Sample records for forested watershed kawagama

  1. Hydrological processes of reference watersheds in Experimental Forests, USA (United States)

    Devendra Amatya; John Campbell; Pete Wohlgemuth; Kelly Elder; Stephen Sebestyen; Sherri Johnson; Elizabeth Keppeler; Mary Beth Adams; Peter Caldwell; D. Misra


    Long-term research at small, gauged, forested watersheds within the USDA Forest Service, Experimental Forest and Range network (USDA-EFR) has contributed substantially to our current understanding of relationships between forests and streamflow (Vose et al., 2014). Many of these watershed studies were established in the early to mid-20th century and have been used to...

  2. Artificial watershed acidification on the Fernow Experimental Forest, USA (United States)

    M.B. Adams; P.J. Edwards; F. Wood; J.N. Kochenderfer


    A whole-watershed manipulation project was begun on the Fernow Experimental Forest in West Virginia, USA, in 1987, with the objective of increasing understanding of the effects of acidic deposition on forest ecosystems. Two treatment watersheds (WS9 and WS3) and one control watershed (WS4) were included. Treatments were twice-ambient N and S deposition, applied via NH...

  3. Modeling the cumulative watershed effects of forest management strategies (United States)

    R. R. Ziemer; J. Lewis; R. M. Rice; T. E. Lisle


    Abstract - There is increasing concern over the possibility of adverse cumulative watershed effects from intensive forest management. It is impractical to address many aspects of the problem experimentally because to do so would require studying large watersheds for 100 yr or more. One such aspect is the long-term effect of forest management strategies on erosion and...

  4. Forest Practice Rules and cumulative watershed impacts in California (United States)

    L. M. Reid


    Response to the following questions, "As currently implemented, are existing California forest practice rules effective in preventing cumulative watershed impacts, including flooding?" and "What kind of measures might improve the effectiveness of forest practices rules for avoiding forestry-related cumulative watershed impacts

  5. Bridging the gap between ecosystem theory and forest watershed management (United States)

    Jackson Webster; Wayne Swank; James Vose; Jennifer Knoepp; Katherine Elliott


    The history of forests and logging in North America provides a back drop for our study of Watershed (WS) 7. Prior to European settlement, potentially commercial forests covered approximately 45% of North America, but not all of it was the pristine, ancient forest that some have imagined. Prior to 1492, Native Americans had extensive settlements throughout eastern...

  6. Implementing watershed investment programs to restore fire-adapted forests for watershed services (United States)

    Springer, A. E.


    Payments for ecosystems services and watershed investment programs have created new solutions for restoring upland fire-adapted forests to support downstream surface-water and groundwater uses. Water from upland forests supports not only a significant percentage of the public water supplies in the U.S., but also extensive riparian, aquatic, and groundwater dependent ecosystems. Many rare, endemic, threatened, and endangered species are supported by the surface-water and groundwater generated from the forested uplands. In the Ponderosa pine forests of the Southwestern U.S., post Euro-American settlement forest management practices, coupled with climate change, has significantly impacted watershed functionality by increasing vegetation cover and associated evapotranspiration and decreasing runoff and groundwater recharge. A large Collaborative Forest Landscape Restoration Program project known as the Four Forests Restoration Initiative is developing landscape scale processes to make the forests connected to these watersheds more resilient. However, there are challenges in financing the initial forest treatments and subsequent maintenance treatments while garnering supportive public opinion to forest thinning projects. A solution called the Flagstaff Watershed Protection Project is utilizing City tax dollars collected through a public bond to finance forest treatments. Exit polling from the bond election documented the reasons for the 73 % affirmative vote on the bond measure. These forest treatments have included in their actions restoration of associated ephemeral stream channels and spring ecosystems, but resources still need to be identified for these actions. A statewide strategy for developing additional forest restoration resources outside of the federal financing is being explored by state and local business and governmental leaders. Coordination, synthesis, and modeling supported by a NSF Water Sustainability and Climate project has been instrumental in

  7. Water cycle observations in forest watersheds of Cambodia (United States)

    Shimizu, A.; Tamai, K.; Kabeya, N.; Shimizu, T.; Iida, S. I.


    The Lower Mekong River flows through Cambodia, where forests cover ~60% of the country and are believed to have a marked effect on the water cycle. These tropical seasonal forests in the Cambodian flat lands are very precious in the Indochinese Peninsula as few forests of this type remain. However, few hydrological observations have been conducted in these areas. In Cambodia, deciduous and evergreen forests make up 42% and 33% of the total forest area, respectively. We established experimental watersheds both in deciduous and evergreen forests containing meteorological observation towers in Cambodia and collected various observational data since 2003 (O'Krieng, deciduous forest watershed including a 30-m-high observation tower, 2,245 km2; Stung Chinit, evergreen forest watershed including a 60-m-high observation tower, 3,700 km2 including three small watersheds). The basic data from these sites included various kinds of information related to the composition of vegetation, soil characteristics, etc. Hydrologic data was collected and linked to the above data; the main hydrologic research results follow. The water budget for each watershed was determined using an observational rainfall and runoff dataset. The evapotranspiration rate in an evergreen forest was obtained using various observational methods including the Bowen energy-balance ratio and the bandpass eddy covariance method. The annual evapotranspiration of evergreen forests, estimated using the Bowen energy-balance ratio method and water balance, was about 1100-1200 mm, corresponding to 70-80% of annual rainfall. While considering the importance of the presence of evergreen forest, we conducted sap flow measurements to analyze the transpiration process that maintains water uptake through root systems that reach to depths exceeding 8 m. Characteristics of the evaporation from the forest floor that form an important element of the evaporation system were estimated in both evergreen and deciduous forests.

  8. Declining water yield from forested mountain watersheds in response to climate change and forest mesophication (United States)

    Peter V. Caldwell; Chelcy F. Miniat; Katherine J. Elliott; Wayne. T. Swank; Steven T. Brantley; Stephanie H. Laseter


    Climate change and forest disturbances are threatening the ability of forested mountain watersheds to provide the clean, reliable, and abundant fresh water necessary to support aquatic ecosystems and a growing human population. Here we used 76 years of water yield, climate, and field plot vegetation measurements in six unmanaged, reference watersheds in the southern...

  9. Annual evapotranspiration of a forested wetland watershed, SC (United States)

    Devendra M. Amatya; Carl Trettin


    In this study, hydro-meteorological data collected from 1 964 to 1 9 76 on an approximately 5, 000 ha predominantly forested coastal watershed (Turkey Creek) at the Francis Marion National Forest near Charleston, SC were analyzed to estimate annual evapotranspiration (E T) using four different empirical methods. The first one, reported by Zhang et a/. (2001), that...

  10. Hydrologic influences of forest vegetation in a changing world: Learning from Forest Service experimental forests, ranges, and watersheds (United States)

    Thomas E. Lisle; Mary Beth Adams; Leslie M. Reid; Kelly Elder


    The importance of forests in providing reliable sources of clean water cannot be underestimated. Therefore, there is a pressing need to understand how hydrologic systems function in forested ecosystems, in response to a variety of traditional and novel stressors and environments. Long-term watershed research on Experimental Forests and Ranges (EFRs) of the Forest...

  11. Estimating water user demand for certification of forest watershed services. (United States)

    Jaung, Wanggi; Bull, Gary Q; Sumaila, Ussif Rashid; Markum; Putzel, Louis


    Eco-certification is one solution to the common problem of verification of delivery of services in payment for ecosystem services (PES) schemes. Certification incurs costs, which may limit uptake, so it should be able to benefit users of certified services for it succeeds. In part to inform a project targeting expansion of the Forest Stewardship Council's forest management certification to include ecosystem services, we tested market demand for a potential certification scheme for watershed services. Using choice experiments among end-users of water subject to an existing PES scheme in Lombok, Indonesia, we assessed potential business values of certification. Our results suggested that preferred business values included credible information disclosure on improved water quality, reduced flood risk, environmental safeguards, and/or social safeguards of the upstream forests. These preferences indicate potential demand for a certification of forest watershed services designed to provide such information to end users. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Assessing the vulnerability of watersheds to climate change: results of national forest watershed vulnerability pilot assessments (United States)

    Michael J. Furniss; Ken B. Roby; Dan Cenderelli; John Chatel; Caty F. Clifton; Alan Clingenpeel; Polly E. Hays; Dale Higgins; Ken Hodges; Carol Howe; Laura Jungst; Joan Louie; Christine Mai; Ralph Martinez; Kerry Overton; Brian P. Staab; Rory Steinke; Mark. Weinhold


    Existing models and predictions project serious changes to worldwide hydrologic processes as a result of global climate change. Projections indicate that significant change may threaten National Forest System watersheds that are an important source of water used to support people, economies, and ecosystems.Wildland managers are expected to anticipate and...

  13. Divergent phenological response to hydroclimate variability in forested mountain watersheds (United States)

    Taehee Hwang; Lawrence E. Band; Chelcy F. Miniat; Conghe Song; Paul V . Bolstad; James M. Vose; Jason P. Love


    Mountain watersheds are primary sources of freshwater, carbon sequestration, and other ecosystem services. There is significant interest in the effects of climate change and variability on these processes over short to long time scales. Much of the impact of hydroclimate variability in forest ecosystems is manifested in vegetation dynamics in space and time. In steep...

  14. Water budgets of two forested watersheds in South Carolina (United States)

    Ge Sun; Jianbiao Lu; David L. Gartner; Masato Miwa; Carl C. Trettin


    Wetland protection, restoration and management require detail information of the water budgets for a particular system. Relatively undisturbed systems with long-term hydrologic records are extremely valuable for developing reference wetlands and detecting effects of management. Two forested flatwoods watersheds in the lower coastal plain of South Carolina have been...

  15. Long-term flow dynamics of three coastal experimental forested watersheds (United States)

    Devendra M. Amatya; Artur Radecki-Pawlik


    Three 1st2nd, and 3rd order experimental forested watersheds located within Francis Marion National Forest in Coastal South Carolina were monitored for rainfall and stream outflows. These watersheds were WS80, a pine-hardwood forest (206 ha); WS79 a predominantly pine forest (500 ha); and WS78, a...

  16. Spatial characteristics of topography, energy exchange, and forest cover in a central Appalachian watershed (United States)

    Stanislaw J. Tajchman; Hailiang Fu; James N. Kochenderfer; Pan Chunshen


    Spatial variation of topography, net radiation, evapotranspiration, and forest stand in the central Appalachian watershed is described. The study area is the control watershed 4 (39"20'N, 79"49"W) located in the Fernow Experimental Forest at Parsons, West Virginia. The watershed encompasses an area of 39.2 ha, it has a southeast orientation, and the...

  17. Impact of Forest Harvesting and Forest Regeneration on Runoff Dynamics at Watersheds of Central Siberia

    Directory of Open Access Journals (Sweden)

    A. A. Onuchin


    Full Text Available In the paper disturbance of Angara river region forests were estimated and peculiarities of forest regeneration after logging and wild fires were analyzed. According to the landscape classification of the regional study, three groups of landscapes differencing on types of forest successions were developed. It was shown that water protective and water regulate functions of the Angara river region forests change under commercial forest harvesting. Comparisons of the inventory and hydrological data detected that hydrological consequences of commercial forest harvesting are dependent on climatic parameters and forest regeneration peculiarities. In the continental climate conditions, when forest regeneration is delayed, snow storms are more active, snow evaporation increases and runoff reduces. In the process of logging sites overgrown with secondary small-leaved forest, snow accumulation increases and runoff increases, exceeding the value of annual runoff at undisturbed watersheds.

  18. 76 FR 62758 - Wallowa-Whitman and Umatilla National Forests, Oregon Granite Creek Watershed Mining Plans (United States)


    ... Granite Creek Watershed Mining Plans AGENCY: Forest Service, USDA. ACTION: Notice of intent to prepare an... to authorize the approval of mining Plans of Operation in the Granite Creek Watershed Mining Plans... environmental analyses for proposed mining Plans in the portions of the Granite Creek Watershed under their...

  19. Curve Numbers for Nine Mountainous Eastern United States Watersheds: Seasonal Variation and Forest Cutting (United States)

    Many engineers and hydrologists use the curve number method to estimate runoff from ungaged watersheds; however, the method does not explicitly account for the influence of season or forest cutting on runoff. This study of observed rainfall and runoff for small, forested watershe...

  20. Effects of forest management on streamflow, sediment yield, and erosion, Caspar Creek Experimental Watersheds (United States)

    Elizabeth T. Keppeler; Jack Lewis; Thomas E. Lisle


    Abstract - Caspar Creek Experimental Watersheds were established in 1962 to research the effects of forest management on streamflow, sedimentation, and erosion in the rainfall-dominated, forested watersheds of north coastal California. Currently, 21 stream sites are gaged in the North Fork (473 ha) and South Fork (424 ha) of Caspar Creek. From 1971 to 1973, 65% of...

  1. Flow dynamics of three experimental forested watersheds in coastal South Carolina (USA) (United States)

    Devendra M. Amatya; Artur Radecki-Pawlik


    Three first-, second- and third-order experimental forested watersheds located within the Francis Marion National Forest in the lower coastal plain of South Carolina were monitored for rainfall and stream outflows. The largest watershed (WS 78) with some open lands, roads and wetlands gave higher annual water yields compared to the two other smaller ones (WS 79, WS 80...

  2. Use of fire spread and hydrology models to target forest management on a municipal watershed (United States)

    Anurag Srivastava; William J. Elliot; Joan Wu


    A small town relies on a forested watershed for its water supply. The forest is at risk for a wildfire. To reduce this risk, some of the watershed will be thinned followed by a prescribed burn. This paper reports on a study to evaluate the impact of such watershed disturbances on water yield. To target management activities, a fire spread model was applied to the...

  3. Can Forest Transformation Help Reducing Floods in Forested Watersheds?

    DEFF Research Database (Denmark)

    Wahl, Niels Arne; Wöllecke, B.; Benz, O.


    populations and stand structure. It was found that infiltration capacity and hydraulic conductivity K exhibit overall low values nevertheless the tree species. This finding appears to be related to water repellency, the predominating texture, and a poor macroporosity. During the different stages of forest...

  4. Integrated simulation of runoff and groundwater in forest wetland watersheds

    Directory of Open Access Journals (Sweden)

    Gen-wei CHENG


    Full Text Available Abstract: A Distributed Forest Wetland Hydrologic Model (DFWHM was constructed and used to examine water dynamics in the different climates of three different watersheds (a cold region, a sub-tropic region, and a large-scale watershed. A phenological index was used to represent the seasonal and species changes of the tree canopy while processes of snow packing, soil freezing, and snow and ice thawing were also included in the simulation. In the cold region, the simulated fall of the groundwater level in winter due to soil freezing and rise in spring due to snow and ice melting compare well with the observed data. Because the evapotranspiration and interaction of surface water and groundwater are included in the model, the modeled seasonal trend of the groundwater level in the sub-tropic region is in agreement with observations. The comparison between modeled and observed hydrographs indicates that the simulations in the large-scale watershed managed to capture the water dynamics in unsaturated and saturated zones.

  5. Integrated simulation of runoff and groundwater in forest wetland watersheds

    Directory of Open Access Journals (Sweden)

    Cheng Genwei


    Full Text Available A Distributed Forest Wetland Hydrologic Model (DFWHM was constructed and used to examine water dynamics in the different climates of three different watersheds (a cold region, a sub-tropic region, and a large-scale watershed. A phenological index was used to represent the seasonal and species changes of the tree canopy while processes of snow packing, soil freezing, and snow and ice thawing were also included in the simulation. In the cold region, the simulated fall of the groundwater level in winter due to soil freezing and rise in spring due to snow and ice melting compare well with the observed data. Because the evapotranspiration and interaction of surface water and groundwater are included in the model, the modeled seasonal trend of the groundwater level in the sub-tropic region is in agreement with observations. The comparison between modeled and observed hydrographs indicates that the simulations in the large-scale watershed managed to capture the water dynamics in unsaturated and saturated zones.

  6. Chapter 6: Creating a basis for watershed management in high elevation forests (United States)

    Gerald J. Gottfried; Leonard F. DeBano; Peter F. Ffolliott


    Higher mountains and plateaus in the Central Arizona Highlands generally support southwestern mixed conifer forests, associated aspen and spruce-fir forests, and a small acreage of grasslands interspersed among the forested areas. Most of the major rivers in the region originate on headwater watersheds that support mixed conifer forests where annual precipitation,...

  7. Analyzing the impacts of forest disturbance and regrowth on watershed hydrology: A case study from the Homochitto Watershed, Mississippi (United States)

    Yeo, I.; Islam, A.; Huang, C.


    Forests are efficient sinks and reservoirs of terrestrial carbons. They can relieve or amplify the adverse impacts of global warming and climate variability and hence, managing forests has been the most important sustainable strategy to mitigate climatic impacts. However, forest management often involves a large scale landscape transformation of land use and cover, and brings significant changes on water resources to the local community. This study is to evaluate the impacts of forest management and disturbance on water quality and quanity in the Homochitto watershed (Mississippi), where forest management and disturbance have occurred on a large scale over long time scales. Using a watershed simulation model (Soil and Water Assessment Tool) and a long term water monitoring data from USGS and US EPA, we will investigate how the spatial heterogeneity of land use, vegetation cover, topography, and climate affect water cycles (e.g., soil water content, water yields), and water quality (e.g., nutrients and sediments) at multiple spatial and temporal scales. Historic chronologies of forest disturbance maps will be generated with a number of satellite-based measurements (such as Landsat, MODIS, and aerial photographs), Geospatial datasets (including MS Gap Analysis Project (GAP), National Land Cover Database (NLCD)), field measurements from the US Forest Service Forest Inventory Analysis (FIA) database, and historic records on forest land management in the region, characterizing the human induced changes in the forest landscape. This study will provide valuable information to better understand the hydrologic feedbacks to changing forests and climate system.

  8. Modeling soil erosion and sediment transport from fires in forested watersheds of the South Carolina Piedmont (United States)

    Tyler Crumbley; Ge Sun; Steve McNulty


    Forested watersheds in the Southeastern U.S. provide high quality water vital to ecosystem integrity and downstream aquatic resources. Excessive sedimentation from human activities in forest streams is of concern to responsible land managers. Prescribed fire is a common treatment applied to Southeastern piedmont forests and the risk of wildfire is becoming increasingly...

  9. Development of watershed hydrologic research at Santee Experimental Forest, coastal South Carolina (United States)

    Devendra Amatya; Carl Trettin


    Managing forested wetland landscapes for water quality improvement and productivity requires a detailed understanding of functional linkages between ecohydrological processes and management practices. Watershed studies are being conducted at USDA Forest Service Santee Experimental Forest, South Carolina, to understand the fundamental hydrologic and biogeochemical...

  10. Climatic control of nitrate loss from forested watersheds in the northeast United States (United States)

    Mitchell, M.J.; Driscoll, C.T.; Kahl, J.S.; Likens, G.E.; Murdoch, Peter S.; Pardo, L.H.


    Increased losses of nitrate from watersheds may accelerate the depletion of nutrient cations and affect the acidification and trophic status of surface waters. Patterns of nitrate concentrations and losses were evaluated in four forested watersheds (East Bear Brook Watershed, Lead Mountain, ME; Watershed 6, Hubbard Brook Experimental Forest, White Mountains, NH; Arbutus Watershed, Huntington Forest, Adirondack Mountains, NY; Biscuit Brook, Catskill Mountains, NY) located across the northeastern United States. A synchronous pattern was observed in nitrate concentrations of drainage waters from these four sites from 1983 through 1993. Most notably, high concentrations and high drainage water losses followed an anomalous cold period (mean daily temperature -11.4 to -16 ??C in December 1989) for all four sites. After high nitrate losses during the snowmelt of 1990, nitrate concentrations and fluxes decreased at all sites. These results suggest that climatic variation can have a major effect on nitrogen flux and cycling and may influence temporal patterns of nitrate loss in a region.

  11. Indicators of nitrate export from forested watersheds of the Chesapeake Bay region (United States)

    Karl W. J. Williard


    Soil net nitrogen mineralization and nitrification rates were studied on nine relatively undisturbed, forested watersheds in an effort to explain the large variations in nitrate export in streamflow within the Chesapeake Bay region. The primary hypothesis tested was that nitrate export from the watersheds was positively associated with rates of net soil nitrogen...

  12. Stream carbon dynamics in low-gradient headwaters of a forested watershed (United States)

    April Bryant-Mason; Y. Jun Xu; Johnny M. Grace


    Headwater streams drain more than 70 percent of the total watershed area in the United States. Understanding of carbon dynamics in the headwater systems is of particular relevance for developing best silvicultural practices to reduce carbon export. This study was conducted in a low-gradient, predominantly forested watershed located in the Gulf Coastal Plain region, to...

  13. Evaluating the SWAT model for a low-gradient forested watershed in coastal South Carolina (United States)

    D.M. Amatya; M.K. Jha.


    Modeling the hydrology of low�]gradient forested watersheds on shallow, poorly drained soils of the coastal plain is a challenging task due to complexities in watershed delineation, microtopography, evapotranspiration, runoff generation processes and pathways including flooding and submergence caused by tropical storms, and complexity of vegetation species....

  14. Hydrology and water budget for a forested atlantic coastal plain watershed, South Carolina (United States)

    Scott V. Harder; Devendra M Amatya; Callahan Timothy J.; Carl C. Trettin; Hakkila Jon


    Increases in timber demand and urban development in the Atlantic Coastal Plain over the past decade have motivated studies on the hydrology, water quality, and sustainable management of coastal plain watersheds. However, studies on baseline water budgets are limited for the low-lying, forested watersheds of the Atlantic Coastal Plain. The purpose of this study was to...

  15. Hyrdology and water budget for a forested atlantic coastal plain watershed, South Carolina (United States)

    Scott V. Harder; Devendra M. Amatya; Timothy J. Callahan; Carl C. Trettin; Jon Hakkila


    Increases in timber demand and urban development in the Atlantic Coastal Plain over the past decade have motivated studies on the hydrology, water quality, and sustainable management of coastal plain watersheds. However, studies on baseline water budgets are limited for the low-lying, forested watersheds of the Atlantic Coastal Plain. The purpose of this study was to...

  16. Effects of watershed experiments on water chemistry at the Marcell Experimental Forest. Chapter 14. (United States)

    Stephen D. Sebestyen; Elon S. Verry


    The Marcell Experimental Forest (MEF) was established during the 1960s to study the hydrology and ecology of lowland watersheds where upland mineral soils drain to central peatlands (Boelter and Verry 1977). The effects of seven large-scale manipulations on water chemistry have been studied on the MEF watersheds and the data now span up to four decades. In this chapter...

  17. Streamwater chemistry and nutrient budgets for forested watersheds in New England: variability and management implications (United States)

    J.W. Hornbeck; S.W. Bailey; D.C. Buso; J.B. Shanley


    Chemistry of precipitation and streamwater and resulting input-output budgets for nutrient ions were determined concurrently for three years on three upland, forested watersheds located within an 80 km radius in central New England. Chemistry of precipitation and inputs of nutrients via wet deposition were similar among the three watersheds and were generally typical...

  18. Hydrologic cycling of mercury and organic carbon in a forested upland-bog watershed (United States)

    R. K. Kolka; D. F. Grigal; E. A. Nater; E. S. Verry


    The hydrologic cyvling of total Hg (HgT) and organic C (OC) was studies for a 1-yr period in a northern Minnesota forested watershed, consisting of an upland surrounding a bog peatland with a narrow lagg at their interface. Throughfall and sternflow contributed twice as much HgT as seven times as much OC to the forested watershed than atmospheric deposition in a...

  19. Diatom Responses to Watershed Development and Potential Moderating Effects of Near-Stream Forest and Wetland Cover (United States)

    Watershed development alters hydrology and delivers anthropogenic stressors to streams via pathways affected by impervious cover. We characterized relationships of diatom communities and metrics with upstream watershed % impervious cover (IC) and with riparian % forest and wetlan...

  20. Guiding principles for management of forested, agricultural, and urban watersheds (United States)

    Pamela J. Edwards; Jon E. Schoonover; Karl W.J. Williard


    Human actions must be well planned and include consideration of their potential influences on water and aquatic ecosystems - such consideration is the foundation of watershed management. Watersheds are the ideal land unit for managing and protecting water resources and aquatic health because watersheds integrate the physical, biological and chemical processes within...

  1. Changes in sediment yield and stream morphology in an actively managed forested watershed due to upstream disturbances (United States)

    Ilkim Cavus; Latif Kalin; Ferhat Kara


    Attaining high quality water has always been a big concern for humankind. Forested watersheds are known to provide the cleanest form of water. However, conversion of forested lands to agricultural and/or urban use, as well as disturbances created in forested watersheds lead to degradation and deterioration of our water resources.

  2. Preliminary study on streamflow in forested and forest plantation experimental watersheds for water resources management

    International Nuclear Information System (INIS)

    Siti Aisah Shamsuddin; Marrynna Lion; Saiful Iskandar, K.; Norazuan, H.


    The future management of forests for water resources will be more important as population growth and demand for water resources increases. In Malaysia many lowland forests has been earmarked for agricultural crops, and timber concessionaires has moved towards the hillier region of the country where specific and costly logging techniques are required. Hence, planting timber trees, as an industrial timber plantation is an alternative to meet timber demands. Very few research on evaluation of the impact of forest clearance on hydrology attributes from newly established industrial timber plantations have been conducted. In 1989, experimental catchment at Bukit Tarek Tambahan Experimental Watershed (BTEW) was initiated to study the effects of land conversion from forest to industrial timber plantation on hydrological parameters changes. The BTEW is located in Compartment 41, Bukit Tarek Tambahan F. R. at Kerling, Selangor Malaysia. The study site was a regenerated secondary forest logged in 1963. The study area is divided into catchment C1 (32.8 ha) and C3 (12.5 ha). Catchment C1, act as a control whereas C3 is the experimental catchments. Catchment C3 was logged in 1999 and early 2000 and subsequently a forest plantation was established. The forest area in Catchment C3 was clear felled, and the residuals trees were burnt. Buffer zone was not established near the riverbanks. The plantation was established in catchment C3 with Hopea odorata in early 2004. Streamflow was measured continuously using the 120 degree V-notch weir at the outlet of each watershed (Weir 1 and Weir 3). The short time interval rainfall was also monitored. In this working paper, the main objective to analyze the data is to examine rainfall-runoff response of forested catchments before establishment of forest plantation. The preliminary study on discharge after the C3 was clear-felled using single storm hydrograph analysis shows that during the storm event, the quick flow runoff dominate the

  3. Impacts of forest changes on hydrology: a case study of large watersheds in the upper reaches of Minjiang River watershed in China (United States)

    Cui, X.; Liu, S.; Wei, X.


    Quantifying the effects of forest changes on hydrology in large watersheds is important for designing forest or land management and adaptation strategies for watershed ecosystem sustainability. Minjiang River watershed, located in the upper reach of the Yangtze River basin, plays a strategic role in the environmental protection and economic and social well-being for both the watershed and the entire Yangtze River basin. The watershed lies in the transition zone from Sichuan Basin to Qinghai-Tibet Plateau with a size of 24 000 km2. Due to its strategic significance, severe historic deforestation and high sensitivity to climate change, the watershed has long been recognized as one of the highest priority watersheds in China for scientific research and resource management. The purpose of this review paper is to provide a state-of-the-art summary on what we have learned from several recently completed research programs (one of them known as "973 of the China National Major Fundamental Science" from 2002 to 2008). This summary paper focused on how land cover or forest change affected hydrology at both forest stand and watershed scales in this large watershed. Inclusion of two different spatial scales is useful, because the results from a small spatial scale (e.g. forest stand level) can help interpret the findings on a large spatial scale. Our review suggests that historic forest harvesting or land cover change has caused significant water yield increase due to reduction of forest canopy interception and evapotranspiration caused by removal of forest vegetation on both spatial scales. The impact magnitude caused by forest harvesting indicates that the hydrological effects of forest or land cover changes can be as important as those caused by climate change, while the opposite impact directions suggest their offsetting effects on water yield in the Minjiang River watershed. In addition, different types of forests have different magnitudes of evapotranspiration (ET), with

  4. Impacts of forest changes on hydrology: a case study of large watersheds in the upper reaches of Minjiang River watershed in China

    Directory of Open Access Journals (Sweden)

    X. Cui


    Full Text Available Quantifying the effects of forest changes on hydrology in large watersheds is important for designing forest or land management and adaptation strategies for watershed ecosystem sustainability. Minjiang River watershed, located in the upper reach of the Yangtze River basin, plays a strategic role in the environmental protection and economic and social well-being for both the watershed and the entire Yangtze River basin. The watershed lies in the transition zone from Sichuan Basin to Qinghai-Tibet Plateau with a size of 24 000 km2. Due to its strategic significance, severe historic deforestation and high sensitivity to climate change, the watershed has long been recognized as one of the highest priority watersheds in China for scientific research and resource management. The purpose of this review paper is to provide a state-of-the-art summary on what we have learned from several recently completed research programs (one of them known as "973 of the China National Major Fundamental Science" from 2002 to 2008. This summary paper focused on how land cover or forest change affected hydrology at both forest stand and watershed scales in this large watershed. Inclusion of two different spatial scales is useful, because the results from a small spatial scale (e.g. forest stand level can help interpret the findings on a large spatial scale. Our review suggests that historic forest harvesting or land cover change has caused significant water yield increase due to reduction of forest canopy interception and evapotranspiration caused by removal of forest vegetation on both spatial scales. The impact magnitude caused by forest harvesting indicates that the hydrological effects of forest or land cover changes can be as important as those caused by climate change, while the opposite impact directions suggest their offsetting effects on water yield in the Minjiang River watershed. In addition, different types of forests have different magnitudes of

  5. Hydrological recovery in two large forested watersheds of southeastern China: the importance of watershed properties in determining hydrological responses to reforestation


    Liu, Wenfei; Wei, Xiaohua; Li, Qiang; Fan, Houbao; Duan, Honglang; Wu, Jianping; Giles-Hansen, Krysta; Zhang, Hao


    Understanding hydrological responses to reforestation is an important subject in watershed management, particularly in large forested watersheds ( >  1000 km2). In this study, we selected two large forested watersheds (Pingjiang and Xiangshui) located in the upper reach of the Poyang Lake watershed, southeastern China (with an area of 3261.4 and 1458 km2, respectively), along with long-term data on climate and hydrology (1954–2006) to assess the effects of large-scale ref...

  6. Assessing the Impact of Forest Change and Climate Variability on Dry Season Runoff by an Improved Single Watershed Approach: A Comparative Study in Two Large Watersheds, China

    Directory of Open Access Journals (Sweden)

    Yiping Hou


    Full Text Available Extensive studies on hydrological responses to forest change have been published for centuries, yet partitioning the hydrological effects of forest change, climate variability and other factors in a large watershed remains a challenge. In this study, we developed a single watershed approach combining the modified double mass curve (MDMC and the time series multivariate autoregressive integrated moving average model (ARIMAX to separate the impact of forest change, climate variability and other factors on dry season runoff variation in two large watersheds in China. The Zagunao watershed was examined for the deforestation effect, while the Meijiang watershed was examined to study the hydrological impact of reforestation. The key findings are: (1 both deforestation and reforestation led to significant reductions in dry season runoff, while climate variability yielded positive effects in the studied watersheds; (2 the hydrological response to forest change varied over time due to changes in soil infiltration and evapotranspiration after vegetation regeneration; (3 changes of subalpine natural forests produced greater impact on dry season runoff than alteration of planted forests. These findings are beneficial to water resource and forest management under climate change and highlight a better planning of forest operations and management incorporated trade-off between carbon and water in different forests.

  7. Experimental forest watershed studies contribution to the effect of disturbances on water quality (United States)

    Daniel G. Neary


    The most sustainable and best quality fresh water sources in the world originate in forested watersheds (Dissmeyer 2000, Brooks et al. 2003, Barten and Ernst 2004). The biological, chemical, and physical characteristics of forest soils are particularly well suited to delivering high quality water to streams, and moderating the climatic extremes which affect stream...

  8. Preface: long-term response of a forest watershed ecosystem, clearcutting in the Southern Appalachians (United States)

    Wayne Swank; Jackson Webster


    Our North American forests are no longer the wild areas of past centuries; they are an economic and ecological resource undergoing changes from both natural and management disturbances. A watershed-scale and long-term perspective of forest ecosystem responses is requisite to understanding and predicting cause and effect relationships. This book synthesizes...

  9. Applying the SWAT hydrologic model on a watershed containing forested karst. (United States)

    Devendra M. Amatya; Amy E. Edwards


    The US Forest Service Center for Forested Wetlands Research is working on a South Carolina Department of Health and Environmental Control (SC DHEC)'s Section 319 Grant Program funded Total Maximum Daily Load (TMDL) project for the watershed of Chapel Branch Creek (CBC) draining to Lake Marion in Santee, South Carolina (Fig. 1)....

  10. Contributions of studies on experimental forests to hydrology and watershed management [Chapter 14 (United States)

    Gerald J. Gottfried; Peter F. Ffolliott; Kenneth N. Brooks; Randall K. Kolka; Carol B. Raish; Daniel G. Neary


    The link between healthy forests and watersheds and healthy streamflow and quality water is universally recognized. The major rivers of the USA originate in the forested mountains of the western and eastern USA and the glaciated regions of the Lake States and Great Plains and produce almost two-thirds of the nation’s clean water supply. Original logging and...

  11. The US Forest Service Watershed Condition Classification: Status and Path Forward (United States)

    Levinson, D. H.; Carlson, C. P.; Eberle, M. B.


    The US Forest Service Watershed Condition Classification (WCC) was developed as a tool to characterize the condition or health of watersheds on National Forests and Grasslands and assist the Agency in prioritizing actions to restore or maintain the condition of specified watersheds. After a number of years of exploring alternative approaches to assessing the health or condition of watersheds, the WCC and the associated Watershed Condition Framework were developed in response to concerns raised by the US Office of Management and Budget that the Forest Service was not able to demonstrate success in restoring watersheds on a national scale. The WCC was initially applied in 2011 to the roughly 15,000 HUC12 watersheds with an area of Forest Service management of 5% or greater. This initial watershed classification found that 52% (or 7,882) were Functioning Properly (Class 1), 45% (or 6,751) were Functioning at Risk (Class 2), and 3% (or 431) had Impaired Function (Class 3). The basic model used in the WCC was intended to provide a reconnaissance-level evaluation of watershed condition through the use of a systematic, flexible means of classifying and comparing watersheds based on a core set of national watershed condition indicators. The WCC consists of 12 indicators in four major process categories: (1) aquatic physical, (2) aquatic biological, (3) terrestrial physical, and (4) terrestrial biological. Each of the indicators is informed by one or more attributes. The attributes fall into three primary categories: numeric, descriptive, and map-derived, each of which is to be interpreted by an interdisciplinary team at the unit level. The descriptive and map-derived attributes are considered to be semi-quantitative or based on professional judgement of the team. The original description of the attributes anticipated that many of them would be improved as better data and information become available. With the advances in geographic information systems and remote sensing

  12. Assessment of watershed vulnerability to climate change for the Uinta-Wasatch-Cache and Ashley National Forests, Utah (United States)

    Janine Rice; Tim Bardsley; Pete Gomben; Dustin Bambrough; Stacey Weems; Sarah Leahy; Christopher Plunkett; Charles Condrat; Linda A. Joyce


    Watersheds on the Uinta-Wasatch-Cache and Ashley National Forests provide many ecosystem services, and climate change poses a risk to these services. We developed a watershed vulnerability assessment to provide scientific information for land managers facing the challenge of managing these watersheds. Literature-based information and expert elicitation is used to...

  13. Why rehabilitation, restoration and protection of watershed forests in ...

    African Journals Online (AJOL)

    Watershed is defined as an area of land that catches rainfall, and other precipitation and funnels it into a marsh, stream, river, lake or ground water is the basic building block of sound natural resources stewardship. The water bodies supplied by the watershed, provide our drinking water, water for agriculture and ...

  14. Applications of long-term watershed research to forest management in California: 50 Years of Learning from the Caspar Creek Watershed Study (United States)

    Cafferata Peter; Leslie Reid


    For over 50 years, the Caspar Creek Experimental Watersheds, located in western Mendocino County, California, have been the site of long-term cooperative watershed research carried out by the U.S. Forest Service Pacific Southwest Research Station (PSW) and the California Department of Forestry and Fire Protection (CAL FIRE). Preliminary stream flow, suspended...

  15. The hidden treasures of long-term paired watershed monitoring in the forests and grasslands of Arizona, USA (United States)

    B. Poff; D. G. Neary; V. Henderson; A. Tecle


    Beginning in the 1950s, researchers of the United States Department of Agriculture Forest Service established a series of paired watershed studies throughout north-central and eastern Arizona. A total of nine experimental watershed areas were established in the pinyon-juniper and chaparral woodlands, as well as the ponderosa pine and mixed conifer forests. While most...

  16. Forest cover change, physiography, local economy, and institutions in a mountain watershed in Nepal. (United States)

    Gautam, Ambika P; Shivakoti, Ganesh P; Webb, Edward L


    This study assessed changes in forest cover in a mountain watershed in central Nepal between 1976 and 2000 by comparing classified satellite images coupled by GIS analyses, and examined the association of forest change with major physiographic, economic, and local forest governance parameters. The results showed an increase in forested area (forest plus shrublands) by 7.6% during 1976-2000. Forest dynamism (changes including improvement, deterioration, gain, and loss) was highest in low-elevation, south-facing and less-steep slopes that were closer to roads. Proportionately the highest net improvement and gain to forested area also took place in those locations. Forest degradation occurred at twice the rate of improvement in high elevation areas (> 2300 m). Forests located in urban and semiurban areas (i.e., a market-oriented economy) experienced a proportionately higher amount of net improvement and gain than forests in rural areas (i.e., a subsistence economy). Among the three governance arrangements, proportionately the highest net improvement and gain took place in semigovernment forests (forested area legally under the forest department but with de facto control and claim of ownership by local communities and/or municipality) followed by formalized community forests (including leasehold). Government forests, which were mostly found in the southern high mountains and had virtually open access, remained relatively stable during the study period. Over 50% of the watershed forests have not come under community-based management despite favorable policy and more than two decades of government intervention with continuous donor support. The findings indicate that the present "one size fits all" approach of community forest handover policy in Nepal needs rethinking to accommodate biophysical and socioeconomic variations across the country.

  17. Fifty years of watershed research on the Fernow Experimental Forest, WV: effects of forest management and air pollution on hardwood forests (United States)

    M.B. Adams; P.J. Edwards; J.N. Kochenderfer; F. Wood


    In 1951, stream gaging was begun on five small headwater catchments on the Fernow Experimental Forest in West Virginia, to study the effects of forest management activities, particularly timber harvesting, on water yield and quality. Results from these watersheds, and others gaged more recently, have shown that annual water yields increase in proportion to the basal...


    Turbidity was highest for South Shore streams overall, but exhibited a significant HGM x storage x fragmentation effect, with highest levels observed in South Shore low storage/high fragmentation watersheds.

  19. Hurricane impacts on a pair of coastal forested watersheds: implications of selective hurricane damage to forest structure and streamflow dynamics (United States)

    A.D. Jayakaran; T.M. Williams; H. Ssegane; D.M. Amatya; B. Song; C.C. Trettin


    Hurricanes are infrequent but influential disruptors of ecosystem processes in the southeastern Atlantic and Gulf coasts. Every southeastern forested wetland has the potential to be struck by a tropical cyclone. We examined the impact of Hurricane Hugo on two paired coastal South Carolina watersheds in terms of streamflow and vegetation dynamics, both before and after...

  20. Modeling potential evapotranspiration of two forested watersheds in the southern Appalachians (United States)

    L.Y. Rao; G. Sun; C.R. Ford; J.M. Vose


    Global climate change has direct impacts on watershed hydrology through altering evapotranspiration (ET) processes at multiple scales. There are many methods to estimate forest ET with models, but the most practical and the most popular one is the potential ET (PET) based method. However, the choice of PET methods for AET estimation remains challenging. This study...

  1. Geoecology of a forest watershed underlain by serpentine in Central Europe (United States)

    Pavel Krám; Filip Oulehle; Veronika Štedrá; Jakub Hruška; James B. Shanley; Rakesh Minocha; Elena. Traister


    The geoecology of a serpentinite-dominated site in the Czech Republic was investigated by rock, soil, water, and plant analyses. The 22-ha Pluhuv Bor watershed is almost entirely forested by a nearly 110-year old plantation of Picea abies (Norway Spruce) mixed with native Pinus sylvestris (Scots Pine) in the highest elevations...

  2. A watershed-based environmental and regulatory data analysis system for the forest products industry (United States)

    John Beebe


    A watershed-based data analysis system was created as a tool for forest product companies to better understand potential implications from environmental regulations. Also known as the Receiving Water Database (RWDB), this data system was designed with the purpose of assisting companies that own pulp and paper mills, wood product facilities, and commercial timberlands...

  3. Northwest Forest Plan—the first 20 years (1994–2013): watershed condition status and trends (United States)

    Stephanie A. Miller; Sean N. Gordon; Peter Eldred; Ronald M. Beloin; Steve Wilcox; Mark Raggon; Heidi Andersen; Ariel. Muldoon


    The Aquatic and Riparian Effectiveness Monitoring Program focuses on assessing the degree to which federal land management under the aquatic conservation strategy (ACS) of the Northwest Forest Plan (NWFP) has been effective in maintaining and improving watershed conditions. We used stream sampling data and upslope/riparian geographic information system (GIS) and remote...

  4. Nutrient loss from disturbed forest watersheds in Oregon's Coast Range (United States)

    James H. Miller; M. Newton


    Dissolved nutrients were monitored bi-weekly in stream water draining 14 upland watetzhcds in Oregon's Coast Range after sprayin g with 2,4,5-T + 2,4-D, clearcut harvesting and slash burning. Anion generation and leaching were primarily studied. The nitrate concentrations fell and the bicarbonate concentrations rose during summer low-flows from treated watersheds...

  5. Impacts of forest changes on hydrology: a case study of large watersheds in the upper reach of Yangtze River Basin (United States)

    Cui, X.; Liu, S.; Wei, X.


    Quantifying the effects of forest changes on hydrology in large watersheds is important for designing forest or land management and adaptation strategies for watershed ecosystem sustainability. Minjiang River watershed located in the upper reach of the Yangtze River Basin plays a strategic role in environmental protection and economic and social wellbeing for both the watershed and the entire Yangtze Basin. The watershed lies in the transition zone from Sichuan Basin to Qinghai-Tibet Plateau with a size of 24 000 km2. Due to its strategic significance, severe historic deforestation and high sensitivity to climate change, the watershed has long been one of the highest priority watersheds in China for scientific research and resource management. The purpose of this review paper is to provide a state-of-the-art summary on what we have learned from several recently-completed research programs (one of them known as "973 of the China National Major Fundamental Science" with funding of 3.5 million USD in 2002 to 2008). This summary paper focused on how land cover or forest change affected hydrology at both forest stand and watershed scales in this large watershed. Inclusion of two different spatial scales is useful because the results from a small spatial scale (e.g. forest stand level) can help interpret the findings at a large spatial scale. Our review suggests that historic forest harvesting or land cover change has caused significant water increase due to reduction of forest canopy interception and evapotranspiration caused by removal of forest vegetation at both spatial scales. The impact magnitudes caused by forest harvesting indicate that the hydrological effects of forest or land cover changes can be as important as those caused by climate change, while the opposite impact directions suggest their offsetting effects on water yields in the Minjiang River watershed. In addition, different types of forests have different magnitudes of ET with old-growth natural

  6. Integration of a Hydrological Model within a Geographical Information System: Application to a Forest Watershed

    Directory of Open Access Journals (Sweden)

    Dimitris Fotakis


    Full Text Available Watershed simulation software used for operational purposes must possess both dependability of results and flexibility in parameter selection and testing. The UBC watershed model (UBCWM contains a wide spectrum of parameters expressing meteorological, geological, as well as ecological watershed characteristics. The hydrological model was coupled to the MapInfo GIS and the software created was named Watershed Mapper (WM. WM is endowed with several features permitting operational utilization. These include input data and basin geometry visualization, land use/cover and soil simulation, exporting of statistical results and thematic maps and interactive variation of disputed parameters. For the application of WM two hypothetical scenarios of forest fires were examined in a study watershed. Four major rainfall events were selected from 12-year daily precipitation data and the corresponding peak flows were estimated for the base line data and hypothetical scenarios. A significant increase was observed as an impact of forest fires on peak flows. Due to its flexibility the combined tool described herein may be utilized in modeling long-term hydrological changes in the context of unsteady hydrological analyses.

  7. The organic nature and atmosphere-climate dependency of nitrogen loss from forest watershed ecosystems


    Brookshire, E. N. J.


    In this dissertation I describe how coupled internal cycling and external forcing from the atmosphere and climate can regulate the dynamics of nitrogen (N) loss from forest watersheds. I address three major gaps in our understanding of the global N cycle: 1) the role of dissolved organic N (DON) in internal N cycling in low-N ecosystems; 2) The influence of atmospheric pollution on DON production and loss from forests; and 3) the inherent climate sensitivity of forest N cycling and loss. In...

  8. Surface runoff generation in a small watershed covered by sugarcane and riparian forest

    Directory of Open Access Journals (Sweden)

    Rafael Pires Fernandes


    Full Text Available Since an understanding of how runoff is generated is of great importance to soil conservation, to water availability and to the management of a watershed, the objective of this study was to understand the generation of surface runoff in a watershed covered by sugarcane and riparian forest. Nine surface runoff plots were set up, evenly distributed on the lower, middle and upper slopes. The lower portion was covered by riparian forest. We showed that the average surface runoff coefficient along the slope in the present study was higher than in other studies under different land uses. Furthermore, the surface runoff was higher under sugarcane compared to the riparian forest, especially after sugarcane harvesting. Besides land cover, other factors such as the characteristics of rainfall events, relief and physical soil characteristics such as soil bulk density and saturated hydraulic conductivity influenced the surface runoff generation.

  9. The cumulative effects of forest disturbance and climate variability on streamflow components in a large forest-dominated watershed (United States)

    Li, Qiang; Wei, Xiaohua; Zhang, Mingfang; Liu, Wenfei; Giles-Hansen, Krysta; Wang, Yi


    Assessing how forest disturbance and climate variability affect streamflow components is critical for watershed management, ecosystem protection, and engineering design. Previous studies have mainly evaluated the effects of forest disturbance on total streamflow, rarely with attention given to its components (e.g., base flow and surface runoff), particularly in large watersheds (>1000 km2). In this study, the Upper Similkameen River watershed (1810 km2), an international watershed situated between Canada and the USA, was selected to examine how forest disturbance and climate variability interactively affect total streamflow, baseflow, and surface runoff. Baseflow was separated using a combination of the recursive digital filter method and conductivity mass balance method. Time series analysis and modified double mass curves were then employed to quantitatively separate the relative contributions of forest disturbance and climate variability to each streamflow component. Our results showed that average annual baseflow and baseflow index (baseflow/streamflow) were 113.3 ± 35.6 mm year-1 and 0.27 for 1954-2013, respectively. Forest disturbance increased annual streamflow, baseflow, and surface runoff of 27.7 ± 13.7 mm, 7.4 ± 3.6 mm, and 18.4 ± 12.9 mm, respectively, with its relative contributions to the changes in respective streamflow components being 27.0 ± 23.0%, 29.2 ± 23.1%, and 25.7 ± 23.4%, respectively. In contrast, climate variability decreased them by 74.9 ± 13.7 mm, 17.9 ± 3.6 mm, and 53.3 ± 12.9 mm, respectively, with its relative contributions to the changes in respective streamflow components being 73.0 ± 23.0%, 70.8 ± 23.1% and 73.1 ± 23.4%, respectively. Despite working in opposite ways, the impacts of climate variability on annual streamflow, baseflow, and surface runoff were of a much greater magnitude than forest disturbance impacts. This study has important implications for the protection of aquatic habitat, engineering design, and

  10. Comparison of forest area data in the Chesapeake Bay Watershed (United States)

    Tonya W. Lister; Andrew J. Lister


    The Chesapeake Bay, the largest estuary in the United States, has been designated by executive order as a national treasure. There is much interest in monitoring the status and trends in forest area within the bay, especially since maintaining forest cover is key to bay restoration efforts. The Chesapeake Bay Land Cover Data Series (CBLCD), a Landsat-based, multi-...

  11. Effects of climate variability and accelerated forest thinning on watershed-scale runoff in southwestern USA ponderosa pine forests. (United States)

    Robles, Marcos D; Marshall, Robert M; O'Donnell, Frances; Smith, Edward B; Haney, Jeanmarie A; Gori, David F


    The recent mortality of up to 20% of forests and woodlands in the southwestern United States, along with declining stream flows and projected future water shortages, heightens the need to understand how management practices can enhance forest resilience and functioning under unprecedented scales of drought and wildfire. To address this challenge, a combination of mechanical thinning and fire treatments are planned for 238,000 hectares (588,000 acres) of ponderosa pine (Pinus ponderosa) forests across central Arizona, USA. Mechanical thinning can increase runoff at fine scales, as well as reduce fire risk and tree water stress during drought, but the effects of this practice have not been studied at scales commensurate with recent forest disturbances or under a highly variable climate. Modifying a historical runoff model, we constructed scenarios to estimate increases in runoff from thinning ponderosa pine at the landscape and watershed scales based on driving variables: pace, extent and intensity of forest treatments and variability in winter precipitation. We found that runoff on thinned forests was about 20% greater than unthinned forests, regardless of whether treatments occurred in a drought or pluvial period. The magnitude of this increase is similar to observed declines in snowpack for the region, suggesting that accelerated thinning may lessen runoff losses due to warming effects. Gains in runoff were temporary (six years after treatment) and modest when compared to mean annual runoff from the study watersheds (0-3%). Nonetheless gains observed during drought periods could play a role in augmenting river flows on a seasonal basis, improving conditions for water-dependent natural resources, as well as benefit water supplies for downstream communities. Results of this study and others suggest that accelerated forest thinning at large scales could improve the water balance and resilience of forests and sustain the ecosystem services they provide.

  12. Effects of Climate Variability and Accelerated Forest Thinning on Watershed-Scale Runoff in Southwestern USA Ponderosa Pine Forests (United States)

    Robles, Marcos D.; Marshall, Robert M.; O'Donnell, Frances; Smith, Edward B.; Haney, Jeanmarie A.; Gori, David F.


    The recent mortality of up to 20% of forests and woodlands in the southwestern United States, along with declining stream flows and projected future water shortages, heightens the need to understand how management practices can enhance forest resilience and functioning under unprecedented scales of drought and wildfire. To address this challenge, a combination of mechanical thinning and fire treatments are planned for 238,000 hectares (588,000 acres) of ponderosa pine (Pinus ponderosa) forests across central Arizona, USA. Mechanical thinning can increase runoff at fine scales, as well as reduce fire risk and tree water stress during drought, but the effects of this practice have not been studied at scales commensurate with recent forest disturbances or under a highly variable climate. Modifying a historical runoff model, we constructed scenarios to estimate increases in runoff from thinning ponderosa pine at the landscape and watershed scales based on driving variables: pace, extent and intensity of forest treatments and variability in winter precipitation. We found that runoff on thinned forests was about 20% greater than unthinned forests, regardless of whether treatments occurred in a drought or pluvial period. The magnitude of this increase is similar to observed declines in snowpack for the region, suggesting that accelerated thinning may lessen runoff losses due to warming effects. Gains in runoff were temporary (six years after treatment) and modest when compared to mean annual runoff from the study watersheds (0–3%). Nonetheless gains observed during drought periods could play a role in augmenting river flows on a seasonal basis, improving conditions for water-dependent natural resources, as well as benefit water supplies for downstream communities. Results of this study and others suggest that accelerated forest thinning at large scales could improve the water balance and resilience of forests and sustain the ecosystem services they provide. PMID

  13. Effects of forest harvest on stream-water quality and nitrogen cycling in the Caspar Creek watershed (United States)

    Randy A. Dahlgren


    The effects of forest harvest on stream-water quality and nitrogen cycling were examined for a redwood/Douglas-fir ecosystem in the North Fork, Caspar Creek experimental watershed in northern California. Stream-water samples were collected from treated (e.g., clearcut) and reference (e.g., noncut) watersheds, and from various locations downstream from the treated...

  14. Stable-isotope and solute-chemistry approaches to flow characterization in a forested tropical watershed, Luquillo Mountains, Puerto Rico (United States)

    Martha A. Scholl; James B. Shanley; Sheila F. Murphy; Jane K. Willenbring; Grizelle Gonzalez


    The prospect of changing climate has led to uncertainty about the resilience of forested mountain watersheds in the tropics. In watersheds where frequent, high rainfall provides ample runoff, we often lack understanding of how the system will respond under conditions of decreased rainfall or drought. Factors that govern water supply, such as recharge rates and...

  15. Effects of hurricane disturbance on stream water concentrations and fluxes in eight tropical forest watersheds of the Luquillo Experimental Forest, Puerto Rico. (United States)



    Stream water chemistry responds substantially to watershed disturbances, but hurricane effects have not been extensively investigated in tropical regions. This study presents a long-term (2.5±11 y) weekly record of stream water chemistry on eight forested watersheds (catchment basins) in the Luquillo Mountains of Puerto Rico. This includes a period before and at least...

