efficacy of a Home-Based Auditory-Cued Step Training Program in Chronic Stroke

    Directory of Open Access Journals (Sweden)

    Rachel L. Wright

    2017-08-01

    Full Text Available BackgroundHemiparesis after stroke typically results in a reduced walking speed, an asymmetrical gait pattern and a reduced ability to make gait adjustments. The purpose of this pilot study was to investigate the feasibility and preliminary efficacy of home-based training involving auditory cueing of stepping in place.MethodsTwelve community-dwelling participants with chronic hemiparesis completed two 3-week blocks of home-based stepping to music overlaid with an auditory metronome. Tempo of the metronome was increased 5% each week. One 3-week block used a regular metronome, whereas the other 3-week block had phase shift perturbations randomly inserted to cue stepping adjustments.ResultsAll participants reported that they enjoyed training, with 75% completing all training blocks. No adverse events were reported. Walking speed, Timed Up and Go (TUG time and Dynamic Gait Index (DGI scores (median [inter-quartile range] significantly improved between baseline (speed = 0.61 [0.32, 0.85] m⋅s−1; TUG = 20.0 [16.0, 39.9] s; DGI = 14.5 [11.3, 15.8] and post stepping training (speed = 0.76 [0.39, 1.03] m⋅s−1; TUG = 16.3 [13.3, 35.1] s; DGI = 16.0 [14.0, 19.0] and was maintained at follow-up (speed = 0.75 [0.41, 1.03] m⋅s−1; TUG = 16.5 [12.9, 34.1] s; DGI = 16.5 [13.5, 19.8].ConclusionThis pilot study suggests that auditory-cued stepping conducted at home was feasible and well-tolerated by participants post-stroke, with improvements in walking and functional mobility. No differences were detected between regular and phase-shift training with the metronome at each assessment point.

  5. Learning Through Experience: Influence of Formal and Informal Training on Medical Error Disclosure Skills in Residents.

    Science.gov (United States)

    Wong, Brian M; Coffey, Maitreya; Nousiainen, Markku T; Brydges, Ryan; McDonald-Blumer, Heather; Atkinson, Adelle; Levinson, Wendy; Stroud, Lynfa

    2017-02-01

    Residents' attitudes toward error disclosure have improved over time. It is unclear whether this has been accompanied by improvements in disclosure skills. To measure the disclosure skills of internal medicine (IM), paediatrics, and orthopaedic surgery residents, and to explore resident perceptions of formal versus informal training in preparing them for disclosure in real-world practice. We assessed residents' error disclosure skills using a structured role play with a standardized patient in 2012-2013. We compared disclosure skills across programs using analysis of variance. We conducted a multiple linear regression, including data from a historical cohort of IM residents from 2005, to investigate the influence of predictor variables on performance: training program, cohort year, and prior disclosure training and experience. We conducted a qualitative descriptive analysis of data from semistructured interviews with residents to explore resident perceptions of formal versus informal disclosure training. In a comparison of disclosure skills for 49 residents, there was no difference in overall performance across specialties (4.1 to 4.4 of 5, P  = .19). In regression analysis, only the current cohort was significantly associated with skill: current residents performed better than a historical cohort of 42 IM residents ( P  formal (workshops, morbidity and mortality rounds) and informal (role modeling, debriefing) activities in preparation for disclosure in real-world practice. Residents across specialties have similar skills in disclosure of errors. Residents identified role modeling and a strong local patient safety culture as key facilitators for disclosure.

  6. Sustained Cortical and Subcortical Measures of Auditory and Visual Plasticity following Short-Term Perceptual Learning.

    Science.gov (United States)

    Lau, Bonnie K; Ruggles, Dorea R; Katyal, Sucharit; Engel, Stephen A; Oxenham, Andrew J

    2017-01-01

    Short-term training can lead to improvements in behavioral discrimination of auditory and visual stimuli, as well as enhanced EEG responses to those stimuli. In the auditory domain, fluency with tonal languages and musical training has been associated with long-term cortical and subcortical plasticity, but less is known about the effects of shorter-term training. This study combined electroencephalography (EEG) and behavioral measures to investigate short-term learning and neural plasticity in both auditory and visual domains. Forty adult participants were divided into four groups. Three groups trained on one of three tasks, involving discrimination of auditory fundamental frequency (F0), auditory amplitude modulation rate (AM), or visual orientation (VIS). The fourth (control) group received no training. Pre- and post-training tests, as well as retention tests 30 days after training, involved behavioral discrimination thresholds, steady-state visually evoked potentials (SSVEP) to the flicker frequencies of visual stimuli, and auditory envelope-following responses simultaneously evoked and measured in response to rapid stimulus F0 (EFR), thought to reflect subcortical generators, and slow amplitude modulation (ASSR), thought to reflect cortical generators. Enhancement of the ASSR was observed in both auditory-trained groups, not specific to the AM-trained group, whereas enhancement of the SSVEP was found only in the visually-trained group. No evidence was found for changes in the EFR. The results suggest that some aspects of neural plasticity can develop rapidly and may generalize across tasks but not across modalities. Behaviorally, the pattern of learning was complex, with significant cross-task and cross-modal learning effects.

  7. Audiovisual spoken word training can promote or impede auditory-only perceptual learning: prelingually deafened adults with late-acquired cochlear implants versus normal hearing adults.

    Science.gov (United States)

    Bernstein, Lynne E; Eberhardt, Silvio P; Auer, Edward T

    2014-01-01

    Training with audiovisual (AV) speech has been shown to promote auditory perceptual learning of vocoded acoustic speech by adults with normal hearing. In Experiment 1, we investigated whether AV speech promotes auditory-only (AO) perceptual learning in prelingually deafened adults with late-acquired cochlear implants. Participants were assigned to learn associations between spoken disyllabic C(=consonant)V(=vowel)CVC non-sense words and non-sense pictures (fribbles), under AV and then AO (AV-AO; or counter-balanced AO then AV, AO-AV, during Periods 1 then 2) training conditions. After training on each list of paired-associates (PA), testing was carried out AO. Across all training, AO PA test scores improved (7.2 percentage points) as did identification of consonants in new untrained CVCVC stimuli (3.5 percentage points). However, there was evidence that AV training impeded immediate AO perceptual learning: During Period-1, training scores across AV and AO conditions were not different, but AO test scores were dramatically lower in the AV-trained participants. During Period-2 AO training, the AV-AO participants obtained significantly higher AO test scores, demonstrating their ability to learn the auditory speech. Across both orders of training, whenever training was AV, AO test scores were significantly lower than training scores. Experiment 2 repeated the procedures with vocoded speech and 43 normal-hearing adults. Following AV training, their AO test scores were as high as or higher than following AO training. Also, their CVCVC identification scores patterned differently than those of the cochlear implant users. In Experiment 1, initial consonants were most accurate, and in Experiment 2, medial consonants were most accurate. We suggest that our results are consistent with a multisensory reverse hierarchy theory, which predicts that, whenever possible, perceivers carry out perceptual tasks immediately based on the experience and biases they bring to the task. We

  8. Problem posing as a didactic resource in formal mathematics courses to train future secondary school mathematics teachers

    Directory of Open Access Journals (Sweden)

    Lorena Salazar Solórzano

    2015-06-01

    Full Text Available Beginning university training programs must focus on different competencies for mathematics teachers, i.e., not only on solving problems, but also on posing them and analyzing the mathematical activity. This paper reports the results of an exploratory study conducted with future secondary school mathematics teachers on the introduction of problem-posing tasks in formal mathematics courses, specifically in abstract algebra and real analysis courses. Evidence was found that training which includes problem-posing tasks has a positive impact on the students’ understanding of definitions, theorems and exercises within formal mathematics, as well as on their competency in reflecting on the mathematical activity. 

  9. Supramodal Enhancement of Auditory Perceptual and Cognitive Learning by Video Game Playing.

    Science.gov (United States)

    Zhang, Yu-Xuan; Tang, Ding-Lan; Moore, David R; Amitay, Sygal

    2017-01-01

    Medical rehabilitation involving behavioral training can produce highly successful outcomes, but those successes are obtained at the cost of long periods of often tedious training, reducing compliance. By contrast, arcade-style video games can be entertaining and highly motivating. We examine here the impact of video game play on contiguous perceptual training. We alternated several periods of auditory pure-tone frequency discrimination (FD) with the popular spatial visual-motor game Tetris played in silence. Tetris play alone did not produce any auditory or cognitive benefits. However, when alternated with FD training it enhanced learning of FD and auditory working memory. The learning-enhancing effects of Tetris play cannot be explained simply by the visual-spatial training involved, as the effects were gone when Tetris play was replaced with another visual-spatial task using Tetris-like stimuli but not incorporated into a game environment. The results indicate that game play enhances learning and transfer of the contiguous auditory experiences, pointing to a promising approach for increasing the efficiency and applicability of rehabilitative training.

  10. Supramodal Enhancement of Auditory Perceptual and Cognitive Learning by Video Game Playing

    Directory of Open Access Journals (Sweden)

    Yu-Xuan Zhang

    2017-06-01

    Full Text Available Medical rehabilitation involving behavioral training can produce highly successful outcomes, but those successes are obtained at the cost of long periods of often tedious training, reducing compliance. By contrast, arcade-style video games can be entertaining and highly motivating. We examine here the impact of video game play on contiguous perceptual training. We alternated several periods of auditory pure-tone frequency discrimination (FD with the popular spatial visual-motor game Tetris played in silence. Tetris play alone did not produce any auditory or cognitive benefits. However, when alternated with FD training it enhanced learning of FD and auditory working memory. The learning-enhancing effects of Tetris play cannot be explained simply by the visual-spatial training involved, as the effects were gone when Tetris play was replaced with another visual-spatial task using Tetris-like stimuli but not incorporated into a game environment. The results indicate that game play enhances learning and transfer of the contiguous auditory experiences, pointing to a promising approach for increasing the efficiency and applicability of rehabilitative training.

  11. Formal training program for nuclear material custodians at Hanford Engineering Development Laboratory

    International Nuclear Information System (INIS)

    Scott, D.D.

    1979-01-01

    Hanford Engineering Development Laboratory (HEDL) has established a formal training program for nuclear material (NM) custodians. The program, designed to familiarize the custodian with the fundamental concepts of proper nuclear materials control and accountability, is conducted on a semiannual basis. The program is prepared and presented by the Safeguards and Materials Management Section of HEDL and covers 14 subjects on accountability, documentation, transportation, custodian responsibilities, and the safeguarding of nuclear material

  12. Generalization of Auditory Sensory and Cognitive Learning in Typically Developing Children.

    Directory of Open Access Journals (Sweden)

    Cristina F B Murphy

    Full Text Available Despite the well-established involvement of both sensory ("bottom-up" and cognitive ("top-down" processes in literacy, the extent to which auditory or cognitive (memory or attention learning transfers to phonological and reading skills remains unclear. Most research has demonstrated learning of the trained task or even learning transfer to a closely related task. However, few studies have reported "far-transfer" to a different domain, such as the improvement of phonological and reading skills following auditory or cognitive training. This study assessed the effectiveness of auditory, memory or attention training on far-transfer measures involving phonological and reading skills in typically developing children. Mid-transfer was also assessed through untrained auditory, attention and memory tasks. Sixty 5- to 8-year-old children with normal hearing were quasi-randomly assigned to one of five training groups: attention group (AG, memory group (MG, auditory sensory group (SG, placebo group (PG; drawing, painting, and a control, untrained group (CG. Compliance, mid-transfer and far-transfer measures were evaluated before and after training. All trained groups received 12 x 45-min training sessions over 12 weeks. The CG did not receive any intervention. All trained groups, especially older children, exhibited significant learning of the trained task. On pre- to post-training measures (test-retest, most groups exhibited improvements on most tasks. There was significant mid-transfer for a visual digit span task, with highest span in the MG, relative to other groups. These results show that both sensory and cognitive (memory or attention training can lead to learning in the trained task and to mid-transfer learning on a task (visual digit span within the same domain as the trained tasks. However, learning did not transfer to measures of language (reading and phonological awareness, as the PG and CG improved as much as the other trained groups. Further

  13. Generalization of Auditory Sensory and Cognitive Learning in Typically Developing Children.

    Science.gov (United States)

    Murphy, Cristina F B; Moore, David R; Schochat, Eliane

    2015-01-01

    Despite the well-established involvement of both sensory ("bottom-up") and cognitive ("top-down") processes in literacy, the extent to which auditory or cognitive (memory or attention) learning transfers to phonological and reading skills remains unclear. Most research has demonstrated learning of the trained task or even learning transfer to a closely related task. However, few studies have reported "far-transfer" to a different domain, such as the improvement of phonological and reading skills following auditory or cognitive training. This study assessed the effectiveness of auditory, memory or attention training on far-transfer measures involving phonological and reading skills in typically developing children. Mid-transfer was also assessed through untrained auditory, attention and memory tasks. Sixty 5- to 8-year-old children with normal hearing were quasi-randomly assigned to one of five training groups: attention group (AG), memory group (MG), auditory sensory group (SG), placebo group (PG; drawing, painting), and a control, untrained group (CG). Compliance, mid-transfer and far-transfer measures were evaluated before and after training. All trained groups received 12 x 45-min training sessions over 12 weeks. The CG did not receive any intervention. All trained groups, especially older children, exhibited significant learning of the trained task. On pre- to post-training measures (test-retest), most groups exhibited improvements on most tasks. There was significant mid-transfer for a visual digit span task, with highest span in the MG, relative to other groups. These results show that both sensory and cognitive (memory or attention) training can lead to learning in the trained task and to mid-transfer learning on a task (visual digit span) within the same domain as the trained tasks. However, learning did not transfer to measures of language (reading and phonological awareness), as the PG and CG improved as much as the other trained groups. Further research

  14. Music lessons improve auditory perceptual and cognitive performance in deaf children.

    Science.gov (United States)

    Rochette, Françoise; Moussard, Aline; Bigand, Emmanuel

    2014-01-01

    Despite advanced technologies in auditory rehabilitation of profound deafness, deaf children often exhibit delayed cognitive and linguistic development and auditory training remains a crucial element of their education. In the present cross-sectional study, we assess whether music would be a relevant tool for deaf children rehabilitation. In normal-hearing children, music lessons have been shown to improve cognitive and linguistic-related abilities, such as phonetic discrimination and reading. We compared auditory perception, auditory cognition, and phonetic discrimination between 14 profoundly deaf children who completed weekly music lessons for a period of 1.5-4 years and 14 deaf children who did not receive musical instruction. Children were assessed on perceptual and cognitive auditory tasks using environmental sounds: discrimination, identification, auditory scene analysis, auditory working memory. Transfer to the linguistic domain was tested with a phonetic discrimination task. Musically trained children showed better performance in auditory scene analysis, auditory working memory and phonetic discrimination tasks, and multiple regressions showed that success on these tasks was at least partly driven by music lessons. We propose that musical education contributes to development of general processes such as auditory attention and perception, which, in turn, facilitate auditory-related cognitive and linguistic processes.

  15. Music lessons improve auditory perceptual and cognitive performance in deaf children

    Directory of Open Access Journals (Sweden)

    Françoise eROCHETTE

    2014-07-01

    Full Text Available Despite advanced technologies in auditory rehabilitation of profound deafness, deaf children often exhibit delayed cognitive and linguistic development and auditory training remains a crucial element of their education. In the present cross-sectional study, we assess whether music would be a relevant tool for deaf children rehabilitation. In normal-hearing children, music lessons have been shown to improve cognitive and linguistic-related abilities, such as phonetic discrimination and reading. We compared auditory perception, auditory cognition, and phonetic discrimination between 14 profoundly deaf children who completed weekly music lessons for a period of 1.5 to 4 years and 14 deaf children who did not receive musical instruction. Children were assessed on perceptual and cognitive auditory tasks using environmental sounds: discrimination, identification, auditory scene analysis, auditory working memory. Transfer to the linguistic domain was tested with a phonetic discrimination task. Musically-trained children showed better performance in auditory scene analysis, auditory working memory and phonetic discrimination tasks, and multiple regressions showed that success on these tasks was at least partly driven by music lessons. We propose that musical education contributes to development of general processes such as auditory attention and perception, which, in turn, facilitate auditory-related cognitive and linguistic processes.

  16. Auditory and visual spatial impression: Recent studies of three auditoria

    Science.gov (United States)

    Nguyen, Andy; Cabrera, Densil

    2004-10-01

    Auditory spatial impression is widely studied for its contribution to auditorium acoustical quality. By contrast, visual spatial impression in auditoria has received relatively little attention in formal studies. This paper reports results from a series of experiments investigating the auditory and visual spatial impression of concert auditoria. For auditory stimuli, a fragment of an anechoic recording of orchestral music was convolved with calibrated binaural impulse responses, which had been made with the dummy head microphone at a wide range of positions in three auditoria and the sound source on the stage. For visual stimuli, greyscale photographs were used, taken at the same positions in the three auditoria, with a visual target on the stage. Subjective experiments were conducted with auditory stimuli alone, visual stimuli alone, and visual and auditory stimuli combined. In these experiments, subjects rated apparent source width, listener envelopment, intimacy and source distance (auditory stimuli), and spaciousness, envelopment, stage dominance, intimacy and target distance (visual stimuli). Results show target distance to be of primary importance in auditory and visual spatial impression-thereby providing a basis for covariance between some attributes of auditory and visual spatial impression. Nevertheless, some attributes of spatial impression diverge between the senses.

  17. The Effects of Meaning-Based Auditory Training on Behavioral Measures of Perceptual Effort in Individuals with Impaired Hearing.

    Science.gov (United States)

    Sommers, Mitchell S; Tye-Murray, Nancy; Barcroft, Joe; Spehar, Brent P

    2015-11-01

    There has been considerable interest in measuring the perceptual effort required to understand speech, as well as to identify factors that might reduce such effort. In the current study, we investigated whether, in addition to improving speech intelligibility, auditory training also could reduce perceptual or listening effort. Perceptual effort was assessed using a modified version of the n-back memory task in which participants heard lists of words presented without background noise and were asked to continually update their memory of the three most recently presented words. Perceptual effort was indexed by memory for items in the three-back position immediately before, immediately after, and 3 months after participants completed the Computerized Learning Exercises for Aural Rehabilitation (clEAR), a 12-session computerized auditory training program. Immediate posttraining measures of perceptual effort indicated that participants could remember approximately one additional word compared to pretraining. Moreover, some training gains were retained at the 3-month follow-up, as indicated by significantly greater recall for the three-back item at the 3-month measurement than at pretest. There was a small but significant correlation between gains in intelligibility and gains in perceptual effort. The findings are discussed within the framework of a limited-capacity speech perception system.

  18. Impact of formal training on agreement of videofluoroscopic swallowing study interpretation across and within disciplines.

    Science.gov (United States)

    Silbergleit, Alice K; Cook, Diana; Kienzle, Scott; Boettcher, Erica; Myers, Daniel; Collins, Denise; Peterson, Edward; Silbergleit, Matthew A; Silbergleit, Richard

    2018-04-04

    Formal agreement studies on interpretation of the videofluoroscopic swallowing study (VFSS) procedure among speech-language pathologists, radiology house officers, and staff radiologists have not been pursued. Each of these professions participates in the procedure, interprets the examination, and writes separate reports on the findings. The aim of this study was to determine reliability of interpretation between and within the disciplines and to determine if structured training improved reliability. Thirteen speech-language pathologists (SLPs), ten diagnostic radiologists (RADs) and twenty-one diagnostic radiology house officers (HOs) participated in this study. Each group viewed 24 VFSS samples and rated the presence or absence of seven aberrant swallowing features as well as the presence of dysphagia and identification of oral dysphagia, pharyngeal dysphagia, or both. During part two, the groups were provided with a training session on normal and abnormal swallowing, using different VFSS samples from those in part one, followed by re-rating of the original 24 VFSS samples. A generalized estimating equations (GEE) approach with a binomial link function was used to examine each question separately. For each cluster of tests, as example, all pairwise comparisons between the three groups in the pretraining period, a Hochberg's correction for multiple testing was used to determine significance. A GEE approach with a binomial link function was used to compare the premeasure to postmeasure for each of the three groups of raters stratified by experience. The primary result revealed that the HO group scored significantly lower than the SLP and RAD group on identification of the presence of dysphagia (p = 0.008; p = 0.001, respectively), identification of oral phase dysphagia (p = 0.003; p = 0.001, respectively), and identification of both oral and pharyngeal phase dysphagia, (p = 0.014, p = 0.001, respectively) pretraining. Post training there was

  19. Early musical training is linked to gray matter structure in the ventral premotor cortex and auditory-motor rhythm synchronization performance.

    Science.gov (United States)

    Bailey, Jennifer Anne; Zatorre, Robert J; Penhune, Virginia B

    2014-04-01

    Evidence in animals and humans indicates that there are sensitive periods during development, times when experience or stimulation has a greater influence on behavior and brain structure. Sensitive periods are the result of an interaction between maturational processes and experience-dependent plasticity mechanisms. Previous work from our laboratory has shown that adult musicians who begin training before the age of 7 show enhancements in behavior and white matter structure compared with those who begin later. Plastic changes in white matter and gray matter are hypothesized to co-occur; therefore, the current study investigated possible differences in gray matter structure between early-trained (ET; 7) musicians, matched for years of experience. Gray matter structure was assessed using voxel-wise analysis techniques (optimized voxel-based morphometry, traditional voxel-based morphometry, and deformation-based morphometry) and surface-based measures (cortical thickness, surface area and mean curvature). Deformation-based morphometry analyses identified group differences between ET and LT musicians in right ventral premotor cortex (vPMC), which correlated with performance on an auditory motor synchronization task and with age of onset of musical training. In addition, cortical surface area in vPMC was greater for ET musicians. These results are consistent with evidence that premotor cortex shows greatest maturational change between the ages of 6-9 years and that this region is important for integrating auditory and motor information. We propose that the auditory and motor interactions required by musical practice drive plasticity in vPMC and that this plasticity is greatest when maturation is near its peak.

  20. Auditory and visual memory in musicians and nonmusicians

    OpenAIRE

    Cohen, Michael A.; Evans, Karla K.; Horowitz, Todd S.; Wolfe, Jeremy M.

    2011-01-01

    Numerous studies have shown that musicians outperform nonmusicians on a variety of tasks. Here we provide the first evidence that musicians have superior auditory recognition memory for both musical and nonmusical stimuli, compared to nonmusicians. However, this advantage did not generalize to the visual domain. Previously, we showed that auditory recognition memory is inferior to visual recognition memory. Would this be true even for trained musicians? We compared auditory and visual memory ...

  1. Development and evaluation of the LiSN & learn auditory training software for deficit-specific remediation of binaural processing deficits in children: preliminary findings.

    Science.gov (United States)

    Cameron, Sharon; Dillon, Harvey

    2011-01-01

    The LiSN & Learn auditory training software was developed specifically to improve binaural processing skills in children with suspected central auditory processing disorder who were diagnosed as having a spatial processing disorder (SPD). SPD is defined here as a condition whereby individuals are deficient in their ability to use binaural cues to selectively attend to sounds arriving from one direction while simultaneously suppressing sounds arriving from another. As a result, children with SPD have difficulty understanding speech in noisy environments, such as in the classroom. To develop and evaluate the LiSN & Learn auditory training software for children diagnosed with the Listening in Spatialized Noise-Sentences Test (LiSN-S) as having an SPD. The LiSN-S is an adaptive speech-in-noise test designed to differentially diagnose spatial and pitch-processing deficits in children with suspected central auditory processing disorder. Participants were nine children (aged between 6 yr, 9 mo, and 11 yr, 4 mo) who performed outside normal limits on the LiSN-S. In a pre-post study of treatment outcomes, participants trained on the LiSN & Learn for 15 min per day for 12 weeks. Participants acted as their own control. Participants were assessed on the LiSN-S, as well as tests of attention and memory and a self-report questionnaire of listening ability. Performance on all tasks was reassessed after 3 mo where no further training occurred. The LiSN & Learn produces a three-dimensional auditory environment under headphones on the user's home computer. The child's task was to identify a word from a target sentence presented in background noise. A weighted up-down adaptive procedure was used to adjust the signal level of the target based on the participant's response. On average, speech reception thresholds on the LiSN & Learn improved by 10 dB over the course of training. As hypothesized, there were significant improvements in posttraining performance on the LiSN-S conditions

  2. Polarity-Specific Transcranial Direct Current Stimulation Disrupts Auditory Pitch Learning

    Directory of Open Access Journals (Sweden)

    Reiko eMatsushita

    2015-05-01

    Full Text Available Transcranial direct current stimulation (tDCS is attracting increasing interest because of its potential for therapeutic use. While its effects have been investigated mainly with motor and visual tasks, less is known in the auditory domain. Past tDCS studies with auditory tasks demonstrated various behavioural outcomes, possibly due to differences in stimulation parameters or task measurements used in each study. Further research using well-validated tasks are therefore required for clarification of behavioural effects of tDCS on the auditory system. Here, we took advantage of findings from a prior functional magnetic resonance imaging study, which demonstrated that the right auditory cortex is modulated during fine-grained pitch learning of microtonal melodic patterns. Targeting the right auditory cortex with tDCS using this same task thus allowed us to test the hypothesis that this region is causally involved in pitch learning. Participants in the current study were trained for three days while we measured pitch discrimination thresholds using microtonal melodies on each day using a psychophysical staircase procedure. We administered anodal, cathodal, or sham tDCS to three groups of participants over the right auditory cortex on the second day of training during performance of the task. Both the sham and the cathodal groups showed the expected significant learning effect (decreased pitch threshold over the three days of training; in contrast we observed a blocking effect of anodal tDCS on auditory pitch learning, such that this group showed no significant change in thresholds over the three days. The results support a causal role for the right auditory cortex in pitch discrimination learning.

  3. Effect of visual distraction and auditory feedback on patient effort during robot-assisted movement training after stroke.

    Science.gov (United States)

    Secoli, Riccardo; Milot, Marie-Helene; Rosati, Giulio; Reinkensmeyer, David J

    2011-04-23

    Practicing arm and gait movements with robotic assistance after neurologic injury can help patients improve their movement ability, but patients sometimes reduce their effort during training in response to the assistance. Reduced effort has been hypothesized to diminish clinical outcomes of robotic training. To better understand patient slacking, we studied the role of visual distraction and auditory feedback in modulating patient effort during a common robot-assisted tracking task. Fourteen participants with chronic left hemiparesis from stroke, five control participants with chronic right hemiparesis and fourteen non-impaired healthy control participants, tracked a visual target with their arms while receiving adaptive assistance from a robotic arm exoskeleton. We compared four practice conditions: the baseline tracking task alone; tracking while also performing a visual distracter task; tracking with the visual distracter and sound feedback; and tracking with sound feedback. For the distracter task, symbols were randomly displayed in the corners of the computer screen, and the participants were instructed to click a mouse button when a target symbol appeared. The sound feedback consisted of a repeating beep, with the frequency of repetition made to increase with increasing tracking error. Participants with stroke halved their effort and doubled their tracking error when performing the visual distracter task with their left hemiparetic arm. With sound feedback, however, these participants increased their effort and decreased their tracking error close to their baseline levels, while also performing the distracter task successfully. These effects were significantly smaller for the participants who used their non-paretic arm and for the participants without stroke. Visual distraction decreased participants effort during a standard robot-assisted movement training task. This effect was greater for the hemiparetic arm, suggesting that the increased demands associated

  4. Effects of consensus training on the reliability of auditory perceptual ratings of voice quality.

    Science.gov (United States)

    Iwarsson, Jenny; Reinholt Petersen, Niels

    2012-05-01

    This study investigates the effect of consensus training of listeners on intrarater and interrater reliability and agreement of perceptual voice analysis. The use of such training, including a reference voice sample, could be assumed to make the internal standards held in memory common and more robust, which is of great importance to reduce the variability of auditory perceptual ratings. A prospective design with testing before and after training. Thirteen students of audiologopedics served as listening subjects. The ratings were made using a multidimensional protocol with four-point equal-appearing interval scales. The stimuli consisted of text reading by authentic dysphonic patients. The consensus training for each perceptual voice parameter included (1) definition, (2) underlying physiology, (3) presentation of carefully selected sound examples representing the parameter in three different grades followed by group discussions of perceived characteristics, and (4) practical exercises including imitation to make use of the listeners' proprioception. Intrarater reliability and agreement showed a marked improvement for intermittent aphonia but not for vocal fry. Interrater reliability was high for most parameters before training with a slight increase after training. Interrater agreement showed marked increases for most voice quality parameters as a result of the training. The results support the recommendation of specific consensus training, including use of a reference voice sample material, to calibrate, equalize, and stabilize the internal standards held in memory by the listeners. Copyright © 2012 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  5. Is the auditory evoked P2 response a biomarker of learning?

    Directory of Open Access Journals (Sweden)

    Kelly eTremblay

    2014-02-01

    Full Text Available Even though auditory training exercises for humans have been shown to improve certain perceptual skills of individuals with and without hearing loss, there is a lack of knowledge pertaining to which aspects of training are responsible for the perceptual gains, and which aspects of perception are changed. To better define how auditory training impacts brain and behavior, electroencephalography and magnetoencephalography have been used to determine the time course and coincidence of cortical modulations associated with different types of training. Here we focus on P1-N1-P2 auditory evoked responses (AEP, as there are consistent reports of gains in P2 amplitude following various types of auditory training experiences; including music and speech-sound training. The purpose of this experiment was to determine if the auditory evoked P2 response is a biomarker of learning. To do this, we taught native English speakers to identify a new pre-voiced temporal cue that is not used phonemically in the English language so that coinciding changes in evoked neural activity could be characterized. To differentiate possible effects of repeated stimulus exposure and a button-pushing task from learning itself, we examined modulations in brain activity in a group of participants who learned to identify the pre-voicing contrast and compared it to participants, matched in time, and stimulus exposure, that did not. The main finding was that the amplitude of the P2 auditory evoked response increased across repeated EEG sessions for all groups, regardless of any change in perceptual performance. What’s more, these effects were retained for months. Changes in P2 amplitude were attributed to changes in neural activity associated with the acquisition process and not the learned outcome itself. A further finding was the expression of a late negativity (LN wave 600-900 ms post-stimulus onset, post-training, exclusively for the group that learned to identify the pre

  6. Auditory-cognitive training improves language performance in prelingually deafened cochlear implant recipients.

    Science.gov (United States)

    Ingvalson, Erin M; Young, Nancy M; Wong, Patrick C M

    2014-10-01

    Phonological and working memory skills have been shown to be important for the development of spoken language. Children who use a cochlear implant (CI) show performance deficits relative to normal hearing (NH) children on all constructs: phonological skills, working memory, and spoken language. Given that phonological skills and working memory have been shown to be important for spoken language development in NH children, we hypothesized that training these foundational skills would result in improved spoken language performance in CI-using children. Nineteen prelingually deafened CI-using children aged 4- to 7-years-old participated. All children had been using their implants for at least one year and were matched on pre-implant hearing thresholds, hearing thresholds at study enrollment, and non-verbal IQ. Children were assessed on expressive vocabulary, listening language, spoken language, and composite language. Ten children received four weeks of training on phonological skills including rhyme, sound blending, and sound discrimination and auditory working memory. The remaining nine children continued with their normal classroom activities for four weeks. Language assessments were repeated following the training/control period. Children who received combined phonological-working memory training showed significant gains on expressive and composite language scores. Children who did not receive training showed no significant improvements at post-test. On average, trained children had gain scores of 6.35 points on expressive language and gain scores of 6.15 points whereas the untrained children had test-retest gain scores of 2.89 points for expressive language and 2.56 for composite language. Our results suggest that training to improve the phonological and working memory skills in CI-using children may lead to improved language performance. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Leftward lateralization of auditory cortex underlies holistic sound perception in Williams syndrome.

    Science.gov (United States)

    Wengenroth, Martina; Blatow, Maria; Bendszus, Martin; Schneider, Peter

    2010-08-23

    Individuals with the rare genetic disorder Williams-Beuren syndrome (WS) are known for their characteristic auditory phenotype including strong affinity to music and sounds. In this work we attempted to pinpoint a neural substrate for the characteristic musicality in WS individuals by studying the structure-function relationship of their auditory cortex. Since WS subjects had only minor musical training due to psychomotor constraints we hypothesized that any changes compared to the control group would reflect the contribution of genetic factors to auditory processing and musicality. Using psychoacoustics, magnetoencephalography and magnetic resonance imaging, we show that WS individuals exhibit extreme and almost exclusive holistic sound perception, which stands in marked contrast to the even distribution of this trait in the general population. Functionally, this was reflected by increased amplitudes of left auditory evoked fields. On the structural level, volume of the left auditory cortex was 2.2-fold increased in WS subjects as compared to control subjects. Equivalent volumes of the auditory cortex have been previously reported for professional musicians. There has been an ongoing debate in the neuroscience community as to whether increased gray matter of the auditory cortex in musicians is attributable to the amount of training or innate disposition. In this study musical education of WS subjects was negligible and control subjects were carefully matched for this parameter. Therefore our results not only unravel the neural substrate for this particular auditory phenotype, but in addition propose WS as a unique genetic model for training-independent auditory system properties.

  8. Leftward lateralization of auditory cortex underlies holistic sound perception in Williams syndrome.

    Directory of Open Access Journals (Sweden)

    Martina Wengenroth

    Full Text Available BACKGROUND: Individuals with the rare genetic disorder Williams-Beuren syndrome (WS are known for their characteristic auditory phenotype including strong affinity to music and sounds. In this work we attempted to pinpoint a neural substrate for the characteristic musicality in WS individuals by studying the structure-function relationship of their auditory cortex. Since WS subjects had only minor musical training due to psychomotor constraints we hypothesized that any changes compared to the control group would reflect the contribution of genetic factors to auditory processing and musicality. METHODOLOGY/PRINCIPAL FINDINGS: Using psychoacoustics, magnetoencephalography and magnetic resonance imaging, we show that WS individuals exhibit extreme and almost exclusive holistic sound perception, which stands in marked contrast to the even distribution of this trait in the general population. Functionally, this was reflected by increased amplitudes of left auditory evoked fields. On the structural level, volume of the left auditory cortex was 2.2-fold increased in WS subjects as compared to control subjects. Equivalent volumes of the auditory cortex have been previously reported for professional musicians. CONCLUSIONS/SIGNIFICANCE: There has been an ongoing debate in the neuroscience community as to whether increased gray matter of the auditory cortex in musicians is attributable to the amount of training or innate disposition. In this study musical education of WS subjects was negligible and control subjects were carefully matched for this parameter. Therefore our results not only unravel the neural substrate for this particular auditory phenotype, but in addition propose WS as a unique genetic model for training-independent auditory system properties.

  9. Auditory Modeling for Noisy Speech Recognition

    National Research Council Canada - National Science Library

    2000-01-01

    ... digital filtering for noise cancellation which interfaces to speech recognition software. It uses auditory features in speech recognition training, and provides applications to multilingual spoken language translation...

  10. Auditory and visual interhemispheric communication in musicians and non-musicians.

    Directory of Open Access Journals (Sweden)

    Rebecca Woelfle

    Full Text Available The corpus callosum (CC is a brain structure composed of axon fibres linking the right and left hemispheres. Musical training is associated with larger midsagittal cross-sectional area of the CC, suggesting that interhemispheric communication may be faster in musicians. Here we compared interhemispheric transmission times (ITTs for musicians and non-musicians. ITT was measured by comparing simple reaction times to stimuli presented to the same hemisphere that controlled a button-press response (uncrossed reaction time, or to the contralateral hemisphere (crossed reaction time. Both visual and auditory stimuli were tested. We predicted that the crossed-uncrossed difference (CUD for musicians would be smaller than for non-musicians as a result of faster interhemispheric transfer times. We did not expect a difference in CUDs between the visual and auditory modalities for either musicians or non-musicians, as previous work indicates that interhemispheric transfer may happen through the genu of the CC, which contains motor fibres rather than sensory fibres. There were no significant differences in CUDs between musicians and non-musicians. However, auditory CUDs were significantly smaller than visual CUDs. Although this auditory-visual difference was larger in musicians than non-musicians, the interaction between modality and musical training was not significant. Therefore, although musical training does not significantly affect ITT, the crossing of auditory information between hemispheres appears to be faster than visual information, perhaps because subcortical pathways play a greater role for auditory interhemispheric transfer.

  11. Auditory and visual interhemispheric communication in musicians and non-musicians.

    Science.gov (United States)

    Woelfle, Rebecca; Grahn, Jessica A

    2013-01-01

    The corpus callosum (CC) is a brain structure composed of axon fibres linking the right and left hemispheres. Musical training is associated with larger midsagittal cross-sectional area of the CC, suggesting that interhemispheric communication may be faster in musicians. Here we compared interhemispheric transmission times (ITTs) for musicians and non-musicians. ITT was measured by comparing simple reaction times to stimuli presented to the same hemisphere that controlled a button-press response (uncrossed reaction time), or to the contralateral hemisphere (crossed reaction time). Both visual and auditory stimuli were tested. We predicted that the crossed-uncrossed difference (CUD) for musicians would be smaller than for non-musicians as a result of faster interhemispheric transfer times. We did not expect a difference in CUDs between the visual and auditory modalities for either musicians or non-musicians, as previous work indicates that interhemispheric transfer may happen through the genu of the CC, which contains motor fibres rather than sensory fibres. There were no significant differences in CUDs between musicians and non-musicians. However, auditory CUDs were significantly smaller than visual CUDs. Although this auditory-visual difference was larger in musicians than non-musicians, the interaction between modality and musical training was not significant. Therefore, although musical training does not significantly affect ITT, the crossing of auditory information between hemispheres appears to be faster than visual information, perhaps because subcortical pathways play a greater role for auditory interhemispheric transfer.

  12. In search of an auditory engram

    OpenAIRE

    Fritz, Jonathan; Mishkin, Mortimer; Saunders, Richard C.

    2005-01-01

    Monkeys trained preoperatively on a task designed to assess auditory recognition memory were impaired after removal of either the rostral superior temporal gyrus or the medial temporal lobe but were unaffected by lesions of the rhinal cortex. Behavioral analysis indicated that this result occurred because the monkeys did not or could not use long-term auditory recognition, and so depended instead on short-term working memory, which is unaffected by rhinal lesions. The findings suggest that mo...

  13. Increased BOLD Signals Elicited by High Gamma Auditory Stimulation of the Left Auditory Cortex in Acute State Schizophrenia

    Directory of Open Access Journals (Sweden)

    Hironori Kuga, M.D.

    2016-10-01

    We acquired BOLD responses elicited by click trains of 20, 30, 40 and 80-Hz frequencies from 15 patients with acute episode schizophrenia (AESZ, 14 symptom-severity-matched patients with non-acute episode schizophrenia (NASZ, and 24 healthy controls (HC, assessed via a standard general linear-model-based analysis. The AESZ group showed significantly increased ASSR-BOLD signals to 80-Hz stimuli in the left auditory cortex compared with the HC and NASZ groups. In addition, enhanced 80-Hz ASSR-BOLD signals were associated with more severe auditory hallucination experiences in AESZ participants. The present results indicate that neural over activation occurs during 80-Hz auditory stimulation of the left auditory cortex in individuals with acute state schizophrenia. Given the possible association between abnormal gamma activity and increased glutamate levels, our data may reflect glutamate toxicity in the auditory cortex in the acute state of schizophrenia, which might lead to progressive changes in the left transverse temporal gyrus.

  14. A eficácia do treinamento auditivo formal em crianças com transtorno de processamento auditivo (central): avaliação comportamental e eletrofisiológica

    OpenAIRE

    Alonso, Renata; Schochat, Eliane

    2009-01-01

    Long Latency Auditory Evoked Potentials can be used to monitor changes in the Central Auditory Nervous System after Auditory Training. AIM: The aim of this study was to investigate the efficacy of Auditory Training in children with (Central) Auditory Processing Disorder, comparing behavioral and electrophysiological findings before and after training. MATERIAL AND METHODS: twenty nine individuals between eight and 16 years of age with (Central) Auditory Processing Disorder - diagnosed by beha...

  15. Temporal Resolution and Active Auditory Discrimination Skill in Vocal Musicians

    Directory of Open Access Journals (Sweden)

    Kumar, Prawin

    2015-12-01

    Full Text Available Introduction Enhanced auditory perception in musicians is likely to result from auditory perceptual learning during several years of training and practice. Many studies have focused on biological processing of auditory stimuli among musicians. However, there is a lack of literature on temporal resolution and active auditory discrimination skills in vocal musicians. Objective The aim of the present study is to assess temporal resolution and active auditory discrimination skill in vocal musicians. Method The study participants included 15 vocal musicians with a minimum professional experience of 5 years of music exposure, within the age range of 20 to 30 years old, as the experimental group, while 15 age-matched non-musicians served as the control group. We used duration discrimination using pure-tones, pulse-train duration discrimination, and gap detection threshold tasks to assess temporal processing skills in both groups. Similarly, we assessed active auditory discrimination skill in both groups using Differential Limen of Frequency (DLF. All tasks were done using MATLab software installed in a personal computer at 40dBSL with maximum likelihood procedure. The collected data were analyzed using SPSS (version 17.0. Result Descriptive statistics showed better threshold for vocal musicians compared with non-musicians for all tasks. Further, independent t-test showed that vocal musicians performed significantly better compared with non-musicians on duration discrimination using pure tone, pulse train duration discrimination, gap detection threshold, and differential limen of frequency. Conclusion The present study showed enhanced temporal resolution ability and better (lower active discrimination threshold in vocal musicians in comparison to non-musicians.

  16. Less is more: latent learning is maximized by shorter training sessions in auditory perceptual learning.

    Science.gov (United States)

    Molloy, Katharine; Moore, David R; Sohoglu, Ediz; Amitay, Sygal

    2012-01-01

    The time course and outcome of perceptual learning can be affected by the length and distribution of practice, but the training regimen parameters that govern these effects have received little systematic study in the auditory domain. We asked whether there was a minimum requirement on the number of trials within a training session for learning to occur, whether there was a maximum limit beyond which additional trials became ineffective, and whether multiple training sessions provided benefit over a single session. We investigated the efficacy of different regimens that varied in the distribution of practice across training sessions and in the overall amount of practice received on a frequency discrimination task. While learning was relatively robust to variations in regimen, the group with the shortest training sessions (∼8 min) had significantly faster learning in early stages of training than groups with longer sessions. In later stages, the group with the longest training sessions (>1 hr) showed slower learning than the other groups, suggesting overtraining. Between-session improvements were inversely correlated with performance; they were largest at the start of training and reduced as training progressed. In a second experiment we found no additional longer-term improvement in performance, retention, or transfer of learning for a group that trained over 4 sessions (∼4 hr in total) relative to a group that trained for a single session (∼1 hr). However, the mechanisms of learning differed; the single-session group continued to improve in the days following cessation of training, whereas the multi-session group showed no further improvement once training had ceased. Shorter training sessions were advantageous because they allowed for more latent, between-session and post-training learning to emerge. These findings suggest that efficient regimens should use short training sessions, and optimized spacing between sessions.

  17. Post training REMs coincident auditory stimulation enhances memory in humans.

    Science.gov (United States)

    Smith, C; Weeden, K

    1990-06-01

    Sleep activity was monitored in 20 freshman college students for two consecutive nights. Subjects were assigned to 4 equal groups and all were asked to learn a complex logic task before bed on the second night. Two groups of subjects learned the task with a constant clicking noise in the background (cued groups), while two groups simply learned the task (non cued). During the night, one cued and one non cued group were presented with auditory clicks during REM sleep such as to coincide with all REMs of at least 100 microvolts. The second cued group was given auditory clicks during REM sleep, but only during the REMs "quiet" times. The second non-cued control group was never given any nighttime auditory stimulations. The cued REMs coincident group showed a significant 23% improvement in task performance when tested one week later. The non cued REMs coincident group showed only an 8.8% improvement which was not significant. The cued REMs quiet and non-stimulated control groups showed no change in task performance when retested. The results were interpreted as support for the idea that the cued auditory stimulation induced a "recall" of the learned material during the REM sleep state in order for further memory processing to take place.

  18. E-assessment and an e-training program among elderly care staff lacking formal competence: results of a mixed-methods intervention study.

    Science.gov (United States)

    Nilsson, Annika; Engström, Maria

    2015-05-06

    Among staff working in elderly care, a considerable proportion lack formal competence for their work. Lack of formal competence, in turn, has been linked to higher staff ratings of stress symptoms, sleep disturbances and workload. 1) To describe the strengths and weaknesses of an e-assessment and subsequent e-training program used among elderly care staff who lack formal competence and 2) to study the effects of an e-training program on staff members' working life (quality of care and psychological and structural empowerment) and well-being (job satisfaction and psychosomatic health). The hypothesis was that staff who had completed the e-assessment and the e-training program would rate greater improvements in working life and well-being than would staff who had only participated in the e-assessments. An intervention study with a mixed-methods approach using quantitative (2010-2011) and qualitative data (2011) was conducted in Swedish elderly care. Participants included a total of 41 staff members. To describe the strengths and weaknesses of the e-assessment and the e-training program, qualitative data were gathered using semi-structured interviews together with a study-specific questionnaire. To study the effects of the intervention, quantitative data were collected using questionnaires on: job satisfaction, psychosomatic health, psychological empowerment, structural empowerment and quality of care in an intervention and a comparison group. Staff who completed the e-assessments and the e-training program primarily experienced strengths associated with this approach. The results were also in line with our hypotheses: Staff who completed the e-assessment and the e-training program rated improvements in their working life and well-being. Use of the e-assessments and e-training program employed in the present study could be one way to support elderly care staff who lack formal education by increasing their competence; increased competence, in turn, could improve their

  19. Effect of visual distraction and auditory feedback on patient effort during robot-assisted movement training after stroke

    Directory of Open Access Journals (Sweden)

    Reinkensmeyer David J

    2011-04-01

    Full Text Available Abstract Background Practicing arm and gait movements with robotic assistance after neurologic injury can help patients improve their movement ability, but patients sometimes reduce their effort during training in response to the assistance. Reduced effort has been hypothesized to diminish clinical outcomes of robotic training. To better understand patient slacking, we studied the role of visual distraction and auditory feedback in modulating patient effort during a common robot-assisted tracking task. Methods Fourteen participants with chronic left hemiparesis from stroke, five control participants with chronic right hemiparesis and fourteen non-impaired healthy control participants, tracked a visual target with their arms while receiving adaptive assistance from a robotic arm exoskeleton. We compared four practice conditions: the baseline tracking task alone; tracking while also performing a visual distracter task; tracking with the visual distracter and sound feedback; and tracking with sound feedback. For the distracter task, symbols were randomly displayed in the corners of the computer screen, and the participants were instructed to click a mouse button when a target symbol appeared. The sound feedback consisted of a repeating beep, with the frequency of repetition made to increase with increasing tracking error. Results Participants with stroke halved their effort and doubled their tracking error when performing the visual distracter task with their left hemiparetic arm. With sound feedback, however, these participants increased their effort and decreased their tracking error close to their baseline levels, while also performing the distracter task successfully. These effects were significantly smaller for the participants who used their non-paretic arm and for the participants without stroke. Conclusions Visual distraction decreased participants effort during a standard robot-assisted movement training task. This effect was greater for

  20. Synchronization and phonological skills: precise auditory timing hypothesis (PATH

    Directory of Open Access Journals (Sweden)

    Adam eTierney

    2014-11-01

    Full Text Available Phonological skills are enhanced by music training, but the mechanisms enabling this cross-domain enhancement remain unknown. To explain this cross-domain transfer, we propose a precise auditory timing hypothesis (PATH whereby entrainment practice is the core mechanism underlying enhanced phonological abilities in musicians. Both rhythmic synchronization and language skills such as consonant discrimination, detection of word and phrase boundaries, and conversational turn-taking rely on the perception of extremely fine-grained timing details in sound. Auditory-motor timing is an acoustic feature which meets all five of the pre-conditions necessary for cross-domain enhancement to occur (Patel 2011, 2012, 2014. There is overlap between the neural networks that process timing in the context of both music and language. Entrainment to music demands more precise timing sensitivity than does language processing. Moreover, auditory-motor timing integration captures the emotion of the trainee, is repeatedly practiced, and demands focused attention. The precise auditory timing hypothesis predicts that musical training emphasizing entrainment will be particularly effective in enhancing phonological skills.

  1. The serious game HearHere for elderly with age-related vision loss : effectively training the skill to use auditory information for navigation

    NARCIS (Netherlands)

    Hartendorp, Mijk; Braad, Eelco; Van Sloten, Janke; Steyvers, Frank; Pinkster, Christiaan

    2017-01-01

    More and more people suffer from age-related eye conditions, e.g. Macular Degeneration. One of the problems experienced by these people is navigation. A strategy shown by many juvenile visually impaired persons (VIPs) is using auditory information for navigation. Therefore, it is important to train

  2. Impact of Educational Level on Performance on Auditory Processing Tests.

    Science.gov (United States)

    Murphy, Cristina F B; Rabelo, Camila M; Silagi, Marcela L; Mansur, Letícia L; Schochat, Eliane

    2016-01-01

    Research has demonstrated that a higher level of education is associated with better performance on cognitive tests among middle-aged and elderly people. However, the effects of education on auditory processing skills have not yet been evaluated. Previous demonstrations of sensory-cognitive interactions in the aging process indicate the potential importance of this topic. Therefore, the primary purpose of this study was to investigate the performance of middle-aged and elderly people with different levels of formal education on auditory processing tests. A total of 177 adults with no evidence of cognitive, psychological or neurological conditions took part in the research. The participants completed a series of auditory assessments, including dichotic digit, frequency pattern and speech-in-noise tests. A working memory test was also performed to investigate the extent to which auditory processing and cognitive performance were associated. The results demonstrated positive but weak correlations between years of schooling and performance on all of the tests applied. The factor "years of schooling" was also one of the best predictors of frequency pattern and speech-in-noise test performance. Additionally, performance on the working memory, frequency pattern and dichotic digit tests was also correlated, suggesting that the influence of educational level on auditory processing performance might be associated with the cognitive demand of the auditory processing tests rather than auditory sensory aspects itself. Longitudinal research is required to investigate the causal relationship between educational level and auditory processing skills.

  3. Effects of asymmetric cultural experiences on the auditory pathway: evidence from music.

    Science.gov (United States)

    Wong, Patrick C M; Perrachione, Tyler K; Margulis, Elizabeth Hellmuth

    2009-07-01

    Cultural experiences come in many different forms, such as immersion in a particular linguistic community, exposure to faces of people with different racial backgrounds, or repeated encounters with music of a particular tradition. In most circumstances, these cultural experiences are asymmetric, meaning one type of experience occurs more frequently than other types (e.g., a person raised in India will likely encounter the Indian todi scale more so than a Westerner). In this paper, we will discuss recent findings from our laboratories that reveal the impact of short- and long-term asymmetric musical experiences on how the nervous system responds to complex sounds. We will discuss experiments examining how musical experience may facilitate the learning of a tone language, how musicians develop neural circuitries that are sensitive to musical melodies played on their instrument of expertise, and how even everyday listeners who have little formal training are particularly sensitive to music of their own culture(s). An understanding of these cultural asymmetries is useful in formulating a more comprehensive model of auditory perceptual expertise that considers how experiences shape auditory skill levels. Such a model has the potential to aid in the development of rehabilitation programs for the efficacious treatment of neurologic impairments.

  4. Sound arithmetic: auditory cues in the rehabilitation of impaired fact retrieval.

    Science.gov (United States)

    Domahs, Frank; Zamarian, Laura; Delazer, Margarete

    2008-04-01

    The present single case study describes the rehabilitation of an acquired impairment of multiplication fact retrieval. In addition to a conventional drill approach, one set of problems was preceded by auditory cues while the other half was not. After extensive repetition, non-specific improvements could be observed for all trained problems (e.g., 3 * 7) as well as for their non-trained complementary problems (e.g., 7 * 3). Beyond this general improvement, specific therapy effects were found for problems trained with auditory cues. These specific effects were attributed to an involvement of implicit memory systems and/or attentional processes during training. Thus, the present results demonstrate that cues in the training of arithmetic facts do not have to be visual to be effective.

  5. Auditory and cognitive performance in elderly musicians and nonmusicians.

    Directory of Open Access Journals (Sweden)

    Massimo Grassi

    Full Text Available Musicians represent a model for examining brain and behavioral plasticity in terms of cognitive and auditory profile, but few studies have investigated whether elderly musicians have better auditory and cognitive abilities than nonmusicians. The aim of the present study was to examine whether being a professional musician attenuates the normal age-related changes in hearing and cognition. Elderly musicians still active in their profession were compared with nonmusicians on auditory performance (absolute threshold, frequency intensity, duration and spectral shape discrimination, gap and sinusoidal amplitude-modulation detection, and on simple (short-term memory and more complex and higher-order (working memory [WM] and visuospatial abilities cognitive tasks. The sample consisted of adults at least 65 years of age. The results showed that older musicians had similar absolute thresholds but better supra-threshold discrimination abilities than nonmusicians in four of the six auditory tasks administered. They also had a better WM performance, and stronger visuospatial abilities than nonmusicians. No differences were found between the two groups' short-term memory. Frequency discrimination and gap detection for the auditory measures, and WM complex span tasks and one of the visuospatial tasks for the cognitive ones proved to be very good classifiers of the musicians. These findings suggest that life-long music training may be associated with enhanced auditory and cognitive performance, including complex cognitive skills, in advanced age. However, whether this music training represents a protective factor or not needs further investigation.

  6. The effects of formalized and trained non-reciprocal peer teaching on psychosocial, behavioral, pedagogical, and motor learning outcomes in physical education

    Directory of Open Access Journals (Sweden)

    Peter R Whipp

    2015-02-01

    Full Text Available Peer teaching is recognized as a powerful instructional method; however, there is a paucity of studies that have evaluated the outcomes experienced by peer-teachers and their student recipients in the context of trained, non-reciprocal, high school physical education. Accordingly, the effectiveness of a formalized and trained non-reciprocal peer teaching (T-PT program upon psychosocial, behavioral, pedagogical and student learning outcomes within high school physical education classes was investigated. Students from eight intact classes (106 males, 94 females, Mage = 12.46, SD = 0.59 were randomly assigned to either a T-PT intervention group (taught by a volunteer peer-teacher who was trained in line with a tactical games approach or untrained group (U-PT; where volunteer peer-teachers received no formal training, but did receive guidance on the game concepts to teach. Data were collected over 10 lessons in a 5-week soccer unit. Mixed-model ANOVAs/MANOVAs revealed that, in comparison to U-PT, the T-PT program significantly enhanced in-game performance actions and academic learning time among student recipients. Those in the T-PT also provided greater levels of feedback and structured learning time, as well as reporting more positive feelings about peer teaching and fewer perceived barriers to accessing learning outcomes. These findings show that non-reciprocal peer-teachers who receive formalized support through training and tactical games approach-based teaching resources can enhance behavioral, pedagogical, and motor performance outcomes in physical education.