  16. EnviroAtlas - Number of Water Markets per HUC8 Watershed, U.S., 2015, Forest Trends' Ecosystem Marketplace (United States)

    This EnviroAtlas dataset contains polygons depicting the number of watershed-level market-based programs, referred to herein as markets, in operation per 8-digit HUC watershed throughout the United States. The data were collected via surveys and desk research conducted by Forest Trends' Ecosystem Marketplace during 2014 regarding markets operating to protect watershed ecosystem services. Utilizing these data, the number of water market coverage areas overlaying each HUC8 watershed were calculated to produce this dataset. Only water markets identified as operating at the watershed level (i.e., single or multiple watersheds define the market boundaries) were included in the count of water markets per HUC8 watershed. Excluded were water markets operating at the national, state, county, or federal lands level and all water projects. Attribute data include the watershed's 8-digit hydrologic unit code and name, in addition to the watershed-level water market count associated with the watershed. This dataset was produced by Forest Trends' Ecosystem Marketplace to support research and online mapping activities related to EnviroAtlas. EnviroAtlas ( allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data ( or as an EnviroAtlas map service. Addi

  17. Effects of Forest Cover Change on Flood Characteristics in the Upper Citarum Watershed

    Directory of Open Access Journals (Sweden)

    Bambang Dwi Dasanto


    Full Text Available Information on the effect of forest cover changes on streamflow (river discharge in large-scale catchment is important to be studied. The rate of forest cover change in the Upper Citarum Watershed as a large-scale catchment is high enough to drive streamflow change, such as increase of discharge level, or flood volume. Within the research area, flood would occur when the volume of streamflow exceeded the canal capacity and inundated areas that were normally dry. Therefore, this research focused on identifying the effects of forest cover change on flood events and its distribution. The research consisted of 2 main stages; firstly, building geometric data of river and performing frequency analysis of historical and scenario discharges using an approach of probability distribution; and, secondly, flood inundation mapping using HEC-RAS model. The results showed that forest reduction have affected water yield in the downstream of Upper Citarum Watershed. In each return period, this reduction have increased river discharge level and affected the spread of flooded areas. In 2-year return period, the extent of flood as an impact of forest reduction was estimated to decrease slowly. However, in the return period of more than 2 years, the spread of flooded areas increased sharply. These proved that forest cover reduction would always increase the discharge value, but it did not always expand the inundated area.

  18. A cross-site comparison of factors influencing soil nitrification rates in northeastern USA forested watersheds (United States)

    Ross, D.S.; Wemple, B.C.; Jamison, A.E.; Fredriksen, G.; Shanley, J.B.; Lawrence, G.B.; Bailey, S.W.; Campbell, J.L.


    Elevated N deposition is continuing on many forested landscapes around the world and our understanding of ecosystem response is incomplete. Soil processes, especially nitrification, are critical. Many studies of soil N transformations have focused on identifying relationships within a single watershed but these results are often not transferable. We studied 10 small forested research watersheds in the northeastern USA to determine if there were common factors related to soil ammonification and nitrification. Vegetation varied between mixed northern hardwoods and mixed conifers. Watershed surface soils (Oa or A horizons) were sampled at grid or transect points and analyzed for a suite of chemical characteristics. At each sampling point, vegetation and topographic metrics (field and GIS-based) were also obtained. Results were examined by watershed averages (n = 10), seasonal/watershed averages (n = 28), and individual sampling points (n = 608). Using both linear and tree regression techniques, the proportion of conifer species was the single best predictor of nitrification rates, with lower rates at higher conifer dominance. Similar to other studies, the soil C/N ratio was also a good predictor and was well correlated with conifer dominance. Unlike other studies, the presence of Acer saccharum was not by itself a strong predictor, but was when combined with the presence of Betula alleghaniensis. Topographic metrics (slope, aspect, relative elevation, and the topographic index) were not related to N transformation rates across the watersheds. Although found to be significant in other studies, neither soil pH, Ca nor Al was related to nitrification. Results showed a strong relationship between dominant vegetation, soil C, and soil C/N. ?? 2008 Springer Science+Business Media, LLC.

  19. Key landscape and biotic indicators of watersheds sensitivity to forest disturbance identified using remote sensing and historical hydrography data (United States)

    Buma, Brian; Livneh, Ben


    Water is one of the most critical resources derived from natural systems. While it has long been recognized that forest disturbances like fire influence watershed streamflow characteristics, individual studies have reported conflicting results with some showing streamflow increases post-disturbance and others decreases, while other watersheds are insensitive to even large disturbance events. Characterizing the differences between sensitive (e.g. where streamflow does change post-disturbance) and insensitive watersheds is crucial to anticipating response to future disturbance events. Here, we report on an analysis of a national-scale, gaged watershed database together with high-resolution forest mortality imagery. A simple watershed response model was developed based on the runoff ratio for watersheds (n = 73) prior to a major disturbance, detrended for variation in precipitation inputs. Post-disturbance deviations from the expected water yield and streamflow timing from expected (based on observed precipitation) were then analyzed relative to the abiotic and biotic characteristics of the individual watershed and observed extent of forest mortality. The extent of the disturbance was significantly related to change in post-disturbance water yield (p water yield. Highly disturbed, arid watersheds with low soil: water contact time are the most likely to see increases, with the magnitude positively correlated with the extent of disturbance. Watersheds dominated by deciduous forest with low bulk density soils typically show reduced yield post-disturbance. Post-disturbance streamflow timing change was associated with climate, forest type, and soil. Snowy coniferous watersheds were generally insensitive to disturbance, whereas finely textured soils with rapid runoff were sensitive. This is the first national scale investigation of streamflow post-disturbance using fused gage and remotely sensed data at high resolution, and gives important insights that can be used to

  20. Forest Cover Change and Soil Erosion in Toledo's Rio Grande Watershed (United States)

    Chicas, S.; Omine, K.


    Toledo, the southernmost district, is the hub of Belize's Mayan population, descendants of the ancient Mayan civilization. The Toledo District is primarily inhibited by Kekchi and Mopan Mayans whose subsistence needs are met by the Milpa slash-and-burn agricultural system and the extraction of forest resources. The poverty assessment in the country indicates that Toledo is the district with the highest percentage of household an individual indigence of 37.5 % and 49.7 % respectively. Forest cover change in the area can be attributed to rapid population growth among the Maya, together with increase in immigration from neighboring countries, logging, oil exploration and improvement and construction of roads. The forest cover change analysis show that from 2001 to 2011 there was a decrease of Lowland broad-leaved wet forest of 7.53 km sq, Shrubland of 4.66 km sq, and Wetland of 0.08 km sq. Forest cover change has resulted in soil erosion which is causing the deterioration of soils. The land cover types that are contributing the most to total erosion in the Rio Grande watershed are no-forest, lowland broad-leaved wet forest and submontane broad-leaved wet forest. In this study the Revised Universal Soil Loss Equation (RUSLE) was employed in a GIS platform to quantify and assess forest cover change and soil erosion. Soil erosion vulnerability maps in Toledo's Rio Grande watershed were also created. This study provides scientifically sound information in order to understand and respond effectively to the impacts of soil erosion in the study site.

  1. Community Structure and Biomass of Tree Species at Chini Watershed Forest, Pekan, Pahang

    International Nuclear Information System (INIS)

    Khairil, M.; Juliana, W.A.W; Nizam, M.S.; Faszly, R.


    A study was conducted to determine the tree species composition, diversity and estimate of above ground biomass at Chini watershed forest. Three types of forest were identified. Thirty plots of 0.1 ha were established in the inland, seasonal flood and reverin forests. A total of 3974 trees with diameter at breast height (dbh) at 5.0 cm and above were recorded. The inland forest recorded 2061 individuals representing 393 species from 164 genera and 57 families; the seasonal flood forest, 1019 individuals representing 268 species from 137 genera and 57 families; and the reverin forest, 894 individuals representing 260 species from 133 genera and 53 families. Endosperm's diadenum (Euphorbiaceae), Streblus elongatus (Moraceae) and Aporusa arborea (Euphorbiaceae) was the most important species in the inland forest, seasonal flood forest and the riverine forest, with Importance Value Index (SIV i ) of 3.36 %, 4.43 % and 2.96 %, respectively. Euphorbiaceae was the most important family in the inland and riverine forest with FIV i of 14.25 % and 12.91 % and Myrtaceae in the seasonal flood forest at 12.36 %. The Shannon-Weiner diversity index (H ' ) were considered high in all three forest types at 5.40 (H ' max = 5.97) in the inland forest, 5.10 (H ' max = 5.54) at the seasonal flood forest and 5.08 (H ' max = 5.56) for the riverine forest. Shannon evenness index (J ' ) in the three types of forest was 0.9. The Sorensons community similarity coefficient (CCs) showed that tree species communities between the three forest types had low similarities with CCs= 0.4. The total above ground biomass estimated in the inland forest was 366.2 tan/ ha, in the seasonal flood forest was 379.8 tan/ ha and in the riverine forest was 401.1 tan/ ha. A total of 44 endemic species in Peninsular Malaysia were found and 104 species were listed in the checklist of Conservation Status of Malaysian Trees that utilized the 2009 IUCN Red List Categories by World

  2. Acid rain mitigation experiment shifts a forested watershed from a net sink to a net source of nitrogen. (United States)

    Rosi-Marshall, Emma J; Bernhardt, Emily S; Buso, Donald C; Driscoll, Charles T; Likens, Gene E


    Decades of acid rain have acidified forest soils and freshwaters throughout montane forests of the northeastern United States; the resulting loss of soil base cations is hypothesized to be responsible for limiting rates of forest growth throughout the region. In 1999, an experiment was conducted that reversed the long-term trend of soil base cation depletion and tested the hypothesis that calcium limits forest growth in acidified soils. Researchers added 1,189 kg Ca(2+) ha(-1) as the pelletized mineral wollastonite (CaSiO3) to a 12-ha forested watershed within the Hubbard Brook Experimental Forest in the White Mountains of New Hampshire. Significant increases in the pH and acid-neutralizing capacity of soils and streamwater resulted, and the predicted increase in forest growth occurred. An unanticipated consequence of this acidification mitigation experiment began to emerge a decade later, with marked increases in dissolved inorganic nitrogen (DIN) exports in streamwater from the treated watershed. By 2013, 30-times greater DIN was exported from this base-treated watershed than from adjacent reference watersheds, and DIN exports resulting from this experiment match or exceed earlier reports of inorganic N losses after severe ice-storm damage within the study watershed. The discovery that CaSiO3 enrichment can convert a watershed from a sink to a source of N suggests that numerous potential mechanisms drive watershed N dynamics and provides new insights into the influence of acid deposition mitigation strategies for both carbon cycling and watershed N export.

  3. Watershed management in Myanmar

    International Nuclear Information System (INIS)

    Choi, K.S.


    Watershed degradation, watershed management, background of watershed management in Myanmar (condition of watershed, manpower), discussion and recommendation (proposed administrative structure, the need for watershed survey and planning, bottom-up approach) are emphasized. Watershed management, after all can be seen that it is the interphase between the forest, agriculture, soil, wildlife and the local communities

  4. Spatial distribution of water erosion risk in a watershed with eucalyptus and Atlantic Forest

    Directory of Open Access Journals (Sweden)

    Junior Cesar Avanzi


    Full Text Available The process of water erosion occurs in watersheds throughout the world and it is strongly affected by anthropogenic influences. Thus, the knowledge of these processes is extremely necessary for planning of conservation efforts. This study was performed in an experimental forested watershed in order to predict the average potential annual soil loss by water erosion using the Universal Soil Loss Equation (USLE and a Geographic Information System (GIS, and then compared with soil loss tolerance. All the USLE factors were generated in a distributed approach employing a GIS tool. The layers were multiplied in the GIS framework in order to predict soil erosion rates. Results showed that the average soil loss was 6.2 Mg ha-1 yr-1. Relative to soil loss tolerance, 83% of the area had an erosion rate lesser than the tolerable value. According to soil loss classes, 49% of the watershed had erosion less than 2.5 Mg ha-1 yr-1. However, about 8.7% of the watershed had erosion rates greater than 15 Mg ha-1 yr-1, being mainly related to Plinthosol soil class and roads, thus requiring special attention for the improvement of sustainable management practices for such areas. Eucalyptus cultivation was found to have soil loss greater than Atlantic Forest. Thus, an effort should be made to bring the erosion rates closer to the native forest. Implementation of the USLE model in a GIS framework was found to be a simple and useful tool for predicting the spatial variation of soil erosion risk and identifying critical areas for conservation efforts.

  5. Controls and forecasts of nitrate yields in forested watersheds: A view over mainland Portugal. (United States)

    Pacheco, F A L; Santos, R M B; Sanches Fernandes, L F; Pereira, M G; Cortes, R M V


    A study on nitrate yields was conducted in forested watersheds of mainland Portugal. The prime goal was to rank parameters in descending order of their contribution to the export of nitrate towards streams and lakes. To attain the goal, variables like soil loss, rainfall intensity, topography, soil type, forest composition and environmental disturbances such as hardwood harvesting or wildfires were organized in a conceptual yield model. Because some parameters were potentially collinear, a robust multivariate statistical technique was selected to execute the conceptual model and perform the aforementioned ranking, namely Partial Least Squares (PLS) regression. This technique was tested with a sample of 60 forested watersheds (>70% of forest occupation), being subject to a double-validation process to ensure prediction capability. According to final regression coefficients, soil erosion seems to regulate nitrate distribution across the basins, because soil loss and type, rainfall intensity and topography explained around 60% of nitrate yield variance. The major importance of erosion is followed by a moderate role of biochemical processes such as nitrification or nutrient uptake, which accounted for approximately 15% of nitrate yield variance. In this case, deciduous forests and scrubland seem to behave as net sinks of nitrate while coniferous and mixed forests seem to act dually, as net sources or sinks. The least important parameters are the environmental disturbances, explaining no more than 5% of nitrate yield variance. The results of PLS regression were coupled in a scenario analysis with measures designed to protect soil from erosion and surface water from eutrophication. These interventions are to be implemented until 2045, according to regional plans of forest management. Considering the key role of erosion in explaining nitrate dynamics across the catchments, it was not surprising to verify that soil protection measures may reduce nitrate yields by some 35

  6. Bi-criteria evaluation of the MIKE SHE model for a forested watershed on the South Carolina coastal plain (United States)

    Z. Dai; C. Li; C. Trettin; G. Sun; D. Amatya; H. Li


    Hydrological models are important tools for effective management, conservation and restoration of forested wetlands. The objective of this study was to test a distributed hydrological model, MIKE SHE, by using bi-criteria (i.e., two measurable variables, streamflow and water table depth) to describe the hydrological processes in a forested watershed that is...

  7. Minimum forest cover required for sustainable water flow regulation of a watershed: a case study in Jambi Province, Indonesia

    Directory of Open Access Journals (Sweden)

    S. Tarigan


    Full Text Available In many tropical regions, the rapid expansion of monoculture plantations has led to a sharp decline in forest cover, potentially degrading the ability of watersheds to regulate water flow. Therefore, regional planners need to determine the minimum proportion of forest cover that is required to support adequate ecosystem services in these watersheds. However, to date, there has been little research on this issue, particularly in tropical areas where monoculture plantations are expanding at an alarming rate. Therefore, in this study, we investigated the influence of forest cover and oil palm (Elaeis guineensis and rubber (Hevea brasiliensis plantations on the partitioning of rainfall into direct runoff and subsurface flow in a humid, tropical watershed in Jambi Province, Indonesia. To do this, we simulated streamflow with a calibrated Soil and Water Assessment Tool (SWAT model and observed several watersheds to derive the direct runoff coefficient (C and baseflow index (BFI. The model had a strong performance, with Nash–Sutcliffe efficiency values of 0.80–0.88 (calibration and 0.80–0.85 (validation and percent bias values of −2.9–1.2 (calibration and 7.0–11.9 (validation. We found that the percentage of forest cover in a watershed was significantly negatively correlated with C and significantly positively correlated with BFI, whereas the rubber and oil palm plantation cover showed the opposite pattern. Our findings also suggested that at least 30 % of the forest cover was required in the study area for sustainable ecosystem services. This study provides new adjusted crop parameter values for monoculture plantations, particularly those that control surface runoff and baseflow processes, and it also describes the quantitative association between forest cover and flow indicators in a watershed, which will help regional planners in determining the minimum proportion of forest and the maximum proportion of plantation to ensure that a

  8. Minimum forest cover required for sustainable water flow regulation of a watershed: a case study in Jambi Province, Indonesia (United States)

    Tarigan, Suria; Wiegand, Kerstin; Sunarti; Slamet, Bejo


    In many tropical regions, the rapid expansion of monoculture plantations has led to a sharp decline in forest cover, potentially degrading the ability of watersheds to regulate water flow. Therefore, regional planners need to determine the minimum proportion of forest cover that is required to support adequate ecosystem services in these watersheds. However, to date, there has been little research on this issue, particularly in tropical areas where monoculture plantations are expanding at an alarming rate. Therefore, in this study, we investigated the influence of forest cover and oil palm (Elaeis guineensis) and rubber (Hevea brasiliensis) plantations on the partitioning of rainfall into direct runoff and subsurface flow in a humid, tropical watershed in Jambi Province, Indonesia. To do this, we simulated streamflow with a calibrated Soil and Water Assessment Tool (SWAT) model and observed several watersheds to derive the direct runoff coefficient (C) and baseflow index (BFI). The model had a strong performance, with Nash-Sutcliffe efficiency values of 0.80-0.88 (calibration) and 0.80-0.85 (validation) and percent bias values of -2.9-1.2 (calibration) and 7.0-11.9 (validation). We found that the percentage of forest cover in a watershed was significantly negatively correlated with C and significantly positively correlated with BFI, whereas the rubber and oil palm plantation cover showed the opposite pattern. Our findings also suggested that at least 30 % of the forest cover was required in the study area for sustainable ecosystem services. This study provides new adjusted crop parameter values for monoculture plantations, particularly those that control surface runoff and baseflow processes, and it also describes the quantitative association between forest cover and flow indicators in a watershed, which will help regional planners in determining the minimum proportion of forest and the maximum proportion of plantation to ensure that a watershed can provide

  9. Hydrological effects of forest transpiration loss in bark beetle-impacted watersheds (United States)

    Bearup, Lindsay A.; Maxwell, Reed M.; Clow, David W.; McCray, John E.


    The recent climate-exacerbated mountain pine beetle infestation in the Rocky Mountains of North America has resulted in tree death that is unprecedented in recorded history. The spatial and temporal heterogeneity inherent in insect infestation creates a complex and often unpredictable watershed response, influencing the primary storage and flow components of the hydrologic cycle. Despite the increased vulnerability of forested ecosystems under changing climate1, watershed-scale implications of interception, ground evaporation, and transpiration changes remain relatively unknown, with conflicting reports of streamflow perturbations across regions. Here, contributions to streamflow are analysed through time and space to investigate the potential for increased groundwater inputs resulting from hydrologic change after infestation. Results demonstrate that fractional late-summer groundwater contributions from impacted watersheds are 30 ± 15% greater after infestation and when compared with a neighbouring watershed that experienced earlier and less-severe attack, albeit uncertainty propagations through time and space are considerable. Water budget analysis confirms that transpiration loss resulting from beetle kill can account for the relative increase in groundwater contributions to streams, often considered the sustainable flow fraction and critical to mountain water supplies and ecosystems.

  10. Chemistry and transport of soluble humic substances in forested watersheds of the Adirondack Park, New York (United States)

    Cronan, C.S.; Aiken, G.R.


    Studies were conducted in conjunction with the Integrated Lake-Watershed Acidification Study (ILWAS) to examine the chemistry and leaching patterns of soluble humic substances in forested watersheds of the Adirondack region. During the summer growing season, mean dissolved organic carbon (DOC) concentrations in the ILWAS watersheds ranged from 21-32 mg C l-1 in O/A horizon leachates, from 5-7 mg C l-1 in B horizon leachates, from 2-4 mg C l-1 in groundwater solutions, from 6-8 mg C l-1 in first order streams, from 3-8 mg C l-1 in lake inlets, and from 2-7 mg C l-1 in lake outlets. During the winter, mean DOC concentrations dropped significantly in the upper soil profile. Soil solutions from mixed and coniferous stands contained as much as twice the DOC concentration of lysimeter samples from hardwood stands. Results of DOC fractionation analysis showed that hydrophobia and hydrophilic acids dominate the organic solute composition of natural waters in these watersheds. Charge balance and titration results indicated that the general acid-base characteristics of the dissolved humic mixture in these natural waters can be accounted for by a model organic acid having an averagepKa of 3.85, an average charge density of 4-5 ??eq mg-1 C at ambient pH, and a total of 6-7 meq COOH per gram carbon. ?? 1985.

  11. Numerical modeling of watershed-scale radiocesium transport coupled with biogeochemical cycling in forests (United States)

    Mori, K.; Tada, K.; Tawara, Y.; Tosaka, H.; Ohno, K.; Asami, M.; Kosaka, K.


    Since the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident, intensive monitoring and modeling works on radionuclide transfer in environment have been carried out. Although Cesium (Cs) concentration has been attenuating due to both physical and environmental half-life (i.e., wash-off by water and sediment), the attenuation rate depends clearly on the type of land use and land cover. In the Fukushima case, studying the migration in forest land use is important for predicting the long-term behavior of Cs because most of the contaminated region is covered by forests. Atmospheric fallout is characterized by complicated behavior in biogeochemical cycle in forests which can be described by biotic/abiotic interactions between many components. In developing conceptual and mathematical model on Cs transfer in forest ecosystem, defining the dominant components and their interactions are crucial issues (BIOMASS, 1997-2001). However, the modeling of fate and transport in geosphere after Cs exports from the forest ecosystem is often ignored. An integrated watershed modeling for simulating spatiotemporal redistribution of Cs that includes the entire region from source to mouth and surface to subsurface, has been recently developed. Since the deposited Cs can migrate due to water and sediment movement, the different species (i.e., dissolved and suspended) and their interactions are key issues in the modeling. However, the initial inventory as source-term was simplified to be homogeneous and time-independent, and biogeochemical cycle in forests was not explicitly considered. Consequently, it was difficult to evaluate the regionally-inherent characteristics which differ according to land uses, even if the model was well calibrated. In this study, we combine the different advantages in modeling of forest ecosystem and watershed. This enable to include more realistic Cs deposition and time series of inventory can be forced over the land surface. These processes are integrated

  12. Water Quality Functions of Riparian Forest Buffers in Chesapeake Bay Watersheds (United States)

    Lowrance; Altier; Newbold; Schnabel; Groffman; Denver; Correll; Gilliam; Robinson; Brinsfield; Staver; Lucas; Todd


    / Maryland, Virginia, and Pennsylvania, USA, have agreed to reduce nutrient loadings to Chesapeake Bay by 40% by the year 2000. This requires control of nonpoint sources of nutrients, much of which comes from agriculture. Riparian forest buffer systems (RFBS) provide effective control of nonpoint source (NPS) pollution in some types of agricultural watersheds. Control of NPS pollution is dependent on the type of pollutant and the hydrologic connection between pollution sources, the RFBS, and the stream. Water quality improvements are most likely in areas of where most of the excess precipitation moves across, in, or near the root zone of the RFBS. In areas such as the Inner Coastal Plain and Piedmont watersheds with thin soils, RFBS should retain 50%-90% of the total loading of nitrate in shallow groundwater, sediment in surface runoff, and total N in both surface runoff and groundwater. Retention of phosphorus is generally much less. In regions with deeper soils and/or greater regional groundwater recharge (such as parts of the Piedmont and the Valley and Ridge), RFBS water quality improvements are probably much less. The expected levels of pollutant control by RFBS are identified for each of nine physiographic provinces of the Chesapeake Bay Watershed. Issues related to of establishment, sustainability, and management are also discussed.KEY WORDS: Riparian forest buffers; Chesapeake Bay; Nonpoint source pollution; Nitrogen; Phosphorus; Sediment

  13. Radionuclides deposition and fine sediment transport in a forested watershed, central Japan (United States)

    Nam, S.; Gomi, T.; Kato, H.; Tesfaye, T.; Onda, Y.


    We investigated radionuclides deposition and fine sediment transport in a 13 ha headwater watershed, Tochigi prefecture, located in 98.94 km north of Tokyo. The study site was within Karasawa experimental forest, Tokyo University of Agriculture and Technology. We conducted fingerprinting approach, based on the activities of fallout radionuclides, including caesium-134 (Cs-134) caesium-137 (Cs-137) and excess lead-210 (Pb-210ex). For indentifying specific sources of fine sediment, we sampled tree, soil on forested floor, soil on logging road surface, stream bed and stream banks. We investigated the radionuclides (i.e., as Cs-134, Cs-137 and Pb-210ex) deposition on tree after accident of nuclear power plants on March 11, 2011. We sampled fruits, leaves, branches, stems, barks on Japanese cedar (Sugi) and Japanese cypress (Hinoki). To analyze the samples, gammaray spectrometry was performed at a laboratory at the University of Tsukuba (Tsukuba City, Japan) using n-type coaxial low-energy HPGe gamma detectors (EGC-200-R and EGC25-195-R of EURYSIS Co., Lingolsheim, France) coupled with a multichannel analyzer. We also collected soil samples under the forest canopy in various soil depths from 2, 5, 10, 20, 30 cm along transect of hillslopes. Samples at forest road were collected road segments crossing on the middle section of monitoring watersheds. Fine sediment transport in the streams were collected at the outlet of 13 ha watersheds using integrated suspended sediment samplers. This study indicates the some portion of radio nuclide potentially remained on the tree surface. Part of the deposited radionuclides attached to soil particles and transported to the streams. Most of the fine sediment can be transported on road surface and/or near stream side (riparian zones).

  14. Forest ecosystems and environments scaling up from shoot module to watershed

    CERN Document Server

    Kohyama, Takashi; Ojima, Dennis S


    Coastal East and Southeast Asia are characterized by wet growing seasons, and species-rich forest ecosystems develop throughout the latitudinal and altitudinal gradients. In this region, the Global Change Impacts on Terrestrial Ecosystems in Monsoon Asia (TEMA) project was carried out as a unique contribution to the international project Global Change and Terrestrial Ecosystems. TEMA aimed to integrate forest ecosystem processes, from leaf physiology to meteorological budget and prediction of long-term change of vegetation composition and architecture through demographic processes. Special attention was given to watershed processes, where forest ecosystem metabolism affects the properties and biogeochemical budgets of freshwater ecosystems, and where rivers, wetlands, and lakes are subject to direct and indirect effects of environmental change. This volume presents the scaling-up concept for better understanding of ecosystem functioning.

  15. Nitrogen (N) dynamics in the mineral soil of a Central Appalachian hardwood forest during a quarter century of whole-watershed N additions (United States)

    Frank S. ​Gilliam; Christopher A. Walter; Mary Beth Adams; William T. Peterjohn


    The structure and function of terrestrial ecosystemsare maintained by processes that vary with temporal and spatial scale. This study examined temporal and spatial patterns of net nitrogen (N) mineralization and nitrification in mineral soil of three watersheds at the Fernow Experimental Forest, WV: 2 untreated watersheds and 1 watershed receiving aerial applications...

  16. An approach to study the effect of harvest and wildfire on watershed hydrology and sediment yield in a coast redwood forest (United States)

    Christopher G. Surfleet; Arne Skaugset; Brian Dietterick


    The Little Creek watershed, within California State Polytechnic University’s Swanton Pacific Ranch, is the location of a paired and nested watershed study to investigate the watershed effects of coast redwood forest management. Streamflow, suspended sediment, and stream turbidity have been collected during storms at two locations on the North Fork Little Creek and at...

  17. Characteristics of Sediment Transportation in Two Contrasting Oak Forested Watersheds in the Lesser Central Himalaya, India (United States)

    Qazi, N. U. Q.; Bruijnzeel, S., Sr.; Rai, S. P., Sr.


    Sediment transfer from mountainous areas to lowland areas is one of the most important geomorphological processes globally with the bulk of the sediment yield from such areas typically deriving from mass wastage processes. This study presents monthly, seasonal and annual variations in sediment transport (both suspended load and bedload) as well as dissolved loads over three consecutive water years (2008-2011) for two small forested watersheds with contrasting levels of forest disturbance in the Lesser Himalaya of Northwest India. Seasonal and annual suspended sediment yields were strongly influenced by amounts of rainfall and streamflow and showed a 10-63 fold range between wet and dry years. Of the annual load, some 93% was produced on average during the monsoon season (June-September). Sediment production by the disturbed forest catchment was 1.9-fold (suspended sediment) to 5.9-fold (bedload) higher than that for the well-stocked forest catchment. By contrast, dissolved loads varied much less between years, seasons (although minimal during the dry summer season), and degree of forest disturbance. Total mechanical denudation rates were 1.6 times and 4.6 times larger than chemical denudation rates for the little disturbed and the heavily disturbed forest catchment, respectively whereas overall denudation rates were estimated at 0.69 and 1.04 mm per 1000 years, respectively.

  18. Application of the Precipitation Runoff Modeling System to measure impacts of forest fire on watershed hydrology (United States)

    Driscoll, J. M.


    Precipitation in the southwestern United States falls primarily in areas of higher elevation. Drought conditions over the past five years have limited snowpack and rainfall, increasing the vulnerability to and frequency of forest fires in these montane regions. In June 2012, the Little Bear fire burned approximately 69 square miles (44,200 acres) in high-elevation forests of the Rio Hondo headwater catchments, south-central New Mexico. Burn severity was high or moderate on 53 percent of the burn area. The Precipitation Runoff Modeling System (PRMS) is a publically-available watershed model developed by the U.S. Geological Survey (USGS). PRMS data are spatially distributed using a 'Geospatial Fabric' developed at a national scale to define Hydrologic Response Units (HRUs), based on topography and points of interest (such as confluences and streamgages). The Little Bear PRMS study area is comprised of 22 HRUs over a 587 square-mile area contributing to the Rio Hondo above Chavez Canyon streamgage (USGS ID 08390020), in operation from 2008 to 2014. Model input data include spatially-distributed climate data from the National Aeronautics and Space Administration (NASA) DayMet and land cover (such as vegetation and soil properties) data from the USGS Geo Data Portal. Remote sensing of vegetation over time has provided a spatial distribution of recovery and has been applied using dynamic parameters within PRMS on the daily timestep over the study area. Investigation into the source and timing of water budget components in the Rio Hondo watershed may assist water planners and managers in determining how the surface-water and groundwater systems will react to future land use/land cover changes. Further application of PRMS in additional areas will allow for comparison of streamflow before and following wildfire conditions, and may lead to better understanding of the changes in watershed-scale hydrologic processes in the Southwest through post-fire watershed recovery.

  19. Observations of distributed snow depth and snow duration within diverse forest structures in a maritime mountain watershed (United States)

    Dickerson-Lange, Susan E.; Lutz, James A.; Gersonde, Rolf; Martin, Kael A.; Forsyth, Jenna E.; Lundquist, Jessica D.


    Spatially distributed snow depth and snow duration data were collected over two to four snow seasons during water years 2011-2014 in experimental forest plots within the Cedar River Municipal Watershed, 50 km east of Seattle, Washington, USA. These 40 × 40 m forest plots, situated on the western slope of the Cascade Range, include unthinned second-growth coniferous forests, variable density thinned forests, forest gaps in which a 20 m diameter (approximately equivalent to one tree height) gap was cut in the middle of each plot, and old-growth forest. Together, this publicly available data set includes snow depth and density observations from manual snow surveys, distributed snow duration observations from ground temperature sensors and time-lapse cameras, meteorological data collected at two open locations and three forested locations, and forest canopy data from airborne light detection and ranging (LiDAR) data and hemispherical photographs. These colocated snow, meteorological, and forest data have the potential to improve understanding of forest influences on snow processes, and provide a unique model-testing data set for hydrological analyses in a forested, maritime watershed. We present empirical snow depletion curves within forests to illustrate an application of these data to improve subgrid representation of snow cover in distributed modeling.

  20. An Integrated Hydrologic Modeling Approach to Cesium-137 Transport in Forested Fukushima Watersheds (United States)

    Siirila-Woodburn, E. R.; Steefel, C. I.; Williams, K. H.; Birkholzer, J. T.


    The 2011 Fukushima Daiichi Nuclear Power Plant (FDNPP) accident in Japan resulted in a significant dissemination of cesium-137 (Cs-137) over a wide area west of the plant, including the contamination of many watersheds and the subsequent evacuation of many communities. Today approximately 90% of on-land Cs-137 fallout following the accident resides in the upper 5 cm of forest soils. While this can be partially attributed to the forested composition of the prefecture (70%), there is also difficulty in cleanup efforts in these regions due to a lack of understanding and predictive capability of radioisotopes transport at the catchment to watershed scale. Subsequently, there is an uncertain, but likely long-term impact on local communities with implications for the use of nuclear energy use worldwide. Due to the complex nature of forest eco-hydrology, sophisticated modeling tools to accurately predict Cs-137 fluxes across different spatial and temporal scales are required. High fidelity, high resolution numerical modeling techniques in conjunction with parallel high performance computing is required to accurately determine transport and feedbacks in these complex systems. To better understand the fundamental transport of Cs-137, a watershed near the FDNPP is modeled with an integrated hydrologic model that includes variably saturated groundwater and overland flow in addition to atmospheric and vegetative processes via a coupled land surface model. Of specific interest is the impact of land cover type on hydrologic flow in the area, which will likely play an important role in erosion patterns and the consequent transport of Cs-137 strongly sorbed to surface soils. Risk management practices (for example, passive remediation versus active remediation such as targeted logging) for two principal tree types (evergreen and deciduous) are informed given the simulated responses to flow patterns assuming different quantities and spatial distribution patterns of each tree type.

  1. Landscape-scale modeling of water quality in Lake Superior and Lake Michigan watersheds: How useful are forest-based indicators? Journal of Great Lakes Research (United States)

    Titus S. Seilheimer; Patrick L. Zimmerman; Kirk M. Stueve; Charles H. Perry


    The Great Lakes watersheds have an important influence on the water quality of the nearshore environment, therefore, watershed characteristics can be used to predict what will be observed in the streams. We used novel landscape information describing the forest cover change, along with forest census data and established land cover data to predict total phosphorus and...

  2. Water quality functions of riparian forest buffers in Chesapeake bay watersheds (United States)

    Lowrance, R.; Altier, L.S.; Newbold, J.D.; Schnabel, R.R.; Groffman, P.M.; Denver, J.M.; Correll, D.L.; Gilliam, J.W.; Robinson, J.L.; Brinsfield, R.B.; Staver, K.W.; Lucas, W.; Todd, A.H.


    Maryland, Virginia, and Pennsylvania, USA, have agreed to reduce nutrient loadings to Chesapeake Bay by 40% by the year 2000. This requires control of nonpoint sources of nutrients much of which comes from agriculture. Riparian forest buffer systems (RFBS) provide effective control of nonpoint source (NPS) pollution in some types of agricultural watersheds. Control of NPS pollution is dependent on the type of pollutant and the hydrologic connection between pollution sources, the RFBS, and the stream. Water quality improvements are most likely in areas of where most of the excess precipitation moves across, in, or near the root zone of the RFBS. In areas such as the Inner Coastal Plain and Piedmont watersheds with thin soils RFBS should retain 50%-90% of the total loading of nitrate in shallow groundwater sediment in surface runoff and total N in born surface runoff and groundwater. Retention of phosphorus is generally much less. In regions with deeper soils and/or greater regional groundwater recharge (such as parts of the Piedmont and the Valley and Ridge), RFBS water quality improvements are probably much less. The expected levels of pollutant control by RFBS are identified for each of nine physiographic provinces of the Chesapeake Bay Watershed. Issues related to of establishment sustainability, and management are also discussed.

  3. Impact of wildfire on levels of mercury in forested watershed systems - Voyageurs National Park, Minnesota (United States)

    Woodruff, Laurel G.; Sandheinrich, Mark B.; Brigham, Mark E.; Cannon, William F.


    Atmospheric deposition of mercury to remote lakes in mid-continental and eastern North America has increased approximately threefold since the mid-1800s (Swain and others, 1992; Fitzgerald and others, 1998; Engstrom and others, 2007). As a result, concerns for human and wildlife health related to mercury contamination have become widespread. Despite an apparent recent decline in atmospheric deposition of mercury in many areas of the Upper Midwest (Engstrom and Swain, 1997; Engstrom and others, 2007), lakes in which fish contain levels of mercury deemed unacceptable for human consumption and possibly unacceptable for fish-consuming wildlife are being detected with increasing frequency. In northern Minnesota, Voyageurs National Park (VNP) (fig. 1) protects a series of southern boreal lakes and wetlands situated on bedrock of the Precambrian Canadian Shield. Mercury contamination has become a significant resource issue within VNP as high concentrations of mercury in loons, bald eagle eaglets, grebes, northern pike, and other species of wildlife and fish have been found. The two most mercury-contaminated lakes in Minnesota, measured as methylmercury in northern pike (Esox lucius), are in VNP. Recent multidisciplinary U.S. Geological Survey (USGS) research demonstrated that the bulk of the mercury in lake waters, soils, and fish in VNP results from atmospheric deposition (Wiener and others, 2006). The study by Wiener and others (2006) showed that the spatial distribution of mercury in watershed soils, lake waters, and age-1 yellow perch (Perca flavescens) within the Park was highly variable. The majority of factors correlated for this earlier study suggested that mercury concentrations in lake waters and age-1 yellow perch reflected the influence of ecosystem processes that affected within-lake microbial production and abundance of methylmercury (Wiener and others, 2006), while the distribution of mercury in watershed soils seemed to be partially dependent on forest

  4. Forest, water and people: The roles and limits of mediation in transforming watershed conflict in Northern Thailand

    Directory of Open Access Journals (Sweden)

    Ahmad Dhiaulhaq


    Full Text Available This study focuses on watershed management in Northern Thailand, where conflict over forest, land and water-use is a prevailing problem. A characteristic of watershed conflicts is that they are often multifaceted and involve multiple stakeholders with different interests and values, consequently requiring conflict management approaches that are sustainable in their outcomes, including addressing the underlying causes of the conflicts. Drawing from a case study in Mae Tia Mae Tae watershed in Northern Thailand, this study explores how mediation by external third party can contribute to the transformation of conflicts in the watershed and how the broader institutional contexts in which the conflict is embedded shapes the mediation outcomes. The study suggests that co-creation of mutual understanding and recognition of each party’s socio-cultural differences, including land-use practices, are critical in building trust and in how conflict transformation processes moved forward. Moreover, the ability of the mediator in facilitating the establishment of a deliberative institution (i.e. a watershed network committee and agreed rules on forest utilization were also critical in maintaining long-term collaboration in the watershed and potentially preventing other conflicts arising in the future. Some issues, however, may threaten the continuity of the cooperation and sustainability of peace in the watershed, including the lack of structural reform that formally recognizes local people’s rights, insecure land tenure, and the absence of legal recognition for the watershed network committee as a legitimate mechanism for watershed decision making. The paper discusses these findings by comparing it with those from our previous studies in other locations (Cambodia, Indonesia and Western Thailand to strengthen the insights from Northern Thailand. Finally, the research puts forward some recommendations for reforms and to strengthen the use of effective

  5. Quantifying the hydrological responses to climate change in an intact forested small watershed in southern China (United States)

    Zhou, Guo-Yi; Wei, Xiaohua; Wu, Yiping; Liu, Shu-Guang; Huang, Yuhui; Yan, Junhua; Zhang, Deqiang; Zhang, Qianmei; Liu, Juxiu; Meng, Ze; Wang, Chunlin; Chu, Guowei; Liu, Shizhong; Tang, Xu-Li; Liu, Xiaodong


    Responses of hydrological processes to climate change are key components in the Intergovernmental Panel for Climate Change (IPCC) assessment. Understanding these responses is critical for developing appropriate mitigation and adaptation strategies for sustainable water resources management and protection of public safety. However, these responses are not well understood and little long-term evidence exists. Herein, we show how climate change, specifically increased air temperature and storm intensity, can affect soil moisture dynamics and hydrological variables based on both long-term observation and model simulations using the Soil and Water Assessment Tool (SWAT) in an intact forested watershed (the Dinghushan Biosphere Reserve) in Southern China. Our results show that, although total annual precipitation changed little from 1950 to 2009, soil moisture decreased significantly. A significant decline was also found in the monthly 7-day low flow from 2000 to 2009. However, the maximum daily streamflow in the wet season and unconfined groundwater tables have significantly increased during the same 10-year period. The significant decreasing trends on soil moisture and low flow variables suggest that the study watershed is moving towards drought-like condition. Our analysis indicates that the intensification of rainfall storms and the increasing number of annual no-rain days were responsible for the increasing chance of both droughts and floods. We conclude that climate change has indeed induced more extreme hydrological events (e.g. droughts and floods) in this watershed and perhaps other areas of Southern China. This study also demonstrated usefulness of our research methodology and its possible applications on quantifying the impacts of climate change on hydrology in any other watersheds where long-term data are available and human disturbance is negligible.

  6. Quantifying the hydrological responses to climate change in an intact forested small watershed in Southern China (United States)

    Zhou, G.; Wei, X.; Wu, Y.; Huang, Y.; Yan, J.; Zhang, Dongxiao; Zhang, Q.; Liu, J.; Meng, Z.; Wang, C.; Chu, G.; Liu, S.; Tang, X.; Liu, Xiuying


    Responses of hydrological processes to climate change are key components in the Intergovernmental Panel for Climate Change (IPCC) assessment. Understanding these responses is critical for developing appropriate mitigation and adaptation strategies for sustainable water resources management and protection of public safety. However, these responses are not well understood and little long-term evidence exists. Herein, we show how climate change, specifically increased air temperature and storm intensity, can affect soil moisture dynamics and hydrological variables based on both long-term observation and model simulations using the Soil and Water Assessment Tool (SWAT) in an intact forested watershed (the Dinghushan Biosphere Reserve) in Southern China. Our results show that, although total annual precipitation changed little from 1950 to 2009, soil moisture decreased significantly. A significant decline was also found in the monthly 7-day low flow from 2000 to 2009. However, the maximum daily streamflow in the wet season and unconfined groundwater tables have significantly increased during the same 10-year period. The significant decreasing trends on soil moisture and low flow variables suggest that the study watershed is moving towards drought-like condition. Our analysis indicates that the intensification of rainfall storms and the increasing number of annual no-rain days were responsible for the increasing chance of both droughts and floods. We conclude that climate change has indeed induced more extreme hydrological events (e.g. droughts and floods) in this watershed and perhaps other areas of Southern China. This study also demonstrated usefulness of our research methodology and its possible applications on quantifying the impacts of climate change on hydrology in any other watersheds where long-term data are available and human disturbance is negligible. ?? 2011 Blackwell Publishing Ltd.

  7. Hydrological services and biodiversity conservation under forestation scenarios: comparing options to improve watershed management (United States)

    Carvalho-Santos, Claudia; Nunes, João Pedro; Sousa-Silva, Rita; Gonçalves, João; Pradinho Honrado, João


    Humans rely on ecosystems for the provision of hydrological services, namely water supply and water damage mitigation, and promoting forests is a widely used management strategy for the provision of hydrological services. Therefore, it is important to model how forests will contribute for this provision, taking into account the environmental characteristics of each region, as well as the spatio-temporal patterns of societal demand. In addition, ensuring forest protection and the delivery of forest ecosystem services is one of the aims included in the European Union biodiversity strategy to 2020. On the other hand, forest management for hydrological services must consider possible trade-offs with other services provision, as well as with biodiversity conservation. Accurate modeling and mapping of both hydrological services and biodiversity conservation value is thus important to support spatial planning and land management options involving forests. The objectives of this study were: to analyze the provision and spatial dynamics of hydrological services under two forest cover change scenarios (oak and eucalyptus/pine) compared to the current shrubland-dominated landscape; and to evaluate their spatial trade-offs with biodiversity conservation value. The Vez watershed (250km2), in northwest Portugal, was used as case-study area. SWAT (Soil and Water Assessment Tool) was applied to simulate the provision of hydrological services (water supply quantity, timing and quality; soil erosion and flood regulation), and was calibrated against daily discharge, sediments, nitrates and evapotranspiration. Good agreement was obtained between model predictions and field measurements. The maps for each service under the different scenarios were produced at the Hydrologic Response Unit (HRU) level. Biodiversity conservation value was based on nature protection regimes and on expert valuation applied to a land cover map. Statistical correlations between hydrological services provision

  8. Sustainable forest management: a challenging task in the siran watershed of district Mansehra in the NWFP of Pakistan

    International Nuclear Information System (INIS)

    Khurshid, M.


    Forests play an important socio-economic and environmental role on earth. Exploitation of forest resources within the carrying capacity of the natural ecosystem has always ensured their sustainability but in recent decades man has overexploited these resources to meet various needs. Pakistan with only 4.8% of its total land area under forests was also experiencing unsustainable forest management. In the Siran Watershed of District Mansehra in the North West Frontier Province (NWFP) of Pakistan, forests were exploited to meet not only the domestic and commercial wood-fuel needs but also timber needs of the local and external markets. Moreover, the local communities as a source of income generation have also used forest resources to increase their cash income earnings. Analysis of time series forest cover change in the past three decades was done in three adjacent sub-watersheds having different property right regimes. The GIS based spatial analysis showed that despite government efforts to conserve these forests, 75% of the forests were completely converted either into regeneration area (34%) or barren areas (41 %) during the past three decades. The Protected Forests have lost 41 % of its cover and the Guzara Forests 34%. Results show that the forest degradation stress has greatly increased in the eighties and afterwards. Using stakeholder analysis the key wood demanding stake holders in terms of their wood demand state were the local communities, the external commercial timber consumers, tobacco growers and Afghan refugees. The wood supplies stake holders were the Forest Department that controls the Common Pool Forests (CPF), the Forest Development Corporation (FDC), the Forest Cooperative Societies (FCS) and the farm foresters. Analysis of the cause effect relationship of the system shows that the pressure factors of increased wood demand by various stake holders coupled with the enabling factors of the market failure, government failure and institutional failure

  9. A modified soil organic carbon density model for a forest watershed in southern China (United States)

    Song, Jiangping; Li, Zhongwu; Nie, Xiaodong; Liu, Chun; Xiao, Haibing; Wang, Danyang; Zeng, Guangming


    In the context of global climate change, correctly estimating soil organic carbon (SOC) stocks is significant. Because SOC density is the basis for calculating total SOC, exploring the spatial distribution of SOC density is more important. In this study, a typical forest watershed in southern China was analysed. An established exponential model that combined the soil erosion, topography, and average annual rainfall in the region to estimate SOC density with varying soil depth was modified by simulated rainfall experiments and 137Cs (Caesium-137) tracer soil erosion techniques. Thus, a modified exponential model for the SOC density in southern China was established. The results showed that the correlation coefficient (R2) reached 0.870 for the linear regression analysis of the simulated and measured SOC densities. The differences between the measured and simulated SOC densities in different soil layers (0-60 cm) all passed the independent sample t-test. Additionally, the Nash-Sutcliffe coefficient for the simulated and measured SOC densities was 0.97 in the forest watershed. Furthermore, the application of the modified exponential model showed that the measured SOC densities were in good agreement with the simulated SOC densities in the different forest areas tested. These results illustrated that the modified exponential model could be effectively used to simulate the vertical distribution of SOC density in southern China. Because the parameters in the modified exponential model were easy to obtain, this modified model could be applied to simulate the vertical distribution of the SOC density in different geomorphological areas. Therefore, the results of this study will help to understand the global carbon cycle and provide valuable information for constructing the ecological environment of various landscapes.

  10. Deforestation and fragmentation of natural forests in the upper Changhua watershed, Hainan, China: implications for biodiversity conservation. (United States)

    Zhai, De-Li; Cannon, Charles H; Dai, Zhi-Cong; Zhang, Cui-Ping; Xu, Jian-Chu


    Hainan, the largest tropical island in China, belongs to the Indo-Burma biodiversity hotspot. The Changhua watershed is a center of endemism for plants and birds and the cradle of Hainan's main rivers. However, this area has experienced recent and ongoing deforestation and habitat fragmentation. To quantify habitat loss and fragmentation of natural forests, as well as the land-cover changes in the Changhua watershed, we analyzed Landsat images obtained in 1988, 1995, and 2005. Land-cover dynamics analysis showed that natural forests increased in area (97,909 to 104,023 ha) from 1988 to 1995 but decreased rapidly to 76,306 ha over the next decade. Rubber plantations increased steadily throughout the study period while pulp plantations rapidly expanded after 1995. Similar patterns of land cover change were observed in protected areas, indicating a lack of enforcement. Natural forests conversion to rubber and pulp plantations has a general negative effect on biodiversity, primarily through habitat fragmentation. The fragmentation analysis showed that natural forests area was reduced and patch number increased, while patch size and connectivity decreased. These land-cover changes threatened local biodiversity, especially island endemic species. Both natural forests losses and fragmentation should be stopped by strict enforcement to prevent further damage. Preserving the remaining natural forests and enforcing the status of protected areas should be a management priority to maximize the watershed's biodiversity conservation value.

  11. Assessing Watershed-Wildfire Risks on National Forest System Lands in the Rocky Mountain Region of the United States

    Directory of Open Access Journals (Sweden)

    Jessica R. Haas


    Full Text Available Wildfires can cause significant negative impacts to water quality with resultant consequences for the environment and human health and safety, as well as incurring substantial rehabilitation and water treatment costs. In this paper we will illustrate how state-of-the-art wildfire simulation modeling and geospatial risk assessment methods can be brought to bear to identify and prioritize at-risk watersheds for risk mitigation treatments, in both pre-fire and post-fire planning contexts. Risk assessment results can be particularly useful for prioritizing management of hazardous fuels to lessen the severity and likely impacts of future wildfires, where budgetary and other constraints limit the amount of area that can be treated. Specifically we generate spatially resolved estimates of wildfire likelihood and intensity, and couple that information with spatial data on watershed location and watershed erosion potential to quantify watershed exposure and risk. For a case study location we focus on National Forest System lands in the Rocky Mountain Region of the United States. The Region houses numerous watersheds that are critically important to drinking water supplies and that have been impacted or threatened by large wildfires in recent years. Assessment results are the culmination of a broader multi-year science-management partnership intended to have direct bearing on wildfire management decision processes in the Region. Our results suggest substantial variation in the exposure of and likely effects to highly valued watersheds throughout the Region, which carry significant implications for prioritization. In particular we identified the San Juan National Forest as having the highest concentration of at-risk highly valued watersheds, as well as the greatest amount of risk that can be mitigated via hazardous fuel reduction treatments. To conclude we describe future opportunities and challenges for management of wildfire-watershed interactions.

  12. A Summary of 20 Years of Forest Monitoring in Cinnamon Bay Watershed, St. John, U.S. Virgin Islands. (United States)

    Peter L. Weaver


    St. John, and probably the Cinnamon Bay watershed, has a history of human use dating to 1700 B.C. The most notable impacts, however, occurred from 1730 to 1780 when sugar cane and cotton production peaked on the island. As agriculture was abandoned, the island regenerated in secondary forest, and in 1956, the Virgin Islands National Park was created. From 1983 to 2003...

  13. Determining soil hydrologic characteristics on a remote forest watershed by continuous monitoring of soil water pressures, rainfall and runoff. (United States)

    L.R. Ahuja; S. A. El-Swaify


    Continuous monitoring of soil-water pressures, rainfall and runoff under natural conditions was tested as a technique for determining soil hydrologic characteristics of a remote forest watershed plot. A completely battery-powered (and thus portable) pressure transducer–scanner–recorder system was assembled for monitoring of soil-water pressures in...

  14. Catchment-scale modeling of nitrogen dynamics in a temperate forested watershed, Oregon. An interdisciplinary communication strategy. (United States)

    Kellie Vache; Lutz Breuer; Julia Jones; Phil Sollins


    We present a systems modeling approach to the development of a place-based ecohydrological model. The conceptual model is calibrated to a variety of existing observations, taken in watershed 10 (WS10) at the HJ Andrews Experimental Forest (HJA) in Oregon, USA, a long term ecological research (LTER) site with a long history of catchment-...

  15. Enhancements to the Water Erosion Prediction Project (WEPP) for modeling large snow-dominated mountainous forest watersheds (United States)

    Anurag Srivastava; Joan Q. Wu; William J. Elliot; Erin S. Brooks


    The Water Erosion Prediction Project (WEPP) model, originally developed for hillslope and small watershed applications, simulates complex interactive processes influencing erosion. Recent incorporations to the model have improved the subsurface hydrology components for forest applications. Incorporation of channel routing has made the WEPP model well suited for large...

  16. Sensitivity of stream flow and water table depth to potential climatic variability in a coastal forested watershed (United States)

    Zhaohua Dai; Carl Trettin; Changsheng Li; Devendra M. Amatya; Ge Sun; Harbin Li


    A physically based distributed hydrological model, MIKE SHE, was used to evaluate the effects of altered temperature and precipitation regimes on the streamflow and water table in a forested watershed on the southeastern Atlantic coastal plain. The model calibration and validation against both streamflow and water table depth showed that the MIKE SHE was applicable for...

  17. An ecosystem report on the Panama Canal: Monitoring the status of the forest communities and the watershed (United States)

    Ibanez, R.; Condit, R.; Angehr, G.; Aguilar, S.; Garcia, T.; Martinez, R.; Sanjur, A.; Stallard, R.; Wright, S.J.; Rand, A.S.; Heckadon, S.


    In 1996, the Smithsonian Tropical Research Institute and the Republic of Panama's Environmental Authority, with support from the United States Agency for International Development, undertook a comprehensive program to monitor the ecosystem of the Panama Canal watershed. The goals were to establish baseline indicators for the integrity of forest communities and rivers. Based on satellite image classification and ground surveys, the 2790 km2 watershed had 1570 km2 of forest in 1997, 1080 km2 of which was in national parks and nature monuments. Most of the 490 km2 of forest not currently in protected areas lies along the west bank of the Canal, and its management status after the year 2000 turnover of the Canal from the U.S. to Panama remains uncertain. In forest plots designed to monitor forest diversity and change, a total of 963 woody plant species were identified and mapped. We estimate there are a total of 850-1000 woody species in forests of the Canal corridor. Forests of the wetter upper reaches of the watershed are distinct in species composition from the Canal corridor, and have considerably higher diversity and many unknown species. These remote areas are extensively forested, poorly explored, and harbor an estimated 1400-2200 woody species. Vertebrate monitoring programs were also initiated, focusing on species threatened by hunting and forest fragmentation. Large mammals are heavily hunted in most forests of Canal corridor, and there was clear evidence that mammal density is greatly reduced in hunted areas and that this affects seed predation and dispersal. The human population of the watershed was 113 000 in 1990, and grew by nearly 4% per year from 1980 to 1990. Much of this growth was in a small region of the watershed on the outskirts of Panama City, but even rural areas, including villages near and within national parks, grew by 2% per year. There is no sewage treatment in the watershed, and many towns have no trash collection, thus streams near large

  18. Sulfate exports from multiple catchments in a glaciated forested watershed in western New York, USA. (United States)

    Inamdar, Shreeram P; Mitchell, Myron J


    Sulfate (SO4(2-)) concentrations and fluxes were studied for multiple storm events in the Point Peter Brook watershed, a glaciated, forested watershed located in Western New York, USA. Investigations were performed across one large (696 ha) and three small (1.6-3.4 ha) catchments with varying extent of riparian and wetland areas. Concentrations of SO4(2-) in groundwater sources (mean values: 238-910 micromol(c) L(-1)) were considerably greater than concentrations recorded for rainfall (60 micromol(c) L(-1)) and throughfall (72-129 micromol(c) L(-1)). Seasonality in SO4(2-) concentrations was most pronounced for valley-bottom riparian waters with maximum concentrations in late winter-spring (February-March) and a minimum in late summer (August). Concentrations of SO4(2-) in wetland water were considerably less than riparian water indicating the likelihood of SO4(2-) reduction in anoxic wetland conditions. Storm events displayed a dilution pattern in SO4(2-) concentrations with a minimum coinciding with the maximum in throughfall contributions. End member mixing analysis (EMMA) was able to predict the storm event concentrations of SO4(2-) for four of the six comparisons. Concentrations of SO4(2-) at the outlet of the large (696 ha) catchment were much greater than values recorded for the smaller catchments. Exports of SO4(2-) in streamflow exceeded the inputs from atmospheric deposition suggesting that watersheds like Point Peter Brook may not show any immediate response to decreases in atmospheric SO4(2-) deposition.