  7. The effects of formalized and trained non-reciprocal peer teaching on psychosocial, behavioral, pedagogical, and motor learning outcomes in physical education.

    Science.gov (United States)

    Whipp, Peter R; Jackson, Ben; Dimmock, James A; Soh, Jenny

    2015-01-01

    Peer teaching is recognized as a powerful instructional method; however, there is a paucity of studies that have evaluated the outcomes experienced by peer-teachers and their student recipients in the context of trained, non-reciprocal, high school physical education (PE). Accordingly, the effectiveness of a formalized and trained non-reciprocal peer teaching (T-PT) program upon psychosocial, behavioral, pedagogical, and student learning outcomes within high school PE classes was investigated. Students from eight intact classes (106 males, 94 females, Mage = 12.46, SD = 0.59) were randomly assigned to either a T-PT intervention group (taught by a volunteer peer-teacher who was trained in line with a tactical games approach) or untrained group (U-PT; where volunteer peer-teachers received no formal training, but did receive guidance on the game concepts to teach). Data were collected over 10 lessons in a 5-week soccer unit. Mixed-model ANOVAs/MANOVAs revealed that, in comparison to U-PT, the T-PT program significantly enhanced in-game performance actions and academic learning time among student recipients. Those in the T-PT also provided greater levels of feedback and structured learning time, as well as reporting more positive feelings about peer teaching and fewer perceived barriers to accessing learning outcomes. These findings show that non-reciprocal peer-teachers who receive formalized support through training and tactical games approach-based teaching resources can enhance behavioral, pedagogical, and motor performance outcomes in PE.

  8. Understanding the Construction of Personal Learning Networks to Support Non-Formal Workplace Learning of Training Professionals

    Science.gov (United States)

    Manning, Christin

    2013-01-01

    Workers in the 21st century workplace are faced with rapid and constant developments that place a heavy demand on them to continually learn beyond what the Human Resources and Training groups can meet. As a consequence, professionals must rely on non-formal learning approaches through the development of a personal learning network to keep…

  9. Auditory-motor learning influences auditory memory for music.

    Science.gov (United States)

    Brown, Rachel M; Palmer, Caroline

    2012-05-01

    In two experiments, we investigated how auditory-motor learning influences performers' memory for music. Skilled pianists learned novel melodies in four conditions: auditory only (listening), motor only (performing without sound), strongly coupled auditory-motor (normal performance), and weakly coupled auditory-motor (performing along with auditory recordings). Pianists' recognition of the learned melodies was better following auditory-only or auditory-motor (weakly coupled and strongly coupled) learning than following motor-only learning, and better following strongly coupled auditory-motor learning than following auditory-only learning. Auditory and motor imagery abilities modulated the learning effects: Pianists with high auditory imagery scores had better recognition following motor-only learning, suggesting that auditory imagery compensated for missing auditory feedback at the learning stage. Experiment 2 replicated the findings of Experiment 1 with melodies that contained greater variation in acoustic features. Melodies that were slower and less variable in tempo and intensity were remembered better following weakly coupled auditory-motor learning. These findings suggest that motor learning can aid performers' auditory recognition of music beyond auditory learning alone, and that motor learning is influenced by individual abilities in mental imagery and by variation in acoustic features.

  10. Rapid measurement of auditory filter shape in mice using the auditory brainstem response and notched noise.

    Science.gov (United States)

    Lina, Ioan A; Lauer, Amanda M

    2013-04-01

    The notched noise method is an effective procedure for measuring frequency resolution and auditory filter shapes in both human and animal models of hearing. Briefly, auditory filter shape and bandwidth estimates are derived from masked thresholds for tones presented in noise containing widening spectral notches. As the spectral notch widens, increasingly less of the noise falls within the auditory filter and the tone becomes more detectible until the notch width exceeds the filter bandwidth. Behavioral procedures have been used for the derivation of notched noise auditory filter shapes in mice; however, the time and effort needed to train and test animals on these tasks renders a constraint on the widespread application of this testing method. As an alternative procedure, we combined relatively non-invasive auditory brainstem response (ABR) measurements and the notched noise method to estimate auditory filters in normal-hearing mice at center frequencies of 8, 11.2, and 16 kHz. A complete set of simultaneous masked thresholds for a particular tone frequency were obtained in about an hour. ABR-derived filter bandwidths broadened with increasing frequency, consistent with previous studies. The ABR notched noise procedure provides a fast alternative to estimating frequency selectivity in mice that is well-suited to high through-put or time-sensitive screening. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Classification of passive auditory event-related potentials using discriminant analysis and self-organizing feature maps.

    Science.gov (United States)

    Schönweiler, R; Wübbelt, P; Tolloczko, R; Rose, C; Ptok, M

    2000-01-01

    Discriminant analysis (DA) and self-organizing feature maps (SOFM) were used to classify passively evoked auditory event-related potentials (ERP) P(1), N(1), P(2) and N(2). Responses from 16 children with severe behavioral auditory perception deficits, 16 children with marked behavioral auditory perception deficits, and 14 controls were examined. Eighteen ERP amplitude parameters were selected for examination of statistical differences between the groups. Different DA methods and SOFM configurations were trained to the values. SOFM had better classification results than DA methods. Subsequently, measures on another 37 subjects that were unknown for the trained SOFM were used to test the reliability of the system. With 10-dimensional vectors, reliable classifications were obtained that matched behavioral auditory perception deficits in 96%, implying central auditory processing disorder (CAPD). The results also support the assumption that CAPD includes a 'non-peripheral' auditory processing deficit. Copyright 2000 S. Karger AG, Basel.

  12. The importance of material resources and qualified trainers in adult non-formal education and training centres in South Africa

    Science.gov (United States)

    Mayombe, Celestin; Lombard, Antoinette

    2016-04-01

    Non-formal education and training (NFET) programmes in public and private centres in South Africa aim to meet the training needs of adults who have been deprived of formal education which would have fostered skills acquisition and access to employment earlier in their lives. The concern which informs this paper is that adults who face long-term unemployment due to a lack of marketable skills often remain unemployed after completing NFET programmes. The paper assesses the extent to which material and human resources have affected skills acquisition and graduate employment in KwaZulu-Natal, South Africa. The results show that material and human resource challenges in most public and some private centres have led to gaps in skills training. Programmes focus too strongly on academic credits and certificates and not enough on employment as an end goal. The authors argue that the existence of suitable training materials and qualified trainers with practical experience and specific technical skills constitutes favourable conditions ("enabling environments") for graduate employment. Without improvement in material and human resources, adult trainees will continue to experience difficulties integrating into the labour market, and the cycle of poverty and social exclusion will remain unbroken.

  13. The Role of Formal Education, Technical and Management Training on Information Systems (IS) Managers' Managerial Effectiveness as Perceived by Their Subordinates

    Science.gov (United States)

    Ligon, Jerry; Abdullah, ABM; Talukder, Majharul

    2007-01-01

    This study examined the relationship between Information Systems (IS) managers' formal education, level of technical and managerial training and their managerial effectiveness as perceived by their subordinates. The study finds that there is a strong positive relationship between the amount of technical training IS managers have received and their…

  14. The impact of educational level on performance on auditory processing tests

    Directory of Open Access Journals (Sweden)

    Cristina F.B. Murphy

    2016-03-01

    Full Text Available Research has demonstrated that a higher level of education is associated with better performance on cognitive tests among middle-aged and elderly people. However, the effects of education on auditory processing skills have not yet been evaluated. Previous demonstrations of sensory-cognitive interactions in the aging process indicate the potential importance of this topic. Therefore, the primary purpose of this study was to investigate the performance of middle-aged and elderly people with different levels of formal education on auditory processing tests. A total of 177 adults with no evidence of cognitive, psychological or neurological conditions took part in the research. The participants completed a series of auditory assessments, including dichotic digit, frequency pattern and speech-in-noise tests. A working memory test was also performed to investigate the extent to which auditory processing and cognitive performance were associated. The results demonstrated positive but weak correlations between years of schooling and performance on all of the tests applied. The factor years of schooling was also one of the best predictors of frequency pattern and speech-in-noise test performance. Additionally, performance on the working memory, frequency pattern and dichotic digit tests was also correlated, suggesting that the influence of educational level on auditory processing performance might be associated with the cognitive demand of the auditory processing tests rather than auditory sensory aspects itself. Longitudinal research is required to investigate the causal relationship between educational level and auditory processing skills.

  15. Emergence of auditory-visual relations from a visual-visual baseline with auditory-specific consequences in individuals with autism.

    Science.gov (United States)

    Varella, André A B; de Souza, Deisy G

    2014-07-01

    Empirical studies have demonstrated that class-specific contingencies may engender stimulus-reinforcer relations. In these studies, crossmodal relations emerged when crossmodal relations comprised the baseline, and intramodal relations emerged when intramodal relations were taught during baseline. This study investigated whether auditory-visual relations (crossmodal) would emerge after participants learned a visual-visual baseline (intramodal) with auditory stimuli presented as specific consequences. Four individuals with autism learned AB and CD relations with class-specific reinforcers. When A1 and C1 were presented as samples, the selections of B1 and D1, respectively, were followed by an edible (R1) and a sound (S1). Selections of B2 and D2 under the control of A2 and C2, respectively, were followed by R2 and S2. Probe trials tested for visual-visual AC, CA, AD, DA, BC, CB, BD, and DB emergent relations and auditory-visual SA, SB, SC, and SD emergent relations. All of the participants demonstrated the emergence of all auditory-visual relations, and three of four participants showed emergence of all visual-visual relations. Thus, the emergence of auditory-visual relations from specific auditory consequences suggests that these relations do not depend on crossmodal baseline training. The procedure has great potential for applied technology to generate auditory-visual discriminations and stimulus classes in the context of behavior-analytic interventions for autism. © Society for the Experimental Analysis of Behavior.

  16. Auditory temporal perceptual learning and transfer in Chinese-speaking children with developmental dyslexia.

    Science.gov (United States)

    Zhang, Manli; Xie, Weiyi; Xu, Yanzhi; Meng, Xiangzhi

    2018-03-01

    Perceptual learning refers to the improvement of perceptual performance as a function of training. Recent studies found that auditory perceptual learning may improve phonological skills in individuals with developmental dyslexia in alphabetic writing system. However, whether auditory perceptual learning could also benefit the reading skills of those learning the Chinese logographic writing system is, as yet, unknown. The current study aimed to investigate the remediation effect of auditory temporal perceptual learning on Mandarin-speaking school children with developmental dyslexia. Thirty children with dyslexia were screened from a large pool of students in 3th-5th grades. They completed a series of pretests and then were assigned to either a non-training control group or a training group. The training group worked on a pure tone duration discrimination task for 7 sessions over 2 weeks with thirty minutes per session. Post-tests immediately after training and a follow-up test 2 months later were conducted. Analyses revealed a significant training effect in the training group relative to non-training group, as well as near transfer to the temporal interval discrimination task and far transfer to phonological awareness, character recognition and reading fluency. Importantly, the training effect and all the transfer effects were stable at the 2-month follow-up session. Further analyses found that a significant correlation between character recognition performance and learning rate mainly existed in the slow learning phase, the consolidation stage of perceptual learning, and this effect was modulated by an individuals' executive function. These findings indicate that adaptive auditory temporal perceptual learning can lead to learning and transfer effects on reading performance, and shed further light on the potential role of basic perceptual learning in the remediation and prevention of developmental dyslexia. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Left auditory cortex gamma synchronization and auditory hallucination symptoms in schizophrenia

    Directory of Open Access Journals (Sweden)

    Shenton Martha E

    2009-07-01

    Full Text Available Abstract Background Oscillatory electroencephalogram (EEG abnormalities may reflect neural circuit dysfunction in neuropsychiatric disorders. Previously we have found positive correlations between the phase synchronization of beta and gamma oscillations and hallucination symptoms in schizophrenia patients. These findings suggest that the propensity for hallucinations is associated with an increased tendency for neural circuits in sensory cortex to enter states of oscillatory synchrony. Here we tested this hypothesis by examining whether the 40 Hz auditory steady-state response (ASSR generated in the left primary auditory cortex is positively correlated with auditory hallucination symptoms in schizophrenia. We also examined whether the 40 Hz ASSR deficit in schizophrenia was associated with cross-frequency interactions. Sixteen healthy control subjects (HC and 18 chronic schizophrenia patients (SZ listened to 40 Hz binaural click trains. The EEG was recorded from 60 electrodes and average-referenced offline. A 5-dipole model was fit from the HC grand average ASSR, with 2 pairs of superior temporal dipoles and a deep midline dipole. Time-frequency decomposition was performed on the scalp EEG and source data. Results Phase locking factor (PLF and evoked power were reduced in SZ at fronto-central electrodes, replicating prior findings. PLF was reduced in SZ for non-homologous right and left hemisphere sources. Left hemisphere source PLF in SZ was positively correlated with auditory hallucination symptoms, and was modulated by delta phase. Furthermore, the correlations between source evoked power and PLF found in HC was reduced in SZ for the LH sources. Conclusion These findings suggest that differential neural circuit abnormalities may be present in the left and right auditory cortices in schizophrenia. In addition, they provide further support for the hypothesis that hallucinations are related to cortical hyperexcitability, which is manifested by

  18. Assessing Course Content Relevance for Employment of Adult Non-Formal Education and Training Graduates in South Africa

    Science.gov (United States)

    Mayombe, Celestin

    2017-01-01

    The purpose of this article is to assess the course content relevance in contributing to wage- or self-employment of adult non-formal education and training (NFET) in the context of South Africa. The concern that informed this article is that adults who face long-term unemployment due to a lack of marketable skills remain unemployed after…

  19. Blocking estradiol synthesis affects memory for songs in auditory forebrain of male zebra finches.

    Science.gov (United States)

    Yoder, Kathleen M; Lu, Kai; Vicario, David S

    2012-11-14

    Estradiol (E2) has recently been shown to modulate sensory processing in an auditory area of the songbird forebrain, the caudomedial nidopallium (NCM). When a bird hears conspecific song, E2 increases locally in NCM, where neurons express both the aromatase enzyme that synthesizes E2 from precursors and estrogen receptors. Auditory responses in NCM show a form of neuronal memory: repeated playback of the unique learned vocalizations of conspecific individuals induces long-lasting stimulus-specific adaptation of neural responses to each vocalization. To test the role of E2 in this auditory memory, we treated adult male zebra finches (n=16) with either the aromatase inhibitor fadrozole (FAD) or saline for 8 days. We then exposed them to 'training' songs and, 6 h later, recorded multiunit auditory responses with an array of 16 microelectrodes in NCM. Adaptation rates (a measure of stimulus-specific adaptation) to playbacks of training and novel songs were computed, using established methods, to provide a measure of neuronal memory. Recordings from the FAD-treated birds showed a significantly reduced memory for the training songs compared with saline-treated controls, whereas auditory processing for novel songs did not differ between treatment groups. In addition, FAD did not change the response bias in favor of conspecific over heterospecific song stimuli. Our results show that E2 depletion affects the neuronal memory for vocalizations in songbird NCM, and suggest that E2 plays a necessary role in auditory processing and memory for communication signals.

  20. Music-induced cortical plasticity and lateral inhibition in the human auditory cortex as foundations for tonal tinnitus treatment.

    Science.gov (United States)

    Pantev, Christo; Okamoto, Hidehiko; Teismann, Henning

    2012-01-01

    Over the past 15 years, we have studied plasticity in the human auditory cortex by means of magnetoencephalography (MEG). Two main topics nurtured our curiosity: the effects of musical training on plasticity in the auditory system, and the effects of lateral inhibition. One of our plasticity studies found that listening to notched music for 3 h inhibited the neuronal activity in the auditory cortex that corresponded to the center-frequency of the notch, suggesting suppression of neural activity by lateral inhibition. Subsequent research on this topic found that suppression was notably dependent upon the notch width employed, that the lower notch-edge induced stronger attenuation of neural activity than the higher notch-edge, and that auditory focused attention strengthened the inhibitory networks. Crucially, the overall effects of lateral inhibition on human auditory cortical activity were stronger than the habituation effects. Based on these results we developed a novel treatment strategy for tonal tinnitus-tailor-made notched music training (TMNMT). By notching the music energy spectrum around the individual tinnitus frequency, we intended to attract lateral inhibition to auditory neurons involved in tinnitus perception. So far, the training strategy has been evaluated in two studies. The results of the initial long-term controlled study (12 months) supported the validity of the treatment concept: subjective tinnitus loudness and annoyance were significantly reduced after TMNMT but not when notching spared the tinnitus frequencies. Correspondingly, tinnitus-related auditory evoked fields (AEFs) were significantly reduced after training. The subsequent short-term (5 days) training study indicated that training was more effective in the case of tinnitus frequencies ≤ 8 kHz compared to tinnitus frequencies >8 kHz, and that training should be employed over a long-term in order to induce more persistent effects. Further development and evaluation of TMNMT therapy

  1. Music-induced cortical plasticity and lateral inhibition in the human auditory cortex as foundations for tonal tinnitus treatment

    Directory of Open Access Journals (Sweden)

    Christo ePantev

    2012-06-01

    Full Text Available Over the past 15 years, we have studied plasticity in the human auditory cortex by means of magnetoencephalography (MEG. Two main topics nurtured our curiosity: the effects of musical training on plasticity in the auditory system, and the effects of lateral inhibition. One of our plasticity studies found that listening to notched music for three hours inhibited the neuronal activity in the auditory cortex that corresponded to the center-frequency of the notch, suggesting suppression of neural activity by lateral inhibition. Crucially, the overall effects of lateral inhibition on human auditory cortical activity were stronger than the habituation effects. Based on these results we developed a novel treatment strategy for tonal tinnitus - tailor-made notched music training (TMNMT. By notching the music energy spectrum around the individual tinnitus frequency, we intended to attract lateral inhibition to auditory neurons involved in tinnitus perception. So far, the training strategy has been evaluated in two studies. The results of the initial long-term controlled study (12 months supported the validity of the treatment concept: subjective tinnitus loudness and annoyance were significantly reduced after TMNMT but not when notching spared the tinnitus frequencies. Correspondingly, tinnitus-related auditory evoked fields (AEFs were significantly reduced after training. The subsequent short-term (5 days training study indicated that training was more effective in the case of tinnitus frequencies ≤ 8 kHz compared to tinnitus frequencies > 8 kHz, and that training should be employed over a long-term in order to induce more persistent effects. Further development and evaluation of TMNMT therapy are planned. A goal is to transfer this novel, completely non-invasive, and low-cost treatment approach for tonal tinnitus into routine clinical practice.

  2. Working memory training in congenitally blind individuals results in an integration of occipital cortex in functional networks.

    Science.gov (United States)

    Gudi-Mindermann, Helene; Rimmele, Johanna M; Nolte, Guido; Bruns, Patrick; Engel, Andreas K; Röder, Brigitte

    2018-08-01

    The functional relevance of crossmodal activation (e.g. auditory activation of occipital brain regions) in congenitally blind individuals is still not fully understood. The present study tested whether the occipital cortex of blind individuals is integrated into a challenged functional network. A working memory (WM) training over four sessions was implemented. Congenitally blind and matched sighted participants were adaptively trained with an n-back task employing either voices (auditory training) or tactile stimuli (tactile training). In addition, a minimally demanding 1-back task served as an active control condition. Power and functional connectivity of EEG activity evolving during the maintenance period of an auditory 2-back task were analyzed, run prior to and after the WM training. Modality-specific (following auditory training) and modality-independent WM training effects (following both auditory and tactile training) were assessed. Improvements in auditory WM were observed in all groups, and blind and sighted individuals did not differ in training gains. Auditory and tactile training of sighted participants led, relative to the active control group, to an increase in fronto-parietal theta-band power, suggesting a training-induced strengthening of the existing modality-independent WM network. No power effects were observed in the blind. Rather, after auditory training the blind showed a decrease in theta-band connectivity between central, parietal, and occipital electrodes compared to the blind tactile training and active control groups. Furthermore, in the blind auditory training increased beta-band connectivity between fronto-parietal, central and occipital electrodes. In the congenitally blind, these findings suggest a stronger integration of occipital areas into the auditory WM network. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Success Stories on Non-Formal Adult Education and Training for Self-Employment in Micro-Enterprises in South Africa

    Science.gov (United States)

    Mayombe, Celestin

    2017-01-01

    Purpose: The purpose of this paper is to investigate the way the adult non-formal education and training (NFET) centres motivated and empowered graduates to start their own micro-enterprises as individuals or as a group. The specific objectives are as follows: to find out the transforming factors fostering the utilisation of acquired skills into…

  4. Auditory memory for temporal characteristics of sound.

    Science.gov (United States)

    Zokoll, Melanie A; Klump, Georg M; Langemann, Ulrike

    2008-05-01

    This study evaluates auditory memory for variations in the rate of sinusoidal amplitude modulation (SAM) of noise bursts in the European starling (Sturnus vulgaris). To estimate the extent of the starling's auditory short-term memory store, a delayed non-matching-to-sample paradigm was applied. The birds were trained to discriminate between a series of identical "sample stimuli" and a single "test stimulus". The birds classified SAM rates of sample and test stimuli as being either the same or different. Memory performance of the birds was measured as the percentage of correct classifications. Auditory memory persistence time was estimated as a function of the delay between sample and test stimuli. Memory performance was significantly affected by the delay between sample and test and by the number of sample stimuli presented before the test stimulus, but was not affected by the difference in SAM rate between sample and test stimuli. The individuals' auditory memory persistence times varied between 2 and 13 s. The starlings' auditory memory persistence in the present study for signals varying in the temporal domain was significantly shorter compared to that of a previous study (Zokoll et al. in J Acoust Soc Am 121:2842, 2007) applying tonal stimuli varying in the spectral domain.

  5. Gymnasts utilize visual and auditory information for behavioural synchronization in trampolining.

    Science.gov (United States)

    Heinen, T; Koschnick, J; Schmidt-Maaß, D; Vinken, P M

    2014-08-01

    In synchronized trampolining, two gymnasts perform the same routine at the same time. While trained gymnasts are thought to coordinate their own movements with the movements of another gymnast by detecting relevant movement information, the question arises how visual and auditory information contribute to the emergence of synchronicity between both gymnasts. Therefore the aim of this study was to examine the role of visual and auditory information in the emergence of coordinated behaviour in synchronized trampolining. Twenty female gymnasts were asked to synchronize their leaps with the leaps of a model gymnast, while visual and auditory information was manipulated. The results revealed that gymnasts needed more leaps to reach synchronicity when only either auditory (12.9 leaps) or visual information (10.8 leaps) was available, as compared to when both auditory and visual information was available (8.1 leaps). It is concluded that visual and auditory information play significant roles in synchronized trampolining, whilst visual information seems to be the dominant source for emerging behavioural synchronization, and auditory information supports this emergence.

  6. Shaping the aging brain: Role of auditory input patterns in the emergence of auditory cortical impairments

    Directory of Open Access Journals (Sweden)

    Brishna Soraya Kamal

    2013-09-01

    Full Text Available Age-related impairments in the primary auditory cortex (A1 include poor tuning selectivity, neural desynchronization and degraded responses to low-probability sounds. These changes have been largely attributed to reduced inhibition in the aged brain, and are thought to contribute to substantial hearing impairment in both humans and animals. Since many of these changes can be partially reversed with auditory training, it has been speculated that they might not be purely degenerative, but might rather represent negative plastic adjustments to noisy or distorted auditory signals reaching the brain. To test this hypothesis, we examined the impact of exposing young adult rats to 8 weeks of low-grade broadband noise on several aspects of A1 function and structure. We then characterized the same A1 elements in aging rats for comparison. We found that the impact of noise exposure on A1 tuning selectivity, temporal processing of auditory signal and responses to oddball tones was almost indistinguishable from the effect of natural aging. Moreover, noise exposure resulted in a reduction in the population of parvalbumin inhibitory interneurons and cortical myelin as previously documented in the aged group. Most of these changes reversed after returning the rats to a quiet environment. These results support the hypothesis that age-related changes in A1 have a strong activity-dependent component and indicate that the presence or absence of clear auditory input patterns might be a key factor in sustaining adult A1 function.

  7. Children with speech sound disorder: Comparing a non-linguistic auditory approach with a phonological intervention approach to improve phonological skills

    Directory of Open Access Journals (Sweden)

    Cristina eMurphy

    2015-02-01

    Full Text Available This study aimed to compare the effects of a non-linguistic auditory intervention approach with a phonological intervention approach on the phonological skills of children with speech sound disorder. A total of 17 children, aged 7-12 years, with speech sound disorder were randomly allocated to either the non-linguistic auditory temporal intervention group (n = 10, average age 7.7 ± 1.2 or phonological intervention group (n = 7, average age 8.6 ± 1.2. The intervention outcomes included auditory-sensory measures (auditory temporal processing skills and cognitive measures (attention, short-term memory, speech production and phonological awareness skills. The auditory approach focused on non-linguistic auditory training (eg. backward masking and frequency discrimination, whereas the phonological approach focused on speech sound training (eg. phonological organisation and awareness. Both interventions consisted of twelve 45-minute sessions delivered twice per week, for a total of nine hours. Intra-group analysis demonstrated that the auditory intervention group showed significant gains in both auditory and cognitive measures, whereas no significant gain was observed in the phonological intervention group. No significant improvement on phonological skills was observed in any of the groups. Inter-group analysis demonstrated significant differences between the improvement following training for both groups, with a more pronounced gain for the non-linguistic auditory temporal intervention in one of the visual attention measures and both auditory measures. Therefore, both analyses suggest that although the non-linguistic auditory intervention approach appeared to be the most effective intervention approach, it was not sufficient to promote the enhancement of phonological skills.

  8. CellNOptR: a flexible toolkit to train protein signaling networks to data using multiple logic formalisms.

    Science.gov (United States)

    Terfve, Camille; Cokelaer, Thomas; Henriques, David; MacNamara, Aidan; Goncalves, Emanuel; Morris, Melody K; van Iersel, Martijn; Lauffenburger, Douglas A; Saez-Rodriguez, Julio

    2012-10-18

    Cells process signals using complex and dynamic networks. Studying how this is performed in a context and cell type specific way is essential to understand signaling both in physiological and diseased situations. Context-specific medium/high throughput proteomic data measured upon perturbation is now relatively easy to obtain but formalisms that can take advantage of these features to build models of signaling are still comparatively scarce. Here we present CellNOptR, an open-source R software package for building predictive logic models of signaling networks by training networks derived from prior knowledge to signaling (typically phosphoproteomic) data. CellNOptR features different logic formalisms, from Boolean models to differential equations, in a common framework. These different logic model representations accommodate state and time values with increasing levels of detail. We provide in addition an interface via Cytoscape (CytoCopteR) to facilitate use and integration with Cytoscape network-based capabilities. Models generated with this pipeline have two key features. First, they are constrained by prior knowledge about the network but trained to data. They are therefore context and cell line specific, which results in enhanced predictive and mechanistic insights. Second, they can be built using different logic formalisms depending on the richness of the available data. Models built with CellNOptR are useful tools to understand how signals are processed by cells and how this is altered in disease. They can be used to predict the effect of perturbations (individual or in combinations), and potentially to engineer therapies that have differential effects/side effects depending on the cell type or context.

  9. Biological Impact of Music and Software-Based Auditory Training

    Science.gov (United States)

    Kraus, Nina

    2012-01-01

    Auditory-based communication skills are developed at a young age and are maintained throughout our lives. However, some individuals--both young and old--encounter difficulties in achieving or maintaining communication proficiency. Biological signals arising from hearing sounds relate to real-life communication skills such as listening to speech in…

  10. How useful are skills acquired at adult non-formal education and training centres for finding employment in South Africa?

    Science.gov (United States)

    Mayombe, Celestin; Lombard, Antoinette

    2015-10-01

    Non-formal adult education and training (NFET) in South Africa is instrumental in breaking the high level of poverty and decreasing the social inequality the country continues to face as a post-apartheid democracy. Public and private NFET centres in South Africa aim to meet the training needs of adults who have been deprived of formal education with courses which foster access to opportunities for skills acquisition and employment and bring about social and economic inclusion. However, many adults who were facing long-term unemployment due to a lack of marketable skills remain unemployed after completing NFET programmes. This paper reports on a study which investigated what constitutes favourable conditions ("internal enabling environments") for skills acquisition inside NFET centres leading to employment and how they can be improved to contribute to coordinated efforts of increasing NFET graduates' paid and/or self-employment capacities. The authors found that centres focusing on activities suitable for self-employment during training were more likely to create internal enabling environments for skills acquisition and income generation than centres offering courses designed for entering paid employment. The authors conclude that there appears to be a significant correlation between NFET centres' training programme objectives, financial resources, trainee selection criteria, the process of training needs assessment, and skills acquisition for successful employment outcomes of NFET graduates. Without these internal enabling factors, adult trainees are likely to continue finding it difficult to integrate into the labour market or participate in economic activities and hence break the cycle of poverty and social exclusion.

  11. Startle Auditory Stimuli Enhance the Performance of Fast Dynamic Contractions

    Science.gov (United States)

    Fernandez-Del-Olmo, Miguel; Río-Rodríguez, Dan; Iglesias-Soler, Eliseo; Acero, Rafael M.

    2014-01-01

    Fast reaction times and the ability to develop a high rate of force development (RFD) are crucial for sports performance. However, little is known regarding the relationship between these parameters. The aim of this study was to investigate the effects of auditory stimuli of different intensities on the performance of a concentric bench-press exercise. Concentric bench-presses were performed by thirteen trained subjects in response to three different conditions: a visual stimulus (VS); a visual stimulus accompanied by a non-startle auditory stimulus (AS); and a visual stimulus accompanied by a startle auditory stimulus (SS). Peak RFD, peak velocity, onset movement, movement duration and electromyography from pectoralis and tricep muscles were recorded. The SS condition induced an increase in the RFD and peak velocity and a reduction in the movement onset and duration, in comparison with the VS and AS condition. The onset activation of the pectoralis and tricep muscles was shorter for the SS than for the VS and AS conditions. These findings point out to specific enhancement effects of loud auditory stimulation on the rate of force development. This is of relevance since startle stimuli could be used to explore neural adaptations to resistance training. PMID:24489967

  12. Startle auditory stimuli enhance the performance of fast dynamic contractions.

    Directory of Open Access Journals (Sweden)

    Miguel Fernandez-Del-Olmo

    Full Text Available Fast reaction times and the ability to develop a high rate of force development (RFD are crucial for sports performance. However, little is known regarding the relationship between these parameters. The aim of this study was to investigate the effects of auditory stimuli of different intensities on the performance of a concentric bench-press exercise. Concentric bench-presses were performed by thirteen trained subjects in response to three different conditions: a visual stimulus (VS; a visual stimulus accompanied by a non-startle auditory stimulus (AS; and a visual stimulus accompanied by a startle auditory stimulus (SS. Peak RFD, peak velocity, onset movement, movement duration and electromyography from pectoralis and tricep muscles were recorded. The SS condition induced an increase in the RFD and peak velocity and a reduction in the movement onset and duration, in comparison with the VS and AS condition. The onset activation of the pectoralis and tricep muscles was shorter for the SS than for the VS and AS conditions. These findings point out to specific enhancement effects of loud auditory stimulation on the rate of force development. This is of relevance since startle stimuli could be used to explore neural adaptations to resistance training.

  13. Age at implantation and auditory memory in cochlear implanted children.

    Science.gov (United States)

    Mikic, B; Miric, D; Nikolic-Mikic, M; Ostojic, S; Asanovic, M

    2014-05-01

    Early cochlear implantation, before the age of 3 years, provides the best outcome regarding listening, speech, cognition an memory due to maximal central nervous system plasticity. Intensive postoperative training improves not only auditory performance and language, but affects auditory memory as well. The aim of this study was to discover if the age at implantation affects auditory memory function in cochlear implanted children. A total of 50 cochlear implanted children aged 4 to 8 years were enrolled in this study: early implanted (1-3y) n = 27 and late implanted (4-6y) n = 23. Two types of memory tests were used: Immediate Verbal Memory Test and Forward and Backward Digit Span Test. Early implanted children performed better on both verbal and numeric tasks of auditory memory. The difference was statistically significant, especially on the complex tasks. Early cochlear implantation, before the age of 3 years, significantly improve auditory memory and contribute to better cognitive and education outcomes.

  14. Auditory agnosia.

    Science.gov (United States)

    Slevc, L Robert; Shell, Alison R

    2015-01-01

    Auditory agnosia refers to impairments in sound perception and identification despite intact hearing, cognitive functioning, and language abilities (reading, writing, and speaking). Auditory agnosia can be general, affecting all types of sound perception, or can be (relatively) specific to a particular domain. Verbal auditory agnosia (also known as (pure) word deafness) refers to deficits specific to speech processing, environmental sound agnosia refers to difficulties confined to non-speech environmental sounds, and amusia refers to deficits confined to music. These deficits can be apperceptive, affecting basic perceptual processes, or associative, affecting the relation of a perceived auditory object to its meaning. This chapter discusses what is known about the behavioral symptoms and lesion correlates of these different types of auditory agnosia (focusing especially on verbal auditory agnosia), evidence for the role of a rapid temporal processing deficit in some aspects of auditory agnosia, and the few attempts to treat the perceptual deficits associated with auditory agnosia. A clear picture of auditory agnosia has been slow to emerge, hampered by the considerable heterogeneity in behavioral deficits, associated brain damage, and variable assessments across cases. Despite this lack of clarity, these striking deficits in complex sound processing continue to inform our understanding of auditory perception and cognition. © 2015 Elsevier B.V. All rights reserved.

  15. How musical expertise shapes speech perception: evidence from auditory classification images.

    Science.gov (United States)

    Varnet, Léo; Wang, Tianyun; Peter, Chloe; Meunier, Fanny; Hoen, Michel

    2015-09-24

    It is now well established that extensive musical training percolates to higher levels of cognition, such as speech processing. However, the lack of a precise technique to investigate the specific listening strategy involved in speech comprehension has made it difficult to determine how musicians' higher performance in non-speech tasks contributes to their enhanced speech comprehension. The recently developed Auditory Classification Image approach reveals the precise time-frequency regions used by participants when performing phonemic categorizations in noise. Here we used this technique on 19 non-musicians and 19 professional musicians. We found that both groups used very similar listening strategies, but the musicians relied more heavily on the two main acoustic cues, at the first formant onset and at the onsets of the second and third formants onsets. Additionally, they responded more consistently to stimuli. These observations provide a direct visualization of auditory plasticity resulting from extensive musical training and shed light on the level of functional transfer between auditory processing and speech perception.

  16. Hearing Shapes: Event-related Potentials Reveal the Time Course of Auditory-Visual Sensory Substitution.

    Science.gov (United States)

    Graulty, Christian; Papaioannou, Orestis; Bauer, Phoebe; Pitts, Michael A; Canseco-Gonzalez, Enriqueta

    2018-04-01

    In auditory-visual sensory substitution, visual information (e.g., shape) can be extracted through strictly auditory input (e.g., soundscapes). Previous studies have shown that image-to-sound conversions that follow simple rules [such as the Meijer algorithm; Meijer, P. B. L. An experimental system for auditory image representation. Transactions on Biomedical Engineering, 39, 111-121, 1992] are highly intuitive and rapidly learned by both blind and sighted individuals. A number of recent fMRI studies have begun to explore the neuroplastic changes that result from sensory substitution training. However, the time course of cross-sensory information transfer in sensory substitution is largely unexplored and may offer insights into the underlying neural mechanisms. In this study, we recorded ERPs to soundscapes before and after sighted participants were trained with the Meijer algorithm. We compared these posttraining versus pretraining ERP differences with those of a control group who received the same set of 80 auditory/visual stimuli but with arbitrary pairings during training. Our behavioral results confirmed the rapid acquisition of cross-sensory mappings, and the group trained with the Meijer algorithm was able to generalize their learning to novel soundscapes at impressive levels of accuracy. The ERP results revealed an early cross-sensory learning effect (150-210 msec) that was significantly enhanced in the algorithm-trained group compared with the control group as well as a later difference (420-480 msec) that was unique to the algorithm-trained group. These ERP modulations are consistent with previous fMRI results and provide additional insight into the time course of cross-sensory information transfer in sensory substitution.

  17. Cortical plasticity induced by short-term multimodal musical rhythm training.

    Directory of Open Access Journals (Sweden)

    Claudia Lappe

    Full Text Available Performing music is a multimodal experience involving the visual, auditory, and somatosensory modalities as well as the motor system. Therefore, musical training is an excellent model to study multimodal brain plasticity. Indeed, we have previously shown that short-term piano practice increase the magnetoencephalographic (MEG response to melodic material in novice players. Here we investigate the impact of piano training using a rhythmic-focused exercise on responses to rhythmic musical material. Musical training with non musicians was conducted over a period of two weeks. One group (sensorimotor-auditory, SA learned to play a piano sequence with a distinct musical rhythm, another group (auditory, A listened to, and evaluated the rhythmic accuracy of the performances of the SA-group. Training-induced cortical plasticity was evaluated using MEG, comparing the mismatch negativity (MMN in response to occasional rhythmic deviants in a repeating rhythm pattern before and after training. The SA-group showed a significantly greater enlargement of MMN and P2 to deviants after training compared to the A- group. The training-induced increase of the rhythm MMN was bilaterally expressed in contrast to our previous finding where the MMN for deviants in the pitch domain showed a larger right than left increase. The results indicate that when auditory experience is strictly controlled during training, involvement of the sensorimotor system and perhaps increased attentional recources that are needed in producing rhythms lead to more robust plastic changes in the auditory cortex compared to when rhythms are simply attended to in the auditory domain in the absence of motor production.

  18. Perception of stochastically undersampled sound waveforms: A model of auditory deafferentation

    Directory of Open Access Journals (Sweden)

    Enrique A Lopez-Poveda

    2013-07-01

    Full Text Available Auditory deafferentation, or permanent loss of auditory nerve afferent terminals, occurs after noise overexposure and aging and may accompany many forms of hearing loss. It could cause significant auditory impairment but is undetected by regular clinical tests and so its effects on perception are poorly understood. Here, we hypothesize and test a neural mechanism by which deafferentation could deteriorate perception. The basic idea is that the spike train produced by each auditory afferent resembles a stochastically digitized version of the sound waveform and that the quality of the waveform representation in the whole nerve depends on the number of aggregated spike trains or auditory afferents. We reason that because spikes occur stochastically in time with a higher probability for high- than for low-intensity sounds, more afferents would be required for the nerve to faithfully encode high-frequency or low-intensity waveform features than low-frequency or high-intensity features. Deafferentation would thus degrade the encoding of these features. We further reason that due to the stochastic nature of nerve firing, the degradation would be greater in noise than in quiet. This hypothesis is tested using a vocoder. Sounds were filtered through ten adjacent frequency bands. For the signal in each band, multiple stochastically subsampled copies were obtained to roughly mimic different stochastic representations of that signal conveyed by different auditory afferents innervating a given cochlear region. These copies were then aggregated to obtain an acoustic stimulus. Tone detection and speech identification tests were performed by young, normal-hearing listeners using different numbers of stochastic samplers per frequency band in the vocoder. Results support the hypothesis that stochastic undersampling of the sound waveform, inspired by deafferentation, impairs speech perception in noise more than in quiet, consistent with auditory aging effects.

  19. Perception of stochastically undersampled sound waveforms: a model of auditory deafferentation

    Science.gov (United States)

    Lopez-Poveda, Enrique A.; Barrios, Pablo

    2013-01-01

    Auditory deafferentation, or permanent loss of auditory nerve afferent terminals, occurs after noise overexposure and aging and may accompany many forms of hearing loss. It could cause significant auditory impairment but is undetected by regular clinical tests and so its effects on perception are poorly understood. Here, we hypothesize and test a neural mechanism by which deafferentation could deteriorate perception. The basic idea is that the spike train produced by each auditory afferent resembles a stochastically digitized version of the sound waveform and that the quality of the waveform representation in the whole nerve depends on the number of aggregated spike trains or auditory afferents. We reason that because spikes occur stochastically in time with a higher probability for high- than for low-intensity sounds, more afferents would be required for the nerve to faithfully encode high-frequency or low-intensity waveform features than low-frequency or high-intensity features. Deafferentation would thus degrade the encoding of these features. We further reason that due to the stochastic nature of nerve firing, the degradation would be greater in noise than in quiet. This hypothesis is tested using a vocoder. Sounds were filtered through ten adjacent frequency bands. For the signal in each band, multiple stochastically subsampled copies were obtained to roughly mimic different stochastic representations of that signal conveyed by different auditory afferents innervating a given cochlear region. These copies were then aggregated to obtain an acoustic stimulus. Tone detection and speech identification tests were performed by young, normal-hearing listeners using different numbers of stochastic samplers per frequency band in the vocoder. Results support the hypothesis that stochastic undersampling of the sound waveform, inspired by deafferentation, impairs speech perception in noise more than in quiet, consistent with auditory aging effects. PMID:23882176

  20. Dopamine modulates memory consolidation of discrimination learning in the auditory cortex.

    Science.gov (United States)

    Schicknick, Horst; Reichenbach, Nicole; Smalla, Karl-Heinz; Scheich, Henning; Gundelfinger, Eckart D; Tischmeyer, Wolfgang

    2012-03-01

    In Mongolian gerbils, the auditory cortex is critical for discriminating rising vs. falling frequency-modulated tones. Based on our previous studies, we hypothesized that dopaminergic inputs to the auditory cortex during and shortly after acquisition of the discrimination strategy control long-term memory formation. To test this hypothesis, we studied frequency-modulated tone discrimination learning of gerbils in a shuttle box GO/NO-GO procedure following differential treatments. (i) Pre-exposure of gerbils to the frequency-modulated tones at 1 day before the first discrimination training session severely impaired the accuracy of the discrimination acquired in that session during the initial trials of a second training session, performed 1 day later. (ii) Local injection of the D1/D5 dopamine receptor antagonist SCH-23390 into the auditory cortex after task acquisition caused a discrimination deficit of similar extent and time course as with pre-exposure. This effect was dependent on the dose and time point of injection. (iii) Injection of the D1/D5 dopamine receptor agonist SKF-38393 into the auditory cortex after retraining caused a further discrimination improvement at the beginning of subsequent sessions. All three treatments, which supposedly interfered with dopamine signalling during conditioning and/or retraining, had a substantial impact on the dynamics of the discrimination performance particularly at the beginning of subsequent training sessions. These findings suggest that auditory-cortical dopamine activity after acquisition of a discrimination of complex sounds and after retrieval of weak frequency-modulated tone discrimination memory further improves memory consolidation, i.e. the correct association of two sounds with their respective GO/NO-GO meaning, in support of future memory recall. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  1. Development of knowledge base of intellectual system for support of formal and informal training of IT staff

    Science.gov (United States)

    Kurvaeva, L. V.; Gavrilova, I. V.; Mahmutova, M. V.; Chichilanova, S. A.; Povituhin, S. A.

    2018-05-01

    The choice of educational digital content, according to education goals (descriptors which are formed by competences, labor functions, etc.), becomes an important practical task because of the variety of existing educational online systems that is available to persons within formal, informal IT education formats. Ontologies can form a basis for working out knowledge bases, which are center of intellectual system support in IT specialist training. The paper describes a technology of ontological model creation; analyzes the structure and the content of basic data. The structure of knowledge interrelation of the considered subject and IT education is considered. This knowledge base is applied for solving tasks of educational and methodical supplementation of educational programs of the higher and additional professional education, corporate training; for creating systems of certification and testing for students and practicing experts; for forming individual trajectories of training and career development.

  2. Implementation of a formal in-training assessment programme in anaesthesiology and preliminary results of acceptability

    DEFF Research Database (Denmark)

    Ringsted, C; Østergaard, D; van der Vleuten, C P M

    2003-01-01

    BACKGROUND: A new reform on postgraduate education in Denmark requires a formal in-training assessment in all specialties. The aim of this study was to survey the implementation and acceptability of the first example of a nation-wide in-training assessment programme for first-year trainees...... in anaesthesiology developed by a working group under the Danish Society of Anaesthesiology and Intensive Care Medicine. METHODS: A questionnaire about the implementation of the programme in practice and the characteristics of the trainees was sent to the educational responsible consultant (ERC) in each of the 26...... anaesthetic departments in the country with first-year trainees in anaesthesiology. Standard evaluations of the assessment programme were regularly collected from trainees. RESULTS: Twenty-five (96%) departments returned the questionnaire. In total the departments reported on 100 trainees and 83 of these had...

  3. An Assessment of Non-Formal Education and Training Centres' Linkages with Role-Players for Adult Employment in South Africa

    Science.gov (United States)

    Mayombe, Celestin

    2017-01-01

    This article outlines the results of a qualitative study, which investigated the adult non-formal education and education (NFET) centre linkages with external role-players in providing post-training support for the employment of graduates. The concern that informed this article is that adults who face long-term unemployment remain unemployed after…

  4. Real-time fMRI feedback training may improve chronic tinnitus

    Energy Technology Data Exchange (ETDEWEB)

    Haller, Sven [University Hospital Basel, Institute of Radiology, Department of Neuroradiology, Basel (Switzerland); Department of Imaging and Medical Informatics, Geneva University Hospital, Institute of Neuroradiology, Geneva (Switzerland); Birbaumer, Niels [University of Tuebingen, Institute of Medical Psychology and Behavioral Neurobiology, Tuebingen (Germany); Instituto di Ricovero e Cura a Carattere Scientifico, Ospedale San Camillo, Venezia (Italy); Veit, Ralf [University of Tuebingen, Institute of Medical Psychology and Behavioral Neurobiology, Tuebingen (Germany)

    2010-03-15

    Tinnitus consists of a more or less constant aversive tone or noise and is associated with excess auditory activation. Transient distortion of this activation (repetitive transcranial magnetic stimulation, rTMS) may improve tinnitus. Recently proposed operant training in real-time functional magnetic resonance imaging (rtfMRI) neurofeedback allows voluntary modification of specific circumscribed neuronal activations. Combining these observations, we investigated whether patients suffering from tinnitus can (1) learn to voluntarily reduce activation of the auditory system by rtfMRI neurofeedback and whether (2) successful learning improves tinnitus symptoms. Six participants with chronic tinnitus were included. First, location of the individual auditory cortex was determined in a standard fMRI auditory block-design localizer. Then, participants were trained to voluntarily reduce the auditory activation (rtfMRI) with visual biofeedback of the current auditory activation. Auditory activation significantly decreased after rtfMRI neurofeedback. This reduced the subjective tinnitus in two of six participants. These preliminary results suggest that tinnitus patients learn to voluntarily reduce spatially specific auditory activations by rtfMRI neurofeedback and that this may reduce tinnitus symptoms. Optimized training protocols (frequency, duration, etc.) may further improve the results. (orig.)

  5. Real-time fMRI feedback training may improve chronic tinnitus

    International Nuclear Information System (INIS)

    Haller, Sven; Birbaumer, Niels; Veit, Ralf

    2010-01-01

    Tinnitus consists of a more or less constant aversive tone or noise and is associated with excess auditory activation. Transient distortion of this activation (repetitive transcranial magnetic stimulation, rTMS) may improve tinnitus. Recently proposed operant training in real-time functional magnetic resonance imaging (rtfMRI) neurofeedback allows voluntary modification of specific circumscribed neuronal activations. Combining these observations, we investigated whether patients suffering from tinnitus can (1) learn to voluntarily reduce activation of the auditory system by rtfMRI neurofeedback and whether (2) successful learning improves tinnitus symptoms. Six participants with chronic tinnitus were included. First, location of the individual auditory cortex was determined in a standard fMRI auditory block-design localizer. Then, participants were trained to voluntarily reduce the auditory activation (rtfMRI) with visual biofeedback of the current auditory activation. Auditory activation significantly decreased after rtfMRI neurofeedback. This reduced the subjective tinnitus in two of six participants. These preliminary results suggest that tinnitus patients learn to voluntarily reduce spatially specific auditory activations by rtfMRI neurofeedback and that this may reduce tinnitus symptoms. Optimized training protocols (frequency, duration, etc.) may further improve the results. (orig.)

  6. [Auditory rehabilitation programmes for adults: what do we know about their effectiveness?].

    Science.gov (United States)

    Cardemil, Felipe; Aguayo, Lorena; Fuente, Adrian

    2014-01-01

    Hearing loss ranks third among the health conditions that involve disability-adjusted life years. Hearing aids are the most commonly used treatment option in people with hearing loss. However, a number of auditory rehabilitation programmes have been developed with the aim of improving communicative abilities in people with hearing loss. The objective of this review was to determine the effectiveness of auditory rehabilitation programmes focused on communication strategies. This was a narrative revision. A literature search using PUBMED was carried out. This search included systematic reviews investigating the effectiveness of auditory training and individual and group auditory rehabilitation programmes with the main focus on counselling and communicative strategies for adults with hearing loss. Each study was analysed in terms of the type of intervention used and the results obtained. Three articles were identified: one article about the effectiveness of auditory training programmes and 2 systematic reviews that investigated the effectiveness of communicative programmes in adults with hearing loss. The "Active Communication Education" programme appears to be an effective group programme of auditory rehabilitation that may be used with older Spanish-speaking adults. The utility of hearing aid fitting and communicative programmes as rehabilitation options are associated with improvements in social participation and quality of life in patients with hearing loss, especially group auditory rehabilitation programmes, which seem to have good potential for reducing activity limitations and social participation restrictions, and thus for improving patient quality of life. Copyright © 2013 Elsevier España, S.L. y Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. All rights reserved.

  7. Functional connectivity between face-movement and speech-intelligibility areas during auditory-only speech perception.

    Science.gov (United States)

    Schall, Sonja; von Kriegstein, Katharina

    2014-01-01

    It has been proposed that internal simulation of the talking face of visually-known speakers facilitates auditory speech recognition. One prediction of this view is that brain areas involved in auditory-only speech comprehension interact with visual face-movement sensitive areas, even under auditory-only listening conditions. Here, we test this hypothesis using connectivity analyses of functional magnetic resonance imaging (fMRI) data. Participants (17 normal participants, 17 developmental prosopagnosics) first learned six speakers via brief voice-face or voice-occupation training (comprehension. Overall, the present findings indicate that learned visual information is integrated into the analysis of auditory-only speech and that this integration results from the interaction of task-relevant face-movement and auditory speech-sensitive areas.

  8. Music training and working memory: an ERP study.

    Science.gov (United States)

    George, Elyse M; Coch, Donna

    2011-04-01

    While previous research has suggested that music training is associated with improvements in various cognitive and linguistic skills, the mechanisms mediating or underlying these associations are mostly unknown. Here, we addressed the hypothesis that previous music training is related to improved working memory. Using event-related potentials (ERPs) and a standardized test of working memory, we investigated both neural and behavioral aspects of working memory in college-aged, non-professional musicians and non-musicians. Behaviorally, musicians outperformed non-musicians on standardized subtests of visual, phonological, and executive memory. ERPs were recorded in standard auditory and visual oddball paradigms (participants responded to infrequent deviant stimuli embedded in lists of standard stimuli). Electrophysiologically, musicians demonstrated faster updating of working memory (shorter latency P300s) in both the auditory and visual domains and musicians allocated more neural resources to auditory stimuli (larger amplitude P300), showing increased sensitivity to the auditory standard/deviant difference and less effortful updating of auditory working memory. These findings demonstrate that long-term music training is related to improvements in working memory, in both the auditory and visual domains and in terms of both behavioral and ERP measures. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Interface Design Implications for Recalling the Spatial Configuration of Virtual Auditory Environments

    Science.gov (United States)

    McMullen, Kyla A.

    Although the concept of virtual spatial audio has existed for almost twenty-five years, only in the past fifteen years has modern computing technology enabled the real-time processing needed to deliver high-precision spatial audio. Furthermore, the concept of virtually walking through an auditory environment did not exist. The applications of such an interface have numerous potential uses. Spatial audio has the potential to be used in various manners ranging from enhancing sounds delivered in virtual gaming worlds to conveying spatial locations in real-time emergency response systems. To incorporate this technology in real-world systems, various concerns should be addressed. First, to widely incorporate spatial audio into real-world systems, head-related transfer functions (HRTFs) must be inexpensively created for each user. The present study further investigated an HRTF subjective selection procedure previously developed within our research group. Users discriminated auditory cues to subjectively select their preferred HRTF from a publicly available database. Next, the issue of training to find virtual sources was addressed. Listeners participated in a localization training experiment using their selected HRTFs. The training procedure was created from the characterization of successful search strategies in prior auditory search experiments. Search accuracy significantly improved after listeners performed the training procedure. Next, in the investigation of auditory spatial memory, listeners completed three search and recall tasks with differing recall methods. Recall accuracy significantly decreased in tasks that required the storage of sound source configurations in memory. To assess the impacts of practical scenarios, the present work assessed the performance effects of: signal uncertainty, visual augmentation, and different attenuation modeling. Fortunately, source uncertainty did not affect listeners' ability to recall or identify sound sources. The present

  10. Superior pre-attentive auditory processing in musicians.

    Science.gov (United States)

    Koelsch, S; Schröger, E; Tervaniemi, M

    1999-04-26

    The present study focuses on influences of long-term experience on auditory processing, providing the first evidence for pre-attentively superior auditory processing in musicians. This was revealed by the brain's automatic change-detection response, which is reflected electrically as the mismatch negativity (MMN) and generated by the operation of sensoric (echoic) memory, the earliest cognitive memory system. Major chords and single tones were presented to both professional violinists and non-musicians under ignore and attend conditions. Slightly impure chords, presented among perfect major chords elicited a distinct MMN in professional musicians, but not in non-musicians. This demonstrates that compared to non-musicians, musicians are superior in pre-attentively extracting more information out of musically relevant stimuli. Since effects of long-term experience on pre-attentive auditory processing have so far been reported for language-specific phonemes only, results indicate that sensory memory mechanisms can be modulated by training on a more general level.

  11. Auditory and audio-visual processing in patients with cochlear, auditory brainstem, and auditory midbrain implants: An EEG study.