  19. EMERGY-based environmental systems assessment of a multi-purpose temperate mixed-forest watershed of the southern Appalachian Mountains, USA (United States)

    David Rogers Tilley; Wayne T. Swank


    Emergy (with an 'm') synthesis was used to assess the balance between nature and humanity and the equity among forest outcomes of a US Forest Service ecosystem management demonstration project on the Wine Spring Creek watershed, a high-elevation (1600 m), temperate forest located in the southern Appalachian mountains of North Carolina, USA. EM embraces a...

  20. [Environmental factors associated with habitat preferences by caddisfly larvae in tropical dry forest watersheds (Tolima, Colombia)]. (United States)

    Vásquez-Ramos, Jesús M; Guevara-Cardona, Giovany; Reinoso-Flórez, Gladys


    River ecosystems, mainly those draining tropical dry forests, are among the most endangered tropical ecosystems and a major conservation priority in South America, as elsewhere. In this study, we assessed the influence of environmental factors (e.g., precipitation) and riparian vegetation on Trichoptera larval assemblages colonizing four substrates (rock, gravel, sand, and litter) in the Venadillo and Opia watersheds (Tolima, Colombia). In each river, five 20m reaches nested into two 100m segments (one at -550 and another at -250masl), were surveyed for benthic invertebrates in the above mentioned substrates. In addition, water samples were collected for physicochemical analyses and the QBR index ("qualitat del bosc de ribera" or riparian forest quality) was applied in both rivers. A total of 6,282 larvae were collected, belonging to 11 families and 22 genera, representing 73.30% and 43.13% of the Trichoptera fauna reported to Colombia, respectively. The most abundant families were Hydropsychidae (49.86%) and Philopotamidae (25.44%) and the least abundant Odontoceridae (0.16%) and Hydrobiosidae (0.06%). The genera Smicridea, Chimarra, Protoptila, Neotrichia, and Leptonema, were common during dry and rainy seasons. The main factors related to changes in composition, richness, and abundance of larval Trichoptera were seasonality and riparian vegetation, which can influence organic matter supply, availability and stability of substrates, and colonization and population dynamics. Trichoptera assemblages showed no significant differences among substrates. However sampling points located at high elevation and in non-urbanized areas offered the largest variety of substrates and richness. Our results indicate that Trichoptera larvae are an important biotic element in freshwater ecosystems and that they are sensitive to environmental changes. Hence, our study suggests that caddisflies may be used as potential organisms for the biomonitoring of tropical dry forest rivers

  1. Forest Conversion to Land of Rubber and Palm Oil Farming and Its Effect on Run Off and Soil Erosion in Batang Pelepat Watershed

    Directory of Open Access Journals (Sweden)



    Full Text Available Forest conversion to some land use happened in all watershed, includes Batang Pelepat watershed. The objectives of this research are to know effect of forest conversion to land of rubber (Hevea brasiliensis and palm oil (Elaeis guinensis Jack farming on run off and soil erosion and different of erosion rate on agro technology of rubber and palm oil farming in Batang Pelepat watershed. The research was carried out during 3 months, begin October to December 2006. Run off and soil erosion measured plot with gutter in the lower of plot. Experimental design for this research is randomized complete block design, with land use type as treatment and slope class as replication or block. Data analyzed statistically by variance analysis (F-test and Duncan New Multiple Range Test on confidence 95% (á = 0.05. The results of this research show that area of forest coverage in Batang Pelepat watershed was decreasing. In 1986 this area still 94.50% of watershed area, but in 1994 area of forest only 78.17% and in 2006 forest area 64.20% of watershed area. Forest conversion was carried out to land of rubber and palm oil farming with some actual agro technologies. Land of monoculture rubber I resulted the highest run off and soil erosion more than the other land use type and showed different of run off and soil erosion on land of secondary forest.

  2. Controls on sediment production from unpaved forest roads in the Honna watershed, Canada (United States)

    van Meerveld, Ilja; Baird, Elizabeth; Floyd, Bill


    Unpaved forest roads are common in many areas and have the potential to produce large amounts of sediment. Traffic on unpaved roads results in the breakdown of surface material and the upward forcing of fine-grained sediment from the road bed. This sediment is transported off the road during rainfall events because the infiltration capacity of roads is generally very low. When there is a high connectivity between the road and a stream, this sediment can be transported to the stream, impacting water quality and aquatic ecology. Despite an increasing number of studies quantifying sediment generation from unpaved roads, there is little agreement on the dominant controls and physical processes affecting the amount of sediment generated from forest roads. We did 24 rainfall simulation experiments on a 30 m forest road section in the Honna Watershed, Haida Gwaii, British Columbia, Canada to determine the controls on sediment generation, in particular the influence of rainfall intensity, rainfall amount, antecedent precipitation, traffic intensity, and truck speed. The 5-52 mm/hr rainfall experiments took place during active hauling between September and November 2009. The results from the experiments showed that precipitation intensity controlled the amount of sediment generated from the road. The number of passages of loaded logging trucks during an experiment was the second most dominant control. Each loaded truck passage resulted in a new sediment pulse, which persisted for 30 minutes during low rainfall intensity events and for shorter times during higher rainfall intensity events. Eight small scale (4-19 mm/hr) rainfall simulation experiments showed that the spatial variability in sediment production from forests roads is high, even for sections of the same road. Steady state sediment concentrations were, however, similar for the different locations. Upscaling of the results from the large scale rainfall simulation experiments and turbidity measurements in the Honna

  3. An evaluation of nitrogen and phosphorus responses to rain events in a forested watershed (United States)

    Steadman, C.; Argerich, A.; Bladon, K. D.; Johnson, S. L.


    Nitrogen (N) and phosphorus (P) exhibit differential responses to storm events which reflect complex, hydrologically-driven biogeochemical activity in a watershed. However, the magnitude of the responses change throughout the year indicating that they may be strongly influenced by antecedent precipitation conditions. To evaluate N and P responses to storms, we collected storm samples from four subwatersheds in a small forested watershed over a 12-month period as well as climate and hydrologic data. We quantified dissolved nitrate (NO3-), ammonium (NH4+), total dissolved nitrogen (TDN), soluble reactive phosphorus (SRP), and total dissolved phosphorus (TDP) concentrations and exports in 300 samples and examined responses across subwatersheds and storms. To assess the influence of potential drivers, we generated a series of models with discharge, instantaneous rain, and cumulative rain as explanatory variables for analyte concentrations. We also constructed models with cumulative rain as the explanatory variable for analyte exports. There was strong evidence (p important for all analyte exports and concentrations. In contrast, evidence was weak for the significance of instantaneous rain for any analyte concentrations while discharge or the discharge-subwatershed interaction was significant for NO3- and NH4+, respectively. Of all factors, cumulative rain was the most relevant to explain analyte concentrations (i.e., showed the highest pseudo-R2), except for NH4+, for which discharge was more relevant. There was significant spatial and temporal variability for all analyte concentrations with the exception of NH4+, which showed little variability storm-to-storm. Maximum NO3- concentration occurred at the onset of the wet season while SRP had the lowest concentration during the same time period. Differential responses of analytes evidence distinct influences of hydrologically-driven biogeochemical activity on individual analytes. However, strong correlations with

  4. 77 FR 66578 - San Bernardino National Forest, Mountaintop Ranger District, CA, Santa Ana Watershed Hazardous... (United States)


    ... recreationists using the watershed, and protect the neighboring communities. The watershed has experienced a... conditions where the vegetation is denser, ladder fuels are present, and there are unnaturally high levels of...

  5. Long-term forest watershed studies in the Southwest: recycled for wildfire and prescribed fire (United States)

    Daniel G. Neary; Gerald J. Gottfried; Peter F. Ffolliott; Boris Poff


    A hydrologic research network was established in Arizona in the 1950s and 1960s called the Arizona Watershed Program (Baker et al. 1999). It consisted of a number of public agencies and private groups interested in obtaining more water for future economic growth while maintaining the State's watersheds in good condition. As part of the Program. paired watershed...

  6. Mercury and Organic Carbon Relationships in Streams Draining Forested Upland/Peatland Watersheds (United States)

    R. K. Kolka; D. F. Grigal; E. S. Verry; E. A. Nater


    We determined the fluxes of total mecury (HgT), total organic carbon (TOC), and dissolved organic carbon (DOC) from five upland/peatland watersheds at the watershed outlet. The difference between TOC and DOC was defined as particulate OC (POC). Concentrations of HgT showed moderate to strong relationships with POC (R2 = 0.77) when all watersheds...

  7. Wetland influence on mercury fate and transport in a temperate forested watershed

    International Nuclear Information System (INIS)

    Selvendiran, Pranesh; Driscoll, Charles T.; Bushey, Joseph T.; Montesdeoca, Mario R.


    The transport and fate of mercury (Hg) was studied in two forest wetlands; a riparian peatland and an abandoned beaver meadow. The proportion of total mercury (THg) that was methyl mercury (% MeHg) increased from 2% to 6% from the upland inlets to the outlet of the wetlands. During the growing season, MeHg concentrations were approximately three times higher (0.27 ng/L) than values during the non-growing season (0.10 ng/L). Transport of Hg species was facilitated by DOC production as indicated by significant positive relations with THg and MeHg. Elevated concentrations of MeHg and % MeHg (as high as 70%) were found in pore waters of the riparian and beaver meadow wetlands. Groundwater interaction with the stream was limited at the riparian peatland due to the low hydraulic conductivity of the peat. The annual fluxes of THg and MeHg at the outlet of the watershed were 2.3 and 0.092 μg/m 2 -year respectively. - Wetlands are sources of THg and MeHg; the production of MeHg is seasonally dependent and driven by sulfate reduction in wetlands

  8. Hotter Drought, Disturbance Process Thresholds, and Reorganization of Forest Ecosystems and Watersheds in the Southwestern USA, and Beyond (United States)

    Allen, C. D.


    Extensive high-severity wildfires and drought-induced tree mortality (including drought-and-heat-related insect pest outbreaks), along with associated major alterations of watershed conditions and hydrological processes, have intensified over the last two decades in Southwest USA forests and woodlands—on a scale unseen regionally since at least pre-1900, and quite possibly not for millennia, based on diverse lines of paleo-ecological and geomorphic evidence. Historical land-use patterns, decadal-scale climate variability (e.g., drought linked to the Pacific Decadal Oscillation), and warming temperatures in recent decades (resulting in "hotter drought" conditions) have been important interactive drivers of observed nonlinear threshold changes in these forest disturbance processes. In response, Southwest forest landscapes have been rapidly transitioning toward more open and drought-tolerant ecosystems, with altered ecohydrological patterns. If regional temperatures increase as projected by climate models, multiple lines of evidence (experiments, observations, empirical models, process models) suggest that Southwest drought stress after ca. 2050 will increasingly exceed that of the most severe droughts in the past 1,000 years, putting current historical forests at grave risk—in particular the tallest (& often the oldest) trees and forests. These findings point toward the emergence of increasingly novel vegetation patterns over the course of this century. Forests globally exhibit great diversity in environmental drivers, histories, dominant ecological patterns and processes, biodiversity, etc., which are expected to produce diverse forest responses (and levels of resilience) to projected global changes in climate and human uses this century. Even given this planetary diversity of forests and expected global change responses, the observed reorganization of forests underway in the Southwest USA - driven by the convergence of changes in land use patterns, disturbance

  9. Soil bacterial communities of a calcium-supplemented and a reference watershed at the Hubbard Brook Experimental Forest (HBEF), New Hampshire, USA (United States)

    Ganapathi Sridevi; Rakesh Minocha; Swathi A. Turlapati; Katherine C. Goldfarb; Eoin L. Brodie; Louis S. Tisa; Subhash C. Minocha


    Soil Ca depletion because of acidic deposition-related soil chemistry changes has led to the decline of forest productivity and carbon sequestration in the northeastern USA. In 1999, acidic watershed (WS) 1 at the Hubbard Brook Experimental Forest (HBEF), NH, USA was amended with Ca silicate to restore soil Ca pools. In 2006, soil samples were collected from the Ca-...

  10. Streamwater Chemistry and Nutrient Export During Five Years of Bark Beetle Infestation of Subalpine Watersheds at the Fraser Experimental Forest (United States)

    Rhoades, C.; Elder, K.; Hubbard, R.; Porth, L.


    Forested watersheds of western North America are currently undergoing rapid and extensive canopy mortality caused by a variety of insect species. The mountain pine bark beetle (Dendroctonus ponderosae) began to attack lodgepole pine (Pinus contorta) at the USFS Fraser Experimental Forest in central Colorado in 2002. By 2007, bark beetles had killed 78% of the overstory pine in Fraser research watersheds on average. The hydrologic, climatic, biogeochemical and vegetation records at the Fraser Experimental Forest provide a unique opportunity to quantify the impacts of this widespread, but poorly understood forest disturbance relative to a multi-decade pre-disturbance period. Here we compare seasonal streamwater chemistry and annual nutrient export for the five years since the bark beetle outbreak began with the pre- attack record. Patterns in post-outbreak streamwater biogeochemistry are compared to changes is species composition and proportional loss of overstory basal area for four basins. The influence of the outbreak will depend upon an aggregate of short (i.e. halted overstory water and nutrient use) and longer-term (i.e. altered canopy interception, windthrow, and understory growth) processes, so the hydrologic and biogeochemical implications of current beetle activity will not be fully realized for decades.

  11. Hydrologic Impacts of Developing Forest-based Bioenergy Feedstock in Wisconsin, USA and Entre Rios, Argentina Watersheds (United States)

    Heidari, A.; Mayer, A. S.; Watkins, D. W., Jr.


    Growing demand for biomass-derived fuels has resulted in an increase in bioenergy projects across the Americas in recent years, a trend that is expected to continue. However, the expansion of bioenergy feedstock production might cause unintended environmental consequences. Accordingly, the goal of this research is to investigate how forest-based bioenergy development across the Americas may affect hydrological systems on a watershed scale. This study focuses on biofuel feedstock production with hybrid poplar cultivation in a snow-dominated watershed in northern Wisconsin, USA, and eucalyptus cultivation in a warm and temperate watershed in Entre Rios, Argentina. The Soil and Water Assessment Tool (SWAT), calibrated and validated for the two watersheds, is used to evaluate the effects of land use change corresponding to a range of biofuel development scenarios. The land use change scenarios include rules for limiting the location of the biofuel feedstock, and rotation time. These variables in turn impact the magnitude and timing of runoff and evapotranspiration. In Wisconsin, long term daily streamflow simulations indicate that planting poplar will increase evapotranspiration and decrease water yield, primarily through reduced baseflow contributions to streamflow. Results are also presented in terms of changes in flow relative to biomass production, to understand the sensitivity of potential biofuel generation to hydrologic impacts, and vice versa. In the end, alternative management practices were evaluated to mitigate the impacts. Keywords: Biofuel; Soil and Water Assessment Tool; Poplar; Baseflow; Evapotranspiration

  12. Effect to groundwater recharge caused by land use change, comparative filed observation in forest and grassland watersheds, Southwestern Japan (United States)

    Kudo, K.; Shimada, J.; Tanaka, N.


    City of Kumamoto and their surrounding area are totally supported by the local groundwater as their tap water source, which is quite unique as comparing to the other large cities in Japan because Japanese large cities are mostly supplied by the surface water which is relatively easy to access for their tap water. Because of this, prefecture government of the Kumamoto City has much concern about the sustainable use of groundwater resources for their future generations. In Japan, for the sustainable use of groundwater resources, the forestation in the groundwater recharge area believed to increase the groundwater recharge to the local groundwater aquifer. It is true that the forestation surely works to reduce the direct runoff rate during the flooding period and also works to maintain a bit higher base flow rate during the low flow period than without forestation. However, the effect to the groundwater recharge rate by the forestation is not well understood because of the increase of evapo-transpiration by the tree itself. In order to understand the change of the groundwater recharge rate by the forestation, a paired catchments field observation has been conducted in two adjacent forest (0.088km2) and grassland (0.14km2) watersheds at the western foot of Mt. Aso known as recharge area of major local aquifer of Kumamoto region. The study sites are located at 32°53'N, 130°57'E with elevation ranging from 500 to 800m. The forest watershed consists mainly of around 30 year aged Japanese cypress plantations surrounded by Japanese cedar and mixture forest. The grassland watershed consists mainly of pasture and Japanese silver grass. Both catchments develop on the mountain foot slope consists of the Aso-2 pyroclastic sediments. As for the hydrometric observation system for each catchments, parshall flume runoff weir for the river discharge, meteoric tower for the evapo-transpiration monitoring purpose, and precipitation gage are installed to calculate groundwater recharge

  13. Calibration and validation of the SWAT model for a forested watershed in coastal South Carolina (United States)

    Devendra M. Amatya; Elizabeth B. Haley; Norman S. Levine; Timothy J. Callahan; Artur Radecki-Pawlik; Manoj K. Jha


    Modeling the hydrology of low-gradient coastal watersheds on shallow, poorly drained soils is a challenging task due to the complexities in watershed delineation, runoff generation processes and pathways, flooding, and submergence caused by tropical storms. The objective of the study is to calibrate and validate a GIS-based spatially-distributed hydrologic model, SWAT...

  14. Stable-isotope and solute-chemistry approaches to flow characterization in a forested tropical watershed, Luquillo Mountains, Puerto Rico (United States)

    Scholl, Martha A.; Shanley, James B.; Murphy, Sheila F.; Willenbring, Jane K; Occhi, Marcie; González, Grizelle


    The prospect of changing climate has led to uncertainty about the resilience of forested mountain watersheds in the tropics. In watersheds where frequent, high rainfall provides ample runoff, we often lack understanding of how the system will respond under conditions of decreased rainfall or drought. Factors that govern water supply, such as recharge rates and groundwater storage capacity, may be poorly quantified. This paper describes 8-year data sets of water stable isotope composition (δ2H and δ18O) of precipitation (4 sites) and a stream (1 site), and four contemporaneous stream sample sets of solute chemistry and isotopes, used to investigate watershed response to precipitation inputs in the 1780-ha Río Mameyes basin in the Luquillo Mountains of northeastern Puerto Rico. Extreme δ2H and δ18O values from low-pressure storm systems and the deuterium excess (d-excess) were useful tracers of watershed response in this tropical system. A hydrograph separation experiment performed in June 2011 yielded different but complementary information from stable isotope and solute chemistry data. The hydrograph separation results indicated that 36% of the storm rain that reached the soil surface left the watershed in a very short time as runoff. Weathering-derived solutes indicated near-stream groundwater was displaced into the stream at the beginning of the event, followed by significant dilution. The more biologically active solutes exhibited a net flushing behavior. The d-excess analysis suggested that streamflow typically has a recent rainfall component (∼25%) with transit time less than the sampling resolution of 7 days, and a more well-mixed groundwater component (∼75%). The contemporaneous stream sample sets showed an overall increase in dissolved solute concentrations with decreasing elevation that may be related to groundwater inputs, different geology, and slope position. A considerable amount of water from rain events runs off as quickflow and bypasses

  15. Quantifying the Relative Contributions of Forest Change and Climatic Variability to Hydrology in Large Watersheds: A Critical Review of Research Methods

    Directory of Open Access Journals (Sweden)

    Xiaohua Wei


    Full Text Available Forest change and climatic variability are two major drivers for influencing change in watershed hydrology in forest–dominated watersheds. Quantifying their relative contributions is important to fully understand their individual effects. This review paper summarizes the progress on quantifying the relative contributions of forest or land cover change and climatic variability to hydrology in large watersheds using available case studies. It compared pros and cons of various research methods, identified research challenges and proposed future research priorities. Our synthesis shows that the relative hydrological effects of forest changes and climatic variability are largely dependent on their own change magnitudes and watershed characteristics. In some severely disturbed watersheds, impacts of forest changes or land use changes can be as important as those from climatic variability. This paper provides a brief review on eight selected research methods for this type of research. Because each method or technique has its own strengths and weaknesses, combining two or more methods is a more robust approach than using any single method alone. Future research priorities include conducting more case studies, refining research methods, and considering mechanism-based research using landscape ecology and geochemistry approaches.

  16. Can forest watershed management mitigate climate change impacts on water resources? (United States)

    James M. Vose; Chelcy R. Ford; Stephanie Laseter; Salli Dymond; GE Sun; Mary Beth Adams; Stephen Sebestyen; John Campbell; Charles Luce; Devendra Amatya; Kelly Elder; Tamara. Heartsill-Scalley


    Long-term hydrology and climate data from United States Forest Service Experimental Forests and Ranges (EFR) provide critical information on the interactions among climate, streamflow, and forest management practices. We examined the relationships among streamflow responses to climate variation and forest management using long-term data. Analysis of climate data from a...

  17. Comparison of mineral weathering and biomass nutrient uptake in two small forested watersheds underlain by quartzite bedrock, Catoctin Mountain, Maryland, USA (United States)

    Rice, Karen; Price, Jason R.


    To quantify chemical weathering and biological uptake, mass-balance calculations were performed on two small forested watersheds located in the Blue Ridge Physiographic Province in north-central Maryland, USA. Both watersheds, Bear Branch (BB) and Fishing Creek Tributary (FCT), are underlain by relatively unreactive quartzite bedrock. Such unreactive bedrock and associated low chemical-weathering rates offer the opportunity to quantify biological processes operating within the watershed. Hydrologic and stream-water chemistry data were collected from the two watersheds for the 9-year period from June 1, 1990 to May 31, 1999. Of the two watersheds, FCT exhibited both higher chemical-weathering rates and biomass nutrient uptake rates, suggesting that forest biomass aggradation was limited by the rate of chemical weathering of the bedrock. Although the chemical-weathering rate in the FCT watershed was low relative to the global average, it masked the influence of biomass base-cation uptake on stream-water chemistry. Any differences in bedrock mineralogy between the two watersheds did not exert a significant influence on the overall weathering stoichiometry. The difference in chemical-weathering rates between the two watersheds is best explained by a larger proportion of reactive phyllitic layers within the bedrock of the FCT watershed. Although the stream gradient of BB is about two-times greater than that of FCT, its influence on chemical weathering appears to be negligible. The findings of this study support the biomass nutrient uptake stoichiometry of K1.0Mg1.1Ca0.97 previously determined for the study site. Investigations of the chemical weathering of relatively unreactive quartzite bedrock may provide insight into critical zone processes.

  18. Alterations in land uses based on amendments to the Brazilian Forest Law and their influences on water quality of a watershed

    Directory of Open Access Journals (Sweden)

    JL. Rodrigues-Filho

    Full Text Available The amendments to the Forest Law proposed by the Brazilian government that allow partial substitution of forested areas by agricultural activities raised deep concern about the integrity of aquatic ecosystems. To assess the impacts of this alteration in land uses on the watershed, diffuse loads of total nitrogen (Nt and total phosphorus (Pt were estimated in Lobo Stream watershed, southeastern Brazil, based on export coefficients of the Model of Correlation between Land Use and Water Quality (MQUAL. Three scenarios were generated: scenario 1 (present scenario, with 30-meter-wide permanent preservation areas along the shore of water bodies and 50-meter-radius in springs; scenario 2, conservative, with 100-meter-wide permanent preservation areas along water bodies; and scenario 3, with the substitution of 20% of natural forest by agricultural activities. Results indicate that a suppression of 20% of forest cover would cause an increase in nutrient loads as well as in the trophic state of aquatic ecosystems of the watershed. This could result in losses of ecosystem services and compromise the quality of water and its supply for the basin. This study underlines the importance of forest cover for the maintenance of water quality in Lobo Stream watershed.

  19. Alterations in land uses based on amendments to the Brazilian Forest Law and their influences on water quality of a watershed. (United States)

    Rodrigues-Filho, J L; Degani, R M; Soares, F S; Periotto, N A; Blanco, F P; Abe, D S; Matsumura-Tundisi, T; Tundisi, J E; Tundisi, J G


    The amendments to the Forest Law proposed by the Brazilian government that allow partial substitution of forested areas by agricultural activities raised deep concern about the integrity of aquatic ecosystems. To assess the impacts of this alteration in land uses on the watershed, diffuse loads of total nitrogen (Nt) and total phosphorus (Pt) were estimated in Lobo Stream watershed, southeastern Brazil, based on export coefficients of the Model of Correlation between Land Use and Water Quality (MQUAL). Three scenarios were generated: scenario 1 (present scenario), with 30-meter-wide permanent preservation areas along the shore of water bodies and 50-meter-radius in springs; scenario 2, conservative, with 100-meter-wide permanent preservation areas along water bodies; and scenario 3, with the substitution of 20% of natural forest by agricultural activities. Results indicate that a suppression of 20% of forest cover would cause an increase in nutrient loads as well as in the trophic state of aquatic ecosystems of the watershed. This could result in losses of ecosystem services and compromise the quality of water and its supply for the basin. This study underlines the importance of forest cover for the maintenance of water quality in Lobo Stream watershed.

  20. Integrating land use and climate change scenarios and models into assessment of forested watershed services in Southern Thailand. (United States)

    Trisurat, Yongyut; Eawpanich, Piyathip; Kalliola, Risto


    The Thadee watershed, covering 112km(2), is the main source of water for agriculture and household consumption in the Nakhon Srithammarat Province in Southern Thailand. As the natural forests upstream have been largely degraded and transformed to fruit tree and rubber plantations, problems with landslides and flooding have resulted. This research attempts to predict how further land-use/land-cover changes during 2009-2020 and conceivable changes in rainfall may influence the future levels of water yield and sediment load in the Thadee River. Three different land use scenarios (trend, development and conservation) were defined in collaboration with the local stakeholders, and three different rainfall scenarios (average rainfall, climate change and extreme wet) were determined on the basis of literature sources. Spatially explicit empirical modelling was employed to allocate future land demands and to assess the contributions of land use and rainfall changes, considering both their separate and combined effects. The results suggest that substantial land use changes may occur from a large expansion of rubber plantations in the upper sub-watersheds, especially under the development land use scenario. The reduction of the current annual rainfall by approximately 30% would decrease the predicted water yields by 38% from 2009. According to the extreme rainfall scenario (an increase of 36% with respect to current rainfall), an amplification of 50% of the current runoff could result. Sensitivity analyses showed that the predicted soil loss is more responsive to changes in rainfall than to the compared land use scenarios alone. However, very high sediment load and runoff levels were predicted on the basis of combined intensified land use and extreme rainfall scenarios. Three conservation activities-protection, reforestation and a mixed-cropping system-are proposed to maintain the functional watershed services of the Thadee watershed region. Copyright © 2016 Elsevier Inc

  1. Changes in Hydrological Response of Forest Conversion to Agroforestry and Rainfed Agriculture in Renggung Watershed, Lombok, Eastern Indonesia

    Directory of Open Access Journals (Sweden)

    Muhamad Husni Idris


    Full Text Available Forest is an ideal ecosystem for a hydrological cycle, however converting forests to agroforestry or rainfed agriculture is inevitable. This study elaborates a hydrological response of infiltration, runoff, and soil moisture in three land uses at Renggung watershed. Field measurements were conducted in 2014−2015 in those system with soil types of entisols at upstream, inceptisols at the middle, and vertisols at downstream. Results showed that constant infiltration rate at upstream in forest was 55.6 cm hr-1, in 15−30 years agroforestry was 32.4 cm hr-1 on average and in rainfed was 26.4 cm hr-1. Infiltration in agroforestry at the middle and downstream was 16.8 cm hr-1 and 11.2 cm hr-1, -1 -1 -1 respectively, while in rainfed was 2.4 cm hr and 4.8 cm hr . Runoff at upstream with 29.3 mm hr rainfall in forest -1 -1 was zero, in agroforestry was 0.026 mm hr and in rainfed was 0.071 mm hr . Runoff in agroforestry at the middle and downstream with 37.1 mm hr-1 and 23.8 mm hr-1 rainfall were 0.045 mm hr-1, and 0.026 mm hr-1. There was a half and one third of that in rainfed. Soil water content in successive order from high to low was in forest, agroforestry, and rainfed. So, capacity of agroforestry in sustaining the hydrology cycle was in between forests and rainfed agriculture

  2. Consideration of Experimental Approaches in the Physical and Biological Sciences in Designing Long-Term Watershed Studies in Forested Landscapes (United States)

    Stallard, R. F.


    The importance of biological processes in controlling weathering, erosion, stream-water composition, soil formation, and overall landscape development is generally accepted. The U.S. Geological Survey (USGS) Water, Energy, and Biogeochemical Budgets (WEBB) Project in eastern Puerto Rico and Panama and the Smithsonian Tropical Research Institute (STRI) Panama Canal Watershed Experiment (PCWE) are landscape-scale studies based in the humid tropics where the warm temperatures, moist conditions, and luxuriant vegetation promote especially rapid biological and chemical processes - photosynthesis, respiration, decay, and chemical weathering. In both studies features of small-watershed, large-watershed, and landscape-scale-biology experiments are blended to satisfy the research needs of the physical and biological sciences. The WEBB Project has successfully synthesized its first fifteen years of data, and has addressed the influence of land cover, geologic, topographic, and hydrologic variability, including huge storms on a wide range of hydrologic, physical, and biogeochemical processes. The ongoing PCWE should provide a similar synthesis of a moderate-sized humid tropical watershed. The PCWE and the Agua Salud Project (ASP) within the PCWE are now addressing the role of land cover (mature forests, pasture, invasive-grass dominated, secondary succession, native species plantation, and teak) at scales ranging from small watersheds to the whole Panama Canal watershed. Biologists have participated in the experimental design at both watershed scales, and small (0.1 ha) to large (50 ha) forest-dynamic plots have a central role in interfacing between physical scientists and biologists. In these plots, repeated, high-resolution mapping of all woody plants greater than 1-cm diameter provides a description of population changes through time presumably reflecting individual life histories, interactions with other organisms and the influence of landscape processes and climate

  3. Contrasting residence times and fluxes of water and sulfate in two small forested watersheds in Virginia, USA. (United States)

    Böhlke, John Karl; Michel, Robert L


    Watershed mass balances for solutes of atmospheric origin may be complicated by the residence times of water and solutes at various time scales. In two small forested headwater catchments in the Appalachian Mountains of Virginia, USA, mean annual export rates of SO(4)(=) differ by a factor of 2, and seasonal variations in SO(4)(=) concentrations in atmospheric deposition and stream water are out of phase. These features were investigated by comparing (3)H, (35)S, delta(34)S, delta(2)H, delta(18)O, delta(3)He, CFC-12, SF(6), and chemical analyses of open deposition, throughfall, stream water, and spring water. The concentrations of SO(4)(=) and radioactive (35)S were about twice as high in throughfall as in open deposition, but the weighted composite values of (35)S/S (11.1 and 12.1x10(-15)) and delta(34)S (+3.8 and +4.1 per thousand) were similar. In both streams (Shelter Run, Mill Run), (3)H concentrations and delta(34)S values during high flow were similar to those of modern deposition, delta(2)H and delta(18)O values exhibited damped seasonal variations, and (35)S/S ratios (0-3x10(-15)) were low throughout the year, indicating inter-seasonal to inter-annual storage and release of atmospheric SO(4)(=) in both watersheds. In the Mill Run watershed, (3)H concentrations in stream base flow (10-13 TU) were consistent with relatively young groundwater discharge, most delta(34)S values were approximately the same as the modern atmospheric deposition values, and the annual export rate of SO(4)(=) was equal to or slightly greater than the modern deposition rate. In the Shelter Run watershed, (3)H concentrations in stream base flow (1-3 TU) indicate that much of the discharging ground water had been deposited prior to the onset of atmospheric nuclear bomb testing in the 1950s, base flow delta(34)S values (+1.6 per thousand) were significantly lower than the modern deposition values, and the annual export rate of SO(4)(=) was less than the modern deposition rate

  4. Spatially-explicit modeling of multi-scale drivers of aboveground forest biomass and water yield in watersheds of the Southeastern United States. (United States)

    Ajaz Ahmed, Mukhtar Ahmed; Abd-Elrahman, Amr; Escobedo, Francisco J; Cropper, Wendell P; Martin, Timothy A; Timilsina, Nilesh


    Understanding ecosystem processes and the influence of regional scale drivers can provide useful information for managing forest ecosystems. Examining more local scale drivers of forest biomass and water yield can also provide insights for identifying and better understanding the effects of climate change and management on forests. We used diverse multi-scale datasets, functional models and Geographically Weighted Regression (GWR) to model ecosystem processes at the watershed scale and to interpret the influence of ecological drivers across the Southeastern United States (SE US). Aboveground forest biomass (AGB) was determined from available geospatial datasets and water yield was estimated using the Water Supply and Stress Index (WaSSI) model at the watershed level. Our geostatistical model examined the spatial variation in these relationships between ecosystem processes, climate, biophysical, and forest management variables at the watershed level across the SE US. Ecological and management drivers at the watershed level were analyzed locally to identify whether drivers contribute positively or negatively to aboveground forest biomass and water yield ecosystem processes and thus identifying potential synergies and tradeoffs across the SE US region. Although AGB and water yield drivers varied geographically across the study area, they were generally significantly influenced by climate (rainfall and temperature), land-cover factor1 (Water and barren), land-cover factor2 (wetland and forest), organic matter content high, rock depth, available water content, stand age, elevation, and LAI drivers. These drivers were positively or negatively associated with biomass or water yield which significantly contributes to ecosystem interactions or tradeoff/synergies. Our study introduced a spatially-explicit modelling framework to analyze the effect of ecosystem drivers on forest ecosystem structure, function and provision of services. This integrated model approach facilitates

  5. Effects of forested floodplain soil properties on phosphorous concentrations in two Chesapeake Bay sub-watersheds, Virginia, USA. (United States)

    Odhiambo, B K; Ricker, M C; Le Blanc, L M; Moxey, K A


    Aquatic ecosystems are known to undergo fluctuations in nutrient levels as a result of both natural and anthropogenic processes. Changes in both extrinsic and intrinsic fluvial dynamics necessitate constant monitoring as anthropogenic alterations exert new pressures to previously stable river basins. In this study, we analyzed stream water and riparian zone soil phosphorous (P) dynamics in two third-order sub-watersheds of the lower Chesapeake Bay in Virginia, USA. The Ni River is predominantly forested (70 % forested), and Sugarland Run is a more human impacted (>45 % impervious surfaces) sub-watershed located in the suburbs of Washington D.C. Total stream P concentrations were measured during both high and low flows and Mehlich-3 methods were used to evaluate potential P fluxes in riparian soils. The results show total stream P concentrations in Sugarland Run ranged from 0.002 to 0.20 ppm, with an average of 0.054 ppm. In contrast, the forested Ni River had typical stream P concentrations <0.01 ppm. Total soil P was significantly higher in the more urbanized Sugarland Run basin (23.8 ± 2.1 ppm) compared to the Ni River basin (16 ± 3.7 ppm). Average stream bank erosion rates and corresponding cut-bank P flux rates were estimated to be 7.98 cm year(-1) and 361 kg P year(-1) for Ni River and 9.84 cm year(-1) and 11,600 kg P year(-1) for Sugarland Run, respectively. The significantly higher values of total P in the stream water and floodplain cut-banks of Sugarland Run suggests erosion and resuspension of previously deposited legacy sediments is an important processes in this human-impacted basin.

  6. Toward geodesign for watershed restoration on the Fremont-Winema National Forest, Pacific Northwest, USA (United States)

    Keith Reynolds; Philip Murphy; Steven Paplanus


    Spatial decision support systems for forest management have steadily evolved over the past 20+ years in order to better address the complexities of contemporary forest management issues such as the sustainability and resilience of ecosystems on forested landscapes. In this paper, we describe and illustrate new features of the Ecosystem Management Decision Support (EMDS...

  7. 78 FR 21590 - Coconino National Forest; Arizona; Flagstaff Watershed Protection Project (United States)


    ...; project-specific Forest Plan amendments; and design features to protect forest resources of soil, water... minimum of 40 percent canopy cover in pine-oak and 60 percent in mixed conifer per the MSO Recovery Plan... cover would be measured, and add a definition to the Forest Plan glossary for the terms ``interspaces...

  8. Non-timber forest products: ramps in the Waynesville, NC watershed (United States)

    Kristina Connor; Jim Chamberlain III; Hilliard Gibbs Jr.; Matt Winn


    The potential of forest farming was noted as far back as 1929, but the recognition of its importance dates back only 20 to 30 years. The U.S. market for harvested foods and medicinal plants from forests now exceeds $4 billion annually. Ramps (Allium tricoccum Aiton), or wild leeks, grow in patches in the rich moist forests of the eastern United...

  9. The role of forest humus in watershed management in New England (United States)

    G. R., Jr. Trimble; Howard W. Lull


    Forest humus is one of the most interesting components of the forest environment. Its surface serves as a depository for leaf fall and needle fall, with successive depths marking stages of transmutation from the freshly fallen to the decomposed. And humus is responsive: humus type and depth are indicators of forest treatment and, to some extent, of site quality....

  10. Critical zone structure controls concentration-discharge relationships and solute generation in forested tropical montane watersheds (United States)

    Wymore, Adam S.; Brereton, Richard L.; Ibarra, Daniel E.; Maher, Kate; McDowell, William H.


    Concentration-discharge (C-Q) relationships are poorly known for tropical watersheds, even though the tropics contribute a disproportionate amount of solutes to the global ocean. The Luquillo Mountains in Puerto Rico offer an ideal environment to examine C-Q relationships across a heterogeneous tropical landscape. We use 10-30 years of weekly stream chemistry data across 10 watersheds to examine C-Q relationships for weathering products (SiO2(aq), Ca2+, Mg2+, and Na+) and biologically controlled solutes (dissolved organic carbon [DOC], dissolved organic nitrogen [DON], NH4+, NO3-, PO43-, K+, and SO42-). We analyze C-Q relationships using power law equations and a solute production model and use principal component analysis to test hypotheses regarding how the structure of the critical zone controls solute generation. Volcaniclastic watersheds had higher concentrations of weathering solutes and smaller tributaries were approximately threefold more efficient at generating these solutes than larger rivers. Lithology and vegetation explained a significant amount of variation in the theoretical maximum concentrations of weathering solutes (r2 = 0.43-0.48) and in the C-Q relationships of PO43- (r2 = 0.63) and SiO2(aq) (r2 = 0.47). However, the direction and magnitude of these relationships varied. Across watersheds, various forms of N and P displayed variable C-Q relationships, while DOC was consistently enriched with increasing discharge. Results suggest that PO43- may be a useful indicator of watershed function. Relationships between C-Q and landscape characteristics indicate the extent to which the structure and function of the Critical zone controls watershed solute fluxes.

  11. Channel bed particle size distribution procedure used to evaluate watershed cumulative effects for range permit re-issuance on the Santa Fe National Forest (United States)

    Bruce Sims; Jim Piatt; Lee Johnson; Carol Purchase; John Phillips


    Personnel on the Santa Fe National Forest used methodologies adapted from Bevenger and King (1995) to collect base line particle size data on streams within grazing allotments currently scheduled for permit reissuance. This information was used to determine the relative current health of the watersheds as well as being used in the development of potential alternatives...

  12. Effects of DEM source and resolution on WEPP hydrologic and erosion simulation: A case study of two forest watersheds in northern Idaho (United States)

    J. X. Zhang; J. Q. Wu; K. Chang; W. J. Elliot; S. Dun


    The recent modification of the Water Erosion Prediction Project (WEPP) model has improved its applicability to hydrology and erosion modeling in forest watersheds. To generate reliable topographic and hydrologic inputs for the WEPP model, carefully selecting digital elevation models (DEMs) with appropriate resolution and accuracy is essential because topography is a...

  13. Collaborative Research and Watershed Management for Optimization of Forest Road Best Management Practices (United States)

    Mark S. Riedel; James M. Vose


    The Coweeta Hydrologic Laboratory, USFS Southern Research Station, worked with state and local agencies and various organizations to provide guidance and tools to reduce sedimentation and facilitate restoration of the 1900km2 Conasauga River watershed in northern Georgia and southern Tennessee. The Conasauga River has the most diverse aquatic...

  14. Forest resources of the Monocacy River watershed of Maryland and Pennsylvania (United States)

    James C. Rettie; George E. Doverspike; Wayne G. Banks


    The Monocacy River Watershed Council, organized in November 1949 with broad representation of the various local interest and civic organizations, is in process of developing a program of conservation for the water and land resources of that area. One of the major objectives is to regulate the streamflow and reduce the silt load of the Monocacy River and its tributaries...

  15. Seasonal rainfall-runoff relationships in a lowland forested watershed in the southeastern USA (United States)

    Ileana La Torre Torres; Devendra Amatya; Ge Sun; Timothy Callahan


    Hydrological processes of lowland watersheds of the southern USA are not well understood compared to a hilly landscape due to their unique topography, soil compositions, and climate. This study describes the seasonal relationships between rainfall patterns and runoff (sum of storm flow and base flow) using 13 years (1964–1976) of rainfall and stream flow data for a low...

  16. Effect of Sulfometuron Methyl on Ground Water and Stream Quality in Coastal Plain Forest Watersheds (United States)

    D.G. Neary; J.L. Michael


    Sulfometuron methyl [methyl 2-[[[[(4,6-dimethyl-2-pyrimidinyl)a-mino]carbonyl]amino]sulfonyl]benzoate] was applied by a ground sprayer at a maximum labeled rate of 0.42 kg ha-1 a.i. to a 4 ha Coastal Plain flatwoods watershed BS site preperation for tree planting. Herbicide residues were detected in streamflow for only seven days after...

  17. Predicting the impact of land management decisions on overland flow generation: Implications for cesium migration in forested Fukushima watersheds (United States)

    Siirila-Woodburn, Erica R.; Steefel, Carl I.; Williams, Kenneth H.; Birkholzer, Jens T.


    The effects of land use and land cover (LULC) change on environmental systems across the land surface's "critical zone" are highly uncertain, often making prediction and risk management decision difficult. In a series of numerical experiments with an integrated hydrologic model, overland flow generation is quantified for both present day and forest thinning scenarios. A typhoon storm event in a watershed near the Fukushima Dai-ichi Nuclear Power Plant is used as an example application in which the interplay between LULC change and overland flow generation is important given that sediment-bound radionuclides may cause secondary contamination via surface water transport. Results illustrate the nonlinearity of the integrated system spanning from the deep groundwater to the atmosphere, and provide quantitative tools when determining the tradeoffs of different risk-mitigation strategies.

  18. Forest nutrient and carbon pools at Walker Branch watershed: changes during a 21-year period (United States)

    Carl C. Trettin; D.W. Johnson; D.E. Todd


    A 21-yr perspective on changes in nutrient and C pools on undisturbed upland forest sites is provided. Plots originally representing four cover types have been sampled three times. On each plot, forest biomass, forest floor, and soil, to a depth of 60 cm, were measured, sampled, and analyzed for Ca, Mg, C, N, and P. Exchangeable soil Ca and Mg have declined in most...

  19. Impacts of Sedimentation from Oil and Gas Development on Stream Macroinvertebrates in Two Adjacent Watersheds of the Allegheny National Forest of Northwestern Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    Fritz, K.; Harris, S.; Edenborn, H.M.; Sams, J.


    Fritz, Kelley'*, Steven Harris', Harry Edenborn2, and James Sams2. 'Clarion University of Pennsylvania, Clarion, PA 16214, 2National Energy Technology Laboratory, U.S. Dept. Energy, Pittsburgh, PA 15236. Impacts a/Sedimentation/rom Oil and Gas Development on Stream Macroinvertebrates in Two Adjacent Watersheds a/the Allegheny National Forest a/Northwestern Pennsylvania - The Allegheny National Forest (ANF), located in northwestern Pennsy Ivania, is a multiuse forest combining commercial development with recreational and conservation activities. As such, portions of the ANF have been heavily logged and are now the subject of widespread oil and gas development. This rapid increase in oil and gas development has led to concerns about sediment runoff from the dirt and gravel roads associated with development and the potential impact on the aquatic biota of the receiving streams. We examined and compared the benthic macroinvertebrate communities in two adjacent watersheds of similar size and topography in the ANF; the Hedgehog Run watershed has no oil and gas development, while the adjacent Grunder Run watershed has extensive oil and gas development. In Hedgehog and Grunder Run, we collected monthly kicknet samples from riffles and glides at two sites from April to October 2010. At the same intervals, we measured standard water quality parameters, including conductivity and turbidity. Preliminary results have indicated much higher turbidity in Grunder Run, but little difference in the diversity and abundance of benthic macro invertebrates inhabiting the two streams.

  20. Minnesota Watersheds (United States)

    Minnesota Department of Natural Resources — Statewide minor watershed delineations with major/minor watershed identifiers and names for provinces, major watersheds, and basins. Also included are watershed...


    Directory of Open Access Journals (Sweden)

    Nining Wahyuningrum


    Full Text Available Population growth leads to water scarcity in terms of both quality and quantity. Agricultural and urban watersheds potentially produce more pollutantsthan forested area. It is considered that forested area has potential in storing and protecting water supply in such a way that water distribution and quality can be guaranteed. The objective of  the study was to determine the relationship between the percentages of forested area in a watershed with the water quality. Thestudy was conducted in 2010in GrojokanSewu Sub-watershed, Karanganyar District, Central Java. Using GIS (Geographic Information System, this sub-watershedwas divided into four sub-sub-watershedswith different percentages of forested areas. Water samples were collected in each sub-sub-watershedto find out the relationship between the forested area and the total dissolvedsolids, turbidity, sodium, nitrite, nitrate, sulfate and organic matters. The statistical analysis indicates relationships in quadratic form between sodium, nitrite, TDS, sulfate and organic matters with the percentage of  forested area (R2=0.99, R2=0.99, R2=0.98, R2=0.95 and R2=0.77, respectively. The relationships are different from those of turbidity and nitrate that have low R2 (R2=0.28 and R2=0.36 values. It implies that the forested area is capable to reduce sodium, nitrite, TDS, sulfate and organic matters, and thus water pollutants can be reduced by forest formation as it can filter water through retention of sediments and nutrients.

  2. USDA Forest Service watershed analyses: A lesson in interdisciplinary natural resource management (United States)

    Anthony S. DeFalco


    Abstract - Recent thinking in natural resource management has led federal land management agencies such as the U.S. Department of Agriculture's Forest Service (Forest Service) to adopt ecosystem management as its official land management policy. A pivotal aspect of ecosystem management is interdisciplinary analysis of complex land management problems....

  3. Mercury bioaccumulation, speciation, and influence on web structure in orb-weaving spiders from a forested watershed. (United States)

    Wyman, Katherine E; Rodenhouse, Nicholas L; Bank, Michael S


    Atmospheric deposition is an important source of Hg in remote terrestrial ecosystems of northeastern North America. As high-level invertebrate consumers, orb-weaving spiders (family Araneidae) are excellent subjects for studying the impact of sublethal levels of Hg on forest animals because their webs provide snapshots of behavior and neurological function. Spiders of the diadematus group of the genus Araneus were collected from the Jeffers Brook watershed in the White Mountain National Forest, New Hampshire (USA), and analyzed for Hg content. Webs were photographed and measured to test for correlations between Hg body burden and web structure. Collected spiders contained concentrations of total Hg averaging 44.7 ± 10.0 ng/g Hg (wet mass; mean ± standard deviation), with 37 ± 6% of the total Hg present in the methylmercury form. Mercury loads were likely accumulated through diet (potential prey items contained an average of 43% of the Hg load in collected spiders) and possibly web ingestion. The present study found no direct evidence that the web structure-and thus the prey-capture ability-of spiders in the study area was affected by their Hg body burden. Copyright © 2011 SETAC.

  4. Comparison of forest aboveground biomass estimates from passive and active remote sensing sensors over Kayar Khola watershed, Chitwan district, Nepal (United States)

    Qazi, Waqas A.; Baig, Shahbaz; Gilani, Hammad; Waqar, Mirza Muhammad; Dhakal, Ashwin; Ammar, Ahmad


    We use passive optical high-resolution GeoEye-1 imagery and active synthetic aperture radar (SAR) Advanced Land Observing Satellite (ALOS-1) phased array type L-band synthetic aperture radar (PALSAR) L-band horizontal-horizontal-polarization imagery to estimate forest aboveground biomass (AGB) of the tropical mountainous forest test site in Kayar Khola watershed, Chitwan district, Nepal. Object-based tools were used to delineate tree crowns from the orthorectified pan-sharpened GeoEye-1 optical imagery. AGB modeling with crown projection area extracted from the optical imagery shows a good linear relationship with R2=0.76. The terrain-corrected, radiometrically calibrated, and speckle-filtered ALOS-1 PALSAR backscatter image was utilized for AGB modeling; the nonlinear modeling of AGB with the SAR backscatter (dB) shows R2=0.52. The validation R2 values for AGB estimates from GeoEye-1 and ALOS-1 PALSAR are 0.83 and 0.44, respectively. The direct comparison of AGB estimates from both sensors is made possible by the utilization of the same set of ground survey points for both training and validation of the statistical models for both datasets. The final AGB output maps from both sensors show that the spatial patterns of AGB are in reasonable agreement at lower elevation, while SAR seems to underestimate AGB values as compared with optical-based estimates in the higher elevation zones.

  5. Case Study Report: REDD+ Pilot Project in Community Forests in Three Watersheds of Nepal

    Directory of Open Access Journals (Sweden)

    Shanti Shrestha


    Full Text Available Reducing emissions from deforestation and forest degradation (REDD+ is an international climate policy instrument that is expected to tap into the large mitigation potential for conservation and better management of the world’s forests through financial flows from developed to developing countries. This paper describes the results and lessons learned from a pioneering REDD+ pilot project in Nepal, which is based on a community forest management approach and which was implemented from 2009–2013 with support from NORAD’s Climate and Forest Initiative. The major focus of the project was to develop and demonstrate an innovative benefit-sharing mechanism for REDD+ incentives, as well as institutionally and socially inclusive approaches to local forest governance. The paper illustrates how community-based monitoring, reporting, and verification (MRV and performance-based payments for forest management can be implemented. The lessons on REDD+ benefit sharing from this demonstration project could provide insights to other countries which are starting to engage in REDD+, in particular in South Asia.

  6. Water, Energy and Carbon Balance Research: Recovery Trajectories For Oil Sands Reclamation and Disturbed Watersheds in the Western Boreal Forest (United States)

    Petrone, R. M.; Carey, S. K.


    The Oil Sand Region (OSR) of North-Central Alberta exists within the sub-humid Boreal Plains (BP) ecozone, with a slight long-term moisture deficit regime. Despite this deficit, the BP is comprised of productive wetland and mixed wood (aspen and conifer dominated) forests. Reclamation activities are now underway at a large number of surface mining operations in the OSR, where target ecosystems are identified, soil prescriptions placed and commercial forest species planted. Some watersheds have been created that now contain wetlands. However, recent work in the BP suggests that over time wetlands supply moisture for the productivity of upland forests. Thus, water use of reclaimed forests is going to be critical in determining the sustainability of these systems and adjacent wetlands, and whether in time, either will achieve some form of equivalent capability that will allow for certification by regulators. A critical component in the success of any reclamation is that sufficient water is available to support target ecosystems through the course of natural climate cycles in the region. Water Use Efficiency (WUE), which links photosynthesis (GEP) with water use (Evapotranspiration (ET)), provides a useful metric to compare ecosystems and evaluate their utilization of resources. In this study, 41 site years of total growing season water and carbon flux data over 8 sites (4 reclamation, 4 regeneration) were evaluated using eddy covariance micrometeorological towers. WUE shows clear discrimination among ecosystem types as aspen stands assimilate more carbon per unit weight of water than conifers. WUEs also change with time as ecosystems become more effective at transpiring water through plant pathways compared with bare-soil evaporation, which allows an assessment of ability to limit water loss without carbon uptake. In addition, clonal rooting systems allow aspen forests to recover quicker after disturbance than reclamation sites in terms of their WUE. For reclamation

  7. Exploring the Non-Stationary Effects of Forests and Developed Land within Watersheds on Biological Indicators of Streams Using Geographically-Weighted Regression

    Directory of Open Access Journals (Sweden)

    Kyoung-Jin An


    Full Text Available This study examined the non-stationary relationship between the ecological condition of streams and the proportions of forest and developed land in watersheds using geographically-weighted regression (GWR. Most previous studies have adopted the ordinary least squares (OLS method, which assumes stationarity of the relationship between land use and biological indicators. However, these conventional OLS models cannot provide any insight into local variations in the land use effects within watersheds. Here, we compared the performance of the OLS and GWR statistical models applied to benthic diatom, macroinvertebrate, and fish communities in sub-watershed management areas. We extracted land use datasets from the Ministry of Environment LULC map and data on biological indicators in Nakdong river systems from the National Aquatic Ecological Monitoring Program in Korea. We found that the GWR model had superior performance compared with the OLS model, as assessed based on R2, Akaike’s Information Criterion, and Moran’s I values. Furthermore, GWR models revealed specific localized effects of land use on biological indicators, which we investigated further. The results of this study can be used to inform more effective policies on watershed management and to enhance ecological integrity by prioritizing sub-watershed management areas

  8. Estimation of different source contributions to sediment organic matter in an agricultural-forested watershed using end member mixing analyses based on stable isotope ratios and fluorescence spectroscopy. (United States)

    Derrien, Morgane; Kim, Min-Seob; Ock, Giyoung; Hong, Seongjin; Cho, Jinwoo; Shin, Kyung-Hoon; Hur, Jin


    The two popular source tracing tools of stable isotope ratios (δ 13 C and δ 15 N) and fluorescence spectroscopy were used to estimate the relative source contributions to sediment organic matter (SeOM) at five different river sites in an agricultural-forested watershed (Soyang Lake watershed), and their capabilities for the source assignment were compared. Bulk sediments were used for the stable isotopes, while alkaline extractable organic matter (AEOM) from sediments was used to obtain fluorescent indices for SeOM. Several source discrimination indices were fully compiled for a range of the SeOM sources distributed in the catchments of the watershed, which included soils, forest leaves, crop (C3 and C4) and riparian plants, periphyton, and organic fertilizers. The relative source contributions to the river sediment samples were estimated via end member mixing analysis (EMMA) based on several selected discrimination indices. The EMMA based on the isotopes demonstrated that all sediments were characterized by a medium to a high contribution of periphyton ranging from ~30% to 70% except for one site heavily affected by forest and agricultural fields with relatively high contributions of terrestrial materials. The EMMA based on fluorescence parameters, however, did not show similar results with low contributions from forest leaf and periphyton. The characteristics of the studied watershed were more consistent with the source contributions determined by the isotope ratios. The discrepancy in the EMMA capability for source assignments between the two analytical tools can be explained by the limited analytical window of fluorescence spectroscopy for non-fluorescent dissolved organic matter (FDOM) and the inability of AEOM to represent original bulk particulate organic matter (POM). Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Development of a GIS interface for WEPP Model application to Great Lakes forested watersheds (United States)

    J. R. Frankenberger; S. Dun; D. C. Flanagan; J. Q. Wu; W. J. Elliot


    This presentation will highlight efforts on development of a new online WEPP GIS interface, targeted toward application in forested regions bordering the Great Lakes. The key components and algorithms of the online GIS system will be outlined. The general procedures used to provide input to the WEPP model and to display model output will be demonstrated.