    Science.gov (United States)

    Schierholz, Irina; Finke, Mareike; Kral, Andrej; Büchner, Andreas; Rach, Stefan; Lenarz, Thomas; Dengler, Reinhard; Sandmann, Pascale

    2017-04-01

    There is substantial variability in speech recognition ability across patients with cochlear implants (CIs), auditory brainstem implants (ABIs), and auditory midbrain implants (AMIs). To better understand how this variability is related to central processing differences, the current electroencephalography (EEG) study compared hearing abilities and auditory-cortex activation in patients with electrical stimulation at different sites of the auditory pathway. Three different groups of patients with auditory implants (Hannover Medical School; ABI: n = 6, CI: n = 6; AMI: n = 2) performed a speeded response task and a speech recognition test with auditory, visual, and audio-visual stimuli. Behavioral performance and cortical processing of auditory and audio-visual stimuli were compared between groups. ABI and AMI patients showed prolonged response times on auditory and audio-visual stimuli compared with NH listeners and CI patients. This was confirmed by prolonged N1 latencies and reduced N1 amplitudes in ABI and AMI patients. However, patients with central auditory implants showed a remarkable gain in performance when visual and auditory input was combined, in both speech and non-speech conditions, which was reflected by a strong visual modulation of auditory-cortex activation in these individuals. In sum, the results suggest that the behavioral improvement for audio-visual conditions in central auditory implant patients is based on enhanced audio-visual interactions in the auditory cortex. Their findings may provide important implications for the optimization of electrical stimulation and rehabilitation strategies in patients with central auditory prostheses. Hum Brain Mapp 38:2206-2225, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. A model of auditory nerve responses to electrical stimulation

    DEFF Research Database (Denmark)

    Joshi, Suyash Narendra; Dau, Torsten; Epp, Bastian

    Cochlear implants (CI) stimulate the auditory nerve (AN) with a train of symmetric biphasic current pulses comprising of a cathodic and an anodic phase. The cathodic phase is intended to depolarize the membrane of the neuron and to initiate an action potential (AP) and the anodic phase to neutral......Cochlear implants (CI) stimulate the auditory nerve (AN) with a train of symmetric biphasic current pulses comprising of a cathodic and an anodic phase. The cathodic phase is intended to depolarize the membrane of the neuron and to initiate an action potential (AP) and the anodic phase......-and-fire neuron with two partitions responding individually to anodic and cathodic stimulation. Membrane noise was parameterized based on reported relative spread of AN neurons. Firing efficiency curves and spike-latency distributions were simulated for monophasic and symmetric biphasic stimulation...

  13. Rhythmic auditory stimulation improves gait more than NDT/Bobath training in near-ambulatory patients early poststroke: a single-blind, randomized trial.

    Science.gov (United States)

    Thaut, M H; Leins, A K; Rice, R R; Argstatter, H; Kenyon, G P; McIntosh, G C; Bolay, H V; Fetter, M

    2007-01-01

    The effectiveness of 2 different types of gait training in stroke rehabilitation, rhythmic auditory stimulation (RAS) versus neurodevelopmental therapy (NDT)/Bobath- based training, was compared in 2 groups of hemiparetic stroke patients over a 3-week period of daily training (RAS group, n = 43; NDT/Bobath group =35). Mean entry date into the study was 21.3 days poststroke for the RAS group and 22.3 days for the control group. Patients entered the study as soon as they were able to complete 5 stride cycles with handheld assistance. Patients were closely equated by age, gender, and lesion site. Motor function in both groups was pre-assessed by the Barthel Index and the Fugl-Meyer Scales. Pre- to posttest measures showed a significant improvement in the RAS group for velocity (P = .006), stride length (P = .0001), cadence (P = .0001) and symmetry (P = .0049) over the NDT/Bobath group. Effect sizes for RAS over NDT/Bobath training were 13.1 m/min for velocity, 0.18 m for stride length, and 19 steps/min for cadence. The data show that after 3 weeks of gait training, RAS is an effective therapeutic method to enhance gait training in hemiparetic stroke rehabilitation. Gains were significantly higher for RAS compared to NDT/Bobath training.

  14. El Salvador - Non-Formal Skills Development

    Data.gov (United States)

    Millennium Challenge Corporation — The Non-Formal Skills Development Sub-Activity had a budget of $5 million (USD) to provide short-term training to vulnerable populations in El Salvador's Northern...

  15. Neuronal activity in primate auditory cortex during the performance of audiovisual tasks.

    Science.gov (United States)

    Brosch, Michael; Selezneva, Elena; Scheich, Henning

    2015-03-01

    This study aimed at a deeper understanding of which cognitive and motivational aspects of tasks affect auditory cortical activity. To this end we trained two macaque monkeys to perform two different tasks on the same audiovisual stimulus and to do this with two different sizes of water rewards. The monkeys had to touch a bar after a tone had been turned on together with an LED, and to hold the bar until either the tone (auditory task) or the LED (visual task) was turned off. In 399 multiunits recorded from core fields of auditory cortex we confirmed that during task engagement neurons responded to auditory and non-auditory stimuli that were task-relevant, such as light and water. We also confirmed that firing rates slowly increased or decreased for several seconds during various phases of the tasks. Responses to non-auditory stimuli and slow firing changes were observed during both the auditory and the visual task, with some differences between them. There was also a weak task-dependent modulation of the responses to auditory stimuli. In contrast to these cognitive aspects, motivational aspects of the tasks were not reflected in the firing, except during delivery of the water reward. In conclusion, the present study supports our previous proposal that there are two response types in the auditory cortex that represent the timing and the type of auditory and non-auditory elements of a auditory tasks as well the association between elements. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  16. Preliminary framework for Familiar Auditory Sensory Training (FAST) provided during coma recovery.

    Science.gov (United States)

    Pape, Theresa Louise-Bender; Rosenow, Joshua M; Harton, Brett; Patil, Vijaya; Guernon, Ann; Parrish, Todd; Froehlich, Kathleen; Burress, Catherine; McNamee, Shane; Herrold, Amy A; Weiss, Bessie; Wang, Xue

    2012-01-01

    Since there remains a need to examine the nature of the neural effect and therapeutic efficacy/effectiveness of sensory stimulation provided to persons in states of seriously impaired consciousness, a passive sensory stimulation intervention, referred to as the Familiar Auditory Sensory Training (FAST) protocol, was developed for examination in an ongoing, double-blind, randomized clinical trial (RCT). The FAST protocol is described in this article according to the preliminary framework, which is a synthesis of knowledge regarding principles of plasticity and capabilities of the human brain to automatically and covertly process sensory input. Feasibility issues considered during the development of the intervention are also described. To enable replication of this intervention, we describe procedures to create the intervention and lessons learned regarding the creation process. The potential effect of the intervention is illustrated using functional brain imaging of nondisabled subjects. This illustration also demonstrates the relevance of the rationale for designing the FAST protocol. To put the intervention within the context of the scientific development process, the article culminates with a description of the study design for the ongoing RCT examining the efficacy of the FAST protocol.

  17. The relationship between the age of onset of musical training and rhythm synchronization performance: validation of sensitive period effects.

    Science.gov (United States)

    Bailey, Jennifer A; Penhune, Virginia B

    2013-01-01

    A sensitive period associated with musical training has been proposed, suggesting the influence of musical training on the brain and behavior is strongest during the early years of childhood. Experiments from our laboratory have directly tested the sensitive period hypothesis for musical training by comparing musicians who began their training prior to age seven with those who began their training after age seven, while matching the two groups in terms of musical experience (Watanabe et al., 2007; Bailey and Penhune, 2010, 2012). Using this matching paradigm, the early-trained groups have demonstrated enhanced sensorimotor synchronization skills and associated differences in brain structure (Bailey et al., 2013; Steele et al., 2013). The current study takes a different approach to investigating the sensitive period hypothesis for musical training by examining a single large group of unmatched musicians (N = 77) and exploring the relationship between age of onset of musical training as a continuous variable and performance on the Rhythm Synchronization Task (RST), a previously used auditory-motor RST. Interestingly, age of onset was correlated with task performance for those who began training earlier, however, no such relationship was observed among those who began training in their later childhood years. In addition, years of formal training showed a similar pattern. However, individual working memory scores were predictive of task performance, regardless of age of onset of musical training. Overall, these results support the sensitive period hypothesis for musical training and suggest a non-linear relationship between age of onset of musical training and auditory-motor rhythm synchronization abilities, such that a relationship exists early in childhood but then plateaus later on in development, similar to maturational growth trajectories of brain regions implicated in playing music.

  18. The relationship between the age of onset of musical training and rhythm synchronization performance: Validation of sensitive period effects

    Directory of Open Access Journals (Sweden)

    Jennifer Anne Bailey

    2013-11-01

    Full Text Available A sensitive period associated with musical training has been proposed, suggesting the influence of musical training on the brain and behaviour is strongest during the early childhood years. Experiments from our laboratory have directly tested the sensitive period hypothesis for musical training by comparing musicians who began their training before age seven with those who began their training after age seven, while matching the two groups in terms of musical experience (Bailey & Penhune, 2010; 2012; Watanabe, Savion-Lemieux, & Penhune, 2007. Using this matching paradigm, the early-trained groups have demonstrated enhanced sensorimotor synchronization skills and associated differences in brain structure (Bailey, Zatorre, & Penhune, under review; Steele, Bailey, Zatorre, & Penhune, 2013. The current study takes a different approach to investigating the sensitive period hypothesis for musical training by examining a single large group of unmatched musicians (N=77 and exploring the relationship between age of onset of musical training as a continuous variable and performance on the Rhythm Synchronization Task (RST, a previously used auditory-motor rhythm synchronization task. Interestingly, age of onset was correlated with task performance for those who began training earlier; however, no such relationship was observed among those who began training in their later childhood years. In addition, years of formal training showed a similar pattern. However, individual working memory scores were predictive of task performance, regardless of age of onset of musical training. Overall, these results support the sensitive period hypothesis for musical training and suggest a non-linear relationship between age of onset of musical training and auditory-motor rhythm synchronization abilities, such that a relationship exists early in childhood but then plateaus later on in development, similar to maturational growth trajectories of brain regions implicated in

  19. Biological impact of music and software-based auditory training

    OpenAIRE

    Kraus, Nina

    2012-01-01

    Auditory-based communication skills are developed at a young age and are maintained throughout our lives. However, some individuals – both young and old – encounter difficulties in achieving or maintaining communication proficiency. Biological signals arising from hearing sounds relate to real-life communication skills such as listening to speech in noisy environments and reading, pointing to an intersection between hearing and cognition. Musical experience, amplification, and software-based ...

  20. Intensive Auditory Cognitive Training Improves Verbal Memory in Adolescents and Young Adults at Clinical High Risk for Psychosis.

    Science.gov (United States)

    Loewy, Rachel; Fisher, Melissa; Schlosser, Danielle A; Biagianti, Bruno; Stuart, Barbara; Mathalon, Daniel H; Vinogradov, Sophia

    2016-07-01

    Individuals at clinical high risk (CHR) for psychosis demonstrate cognitive impairments that predict later psychotic transition and real-world functioning. Cognitive training has shown benefits in schizophrenia, but has not yet been adequately tested in the CHR population. In this double-blind randomized controlled trial, CHR individuals (N = 83) were given laptop computers and trained at home on 40 hours of auditory processing-based exercises designed to target verbal learning and memory operations, or on computer games (CG). Participants were assessed with neurocognitive tests based on the Measurement and Treatment Research to Improve Cognition in Schizophrenia initiative (MATRICS) battery and rated on symptoms and functioning. Groups were compared before and after training using a mixed-effects model with restricted maximum likelihood estimation, given the high study attrition rate (42%). Participants in the targeted cognitive training group showed a significant improvement in Verbal Memory compared to CG participants (effect size = 0.61). Positive and Total symptoms improved in both groups over time. CHR individuals showed patterns of training-induced cognitive improvement in verbal memory consistent with prior observations in schizophrenia. This is a particularly vulnerable domain in individuals at-risk for psychosis that predicts later functioning and psychotic transition. Ongoing follow-up of this cohort will assess the durability of training effects in CHR individuals, as well as the potential impact on symptoms and functioning over time. Clinical Trials Number: NCT00655239. URL: https://clinicaltrials.gov/ct2/show/NCT00655239?term=vinogradov&rank=5. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center 2016.

  1. Effects of musical training and hearing loss on pitch discrimination

    DEFF Research Database (Denmark)

    Santurette, Sébastien; Bianchi, Federica; Dau, Torsten

    2018-01-01

    content of the sound and whether the harmonics are resolved by the auditory frequency analysis operated by cochlear processing. F0DLs are also heavily influenced by the amount of musical training received by the listener and by the spectrotemporal auditory processing deficits that often accompany...... sensorineural hearing loss. This paper reviews the latest evidence for how musical training and hearing loss affect pitch discrimination performance, based on behavioral F0DL experiments with complex tones containing either resolved or unresolved harmonics, carried out in listeners with different degrees...... of hearing loss and musicianship. A better understanding of the interaction between these two factors is crucial to determine whether auditory training based on musical tasks or targeted towards specific auditory cues may be useful to hearing-impaired patients undergoing hearing rehabilitation....

  2. The Central Auditory Processing Kit[TM]. Book 1: Auditory Memory [and] Book 2: Auditory Discrimination, Auditory Closure, and Auditory Synthesis [and] Book 3: Auditory Figure-Ground, Auditory Cohesion, Auditory Binaural Integration, and Compensatory Strategies.

    Science.gov (United States)

    Mokhemar, Mary Ann

    This kit for assessing central auditory processing disorders (CAPD), in children in grades 1 through 8 includes 3 books, 14 full-color cards with picture scenes, and a card depicting a phone key pad, all contained in a sturdy carrying case. The units in each of the three books correspond with auditory skill areas most commonly addressed in…

  3. Auditory Perceptual Abilities Are Associated with Specific Auditory Experience

    Directory of Open Access Journals (Sweden)

    Yael Zaltz

    2017-11-01

    Full Text Available The extent to which auditory experience can shape general auditory perceptual abilities is still under constant debate. Some studies show that specific auditory expertise may have a general effect on auditory perceptual abilities, while others show a more limited influence, exhibited only in a relatively narrow range associated with the area of expertise. The current study addresses this issue by examining experience-dependent enhancement in perceptual abilities in the auditory domain. Three experiments were performed. In the first experiment, 12 pop and rock musicians and 15 non-musicians were tested in frequency discrimination (DLF, intensity discrimination, spectrum discrimination (DLS, and time discrimination (DLT. Results showed significant superiority of the musician group only for the DLF and DLT tasks, illuminating enhanced perceptual skills in the key features of pop music, in which miniscule changes in amplitude and spectrum are not critical to performance. The next two experiments attempted to differentiate between generalization and specificity in the influence of auditory experience, by comparing subgroups of specialists. First, seven guitar players and eight percussionists were tested in the DLF and DLT tasks that were found superior for musicians. Results showed superior abilities on the DLF task for guitar players, though no difference between the groups in DLT, demonstrating some dependency of auditory learning on the specific area of expertise. Subsequently, a third experiment was conducted, testing a possible influence of vowel density in native language on auditory perceptual abilities. Ten native speakers of German (a language characterized by a dense vowel system of 14 vowels, and 10 native speakers of Hebrew (characterized by a sparse vowel system of five vowels, were tested in a formant discrimination task. This is the linguistic equivalent of a DLS task. Results showed that German speakers had superior formant

  4. Auditory midbrain processing is differentially modulated by auditory and visual cortices: An auditory fMRI study.

    Science.gov (United States)

    Gao, Patrick P; Zhang, Jevin W; Fan, Shu-Juan; Sanes, Dan H; Wu, Ed X

    2015-12-01

    The cortex contains extensive descending projections, yet the impact of cortical input on brainstem processing remains poorly understood. In the central auditory system, the auditory cortex contains direct and indirect pathways (via brainstem cholinergic cells) to nuclei of the auditory midbrain, called the inferior colliculus (IC). While these projections modulate auditory processing throughout the IC, single neuron recordings have samples from only a small fraction of cells during stimulation of the corticofugal pathway. Furthermore, assessments of cortical feedback have not been extended to sensory modalities other than audition. To address these issues, we devised blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) paradigms to measure the sound-evoked responses throughout the rat IC and investigated the effects of bilateral ablation of either auditory or visual cortices. Auditory cortex ablation increased the gain of IC responses to noise stimuli (primarily in the central nucleus of the IC) and decreased response selectivity to forward species-specific vocalizations (versus temporally reversed ones, most prominently in the external cortex of the IC). In contrast, visual cortex ablation decreased the gain and induced a much smaller effect on response selectivity. The results suggest that auditory cortical projections normally exert a large-scale and net suppressive influence on specific IC subnuclei, while visual cortical projections provide a facilitatory influence. Meanwhile, auditory cortical projections enhance the midbrain response selectivity to species-specific vocalizations. We also probed the role of the indirect cholinergic projections in the auditory system in the descending modulation process by pharmacologically blocking muscarinic cholinergic receptors. This manipulation did not affect the gain of IC responses but significantly reduced the response selectivity to vocalizations. The results imply that auditory cortical

  5. Neuroscience illuminating the influence of auditory or phonological intervention on language-related deficits

    Directory of Open Access Journals (Sweden)

    Sari eYlinen

    2015-02-01

    Full Text Available Remediation programs for language-related learning deficits are urgently needed to enable equal opportunities in education. To meet this need, different training and intervention programs have been developed. Here we review, from an educational perspective, studies that have explored the neural basis of behavioral changes induced by auditory or phonological training in dyslexia, specific language impairment (SLI, and language-learning impairment (LLI. Training has been shown to induce plastic changes in deficient neural networks. In dyslexia, these include, most consistently, increased or normalized activation of previously hypoactive inferior frontal and occipito-temporal areas. In SLI and LLI, studies have shown the strengthening of previously weak auditory brain responses as a result of training. The combination of behavioral and brain measures of remedial gains has potential to increase the understanding of the causes of language-related deficits, which may help to target remedial interventions more accurately to the core problem.

  6. Developing corpus-based translation methods between informal and formal mathematics : project description

    NARCIS (Netherlands)

    Kaliszyk, C.; Urban, J.; Vyskocil, J.; Geuvers, J.H.; Watt, S.M.; Davenport, J.H.; Sexton, A.P.; Sojka, P.; Urban, J.

    2014-01-01

    The goal of this project is to (i) accumulate annotated informal/formal mathematical corpora suitable for training semi-automated translation between informal and formal mathematics by statistical machine-translation methods, (ii) to develop such methods oriented at the formalization task, and in

  7. Industrial Practice in Formal Methods : A Review

    DEFF Research Database (Denmark)

    Bicarregui, Juan C.; Fitzgerald, John; Larsen, Peter Gorm

    2009-01-01

    We examine the the industrial application of formal methods using data gathered in a review of 62 projects taking place over the last 25 years. The review suggests that formal methods are being applied in a wide range of application domains, with increasingly strong tool support. Significant chal...... challenges remain in providing usable tools that can be integrated into established development processes; in education and training; in taking formal methods from first use to second use, and in gathering and evidence to support informed selection of methods and tools.......We examine the the industrial application of formal methods using data gathered in a review of 62 projects taking place over the last 25 years. The review suggests that formal methods are being applied in a wide range of application domains, with increasingly strong tool support. Significant...

  8. Auditory learning through active engagement with sound: Biological impact of community music lessons in at-risk children

    Directory of Open Access Journals (Sweden)

    Nina eKraus

    2014-11-01

    Full Text Available The young nervous system is primed for sensory learning, facilitating the acquisition of language and communication skills. Social and linguistic impoverishment can limit these learning opportunities, eventually leading to language-related challenges such as poor reading. Music training offers a promising auditory learning strategy by directing attention to meaningful acoustic elements in the soundscape. In light of evidence that music training improves auditory skills and their neural substrates, there are increasing efforts to enact community-based programs to provide music instruction to at-risk children. Harmony Project is a community foundation that has provided free music instruction to over 1,000 children from Los Angeles gang-reduction zones over the past decade. We conducted an independent evaluation of biological effects of participating in Harmony Project by following a cohort of children for one year. Here we focus on a comparison between students who actively engaged with sound through instrumental music training vs. students who took music appreciation classes. All children began with an introductory music appreciation class, but midway through the year half of the children transitioned to an instrumental training class. After the year of training, the children who actively engaged with sound through instrumental music training had faster and more robust neural processing of speech than the children who stayed in the music appreciation class, observed in neural responses to a speech sound /d/. The neurophysiological measures found to be enhanced in the instrumentally trained children have been previously linked to reading ability, suggesting a gain in neural processes important for literacy stemming from active auditory learning. These findings speak to the potential of active engagement with sound (i.e., music-making to engender experience-dependent neuroplasticity during trand may inform the development of strategies for auditory

  9. Auditory learning through active engagement with sound: biological impact of community music lessons in at-risk children.

    Science.gov (United States)

    Kraus, Nina; Slater, Jessica; Thompson, Elaine C; Hornickel, Jane; Strait, Dana L; Nicol, Trent; White-Schwoch, Travis

    2014-01-01

    The young nervous system is primed for sensory learning, facilitating the acquisition of language and communication skills. Social and linguistic impoverishment can limit these learning opportunities, eventually leading to language-related challenges such as poor reading. Music training offers a promising auditory learning strategy by directing attention to meaningful acoustic elements of the soundscape. In light of evidence that music training improves auditory skills and their neural substrates, there are increasing efforts to enact community-based programs to provide music instruction to at-risk children. Harmony Project is a community foundation that has provided free music instruction to over 1000 children from Los Angeles gang-reduction zones over the past decade. We conducted an independent evaluation of biological effects of participating in Harmony Project by following a cohort of children for 1 year. Here we focus on a comparison between students who actively engaged with sound through instrumental music training vs. students who took music appreciation classes. All children began with an introductory music appreciation class, but midway through the year half of the children transitioned to the instrumental training. After the year of training, the children who actively engaged with sound through instrumental music training had faster and more robust neural processing of speech than the children who stayed in the music appreciation class, observed in neural responses to a speech sound /d/. The neurophysiological measures found to be enhanced in the instrumentally-trained children have been previously linked to reading ability, suggesting a gain in neural processes important for literacy stemming from active auditory learning. Despite intrinsic constraints on our study imposed by a community setting, these findings speak to the potential of active engagement with sound (i.e., music-making) to engender experience-dependent neuroplasticity and may inform the

  10. Recognising Non-Formal and Informal Learning: An Open Challenge

    Science.gov (United States)

    Perulli, Elisabetta

    2009-01-01

    The social-institutional endorsement towards the perspective of recognising and enhancing learning acquired outside the formal education and training contexts (non-formal and informal learning), has been gaining strength and has entered policy agendas throughout Europe, but also in other major non-European countries. Nevertheless there are still…

  11. Hearing after congenital deafness: central auditory plasticity and sensory deprivation.

    Science.gov (United States)

    Kral, A; Hartmann, R; Tillein, J; Heid, S; Klinke, R

    2002-08-01

    The congenitally deaf cat suffers from a degeneration of the inner ear. The organ of Corti bears no hair cells, yet the auditory afferents are preserved. Since these animals have no auditory experience, they were used as a model for congenital deafness. Kittens were equipped with a cochlear implant at different ages and electro-stimulated over a period of 2.0-5.5 months using a monopolar single-channel compressed analogue stimulation strategy (VIENNA-type signal processor). Following a period of auditory experience, we investigated cortical field potentials in response to electrical biphasic pulses applied by means of the cochlear implant. In comparison to naive unstimulated deaf cats and normal hearing cats, the chronically stimulated animals showed larger cortical regions producing middle-latency responses at or above 300 microV amplitude at the contralateral as well as the ipsilateral auditory cortex. The cortex ipsilateral to the chronically stimulated ear did not show any signs of reduced responsiveness when stimulating the 'untrained' ear through a second cochlear implant inserted in the final experiment. With comparable duration of auditory training, the activated cortical area was substantially smaller if implantation had been performed at an older age of 5-6 months. The data emphasize that young sensory systems in cats have a higher capacity for plasticity than older ones and that there is a sensitive period for the cat's auditory system.

  12. Integrated formal operations plan

    Energy Technology Data Exchange (ETDEWEB)

    Cort, G.; Dearholt, W.; Donahue, S.; Frank, J.; Perkins, B.; Tyler, R.; Wrye, J.

    1994-01-05

    The concept of formal operations (that is, a collection of business practices to assure effective, accountable operations) has vexed the Laboratory for many years. To date most attempts at developing such programs have been based upon rigid, compliance-based interpretations of a veritable mountain of Department of Energy (DOE) orders, directives, notices, and standards. These DOE dictates seldom take the broad view but focus on highly specialized programs isolated from the overall context of formal operations. The result is a confusing array of specific, and often contradictory, requirements that produce a patchwork of overlapping niche programs. This unnecessary duplication wastes precious resources, dramatically increases the complexity of our work processes, and communicates a sense of confusion to our customers and regulators. Coupled with the artificial divisions that have historically existed among the Laboratory`s formal operations organizations (quality assurance, configuration management, records management, training, etc.), this approach has produced layers of increasingly vague and complex formal operations plans, each of which interprets its parent and adds additional requirements of its own. Organizational gridlock ensues whenever an activity attempts to implement these bureaucratic monstrosities. The integrated formal operations plan presented is to establish a set of requirements that must be met by an integrated formal operations program, assign responsibilities for implementation and operation of the program, and specify criteria against which the performance of the program will be measured. The accountable line manager specifies the items, processes, and information (the controlled elements) to which the formal operations program specified applies. The formal operations program is implemented using a graded approach based on the level of importance of the various controlled elements and the scope of the activities in which they are involved.

  13. Evidence for training-induced plasticity in multisensory brain structures: an MEG study.

    Directory of Open Access Journals (Sweden)

    Evangelos Paraskevopoulos

    Full Text Available Multisensory learning and resulting neural brain plasticity have recently become a topic of renewed interest in human cognitive neuroscience. Music notation reading is an ideal stimulus to study multisensory learning, as it allows studying the integration of visual, auditory and sensorimotor information processing. The present study aimed at answering whether multisensory learning alters uni-sensory structures, interconnections of uni-sensory structures or specific multisensory areas. In a short-term piano training procedure musically naive subjects were trained to play tone sequences from visually presented patterns in a music notation-like system [Auditory-Visual-Somatosensory group (AVS], while another group received audio-visual training only that involved viewing the patterns and attentively listening to the recordings of the AVS training sessions [Auditory-Visual group (AV]. Training-related changes in cortical networks were assessed by pre- and post-training magnetoencephalographic (MEG recordings of an auditory, a visual and an integrated audio-visual mismatch negativity (MMN. The two groups (AVS and AV were differently affected by the training. The results suggest that multisensory training alters the function of multisensory structures, and not the uni-sensory ones along with their interconnections, and thus provide an answer to an important question presented by cognitive models of multisensory training.

  14. Neurofeedback-Based Enhancement of Single Trial Auditory Evoked Potentials: Feasibility in Healthy Subjects.

    Science.gov (United States)

    Rieger, Kathryn; Rarra, Marie-Helene; Moor, Nicolas; Diaz Hernandez, Laura; Baenninger, Anja; Razavi, Nadja; Dierks, Thomas; Hubl, Daniela; Koenig, Thomas

    2018-03-01

    Previous studies showed a global reduction of the event-related potential component N100 in patients with schizophrenia, a phenomenon that is even more pronounced during auditory verbal hallucinations. This reduction assumingly results from dysfunctional activation of the primary auditory cortex by inner speech, which reduces its responsiveness to external stimuli. With this study, we tested the feasibility of enhancing the responsiveness of the primary auditory cortex to external stimuli with an upregulation of the event-related potential component N100 in healthy control subjects. A total of 15 healthy subjects performed 8 double-sessions of EEG-neurofeedback training over 2 weeks. The results of the used linear mixed effect model showed a significant active learning effect within sessions ( t = 5.99, P < .001) against an unspecific habituation effect that lowered the N100 amplitude over time. Across sessions, a significant increase in the passive condition ( t = 2.42, P = .03), named as carry-over effect, was observed. Given that the carry-over effect is one of the ultimate aims of neurofeedback, it seems reasonable to apply this neurofeedback training protocol to influence the N100 amplitude in patients with schizophrenia. This intervention could provide an alternative treatment option for auditory verbal hallucinations in these patients.

  15. Effects of hand gestures on auditory learning of second-language vowel length contrasts.

    Science.gov (United States)

    Hirata, Yukari; Kelly, Spencer D; Huang, Jessica; Manansala, Michael

    2014-12-01

    Research has shown that hand gestures affect comprehension and production of speech at semantic, syntactic, and pragmatic levels for both native language and second language (L2). This study investigated a relatively less explored question: Do hand gestures influence auditory learning of an L2 at the segmental phonology level? To examine auditory learning of phonemic vowel length contrasts in Japanese, 88 native English-speaking participants took an auditory test before and after one of the following 4 types of training in which they (a) observed an instructor in a video speaking Japanese words while she made syllabic-rhythm hand gesture, (b) produced this gesture with the instructor, (c) observed the instructor speaking those words and her moraic-rhythm hand gesture, or (d) produced the moraic-rhythm gesture with the instructor. All of the training types yielded similar auditory improvement in identifying vowel length contrast. However, observing the syllabic-rhythm hand gesture yielded the most balanced improvement between word-initial and word-final vowels and between slow and fast speaking rates. The overall effect of hand gesture on learning of segmental phonology is limited. Implications for theories of hand gesture are discussed in terms of the role it plays at different linguistic levels.

  16. Establishing Auditory-Tactile-Visual Equivalence Classes in Children with Autism and Developmental Delays

    Science.gov (United States)

    Mullen, Stuart; Dixon, Mark R.; Belisle, Jordan; Stanley, Caleb

    2017-01-01

    The current study sought to evaluate the efficacy of a stimulus equivalence training procedure in establishing auditory-tactile-visual stimulus classes with 2 children with autism and developmental delays. Participants were exposed to vocal-tactile (A-B) and tactile-picture (B-C) conditional discrimination training and were tested for the…

  17. Regular Formal Evaluation Sessions are Effective as Frame-of-Reference Training for Faculty Evaluators of Clerkship Medical Students.

    Science.gov (United States)

    Hemmer, Paul A; Dadekian, Gregory A; Terndrup, Christopher; Pangaro, Louis N; Weisbrod, Allison B; Corriere, Mark D; Rodriguez, Rechell; Short, Patricia; Kelly, William F

    2015-09-01

    Face-to-face formal evaluation sessions between clerkship directors and faculty can facilitate the collection of trainee performance data and provide frame-of-reference training for faculty. We hypothesized that ambulatory faculty who attended evaluation sessions at least once in an academic year (attendees) would use the Reporter-Interpreter-Manager/Educator (RIME) terminology more appropriately than faculty who did not attend evaluation sessions (non-attendees). Investigators conducted a retrospective cohort study using the narrative assessments of ambulatory internal medicine clerkship students during the 2008-2009 academic year. The study included assessments of 49 clerkship medical students, which comprised 293 individual teacher narratives. Single-teacher written and transcribed verbal comments about student performance were masked and reviewed by a panel of experts who, by consensus, (1) determined whether RIME was used, (2) counted the number of RIME utterances, and (3) assigned a grade based on the comments. Analysis included descriptive statistics and Pearson correlation coefficients. The authors reviewed 293 individual teacher narratives regarding the performance of 49 students. Attendees explicitly used RIME more frequently than non-attendees (69.8 vs. 40.4 %; p sessions used RIME terminology more frequently and provided more accurate grade recommendations than teachers who did not attend. Formal evaluation sessions may provide frame-of-reference training for the RIME framework, a method that improves the validity and reliability of workplace assessment.

  18. Adult plasticity in the subcortical auditory pathway of the maternal mouse.

    Directory of Open Access Journals (Sweden)

    Jason A Miranda

    Full Text Available Subcortical auditory nuclei were traditionally viewed as non-plastic in adulthood so that acoustic information could be stably conveyed to higher auditory areas. Studies in a variety of species, including humans, now suggest that prolonged acoustic training can drive long-lasting brainstem plasticity. The neurobiological mechanisms for such changes are not well understood in natural behavioral contexts due to a relative dearth of in vivo animal models in which to study this. Here, we demonstrate in a mouse model that a natural life experience with increased demands on the auditory system - motherhood - is associated with improved temporal processing in the subcortical auditory pathway. We measured the auditory brainstem response to test whether mothers and pup-naïve virgin mice differed in temporal responses to both broadband and tone stimuli, including ultrasonic frequencies found in mouse pup vocalizations. Mothers had shorter latencies for early ABR peaks, indicating plasticity in the auditory nerve and the cochlear nucleus. Shorter interpeak latency between waves IV and V also suggest plasticity in the inferior colliculus. Hormone manipulations revealed that these cannot be explained solely by estrogen levels experienced during pregnancy and parturition in mothers. In contrast, we found that pup-care experience, independent of pregnancy and parturition, contributes to shortening auditory brainstem response latencies. These results suggest that acoustic experience in the maternal context imparts plasticity on early auditory processing that lasts beyond pup weaning. In addition to establishing an animal model for exploring adult auditory brainstem plasticity in a neuroethological context, our results have broader implications for models of perceptual, behavioral and neural changes that arise during maternity, where subcortical sensorineural plasticity has not previously been considered.

  19. Adult plasticity in the subcortical auditory pathway of the maternal mouse.

    Science.gov (United States)

    Miranda, Jason A; Shepard, Kathryn N; McClintock, Shannon K; Liu, Robert C

    2014-01-01

    Subcortical auditory nuclei were traditionally viewed as non-plastic in adulthood so that acoustic information could be stably conveyed to higher auditory areas. Studies in a variety of species, including humans, now suggest that prolonged acoustic training can drive long-lasting brainstem plasticity. The neurobiological mechanisms for such changes are not well understood in natural behavioral contexts due to a relative dearth of in vivo animal models in which to study this. Here, we demonstrate in a mouse model that a natural life experience with increased demands on the auditory system - motherhood - is associated with improved temporal processing in the subcortical auditory pathway. We measured the auditory brainstem response to test whether mothers and pup-naïve virgin mice differed in temporal responses to both broadband and tone stimuli, including ultrasonic frequencies found in mouse pup vocalizations. Mothers had shorter latencies for early ABR peaks, indicating plasticity in the auditory nerve and the cochlear nucleus. Shorter interpeak latency between waves IV and V also suggest plasticity in the inferior colliculus. Hormone manipulations revealed that these cannot be explained solely by estrogen levels experienced during pregnancy and parturition in mothers. In contrast, we found that pup-care experience, independent of pregnancy and parturition, contributes to shortening auditory brainstem response latencies. These results suggest that acoustic experience in the maternal context imparts plasticity on early auditory processing that lasts beyond pup weaning. In addition to establishing an animal model for exploring adult auditory brainstem plasticity in a neuroethological context, our results have broader implications for models of perceptual, behavioral and neural changes that arise during maternity, where subcortical sensorineural plasticity has not previously been considered.

  20. Auditory hallucinations.

    Science.gov (United States)

    Blom, Jan Dirk

    2015-01-01

    Auditory hallucinations constitute a phenomenologically rich group of endogenously mediated percepts which are associated with psychiatric, neurologic, otologic, and other medical conditions, but which are also experienced by 10-15% of all healthy individuals in the general population. The group of phenomena is probably best known for its verbal auditory subtype, but it also includes musical hallucinations, echo of reading, exploding-head syndrome, and many other types. The subgroup of verbal auditory hallucinations has been studied extensively with the aid of neuroimaging techniques, and from those studies emerges an outline of a functional as well as a structural network of widely distributed brain areas involved in their mediation. The present chapter provides an overview of the various types of auditory hallucination described in the literature, summarizes our current knowledge of the auditory networks involved in their mediation, and draws on ideas from the philosophy of science and network science to reconceptualize the auditory hallucinatory experience, and point out directions for future research into its neurobiologic substrates. In addition, it provides an overview of known associations with various clinical conditions and of the existing evidence for pharmacologic and non-pharmacologic treatments. © 2015 Elsevier B.V. All rights reserved.

  1. Auditory short-term memory in the primate auditory cortex.

    Science.gov (United States)

    Scott, Brian H; Mishkin, Mortimer

    2016-06-01

    Sounds are fleeting, and assembling the sequence of inputs at the ear into a coherent percept requires auditory memory across various time scales. Auditory short-term memory comprises at least two components: an active ׳working memory' bolstered by rehearsal, and a sensory trace that may be passively retained. Working memory relies on representations recalled from long-term memory, and their rehearsal may require phonological mechanisms unique to humans. The sensory component, passive short-term memory (pSTM), is tractable to study in nonhuman primates, whose brain architecture and behavioral repertoire are comparable to our own. This review discusses recent advances in the behavioral and neurophysiological study of auditory memory with a focus on single-unit recordings from macaque monkeys performing delayed-match-to-sample (DMS) tasks. Monkeys appear to employ pSTM to solve these tasks, as evidenced by the impact of interfering stimuli on memory performance. In several regards, pSTM in monkeys resembles pitch memory in humans, and may engage similar neural mechanisms. Neural correlates of DMS performance have been observed throughout the auditory and prefrontal cortex, defining a network of areas supporting auditory STM with parallels to that supporting visual STM. These correlates include persistent neural firing, or a suppression of firing, during the delay period of the memory task, as well as suppression or (less commonly) enhancement of sensory responses when a sound is repeated as a ׳match' stimulus. Auditory STM is supported by a distributed temporo-frontal network in which sensitivity to stimulus history is an intrinsic feature of auditory processing. This article is part of a Special Issue entitled SI: Auditory working memory. Published by Elsevier B.V.

  2. Acquisition of L2 Japanese Geminates: Training with Waveform Displays

    Science.gov (United States)

    Motohashi-Saigo, Miki; Hardison, Debra M.

    2009-01-01

    The value of waveform displays as visual feedback was explored in a training study involving perception and production of L2 Japanese by beginning-level L1 English learners. A pretest-posttest design compared auditory-visual (AV) and auditory-only (A-only) Web-based training. Stimuli were singleton and geminate /t,k,s/ followed by /a,u/ in two…

  3. Audiomotor Perceptual Training Enhances Speech Intelligibility in Background Noise.

    Science.gov (United States)

    Whitton, Jonathon P; Hancock, Kenneth E; Shannon, Jeffrey M; Polley, Daniel B

    2017-11-06

    Sensory and motor skills can be improved with training, but learning is often restricted to practice stimuli. As an exception, training on closed-loop (CL) sensorimotor interfaces, such as action video games and musical instruments, can impart a broad spectrum of perceptual benefits. Here we ask whether computerized CL auditory training can enhance speech understanding in levels of background noise that approximate a crowded restaurant. Elderly hearing-impaired subjects trained for 8 weeks on a CL game that, like a musical instrument, challenged them to monitor subtle deviations between predicted and actual auditory feedback as they moved their fingertip through a virtual soundscape. We performed our study as a randomized, double-blind, placebo-controlled trial by training other subjects in an auditory working-memory (WM) task. Subjects in both groups improved at their respective auditory tasks and reported comparable expectations for improved speech processing, thereby controlling for placebo effects. Whereas speech intelligibility was unchanged after WM training, subjects in the CL training group could correctly identify 25% more words in spoken sentences or digit sequences presented in high levels of background noise. Numerically, CL audiomotor training provided more than three times the benefit of our subjects' hearing aids for speech processing in noisy listening conditions. Gains in speech intelligibility could be predicted from gameplay accuracy and baseline inhibitory control. However, benefits did not persist in the absence of continuing practice. These studies employ stringent clinical standards to demonstrate that perceptual learning on a computerized audio game can transfer to "real-world" communication challenges. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Working Memory Training in Children with Mild Intellectual Disability, Through Designed Computerized Program

    Directory of Open Access Journals (Sweden)

    Mona Delavarian

    2015-12-01

    Full Text Available Objectives: The aim of this research is designing a computerized program, in game format, for working memory training in mild intellectual disabled children. Methods: 24 students participated as test and control groups. The auditory and visual-spatial WM were assessed by primary test, which included computerized Wechsler numerical forward and backward sub- tests, and secondary tests, which contained three parts: dual visual-spatial test, auditory test, and a one-syllable word recalling test. Results: The results showed significant differnces between working memory capacity in the intellectually disabled children and normal ones (P-value<0.00001. After using the computerized working memory training, Visual-spatial WM, auditory WM, and speaking were improved in the trained group. The mentioned four tests showed significant differences between pre-test and post-test. The trained group showed more improvements in forward tasks. The trained participant’s processing speed increased with training. Discussion: According to the results, comprehensive human-computer interfaces and the aplication of computer in children training, especially in traing of intellectual disabled children with impairements in visual and auditory perceptions, could be more effective and vaulable.

  5. Musical training generalises across modalities and reveals efficient and adaptive mechanisms for reproducing temporal intervals.

    Science.gov (United States)

    Aagten-Murphy, David; Cappagli, Giulia; Burr, David

    2014-03-01

    Expert musicians are able to time their actions accurately and consistently during a musical performance. We investigated how musical expertise influences the ability to reproduce auditory intervals and how this generalises across different techniques and sensory modalities. We first compared various reproduction strategies and interval length, to examine the effects in general and to optimise experimental conditions for testing the effect of music, and found that the effects were robust and consistent across different paradigms. Focussing on a 'ready-set-go' paradigm subjects reproduced time intervals drawn from distributions varying in total length (176, 352 or 704 ms) or in the number of discrete intervals within the total length (3, 5, 11 or 21 discrete intervals). Overall, Musicians performed more veridical than Non-Musicians, and all subjects reproduced auditory-defined intervals more accurately than visually-defined intervals. However, Non-Musicians, particularly with visual stimuli, consistently exhibited a substantial and systematic regression towards the mean interval. When subjects judged intervals from distributions of longer total length they tended to regress more towards the mean, while the ability to discriminate between discrete intervals within the distribution had little influence on subject error. These results are consistent with a Bayesian model that minimizes reproduction errors by incorporating a central tendency prior weighted by the subject's own temporal precision relative to the current distribution of intervals. Finally a strong correlation was observed between all durations of formal musical training and total reproduction errors in both modalities (accounting for 30% of the variance). Taken together these results demonstrate that formal musical training improves temporal reproduction, and that this improvement transfers from audition to vision. They further demonstrate the flexibility of sensorimotor mechanisms in adapting to

  6. Effect of rhythmic auditory cueing on parkinsonian gait: A systematic review and meta-analysis.

    Science.gov (United States)

    Ghai, Shashank; Ghai, Ishan; Schmitz, Gerd; Effenberg, Alfred O

    2018-01-11

    The use of rhythmic auditory cueing to enhance gait performance in parkinsonian patients' is an emerging area of interest. Different theories and underlying neurophysiological mechanisms have been suggested for ascertaining the enhancement in motor performance. However, a consensus as to its effects based on characteristics of effective stimuli, and training dosage is still not reached. A systematic review and meta-analysis was carried out to analyze the effects of different auditory feedbacks on gait and postural performance in patients affected by Parkinson's disease. Systematic identification of published literature was performed adhering to PRISMA guidelines, from inception until May 2017, on online databases; Web of science, PEDro, EBSCO, MEDLINE, Cochrane, EMBASE and PROQUEST. Of 4204 records, 50 studies, involving 1892 participants met our inclusion criteria. The analysis revealed an overall positive effect on gait velocity, stride length, and a negative effect on cadence with application of auditory cueing. Neurophysiological mechanisms, training dosage, effects of higher information processing constraints, and use of cueing as an adjunct with medications are thoroughly discussed. This present review bridges the gaps in literature by suggesting application of rhythmic auditory cueing in conventional rehabilitation approaches to enhance motor performance and quality of life in the parkinsonian community.

  7. Auditory-Motor Mapping Training in a More Verbal Child with Autism

    Directory of Open Access Journals (Sweden)

    Karen V. Chenausky

    2017-09-01

    Full Text Available We tested the effect of Auditory-Motor Mapping Training (AMMT, a novel, intonation-based treatment for spoken language originally developed for minimally verbal (MV children with autism, on a more-verbal child with autism. We compared this child’s performance after 25 therapy sessions with that of: (1 a child matched on age, autism severity, and expressive language level who received 25 sessions of a non-intonation-based control treatment Speech Repetition Therapy (SRT; and (2 a matched pair of MV children (one of whom received AMMT; the other, SRT. We found a significant Time × Treatment effect in favor of AMMT for number of Syllables Correct and Consonants Correct per stimulus for both pairs of children, as well as a significant Time × Treatment effect in favor of AMMT for number of Vowels Correct per stimulus for the more-verbal pair. Magnitudes of the difference in post-treatment performance between AMMT and SRT, adjusted for Baseline differences, were: (a larger for the more-verbal pair than for the MV pair; and (b associated with very large effect sizes (Cohen’s d > 1.3 in the more-verbal pair. Results hold promise for the efficacy of AMMT for improving spoken language production in more-verbal children with autism as well as their MV peers and suggest hypotheses about brain function that are testable in both correlational and causal behavioral-imaging studies.

  8. Musically cued gait-training improves both perceptual and motor timing in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Charles-Etienne eBenoit

    2014-07-01

    Full Text Available It is well established that auditory cueing improves gait in patients with Idiopathic Parkinson’s Disease (IPD. Disease-related reductions in speed and step length can be improved by providing rhythmical auditory cues via a metronome or music. However, effects on cognitive aspects of motor control have yet to be thoroughly investigated. If synchronization of movement to an auditory cue relies on a supramodal timing system involved in perceptual, motor and sensorimotor integration, auditory cueing can be expected to affect both motor and perceptual timing. Here we tested this hypothesis by assessing perceptual and motor timing in 15 IPD patients before and after a four-week music training program with rhythmic auditory cueing. Long-term effects were assessed one month after the end of the training. Perceptual and motor timing was evaluated with the Battery for the Assessment of Auditory Sensorimotor and Timing Abilities (BAASTA and compared to that of age-, gender-, and education-matched healthy controls. Prior to training, IPD patients exhibited impaired perceptual and motor timing. Training improved patients’ performance in tasks requiring synchronization with isochronous sequences, and enhanced their ability to adapt to durational changes in a sequence in hand tapping tasks. Benefits of cueing extended to time perception (duration discrimination and detection of misaligned beats in musical excerpts. The current results demonstrate that auditory cueing leads to benefits beyond gait and support the idea that coupling gait to rhythmic auditory cues in IPD patients relies on a neuronal network engaged in both perceptual and motor timing.

  9. Psychophysical Estimates of Frequency Discrimination: More than Just Limitations of Auditory Processing

    Directory of Open Access Journals (Sweden)

    Beate Sabisch

    2013-07-01

    Full Text Available Efficient auditory processing is hypothesized to support language and literacy development. However, behavioral tasks used to assess this hypothesis need to be robust to non-auditory specific individual differences. This study compared frequency discrimination abilities in a heterogeneous sample of adults using two different psychoacoustic task designs, referred to here as: 2I_6A_X and 3I_2AFC designs. The role of individual differences in nonverbal IQ (NVIQ, socioeconomic status (SES and musical experience in predicting frequency discrimination thresholds on each task were assessed using multiple regression analyses. The 2I_6A_X task was more cognitively demanding and hence more susceptible to differences specifically in SES and musical training. Performance on this task did not, however, relate to nonword repetition ability (a measure of language learning capacity. The 3I_2AFC task, by contrast, was only susceptible to musical training. Moreover, thresholds measured using it predicted some variance in nonword repetition performance. This design thus seems suitable for use in studies addressing questions regarding the role of auditory processing in supporting language and literacy development.

  10. Stuttering adults' lack of pre-speech auditory modulation normalizes when speaking with delayed auditory feedback.

    Science.gov (United States)

    Daliri, Ayoub; Max, Ludo

    2018-02-01

    Auditory modulation during speech movement planning is limited in adults who stutter (AWS), but the functional relevance of the phenomenon itself remains unknown. We investigated for AWS and adults who do not stutter (AWNS) (a) a potential relationship between pre-speech auditory modulation and auditory feedback contributions to speech motor learning and (b) the effect on pre-speech auditory modulation of real-time versus delayed auditory feedback. Experiment I used a sensorimotor adaptation paradigm to estimate auditory-motor speech learning. Using acoustic speech recordings, we quantified subjects' formant frequency adjustments across trials when continually exposed to formant-shifted auditory feedback. In Experiment II, we used electroencephalography to determine the same subjects' extent of pre-speech auditory modulation (reductions in auditory evoked potential N1 amplitude) when probe tones were delivered prior to speaking versus not speaking. To manipulate subjects' ability to monitor real-time feedback, we included speaking conditions with non-altered auditory feedback (NAF) and delayed auditory feedback (DAF). Experiment I showed that auditory-motor learning was limited for AWS versus AWNS, and the extent of learning was negatively correlated with stuttering frequency. Experiment II yielded several key findings: (a) our prior finding of limited pre-speech auditory modulation in AWS was replicated; (b) DAF caused a decrease in auditory modulation for most AWNS but an increase for most AWS; and (c) for AWS, the amount of auditory modulation when speaking with DAF was positively correlated with stuttering frequency. Lastly, AWNS showed no correlation between pre-speech auditory modulation (Experiment II) and extent of auditory-motor learning (Experiment I) whereas AWS showed a negative correlation between these measures. Thus, findings suggest that AWS show deficits in both pre-speech auditory modulation and auditory-motor learning; however, limited pre

  11. Effect of delayed auditory feedback on stuttering with and without central auditory processing disorders.

    Science.gov (United States)

    Picoloto, Luana Altran; Cardoso, Ana Cláudia Vieira; Cerqueira, Amanda Venuti; Oliveira, Cristiane Moço Canhetti de

    2017-12-07

    To verify the effect of delayed auditory feedback on speech fluency of individuals who stutter with and without central auditory processing disorders. The participants were twenty individuals with stuttering from 7 to 17 years old and were divided into two groups: Stuttering Group with Auditory Processing Disorders (SGAPD): 10 individuals with central auditory processing disorders, and Stuttering Group (SG): 10 individuals without central auditory processing disorders. Procedures were: fluency assessment with non-altered auditory feedback (NAF) and delayed auditory feedback (DAF), assessment of the stuttering severity and central auditory processing (CAP). Phono Tools software was used to cause a delay of 100 milliseconds in the auditory feedback. The "Wilcoxon Signal Post" test was used in the intragroup analysis and "Mann-Whitney" test in the intergroup analysis. The DAF caused a statistically significant reduction in SG: in the frequency score of stuttering-like disfluencies in the analysis of the Stuttering Severity Instrument, in the amount of blocks and repetitions of monosyllabic words, and in the frequency of stuttering-like disfluencies of duration. Delayed auditory feedback did not cause statistically significant effects on SGAPD fluency, individuals with stuttering with auditory processing disorders. The effect of delayed auditory feedback in speech fluency of individuals who stutter was different in individuals of both groups, because there was an improvement in fluency only in individuals without auditory processing disorder.

  12. Auditory, visual and auditory-visual memory and sequencing performance in typically developing children.

    Science.gov (United States)

    Pillai, Roshni; Yathiraj, Asha

    2017-09-01

    The study evaluated whether there exists a difference/relation in the way four different memory skills (memory score, sequencing score, memory span, & sequencing span) are processed through the auditory modality, visual modality and combined modalities. Four memory skills were evaluated on 30 typically developing children aged 7 years and 8 years across three modality conditions (auditory, visual, & auditory-visual). Analogous auditory and visual stimuli were presented to evaluate the three modality conditions across the two age groups. The children obtained significantly higher memory scores through the auditory modality compared to the visual modality. Likewise, their memory scores were significantly higher through the auditory-visual modality condition than through the visual modality. However, no effect of modality was observed on the sequencing scores as well as for the memory and the sequencing span. A good agreement was seen between the different modality conditions that were studied (auditory, visual, & auditory-visual) for the different memory skills measures (memory scores, sequencing scores, memory span, & sequencing span). A relatively lower agreement was noted only between the auditory and visual modalities as well as between the visual and auditory-visual modality conditions for the memory scores, measured using Bland-Altman plots. The study highlights the efficacy of using analogous stimuli to assess the auditory, visual as well as combined modalities. The study supports the view that the performance of children on different memory skills was better through the auditory modality compared to the visual modality. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Audio-tactile integration and the influence of musical training.

    Science.gov (United States)

    Kuchenbuch, Anja; Paraskevopoulos, Evangelos; Herholz, Sibylle C; Pantev, Christo

    2014-01-01

    Perception of our environment is a multisensory experience; information from different sensory systems like the auditory, visual and tactile is constantly integrated. Complex tasks that require high temporal and spatial precision of multisensory integration put strong demands on the underlying networks but it is largely unknown how task experience shapes multisensory processing. Long-term musical training is an excellent model for brain plasticity because it shapes the human brain at functional and structural levels, affecting a network of brain areas. In the present study we used magnetoencephalography (MEG) to investigate how audio-tactile perception is integrated in the human brain and if musicians show enhancement of the corresponding activation compared to non-musicians. Using a paradigm that allowed the investigation of combined and separate auditory and tactile processing, we found a multisensory incongruency response, generated in frontal, cingulate and cerebellar regions, an auditory mismatch response generated mainly in the auditory cortex and a tactile mismatch response generated in frontal and cerebellar regions. The influence of musical training was seen in the audio-tactile as well as in the auditory condition, indicating enhanced higher-order processing in musicians, while the sources of the tactile MMN were not influenced by long-term musical training. Consistent with the predictive coding model, more basic, bottom-up sensory processing was relatively stable and less affected by expertise, whereas areas for top-down models of multisensory expectancies were modulated by training.

  14. Audio-tactile integration and the influence of musical training.

    Directory of Open Access Journals (Sweden)

    Anja Kuchenbuch

    Full Text Available Perception of our environment is a multisensory experience; information from different sensory systems like the auditory, visual and tactile is constantly integrated. Complex tasks that require high temporal and spatial precision of multisensory integration put strong demands on the underlying networks but it is largely unknown how task experience shapes multisensory processing. Long-term musical training is an excellent model for brain plasticity because it shapes the human brain at functional and structural levels, affecting a network of brain areas. In the present study we used magnetoencephalography (MEG to investigate how audio-tactile perception is integrated in the human brain and if musicians show enhancement of the corresponding activation compared to non-musicians. Using a paradigm that allowed the investigation of combined and separate auditory and tactile processing, we found a multisensory incongruency response, generated in frontal, cingulate and cerebellar regions, an auditory mismatch response generated mainly in the auditory cortex and a tactile mismatch response generated in frontal and cerebellar regions. The influence of musical training was seen in the audio-tactile as well as in the auditory condition, indicating enhanced higher-order processing in musicians, while the sources of the tactile MMN were not influenced by long-term musical training. Consistent with the predictive coding model, more basic, bottom-up sensory processing was relatively stable and less affected by expertise, whereas areas for top-down models of multisensory expectancies were modulated by training.

  15. Auditory processing efficiency deficits in children with developmental language impairments

    Science.gov (United States)

    Hartley, Douglas E. H.; Moore, David R.

    2002-12-01

    The ``temporal processing hypothesis'' suggests that individuals with specific language impairments (SLIs) and dyslexia have severe deficits in processing rapidly presented or brief sensory information, both within the auditory and visual domains. This hypothesis has been supported through evidence that language-impaired individuals have excess auditory backward masking. This paper presents an analysis of masking results from several studies in terms of a model of temporal resolution. Results from this modeling suggest that the masking results can be better explained by an ``auditory efficiency'' hypothesis. If impaired or immature listeners have a normal temporal window, but require a higher signal-to-noise level (poor processing efficiency), this hypothesis predicts the observed small deficits in the simultaneous masking task, and the much larger deficits in backward and forward masking tasks amongst those listeners. The difference in performance on these masking tasks is predictable from the compressive nonlinearity of the basilar membrane. The model also correctly predicts that backward masking (i) is more prone to training effects, (ii) has greater inter- and intrasubject variability, and (iii) increases less with masker level than do other masking tasks. These findings provide a new perspective on the mechanisms underlying communication disorders and auditory masking.

  16. Definition of curriculum and approach: study of a training course for teachers of non-formal education in NGOs

    Directory of Open Access Journals (Sweden)

    Deivis Perez

    2014-06-01

    Full Text Available This article presents a research aimed to analyze the approach and the definition of guiding curriculum of teacher training for work in the non-formal education in non-governmental organizations(NGOs. We opted for a qualitative approach and case study of Teacher Training Course for NGOs, developed by Ong São Paulo-SP. The research instruments were: analysis of documents of the course, interviews with trainers and coordinator and literature review. In this course, curriculum is defined as a path to be followed by students and instructors and the coordinator of the subjects studied. We adopted the so-called Integrated Curriculum, in which teaching occurs by the study of problem situations and integrators of learning projects. At the end, we suggest improving the course and following that information, it is hoped, one will support the production of further comparative research.

  17. Auditory Spatial Layout

    Science.gov (United States)

    Wightman, Frederic L.; Jenison, Rick

    1995-01-01

    All auditory sensory information is packaged in a pair of acoustical pressure waveforms, one at each ear. While there is obvious structure in these waveforms, that structure (temporal and spectral patterns) bears no simple relationship to the structure of the environmental objects that produced them. The properties of auditory objects and their layout in space must be derived completely from higher level processing of the peripheral input. This chapter begins with a discussion of the peculiarities of acoustical stimuli and how they are received by the human auditory system. A distinction is made between the ambient sound field and the effective stimulus to differentiate the perceptual distinctions among various simple classes of sound sources (ambient field) from the known perceptual consequences of the linear transformations of the sound wave from source to receiver (effective stimulus). Next, the definition of an auditory object is dealt with, specifically the question of how the various components of a sound stream become segregated into distinct auditory objects. The remainder of the chapter focuses on issues related to the spatial layout of auditory objects, both stationary and moving.

  18. Transfer Effect of Speech-sound Learning on Auditory-motor Processing of Perceived Vocal Pitch Errors.

    Science.gov (United States)

    Chen, Zhaocong; Wong, Francis C K; Jones, Jeffery A; Li, Weifeng; Liu, Peng; Chen, Xi; Liu, Hanjun

    2015-08-17

    Speech perception and production are intimately linked. There is evidence that speech motor learning results in changes to auditory processing of speech. Whether speech motor control benefits from perceptual learning in speech, however, remains unclear. This event-related potential study investigated whether speech-sound learning can modulate the processing of feedback errors during vocal pitch regulation. Mandarin speakers were trained to perceive five Thai lexical tones while learning to associate pictures with spoken words over 5 days. Before and after training, participants produced sustained vowel sounds while they heard their vocal pitch feedback unexpectedly perturbed. As compared to the pre-training session, the magnitude of vocal compensation significantly decreased for the control group, but remained consistent for the trained group at the post-training session. However, the trained group had smaller and faster N1 responses to pitch perturbations and exhibited enhanced P2 responses that correlated significantly with their learning performance. These findings indicate that the cortical processing of vocal pitch regulation can be shaped by learning new speech-sound associations, suggesting that perceptual learning in speech can produce transfer effects to facilitating the neural mechanisms underlying the online monitoring of auditory feedback regarding vocal production.

  19. Effects of frequency discrimination training on tinnitus: results from two randomised controlled trials.

    Science.gov (United States)

    Hoare, Derek J; Kowalkowski, Victoria L; Hall, Deborah A

    2012-08-01

    That auditory perceptual training may alleviate tinnitus draws on two observations: (1) tinnitus probably arises from altered activity within the central auditory system following hearing loss and (2) sound-based training can change central auditory activity. Training that provides sound enrichment across hearing loss frequencies has therefore been hypothesised to alleviate tinnitus. We tested this prediction with two randomised trials of frequency discrimination training involving a total of 70 participants with chronic subjective tinnitus. Participants trained on either (1) a pure-tone standard at a frequency within their region of normal hearing, (2) a pure-tone standard within the region of hearing loss or (3) a high-pass harmonic complex tone spanning a region of hearing loss. Analysis of the primary outcome measure revealed an overall reduction in self-reported tinnitus handicap after training that was maintained at a 1-month follow-up assessment, but there were no significant differences between groups. Secondary analyses also report the effects of different domains of tinnitus handicap on the psychoacoustical characteristics of the tinnitus percept (sensation level, bandwidth and pitch) and on duration of training. Our overall findings and conclusions cast doubt on the superiority of a purely acoustic mechanism to underpin tinnitus remediation. Rather, the nonspecific patterns of improvement are more suggestive that auditory perceptual training affects impact on a contributory mechanism such as selective attention or emotional state.

  20. Central auditory neurons have composite receptive fields.

    Science.gov (United States)

    Kozlov, Andrei S; Gentner, Timothy Q

    2016-02-02

    High-level neurons processing complex, behaviorally relevant signals are sensitive to conjunctions of features. Characterizing the receptive fields of such neurons is difficult with standard statistical tools, however, and the principles governing their organization remain poorly understood. Here, we demonstrate multiple distinct receptive-field features in individual high-level auditory neurons in a songbird, European starling, in response to natural vocal signals (songs). We then show that receptive fields with similar characteristics can be reproduced by an unsupervised neural network trained to represent starling songs with a single learning rule that enforces sparseness and divisive normalization. We conclude that central auditory neurons have composite receptive fields that can arise through a combination of sparseness and normalization in neural circuits. Our results, along with descriptions of random, discontinuous receptive fields in the central olfactory neurons in mammals and insects, suggest general principles of neural computation across sensory systems and animal classes.

  1. Adjusting brain dynamics in schizophrenia by means of perceptual and cognitive training.

    Directory of Open Access Journals (Sweden)

    Tzvetan Popov

    Full Text Available In a previous report we showed that cognitive training fostering auditory-verbal discrimination and working memory normalized magnetoencephalographic (MEG M50 gating ratio in schizophrenia patients. The present analysis addressed whether training effects on M50 ratio and task performance are mediated by changes in brain oscillatory activity. Such evidence should improve understanding of the role of oscillatory activity in phenomena such as M50 ratio, the role of dysfunctional oscillatory activity in processing abnormalities in schizophrenia, and mechanisms of action of cognitive training.Time-locked and non-time-locked oscillatory activity was measured together with M50 ratio in a paired-click design before and after a 4-week training of 36 patients randomly assigned to specific cognitive exercises (CE or standard (comparison cognitive training (CP. Patient data were compared to those of 15 healthy controls who participated in two MEG measurements 4 weeks apart without training. Training led to more time-locked gamma-band response and more non-time-locked alpha-band desynchronization, moreso after CE than after CP. Only after CE, increased alpha desynchronization was associated with normalized M50 ratio and with improved verbal memory performance. Thus, both types of cognitive training normalized gamma activity, associated with improved stimulus encoding. More targeted training of auditory-verbal discrimination and memory additionally normalized alpha desynchronization, associated with improved elaborative processing. The latter presumably contributes to improved auditory gating and cognitive function.Results suggest that dysfunctional interplay of ocillatory activity that may contribute to auditory processing disruption in schizophrenia can be modified by targeted training.

  2. Diminished auditory sensory gating during active auditory verbal hallucinations.

    Science.gov (United States)

    Thoma, Robert J; Meier, Andrew; Houck, Jon; Clark, Vincent P; Lewine, Jeffrey D; Turner, Jessica; Calhoun, Vince; Stephen, Julia

    2017-10-01

    Auditory sensory gating, assessed in a paired-click paradigm, indicates the extent to which incoming stimuli are filtered, or "gated", in auditory cortex. Gating is typically computed as the ratio of the peak amplitude of the event related potential (ERP) to a second click (S2) divided by the peak amplitude of the ERP to a first click (S1). Higher gating ratios are purportedly indicative of incomplete suppression of S2 and considered to represent sensory processing dysfunction. In schizophrenia, hallucination severity is positively correlated with gating ratios, and it was hypothesized that a failure of sensory control processes early in auditory sensation (gating) may represent a larger system failure within the auditory data stream; resulting in auditory verbal hallucinations (AVH). EEG data were collected while patients (N=12) with treatment-resistant AVH pressed a button to indicate the beginning (AVH-on) and end (AVH-off) of each AVH during a paired click protocol. For each participant, separate gating ratios were computed for the P50, N100, and P200 components for each of the AVH-off and AVH-on states. AVH trait severity was assessed using the Psychotic Symptoms Rating Scales AVH Total score (PSYRATS). The results of a mixed model ANOVA revealed an overall effect for AVH state, such that gating ratios were significantly higher during the AVH-on state than during AVH-off for all three components. PSYRATS score was significantly and negatively correlated with N100 gating ratio only in the AVH-off state. These findings link onset of AVH with a failure of an empirically-defined auditory inhibition system, auditory sensory gating, and pave the way for a sensory gating model of AVH. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Effectiveness of auditory and tactile crossmodal cues in a dual-task visual and auditory scenario.

    Science.gov (United States)

    Hopkins, Kevin; Kass, Steven J; Blalock, Lisa Durrance; Brill, J Christopher

    2017-05-01

    In this study, we examined how spatially informative auditory and tactile cues affected participants' performance on a visual search task while they simultaneously performed a secondary auditory task. Visual search task performance was assessed via reaction time and accuracy. Tactile and auditory cues provided the approximate location of the visual target within the search display. The inclusion of tactile and auditory cues improved performance in comparison to the no-cue baseline conditions. In comparison to the no-cue conditions, both tactile and auditory cues resulted in faster response times in the visual search only (single task) and visual-auditory (dual-task) conditions. However, the effectiveness of auditory and tactile cueing for visual task accuracy was shown to be dependent on task-type condition. Crossmodal cueing remains a viable strategy for improving task performance without increasing attentional load within a singular sensory modality. Practitioner Summary: Crossmodal cueing with dual-task performance has not been widely explored, yet has practical applications. We examined the effects of auditory and tactile crossmodal cues on visual search performance, with and without a secondary auditory task. Tactile cues aided visual search accuracy when also engaged in a secondary auditory task, whereas auditory cues did not.

  4. Non-Formal Education Services for Prison Inmates in Thailand

    Science.gov (United States)

    Phatininnart, Chuleeporn

    2009-01-01

    The making of changes inside prisons necessarily implies education. In Thailand, the point is not only to organise professional training courses but also to make detainees aware of the fact that they belong to a community of values. Non-formal education allows the necessary flexibility to an individual approach of training that must take into…

  5. The musical environment and auditory plasticity: Hearing the pitch of percussion

    Directory of Open Access Journals (Sweden)

    Neil M Mclachlan

    2013-10-01

    Full Text Available Although musical skills clearly improve with training, pitch processing has generally been believed to be biologically determined by the behavior of brain stem neural mechanisms. Two main classes of pitch models have emerged over the last 50 years. Harmonic template models have been used to explain cross-channel integration of frequency information, and waveform periodicity models have been used to explain pitch discrimination that is much finer than the resolution of the auditory nerve. It has been proposed that harmonic templates are learnt from repeated exposure to voice, and so it may also be possible to learn inharmonic templates from repeated exposure to inharmonic music instruments. This study investigated whether pitch-matching accuracy for inharmonic percussion instruments was better in people who have trained on these instruments and could reliably recognize their timbre. We found that adults who had trained with Indonesian gamelan instruments were better at recognizing and pitch-matching gamelan instruments than people with similar levels of music training, but no prior exposure to these instruments. These findings suggest that gamelan musicians were able to use inharmonic templates to support accurate pitch processing for these instruments. We suggest that recognition mechanisms based on spectrotemporal patterns of afferent auditory excitation in the early stages of pitch processing allow rapid priming of the lowest frequency partial of inharmonic timbres, explaining how music training can adapt pitch processing to different musical genres and instruments.

  6. Bioacoustic Signal Classification in Cat Auditory Cortex

    Science.gov (United States)

    1994-01-01

    of the cat’s WINER. 1. A. Anatomy of layer IV in cat primary auditory cortex t4,1). J miedial geniculate body Ideintified by projections to binaural...34language" (see for example Tartter, 1986, chapter 8; and Lieberman, 1984). Attempts have been made to train animals (mainly apes, gorillas , _ _ ___I 3...gestures of a gorilla : Language acquisition in another Pongid. Brain and Language, 1978a, 5, 72-97. Patterson, F. Conversations with a gorilla

  7. Attending to auditory memory.

    Science.gov (United States)

    Zimmermann, Jacqueline F; Moscovitch, Morris; Alain, Claude

    2016-06-01

    Attention to memory describes the process of attending to memory traces when the object is no longer present. It has been studied primarily for representations of visual stimuli with only few studies examining attention to sound object representations in short-term memory. Here, we review the interplay of attention and auditory memory with an emphasis on 1) attending to auditory memory in the absence of related external stimuli (i.e., reflective attention) and 2) effects of existing memory on guiding attention. Attention to auditory memory is discussed in the context of change deafness, and we argue that failures to detect changes in our auditory environments are most likely the result of a faulty comparison system of incoming and stored information. Also, objects are the primary building blocks of auditory attention, but attention can also be directed to individual features (e.g., pitch). We review short-term and long-term memory guided modulation of attention based on characteristic features, location, and/or semantic properties of auditory objects, and propose that auditory attention to memory pathways emerge after sensory memory. A neural model for auditory attention to memory is developed, which comprises two separate pathways in the parietal cortex, one involved in attention to higher-order features and the other involved in attention to sensory information. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Achilles' ear? Inferior human short-term and recognition memory in the auditory modality.

    Science.gov (United States)

    Bigelow, James; Poremba, Amy

    2014-01-01

    Studies of the memory capabilities of nonhuman primates have consistently revealed a relative weakness for auditory compared to visual or tactile stimuli: extensive training is required to learn auditory memory tasks, and subjects are only capable of retaining acoustic information for a brief period of time. Whether a parallel deficit exists in human auditory memory remains an outstanding question. In the current study, a short-term memory paradigm was used to test human subjects' retention of simple auditory, visual, and tactile stimuli that were carefully equated in terms of discriminability, stimulus exposure time, and temporal dynamics. Mean accuracy did not differ significantly among sensory modalities at very short retention intervals (1-4 s). However, at longer retention intervals (8-32 s), accuracy for auditory stimuli fell substantially below that observed for visual and tactile stimuli. In the interest of extending the ecological validity of these findings, a second experiment tested recognition memory for complex, naturalistic stimuli that would likely be encountered in everyday life. Subjects were able to identify all stimuli when retention was not required, however, recognition accuracy following a delay period was again inferior for auditory compared to visual and tactile stimuli. Thus, the outcomes of both experiments provide a human parallel to the pattern of results observed in nonhuman primates. The results are interpreted in light of neuropsychological data from nonhuman primates, which suggest a difference in the degree to which auditory, visual, and tactile memory are mediated by the perirhinal and entorhinal cortices.

  9. New Graduate Paramedics’ First and Emergency Aid Formal and Practical Training Levels and Perception of Competency

    Directory of Open Access Journals (Sweden)

    Cetin Kizilkan

    2009-08-01

    Full Text Available AIM: The aim of this study is to determine first and emergency aid formal and practical education levels and perception of adequacy of trainee medical noncommissioned officers who graduated from Gulhane Military Medical Academy Medical NCO Vocational School in 2007. METHOD: The study included 54 trainee medical NCOs who had graduated from Gulhane Military Medical Academy Medical NCO Vocational School in 2007. The data were collected by a questionnaire developed by the investigators. RESULTS: Of the participants 79,6 % stated that he had never used the defibrillator, 33,3 % had never made hemorrhage control, 53,7% had never done fracture stabilization, 90,7% expressed himself adequate in “Intravenous (IV cannulation”, 98,2% in “hemorrhage control” and 72,2% in “Firearms wounds management”. In the exam including 10 questions nobody answered all the questions correctly and correct answers average was 5.9 ± 1.3 (minimum 3, maximum 9. CONCLUSION: Having the medical NCOs in a training program before they start service would be useful. Revision of the training program for medical NCOs according to the findings of our study especially in competency giving practical training would help the training of NCOs. Skills related to combat casualty care of NCOs should be promoted. Bu arastirma 13 ncu Balkan Askeri Tip Komitesi Kongresinde poster bildiri olarak sunulmustur. [TAF Prev Med Bull 2009; 8(4.000: 291-296

  10. Global Perspectives on Recognising Non-Formal and Informal Learning: Why Recognition Matters. Technical and Vocational Education and Training: Issues, Concerns and Prospects. Volume 21

    Science.gov (United States)

    Singh, Madhu

    2015-01-01

    This book deals with the relevance of recognition, validation and accreditation (RVA) of non-formal and informal learning in education and training, the workplace and society. It examines RVA's strategic policy objectives and best practice features as well as the challenges faced and ways forward as reported by Member States. Special attention is…

  11. Informal and formal learning of general practitioners

    NARCIS (Netherlands)

    Spaan, Nadia Roos; Dekker, Anne R. J.; van der Velden, Alike W.; de Groot, Esther

    2016-01-01

    Purpose The purpose of this study is to understand the influence of formal learning from a web-based training and informal (workplace) learning afterwards on the behaviour of general practitioners (GPs) with respect to prescription of antibiotics. Design/methodology/approach To obtain insight in

  12. Predictive coding of visual-auditory and motor-auditory events: An electrophysiological study.

    Science.gov (United States)

    Stekelenburg, Jeroen J; Vroomen, Jean

    2015-11-11

    The amplitude of auditory components of the event-related potential (ERP) is attenuated when sounds are self-generated compared to externally generated sounds. This effect has been ascribed to internal forward modals predicting the sensory consequences of one's own motor actions. Auditory potentials are also attenuated when a sound is accompanied by a video of anticipatory visual motion that reliably predicts the sound. Here, we investigated whether the neural underpinnings of prediction of upcoming auditory stimuli are similar for motor-auditory (MA) and visual-auditory (VA) events using a stimulus omission paradigm. In the MA condition, a finger tap triggered the sound of a handclap whereas in the VA condition the same sound was accompanied by a video showing the handclap. In both conditions, the auditory stimulus was omitted in either 50% or 12% of the trials. These auditory omissions induced early and mid-latency ERP components (oN1 and oN2, presumably reflecting prediction and prediction error), and subsequent higher-order error evaluation processes. The oN1 and oN2 of MA and VA were alike in amplitude, topography, and neural sources despite that the origin of the prediction stems from different brain areas (motor versus visual cortex). This suggests that MA and VA predictions activate a sensory template of the sound in auditory cortex. This article is part of a Special Issue entitled SI: Prediction and Attention. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Development of the auditory system

    Science.gov (United States)

    Litovsky, Ruth

    2015-01-01

    Auditory development involves changes in the peripheral and central nervous system along the auditory pathways, and these occur naturally, and in response to stimulation. Human development occurs along a trajectory that can last decades, and is studied using behavioral psychophysics, as well as physiologic measurements with neural imaging. The auditory system constructs a perceptual space that takes information from objects and groups, segregates sounds, and provides meaning and access to communication tools such as language. Auditory signals are processed in a series of analysis stages, from peripheral to central. Coding of information has been studied for features of sound, including frequency, intensity, loudness, and location, in quiet and in the presence of maskers. In the latter case, the ability of the auditory system to perform an analysis of the scene becomes highly relevant. While some basic abilities are well developed at birth, there is a clear prolonged maturation of auditory development well into the teenage years. Maturation involves auditory pathways. However, non-auditory changes (attention, memory, cognition) play an important role in auditory development. The ability of the auditory system to adapt in response to novel stimuli is a key feature of development throughout the nervous system, known as neural plasticity. PMID:25726262

  14. Animal models for auditory streaming

    Science.gov (United States)

    Itatani, Naoya

    2017-01-01

    Sounds in the natural environment need to be assigned to acoustic sources to evaluate complex auditory scenes. Separating sources will affect the analysis of auditory features of sounds. As the benefits of assigning sounds to specific sources accrue to all species communicating acoustically, the ability for auditory scene analysis is widespread among different animals. Animal studies allow for a deeper insight into the neuronal mechanisms underlying auditory scene analysis. Here, we will review the paradigms applied in the study of auditory scene analysis and streaming of sequential sounds in animal models. We will compare the psychophysical results from the animal studies to the evidence obtained in human psychophysics of auditory streaming, i.e. in a task commonly used for measuring the capability for auditory scene analysis. Furthermore, the neuronal correlates of auditory streaming will be reviewed in different animal models and the observations of the neurons’ response measures will be related to perception. The across-species comparison will reveal whether similar demands in the analysis of acoustic scenes have resulted in similar perceptual and neuronal processing mechanisms in the wide range of species being capable of auditory scene analysis. This article is part of the themed issue ‘Auditory and visual scene analysis’. PMID:28044022

  15. A Further Evaluation of Picture Prompts during Auditory-Visual Conditional Discrimination Training

    Science.gov (United States)

    Carp, Charlotte L.; Peterson, Sean P.; Arkel, Amber J.; Petursdottir, Anna I.; Ingvarsson, Einar T.

    2012-01-01

    This study was a systematic replication and extension of Fisher, Kodak, and Moore (2007), in which a picture prompt embedded into a least-to-most prompting sequence facilitated acquisition of auditory-visual conditional discriminations. Participants were 4 children who had been diagnosed with autism; 2 had limited prior receptive skills, and 2 had…

  16. Effects of vocal training in a musicophile with congenital amusia.

    Science.gov (United States)

    Wilbiks, Jonathan M P; Vuvan, Dominique T; Girard, Pier-Yves; Peretz, Isabelle; Russo, Frank A

    2016-12-01

    Congenital amusia is a condition in which an individual suffers from a deficit of musical pitch perception and production. Individuals suffering from congenital amusia generally tend to abstain from musical activities. Here, we present the unique case of Tim Falconer, a self-described musicophile who also suffers from congenital amusia. We describe and assess Tim's attempts to train himself out of amusia through a self-imposed 18-month program of formal vocal training and practice. We tested Tim with respect to music perception and vocal production across seven sessions including pre- and post-training assessments. We also obtained diffusion-weighted images of his brain to assess connectivity between auditory and motor planning areas via the arcuate fasciculus (AF). Tim's behavioral and brain data were compared to that of normal and amusic controls. While Tim showed temporary gains in his singing ability, he did not reach normal levels, and these gains faded when he was not engaged in regular lessons and practice. Tim did show some sustained gains with respect to the perception of musical rhythm and meter. We propose that Tim's lack of improvement in pitch perception and production tasks is due to long-standing and likely irreversible reduction in connectivity along the AF fiber tract.

  17. Examination of the Relation between an Assessment of Skills and Performance on Auditory-Visual Conditional Discriminations for Children with Autism Spectrum Disorder

    Science.gov (United States)

    Kodak, Tiffany; Clements, Andrea; Paden, Amber R.; LeBlanc, Brittany; Mintz, Joslyn; Toussaint, Karen A.

    2015-01-01

    The current investigation evaluated repertoires that may be related to performance on auditory-to-visual conditional discrimination training with 9 students who had been diagnosed with autism spectrum disorder. The skills included in the assessment were matching, imitation, scanning, an auditory discrimination, and a visual discrimination. The…

  18. Training effectiveness feedback

    International Nuclear Information System (INIS)

    Wiggin, N.A.

    1987-01-01

    A formal method of getting feedback about the job performance of employees is a necessary part of all the authors training programs. The formal process may prove to be inadequate if it is the only process in use. There are many ways and many opportunities to get good feedback about employee performance. It is important to document these methods and specific instances to supplement the more formalized process. The key is to identify them, encourage them, use them, and document the training actions that result from them. This paper describes one plant's method of getting feedback about performance of technicians in the field

  19. Improvement of auditory hallucinations and reduction of primary auditory area's activation following TMS

    International Nuclear Information System (INIS)

    Giesel, Frederik L.; Mehndiratta, Amit; Hempel, Albrecht; Hempel, Eckhard; Kress, Kai R.; Essig, Marco; Schröder, Johannes

    2012-01-01

    Background: In the present case study, improvement of auditory hallucinations following transcranial magnetic stimulation (TMS) therapy was investigated with respect to activation changes of the auditory cortices. Methods: Using functional magnetic resonance imaging (fMRI), activation of the auditory cortices was assessed prior to and after a 4-week TMS series of the left superior temporal gyrus in a schizophrenic patient with medication-resistant auditory hallucinations. Results: Hallucinations decreased slightly after the third and profoundly after the fourth week of TMS. Activation in the primary auditory area decreased, whereas activation in the operculum and insula remained stable. Conclusions: Combination of TMS and repetitive fMRI is promising to elucidate the physiological changes induced by TMS.

  20. Vestibular Stimulation and Auditory Perception in Children with Attention Deficit Hyperactivity Disorder

    Directory of Open Access Journals (Sweden)

    Azin Salamati

    2014-09-01

    Full Text Available Objectives: Rehabilitation strategies play a pivotal role in reliving the inappropriate behaviors and improving children's performance during school. Concentration and visual and auditory comprehension in children are crucial to effective learning and have drawn interest from researchers and clinicians. Vestibular function deficits usually cause high level of alertness and vigilance, and problems in maintaining focus, paying selective attention, and altering in precision and attention to the stimulus. The aim of this study is to investigate the correlation between vestibular stimulation and auditory perception in children with attention deficit hyperactivity disorder. Methods: Totally 30 children aged from 7 to 12 years with attention deficit hyperactivity disorder participated in this study. They were assessed based on the criteria of diagnostic and statistical manual of mental disorders. After obtaining guardian and parental consent, they were enrolled and randomly matched on age to two groups of intervention and control. Integrated visual and auditory continuous performance test was carried out as a pre-test. Those in the intervention group received vestibular stimulation during the therapy sessions, twice a week for 10 weeks. At the end the test was done to both groups as post-test. Results: The pre-and post-test scores were measured and compared the differences between means for two subject groups. Statistical analyses found a significant difference for the mean differences regarding auditory comprehension improvement. Discussion: The findings suggest that vestibular training is a reliable and powerful option treatment for attention deficit hyperactivity disorder especially along with other trainings, meaning that stimulating the sense of balance highlights the importance of interaction between inhabitation and cognition.

  1. Does formal education and training of staff reduce the operation rate for fractures of the distal radius?

    Science.gov (United States)

    McDonald, Kyle; Murphy, Lynn; Gallagher, Brendan; Eames, Niall

    2013-12-01

    Fractures of the distal radius are one of the most common extremity fractures, and operation rates are increasing. Staff within our unit felt that formal teaching, particularly of new medical staff, with regards to fracture reduction and appropriate cast application could result in a reduction in operation rates. Retrospective data was extracted from FORD (Fracture Outcome and Research Database), including: number of fractures, number of fractures undergoing ORIF, fracture configuration, patient demographics, and mechanism of injury. All patients undergoing ORIF had their radiographs assessed by two separate reviewers. Information regarding adequate fracture reduction, adequate cast application (using Gap Index), and appropriate plaster cast moulding was recorded. Formal teaching was then given to the next group of medical staff rotating through the unit, and the same data was collected prospectively for that six-month period. Exclusion criteria included bilateral injuries, and polytrauma patients. A total of 1623 distal radial fractures were treated in our unit over the 12-month period, with 71 undergoing ORIF in the first 6 months and 39 in the second 6 months, this was statistically significant (p = 0.0009). Our study found that formal teaching and education significantly reduced the operation rate for distal radial fractures. This effect was most significant for extra-articular, dorsally angulated fractures of the distal radius. Our study proves that just 1 h of basic training at the beginning of an attachment can have significant benefits to both the unit and, more importantly, the patients. Copyright © 2013 Royal College of Surgeons of Edinburgh (Scottish charity number SC005317) and Royal College of Surgeons in Ireland. Published by Elsevier Ltd. All rights reserved.

  2. Adaptive training diminishes distractibility in aging across species.

    Science.gov (United States)

    Mishra, Jyoti; de Villers-Sidani, Etienne; Merzenich, Michael; Gazzaley, Adam

    2014-12-03

    Aging is associated with deficits in the ability to ignore distractions, which has not yet been remediated by any neurotherapeutic approach. Here, in parallel auditory experiments with older rats and humans, we evaluated a targeted cognitive training approach that adaptively manipulated distractor challenge. Training resulted in enhanced discrimination abilities in the setting of irrelevant information in both species that was driven by selectively diminished distraction-related errors. Neural responses to distractors in auditory cortex were selectively reduced in both species, mimicking the behavioral effects. Sensory receptive fields in trained rats exhibited improved spectral and spatial selectivity. Frontal theta measures of top-down engagement with distractors were selectively restrained in trained humans. Finally, training gains generalized to group and individual level benefits in aspects of working memory and sustained attention. Thus, we demonstrate converging cross-species evidence for training-induced selective plasticity of distractor processing at multiple neural scales, benefitting distractor suppression and cognitive control. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Informal and Formal Learning of General Practitioners

    Science.gov (United States)

    Spaan, Nadia Roos; Dekker, Anne R. J.; van der Velden, Alike W.; de Groot, Esther

    2016-01-01

    Purpose: The purpose of this study is to understand the influence of formal learning from a web-based training and informal (workplace) learning afterwards on the behaviour of general practitioners (GPs) with respect to prescription of antibiotics. Design/methodology/approach: To obtain insight in various learning processes, semi-structured…

  4. Achilles' ear? Inferior human short-term and recognition memory in the auditory modality.

    Directory of Open Access Journals (Sweden)

    James Bigelow

    Full Text Available Studies of the memory capabilities of nonhuman primates have consistently revealed a relative weakness for auditory compared to visual or tactile stimuli: extensive training is required to learn auditory memory tasks, and subjects are only capable of retaining acoustic information for a brief period of time. Whether a parallel deficit exists in human auditory memory remains an outstanding question. In the current study, a short-term memory paradigm was used to test human subjects' retention of simple auditory, visual, and tactile stimuli that were carefully equated in terms of discriminability, stimulus exposure time, and temporal dynamics. Mean accuracy did not differ significantly among sensory modalities at very short retention intervals (1-4 s. However, at longer retention intervals (8-32 s, accuracy for auditory stimuli fell substantially below that observed for visual and tactile stimuli. In the interest of extending the ecological validity of these findings, a second experiment tested recognition memory for complex, naturalistic stimuli that would likely be encountered in everyday life. Subjects were able to identify all stimuli when retention was not required, however, recognition accuracy following a delay period was again inferior for auditory compared to visual and tactile stimuli. Thus, the outcomes of both experiments provide a human parallel to the pattern of results observed in nonhuman primates. The results are interpreted in light of neuropsychological data from nonhuman primates, which suggest a difference in the degree to which auditory, visual, and tactile memory are mediated by the perirhinal and entorhinal cortices.

  5. Achilles’ Ear? Inferior Human Short-Term and Recognition Memory in the Auditory Modality

    Science.gov (United States)

    Bigelow, James; Poremba, Amy

    2014-01-01

    Studies of the memory capabilities of nonhuman primates have consistently revealed a relative weakness for auditory compared to visual or tactile stimuli: extensive training is required to learn auditory memory tasks, and subjects are only capable of retaining acoustic information for a brief period of time. Whether a parallel deficit exists in human auditory memory remains an outstanding question. In the current study, a short-term memory paradigm was used to test human subjects’ retention of simple auditory, visual, and tactile stimuli that were carefully equated in terms of discriminability, stimulus exposure time, and temporal dynamics. Mean accuracy did not differ significantly among sensory modalities at very short retention intervals (1–4 s). However, at longer retention intervals (8–32 s), accuracy for auditory stimuli fell substantially below that observed for visual and tactile stimuli. In the interest of extending the ecological validity of these findings, a second experiment tested recognition memory for complex, naturalistic stimuli that would likely be encountered in everyday life. Subjects were able to identify all stimuli when retention was not required, however, recognition accuracy following a delay period was again inferior for auditory compared to visual and tactile stimuli. Thus, the outcomes of both experiments provide a human parallel to the pattern of results observed in nonhuman primates. The results are interpreted in light of neuropsychological data from nonhuman primates, which suggest a difference in the degree to which auditory, visual, and tactile memory are mediated by the perirhinal and entorhinal cortices. PMID:24587119

  6. Auditory Perspective Taking

    National Research Council Canada - National Science Library

    Martinson, Eric; Brock, Derek

    2006-01-01

    .... From this knowledge of another's auditory perspective, a conversational partner can then adapt his or her auditory output to overcome a variety of environmental challenges and insure that what is said is intelligible...

  7. Test-retest reliability of the 40 Hz EEG auditory steady-state response.

    Directory of Open Access Journals (Sweden)

    Kristina L McFadden

    Full Text Available Auditory evoked steady-state responses are increasingly being used as a marker of brain function and dysfunction in various neuropsychiatric disorders, but research investigating the test-retest reliability of this response is lacking. The purpose of this study was to assess the consistency of the auditory steady-state response (ASSR across sessions. Furthermore, the current study aimed to investigate how the reliability of the ASSR is impacted by stimulus parameters and analysis method employed. The consistency of this response across two sessions spaced approximately 1 week apart was measured in nineteen healthy adults using electroencephalography (EEG. The ASSR was entrained by both 40 Hz amplitude-modulated white noise and click train stimuli. Correlations between sessions were assessed with two separate analytical techniques: a channel-level analysis across the whole-head array and b signal-space projection from auditory dipoles. Overall, the ASSR was significantly correlated between sessions 1 and 2 (p<0.05, multiple comparison corrected, suggesting adequate test-retest reliability of this response. The current study also suggests that measures of inter-trial phase coherence may be more reliable between sessions than measures of evoked power. Results were similar between the two analysis methods, but reliability varied depending on the presented stimulus, with click train stimuli producing more consistent responses than white noise stimuli.

  8. Exploiting formal, non-formal and informal learning when using business games in leadership education

    DEFF Research Database (Denmark)

    Børgesen, Kenneth; Nielsen, Rikke Kristine; Henriksen, Thomas Duus

    2016-01-01

    Purpose This paper aims to address the necessity of allowing non-formal and informal processes to unfold when using business games for leadership development. While games and simulations have long been used in management training and leadership development, emphasis has been placed on the formal...... of the process is not assessed. Practical implications This paper suggests that the use of business games in leadership development should focus more on the processes and activities surrounding the game rather than narrowly focusing on the game. Originality/value This paper suggests a novel approach to using...... parts of the process and especially on the gaming experience. Design/methodology/approach This paper is based on a qualitative study of a French management game on change management, in which the game-based learning process is examined in light of adult learning. Findings This paper concludes that less...

  9. Development of a Comprehensive Blast-Related Auditory Injury Database (BRAID)

    Science.gov (United States)

    2016-05-01

    servicemembers included in the Blast-Related Auditory Injury Database. * Training injuries, accidents, and other noncombat injuries. †3,452 injuries...medications, exposures to ototoxic chemicals, recreational noise exposure, and other forms of temporary and persistent threshold shift. Combat marines...AC, Vecchiotti M, Kujawa SG, Lee DJ, Quesnel AM. Otologic outcomes after blast injury: The Boston Marathon experience. Otol Neurotol. 2014; 35(10

  10. Competition and convergence between auditory and cross-modal visual inputs to primary auditory cortical areas

    Science.gov (United States)

    Mao, Yu-Ting; Hua, Tian-Miao

    2011-01-01

    Sensory neocortex is capable of considerable plasticity after sensory deprivation or damage to input pathways, especially early in development. Although plasticity can often be restorative, sometimes novel, ectopic inputs invade the affected cortical area. Invading inputs from other sensory modalities may compromise the original function or even take over, imposing a new function and preventing recovery. Using ferrets whose retinal axons were rerouted into auditory thalamus at birth, we were able to examine the effect of varying the degree of ectopic, cross-modal input on reorganization of developing auditory cortex. In particular, we assayed whether the invading visual inputs and the existing auditory inputs competed for or shared postsynaptic targets and whether the convergence of input modalities would induce multisensory processing. We demonstrate that although the cross-modal inputs create new visual neurons in auditory cortex, some auditory processing remains. The degree of damage to auditory input to the medial geniculate nucleus was directly related to the proportion of visual neurons in auditory cortex, suggesting that the visual and residual auditory inputs compete for cortical territory. Visual neurons were not segregated from auditory neurons but shared target space even on individual target cells, substantially increasing the proportion of multisensory neurons. Thus spatial convergence of visual and auditory input modalities may be sufficient to expand multisensory representations. Together these findings argue that early, patterned visual activity does not drive segregation of visual and auditory afferents and suggest that auditory function might be compromised by converging visual inputs. These results indicate possible ways in which multisensory cortical areas may form during development and evolution. They also suggest that rehabilitative strategies designed to promote recovery of function after sensory deprivation or damage need to take into

  11. The role of the auditory brainstem in processing musically-relevant pitch

    Directory of Open Access Journals (Sweden)

    Gavin M. Bidelman

    2013-05-01

    Full Text Available Neuroimaging work has shed light on the cerebral architecture involved in processing the melodic and harmonic aspects of music. Here, recent evidence is reviewed illustrating that subcortical auditory structures contribute to the early formation and processing of musically-relevant pitch. Electrophysiological recordings from the human brainstem and population responses from the auditory nerve reveal that nascent features of tonal music (e.g., consonance/dissonance, pitch salience, harmonic sonority are evident at early, subcortical levels of the auditory pathway. The salience and harmonicity of brainstem activity is strongly correlated with listeners’ perceptual preferences and perceived consonance for the tonal relationships of music. Moreover, the hierarchical ordering of pitch intervals/chords described by the Western music practice and their perceptual consonance is well-predicted by the salience with which pitch combinations are encoded in subcortical auditory structures. While the neural correlates of consonance can be tuned and exaggerated with musical training, they persist even in the absence of musicianship or long-term enculturation. As such, it is posited that the structural foundations of musical pitch might result from innate processing performed by the central auditory system. A neurobiological predisposition for consonant, pleasant sounding pitch relationships may be one reason why these pitch combinations have been favored by composers and listeners for centuries. It is suggested that important perceptual dimensions of music emerge well before the auditory signal reaches cerebral cortex and prior to attentional engagement. While cortical mechanisms are no doubt critical to the perception, production, and enjoyment of music, the contribution of subcortical structures implicates a more integrated, hierarchically organized network underlying music processing within the brain.

  12. Persistent fluctuations in stride intervals under fractal auditory stimulation.

    Science.gov (United States)

    Marmelat, Vivien; Torre, Kjerstin; Beek, Peter J; Daffertshofer, Andreas

    2014-01-01

    Stride sequences of healthy gait are characterized by persistent long-range correlations, which become anti-persistent in the presence of an isochronous metronome. The latter phenomenon is of particular interest because auditory cueing is generally considered to reduce stride variability and may hence be beneficial for stabilizing gait. Complex systems tend to match their correlation structure when synchronizing. In gait training, can one capitalize on this tendency by using a fractal metronome rather than an isochronous one? We examined whether auditory cues with fractal variations in inter-beat intervals yield similar fractal inter-stride interval variability as isochronous auditory cueing in two complementary experiments. In Experiment 1, participants walked on a treadmill while being paced by either an isochronous or a fractal metronome with different variation strengths between beats in order to test whether participants managed to synchronize with a fractal metronome and to determine the necessary amount of variability for participants to switch from anti-persistent to persistent inter-stride intervals. Participants did synchronize with the metronome despite its fractal randomness. The corresponding coefficient of variation of inter-beat intervals was fixed in Experiment 2, in which participants walked on a treadmill while being paced by non-isochronous metronomes with different scaling exponents. As expected, inter-stride intervals showed persistent correlations similar to self-paced walking only when cueing contained persistent correlations. Our results open up a new window to optimize rhythmic auditory cueing for gait stabilization by integrating fractal fluctuations in the inter-beat intervals.

  13. Older adults benefit from music training early in life: biological evidence for long-term training-driven plasticity.

    Science.gov (United States)

    White-Schwoch, Travis; Woodruff Carr, Kali; Anderson, Samira; Strait, Dana L; Kraus, Nina

    2013-11-06

    Aging results in pervasive declines in nervous system function. In the auditory system, these declines include neural timing delays in response to fast-changing speech elements; this causes older adults to experience difficulty understanding speech, especially in challenging listening environments. These age-related declines are not inevitable, however: older adults with a lifetime of music training do not exhibit neural timing delays. Yet many people play an instrument for a few years without making a lifelong commitment. Here, we examined neural timing in a group of human older adults who had nominal amounts of music training early in life, but who had not played an instrument for decades. We found that a moderate amount (4-14 years) of music training early in life is associated with faster neural timing in response to speech later in life, long after training stopped (>40 years). We suggest that early music training sets the stage for subsequent interactions with sound. These experiences may interact over time to sustain sharpened neural processing in central auditory nuclei well into older age.

  14. Non-Formal Education for Women in Morocco.

    Science.gov (United States)

    Agency for International Development (Dept. of State), Washington, DC.

    Morocco's three non-formal educational programs for "the hard core poor female adolescent school drop-out" differ in the kind and effectiveness of training offered. The Foyers Feminins program, although it claims to emphasize crafts and literacy, is in fact, definitely geared towards the teaching of handicrafts. The Ouvroir Centers…

  15. Essential competencies analysis of a training model development for non-formal vocational teachers under the office of the non-formal and informal education in Thailand

    Directory of Open Access Journals (Sweden)

    Chayanopparat Piyanan

    2016-01-01

    Full Text Available Non-formal vocational education provides practical experiences in a particular occupational field to non-formal semi-skilled learners. Non-formal vocational teachers are the key persons to deliver particular occupational knowledge. The essential competencies enhancement for non-sformal vocational teachers will improve teaching performance. The question of the research is what the essential competencies for the nonformal vocational teachers are. The research method was 1 to review related literature, 2 to collect a needs assessment, and 3 to analyse the essential competencies for non-formal vocational teachers. The population includes non-formal vocational teachers at the executive level and nonformal vocational teachers. The results from the essential competencies analysis found that the essential competencies for non-formal vocational teachers consist of 5 capabilities including 1 Adult learning design capability, 2 Adult learning principle application capability, 3 ICT searching capability for teaching preparation, 4 Instructional plan development capability and 5 Instructional media development capability.

  16. The role of auditory feedback in music-supported stroke rehabilitation: A single-blinded randomised controlled intervention.

    Science.gov (United States)

    van Vugt, F T; Kafczyk, T; Kuhn, W; Rollnik, J D; Tillmann, B; Altenmüller, E

    2016-01-01

    Learning to play musical instruments such as piano was previously shown to benefit post-stroke motor rehabilitation. Previous work hypothesised that the mechanism of this rehabilitation is that patients use auditory feedback to correct their movements and therefore show motor learning. We tested this hypothesis by manipulating the auditory feedback timing in a way that should disrupt such error-based learning. We contrasted a patient group undergoing music-supported therapy on a piano that emits sounds immediately (as in previous studies) with a group whose sounds are presented after a jittered delay. The delay was not noticeable to patients. Thirty-four patients in early stroke rehabilitation with moderate motor impairment and no previous musical background learned to play the piano using simple finger exercises and familiar children's songs. Rehabilitation outcome was not impaired in the jitter group relative to the normal group. Conversely, some clinical tests suggests the jitter group outperformed the normal group. Auditory feedback-based motor learning is not the beneficial mechanism of music-supported therapy. Immediate auditory feedback therapy may be suboptimal. Jittered delay may increase efficacy of the proposed therapy and allow patients to fully benefit from motivational factors of music training. Our study shows a novel way to test hypotheses concerning music training in a single-blinded way, which is an important improvement over existing unblinded tests of music interventions.

  17. Visual and Auditory Cue Effects on Risk Assessment in a Highway Training Simulation

    NARCIS (Netherlands)

    Toet, A.; Houtkamp, J.M.; Meulen, van der R.

    2013-01-01

    We investigated whether manipulation of visual and auditory depth and speed cues can affect a user’s sense of risk for a low-cost nonimmersive virtual environment (VE) representing a highway environment with traffic incidents. The VE is currently used in an examination program to assess procedural

  18. Visual and auditory cue effects on risk assessment in a highway training simulation

    NARCIS (Netherlands)

    Toet, A.; Houtkamp, J.M.; Meulen, R. van der

    2013-01-01

    We investigated whether manipulation of visual and auditory depth and speed cues can affect a user’s sense of risk for a low-cost nonimmersive virtual environment (VE) representing a highway environment with traffic incidents. The VE is currently used in an examination program to assess procedural

  19. Auditory perceptual learning in adults with and without age-related hearing loss

    Directory of Open Access Journals (Sweden)

    Hanin eKarawani

    2016-02-01

    Full Text Available Introduction: Speech recognition in adverse listening conditions becomes more difficult as we age, particularly for individuals with age-related hearing loss (ARHL. Whether these difficulties can be eased with training remains debated, because it is not clear whether the outcomes are sufficiently general to be of use outside of the training context. The aim of the current study was to compare training-induced learning and generalization between normal-hearing older adults and those with ARHL.Methods: 56 listeners (60-72 y/o, 35 participants with ARHL and 21 normal hearing adults participated in the study. The study design was a cross over design with three groups (immediate-training, delayed-training and no-training group. Trained participants received 13 sessions of home-based auditory training over the course of 4 weeks. Three adverse listening conditions were targeted: (1 Speech-in-noise (2 time compressed speech and (3 competing speakers, and the outcomes of training were compared between normal and ARHL groups. Pre- and post-test sessions were completed by all participants. Outcome measures included tests on all of the trained conditions as well as on a series of untrained conditions designed to assess the transfer of learning to other speech and non-speech conditions. Results: Significant improvements on all trained conditions were observed in both ARHL and normal-hearing groups over the course of training. Normal hearing participants learned more than participants with ARHL in the speech-in-noise condition, but showed similar patterns of learning in the other conditions. Greater pre- to post-test changes were observed in trained than in untrained listeners on all trained conditions. In addition, the ability of trained listeners from the ARHL group to discriminate minimally different pseudowords in noise also improved with training. Conclusions: ARHL did not preclude auditory perceptual learning but there was little generalization to

  20. Discussion: Changes in Vocal Production and Auditory Perception after Hair Cell Regeneration.

    Science.gov (United States)

    Ryals, Brenda M.; Dooling, Robert J.

    2000-01-01

    A bird study found that with sufficient time and training after hair cell and hearing loss and hair cell regeneration, the mature avian auditory system can accommodate input from a newly regenerated periphery sufficiently to allow for recognition of previously familiar vocalizations and the learning of new complex acoustic classifications.…

  1. Neural biomarkers for dyslexia, ADHD and ADD in the auditory cortex of children

    Directory of Open Access Journals (Sweden)

    Bettina Serrallach

    2016-07-01

    Full Text Available Dyslexia, attention deficit hyperactivity disorder (ADHD, and attention deficit disorder (ADD show distinct clinical profiles that may include auditory and language-related impairments. Currently, an objective brain-based diagnosis of these developmental disorders is still unavailable. We investigated the neuro-auditory systems of dyslexic, ADHD, ADD, and age-matched control children (N=147 using neuroimaging, magnet-encephalography and psychoacoustics. All disorder subgroups exhibited an oversized left planum temporale and an abnormal interhemispheric asynchrony (10-40 ms of the primary auditory evoked P1-response. Considering right auditory cortex morphology, bilateral P1 source waveform shapes, and auditory performance, the three disorder subgroups could be reliably differentiated with outstanding accuracies of 89-98%. We therefore for the first time provide differential biomarkers for a brain-based diagnosis of dyslexia, ADHD, and ADD. The method allowed not only a clear discrimination between two subtypes of attentional disorders (ADHD and ADD, a topic controversially discussed for decades in the scientific community, but also revealed the potential for objectively identifying comorbid cases. Noteworthy, in children playing a musical instrument, after three and a half years of training the observed interhemispheric asynchronies were reduced by about 2/3, thus suggesting a strong beneficial influence of music experience on brain development. These findings might have far-reaching implications for both research and practice and enable a profound understanding of the brain-related etiology, diagnosis, and musically based therapy of common auditory-related developmental disorders and learning disabilities.

  2. Manipulation of Auditory Inputs as Rehabilitation Therapy for Maladaptive Auditory Cortical Reorganization

    Directory of Open Access Journals (Sweden)

    Hidehiko Okamoto

    2018-01-01

    Full Text Available Neurophysiological and neuroimaging data suggest that the brains of not only children but also adults are reorganized based on sensory inputs and behaviors. Plastic changes in the brain are generally beneficial; however, maladaptive cortical reorganization in the auditory cortex may lead to hearing disorders such as tinnitus and hyperacusis. Recent studies attempted to noninvasively visualize pathological neural activity in the living human brain and reverse maladaptive cortical reorganization by the suitable manipulation of auditory inputs in order to alleviate detrimental auditory symptoms. The effects of the manipulation of auditory inputs on maladaptively reorganized brain were reviewed herein. The findings obtained indicate that rehabilitation therapy based on the manipulation of auditory inputs is an effective and safe approach for hearing disorders. The appropriate manipulation of sensory inputs guided by the visualization of pathological brain activities using recent neuroimaging techniques may contribute to the establishment of new clinical applications for affected individuals.

  3. Long-term music training modulates the recalibration of audiovisual simultaneity.

    Science.gov (United States)

    Jicol, Crescent; Proulx, Michael J; Pollick, Frank E; Petrini, Karin

    2018-07-01

    To overcome differences in physical transmission time and neural processing, the brain adaptively recalibrates the point of simultaneity between auditory and visual signals by adapting to audiovisual asynchronies. Here, we examine whether the prolonged recalibration process of passively sensed visual and auditory signals is affected by naturally occurring multisensory training known to enhance audiovisual perceptual accuracy. Hence, we asked a group of drummers, of non-drummer musicians and of non-musicians to judge the audiovisual simultaneity of musical and non-musical audiovisual events, before and after adaptation with two fixed audiovisual asynchronies. We found that the recalibration for the musicians and drummers was in the opposite direction (sound leading vision) to that of non-musicians (vision leading sound), and change together with both increased music training and increased perceptual accuracy (i.e. ability to detect asynchrony). Our findings demonstrate that long-term musical training reshapes the way humans adaptively recalibrate simultaneity between auditory and visual signals.

  4. Auditory temporal preparation induced by rhythmic cues during concurrent auditory working memory tasks.

    Science.gov (United States)

    Cutanda, Diana; Correa, Ángel; Sanabria, Daniel

    2015-06-01

    The present study investigated whether participants can develop temporal preparation driven by auditory isochronous rhythms when concurrently performing an auditory working memory (WM) task. In Experiment 1, participants had to respond to an auditory target presented after a regular or an irregular sequence of auditory stimuli while concurrently performing a Sternberg-type WM task. Results showed that participants responded faster after regular compared with irregular rhythms and that this effect was not affected by WM load; however, the lack of a significant main effect of WM load made it difficult to draw any conclusion regarding the influence of the dual-task manipulation in Experiment 1. In order to enhance dual-task interference, Experiment 2 combined the auditory rhythm procedure with an auditory N-Back task, which required WM updating (monitoring and coding of the information) and was presumably more demanding than the mere rehearsal of the WM task used in Experiment 1. Results now clearly showed dual-task interference effects (slower reaction times [RTs] in the high- vs. the low-load condition). However, such interference did not affect temporal preparation induced by rhythms, with faster RTs after regular than after irregular sequences in the high-load and low-load conditions. These results revealed that secondary tasks demanding memory updating, relative to tasks just demanding rehearsal, produced larger interference effects on overall RTs in the auditory rhythm task. Nevertheless, rhythm regularity exerted a strong temporal preparation effect that survived the interference of the WM task even when both tasks competed for processing resources within the auditory modality. (c) 2015 APA, all rights reserved).

  5. Short-term plasticity in auditory cognition.

    Science.gov (United States)

    Jääskeläinen, Iiro P; Ahveninen, Jyrki; Belliveau, John W; Raij, Tommi; Sams, Mikko

    2007-12-01

    Converging lines of evidence suggest that auditory system short-term plasticity can enable several perceptual and cognitive functions that have been previously considered as relatively distinct phenomena. Here we review recent findings suggesting that auditory stimulation, auditory selective attention and cross-modal effects of visual stimulation each cause transient excitatory and (surround) inhibitory modulations in the auditory cortex. These modulations might adaptively tune hierarchically organized sound feature maps of the auditory cortex (e.g. tonotopy), thus filtering relevant sounds during rapidly changing environmental and task demands. This could support auditory sensory memory, pre-attentive detection of sound novelty, enhanced perception during selective attention, influence of visual processing on auditory perception and longer-term plastic changes associated with perceptual learning.

  6. Using Complex Auditory-Visual Samples to Produce Emergent Relations in Children with Autism

    Science.gov (United States)

    Groskreutz, Nicole C.; Karsina, Allen; Miguel, Caio F.; Groskreutz, Mark P.

    2010-01-01

    Six participants with autism learned conditional relations between complex auditory-visual sample stimuli (dictated words and pictures) and simple visual comparisons (printed words) using matching-to-sample training procedures. Pre- and posttests examined potential stimulus control by each element of the complex sample when presented individually…

  7. Auditory Processing Disorder (For Parents)

    Science.gov (United States)

    ... role. Auditory cohesion problems: This is when higher-level listening tasks are difficult. Auditory cohesion skills — drawing inferences from conversations, understanding riddles, or comprehending verbal math problems — require heightened auditory processing and language levels. ...

  8. Action video games improve reading abilities and visual-to-auditory attentional shifting in English-speaking children with dyslexia.