  10. 77 FR 55796 - Sand Lick Fork Watershed Restoration Project; Daniel Boone National Forest, KY (United States)


    ... to stay open, the greater the pollution they will cause. Goal 3 of the 2004 Forest Plan provides, in... roads, has created areas of exposed soil and rutting, resulting in sedimentation of the streams and..., loosening of compacted soils, placement of woody debris from surrounding woodland, and planting with native...

  11. Management and climate change in coastal Oregon forests: The Panther Creek Watershed as a case study (United States)

    The highly productive forests of the Oregon Coast Range Mountains have been intensively harvested for many decades, and recent interest has emerged in the potential for removing harvest residue as a source of renewable woody biomass energy. However, the long-term consequences of ...

  12. Spatial and Temporal Trends in the Carbon, Nitrogen, and Sulfur Isotopes of Stream DOM From 10 Watersheds at the HJ Andrews Experimental Forest. (United States)

    Frentress, J.; Kendall, C.; Lajtha, K.; Jones, J.


    In order to better understand sources of dissolved organic matter (DOM) in streams from the small to large watershed scales, we initiated a one-year investigation of the chemical and isotopic characteristics of DOM at the HJ Andrews Experimental Forest (HJA) in Blue River, OR. DOM is a biologically significant loss from these watersheds, but its sources (forest floor, mineral soil, riparian zones, stream biota) are debated. Traditional chemical characterizations of DOM like SUVA and FI have been useful in conceptualizing and modeling streamflow sources, however, an improved method for assessing DOM quality is needed to adequately differentiate DOM from sources within the watershed. The isotopic characterization of inorganic molecules like nitrate has provided insight to the role of subsurface and surface processes governing the production and transport of critical nutrients, and yet to date, little work has been done to examine the usefulness of isotopic characterization of organically bound nutrients. We apply the isotopic characterization approach to DOM in order to better understand DOM production, transformation, and transport to streams in a range of watershed sizes. Major questions addressed in this research are: 1) Where in the watershed does stream DOM come from? 2) How do DOM sources vary temporally? 3) How do physical attributes of the watershed mediate DOM quality? A relatively new solid-phase extraction technique using C-18 resin was used to isolate DOM in water samples from 10 watersheds, ranging in size from 10 to 6200 hectares, on 3-week intervals from May 2007 to June 2008. The modified technique allowed for small (1 Liter) sample sizes and short processing times to reduce the costs of analysis. The capacity of carbon, nitrogen and sulfur isotopic characterizations of DOM, as well as traditional methods like SUVA and C:N, to predict physical watershed attributes (i.e. mean residence time, soil depth, elevation, gradient) and land use history (timber

  13. Integrating landscape and hydrologic simulation models to assess the influence of fire-suppression on water yield from forested Rocky Mountain watersheds (United States)

    Ahl, R. S.; Woods, S.; Diluzio, M.


    Most of the water supply for semi-arid western North America originates as snow that is deposited and temporarily stored in forested, high elevation watersheds. Snow accumulation in these watersheds varies with climate, elevation, topography and forest vegetation characteristics. Canopy structure is an especially important vegetation characteristic because of its effect on the interception component of the water budget and the wind speed and solar radiation flux at the snow surface. Canopy structure is a function of forest composition, structure and extent, all of which are shaped by disturbance processes such as fire, insect and disease outbreaks, and human-induced changes. Changes in the frequency and magnitude of these disturbance processes such as those that have occurred due to fire suppression lead to changes in forest structure, and this may result in long term reductions in water yield from forested watersheds. We have developed a methodology for linking, spatially explicit, time-series, landcover and hydrologic analysis at the watershed scale, with the goal of quantifying changes in long term water yield due to fire suppression and other management scenarios. Output from the SIMPPLLE (Simulating Patterns and Processes at Landscape Scales) vegetation simulation model is classified and processed to provide input to the SWAT (Soil and Water Assessment Tool) hydrologic model. SIMPPLLE integrates various data sources to simulate vegetation growth and disturbance pathways for forested environments in the Rocky Mountains. We used SIMPPLLE to simulate landcover change 300 years forward from current conditions for 1) fire suppression and 2) natural succession management scenarios. Grid-based maps were produced for each scenario at decadal intervals and used as input for SWAT. SWAT was calibrated using current landcover data and five years of daily streamflow records, and a Nash-Sutcliffe model efficiency of 0.90 was achieved. The calibrated SWAT model was then used

  14. [Leaf litter decomposition in six Cloud Forest streams of the upper La Antigua watershed, Veracruz, Mexico]. (United States)

    Astudillo, Manuel R; Ramírez, Alonso; Novelo-Gutiérrez, Rodolfo; Vázquez, Gabriela


    Leaf litter decomposition is an important stream ecosystem process. To understand factors controlling leaf decomposition in cloud forest in Mexico, we incubated leaf packs in different streams along a land use cover gradient for 35 days during the dry and wet seasons. We assessed relations between leaf decomposition rates (k), stream physicochemistry, and macroinvertebrates colonizing leaf packs. Physicochemical parameters showed a clear seasonal difference at all study streams. Leaves were colonized by collector-gatherer insects, followed by shredders. Assessment of factors related to k indicated that only forest cover was negatively related to leaf decomposition rates. Thus stream physicochemistry and seasonality had no impact on decomposition rates. We concluded that leaf litter decomposition at our study streams is a stable process over the year. However, it is possible that this stability is the result of factors regulating decomposition during the different seasons and streams.

  15. Ecological recovery of affected areas by a forest fire in the Tintales watershed (Boyacá, Colombia

    Directory of Open Access Journals (Sweden)

    Fernando Fernández-Méndez


    Full Text Available The tintales watershed, located in the Santuario de Flora y Fauna (SFF of Iguaque, Boyaca, was affected by a wildfire. In that area, the natural regeneration was evaluated in 29 permanent plots. Two phyto-physiognomies, a rocky outcrop and oak were evaluated to compare their richness, diversity and dominance, with rocky outcrop yielding a greater richness and diversity. The Asteraceae family was the one that obtained greater representation, with a dominance of species such as Hypoxis decumbens, Pterídium aquilinum and Andropogon bicornis. The diversity in the whole sampling was low and uniform due to the repeated incidence of forest fires that have caused changes in the structure and composition of vegetation. The vegetation found did not differ substantially from other studies reported for this life zone and the region, where the dynamics of land use are similar, with high deforestation and fires. The vegetation established after the fire is dominated by colonizing and pioneering species. In the two phyto physiognomies studied after a year of the fire, two plant communities with statistically significant differences in wealth and homogeneity could be stablished. To start the restoration process, it is recommended to use as one of the inputs, the taxonomic differences found between oak  and rocky outcrop.

  16. Water Quality of a Tropical Montane Cloud Forest Watershed, Monteverde, Costa Rica (United States)

    Rhodes, A. L.; Guswa, A. J.; Dallas, S.; Kim, E. M.; Katchpole, S.; Newell, S. E.; Pufall, A.


    The Rio Guacimal originates in the Monteverde Cloud Forest Preserve, located on the leeward side of the continental divide through Costa Rica. Agriculture and ecotourism has spurred growth adjacent to the preserve. Continued development coupled with changes in precipitation patterns could stress the quality and quantity of water. This study characterizes water chemistry and surface water hydrology of a 21 km2 headwater catchment to evaluate effects of current and projected land use on water quality. Stream samples have been collected from up to 11 sites since March 2000. Two sites located on tributaries in remote, forested areas serve as references for sites located downstream of agricultural and residential areas. Waters were analyzed for specific conductance, pH, DO, acid neutralizing capacity (ANC), Ca, Mg, Na, NH4, SO4, NO3, Cl, PO4 and dissolved silica. In the upland, forested streams, chemical loading is dominated by mineral weathering and cation exchange reactions. Silica, ANC and base cation concentrations all exceed sum of acid anions. During the dry season, concentrations of all dissolved constituents increase synchronously, but at different magnitudes (SO4 and Cl by 15 μ eq/L; silica by 250 μ mol/L; sum of base cations and ANC by 120 μ eq/L), suggesting that increased baseflow has a greater effect on temporal changes of chemical loads in high-elevation, forested streams than does evapotranspiration. Chemical loads of streams receiving runoff from populated areas are 2-5x more concentrated than the upland sites. Highest concentrations occur in Queb. Sucia (QS), which receives grey-water runoff from residential areas. Acidic runoff decreases the ANC of QS by 90-200 μ eq/L; however high alkalinity (ANC=400-1000 μ eq/L) prevents acidification. Acid anions in streams receiving grey-water runoff throughout the year are most concentrated during the dry season when dilution from precipitation is least. Conversely, a site that receives nonpoint source

  17. Effects on watershed hydrology after rain forest conversion to shifting cultivation and agroforestry in Sabah, Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Fagerberg, Nils


    A paired catchment study was conducted in Mendolong, Sabah, Malaysia, to monitor the hydrological effects from conversion of secondary rain forest to shifting cultivation and agroforestry land-uses. Four different treatments were investigated: (1.) Agroforestry with initial burning and planting of fast-growing trees (Acacia mangium) and one rotation of hill rice, (2.) Agroforestry treatment as in no. 1, but without burning, (3.) Shifting cultivation with burning and one rotation of hill rice and (4.) No burning and one rotation of hill rice. A fifth catchment was used as untreated control. Waterflow was continuously measured in the streams during 41 months, between May 1994 to November 1997. 11 months were used as a calibration period before clear-felling and treatments. The data were used to determine water budgets (precipitation, runoff and evapotranspiration), runoff increases after clear-felling and changes in streamflow regimes. Regression analyses on runoff from each catchment versus the control catchment during the calibration period were used to determine the increase in runoff after clear-felling. Some unexpected losses and gains of water across the borders of the divided catchments were detected in three of the five catchments. The estimated transferred water volumes under forest cover range between 10 % and 22 % of total runoff. After clear-felling the losses and gains of water across the borders increased. The water transfer did mainly occur as sub-surface flow, probably in more permeable parts in the lower soil profile like cracks in the bedrock. Generally, the risk of deep leakage seams to increase with distance from the ridge. Hydrological effects could still be calculated through amalgamation of two of the catchments, and since the third catchment had a stable level of water gain due to unchanged conditions in the surrounding catchments. The mean areal rainfall during the period was higher than earlier measurements in the area, 4061 mm. The mean

  18. Mass-balance modeling of mineral weathering rates and CO2 consumption in the forested, metabasaltic Hauver Branch watershed, Catoctin Mountain, Maryland, USA (United States)

    Rice, Karen; Price, Jason R.; Szymanski, David W.


    Mineral weathering rates and a forest macronutrient uptake stoichiometry were determined for the forested, metabasaltic Hauver Branch watershed in north-central Maryland, USA. Previous studies of Hauver Branch have had an insufficient number of analytes to permit determination of rates of all the minerals involved in chemical weathering, including biomass. More equations in the mass-balance matrix were added using existing mineralogic information. The stoichiometry of a deciduous biomass term was determined using multi-year weekly to biweekly stream-water chemistry for a nearby watershed, which drains relatively unreactive quartzite bedrock.At Hauver Branch, calcite hosts ~38 mol% of the calcium ion (Ca2+) contained in weathering minerals, but its weathering provides ~90% of the stream water Ca2+. This occurs in a landscape with a regolith residence time of more than several Ka (kiloannum). Previous studies indicate that such old regolith does not typically contain dissolving calcite that affects stream Ca2+/Na+ ratios. The relatively high calcite dissolution rate likely reflects dissolution of calcite in fractures of the deep critical zone.Of the carbon dioxide (CO2) consumed by mineral weathering, calcite is responsible for approximately 27%, with the silicate weathering consumption rate far exceeding that of the global average. The chemical weathering of mafic terrains in decaying orogens thus may be capable of influencing global geochemical cycles, and therefore, climate, on geological timescales. Based on carbon-balance calculations, atmospheric-derived sulfuric acid is responsible for approximately 22% of the mineral weathering occurring in the watershed. Our results suggest that rising air temperatures, driven by global warming and resulting in higher precipitation, will cause the rate of chemical weathering in the Hauver Branch watershed to increase until a threshold temperature is reached. Beyond the threshold temperature, increased recharge would

  19. Runoff response for a peri-urban watershed in the Atlantic Forest Biome, southern Brazil, using the Kineros2 model (United States)

    Beling, F. A.; Dias de Paiva, J.; Cauduro Dias de Paiva, E. M.; Heatwole, C.


    Simulating the hydrologic response of a watershed for different scenarios is an important tool for assessing the rational use of the land and natural resources, especially in environments where urbanization is not ever an organized procedure. This study used the Kineros2 event oriented hydrological model to simulate the runoff response of a 4.9 km2 peri-urban basin located in the Atlantic Forest biome in Southern Brazil, with 47% of the area being impermeable. The goal of the simulations was to estimate the characteristic parameters of the soils and land cover of the watershed to then enable the prediction of basin response for different land uses. To acheive this objective, the responses of ten measured rainfall-runoff events were used to calibrate five parameters of the model. The PEST (Model-Independent Parameter Estimation and Uncertainty Analysis) package was used for automatic calibration of the model parameters. The quality of results is shown in Nash-Sutcliffe efficiency index values varying from 0.64 up to 0.98, with an average value of 0.88. The average absolute error in the simulated peak flow was 4.5% and 20.7% in the simulated runoff volume. A cross-validation using the same events used in the calibration and using average values of the calibrated parameters. gave Nash-Sutcliffe index values varying from 0.26 up to 0.92, with an average value of 0.73. The average absolute error in the simulated peak flow and runoff volume were 22.7% and 25.6%, respectively. We used two validated events to simulate distinct scenarios, being representative of a wet and of dry antecedent moisture conditions. For a scenario of a totally forested land cover, the simulated peak flow and runoff volume for a dry condition changed -53% and -46% respectively, and for a wet condition, -63% and -41% respectively, relatively to the present land use. For a complete pasture land use, the simulated peak flow and runoff volume for a dry condition changed -31% and -27% respectively and

  20. Processes controlling silicon isotopic fractionation in a forested tropical watershed: Mule Hole Critical Zone Observatory (Southern India) (United States)

    Riotte, Jean; Meunier, Jean-Dominique; Zambardi, Thomas; Audry, Stéphane; Barboni, Doris; Anupama, Krishnamurthy; Prasad, Srinivasan; Chmeleff, Jérôme; Poitrasson, Franck; Sekhar, Muddu; Braun, Jean-Jacques


    Assessing the dynamics of the silica cycle in the critical zone remains challenging, particularly within the soil, where multiple processes are involved. To improve our understanding of this cycle in the Tropics, and more specifically the role played by vegetation, we combined elemental Si mass balance with the δ30Si signatures of the compartments involved in the water-plant-rock interactions of a tropical forested watershed, Mule Hole (Southern India). To accomplish this, we analysed (1) the δ30Si values of present-day litter phytoliths from tree leaves and grass, as well as soil amorphous silica (ASi); (2) the Si isotope fractionation induced by phytolith dissolution; (3) the silicon mass balance inferred from isotopes at the soil-plant scale; and (4) the consistency between water sources and the δ30Si signatures in the ephemeral stream. The δ30Si values of present-day litter phytoliths and soil ASi vary within a narrow range of 1.10-1.40‰ for all samples, but two deep vertisol samples which likely trapped phytoliths from different vegetation growing under more humid conditions, as indicated by pollen analysis. A homogeneous signature of litter is a minimum condition for using δ30Si as a proxy for the litter/phytolith source of Si. However, litter-ash dissolution experiments demonstrate that the incipient dissolution of phytoliths fractionates Si isotopes, with the preferential dissolution of 28Si over 30Si yielding δ30Si values as low as -1.41‰. Values close to the whole-sample signatures, i.e., above 1‰, were recovered in the solution after a few hours of water-ash interaction. At the soil-plant scale, the average δ30Si value of soil-infiltrating solutions is slightly lighter than the average phytolith signature, which suggests phytoliths as the source of soil dissolved Si. The isotopic budget of dissolved Si within the soil layer, which was obtained based on previous elemental fluxes, is imbalanced. Equilibrating the isotopic budget would imply

  1. A framework model for investigating the export of phosphorus to surface waters in forested watersheds: Implications to management. (United States)

    Santos, R M B; Sanches Fernandes, L F; Pereira, M G; Cortes, R M V; Pacheco, F A L


    The present study was developed in four sub-basins of rivers Cávado and Douro, located in the North of mainland Portugal. The goal was to identify main stressors as well as driving and attenuating processes responsible for the presence of phosphorus in masses of surface water in those catchments. To accomplish the goal, the basins were selected where a quality station was present at the outlet, the forest occupation was greater than 75% and the phosphorus concentrations have repeatedly exceeded the threshold for the good ecological status in the period 2000-2006. Further, in two basins the quality station was installed in a lotic (free-flow water) environment whereas in the other two was placed in a lentic (dammed water) environment. The ArcMap GIS-based software package was used for the spatial analysis of stressors and processes. The yields of phosphorus vary widely across the studied basins, from 0.2-30 kg·ha(-1)·yr(-1). The results point to post-fire soil erosion and hardwood clear cuttings as leading factors of phosphorus exports across the watersheds, with precipitation intensity being the key variable of erosion. However, yields can be attenuated by sediment deposition along the pathway from burned or managed areas to water masses. The observed high yields and concentrations of phosphorus in surface water encompass serious implications for water resources management in the basins, amplified in the lentic cases by potential release of phosphorus from lake sediments especially during the summer season. Therefore, a number of measures were proposed as regards wildfire combat, reduction of phosphorus exports after tree cuts, attenuation of soil erosion and improvement of riparian buffers, all with the purpose of preventing phosphorus concentrations to go beyond the regulatory good ecological status. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Simulated water budget of a small forested watershed in the continental/maritime hydroclimatic region of the United States (United States)

    Liang Wei; Timothy E. Link; Andrew T. Hudak; John D. Marshall; Kathleen L. Kavanagh; John T. Abatzoglou; Hang Zhou; Robert E. Pangle; Gerald N. Flerchinger


    Annual streamflows have decreased across mountain watersheds in the Pacific Northwest of the United States over the last ~70 years; however, in some watersheds, observed annual flows have increased. Physically based models are useful tools to reveal the combined effects of climate and vegetation on long-term water balances by explicitly simulating the internal...

  3. Physical, chemical, and biological impacts of intensive forest management on streams draining watersheds in the coastal plain of Alabama (United States)

    J.L. Michael; S.S. Ruiz-Cordova


    Five watersheds drained by first-order streams and containing timber that was 80+ years old were selected to study the impacts of clearcutting and planting site preparation on water quality in the presence and absence of streamside management zones (SMZs). One watershed was maintained as a reference with no treatment while the remaining 4 were clear cut harvested. Two...

  4. Use of ESI-FTICR-MS to Characterize Dissolved Organic Matter in Headwater Streams Draining Forest-Dominated and Pasture-Dominated Watersheds.

    Directory of Open Access Journals (Sweden)

    YueHan Lu

    Full Text Available Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS has proven to be a powerful technique revealing complexity and diversity of natural DOM molecules, but its application to DOM analysis in grazing-impacted agricultural systems remains scarce. In the present study, we presented a case study of using ESI-FTICR-MS in analyzing DOM from four headwater streams draining forest- or pasture-dominated watersheds in Virginia, USA. In all samples, most formulas were CHO compounds (71.8-87.9%, with other molecular series (CHOS, CHON, CHONS, and CHOP (N, S accounting for only minor fractions. All samples were dominated by molecules falling in the lignin-like region (H/C = 0.7-1.5, O/C = 0.1-0.67, suggesting the predominance of allochthonous, terrestrial plant-derived DOM. Relative to the two pasture streams, DOM formulas in the two forest streams were more similar, based on Jaccard similarity coefficients and nonmetric multidimensional scaling calculated from Bray-Curtis distance. Formulas from the pasture streams were characterized by lower proportions of aromatic formulas and lower unsaturation, suggesting that the allochthonous versus autochthonous contributions of organic matter to streams were modified by pasture land use. The number of condensed aromatic structures (CAS was higher for the forest streams, which is possibly due to the controlled burning in the forest-dominated watersheds and suggests that black carbon was mobilized from soils to streams. During 15-day biodegradation experiments, DOM from the two pasture streams was altered to a greater extent than DOM from the forest streams, with formulas with H/C and O/C ranges similar to protein (H/C = 1.5-2.2, O/C = 0.3-0.67, lipid (H/C = 1.5-2.0, O/C = 0-0.3, and unsaturated hydrocarbon (H/C = 0.7-1.5, O/C = 0-0.1 being the most bioreactive groups. Aromatic compound formulas including CAS were preferentially removed during combined light

  5. EnviroAtlas - Number of Water Markets per HUC8 Watershed, U.S., 2015, Forest Trends' Ecosystem Marketplace (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset contains polygons depicting the number of watershed-level market-based programs, referred to herein as markets, in operation per 8-digit HUC...

  6. Estimation of watershed-level distributed forest structure metrics relevant to hydrologic modeling using LiDAR and Landsat (United States)

    Varhola, Andrés; Coops, Nicholas C.


    SummaryA detailed characterization of vegetation structure is fundamental for physically-based hydrologic models to simulate various processes that determine rates of snow accumulation and ablation, evapotranspiration and water dynamics. However, major efforts focused on developing complex equations to describe hydrologic processes as a function of vegetation structure at the plot level have not been accompanied by corresponding attempts to adequately extrapolate these metrics over the wider landscape in order to parameterize fully-distributed models. Recent advances in remote sensing technologies offer alternatives to overcome these difficulties and therefore improve our capacity to monitor vegetation and hydrologic processes extensively. Airborne Laser Scanning (ALS) stands out as the most promising tool to provide detailed, 3-dimensional representations of vegetation from which a wide array of structural metrics can be estimated. On the other hand, moderate scale optical remote sensing imagery such as Landsat Thematic Mapper (TM) offers the capacity to extrapolate these metrics across the landscape by virtue of its spatial and temporal resolutions. Here we correlate ALS-derived forest cover (FC), tree height (H), leaf area index (LAI) and sky view-factor (SVF) - the four main structural parameters used by hydrologic models - with a suite of spectral indices obtained from six spectral bands of a Landsat 5 TM image. Despite numerous sources of variation that affect the relationships between 2-dimensional spectral indices and three-dimensional structural metrics, models to predict FC, H, LAI and SVF with reasonable accuracy were developed. The extrapolation of these variables across a watershed in British Columbia severely affected by insect disturbance resulted in highly-detailed 30 m spatial resolution maps and frequency distributions consistent with the natural variation ranges of each metric - a major improvement compared to traditional approaches that use

  7. Mechanisms and rates of atmospheric deposition of selected trace elements and sulfate to a deciduous forest watershed. [Roles of dry and wet deposition concentrations measured in Walker Branch Watershed

    Energy Technology Data Exchange (ETDEWEB)

    Lindberg, S.E.; Harriss, R.C.; Turner, R.R.; Shriner, D.S.; Huff, D.D.


    The critical links between anthropogenic emissions to the atmosphere and their effects on ecosystems are the mechanisms and rates of atmospheric deposition. The atmospheric input of several trace elements and sulfate to a deciduous forest canopy is quantified and the major mechanisms of deposition are determined. The study area was Walker Branch Watershed (WBW) in eastern Tennessee. The presence of a significant quantity of fly ash and dispersed soil particles on upward-facing leaf and flat surfaces suggested sedimentation to be a major mechanism of dry deposition to upper canopy elements. The agreement for deposition rates measured to inert, flat surfaces and to leaves was good for Cd, SO/sub 4//sup =/, Zn, and Mn but poor for Pb. The precipitation concentrations of H/sup +/, Pb, Mn, and SO/sub 4//sup =/ reached maximum values during the summer months. About 90% of the wet deposition of Pb and SO/sub 4//sup =/ was attributed to scavenging by in-cloud processes while for Cd and Mn, removal by in-cloud scavenging accounted for 60 to 70% of the deposition. The interception of incoming rain by the forest canopy resulted in a net increase in the concentrations of Cd, Mn, Pb, Zn, and SO/sub 4//sup =/ but a net decrease in the concentration of H/sup +/. The source of these elements in the forest canopy was primarily dry deposited aerosols for Pb, primarily internal plant leaching for Mn, Cd, and Zn, and an approximately equal combination of the two for SO/sub 4//sup =/. Significant fractions of the total annual elemental flux to the forest floor in a representative chestnut oak stand were attributable to external sources for Pb (99%), Zn (44%), Cd (42%), SO/sub 4//sup =/ (39%), and Mn (14%), the remainder being related to internal element cycling mechanisms. On an annual scale the dry deposition process constituted a significant fraction of the total atmospheric input. (ERB)

  8. Water flow pathway and the organic carbon discharge during rain storm events in a coniferous forested head watershed, Tokyo, central Japan (United States)

    Moriizumi, Mihoko; Terajima, Tomomi


    The current intense discussion of the green house effect, that has been one of the main focuses on the carbon cycle in environmental systems of the earth, seems to be weakened the importance related to the effect of carbonic materials on substance movement in the aquatic environments; though it has just begun to be referred recently. Because dissolved organic carbon (DOC) in stream flows believes to play a main role of the carbon cycle in the fresh water environment, seasonal changes in DOC discharge were investigated in catchments with various scale and land use, especially in forested catchments which are one of the important sources of DOC. In order to understand the fundamental characteristics of the discharge of dissolved organic materials, stream flows, DOC, and fulvic acid like materials (FA) included in stream flows were measured in a coniferous forested head watershed. The watershed is located at the southeast edge of the Kanto mountain and is 40 km west of Tokyo with the elevation from 720 to 820 m and mean slope gradient of 38 degrees. Geology of the watershed is underlain by the sequence of mud and sand stones in Jurassic and the soil in the watershed is Cambisol (Inceptisols). The watershed composes of a dense cypress and cedar forest of 45 years old with poor understory vegetation. Observations were carried out for 6 rain storms of which the total precipitations ranged between 16.2 and 117.4 mm. The magnitude of the storms was classified into small, middle, and big events on the basis of the total precipitation of around 20, 40, and more than 70 mm. Stream flows were collected during the storm events by 1 hour interval and were passed through the 0.45 μm filters, and then the DOC concentrations in the flows were measured with a total organic carbon analyzer. The relative concentrations of fulvic acid (FA) in the flows were monitored with three dimensional excitations emission matrix fluorescence spectroscopy, because fulvic acid shows distinctive

  9. Application of the Water Erosion Prediction Project (WEPP) Model to simulate streamflow in a PNW forest watershed (United States)

    A. Srivastava; M. Dobre; E. Bruner; W. J. Elliot; I. S. Miller; J. Q. Wu


    Assessment of water yields from watersheds into streams and rivers is critical to managing water supply and supporting aquatic life. Surface runoff typically contributes the most to peak discharge of a hydrograph while subsurface flow dominates the falling limb of hydrograph and baseflow contributes to streamflow from shallow unconfined aquifers primarily during the...

  10. Structuring expert input for a knowledge-based approach to watershed condition assessment for the Northwest Forest Plan, USA (United States)

    Sean N. Gordon; Gallo. Kirsten


    Assessments of watershed condition for aquatic and riparian species often have to rely on expert opinion because of the complexity of establishing statistical relationships among the many factors involved. Such expert-based assessments can be difficult to document and apply consistently over time and space. We describe and reflect on the process of developing a...

  11. Modeling watershed-scale137Cs transport in a forested catchment affected by the Fukushima Dai-ichi Nuclear Power Plant accident. (United States)

    Wei, Lezhang; Kinouchi, Tsuyoshi; Yoshimura, Kazuya; Velleux, Mark L


    The Fukushima nuclear accident in 2011 resulted in 137 Cs contamination of large areas in northeast Japan. A watershed-scale 137 Cs transport model was developed and applied to a forested catchment in Fukushima area. This model considers 137 Cs wash-off from vegetation, movement through soils, and transport of dissolved and particulate 137 Cs adsorbed to clay, silt and sand. Comparisons between measurements and simulations demonstrated that the model well reproduced 137 Cs concentrations in the stream fed from the catchment. Simulations estimated that 0.57 TBq of 137 Cs was exported from the catchment between June, 2011 and December, 2014. Transport largely occurred with eroded sediment particles at a ratio of 17:70:13 of clay, silt, and sand. The overall 137 Cs reduction ratio by rainfall-runoff wash-off was about 1.6%. Appreciable 137 Cs remained in the catchment at the end of 2014. The largest rate of 137 Cs reduction by wash-off was simulated to occur in subwatersheds of the upper catchment. However, despite relatively low initial deposition, middle portions of the watershed exported proportionately more 137 Cs by rainfall-runoff processes. Simulations indicated that much of the transported 137 Cs originates from erosion over hillsides and river banks. These results suggested that areas where 137 Cs accumulates with redeposited sediments can be targeted for decontamination and also provided insight into 137 Cs transport at the watershed scale to assess risk management and decontamination planning efforts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Contrasting Response of Forest Watersheds in Glaciated and Unglaciated Regions of the Eastern U.S. to Reductions in Acid Deposition (United States)

    Fakhraei, H.; Driscoll, C. T.


    Atmospheric deposition of anthropogenic sulfur and nitrogen compounds (known as acid deposition) primarily originates from emissions from electric utilities, industrial processes, mobile sources and agricultural activities. Marked decline in emissions of acid compounds in recent decades have resulted in a concomitant decrease in the concentrations and fluxes of sulfate and nitrate in wet and dry acid deposition across the eastern U.S. In the Adirondacks, a glaciated region in northeastern U.S., long-term lake chemistry data indicate a correlation between decadal declines in acidic deposition and recovery of acid impaired lakes. However, in Great Smoky Mountains National Park (GRSM), an unglaciated region in southeastern U.S., stream recovery from elevated acid deposition is highly delayed. In this study, a biogeochemical model, PnET-BGC, was used to relate decreases in atmospheric loads of sulfur and nitrogen to acid-base chemistry of water and soil and predict future response of forest watersheds to reductions in acid deposition. The model was calibrated using long-term surface water chemistry data. Our modeling indicates that in the Adirondacks controlling S deposition is much more effective in recovering acidic lakes than N deposition. In contrast to the watersheds in the Adirondacks which are near steady state with respect to S deposition (sulfate input is approximately equal to the sulfate output), watersheds in the GRSM retain a high proportion of sulfate atmospheric deposition due to the high sulfate adsorption capacity of soils, resulting in a delayed response to decreases in acid deposition. Our model calculations suggest that control on S and N deposition is more effective recovering the acid neutralizing capacity of streams in GRSM than equivalent decreases in S deposition. Therefore a national program to aggressively control both S and N emissions will be most effective to mitigate the effects of acid deposition broadly across the eastern U.S.

  13. Watershed hydrology. Chapter 7. (United States)

    Elons S. Verry; Kenneth N. Brooks; Dale S. Nichols; Dawn R. Ferris; Stephen D. Sebestyen


    Watershed hydrology is determined by the local climate, land use, and pathways of water flow. At the Marcell Experimental Forest (MEF), streamflow is dominated by spring runoff events driven by snowmelt and spring rains common to the strongly continental climate of northern Minnesota. Snowmelt and rainfall in early spring saturate both mineral and organic soils and...

  14. Science You Can Use Bulletin: From watersheds to the web: Online tools for modeling forest soil erosion (United States)

    Sue Miller; Bill Elliot; Pete Robichaud; Randy Foltz; Dennis Flanagan; Erin Brooks


    Forest erosion can lead to topsoil loss, and also to damaging deposits of sediment in aquatic ecosystems. For this reason, forest managers must be able to estimate the erosion potential of both planned management activities and catastrophic events, in order to decide where to use limited funds to focus erosion control efforts. To meet this need, scientists from RMRS (...

  15. Changing forest water yields in response to climate warming: results from long-term experimental watershed sites across North America (United States)

    Irena F. Creed; Adam T. Spargo; Julia A. Jones; Jim M. Buttle; Mary B. Adams; Fred D. Beall; Eric G. Booth; John L. Campbell; Dave Clow; Kelly Elder; Mark B. Green; Nancy B. Grimm; Chelcy Miniat; Patricia Ramlal; Amartya Saha; Stephen Sebestyen; Dave Spittlehouse; Shannon Sterling; Mark W. Williams; Rita Winkler; Huaxia. Yao


    Climate warming is projected to affect forest water yields but the effects are expected to vary.We investigated how forest type and age affect water yield resilience to climate warming. To answer this question, we examined the variability in historical water yields at long-term experimental catchments across Canada and the United States over 5-year cool and warm...

  16. Ecological recovery of affected areas by a forest fire in the Tintales watershed (Boyacá, Colombia)


    Fernando Fernández-Méndez; Verónica María Velasco-Salcedo; Juanita Guerrero-Contecha; Manuel Galvis-Rueda; Andreza Viana Neri


    The tintales watershed, located in the Santuario de Flora y Fauna (SFF) of Iguaque, Boyaca, was affected by a wildfire. In that area, the natural regeneration was evaluated in 29 permanent plots. Two phyto-physiognomies, a rocky outcrop and oak were evaluated to compare their richness, diversity and dominance, with rocky outcrop yielding a greater richness and diversity. The Asteraceae family was the one that obtained greater representation, with a dominance of species such as Hypoxis decumbe...

  17. Forests (United States)

    Louis R. Iverson; Mark W. Schwartz


    Originally diminished by development, forests are coming back: forest biomass is accumulating. Forests are repositories for many threatened species. Even with increased standing timber, however, biodiversity is threatened by increased forest fragmentation and by exotic species.

  18. Historical effects of dissolved organic carbon export and land management decisions on the watershed-scale forest carbon budget of a coastal British Columbia Douglas-fir-dominated landscape

    Directory of Open Access Journals (Sweden)

    B. P. Smiley


    Full Text Available Abstract Background To address how natural disturbance, forest harvest, and deforestation from reservoir creation affect landscape-level carbon (C budgets, a retrospective C budget for the 8500 ha Sooke Lake Watershed (SLW from 1911 to 2012 was developed using historical spatial inventory and disturbance data. To simulate forest C dynamics, data was input into a spatially-explicit version of the Carbon Budget Model-Canadian Forest Sector (CBM-CFS3. Transfers of terrestrial C to inland aquatic environments need to be considered to better capture the watershed scale C balance. Using dissolved organic C (DOC and stream flow measurements from three SLW catchments, DOC load into the reservoir was derived for a 17-year period. C stocks and stock changes between a baseline and two alternative management scenarios were compared to understand the relative impact of successive reservoir expansions and sustained harvest activity over the 100-year period. Results Dissolved organic C flux for the three catchments ranged from 0.017 to 0.057 Mg C ha−1 year−1. Constraining CBM-CFS3 to observed DOC loads required parameterization of humified soil C losses of 2.5, 5.5, and 6.5%. Scaled to the watershed and assuming none of the exported terrestrial DOC was respired to CO2, we hypothesize that over 100 years up to 30,657 Mg C may have been available for sequestration in sediment. By 2012, deforestation due to reservoir creation/expansion resulted in the watershed forest lands sequestering 14 Mg C ha−1 less than without reservoir expansion. Sustained harvest activity had a substantially greater impact, reducing forest C stores by 93 Mg C ha−1 by 2012. However approximately half of the C exported as merchantable wood during logging (~176,000 Mg C may remain in harvested wood products, reducing the cumulative impact of forestry activity from 93 to 71 Mg C ha−1. Conclusions Dissolved organic C flux from temperate forest ecosystems is a

  19. Historical effects of dissolved organic carbon export and land management decisions on the watershed-scale forest carbon budget of a coastal British Columbia Douglas-fir-dominated landscape. (United States)

    Smiley, B P; Trofymow, J A


    To address how natural disturbance, forest harvest, and deforestation from reservoir creation affect landscape-level carbon (C) budgets, a retrospective C budget for the 8500 ha Sooke Lake Watershed (SLW) from 1911 to 2012 was developed using historical spatial inventory and disturbance data. To simulate forest C dynamics, data was input into a spatially-explicit version of the Carbon Budget Model-Canadian Forest Sector (CBM-CFS3). Transfers of terrestrial C to inland aquatic environments need to be considered to better capture the watershed scale C balance. Using dissolved organic C (DOC) and stream flow measurements from three SLW catchments, DOC load into the reservoir was derived for a 17-year period. C stocks and stock changes between a baseline and two alternative management scenarios were compared to understand the relative impact of successive reservoir expansions and sustained harvest activity over the 100-year period. Dissolved organic C flux for the three catchments ranged from 0.017 to 0.057 Mg C ha -1  year -1 . Constraining CBM-CFS3 to observed DOC loads required parameterization of humified soil C losses of 2.5, 5.5, and 6.5%. Scaled to the watershed and assuming none of the exported terrestrial DOC was respired to CO 2 , we hypothesize that over 100 years up to 30,657 Mg C may have been available for sequestration in sediment. By 2012, deforestation due to reservoir creation/expansion resulted in the watershed forest lands sequestering 14 Mg C ha -1 less than without reservoir expansion. Sustained harvest activity had a substantially greater impact, reducing forest C stores by 93 Mg C ha -1 by 2012. However approximately half of the C exported as merchantable wood during logging (~176,000 Mg C) may remain in harvested wood products, reducing the cumulative impact of forestry activity from 93 to 71 Mg C ha -1 . Dissolved organic C flux from temperate forest ecosystems is a small but persistent C flux which may have long term

  20. Water Quality Response to Forest Biomass Utilization (United States)

    Benjamin Rau; Augustine Muwamba; Carl Trettin; Sudhanshu Panda; Devendra Amatya; Ernest Tollner


    Forested watersheds provide approximately 80% of freshwater drinking resources in the United States (Fox et al. 2007). The water originating from forested watersheds is typically of high quality when compared to agricul¬tural watersheds, and concentrations of nitrogen and phosphorus are nine times higher, on average, in agricultur¬al watersheds when compared to...

  1. A Quantitative Assessment of Forest Cover Change in the Moulouya River Watershed (Morocco by the Integration of a Subpixel-Based and Object-Based Analysis of Landsat Data

    Directory of Open Access Journals (Sweden)

    Fernando J. Aguilar


    Full Text Available A quantitative assessment of forest cover change in the Moulouya River watershed (Morocco was carried out by means of an innovative approach from atmospherically corrected reflectance Landsat images corresponding to 1984 (Landsat 5 Thematic Mapper and 2013 (Landsat 8 Operational Land Imager. An object-based image analysis (OBIA was undertaken to classify segmented objects as forested or non-forested within the 2013 Landsat orthomosaic. A Random Forest classifier was applied to a set of training data based on a features vector composed of different types of object features such as vegetation indices, mean spectral values and pixel-based fractional cover derived from probabilistic spectral mixture analysis. The very high spatial resolution image data of Google Earth 2013 were employed to train/validate the Random Forest classifier, ranking the NDVI vegetation index and the corresponding pixel-based percentages of photosynthetic vegetation and bare soil as the most statistically significant object features to extract forested and non-forested areas. Regarding classification accuracy, an overall accuracy of 92.34% was achieved. The previously developed classification scheme was applied to the 1984 Landsat data to extract the forest cover change between 1984 and 2013, showing a slight net increase of 5.3% (ca. 8800 ha in forested areas for the whole region.

  2. Changing forest water yields in response to climate warming: results from long-term experimental watershed sites across North America. (United States)

    Creed, Irena F; Spargo, Adam T; Jones, Julia A; Buttle, Jim M; Adams, Mary B; Beall, Fred D; Booth, Eric G; Campbell, John L; Clow, Dave; Elder, Kelly; Green, Mark B; Grimm, Nancy B; Miniat, Chelcy; Ramlal, Patricia; Saha, Amartya; Sebestyen, Stephen; Spittlehouse, Dave; Sterling, Shannon; Williams, Mark W; Winkler, Rita; Yao, Huaxia


    Climate warming is projected to affect forest water yields but the effects are expected to vary. We investigated how forest type and age affect water yield resilience to climate warming. To answer this question, we examined the variability in historical water yields at long-term experimental catchments across Canada and the United States over 5-year cool and warm periods. Using the theoretical framework of the Budyko curve, we calculated the effects of climate warming on the annual partitioning of precipitation (P) into evapotranspiration (ET) and water yield. Deviation (d) was defined as a catchment's change in actual ET divided by P [AET/P; evaporative index (EI)] coincident with a shift from a cool to a warm period - a positive d indicates an upward shift in EI and smaller than expected water yields, and a negative d indicates a downward shift in EI and larger than expected water yields. Elasticity was defined as the ratio of interannual variation in potential ET divided by P (PET/P; dryness index) to interannual variation in the EI - high elasticity indicates low d despite large range in drying index (i.e., resilient water yields), low elasticity indicates high d despite small range in drying index (i.e., nonresilient water yields). Although the data needed to fully evaluate ecosystems based on these metrics are limited, we were able to identify some characteristics of response among forest types. Alpine sites showed the greatest sensitivity to climate warming with any warming leading to increased water yields. Conifer forests included catchments with lowest elasticity and stable to larger water yields. Deciduous forests included catchments with intermediate elasticity and stable to smaller water yields. Mixed coniferous/deciduous forests included catchments with highest elasticity and stable water yields. Forest type appeared to influence the resilience of catchment water yields to climate warming, with conifer and deciduous catchments more susceptible to

  3. Timber markets and marketing in the Monocacy River watershed of Maryland and Pennsylvania (United States)

    George E. Doverspike; James C. Rettie; Harry W., Jr. Camp


    The Maryland Department of State Forests and Parks, cooperating with the locally organized Monocacy River Watershed Council, has requested the Northeastern Forest Experiment Station to undertake a study of the forest resource of that watershed. The objective is to provide information that will be helpful in conserving watershed values and in promoting better management...

  4. Direct effects of temperature on forest nitrogen cycling revealed through analysis of long-term watershed records (United States)

    E.N. Jack Brookshire; Stefan Gerber; Jackson R. Webster; James M. Vose; Wayne T. Swank


    The microbial conversion of organic nitrogen (N) to plant available forms is a critical determinant of plant growth and carbon sequestration in forests worldwide. In temperate zones, microbial activity is coupled to variations in temperature, yet at the ecosystem level, microbial N mineralization seems to play a minor role in determining patterns of N loss. Rather, N...

  5. Human uses of forested watersheds and riparian corridors: hazard mitigation as an ecosystem service, with examples from Panama, Puerto Rico, and Venezuela (United States)

    Larsen, M. C.


    Humans have long favored settlement along rivers for access to water supply for drinking and agriculture, for transport corridors, and for food sources. Additionally, settlement in or near montane forests include benefits such as food sources, wood supply, esthetic values, and high quality water resources derived from watersheds where upstream human disturbance and environmental degradation is generally reduced. However, the advantages afforded by these riparian and montane settings pose episodic risks for communities located there as floods, landslides, and wildfires cause loss of life, destroy infrastructure, and damage or destroy crops. A basic understanding of flood probability and magnitude as well as hillslope stability by residents in these environments can mitigate these risks. Early humans presumably developed some degree of knowledge about these risks by means of their long periods of occupation in these environments and their observations of seasonal and storm rainfall patterns and river discharge, which became more refined as agriculture developed over the past 10,000 years. Modern global urbanization, particularly in regions of rapid economic growth, has resulted in much of this "organic" knowledge being lost, as rural populations move into megacities, many of which encroach on floodplains and mountain fronts. Moreover, the most likely occupants of these hazardous locations are often economically constrained, increasing their vulnerabity. Effective stewardship of river floodplains and upstream montane forests yields a key ecosystem service, which in addition to the well-known services, ie. water, hydroelectric energy, etc., provides a risk mitigation service, by reducing hazard and vulnerability. Puerto Rico, Panama, and Venezuela illustrate a range of practices and results, providing useful examples for planners and land use managers.

  6. Comparing nutrient export from first, second and third order watersheds in the South Carolina Atlantic coastal plain (United States)

    Augustine Muwamba; Devendra M. Amatya; Carl C. Trettin; James B. Glover


    Monitoring of stream water chemistry in forested watersheds provides information to environmental scientists that relate management operations to hydrologic and biogeochemical processes. We used data for the first order watershed, WS80, and second order watershed, WS79, at Santee Experimental Forest. We also used data from a third order watershed, WS78, to...

  7. Soil properties in different types of Eucalypt Plantations in a small forested watershed, north-central Portugal (United States)

    Santos, J. M.; van Beersum, S.; van Hall, I.; Bernard-Jannin, L.; Rial-Rivas, M. E.; Nunes, J. P.; Keizer, J. J.


    The main aim of the HIDRIA project is to improve the knowledge and understanding of factors and processes that determine the hydrological behaviour of forested foothills in the Caramulo mountain range, North-Central Portugal. The changes from natural forest cover to Eucalyptus plantations in the last decades in Portugal is present in Serra de Cima catchment, one of the four experimental catchments monitored within the framework of the project. The objectives of the present study are to determine the effects of these changes on soil properties, and to improve the parameterization of the SWAT model to simulate the impact of land-use changes associated with forestry practices on hydrological processes. The study catchment (Serra de Cima) is located in the Águeda Basin, draining the foothills of the Caramulo mountains east of Águeda (40°36'N, -8°20'E). The climate is wet Mediterranean with a mean annual precipitation of about 1600 mm at 445 m a.s.l. Soils are generally Umbric Leptosols (Molarity of Ethanol Droplet test); and near-saturated hydraulic conductivity (mini-disk experiments). There were clear differences in almost every parameter between eucalypt and pine plots, but also for eucalypt stands of different ages, indicating an impact of eucalypt growth on the properties of the underlying soil. The repetition of some measurements is foreseen to evaluate their seasonal variability.

  8. Watershed management (United States)

    Watershed management is aimed at land and water resources, and is applied to an area of land that drains to a defined location along a stream or river. Watershed management aims to care for natural resources in a way that supports human needs for water, food, fiber, energy, and habitation, while sup...

  9. Linking habitat quality with trophic performance of steelhead along forest gradients in the South Fork Trinity River Watershed, California (United States)

    McCarthy, Sarah G.; Duda, Jeffrey J.; Emlen, John M.; Hodgson, Garth R.; Beauchamp, David A.


    We examined invertebrate prey, fish diet, and energy assimilation in relation to habitat variation for steelhead Oncorhynchus mykiss (anadromous rainbow trout) and rainbow trout in nine low-order tributaries of the South Fork Trinity River, northern California. These streams spanned a range of environmental conditions, which allowed us to use bioenergetics modeling to determine the relative effects of forest cover, stream temperature, season, and fish age on food consumption and growth efficiency. Evidence of seasonal shifts in reliance on aquatic versus terrestrial food sources was detected among forest cover categories and fish ages, although these categories were not robust indicators of O. mykiss condition and growth efficiency. Consumption estimates were generally less than 20% of maximum consumption, and fish lost weight in some streams during summer low-flow conditions when stream temperatures exceeded 15°C. Current 100-year climate change projections for California threaten to exacerbate negative growth patterns and may undermine the productivity of this steelhead population, which is currently not listed as endangered or threatened. To demonstrate the potential effect of global warming on fish growth, we ran three climate change scenarios in two representative streams. Simulated temperature increases ranging from 1.4°C to 5.5°C during the summer and from 1.5°C to 2.9C during the winter amplified the weight loss; estimated average growth for age-1 fish was 0.4–4.5 times lower than normal (low to high estimated temperature increase) in the warm stream and 0.05–0.8 times lower in the cool stream. We conclude that feeding rate and temperature during the summer currently limit the growth and productivity of steelhead and rainbow trout in low-order streams in the South Fork Trinity River basin and predict that climate change will have detrimental effects on steelhead growth as well as on macroinvertebrate communities and stream ecosystems in general.

  10. Emerging investigator series: the effect of wildfire on streamwater mercury and organic carbon in a forested watershed in the southeastern United States. (United States)

    Jensen, Allison M; Scanlon, Todd M; Riscassi, Ami L


    Wildfires alter forested ecosystems, which include large stores of mercury (Hg) and organic carbon, two compounds that are closely linked in vegetation, soils, and streamwater. Studies have shown that wildfires release elevated levels of mercury to the atmosphere which can be locally redeposited and leave charred organic material (vegetation and litter) on the soil surface. Both can contribute to the elevated mobilization of Hg into lakes and streams. However, no studies have conducted a detailed examination of hydrological transport of Hg following a wildfire. This study investigates the coupled transport of mercury and carbon at Twomile Run, a headwater stream located in the forested mountains of Shenandoah National Park, in the year following a low-severity wildfire. Weekly baseflow samples and bi-hourly high-flow storm samples were analyzed for dissolved and particulate mercury (Hg D and Hg P , respectively), dissolved organic carbon (DOC), UV absorbance at 254 nm (UV 254 , surrogate for DOC quantity and character), and total suspended solids (TSS), and were compared with identical measurements taken from a nearby unburned watershed. For all flow conditions sampled at the burned site (which did not include the 2 months following the fire), streamwater Hg D and DOC concentrations, and corresponding UV 254 , were similar to the unburned system. TSS concentrations varied between sites but overall differences were relatively small in magnitude and likely attributable to site differences rather than fire effects. Notably, the Hg P per unit of TSS at the burned site was an order of magnitude higher than the unburned site (2.66 and 0.13 ng Hg P per mg TSS, respectively) for 8 months following the fire, resulting in elevated Hg P concentrations for the range of flow conditions, after which there was a rapid return to non-disturbed conditions. Streamwater total Hg fluxes roughly doubled (0.55 to 1.04 μg m -2 yr -1 ) as a consequence of the fire, indicating that in

  11. Pesticide contamination interception strategy and removal efficiency in forest buffer and artificial wetland in a tile-drained agricultural watershed. (United States)

    Passeport, Elodie; Tournebize, Julien; Chaumont, Cédric; Guenne, Angeline; Coquet, Yves


    Pesticide pollution is a major threat to aquatic ecosystems that can be mitigated through complementary actions including buffer zones (BZs). This paper discusses the results of 3 yr of field-scale monitoring of the concentration and load transfer of 16 pesticides out of a tile-drained catchment (Bray, France) and their reduction through two BZ: an artificial wetland (AW) and a forest buffer (FB). Typically, the highest concentrations were measured in the first flows following pesticide applications or resuming after periods of low or no flow. An open/close water management strategy was implemented to operate the parallel BZ based on pesticide applications by the farmer. The strategy was efficient in intercepting molecules whose highest concentrations occurred during the first flows following application. Inlet vs. outlet pesticide load reductions ranged from 45% to 96% (AW) and from -32% to 100% (FB) depending on the pesticide molecule and the hydrological year. Partly reversible adsorption was a dominant process explaining pesticide removal; whereas, degradation occurred for sufficiently long water retention time. Apart from the least sorbing molecules (e.g., isoproturon), BZ can partially remove pesticide pollution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Watershed District (United States)

    Kansas Data Access and Support Center — Boundaries show on this map are derived from legal descriptions contained in petitions to the Kansas Secretary of State for the creation or extension of watershed...

  13. Interim report on the scientific investigations in the Animas River watershed, Colorado to facilitate remediation decisions by the U.S. Bureau of Land Management and the U.S. Forest Service, March 29, 2000 meeting, Denver, Colorado (United States)



    INTRODUCTION The joint U.S. Department of the Interior and U.S. Department of Agriculture Abandoned Mine Lands Initiative (AMLI) was developed as a collaborative effort between the Federal land management agencies (FLMA, that is the U.S. Bureau of Land Management and the U.S. Forest Service) and the U.S. Geological Survey (USGS) in 1996. The stated goal of the AML Initiative was to develop a strategy for gathering and communicating the scientific information needed to develop effective and cost-efficient remediation of abandoned mines within the framework of a watershed. Four primary objectives of the AMLI are to: 1. Provide the scientific information needed (in the short-term) by the FLMAs to make decisions related to the design and implementation of cleanup actions, 2. Develop a multi-disciplined, multi-division approach that integrates geologic, hydrologic, geochemical and ecological information into a knowledge base for sound decision making, 3. Transfer technologies developed within the scientific programs of the USGS to the field and demonstrate their suitability to solve real, practical problems, and 4. Establish working relationships among involved members of land management and regulatory agencies within the framework of a watershed approach to the cleanup of abandoned mines. Long-term process-based research, including development of analytical tools, is recognized as being critical to the long-term success in remediating watersheds impacted by historical mining activities (AML 5-year plan, In a meeting of Federal agencies (U.S. Bureau of Land Management [BLM], U.S. Bureau of Reclamation [BOR], U.S. National Park Service [NPS], U.S. Forest Service [USFS], the U.S. Environmental Protection Agency [EPA], the U.S. Fish and Wildlife Service [F&WS]), and State agencies (Colorado Division of Public Health and Environment, Colorado Division of Mines and Geology), several watersheds were examined within the state whose water quality was

  14. Threats to private forest lands in the U.S.A.: a forests on the edge study (United States)

    Mark H. Hatfield; Ronald E. McRoberts; Dacia M. Meneguzzo; Sara. Comas


    The Forests on the Edge project, sponsored by the USDA Forest Service, uses geographic information systems to construct and analyze maps depicting threats to the contributions of America’s private forest lands. For this study, watersheds across the conterminous United States are evaluated with respect to the amount of their private forest land. Watersheds with at least...