    Science.gov (United States)

    Franceschini, Sandro; Trevisan, Piergiorgio; Ronconi, Luca; Bertoni, Sara; Colmar, Susan; Double, Kit; Facoetti, Andrea; Gori, Simone

    2017-07-19

    Dyslexia is characterized by difficulties in learning to read and there is some evidence that action video games (AVG), without any direct phonological or orthographic stimulation, improve reading efficiency in Italian children with dyslexia. However, the cognitive mechanism underlying this improvement and the extent to which the benefits of AVG training would generalize to deep English orthography, remain two critical questions. During reading acquisition, children have to integrate written letters with speech sounds, rapidly shifting their attention from visual to auditory modality. In our study, we tested reading skills and phonological working memory, visuo-spatial attention, auditory, visual and audio-visual stimuli localization, and cross-sensory attentional shifting in two matched groups of English-speaking children with dyslexia before and after they played AVG or non-action video games. The speed of words recognition and phonological decoding increased after playing AVG, but not non-action video games. Furthermore, focused visuo-spatial attention and visual-to-auditory attentional shifting also improved only after AVG training. This unconventional reading remediation program also increased phonological short-term memory and phoneme blending skills. Our report shows that an enhancement of visuo-spatial attention and phonological working memory, and an acceleration of visual-to-auditory attentional shifting can directly translate into better reading in English-speaking children with dyslexia.

  9. Music training for the development of reading skills.

    Science.gov (United States)

    Tierney, Adam; Kraus, Nina

    2013-01-01

    The beneficial effects of musical training are not limited to enhancement of musical skills, but extend to language skills. Here, we review evidence that musical training can enhance reading ability. First, we discuss five subskills underlying reading acquisition-phonological awareness, speech-in-noise perception, rhythm perception, auditory working memory, and the ability to learn sound patterns-and show that each is linked to music experience. We link these five subskills through a unifying biological framework, positing that they share a reliance on auditory neural synchrony. After laying this theoretical groundwork for why musical training might be expected to enhance reading skills, we review the results of longitudinal studies providing evidence for a role for musical training in enhancing language abilities. Taken as a whole, these findings suggest that musical training can provide an effective developmental educational strategy for all children, including those with language learning impairments. © 2013 Elsevier B.V. All rights reserved.

  10. Informal in Formal: The Relationship of Informal and Formal Learning in Popular and Jazz Music Master Workshops in Conservatoires

    Science.gov (United States)

    Virkkula, Esa

    2016-01-01

    The present article will examine informal learning in popular and jazz music education in Finland and evaluate it as a part of formal upper secondary vocational musicians' training, which is typically teacher directed. It is not necessarily the best model of working in popular and jazz music learning, which has traditionally benefitted from…

  11. Modularity in Sensory Auditory Memory

    OpenAIRE

    Clement, Sylvain; Moroni, Christine; Samson, Séverine

    2004-01-01

    The goal of this paper was to review various experimental and neuropsychological studies that support the modular conception of auditory sensory memory or auditory short-term memory. Based on initial findings demonstrating that verbal sensory memory system can be dissociated from a general auditory memory store at the functional and anatomical levels. we reported a series of studies that provided evidence in favor of multiple auditory sensory stores specialized in retaining eit...

  12. Beneficial auditory and cognitive effects of auditory brainstem implantation in children.

    Science.gov (United States)

    Colletti, Liliana

    2007-09-01

    This preliminary study demonstrates the development of hearing ability and shows that there is a significant improvement in some cognitive parameters related to selective visual/spatial attention and to fluid or multisensory reasoning, in children fitted with auditory brainstem implantation (ABI). The improvement in cognitive paramenters is due to several factors, among which there is certainly, as demonstrated in the literature on a cochlear implants (CIs), the activation of the auditory sensory canal, which was previously absent. The findings of the present study indicate that children with cochlear or cochlear nerve abnormalities with associated cognitive deficits should not be excluded from ABI implantation. The indications for ABI have been extended over the last 10 years to adults with non-tumoral (NT) cochlear or cochlear nerve abnormalities that cannot benefit from CI. We demonstrated that the ABI with surface electrodes may provide sufficient stimulation of the central auditory system in adults for open set speech recognition. These favourable results motivated us to extend ABI indications to children with profound hearing loss who were not candidates for a CI. This study investigated the performances of young deaf children undergoing ABI, in terms of their auditory perceptual development and their non-verbal cognitive abilities. In our department from 2000 to 2006, 24 children aged 14 months to 16 years received an ABI for different tumour and non-tumour diseases. Two children had NF2 tumours. Eighteen children had bilateral cochlear nerve aplasia. In this group, nine children had associated cochlear malformations, two had unilateral facial nerve agenesia and two had combined microtia, aural atresia and middle ear malformations. Four of these children had previously been fitted elsewhere with a CI with no auditory results. One child had bilateral incomplete cochlear partition (type II); one child, who had previously been fitted unsuccessfully elsewhere

  13. What determines auditory distraction? On the roles of local auditory changes and expectation violations.

    Directory of Open Access Journals (Sweden)

    Jan P Röer

    Full Text Available Both the acoustic variability of a distractor sequence and the degree to which it violates expectations are important determinants of auditory distraction. In four experiments we examined the relative contribution of local auditory changes on the one hand and expectation violations on the other hand in the disruption of serial recall by irrelevant sound. We present evidence for a greater disruption by auditory sequences ending in unexpected steady state distractor repetitions compared to auditory sequences with expected changing state endings even though the former contained fewer local changes. This effect was demonstrated with piano melodies (Experiment 1 and speech distractors (Experiment 2. Furthermore, it was replicated when the expectation violation occurred after the encoding of the target items (Experiment 3, indicating that the items' maintenance in short-term memory was disrupted by attentional capture and not their encoding. This seems to be primarily due to the violation of a model of the specific auditory distractor sequences because the effect vanishes and even reverses when the experiment provides no opportunity to build up a specific neural model about the distractor sequence (Experiment 4. Nevertheless, the violation of abstract long-term knowledge about auditory regularities seems to cause a small and transient capture effect: Disruption decreased markedly over the course of the experiments indicating that participants habituated to the unexpected distractor repetitions across trials. The overall pattern of results adds to the growing literature that the degree to which auditory distractors violate situation-specific expectations is a more important determinant of auditory distraction than the degree to which a distractor sequence contains local auditory changes.

  14. Predicting dynamic range and intensity discrimination for electrical pulse-train stimuli using a stochastic auditory nerve model: the effects of stimulus noise.

    Science.gov (United States)

    Xu, Yifang; Collins, Leslie M

    2005-06-01

    This work investigates dynamic range and intensity discrimination for electrical pulse-train stimuli that are modulated by noise using a stochastic auditory nerve model. Based on a hypothesized monotonic relationship between loudness and the number of spikes elicited by a stimulus, theoretical prediction of the uncomfortable level has previously been determined by comparing spike counts to a fixed threshold, Nucl. However, no specific rule for determining Nucl has been suggested. Our work determines the uncomfortable level based on the excitation pattern of the neural response in a normal ear. The number of fibers corresponding to the portion of the basilar membrane driven by a stimulus at an uncomfortable level in a normal ear is related to Nucl at an uncomfortable level of the electrical stimulus. Intensity discrimination limens are predicted using signal detection theory via the probability mass function of the neural response and via experimental simulations. The results show that the uncomfortable level for pulse-train stimuli increases slightly as noise level increases. Combining this with our previous threshold predictions, we hypothesize that the dynamic range for noise-modulated pulse-train stimuli should increase with additive noise. However, since our predictions indicate that intensity discrimination under noise degrades, overall intensity coding performance may not improve significantly.

  15. Auditory-visual integration in fields of the auditory cortex.

    Science.gov (United States)

    Kubota, Michinori; Sugimoto, Shunji; Hosokawa, Yutaka; Ojima, Hisayuki; Horikawa, Junsei

    2017-03-01

    While multimodal interactions have been known to exist in the early sensory cortices, the response properties and spatiotemporal organization of these interactions are poorly understood. To elucidate the characteristics of multimodal sensory interactions in the cerebral cortex, neuronal responses to visual stimuli with or without auditory stimuli were investigated in core and belt fields of guinea pig auditory cortex using real-time optical imaging with a voltage-sensitive dye. On average, visual responses consisted of short excitation followed by long inhibition. Although visual responses were observed in core and belt fields, there were regional and temporal differences in responses. The most salient visual responses were observed in the caudal belt fields, especially posterior (P) and dorsocaudal belt (DCB) fields. Visual responses emerged first in fields P and DCB and then spread rostroventrally to core and ventrocaudal belt (VCB) fields. Absolute values of positive and negative peak amplitudes of visual responses were both larger in fields P and DCB than in core and VCB fields. When combined visual and auditory stimuli were applied, fields P and DCB were more inhibited than core and VCB fields beginning approximately 110 ms after stimuli. Correspondingly, differences between responses to auditory stimuli alone and combined audiovisual stimuli became larger in fields P and DCB than in core and VCB fields after approximately 110 ms after stimuli. These data indicate that visual influences are most salient in fields P and DCB, which manifest mainly as inhibition, and that they enhance differences in auditory responses among fields. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Assessing the aging effect on auditory-verbal memory by Persian version of dichotic auditory verbal memory test

    Directory of Open Access Journals (Sweden)

    Zahra Shahidipour

    2014-01-01

    Conclusion: Based on the obtained results, significant reduction in auditory memory was seen in aged group and the Persian version of dichotic auditory-verbal memory test, like many other auditory verbal memory tests, showed the aging effects on auditory verbal memory performance.

  17. From a formal training program in musculoskeletal ultrasound (MSUS) to a high reproducibility for Doppler ultrasound in rheumatoid arthritis.

    Science.gov (United States)

    Villota, Orlando; Diaz, Mario; Ceron, Carmen; Moller, Ingrid; Naredo, Esperanza; Saaibi, Diego Luis

    2017-07-28

    To assess the intra- and inter-observer reliability of ultrasound (US) in scoring B-mode, Doppler synovitis and combined B-mode and Doppler synovitis scores in different peripheral joints of rheumatoid arthritis (RA) patients. Four rheumatologists with a formal training in musculoskeletal US (MSKUS) particularly focus on definitions and scoring synovitis on B-mode and Doppler mode participated in a patient-based reliability exercise on 16 active RA patients. The four rheumatologists independently and consecutively performed a B-mode and power Doppler (PD) US assessment of 7 joints of each patient in two rounds in a blinded fashion. Each joint was semi quantitatively scored from 0 to 3 for B-mode synovitis (BS), Doppler synovitis (DS), and combined B-mode/Doppler synovitis (CS). Intraobserver reliability was assessed by Cohen's κ. Interobserver reliability was assessed by unweight Light's κ. The mean prevalence of synovitis on B-mode was 83% of joints; scores ranging from grade 1 in 18% of joints, to grade 3 in 33%. In 55% of joints synovial PD signal was detected and the distribution of scores range from 14% of joints for grade 3, to 26% for grade 2. After a total of 448 joints scanned with 896 adquired images our intraobserver and interobserver reliability was good to excellent for most of the joints. Formal, structured and continuous training in musculoskeletal ultrasound would bring a good to excellent reproducibility in rheumatological hands with a high reliability in real time acquisition BS, DS and CS modalities for scoring synovitis in patients with active rheumatoid arthritis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Formal analysis of empirical traces in incident management

    International Nuclear Information System (INIS)

    Hoogendoorn, Mark; Jonker, Catholijn M.; Maanen, Peter-Paul van; Sharpanskykh, Alexei

    2008-01-01

    Within the field of incident management split second decisions have to be made, usually on the basis of incomplete and partially incorrect information. As a result of these conditions, errors occur in such decision processes. In order to avoid repetition of such errors, historic cases, disaster plans, and training logs need to be thoroughly analysed. This paper presents a formal approach for such an analysis that pays special attention to spatial and temporal aspects, to information exchange, and to organisational structure. The formal nature of the approach enables automation of analysis, which is illustrated by case studies of two disasters

  19. Auditory-Visual Context and Memory Retrieval in 3-Month-Old Infants

    Science.gov (United States)

    Daman-Wasserman, Michelle; Brennan, Barbara; Radcliffe, Fiona; Prigot, Joyce; Fagen, Jeffrey

    2006-01-01

    In 3 experiments, 3-month-old infants were trained to move an overhead mobile by kicking 1 of their feet in the presence of a distinctive visual (crib bumpers) and auditory (music) context. In Experiment 1A, 5-day but not 1-day retention was disrupted if either or both elements of the context present during the retention test were novel. In…

  20. Persistent fluctuations in stride intervals under fractal auditory stimulation.

    Directory of Open Access Journals (Sweden)

    Vivien Marmelat

    Full Text Available Stride sequences of healthy gait are characterized by persistent long-range correlations, which become anti-persistent in the presence of an isochronous metronome. The latter phenomenon is of particular interest because auditory cueing is generally considered to reduce stride variability and may hence be beneficial for stabilizing gait. Complex systems tend to match their correlation structure when synchronizing. In gait training, can one capitalize on this tendency by using a fractal metronome rather than an isochronous one? We examined whether auditory cues with fractal variations in inter-beat intervals yield similar fractal inter-stride interval variability as isochronous auditory cueing in two complementary experiments. In Experiment 1, participants walked on a treadmill while being paced by either an isochronous or a fractal metronome with different variation strengths between beats in order to test whether participants managed to synchronize with a fractal metronome and to determine the necessary amount of variability for participants to switch from anti-persistent to persistent inter-stride intervals. Participants did synchronize with the metronome despite its fractal randomness. The corresponding coefficient of variation of inter-beat intervals was fixed in Experiment 2, in which participants walked on a treadmill while being paced by non-isochronous metronomes with different scaling exponents. As expected, inter-stride intervals showed persistent correlations similar to self-paced walking only when cueing contained persistent correlations. Our results open up a new window to optimize rhythmic auditory cueing for gait stabilization by integrating fractal fluctuations in the inter-beat intervals.

  1. Brain dynamics that correlate with effects of learning on auditory distance perception

    Directory of Open Access Journals (Sweden)

    Matthew G. Wisniewski

    2014-12-01

    Full Text Available Accuracy in auditory distance perception can improve with practice and varies for sounds differing in familiarity. Here, listeners were trained to judge the distances of English, Bengali, and backwards speech sources pre-recorded at near (2-m and far (30-m distances. Listeners’ accuracy was tested before and after training. Improvements from pre-test to post-test were greater for forward speech, demonstrating a learning advantage for forward speech sounds. Independent component (IC processes identified in electroencephalographic (EEG data collected during pre- and post-testing revealed three clusters of ICs across subjects with stimulus-locked spectral perturbations related to learning and accuracy. One cluster exhibited a transient stimulus-locked increase in 4-8 Hz power (theta event-related synchronization; ERS that was smaller after training and largest for backwards speech. For a left temporal cluster, 8-12 Hz decreases in power (alpha event-related desynchronization; ERD were greatest for English speech and less prominent after training. In contrast, a cluster of IC processes centered at or near anterior portions of the medial frontal cortex showed learning-related enhancement of sustained increases in 10-16 Hz power (upper-alpha/low-beta ERS. The degree of this enhancement was positively correlated with the degree of behavioral improvements. Results suggest that neural dynamics in non-auditory cortical areas support distance judgments. Further, frontal cortical networks associated with attentional and/or working memory processes appear to play a role in perceptual learning for source distance.

  2. Art and Science: How Musical Training Shapes the Brain

    Directory of Open Access Journals (Sweden)

    Karen Chan Barrett

    2013-10-01

    Full Text Available What makes a musician? In this review, we discuss innate and experience-dependent factors that mold the musician brain in addition to presenting new data in children that indicate that some neural enhancements in musicians unfold with continued training over development. We begin by addressing effects of training on musical expertise, presenting neural, perceptual and cognitive evidence to support the claim that musicians are shaped by their musical training regimes. For example, many musician-advantages in the neural encoding of sound, auditory perception, and auditory-cognitive skills correlate with their extent of musical training, are not observed in young children just initiating musical training, and differ based on the type of training pursued. Even amidst innate characteristics that contribute to the biological building blocks that make up the musician, musicians demonstrate further training-related enhancements through extensive education and practice. We conclude by reviewing evidence from neurobiological and epigenetic approaches to frame biological markers of musicianship in the context of interactions between genetic and experience-related factors.

  3. Amygdala and auditory cortex exhibit distinct sensitivity to relevant acoustic features of auditory emotions.

    Science.gov (United States)

    Pannese, Alessia; Grandjean, Didier; Frühholz, Sascha

    2016-12-01

    Discriminating between auditory signals of different affective value is critical to successful social interaction. It is commonly held that acoustic decoding of such signals occurs in the auditory system, whereas affective decoding occurs in the amygdala. However, given that the amygdala receives direct subcortical projections that bypass the auditory cortex, it is possible that some acoustic decoding occurs in the amygdala as well, when the acoustic features are relevant for affective discrimination. We tested this hypothesis by combining functional neuroimaging with the neurophysiological phenomena of repetition suppression (RS) and repetition enhancement (RE) in human listeners. Our results show that both amygdala and auditory cortex responded differentially to physical voice features, suggesting that the amygdala and auditory cortex decode the affective quality of the voice not only by processing the emotional content from previously processed acoustic features, but also by processing the acoustic features themselves, when these are relevant to the identification of the voice's affective value. Specifically, we found that the auditory cortex is sensitive to spectral high-frequency voice cues when discriminating vocal anger from vocal fear and joy, whereas the amygdala is sensitive to vocal pitch when discriminating between negative vocal emotions (i.e., anger and fear). Vocal pitch is an instantaneously recognized voice feature, which is potentially transferred to the amygdala by direct subcortical projections. These results together provide evidence that, besides the auditory cortex, the amygdala too processes acoustic information, when this is relevant to the discrimination of auditory emotions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Essential competencies analysis of a training model development for non-formal vocational teachers under the office of the non-formal and informal education in Thailand

    OpenAIRE

    Chayanopparat Piyanan; Charungkaittikul Suwithida; Ratana-Ubol Archanya

    2016-01-01

    Non-formal vocational education provides practical experiences in a particular occupational field to non-formal semi-skilled learners. Non-formal vocational teachers are the key persons to deliver particular occupational knowledge. The essential competencies enhancement for non-sformal vocational teachers will improve teaching performance. The question of the research is what the essential competencies for the nonformal vocational teachers are. The research method was 1) to review related lit...

  5. Applying virtual environments to training and simulation (abstract)

    NARCIS (Netherlands)

    Jense, G.J.; Kuijper, F.

    1993-01-01

    Virtual environment (VE) technology is expected to make a big impact on future training and simulation systems. Direct stimulation of human-senses (eyesight, auditory, tactile) and new paradigms for user input will improve the realism of simulations and thereby the effectiveness of training systems.

  6. Absence of both auditory evoked potentials and auditory percepts dependent on timing cues.

    Science.gov (United States)

    Starr, A; McPherson, D; Patterson, J; Don, M; Luxford, W; Shannon, R; Sininger, Y; Tonakawa, L; Waring, M

    1991-06-01

    An 11-yr-old girl had an absence of sensory components of auditory evoked potentials (brainstem, middle and long-latency) to click and tone burst stimuli that she could clearly hear. Psychoacoustic tests revealed a marked impairment of those auditory perceptions dependent on temporal cues, that is, lateralization of binaural clicks, change of binaural masked threshold with changes in signal phase, binaural beats, detection of paired monaural clicks, monaural detection of a silent gap in a sound, and monaural threshold elevation for short duration tones. In contrast, auditory functions reflecting intensity or frequency discriminations (difference limens) were only minimally impaired. Pure tone audiometry showed a moderate (50 dB) bilateral hearing loss with a disproportionate severe loss of word intelligibility. Those auditory evoked potentials that were preserved included (1) cochlear microphonics reflecting hair cell activity; (2) cortical sustained potentials reflecting processing of slowly changing signals; and (3) long-latency cognitive components (P300, processing negativity) reflecting endogenous auditory cognitive processes. Both the evoked potential and perceptual deficits are attributed to changes in temporal encoding of acoustic signals perhaps occurring at the synapse between hair cell and eighth nerve dendrites. The results from this patient are discussed in relation to previously published cases with absent auditory evoked potentials and preserved hearing.

  7. Encoding and retrieval of artificial visuoauditory memory traces in the auditory cortex requires the entorhinal cortex.

    Science.gov (United States)

    Chen, Xi; Guo, Yiping; Feng, Jingyu; Liao, Zhengli; Li, Xinjian; Wang, Haitao; Li, Xiao; He, Jufang

    2013-06-12

    Damage to the medial temporal lobe impairs the encoding of new memories and the retrieval of memories acquired immediately before the damage in human. In this study, we demonstrated that artificial visuoauditory memory traces can be established in the rat auditory cortex and that their encoding and retrieval depend on the entorhinal cortex of the medial temporal lobe in the rat. We trained rats to associate a visual stimulus with electrical stimulation of the auditory cortex using a classical conditioning protocol. After conditioning, we examined the associative memory traces electrophysiologically (i.e., visual stimulus-evoked responses of auditory cortical neurons) and behaviorally (i.e., visual stimulus-induced freezing and visual stimulus-guided reward retrieval). The establishment of a visuoauditory memory trace in the auditory cortex, which was detectable by electrophysiological recordings, was achieved over 20-30 conditioning trials and was blocked by unilateral, temporary inactivation of the entorhinal cortex. Retrieval of a previously established visuoauditory memory was also affected by unilateral entorhinal cortex inactivation. These findings suggest that the entorhinal cortex is necessary for the encoding and involved in the retrieval of artificial visuoauditory memory in the auditory cortex, at least during the early stages of memory consolidation.

  8. A preliminary report of music-based training for adult cochlear implant users: rationales and development

    Science.gov (United States)

    Gfeller, Kate; Guthe, Emily; Driscoll, Virginia; Brown, Carolyn J.

    2015-01-01

    Objective This paper provides a preliminary report of a music-based training program for adult cochlear implant (CI) recipients. Included in this report are descriptions of the rationale for music-based training, factors influencing program development, and the resulting program components. Methods Prior studies describing experience-based plasticity in response to music training, auditory training for persons with hearing impairment, and music training for cochlear implant recipients were reviewed. These sources revealed rationales for using music to enhance speech, factors associated with successful auditory training, relevant aspects of electric hearing and music perception, and extant evidence regarding limitations and advantages associated with parameters for music training with CI users. This information formed the development of a computer-based music training program designed specifically for adult CI users. Results Principles and parameters for perceptual training of music, such as stimulus choice, rehabilitation approach, and motivational concerns were developed in relation to the unique auditory characteristics of adults with electric hearing. An outline of the resulting program components and the outcome measures for evaluating program effectiveness are presented. Conclusions Music training can enhance the perceptual accuracy of music, but is also hypothesized to enhance several features of speech with similar processing requirements as music (e.g., pitch and timbre). However, additional evaluation of specific training parameters and the impact of music-based training on speech perception of CI users are required. PMID:26561884

  9. Professional Development across the Teaching Career: Teachers' Uptake of Formal and Informal Learning Opportunities

    Science.gov (United States)

    Richter, Dirk; Kunter, Mareike; Klusmann, Uta; Ludtke, Oliver; Baumert, Jurgen

    2011-01-01

    This study examined teachers' uptake of formal and informal learning opportunities across the career cycle. Analyses were based on data from 1939 German secondary teachers in 198 schools. Results showed that formal learning opportunities (in-service training) were used most frequently by mid-career teachers, whereas informal learning opportunities…

  10. Developmental programming of auditory learning

    Directory of Open Access Journals (Sweden)

    Melania Puddu

    2012-10-01

    Full Text Available The basic structures involved in the development of auditory function and consequently in language acquisition are directed by genetic code, but the expression of individual genes may be altered by exposure to environmental factors, which if favorable, orient it in the proper direction, leading its development towards normality, if unfavorable, they deviate it from its physiological course. Early sensorial experience during the foetal period (i.e. intrauterine noise floor, sounds coming from the outside and attenuated by the uterine filter, particularly mother’s voice and modifications induced by it at the cochlear level represent the first example of programming in one of the earliest critical periods in development of the auditory system. This review will examine the factors that influence the developmental programming of auditory learning from the womb to the infancy. In particular it focuses on the following points: the prenatal auditory experience and the plastic phenomena presumably induced by it in the auditory system from the basilar membrane to the cortex;the involvement of these phenomena on language acquisition and on the perception of language communicative intention after birth;the consequences of auditory deprivation in critical periods of auditory development (i.e. premature interruption of foetal life.

  11. Auditory Processing Interventions and Developmental Dyslexia: A Comparison of Phonemic and Rhythmic Approaches

    Science.gov (United States)

    Thomson, Jennifer M.; Leong, Victoria; Goswami, Usha

    2013-01-01

    The purpose of this study was to compare the efficacy of two auditory processing interventions for developmental dyslexia, one based on rhythm and one based on phonetic training. Thirty-three children with dyslexia participated and were assigned to one of three groups (a) a novel rhythmic processing intervention designed to highlight auditory…

  12. The Pros and Cons of Viewing Formal Diagnosis from a Social Constructionist Perspective

    Science.gov (United States)

    McLaughlin, Jerry E.

    2006-01-01

    Over the last few years, counselor training has focused more on formal diagnosis, but this increased focus has been questioned. In the end, the question seems less about whether formal diagnosis will be taught and more about how it will be taught. The author argues that diagnosis should be taught from a social constructionist rather than an…

  13. Effect of rhythmic auditory stimulation on gait kinematic parameters of patients with multiple sclerosis.

    Science.gov (United States)

    Shahraki, M; Sohrabi, M; Taheri Torbati, H R; Nikkhah, K; NaeimiKia, M

    2017-01-01

    Purpose: This study aimed to examine the effect of rhythmic auditory stimulation on gait kinematic parameters of patients with multiple sclerosis. Subjects and Methods: In this study, 18 subjects, comprising 4 males and 14 females with Multiple Sclerosis with expanded disability status scale of 3 to 6 were chosen. Subjects were selected by available and targeted sampling and were randomly divided into two experimental (n = 9) and control (n = 9) groups. Exercises were gait with rhythmic auditory stimulation by a metronome device, in addition to gait without stimulation for the experimental and control groups, respectively. Training was carried out for 3 weeks, with 30 min duration for each session 3 times a week. Stride length, stride time, double support time, cadence and gait speed were measured by motion analysis device. Results: There was a significant difference between stride length, stride time, double support time, cadence and gait speed in the experimental group, before and after the training. Furthermore, there was a significant difference between the experimental and control groups in the enhancement of stride length, stride time, cadence and gait speed in favor of the experimental group. While this difference was not significant for double support time. Conclusion: The results of this study showed that rhythmic auditory stimulation is an effective rehabilitation method to improve gait kinematic parameters in patients with multiple sclerosis.

  14. Auditory short-term memory in the primate auditory cortex

    OpenAIRE

    Scott, Brian H.; Mishkin, Mortimer

    2015-01-01

    Sounds are fleeting, and assembling the sequence of inputs at the ear into a coherent percept requires auditory memory across various time scales. Auditory short-term memory comprises at least two components: an active ���working memory��� bolstered by rehearsal, and a sensory trace that may be passively retained. Working memory relies on representations recalled from long-term memory, and their rehearsal may require phonological mechanisms unique to humans. The sensory component, passive sho...

  15. Direct recordings from the auditory cortex in a cochlear implant user.

    Science.gov (United States)

    Nourski, Kirill V; Etler, Christine P; Brugge, John F; Oya, Hiroyuki; Kawasaki, Hiroto; Reale, Richard A; Abbas, Paul J; Brown, Carolyn J; Howard, Matthew A

    2013-06-01

    Electrical stimulation of the auditory nerve with a cochlear implant (CI) is the method of choice for treatment of severe-to-profound hearing loss. Understanding how the human auditory cortex responds to CI stimulation is important for advances in stimulation paradigms and rehabilitation strategies. In this study, auditory cortical responses to CI stimulation were recorded intracranially in a neurosurgical patient to examine directly the functional organization of the auditory cortex and compare the findings with those obtained in normal-hearing subjects. The subject was a bilateral CI user with a 20-year history of deafness and refractory epilepsy. As part of the epilepsy treatment, a subdural grid electrode was implanted over the left temporal lobe. Pure tones, click trains, sinusoidal amplitude-modulated noise, and speech were presented via the auxiliary input of the right CI speech processor. Additional experiments were conducted with bilateral CI stimulation. Auditory event-related changes in cortical activity, characterized by the averaged evoked potential and event-related band power, were localized to posterolateral superior temporal gyrus. Responses were stable across recording sessions and were abolished under general anesthesia. Response latency decreased and magnitude increased with increasing stimulus level. More apical intracochlear stimulation yielded the largest responses. Cortical evoked potentials were phase-locked to the temporal modulations of periodic stimuli and speech utterances. Bilateral electrical stimulation resulted in minimal artifact contamination. This study demonstrates the feasibility of intracranial electrophysiological recordings of responses to CI stimulation in a human subject, shows that cortical response properties may be similar to those obtained in normal-hearing individuals, and provides a basis for future comparisons with extracranial recordings.

  16. Integration of auditory and visual speech information

    NARCIS (Netherlands)

    Hall, M.; Smeele, P.M.T.; Kuhl, P.K.

    1998-01-01

    The integration of auditory and visual speech is observed when modes specify different places of articulation. Influences of auditory variation on integration were examined using consonant identifi-cation, plus quality and similarity ratings. Auditory identification predicted auditory-visual

  17. Auditory Dysfunction in Patients with Cerebrovascular Disease

    Directory of Open Access Journals (Sweden)

    Sadaharu Tabuchi

    2014-01-01

    Full Text Available Auditory dysfunction is a common clinical symptom that can induce profound effects on the quality of life of those affected. Cerebrovascular disease (CVD is the most prevalent neurological disorder today, but it has generally been considered a rare cause of auditory dysfunction. However, a substantial proportion of patients with stroke might have auditory dysfunction that has been underestimated due to difficulties with evaluation. The present study reviews relationships between auditory dysfunction and types of CVD including cerebral infarction, intracerebral hemorrhage, subarachnoid hemorrhage, cerebrovascular malformation, moyamoya disease, and superficial siderosis. Recent advances in the etiology, anatomy, and strategies to diagnose and treat these conditions are described. The numbers of patients with CVD accompanied by auditory dysfunction will increase as the population ages. Cerebrovascular diseases often include the auditory system, resulting in various types of auditory dysfunctions, such as unilateral or bilateral deafness, cortical deafness, pure word deafness, auditory agnosia, and auditory hallucinations, some of which are subtle and can only be detected by precise psychoacoustic and electrophysiological testing. The contribution of CVD to auditory dysfunction needs to be understood because CVD can be fatal if overlooked.

  18. Acquisition of L2 Japanese Geminates: Training with Waveform Displays

    Directory of Open Access Journals (Sweden)

    Miki Motohashi-Saigo

    2009-06-01

    Full Text Available The value of waveform displays as visual feedback was explored in a training study involving perception and production of L2 Japanese by beginning-level L1 English learners. A pretest-posttest design compared auditory-visual (AV and auditory-only (A-only Web-based training. Stimuli were singleton and geminate /t,k,s/ followed by /a,u/ in two conditions (isolated words, carrier sentences. Fillers with long vowels were included. Participants completed a forced-choice identification task involving minimal triplets: singletons, geminates, long vowels (e.g., sasu, sassu, saasu. Results revealed a significant improvement in geminate identification following training, especially for AV; b significant effect of geminate (lowest scores for /s/; c no significant effect of condition; and d no significant improvement for the control group. Most errors were misperceptions of geminates as long vowels. Test of generalization revealed 5% decline in accuracy for AV and 14% for A-only. Geminate production improved significantly (especially for AV based on rater judgments; improvement was greatest for /k/ and smallest for /s/. Most production errors involved substitution of a singleton for a geminate. Post-study interviews produced positive comments on Web-based training. Waveforms increased awareness of durational differences. Results support the effectiveness of auditory-visual input in L2 perception training with transfer to novel stimuli and improved production.

  19. Weak responses to auditory feedback perturbation during articulation in persons who stutter: evidence for abnormal auditory-motor transformation.

    Directory of Open Access Journals (Sweden)

    Shanqing Cai

    Full Text Available Previous empirical observations have led researchers to propose that auditory feedback (the auditory perception of self-produced sounds when speaking functions abnormally in the speech motor systems of persons who stutter (PWS. Researchers have theorized that an important neural basis of stuttering is the aberrant integration of auditory information into incipient speech motor commands. Because of the circumstantial support for these hypotheses and the differences and contradictions between them, there is a need for carefully designed experiments that directly examine auditory-motor integration during speech production in PWS. In the current study, we used real-time manipulation of auditory feedback to directly investigate whether the speech motor system of PWS utilizes auditory feedback abnormally during articulation and to characterize potential deficits of this auditory-motor integration. Twenty-one PWS and 18 fluent control participants were recruited. Using a short-latency formant-perturbation system, we examined participants' compensatory responses to unanticipated perturbation of auditory feedback of the first formant frequency during the production of the monophthong [ε]. The PWS showed compensatory responses that were qualitatively similar to the controls' and had close-to-normal latencies (∼150 ms, but the magnitudes of their responses were substantially and significantly smaller than those of the control participants (by 47% on average, p<0.05. Measurements of auditory acuity indicate that the weaker-than-normal compensatory responses in PWS were not attributable to a deficit in low-level auditory processing. These findings are consistent with the hypothesis that stuttering is associated with functional defects in the inverse models responsible for the transformation from the domain of auditory targets and auditory error information into the domain of speech motor commands.

  20. Current Status of Nutrition Training in Graduate Medical Education From a Survey of Residency Program Directors: A Formal Nutrition Education Course Is Necessary.

    Science.gov (United States)

    Daley, Brian J; Cherry-Bukowiec, Jill; Van Way, Charles W; Collier, Bryan; Gramlich, Leah; McMahon, M Molly; McClave, Stephen A

    2016-01-01

    Nutrition leaders surmised graduate medical nutrition education was not well addressed because most medical and surgical specialties have insufficient resources to teach current nutrition practice. A needs assessment survey was constructed to determine resources and commitment for nutrition education from U.S. graduate medical educators to address this problem. An online survey of 36 questions was sent to 495 Accreditation Council for Graduate Medical Education (ACGME) Program Directors in anesthesia, family medicine, internal medicine, pediatrics, obstetrics/gynecology, and general surgery. Demographics, resources, and open-ended questions were included. There was a 14% response rate (72 programs), consistent with similar studies on the topic. Most (80%) of the program directors responding were from primary care programs, the rest surgical (17%) or anesthesia (3%). Program directors themselves lacked knowledge of nutrition. While some form of nutrition education was provided at 78% of programs, only 26% had a formal curriculum and physicians served as faculty at only 53%. Sixteen programs had no identifiable expert in nutrition and 10 programs stated that no nutrition training was provided. Training was variable, ranging from an hour of lecture to a month-long rotation. Seventy-seven percent of program directors stated that the required educational goals in nutrition were not met. The majority felt an advanced course in clinical nutrition should be required of residents now or in the future. Nutrition education in current graduate medical education is poor. Most programs lack the expertise or time commitment to teach a formal course but recognize the need to meet educational requirements. A broad-based, diverse universal program is needed for training in nutrition during residency. © 2015 American Society for Parenteral and Enteral Nutrition.

  1. Formal education in outdoor studies: introduction

    OpenAIRE

    Prince, Heather

    2015-01-01

    Regional cultural perspectives involve outdoor studies in different ways in formal curricula. This section focuses on Western Europe, particularly the UK and Scandinavia, although also has a more international reach in Backman’s consideration of the training of teachers and in place-responsive teaching as described by Mannion and Lynch. ‘Outdoor studies’ is not seen in curricula per se but under various more specialised aspects such as outdoor play, outdoor learning, environmental education, ...

  2. Integration of Visual Information in Auditory Cortex Promotes Auditory Scene Analysis through Multisensory Binding.

    Science.gov (United States)

    Atilgan, Huriye; Town, Stephen M; Wood, Katherine C; Jones, Gareth P; Maddox, Ross K; Lee, Adrian K C; Bizley, Jennifer K

    2018-02-07

    How and where in the brain audio-visual signals are bound to create multimodal objects remains unknown. One hypothesis is that temporal coherence between dynamic multisensory signals provides a mechanism for binding stimulus features across sensory modalities. Here, we report that when the luminance of a visual stimulus is temporally coherent with the amplitude fluctuations of one sound in a mixture, the representation of that sound is enhanced in auditory cortex. Critically, this enhancement extends to include both binding and non-binding features of the sound. We demonstrate that visual information conveyed from visual cortex via the phase of the local field potential is combined with auditory information within auditory cortex. These data provide evidence that early cross-sensory binding provides a bottom-up mechanism for the formation of cross-sensory objects and that one role for multisensory binding in auditory cortex is to support auditory scene analysis. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. Interaction of language, auditory and memory brain networks in auditory verbal hallucinations

    NARCIS (Netherlands)

    Curcic-Blake, Branislava; Ford, Judith M.; Hubl, Daniela; Orlov, Natasza D.; Sommer, Iris E.; Waters, Flavie; Allen, Paul; Jardri, Renaud; Woodruff, Peter W.; David, Olivier; Mulert, Christoph; Woodward, Todd S.; Aleman, Andre

    Auditory verbal hallucinations (AVH) occur in psychotic disorders, but also as a symptom of other conditions and even in healthy people. Several current theories on the origin of AVH converge, with neuroimaging studies suggesting that the language, auditory and memory/limbic networks are of

  4. The role of information technologies in organization of non-formal education

    Directory of Open Access Journals (Sweden)

    Elkina Irina

    2016-01-01

    Full Text Available The authors consider the role of information technologies in realization of non-formal education in the modern information society. Cultural and leisure institutions, libraries etc. become facilitators of non-formal education. Introduction to cultural values, to the new knowledge, obtaining positive emotions attracts the representatives of various professional and social groups to this kind of education and additionally favors their familiarization with the Humanities. A large choice of new, game forms and methods of training, learners’ active participation – all this empowers non-formal education and a skill to learn and work under the conditions of redundant information is one of the most relevant in the modern society.

  5. Neural responses in the primary auditory cortex of freely behaving cats while discriminating fast and slow click-trains.

    Science.gov (United States)

    Dong, Chao; Qin, Ling; Liu, Yongchun; Zhang, Xinan; Sato, Yu

    2011-01-01

    Repeated acoustic events are ubiquitous temporal features of natural sounds. To reveal the neural representation of the sound repetition rate, a number of electrophysiological studies have been conducted on various mammals and it has been proposed that both the spike-time and firing rate of primary auditory cortex (A1) neurons encode the repetition rate. However, previous studies rarely examined how the experimental animals perceive the difference in the sound repetition rate, and a caveat to these experiments is that they compared physiological data obtained from animals with psychophysical data obtained from humans. In this study, for the first time, we directly investigated acoustic perception and the underlying neural mechanisms in the same experimental animal by examining spike activities in the A1 of free-moving cats while performing a Go/No-go task to discriminate the click-trains at different repetition rates (12.5-200 Hz). As reported by previous studies on passively listening animals, A1 neurons showed both synchronized and non-synchronized responses to the click-trains. We further found that the neural performance estimated from the precise temporal information of synchronized units was good enough to distinguish all 16.7-200 Hz from the 12.5 Hz repetition rate; however, the cats showed declining behavioral performance with the decrease of the target repetition rate, indicating an increase of difficulty in discriminating two slower click-trains. Such behavioral performance was well explained by the firing rate of some synchronized and non-synchronized units. Trial-by-trial analysis indicated that A1 activity was not affected by the cat's judgment of behavioral response. Our results suggest that the main function of A1 is to effectively represent temporal signals using both spike timing and firing rate, while the cats may read out the rate-coding information to perform the task in this experiment.

  6. Neural responses in the primary auditory cortex of freely behaving cats while discriminating fast and slow click-trains.

    Directory of Open Access Journals (Sweden)

    Chao Dong

    Full Text Available Repeated acoustic events are ubiquitous temporal features of natural sounds. To reveal the neural representation of the sound repetition rate, a number of electrophysiological studies have been conducted on various mammals and it has been proposed that both the spike-time and firing rate of primary auditory cortex (A1 neurons encode the repetition rate. However, previous studies rarely examined how the experimental animals perceive the difference in the sound repetition rate, and a caveat to these experiments is that they compared physiological data obtained from animals with psychophysical data obtained from humans. In this study, for the first time, we directly investigated acoustic perception and the underlying neural mechanisms in the same experimental animal by examining spike activities in the A1 of free-moving cats while performing a Go/No-go task to discriminate the click-trains at different repetition rates (12.5-200 Hz. As reported by previous studies on passively listening animals, A1 neurons showed both synchronized and non-synchronized responses to the click-trains. We further found that the neural performance estimated from the precise temporal information of synchronized units was good enough to distinguish all 16.7-200 Hz from the 12.5 Hz repetition rate; however, the cats showed declining behavioral performance with the decrease of the target repetition rate, indicating an increase of difficulty in discriminating two slower click-trains. Such behavioral performance was well explained by the firing rate of some synchronized and non-synchronized units. Trial-by-trial analysis indicated that A1 activity was not affected by the cat's judgment of behavioral response. Our results suggest that the main function of A1 is to effectively represent temporal signals using both spike timing and firing rate, while the cats may read out the rate-coding information to perform the task in this experiment.

  7. Differential effects of rhythmic auditory stimulation and neurodevelopmental treatment/Bobath on gait patterns in adults with cerebral palsy: a randomized controlled trial.

    Science.gov (United States)

    Kim, Soo Ji; Kwak, Eunmi E; Park, Eun Sook; Cho, Sung-Rae

    2012-10-01

    To investigate the effects of rhythmic auditory stimulation (RAS) on gait patterns in comparison with changes after neurodevelopmental treatment (NDT/Bobath) in adults with cerebral palsy. A repeated-measures analysis between the pretreatment and posttreatment tests and a comparison study between groups. Human gait analysis laboratory. Twenty-eight cerebral palsy patients with bilateral spasticity participated in this study. The subjects were randomly allocated to either neurodevelopmental treatment (n = 13) or rhythmic auditory stimulation (n = 15). Gait training with rhythmic auditory stimulation or neurodevelopmental treatment was performed three sessions per week for three weeks. Temporal and kinematic data were analysed before and after the intervention. Rhythmic auditory stimulation was provided using a combination of a metronome beat set to the individual's cadence and rhythmic cueing from a live keyboard, while neurodevelopmental treatment was implemented following the traditional method. Temporal data, kinematic parameters and gait deviation index as a measure of overall gait pathology were assessed. Temporal gait measures revealed that rhythmic auditory stimulation significantly increased cadence, walking velocity, stride length, and step length (P rhythmic auditory stimulation (P rhythmic auditory stimulation (P rhythmic auditory stimulation showed aggravated maximal internal rotation in the transverse plane (P rhythmic auditory stimulation or neurodevelopmental treatment elicited differential effects on gait patterns in adults with cerebral palsy.

  8. Audiovisual Interval Size Estimation Is Associated with Early Musical Training.

    Science.gov (United States)

    Abel, Mary Kathryn; Li, H Charles; Russo, Frank A; Schlaug, Gottfried; Loui, Psyche

    2016-01-01

    Although pitch is a fundamental attribute of auditory perception, substantial individual differences exist in our ability to perceive differences in pitch. Little is known about how these individual differences in the auditory modality might affect crossmodal processes such as audiovisual perception. In this study, we asked whether individual differences in pitch perception might affect audiovisual perception, as it relates to age of onset and number of years of musical training. Fifty-seven subjects made subjective ratings of interval size when given point-light displays of audio, visual, and audiovisual stimuli of sung intervals. Audiovisual stimuli were divided into congruent and incongruent (audiovisual-mismatched) stimuli. Participants' ratings correlated strongly with interval size in audio-only, visual-only, and audiovisual-congruent conditions. In the audiovisual-incongruent condition, ratings correlated more with audio than with visual stimuli, particularly for subjects who had better pitch perception abilities and higher nonverbal IQ scores. To further investigate the effects of age of onset and length of musical training, subjects were divided into musically trained and untrained groups. Results showed that among subjects with musical training, the degree to which participants' ratings correlated with auditory interval size during incongruent audiovisual perception was correlated with both nonverbal IQ and age of onset of musical training. After partialing out nonverbal IQ, pitch discrimination thresholds were no longer associated with incongruent audio scores, whereas age of onset of musical training remained associated with incongruent audio scores. These findings invite future research on the developmental effects of musical training, particularly those relating to the process of audiovisual perception.

  9. Audiovisual Interval Size Estimation Is Associated with Early Musical Training.

    Directory of Open Access Journals (Sweden)

    Mary Kathryn Abel

    Full Text Available Although pitch is a fundamental attribute of auditory perception, substantial individual differences exist in our ability to perceive differences in pitch. Little is known about how these individual differences in the auditory modality might affect crossmodal processes such as audiovisual perception. In this study, we asked whether individual differences in pitch perception might affect audiovisual perception, as it relates to age of onset and number of years of musical training. Fifty-seven subjects made subjective ratings of interval size when given point-light displays of audio, visual, and audiovisual stimuli of sung intervals. Audiovisual stimuli were divided into congruent and incongruent (audiovisual-mismatched stimuli. Participants' ratings correlated strongly with interval size in audio-only, visual-only, and audiovisual-congruent conditions. In the audiovisual-incongruent condition, ratings correlated more with audio than with visual stimuli, particularly for subjects who had better pitch perception abilities and higher nonverbal IQ scores. To further investigate the effects of age of onset and length of musical training, subjects were divided into musically trained and untrained groups. Results showed that among subjects with musical training, the degree to which participants' ratings correlated with auditory interval size during incongruent audiovisual perception was correlated with both nonverbal IQ and age of onset of musical training. After partialing out nonverbal IQ, pitch discrimination thresholds were no longer associated with incongruent audio scores, whereas age of onset of musical training remained associated with incongruent audio scores. These findings invite future research on the developmental effects of musical training, particularly those relating to the process of audiovisual perception.

  10. Procedures for central auditory processing screening in schoolchildren.

    Science.gov (United States)

    Carvalho, Nádia Giulian de; Ubiali, Thalita; Amaral, Maria Isabel Ramos do; Santos, Maria Francisca Colella

    2018-03-22

    Central auditory processing screening in schoolchildren has led to debates in literature, both regarding the protocol to be used and the importance of actions aimed at prevention and promotion of auditory health. Defining effective screening procedures for central auditory processing is a challenge in Audiology. This study aimed to analyze the scientific research on central auditory processing screening and discuss the effectiveness of the procedures utilized. A search was performed in the SciELO and PUBMed databases by two researchers. The descriptors used in Portuguese and English were: auditory processing, screening, hearing, auditory perception, children, auditory tests and their respective terms in Portuguese. original articles involving schoolchildren, auditory screening of central auditory skills and articles in Portuguese or English. studies with adult and/or neonatal populations, peripheral auditory screening only, and duplicate articles. After applying the described criteria, 11 articles were included. At the international level, central auditory processing screening methods used were: screening test for auditory processing disorder and its revised version, screening test for auditory processing, scale of auditory behaviors, children's auditory performance scale and Feather Squadron. In the Brazilian scenario, the procedures used were the simplified auditory processing assessment and Zaidan's battery of tests. At the international level, the screening test for auditory processing and Feather Squadron batteries stand out as the most comprehensive evaluation of hearing skills. At the national level, there is a paucity of studies that use methods evaluating more than four skills, and are normalized by age group. The use of simplified auditory processing assessment and questionnaires can be complementary in the search for an easy access and low-cost alternative in the auditory screening of Brazilian schoolchildren. Interactive tools should be proposed, that

  11. Recurrence of task set-related MEG signal patterns during auditory working memory.

    Science.gov (United States)

    Peters, Benjamin; Bledowski, Christoph; Rieder, Maria; Kaiser, Jochen

    2016-06-01

    Processing of auditory spatial and non-spatial information in working memory has been shown to rely on separate cortical systems. While previous studies have demonstrated differences in spatial versus non-spatial processing from the encoding of to-be-remembered stimuli onwards, here we investigated whether such differences would be detectable already prior to presentation of the sample stimulus. We analyzed broad-band magnetoencephalography data from 15 healthy adults during an auditory working memory paradigm starting with a visual cue indicating the task-relevant stimulus feature for a given trial (lateralization or pitch) and a subsequent 1.5-s pre-encoding phase. This was followed by a sample sound (0.2s), the delay phase (0.8s) and a test stimulus (0.2s) after which participants made a match/non-match decision. Linear discriminant functions were trained to decode task-specific signal patterns throughout the task, and temporal generalization was used to assess whether the neural codes discriminating between the tasks during the pre-encoding phase would recur during later task periods. The spatial versus non-spatial tasks could indeed be discriminated after the onset of the cue onwards, and decoders trained during the pre-encoding phase successfully discriminated the tasks during both sample stimulus encoding and during the delay phase. This demonstrates that task-specific neural codes are established already before the memorandum is presented and that the same patterns are reestablished during stimulus encoding and maintenance. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. (A)musicality in Williams syndrome: examining relationships among auditory perception, musical skill, and emotional responsiveness to music.

    Science.gov (United States)

    Lense, Miriam D; Shivers, Carolyn M; Dykens, Elisabeth M

    2013-01-01

    Williams syndrome (WS), a genetic, neurodevelopmental disorder, is of keen interest to music cognition researchers because of its characteristic auditory sensitivities and emotional responsiveness to music. However, actual musical perception and production abilities are more variable. We examined musicality in WS through the lens of amusia and explored how their musical perception abilities related to their auditory sensitivities, musical production skills, and emotional responsiveness to music. In our sample of 73 adolescents and adults with WS, 11% met criteria for amusia, which is higher than the 4% prevalence rate reported in the typically developing (TD) population. Amusia was not related to auditory sensitivities but was related to musical training. Performance on the amusia measure strongly predicted musical skill but not emotional responsiveness to music, which was better predicted by general auditory sensitivities. This study represents the first time amusia has been examined in a population with a known neurodevelopmental genetic disorder with a range of cognitive abilities. Results have implications for the relationships across different levels of auditory processing, musical skill development, and emotional responsiveness to music, as well as the understanding of gene-brain-behavior relationships in individuals with WS and TD individuals with and without amusia.

  13. Auditory prediction during speaking and listening.

    Science.gov (United States)

    Sato, Marc; Shiller, Douglas M

    2018-02-02

    In the present EEG study, the role of auditory prediction in speech was explored through the comparison of auditory cortical responses during active speaking and passive listening to the same acoustic speech signals. Two manipulations of sensory prediction accuracy were used during the speaking task: (1) a real-time change in vowel F1 feedback (reducing prediction accuracy relative to unaltered feedback) and (2) presenting a stable auditory target rather than a visual cue to speak (enhancing auditory prediction accuracy during baseline productions, and potentially enhancing the perturbing effect of altered feedback). While subjects compensated for the F1 manipulation, no difference between the auditory-cue and visual-cue conditions were found. Under visually-cued conditions, reduced N1/P2 amplitude was observed during speaking vs. listening, reflecting a motor-to-sensory prediction. In addition, a significant correlation was observed between the magnitude of behavioral compensatory F1 response and the magnitude of this speaking induced suppression (SIS) for P2 during the altered auditory feedback phase, where a stronger compensatory decrease in F1 was associated with a stronger the SIS effect. Finally, under the auditory-cued condition, an auditory repetition-suppression effect was observed in N1/P2 amplitude during the listening task but not active speaking, suggesting that auditory predictive processes during speaking and passive listening are functionally distinct. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Adaptation in the auditory system: an overview

    Directory of Open Access Journals (Sweden)

    David ePérez-González

    2014-02-01

    Full Text Available The early stages of the auditory system need to preserve the timing information of sounds in order to extract the basic features of acoustic stimuli. At the same time, different processes of neuronal adaptation occur at several levels to further process the auditory information. For instance, auditory nerve fiber responses already experience adaptation of their firing rates, a type of response that can be found in many other auditory nuclei and may be useful for emphasizing the onset of the stimuli. However, it is at higher levels in the auditory hierarchy where more sophisticated types of neuronal processing take place. For example, stimulus-specific adaptation, where neurons show adaptation to frequent, repetitive stimuli, but maintain their responsiveness to stimuli with different physical characteristics, thus representing a distinct kind of processing that may play a role in change and deviance detection. In the auditory cortex, adaptation takes more elaborate forms, and contributes to the processing of complex sequences, auditory scene analysis and attention. Here we review the multiple types of adaptation that occur in the auditory system, which are part of the pool of resources that the neurons employ to process the auditory scene, and are critical to a proper understanding of the neuronal mechanisms that govern auditory perception.

  15. Individualization of music-based rhythmic auditory cueing in Parkinson's disease.

    Science.gov (United States)

    Bella, Simone Dalla; Dotov, Dobromir; Bardy, Benoît; de Cock, Valérie Cochen

    2018-06-04

    Gait dysfunctions in Parkinson's disease can be partly relieved by rhythmic auditory cueing. This consists in asking patients to walk with a rhythmic auditory stimulus such as a metronome or music. The effect on gait is visible immediately in terms of increased speed and stride length. Moreover, training programs based on rhythmic cueing can have long-term benefits. The effect of rhythmic cueing, however, varies from one patient to the other. Patients' response to the stimulation may depend on rhythmic abilities, often deteriorating with the disease. Relatively spared abilities to track the beat favor a positive response to rhythmic cueing. On the other hand, most patients with poor rhythmic abilities either do not respond to the cues or experience gait worsening when walking with cues. An individualized approach to rhythmic auditory cueing with music is proposed to cope with this variability in patients' response. This approach calls for using assistive mobile technologies capable of delivering cues that adapt in real time to patients' gait kinematics, thus affording step synchronization to the beat. Individualized rhythmic cueing can provide a safe and cost-effective alternative to standard cueing that patients may want to use in their everyday lives. © 2018 New York Academy of Sciences.

  16. Temporal envelope processing in the human auditory cortex: response and interconnections of auditory cortical areas.

    Science.gov (United States)

    Gourévitch, Boris; Le Bouquin Jeannès, Régine; Faucon, Gérard; Liégeois-Chauvel, Catherine

    2008-03-01

    Temporal envelope processing in the human auditory cortex has an important role in language analysis. In this paper, depth recordings of local field potentials in response to amplitude modulated white noises were used to design maps of activation in primary, secondary and associative auditory areas and to study the propagation of the cortical activity between them. The comparison of activations between auditory areas was based on a signal-to-noise ratio associated with the response to amplitude modulation (AM). The functional connectivity between cortical areas was quantified by the directed coherence (DCOH) applied to auditory evoked potentials. This study shows the following reproducible results on twenty subjects: (1) the primary auditory cortex (PAC), the secondary cortices (secondary auditory cortex (SAC) and planum temporale (PT)), the insular gyrus, the Brodmann area (BA) 22 and the posterior part of T1 gyrus (T1Post) respond to AM in both hemispheres. (2) A stronger response to AM was observed in SAC and T1Post of the left hemisphere independent of the modulation frequency (MF), and in the left BA22 for MFs 8 and 16Hz, compared to those in the right. (3) The activation and propagation features emphasized at least four different types of temporal processing. (4) A sequential activation of PAC, SAC and BA22 areas was clearly visible at all MFs, while other auditory areas may be more involved in parallel processing upon a stream originating from primary auditory area, which thus acts as a distribution hub. These results suggest that different psychological information is carried by the temporal envelope of sounds relative to the rate of amplitude modulation.

  17. (Amusicality in Williams syndrome: Examining relationships among auditory perception, musical skill, and emotional responsiveness to music

    Directory of Open Access Journals (Sweden)

    Miriam eLense

    2013-08-01

    Full Text Available Williams syndrome (WS, a genetic, neurodevelopmental disorder, is of keen interest to music cognition researchers because of its characteristic auditory sensitivities and emotional responsiveness to music. However, actual musical perception and production abilities are more variable. We examined musicality in WS through the lens of amusia and explored how their musical perception abilities related to their auditory sensitivities, musical production skills, and emotional responsiveness to music. In our sample of 73 adolescents and adults with WS, 11% met criteria for amusia, which is higher than the 4% prevalence rate reported in the typically developing population. Amusia was not related to auditory sensitivities but was related to musical training. Performance on the amusia measure strongly predicted musical skill but not emotional responsiveness to music, which was better predicted by general auditory sensitivities. This study represents the first time amusia has been examined in a population with a known neurodevelopmental genetic disorder with a range of cognitive abilities. Results have implications for the relationships across different levels of auditory processing, musical skill development, and emotional responsiveness to music, as well as the understanding of gene-brain-behavior relationships in individuals with WS and typically developing individuals with and without amusia.

  18. Cross-modal attention influences auditory contrast sensitivity: Decreasing visual load improves auditory thresholds for amplitude- and frequency-modulated sounds.

    Science.gov (United States)

    Ciaramitaro, Vivian M; Chow, Hiu Mei; Eglington, Luke G

    2017-03-01

    We used a cross-modal dual task to examine how changing visual-task demands influenced auditory processing, namely auditory thresholds for amplitude- and frequency-modulated sounds. Observers had to attend to two consecutive intervals of sounds and report which interval contained the auditory stimulus that was modulated in amplitude (Experiment 1) or frequency (Experiment 2). During auditory-stimulus presentation, observers simultaneously attended to a rapid sequential visual presentation-two consecutive intervals of streams of visual letters-and had to report which interval contained a particular color (low load, demanding less attentional resources) or, in separate blocks of trials, which interval contained more of a target letter (high load, demanding more attentional resources). We hypothesized that if attention is a shared resource across vision and audition, an easier visual task should free up more attentional resources for auditory processing on an unrelated task, hence improving auditory thresholds. Auditory detection thresholds were lower-that is, auditory sensitivity was improved-for both amplitude- and frequency-modulated sounds when observers engaged in a less demanding (compared to a more demanding) visual task. In accord with previous work, our findings suggest that visual-task demands can influence the processing of auditory information on an unrelated concurrent task, providing support for shared attentional resources. More importantly, our results suggest that attending to information in a different modality, cross-modal attention, can influence basic auditory contrast sensitivity functions, highlighting potential similarities between basic mechanisms for visual and auditory attention.

  19. Planning music-based amelioration and training in infancy and childhood based on neural evidence.

    Science.gov (United States)

    Huotilainen, Minna; Tervaniemi, Mari

    2018-05-04

    Music-based amelioration and training of the developing auditory system has a long tradition, and recent neuroscientific evidence supports using music in this manner. Here, we present the available evidence showing that various music-related activities result in positive changes in brain structure and function, becoming helpful for auditory cognitive processes in everyday life situations for individuals with typical neural development and especially for individuals with hearing, learning, attention, or other deficits that may compromise auditory processing. We also compare different types of music-based training and show how their effects have been investigated with neural methods. Finally, we take a critical position on the multitude of error sources found in amelioration and training studies and on publication bias in the field. We discuss some future improvements of these issues in the field of music-based training and their potential results at the neural and behavioral levels in infants and children for the advancement of the field and for a more complete understanding of the possibilities and significance of the training. © 2018 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.

  20. Auditory preferences of young children with and without hearing loss for meaningful auditory-visual compound stimuli.

    Science.gov (United States)

    Zupan, Barbra; Sussman, Joan E

    2009-01-01

    Experiment 1 examined modality preferences in children and adults with normal hearing to combined auditory-visual stimuli. Experiment 2 compared modality preferences in children using cochlear implants participating in an auditory emphasized therapy approach to the children with normal hearing from Experiment 1. A second objective in both experiments was to evaluate the role of familiarity in these preferences. Participants were exposed to randomized blocks of photographs and sounds of ten familiar and ten unfamiliar animals in auditory-only, visual-only and auditory-visual trials. Results indicated an overall auditory preference in children, regardless of hearing status, and a visual preference in adults. Familiarity only affected modality preferences in adults who showed a strong visual preference to unfamiliar stimuli only. The similar degree of auditory responses in children with hearing loss to those from children with normal hearing is an original finding and lends support to an auditory emphasis for habilitation. Readers will be able to (1) Describe the pattern of modality preferences reported in young children without hearing loss; (2) Recognize that differences in communication mode may affect modality preferences in young children with hearing loss; and (3) Understand the role of familiarity in modality preferences in children with and without hearing loss.

  1. The Relationship between Types of Attention and Auditory Processing Skills: Reconsidering Auditory Processing Disorder Diagnosis

    Science.gov (United States)

    Stavrinos, Georgios; Iliadou, Vassiliki-Maria; Edwards, Lindsey; Sirimanna, Tony; Bamiou, Doris-Eva

    2018-01-01

    Measures of attention have been found to correlate with specific auditory processing tests in samples of children suspected of Auditory Processing Disorder (APD), but these relationships have not been adequately investigated. Despite evidence linking auditory attention and deficits/symptoms of APD, measures of attention are not routinely used in APD diagnostic protocols. The aim of the study was to examine the relationship between auditory and visual attention tests and auditory processing tests in children with APD and to assess whether a proposed diagnostic protocol for APD, including measures of attention, could provide useful information for APD management. A pilot study including 27 children, aged 7–11 years, referred for APD assessment was conducted. The validated test of everyday attention for children, with visual and auditory attention tasks, the listening in spatialized noise sentences test, the children's communication checklist questionnaire and tests from a standard APD diagnostic test battery were administered. Pearson's partial correlation analysis examining the relationship between these tests and Cochrane's Q test analysis comparing proportions of diagnosis under each proposed battery were conducted. Divided auditory and divided auditory-visual attention strongly correlated with the dichotic digits test, r = 0.68, p attention battery identified as having Attention Deficits (ADs). The proposed APD battery excluding AD cases did not have a significantly different diagnosis proportion than the standard APD battery. Finally, the newly proposed diagnostic battery, identifying an inattentive subtype of APD, identified five children who would have otherwise been considered not having ADs. The findings show that a subgroup of children with APD demonstrates underlying sustained and divided attention deficits. Attention deficits in children with APD appear to be centred around the auditory modality but further examination of types of attention in both

  2. Auditory interfaces: The human perceiver

    Science.gov (United States)

    Colburn, H. Steven

    1991-01-01

    A brief introduction to the basic auditory abilities of the human perceiver with particular attention toward issues that may be important for the design of auditory interfaces is presented. The importance of appropriate auditory inputs to observers with normal hearing is probably related to the role of hearing as an omnidirectional, early warning system and to its role as the primary vehicle for communication of strong personal feelings.

  3. Visual Temporal Acuity Is Related to Auditory Speech Perception Abilities in Cochlear Implant Users.

    Science.gov (United States)

    Jahn, Kelly N; Stevenson, Ryan A; Wallace, Mark T

    significantly better visual temporal acuity than nonproficient CI users. These findings provide the first behavioral evidence that visual temporal acuity is related to post implantation CI proficiency as indexed by auditory-only speech perception performance. These preliminary data bring to light the possible future role of visual temporal acuity in predicting CI outcomes before implantation, as well as the possible utility of visual training methods in improving CI outcomes.

  4. Auditory attention activates peripheral visual cortex.

    Directory of Open Access Journals (Sweden)

    Anthony D Cate

    Full Text Available BACKGROUND: Recent neuroimaging studies have revealed that putatively unimodal regions of visual cortex can be activated during auditory tasks in sighted as well as in blind subjects. However, the task determinants and functional significance of auditory occipital activations (AOAs remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: We examined AOAs in an intermodal selective attention task to distinguish whether they were stimulus-bound or recruited by higher-level cognitive operations associated with auditory attention. Cortical surface mapping showed that auditory occipital activations were localized to retinotopic visual cortex subserving the far peripheral visual field. AOAs depended strictly on the sustained engagement of auditory attention and were enhanced in more difficult listening conditions. In contrast, unattended sounds produced no AOAs regardless of their intensity, spatial location, or frequency. CONCLUSIONS/SIGNIFICANCE: Auditory attention, but not passive exposure to sounds, routinely activated peripheral regions of visual cortex when subjects attended to sound sources outside the visual field. Functional connections between auditory cortex and visual cortex subserving the peripheral visual field appear to underlie the generation of AOAs, which may reflect the priming of visual regions to process soon-to-appear objects associated with unseen sound sources.

  5. Neuronal Correlates of Auditory Streaming in Monkey Auditory Cortex for Tone Sequences without Spectral Differences

    Directory of Open Access Journals (Sweden)

    Stanislava Knyazeva

    2018-01-01

    Full Text Available This study finds a neuronal correlate of auditory perceptual streaming in the primary auditory cortex for sequences of tone complexes that have the same amplitude spectrum but a different phase spectrum. Our finding is based on microelectrode recordings of multiunit activity from 270 cortical sites in three awake macaque monkeys. The monkeys were presented with repeated sequences of a tone triplet that consisted of an A tone, a B tone, another A tone and then a pause. The A and B tones were composed of unresolved harmonics formed by adding the harmonics in cosine phase, in alternating phase, or in random phase. A previous psychophysical study on humans revealed that when the A and B tones are similar, humans integrate them into a single auditory stream; when the A and B tones are dissimilar, humans segregate them into separate auditory streams. We found that the similarity of neuronal rate responses to the triplets was highest when all A and B tones had cosine phase. Similarity was intermediate when the A tones had cosine phase and the B tones had alternating phase. Similarity was lowest when the A tones had cosine phase and the B tones had random phase. The present study corroborates and extends previous reports, showing similar correspondences between neuronal activity in the primary auditory cortex and auditory streaming of sound sequences. It also is consistent with Fishman’s population separation model of auditory streaming.

  6. Neuronal Correlates of Auditory Streaming in Monkey Auditory Cortex for Tone Sequences without Spectral Differences.

    Science.gov (United States)

    Knyazeva, Stanislava; Selezneva, Elena; Gorkin, Alexander; Aggelopoulos, Nikolaos C; Brosch, Michael

    2018-01-01

    This study finds a neuronal correlate of auditory perceptual streaming in the primary auditory cortex for sequences of tone complexes that have the same amplitude spectrum but a different phase spectrum. Our finding is based on microelectrode recordings of multiunit activity from 270 cortical sites in three awake macaque monkeys. The monkeys were presented with repeated sequences of a tone triplet that consisted of an A tone, a B tone, another A tone and then a pause. The A and B tones were composed of unresolved harmonics formed by adding the harmonics in cosine phase, in alternating phase, or in random phase. A previous psychophysical study on humans revealed that when the A and B tones are similar, humans integrate them into a single auditory stream; when the A and B tones are dissimilar, humans segregate them into separate auditory streams. We found that the similarity of neuronal rate responses to the triplets was highest when all A and B tones had cosine phase. Similarity was intermediate when the A tones had cosine phase and the B tones had alternating phase. Similarity was lowest when the A tones had cosine phase and the B tones had random phase. The present study corroborates and extends previous reports, showing similar correspondences between neuronal activity in the primary auditory cortex and auditory streaming of sound sequences. It also is consistent with Fishman's population separation model of auditory streaming.

  7. 75 FR 16514 - Bayer Material Science, LLC, Formally Known as Sheffield Plastics, Including On-Site Leased...

    Science.gov (United States)

    2010-04-01

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-71,045] Bayer Material Science... January 8th, 2010, applicable to workers of Bayer Material Science, LLC, formally known as Sheffield... polycarbonate film products. Information shows that Bayer Material Science, LLC was formally known as Sheffield...

  8. Pre-Attentive Auditory Processing of Lexicality

    Science.gov (United States)

    Jacobsen, Thomas; Horvath, Janos; Schroger, Erich; Lattner, Sonja; Widmann, Andreas; Winkler, Istvan

    2004-01-01

    The effects of lexicality on auditory change detection based on auditory sensory memory representations were investigated by presenting oddball sequences of repeatedly presented stimuli, while participants ignored the auditory stimuli. In a cross-linguistic study of Hungarian and German participants, stimulus sequences were composed of words that…

  9. Management Development Experiences and Expectations: Informal vs Formal Learning

    Science.gov (United States)

    Becker, Karen; Bish, Adelle

    2017-01-01

    Purpose: Many organisations are reconsidering their investment in formal education and training, in favour of more informal approaches to learning such as mentoring, temporary assignments, stretch assignments, and job rotation. The purpose of this paper is to explore the ways in which managers have developed capabilities for their roles thus far…

  10. 321 Intervention Models of Non-formal Education for the ...

    African Journals Online (AJOL)

    Nekky Umera

    providing skills needed for the target participants to obtain employment or vocational trades ... difficulties if provided at an adequate level, in preventing child abuse and neglect and ... training of non-formal education programmes, show that learning readily occurs when .... it at the market place or motor parks. This extends to ...

  11. Unilateral versus bilateral upper limb training after stroke: The upper limb training after stroke clinical trial

    OpenAIRE

    van Delden, AL; Peper, CE; Nienhuys, KN; Zijp, NI; Beek, PJ; Kwakkel, G

    2013-01-01

    This article is available open access through the publisher’s website at the link below. Copyright © 2013 American Heart Association, Inc. Background and Purpose — Unilateral and bilateral training protocols for upper limb rehabilitation after stroke represent conceptually contrasting approaches with the same ultimate goal. In a randomized controlled trial, we compared the merits of modified constraint-induced movement therapy, modified bilateral arm training with rhythmic auditory cueing,...

  12. Plasticity in the Primary Auditory Cortex, Not What You Think it is: Implications for Basic and Clinical Auditory Neuroscience

    Science.gov (United States)

    Weinberger, Norman M.

    2013-01-01

    Standard beliefs that the function of the primary auditory cortex (A1) is the analysis of sound have proven to be incorrect. Its involvement in learning, memory and other complex processes in both animals and humans is now well-established, although often not appreciated. Auditory coding is strongly modifed by associative learning, evident as associative representational plasticity (ARP) in which the representation of an acoustic dimension, like frequency, is re-organized to emphasize a sound that has become behaviorally important. For example, the frequency tuning of a cortical neuron can be shifted to match that of a significant sound and the representational area of sounds that acquire behavioral importance can be increased. ARP depends on the learning strategy used to solve an auditory problem and the increased cortical area confers greater strength of auditory memory. Thus, primary auditory cortex is involved in cognitive processes, transcending its assumed function of auditory stimulus analysis. The implications for basic neuroscience and clinical auditory neuroscience are presented and suggestions for remediation of auditory processing disorders are introduced. PMID:25356375

  13. Phantom auditory sensation in rats: an animal model for tinnitus.

    Science.gov (United States)

    Jastreboff, P J; Brennan, J F; Coleman, J K; Sasaki, C T

    1988-12-01

    In order to measure tinnitus induced by sodium salicylate injections, 84 pigmented rats, distributed among 14 groups in five experiments, were used in a conditioned suppression paradigm. In Experiment 1, all groups were trained with a conditioned stimulus (CS) consisting of the offset of a continuous background noise. One group began salicylate injections before Pavlovian training, a second group started injections after training, and a control group received daily saline injections. Resistance to extinction was profound when injections started before training, but minimal when initiated after training, which suggests that salicylate-induced effects acquired differential conditioned value. In Experiment 2 we mimicked the salicylate treatments by substituting a 7 kHz tone in place of respective injections, resulting in effects equivalent to salicylate-induced behavior. In a third experiment we included a 3 kHz CS, and again replicated the salicylate findings. In Experiment 4 we decreased the motivational level, and the sequential relation between salicylate-induced effects and suppression training was retained. Finally, no salicylate effects emerged when the visual modality was used. These findings support the demonstration of phantom auditory sensations in animals.

  14. CT colonography training for radiographers - a formal evaluation

    International Nuclear Information System (INIS)

    Haycock, A.; Burling, D.; Wylie, P.; Muckian, J.; Ilangovan, R.; Thomas-Gibson, S.

    2010-01-01

    Aims: To evaluate the efficacy of a new intensive 'hands-on' course designed to train small teams of radiographers in computed tomography colonography (CTC) technique and initial interpretation for patient triage. Materials and methods: The course comprised small-group lectures, active participation in the daily CTC service with practical technique and image interpretation training by experienced radiologists and radiographers. Evaluation was by assessment of knowledge using randomized sets of multiple choice questions (MCQ; pre/post-course), practical technique using checklists and expert global scores, and interpretation performance outcomes using randomized pre/post-course test datasets (five validated CTC examinations each). Paired t-tests were used to investigate change in performance for MCQ score and interpretation accuracy. Results: Thirteen courses with 49 participants were evaluated over 2 years. Practical skills were high, with mean (SD) checklist scores of 14/15 (0.85) and global scores of 26/30 (2.3). MCQ scores increased significantly from a mean of 59% pre-course to 69% post-course, p 10 mm) detection rates also improved significantly from 49% to 60%, p = 0.002. Conclusion: Structured training in CTC can significantly improve knowledge and interpretation skills of radiographers, while assessing safe procedural performance. Implementation of similar programmes nationally may help reduce performance gaps between centres.

  15. A Brain System for Auditory Working Memory.

    Science.gov (United States)

    Kumar, Sukhbinder; Joseph, Sabine; Gander, Phillip E; Barascud, Nicolas; Halpern, Andrea R; Griffiths, Timothy D

    2016-04-20

    The brain basis for auditory working memory, the process of actively maintaining sounds in memory over short periods of time, is controversial. Using functional magnetic resonance imaging in human participants, we demonstrate that the maintenance of single tones in memory is associated with activation in auditory cortex. In addition, sustained activation was observed in hippocampus and inferior frontal gyrus. Multivoxel pattern analysis showed that patterns of activity in auditory cortex and left inferior frontal gyrus distinguished the tone that was maintained in memory. Functional connectivity during maintenance was demonstrated between auditory cortex and both the hippocampus and inferior frontal cortex. The data support a system for auditory working memory based on the maintenance of sound-specific representations in auditory cortex by projections from higher-order areas, including the hippocampus and frontal cortex. In this work, we demonstrate a system for maintaining sound in working memory based on activity in auditory cortex, hippocampus, and frontal cortex, and functional connectivity among them. Specifically, our work makes three advances from the previous work. First, we robustly demonstrate hippocampal involvement in all phases of auditory working memory (encoding, maintenance, and retrieval): the role of hippocampus in working memory is controversial. Second, using a pattern classification technique, we show that activity in the auditory cortex and inferior frontal gyrus is specific to the maintained tones in working memory. Third, we show long-range connectivity of auditory cortex to hippocampus and frontal cortex, which may be responsible for keeping such representations active during working memory maintenance. Copyright © 2016 Kumar et al.

  16. (A)musicality in Williams syndrome: examining relationships among auditory perception, musical skill, and emotional responsiveness to music

    Science.gov (United States)

    Lense, Miriam D.; Shivers, Carolyn M.; Dykens, Elisabeth M.

    2013-01-01

    Williams syndrome (WS), a genetic, neurodevelopmental disorder, is of keen interest to music cognition researchers because of its characteristic auditory sensitivities and emotional responsiveness to music. However, actual musical perception and production abilities are more variable. We examined musicality in WS through the lens of amusia and explored how their musical perception abilities related to their auditory sensitivities, musical production skills, and emotional responsiveness to music. In our sample of 73 adolescents and adults with WS, 11% met criteria for amusia, which is higher than the 4% prevalence rate reported in the typically developing (TD) population. Amusia was not related to auditory sensitivities but was related to musical training. Performance on the amusia measure strongly predicted musical skill but not emotional responsiveness to music, which was better predicted by general auditory sensitivities. This study represents the first time amusia has been examined in a population with a known neurodevelopmental genetic disorder with a range of cognitive abilities. Results have implications for the relationships across different levels of auditory processing, musical skill development, and emotional responsiveness to music, as well as the understanding of gene-brain-behavior relationships in individuals with WS and TD individuals with and without amusia. PMID:23966965

  17. Functional studies of the human auditory cortex, auditory memory and musical hallucinations

    International Nuclear Information System (INIS)

    Goycoolea, Marcos; Mena, Ismael; Neubauer, Sonia

    2004-01-01

    Objectives. 1. To determine which areas of the cerebral cortex are activated stimulating the left ear with pure tones, and what type of stimulation occurs (eg. excitatory or inhibitory) in these different areas. 2. To use this information as an initial step to develop a normal functional data base for future studies. 3. To try to determine if there is a biological substrate to the process of recalling previous auditory perceptions and if possible, suggest a locus for auditory memory. Method. Brain perfusion single photon emission computerized tomography (SPECT) evaluation was conducted: 1-2) Using auditory stimulation with pure tones in 4 volunteers with normal hearing. 3) In a patient with bilateral profound hearing loss who had auditory perception of previous musical experiences; while injected with Tc99m HMPAO while she was having the sensation of hearing a well known melody. Results. Both in the patient with auditory hallucinations and the normal controls -stimulated with pure tones- there was a statistically significant increase in perfusion in Brodmann's area 39, more intense on the right side (right to left p < 0.05). With a lesser intensity there was activation in the adjacent area 40 and there was intense activation also in the executive frontal cortex areas 6, 8, 9, and 10 of Brodmann. There was also activation of area 7 of Brodmann; an audio-visual association area; more marked on the right side in the patient and the normal stimulated controls. In the subcortical structures there was also marked activation in the patient with hallucinations in both lentiform nuclei, thalamus and caudate nuclei also more intense in the right hemisphere, 5, 4.7 and 4.2 S.D. above the mean respectively and 5, 3.3, and 3 S.D. above the normal mean in the left hemisphere respectively. Similar findings were observed in normal controls. Conclusions. After auditory stimulation with pure tones in the left ear of normal female volunteers, there is bilateral activation of area 39

  18. Formal and Informal Work Group Relationships With Performance: A Moderation Model Using Social

    National Research Council Canada - National Science Library

    Knost, Benjamin R

    2006-01-01

    .... This field study, conducted at a military training course, attempted to further refine this social network-performance relationship by modeling characteristics of both the formal and informal work...

  19. An auditory multiclass brain-computer interface with natural stimuli: Usability evaluation with healthy participants and a motor impaired end user.

    Science.gov (United States)

    Simon, Nadine; Käthner, Ivo; Ruf, Carolin A; Pasqualotto, Emanuele; Kübler, Andrea; Halder, Sebastian

    2014-01-01

    Brain-computer interfaces (BCIs) can serve as muscle independent communication aids. Persons, who are unable to control their eye muscles (e.g., in the completely locked-in state) or have severe visual impairments for other reasons, need BCI systems that do not rely on the visual modality. For this reason, BCIs that employ auditory stimuli were suggested. In this study, a multiclass BCI spelling system was implemented that uses animal voices with directional cues to code rows and columns of a letter matrix. To reveal possible training effects with the system, 11 healthy participants performed spelling tasks on 2 consecutive days. In a second step, the system was tested by a participant with amyotrophic lateral sclerosis (ALS) in two sessions. In the first session, healthy participants spelled with an average accuracy of 76% (3.29 bits/min) that increased to 90% (4.23 bits/min) on the second day. Spelling accuracy by the participant with ALS was 20% in the first and 47% in the second session. The results indicate a strong training effect for both the healthy participants and the participant with ALS. While healthy participants reached high accuracies in the first session and second session, accuracies for the participant with ALS were not sufficient for satisfactory communication in both sessions. More training sessions might be needed to improve spelling accuracies. The study demonstrated the feasibility of the auditory BCI with healthy users and stresses the importance of training with auditory multiclass BCIs, especially for potential end-users of BCI with disease.

  20. An auditory multiclass brain-computer interface with natural stimuli: usability evaluation with healthy participants and a motor impaired end user

    Directory of Open Access Journals (Sweden)

    Nadine eSimon

    2015-01-01

    Full Text Available Brain-computer interfaces (BCIs can serve as muscle independent communication aids. Persons, who are unable to control their eye muscles (e.g. in the completely locked-in state or have severe visual impairments for other reasons, need BCI systems that do not rely on the visual modality. For this reason, BCIs that employ auditory stimuli were suggested. In this study, a multiclass BCI spelling system was implemented that uses animal voices with directional cues to code rows and columns of a letter matrix. To reveal possible training effects with the system, 11 healthy participants performed spelling tasks on two consecutive days. In a second step, the system was tested by a participant with amyotrophic lateral sclerosis (ALS in two sessions. In the first session, healthy participants spelled with an average accuracy of 76% (3.29 bits/min that increased to 90% (4.23 bits/min on the second day. Spelling accuracy by the participant with ALS was 20% in the first and 47% in the second session. The results indicate a strong training effect for both the healthy participants and the participant with ALS. While healthy participants reached high accuracies in the first session and second session, accuracies for the participant with ALS were not sufficient for satisfactory communication in both sessions. More training sessions might be needed to improve spelling accuracies. The study demonstrated the feasibility of the auditory BCI with healthy users and stresses the importance of training with auditory multiclass BCIs, especially for potential end-users of BCI with disease.

  1. Musical Expectations Enhance Auditory Cortical Processing in Musicians: A Magnetoencephalography Study.

    Science.gov (United States)

    Park, Jeong Mi; Chung, Chun Kee; Kim, June Sic; Lee, Kyung Myun; Seol, Jaeho; Yi, Suk Won

    2018-01-15

    The present study investigated the influence of musical expectations on auditory representations in musicians and non-musicians using magnetoencephalography (MEG). Neuroscientific studies have demonstrated that musical syntax is processed in the inferior frontal gyri, eliciting an early right anterior negativity (ERAN), and anatomical evidence has shown that interconnections occur between the frontal cortex and the belt and parabelt regions in the auditory cortex (AC). Therefore, we anticipated that musical expectations would mediate neural activities in the AC via an efferent pathway. To test this hypothesis, we measured the auditory-evoked fields (AEFs) of seven musicians and seven non-musicians while they were listening to a five-chord progression in which the expectancy of the third chord was manipulated (highly expected, less expected, and unexpected). The results revealed that highly expected chords elicited shorter N1m (negative AEF at approximately 100 ms) and P2m (positive AEF at approximately 200 ms) latencies and larger P2m amplitudes in the AC than less-expected and unexpected chords. The relations between P2m amplitudes/latencies and harmonic expectations were similar between the groups; however, musicians' results were more remarkable than those of non-musicians. These findings suggest that auditory cortical processing is enhanced by musical knowledge and long-term training in a top-down manner, which is reflected in shortened N1m and P2m latencies and enhanced P2m amplitudes in the AC. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Psychophysical evidence for auditory motion parallax.

    Science.gov (United States)

    Genzel, Daria; Schutte, Michael; Brimijoin, W Owen; MacNeilage, Paul R; Wiegrebe, Lutz

    2018-04-17

    Distance is important: From an ecological perspective, knowledge about the distance to either prey or predator is vital. However, the distance of an unknown sound source is particularly difficult to assess, especially in anechoic environments. In vision, changes in perspective resulting from observer motion produce a reliable, consistent, and unambiguous impression of depth known as motion parallax. Here we demonstrate with formal psychophysics that humans can exploit auditory motion parallax, i.e., the change in the dynamic binaural cues elicited by self-motion, to assess the relative depths of two sound sources. Our data show that sensitivity to relative depth is best when subjects move actively; performance deteriorates when subjects are moved by a motion platform or when the sound sources themselves move. This is true even though the dynamic binaural cues elicited by these three types of motion are identical. Our data demonstrate a perceptual strategy to segregate intermittent sound sources in depth and highlight the tight interaction between self-motion and binaural processing that allows assessment of the spatial layout of complex acoustic scenes.

  3. An analysis of nonlinear dynamics underlying neural activity related to auditory induction in the rat auditory cortex.

    Science.gov (United States)

    Noto, M; Nishikawa, J; Tateno, T

    2016-03-24

    A sound interrupted by silence is perceived as discontinuous. However, when high-intensity noise is inserted during the silence, the missing sound may be perceptually restored and be heard as uninterrupted. This illusory phenomenon is called auditory induction. Recent electrophysiological studies have revealed that auditory induction is associated with the primary auditory cortex (A1). Although experimental evidence has been accumulating, the neural mechanisms underlying auditory induction in A1 neurons are poorly understood. To elucidate this, we used both experimental and computational approaches. First, using an optical imaging method, we characterized population responses across auditory cortical fields to sound and identified five subfields in rats. Next, we examined neural population activity related to auditory induction with high temporal and spatial resolution in the rat auditory cortex (AC), including the A1 and several other AC subfields. Our imaging results showed that tone-burst stimuli interrupted by a silent gap elicited early phasic responses to the first tone and similar or smaller responses to the second tone following the gap. In contrast, tone stimuli interrupted by broadband noise (BN), considered to cause auditory induction, considerably suppressed or eliminated responses to the tone following the noise. Additionally, tone-burst stimuli that were interrupted by notched noise centered at the tone frequency, which is considered to decrease the strength of auditory induction, partially restored the second responses from the suppression caused by BN. To phenomenologically mimic the neural population activity in the A1 and thus investigate the mechanisms underlying auditory induction, we constructed a computational model from the periphery through the AC, including a nonlinear dynamical system. The computational model successively reproduced some of the above-mentioned experimental results. Therefore, our results suggest that a nonlinear, self

  4. Formal matrices

    CERN Document Server

    Krylov, Piotr

    2017-01-01

    This monograph is a comprehensive account of formal matrices, examining homological properties of modules over formal matrix rings and summarising the interplay between Morita contexts and K theory. While various special types of formal matrix rings have been studied for a long time from several points of view and appear in various textbooks, for instance to examine equivalences of module categories and to illustrate rings with one-sided non-symmetric properties, this particular class of rings has, so far, not been treated systematically. Exploring formal matrix rings of order 2 and introducing the notion of the determinant of a formal matrix over a commutative ring, this monograph further covers the Grothendieck and Whitehead groups of rings. Graduate students and researchers interested in ring theory, module theory and operator algebras will find this book particularly valuable. Containing numerous examples, Formal Matrices is a largely self-contained and accessible introduction to the topic, assuming a sol...

  5. Discrimination of communication vocalizations by single neurons and groups of neurons in the auditory midbrain.

    Science.gov (United States)

    Schneider, David M; Woolley, Sarah M N

    2010-06-01

    Many social animals including songbirds use communication vocalizations for individual recognition. The perception of vocalizations depends on the encoding of complex sounds by neurons in the ascending auditory system, each of which is tuned to a particular subset of acoustic features. Here, we examined how well the responses of single auditory neurons could be used to discriminate among bird songs and we compared discriminability to spectrotemporal tuning. We then used biologically realistic models of pooled neural responses to test whether the responses of groups of neurons discriminated among songs better than the responses of single neurons and whether discrimination by groups of neurons was related to spectrotemporal tuning and trial-to-trial response variability. The responses of single auditory midbrain neurons could be used to discriminate among vocalizations with a wide range of abilities, ranging from chance to 100%. The ability to discriminate among songs using single neuron responses was not correlated with spectrotemporal tuning. Pooling the responses of pairs of neurons generally led to better discrimination than the average of the two inputs and the most discriminating input. Pooling the responses of three to five single neurons continued to improve neural discrimination. The increase in discriminability was largest for groups of neurons with similar spectrotemporal tuning. Further, we found that groups of neurons with correlated spike trains achieved the largest gains in discriminability. We simulated neurons with varying levels of temporal precision and measured the discriminability of responses from single simulated neurons and groups of simulated neurons. Simulated neurons with biologically observed levels of temporal precision benefited more from pooling correlated inputs than did neurons with highly precise or imprecise spike trains. These findings suggest that pooling correlated neural responses with the levels of precision observed in the

  6. Predictors of auditory performance in hearing-aid users: The role of cognitive function and auditory lifestyle (A)

    DEFF Research Database (Denmark)

    Vestergaard, Martin David

    2006-01-01

    no objective benefit can be measured. It has been suggested that lack of agreement between various hearing-aid outcome components can be explained by individual differences in cognitive function and auditory lifestyle. We measured speech identification, self-report outcome, spectral and temporal resolution...... of hearing, cognitive skills, and auditory lifestyle in 25 new hearing-aid users. The purpose was to assess the predictive power of the nonauditory measures while looking at the relationships between measures from various auditory-performance domains. The results showed that only moderate correlation exists...... between objective and subjective hearing-aid outcome. Different self-report outcome measures showed a different amount of correlation with objective auditory performance. Cognitive skills were found to play a role in explaining speech performance and spectral and temporal abilities, and auditory lifestyle...

  7. Barriers to formal emergency obstetric care services' utilization.

    Science.gov (United States)

    Essendi, Hildah; Mills, Samuel; Fotso, Jean-Christophe

    2011-06-01

    Access to appropriate health care including skilled birth attendance at delivery and timely referrals to emergency obstetric care services can greatly reduce maternal deaths and disabilities, yet women in sub-Saharan Africa continue to face limited access to skilled delivery services. This study relies on qualitative data collected from residents of two slums in Nairobi, Kenya in 2006 to investigate views surrounding barriers to the uptake of formal obstetric services. Data indicate that slum dwellers prefer formal to informal obstetric services. However, their efforts to utilize formal emergency obstetric care services are constrained by various factors including ineffective health decision making at the family level, inadequate transport facilities to formal care facilities and insecurity at night, high cost of health services, and inhospitable formal service providers and poorly equipped health facilities in the slums. As a result, a majority of slum dwellers opt for delivery services offered by traditional birth attendants (TBAs) who lack essential skills and equipment, thereby increasing the risk of death and disability. Based on these findings, we maintain that urban poor women face barriers to access of formal obstetric services at family, community, and health facility levels, and efforts to reduce maternal morbidity and mortality among the urban poor must tackle the barriers, which operate at these different levels to hinder women's access to formal obstetric care services. We recommend continuous community education on symptoms of complications related to pregnancy and timely referral. A focus on training of health personnel on "public relations" could also restore confidence in the health-care system with this populace. Further, we recommend improving the health facilities in the slums, improving the services provided by TBAs through capacity building as well as involving TBAs in referral processes to make access to services timely. Measures can also be

  8. Central auditory processing outcome after stroke in children

    Directory of Open Access Journals (Sweden)

    Karla M. I. Freiria Elias

    2014-09-01

    Full Text Available Objective To investigate central auditory processing in children with unilateral stroke and to verify whether the hemisphere affected by the lesion influenced auditory competence. Method 23 children (13 male between 7 and 16 years old were evaluated through speech-in-noise tests (auditory closure; dichotic digit test and staggered spondaic word test (selective attention; pitch pattern and duration pattern sequence tests (temporal processing and their results were compared with control children. Auditory competence was established according to the performance in auditory analysis ability. Results Was verified similar performance between groups in auditory closure ability and pronounced deficits in selective attention and temporal processing abilities. Most children with stroke showed an impaired auditory ability in a moderate degree. Conclusion Children with stroke showed deficits in auditory processing and the degree of impairment was not related to the hemisphere affected by the lesion.

  9. Auditory and motor imagery modulate learning in music performance.

    Science.gov (United States)

    Brown, Rachel M; Palmer, Caroline

    2013-01-01

    Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of

  10. Auditory and motor imagery modulate learning in music performance

    Science.gov (United States)

    Brown, Rachel M.; Palmer, Caroline

    2013-01-01

    Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of

  11. Auditory-vocal mirroring in songbirds.

    Science.gov (United States)

    Mooney, Richard

    2014-01-01

    Mirror neurons are theorized to serve as a neural substrate for spoken language in humans, but the existence and functions of auditory-vocal mirror neurons in the human brain remain largely matters of speculation. Songbirds resemble humans in their capacity for vocal learning and depend on their learned songs to facilitate courtship and individual recognition. Recent neurophysiological studies have detected putative auditory-vocal mirror neurons in a sensorimotor region of the songbird's brain that plays an important role in expressive and receptive aspects of vocal communication. This review discusses the auditory and motor-related properties of these cells, considers their potential role on song learning and communication in relation to classical studies of birdsong, and points to the circuit and developmental mechanisms that may give rise to auditory-vocal mirroring in the songbird's brain.

  12. Noise perception in the workplace and auditory and extra-auditory symptoms referred by university professors.

    Science.gov (United States)

    Servilha, Emilse Aparecida Merlin; Delatti, Marina de Almeida

    2012-01-01

    To investigate the correlation between noise in the work environment and auditory and extra-auditory symptoms referred by university professors. Eighty five professors answered a questionnaire about identification, functional status, and health. The relationship between occupational noise and auditory and extra-auditory symptoms was investigated. Statistical analysis considered the significance level of 5%. None of the professors indicated absence of noise. Responses were grouped in Always (A) (n=21) and Not Always (NA) (n=63). Significant sources of noise were both the yard and another class, which were classified as high intensity; poor acoustic and echo. There was no association between referred noise and health complaints, such as digestive, hormonal, osteoarticular, dental, circulatory, respiratory and emotional complaints. There was also no association between referred noise and hearing complaints, and the group A showed higher occurrence of responses regarding noise nuisance, hearing difficulty and dizziness/vertigo, tinnitus, and earache. There was association between referred noise and voice alterations, and the group NA presented higher percentage of cases with voice alterations than the group A. The university environment was considered noisy; however, there was no association with auditory and extra-auditory symptoms. The hearing complaints were more evident among professors in the group A. Professors' health is a multi-dimensional product and, therefore, noise cannot be considered the only aggravation factor.

  13. Relation between Working Memory Capacity and Auditory Stream Segregation in Children with Auditory Processing Disorder.

    Science.gov (United States)

    Lotfi, Yones; Mehrkian, Saiedeh; Moossavi, Abdollah; Zadeh, Soghrat Faghih; Sadjedi, Hamed

    2016-03-01

    This study assessed the relationship between working memory capacity and auditory stream segregation by using the concurrent minimum audible angle in children with a diagnosed auditory processing disorder (APD). The participants in this cross-sectional, comparative study were 20 typically developing children and 15 children with a diagnosed APD (age, 9-11 years) according to the subtests of multiple-processing auditory assessment. Auditory stream segregation was investigated using the concurrent minimum audible angle. Working memory capacity was evaluated using the non-word repetition and forward and backward digit span tasks. Nonparametric statistics were utilized to compare the between-group differences. The Pearson correlation was employed to measure the degree of association between working memory capacity and the localization tests between the 2 groups. The group with APD had significantly lower scores than did the typically developing subjects in auditory stream segregation and working memory capacity. There were significant negative correlations between working memory capacity and the concurrent minimum audible angle in the most frontal reference location (0° azimuth) and lower negative correlations in the most lateral reference location (60° azimuth) in the children with APD. The study revealed a relationship between working memory capacity and auditory stream segregation in children with APD. The research suggests that lower working memory capacity in children with APD may be the possible cause of the inability to segregate and group incoming information.

  14. Auditory and motor imagery modulate learning in music performance

    Directory of Open Access Journals (Sweden)

    Rachel M. Brown

    2013-07-01

    Full Text Available Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians’ encoding (during Learning, as they practiced novel melodies, and retrieval (during Recall of those melodies. Pianists learned melodies by listening without performing (auditory learning or performing without sound (motor learning; following Learning, pianists performed the melodies from memory with auditory feedback (Recall. During either Learning (Experiment 1 or Recall (Experiment 2, pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced and temporal regularity (variability of quarter-note interonset intervals were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists’ pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2. Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1: Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2: Higher auditory imagery skill predicted greater temporal regularity during Recall in the

  15. Training to Facilitate Adaptation to Novel Sensory Environments

    Science.gov (United States)

    Bloomberg, J. J.; Peters, B. T.; Mulavara, A. P.; Brady, R. A.; Batson, C. D.; Ploutz-Snyder, R. J.; Cohen, H. S.

    2010-01-01

    After spaceflight, the process of readapting to Earth s gravity causes locomotor dysfunction. We are developing a gait training countermeasure to facilitate adaptive responses in locomotor function. Our training system is comprised of a treadmill placed on a motion-base facing a virtual visual scene that provides an unstable walking surface combined with incongruent visual flow designed to train subjects to rapidly adapt their gait patterns to changes in the sensory environment. The goal of our present study was to determine if training improved both the locomotor and dual-tasking ability responses to a novel sensory environment and to quantify the retention of training. Subjects completed three, 30-minute training sessions during which they walked on the treadmill while receiving discordant support surface and visual input. Control subjects walked on the treadmill without any support surface or visual alterations. To determine the efficacy of training, all subjects were then tested using a novel visual flow and support surface movement not previously experienced during training. This test was performed 20 minutes, 1 week, and 1, 3, and 6 months after the final training session. Stride frequency and auditory reaction time were collected as measures of postural stability and cognitive effort, respectively. Subjects who received training showed less alteration in stride frequency and auditory reaction time compared to controls. Trained subjects maintained their level of performance over 6 months. We conclude that, with training, individuals became more proficient at walking in novel discordant sensorimotor conditions and were able to devote more attention to competing tasks.

  16. Auditory steady-state responses in cochlear implant users: Effect of modulation frequency and stimulation artifacts.

    Science.gov (United States)

    Gransier, Robin; Deprez, Hanne; Hofmann, Michael; Moonen, Marc; van Wieringen, Astrid; Wouters, Jan

    2016-05-01

    Previous studies have shown that objective measures based on stimulation with low-rate pulse trains fail to predict the threshold levels of cochlear implant (CI) users for high-rate pulse trains, as used in clinical devices. Electrically evoked auditory steady-state responses (EASSRs) can be elicited by modulated high-rate pulse trains, and can potentially be used to objectively determine threshold levels of CI users. The responsiveness of the auditory pathway of profoundly hearing-impaired CI users to modulation frequencies is, however, not known. In the present study we investigated the responsiveness of the auditory pathway of CI users to a monopolar 500 pulses per second (pps) pulse train modulated between 1 and 100 Hz. EASSRs to forty-three modulation frequencies, elicited at the subject's maximum comfort level, were recorded by means of electroencephalography. Stimulation artifacts were removed by a linear interpolation between a pre- and post-stimulus sample (i.e., blanking). The phase delay across modulation frequencies was used to differentiate between the neural response and a possible residual stimulation artifact after blanking. Stimulation artifacts were longer than the inter-pulse interval of the 500pps pulse train for recording electrodes ipsilateral to the CI. As a result the stimulation artifacts could not be removed by artifact removal on the bases of linear interpolation for recording electrodes ipsilateral to the CI. However, artifact-free responses could be obtained in all subjects from recording electrodes contralateral to the CI, when subject specific reference electrodes (Cz or Fpz) were used. EASSRs to modulation frequencies within the 30-50 Hz range resulted in significant responses in all subjects. Only a small number of significant responses could be obtained, during a measurement period of 5 min, that originate from the brain stem (i.e., modulation frequencies in the 80-100 Hz range). This reduced synchronized activity of brain stem

  17. The relation between working memory capacity and auditory lateralization in children with auditory processing disorders.

    Science.gov (United States)

    Moossavi, Abdollah; Mehrkian, Saiedeh; Lotfi, Yones; Faghihzadeh, Soghrat; sajedi, Hamed

    2014-11-01

    Auditory processing disorder (APD) describes a complex and heterogeneous disorder characterized by poor speech perception, especially in noisy environments. APD may be responsible for a range of sensory processing deficits associated with learning difficulties. There is no general consensus about the nature of APD and how the disorder should be assessed or managed. This study assessed the effect of cognition abilities (working memory capacity) on sound lateralization in children with auditory processing disorders, in order to determine how "auditory cognition" interacts with APD. The participants in this cross-sectional comparative study were 20 typically developing and 17 children with a diagnosed auditory processing disorder (9-11 years old). Sound lateralization abilities investigated using inter-aural time (ITD) differences and inter-aural intensity (IID) differences with two stimuli (high pass and low pass noise) in nine perceived positions. Working memory capacity was evaluated using the non-word repetition, and forward and backward digits span tasks. Linear regression was employed to measure the degree of association between working memory capacity and localization tests between the two groups. Children in the APD group had consistently lower scores than typically developing subjects in lateralization and working memory capacity measures. The results showed working memory capacity had significantly negative correlation with ITD errors especially with high pass noise stimulus but not with IID errors in APD children. The study highlights the impact of working memory capacity on auditory lateralization. The finding of this research indicates that the extent to which working memory influences auditory processing depend on the type of auditory processing and the nature of stimulus/listening situation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Functional Mapping of the Human Auditory Cortex: fMRI Investigation of a Patient with Auditory Agnosia from Trauma to the Inferior Colliculus.

    Science.gov (United States)

    Poliva, Oren; Bestelmeyer, Patricia E G; Hall, Michelle; Bultitude, Janet H; Koller, Kristin; Rafal, Robert D

    2015-09-01

    To use functional magnetic resonance imaging to map the auditory cortical fields that are activated, or nonreactive, to sounds in patient M.L., who has auditory agnosia caused by trauma to the inferior colliculi. The patient cannot recognize speech or environmental sounds. Her discrimination is greatly facilitated by context and visibility of the speaker's facial movements, and under forced-choice testing. Her auditory temporal resolution is severely compromised. Her discrimination is more impaired for words differing in voice onset time than place of articulation. Words presented to her right ear are extinguished with dichotic presentation; auditory stimuli in the right hemifield are mislocalized to the left. We used functional magnetic resonance imaging to examine cortical activations to different categories of meaningful sounds embedded in a block design. Sounds activated the caudal sub-area of M.L.'s primary auditory cortex (hA1) bilaterally and her right posterior superior temporal gyrus (auditory dorsal stream), but not the rostral sub-area (hR) of her primary auditory cortex or the anterior superior temporal gyrus in either hemisphere (auditory ventral stream). Auditory agnosia reflects dysfunction of the auditory ventral stream. The ventral and dorsal auditory streams are already segregated as early as the primary auditory cortex, with the ventral stream projecting from hR and the dorsal stream from hA1. M.L.'s leftward localization bias, preserved audiovisual integration, and phoneme perception are explained by preserved processing in her right auditory dorsal stream.

  19. The Efficacy of Rehearsal Strategy on Auditory Short-Term Memory of Educable 5 to 8 Years Old Children with Down Syndrome

    Directory of Open Access Journals (Sweden)

    Esmaeil Esmaieli

    2014-03-01

    Full Text Available Objective: One of the problems of children with Down syndrome is their low performance on retention of information and its recall in the memory. The present study aimed to determine the efficacy of rehearsal strategy on auditory short-term memory of educable 5 to 8 years old children with Down syndrome. Materials & Methods: In this quasi-experimental study, 24 children (14 boys and 10 girls were selected in convenience from Iranian Down Syndrome Charity Association and evaluated by Raven’s Intelligence Progressive Matrices. Then, children were assigned into two experimental and control groups randomly (each contained 12 individuals. Experimental group participated in 8 group sessions (two sessions per week, each lasting 30 minutes and trained by rehearsal strategy. All subjects were evaluated by Expressive-Auditory Memory Sequence Test before and after intervention sessions. Data were analyzed by multiple analysis of covariance.  Results: The results of analysis of covariance showed that rehearsal strategy have led to increase of digit span, word span and auditory short-term memory (P<0.01 in experimental group compared to control group. Conclusion: It can be concluded that rehearsal strategy training is an effective method on promotion of digit span, word span and auditory short-term memory of children with Down syndrome and implies important consequences for their education.

  20. Neural circuits in auditory and audiovisual memory.

    Science.gov (United States)

    Plakke, B; Romanski, L M

    2016-06-01

    Working memory is the ability to employ recently seen or heard stimuli and apply them to changing cognitive context. Although much is known about language processing and visual working memory, the neurobiological basis of auditory working memory is less clear. Historically, part of the problem has been the difficulty in obtaining a robust animal model to study auditory short-term memory. In recent years there has been neurophysiological and lesion studies indicating a cortical network involving both temporal and frontal cortices. Studies specifically targeting the role of the prefrontal cortex (PFC) in auditory working memory have suggested that dorsal and ventral prefrontal regions perform different roles during the processing of auditory mnemonic information, with the dorsolateral PFC performing similar functions for both auditory and visual working memory. In contrast, the ventrolateral PFC (VLPFC), which contains cells that respond robustly to auditory stimuli and that process both face and vocal stimuli may be an essential locus for both auditory and audiovisual working memory. These findings suggest a critical role for the VLPFC in the processing, integrating, and retaining of communication information. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Long-term evolution of brainstem electrical evoked responses to sound after restricted ablation of the auditory cortex.

    Directory of Open Access Journals (Sweden)

    Verónica Lamas

    Full Text Available INTRODUCTION: This study aimed to assess the top-down control of sound processing in the auditory brainstem of rats. Short latency evoked responses were analyzed after unilateral or bilateral ablation of auditory cortex. This experimental paradigm was also used towards analyzing the long-term evolution of post-lesion plasticity in the auditory system and its ability to self-repair. METHOD: Auditory cortex lesions were performed in rats by stereotactically guided fine-needle aspiration of the cerebrocortical surface. Auditory Brainstem Responses (ABR were recorded at post-surgery day (PSD 1, 7, 15 and 30. Recordings were performed under closed-field conditions, using click trains at different sound intensity levels, followed by statistical analysis of threshold values and ABR amplitude and latency variables. Subsequently, brains were sectioned and immunostained for GAD and parvalbumin to assess the location and extent of lesions accurately. RESULTS: Alterations in ABR variables depended on the type of lesion and post-surgery time of ABR recordings. Accordingly, bilateral ablations caused a statistically significant increase in thresholds at PSD1 and 7 and a decrease in waves amplitudes at PSD1 that recover at PSD7. No effects on latency were noted at PSD1 and 7, whilst recordings at PSD15 and 30 showed statistically significant decreases in latency. Conversely, unilateral ablations had no effect on auditory thresholds or latencies, while wave amplitudes only decreased at PSD1 strictly in the ipsilateral ear. CONCLUSION: Post-lesion plasticity in the auditory system acts in two time periods: short-term period of decreased sound sensitivity (until PSD7, most likely resulting from axonal degeneration; and a long-term period (up to PSD7, with changes in latency responses and recovery of thresholds and amplitudes values. The cerebral cortex may have a net positive gain on the auditory pathway response to sound.

  2. Auditory motion-specific mechanisms in the primate brain.

    Directory of Open Access Journals (Sweden)

    Colline Poirier

    2017-05-01

    Full Text Available This work examined the mechanisms underlying auditory motion processing in the auditory cortex of awake monkeys using functional magnetic resonance imaging (fMRI. We tested to what extent auditory motion analysis can be explained by the linear combination of static spatial mechanisms, spectrotemporal processes, and their interaction. We found that the posterior auditory cortex, including A1 and the surrounding caudal belt and parabelt, is involved in auditory motion analysis. Static spatial and spectrotemporal processes were able to fully explain motion-induced activation in most parts of the auditory cortex, including A1, but not in circumscribed regions of the posterior belt and parabelt cortex. We show that in these regions motion-specific processes contribute to the activation, providing the first demonstration that auditory motion is not simply deduced from changes in static spatial location. These results demonstrate that parallel mechanisms for motion and static spatial analysis coexist within the auditory dorsal stream.

  3. Effects of musical training on sound pattern processing in high-school students.

    Science.gov (United States)

    Wang, Wenjung; Staffaroni, Laura; Reid, Errold; Steinschneider, Mitchell; Sussman, Elyse

    2009-05-01

    Recognizing melody in music involves detection of both the pitch intervals and the silence between sequentially presented sounds. This study tested the hypothesis that active musical training in adolescents facilitates the ability to passively detect sequential sound patterns compared to musically non-trained age-matched peers. Twenty adolescents, aged 15-18 years, were divided into groups according to their musical training and current experience. A fixed order tone pattern was presented at various stimulus rates while electroencephalogram was recorded. The influence of musical training on passive auditory processing of the sound patterns was assessed using components of event-related brain potentials (ERPs). The mismatch negativity (MMN) ERP component was elicited in different stimulus onset asynchrony (SOA) conditions in non-musicians than musicians, indicating that musically active adolescents were able to detect sound patterns across longer time intervals than age-matched peers. Musical training facilitates detection of auditory patterns, allowing the ability to automatically recognize sequential sound patterns over longer time periods than non-musical counterparts.

  4. Selective memory retrieval of auditory what and auditory where involves the ventrolateral prefrontal cortex.

    Science.gov (United States)

    Kostopoulos, Penelope; Petrides, Michael

    2016-02-16

    There is evidence from the visual, verbal, and tactile memory domains that the midventrolateral prefrontal cortex plays a critical role in the top-down modulation of activity within posterior cortical areas for the selective retrieval of specific aspects of a memorized experience, a functional process often referred to as active controlled retrieval. In the present functional neuroimaging study, we explore the neural bases of active retrieval for auditory nonverbal information, about which almost nothing is known. Human participants were scanned with functional magnetic resonance imaging (fMRI) in a task in which they were presented with short melodies from different locations in a simulated virtual acoustic environment within the scanner and were then instructed to retrieve selectively either the particular melody presented or its location. There were significant activity increases specifically within the midventrolateral prefrontal region during the selective retrieval of nonverbal auditory information. During the selective retrieval of information from auditory memory, the right midventrolateral prefrontal region increased its interaction with the auditory temporal region and the inferior parietal lobule in the right hemisphere. These findings provide evidence that the midventrolateral prefrontal cortical region interacts with specific posterior cortical areas in the human cerebral cortex for the selective retrieval of object and location features of an auditory memory experience.