  15. Consistency of Hydrologic Relationships of a Paired Watershed Approach (United States)

    Herbert Ssegane; Devendra M. Amatya; George M. Chescheir; Wayne R. Skaggs; Ernest W. Tollner; Jami E.. Nettles


    Paired watershed studies are used around the world to evaluate and quantify effects of forest and water management practices on hydrology and water quality. The basic concept uses two neighboring watersheds (one as a control and another as a treatment), which are concurrently monitored during calibration (pre-treatment) and post-treatment periods. A statistically...

  16. 36 CFR 251.9 - Management of Municipal Watersheds. (United States)


    ... LAND USES Miscellaneous Land Uses Natural Resources Control § 251.9 Management of Municipal Watersheds... forth in subpart B of this part. (e) Any municipal watershed management agreements, special use... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Management of Municipal...

  17. Lessons learned in watershed management: A retrospective view (United States)

    Walter F. Megahan; Jim Hornbeck


    Forest watershed management research is mandated by over 100 years of legislation, from the Organic Act and Weeks Law enacted around the beginning of the 20th century, to a variety of environmental protection acts passed over the past several decades. Research results have come primarily from studies of a multitude of gaged watersheds selected to represent a variety of...

  18. Baseflow and peakflow chemical responses to experimental applications of ammonium sulphate to forested watersheds in north-central West Virginia, USA (United States)

    Edwards, Pamela J.; Wood, Frederica; Kochenderfer, James N.


    Stream water was analysed to determine how induced watershed acidification changed the chemistry of peakflow and baseflow and to compare the relative timing of these changes. Two watersheds in north-central West Virginia, WS3 and WS9, were subjected to three applications of ammonium sulphate fertilizer per year to induce acidification. A third watershed, WS4, was the control. Samples were collected for 8 years from WS9 and for 9 years from WS3. Prior to analyses, concentration data were flow adjusted, and the influence of natural background changes was removed by accounting for the chemical responses measured from WS4. This yielded residual values that were evaluated using robust locally weighted regression and Mann-Kendall tests. On WS3, analyte responses during baseflow and peakflow were similar, although peakflow responses occurred soon after the first treatment whereas baseflow responses lagged 1-2 years. This lag in baseflow responses corresponded well with the mean transit time of baseflow on WS3. Anion adsorption on WS3 apparently delayed increases in SO4 leaching, but resulted in enhanced early leaching losses of Cl and NO3. Leaching of Ca and Mg was strongly tied, both by timing and stoichiometrically, to NO3 and SO4 leaching. F-factors for WS3 baseflow and peakflow indicated that the catchment was insensitive to acid neutralizing capacity reductions both before and during treatment, although NO3 played a large role in reducing the treatment period F-factor. By contrast, the addition of fertilizer to WS9 created an acid sensitive system in both baseflow and peakflow. On WS9, baseflow and peakflow responses also were similar to each other, but there was no time lag after treatment for baseflow. Changes in concentrations generally were not as great on WS9 as on WS3, and several ions showed no significant changes, particularly for peakflow. The lesser response to treatment on WS9 is attributed to the past abusive farming and site preparation before larch

  19. Water Balance Modeling to Identify the Time-Variable Contribution of Hillslope and Riparian Fluxes to Discharge in a Small Forested Piedmont Watershed (United States)

    Putnam, S. M.; Harman, C. J.


    The influence of watershed structure on the time-variability of transport at the watershed scale is not well understood. Transport is often represented by a transit time distribution (TTD), which encapsulates the emergent effects of watershed structure, but in doing so obscures how the component parts of the watershed contribute to it. For example, the time-variability of a catchment's TTD might arise largely from shifting contributions to discharge from hydrogeomorphic units whose individual TTDs are more stable, or it might be dominated by time-variability in the individual hydrogeomorphic units' TTDs. Advances in transport modeling make it possible to capture the time-variable TTDs of individual units, and their contribution to overall variability, using rank StorAge Selection (rSAS). However, to use that approach we must first know the relative contribution of water coming from each unit. In this study, water balance models have been constructed for hillslope and riparian hydrogeomorphic units using data collected from a 37-hectare Piedmont watershed of the eastern US. These estimates will be used in conjunction with tracer data to infer the contribution of individual hydrogeomorphic units to the overall age distribution of discharge over a range of flow conditions and link the shifting age structure at the catchment scale to the hydrologic processes of each unit. The emphasis of the work presented here is on the construction of the water balance estimates for the riparian and hillslope zones as distinct hydrogeomorphic units as a step toward the subsequent analysis of age dynamics. Diurnal fluctuations in water level are used to estimate evapotranspiration, rates of groundwater flux, and changes storage for riparian hydrogeomorphic unit. The flux of water leaving the hillslope hydrogeomorphic unit is estimated using discharge measured from a gaged spring. Hillslope evapotranspiration is estimated from data collected by an onsite weather station, which also


    There is concern that changes in atmospheric deposition, climate, or land use have altered the biogeochemistry of forests causing soil base-cation depletion, particularly Ca. The Bear Brook Watershed in Maine (BBWM) is a paired watershed experiment with one watershed subjected to...

  1. Watershed research and management in the lake states and northeastern United States (United States)

    Elton S. Verry; James W. Hornbeck; H. Albert


    We present a brief synopsis of the beginnings of watershed management research and practice in the Lake States and Northeastern United States, followed by a summary of significant research findings on many aspects of watershed management, and finally, a review of four examples of how watershed management research has been incorporated into national forest management...

  2. Effects of watershed management practices on sediment concentrations in the southwestern United States: Management implications (United States)

    Vicente L. Lopes; Peter F. Ffolliott; Malchus B. Baker


    Effects of watershed management practices on suspended sediment concentrations from ponderosa pine forests and pinyon-juniper woodlands in the Southwestern United States are examined. Completely cleared and strip-cut ponderosa pine watersheds produced higher sediment concentrations than the control. Likewise, cabled and herbicide-treated pinyon-juniper watersheds...

  3. Experimental Acidification Causes Soil Base-Cation Depletion at the Bear Brook Watershed in Maine (United States)

    Ivan J. Fernandez; Lindsey E. Rustad; Stephen A. Norton; Jeffrey S. Kahl; Bernard J. Cosby


    There is concern that changes in atmospheric deposition, climate, or land use have altered the biogeochemistry of forests causing soil base-cation depletion, particularly Ca. The Bear Brook Watershed in Maine (BBWM) is a paired watershed experiment with one watershed subjected to elevated N and S deposition through bimonthly additions of (NH4)2SO4. Quantitative soil...

  4. Nitrogen fluxes and retention in urban watershed ecosystems (United States)

    Groffman, P.M.; Law, N.L.; Belt, K.T.; Band, L.E.; Fisher, G.T.


    Although the watershed approach has long been used to study whole-ecosystem function, it has seldom been applied to study human-dominated systems, especially those dominated by urban and suburban land uses. Here we present 3 years of data on nitrogen (N) losses from one completely forested, one agricultural, and six urban/suburban watersheds, and input-output N budgets for suburban, forested, and agricultural watersheds. The work is a product of the Baltimore Ecosystem Study, a long-term study of urban and suburban ecosystems, and a component of the US National Science Foundation's long-term ecological research (LTER) network. As expected, urban and suburban watersheds had much higher N losses than did the completely forested watershed, with N yields ranging from 2.9 to 7.9 kg N ha-1 y-1 in the urban and suburban watersheds compared with less than 1 kg N ha-1 y -1 in the completely forested watershed. Yields from urban and suburban watersheds were lower than those from an agricultural watershed (13-19.8 kg N ha-1 y-1). Retention of N in the suburban watershed was surprisingly high, 75% of inputs, which were dominated by home lawn fertilizer (14.4 kg N ha-1 y-1) and atmospheric deposition (11.2 kg N ha-1 y-1). Detailed analysis of mechanisms of N retention, which must occur in the significant amounts of pervious surface present in urban and suburban watersheds, and which include storage in soils and vegetation and gaseous loss, is clearly warranted.

  5. Geochemical studies in watersheds expanded (United States)

    Church, M. Robbins

    In the past, geochemical research in forested watersheds has focused on understanding the basic processes that occur in soils and rocks. Watershed geochemical processes, however, are greatly influenced by, and in turn, greatly influence, both organisms and biological process in soils, and hydrologic responses of catchments. To date, geochemical research has dealt principally with basic chemical processes in soils and rocks, and much less with questions concerning hydrologic routing through catchments and the effects such routing has on temporal variation in chemical composition of surface waters.Research on flow generation in catchments has focused on intensive field studies on plots, hillslope sections, and small catchments, with extension to larger scales necessarily involving the application of conceptual models that might (or might not) be valid. The acquisition of direct experimental evidence (for example, verifying flow generation mechanisms) on larger-scale watersheds has always been problematic. Although geochemists understand that the explanation of some geochemical observations requires that flow pathways be explicitly identified, and hydrologists understand that flow generation can be better elucidated if the geochemical history of waters is known, critical integrated communication between the disciplines is often lacking. In turn, biologists require physical and geochemical information to interpret biological effects in watersheds, and hydrologists and geochemists need to be aware of the effects of biological processes on hydrochemical response of catchments.

  6. Using Continuous In-situ Measurement of Fluorescence to Reveal Hot Spots and Hot Moments of Dissolved Organic Matter Dynamics in a Forested Watershed (United States)

    Ryan, K. A.; Hosen, J. D.; Raymond, P. A.; Stubbins, A.; Shanley, J. B.


    River systems serve as net carbon exporters from land to the ocean, fueling downstream aquatic ecosystem food webs. Fluorescence signatures of aquatic organic matter can be used as a proxy for dissolved organic carbon (DOC) concentration and can characterize DOC composition, reactivity, and source to improve our understanding of ecological processes. In-situ measurement of fluorescence using fifteen-minute interval data logging allows greater temporal resolution than laboratory studies. However, in-situ data must be corrected for interferences from temperature, absorbance and turbidity changes occurring in the field. We installed multiparameter water quality sondes (Eureka Mantas) and in-situ fluorometers (Turner Designs Cyclops) at sites nested within streams and riparian zones in the Sleepers River Research Watershed in Vermont in 2017. We coupled these measurements with simultaneous intensive field sampling campaigns and laboratory analysis of DOC and fluorescence Excitation-Emission Matrices. The data loggers from the nested sites recorded fluorescence peaks responding to discharge events and tracked changes in fluorescence occurring from upstream to downstream sites. Laboratory results confirm a nonlinear, hysteretic relationship between discharge and DOC where peak DOC lags peak discharge. This hysteresis is predicted to be controlled by multiple flow paths and DOC sources (i.e. groundwater, overland flow). We conclude that continuous in-situ records of river water fluorescence can be used to inform ecological processes and test new hypotheses concerning dissolved organic matter dynamics in watersheds.

  7. Effects of land use on the timing and magnitude of dissolved organic carbon and nitrate fluxes: a regional analysis of high-frequency sensor measurements from forested, agricultural, and urban watersheds (United States)

    Seybold, E. C.; Gold, A.; Inamdar, S. P.; Pradhanang, S. M.; Bowden, W. B.; Vaughan, M.; Addy, K.; Shanley, J. B.; Andrew, V.; Sleeper, R.; Levia, D. F., Jr.; Adair, C.; Wemple, B. C.; Schroth, A. W.


    Land use/land cover change has been shown to have significant impacts on nutrient loading to aquatic systems, and has been linked to coastal zone hypoxia and eutrophication of lake ecosystems. While it is clear that changes in land use/land cover are associated with changes in aquatic ecosystem function, a mechanistic understanding of how nutrient fluxes from distinct land cover classes respond to hydrologic events on event and seasonal scales remains unknown. Recent advances in the availability of high-frequency water quality sensors provide an opportunity to assess these relationships at a high temporal resolution. We deployed a network of in-situ spectrophotometers in watersheds with predominantly forested, agricultural, and urban land uses that spanned a latitudinal gradient in the northeastern US from Vermont to Delaware. Our study sought to assess how land cover affected the timing and magnitude of fluxes of carbon (C) and nitrogen (N) from watersheds with distinct land uses, and to determine whether these relationships varied regionally. We found systematic differences in the timing and magnitude of C and N fluxes and strong variation in the annual mass fluxes from these distinct land cover classes. In particular, we found that while the phenology of C and N fluxes varied across land uses, there were distinct regional similarities in the C and N flux regimes within a given land use class. We also found strong inter-annual variability in carbon and nitrogen fluxes in response to inter-annual variability in precipitation and discharge, suggesting a high degree of hydrologic control over nutrient loading. These findings also emphasize the potential for climate change, and in particular precipitation variability, to drive strong variation in the magnitude of downstream nutrient flux to receiving lakes and estuaries. Our study emphasizes the pervasive influence of land cover and its effects on water quality, and also highlights the strong signature of

  8. How to restore dry forest ecosystems


    Nalvarte, Jaime


    AIDER is a Peruvian non-governmental organization working since 1992 on forest management activities, watershed management and urban forest management on tropical humid and dry forest at a national level. AIDER and the José Ignacio Távara Pasapera rural community have been working on dry forest management and recovery since 1992. This paper summarizes the activity of AIDER in the dry forests for the purpose of recovering degraded forest areas and conserve existing forests by developing sustai...



    Ana Paula Almeida Bertossi; Paulo Roberto da Rocha Júnior; Paulo Henrique Ribeiro; João Paulo Cunha de Menezes; Roberto Avelino Cecílio; Felipe Vaz Andrade


    ABSTRACT The objective of this study was to evaluate the chemical and physical attributes of different soil cover in a Oxisol with a strong wavy relief in the Atlantic Forest Biome, in which were selected three watersheds, employed with grazing (watershed P), forest (watershed M) and coffee (watershed C). Deformed and not deformed samples were collected in three depths for physical and chemical characterization. The chemical characteristics of soil in different watershed studies presented low...

  10. Biomass Carbon Sequestration Potential by Riparian Forest in the Tarim River Watershed, Northwest China: Implication for the Mitigation of Climate Change Impact

    Directory of Open Access Journals (Sweden)

    Tayierjiang Aishan


    Full Text Available Carbon management in forests has become the most important agenda of the first half of the 21st century in China in the context of the mitigation of climate change impact. As the main producer of the inland river basin ecosystem in arid region of Northwest China, the desert riparian forest maintains the regional environment and also holds a great significance in regulating the regional/global carbon cycle. In this study, we estimated the total biomass, carbon storage, as well as monetary ecosystem service values of desert riparian Populus euphratica Oliv. in the lower reaches of the Tarim River based on terrestrial forest inventory data within an area of 100 ha (100 plots with sizes of 100 m × 100 m and digitized tree data within 1000 ha (with 10 m × 10 m grid using a statistical model of biomass estimation against tree height (TH and diameter at breast height (DBH data. Our results show that total estimated biomass and carbon storage of P. euphratica within the investigated area ranged from 3.00 to 4317.00 kg/ha and from 1.82 to 2158.73 kg/ha, respectively. There was a significant negative relationship (p < 0.001 between biomass productivity of these forests and distance to the river and groundwater level. Large proportions of biomass (64% of total biomass are estimated within 200 m distance to the river where groundwater is relatively favorable for vegetation growth and biomass production. However, our data demonstrated that total biomass showed a sharp decreasing trend with increasing distance to the river; above 800 m distance, less biomass and carbon storage were estimated. The total monetary value of the ecosystem service “carbon storage” provided by P. euphratica was estimated to be $6.8 × 104 USD within the investigated area, while the average monetary value was approximately $70 USD per ha, suggesting that the riparian forest ecosystem in the Tarim River Basin should be considered a relevant regional carbon sink. The findings of

  11. Research related to roads in USDA experimental forests [Chapter 16 (United States)

    W. J. Elliot; P. J. Edwards; R. B. Foltz


    Forest roads are essential in experimental forests and rangelands (EFRs) to allow researchers and the public access to research sites and for fire suppression, timber extraction, and fuel management. Sediment from roads can adversely impact watershed health. Since the 1930s, the design and management of forest roads has addressed both access issues and watershed health...

  12. A problem analysis and program for watershed-management research in the White Mountains of New Hampshire (United States)

    George R., Jr. Trimble


    The U. S. Forest Service was authorized by Congress in late summer of 1954 to conduct watershed management research in New Hampshire. The purpose of this work is to determine the effect of forest cover on streamflow: the influence of forest cover type, forest condition, and forest treatment practices on water yield, rate of delivery, and on water quality. This is the...

  13. Modeling erosion from forest roads with WEPP (United States)

    J. McFero Grace


    Forest roads can be major sources of soil erosion from forest watersheds. Sediments from forest roads are a concern due to their potential delivery to stream systems resulting in degradation of water quality. The Water Erosion Prediction Project (WEPP) was used to predict erosion from forest road components under different management practices. WEPP estimates are...

  14. Emergency watershed treatments on burned lands in southwestern Oregon (United States)

    Ed Gross; Ivars Steinblums; Curt Ralston; Howard Jubas


    Following extensive, natural wildfires on the Siskiyou National Forest in southwest Oregon during fall 1987, numerous rehabilitation measures were applied to severely burned public and private forest watersheds. Treatments were designed to prevent offsite degradation of water quality and fisheries, to minimize soil erosion and productivity losses, and to prevent...

  15. Declining Atmospheric Sulfate Deposition in an Agricultural Watershed in Central Pennsylvania, USA

    Directory of Open Access Journals (Sweden)

    Kyle R. Elkin


    Full Text Available Sulfur emissions in the northeastern United States are only 20% of levels measured in 1987 due to the enactment of the US federal Clean Air Act. While there are numerous reports of forested ecosystems recovering from acidification as a result of the decline in sulfur deposition, few studies describe such recovery in agricultural watersheds. We used long-term (30+ yr atmospheric and watershed data from a USDA experimental watershed to investigate whether daily agricultural practices masked the declining sulfur (as sulfate-sulfur trends seen in mainly forested watersheds. Over the study period, atmospheric wet deposition of sulfate-sulfur decreased 75% while sulfate-sulfur at the watershed decreased by approximately 30%. While the deposition of sulfur is detrimental to stream quality, the reduction of sulfur deposition in recent years has caused many soils in the watershed to develop sulfur deficiencies. Long-term declines in watershed sulfur export reveal emerging concerns about reducing atmospheric sulfur levels.

  16. Watershed Management Partnership Agreement (United States)

    On November 19, 2004, the U.S. Environmental Protection Agency and the U.S. Army Corps of Engineers signed the Watershed Management Partnership Agreement to promote watershed health, economic sustainability and community vitality through effective manageme

  17. Managing Watersheds with WMOST (United States)

    The Watershed Management Optimization Support Tool (WMOST) allows water-resource managers and planners to screen a wide range of practices for cost-effectiveness in achieving watershed or water utilities management goals.

  18. Adopt Your Watershed (United States)

    U.S. Environmental Protection Agency — Adopt Your Watershed is a Website that encourages stewardship of the nation's water resources and serves as a national inventory of local watershed groups and...

  19. Watershed responses to Amazon soya bean cropland expansion and intensification. (United States)

    Neill, Christopher; Coe, Michael T; Riskin, Shelby H; Krusche, Alex V; Elsenbeer, Helmut; Macedo, Marcia N; McHorney, Richard; Lefebvre, Paul; Davidson, Eric A; Scheffler, Raphael; Figueira, Adelaine Michela e Silva; Porder, Stephen; Deegan, Linda A


    The expansion and intensification of soya bean agriculture in southeastern Amazonia can alter watershed hydrology and biogeochemistry by changing the land cover, water balance and nutrient inputs. Several new insights on the responses of watershed hydrology and biogeochemistry to deforestation in Mato Grosso have emerged from recent intensive field campaigns in this region. Because of reduced evapotranspiration, total water export increases threefold to fourfold in soya bean watersheds compared with forest. However, the deep and highly permeable soils on the broad plateaus on which much of the soya bean cultivation has expanded buffer small soya bean watersheds against increased stormflows. Concentrations of nitrate and phosphate do not differ between forest or soya bean watersheds because fixation of phosphorus fertilizer by iron and aluminium oxides and anion exchange of nitrate in deep soils restrict nutrient movement. Despite resistance to biogeochemical change, streams in soya bean watersheds have higher temperatures caused by impoundments and reduction of bordering riparian forest. In larger rivers, increased water flow, current velocities and sediment flux following deforestation can reshape stream morphology, suggesting that cumulative impacts of deforestation in small watersheds will occur at larger scales.

  20. Watershed Conservation in the Long Run

    DEFF Research Database (Denmark)

    Kaiser, Brooks


    We studied unanticipated long-run outcomes of conservation activities that occurred in forested watersheds on O`ahu, Hawaii, in the early twentieth century. The initial general impetus for the conservation activities was to improve irrigation surface water flow for the sugar industry. Industry...... concentration facilitated conservation of entire ecosystems. We investigate the benefits that accrued through dynamic linkages of the hydrological cycle and groundwater aquifer system. This provides a clear example of the need to consider integrated watershed effects, industrial structure, and linkages...

  1. Applying Physically Representative Watershed Modelling to Assess Peak and Low Flow Response to Timber Harvest: Application for Watershed Assessments (United States)

    MacDonald, R. J.; Anderson, A.; Silins, U.; Craig, J. R.


    Forest harvesting, insects, disease, wildfire, and other disturbances can combine with climate change to cause unknown changes to the amount and timing of streamflow from critical forested watersheds. Southern Alberta forest and alpine areas provide downstream water supply for agriculture and water utilities that supply approximately two thirds of the Alberta population. This project uses datasets from intensely monitored study watersheds and hydrological model platforms to extend our understanding of how disturbances and climate change may impact various aspects of the streamflow regime that are of importance to downstream users. The objectives are 1) to use the model output of watershed response to disturbances to inform assessments of forested watersheds in the region, and 2) to investigate the use of a new flexible modelling platform as a tool for detailed watershed assessments and hypothesis testing. Here we applied the RAVEN hydrological modelling framework to quantify changes in key hydrological processes driving peak and low flows in a headwater catchment along the eastern slopes of the Canadian Rocky Mountains. The model was applied to simulate the period from 2006 to 2011 using data from the Star Creek watershed in southwestern Alberta. The representation of relevant hydrological processes was verified using snow survey, meteorological, and vegetation data collected through the Southern Rockies Watershed Project. Timber harvest scenarios were developed to estimate the effects of cut levels ranging from 20 to 100% over a range of elevations, slopes, and aspects. We quantified changes in the timing and magnitude of low flow and high flow events during the 2006 to 2011 period. Future work will assess changes in the probability of low and high flow events using a long-term meteorological record. This modelling framework enables relevant processes at the watershed scale to be accounted in a physically robust and computational efficient manner. Hydrologic

  2. Applying four principles of headwater system aquatic biology to forest management (United States)

    Robert J. Danehy; Sherri L. Johnson


    Headwater systems, including the channel and the adjacent riparian forest, are a dominant landscape feature in forested watersheds, draining most of the watershed area, and comprising the majority of channel length in drainage networks. Being at the upper extent of watersheds, these systems are smaller and steeper than large streams, and create microhabitats that...

  3. Forests on the edge: housing development on America’s private forests. (United States)

    Ronald E. McRoberts; Ralph J. Alig; Mark D. Nelson; David M. Theobald; Mike Eley; Mike Dechter; Mary. Carr


    The private working land base of America’s forests is being converted to developed uses, with implications for the condition and management of affected private forests and the watersheds in which they occur. The Forests on the Edge project seeks to improve understanding of the processes and thresholds associated with increases in housing density in private forests and...

  4. Is There Synchronicity in Nitrogen Input and Output Fluxes at the Noland Divide Watershed, a Small N-Saturated Forested Catchment in the Great Smoky Mountains National Park?

    Directory of Open Access Journals (Sweden)

    H. Van Miegroet


    Full Text Available High-elevation red spruce [Picea rubens Sarg.]-Fraser fir [Abies fraseri (Pursh. Poir] forests in the Southern Appalachians currently receive large nitrogen (N inputs via atmospheric deposition (30 kg N ha�1 year�1 but have limited N retention capacity due to a combination of stand age, heavy fir mortality caused by exotic insect infestations, and numerous gaps caused by windfalls and ice storms. This study examined the magnitude and timing of the N fluxes into, through, and out of a small, first-order catchment in the Great Smoky Mountains National Park. It also examined the role of climatic conditions in causing interannual variations in the N output signal. About half of the atmospheric N input was exported annually in the streamwater, primarily as nitrate (NO3-N. While most incoming ammonium (NH4-N was retained in the canopy and the forest floor, the NO3-N fluxes were very dynamic in space as well as in time. There was a clear decoupling between NO3-N input and output fluxes. Atmospheric N input was greatest in the growing season while largest NO3-N losses typically occurred in the dormant season. Also, as water passed through the various catchment compartments, the NO3-N flux declined below the canopy, increased in the upper soil due to internal N mineralization and nitrification, and declined again deeper in the mineral soil due to plant uptake and microbial processing. Temperature control on N production and hydrologic control on NO3-N leaching during the growing season likely caused the observed inter-annual variation in fall peak NO3-N concentrations and N discharge rates in the stream.

  5. Nitrogen and Phosphorous Flow in Atlantic Forest Covered Watersheds on the Oceanic and Continental Slopes at Serra dos Órgãos mountain, Southeast of Brazil (United States)

    Vidal, M. M.; De Souza, P.; De Mello, W. Z.; Damaceno, I.; Bourseau, L.; Rodrigues, R. D. A.; Mattos, B. B.


    Concentration of nutrients above natural levels are found even at remote or protected environments due to atmospheric transportation from biomass burning emissions, urban and industrial areas. This study evaluate N and P atmospheric deposition at the oceanic and continental slopes of Serra dos Órgãos mountain, which are influenced by the pollutants emission from the Metropolitan Region of Rio de Janeiro. Flux of dissolved forms of N and P were measured in three watersheds in headwaters of Piabanha basin, southeastern Brazil, to understand the dynamics of the biogeochemical processes of these elements, related to anthropic influences of atmospheric inputs and export via stream flow. Samples of bulk precipitation (weekly; n=47) and stream water (monthly; n=13) were collected along one year (Sept 2014 - Sept 2015). During that period the annual rainfall in the oceanic slope (2163 mm) was the double of the continental one. It is important to stress that the rainfall in the oceanic slope was 13 % and 28% in 2014/15, respectively, lower than the long term average. Atmospheric deposition of total dissolved nitrogen (TDN) on the oceanic and continental slopes were, respectively, 15 and 8.6 kg N ha-1 year-1. The TDN outputs by stream water were 5-7 times lower in oceanic slope and 28 times lower on the continental one. The relative contribution of dissolved organic nitrogen (DON; 65%-70%) was higher than the one of dissolved inorganic nitrogen (DIN; 30-35%) to TDN deposition. Atmospheric deposition of total dissolved phosphorus (TDP) in oceanic and continental slopes were 1.4 and 0.95 kg P ha-1 year-1. Dissolved Organic Phosphorus (DOP; 89-96%) was higher than the inorganic one (PO43-; 5-11%). TDP outputs were 2-4 times lower, regarding to atmospheric contribution. The contribution of DOP (73-77 %) was higher than DIP (23-27 %). Results show variations in quantities and forms of N and P species due to natural and anthropogenic processes which contribute to the cycling of

  6. Watershed-scale evaluation of the Water Erosion Prediction Project (WEPP) model in the Lake Tahoe basin (United States)

    Erin S. Brooks; Mariana Dobre; William J. Elliot; Joan Q. Wu; Jan Boll


    Forest managers need methods to evaluate the impacts of management at the watershed scale. The Water Erosion Prediction Project (WEPP) has the ability to model disturbed forested hillslopes, but has difficulty addressing some of the critical processes that are important at a watershed scale, including baseflow and water yield. In order to apply WEPP to...

  7. Watershed management program. Final environmental impact statement

    International Nuclear Information System (INIS)


    Under the Northwest Power Act, BPA is responsible for mitigating the loss of fish and wildlife habitat caused by the development of the Federal Columbia River Power System. BPA accomplishes this mitigation by funding projects consistent with those recommended by the Northwest Power Planning Council (Council). The projects are submitted to the Council from Indian tribes, state agencies property owners, private conservation groups, and Federal agencies. Future watershed management actions with potential environmental impacts are expected to include in-channel modifications and fish habitat enhancement structures; riparian restoration and other vegetation management techniques; agricultural management techniques for crop irrigation, animal facilities, and grazing; road, forest, urban area, and recreation management techniques; mining reclamation; and similar watershed conservation actions. BPA needs to ensure that individual watershed management projects are planned and carried out with appropriate consistency across projects, jurisdictions, and ecosystems, as well as over time

  8. Managing Forests for Water Quality: Streamside Management Zones


    Daniels, Barbara


    Throughout Utah, forestlands act as collectors of pure water. Much of Utah’s water supply originates in high elevation forested watersheds. These forests play a vital role in purifying and maintaining clean water for streams, lakes and groundwater.

  9. Cumulative watershed effects of fuel management in the western United States (United States)

    William J. Elliot; Ina Sue Miller; Lisa Audin


    Fire suppression in the last century has resulted in forests with excessive amounts of biomass, leading to more severe wildfires, covering greater areas, requiring more resources for suppression and mitigation, and causing increased onsite and offsite damage to forests and watersheds. Forest managers are now attempting to reduce this accumulated biomass by thinning,...

  10. Nitrogen Saturation in Highly Retentive Watersheds? (United States)

    Daley, M. L.; McDowell, W. H.


    Watershed managers are often concerned with minimizing the amount of N delivered to N-limited estuaries and coastal zones. A major concern is that watersheds might reach N saturation, in which N delivered to coastal zones increases due to declines in the efficiency of N retention despite constant or even reduced N inputs. We have quantified long-term changes in N inputs (atmospheric deposition, imported food and agricultural fertilizers), outputs (N concentration and export) and retention in the urbanizing Lamprey River watershed in coastal NH. Overall, the Lamprey watershed is 70% forested, receives about 13.5 kg N/ha/yr and has a high rate of annual N retention (85%). Atmospheric deposition (8.7 kg/ha/yr) is the largest N input to the watershed. Of the 2.2 kg N/ha/yr exported in the Lamprey River, dissolved organic N (DON) is the dominant form (50% of total) and it varies spatially throughout the watershed with wetland cover. Nitrate accounts for 30% of the N exported, shows a statistically significant increase from 1999 to 2009, and its spatial variability in both concentration and export is related to human population density. In sub-basins throughout the Lamprey, inorganic N retention is high (85-99%), but the efficiency of N retention declines sharply with increased human population density and associated anthropogenic N inputs. N assimilation in the vegetation, denitrification to the atmosphere and storage in the groundwater pool could all be important contributors to the current high rates of N retention. The temporal and spatial patterns that we have observed in nitrate concentration and export are driven by increases in N inputs and impervious surfaces over time, but the declining efficiency of N retention suggests that the watershed may also be reaching N saturation. The downstream receiving estuary, Great Bay, already suffers from low dissolved oxygen levels and eelgrass loss in part due to N loading from the Lamprey watershed. Targeting and reducing

  11. Wind River Watershed Restoration: 1999 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, Patrick J.


    This document represents work conducted as part of the Wind River Watershed Restoration Project during its first year of funding through the Bonneville Power Administration (BPA). The project is a comprehensive effort involving public and private entities seeking to restore water quality and fishery resources in the basin through cooperative actions. Project elements include coordination, watershed assessment, restoration, monitoring, and education. Entities involved with implementing project components are the Underwood Conservation District (UCD), USDA Forest Service (USFS), U.S. Geological Survey--Columbia River Research Lab (USGS-CRRL), and WA Department of Fish & Wildlife (WDFW). Following categories given in the FY1999 Statement of Work, the broad categories, the related objectives, and the entities associated with each objective (lead entity in boldface) were as follows: Coordination--Objective 1: Coordinate the Wind River watershed Action Committee (AC) and Technical Advisory Committee (TAC) to develop a prioritized list of watershed enhancement projects. Monitoring--Objective 2: Monitor natural production of juvenile, smolt, and adult steelhead in the Wind River subbasin. Objective 3: Evaluate physical habitat conditions in the Wind River subbasin. Assessment--Objective 4: Assess watershed health using an ecosystem-based diagnostic model that will provide the technical basis to prioritize out-year restoration projects. Restoration--Objective 5: Reduce road related sediment sources by reducing road densities to less than 2 miles per square mile. Objective 6: Rehabilitate riparian corridors, flood plains, and channel morphology to reduce maximum water temperatures to less than 61 F, to increase bank stability to greater than 90%, to reduce bankfull width to depth ratios to less than 30, and to provide natural levels of pools and cover for fish. Objective 7: Maintain and evaluate passage for adult and juvenile steelhead at artificial barriers. Education

  12. Recent findings related to measuring and modeling forest road erosion (United States)

    W. J. Elliot; R. B. Foltz; P. R. Robichaud


    Sediment is the greatest pollutant of forest streams. In the absence of wildfire, forest road networks are usually the main source of sediment in forest watersheds. An understanding of forest road erosion processes is important to aid in predicting sediment delivery from roads to streams. The flowpath followed by runoff is the key to understanding road erosion...

  13. Tracking nonpoint source nitrogen pollution in human-impacted watersheds (United States)

    Kaushal, Sujay S.; Groffman, Peter M; Band, Lawrence; Elliott, Emily M.; Shields, Catherine A.; Kendall, Carol


    Nonpoint source nitrogen (N) pollution is a leading contributor to U.S. water quality impairments. We combined watershed N mass balances and stable isotopes to investigate fate and transport of nonpoint N in forest, agricultural, and urbanized watersheds at the Baltimore Long-Term Ecological Research site. Annual N retention was 55%, 68%, and 82% for agricultural, suburban, and forest watersheds, respectively. Analysis of δ15N-NO3–, and δ18O-NO3– indicated wastewater was an important nitrate source in urbanized streams during baseflow. Negative correlations between δ15N-NO3– and δ18O-NO3– in urban watersheds indicated mixing between atmospheric deposition and wastewater, and N source contributions changed with storm magnitude (atmospheric sources contributed ∼50% at peak storm N loads). Positive correlations between δ15N-NO3– and δ18O-NO3– in watersheds suggested denitrification was removing septic system and agriculturally derived N, but N from belowground leaking sewers was less susceptible to denitrification. N transformations were also observed in a storm drain (no natural drainage network) potentially due to organic carbon inputs. Overall, nonpoint sources such as atmospheric deposition, wastewater, and fertilizer showed different susceptibility to watershed N export. There were large changes in nitrate sources as a function of runoff, and anticipating source changes in response to climate and storms will be critical for managing nonpoint N pollution.

  14. Tracking nonpoint source nitrogen pollution in human-impacted watersheds. (United States)

    Kaushal, Sujay S; Groffman, Peter M; Band, Lawrence E; Elliott, Emily M; Shields, Catherine A; Kendall, Carol


    Nonpoint source nitrogen (N) pollution is a leading contributor to U.S. water quality impairments. We combined watershed N mass balances and stable isotopes to investigate fate and transport of nonpoint N in forest, agricultural, and urbanized watersheds at the Baltimore Long-Term Ecological Research site. Annual N retention was 55%, 68%, and 82% for agricultural, suburban, and forest watersheds, respectively. Analysis of δ(15)N-NO(3)(-), and δ(18)O-NO(3)(-) indicated wastewater was an important nitrate source in urbanized streams during baseflow. Negative correlations between δ(15)N-NO(3)(-) and δ(18)O-NO(3)(-) in urban watersheds indicated mixing between atmospheric deposition and wastewater, and N source contributions changed with storm magnitude (atmospheric sources contributed ∼50% at peak storm N loads). Positive correlations between δ(15)N-NO(3)(-) and δ(18)O-NO(3)(-) in watersheds suggested denitrification was removing septic system and agriculturally derived N, but N from belowground leaking sewers was less susceptible to denitrification. N transformations were also observed in a storm drain (no natural drainage network) potentially due to organic carbon inputs. Overall, nonpoint sources such as atmospheric deposition, wastewater, and fertilizer showed different susceptibility to watershed N export. There were large changes in nitrate sources as a function of runoff, and anticipating source changes in response to climate and storms will be critical for managing nonpoint N pollution.

  15. Influences of forest and rangeland management on salmonid fishes and their habitats

    National Research Council Canada - National Science Library

    Meehan, William R


    Contents : Stream ecosystems - Salmonid distributions and life histories - Habitat requirements of salmonids in streams - Natural processes - Timber harvesting, silvicultrue and watershed processes - Forest...

  16. Watershed Adaptation Measures to Climate Change Impacts: A case of Kiha Watershed in Albertine Graben (United States)

    Zizinga, A.


    Watershed Adaptation Measures to Climate Change Impacts: A case of Kiha Watershed in Albertine GrabenAlex Zizinga1, Moses Tenywa2, Majaliwa Jackson Gilbert1, 1Makerere University, Department of Environmental Sciences, O Box 7062, Kampala, Uganda 1Makerere University, Department of Agricultural Production, P.O Box 7062, Kampala, Uganda Corresponding author: AbstractThe most pressing issues local communities in Uganda are facing result from land-use and land cover changes exacerbated by climate change impacts. A key issue is the documentation of land-cover changes visible with the ongoing clearance of remaining forests, bush-lands and wetlands for expanding farmland for sugarcane production, producing charcoal and collecting firewood for local distilleries using imported molasses. Decision-makers, resource managers, farmers and practitioners must build their capacity for adaptive measures. Here we present the potential impacts of climate change on watershed hydrological processes in the River Kiha Watershed, located in Western Uganda, Lake Albert Water Management Zone, by using social learning techniques incorporating water users, local stakeholders and researchers. The research team examined different farming and economic activities within the watershed to assess their impacts on catchment water resources, namely on water quality and discharge of river Kiha. We present the impacts of locally induced climate change, which are already manifested in increasing seasonal variability of rainfall. The study aims at answering questions posed by local communities and stakeholders about climate change and its effects on livelihood and key resources, specifically water and soils within the Kiha watershed. Key words: Climate change impacts, Social Learning and Watershed Management

  17. Forests on the edge: evaluating contributions of and threats to America's private forest lands (United States)

    Mark Hatfield; Ronald E. McRoberts; Dacia M. Meneguzzo; Mike Dechter; < i> et al< /i>


    The Forests on the Edge project, sponsored by the U.S. Department of Agriculture Forest Service, uses geographic information systems to construct and analyze maps depicting ecological, social, and economic contributions of America's private forest lands and threats to those contributions. Watersheds across the conterminous United States are ranked relative to the...

  18. Changing perceptions of watershed management from a retrospective viewpoint (United States)

    Daniel G. Neary


    Watershed management, an ancient concept, was defined in Vedic texts from India that date from 1,000 B.C. This concept has been an integral part of forest and rangeland management in North America throughout the 20th century, but its scope has broadened significantly. Although the Forest Reserve Act of 1891 created the reserves that were to become the core of the...

  19. Workshop to transfer VELMA watershed model results to ... (United States)

    An EPA Western Ecology Division (WED) watershed modeling team has been working with the Snoqualmie Tribe Environmental and Natural Resources Department to develop VELMA watershed model simulations of the effects of historical and future restoration and land use practices on streamflow, stream temperature, and other habitat characteristics affecting threatened salmon populations in the 100 square mile Tolt River watershed in Washington state. To date, the WED group has fully calibrated the watershed model to simulate Tolt River flows with a high degree of accuracy under current and historical conditions and practices, and is in the process of simulating long-term responses to specific watershed restoration practices conducted by the Snoqualmie Tribe and partners. On July 20-21 WED Researchers Bob McKane, Allen Brookes and ORISE Fellow Jonathan Halama will be attending a workshop at the Tolt River site in Carnation, WA, to present and discuss modeling results with the Snoqualmie Tribe and other Tolt River watershed stakeholders and land managers, including the Washington Departments of Ecology and Natural Resources, U.S. Forest Service, City of Seattle, King County, and representatives of the Northwest Indian Fisheries Commission. The workshop is being co-organized by the Snoqualmie Tribe, EPA Region 10 and WED. The purpose of this 2-day workshop is two-fold. First, on Day 1, the modeling team will perform its second site visit to the watershed, this time focus

  20. Nitrate in watersheds: straight from soils to streams? (United States)

    Sudduth, Elizabeth B.; Perakis, Steven S.; Bernhardt, Emily S.


    Human activities are rapidly increasing the global supply of reactive N and substantially altering the structure and hydrologic connectivity of managed ecosystems. There is long-standing recognition that N must be removed along hydrologic flowpaths from uplands to streams, yet it has proven difficult to assess the generality of this removal across ecosystem types, and whether these patterns are influenced by land-use change. To assess how well upland nitrate (NO3-) loss is reflected in stream export, we gathered information from >50 watershed biogeochemical studies that reported nitrate concentrations ([NO3-]) for stream water and for either upslope soil solution or groundwater NO3- to examine whether stream export of NO3- accurately reflects upland NO3- losses. In this dataset, soil solution and streamwater [NO3-] were correlated across 40 undisturbed forest watersheds, with streamwater [NO3-] typically half (median = 50%) soil solution [NO3-]. A similar relationship was seen in 10 disturbed forest watersheds. However, for 12 watersheds with significant agricultural or urban development, the intercept and slope were both significantly higher than the relationship seen in forest watersheds. Differences in concentration between soil solution or groundwater and stream water may be attributed to biological uptake, microbial processes including denitrification, and/or preferential flow routing. The results of this synthesis are consistent with the hypotheses that undisturbed watersheds have a significant capacity to remove nitrate after it passes below the rooting zone and that land use changes tend to alter the efficiency or the length of watershed flowpaths, leading to reductions in nitrate removal and increased stream nitrate concentrations.

  1. Comparison of the Spatiotemporal Variability of Temperature, Precipitation, and Maximum Daily Spring Flows in Two Watersheds in Quebec Characterized by Different Land Use

    Directory of Open Access Journals (Sweden)

    Ali A. Assani


    Full Text Available We compared the spatiotemporal variability of temperatures and precipitation with that of the magnitude and timing of maximum daily spring flows in the geographically adjacent L’Assomption River (agricultural and Matawin River (forested watersheds during the period from 1932 to 2013. With regard to spatial variability, fall, winter, and spring temperatures as well as total precipitation are higher in the agricultural watershed than in the forested one. The magnitude of maximum daily spring flows is also higher in the first watershed as compared with the second, owing to substantial runoff, given that the amount of snow that gives rise to these flows is not significantly different in the two watersheds. These flows occur early in the season in the agricultural watershed because of the relatively high temperatures. With regard to temporal variability, minimum temperatures increased over time in both watersheds. Maximum temperatures in the fall only increased in the agricultural watershed. The amount of spring rain increased over time in both watersheds, whereas total precipitation increased significantly in the agricultural watershed only. However, the amount of snow decreased in the forested watershed. The magnitude of maximum daily spring flows increased over time in the forested watershed.

  2. Effect of assessment scale on spatial and temporal variations in CH4, C02, and N20 fluxes in a forested wetland (United States)

    Zhaohua Dai; Carl Trettin; Changsheng Li; Harbin Li; Ge Sun; Devendra Amatya


    Emissions of methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O) from a forested watershed (160 ha) in South Carolina, USA, were estimated with a spatially explicit watershed-scale modeling framework that utilizes the spatial variations in physical and biogeochemical characteristics across watersheds. The target watershed (WS80) consisting of wetland (23%) and...

  3. History of watershed research in the Central Arizona Highlands (United States)

    Malchus B. Baker


    The Central Arizona Highlands have been the focus of a wide range of research efforts designed to learn more about the effects of natural and human induced disturbances on the functioning, processes, and components of the region's ecosystems. The watershed research spearheaded by the USDA Forest Service and its cooperators continues to lead to a comprehensive...

  4. An adaptive watershed management assessment based on watershed investigation data. (United States)

    Kang, Min Goo; Park, Seung Woo


    The aim of this study was to assess the states of watersheds in South Korea and to formulate new measures to improve identified inadequacies. The study focused on the watersheds of the Han River basin and adopted an adaptive watershed management framework. Using data collected during watershed investigation projects, we analyzed the management context of the study basin and identified weaknesses in water use management, flood management, and environmental and ecosystems management in the watersheds. In addition, we conducted an interview survey to obtain experts' opinions on the possible management of watersheds in the future. The results of the assessment show that effective management of the Han River basin requires adaptive watershed management, which includes stakeholders' participation and social learning. Urbanization was the key variable in watershed management of the study basin. The results provide strong guidance for future watershed management and suggest that nonstructural measures are preferred to improve the states of the watersheds and that consistent implementation of the measures can lead to successful watershed management. The results also reveal that governance is essential for adaptive watershed management in the study basin. A special ordinance is necessary to establish governance and aid social learning. Based on the findings, a management process is proposed to support new watershed management practices. The results will be of use to policy makers and practitioners who can implement the measures recommended here in the early stages of adaptive watershed management in the Han River basin. The measures can also be applied to other river basins.

  5. Relative reduction in annual soil loss in micro watersheds due to the relief and forest cover Redução relativa da perda de solo anual em microbacias hidrográficas em função do relevo e da cobertura florestal

    Directory of Open Access Journals (Sweden)

    Rafael Mingoti


    Full Text Available With the intense debate, in Brazil, between landowners and public agencies about the amount of area with forest cover needed in different regions, there is an increase of the need for provision of technical data used as a basis for decision making. One of the criteria to evaluate the effect of forest cover in protecting water resources is the soil loss, which leads to several consequences on the environment, including the silting of the rivers. Therefore, this study aimed to evaluate the reduction in the soil loss in micro watersheds with different reliefs, size and location of forest cover, in the Corumbataí River watershed, in the state of São Paulo, using the Revised Universal Soil Loss Equation (RUSLE in a GIS environment. For this study, 18 watersheds in three degrees of slope were selected, and 20 scenarios for land-use were established, by analyzing the influence of the PPA size, and the size and the location of the Legal Reserve. The results showed that: a the effect of forest cover in reducing annual soil loss varies depending on the average slope of the watershed; b the PPA width must be determined taking into account the slope of the watershed; c the Legal Reserve must be located along the PPA. These provide better results in reducing annual soil loss.Com a intensa discussão, no Brasil, entre proprietários e órgãos públicos sobre a quantidade de área com cobertura florestal necessária em diferentes biomas, ocorre o aumento da necessidade de disponibilização de dados técnicos que sirvam de embasamento para a tomada de decisões. Um dos critérios para se avaliar o efeito da cobertura florestal na proteção aos recursos hídricos é a perda de solo, que ocasiona diversas consequências no ambiente, entre as quais o assoreamento dos cursos d'água. Com isso, este trabalho teve como objetivo geral avaliar a redução na perda de solos em microbacias hidrográficas com diferentes relevos e diferentes tamanhos, e as localiza

  6. Stormwater Impaired Watersheds (United States)

    Vermont Center for Geographic Information — Stormwater impaired watersheds occuring on both the Priority Waters (Part D - Completed TMDL) and 303(d) list of waters (Part A - need TMDL) The Vermont State...

  7. Watershed Planning Basins (United States)

    Vermont Center for Geographic Information — The Watershed Planning Basin layer is part of a larger dataset contains administrative boundaries for Vermont's Agency of Natural Resources. The dataset includes...

  8. Healthy Watersheds Protection (United States)

    ... aquatic and riparian habitats in the longitudinal, lateral, vertical, and temporal dimensions helps ensure the flow of ... live there. A watershed – the land area that drains to a stream, lake or river – affects the ...

  9. Fecal Contamination in the Surface Waters of a Rural- and an Urban-Source Watershed

    DEFF Research Database (Denmark)

    Stea, Emma C.; Hansen, Lisbeth Truelstrup; Jamieson, Rob C.


    in each watershed) over 18 months. The human Bacteroidales marker (HF183) occurred in 9-10% of the water samples at nine sampling sites; while a forested site in the urban watershed tested negative. Ruminant/cow Bacteroidales markers (BacR and CowM2) only appeared in the rural watershed (6%). The mt......DNA markers (HcytB and AcytB) showed the same pattern but were less sensitive due to lower fecal concentrations. Higher prevalences (Purban watershed, respectively) and E. coli O157:H7 (12 vs. 3%) were observed in the rural watershed, while Salmonella...... and fecal marker concentrations in the waterways. The employment of multiple FST methods suggested failing onsite wastewater systems contribute to human fecal pollution in both watersheds....

  10. When Everything Changes: Mountaintop Mining Effects on Watershed Hydrology (United States)

    Nippgen, F.; Ross, M. R.; McGlynn, B. L.; Bernhardt, E. S.


    Mountaintop removal coal mining (MTM) in the Central Appalachians has expanded over the last 40 years to cover ~7% of this mountainous landscape. MTM operations remove mountaintops and ridges with explosives and machinery to access underlying coal seams. Much of this crushed rock overburden is subsequently deposited into nearby valleys, creating valley fills that often bury headwater streams. In contrast to other disturbances such as forest clear-cutting, perturbations from MTM can extend hundreds of meters deep into the critical zone and completely reshape landscapes. Despite the expansiveness and intensity of the disturbance, MTM has only recently begun to receive focused attention from the hydrologic community and the effect of MTM on the hydrology of impacted watersheds is still not well understood. We are using a two-pronged approach consisting of GIS analysis to quantify spoil volumes and landscape change, together with empirical analysis and modeling of rainfall and runoff data collected in two sets of paired watersheds. We seek to investigate how MTM affects basic hydrologic metrics, including storm peakflows, runoff response times, baseflow, statistics of flow duration curves, and longer-term water balances. Each pair consists of a mined and an unmined watershed; the first set contains headwater streams (size ~100ha), the second set consists of 3rd order streams, draining ~3500ha. Mining covers ~ 95% of the headwater watershed, and 40% of the 3rd-order watershed. Initial GIS analysis indicates that the overburden moved during the mining process could be up to three times greater than previously estimated. Storm runoff peaks in the mined watersheds were muted as compared to the unmined watersheds and runoff ratios were reduced by up to 75% during both wet and dry antecedent conditions. The natural reference watersheds were highly responsive while the additional storage in the mined watersheds led to decreased peak flows during storms and enhanced baseflow

  11. Sources, Transport, and Storage of Sediment at Selected Sites in the Chesapeake Bay Watershed (United States)

    Gellis, Allen C.; Hupp, Cliff R.; Pavich, Milan J.; Landwehr, Jurate M.; Banks, William S.L.; Hubbard, Bernard E.; Langland, Michael J.; Ritchie, Jerry C.; Reuter, Joanna M.


    The Chesapeake Bay Watershed covers 165,800 square kilometers and is supplied with water and sediment from five major physiographic provinces: Appalachian Plateau, Blue Ridge, Coastal Plain, Piedmont, and the Valley and Ridge. Suspended-sediment loads measured in the Chesapeake Bay Watershed showed that the Piedmont Physiographic Province has the highest rates of modern (20th Century) sediment yields, measured at U.S. Geological Survey streamflow-gaging stations, and the lowest rates of background or geologic rates of erosion (~10,000 years) measured with in situ beryllium-10. In the agricultural and urbanizing Little Conestoga Creek Watershed, a Piedmont watershed, sources of sediment using the 'sediment-fingerprinting' approach showed that streambanks were the most important source (63 percent), followed by cropland (37 percent). Cesium-137 inventories, which quantify erosion rates over a 40-year period, showed average cropland erosion of 19.39 megagrams per hectare per year in the Little Conestoga Creek Watershed. If this erosion rate is extrapolated to the 13 percent of the watershed that is in cropland, then cropland could contribute almost four times the measured suspended-sediment load transported out of the watershed (27,600 megagrams per hectare per year), indicating that much of the eroded sediment is being deposited in channel and upland storage. The Piedmont has had centuries of land-use change, from forest to agriculture, to suburban and urban areas, and in some areas, back to forest. These land-use changes mobilized a large percentage of sediment that was deposited in upland and channel storage, and behind thousands of mill dams. The effects of these land-use changes on erosion and sediment transport are still being observed today as stored sediment in streambanks is a source of sediment. Cropland is also an important source of sediment. The Coastal Plain Physiographic Province has had the lowest sediment yields in the 20th Century and with sandy

  12. 75 FR 11837 - Chesapeake Bay Watershed Initiative (United States)


    ... DEPARTMENT OF AGRICULTURE Commodity Credit Corporation Chesapeake Bay Watershed Initiative AGENCY...: Notice of availability of program funds for the Chesapeake Bay Watershed Initiative. SUMMARY: The... through the Chesapeake Bay Watershed Initiative for agricultural producers in the Chesapeake Bay watershed...

  13. Integrated Resource Management at a Watershed Scale (United States)

    Byrne, J. M.; MacDonald, R. J.; Cairns, D.; Barnes, C. C.; Mirmasoudi, S. S.; Lewis, D.


    Watershed hydrologists, managers and planners have a long list of resources to "manage." Our group has worked for over a decade to develop and apply the GENESYS (Generate Earth Systems Science) high-resolution spatial hydrometeorological model. GENESYS was intended for modelling of alpine snowpack, and that work has been the subject of a series of hydrometeorology papers that applied the model to evaluate how climate change may impact water resources for a series of climate warming scenarios through 2100. GENESYS has research modules that have been used to assess alpine glacier mass balance, soil water and drought, forest fire risk under climate change, and a series of papers linking GENESYS to a water temperature model for small headwater streams. Through a major commercialization grant, we are refining, building, adopting, and adapting routines for flood hydrology and hydraulics, surface and groundwater storage and runoff, crop and ecosystem soil water budgets, and biomass yields. The model will be available for research collaborations in the near future. The central goal of this development program is to provide a series of research and development tools for non-profit integrated resource management in the developed and developing world. A broader question that arises is what are the bounds of watershed management, if any? How long should our list of "managed" resources be? Parallel work is evaluating the relative values of watershed specialists managing many more resources with the watershed. Hydroelectric power is often a key resource complimentary to wind, solar and biomass renewable energy developments; and biomass energy is linked to water supply and agriculture. The August 2014 massive tailings dam failure in British Columbia threatens extensive portions of the Fraser River sockeye salmon run, millions of fish, and there are concerns about long-term contamination of water supplies for many British Columbians. This disaster, and many others that may occur

  14. Watershed controls on the export of large wood from stream corridors (United States)

    Fremier, Alexander K.; Seo, Jung Il; Nakamura, Futoshi


    Large wood maintains in-channel and floodplain habitats by influencing the biophysical character of the river corridor. Large wood dynamics in a river corridor are a product of watershed wide processes and also of local recruitment, transport, and storage. This complexity of scales added to the logistical constraints in taking measurements limits our understanding of large wood dynamics through the watershed. To begin to unravel this issue, we compiled a data set of the volume of large wood deposited annually into 131 reservoirs across Japan and compared large wood export to flow discharge and watershed characteristics (watershed size, latitude, channel slope, percent forest, and forest type). We found that large wood was predominately transported during peak flow events. Large wood export increased logarithmically with watershed area. The decreasing export rate of large wood per watershed area is interpreted as a combination of annual export variability in upper watersheds, a non-significant increase in large wood recruitment along the longitudinal gradient (potentially human influenced), the increase in long-term storage on adjacent large floodplains, and significant decay/fragmentation downstream. Watersheds < 10-20 km2 had a highly variable large wood export pattern, conforming generally to previously published work that suggest transport limitation in smaller watersheds. The data suggest the existence of an export threshold (∼ 75 km2) where large wood export is no longer related to watershed size. Export across all watershed sizes was controlled by watershed characteristics (slope, percent forested, etc.) and peak discharge events. The connection with upstream watersheds and laterally with the floodplain increases the net flux of large wood through downstream transport and retransport of buried logs. Identifying rates of large wood transport from watershed connectivity as a potential key input process will improve our basic understanding of geomorphic and

  15. Evapotranspiration sensitivity to air temperature across a snow-influenced watershed: Space-for-time substitution versus integrated watershed modeling (United States)

    Jepsen, S. M.; Harmon, T. C.; Ficklin, D. L.; Molotch, N. P.; Guan, B.


    Changes in long-term, montane actual evapotranspiration (ET) in response to climate change could impact future water supplies and forest species composition. For scenarios of atmospheric warming, predicted changes in long-term ET tend to differ between studies using space-for-time substitution (STS) models and integrated watershed models, and the influence of spatially varying factors on these differences is unclear. To examine this, we compared warming-induced (+2 to +6 °C) changes in ET simulated by an STS model and an integrated watershed model across zones of elevation, substrate available water capacity, and slope in the snow-influenced upper San Joaquin River watershed, Sierra Nevada, USA. We used the Soil Water and Assessment Tool (SWAT) for the watershed modeling and a Budyko-type relationship for the STS modeling. Spatially averaged increases in ET from the STS model increasingly surpassed those from the SWAT model in the higher elevation zones of the watershed, resulting in 2.3-2.6 times greater values from the STS model at the watershed scale. In sparse, deep colluvium or glacial soils on gentle slopes, the SWAT model produced ET increases exceeding those from the STS model. However, watershed areas associated with these conditions were too localized for SWAT to produce spatially averaged ET-gains comparable to the STS model. The SWAT model results nevertheless demonstrate that such soils on high-elevation, gentle slopes will form ET "hot spots" exhibiting disproportionately large increases in ET, and concomitant reductions in runoff yield, in response to warming. Predicted ET responses to warming from STS models and integrated watershed models may, in general, substantially differ (e.g., factor of 2-3) for snow-influenced watersheds exhibiting an elevational gradient in substrate water holding capacity and slope. Long-term water supplies in these settings may therefore be more resilient to warming than STS model predictions would suggest.

  16. Forests: a planetary treasure. (United States)

    Myers, N


    This article explores the real nature of tropical forests and outlines some of the damaging consequences of grand-scale deforestation. Forests are the main home of Earth's species. They cover only 6% of the planet's land surface, and 50% of them are tropical forests inhabited by possibly 70% and conceivably 90% of all species. Aside from their being a habitat, these forests contain plants that have been known to contribute to our health. Analgesics, antibiotics, contraceptives are some of the few byproducts of plants in tropical forests. In addition, tropical forests contribute environmental services even more valuable than the material goods they produce. Most significant of these are watershed services, wherein deforestation of upland catchments can lead to disruption of hydrological systems, causing year-round water flows in downstream areas to give way to flood-and-drought regimes. Moreover, forests have a role in carbon sinking and hence in mitigating global warming. Depletion of forests through deforestation as well as forest fires could lead to an increased rate of die-off in remaining forests in other parts of the world, plus a decline of biomass in other ecological zones such as grasslands.

  17. Effects of topographic features on postfire exposed mineral soil in small watersheds (United States)

    Mariana Dobre; Joan Q. Wu; William J. Elliot; Ina S. Miller; Theresa B. Jain


    Exposed mineral soil is an immediate result of forest fires with direct relevance on surface runoff and soil erosion. The goal of this study was to determine which topographic features influence the distribution of exposed mineral soil following wildfire in forested watersheds. In a field investigation 2 months after a simulated wildfire, ground cover was measured and...

  18. Watershed Central: A New Gateway to Watershed Information (United States)

    Many communities across the country struggle to find the right approaches, tools and data to in their watershed plans. EPA recently posted a new Web site called "Watershed Central, a “onestop" tool, to help watershed organizations and others find key resources to protect their ...

  19. Private forests, housing growth, and America’s water supply: A report from the Forests on the Edge and Forests to Faucets Projects (United States)

    M. H. Mockrin; R. L. Lilja; E. Weidner; S. M. Stein; M. A. Carr


    America’s private forests provide a vast array of public goods and services, including abundant, clean surface water. Forest loss and development can affect water quality and quantity when forests are removed and impervious surfaces, such as paved roads, spread across the landscape. We rank watersheds across the conterminous United States according to the contributions...

  20. A Knowledge-Based Information Management System for Watershed Analysis in the Pacific Northwest U.S. (United States)

    Keith Reynolds; Patrick Cunningham; Larry Bednar; Michael Saunders; Michael Foster; Richard Olson; Daniel Schmoldt; Donald Latham; Bruce Miller; John Steffenson


    The Pacific Northwest Research Station (USDA Forest Service) is developing a knowledge-based information management system to provide decision support for watershed analysis. The system includes: (1) a GIS interface that allows users to navigate graphically to specific provinces and watersheds and display a variety of themes (vegetation, streams, roads, topography, etc...

  1. Disentangling the response of streamflow to forest management and climate (United States)

    Dymond, S.; Miniat, C.; Bladon, K. D.; Keppeler, E.; Caldwell, P. V.


    Paired watershed studies have showcased the relationships between forests, management, and streamflow. However, classical analyses of paired-watershed studies have done little to disentangle the effects of management from overarching climatic signals, potentially masking the interaction between management and climate. Such approaches may confound our understanding of how forest management impacts streamflow. Here we use a 50-year record of streamflow and climate data from the Caspar Creek Experimental Watersheds (CCEW), California, USA to separate the effects of forest management and climate on streamflow. CCEW has two treatment watersheds that have been harvested in the past 50 years. We used a nonlinear mixed model to combine the pre-treatment relationship between streamflow and climate and the post-treatment relationship via an interaction between climate and management into one equation. Our results show that precipitation and potential evapotranspiration alone can account for >95% of the variability in pre-treatment streamflow. Including management scenarios into the model explained most of the variability in streamflow (R2 > 0.98). While forest harvesting altered streamflow in both of our modeled watersheds, removing 66% of the vegetation via selection logging using a tractor yarding system over the entire watershed had a more substantial impact on streamflow than clearcutting small portions of a watershed using cable-yarding. These results suggest that forest harvesting may result in differing impacts on streamflow and highlights the need to incorporate climate into streamflow analyses of paired-watershed studies.

  2. Forest loss and Borneo’s climate (United States)

    McAlpine, Clive A.; Johnson, Alex; Salazar, Alvaro; Syktus, Jozef; Wilson, Kerrie; Meijaard, Erik; Seabrook, Leonie; Dargusch, Paul; Nordin, Haziq; Sheil, Douglas


    The equatorial island of Borneo is a deforestation hotspot. However, the influence of forest loss on the island’s climate remains largely unexplored. Here, we examine how forest loss is related to changes in ground-based records of temperature (1961–2007) and precipitation (1951–2007), and MODIS data for temperature (2002–2016). Analyses were performed for the entire island, lowland areas (deforestation and changes in local climate was most pronounced for watersheds in southeast Borneo, which have lost 40%–75% of their forests since 1973. These watersheds also had a significantly higher frequency of temperatures above 31 °C. Watersheds in north and northwest Borneo, which have lost 5%–25% of their forest cover, maintained a more stable climate with a similar distribution of mean and extreme warm temperatures between forest and modified forest areas. Watersheds with >15% forest loss had a >15% reduction in rainfall. We conclude that loss of forest in Borneo has increased local daily temperatures and temperature extremes, and reduced daily precipitation.

  3. Hydrology of a natural hardwood forested wetland (United States)

    George M. Chescheir; Devendra M. Amatya; R. Wayne Skaggs


    This paper documents the hydrology of a natural forested wetland near Plymouth, NC, USA. The research site was located on one of the few remaining, undrained non-riverine, palustrine forested hardwood wetlands on the lower coastal plain of North Carolina. A 137 ha watershed within the 350ha wetland was selected for intensive field study. Water balance components...

  4. Experimental Watershed Study Designs: A Tool for Advancing Process Understanding and Management of Mixed-Land-Use Watersheds (United States)

    Hubbart, J. A.; Kellner, R. E.; Zeiger, S. J.


    Advancements in watershed management are both a major challenge, and urgent need of this century. The experimental watershed study (EWS) approach provides critical baseline and long-term information that can improve decision-making, and reduce misallocation of mitigation investments. Historically, the EWS approach was used in wildland watersheds to quantitatively characterize basic landscape alterations (e.g. forest harvest, road building). However, in recent years, EWS is being repurposed in contemporary multiple-land-use watersheds comprising a mosaic of land use practices such as urbanizing centers, industry, agriculture, and rural development. The EWS method provides scalable and transferrable results that address the uncertainties of development, while providing a scientific basis for total maximum daily load (TMDL) targets in increasing numbers of Clean Water Act 303(d) listed waters. Collaborative adaptive management (CAM) programs, designed to consider the needs of many stakeholders, can also benefit from EWS-generated information, which can be used for best decision making, and serve as a guidance tool throughout the CAM program duration. Of similar importance, long-term EWS monitoring programs create a model system to show stakeholders how investing in rigorous scientific research initiatives improves decision-making, thereby increasing management efficiencies through more focused investments. The evolution from classic wildland EWS designs to contemporary EWS designs in multiple-land-use watersheds will be presented while illustrating how such an approach can encourage innovation, cooperation, and trust among watershed stakeholders working to reach the common goal of improving and sustaining hydrologic regimes and water quality.

  5. Physiography, geology, and land cover of four watersheds in eastern Puerto Rico: Chapter A in Water quality and landscape processes of four watersheds in eastern Puerto Rico (United States)

    Murphy, Sheila F.; Stallard, Robert F.; Larsen, Matthew C.; Gould, William A.; Murphy, Sheila F.


    Four watersheds with differing geology and land cover in eastern Puerto Rico have been studied on a long-term basis by the U.S. Geological Survey to evaluate water, energy, and biogeochemical budgets. These watersheds are typical of tropical, island-arc settings found in many parts of the world. Two watersheds are located on coarse-grained granitic rocks that weather to quartz- and clay-rich, sandy soils, and two are located on fine-grained volcanic rocks and volcaniclastic sedimentary rocks that weather to quartz-poor, fine-grained soils. For each bedrock type, one watershed is covered with mature forest, and the other watershed, like most of Puerto Rico, has transformed from relatively undisturbed pre-European forest to intensive agriculture in the 19th and early 20th centuries, and further to ongoing reforestation that began in the middle of the 20th century. The comparison of water chemistry and hydrology in these watersheds allows an evaluation of the effects of land-use history and geology on hydrologic regimes and erosion rates. This chapter describes the physiography, geology, and land cover of the four watersheds and provides background information for the remaining chapters in this volume.

  6. Representation of regional urban development conditions using a watershed-based gradient study design (United States)

    Terziotti, Silvia; McMahon, Gerard; Bell, Amanda H.


    As part of the U.S. Geological Survey National Water-Quality Assessment Program, the effects of urbanization on stream ecosystems (EUSE) have been intensively investigated in nine metropolitan areas in the United States, including Boston, Massachusetts; Atlanta, Georgia; Birmingham, Alabama; Raleigh, North Carolina; Salt Lake City, Utah; Denver, Colorado; Dallas–Fort Worth, Texas; Portland, Oregon; and Milwaukee–Green Bay, Wisconsin. Each of the EUSE study area watersheds was associated with one ecological region of the United States. This report evaluates whether each metropolitan area can be generalized across the ecological regions (ecoregions) within which the EUSE study watersheds are located. Seven characteristics of the EUSE watersheds that affect stream ecosystems were examined to determine the similarities in the same seven characteristics of the watersheds in the entire ecoregion. Land cover (percentage developed, forest and shrubland, and herbaceous and cultivated classes), average annual temperature, average annual precipitation, average surface elevation, and average percentage slope were selected as human-influenced, climate, and topography characteristics. Three findings emerged from this comparison that have implications for the use of EUSE data in models used to predict stream ecosystem condition. One is that the predominant or "background" land-cover type (either forested or agricultural land) in each ecoregion also is the predominant land-cover type within the associated EUSE study watersheds. The second finding is that in all EUSE study areas, the watersheds account for the range of developed land conditions that exist in the corresponding ecoregion watersheds. However, six of the nine EUSE study area watersheds have significantly different distributions of developed land from the ecoregion watersheds. Finally, in seven of the nine EUSE/ecoregion comparisons, the distributions of the values of climate variables in the EUSE watersheds are

  7. Land Capability Evaluation of Upper Sekampung Watersheds

    Directory of Open Access Journals (Sweden)

    Irwan Sukri Banuwa


    Full Text Available Land degradation is a serious problem in the Upper Sekampung Watersheds. This is because the farmers cultivated in steep land to coffee crops without in adequate soil and water conservation practices. The land degradation is mostly caused by erosion. The erosion problem not only stripping the most fertile top soil and decreasing crop production, but also resulting problems in lowland. Therefore, the reorientation land management should be improved to produce agriculture sustainability. The first step is to evaluated land capability this area. The objectives of the research were evaluate land capability of Upper Sekampung Watersheds. The results showed that the Upper Sekampung Watersheds were dominated with class and subclass land capability of III-l2 about 17.630,51 ha (41,58%. All of the constrain for each land capability in this area is erosion hazard, especially land slope. From this research, cultivated land to coffee base crops were allowed in land capability II-l1.e1, III-l2, IV-l3, and VI-l4, with in adequate soil and water conservation practices. In contrary, the land capability of VII-l5 unsuitable for agriculture, they should be a nature or for conservation forest.

  8. Nutrient Cycling in Primary, Secondary Forests and Cocoa ...

    African Journals Online (AJOL)


    Abstract. Primary forest (reserved area), secondary forest and cocoa plantation land uses characterize uplands of Dwinyama watershed in Ghana within the dry semi-deciduous forest zone. The nutrients recycled in the land uses were studied through leaf litter fall, nutrient release, nutrient fluxes estimation and topsoil ...

  9. Combining fire and erosion modeling to target forest management activities (United States)

    William J. Elliot; Mary Ellen Miller; Nic Enstice


    Forests deliver a number of important ecosystem services including clean water. When forests are disturbed by wildfire, the timing, quantity and quality of runoff are altered. A modeling study was carried out in a forested watershed in California to determine the risk of wildfire, and the potential post-fire sediment delivery from approximately 6-ha hillslope polygons...

  10. Targeting forest management through fire and erosion modeling (United States)

    William J. Elliot; Mary Ellen Miller; Nic Enstice


    Forests deliver a number of important ecosystem services, including clean water. When forests are disturbed by wildfire, the timing, quantity and quality of runoff are altered. A modelling study was conducted in a forested watershed in California, USA, to determine the risk of wildfire, and the potential post-fire sediment delivery from ~4-ha hillslope polygons within...

  11. Characterization and evaluation of controls on post-fire streamflow response across western US watersheds (United States)

    Saxe, Samuel; Hogue, Terri S.; Hay, Lauren


    strongly influence response. Spearman correlation identified NDVI, aridity index, percent of a watershed's precipitation that falls as rain, and slope as being positively correlated with post-fire streamflow response. This metric also suggested a negative correlation between response and the soil erodibility factor, watershed area, and percent low burn severity. Regression models identified only moderate burn severity and watershed area as being consistently positively/negatively correlated, respectively, with response. The random forest model identified only slope and percent area burned as significant watershed parameters controlling response. Results will help inform post-fire runoff management decisions by helping to identify expected changes to flow regimes, as well as facilitate parameterization for model application in burned watersheds.

  12. Characterization and evaluation of controls on post-fire streamflow response across western US watersheds

    Directory of Open Access Journals (Sweden)

    S. Saxe


    other watershed factors strongly influence response. Spearman correlation identified NDVI, aridity index, percent of a watershed's precipitation that falls as rain, and slope as being positively correlated with post-fire streamflow response. This metric also suggested a negative correlation between response and the soil erodibility factor, watershed area, and percent low burn severity. Regression models identified only moderate burn severity and watershed area as being consistently positively/negatively correlated, respectively, with response. The random forest model identified only slope and percent area burned as significant watershed parameters controlling response. Results will help inform post-fire runoff management decisions by helping to identify expected changes to flow regimes, as well as facilitate parameterization for model application in burned watersheds.

  13. In Land of Cypress and Pine: An Environmental History of the Santee Experimental Forest, 1683-1937 (United States)

    Hayden R. Smith


    The Santee Experimental Forest is a 6,100-acre research facility located within the Francis Marion National Forest, SC. Situated within the Huger Creek watershed in the headwaters of the East Branch of the Cooper River, the Santee Experimental Forest supports research in forest ecology, silviculture, prescribed fire, forest hydrology, ecosystem restoration, and...

  14. Fundamentals of watershed hydrology (United States)

    Pamela J. Edwards; Karl W.J. Williard; Jon E. Schoonover


    This is a primer about hydrology, the science of water. Watersheds are the basic land unit for water resource management and their delineation, importance, and variation are explained and illustrated. The hydrologic cycle and its components (precipitation, evaporation, transpiration, soil water, groundwater, and streamflow) which collectively provide a foundation for...

  15. Watersheds in disordered media

    Directory of Open Access Journals (Sweden)

    José S. Andrade Jr.


    Full Text Available What is the best way to divide a rugged landscape? Since ancient times, watershedsseparating adjacent water systems that flow, for example, toward different seas, have beenused to delimit boundaries. Interestingly, serious and even tense border disputes betweencountries have relied on the subtle geometrical properties of these tortuous lines. For instance,slight and even anthropogenic modifications of landscapes can produce large changes in awatershed, and the effects can be highly nonlocal. Although the watershed concept arisesnaturally in geomorphology, where it plays a fundamental role in water management, landslide,and flood prevention, it also has important applications in seemingly unrelated fields suchas image processing and medicine. Despite the far-reaching consequences of the scalingproperties on watershed-related hydrological and political issues, it was only recently that a moreprofound and revealing connection has been disclosed between the concept of watershed andstatistical physics of disordered systems. This review initially surveys the origin and definition of awatershed line in a geomorphological framework to subsequently introduce its basic geometricaland physical properties. Results on statistical properties of watersheds obtained from artificialmodel landscapes generated with long-range correlations are presented and shown to be ingood qualitative and quantitative agreement with real landscapes.


    The Automated Geospatial Watershed Assessment tool (AGWA) is a GIS interface jointly developed by the USDA Agricultural Research Service, the U.S. Environmental Protection Agency, the University of Arizona, and the University of Wyoming to automate the parameterization and execution of the Soil Water Assessment Tool (SWAT) and KINEmatic Runoff and EROSion (KINEROS2) hydrologic models. The application of these two models allows AGWA to conduct hydrologic modeling and watershed assessments at multiple temporal and spatial scales. AGWA’s current outputs are runoff (volumes and peaks) and sediment yield, plus nitrogen and phosphorus with the SWAT model. AGWA uses commonly available GIS data layers to fully parameterize, execute, and visualize results from both models. Through an intuitive interface the user selects an outlet from which AGWA delineates and discretizes the watershed using a Digital Elevation Model (DEM) based on the individual model requirements. The watershed model elements are then intersected with soils and land cover data layers to derive the requisite model input parameters. The chosen model is then executed, and the results are imported back into AGWA for visualization. This allows managers to identify potential problem areas where additional monitoring can be undertaken or mitigation activities can be focused. AGWA also has tools to apply an array of best management practices. There are currently two versions of AGWA available; AGWA 1.5 for

  17. Allegheny County Watershed Boundaries (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates the 52 isolated sub-Watersheds of Allegheny County that drain to single point on the main stem rivers. Created by 3 Rivers 2nd Nature based...

  18. Land Use Planning of Way Betung Watershed for Sustainable Water Resources Development of Bandar Lampung City

    Directory of Open Access Journals (Sweden)

    Bunasor Sanim


    Full Text Available Way Betung watershed is one of the important water resources in Lampung Province and it provides a clean water for Bandar Lampung City through a regional water supply company (PDAM. By the increase of population and economical activities of Bandar Lampung City, the need of clean water also increase, however by the time, the conditions of Way Betung watershed as water resources are declining. Therefore, to improve or to restore Way Betung watershed, a high cost is needed. The research was aimed: (a to study the effects of Way Betung watershed land use change on the water resources of Bandar Lampung City, (b to arrange the sustainable development of Way Betung watershed in order to maintain the availability of water resources. The sustainable developments of water resources of Way Betung watershed were arranged in five alternatives/scenarios and each alternative was related to its erosion (USLE method and its run off volume (SCS method. The results showed that land use changes of Way Betung watershed (1991-2006 were likely to increase daily maximum discharge (Q max, to decrease daily minimum discharge (Q min, to increase fluctuation of river discharge, and to increase yearly run off coeffcient. The best sustainable development of water resources of Way Betung watershed, Lampung Province, was alternative/scenario-4 (forest as 30% of watershed areas + alley cropping in the mix garden. This alternative will decrease erosion to the level lower than tolerable soil loss and also decrease fluctuation of monthly run off.

  19. Significant alteration of Critical Zone processes in urban watersheds: shifting from a transport-limited to a weathering-limited regime (United States)

    Moore, J.; Bird, D. L.; Dobbis, S. K.; Woodward, G.


    Urban areas and associated impervious surface cover (ISC) are among the fastest growing land use types. Rapid growth of urban lands has significant implications for geochemical cycling and solute sources to streams, estuaries, and coastal waters. However, little work has been done to investigate the impacts of urbanization on Critical Processes, including on the export of solutes from urban watersheds. Despite observed elevated solute concentrations in urban streams in some previous studies, neither solute sources nor total solute fluxes have been quantified due to mixed bedrock geology, lack of a forested reference watershed, or the presence of point sources that confounded separation of anthropologic and natural sources. We investigated the geochemical signal of the urban built environment (e.g., roads, parking lots, buildings) in a set of five USGS-gaged watersheds across a rural (forested) to urban gradient in the Maryland Piedmont. These watersheds have ISC ranging from 0 to 25%, no point sources, and similar felsic bedrock chemistry. Weathering from the urban built environment and ISC produces dramatically higher solute concentrations in urban watersheds than in the forested watershed. Higher solute concentrations result in chemical weathering fluxes from urban watersheds that are 11-13 times higher than the forested watershed and are similar to fluxes from mountainous, weathering-limited watersheds rather than fluxes from transport-limited, dilute streams like the forested watershed. Weathering of concrete in urban watersheds produces geochemistry similar to weathering-limited watersheds with high concentrations of Ca2+, Mg2+, and DIC, which is similar to stream chemistry due to carbonate weathering. Road salt dissolution results in high Na+ and Cl- concentrations similar to evaporite weathering. Quantifying processes causing elevated solute fluxes from urban areas is essential to understanding cycling of Ca2+, Mg2+, and DIC in urban streams and in

  20. Chapter 6: Incorporating rural community characteristics into forest management decisions (United States)

    Mindy S. Crandall; Jane L. Harrison; Claire A. Montgomery


    As part of the Integrated Landscape Assessment Project, we developed a methodology for managers to include potential community benefits when considering forest management treatments. To do this, we created a watershed impact score that scores each watershed (potential source of wood material) with respect to the communities that are likely to benefit from increased...

  1. Evolution of soil, ecosystem, and critical zone research at the USDA FS Calhoun Experimental Forest (United States)

    Daniel deB. Richter; Allan R. Bacon; Sharon A. Billings; Dan Binkley; Marilyn Buford; Mac Callaham; Amy E. Curry; Ryan L. Fimmen; A. Stuart Grandy; Paul R. Heine; Michael Hofmockel; Jason A. Jackson; Elisabeth LeMaster; Jianwei Li; Daniel Markewitz; Megan L. Mobley; Mary W. Morrison; Michael S. Strickland; Thomas Waldrop; Carol G. Wells


    The US Department of Agriculture (USDA) Forest Service Calhoun Experimental Forest was organized in 1947 on the southern Piedmont to engage in research that today is called restoration ecology, to improve soils, forests, and watersheds in a region that had been severely degraded by nearly 150 years farming. Today, this 2,050-ha research forest is managed by the Sumter...

  2. 2008 USDA Forest Service Lidar: Sandy River Study Area (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. collected Light Detection and Ranging (LiDAR) data for the Sandy River study area in collaboration with the USDA Forest Service. The areas...

  3. Ecosystem services of human-dominated watersheds and land use influences: a case study from the Dianchi Lake watershed in China. (United States)

    Hou, Ying; Li, Bo; Müller, Felix; Chen, Weiping


    Watersheds provide multiple ecosystem services. Ecosystem service assessment is a promising approach to investigate human-environment interaction at the watershed scale. The spatial characteristics of ecosystem services are closely related to land use statuses in human-dominated watersheds. This study aims to investigate the effects of land use on the spatial variations of ecosystem services at the Dianchi Lake watershed in Southwest China. We investigated the spatial variations of six ecosystem services-food supply, net primary productivity (NPP), habitat quality, evapotranspiration, water yield, and nitrogen retention. These services were selected based on their significance at the Dianchi Lake watershed and the availability of their data. The quantification of these services was based on modeling, value transference, and spatial analysis in combination with biophysical and socioeconomic data. Furthermore, we calculated the values of ecosystem services provided by different land use types and quantified the correlations between ecosystem service values and land use area proportions. The results show considerable spatial variations in the six ecosystem services associated with land use influences in the Dianchi Lake watershed. The cropland and forest land use types had predominantly positive influences on food productivity and NPP, respectively. The rural residential area and forest land use types reduced and enhanced habitat quality, respectively; these influences were identical to those of evapotranspiration. Urban area and rural residential area exerted significantly positive influences on water yield. In contrast, water yield was negatively correlated with forest area proportion. Finally, cropland and forest had significantly positive and negative influences, respectively, on nitrogen retention. Our study emphasizes the importance of consideration of the influences from land use composition and distribution on ecosystem services for managing the ecosystems of

  4. 76 FR 18713 - Malheur National Forest; Oregon; Malheur National Forest Site-Specific Invasive Plants Treatment... (United States)


    ... species that currently are not found on the Forest. Treatment could be anywhere on Forest Service system.... Electronic comments in acceptable plain text (.txt), rich text (.rtf), or Word (.doc) may be submitted to... wildlife habitat, out-compete native plants, impair water quality and watershed health, and adversely...

  5. 76 FR 51936 - Coconino and Kaibab National Forests, Arizona, Four-Forest Restoration Initiative (United States)


    ... and Tusayan districts. The objective of the project is to re-establish forest structure, pattern and... habitat, soil productivity, and watershed function. DATES: Comments concerning the scope of the analysis... structure, density, and ecological function. Most pine forests in the Southwest are at much higher risk of...

  6. Forests and water: effects of forest management on floods, sedimentation, and water supply (United States)

    Henry W. Anderson; Marvin D. Hoover; Kenneth G. Reinhart


    From the background of more than 100 years' collective experience in watershed research and from comprehensive review of the literature of forest hydrology, the authors summarize what is known about the forest's influence on the water resource, particularly the effects of current forestry practices. They first examine the fundamental hydrologic processes in...

  7. Modelling the hydrologic response of a mesoscale Andean watershed to changes in land use patterns for environmental planning (United States)

    Stehr, A.; Aguayo, M.; Link, O.; Parra, O.; Romero, F.; Alcayaga, H.


    A multidisciplinary approach is followed for analysis of the effect of changes in land use patterns on the hydrologic response of the Vergara watershed (4340 km2) located in central Chile. Probable future land use scenarios were generated using heuristic rules and logistic regression models, in order to identify and represent the main pressure on the watershed, namely forestation of extensive areas used for agriculture with rapid growing exotic species. The hydrologic response of the watershed was computed with a physically based distributed precipitation-runoff model, which was calibrated and validated for the current period. Results show that mean annual discharge increase with agricultural land use and diminish with introduced forest coverage. Thus, forestation of areas with introduced species like Pinus radiata and Eucalyptus globulus might be regulated in order to protect the water resources of the watershed.

  8. Mapeamento dos fragmentos de vegetação florestal nativa da bacia hidrográfica do rio Alegre, Espírito Santo, a partir de imagens do satélite IKONOS II Native forest fragmentation mapping of the Alegre river watershed, Espirito Santo State, Brazil, using IKONOS II data

    Directory of Open Access Journals (Sweden)

    Melchior Carlos do Nascimento


    Full Text Available O estudo teve como objetivos elaborar o mapa de uso da terra e diagnosticar, em nível de paisagem, os fragmentos de vegetação florestal nativa por meio da classificação visual da imagem do satélite IKONOS II. A pesquisa foi desenvolvida na bacia hidrográfica do rio Alegre, situada no extremo sul do Estado do Espírito Santo, Brasil. Foram mapeadas 12 classes de uso da terra, destacando-se 475 fragmentos florestais. As classes cafezal (2.086,2 ha, pastagem (14.130,1 ha e fragmento florestal (2.978,9 ha ocuparam 92,16% (19.195,2 ha da área total da bacia, que é de 20.819,8 ha. A maioria dos fragmentos florestais possui formas fortemente alongadas e área média de 6,3 ha. Também se constatou que a maior parte está sujeita a um elevado nível de perturbação, com 452 e 166 fragmentos florestais vizinhos às classes pastagem e cafezal, respectivamente.The main objective of this study was to create land use and diagnosis maps, at landscape level, of the native forest fragmentation through visual classification using IKONOS II data. The study was conducted in the river Alegre watershed, situated in the south region of State of Espirito Santo, Brazil. Twelve land use classes were mapped, pointing out 475 forest fragments. The classes of coffee plantation (2,086.2 ha, pasture (14,130.1 ha and forest fragmentation (2,978.9 ha occupied 92.16% (19,195.2 ha of the total study area, which was about 20,819.8 ha. The majority of the forest fragments presented strongly elongated shapes, with an average of 6.3 ha. It was also noticed that most of them presented a high level of disturbance, with 452 and 166 forest fragments neighboring the pasture and coffee plantation classes, respectively.

  9. Social-ecological Resilience of a Nuosu Community-linked Watershed, Southwest Sichuan, China

    Directory of Open Access Journals (Sweden)

    Lauren S. Urgenson


    Full Text Available Farmers of the Nuosu Yi ethnic group in the Upper Baiwu watershed report reductions in the availability of local forest resources. A team of interdisciplinary scientists worked in partnership with this community to assess the type and extent of social-ecological change in the watershed and to identify key drivers of those changes. Here, we combine a framework for institutional analysis with resilience concepts to assess system dynamics and interactions among resource users, resources, and institutions over the past century. The current state of this system reflects a legacy of past responses to institutional disturbances initiated at the larger, national system scale. Beginning with the Communist Revolution in 1957 and continuing through the next two decades, centralized forest regulations imposed a mismatch between the scale of management and the scale of the ecological processes being managed. A newly implemented forest property rights policy is shifting greater control over the management of forest resources to individuals in rural communities. Collective forest users will be allowed to manage commodity forests for profit through the transfer of long-term leases to private contractors. Villagers are seeking guidance on how to develop sustainable and resilient forest management practices under the new policy, a responsibility returned to them after half a century and with less abundant and fewer natural resources, a larger and aggregated population, and greater influence from external forces. We assess the watershed's current state in light of the past and identify future opportunities to strengthen local institutions for governance of forest resources.

  10. Adaptive Management Fitness of Watersheds

    Directory of Open Access Journals (Sweden)

    Ignacio Porzecanski


    Full Text Available Adaptive management (AM promises to improve our ability to cope with the inherent uncertainties of managing complex dynamic systems such as watersheds. However, despite the increasing adherence and attempts at implementation, the AM approach is rarely successful in practice. A one-size-fits-all AM strategy fails because some watersheds are better positioned at the outset to succeed at AM than others. We introduce a diagnostic tool called the Index of Management Condition (IMC and apply it to twelve diverse watersheds in order to determine their AM "fitness"; that is, the degree to which favorable adaptive management conditions are in place in a watershed.

  11. Protect and Restore Red River Watershed, 2007-2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bransford, Stephanie [Nez Perce Tribe Fisheries/Watershed Program


    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. The Nez Perce Tribe (NPT) and the Nez Perce National Forest (NPNF) have formed a partnership in completing watershed restoration activities, and through this partnership more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Red River Watershed of the South Fork Clearwater River in 2001. Progress has been made in restoring the watershed through road decommissioning and culvert replacement. From completing a watershed assessment to two NEPA efforts and a final stream restoration design, we will begin the effort of restoring the mainstem channel of Red River to provide spawning and rearing habitat for anadromous and resident fish species. Roads have been surveyed and prioritized for removal or improvement as well as culverts being prioritized for replacement to accommodate fish passage throughout the watershed. Another major, and extremely, important component of this project is the Red River Meadow Conservation Easement. We have begun the process of pursuing a conservation easement on approximately 270 acres of prime meadow habitat (Red River runs through this meadow and is prime spawning and rearing habitat).

  12. Hydrologically sensitive areas: theory and application to Barigui river watershed, PR, Brazil

    Directory of Open Access Journals (Sweden)

    Irani dos Santos


    Full Text Available The concept of hydrologically sensitive area (HSA is discussed and applied to Barigui river watershed (58.5 km², located in Almirante Tamandaré city, Parana State, Brazil. The HSA is considered as the area of the watershed with a higher probability of reaching a soil saturation condition, and is, therefore, defined as the area that remains saturated for more than 30% of the time. The Topmodel was used to simulate the saturated zone dynamics in the watershed. The model assumes that the saturated zone dynamics can be obtained by hydrological similarity given by the spatial distribution of topographic index, based on the construction of the soil saturation probability in the watershed. The Topmodel showed good results in observed flow data, confirming a high performance in the meso-scale watersheds, with humid climate and smooth relief. The HSA's in the watershed totaling 17.1 km² or 27% of the total area. Considering the HSAs as those of interest for environmental preservation, an increase of 13.2 km² of the permanent preservation areas in the watershed was found according to the Forest Code (Law n° 4.771 / 69. It makes a total of 44% of the whole watershed environmentally important.

  13. TMDL for phosphorus and contributing factors in subtropical watersheds of southern China. (United States)

    Meng, Cen; Li, Yuyuan; Wang, Yi; Yang, Wen; Jiao, Junxia; Wang, Meihui; Zhang, Manyi; Li, Yong; Wu, Jinshui


    Water eutrophication, particularly that caused by phosphorus runoff, is of major concern in China due to the serious threats it poses to watershed environments. We investigated one forested and nine agricultural watersheds with areas of 9-5212 ha in a hilly region of Hunan Province in a subtropical region of southern China from 2010 to 2012 to study total phosphorus (TP) loads and contributing factors. The annual TP loads varied from 35.7 to 222.1 kg P km(-2) year(-1) among the different watersheds, with the rainy season of spring and summer accounting for 56.3-82.0% of TP loss. The highest total maximum daily load (TMDL, 0.5 kg P km(-2) day(-1)) and existing exported daily TP loads (DTPL, 1.8 kg P km(-2) day(-1)) were observed under high flow and moist flow conditions in the ten watersheds. However, the target daily reduction ratios for the DTPLs to reach the water quality standard of 0.05 mg P L(-1) varied little with flow condition in the stream but depended on the type of watershed, i.e., soil available phosphorous (SAP), cropland percentage, and mean shape index (SHMN) were notable factors for daily reduction rate (DRR) under high and moist flow conditions. Therefore, to protect the local watershed environments, watershed management approaches that include the regulation of livestock production are recommended as the most effective means of reducing P loads at the watershed scale in subtropical areas of southern China.

  14. Metal cycling within mountain pine beetle impacted watersheds of Keystone Gulch, Colorado (United States)

    Heil, E. M.; Navarre-Sitchler, A.; Wanty, R. B.


    Metal cycling in mountain watersheds may be altered due to rapid landscape changes. Previous studies have examined the impact of deforestation and wildfires, on the fate and transport of metals in watersheds. However, we have only begun to understand changes in metal cycling in watersheds impacted by the mountain pine beetle. Warming climates and extended droughts have enabled pine beetles to impact larger areas. In these areas tree death occurs an average of three years after the initial infestation. In this short period of time the trees stop transpiring, defoliate, and die. The rapid deposition of pine needles to the forest floor, and subsequent decomposition of the needles, increases organic carbon (OC) availability and release metals that are stored in the impacted watersheds. Consequently, both OC and metal fluxes into and through the beetle-infested watersheds may be larger than those in non-infested watersheds. Four watersheds along Keystone Gulch Rd., located in Keystone, CO, were chosen for soil, water, and needle sampling because of their similar bedrock, drainage area, tree density and type, aspect, and their varying degree of pine beetle infestation. Sequential extractions using simulated rainwater, MgCl2, and pyrophosphate (representing soil pore water, exchangeable fraction, and organically bound metals) were performed on the Keystone Gulch soil samples to develop a better understanding of the distribution of metals in soils. Samples were classified by degree of beetle impact within and between the watersheds. The most obvious differences in the soil extractions between the four watersheds were observed for aluminum and iron and to a slightly lesser extent copper and zinc. In general, aluminum, iron, and zinc concentrations were higher while copper concentrations were lower in soils from less beetle-impacted watersheds. Metal concentrations in stream waters will be evaluated in the context of metal mobility through and out of the watershed.

  15. Application of a distributed process-based hydrologic model to estimate the effects of forest road density on stormflows in the Southern Appalachians (United States)

    Salli F. Dymond; W. Michael Aust; Stephen P. Prisley; Mark H. Eisenbies; James M. Vose


    Managed forests have historically been linked to watershed protection and flood mitigation. Research indicates that forests can potentially minimize peak flows during storm events, yet the relationship between forests and flooding is complex. Forest roads, usually found in managed systems, can potentially magnify the effects of forest harvesting on water yields. The...

  16. Dual nitrate isotopes clarify the role of biological processing and hydrologic flow paths on nitrogen cycling in subtropical low-gradient watersheds (United States)

    Griffiths, Natalie A.; Jackson, C. Rhett; McDonnell, Jeffrey J.; Klaus, Julian; Du, Enhao; Bitew, Menberu M.


    Nitrogen (N) is an important nutrient as it often limits productivity but in excess can impair water quality. Most studies on watershed N cycling have occurred in upland forested catchments where snowmelt dominates N export; fewer studies have focused on low-relief watersheds that lack snow. We examined watershed N cycling in three adjacent, low-relief watersheds in the Upper Coastal Plain of the southeastern United States to better understand the role of hydrological flow paths and biological transformations of N at the watershed scale. Groundwater was the dominant source of nitrified N to stream water in two of the three watersheds, while atmospheric deposition comprised 28% of stream water nitrate in one watershed. The greater atmospheric contribution may have been due to the larger stream channel area relative to total watershed area or the dominance of shallow subsurface flow paths contributing to stream flow in this watershed. There was a positive relationship between temperature and stream water ammonium concentrations and a negative relationship between temperature and stream water nitrate concentrations in each watershed suggesting that N cycling processes (i.e., nitrification and denitrification) varied seasonally. However, there were no clear patterns in the importance of denitrification in different water pools possibly because a variety of factors (i.e., assimilatory uptake, dissimilatory uptake, and mixing) affected nitrate concentrations. Together, these results highlight the hydrological and biological controls on N cycling in low-gradient watersheds and variability in N delivery flow paths among adjacent watersheds with similar physical characteristics.

  17. Application of LiDAR data for hydrologic assessments of low-gradient coastal watershed drainage characteristics (United States)

    Devendra Amatya; Carl Trettin; Sudhanshu Panda; Herbert. Ssegane


    Documenting the recovery of hydrologic functions following perturbations of a landscape/watershed is important to address issues associated with land use change and ecosystem restoration. High resolution LiDAR data for the USDA Forest Service Santee Experimental Forest in coastal South Carolina,USA was used to delineate the remnant historical water management...

  18. Fish Assemblage Responses to Forest Cover (United States)

    Burcher, Chris L.; McTammany, Matthew E.; Benfield, E. Fred; Helfman, Gene S.


    We investigated whether fish assemblage structure in southern Appalachian streams differed with historical and contemporary forest cover. We compared fish assemblages in 2nd-4th order streams draining watersheds that had increased forest cover between 1950 and 1993 (i.e ., reforesting watersheds). We sampled fish in 50 m reaches during August 2001 and calculated catch-per-unit-effort (CPUE) by taxonomic, distributional, trophic, reproductive, and thermal metrics. We assigned streams to reforestation categories based on cluster analysis of years 1950 and 1993 near-stream forest cover. The relationship between forest cover and assemblage structure was assessed using analysis of variance to identify differences in fish CPUE in five forest cover categories. Streams contained 23 fish species representing six families, and taxa richness ranged from 1 to 13 at 30 stream sites. Streams with relatively low near-stream forest cover were different from streams having moderate to high near-stream forest cover in 1950 and 1993. Fish assemblages in streams having the lowest amount of forest cover (53-75%) were characterized by higher cosmopolitan, brood hider, detritivore/herbivore, intermediate habitat breadths, run-pool dweller, and warm water tolerant fish CPUE compared to streams with higher riparian forest cover. Our results suggest that fish assemblage’s structural and functional diversity and/or richness may be lower in streams having lower recent or past riparian forest cover compared to assemblages in streams having a high degree of near-stream forest cover.

  19. Sources of fine-grained sediment in the Linganore Creek watershed, Frederick and Carroll Counties, Maryland, 2008-10 (United States)

    Gellis, Allen C.; Noe, Gregory B.; Clune, John W.; Myers, Michael K.; Hupp, Cliff R.; Schenk, Edward R.; Schwarz, Gregory E.


    Sediment fingerprinting quantifies the delivery of fine-grained sediment from a watershed and sediment-budget measurements quantify the erosion and deposition of fine-grained sediment. Both approaches were used in the agricultural and forested 147-square-kilometer (km2) Linganore Creek watershed in Maryland from August 1, 2008 through December 31, 2010, to determine the sources of fine-grained (less than 63 microns) sediment, and the amount of fine-grained sediment eroded from and deposited on streambanks, flood plains, channel beds, and agricultural and forested uplands. Sediment-weighted results of sediment fingerprinting for 194 suspended-sediment samples collected during 36 storms indicate that streambanks contributed 52 percent of the annual fine-grained suspended-sediment load, agriculture (cropland and pasture) contributed 45 percent, and forests contributed 3 percent. Fifty-four percent of the Linganore Creek watershed is agriculture and 27 percent is forest.

  20. Modeling of phosphorus fluxes produced by wild fires at watershed scales. (United States)

    Matyjasik, M.; Hernandez, M.; Shaw, N.; Baker, M.; Fowles, M. T.; Cisney, T. A.; Jex, A. P.; Moisen, G.


    River runoff is one of the controlling processes in the terrestrial phosphorus cycle. Phosphorus is often a limiting factor in fresh water. One of the factors that has not been studied and modeled in detail is phosporus flux produced from forest wild fires. Phosphate released by weathering is quickly absorbed in soils. Forest wild fires expose barren soils to intensive erosion, thus releasing relatively large fluxes of phosphorus. Measurements from three control burn sites were used to correlate erosion with phosphorus fluxes. These results were used to model phosphorus fluxes from burned watersheds during a five year long period after fires occurred. Erosion in our model is simulated using a combination of two models: the WEPP (USDA Water Erosion Prediction Project) and the GeoWEPP (GIS-based Water Erosion Prediction Project). Erosion produced from forest disturbances is predicted for any watershed using hydrologic, soil, and meteorological data unique to the individual watersheds or individual slopes. The erosion results are modified for different textural soil classes and slope angles to model fluxes of phosphorus. The results of these models are calibrated using measured concentrations of phosphorus for three watersheds located in the Interior Western United States. The results will help the United States Forest Service manage phosporus fluxes in national forests.

  1. Alaska Index of Watershed Integrity (United States)

    The US Environmental Protection Agency’s (EPA) Index of Watershed Integrity (IWI) is used to calculate and visualize the status of natural watershed infrastructure that supports ecological processes (e.g., nutrient cycling) and services provided to society (e.g., subsistenc...

  2. Global perspective of watershed management (United States)

    Kenneth N. Brooks; Karlyn Eckman


    This paper discusses the role of watershed management in moving towards sustainable natural resource and agricultural development. Examples from 30 field projects and six training projects involving over 25 countries are presented to illustrate watershed management initiatives that have been implemented over the last half of the 20th century. The level of success has...

  3. Air Pollution and Watershed Research in the Central Sierra Nevada of California: Nitrogen and Ozone

    Directory of Open Access Journals (Sweden)

    Carolyn Hunsaker


    Full Text Available Maintaining healthy forests is the major objective for the Forest Service scientists and managers working for the U.S. Department of Agriculture. Air pollution, specifically ozone (O3 and nitrogenous (N air pollutants, may severely affect the health of forest ecosystems in the western U.S. Thus, the monitoring of air pollution concentration and deposition levels, as well as studies focused on understanding effects mechanisms, are essential for evaluation of risks associated with their presence. Such information is essential for development of proper management strategies for maintaining clean air, clean water, and healthy ecosystems on land managed by the Forest Service. We report on two years of research in the central Sierra Nevada of California, a semi-arid forest at elevations of 1100–2700 m. Information on O3 and N air pollutants is obtained from a network of 18 passive samplers. We relate the atmospheric N concentration to N concentrations in streams, shallow soil water, and bulk deposition collectors within the Kings River Experimental Watershed. This watershed also contains an intensive site that is part of a recent Forest Service effort to calculate critical loads for N, sulfur, and acidity to forest ecosystems. The passive sampler design allows for extensive spatial measurements while the watershed experiment provides intensive spatial data for future analysis of ecosystem processes.

  4. Influence of weather factors on moisture content of light fuels in forests of the northern Rocky Mountains (United States)

    George M. Jemison


    The necessity of forest-fire protection is generally recognized in the United Slates. The tremendous damage done by forest fires each year to valuable timber, watershed cover, forest range, wildlife, recreational facilities, and personal property has impressed upon the people the need for preventing and controlling forest fires so far as this is humanly possible.

  5. Wind River Watershed restoration: 1999 annual report; ANNUAL

    International Nuclear Information System (INIS)

    Connolly, Patrick J.


    This document represents work conducted as part of the Wind River Watershed Restoration Project during its first year of funding through the Bonneville Power Administration (BPA). The project is a comprehensive effort involving public and private entities seeking to restore water quality and fishery resources in the basin through cooperative actions. Project elements include coordination, watershed assessment, restoration, monitoring, and education. Entities involved with implementing project components are the Underwood Conservation District (UCD), USDA Forest Service (USFS), U.S. Geological Survey-Columbia River Research Lab (USGS-CRRL), and WA Department of Fish and Wildlife (WDFW). Following categories given in the FY1999 Statement of Work, the broad categories, the related objectives, and the entities associated with each objective (lead entity in boldface) were as follows: Coordination-Objective 1: Coordinate the Wind River watershed Action Committee (AC) and Technical Advisory Committee (TAC) to develop a prioritized list of watershed enhancement projects. Monitoring-Objective 2: Monitor natural production of juvenile, smolt, and adult steelhead in the Wind River subbasin. Objective 3: Evaluate physical habitat conditions in the Wind River subbasin. Assessment-Objective 4: Assess watershed health using an ecosystem-based diagnostic model that will provide the technical basis to prioritize out-year restoration projects. Restoration-Objective 5: Reduce road related sediment sources by reducing road densities to less than 2 miles per square mile. Objective 6: Rehabilitate riparian corridors, flood plains, and channel morphology to reduce maximum water temperatures to less than 61 F, to increase bank stability to greater than 90%, to reduce bankfull width to depth ratios to less than 30, and to provide natural levels of pools and cover for fish. Objective 7: Maintain and evaluate passage for adult and juvenile steelhead at artificial barriers. Education

  6. California's forest resources. Preliminary assessment

    Energy Technology Data Exchange (ETDEWEB)


    This Preliminary Assessment was prepared in response to the California Forest Resources Assessment and Policy Act of 1977 (FRAPA). This Act was passed to improve the information base upon which State resource administrators formulate forest policy. The Act provides for this report and a full assessment by 1987 and at five year intervals thereafter. Information is presented under the following chapter titles: introduction to the forest resources assessment program; the forest area: a general description; classifications of the forest lands; the watersheds; forest lands and the air resource; fish and wildlife resources; the forested rangelands; the wilderness; forest lands as a recreation resource; the timber resource; wood energy; forest lands and the mineral, fossil fuels, and geothermal energy resources; mathematically modeling California's forest lands; vegetation mapping using remote sensing technology; important forest resources legislation; and, State and cooperative State/Federal forestry programs. Twelve indexes, a bibliography, and glossary are included. (JGB)

  7. Uncertainty in future water supplies from forests: hydrologic effects of a changing forest landscape (United States)

    Jones, J. A.; Achterman, G. L.; Alexander, L. E.; Brooks, K. N.; Creed, I. F.; Ffolliott, P. F.; MacDonald, L.; Wemple, B. C.


    Forests account for 33 percent of the U.S. land area, process nearly two-thirds of the fresh water supply, and provide water to 40 percent of all municipalities or about 180 million people. Water supply management is becoming more difficult given the increasing demand for water, climate change, increasing development, changing forest ownership, and increasingly fragmented laws governing forest and watershed management. In 2006, the US National Research Council convened a study on the present understanding of forest hydrology, the hydrologic effects of a changing forest landscape, and research and management needs for sustaining water resources from forested landscapes. The committee concluded that while it is possible to generate short-term water yield increases by timber harvesting, there are a variety of reasons why active forest management has only limited potential to sustainably increase water supplies. These include the short-term nature of the increases in most environments, the timing of the increases, the need for downstream storage, and that continuing ground- based timber harvest can reduce water quality. At the same time, past and continuing changes in forest structure and management may be altering water supplies at the larger time and space scales that are of most interest to forest and water managers. These changes include the legacy of past forest management practices, particularly fire suppression and clearcutting; exurban sprawl, which permanently converts forest land to nonforest uses; effects of climate change on wildfires, insect outbreaks, forest structure, forest species composition, snowpack depth and snowmelt; road networks; and changes in forest land ownership. All of these changes have the potential to alter water quantity and quality from forests. Hence, the baseline conditions that have been used to estimate sustained water yields from forested watersheds may no longer be applicable. Stationarity also can no longer be assumed for the

  8. Effects of mountain tea plantations on nutrient cycling at upstream watersheds (United States)

    Lin, T.-C.; Shaner, P.-J. L.; Wang, L.-J.; Shih, Y.-T.; Wang, C.-P.; Huang, G.-H.; Huang, J.-C.


    The expansion of agriculture to rugged mountains can exacerbate negative impacts of agricultural activities on ecosystem function. In this study, we monitored streamwater and rainfall chemistry of mountain watersheds at the Feitsui Reservoir Watershed in northern Taiwan to examine the effects of agriculture on watershed nutrient cycling. We found that the greater the proportion of tea plantation cover, the higher the concentrations of fertilizer-associated ions (NO3-, K+) in streamwater of the four mountain watersheds examined; on the other hand, the concentrations of the ions that are rich in soils (SO42-, Ca2+, Mg2+) did not increase with the proportion of tea plantation cover, suggesting that agriculture enriched fertilizer-associated nutrients in streamwater. Of the two watersheds for which rainfall chemistry was available, the one with higher proportion of tea plantation cover had higher concentrations of ions in rainfall and retained less nitrogen in proportion to input compared to the more pristine watershed, suggesting that agriculture can influence atmospheric deposition of nutrients and a system's ability to retain nutrients. As expected, we found that a forested watershed downstream of agricultural activities can dilute the concentrations of NO3- in streamwater by more than 70 %, indicating that such a landscape configuration helps mitigate nutrient enrichment in aquatic systems even for watersheds with steep topography. We estimated that tea plantation at our study site contributed approximately 450 kg ha-1 yr-1 of NO3-N via streamwater, an order of magnitude greater than previously reported for agricultural lands around the globe, which can only be matched by areas under intense fertilizer use. Furthermore, we constructed watershed N fluxes to show that excessive leaching of N, and additional loss to the atmosphere via volatilization and denitrification can occur under intense fertilizer use. In summary, this study demonstrated the pervasive impacts of

  9. Watershed-based survey designs (United States)

    Detenbeck, N.E.; Cincotta, D.; Denver, J.M.; Greenlee, S.K.; Olsen, A.R.; Pitchford, A.M.


    Watershed-based sampling design and assessment tools help serve the multiple goals for water quality monitoring required under the Clean Water Act, including assessment of regional conditions to meet Section 305(b), identification of impaired water bodies or watersheds to meet Section 303(d), and development of empirical relationships between causes or sources of impairment and biological responses. Creation of GIS databases for hydrography, hydrologically corrected digital elevation models, and hydrologic derivatives such as watershed boundaries and upstream–downstream topology of subcatchments would provide a consistent seamless nationwide framework for these designs. The elements of a watershed-based sample framework can be represented either as a continuous infinite set defined by points along a linear stream network, or as a discrete set of watershed polygons. Watershed-based designs can be developed with existing probabilistic survey methods, including the use of unequal probability weighting, stratification, and two-stage frames for sampling. Case studies for monitoring of Atlantic Coastal Plain streams, West Virginia wadeable streams, and coastal Oregon streams illustrate three different approaches for selecting sites for watershed-based survey designs.