  5. Fundamental deficits of auditory perception in Wernicke's aphasia.

    Science.gov (United States)

    Robson, Holly; Grube, Manon; Lambon Ralph, Matthew A; Griffiths, Timothy D; Sage, Karen

    2013-01-01

    This work investigates the nature of the comprehension impairment in Wernicke's aphasia (WA), by examining the relationship between deficits in auditory processing of fundamental, non-verbal acoustic stimuli and auditory comprehension. WA, a condition resulting in severely disrupted auditory comprehension, primarily occurs following a cerebrovascular accident (CVA) to the left temporo-parietal cortex. Whilst damage to posterior superior temporal areas is associated with auditory linguistic comprehension impairments, functional-imaging indicates that these areas may not be specific to speech processing but part of a network for generic auditory analysis. We examined analysis of basic acoustic stimuli in WA participants (n = 10) using auditory stimuli reflective of theories of cortical auditory processing and of speech cues. Auditory spectral, temporal and spectro-temporal analysis was assessed using pure-tone frequency discrimination, frequency modulation (FM) detection and the detection of dynamic modulation (DM) in "moving ripple" stimuli. All tasks used criterion-free, adaptive measures of threshold to ensure reliable results at the individual level. Participants with WA showed normal frequency discrimination but significant impairments in FM and DM detection, relative to age- and hearing-matched controls at the group level (n = 10). At the individual level, there was considerable variation in performance, and thresholds for both FM and DM detection correlated significantly with auditory comprehension abilities in the WA participants. These results demonstrate the co-occurrence of a deficit in fundamental auditory processing of temporal and spectro-temporal non-verbal stimuli in WA, which may have a causal contribution to the auditory language comprehension impairment. Results are discussed in the context of traditional neuropsychology and current models of cortical auditory processing. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Visual cortex and auditory cortex activation in early binocularly blind macaques: A BOLD-fMRI study using auditory stimuli.

    Science.gov (United States)

    Wang, Rong; Wu, Lingjie; Tang, Zuohua; Sun, Xinghuai; Feng, Xiaoyuan; Tang, Weijun; Qian, Wen; Wang, Jie; Jin, Lixin; Zhong, Yufeng; Xiao, Zebin

    2017-04-15

    Cross-modal plasticity within the visual and auditory cortices of early binocularly blind macaques is not well studied. In this study, four healthy neonatal macaques were assigned to group A (control group) or group B (binocularly blind group). Sixteen months later, blood oxygenation level-dependent functional imaging (BOLD-fMRI) was conducted to examine the activation in the visual and auditory cortices of each macaque while being tested using pure tones as auditory stimuli. The changes in the BOLD response in the visual and auditory cortices of all macaques were compared with immunofluorescence staining findings. Compared with group A, greater BOLD activity was observed in the bilateral visual cortices of group B, and this effect was particularly obvious in the right visual cortex. In addition, more activated volumes were found in the bilateral auditory cortices of group B than of group A, especially in the right auditory cortex. These findings were consistent with the fact that there were more c-Fos-positive cells in the bilateral visual and auditory cortices of group B compared with group A (p visual cortices of binocularly blind macaques can be reorganized to process auditory stimuli after visual deprivation, and this effect is more obvious in the right than the left visual cortex. These results indicate the establishment of cross-modal plasticity within the visual and auditory cortices. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. CT colonography training for radiographers - a formal evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Haycock, A. [Intestinal Imaging Centre and Wolfson Unit for Endoscopy, St Mark' s Hospital, Imperial College London, London (United Kingdom); Burling, D., E-mail: burlingdavid@yahoo.co.u [Intestinal Imaging Centre and Wolfson Unit for Endoscopy, St Mark' s Hospital, Imperial College London, London (United Kingdom); Wylie, P.; Muckian, J.; Ilangovan, R.; Thomas-Gibson, S. [Intestinal Imaging Centre and Wolfson Unit for Endoscopy, St Mark' s Hospital, Imperial College London, London (United Kingdom)

    2010-12-15

    Aims: To evaluate the efficacy of a new intensive 'hands-on' course designed to train small teams of radiographers in computed tomography colonography (CTC) technique and initial interpretation for patient triage. Materials and methods: The course comprised small-group lectures, active participation in the daily CTC service with practical technique and image interpretation training by experienced radiologists and radiographers. Evaluation was by assessment of knowledge using randomized sets of multiple choice questions (MCQ; pre/post-course), practical technique using checklists and expert global scores, and interpretation performance outcomes using randomized pre/post-course test datasets (five validated CTC examinations each). Paired t-tests were used to investigate change in performance for MCQ score and interpretation accuracy. Results: Thirteen courses with 49 participants were evaluated over 2 years. Practical skills were high, with mean (SD) checklist scores of 14/15 (0.85) and global scores of 26/30 (2.3). MCQ scores increased significantly from a mean of 59% pre-course to 69% post-course, p < 0.001. Correct classification of CTC examination improved significantly from a mean of 55% pre-course to 71% post-course, p < 0.001. Cancer and large polyp (>10 mm) detection rates also improved significantly from 49% to 60%, p = 0.002. Conclusion: Structured training in CTC can significantly improve knowledge and interpretation skills of radiographers, while assessing safe procedural performance. Implementation of similar programmes nationally may help reduce performance gaps between centres.

  8. Spinor formalism and complex-vector formalism of general relativity

    International Nuclear Information System (INIS)

    Han-ying, G.; Yong-shi, W.; Gendao, L.

    1974-01-01

    In this paper, using E. Cartan's exterior calculus, we give the spinor form of the structure equations, which leads naturally to the Newman--Penrose equations. Furthermore, starting from the spinor spaces and the el (2C) algebra, we construct the general complex-vector formalism of general relativity. We find that both the Cahen--Debever--Defrise complex-vector formalism and that of Brans are its special cases. Thus, the spinor formalism and the complex-vector formalism of general relativity are unified on the basis of the uni-modular group SL(2C) and its Lie algebra

  9. Auditory Motion Elicits a Visual Motion Aftereffect.

    Science.gov (United States)

    Berger, Christopher C; Ehrsson, H Henrik

    2016-01-01

    The visual motion aftereffect is a visual illusion in which exposure to continuous motion in one direction leads to a subsequent illusion of visual motion in the opposite direction. Previous findings have been mixed with regard to whether this visual illusion can be induced cross-modally by auditory stimuli. Based on research on multisensory perception demonstrating the profound influence auditory perception can have on the interpretation and perceived motion of visual stimuli, we hypothesized that exposure to auditory stimuli with strong directional motion cues should induce a visual motion aftereffect. Here, we demonstrate that horizontally moving auditory stimuli induced a significant visual motion aftereffect-an effect that was driven primarily by a change in visual motion perception following exposure to leftward moving auditory stimuli. This finding is consistent with the notion that visual and auditory motion perception rely on at least partially overlapping neural substrates.

  10. Auditory Motion Elicits a Visual Motion Aftereffect

    Directory of Open Access Journals (Sweden)

    Christopher C. Berger

    2016-12-01

    Full Text Available The visual motion aftereffect is a visual illusion in which exposure to continuous motion in one direction leads to a subsequent illusion of visual motion in the opposite direction. Previous findings have been mixed with regard to whether this visual illusion can be induced cross-modally by auditory stimuli. Based on research on multisensory perception demonstrating the profound influence auditory perception can have on the interpretation and perceived motion of visual stimuli, we hypothesized that exposure to auditory stimuli with strong directional motion cues should induce a visual motion aftereffect. Here, we demonstrate that horizontally moving auditory stimuli induced a significant visual motion aftereffect—an effect that was driven primarily by a change in visual motion perception following exposure to leftward moving auditory stimuli. This finding is consistent with the notion that visual and auditory motion perception rely on at least partially overlapping neural substrates.

  11. Three-dimensional Acoustic Localisation via Directed Movements of a Two-dimensional Model of the Lizard Peripheral Auditory System

    DEFF Research Database (Denmark)

    Shaikh, Danish; Kjær Schmidt, Michael

    2017-01-01

    of the acoustic target with respect to one plane of rotation. A multi-layer perceptron neural network is trained via supervised learning to translate the combination of the two measurements into an estimate of the relative location of the acoustic target in terms of its azimuth and elevation. The acoustic...... localisation performance of the system is evaluated in simulation for noiseless as well as noisy sinusoidal auditory signals with a 20 dB signal-to-noise ratio for four different sound frequencies of 1450 Hz, 1650 Hz, 1850 Hz and 2050 Hz that span the response frequency range of the peripheral auditory model...

  12. Air Traffic Controllers’ Long-Term Speech-in-Noise Training Effects: A Control Group Study

    Science.gov (United States)

    Zaballos, María T.P.; Plasencia, Daniel P.; González, María L.Z.; de Miguel, Angel R.; Macías, Ángel R.

    2016-01-01

    Introduction: Speech perception in noise relies on the capacity of the auditory system to process complex sounds using sensory and cognitive skills. The possibility that these can be trained during adulthood is of special interest in auditory disorders, where speech in noise perception becomes compromised. Air traffic controllers (ATC) are constantly exposed to radio communication, a situation that seems to produce auditory learning. The objective of this study has been to quantify this effect. Subjects and Methods: 19 ATC and 19 normal hearing individuals underwent a speech in noise test with three signal to noise ratios: 5, 0 and −5 dB. Noise and speech were presented through two different loudspeakers in azimuth position. Speech tokes were presented at 65 dB SPL, while white noise files were at 60, 65 and 70 dB respectively. Results: Air traffic controllers outperform the control group in all conditions [P<0.05 in ANOVA and Mann-Whitney U tests]. Group differences were largest in the most difficult condition, SNR=−5 dB. However, no correlation between experience and performance were found for any of the conditions tested. The reason might be that ceiling performance is achieved much faster than the minimum experience time recorded, 5 years, although intrinsic cognitive abilities cannot be disregarded. Discussion: ATC demonstrated enhanced ability to hear speech in challenging listening environments. This study provides evidence that long-term auditory training is indeed useful in achieving better speech-in-noise understanding even in adverse conditions, although good cognitive qualities are likely to be a basic requirement for this training to be effective. Conclusion: Our results show that ATC outperform the control group in all conditions. Thus, this study provides evidence that long-term auditory training is indeed useful in achieving better speech-in-noise understanding even in adverse conditions. PMID:27991470

  13. Air traffic controllers' long-term speech-in-noise training effects: A control group study.

    Science.gov (United States)

    Zaballos, Maria T P; Plasencia, Daniel P; González, María L Z; de Miguel, Angel R; Macías, Ángel R

    2016-01-01

    Speech perception in noise relies on the capacity of the auditory system to process complex sounds using sensory and cognitive skills. The possibility that these can be trained during adulthood is of special interest in auditory disorders, where speech in noise perception becomes compromised. Air traffic controllers (ATC) are constantly exposed to radio communication, a situation that seems to produce auditory learning. The objective of this study has been to quantify this effect. 19 ATC and 19 normal hearing individuals underwent a speech in noise test with three signal to noise ratios: 5, 0 and -5 dB. Noise and speech were presented through two different loudspeakers in azimuth position. Speech tokes were presented at 65 dB SPL, while white noise files were at 60, 65 and 70 dB respectively. Air traffic controllers outperform the control group in all conditions [P<0.05 in ANOVA and Mann-Whitney U tests]. Group differences were largest in the most difficult condition, SNR=-5 dB. However, no correlation between experience and performance were found for any of the conditions tested. The reason might be that ceiling performance is achieved much faster than the minimum experience time recorded, 5 years, although intrinsic cognitive abilities cannot be disregarded. ATC demonstrated enhanced ability to hear speech in challenging listening environments. This study provides evidence that long-term auditory training is indeed useful in achieving better speech-in-noise understanding even in adverse conditions, although good cognitive qualities are likely to be a basic requirement for this training to be effective. Our results show that ATC outperform the control group in all conditions. Thus, this study provides evidence that long-term auditory training is indeed useful in achieving better speech-in-noise understanding even in adverse conditions.

  14. Literacy Programs and Non-Formal Education of Bangladesh and India

    Science.gov (United States)

    Rahman, Mohammad Saidur; Yasmin, Farzana; Begum, Monzil Ara; Ara, Jesmin; Nath, Tapan Kumar

    2010-01-01

    In both Bangladesh and India expand non-formal education (NFE) programs for unenrolled and drop-out children and adults (8-45 year cohort) for ensure comparable standard with the primary curriculum, establish equivalency of NFE with primary education and overall competency, raise qualification and training level of teachers for effective delivery…

  15. Relation between Working Memory Capacity and Auditory Stream Segregation in Children with Auditory Processing Disorder

    Directory of Open Access Journals (Sweden)

    Yones Lotfi

    2016-03-01

    Full Text Available Background: This study assessed the relationship between working memory capacity and auditory stream segregation by using the concurrent minimum audible angle in children with a diagnosed auditory processing disorder (APD. Methods: The participants in this cross-sectional, comparative study were 20 typically developing children and 15 children with a diagnosed APD (age, 9–11 years according to the subtests of multiple-processing auditory assessment. Auditory stream segregation was investigated using the concurrent minimum audible angle. Working memory capacity was evaluated using the non-word repetition and forward and backward digit span tasks. Nonparametric statistics were utilized to compare the between-group differences. The Pearson correlation was employed to measure the degree of association between working memory capacity and the localization tests between the 2 groups. Results: The group with APD had significantly lower scores than did the typically developing subjects in auditory stream segregation and working memory capacity. There were significant negative correlations between working memory capacity and the concurrent minimum audible angle in the most frontal reference location (0° azimuth and lower negative correlations in the most lateral reference location (60° azimuth in the children with APD. Conclusion: The study revealed a relationship between working memory capacity and auditory stream segregation in children with APD. The research suggests that lower working memory capacity in children with APD may be the possible cause of the inability to segregate and group incoming information.

  16. Distributed neural signatures of natural audiovisual speech and music in the human auditory cortex.

    Science.gov (United States)

    Salmi, Juha; Koistinen, Olli-Pekka; Glerean, Enrico; Jylänki, Pasi; Vehtari, Aki; Jääskeläinen, Iiro P; Mäkelä, Sasu; Nummenmaa, Lauri; Nummi-Kuisma, Katarina; Nummi, Ilari; Sams, Mikko

    2017-08-15

    During a conversation or when listening to music, auditory and visual information are combined automatically into audiovisual objects. However, it is still poorly understood how specific type of visual information shapes neural processing of sounds in lifelike stimulus environments. Here we applied multi-voxel pattern analysis to investigate how naturally matching visual input modulates supratemporal cortex activity during processing of naturalistic acoustic speech, singing and instrumental music. Bayesian logistic regression classifiers with sparsity-promoting priors were trained to predict whether the stimulus was audiovisual or auditory, and whether it contained piano playing, speech, or singing. The predictive performances of the classifiers were tested by leaving one participant at a time for testing and training the model using the remaining 15 participants. The signature patterns associated with unimodal auditory stimuli encompassed distributed locations mostly in the middle and superior temporal gyrus (STG/MTG). A pattern regression analysis, based on a continuous acoustic model, revealed that activity in some of these MTG and STG areas were associated with acoustic features present in speech and music stimuli. Concurrent visual stimulus modulated activity in bilateral MTG (speech), lateral aspect of right anterior STG (singing), and bilateral parietal opercular cortex (piano). Our results suggest that specific supratemporal brain areas are involved in processing complex natural speech, singing, and piano playing, and other brain areas located in anterior (facial speech) and posterior (music-related hand actions) supratemporal cortex are influenced by related visual information. Those anterior and posterior supratemporal areas have been linked to stimulus identification and sensory-motor integration, respectively. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Auditory conflict and congruence in frontotemporal dementia.

    Science.gov (United States)

    Clark, Camilla N; Nicholas, Jennifer M; Agustus, Jennifer L; Hardy, Christopher J D; Russell, Lucy L; Brotherhood, Emilie V; Dick, Katrina M; Marshall, Charles R; Mummery, Catherine J; Rohrer, Jonathan D; Warren, Jason D

    2017-09-01

    Impaired analysis of signal conflict and congruence may contribute to diverse socio-emotional symptoms in frontotemporal dementias, however the underlying mechanisms have not been defined. Here we addressed this issue in patients with behavioural variant frontotemporal dementia (bvFTD; n = 19) and semantic dementia (SD; n = 10) relative to healthy older individuals (n = 20). We created auditory scenes in which semantic and emotional congruity of constituent sounds were independently probed; associated tasks controlled for auditory perceptual similarity, scene parsing and semantic competence. Neuroanatomical correlates of auditory congruity processing were assessed using voxel-based morphometry. Relative to healthy controls, both the bvFTD and SD groups had impaired semantic and emotional congruity processing (after taking auditory control task performance into account) and reduced affective integration of sounds into scenes. Grey matter correlates of auditory semantic congruity processing were identified in distributed regions encompassing prefrontal, parieto-temporal and insular areas and correlates of auditory emotional congruity in partly overlapping temporal, insular and striatal regions. Our findings suggest that decoding of auditory signal relatedness may probe a generic cognitive mechanism and neural architecture underpinning frontotemporal dementia syndromes. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  18. SBME : Exploring boundaries between formal, non-formal, and informal learning

    OpenAIRE

    Shahoumian, Armineh; Parchoma, Gale; Saunders, Murray; Hanson, Jacky; Dickinson, Mike; Pimblett, Mark

    2013-01-01

    In medical education learning extends beyond university settings into practice. Non-formal and informal learning support learners’ efforts to meet externally set and learner-identified objectives. In SBME research, boundaries between formal, non-formal, and informal learning have not been widely explored. Whether SBME fits within or challenges these categories can make a contribution. Formal learning is described in relation to educational settings, planning, assessment, and accreditation. In...

  19. Effect of age at cochlear implantation on auditory and speech development of children with auditory neuropathy spectrum disorder.

    Science.gov (United States)

    Liu, Yuying; Dong, Ruijuan; Li, Yuling; Xu, Tianqiu; Li, Yongxin; Chen, Xueqing; Gong, Shusheng

    2014-12-01

    To evaluate the auditory and speech abilities in children with auditory neuropathy spectrum disorder (ANSD) after cochlear implantation (CI) and determine the role of age at implantation. Ten children participated in this retrospective case series study. All children had evidence of ANSD. All subjects had no cochlear nerve deficiency on magnetic resonance imaging and had used the cochlear implants for a period of 12-84 months. We divided our children into two groups: children who underwent implantation before 24 months of age and children who underwent implantation after 24 months of age. Their auditory and speech abilities were evaluated using the following: behavioral audiometry, the Categories of Auditory Performance (CAP), the Meaningful Auditory Integration Scale (MAIS), the Infant-Toddler Meaningful Auditory Integration Scale (IT-MAIS), the Standard-Chinese version of the Monosyllabic Lexical Neighborhood Test (LNT), the Multisyllabic Lexical Neighborhood Test (MLNT), the Speech Intelligibility Rating (SIR) and the Meaningful Use of Speech Scale (MUSS). All children showed progress in their auditory and language abilities. The 4-frequency average hearing level (HL) (500Hz, 1000Hz, 2000Hz and 4000Hz) of aided hearing thresholds ranged from 17.5 to 57.5dB HL. All children developed time-related auditory perception and speech skills. Scores of children with ANSD who received cochlear implants before 24 months tended to be better than those of children who received cochlear implants after 24 months. Seven children completed the Mandarin Lexical Neighborhood Test. Approximately half of the children showed improved open-set speech recognition. Cochlear implantation is helpful for children with ANSD and may be a good optional treatment for many ANSD children. In addition, children with ANSD fitted with cochlear implants before 24 months tended to acquire auditory and speech skills better than children fitted with cochlear implants after 24 months. Copyright © 2014

  20. Effects of Auditory Stimuli on Visual Velocity Perception

    Directory of Open Access Journals (Sweden)

    Michiaki Shibata

    2011-10-01

    Full Text Available We investigated the effects of auditory stimuli on the perceived velocity of a moving visual stimulus. Previous studies have reported that the duration of visual events is perceived as being longer for events filled with auditory stimuli than for events not filled with auditory stimuli, ie, the so-called “filled-duration illusion.” In this study, we have shown that auditory stimuli also affect the perceived velocity of a moving visual stimulus. In Experiment 1, a moving comparison stimulus (4.2∼5.8 deg/s was presented together with filled (or unfilled white-noise bursts or with no sound. The standard stimulus was a moving visual stimulus (5 deg/s presented before or after the comparison stimulus. The participants had to judge which stimulus was moving faster. The results showed that the perceived velocity in the auditory-filled condition was lower than that in the auditory-unfilled and no-sound conditions. In Experiment 2, we investigated the effects of auditory stimuli on velocity adaptation. The results showed that the effects of velocity adaptation in the auditory-filled condition were weaker than those in the no-sound condition. These results indicate that auditory stimuli tend to decrease the perceived velocity of a moving visual stimulus.

  1. The attenuation of auditory neglect by implicit cues.

    Science.gov (United States)

    Coleman, A Rand; Williams, J Michael

    2006-09-01

    This study examined implicit semantic and rhyming cues on perception of auditory stimuli among nonaphasic participants who suffered a lesion of the right cerebral hemisphere and auditory neglect of sound perceived by the left ear. Because language represents an elaborate processing of auditory stimuli and the language centers were intact among these patients, it was hypothesized that interactive verbal stimuli presented in a dichotic manner would attenuate neglect. The selected participants were administered an experimental dichotic listening test composed of six types of word pairs: unrelated words, synonyms, antonyms, categorically related words, compound words, and rhyming words. Presentation of word pairs that were semantically related resulted in a dramatic reduction of auditory neglect. Dichotic presentations of rhyming words exacerbated auditory neglect. These findings suggest that the perception of auditory information is strongly affected by the specific content conveyed by the auditory system. Language centers will process a degraded stimulus that contains salient language content. A degraded auditory stimulus is neglected if it is devoid of content that activates the language centers or other cognitive systems. In general, these findings suggest that auditory neglect involves a complex interaction of intact and impaired cerebral processing centers with content that is selectively processed by these centers.

  2. The role of temporal coherence in auditory stream segregation

    DEFF Research Database (Denmark)

    Christiansen, Simon Krogholt

    The ability to perceptually segregate concurrent sound sources and focus one’s attention on a single source at a time is essential for the ability to use acoustic information. While perceptual experiments have determined a range of acoustic cues that help facilitate auditory stream segregation......, it is not clear how the auditory system realizes the task. This thesis presents a study of the mechanisms involved in auditory stream segregation. Through a combination of psychoacoustic experiments, designed to characterize the influence of acoustic cues on auditory stream formation, and computational models...... of auditory processing, the role of auditory preprocessing and temporal coherence in auditory stream formation was evaluated. The computational model presented in this study assumes that auditory stream segregation occurs when sounds stimulate non-overlapping neural populations in a temporally incoherent...

  3. Post-School-Age Training among Women: Training Methods and Labor Market Outcomes at Older Ages.

    Science.gov (United States)

    Hill, Elizabeth T.

    2001-01-01

    Uses the NLS Mature Women's Cohort to examine Labor Market effects of education and training at preretirement age. Younger, more educated women tend to train more than older women. On-the-job training is more strongly associated with wage growth than is formal education. (Contains 18 references.) (MLH)

  4. Formalization of Database Systems -- and a Formal Definition of {IMS}

    DEFF Research Database (Denmark)

    Bjørner, Dines; Løvengreen, Hans Henrik

    1982-01-01

    Drawing upon an analogy between Programming Language Systems and Database Systems we outline the requirements that architectural specifications of database systems must futfitl, and argue that only formal, mathematical definitions may 6atisfy these. Then we illustrate home aspects and touch upon...... come ueee of formal definitions of data models and databaee management systems. A formal model of INS will carry this discussion. Finally we survey some of the exkting literature on formal definitions of database systems. The emphasis will be on constructive definitions in the denotationul semantics...... style of the VCM: Vienna Development Nethd. The role of formal definitions in international standardiaation efforts is briefly mentioned....

  5. Intrinsic and extrinsic motivation is associated with computer-based auditory training uptake, engagement, and adherence for people with hearing loss

    Directory of Open Access Journals (Sweden)

    Helen eHenshaw

    2015-08-01

    Full Text Available Hearing aid intervention typically occurs after significant delay, or not at all, resulting in an unmet need for many people with hearing loss. Computer-based auditory training (CBAT may provide generalized benefits to real-world listening, particularly in adverse listening conditions, and can be conveniently delivered in the home environment. Yet as with any intervention, adherence to CBAT is critical to its success. The main aim of this investigation was to explore motivations for uptake, engagement and adherence with home-delivered CBAT in a randomized controlled trial of adults with mild sensorineural hearing loss (SNHL, with a view to informing future CBAT development. A secondary aim examined perceived benefits of CBAT.Participants (n = 44, 50-74 year olds with mild SNHL who did not have hearing aids completed a four-week program of phoneme discrimination CBAT at home. Participants’ experiences of CBAT were captured using a post-training questionnaire (n = 44 and two focus groups (n = 5 per group. A mixed-methods approach examined participants’ experiences with the intervention, the usability and desirability of the CBAT software, and participants’ motivations for CBAT uptake, engagement and adherence. Self-Determination Theory was used as a theoretical framework for the interpretation of results. Participants found the CBAT intervention easy to use, interesting and enjoyable. Initial participation in the study was associated with extrinsic motivation (e.g. hearing difficulties. Engagement and adherence with CBAT was influenced by intrinsic (e.g. a desire to achieve higher scores, and extrinsic (e.g. to help others with hearing loss motivations. Perceived post-training benefits included better concentration and attention leading to improved listening. CBAT also prompted further help-seeking behaviors for some individuals. We see this as an important first-step for informing future theory-driven development of effective CBAT

  6. Intrinsic and extrinsic motivation is associated with computer-based auditory training uptake, engagement, and adherence for people with hearing loss.

    Science.gov (United States)

    Henshaw, Helen; McCormack, Abby; Ferguson, Melanie A

    2015-01-01

    Hearing aid intervention typically occurs after significant delay, or not at all, resulting in an unmet need for many people with hearing loss. Computer-based auditory training (CBAT) may provide generalized benefits to real-world listening, particularly in adverse listening conditions, and can be conveniently delivered in the home environment. Yet as with any intervention, adherence to CBAT is critical to its success. The main aim of this investigation was to explore motivations for uptake, engagement and adherence with home-delivered CBAT in a randomized controlled trial of adults with mild sensorineural hearing loss (SNHL), with a view to informing future CBAT development. A secondary aim examined perceived benefits of CBAT. Participants (n = 44, 50-74 years olds with mild SNHL who did not have hearing aids) completed a 4-week program of phoneme discrimination CBAT at home. Participants' experiences of CBAT were captured using a post-training questionnaire (n = 44) and two focus groups (n = 5 per group). A mixed-methods approach examined participants' experiences with the intervention, the usability and desirability of the CBAT software, and participants' motivations for CBAT uptake, engagement and adherence. Self-Determination Theory (SDT) was used as a theoretical framework for the interpretation of results. Participants found the CBAT intervention easy to use, interesting and enjoyable. Initial participation in the study was associated with extrinsic motivation (e.g., hearing difficulties). Engagement and adherence with CBAT was influenced by intrinsic (e.g., a desire to achieve higher scores), and extrinsic (e.g., to help others with hearing loss) motivations. Perceived post-training benefits included better concentration and attention leading to improved listening. CBAT also prompted further help-seeking behaviors for some individuals. We see this as an important first-step for informing future theory-driven development of effective CBAT interventions.

  7. Early auditory processing in area V5/MT+ of the congenitally blind brain.

    Science.gov (United States)

    Watkins, Kate E; Shakespeare, Timothy J; O'Donoghue, M Clare; Alexander, Iona; Ragge, Nicola; Cowey, Alan; Bridge, Holly

    2013-11-13

    Previous imaging studies of congenital blindness have studied individuals with heterogeneous causes of blindness, which may influence the nature and extent of cross-modal plasticity. Here, we scanned a homogeneous group of blind people with bilateral congenital anophthalmia, a condition in which both eyes fail to develop, and, as a result, the visual pathway is not stimulated by either light or retinal waves. This model of congenital blindness presents an opportunity to investigate the effects of very early visual deafferentation on the functional organization of the brain. In anophthalmic animals, the occipital cortex receives direct subcortical auditory input. We hypothesized that this pattern of subcortical reorganization ought to result in a topographic mapping of auditory frequency information in the occipital cortex of anophthalmic people. Using functional MRI, we examined auditory-evoked activity to pure tones of high, medium, and low frequencies. Activity in the superior temporal cortex was significantly reduced in anophthalmic compared with sighted participants. In the occipital cortex, a region corresponding to the cytoarchitectural area V5/MT+ was activated in the anophthalmic participants but not in sighted controls. Whereas previous studies in the blind indicate that this cortical area is activated to auditory motion, our data show it is also active for trains of pure tone stimuli and in some anophthalmic participants shows a topographic mapping (tonotopy). Therefore, this region appears to be performing early sensory processing, possibly served by direct subcortical input from the pulvinar to V5/MT+.

  8. Clinical utility of auditory memory testing in a heart failure population.

    Science.gov (United States)

    Hammers, Dustin B; Jung, Miyeon; Pressler, Susan J; Sullivan, Barbara-Jean; Koelling, Todd; Giordani, Bruno

    2013-01-01

    The self-care regimen necessary in heart failure (HF) is notably complex. A complication to integrating new knowledge and behaviors is that impaired cognition has been frequently reported in patients with HF, which significantly impacts patients' health, admission and mortality rates, and instrumental activities of daily living. The identification of reliable cognitive screening tools to assess potential difficulties in performing self-care for cardiac populations is essential. As such, the current purposes were to evaluate the validity and stability of the International Shopping List (ISL) auditory learning subtest from the computerized CogState battery as a screening tool in HF populations, determine the ISL's ability to predict functional declines, and evaluate the task's sensitivity in myocardial infarction. Forty patients with chronic HF were enrolled in a longitudinal study evaluating the impact of a cognitive training intervention. Baseline neuropsychological and behavioral measurements before treatment were used in the current study, including measures of auditory memory, orientation, verbal fluency, processing speed, and activities of daily living, and a subset of patients (n = 17) received repeat testing at 8 weeks on some tasks. Analyses also were performed with patients organized based on myocardial infarction status. The current study indicated that the ISL performed comparably with an established measure of auditory memory (Hopkins Verbal Learning Test-Revised; r = 0.70, P auditory memory subtest, the ISL, seems to be a beneficial tool in evaluating cognitive change in HF patients. Particularly given its cross-cultural sensitivity and ease of administration and scoring, this task may provide assistance to quickly and reliably monitor memory functioning in these vulnerable patients and gauge their potential for self-care behaviors.

  9. MatLab Programming for Engineers Having No Formal Programming Knowledge

    Science.gov (United States)

    Shaykhian, Linda H.; Shaykhian, Gholam Ali

    2007-01-01

    MatLab is one of the most widely used very high level programming languages for Scientific and engineering computations. It is very user-friendly and needs practically no formal programming knowledge. Presented here are MatLab programming aspects and not just the MatLab commands for scientists and engineers who do not have formal programming training and also have no significant time to spare for learning programming to solve their real world problems. Specifically provided are programs for visualization. Also, stated are the current limitations of the MatLab, which possibly can be taken care of by Mathworks Inc. in a future version to make MatLab more versatile.

  10. Generalization of conditioned suppression during salicylate-induced phantom auditory perception in rats.

    Science.gov (United States)

    Brennan, J F; Jastreboff, P J

    1991-01-01

    Tonal frequency generalization was examined in a total of 114 pigmented male rats, 60 of which were tested under the influence of salicylate-induced phantom auditory perception, introduced before or after lick suppression training. Thirty control subjects received saline injections, and the remaining 24 subjects served as noninjected controls of tonal background effects on generalization. Rats were continuously exposed to background noise alone or with a superimposed tone. Offset of background noise alone (Experiment I), or combined with onset or continuation of the tone (Experiments II and III) served as the conditioned stimulus (CS). In Experiment I, tone presentations were introduced only after suppression training. Depending on the time of salicylate introduction, a strong and differential influence on generalization gradients was observed, which is consistent with subjects' detection of salicylate-induced, high-pitched sound. Moreover, when either 12- or 3 kHz tones were introduced before or after Pavlovian training to mimic salicylate effects in 24 rats, the distortions in generalization gradients resembled trends obtained from respective salicylate injected groups. Experiments II and III were aimed at evaluating the masking effect of salicylate-induced phantom auditory perception on external sounds, with a 5- or a 10-kHz tone imposed continuously on the noise or presented only during the CS. Tests of tonal generalization to frequencies ranging from 4- to 11- kHz showed that in this experimental context salicylate-induced perception did not interfere with the dominant influence of external tones, a result that further strengthens the conclusion of Experiment I.

  11. Feature Assignment in Perception of Auditory Figure

    Science.gov (United States)

    Gregg, Melissa K.; Samuel, Arthur G.

    2012-01-01

    Because the environment often includes multiple sounds that overlap in time, listeners must segregate a sound of interest (the auditory figure) from other co-occurring sounds (the unattended auditory ground). We conducted a series of experiments to clarify the principles governing the extraction of auditory figures. We distinguish between auditory…

  12. Computational speech segregation based on an auditory-inspired modulation analysis

    DEFF Research Database (Denmark)

    May, Tobias; Dau, Torsten

    2014-01-01

    A monaural speech segregation system is presented that estimates the ideal binary mask from noisy speech based on the supervised learning of amplitude modulation spectrogram (AMS) features. Instead of using linearly scaled modulation filters with constant absolute bandwidth, an auditory- inspired...... about speech activity present in neighboring time-frequency units. In order to evaluate the generalization performance of the system to unseen acoustic conditions, the speech segregation system is trained with a limited set of low signal-to-noise ratio (SNR) conditions, but tested over a wide range...

  13. Masses of Formal Philosophy

    DEFF Research Database (Denmark)

    Masses of Formal Philosophy is an outgrowth of Formal Philosophy. That book gathered the responses of some of the most prominent formal philosophers to five relatively open and broad questions initiating a discussion of metaphilosophical themes and problems surrounding the use of formal methods i...... in philosophy. Including contributions from a wide range of philosophers, Masses of Formal Philosophy contains important new responses to the original five questions.......Masses of Formal Philosophy is an outgrowth of Formal Philosophy. That book gathered the responses of some of the most prominent formal philosophers to five relatively open and broad questions initiating a discussion of metaphilosophical themes and problems surrounding the use of formal methods...

  14. Auditory and Visual Sensations

    CERN Document Server

    Ando, Yoichi

    2010-01-01

    Professor Yoichi Ando, acoustic architectural designer of the Kirishima International Concert Hall in Japan, presents a comprehensive rational-scientific approach to designing performance spaces. His theory is based on systematic psychoacoustical observations of spatial hearing and listener preferences, whose neuronal correlates are observed in the neurophysiology of the human brain. A correlation-based model of neuronal signal processing in the central auditory system is proposed in which temporal sensations (pitch, timbre, loudness, duration) are represented by an internal autocorrelation representation, and spatial sensations (sound location, size, diffuseness related to envelopment) are represented by an internal interaural crosscorrelation function. Together these two internal central auditory representations account for the basic auditory qualities that are relevant for listening to music and speech in indoor performance spaces. Observed psychological and neurophysiological commonalities between auditor...

  15. Word Recognition in Auditory Cortex

    Science.gov (United States)

    DeWitt, Iain D. J.

    2013-01-01

    Although spoken word recognition is more fundamental to human communication than text recognition, knowledge of word-processing in auditory cortex is comparatively impoverished. This dissertation synthesizes current models of auditory cortex, models of cortical pattern recognition, models of single-word reading, results in phonetics and results in…

  16. Partial Epilepsy with Auditory Features

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2004-07-01

    Full Text Available The clinical characteristics of 53 sporadic (S cases of idiopathic partial epilepsy with auditory features (IPEAF were analyzed and compared to previously reported familial (F cases of autosomal dominant partial epilepsy with auditory features (ADPEAF in a study at the University of Bologna, Italy.

  17. Maps of the Auditory Cortex.

    Science.gov (United States)

    Brewer, Alyssa A; Barton, Brian

    2016-07-08

    One of the fundamental properties of the mammalian brain is that sensory regions of cortex are formed of multiple, functionally specialized cortical field maps (CFMs). Each CFM comprises two orthogonal topographical representations, reflecting two essential aspects of sensory space. In auditory cortex, auditory field maps (AFMs) are defined by the combination of tonotopic gradients, representing the spectral aspects of sound (i.e., tones), with orthogonal periodotopic gradients, representing the temporal aspects of sound (i.e., period or temporal envelope). Converging evidence from cytoarchitectural and neuroimaging measurements underlies the definition of 11 AFMs across core and belt regions of human auditory cortex, with likely homology to those of macaque. On a macrostructural level, AFMs are grouped into cloverleaf clusters, an organizational structure also seen in visual cortex. Future research can now use these AFMs to investigate specific stages of auditory processing, key for understanding behaviors such as speech perception and multimodal sensory integration.

  18. Interactions of cognitive and auditory abilities in congenitally blind individuals.

    Science.gov (United States)

    Rokem, Ariel; Ahissar, Merav

    2009-02-01

    Congenitally blind individuals have been found to show superior performance in perceptual and memory tasks. In the present study, we asked whether superior stimulus encoding could account for performance in memory tasks. We characterized the performance of a group of congenitally blind individuals on a series of auditory, memory and executive cognitive tasks and compared their performance to that of sighted controls matched for age, education and musical training. As expected, we found superior verbal spans among congenitally blind individuals. Moreover, we found superior speech perception, measured by resilience to noise, and superior auditory frequency discrimination. However, when memory span was measured under conditions of equivalent speech perception, by adjusting the signal to noise ratio for each individual to the same level of perceptual difficulty (80% correct), the advantage in memory span was completely eliminated. Moreover, blind individuals did not possess any advantage in cognitive executive functions, such as manipulation of items in memory and math abilities. We propose that the short-term memory advantage of blind individuals results from better stimulus encoding, rather than from superiority at subsequent processing stages.

  19. Visually Evoked Visual-Auditory Changes Associated with Auditory Performance in Children with Cochlear Implants

    Directory of Open Access Journals (Sweden)

    Maojin Liang

    2017-10-01

    Full Text Available Activation of the auditory cortex by visual stimuli has been reported in deaf children. In cochlear implant (CI patients, a residual, more intense cortical activation in the frontotemporal areas in response to photo stimuli was found to be positively associated with poor auditory performance. Our study aimed to investigate the mechanism by which visual processing in CI users activates the auditory-associated cortex during the period after cochlear implantation as well as its relation to CI outcomes. Twenty prelingually deaf children with CI were recruited. Ten children were good CI performers (GCP and ten were poor (PCP. Ten age- and sex- matched normal-hearing children were recruited as controls, and visual evoked potentials (VEPs were recorded. The characteristics of the right frontotemporal N1 component were analyzed. In the prelingually deaf children, higher N1 amplitude was observed compared to normal controls. While the GCP group showed significant decreases in N1 amplitude, and source analysis showed the most significant decrease in brain activity was observed in the primary visual cortex (PVC, with a downward trend in the primary auditory cortex (PAC activity, but these did not occur in the PCP group. Meanwhile, higher PVC activation (comparing to controls before CI use (0M and a significant decrease in source energy after CI use were found to be related to good CI outcomes. In the GCP group, source energy decreased in the visual-auditory cortex with CI use. However, no significant cerebral hemispheric dominance was found. We supposed that intra- or cross-modal reorganization and higher PVC activation in prelingually deaf children may reflect a stronger potential ability of cortical plasticity. Brain activity evolution appears to be related to CI auditory outcomes.

  20. Visually Evoked Visual-Auditory Changes Associated with Auditory Performance in Children with Cochlear Implants.

    Science.gov (United States)

    Liang, Maojin; Zhang, Junpeng; Liu, Jiahao; Chen, Yuebo; Cai, Yuexin; Wang, Xianjun; Wang, Junbo; Zhang, Xueyuan; Chen, Suijun; Li, Xianghui; Chen, Ling; Zheng, Yiqing

    2017-01-01

    Activation of the auditory cortex by visual stimuli has been reported in deaf children. In cochlear implant (CI) patients, a residual, more intense cortical activation in the frontotemporal areas in response to photo stimuli was found to be positively associated with poor auditory performance. Our study aimed to investigate the mechanism by which visual processing in CI users activates the auditory-associated cortex during the period after cochlear implantation as well as its relation to CI outcomes. Twenty prelingually deaf children with CI were recruited. Ten children were good CI performers (GCP) and ten were poor (PCP). Ten age- and sex- matched normal-hearing children were recruited as controls, and visual evoked potentials (VEPs) were recorded. The characteristics of the right frontotemporal N1 component were analyzed. In the prelingually deaf children, higher N1 amplitude was observed compared to normal controls. While the GCP group showed significant decreases in N1 amplitude, and source analysis showed the most significant decrease in brain activity was observed in the primary visual cortex (PVC), with a downward trend in the primary auditory cortex (PAC) activity, but these did not occur in the PCP group. Meanwhile, higher PVC activation (comparing to controls) before CI use (0M) and a significant decrease in source energy after CI use were found to be related to good CI outcomes. In the GCP group, source energy decreased in the visual-auditory cortex with CI use. However, no significant cerebral hemispheric dominance was found. We supposed that intra- or cross-modal reorganization and higher PVC activation in prelingually deaf children may reflect a stronger potential ability of cortical plasticity. Brain activity evolution appears to be related to CI auditory outcomes.

  1. Rehabilitation of the Upper Extremity after Stroke: A Case Series Evaluating REO Therapy and an Auditory Sensor Feedback for Trunk Control

    Directory of Open Access Journals (Sweden)

    G. Thielman

    2012-01-01

    Full Text Available Background and Purpose. Training in the virtual environment in post stroke rehab is being established as a new approach for neurorehabilitation, specifically, ReoTherapy (REO a robot-assisted virtual training device. Trunk stabilization strapping has been part of the concept with this device, and literature is lacking to support this for long-term functional changes with individuals after stroke. The purpose of this case series was to measure the feasibility of auditory trunk sensor feedback during REO therapy, in moderate to severely impaired individuals after stroke. Case Description. Using an open label crossover comparison design, 3 chronic stroke subjects were trained for 12 sessions over six weeks on either the REO or the control condition of task related training (TRT; after a washout period of 4 weeks; the alternative therapy was given. Outcomes. With both interventions, clinically relevant improvements were found for measures of body function and structure, as well as for activity, for two participants. Providing auditory feedback during REO training for trunk control was found to be feasible. Discussion. The degree of changes evident varied per protocol and may be due to the appropriateness of the technique chosen, as well as based on patients impaired arm motor control.

  2. Assessing the aging effect on auditory-verbal memory by Persian version of dichotic auditory verbal memory test

    OpenAIRE

    Zahra Shahidipour; Ahmad Geshani; Zahra Jafari; Shohreh Jalaie; Elham Khosravifard

    2014-01-01

    Background and Aim: Memory is one of the aspects of cognitive function which is widely affected among aged people. Since aging has different effects on different memorial systems and little studies have investigated auditory-verbal memory function in older adults using dichotic listening techniques, the purpose of this study was to evaluate the auditory-verbal memory function among old people using Persian version of dichotic auditory-verbal memory test. Methods: The Persian version of dic...

  3. Perceptual Plasticity for Auditory Object Recognition

    Science.gov (United States)

    Heald, Shannon L. M.; Van Hedger, Stephen C.; Nusbaum, Howard C.

    2017-01-01

    In our auditory environment, we rarely experience the exact acoustic waveform twice. This is especially true for communicative signals that have meaning for listeners. In speech and music, the acoustic signal changes as a function of the talker (or instrument), speaking (or playing) rate, and room acoustics, to name a few factors. Yet, despite this acoustic variability, we are able to recognize a sentence or melody as the same across various kinds of acoustic inputs and determine meaning based on listening goals, expectations, context, and experience. The recognition process relates acoustic signals to prior experience despite variability in signal-relevant and signal-irrelevant acoustic properties, some of which could be considered as “noise” in service of a recognition goal. However, some acoustic variability, if systematic, is lawful and can be exploited by listeners to aid in recognition. Perceivable changes in systematic variability can herald a need for listeners to reorganize perception and reorient their attention to more immediately signal-relevant cues. This view is not incorporated currently in many extant theories of auditory perception, which traditionally reduce psychological or neural representations of perceptual objects and the processes that act on them to static entities. While this reduction is likely done for the sake of empirical tractability, such a reduction may seriously distort the perceptual process to be modeled. We argue that perceptual representations, as well as the processes underlying perception, are dynamically determined by an interaction between the uncertainty of the auditory signal and constraints of context. This suggests that the process of auditory recognition is highly context-dependent in that the identity of a given auditory object may be intrinsically tied to its preceding context. To argue for the flexible neural and psychological updating of sound-to-meaning mappings across speech and music, we draw upon examples

  4. Cortical Representations of Speech in a Multitalker Auditory Scene.

    Science.gov (United States)

    Puvvada, Krishna C; Simon, Jonathan Z

    2017-09-20

    The ability to parse a complex auditory scene into perceptual objects is facilitated by a hierarchical auditory system. Successive stages in the hierarchy transform an auditory scene of multiple overlapping sources, from peripheral tonotopically based representations in the auditory nerve, into perceptually distinct auditory-object-based representations in the auditory cortex. Here, using magnetoencephalography recordings from men and women, we investigate how a complex acoustic scene consisting of multiple speech sources is represented in distinct hierarchical stages of the auditory cortex. Using systems-theoretic methods of stimulus reconstruction, we show that the primary-like areas in the auditory cortex contain dominantly spectrotemporal-based representations of the entire auditory scene. Here, both attended and ignored speech streams are represented with almost equal fidelity, and a global representation of the full auditory scene with all its streams is a better candidate neural representation than that of individual streams being represented separately. We also show that higher-order auditory cortical areas, by contrast, represent the attended stream separately and with significantly higher fidelity than unattended streams. Furthermore, the unattended background streams are more faithfully represented as a single unsegregated background object rather than as separated objects. Together, these findings demonstrate the progression of the representations and processing of a complex acoustic scene up through the hierarchy of the human auditory cortex. SIGNIFICANCE STATEMENT Using magnetoencephalography recordings from human listeners in a simulated cocktail party environment, we investigate how a complex acoustic scene consisting of multiple speech sources is represented in separate hierarchical stages of the auditory cortex. We show that the primary-like areas in the auditory cortex use a dominantly spectrotemporal-based representation of the entire auditory

  5. Empowering Non-Formal Education Policy on Life Skills and Its Implications on People Welfare

    Directory of Open Access Journals (Sweden)

    Moh. Alifuddin

    2017-05-01

    Full Text Available The non-formal education policy in responding to the life skills needs of learners has been anticipated by the issuance of some products of legal regulations concerning the non-formal education. Life skills education was explicitly mentioned in legislation, but its implementation has not been in line with the expectations. In practice, many training institutions were only responsible for the output without even trying to channel or hire the students after graduation. The curriculum developed referred to the national standard curriculum by adding local content. Welfare could be easily obtained because the alumni got jobs after completing their skill training. Thus, the life skills education developed was able to give positive implications, especially for the welfare of its alumni and their families

  6. Auditory Connections and Functions of Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Bethany ePlakke

    2014-07-01

    Full Text Available The functional auditory system extends from the ears to the frontal lobes with successively more complex functions occurring as one ascends the hierarchy of the nervous system. Several areas of the frontal lobe receive afferents from both early and late auditory processing regions within the temporal lobe. Afferents from the early part of the cortical auditory system, the auditory belt cortex, which are presumed to carry information regarding auditory features of sounds, project to only a few prefrontal regions and are most dense in the ventrolateral prefrontal cortex (VLPFC. In contrast, projections from the parabelt and the rostral superior temporal gyrus (STG most likely convey more complex information and target a larger, widespread region of the prefrontal cortex. Neuronal responses reflect these anatomical projections as some prefrontal neurons exhibit responses to features in acoustic stimuli, while other neurons display task-related responses. For example, recording studies in non-human primates indicate that VLPFC is responsive to complex sounds including vocalizations and that VLPFC neurons in area 12/47 respond to sounds with similar acoustic morphology. In contrast, neuronal responses during auditory working memory involve a wider region of the prefrontal cortex. In humans, the frontal lobe is involved in auditory detection, discrimination, and working memory. Past research suggests that dorsal and ventral subregions of the prefrontal cortex process different types of information with dorsal cortex processing spatial/visual information and ventral cortex processing non-spatial/auditory information. While this is apparent in the non-human primate and in some neuroimaging studies, most research in humans indicates that specific task conditions, stimuli or previous experience may bias the recruitment of specific prefrontal regions, suggesting a more flexible role for the frontal lobe during auditory cognition.

  7. Auditory connections and functions of prefrontal cortex

    Science.gov (United States)

    Plakke, Bethany; Romanski, Lizabeth M.

    2014-01-01

    The functional auditory system extends from the ears to the frontal lobes with successively more complex functions occurring as one ascends the hierarchy of the nervous system. Several areas of the frontal lobe receive afferents from both early and late auditory processing regions within the temporal lobe. Afferents from the early part of the cortical auditory system, the auditory belt cortex, which are presumed to carry information regarding auditory features of sounds, project to only a few prefrontal regions and are most dense in the ventrolateral prefrontal cortex (VLPFC). In contrast, projections from the parabelt and the rostral superior temporal gyrus (STG) most likely convey more complex information and target a larger, widespread region of the prefrontal cortex. Neuronal responses reflect these anatomical projections as some prefrontal neurons exhibit responses to features in acoustic stimuli, while other neurons display task-related responses. For example, recording studies in non-human primates indicate that VLPFC is responsive to complex sounds including vocalizations and that VLPFC neurons in area 12/47 respond to sounds with similar acoustic morphology. In contrast, neuronal responses during auditory working memory involve a wider region of the prefrontal cortex. In humans, the frontal lobe is involved in auditory detection, discrimination, and working memory. Past research suggests that dorsal and ventral subregions of the prefrontal cortex process different types of information with dorsal cortex processing spatial/visual information and ventral cortex processing non-spatial/auditory information. While this is apparent in the non-human primate and in some neuroimaging studies, most research in humans indicates that specific task conditions, stimuli or previous experience may bias the recruitment of specific prefrontal regions, suggesting a more flexible role for the frontal lobe during auditory cognition. PMID:25100931

  8. A virtual auditory environment for investigating the auditory signal processing of realistic sounds

    DEFF Research Database (Denmark)

    Favrot, Sylvain Emmanuel; Buchholz, Jörg

    2008-01-01

    In the present study, a novel multichannel loudspeaker-based virtual auditory environment (VAE) is introduced. The VAE aims at providing a versatile research environment for investigating the auditory signal processing in real environments, i.e., considering multiple sound sources and room...... reverberation. The environment is based on the ODEON room acoustic simulation software to render the acoustical scene. ODEON outputs are processed using a combination of different order Ambisonic techniques to calculate multichannel room impulse responses (mRIR). Auralization is then obtained by the convolution...... the VAE development, special care was taken in order to achieve a realistic auditory percept and to avoid “artifacts” such as unnatural coloration. The performance of the VAE has been evaluated and optimized on a 29 loudspeaker setup using both objective and subjective measurement techniques....

  9. Auditory, visual, and auditory-visual perceptions of emotions by young children with hearing loss versus children with normal hearing.

    Science.gov (United States)

    Most, Tova; Michaelis, Hilit

    2012-08-01

    This study aimed to investigate the effect of hearing loss (HL) on emotion-perception ability among young children with and without HL. A total of 26 children 4.0-6.6 years of age with prelingual sensory-neural HL ranging from moderate to profound and 14 children with normal hearing (NH) participated. They were asked to identify happiness, anger, sadness, and fear expressed by an actress when uttering the same neutral nonsense sentence. Their auditory, visual, and auditory-visual perceptions of the emotional content were assessed. The accuracy of emotion perception among children with HL was lower than that of the NH children in all 3 conditions: auditory, visual, and auditory-visual. Perception through the combined auditory-visual mode significantly surpassed the auditory or visual modes alone in both groups, indicating that children with HL utilized the auditory information for emotion perception. No significant differences in perception emerged according to degree of HL. In addition, children with profound HL and cochlear implants did not perform differently from children with less severe HL who used hearing aids. The relatively high accuracy of emotion perception by children with HL may be explained by their intensive rehabilitation, which emphasizes suprasegmental and paralinguistic aspects of verbal communication.

  10. Distraction by deviance: comparing the effects of auditory and visual deviant stimuli on auditory and visual target processing.

    Science.gov (United States)

    Leiva, Alicia; Parmentier, Fabrice B R; Andrés, Pilar

    2015-01-01

    We report the results of oddball experiments in which an irrelevant stimulus (standard, deviant) was presented before a target stimulus and the modality of these stimuli was manipulated orthogonally (visual/auditory). Experiment 1 showed that auditory deviants yielded distraction irrespective of the target's modality while visual deviants did not impact on performance. When participants were forced to attend the distractors in order to detect a rare target ("target-distractor"), auditory deviants yielded distraction irrespective of the target's modality and visual deviants yielded a small distraction effect when targets were auditory (Experiments 2 & 3). Visual deviants only produced distraction for visual targets when deviant stimuli were not visually distinct from the other distractors (Experiment 4). Our results indicate that while auditory deviants yield distraction irrespective of the targets' modality, visual deviants only do so when attended and under selective conditions, at least when irrelevant and target stimuli are temporally and perceptually decoupled.

  11. Can Competency-Based Training Fly?: An Overview of Key Issues for "Ab Initio" Pilot Training

    Science.gov (United States)

    Franks, Peter; Hay, Stephen; Mavin, Tim

    2014-01-01

    Competency-based training (CBT) for pilots was formally introduced in 1999 by the Civil Aviation Safety Authority (CASA) for training leading to the issue of aeroplane private and commercial pilot licences. This initiative followed the Australian government's introduction of CBT policy for vocational and workplace training in the late 1980's.…

  12. Active listening: task-dependent plasticity of spectrotemporal receptive fields in primary auditory cortex.

    Science.gov (United States)

    Fritz, Jonathan; Elhilali, Mounya; Shamma, Shihab

    2005-08-01

    Listening is an active process in which attentive focus on salient acoustic features in auditory tasks can influence receptive field properties of cortical neurons. Recent studies showing rapid task-related changes in neuronal spectrotemporal receptive fields (STRFs) in primary auditory cortex of the behaving ferret are reviewed in the context of current research on cortical plasticity. Ferrets were trained on spectral tasks, including tone detection and two-tone discrimination, and on temporal tasks, including gap detection and click-rate discrimination. STRF changes could be measured on-line during task performance and occurred within minutes of task onset. During spectral tasks, there were specific spectral changes (enhanced response to tonal target frequency in tone detection and discrimination, suppressed response to tonal reference frequency in tone discrimination). However, only in the temporal tasks, the STRF was changed along the temporal dimension by sharpening temporal dynamics. In ferrets trained on multiple tasks, distinctive and task-specific STRF changes could be observed in the same cortical neurons in successive behavioral sessions. These results suggest that rapid task-related plasticity is an ongoing process that occurs at a network and single unit level as the animal switches between different tasks and dynamically adapts cortical STRFs in response to changing acoustic demands.