    Directory of Open Access Journals (Sweden)

    Ana Paula Almeida Bertossi


    Full Text Available ABSTRACT The objective of this study was to evaluate the chemical and physical attributes of different soil cover in a Oxisol with a strong wavy relief in the Atlantic Forest Biome, in which were selected three watersheds, employed with grazing (watershed P, forest (watershed M and coffee (watershed C. Deformed and not deformed samples were collected in three depths for physical and chemical characterization. The chemical characteristics of soil in different watershed studies presented low levels of fertility. It was observed an elevation of pH in the soil and contents of Ca2+ and Mg2+ in the watersheds P and C in relation to the watershed M. Due to deforestation and the establishment of agriculture and livestock, there was a decrease in the contents of soil organic matter in the watershed P and C, not altering the physical characteristics of the soil in the watershed P. The implementation of coffee plantation is causing a reduction in the soil quality of watershed C in comparison to the watershed P and M, therefore indicating a need to adequate soil management in this area.

  11. Urbanization-driven hydrological process change in Conestoga River watershed in Lancaster of Pennsylvania (United States)

    Shu, L.; Duffy, C.


    The Conestoga River watershed underwent rapidly urbanization process due to population exploding in Lancaster County of Pennsylvania during past decades. During urbanization, soil properties, surface water availability, radiation, vegetation cover and evapotranspiration are altered dramatically. The objective of this study is to investigate the effects of urbanization on hydrological characteristics in a watershed in Lancaster County, PA, which used to be covered by forest and rural area. PIHM (Penn State Integrated Hydrological Model) with the benefit of data support of HydroTerre simulates the effects of urbanization. Two scenarios of rural and urbanized watershed are simulated in PIHM respectively. Parameters in PIHM are calibrated within each land-use condition separately. Comparison of streamflow characteristics of two scenarios indicates the influences of urbanization on water balance, soil water storage, mean discharge and peak discharge of the watershed. This research is useful for urban studies and planning and flood control as well.

  12. Dynamic Processes of Large Wood and Their Effects on Fluvial Export at the Watershed Scale (United States)

    Seo, J.; Nakamura, F.; Chun, K.


    The presence of large wood (LW) has a pronounced impact on the geomorphic and ecological character of river corridors, yet relatively little is known about the patterns and processes at the watershed scale. To understand these patterns we monitored the volumetric input of LW into 131 reservoirs and a suite of watershed characteristics. Of all geomorphic and hydrologic variables tested, watershed area was most important in explaining LW export. LW export per unit watershed area was relatively high in small watersheds, peaked in intermediate-sized watersheds and decreased in large watersheds. To explain these variations, we surveyed the amount of LW with respect to channel morphology in 78 segments (26 segments in each size class) in the Nukabira River, northern Japan, and examined the differences in LW dynamics, including its recruitment, transport, storage, and fragmentation and decay along the spectrum of watershed sizes. We found in small watersheds a larger proportion of LW produced by forest dynamics and hillslope processes was retained due to narrower valley floors and lower stream power. The retained LW pieces may eventually be exported during debris flows. In intermediate-sized watersheds the volume of LW pieces derived from hillslopes decreased substantially with reductions of proportion of channel length bordered by hillslope margins, which potentially deliver large quantities of LW. Because these channels have lower wood piece length to channel width ratios and higher stream power, LW pieces can be transported downstream. During transport, LW pieces are further fragmented and can be more easily transported; and therefore, the fluvial export of LW is maximized in intermediate-sized watersheds. Rivers in large watersheds, where the recruitment of LW is limited by the decreasing hillslope margins, cannot transport LW pieces because of their low stream power and thus LW pieces accumulate at various storage sites. Although these stored LW pieces can be re

  13. Wellspring characteristics in Rawapening watershed (United States)

    Hafidah, A. D.; Damayanti, A.; Waryono, T.


    Rawapening watershed is formed in a volcanic region and is the headwater of Tuntang River that disembogues into Rawa Pening Lake. Rawa Pening Lake was formed due to gravitational tectonic events that form many faults and folds. Those events result in aquifers that create many wellsprings in Rawapening watershed. This research is conducted to determine the wellsprings distribution based on physical characteristics of the discharge area and the types of wellsprings in Rawapening watershed. Associative and descriptive analysis are used to explain the wellsprings' condition based on height, slopeness, geological formation, and the soil utilization.

  14. Modeling soil erosion and transport on forest landscape (United States)

    Ge Sun; Steven G McNulty


    Century-long studies on the impacts of forest management in North America suggest sediment can cause major reduction on stream water quality. Soil erosion patterns in forest watersheds are patchy and heterogeneous. Therefore, patterns of soil erosion are difficult to model and predict. The objective of this study is to develop a user friendly management tool for land...

  15. Potential water yield reduction due to forestation across China (United States)

    Ge Sun; Guoyi Zhou; Zhiqiang Zhang; Xiaohua Wei; Steven G. McNulty; James M. Vose


    It is widely recognized that vegetation restoration will have positive effects on watershed health by reducing soil erosion and non-point source pollution, enhancing terrestrial and aquatic habitat, and increasing ecosystem carbon sequestration. However, the hydrologic consequences of forestation on degraded lands are not well studied in the forest hydrology community...

  16. Fifty years of forest hydrology in the Southeast (United States)

    C. Rhett Jackson; Ge Sun; Devendra Amatya; Wayne T. Swank; Mark Riedel; Jim Patric; Tom Williams; Jim M. Vose; Carl Trettin; W. Michael Aust; R. Scott Beasley; Hamlin Williston; George G. Ice


    The forests of the southeastern United States are incredibly valuable and diverse, both for timber production and for the aquatic habitat they provide. These overlapping values and diverse conditions have spawned numerous studies to assess how forest management affects hydrology and water quality. In the mountains, key watershed studies include those conducted at USDA...

  17. Establishing the Marcell Experimental Forest: Threads in time. Chapter 1. (United States)

    Elon S. Verry; Roger R. Bay; Don H. Boelter


    The Marcell Experimental Forest (MEF), carved out of northern Minnesota's aspen, pine, and swamp forests in 1959, turned 50 years old in 2009. Established to investigate the role of peatlands in the northern Lake States region, its instrumented watersheds include nutrient-poor bogs and nutrient-rich fens (organic-soil wetlands) along with glacial-till moraines and...

  18. Spatial complementarity of forests and farms: accounting for ecosystem services (United States)

    Subhrendu K. Pattanayak; David T. Butry


    Our article considers the economic contributions of forest ecosystem services, using a case study from Flores, Indonesia, in which forest protection in upstream watersheds stabilize soil and hydrological flows in downstream farms. We focus on the demand for a weak complement to the ecosystem services--farm labor-- and account for spatial dependence due to economic...

  19. Fourth annual Walker Branch Watershed research symposium: Program and abstracts

    International Nuclear Information System (INIS)


    The methods and concepts of watershed research, originally applied in an experimental or monitoring mode to relatively small catchments, are increasingly being used at larger scales and for specific applied problems. Research at Oak Ridge National Laboratory, the Tennessee Valley Authority, the US Forest Service, and other agencies and institutions participating in this symposium reflects research over a broad range of spatial scales that is being integrated through large-scale experiments along with computer modeling and graphical interfaces. These research projects address the basic atmospheric, geophysical, biogeochemical, and biological processes that regulate the responses of forested ecosystems to natural environmental variation and anthropogenic stresses. This symposium highlights the use of large-scale ecosystem experiments to address environmental issues of global concern. These experiments provide the only effective way to test models of ecosystem response that are based on the current state of knowledge of hydrology, biogeochemistry, plant physiology, and other ecosystem processes. Major environmental problems that are being addressed include acidic deposition and nitrogen loading (Bear Brook Watershed, Maine; and the Girdsjoen Covered Catchment, Sweden); climate warming (Soil Warming Experiment, Maine); and altered rainfall amounts (Savannah River Loblolly Pine Soil Water Manipulation and the Walker Branch Watershed Throughfall Displacement Experiment)

  20. Watershed Land Use and Seasonal Variation Constrain the ... (United States)

    While watershed and local scale controls on stream metabolism have been independently investigated, little is known about how controls exerted at these different scales interact to determine stream metabolic rates, or how these interactions vary across seasons. To address this knowledge gap, we measured ecosystem metabolism in four urban and four reference streams in northern Kentucky, USA, with paired closed and open riparian canopies, during each of the four seasons of the year. Gross primary production (GPP), ecosystem respiration (ER), and net ecosystem production (NEP) were all best predicted by models with season as a main effect, but interactions between season, canopy and watershed varied for each response. Urban streams exhibited higher GPP during most seasons, likely due to elevated nutrient loads. Open canopy reaches in both urban and forested streams supported higher rates of GPP than the closed canopy reaches during the summer and fall when the overhead vegetation shaded the closed reaches. Surprisingly, the effect of canopy cover on GPP was similar among urban and forested streams. The combination of watershed and local-scale controls resulted in urban streams that alternated between net heterotrophy (NEP 0) between seasons with and without dense canopy cover. This finding has management relevance because net production can lead to accumulation of algal biomass and associated issues like dissolved oxygen sags at night. Our study reinforces

  1. Variable Width Riparian Model Enhances Landscape and Watershed Condition (United States)

    Abood, S. A.; Spencer, L.


    Riparian areas are ecotones that represent about 1% of USFS administered landscape and contribute to numerous valuable ecosystem functions such as wildlife habitat, stream water quality and flows, bank stability and protection against erosion, and values related to diversity, aesthetics and recreation. Riparian zones capture the transitional area between terrestrial and aquatic ecosystems with specific vegetation and soil characteristics which provide critical values/functions and are very responsive to changes in land management activities and uses. Two staff areas at the US Forest Service have coordinated on a two phase project to support the National Forests in their planning revision efforts and to address rangeland riparian business needs at the Forest Plan and Allotment Management Plan levels. The first part of the project will include a national fine scale (USGS HUC-12 digits watersheds) inventory of riparian areas on National Forest Service lands in western United States with riparian land cover, utilizing GIS capabilities and open source geospatial data. The second part of the project will include the application of riparian land cover change and assessment based on selected indicators to assess and monitor riparian areas on annual/5-year cycle basis.This approach recognizes the dynamic and transitional nature of riparian areas by accounting for hydrologic, geomorphic and vegetation data as inputs into the delineation process. The results suggest that incorporating functional variable width riparian mapping within watershed management planning can improve riparian protection and restoration. The application of Riparian Buffer Delineation Model (RBDM) approach can provide the agency Watershed Condition Framework (WCF) with observed riparian area condition on an annual basis and on multiple scales. The use of this model to map moderate to low gradient systems of sufficient width in conjunction with an understanding of the influence of distinctive landscape

  2. Land Use-Land Cover dynamics of Huluka watershed, Central Rift Valley, Ethiopia

    Directory of Open Access Journals (Sweden)

    Hagos Gebreslassie


    Full Text Available Land Use-Land Cover (LULC dynamic has of human kind age and is one of the phenomenons which interweave the socio economic and environmental issues in Ethiopia. Huluka watershed is one of the watersheds in Central Rift Valley of Ethiopia which drains to Lake Langano. Few decades ago the stated watershed was covered with dense acacia forest. But, nowadays like other part of Ethiopia, it is experiencing complex dynamics of LULC. The aim of this research was thus to evaluate the LULC dynamics seen in between 1973–2009. This was achieved through collecting qualitative and quantitative data using Geographic Information System (GIS and Remote Sensing (RS technique. Field observations, discussion with elders were also employed to validate results from remotely sensed data. Based on the result, eight major dynamic LULC classes were identified from the watershed. Of these LULC classes, only cultivated and open lands had shown continuous and progressive expansion mainly at the expense of grass, shrub and forest lands. The 25% and 0% of cultivated and open land of the watershed in 1973 expanded to 84% and 4% in 2009 respectively while the 29%, 18% and 22% of grass, shrub and forest land of the watershed in 1973 degraded to 3.5%, 4% and 1.5% in 2009 respectively. As a result, land units which had been used for pastoralist before 1973 were identified under mixed agricultural system after 2000. In the end, this study came with a recommendation of an intervention of concerned body to stop the rapid degradation of vegetation on the watershed.

  3. Evaluating Hydrologic Response of an Agricultural Watershed for Watershed Analysis

    Directory of Open Access Journals (Sweden)

    Manoj Kumar Jha


    Full Text Available This paper describes the hydrological assessment of an agricultural watershed in the Midwestern United States through the use of a watershed scale hydrologic model. The Soil and Water Assessment Tool (SWAT model was applied to the Maquoketa River watershed, located in northeast Iowa, draining an agriculture intensive area of about 5,000 km2. The inputs to the model were obtained from the Environmental Protection Agency’s geographic information/database system called Better Assessment Science Integrating Point and Nonpoint Sources (BASINS. Meteorological input, including precipitation and temperature from six weather stations located in and around the watershed, and measured streamflow data at the watershed outlet, were used in the simulation. A sensitivity analysis was performed using an influence coefficient method to evaluate surface runoff and baseflow variations in response to changes in model input hydrologic parameters. The curve number, evaporation compensation factor, and soil available water capacity were found to be the most sensitive parameters among eight selected parameters. Model calibration, facilitated by the sensitivity analysis, was performed for the period 1988 through 1993, and validation was performed for 1982 through 1987. The model was found to explain at least 86% and 69% of the variability in the measured streamflow data for calibration and validation periods, respectively. This initial hydrologic assessment will facilitate future modeling applications using SWAT to the Maquoketa River watershed for various watershed analyses, including watershed assessment for water quality management, such as total maximum daily loads, impacts of land use and climate change, and impacts of alternate management practices.

  4. Values, Watersheds and Justification

    DEFF Research Database (Denmark)

    Wiberg, Katrina


    The aim of this paper is to articulate and present some arguments for the following main hypothesis concerning the handling of water (HOW) in the urban landscapes of our times of climate change. During industrialism water in urban areas to a very high degree was handled by ‘undergrounding......’ it in systems of water provision, sewagesystems etc. Under conditions of climate change this ‘undergrounding’ approach has shown its limitations. In extreme weather conditions water is ‘resurfacing’ which creates both problems and a new condition of HOW in urban landscapes. Problems of water cannot be ‘buried......’ anymore; they also have to be handled at surface levels. This has two interconnected implications: firstly, watersheds gains new importance for HOW at surface-levels, and secondly, such surfacing of water problems leads to a rise in the potential levels of value-disputes and conflicts of interest...

  5. Urbanization and the loss of resource lands in the chesapeake bay watershed. (United States)

    Jantz, Patrick; Goetz, Scott; Jantz, Claire


    We made use of land cover maps, and land use change associated with urbanization, to provide estimates of the loss of natural resource lands (forest, agriculture, and wetland areas) across the 168,000 km2 Chesapeake Bay watershed. We conducted extensive accuracy assessments of the satellite-derived maps, most of which were produced by us using widely available multitemporal Landsat imagery. The change in urbanization was derived from impervious surface area maps (the built environment) for 1990 and 2000, from which we estimated the loss of resource lands that occurred during this decade. Within the watershed, we observed a 61% increase in developed land (from 5,177 to 8,363 km2). Most of this new development (64%) occurred on agricultural and grasslands, whereas 33% occurred on forested land. Some smaller municipalities lost as much as 17% of their forest lands and 36% of their agricultural lands to development, although in the outlying counties losses ranged from 0% to 1.4% for forests and 0% to 2.6% for agriculture. Fast-growing urban areas surrounded by forested land experienced the most loss of forest to impervious surfaces. These estimates could be used for the monitoring of the impacts of development across the Chesapeake Bay watershed, and the approach has utility for other regions nationwide. In turn, the results and the approach can help jurisdictions set goals for resource land protection and acquisition that are consistent with regional restoration goals.

  6. Long-term stream chemistry monitoring on the fernow experiment forest: implications for sustainable management of hardwood forests (United States)

    Mary Beth Adams; James N. Kochenderfer


    Long-term monitoring of stream chemistry of forested watersheds on the Fernow Experimental Forest in West Virginia has been conducted to determine the effects of both human induced and natural disturbances on nutrient cycling and stream chemistry. We compare mean annual stream water pH, and nitrate (NO3), sulfate (SO4), and...

  7. Ecosystem processes at the watershed scale: mapping and modeling ecohydrological controls (United States)

    Lawrence E. Band; T. Hwang; T.C. Hales; James Vose; Chelcy. Ford


    Mountain watersheds are sources of a set of valuable ecosystem services as well as potential hazards. The former include high quality freshwater, carbon sequestration, nutrient retention, and biodiversity, whereas the latter include flash floods, landslides and forest fires. Each of these ecosystem services and hazards represents different elements of the integrated...

  8. Influences of watershed geomorphology on extent and composition of riparian vegetation (United States)

    Blake M. Engelhardt; Peter J. Weisberg; Jeanne C. Chambers


    Watershed (drainage basin) morphometry and geology were derived from digital data sets (DEMs and geologic maps). Riparian corridors were classified into five vegetation types (riparian forest, riparian shrub, wet/mesic meadow, dry meadow and shrub dry meadow) using high-resolution aerial photography. Regression and multivariate analyses were used to relate geomorphic...

  9. Precipitation Change and Soil Leaching: Field Results and Simulations from Walker Branch Watershed, Tennessee (United States)

    D.W. Johnson; P.J. Hanson; D.E. Todd; R.B. Susfalk; Carl C. Trettin


    Abstract. To investigate the potential effects of changing precipitation on a deciduous forest ecosystem, an experiment was established on Walker Branch Watershed, Tennessee that modified the amount of throughfall at 4 -33 %. ambient (no change), and +33 % using a system of rain gutters and sprinklers. We hypothesized that the drier treatments would...

  10. Statistically extracted fundamental watershed variables for estimating the loads of total nitrogen in small streams (United States)

    Kronholm, Scott C.; Capel, Paul D.; Terziotti, Silvia


    Accurate estimation of total nitrogen loads is essential for evaluating conditions in the aquatic environment. Extrapolation of estimates beyond measured streams will greatly expand our understanding of total nitrogen loading to streams. Recursive partitioning and random forest regression were used to assess 85 geospatial, environmental, and watershed variables across 636 small (monitoring may be beneficial.

  11. Riparian Restoration and Watershed Management: Some Examples from the California Coast (United States)

    Laurel Marcus


    Managing and restoring watersheds often involves recreation of riparian habitats. The natural functions of riparian forest natural to slow flood water, stabilize stream banks and trap sediments can be used in restoring disturbed creek systems. The State Coastal Conservancy's wetland enhancement program is preserving wetlands on the California coast through repair...

  12. Watershed management contributions to land stewardship: Case studies in the Southeast (United States)

    Wayne T. Swank; David R. Tilley


    We describe three examples of watershed management studies, at different spatial scales, that provide approaches and information useful in enhancing natural resource stewardship in the southern Appalachians. A multiple use “pilot” study, initiated 35 years ago at the Coweeta Hydrologic Laboratory, demonstrates that southern Appalachian forests can be successfully...

  13. Soil properties associated with net nitrification following watershed conversion with Appalachian hardwoods to Norway spruce (United States)

    Charlene N. Kelly; Stephen H. Schoenholtz; Mary Beth. Adams


    Nitrate (NO3-N) in soil solution and streamwater can be an important vector of nitrogen (N) loss from forested watersheds, and nitrification is associated with negative consequences of soil acidification and eutrophication of aquatic ecosystems. The purpose of this study was to identify vegetation-mediated soil properties that may control...

  14. Composition and design of vegetative filter strips instrumental in improving water quality by mass reduction of suspended sediment, nutrients andEscherichia coliin overland flows in eastern escarpment of Mau Forest, Njoro River Watershed, Kenya. (United States)

    Olilo, C O; Onyando, J O; Moturi, W N; Muia, A W; Roegner, Amber F; Ogari, Z; Ombui, P N; Shivoga, W A


    This study assessed the effect of vegetative filter strip (VFS) in removal of suspended sediment (SS), total nitrogen, total phosphorus and Escherichia coli ( E. coli ) in overland flow to improve receiving water quality standards. Four and half kilograms of cowpat manure was applied to the model pasture 14 m beyond the edge of vegetated filter strip (VFS) comprising 10-m Napier grass draining into 20-m Kikuyu grass (VFS II), 10-m Kikuyu grass draining into 20-m Napier grass (VFS III) and native grass mixture of Couch-Buffel (VFS I-control). Overland flow water samples were collected from the sites at positions 0, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 and 30 m along the length of VFSs. E. coli removal by Napier grass VFS was on the order of log unit, which provided an important level of protection and reduced surface-flow concentrations of E. coli to below the 200 (CFU 100 mL -1 ) recommended water quality standards, but not for nutrients and SS. The Napier grass showed highest efficiency (99.6 %), thus outperforming both Kikuyu grass (85.8 %) and Couch-Buffel grasses VFS (67.9 ± 4.2 %) in removing E. coli from overland flow. The low-level efficiency of native Couch-Buffel grasses in reducing E. coli in overland flow was because of preferential flow. Composition and design of VFS was instrumental and could be applied with a high potential of contracting the uncertainty in improving water quality standards through mass reduction of SS, nutrients and E. coli load in watersheds.

  15. 77 FR 13072 - Salmon-Challis National Forest, Butte, Custer and Lemhi Counties, ID, Supplemental Environmental... (United States)


    ... objective of minimizing damage to soil, watershed, vegetation, and other forest resources; harassment of... existing or proposed recreational uses of National Forest System lands or neighboring Federal lands; and conflicts among different classes of motor vehicle uses of National Forest System lands or neighboring...

  16. Long-term monitoring sites and trends at the Marcell Experimental Forest. Chapter 2. (United States)

    Stephen D. Sebestyen; Carrie Dorrance; Donna M. Olson; Elon S. Verry; Randall K. Kolka; Art E. Elling; Richard. Kyllander


    The MEF is one of few long-term research programs on the hydrology and ecology of undrained peatlands in boreal forests. No other site in the Experimental Forest and Range Network of the Forest Service and few sites around the globe have studied the hydrology and biogeochemistry of peatland watersheds with the intensity or longevity as on the MEF. In this chapter, we...

  17. Adapting the Water Erosion Prediction Project (WEPP) model for forest applications (United States)

    Shuhui Dun; Joan Q. Wu; William J. Elliot; Peter R. Robichaud; Dennis C. Flanagan; James R. Frankenberger; Robert E. Brown; Arthur C. Xu


    There has been an increasing public concern over forest stream pollution by excessive sedimentation due to natural or human disturbances. Adequate erosion simulation tools are needed for sound management of forest resources. The Water Erosion Prediction Project (WEPP) watershed model has proved useful in forest applications where Hortonian flow is the major form of...

  18. Long term records provide insights on the relative influence of climate and forest community structure on water yield in the southern Appalachians (United States)

    Peter Caldwell; Chelcy Ford Miniat; Steven Brantley; Katherine Elliott; Stephanie Laseter; Wayne Swank


    In forested watersheds, changes in climate and forest structure or age can affect water yield; yet few long-term observational records from such watersheds exist that allow an assessment of these impacts over time. In this study, we used long-term (~80 yrs) observational records of climate and water yield in six reference watersheds at the Coweeta Hydrologic Laboratory...

  19. Asotin Creek Model Watershed Plan

    Energy Technology Data Exchange (ETDEWEB)

    Browne, D.; Holzmiller, J.; Koch, F.; Polumsky, S.; Schlee, D.; Thiessen, G.; Johnson, C.


    The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ``Strategy for Salmon``. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity. The watershed coordinator for the Asotin County Conservation District led a locally based process that combined local concerns and knowledge with technology from several agencies to produce the Asotin Creek Model Watershed Plan.

  20. Watershed and longitudinal monitoring events (United States)

    Harold Harbert; Steven Blackburn


    Georgia Adopt-A-Stream partners annually with many organizations, universities and watershed groups to conduct sampling events with volunteers at a watershed level. These monitoring events range from one-day snapshots to week-long paddle trips. One-day sampling events, also called “Blitzs,” River Adventures and River Rendezvous, generally target 20-50 sites within a...

  1. Effects of earthworms on slopewash, surface runoff, and fine-litter transport on a humid-tropical forested hillslope in eastern Puerto Rico: Chapter G in Water quality and landscape processes of four watersheds in eastern Puerto Rico (United States)

    Larsen, Matthew C.; Liu, Zhigang Liu; Zou, Xiaoming; Murphy, Sheila F.; Stallard, Robert F.


    Rainfall, slopewash (the erosion of soil particles), surface runoff, and fine-litter transport were measured in tropical wet forest on a hillslope in the Luquillo Experimental Forest, Puerto Rico, from February 1998 until April 2000. Slopewash data were collected using Gerlach troughs at eight plots, each 2 square meters in area. Earthworms were excluded by electroshocking from four randomly selected plots. The other four (control) plots were undisturbed. During the experiment, earthworm population in the electroshocked plots was reduced by 91 percent. At the end of the experiment, the electroshocked plots had 13 percent of earthworms by count and 6 percent by biomass as compared with the control plots. Rainfall during the sampling period (793 days) was 9,143 millimeters. Mean and maximum rainfall by sampling period (mean of 16 days) were 189 and 563 millimeters, respectively. Surface runoff averaged 0.6 millimeters and 1.2 millimeters by sampling period for the control and experimental plots, equal to 0.25 and 0.48 percent of mean rainfall, respectively. Disturbance of the soil environment by removal of earthworms doubled runoff and increased the transport (erosion) of soil and organic material by a factor of 4.4. When earthworms were removed, the erosion of mineral soil (soil mass left after ashing) and the transport of fine litter were increased by a factor of 5.3 and 3.4, respectively. It is assumed that increased runoff is a function of reduced soil porosity, resulting from decreased burrowing and reworking of the soil in the absence of earthworms. The background, or undisturbed, downslope transport of soil, as determined from the control plots, was 51 kilograms per hectare and the "disturbance" rate, determined from the experimental plots, was 261 kilograms per hectare. The background rate for downslope transport of fine litter was 71 kilograms per hectare and the disturbance rate was 246 kilograms per hectare. Data from this study indicate that the reduction

  2. Variation of Annual ET Determined from Water Budgets Across Rural Southeastern Basins Differing in Forest Types (United States)

    Younger, S. E.; Jackson, C. R.


    In the Southeastern United States, evapotranspiration (ET) typically accounts for 60-70% of precipitation. Watershed and plot scale experiments show that evergreen forests have higher ET rates than hardwood forests and pastures. However, some plot experiments indicate that certain hardwood species have higher ET than paired evergreens. The complexity of factors influencing ET in mixed land cover watersheds makes identifying the relative influences difficult. Previous watershed scale studies have relied on regression to understand the influences or low flow analysis to indicate growing season differences among watersheds. Existing studies in the southeast investigating ET rates for watersheds with multiple forest cover types have failed to identify a significant forest type effect, but these studies acknowledge small sample sizes. Trends of decreasing streamflow have been recognized in the region and are generally attributed to five key factors, 1.) influences from multiple droughts, 2.) changes in distribution of precipitation, 3.) reforestation of agricultural land, 4.) increasing consumptive uses, or 5.) a combination of these and other factors. This study attempts to address the influence of forest type on long term average annual streamflow and on stream low flows. Long term annual ET rates were calculated as ET = P-Q for 46 USGS gaged basins with daily data for the 1982 - 2014 water years, >40% forest cover, and no large reservoirs. Land cover data was regressed against ET to describe the relationship between each of the forest types in the National Land Cover Database. Regression analysis indicates evergreen land cover has a positive relationship with ET while deciduous and total forest have a negative relationship with ET. Low flow analysis indicates low flows tend to be lower in watersheds with more evergreen cover, and that low flows increase with increasing deciduous cover, although these relationships are noisy. This work suggests considering forest

  3. Watershed Urbanization Linked to Differences in Stream Bacterial Community Composition. (United States)

    Hosen, Jacob D; Febria, Catherine M; Crump, Byron C; Palmer, Margaret A


    Urbanization strongly influences headwater stream chemistry and hydrology, but little is known about how these conditions impact bacterial community composition. We predicted that urbanization would impact bacterial community composition, but that stream water column bacterial communities would be most strongly linked to urbanization at a watershed-scale, as measured by impervious cover, while sediment bacterial communities would correlate with environmental conditions at the scale of stream reaches. To test this hypothesis, we determined bacterial community composition in the water column and sediment of headwater streams located across a gradient of watershed impervious cover using high-throughput 16S rRNA gene amplicon sequencing. Alpha diversity metrics did not show a strong response to catchment urbanization, but beta diversity was significantly related to watershed impervious cover with significant differences also found between water column and sediment samples. Samples grouped primarily according to habitat-water column vs. sediment-with a significant response to watershed impervious cover nested within each habitat type. Compositional shifts for communities in urbanized streams indicated an increase in taxa associated with human activity including bacteria from the genus Polynucleobacter , which is widespread, but has been associated with eutrophic conditions in larger water bodies. Another indicator of communities in urbanized streams was an OTU from the genus Gallionella , which is linked to corrosion of water distribution systems. To identify changes in bacterial community interactions, bacterial co-occurrence networks were generated from urban and forested samples. The urbanized co-occurrence network was much smaller and had fewer co-occurrence events per taxon than forested equivalents, indicating a loss of keystone taxa with urbanization. Our results suggest that urbanization has significant impacts on the community composition of headwater streams

  4. Watershed Urbanization Linked to Differences in Stream Bacterial Community Composition

    Directory of Open Access Journals (Sweden)

    Jacob D. Hosen


    Full Text Available Urbanization strongly influences headwater stream chemistry and hydrology, but little is known about how these conditions impact bacterial community composition. We predicted that urbanization would impact bacterial community composition, but that stream water column bacterial communities would be most strongly linked to urbanization at a watershed-scale, as measured by impervious cover, while sediment bacterial communities would correlate with environmental conditions at the scale of stream reaches. To test this hypothesis, we determined bacterial community composition in the water column and sediment of headwater streams located across a gradient of watershed impervious cover using high-throughput 16S rRNA gene amplicon sequencing. Alpha diversity metrics did not show a strong response to catchment urbanization, but beta diversity was significantly related to watershed impervious cover with significant differences also found between water column and sediment samples. Samples grouped primarily according to habitat—water column vs. sediment—with a significant response to watershed impervious cover nested within each habitat type. Compositional shifts for communities in urbanized streams indicated an increase in taxa associated with human activity including bacteria from the genus Polynucleobacter, which is widespread, but has been associated with eutrophic conditions in larger water bodies. Another indicator of communities in urbanized streams was an OTU from the genus Gallionella, which is linked to corrosion of water distribution systems. To identify changes in bacterial community interactions, bacterial co-occurrence networks were generated from urban and forested samples. The urbanized co-occurrence network was much smaller and had fewer co-occurrence events per taxon than forested equivalents, indicating a loss of keystone taxa with urbanization. Our results suggest that urbanization has significant impacts on the community composition

  5. Hydrological characterization of watersheds in the Blue Nile Basin, Ethiopia

    Directory of Open Access Journals (Sweden)

    S. G. Gebrehiwot


    Full Text Available Thirty-two watersheds (31–4350 km2, in the Blue Nile Basin, Ethiopia, were hydrologically characterized with data from a study of water and land resources by the US Department of Interior, Bureau of Reclamation (USBR published in 1964. The USBR document contains data on flow, topography, geology, soil type, and land use for the period 1959 to 1963. The aim of the study was to identify watershed variables best explaining the variation in the hydrological regime, with a special focus on low flows. Moreover, this study aimed to identify variables that may be susceptible to management policies for developing and securing water resources in dry periods. Principal Component Analysis (PCA and Partial Least Square (PLS were used to analyze the relationship between five hydrologic response variables (total flow, high flow, low flow, runoff coefficient, low flow index and 30 potential explanatory watershed variables. The explanatory watershed variables were classified into three groups: land use, climate and topography as well as geology and soil type. Each of the three groups had almost equal influence on the variation in hydrologic variables (R2 values ranging from 0.3 to 0.4. Specific variables from within each of the three groups of explanatory variables were better in explaining the variation. Low flow and low flow index were positively correlated to land use types woodland, dense wet forest and savannah grassland, whereas grazing land and bush land were negatively correlated. We concluded that extra care for preserving low flow should be taken on tuffs/basalts which comprise 52% of the Blue Nile Basin. Land use management plans should recognize that woodland, dense wet forest and savannah grassland can promote higher low flows, while grazing land diminishes low flows.

  6. Green Infrastructure and Watershed-Scale Hydrology in a Mixed Land Cover System (United States)

    Hoghooghi, N.; Golden, H. E.; Bledsoe, B. P.


    Urbanization results in replacement of pervious areas (e.g., vegetation, topsoil) with impervious surfaces such as roads, roofs, and parking lots, which cause reductions in interception, evapotranspiration, and infiltration, and increases in surface runoff (overland flow) and pollutant loads and concentrations. Research on the effectiveness of different Green Infrastructure (GI), or Low Impact Development (LID), practices to reduce these negative impacts on stream flow and water quality has been mostly focused at the local scale (e.g., plots, small catchments). However, limited research has considered the broader-scale effects of LID, such as how LID practices influence water quantity, nutrient removal, and aquatic ecosystems at watershed scales, particularly in mixed land cover and land use systems. We use the Visualizing Ecosystem Land Management Assessments (VELMA) model to evaluate the effects of different LID practices on daily and long-term watershed-scale hydrology, including infiltration surface runoff. We focus on Shayler Crossing (SHC) watershed, a mixed land cover (61% urban, 24% agriculture, 15% forest) subwatershed of the East Fork Little Miami River watershed, Ohio, United States, with a drainage area of 0.94 km2. The model was calibrated to daily stream flow at the outlet of SHC watershed from 2009 to 2010 and was applied to evaluate diverse distributions (at 25% to 100% implementation levels) and types (e.g., pervious pavement and rain gardens) of LID across the watershed. Results show reduced surface water runoff and higher rates of infiltration concomitant with increasing LID implementation levels; however, this response varies between different LID practices. The highest magnitude response in streamflow at the watershed outlet is evident when a combination of LID practices is applied. The combined scenarios elucidate that the diverse watershed-scale hydrological responses of LID practices depend primarily on the type and extent of the implemented

  7. Baseline for Climate Change: Modeling Watershed Aquatic Biodiversity Relative to Environmental and Anthropogenic Factors

    Energy Technology Data Exchange (ETDEWEB)

    Maurakis, Eugene G


    Objectives of the two-year study were to (1) establish baselines for fish and macroinvertebrate community structures in two mid-Atlantic lower Piedmont watersheds (Quantico Creek, a pristine forest watershed; and Cameron Run, an urban watershed, Virginia) that can be used to monitor changes relative to the impacts related to climate change in the future; (2) create mathematical expressions to model fish species richness and diversity, and macroinvertebrate taxa and macroinvertebrate functional feeding group taxa richness and diversity that can serve as a baseline for future comparisons in these and other watersheds in the mid-Atlantic region; and (3) heighten people’s awareness, knowledge and understanding of climate change and impacts on watersheds in a laboratory experience and interactive exhibits, through internship opportunities for undergraduate and graduate students, a week-long teacher workshop, and a website about climate change and watersheds. Mathematical expressions modeled fish and macroinvertebrate richness and diversity accurately well during most of the six thermal seasons where sample sizes were robust. Additionally, hydrologic models provide the basis for estimating flows under varying meteorological conditions and landscape changes. Continuations of long-term studies are requisite for accurately teasing local human influences (e.g. urbanization and watershed alteration) from global anthropogenic impacts (e.g. climate change) on watersheds. Effective and skillful translations (e.g. annual potential exposure of 750,000 people to our inquiry-based laboratory activities and interactive exhibits in Virginia) of results of scientific investigations are valuable ways of communicating information to the general public to enhance their understanding of climate change and its effects in watersheds.


    Directory of Open Access Journals (Sweden)



    Full Text Available Agroforestry systems under rules of community-based forest management support local livelihoods in the Jangkok watershed, Lombok Island. One of the conditions from the forest authoritiesfor allowing agroforestry system is that it should maintain forest conditions. Since 1995 the Jangkok watershed has undergone rapid land use change, especially in the forest area. These changes led to a reduction of carbon stocks and thus to emission of CO2. This research aimed to: (1 Measure the carbon stocks in several land use system within the Jangkok watershed, (2 Assess the contribution of agroforestry systems in maintaining carbon stocks and reducing emissions. The assesment was performed based on the RaCSA (Rapid Carbon Stock Appraisal method using three phases: (1 Classify land use change applying TM5 Landsat Satellite images for the period 1995-2009, (2 Measure carbon stock in the main land uses identified, (3 Quantify the contribution of agroforestry practices. Results showed that (1 The total amount of carbon stock at Jangkok watershed (19,088ha was 3.69 Mt (193 Mg ha-1; about 23% of this stock found in the agroforestry systems (32% of the area,(2 Gross CO2 emission from the Jangkok watershed was 8.41 Mg ha-1 yr-1, but due to the net gain in agroforestry of 2.55 Mg ha-1 yr-1 the net emission became 5.86 Mg ha-1 yr-1

  9. Third annual Walker Branch watershed research symposium: Programs and abstracts

    International Nuclear Information System (INIS)


    The methods and concepts of watershed research, originally applied in an experimental or monitoring mode to relatively small catchments, are increasingly being used at larger scales and for specific applied problems. Research at Oak Ridge National Laboratory, the Tennessee Valley Authority, the US Forest Service, and other agencies and institutions participating in this symposium reflects research over a broad range of spatial scales. These research projects address the basic atmospheric, geophysical, biogeochemical, and biological processes that regulate the responses of forested ecosystems to natural environmental variation and anthropogenic stresses. Regional and global issues addressed by presentations include emissions of carbon dioxide, methane, and other hydrocarbons; deposition of sulfate, nitrate, and mercury; land-use changes; biological diversity; droughts; and water quality. The Department of Energy's local research site, Walker Branch Watershed, is a long-term ecosystem research project initiated on the Oak Ridge Reservation in 1967. Walker Branch provides a well-characterized site where many of these methods can be tested and applied.In addition, other large-scale experiments represented in this symposium include experiments on the effects of clearcutting and burning on forest structure and productivity associated with Coweeta Hydrologic Laboratory, and whole-tree ozone exposure chambers constructed by TVA and ORNL researchers

  10. Forest management challenges for sustaining water resources in the Anthropocene (United States)

    Ge Sun; James M. Vose


    The Earth has entered the Anthropocene epoch that is dominated by humans who demand unprecedented quantities of goods and services from forests. The science of forest hydrology and watershed management generated during the past century provides a basic understanding of relationships among forests and water and offers management principles that maximize the benefits of...

  11. Reforestation-induced changes of landscape composition and configuration modulate freshwater supply and flooding risk of tropical watersheds. (United States)

    Gao, Qiong; Yu, Mei


    Impact of changes in land cover and land use on hydrological service of tropical watersheds is one of the focal research tropics in both hydrology and Land Cover Land Use Changes (LCLUC). Land fragmentation is an important feature of LCLUC, however, its impact on hydrological service of tropical watershed is unclear despite a few theoretical frameworks. In this paper, we described a simulation study of eight tropical watersheds in Puerto Rico using the Soil Water Assessment Tool. Annual average stream discharge was derived according to the simulations with the land cover maps in 1977, 1991, and 2000. Annual big stream discharge with risks of flooding and severe soil erosion was computed as the sum of daily discharge greater than 95th percentile. The impacts of changes in land cover and fragmentation represented by perimeter-to-area ratio of land patches on annual average and big discharges were further analyzed by means of the linear mixed-effects model. Most mountainous watersheds were characterized by reforestation in 1977-1991 but slight deforestation in 1991-2000. Forest perimeter-to-area ratio was significantly correlated with covers of forest (correlation coefficient of -0.97), pasture (0.94), and urban (0.95). Thus forest fragmentation was reduced by reforestation but increased by deforestation. The annual average and big discharges were significantly reduced by forest cover and forest perimeter-to-area ratio. The enhanced edge effect by forest fragmentation may have incurred more effective interception of the subsurface flow by forest root system, and promoted forest transpiration, thus reduced stream flows. Land cover change plays more important roles in regulating the big discharges than altering the annual average discharges. Due to the negative correlation between forest cover and fragmentation, the decreased forest fragmentation accompanied with reforestation offsets the impact of reforestation on lessening freshwater supply and flooding risk.

  12. Water quality and mass transport in four watersheds in eastern Puerto Rico: Chapter E in Water quality and landscape processes of four watersheds in eastern Puerto Rico (United States)

    Stallard, Robert F.; Murphy, Sheila F.; Murphy, Sheila F.; Stallard, Robert F.


    Water quality of four small watersheds in eastern Puerto Rico has been monitored since 1991 as part of the U.S. Geological Survey's Water, Energy, and Biogeochemical Budgets program. These watersheds represent a montane, humid-tropical environment and differ in geology and land cover. Two watersheds are located on granitic rocks, and two are located on volcaniclastic rock. For each bedrock type, one watershed is covered with mature rainforest in the Luquillo Mountains, and the other watershed is undergoing reforestation after being affected by agricultural practices typical of eastern Puerto Rico. A subwatershed of the Icacos watershed, the Guabá, was also monitored to examine scaling effects. The water quality of the rivers draining forest, in the Icacos and Guabá (granitic watersheds) and Mameyes (a volcaniclastic watershed), show little contamination by human activities. The water is well oxygenated and has a nearly neutral pH, and nutrient concentrations are low. Concentrations of nutrients in the disturbed watersheds, the Cayaguás (granitic rock) and Canóvanas (volcaniclastic rock), are greater than in the forested watersheds, indicating some inputs from human activities. High in-stream productivity in the Canóvanas watershed leads to occasional oxygen and calcite supersaturation and carbon dioxide undersaturation. Suspended sediment concentrations in all watersheds are low, except during major storms. Most dissolved constituents derived from bedrock weathering or atmospheric deposition (including sodium, magnesium, calcium, silica, alkalinity, and chloride) decrease in concentration with increasing runoff, reflecting dilution from increased proportions of overland or near-surface flow. Strongly bioactive constituents (dissolved organic carbon, potassium, nitrate, ammonium ion, and phosphate) commonly display increasing concentration with increasing runoff, regardless of their ultimate origin (bedrock or atmosphere). The concentrations of many of the

  13. Conservation Management of Agriculture Land using Geospatial Approach (A Case Study in the Bone Watershed, Gorontalo Province, Indonesia

    Directory of Open Access Journals (Sweden)

    Maryati Sri


    Full Text Available Bone Watershed is one of the major watersheds in Gorontalo Province. Bone watershed has a very important role for the people of Gorontalo Province. The role of Bone Watershed is mainly related to the providing clean water, producing oxygen, controlling flood, providing habitat for endemic flora fauna and other environmental functions. The role of Bone Watershed for the community’s economic sector is also very important, the Bone watershed provides livelihood for surrounding communities includes fertile land resources for agriculture and plantations, forest products, and livestock feed. This research is important considering the Bone watershed has limited availability of land for agriculture and the high risk of natural disasters such as floods and landslides. Geospatial data includes topography map, landform map, soil map, integrated with field survey results and soil properties were analized to determine conservation management of agriculture land in the Bone Watershed, Gorontalo Province, Indonesia. The result of this study shows that based on soil properties and physical land characteristics, land use for agriculture should consider appropriate conservation techniques, land capability and respect to local wisdom.

  14. Dynamic Model Of Suspended Sediment Concentration River Discharge And Rainfall Intensity At Padang Watershed North Sumatra Indonesia

    Directory of Open Access Journals (Sweden)

    Kemala Sari Lubis


    Full Text Available Abstract Sediment transport has relationship with hydrologic input primarily river discharge and rainfall intensity. Fluctuation of river discharge and rainfall intensity have great effect on suspended sediment concentration. Bayesian Dynamic Linear Model DLMs is used to study relation of input hydrology and basin response variables. Response variables were taken from suspended sediment concentration and river discharge from a year July 2012 to June 2013 at two outlets at Padang sub-watershed upstream and Padang Hilir sub-watershed downstream of Padang watershed North Sumatra. Datas were analyzed by regression analysis of Suspended Sediment Concentration SSC as a dependent variables while river discharge and rainfall intensity as independent variables. The results showed that river discharge value are the highest on July 2012 and October 2012 at upstream and downstream of Padang watershed respectively. The SSC value are the highest on July 2012 and April 2013 at upstream and downstream of Padang watershed respectively. There is a weak correlation r2 0.002 between SSC and rainfall intensity at source points of outlet at upstream of Padang watershed. There is decreasing of forest paddy and plantation areas but increasing of bush and farming areas from 2012 to 2015 at upstream of Padang watershed. Meanwhile at downstream of Padang watershed were increasing of plantation areas since 2012 to 2015

  15. Conservation Management of Agriculture Land using Geospatial Approach (A Case Study in the Bone Watershed, Gorontalo Province, Indonesia) (United States)

    Maryati, Sri; Eraku, Sunarty; Kasim, Muh


    Bone Watershed is one of the major watersheds in Gorontalo Province. Bone watershed has a very important role for the people of Gorontalo Province. The role of Bone Watershed is mainly related to the providing clean water, producing oxygen, controlling flood, providing habitat for endemic flora fauna and other environmental functions. The role of Bone Watershed for the community's economic sector is also very important, the Bone watershed provides livelihood for surrounding communities includes fertile land resources for agriculture and plantations, forest products, and livestock feed. This research is important considering the Bone watershed has limited availability of land for agriculture and the high risk of natural disasters such as floods and landslides. Geospatial data includes topography map, landform map, soil map, integrated with field survey results and soil properties were analized to determine conservation management of agriculture land in the Bone Watershed, Gorontalo Province, Indonesia. The result of this study shows that based on soil properties and physical land characteristics, land use for agriculture should consider appropriate conservation techniques, land capability and respect to local wisdom.

  16. Head-of-tide bottleneck of particulate material transport from watersheds to estuaries (United States)

    Ensign, Scott H.; Noe, Gregory; Hupp, Cliff R.; Skalak, Katherine


    We measured rates of sediment, C, N, and P accumulation at four floodplain sites spanning the nontidal through oligohaline Choptank and Pocomoke Rivers, Maryland, USA. Ceramic tiles were used to collect sediment for a year and sediment cores were collected to derive decadal sedimentation rates using 137Cs. The results showed highest rates of short- and long-term sediment, C, N, and P accumulation occurred in tidal freshwater forests at the head of tide on the Choptank and the oligohaline marsh of the Pocomoke River, and lowest rates occurred in the downstream tidal freshwater forests in both rivers. Presumably, watershed material was mostly trapped at the head of tide, and estuarine material was trapped in oligohaline marshes. This hydrologic transport bottleneck at the head of tide stores most available watershed sediment, C, N, and P creating a sediment shadow in lower tidal freshwater forests potentially limiting their resilience to sea level rise.

  17. Forest Clearcutting and Site Preparation on a Saline Soil in East Texas: Impacts on Water Quality (United States)

    Matthew McBroom; Mingteh Chang; Alexander K. Sayok


    Three 0.02 hectare plot-watersheds were installed on a saline soil in the Davy Crockett National Forest near Apple Springs, Texas. Each plot was installed with an H-flume, FW-1 automatic water level recorder, Coshocton N-1 runoff sampler, and two storage tanks. One watershed was undisturbed forested and served a control, one was clearcut without any site-preparation,...

  18. Myanmar strategy for forest resource development

    International Nuclear Information System (INIS)

    Sein Maung Wint


    Myanmar strategy for forest resource development is presented under sub-headings of (1) Myanmar experience; (2) control against over-exploitation; (3) impact of population pressure; (4) forest plantation system on commercial plantation, industrial plantation, firewood plantation and watershed plantation; (5) people's participation; (6) shifting cultivation. The forest resources of Myanmar have been changed for the past 136 years (1856-1992) successfully on sustained yield basis. Through proclamation of Forest Law (1992), active forestry and forest products research, upgrading of forestry educational institutions, modernization of forest inventory system and encouragement of downstream processing wood-based industries for value-added products, it was expected by the author that the forestry sector would be able to contribute more for the well-being of the people of Myanmar

  19. Application of Watershed Scale Models to Predict Nitrogen Loading From Coastal Plain Watersheds (United States)

    George M. Chescheir; Glenn P Fernandez; R. Wayne Skaggs; Devendra M. Amatya


    DRAINMOD-based watershed models have been developed and tested using data collected from an intensively instrumented research site on Kendricks Creek watershed near Plymouth. NC. These models were applied to simulate the hydrology and nitrate nitrogen (NO3-N) loading from two other watersheds in the Coastal Plain of North Carolina, the 11600 ha Chicod Creek watershed...

  20. Impacts of deforestation on water balance components of a watershed on the Brazilian East Coast

    Directory of Open Access Journals (Sweden)

    Donizete dos Reis Pereira


    Full Text Available The Brazilian East coast was intensely affected by deforestation, which drastically cut back the original biome. The possible impacts of this process on water resources are still unknown. The purpose of this study was an evaluation of the impacts of deforestation on the main water balance components of the Galo creek watershed, in the State of Espírito Santo, on the East coast of Brazil. Considering the real conditions of the watershed, the SWAT model was calibrated with data from 1997 to 2000 and validated for the period between 2001 and 2003. The calibration and validation processes were evaluated by the Nash-Sutcliffe efficiency coefficient and by the statistical parameters (determination coefficient, slope coefficient and F test of the regression model adjusted for estimated and measured flow data. After calibration and validation of the model, new simulations were carried out for three different land use scenarios: a scenario in compliance with the law (C1, assuming the preservation of PPAs (permanent preservation areas; an optimistic scenario (C2, which considers the watershed to be almost entirely covered by native vegetation; and a pessimistic scenario (C3, in which the watershed would be almost entirely covered by pasture. The scenarios C1, C2 and C3 represent a soil cover of native forest of 76, 97 and 0 %, respectively. The results were compared with the simulation, considering the real scenario (C0 with 54 % forest cover. The Nash-Sutcliffe coefficients were 0.65 and 0.70 for calibration and validation, respectively, indicating satisfactory results in the flow simulation. A mean reduction of 10 % of the native forest cover would cause a mean annual increase of approximately 11.5 mm in total runoff at the watershed outlet. Reforestation would ensure minimum flows in the dry period and regulate the maximum flow of the main watercourse of the watershed.

  1. Assessing the Role of Land Use in Watershed Nitrate Export Using Triple Oxygen Isotopes (United States)

    Bostic, J.; Nelson, D. M.; Eshleman, K. N.


    Quantifying the influence of land-use patterns on the amount and source(s) of nitrate (NO3) exported from watersheds is critical for understanding and mitigating the effects of nutrient pollution on downstream waterbodies. The isotopic composition of NO3 is valuable for fingerprinting of NO3 sources, including manure and atmospheric nitrate. To assess loads, sources, and potential transformations of NO3 in the Chesapeake Bay (CB) watershed, stream samples from fourteen sub-watersheds of the CB were collected semi-monthly and during multiple storm events from October 2015-September 2016 (Water Year 2016). The watersheds range in size (500 - 127,900 ha) and in dominant land-use (forest, urban, agriculture). The samples were analyzed for nitrate concentrations and isotopes (δ15N, as well as the triple oxygen isotope composition, defined as Δ17O ≅ δ17O - 0.52 x δ18O). Stream loads of nitrate were estimated using WRTDS (Weighted Regressions on Time, Discharge, and Season). NO3 deposition (dry and wet) was fairly uniform across all watersheds (2.1 - 3.0 kg NO3-N ha-1), whereas stream NO3 varied greatly (0.6 - 11.8 kg NO3-N ha-1). Stream loads of NO3 were positively related to the percent of agricultural land (r2 = 0.67, p watersheds are manure or pools of partially denitrified fertilizer. A positive relationship between Δ17ONO3 and the percent of forested land (r2 = 0.19, p watersheds to elucidate the amount and sources of NO3 exported from a variety of land-uses.

  2. Review of Watershed Water Quality Models

    National Research Council Canada - National Science Library

    Deliman, Patrick


    .... Several available watershed water quality models were reviewed and rated with regard to their potential in being utilized as the building block for the development of a Corps of Engineers watershed water quality model...

  3. DNR Watersheds - DNR Level 02 - HUC 04 (United States)

    Minnesota Department of Natural Resources — These data consists of watershed delineations in one seamless dataset of drainage areas called Minnesota Department of Natural Resources (DNR) Level 02 Watersheds....

  4. NYC Reservoirs Watershed Areas (HUC 12) (United States)

    U.S. Environmental Protection Agency — This NYC Reservoirs Watershed Areas (HUC 12) GIS layer was derived from the 12-Digit National Watershed Boundary Database (WBD) at 1:24,000 for EPA Region 2 and...

  5. Nutrient exports from watersheds with varying septic system densities in the North Carolina Piedmont. (United States)

    Iverson, G; Humphrey, C P; O'Driscoll, M A; Sanderford, C; Jernigan, J; Serozi, B


    Septic systems (SSs) have been shown to be a significant source of nitrogen and phosphorus to nutrient-sensitive coastal surface and groundwaters. However, few published studies have quantified the effects of SSs on nutrient inputs to water supply watersheds in the Piedmont region of the USA. This region consists of rolling hills at the surface underlain by clayey soils. There are nearly 1 million SSs in this region, which accounts for approximately 50% of all SSs in North Carolina. The goal of this study was to determine if significant differences in nutrient concentrations and exports exist between Piedmont watersheds with different densities of SSs. Water quality was assessed in watersheds with SSs (n = 11) and a sewer and a forested watershed, which were designated as controls. Stream flow and environmental readings were recorded and water samples were collected from the watersheds from January 2015-December 2016. Additional samples were collected from sand filter watersheds in April 2015-March 2016 to compare to septic and control watersheds. Samples were analyzed for total dissolved nitrogen (TDN) and orthophosphate (PO 4 -P). Results indicated that watersheds served by a high-density (HD) of SSs (4.9 kg-N yr -1 ha -1 ; 0.2 kg-P yr -1 ha -1 ) exported more than double the median masses of TDN and PO 4 -P, respectively, relative to low-density (1.0 kg-N yr -1 ha -1 ; <0.1 kg-P yr -1 ha -1 ) and control watersheds (1.4 kg-N yr -1 ha -1 ; <0.1 kg-P yr -1 ha -1 ) during baseflow. Isotopic analysis indicated that wastewater was the most likely source of nitrate-N in HD watersheds. In all other watersheds, isotopic results suggested non-wastewater sources as the dominant nitrate-N provider. These findings indicated that SS density was a significant factor in the delivery of septic-derived nutrients to these nutrient-sensitive, water supply watersheds of the North Carolina Piedmont. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Grays River Watershed Geomorphic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Geist, David R


    This investigation, completed for the Pacific Northwest National Laboratory (PNNL), is part of the Grays River Watershed and Biological Assessment commissioned by Bonneville Power Administration under project number 2003-013-00 to assess impacts on salmon habitat in the upper Grays River watershed and present recommendations for habitat improvement. This report presents the findings of the geomorphic assessment and is intended to support the overall PNNL project by evaluating the following: The effects of historical and current land use practices on erosion and sedimentation within the channel network The ways in which these effects have influenced the sediment budget of the upper watershed The resulting responses in the main stem Grays River upstream of State Highway 4 The past and future implications for salmon habitat.