  13. Characteristics and Outcomes of an Innovative Train-in-Place Residency Program.

    Science.gov (United States)

    Green-McKenzie, Judith; Emmett, Edward A

    2017-10-01

    Physicians who make a midcareer specialty change may find their options for formal training are limited. Here, we describe a train-in-place program, with measureable outcomes, created to train midcareer physicians who desire formal training in occupational medicine. We evaluated educational outcomes from a novel residency program for midcareer physicians seeking formal training and board certification in occupational medicine. Physicians train in place at selected clinical training sites where they practice, and participate in 18 visits to the primary training site over a 2-year period. Program components include competency-based training structured around rotations, mentored projects, and periodic auditing visits to train-in-site locations by program faculty. Main outcome measures are achievement of Accreditation Council for Graduate Medical Education Occupational Medicine Milestones, American College of Occupational and Environmental Medicine competencies, performance on the American College of Preventive Medicine examinations, diversity in selection, placement of graduates, and the number of graduates who remain in the field. Since inception of this program in 1997, there have been 109 graduates who comprise 7.2% of new American Board of Preventive Medicine diplomates over the past decade. Graduates scored competitively on the certifying examination, achieved all milestones, expressed satisfaction with training, and are geographically dispersed, representing every US region. Most practice outside the 25 largest standard metropolitan statistical areas. More than 95% have remained in the field. Training in place is an effective approach to provide midcareer physicians seeking comprehensive skills and board certification in occupational medicine formal training, and may be adaptable to other specialties.

  14. Expanding the scope of leadership training in medicine.

    Science.gov (United States)

    Gabel, Stewart

    2014-06-01

    All physicians take a leadership role at some point in their career-some exert influence in their practices and communities as informal leaders, and others hold formal leadership roles to which they are appointed or elected. These formal leadership roles convey power to those individuals who hold such positions. Formal leadership, however, is limited in its influence unless it is accompanied by a series of personal and interpersonal competencies that characterize both formal and informal leaders.Many physicians who do not hold formal leadership roles will be called on to provide (or will wish to provide) informal leadership at various times in their careers. Both formal and informal leaders should be trained in the personal and interpersonal competencies necessary for effective leadership to advance the principles-driven and values-oriented goals inherent in the health care enterprise.In this article, the author defines leadership and describes the characteristics of formal and informal leaders, then discusses the types of leadership and the power derived from different leadership roles. He concludes by arguing in favor of expanding the scope of leadership training to include informal as well as formal leaders.

  15. Visual-induced expectations modulate auditory cortical responses

    Directory of Open Access Journals (Sweden)

    Virginie evan Wassenhove

    2015-02-01

    Full Text Available Active sensing has important consequences on multisensory processing (Schroeder et al. 2010. Here, we asked whether in the absence of saccades, the position of the eyes and the timing of transient colour changes of visual stimuli could selectively affect the excitability of auditory cortex by predicting the where and the when of a sound, respectively. Human participants were recorded with magnetoencephalography (MEG while maintaining the position of their eyes on the left, right, or centre of the screen. Participants counted colour changes of the fixation cross while neglecting sounds which could be presented to the left, right or both ears. First, clear alpha power increases were observed in auditory cortices, consistent with participants’ attention directed to visual inputs. Second, colour changes elicited robust modulations of auditory cortex responses (when prediction seen as ramping activity, early alpha phase-locked responses, and enhanced high-gamma band responses in the contralateral side of sound presentation. Third, no modulations of auditory evoked or oscillatory activity were found to be specific to eye position. Altogether, our results suggest that visual transience can automatically elicit a prediction of when a sound will occur by changing the excitability of auditory cortices irrespective of the attended modality, eye position or spatial congruency of auditory and visual events. To the contrary, auditory cortical responses were not significantly affected by eye position suggesting that where predictions may require active sensing or saccadic reset to modulate auditory cortex responses, notably in the absence of spatial orientation to sounds.

  16. Naftidrofuryl affects neurite regeneration by injured adult auditory neurons.

    Science.gov (United States)

    Lefebvre, P P; Staecker, H; Moonen, G; van de Water, T R

    1993-07-01

    Afferent auditory neurons are essential for the transmission of auditory information from Corti's organ to the central auditory pathway. Auditory neurons are very sensitive to acute insult and have a limited ability to regenerate injured neuronal processes. Therefore, these neurons appear to be a limiting factor in restoration of hearing function following an injury to the peripheral auditory receptor. In a previous study nerve growth factor (NGF) was shown to stimulate neurite repair but not survival of injured auditory neurons. In this study, we have demonstrated a neuritogenesis promoting effect of naftidrofuryl in an vitro model for injury to adult auditory neurons, i.e. dissociated cell cultures of adult rat spiral ganglia. Conversely, naftidrofuryl did not have any demonstrable survival promoting effect on these in vitro preparations of injured auditory neurons. The potential uses of this drug as a therapeutic agent in acute diseases of the inner ear are discussed in the light of these observations.

  17. Early Stages of Melody Processing: Stimulus-Sequence and Task-Dependent Neuronal Activity in Monkey Auditory Cortical Fields A1 and R

    Science.gov (United States)

    Yin, Pingbo; Mishkin, Mortimer; Sutter, Mitchell; Fritz, Jonathan B.

    2008-01-01

    To explore the effects of acoustic and behavioral context on neuronal responses in the core of auditory cortex (fields A1 and R), two monkeys were trained on a go/no-go discrimination task in which they learned to respond selectively to a four-note target (S+) melody and withhold response to a variety of other nontarget (S−) sounds. We analyzed evoked activity from 683 units in A1/R of the trained monkeys during task performance and from 125 units in A1/R of two naive monkeys. We characterized two broad classes of neural activity that were modulated by task performance. Class I consisted of tone-sequence–sensitive enhancement and suppression responses. Enhanced or suppressed responses to specific tonal components of the S+ melody were frequently observed in trained monkeys, but enhanced responses were rarely seen in naive monkeys. Both facilitatory and suppressive responses in the trained monkeys showed a temporal pattern different from that observed in naive monkeys. Class II consisted of nonacoustic activity, characterized by a task-related component that correlated with bar release, the behavioral response leading to reward. We observed a significantly higher percentage of both Class I and Class II neurons in field R than in A1. Class I responses may help encode a long-term representation of the behaviorally salient target melody. Class II activity may reflect a variety of nonacoustic influences, such as attention, reward expectancy, somatosensory inputs, and/or motor set and may help link auditory perception and behavioral response. Both types of neuronal activity are likely to contribute to the performance of the auditory task. PMID:18842950

  18. Training propositional reasoning.

    Science.gov (United States)

    Klauer, K C; Meiser, T; Naumer, B

    2000-08-01

    Two experiments compared the effects of four training conditions on propositional reasoning. A syntactic training demonstrated formal derivations, in an abstract semantic training the standard truth-table definitions of logical connectives were explained, and a domain-specific semantic training provided thematic contexts for the premises of the reasoning task. In a control training, an inductive reasoning task was practised. In line with the account by mental models, both kinds of semantic training were significantly more effective than the control and the syntactic training, whereas there were no significant differences between the control and the syntactic training, nor between the two kinds of semantic training. Experiment 2 replicated this pattern of effects using a different set of syntactic and domain-specific training conditions.

  19. The role of auditory cortices in the retrieval of single-trial auditory-visual object memories.

    Science.gov (United States)

    Matusz, Pawel J; Thelen, Antonia; Amrein, Sarah; Geiser, Eveline; Anken, Jacques; Murray, Micah M

    2015-03-01

    Single-trial encounters with multisensory stimuli affect both memory performance and early-latency brain responses to visual stimuli. Whether and how auditory cortices support memory processes based on single-trial multisensory learning is unknown and may differ qualitatively and quantitatively from comparable processes within visual cortices due to purported differences in memory capacities across the senses. We recorded event-related potentials (ERPs) as healthy adults (n = 18) performed a continuous recognition task in the auditory modality, discriminating initial (new) from repeated (old) sounds of environmental objects. Initial presentations were either unisensory or multisensory; the latter entailed synchronous presentation of a semantically congruent or a meaningless image. Repeated presentations were exclusively auditory, thus differing only according to the context in which the sound was initially encountered. Discrimination abilities (indexed by d') were increased for repeated sounds that were initially encountered with a semantically congruent image versus sounds initially encountered with either a meaningless or no image. Analyses of ERPs within an electrical neuroimaging framework revealed that early stages of auditory processing of repeated sounds were affected by prior single-trial multisensory contexts. These effects followed from significantly reduced activity within a distributed network, including the right superior temporal cortex, suggesting an inverse relationship between brain activity and behavioural outcome on this task. The present findings demonstrate how auditory cortices contribute to long-term effects of multisensory experiences on auditory object discrimination. We propose a new framework for the efficacy of multisensory processes to impact both current multisensory stimulus processing and unisensory discrimination abilities later in time. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  20. Auditory cortex involvement in emotional learning and memory.

    Science.gov (United States)

    Grosso, A; Cambiaghi, M; Concina, G; Sacco, T; Sacchetti, B

    2015-07-23

    Emotional memories represent the core of human and animal life and drive future choices and behaviors. Early research involving brain lesion studies in animals lead to the idea that the auditory cortex participates in emotional learning by processing the sensory features of auditory stimuli paired with emotional consequences and by transmitting this information to the amygdala. Nevertheless, electrophysiological and imaging studies revealed that, following emotional experiences, the auditory cortex undergoes learning-induced changes that are highly specific, associative and long lasting. These studies suggested that the role played by the auditory cortex goes beyond stimulus elaboration and transmission. Here, we discuss three major perspectives created by these data. In particular, we analyze the possible roles of the auditory cortex in emotional learning, we examine the recruitment of the auditory cortex during early and late memory trace encoding, and finally we consider the functional interplay between the auditory cortex and subcortical nuclei, such as the amygdala, that process affective information. We conclude that, starting from the early phase of memory encoding, the auditory cortex has a more prominent role in emotional learning, through its connections with subcortical nuclei, than is typically acknowledged. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Music and dyslexia: A new musical training method to improve reading and related disorders

    Directory of Open Access Journals (Sweden)

    Michel eHabib

    2016-01-01

    Full Text Available Numerous arguments in the recent neuroscientific literature support the use of musical training as a therapeutic tool among the arsenal already available to therapists and educators for treating children with dyslexia. In the present study, we tested the efficacy of a specially-designed Cognitivo-Musical Training (CMT protocol based upon three principles : 1- music-language analogies : training dyslexics with music could contribute to improve brain circuits which are common to music and language processes; 2 – the temporal and rhythmic features of music, which could exert a positive effect on the multiple dimensions of the temporal deficit characteristic of dyslexia; and 3- cross-modal integration, based on converging evidence of impaired connectivity in dyslexia and related disorders. Accordingly, we developed a series of musical exercises involving jointly and simultaneously sensory (visual, auditory, somatosensory and motor systems, with special emphasis on rhythmic perception and production in addition to intensive training of various features of the musical auditory signal. Two separate studies were carried out, one in which dyslexic children received intensive musical exercises concentrated over 18 hours during three consecutive days, and the other in which the 18 hours of musical training were spread over six weeks. Both studies showed significant improvements in some untrained, linguistic and non-linguistic variables. The first one yielded significant improvement in categorial perception and auditory perception of temporal components of speech. The second study revealed additional improvements in auditory attention, phonological awareness (syllable fusion, reading abilities and repetition of pseudo-words. Importantly, most improvements persisted after an untrained period of 6 weeks. These results provide new additional arguments for using music as part of systematic therapeutic and instructional practice for dyslexic children.

  2. Mental toughness training in a multi-task environment (ACCUVISION)

    International Nuclear Information System (INIS)

    Scott, B.

    1996-01-01

    NU operators were introduced to the Accuvision training program on Friday May 10, 1995. The purpose of the training is to help operators cope with progressively higher volumes and greater complexities of information without sacrificing quality of judgment or motor response. This objective is pursued through a sensory and response overload training protocol in which the operator must make accurate responses to target lights on the Accuvision board while attending to and responding to peripheral auditory and visual stimuli

  3. Top-Down Modulation of Auditory-Motor Integration during Speech Production: The Role of Working Memory.

    Science.gov (United States)

    Guo, Zhiqiang; Wu, Xiuqin; Li, Weifeng; Jones, Jeffery A; Yan, Nan; Sheft, Stanley; Liu, Peng; Liu, Hanjun

    2017-10-25

    Although working memory (WM) is considered as an emergent property of the speech perception and production systems, the role of WM in sensorimotor integration during speech processing is largely unknown. We conducted two event-related potential experiments with female and male young adults to investigate the contribution of WM to the neurobehavioural processing of altered auditory feedback during vocal production. A delayed match-to-sample task that required participants to indicate whether the pitch feedback perturbations they heard during vocalizations in test and sample sequences matched, elicited significantly larger vocal compensations, larger N1 responses in the left middle and superior temporal gyrus, and smaller P2 responses in the left middle and superior temporal gyrus, inferior parietal lobule, somatosensory cortex, right inferior frontal gyrus, and insula compared with a control task that did not require memory retention of the sequence of pitch perturbations. On the other hand, participants who underwent extensive auditory WM training produced suppressed vocal compensations that were correlated with improved auditory WM capacity, and enhanced P2 responses in the left middle frontal gyrus, inferior parietal lobule, right inferior frontal gyrus, and insula that were predicted by pretraining auditory WM capacity. These findings indicate that WM can enhance the perception of voice auditory feedback errors while inhibiting compensatory vocal behavior to prevent voice control from being excessively influenced by auditory feedback. This study provides the first evidence that auditory-motor integration for voice control can be modulated by top-down influences arising from WM, rather than modulated exclusively by bottom-up and automatic processes. SIGNIFICANCE STATEMENT One outstanding question that remains unsolved in speech motor control is how the mismatch between predicted and actual voice auditory feedback is detected and corrected. The present study

  4. Controlling memory impairment in elderly adults using virtual reality memory training: a randomized controlled pilot study.

    Science.gov (United States)

    Optale, Gabriele; Urgesi, Cosimo; Busato, Valentina; Marin, Silvia; Piron, Lamberto; Priftis, Konstantinos; Gamberini, Luciano; Capodieci, Salvatore; Bordin, Adalberto

    2010-05-01

    Memory decline is a prevalent aspect of aging but may also be the first sign of cognitive pathology. Virtual reality (VR) using immersion and interaction may provide new approaches to the treatment of memory deficits in elderly individuals. The authors implemented a VR training intervention to try to lessen cognitive decline and improve memory functions. The authors randomly assigned 36 elderly residents of a rest care facility (median age 80 years) who were impaired on the Verbal Story Recall Test either to the experimental group (EG) or the control group (CG). The EG underwent 6 months of VR memory training (VRMT) that involved auditory stimulation and VR experiences in path finding. The initial training phase lasted 3 months (3 auditory and 3 VR sessions every 2 weeks), and there was a booster training phase during the following 3 months (1 auditory and 1 VR session per week). The CG underwent equivalent face-to-face training sessions using music therapy. Both groups participated in social and creative and assisted-mobility activities. Neuropsychological and functional evaluations were performed at baseline, after the initial training phase, and after the booster training phase. The EG showed significant improvements in memory tests, especially in long-term recall with an effect size of 0.7 and in several other aspects of cognition. In contrast, the CG showed progressive decline. The authors suggest that VRMT may improve memory function in elderly adults by enhancing focused attention.

  5. Auditory feedback improves heart rate moderation during moderate-intensity exercise.

    Science.gov (United States)

    Shaykevich, Alex; Grove, J Robert; Jackson, Ben; Landers, Grant J; Dimmock, James

    2015-05-01

    The objective of this study is to determine whether exposure to automated HR feedback can produce improvements in the ability to regulate HR during moderate-intensity exercise and to evaluate the persistence of these improvements after feedback is removed. Twenty healthy adults performed 10 indoor exercise sessions on cycle ergometers over 5 wk after a twice-weekly schedule. During these sessions (FB), participants received auditory feedback designed to maintain HR within a personalized, moderate-intensity training zone between 70% and 80% of estimated maximum HR. All feedback was delivered via a custom mobile software application. Participants underwent an initial assessment (PREFB) to measure their ability to maintain exercise intensity defined by the training zone without use of feedback. After completing the feedback training, participants performed three additional assessments identical to PREFB at 1 wk (POST1), 2 wk (POST2), and 4 wk (POST3) after their last feedback session. Time in zone (TIZ), defined as the ratio of the time spent within the training zone divided by the overall time of exercise, rate of perceived exertion, instrumental attitudes, and affective attitudes were then evaluated to assess results using two-way, mixed-model ANOVA with sessions and gender as factors. Training with feedback significantly improved TIZ (P moderate-intensity exercise in healthy adults.

  6. An evaluation of a working memory training scheme in older adults

    Directory of Open Access Journals (Sweden)

    Laura Patricia McAvinue

    2013-05-01

    Full Text Available Working memory is a cognitive process that is particularly vulnerable to decline with age. The current study sought to evaluate the efficacy of a working memory training scheme in improving memory in a group of older adults. A 5-week online training scheme was designed to provide training in the main components of Baddeley’s (2000 working memory model, namely auditory and visuospatial short-term and working memory. A group of older adults aged between 64 and 79 were randomly assigned to a trainee (n = 19 or control (n = 17 group, with trainees engaging in the adaptive training scheme and controls engaging in a non-adaptive version of the programme. Before and after training and at 3- and 6-month follow-up sessions, trainees and controls were asked to complete measures of short-term and working memory, long-term episodic memory, subjective ratings of memory and attention and achievement of goals set at the beginning of training. The results provided evidence of an expansion of auditory short-term memory span, which was maintained 6 months later, and transfer to long-term episodic memory but no evidence of improvement in working memory capacity per se. A serendipitous and intriguing finding of a relationship between time spent training, psychological stress and training gains provided further insight into individual differences in training gains in older adults.

  7. Auditory-motor mapping training as an intervention to facilitate speech output in non-verbal children with autism: a proof of concept study.

    Directory of Open Access Journals (Sweden)

    Catherine Y Wan

    Full Text Available Although up to 25% of children with autism are non-verbal, there are very few interventions that can reliably produce significant improvements in speech output. Recently, a novel intervention called Auditory-Motor Mapping Training (AMMT has been developed, which aims to promote speech production directly by training the association between sounds and articulatory actions using intonation and bimanual motor activities. AMMT capitalizes on the inherent musical strengths of children with autism, and offers activities that they intrinsically enjoy. It also engages and potentially stimulates a network of brain regions that may be dysfunctional in autism. Here, we report an initial efficacy study to provide 'proof of concept' for AMMT. Six non-verbal children with autism participated. Prior to treatment, the children had no intelligible words. They each received 40 individual sessions of AMMT 5 times per week, over an 8-week period. Probe assessments were conducted periodically during baseline, therapy, and follow-up sessions. After therapy, all children showed significant improvements in their ability to articulate words and phrases, with generalization to items that were not practiced during therapy sessions. Because these children had no or minimal vocal output prior to treatment, the acquisition of speech sounds and word approximations through AMMT represents a critical step in expressive language development in children with autism.

  8. Validation, verification and evaluation of a Train to Train Distance Measurement System by means of Colored Petri Nets

    International Nuclear Information System (INIS)

    Song, Haifeng; Liu, Jieyu; Schnieder, Eckehard

    2017-01-01

    Validation, verification and evaluation are necessary processes to assure the safety and functionality of a system before its application in practice. This paper presents a Train to Train Distance Measurement System (TTDMS), which can provide distance information independently from existing onboard equipment. Afterwards, we proposed a new process using Colored Petri Nets to verify the TTDMS system functional safety, as well as to evaluate the system performance. Three main contributions are carried out in the paper: Firstly, this paper proposes a formalized TTDMS model, and the model correctness is validated using state space analysis and simulation-based verification. Secondly, corresponding checking queries are proposed for the purpose of functional safety verification. Further, the TTDMS performance is evaluated by applying parameters in the formal model. Thirdly, the reliability of a functional prototype TTDMS is estimated. It is found that the procedure can cooperate with the system development, and both formal and simulation-based verifications are performed. Using our process to evaluate and verify a system is easier to read and more reliable compared to executable code and mathematical methods. - Highlights: • A new Train to Train Distance Measurement System. • New approach verifying system functional safety and evaluating system performance by means of CPN. • System formalization using the system property concept. • Verification of system functional safety using state space analysis. • Evaluation of system performance applying simulation-based analysis.

  9. Auditory cortical processing in real-world listening: the auditory system going real.

    Science.gov (United States)

    Nelken, Israel; Bizley, Jennifer; Shamma, Shihab A; Wang, Xiaoqin

    2014-11-12

    The auditory sense of humans transforms intrinsically senseless pressure waveforms into spectacularly rich perceptual phenomena: the music of Bach or the Beatles, the poetry of Li Bai or Omar Khayyam, or more prosaically the sense of the world filled with objects emitting sounds that is so important for those of us lucky enough to have hearing. Whereas the early representations of sounds in the auditory system are based on their physical structure, higher auditory centers are thought to represent sounds in terms of their perceptual attributes. In this symposium, we will illustrate the current research into this process, using four case studies. We will illustrate how the spectral and temporal properties of sounds are used to bind together, segregate, categorize, and interpret sound patterns on their way to acquire meaning, with important lessons to other sensory systems as well. Copyright © 2014 the authors 0270-6474/14/3415135-04$15.00/0.

  10. Evaluation of artifact-corrected electroencephalographic (EEG) training: a pilot study.

    Science.gov (United States)

    La Marca, Jeffry P; Cruz, Daniel; Fandino, Jennifer; Cacciaguerra, Fabiana R; Fresco, Joseph J; Guerra, Austin T

    2018-07-01

    This double-blind study examined the effect of electromyographical (EMG) artifacts, which contaminate electroencephalographical (EEG) signals, by comparing artifact-corrected (AC) and non-artifact-corrected (NAC) neurofeedback (NF) training procedures. 14 unmedicated college students were randomly assigned to two groups: AC (n = 7) or NAC (n = 7). Both groups received 12 sessions of NF and were trained using identical NF treatment protocols to reduce their theta/beta power ratios (TBPR). Outcomes on a continuous performance test revealed that the AC group had statistically significant increases across measures of auditory and visual attention. The NAC group showed smaller gains that only reached statistical significance on measures of visual attention. Only the AC group reduced their TBPR, the NAC group did not. AC NF appears to play an important role during training that leads to improvements in both auditory and visual attention. Additional research is required to confirm the results of this study.

  11. Echoic memory: investigation of its temporal resolution by auditory offset cortical responses.

    Science.gov (United States)

    Nishihara, Makoto; Inui, Koji; Morita, Tomoyo; Kodaira, Minori; Mochizuki, Hideki; Otsuru, Naofumi; Motomura, Eishi; Ushida, Takahiro; Kakigi, Ryusuke

    2014-01-01

    Previous studies showed that the amplitude and latency of the auditory offset cortical response depended on the history of the sound, which implicated the involvement of echoic memory in shaping a response. When a brief sound was repeated, the latency of the offset response depended precisely on the frequency of the repeat, indicating that the brain recognized the timing of the offset by using information on the repeat frequency stored in memory. In the present study, we investigated the temporal resolution of sensory storage by measuring auditory offset responses with magnetoencephalography (MEG). The offset of a train of clicks for 1 s elicited a clear magnetic response at approximately 60 ms (Off-P50m). The latency of Off-P50m depended on the inter-stimulus interval (ISI) of the click train, which was the longest at 40 ms (25 Hz) and became shorter with shorter ISIs (2.5∼20 ms). The correlation coefficient r2 for the peak latency and ISI was as high as 0.99, which suggested that sensory storage for the stimulation frequency accurately determined the Off-P50m latency. Statistical analysis revealed that the latency of all pairs, except for that between 200 and 400 Hz, was significantly different, indicating the very high temporal resolution of sensory storage at approximately 5 ms.

  12. Echoic memory: investigation of its temporal resolution by auditory offset cortical responses.

    Directory of Open Access Journals (Sweden)

    Makoto Nishihara

    Full Text Available Previous studies showed that the amplitude and latency of the auditory offset cortical response depended on the history of the sound, which implicated the involvement of echoic memory in shaping a response. When a brief sound was repeated, the latency of the offset response depended precisely on the frequency of the repeat, indicating that the brain recognized the timing of the offset by using information on the repeat frequency stored in memory. In the present study, we investigated the temporal resolution of sensory storage by measuring auditory offset responses with magnetoencephalography (MEG. The offset of a train of clicks for 1 s elicited a clear magnetic response at approximately 60 ms (Off-P50m. The latency of Off-P50m depended on the inter-stimulus interval (ISI of the click train, which was the longest at 40 ms (25 Hz and became shorter with shorter ISIs (2.5∼20 ms. The correlation coefficient r2 for the peak latency and ISI was as high as 0.99, which suggested that sensory storage for the stimulation frequency accurately determined the Off-P50m latency. Statistical analysis revealed that the latency of all pairs, except for that between 200 and 400 Hz, was significantly different, indicating the very high temporal resolution of sensory storage at approximately 5 ms.

  13. Tinnitus alters resting state functional connectivity (RSFC) in human auditory and non-auditory brain regions as measured by functional near-infrared spectroscopy (fNIRS).

    Science.gov (United States)

    San Juan, Juan; Hu, Xiao-Su; Issa, Mohamad; Bisconti, Silvia; Kovelman, Ioulia; Kileny, Paul; Basura, Gregory

    2017-01-01

    Tinnitus, or phantom sound perception, leads to increased spontaneous neural firing rates and enhanced synchrony in central auditory circuits in animal models. These putative physiologic correlates of tinnitus to date have not been well translated in the brain of the human tinnitus sufferer. Using functional near-infrared spectroscopy (fNIRS) we recently showed that tinnitus in humans leads to maintained hemodynamic activity in auditory and adjacent, non-auditory cortices. Here we used fNIRS technology to investigate changes in resting state functional connectivity between human auditory and non-auditory brain regions in normal-hearing, bilateral subjective tinnitus and controls before and after auditory stimulation. Hemodynamic activity was monitored over the region of interest (primary auditory cortex) and non-region of interest (adjacent non-auditory cortices) and functional brain connectivity was measured during a 60-second baseline/period of silence before and after a passive auditory challenge consisting of alternating pure tones (750 and 8000Hz), broadband noise and silence. Functional connectivity was measured between all channel-pairs. Prior to stimulation, connectivity of the region of interest to the temporal and fronto-temporal region was decreased in tinnitus participants compared to controls. Overall, connectivity in tinnitus was differentially altered as compared to controls following sound stimulation. Enhanced connectivity was seen in both auditory and non-auditory regions in the tinnitus brain, while controls showed a decrease in connectivity following sound stimulation. In tinnitus, the strength of connectivity was increased between auditory cortex and fronto-temporal, fronto-parietal, temporal, occipito-temporal and occipital cortices. Together these data suggest that central auditory and non-auditory brain regions are modified in tinnitus and that resting functional connectivity measured by fNIRS technology may contribute to conscious phantom

  14. Tinnitus alters resting state functional connectivity (RSFC in human auditory and non-auditory brain regions as measured by functional near-infrared spectroscopy (fNIRS.

    Directory of Open Access Journals (Sweden)

    Juan San Juan

    Full Text Available Tinnitus, or phantom sound perception, leads to increased spontaneous neural firing rates and enhanced synchrony in central auditory circuits in animal models. These putative physiologic correlates of tinnitus to date have not been well translated in the brain of the human tinnitus sufferer. Using functional near-infrared spectroscopy (fNIRS we recently showed that tinnitus in humans leads to maintained hemodynamic activity in auditory and adjacent, non-auditory cortices. Here we used fNIRS technology to investigate changes in resting state functional connectivity between human auditory and non-auditory brain regions in normal-hearing, bilateral subjective tinnitus and controls before and after auditory stimulation. Hemodynamic activity was monitored over the region of interest (primary auditory cortex and non-region of interest (adjacent non-auditory cortices and functional brain connectivity was measured during a 60-second baseline/period of silence before and after a passive auditory challenge consisting of alternating pure tones (750 and 8000Hz, broadband noise and silence. Functional connectivity was measured between all channel-pairs. Prior to stimulation, connectivity of the region of interest to the temporal and fronto-temporal region was decreased in tinnitus participants compared to controls. Overall, connectivity in tinnitus was differentially altered as compared to controls following sound stimulation. Enhanced connectivity was seen in both auditory and non-auditory regions in the tinnitus brain, while controls showed a decrease in connectivity following sound stimulation. In tinnitus, the strength of connectivity was increased between auditory cortex and fronto-temporal, fronto-parietal, temporal, occipito-temporal and occipital cortices. Together these data suggest that central auditory and non-auditory brain regions are modified in tinnitus and that resting functional connectivity measured by fNIRS technology may contribute to

  15. Senior Surfing: Computer Use, Aging, and Formal Training

    Science.gov (United States)

    Warren-Peace, Paula; Parrish, Elaine; Peace, C. Brian; Xu, Jianzhong

    2008-01-01

    In this article, we describe data from two case studies of seniors (one younger senior and one older senior) in learning to use computers. The study combined interviews, observations, and documents to take a close look at their experiences with computers, as well as the influences of aging and computer training on their experiences. The study…

  16. Specialized prefrontal auditory fields: organization of primate prefrontal-temporal pathways

    Directory of Open Access Journals (Sweden)

    Maria eMedalla

    2014-04-01

    Full Text Available No other modality is more frequently represented in the prefrontal cortex than the auditory, but the role of auditory information in prefrontal functions is not well understood. Pathways from auditory association cortices reach distinct sites in the lateral, orbital, and medial surfaces of the prefrontal cortex in rhesus monkeys. Among prefrontal areas, frontopolar area 10 has the densest interconnections with auditory association areas, spanning a large antero-posterior extent of the superior temporal gyrus from the temporal pole to auditory parabelt and belt regions. Moreover, auditory pathways make up the largest component of the extrinsic connections of area 10, suggesting a special relationship with the auditory modality. Here we review anatomic evidence showing that frontopolar area 10 is indeed the main frontal auditory field as the major recipient of auditory input in the frontal lobe and chief source of output to auditory cortices. Area 10 is thought to be the functional node for the most complex cognitive tasks of multitasking and keeping track of information for future decisions. These patterns suggest that the auditory association links of area 10 are critical for complex cognition. The first part of this review focuses on the organization of prefrontal-auditory pathways at the level of the system and the synapse, with a particular emphasis on area 10. Then we explore ideas on how the elusive role of area 10 in complex cognition may be related to the specialized relationship with auditory association cortices.

  17. Formalizing Informal Logic

    Directory of Open Access Journals (Sweden)

    Douglas Walton

    2015-12-01

    Full Text Available This paper presents a formalization of informal logic using the Carneades Argumentation System (CAS, a formal, computational model of argument that consists of a formal model of argument graphs and audiences. Conflicts between pro and con arguments are resolved using proof standards, such as preponderance of the evidence. CAS also formalizes argumentation schemes. Schemes can be used to check whether a given argument instantiates the types of argument deemed normatively appropriate for the type of dialogue.

  18. Auditory Neuropathy

    Science.gov (United States)

    ... children and adults with auditory neuropathy. Cochlear implants (electronic devices that compensate for damaged or nonworking parts ... and Drug Administration: Information on Cochlear Implants Telecommunications Relay Services Your Baby's Hearing Screening News Deaf health ...

  19. Selective Attention to Visual Stimuli Using Auditory Distractors Is Altered in Alpha-9 Nicotinic Receptor Subunit Knock-Out Mice.

    Science.gov (United States)

    Terreros, Gonzalo; Jorratt, Pascal; Aedo, Cristian; Elgoyhen, Ana Belén; Delano, Paul H

    2016-07-06

    During selective attention, subjects voluntarily focus their cognitive resources on a specific stimulus while ignoring others. Top-down filtering of peripheral sensory responses by higher structures of the brain has been proposed as one of the mechanisms responsible for selective attention. A prerequisite to accomplish top-down modulation of the activity of peripheral structures is the presence of corticofugal pathways. The mammalian auditory efferent system is a unique neural network that originates in the auditory cortex and projects to the cochlear receptor through the olivocochlear bundle, and it has been proposed to function as a top-down filter of peripheral auditory responses during attention to cross-modal stimuli. However, to date, there is no conclusive evidence of the involvement of olivocochlear neurons in selective attention paradigms. Here, we trained wild-type and α-9 nicotinic receptor subunit knock-out (KO) mice, which lack cholinergic transmission between medial olivocochlear neurons and outer hair cells, in a two-choice visual discrimination task and studied the behavioral consequences of adding different types of auditory distractors. In addition, we evaluated the effects of contralateral noise on auditory nerve responses as a measure of the individual strength of the olivocochlear reflex. We demonstrate that KO mice have a reduced olivocochlear reflex strength and perform poorly in a visual selective attention paradigm. These results confirm that an intact medial olivocochlear transmission aids in ignoring auditory distraction during selective attention to visual stimuli. The auditory efferent system is a neural network that originates in the auditory cortex and projects to the cochlear receptor through the olivocochlear system. It has been proposed to function as a top-down filter of peripheral auditory responses during attention to cross-modal stimuli. However, to date, there is no conclusive evidence of the involvement of olivocochlear

  20. Dynamics of auditory working memory

    Directory of Open Access Journals (Sweden)

    Jochen eKaiser

    2015-05-01

    Full Text Available Working memory denotes the ability to retain stimuli in mind that are no longer physically present and to perform mental operations on them. Electro- and magnetoencephalography allow investigating the short-term maintenance of acoustic stimuli at a high temporal resolution. Studies investigating working memory for non-spatial and spatial auditory information have suggested differential roles of regions along the putative auditory ventral and dorsal streams, respectively, in the processing of the different sound properties. Analyses of event-related potentials have shown sustained, memory load-dependent deflections over the retention periods. The topography of these waves suggested an involvement of modality-specific sensory storage regions. Spectral analysis has yielded information about the temporal dynamics of auditory working memory processing of individual stimuli, showing activation peaks during the delay phase whose timing was related to task performance. Coherence at different frequencies was enhanced between frontal and sensory cortex. In summary, auditory working memory seems to rely on the dynamic interplay between frontal executive systems and sensory representation regions.

  1. Speech Evoked Auditory Brainstem Response in Stuttering

    Directory of Open Access Journals (Sweden)

    Ali Akbar Tahaei

    2014-01-01

    Full Text Available Auditory processing deficits have been hypothesized as an underlying mechanism for stuttering. Previous studies have demonstrated abnormal responses in subjects with persistent developmental stuttering (PDS at the higher level of the central auditory system using speech stimuli. Recently, the potential usefulness of speech evoked auditory brainstem responses in central auditory processing disorders has been emphasized. The current study used the speech evoked ABR to investigate the hypothesis that subjects with PDS have specific auditory perceptual dysfunction. Objectives. To determine whether brainstem responses to speech stimuli differ between PDS subjects and normal fluent speakers. Methods. Twenty-five subjects with PDS participated in this study. The speech-ABRs were elicited by the 5-formant synthesized syllable/da/, with duration of 40 ms. Results. There were significant group differences for the onset and offset transient peaks. Subjects with PDS had longer latencies for the onset and offset peaks relative to the control group. Conclusions. Subjects with PDS showed a deficient neural timing in the early stages of the auditory pathway consistent with temporal processing deficits and their abnormal timing may underlie to their disfluency.

  2. Auditory hallucinations and PTSD in ex-POWS

    DEFF Research Database (Denmark)

    Crompton, Laura; Lahav, Yael; Solomon, Zahava

    2017-01-01

    (PTSD) symptoms, over time. Former prisoners of war (ex-POWs) from the 1973 Yom Kippur War (n = 99) with and without PTSD and comparable veterans (n = 103) were assessed twice, in 1991 (T1) and 2003 (T2) in regard to auditory hallucinations and PTSD symptoms. Findings indicated that ex-POWs who suffered...... from PTSD reported higher levels of auditory hallucinations at T2 as well as increased hallucinations over time, compared to ex-POWs without PTSD and combatants who did not endure captivity. The relation between PTSD and auditory hallucinations was unidirectional, so that the PTSD overall score at T1...... predicted an increase in auditory hallucinations between T1 and T2, but not vice versa. Assessing the role of PTSD clusters in predicting hallucinations revealed that intrusion symptoms had a unique contribution, compared to avoidance and hyperarousal symptoms. The findings suggest that auditory...

  3. Continuous Auditory Feedback of Eye Movements: An Exploratory Study toward Improving Oculomotor Control

    Directory of Open Access Journals (Sweden)

    Eric O. Boyer

    2017-04-01

    Full Text Available As eye movements are mostly automatic and overtly generated to attain visual goals, individuals have a poor metacognitive knowledge of their own eye movements. We present an exploratory study on the effects of real-time continuous auditory feedback generated by eye movements. We considered both a tracking task and a production task where smooth pursuit eye movements (SPEM can be endogenously generated. In particular, we used a visual paradigm which enables to generate and control SPEM in the absence of a moving visual target. We investigated whether real-time auditory feedback of eye movement dynamics might improve learning in both tasks, through a training protocol over 8 days. The results indicate that real-time sonification of eye movements can actually modify the oculomotor behavior, and reinforce intrinsic oculomotor perception. Nevertheless, large inter-individual differences were observed preventing us from reaching a strong conclusion on sensorimotor learning improvements.

  4. Functional mapping of the primate auditory system.

    Science.gov (United States)

    Poremba, Amy; Saunders, Richard C; Crane, Alison M; Cook, Michelle; Sokoloff, Louis; Mishkin, Mortimer

    2003-01-24

    Cerebral auditory areas were delineated in the awake, passively listening, rhesus monkey by comparing the rates of glucose utilization in an intact hemisphere and in an acoustically isolated contralateral hemisphere of the same animal. The auditory system defined in this way occupied large portions of cerebral tissue, an extent probably second only to that of the visual system. Cortically, the activated areas included the entire superior temporal gyrus and large portions of the parietal, prefrontal, and limbic lobes. Several auditory areas overlapped with previously identified visual areas, suggesting that the auditory system, like the visual system, contains separate pathways for processing stimulus quality, location, and motion.

  5. Auditory recognition memory is inferior to visual recognition memory.

    Science.gov (United States)

    Cohen, Michael A; Horowitz, Todd S; Wolfe, Jeremy M

    2009-04-07

    Visual memory for scenes is surprisingly robust. We wished to examine whether an analogous ability exists in the auditory domain. Participants listened to a variety of sound clips and were tested on their ability to distinguish old from new clips. Stimuli ranged from complex auditory scenes (e.g., talking in a pool hall) to isolated auditory objects (e.g., a dog barking) to music. In some conditions, additional information was provided to help participants with encoding. In every situation, however, auditory memory proved to be systematically inferior to visual memory. This suggests that there exists either a fundamental difference between auditory and visual stimuli, or, more plausibly, an asymmetry between auditory and visual processing.

  6. The effects of aging on lifetime of auditory sensory memory in humans.

    Science.gov (United States)

    Cheng, Chia-Hsiung; Lin, Yung-Yang

    2012-02-01

    The amplitude change of cortical responses to repeated stimulation with respect to different interstimulus intervals (ISIs) is considered as an index of sensory memory. To determine the effect of aging on lifetime of auditory sensory memory, N100m responses were recorded in young, middle-aged, and elderly healthy volunteers (n=15 for each group). Trains of 5 successive tones were presented with an inter-train interval of 10 s. In separate sessions, the within-train ISIs were 0.5, 1, 2, 4, and 8 s. The amplitude ratio between N100m responses to the first and fifth stimuli (S5/S1 N100m ratio) within each ISI condition was obtained to reflect the recovery cycle profile. The recovery function time constant (τ) was smaller in the elderly (1.06±0.26 s, psensory memory. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. An Evaluation of Non-Formal Educational Programs for Women in Morocco.

    Science.gov (United States)

    Youssef, Nadia H.; And Others

    Morocco's existing non-formal education programs involving women (Foyers Feminins and Ouvroirs) cater to female adolescents from low-income families and are almost entirely oriented to the teaching of traditional feminine crafts. Efforts are being made by both programs to introduce non-craft training in areas related to the modern economic sector.…

  8. Reduced auditory efferent activity in childhood selective mutism.

    Science.gov (United States)

    Bar-Haim, Yair; Henkin, Yael; Ari-Even-Roth, Daphne; Tetin-Schneider, Simona; Hildesheimer, Minka; Muchnik, Chava

    2004-06-01

    Selective mutism is a psychiatric disorder of childhood characterized by consistent inability to speak in specific situations despite the ability to speak normally in others. The objective of this study was to test whether reduced auditory efferent activity, which may have direct bearings on speaking behavior, is compromised in selectively mute children. Participants were 16 children with selective mutism and 16 normally developing control children matched for age and gender. All children were tested for pure-tone audiometry, speech reception thresholds, speech discrimination, middle-ear acoustic reflex thresholds and decay function, transient evoked otoacoustic emission, suppression of transient evoked otoacoustic emission, and auditory brainstem response. Compared with control children, selectively mute children displayed specific deficiencies in auditory efferent activity. These aberrations in efferent activity appear along with normal pure-tone and speech audiometry and normal brainstem transmission as indicated by auditory brainstem response latencies. The diminished auditory efferent activity detected in some children with SM may result in desensitization of their auditory pathways by self-vocalization and in reduced control of masking and distortion of incoming speech sounds. These children may gradually learn to restrict vocalization to the minimal amount possible in contexts that require complex auditory processing.

  9. The effects of divided attention on auditory priming.

    Science.gov (United States)

    Mulligan, Neil W; Duke, Marquinn; Cooper, Angela W

    2007-09-01

    Traditional theorizing stresses the importance of attentional state during encoding for later memory, based primarily on research with explicit memory. Recent research has begun to investigate the role of attention in implicit memory but has focused almost exclusively on priming in the visual modality. The present experiments examined the effect of divided attention on auditory implicit memory, using auditory perceptual identification, word-stem completion and word-fragment completion. Participants heard study words under full attention conditions or while simultaneously carrying out a distractor task (the divided attention condition). In Experiment 1, a distractor task with low response frequency failed to disrupt later auditory priming (but diminished explicit memory as assessed with auditory recognition). In Experiment 2, a distractor task with greater response frequency disrupted priming on all three of the auditory priming tasks as well as the explicit test. These results imply that although auditory priming is less reliant on attention than explicit memory, it is still greatly affected by at least some divided-attention manipulations. These results are consistent with research using visual priming tasks and have relevance for hypotheses regarding attention and auditory priming.

  10. Auditory memory function in expert chess players.

    Science.gov (United States)

    Fattahi, Fariba; Geshani, Ahmad; Jafari, Zahra; Jalaie, Shohreh; Salman Mahini, Mona

    2015-01-01

    Chess is a game that involves many aspects of high level cognition such as memory, attention, focus and problem solving. Long term practice of chess can improve cognition performances and behavioral skills. Auditory memory, as a kind of memory, can be influenced by strengthening processes following long term chess playing like other behavioral skills because of common processing pathways in the brain. The purpose of this study was to evaluate the auditory memory function of expert chess players using the Persian version of dichotic auditory-verbal memory test. The Persian version of dichotic auditory-verbal memory test was performed for 30 expert chess players aged 20-35 years and 30 non chess players who were matched by different conditions; the participants in both groups were randomly selected. The performance of the two groups was compared by independent samples t-test using SPSS version 21. The mean score of dichotic auditory-verbal memory test between the two groups, expert chess players and non-chess players, revealed a significant difference (p≤ 0.001). The difference between the ears scores for expert chess players (p= 0.023) and non-chess players (p= 0.013) was significant. Gender had no effect on the test results. Auditory memory function in expert chess players was significantly better compared to non-chess players. It seems that increased auditory memory function is related to strengthening cognitive performances due to playing chess for a long time.

  11. Comment entrainer la memoire sensorielle (How to Train Sensory Memory).

    Science.gov (United States)

    Llorca, Regine

    1993-01-01

    At the University of Queensland (Australia), second-language instruction techniques involving principles of sensory training are being used experimentally. The method promotes sensory integration of speech events through auditory, visual, and kinesthetic memory. (MSE)

  12. Aging increases distraction by auditory oddballs in visual, but not auditory tasks.

    Science.gov (United States)

    Leiva, Alicia; Parmentier, Fabrice B R; Andrés, Pilar

    2015-05-01

    Aging is typically considered to bring a reduction of the ability to resist distraction by task-irrelevant stimuli. Yet recent work suggests that this conclusion must be qualified and that the effect of aging is mitigated by whether irrelevant and target stimuli emanate from the same modalities or from distinct ones. Some studies suggest that aging is especially sensitive to distraction within-modality while others suggest it is greater across modalities. Here we report the first study to measure the effect of aging on deviance distraction in cross-modal (auditory-visual) and uni-modal (auditory-auditory) oddball tasks. Young and older adults were asked to judge the parity of target digits (auditory or visual in distinct blocks of trials), each preceded by a task-irrelevant sound (the same tone on most trials-the standard sound-or, on rare and unpredictable trials, a burst of white noise-the deviant sound). Deviant sounds yielded distraction (longer response times relative to standard sounds) in both tasks and age groups. However, an age-related increase in distraction was observed in the cross-modal task and not in the uni-modal task. We argue that aging might affect processes involved in the switching of attention across modalities and speculate that this may due to the slowing of this type of attentional shift or a reduction in cognitive control required to re-orient attention toward the target's modality.

  13. The Eindhoven laparoscopic cholecystectomy training course--improving operating room performance using virtual reality training: results from the first E.A.E.S. accredited virtual reality trainings curriculum

    NARCIS (Netherlands)

    Schijven, M. P.; Jakimowicz, J. J.; Broeders, I. A. M. J.; Tseng, L. N. L.

    2005-01-01

    BACKGROUND: This study was undertaken to investigate operating room performance of surgical residents, after participating in the Eindhoven virtual reality laparoscopic cholecystectomy training course. This course is the first formal surgical resident trainings course, using a variety of

  14. Effect of task-related continuous auditory feedback during learning of tracking motion exercises

    Directory of Open Access Journals (Sweden)

    Rosati Giulio

    2012-10-01

    Full Text Available Abstract Background This paper presents the results of a set of experiments in which we used continuous auditory feedback to augment motor training exercises. This feedback modality is mostly underexploited in current robotic rehabilitation systems, which usually implement only very basic auditory interfaces. Our hypothesis is that properly designed continuous auditory feedback could be used to represent temporal and spatial information that could in turn, improve performance and motor learning. Methods We implemented three different experiments on healthy subjects, who were asked to track a target on a screen by moving an input device (controller with their hand. Different visual and auditory feedback modalities were envisaged. The first experiment investigated whether continuous task-related auditory feedback can help improve performance to a greater extent than error-related audio feedback, or visual feedback alone. In the second experiment we used sensory substitution to compare different types of auditory feedback with equivalent visual feedback, in order to find out whether mapping the same information on a different sensory channel (the visual channel yielded comparable effects with those gained in the first experiment. The final experiment applied a continuously changing visuomotor transformation between the controller and the screen and mapped kinematic information, computed in either coordinate system (controller or video, to the audio channel, in order to investigate which information was more relevant to the user. Results Task-related audio feedback significantly improved performance with respect to visual feedback alone, whilst error-related feedback did not. Secondly, performance in audio tasks was significantly better with respect to the equivalent sensory-substituted visual tasks. Finally, with respect to visual feedback alone, video-task-related sound feedback decreased the tracking error during the learning of a novel

  15. Increasing the effectiveness of instrumentation and control training programs using integrated training settings and a systematic approach to training

    International Nuclear Information System (INIS)

    McMahon, J.F.; Rakos, N.

    1992-01-01

    The performance of plant maintenance-related tasks assigned to instrumentation and control (I ampersand C) technicians can be broken down into physical skills required to do the task; resident knowledge of how to do the task; effect of maintenance on plant operating conditions; interactions with other plant organizations such as operations, radiation protection, and quality control; and knowledge of consequences of miss-action. A technician who has learned about the task in formal classroom presentations has not had the advantage of integrating that knowledge with the requisite physical and communication skills; hence, the first time these distinct and vital parts of the task equation are put together is on the job, during initial task performance. On-the-job training provides for the integration of skills and knowledge; however, this form of training is limited by plant conditions, availability of supporting players, and training experience levels of the personnel conducting the exercise. For licensed operations personnel, most nuclear utilities use formal classroom and a full-scope control room simulator to achieve the integration of skills and knowledge in a controlled training environment. TU Electric has taken that same approach into maintenance areas by including identical plant equipment in a laboratory setting for the large portion of training received by maintenance personnel at its Comanche Peak steam electric station. The policy of determining training needs and defining the scope of training by using the systematic approach to training has been highly effective and provided training at a reasonable cost (approximately $18.00/student contact hour)

  16. How well do you see what you hear? The acuity of visual-to-auditory sensory substitution

    Directory of Open Access Journals (Sweden)

    Alastair eHaigh

    2013-06-01

    Full Text Available Sensory substitution devices (SSDs aim to compensate for the loss of a sensory modality, typically vision, by converting information from the lost modality into stimuli in a remaining modality. The vOICe is a visual-to-auditory SSD which encodes images taken by a camera worn by the user into soundscapes such that an experienced user can extract information about their surroundings. Here we investigated how much detail was resolvable during the early induction stages by testing the acuity of blindfolded sighted, naïve vOICe users. Initial performance was well above chance. Participants who took the test twice as a form of minimal training showed a marked improvement on the second test. Acuity was slightly but not significantly impaired when participants wore a camera and judged letter orientations live. A positive correlation was found between participants’ musical training and their acuity. The relationship between auditory expertise via musical training and the lack of a relationship with visual imagery, suggests that early use of a sensory substitution device draws primarily on the mechanisms of the sensory modality being used rather than the one being substituted. If vision is lost, audition represents the sensory channel of highest bandwidth of those remaining. The level of acuity found here, and the fact it was achieved with very little experience in sensory substitution by naïve users is promising.

  17. Effects of user training with electronically-modulated sound transmission hearing protectors and the open ear on horizontal localization ability.

    Science.gov (United States)

    Casali, John G; Robinette, Martin B

    2015-02-01

    To determine if training with electronically-modulated hearing protection (EMHP) and the open ear results in auditory learning on a horizontal localization task. Baseline localization testing was conducted in three listening conditions (open-ear, in-the-ear (ITE) EMHP, and over-the-ear (OTE) EMHP). Participants then wore either an ITE or OTE EMHP for 12, almost daily, one-hour training sessions. After training was complete, participants again underwent localization testing in all three listening conditions. A computer with a custom software and hardware interface presented localization sounds and collected participant responses. Twelve participants were recruited from the student population at Virginia Tech. Audiometric requirements were 35 dBHL at 500, 1000, and 2000 Hz bilaterally, and 55 dBHL at 4000 Hz in at least one ear. Pre-training localization performance with an ITE or OTE EMHP was worse than open-ear performance. After training with any given listening condition, including open-ear, performance in that listening condition improved, in part from a practice effect. However, post-training localization performance showed near equal performance between the open-ear and training EMHP. Auditory learning occurred for the training EMHP, but not for the non-training EMHP; that is, there was no significant training crossover effect between the ITE and the OTE devices. It is evident from this study that auditory learning (improved horizontal localization performance) occurred with the EMHP for which training was performed. However, performance improvements found with the training EMHP were not realized in the non-training EMHP. Furthermore, localization performance in the open-ear condition also benefitted from training on the task.

  18. Perceptual consequences of disrupted auditory nerve activity.

    Science.gov (United States)

    Zeng, Fan-Gang; Kong, Ying-Yee; Michalewski, Henry J; Starr, Arnold

    2005-06-01

    Perceptual consequences of disrupted auditory nerve activity were systematically studied in 21 subjects who had been clinically diagnosed with auditory neuropathy (AN), a recently defined disorder characterized by normal outer hair cell function but disrupted auditory nerve function. Neurological and electrophysical evidence suggests that disrupted auditory nerve activity is due to desynchronized or reduced neural activity or both. Psychophysical measures showed that the disrupted neural activity has minimal effects on intensity-related perception, such as loudness discrimination, pitch discrimination at high frequencies, and sound localization using interaural level differences. In contrast, the disrupted neural activity significantly impairs timing related perception, such as pitch discrimination at low frequencies, temporal integration, gap detection, temporal modulation detection, backward and forward masking, signal detection in noise, binaural beats, and sound localization using interaural time differences. These perceptual consequences are the opposite of what is typically observed in cochlear-impaired subjects who have impaired intensity perception but relatively normal temporal processing after taking their impaired intensity perception into account. These differences in perceptual consequences between auditory neuropathy and cochlear damage suggest the use of different neural codes in auditory perception: a suboptimal spike count code for intensity processing, a synchronized spike code for temporal processing, and a duplex code for frequency processing. We also proposed two underlying physiological models based on desynchronized and reduced discharge in the auditory nerve to successfully account for the observed neurological and behavioral data. These methods and measures cannot differentiate between these two AN models, but future studies using electric stimulation of the auditory nerve via a cochlear implant might. These results not only show the unique

  19. Comorbidity of Auditory Processing, Language, and Reading Disorders

    Science.gov (United States)

    Sharma, Mridula; Purdy, Suzanne C.; Kelly, Andrea S.

    2009-01-01

    Purpose: The authors assessed comorbidity of auditory processing disorder (APD), language impairment (LI), and reading disorder (RD) in school-age children. Method: Children (N = 68) with suspected APD and nonverbal IQ standard scores of 80 or more were assessed using auditory, language, reading, attention, and memory measures. Auditory processing…

  20. Auditory Preferences of Young Children with and without Hearing Loss for Meaningful Auditory-Visual Compound Stimuli

    Science.gov (United States)

    Zupan, Barbra; Sussman, Joan E.

    2009-01-01

    Experiment 1 examined modality preferences in children and adults with normal hearing to combined auditory-visual stimuli. Experiment 2 compared modality preferences in children using cochlear implants participating in an auditory emphasized therapy approach to the children with normal hearing from Experiment 1. A second objective in both…