  7. Cloud GIS Based Watershed Management (United States)

    Bediroğlu, G.; Colak, H. E.


    In this study, we generated a Cloud GIS based watershed management system with using Cloud Computing architecture. Cloud GIS is used as SAAS (Software as a Service) and DAAS (Data as a Service). We applied GIS analysis on cloud in terms of testing SAAS and deployed GIS datasets on cloud in terms of DAAS. We used Hybrid cloud computing model in manner of using ready web based mapping services hosted on cloud (World Topology, Satellite Imageries). We uploaded to system after creating geodatabases including Hydrology (Rivers, Lakes), Soil Maps, Climate Maps, Rain Maps, Geology and Land Use. Watershed of study area has been determined on cloud using ready-hosted topology maps. After uploading all the datasets to systems, we have applied various GIS analysis and queries. Results shown that Cloud GIS technology brings velocity and efficiency for watershed management studies. Besides this, system can be easily implemented for similar land analysis and management studies.


    Directory of Open Access Journals (Sweden)

    G. Bediroğlu


    Full Text Available In this study, we generated a Cloud GIS based watershed management system with using Cloud Computing architecture. Cloud GIS is used as SAAS (Software as a Service and DAAS (Data as a Service. We applied GIS analysis on cloud in terms of testing SAAS and deployed GIS datasets on cloud in terms of DAAS. We used Hybrid cloud computing model in manner of using ready web based mapping services hosted on cloud (World Topology, Satellite Imageries. We uploaded to system after creating geodatabases including Hydrology (Rivers, Lakes, Soil Maps, Climate Maps, Rain Maps, Geology and Land Use. Watershed of study area has been determined on cloud using ready-hosted topology maps. After uploading all the datasets to systems, we have applied various GIS analysis and queries. Results shown that Cloud GIS technology brings velocity and efficiency for watershed management studies. Besides this, system can be easily implemented for similar land analysis and management studies.

  9. Automated image processing of Landsat II digital data for watershed runoff prediction (United States)

    Sasso, R. R.; Jensen, J. R.; Estes, J. E.


    Digital image processing of Landsat data from a 230 sq km area was examined as a possible means of generating soil cover information for use in the watershed runoff prediction of Kern County, California. The soil cover information included data on brush, grass, pasture lands and forests. A classification accuracy of 94% for the Landsat-based soil cover survey suggested that the technique could be applied to the watershed runoff estimate. However, problems involving the survey of complex mountainous environments may require further attention

  10. Wind River Watershed Restoration Project, Segment II, 2000-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bair, Brian; Olegario, Anthony; Powers, Paul


    This document represents work conducted as part of the Wind River Watershed Restoration Project during its second year of funding through the Bonneville Power Administration (BPA). The project is a comprehensive effort involving public and private entities seeking to restore water quality and fishery resources in the basin through cooperative actions. Project elements include coordination, watershed assessment, restoration, monitoring, and education. Entities involved with implementing project components are the Underwood Conservation District (UCD), USDA Forest Service (USFS), U.S. Geological Survey - Columbia River Research Lab (USGS-CRRL), and WA Department of Fish & Wildlife (WDFW).

  11. Watershed Management Optimization Support Tool v3 (United States)

    The Watershed Management Optimization Support Tool (WMOST) is a decision support tool that facilitates integrated water management at the local or small watershed scale. WMOST models the environmental effects and costs of management decisions in a watershed context that is, accou...

  12. Emerging tools and technologies in watershed management (United States)

    D. Phillip Guertin; Scott N. Miller; David C. Goodrich


    The field of watershed management is highly dependent on spatially distributed data. Over the past decade, significant advances have been made toward the capture, storage, and use of spatial data. Emerging tools and technologies hold great promise for improving the scientific understanding of watershed processes and are already revolutionizing watershed research....

  13. Urban Forests (United States)

    David Nowak


    Urban forests (and trees) constitute the second forest resource considered in this report. We specifically emphasize the fact that agricultural and urban forests exist on a continuum defined by their relationship (and interrelationship) with a given landscape. These two forest types generally serve different purposes, however. Whereas agricultural forests are...

  14. Rangeland degradation in two watersheds of Lebanon

    International Nuclear Information System (INIS)

    Darwish, T; Faour, G.


    A complex and rugged nature characterizes the Lebanese mountains.The climatic pattern prevailing in the country, deforestation and man made erosion caused increased rangeland degradation. The purpose of this study was to monitor two contrasting watersheds, representing the Lebanese agro-ecological zones, to analyze the vegetation dynamics and trace the state of rangeland degradation. The Kfarselouane (205 km2) and Aarsal (316.7 km2) watersheds are located in the Lebanon and Anti-Lebanon mountain chain and characterized by sub humid and semi-arid climate respectively.Using multitemporal spot vegetation images between 1999 and 2005 to analyze the normalized differential vegetation index (NDVI) revealed some improvement of the vegetation cover over recent years in Kfaselouane with a steady state in Aarsal. The NDVI trend curve inclines in spring and declines in summer and fall. Judging by the time scale amplitude change and highest magnitude between the peak and lower NDVI level in Aarsal, an increased vulnerability to drought is observed in the dry Lebanese areas. Comparing land cover/use in Aarsal area between 1962 and 2000 using aerial photos and large resolution Indian satellite images (IRS) showed wood fragmentation and slight increase of the degenerated forest cover from 1108 ha to 1168 ha. Landuse change was accompanied by a simultaneous increase of cultivated lands (mostly fruit trees) from 932 ha to 4878 ha with absence of soil conservation and water harvesting practices. On the contrary, grasslands decreased from 29581 ha to 25000 ha. In Kfarselouane, the area of grassland was invaded by forestland where rangeland decreased from 8073 ha to 3568 ha and woodland increased from 5766 ha to 11800 ha. Forest expansion occurred even at the account of unproductive land which decreased from 2668 ha to 248 ha, while cultivated lands did not reveal any substantial change. Based on animals' seasonal feeding pattern, a mismatch between land carrying capacity and grazing

  15. Watershed Education for Broadcast Meteorologists (United States)

    Lamos, J. P.; Sliter, D.; Espinoza, S.; Spangler, T. C.


    The National Environmental Education and Training Organization (NEETF) published a report in 2005 that summarized the findings of ten years of NEETF and Roper Research. The report stated, "Our years of data from Roper surveys show a persistent pattern of environmental ignorance even among the most educated and influential members of society." Market research has also shown that 80% of television viewers list the weather as the primary reason for watching the local news. Broadcast meteorologists, with a broader understanding of environmental and related sciences have an opportunity to use their weathercasts to inform the public about the environment and the factors that influence environmental health. As "station scientists," broadcast meteorologists can use the weather, and people's connection to it, to broaden their understanding of the environment they live in. Weather and watershed conditions associated with flooding and drought have major human and environmental impacts. Increasing the awareness of the general public about basic aspects of the hydrologic landscape can be an important part of mitigating the adverse effects of too much or too little precipitation, and of protecting the environment as well. The concept of a watershed as a person's natural neighborhood is a very important one for understanding hydrologic and environmental issues. Everyone lives in a watershed, and the health of a watershed is the result of the interplay between weather and human activity. This paper describes an online course to give broadcast meteorologists a basic understanding of watersheds and how watersheds are impacted by weather. It discusses how to convey watershed science to a media- savvy audience as well as how to model the communication of watershed and hydrologic concepts to the public. The course uses a narrative, story-like style to present its content. It is organized into six short units of instruction, each approximately 20 minutes in duration. Each unit is

  16. Physical characterization of a watershed through GIS: a study in the Schmidt stream, Brazil

    Directory of Open Access Journals (Sweden)

    D. R. Reis

    Forest (12.83%, Native Forest + Rural Anthropic + Secondary Vegetation + Forestry (43.81%, Urban Anthropic/Urban Area (39.85%, and also Urban Anthropic/Expansion areas (3.01%. Mean annual rainfall is 1337 mm, maximum temperatures range from 10.5°C to 41.6°C and minimum temperatures range from –1.80°C and 26°C, weak winds, occasionally over 5 m/s. Conducting an environmental assessment in this watershed is essential for environmental and land management. However, these assessments are not conducted in all watersheds and, when they are, their frequency is not sufficiency to allow for continuous monitoring, in order to model and predict scenarios, with a view to adopt medium and long-term measures for environmental protection.

  17. How are streamflow responses to the El Nino Southern Oscillation affected by watershed characteristics? (United States)

    Rice, Joshua S.; Emanuel, Ryan E.


    Understanding the factors that influence how global climate phenomena, such as the El-Nino Southern Oscillation (ENSO), affect streamflow behavior is an important area of research in the hydrologic sciences. While large-scale patterns in ENSO-streamflow relationships have been thoroughly studied, and are relatively well-understood, information is scarce concerning factors that affect variation in ENSO responses from one watershed to another. To this end, we examined relationships between variability in ENSO activity and streamflow for 2731 watersheds across the conterminous U.S. from 1970 to 2014 using a novel approach to account for the intermediary role of precipitation. We applied an ensemble of regression techniques to describe relationships between variability in ENSO activity and streamflow as a function of watershed characteristics including: hydroclimate, topography, geomorphology, geographic location, land cover, soil characteristics, bedrock geology, and anthropogenic influences. We found that variability in watershed scale ENSO-streamflow relationships was strongly related to factors including: precipitation timing and phase, forest cover, and interactions between watershed topography and geomorphology. These, and other influential factors, share in common the ability to affect the partitioning and movement of water within watersheds. Our results demonstrate that the conceptualization of watersheds as signal filters for hydroclimate inputs, commonly applied to short-term rainfall-runoff responses, also applies to long-term hydrologic responses to sources of recurrent climate variability. These results also show that watershed processes, which are typically studied at relatively fine spatial scales, are also critical for understanding continental scale hydrologic responses to global climate.

  18. Chapter 19. Cumulative watershed effects and watershed analysis (United States)

    Leslie M. Reid


    Cumulative watershed effects are environmental changes that are affected by more land-use activity and that are influenced by.processes involving the generation or transport.of water. Almost all environmental changes are.cumulative effects, and almost all land-use.activities contribute to cumulative effects

  19. Landscape ecological assessment of the Chesapeake Bay watershed. (United States)

    Weber, Ted


    The Chesapeake Bay Watershed, located in the Mid-Atlantic Region of the United States, is experiencing rapid habitat loss and fragmentation from sprawling low-density development. The bay itself is heavily stressed by excess sediment and nutrient runoff. Three states, the District of Columbia, and the federal government signed an agreement in 2000 to address these problems. The commitments included an assessment of the watershed's resource lands, and targeting the most valued lands for protection. As part of this task, the Resource Lands Assessment identified an ecological network comprised of large contiguous blocks (hubs) of forests, wetlands, and streams, interconnected by corridors to allow animal and plant propagule dispersal and migration. Hubs were prioritized by ecoregion, by analyzing a variety of ecological parameters, including: rare species presence, rarity and population viability; vegetation and vertebrate richness; habitat area, condition, and diversity; intactness and remoteness; connectivity potential; and the nature of the surrounding landscape. I found that much of the watershed was still fairly intact, although this varied dramatically by ecoregion. Current protection also varied, and an assessment of vulnerability will help focus protection efforts among the most valuable hubs and corridors.

  20. Coffee agroforestry for sustainability of Upper Sekampung Watershed management (United States)

    Fitriani; Arifin, Bustanul; Zakaria, Wan Abbas; Hanung Ismono, R.


    The main objective of watershed management is to ensure the optimal hydrological and natural resource use for ecological, social and economic importance. One important adaptive management step in dealing with the risk of damage to forest ecosystems is the practice of agroforestry coffee. This study aimed to (1) assess the farmer's response to ecological service responsibility and (2) analyze the Sekampung watersheds management by providing environmental services. The research location was Air Naningan sub-district, Tanggamus, Lampung Province, Indonesia. The research was conducted from July until November 2016. Stratification random sampling based on the pattern of ownership of land rights is used to determine the respondents. Data were analyzed using descriptive statistics and logistic regression analysis. Based on the analysis, it was concluded that coffee farmers' participation in the practice of coffee agroforestry in the form of 38% shade plants and multiple cropping (62%). The logistic regression analysis indicated that the variables of experience and status of land ownership, and incentive-size plans were able to explain variations in the willingness of coffee growers to follow the scheme of providing environmental services. The existence of farmer with partnership and CBFM scheme on different land tenure on upper Sekampung has a strategic position to minimize the deforestation and recovery watersheds destruction.

  1. Multiagent distributed watershed management (United States)

    Giuliani, M.; Castelletti, A.; Amigoni, F.; Cai, X.


    Deregulation and democratization of water along with increasing environmental awareness are challenging integrated water resources planning and management worldwide. The traditional centralized approach to water management, as described in much of water resources literature, is often unfeasible in most of the modern social and institutional contexts. Thus it should be reconsidered from a more realistic and distributed perspective, in order to account for the presence of multiple and often independent Decision Makers (DMs) and many conflicting stakeholders. Game theory based approaches are often used to study these situations of conflict (Madani, 2010), but they are limited to a descriptive perspective. Multiagent systems (see Wooldridge, 2009), instead, seem to be a more suitable paradigm because they naturally allow to represent a set of self-interested agents (DMs and/or stakeholders) acting in a distributed decision process at the agent level, resulting in a promising compromise alternative between the ideal centralized solution and the actual uncoordinated practices. Casting a water management problem in a multiagent framework allows to exploit the techniques and methods that are already available in this field for solving distributed optimization problems. In particular, in Distributed Constraint Satisfaction Problems (DCSP, see Yokoo et al., 2000), each agent controls some variables according to his own utility function but has to satisfy inter-agent constraints; while in Distributed Constraint Optimization Problems (DCOP, see Modi et al., 2005), the problem is generalized by introducing a global objective function to be optimized that requires a coordination mechanism between the agents. In this work, we apply a DCSP-DCOP based approach to model a steady state hypothetical watershed management problem (Yang et al., 2009), involving several active human agents (i.e. agents who make decisions) and reactive ecological agents (i.e. agents representing

  2. Watershed Boundaries, Frederick County, Maryland, watershed management areas that extend to the topographic watershed divide. Watersheds were developed from catchment delineations (2008) by dissolving catchments within larger drainage areas that were previously defined by Fre, Published in 2008, 1:12000 (1in=1000ft) scale, Frederick County Government. (United States)

    NSGIC Local Govt | GIS Inventory — Watershed Boundaries dataset current as of 2008. Frederick County, Maryland, watershed management areas that extend to the topographic watershed divide. Watersheds...

  3. Ecosystem Service Valuation through Wildfire Risk Mitigation: Design, Governance, and Outcomes of the Flagstaff Watershed Protection Project (FWPP

    Directory of Open Access Journals (Sweden)

    Roy Miller


    Full Text Available The full value of benefits rendered from healthy watersheds is difficult to estimate, and ecosystem service (ES valuation sometimes necessarily occurs in the form of costs incurred or avoided. Along these lines, social-ecological systems including Payment for Watershed Services (PWS are increasing in frequency and can help land management entities to bridge budget shortfalls for funding needed watershed restoration forestry treatments. The Flagstaff Watershed Protection Project (FWPP is a bond-financed wildfire risk mitigation partnership and PWS program in Northern Arizona, the only forest management project that utilizes a municipal bond as the financial mechanism in conjunction with a partnership governance structure to invest in federal land management. The purpose of this research was to describe this new governance structure to understand the potential benefits to communities and federal land management agencies for protecting watershed services. Data were derived from document review and key informant interviews (n = 9. FWPP institutional design and governance structures were tailored to maximize community strengths and encompassed several advantages over traditional federal land management models; these advantages include increased collaboration and institutional support, financial security, and public approval. The FWPP represents an innovative PWS system that can help showcase unique community and federal forest management partnerships that benefit watershed health in western US communities.

  4. Influences on wood load in mountain streams of the Bighorn National Forest, Wyoming, USA. (United States)

    Nowakowski, Amy L; Wohl, Ellen


    We documented valley and channel characteristics and wood loads in 19 reaches of forested headwater mountain streams in the Bighorn National Forest of northern Wyoming. Ten of these reaches were in the Upper Tongue River watershed, which has a history of management including timber harvest, tie floating, and road construction. Nine reaches were in the North Rock Creek watershed, which has little history of management activities. We used these data to test hypotheses that (i) valley geometry correlates with wood load, (ii) stream gradient correlates with wood load, and (iii) wood loads are significantly lower in managed watersheds than in otherwise similar unmanaged watersheds. Statistical analyses of the data support the first and third hypotheses. Stream reaches with steeper valley side slopes tend to have higher wood loads, and reaches in managed watersheds tend to have lower wood loads than reaches in unmanaged watersheds. Results do not support the second hypothesis. Shear stress correlated more strongly with wood load than did stream gradient, but statistical models with valley-scale variables had greater explanatory power than statistical models with channel-scale variables. Wood loads in stream reaches within managed watersheds in the Bighorn National Forest tend to be two to three times lower than wood loads in unmanaged watersheds.

  5. Weathering, landscape equilibrium, and carbon in four watersheds in eastern Puerto Rico: Chapter H in Water quality and landscape processes of four watersheds in eastern Puerto Rico (United States)

    Stallard, Robert F.; Murphy, Sheila F.; Stallard, Robert F.


    The U.S. Geological Survey's Water, Energy, and Biogeochemical Budgets (WEBB) program research in eastern Puerto Rico involves a double pair-wise comparison of four montane river basins, two on granitic bedrock and two on fine-grained volcaniclastic bedrock; for each rock type, one is forested and the other is developed. A confounding factor in this comparison is that the developed watersheds are substantially drier than the forested (runoff of 900–1,600 millimeters per year compared with 2,800–3,700 millimeters per year). To reduce the effects of contrasting runoff, the relation between annual runoff and annual constituent yield were used to estimate mean-annual yields at a common, intermediate mean-annual runoff of 1,860 millimeters per year. Upon projection to this intermediate runoff, the ranges of mean-annual yields among all watersheds became more compact or did not substantially change for dissolved bedrock, sodium, silica, chloride, dissolved organic carbon, and calcium. These constituents are the primary indicators of chemical weathering, biological activity on the landscape, and atmospheric inputs; the narrow ranges indicate little preferential influence by either geology or land cover. The projected yields of biologically active constituents (potassium, nitrate, ammonium ion, phosphate), and particulate constituents (suspended bedrock and particulate organic carbon) were considerably greater for developed landscapes compared with forested watersheds, consistent with the known effects of land clearing and human waste inputs. Equilibrium rates of combined chemical and physical weathering were estimated by using a method based on concentrations of silicon and sodium in bedrock, river-borne solids, and river-borne solutes. The observed rates of landscape denudation greatly exceed rates expected for a dynamic equilibrium, except possibly for the forested watershed on volcaniclastic rock. Deforestation and agriculture can explain the accelerated physical

  6. Three Different Methods of Estimating LAI in a Small Watershed (United States)

    Speckman, H. N.; Ewers, B. E.; Beverly, D.


    Leaf area index (LAI) is a critical input of models that improve predictive understanding of ecology, hydrology, and climate change. Multiple techniques exist to quantify LAI, most of which are labor intensive, and all often fail to converge on similar estimates. . Recent large-scale bark beetle induced mortality greatly altered LAI, which is now dominated by younger and more metabolically active trees compared to the pre-beetle forest. Tree mortality increases error in optical LAI estimates due to the lack of differentiation between live and dead branches in dense canopy. Our study aims to quantify LAI using three different LAI methods, and then to compare the techniques to each other and topographic drivers to develop an effective predictive model of LAI. This study focuses on quantifying LAI within a small (~120 ha) beetle infested watershed in Wyoming's Snowy Range Mountains. The first technique estimated LAI using in-situ hemispherical canopy photographs that were then analyzed with Hemisfer software. The second LAI estimation technique was use of the Kaufmann 1982 allometrerics from forest inventories conducted throughout the watershed, accounting for stand basal area, species composition, and the extent of bark beetle driven mortality. The final technique used airborne light detection and ranging (LIDAR) first DMS returns, which were used to estimating canopy heights and crown area. LIDAR final returns provided topographical information and were then ground-truthed during forest inventories. Once data was collected, a fractural analysis was conducted comparing the three methods. Species composition was driven by slope position and elevation Ultimately the three different techniques provided very different estimations of LAI, but each had their advantage: estimates from hemisphere photos were well correlated with SWE and snow depth measurements, forest inventories provided insight into stand health and composition, and LIDAR were able to quickly and

  7. 10 Watershed Disturbance.cdr

    African Journals Online (AJOL)


    plant species and several endemic butterfly species like N. lamborni and B. ... been colonized by invasive species notably the Siam weed ..... to climate change. If these activities are not checked, the water bodies which owe their existence to the watershed will be negatively affected. Conclusion. The study examined the ...

  8. Watershed dissolved organic carbon export patterns exhibit significant transport-limitations (United States)

    Zarnetske, J. P.; Bouda, M.; Saiers, J. E.; Raymond, P. A.


    Dissolved organic carbon (DOC) is a master variable in aquatic ecosystems and drinking water quality. However, it is difficult to reveal how DOC travels from terrestrial environments to streams and is eventually exported from watersheds. Fundamentally, we need to reveal when and where DOC export is controlled by the sources of watershed DOC or the ability to hydrologically transport it. Therefore, we evaluate the importance of DOC source versus hydrologic transport limitations on watershed DOC export patterns across the United States. To do this, we analyzed empirical DOC flux (F_DOC) patterns across many watersheds (n= 655), which span a wide range of watershed sizes, flow regimes, climates, and biomes. They also represent 66% of the areal extent of the conterminous United States. We fit a power law model of F_DOC for each watershed, where F_DOC=aQ^b. This power-law model had a robust goodness of fit for the watersheds in this data set (mean NSE=0.88). We used the calibrated b value for each watershed to characterize DOC export as either transport-limited (b>1; concurrent increase in DOC concentration with flow), chemostatic (b=1; constant DOC concentration with increasing flow), or source-limited (bconcentration with increasing flow). This synthesis of watersheds demonstrates that DOC export is limited by transport processes in a large majority (69%) of the watersheds in the data set. Further, we used an ensemble method to fit statistical models (i.e., boosted regression trees) that predict the transport- vs source-limitation behavior of watersheds. The observed limitation behavior is largely associated with two land cover variables (evergreen forest and developed land extent) and climatic variables (annual precipitation and temperature seasonality). This synthesis indicates that the coupling of terrestrial and aquatic systems in terms of DOC is predominantly controlled by hydrologic transport processes. Overall, these DOC export findings suggest that future

  9. Coastal Fog Sustains Summer Baseflow in Northern Californian Watershed (United States)

    Chung, M.; Dufour, A.; Leonardson, R.; Thompson, S. E.; Dawson, T. E.


    The Mediterranean climate of Northern California imposes significant water stress on ecosystems and water resources during the dry summer months. During summer, frequently the only water inputs occur as occult precipitation, in the form of fog and dew. In this study, we characterized the role of coastal fog, a dominant feature of Northern Californian coastal ecosystems and a widespread phenomenon associated with deep marine upwelling in west coast, arid, and Mediterranean climates worldwide. We monitored fog occurrence and intensity, throughfall following canopy interception of fog, soil moisture, streamflow, and meteorological variables, and made visual observations of the spatial extent of fog using time-lapse imagery in Upper Pilarcitos Creek Watershed (managed by San Francisco Public Utilities Commission as part of the San Francisco area water supply). We adopted a stratified sampling design that captured the watershed's elevation gradient, forest-edge versus interior locations, and different vegetation cover. The point-scale observations of throughfall inputs and transpiration suppression, estimated from the Penman equation, were upscaled using such watershed features and the observed fog "footprint" identified from the time-lapse images. When throughfall input and fog-induced transpiration suppression were incorporated into the operational watershed model, they improved estimates of summer baseflow, which remained persistently higher than could be explained without the fog effects. Fog, although providing relatively small volumetric inputs to the water balance, appears to offer significant relief of water stress throughout the terrestrial and aquatic components of the coastal Californian ecosystem and thus should be accounted for when assessing water stress availability in dry ecosystems.

  10. Third annual Walker Branch Watershed research symposium. Program and abstracts

    Energy Technology Data Exchange (ETDEWEB)


    The methods and concepts of watershed research, originally applied in an experimental or monitoring mode to relatively small catchments, are increasingly being used at larger scales and for specific applied problems. Research at Oak Ridge National Laboratory, the Tennessee Valley Authority, the US Forest Service, and other agencies and institutions participating in this symposium reflects research over a broad range of spatial scales that is being integrated through large-scale experiments along with computer modeling and graphical interfaces. These research projects address the basic atmospheric, geophysical, biogeochemical, and biological processes that regulate the responses of forested ecosystems to natural environmental variation and anthropogenic stresses. Regional and global issues addressed by presentations include emissions of carbon dioxide, methane, and other hydrocarbons; deposition of sulfate, nitrate, and mercury; land-use changes; biological diversity; droughts; and water quality. The reports presented in this symposium illustrate a wide range of methods and approaches and focus more on concepts and techniques than on a specific physical site. Sites and projects that have contributed research results to this symposium include Walker Branch Watershed (DOE), the Coweeta Hydrologic Laboratory and LTER site (USFS and NSF), Great Smoky Mountains National Park (research funded by NPS, TVA, and EPRI), Imnavait Creek, Alaska (DOE), the TVA-Norris Whole-tree Facility (TVA and EPRI), and DOE`s Biomass Program.

  11. Forecasts of forest conditions in regions of the United States under future scenarios: a technical document supporting the Forest Service 2012 RPA Assessment (United States)

    David N. Wear; Robert Huggett; Ruhong Li; Benjamin Perryman; Shan Liu


    The 626 million acres of forests in the conterminous United States represent significant reserves of biodiversity and terrestrial carbon and provide substantial flows of highly valued ecosystem services, including timber products, watershed protection benefits, and recreation. This report describes forecasts of forest conditions for the conterminous United States in...

  12. Can forest management be used to sustain water-based ecosystem service in the face of climate change? (United States)

    Chelcy Ford; Stephanie Laseter; Wayne Swank; James Vose


    Forested watersheds, an important provider of ecosystems services related to water supply, can have their structure, function, and resulting streamflow substantially altered by land use and land cover. Using a retrospective analysis and synthesis of long-term climate and streamflow data (75 years) from six watersheds differing in management histories we explored...

  13. Modeling hydrology and in-stream transport on drained forested lands in coastal Carolinas, U.S.A. (United States)

    Devendra Amatya


    This study summarizes the successional development and testing of forest hydrologic models based on DRAINMOD that predicts the hydrology of low-gradient poorly drained watersheds as affected by land management and climatic variation. The field scale (DRAINLOB) and watershed-scale in-stream routing (DRAINWAT) models were successfully tested with water table and outflow...

  14. Substrate availability drives spatial patterns in richness of ammonia-oxidizing bacteria and archaea in temperate forest soils (United States)

    J.S. Norman; J.E. Barrett


    We sought to investigate the drivers of richness of ammonia-oxidizing bacteria (AOB) and archaea (AOA) in temperate forest soils. We sampled soils across four experimental watersheds in the Coweeta Hydrologic Laboratory, North Carolina USA. These watersheds are geographically close, but vary in soil chemistry due to differences in land use history. While we...

  15. Retrospective Analysis of Low Flows at Headwater Watersheds in Wyoming (United States)

    Voutchkova, D. D.; Miller, S. N.


    Understanding summer low-flow variability and change in the mountainous West has important implications for water allocations downstream and for maintaining water availability for drinking water supply, reservoir storage, industrial, agricultural, and ecological needs. Wildfires and insect infestations are classical disturbance hydrology topics. It is unclear, however, what are their effects on streamflow and in particular low-flows, when vegetation disturbances are overlapping in time and combined with highly variable and potentially changing local climate. The purpose of this study, therefore, is to quantify changes in low-flows resulting from disturbance in headwater streams. Here we present a retrospective analysis based on: (1) 49-75 complete water years (wy) of daily streamflow data (USGS) for 14 high-elevation headwater watersheds with varying areas (60-1730 km2, 86-100% of watershed area >2000masl) and evergreen forest cover (15-82%), (2) 25-36 complete wy of daily snow-water equivalent accumulation (SWE) and precipitation data from Wyoming SNOTEL stations, (3) burned area boundaries for 20wy (MTBS project), (4) aerial surveys by R1, R2, R4 Forest Service Regions for 18wy (data on tree mortality). We quantify the change in various low-flow characteristics (e.g. post-snowmelt baseflow, Q90 and Q95, 3-,7-, 30- and 90-day annual minima etc.) while accounting for local inter- and multi-annual climate variability by using SWE accumulation data, as it integrates both temperature and precipitation changes. Our approach differs from typical before-after field-based investigation for paired watersheds, as it provides a synthesis over large temporal and spatial scales, resulting in spectrum of possible hydrologic responses due to varying disturbance severity. Quantifying the changes in low-flows and low-flow variability will improve our understanding and will facilitate water management and planning at local state-wide level.

  16. Accounting for small scale heterogeneity in ecohydrologic watershed models (United States)

    Burke, W.; Tague, C.


    Spatially distributed ecohydrologic models are inherently constrained by the spatial resolution of their smallest units, below which land and processes are assumed to be homogenous. At coarse scales, heterogeneity is often accounted for by computing store and fluxes of interest over a distribution of land cover types (or other sources of heterogeneity) within spatially explicit modeling units. However this approach ignores spatial organization and the lateral transfer of water and materials downslope. The challenge is to account both for the role of flow network topology and fine-scale heterogeneity. We present a new approach that defines two levels of spatial aggregation and that integrates spatially explicit network approach with a flexible representation of finer-scale aspatial heterogeneity. Critically, this solution does not simply increase the resolution of the smallest spatial unit, and so by comparison, results in improved computational efficiency. The approach is demonstrated by adapting Regional Hydro-Ecologic Simulation System (RHESSys), an ecohydrologic model widely used to simulate climate, land use, and land management impacts. We illustrate the utility of our approach by showing how the model can be used to better characterize forest thinning impacts on ecohydrology. Forest thinning is typically done at the scale of individual trees, and yet management responses of interest include impacts on watershed scale hydrology and on downslope riparian vegetation. Our approach allow us to characterize the variability in tree size/carbon reduction and water transfers between neighboring trees while still capturing hillslope to watershed scale effects, Our illustrative example demonstrates that accounting for these fine scale effects can substantially alter model estimates, in some cases shifting the impacts of thinning on downslope water availability from increases to decreases. We conclude by describing other use cases that may benefit from this approach

  17. Prescribed Burning and Erosion Potential in Mixed Hardwood Forests of Southern Illinois

    Directory of Open Access Journals (Sweden)

    Gurbir Singh


    Full Text Available Prescribed fire has several benefits for managing forest ecosystems including reduction of fuel loading and invasive species and enhanced regeneration of desirable tree species. Along with these benefits there are some limitations like nutrient and sediment loss which have not been studied extensively in mixed hardwood forests. The objective of our research was to quantify the amount of sediment movement occurring on a watershed scale due to prescribed fire in a southern Illinois mixed hardwood ecosystem. The research site was located at Trail of Tears State Forest in western Union county, IL, USA and included five watershed pairs. One watershed in each pair was randomly assigned the prescribed burn treatment and the other remained as control (i.e., unburned. The prescribed burn treatment significantly reduced the litter depth with 12.6%–31.5% litter remaining in the prescribed burn treatment watersheds. When data were combined across all watersheds, no significant differences were obtained between burn treatment and control watershed for total suspended solids and sediment concentrations or loads. The annual sediment losses varied from 1.41 to 90.54 kg·ha−1·year−1 in the four prescribed burn watersheds and 0.81 to 2.54 kg·ha−1·year−1 in the four control watersheds. Prescribed burn watershed 7 showed an average soil sediment loss of 4.2 mm, whereas control watershed 8 showed an average accumulation of sediments (9.9 mm, possibly due to steeper slopes. Prescribed burning did not cause a significant increase in soil erosion and sediment loss and can be considered acceptable in managing mixed hardwood forests of Ozark uplands and the Shawnee Hills physiographic regions of southern Illinois.

  18. Physio-climatic controls on vulnerability of watersheds to climate and land use change across the U. S. (United States)

    Deshmukh, Ankit; Singh, Riddhi


    Understanding how a watershed's physio-climatic characteristics affect its vulnerability to environmental (climatic and land use) change is crucial for managing these complex systems. In this study, we combine the strengths of recently developed exploratory modeling frameworks and comparative hydrology to quantify the relationship between watershed's vulnerability and its physio-climatic characteristics. We propose a definition of vulnerability that can be used by a diverse range of water system managers and is useful in the presence of large uncertainties in drivers of environmental change. This definition is related to adverse climate change and land use thresholds that are quantified using a recently developed exploratory modeling approach. In this way, we estimate the vulnerability of 69 watersheds in the United States to climate and land use change. We explore definitions of vulnerability that describe average or extreme flow conditions, as well as others that are relevant from the point of view of instream organisms. In order to understand the dominant controls on vulnerability, we correlate these indices with watershed's characteristics describing its topography, geology, drainage, climate, and land use. We find that mean annual flow is more vulnerable to reductions in precipitation in watersheds with lower average soil permeability, lower baseflow index, lower forest cover, higher topographical wetness index, and vice-versa. Our results also indicate a potential mediation of climate change impacts by regional groundwater systems. By developing such relationships across a large range of watersheds, such information can potentially be used to assess the vulnerability of ungauged watersheds to uncertain environmental change.

  19. Panama Canal Watershed Experiment- Agua Salud Project (United States)

    Stallard, Robert F.; Ogden, Fred L.; Elsenbeer, Helmut; Hall, Jefferson S.


    The Agua Salud Project utilizes the Panama Canal’s (Canal) central role in world commerce to focus global attention on the ecosystem services provided by tropical forests. The Canal was one of the great engineering projects in the world. Completed in 1914, after almost a decade of concerted effort, its 80 km length greatly shortened the voyage between the Atlantic and Pacific Oceans. An entire class of ships, the Panamax, has been constructed to maximize the amount of cargo that can be carried in a Canal passage. In today’s parlance, the Canal is a “green” operation, powered largely by water (Table 1). The locks, three pairs on each end with a net lift of 27 meters, are gravity fed. For each ton of cargo that is transferred from ocean to ocean, about 13 tons of water (m3) are used. Lake Gatún forms much of the waterway in the Canal transect. Hydroelectricity is generated at the Gatún dam, whenever there is surplus water, and at Madden Dam (completed in 1936) when water is transferred from Lake Alhajuela to Lake Gatún. The Canal watershed is the source of drinking water for Panama City and Colon City, at either end of the Canal, and numerous towns in between.

  20. Watershed Landscape Ecology: Interdisciplinary and Field-based Learning in the Northeast Creek Watershed, Mount Desert Island, Maine (United States)

    Hall, S. R.; Anderson, J.; Rajakaruna, N.; Cass, D.


    At the College of the Atlantic, Bar Harbor, Maine, undergraduate students have the opportunity to design their own curriculum within a major of "Human Ecology." To enable students to have early research experiences, we developed a field-based interdisciplinary program for students to learn and practice field methods in a variety of disciplines, Earth Science, Botany, Chemistry, and Wildlife Biology at three specific field sites within a single watershed on Mt. Desert Island. As the Northeast Creek watershed was the site of previous water quality studies, this program of courses enabled continued monitoring of portions of the watershed. The program includes 4 new courses: Critical Zone 1, Critical Zone 2, Wildlife Biology, and Botany. In Critical Zone 1 students are introduced to general topics in Earth Science and learn to use ArcGIS to make basic maps. In Critical Zone 2, Wildlife Biology, and Botany, students are in the field every week using classic field tools and methods. All three of these courses use the same three general field areas: two with working farms at the middle and lower portion of the watershed and one uninhabited forested property in the higher relief headwaters of the watershed. Students collect daily surface water chemistry data at five stream sites within the watershed, complete basic geologic bedrock and geomorphic mapping, conduct wildlife surveys, botanical surveys, and monitor weather patterns at each of the main sites. Beyond the class data collected and synthesized, students also complete group independent study projects at focused field sites, some of which have turned into much larger research projects. This program is an opportunity for students and faculty with varied interests and expertise to work together to study a specific field locality over multiple years. We see this model as enhancing a number of positive education components: field-based learning, teamwork, problem solving, interdisciplinary discussion, multiple faculty

  1. An annotated list of the flora of the Bisley Area Luquillo Experimental Forest, Puerto Rico 1987 to 1992 (United States)

    Jesus Danilo Chinea; Renee J. Beymer; Carlos Rivera; Ines Sastre de Jeses; F.N. Scatena


    Known species of plants, including bryophytes and ferns, are listed for the area of the Bisley experimental watershed area, a subtropical wet forest in the Luquillo Mountains of northeastern Puerto Rico.

  2. Relation of watershed setting and stream nutrient yields at selected sites in central and eastern North Carolina, 1997-2008 (United States)

    Harden, Stephen L.; Cuffney, Thomas F.; Terziotti, Silvia; Kolb, Katharine R.


    ) were excluded from the regression tree analyses (Models 2–4), the percentage of forested land in the watersheds was identified as the primary environmental variable influencing stream yields for both total N and total P. Models 2, 3 and 4 did not identify any watershed environmental variables that could adequately explain the observed variability in the nitrate yields among the set of sites examined by each of these models. The results for Models 2, 3, and 4 indicated that watersheds with higher percentages of forested land had lower annual total N and total P yields compared to watersheds with lower percentages of forested land, which had higher median annual total N and total P yields. Additional environmental variables determined to further influence the stream nutrient yields included median annual percentage of point-source flow contributions to the streams, variables of land cover (percentage of forested land, agricultural land, and (or) forested land plus wetlands) in the watershed and (or) in the stream buffer, and drainage area. The regression tree models can serve as a tool for relating differences in select watershed attributes to differences in stream yields of nitrate, total N, and total P, which can provide beneficial information for improving nutrient management in streams throughout North Carolina and for reducing nutrient loads to coastal waters.

  3. Atmospheric deposition and watershed nitrogen export along an elevational gradient in the Catskill Mountains, New York (United States)

    Lawrence, G.B.; Lovett, Gary M.; Baevsky, Y.H.


    Cumulative effects of atmospheric N deposition may increase N export from watersheds and contribute to the acidification of surface waters, but natural factors (such as forest productivity and soil drainage) that affect forest N cycling can also control watershed N export. To identify factors that are related to stream-water export of N, elevational gradients in atmospheric deposition and natural processes were evaluated in a steep, first-order watershed in the Catskill Mountains of New York, from 1991 to 1994. Atmospheric deposition of SO4/2-, and probably N, increased with increasing elevation within this watershed. Stream-water concentrations of SO4/2- increased with increasing elevation throughout the year, whereas stream-water concentrations of NO3/- decreased with increasing elevation during the winter and spring snowmelt period, and showed no relation with elevation during the growing season or the fall. Annual export of N in stream water for the overall watershed equaled 12% to 17% of the total atmospheric input on the basis of two methods of estimation. This percentage decreased with increasing elevation, from about 25% in the lowest subwatershed to 7% in the highest subwatershed; a probable result of an upslope increase in the thickness of the surface organic horizon, attributable to an elevational gradient in temperature that slows decomposition rates at upper elevations. Balsam fir stands, more prevalent at upper elevations than lower elevations, may also affect the gradient of subwatershed N export by altering nitrification rates in the soil. Variations in climate and vegetation must be considered to determine how future trends in atmospheric deposition will effect watershed export of nitrogen.

  4. The Hidden Watershed's Journals: the Informational Characteristics of Biomarkers in Sedimentary Deposits (United States)

    Guerrero, F. J.; Hatten, J. A.


    The historical reconstruction of past environmental changes in watersheds is essential to understand watershed response to disturbances and how those diturbances could affect the provision of valuable goods like water. That reconstruction requires the interpretation of natural records, mainly associated to sedimentary deposits that store detailed information in the form of specific biogenic molecules (i.e. biomarkers). In forested watersheds terrestrial vegetation is an important source of biomarkers like those associated to Lignin, a complex organic polymer used by plants to provide physical support in its tissues. Through litter inputs Lignin is deposited in soils and then is transported to sedimentary environments by rivers (e.g. floodplains, lake bottoms), serving as a source of information about vegetation changes in watersheds. In spite of the critical character of the information extracted from biomarkers in sedimentary records, the very concept of information is still used in a metaphorical sense, even though it was formally defined more than 60 years ago and has been applied extensively in ecology (e.g. Shannon's diversity index). Furthermore, sophisticated techniques are being used to deliver more complex molecular data that require examination and validation as indicators for watershed historical reconstructions. My research aims to explore the applicability of some information metrics (i.e. diversity indices, information coefficients) to a diverse molecular set derived from the chemical depolymerization of lignin deposited in floodplains and lake sediments in different basins. This approach attempts to assess the informational characteristics of Lignin as an indicator of natural/human-induced perturbations in forested watersheds. The formal assessment of the informational characteristics of natural records could have a profound impact not only in our methodological approaches but also in our philosophical view about information and communication in

  5. Goddard DEVELOP Students: Using NASA Remote Sensing Technology to Study the Chesapeake Bay Watershed (United States)

    Moore, Rachel


    The DEVELOP National Program is an Earth Science research internship, operating under NASA s Applied Sciences Program. Each spring, summer, and fall, DEVELOP interns form teams to investigate Earth Science related issues. Since the Fall of 2003, Goddard Space Flight Center (GSFC) has been home to one of 10 national DEVELOP teams. In past terms, students completed a variety of projects related to the Applied Sciences Applications of National Priority, such as Public Health, Natural Disasters, Water Resources, and Ecological Forecasting. These projects have focused on areas all over the world, including the United States, Africa, and Asia. Recently, Goddard DEVELOP students have turned their attention to a local environment, the Chesapeake Bay Watershed. The Chesapeake Bay Watershed is a complex and diverse ecosystem, spanning approximately 64,000 square miles. The watershed encompasses parts of six states: Delaware, Maryland, New York, Pennsylvania, Virginia, and West Virginia, as well as the District of Columbia. The Bay itself is the biggest estuary in the United States, with over 100,000 tributaries feeding into it. The ratio of fresh water to salt water varies throughout the Bay, allowing for a variety of habitats. The Bay s wetlands, marshes, forests, reefs, and rivers support more than 3,600 plant and animal species, including birds, mammals, reptiles, amphibians, fish, and crabs. The Bay is also commercially significant. It is ranked third in the nation in fishery catch, and supplies approximately 500 million pounds of seafood annually. In addition to its abundant flora and fauna, the Chesapeake Bay watershed is home to approximately 16.6 million people, who live and work throughout the watershed, and who use its diverse resources for recreational purposes. Over the past several decades, the population throughout the watershed has increased rapidly, resulting in land use changes, and ultimately decreasing the health of the Chesapeake Bay Watershed. Over the

  6. Water-limiting conditions based on monthly water balances and potential evapotranspiration at Panola Mountain Research Watershed, Georgia, U.S.A (United States)

    Brent Aulenbach; Norman E. Peters; James Freer


    Drought and resulting water-limiting conditions can result in negative ecological impacts such as reduced plant growth and increased stress that can make plants more vulnerable to threats such as insect infestations. The long-term dataset at Panola Mountain Research Watershed, a small 0.41-hectare forested watershed near Atlanta, Georgia, U.S.A., was used to better ...

  7. Forest Management Challenges for Sustaining Water Resources in the Anthropocene

    Directory of Open Access Journals (Sweden)

    Ge Sun


    Full Text Available The Earth has entered the Anthropocene epoch that is dominated by humans who demand unprecedented quantities of goods and services from forests. The science of forest hydrology and watershed management generated during the past century provides a basic understanding of relationships among forests and water and offers management principles that maximize the benefits of forests for people while sustaining watershed ecosystems. However, the rapid pace of changes in climate, disturbance regimes, invasive species, human population growth, and land use expected in the 21st century is likely to create substantial challenges for watershed management that may require new approaches, models, and best management practices. These challenges are likely to be complex and large scale, involving a combination of direct and indirect biophysical watershed responses, as well as socioeconomic impacts and feedbacks. We discuss the complex relationships between forests and water in a rapidly changing environment, examine the trade-offs and conflicts between water and other resources, and propose new management approaches for sustaining water resources in the Anthropocene.

  8. Interaction between urbanization and climate variability amplifies watershed nitrate export in Maryland (United States)

    Kaushal, S.S.; Groffman, P.M.; Band, L.E.; Shields, C.A.; Morgan, R.P.; Palmer, Margaret A.; Belt, K.T.; Swan, C.M.; Findlay, S.E.G.; Fisher, G.T.


    We investigated regional effects of urbanization and land use change on nitrate concentrations in approximately 1,000 small streams in Maryland during record drought and wet years in 2001-2003. We also investigated changes in nitrate-N export during the same time period in 8 intensively monitored small watersheds across an urbanization gradient in Baltimore, Maryland. Nitrate-N concentrations in Maryland were greatest in agricultural streams, urban streams, and forest streams respectively. During the period of record drought and wet years, nitrate-N exports in Baltimore showed substantial variation in 6 suburban/urban streams (2.9-15.3 kg/ha/y), 1 agricultural stream (3.4-38.9 kg/ha/y), and 1 forest stream (0.03-0.2 kg/ ha/y). Interannual variability was similar for small Baltimore streams and nearby well-monitored tributaries and coincided with record hypoxia in Chesapeake Bay. Discharge-weighted mean annual nitrate concentrations showed a variable tendency to decrease/increase with changes in annual runoff, although total N export generally increased with annual runoff. N retention in small Baltimore watersheds during the 2002 drought was 85%, 99%, and 94% for suburban, forest, and agricultural watersheds, respectively, and declined to 35%, 91%, and 41% during the wet year of 2003. Our results suggest that urban land use change can increase the vulnerability of ecosystem nitrogen retention functions to climatic variability. Further work is necessary to characterize patterns of nitrate-N export and retention in small urbanizing watersheds under varying climatic conditions to improve future forecasting and watershed scale restoration efforts aimed at improving nitrate-N retention. ?? 2008 American Chemical Society.

  9. Land suitability assessment on a watershed of Loess Plateau using the analytic hierarchy process.

    Directory of Open Access Journals (Sweden)

    Xiaobo Yi

    Full Text Available In order to reduce soil erosion and desertification, the Sloping Land Conversion Program has been conducted in China for more than 15 years, and large areas of farmland have been converted to forest and grassland. However, this large-scale vegetation-restoration project has faced some key problems (e.g. soil drying that have limited the successful development of the current ecological-recovery policy. Therefore, it is necessary to know about the land use, vegetation, and soil, and their inter-relationships in order to identify the suitability of vegetation restoration. This study was conducted at the watershed level in the ecologically vulnerable region of the Loess Plateau, to evaluate the land suitability using the analytic hierarchy process (AHP. The results showed that (1 the area unsuitable for crops accounted for 73.3% of the watershed, and the main factors restricting cropland development were soil physical properties and soil nutrients; (2 the area suitable for grassland was about 86.7% of the watershed, with the remaining 13.3% being unsuitable; (3 an area of 3.95 km(2, accounting for 66.7% of the watershed, was unsuitable for forest. Overall, the grassland was found to be the most suitable land-use to support the aims of the Sloping Land Conversion Program in the Liudaogou watershed. Under the constraints of soil water shortage and nutrient deficits, crops and forests were considered to be inappropriate land uses in the study area, especially on sloping land. When selecting species for re-vegetation, non-native grass species with high water requirements should be avoided so as to guarantee the sustainable development of grassland and effective ecological functioning. Our study provides local land managers and farmers with valuable information about the inappropriateness of growing trees in the study area along with some information on species selection for planting in the semi-arid area of the Loess Plateau.

  10. Monitoring deforestation and urbanization growth in rawal watershed area using remote sensing and gis techniques

    International Nuclear Information System (INIS)

    Saeed, M.A.; Ashraf, A.


    The Rawal watershed in Pothwar region of Pakistan has undergone significant changes in its environmental conditions and landuse activities due to numerous socio-economic and natural factors. These ultimately influence the livelihood of the inhabitants of the area. The connected environmental changes are resulting in accelerated land degradation, deforestation, and landslides. In the present study, spatio-temporal behaviour of landuse/landcover in the Rawal watershed area was investigated using Remote Sensing (RS) and Geographical Information System (GIS) techniques. Satellite image data of LANDSAT ETM+ of 1992, 2000 and 2010 periods were processed and analyzed for detecting land use change and identifying risk prone locations in the watershed area. The study results revealed significant changes in the coverage of conifer forest (34 % decrease), scrub forest (29 % decrease) and settlement (231 % increase) during the decade 1992-2010. The rate of decline in conifer class is about 19 ha/annum while that of scrub class is 223 ha/annum. In both the cases, the rates of decrease were higher during the period 1992-2000 than the period 2000-2010. The Agriculture land has shown an increase of about 1.8% while built-up land had increased almost four folds, i.e. from 2.6 % in 1992 to 8.7 % in 2010. The growth in urbanization may result in further loss of forest cover in the watershed area. The findings of the study could help in developing effective strategies for future resource management and conservation, as well as for controlling land degradation in the watershed area. (author)

  11. Forest hydrology (United States)

    Ge Sun; Devendra Amatya; Steve McNulty


    Forest hydrology studies the distribution, storage, movement, and quality of water and the hydrological processes in forest-dominated ecosystems. Forest hydrological science is regarded as the foundation of modern integrated water¬shed management. This chapter provides an overview of the history of forest hydrology and basic principles of this unique branch of...

  12. Forest soils (United States)

    Charles H. (Hobie) Perry; Michael C. Amacher


    Productive soils are the foundation of sustainable forests throughout the United States. Forest soils are generally subjected to fewer disturbances than agricultural soils, particularly those that are tilled, so forest soils tend to have better preserved A-horizons than agricultural soils. Another major contrast between forest and agricultural soils is the addition of...

  13. Summer lowflow deficits after two decades of forest regeneration in the western Cascades, Oregon (United States)

    Perry, T.; Jones, J. A.


    This study explored the long-term response of summer water yields to past forest management practices, specifically the conversion of mature and old growth conifer forests to young forest plantations, in seasonally drought-stressed conifer forests of western Oregon. Results were based on long-term (40 to 50-year) paired watershed experiments in the HJ Andrews Forest in the Willamette National Forest and Coyote Creek in the South Umpqua National Forest. In the third decade after 100 percent clearcutting, streamflows were 30 to 80 percent lower in the young forest than the reference (mature and old forest) watershed during August to November. In the third decade after patch-clearcutting, summer streamflows were 20 to 40 percent lower in the cut watershed compared to the control. In the third decade after a 50 percent overstory thin, almost all summer low flows were within 25 percent of the flows at the control watershed. A 12 percent understory thin in a clearcut watershed during the third decade led to a temporary, minor abatement in summer low flow declines, but within five years, summer low flows from the thinned watershed were similar to those from an adjacent, unthinned forest plantation of similar age. Streamflow deficits emerged as early as March or April and persisted into October and November in the warmer, drier site in southern Oregon (Coyote Creek), whereas summer streamflow deficits emerged later and persisted for fewer weeks in the cooler, wetter Andrews Forest. These findings are consistent with previous studies demonstrating (1) increases in water use in certain conifer species relative to others (e.g. Douglas-fir versus pine); (2) higher water use in young (i.e., 10 to 50- yr-old) compared to old (100 to 250-yr-old) stands of many tree species; and (3) decreased interception capacity of young relative to old forest stands associated with loss of canopy epiphytes. Results appear to be robust, despite gaps in data availability, uncertainties associated

  14. Sustainable watershed management: an international multi-watershed case study. (United States)

    Wagner, Walter; Gawel, James; Furuma, Hiroak; De Souza, Marcelo Pereira; Teixeira, Denilson; Rios, Leonardo; Ohgaki, Shinichiro; Zehnder, Alexander J B; Hemond, Harold F


    Global freshwater resources are being increasingly polluted and depleted, threatening sustainable development and human and ecosystem health. Utilizing case studies from 4 different watersheds in the United States, Japan, Switzerland, and Brazil, this paper identifies the most relevant sustainability deficits and derives general vectors for more sustainable water management. As a consequence of the demographic and economic developments experienced in the last few decades, each watershed has suffered declines in water quality, streamflow and biotic resources. However, the extent and the cultural perception of these water-related problems vary substantially in the different watersheds, leading to specific water-management strategies. In industrialized countries, exemplified by the US, Switzerland, and Japan, these strategies have primarily consisted of finance- and energy-intensive technologies, allowing these countries to meet water requirements while minimizing human health risks. But, from a sustainability point of view, such strategies, relying on limited natural resources, are not long-term solutions. For newly industrialized countries such as Brazil, expensive technologies for water management are often not economically feasible, thus limiting the extent to which newly industrialized and developing countries can utilize the expertise offered by the industrialized world. Sustainable water management has to be achieved by a common learning process involving industrialized, newly industrialized, and developing countries, following general sustainability guidelines as exemplified in this paper.

  15. Effect of land use land cover change on soil erosion potential in an agricultural watershed. (United States)

    Sharma, Arabinda; Tiwari, Kamlesh N; Bhadoria, P B S


    Universal soil loss equation (USLE) was used in conjunction with a geographic information system to determine the influence of land use and land cover change (LUCC) on soil erosion potential of a reservoir catchment during the period 1989 to 2004. Results showed that the mean soil erosion potential of the watershed was increased slightly from 12.11 t ha(-1) year(-1) in the year 1989 to 13.21 t ha(-1) year(-1) in the year 2004. Spatial analysis revealed that the disappearance of forest patches from relatively flat areas, increased in wasteland in steep slope, and intensification of cultivation practice in relatively more erosion-prone soil were the main factors contributing toward the increased soil erosion potential of the watershed during the study period. Results indicated that transition of other land use land cover (LUC) categories to cropland was the most detrimental to watershed in terms of soil loss while forest acted as the most effective barrier to soil loss. A p value of 0.5503 obtained for two-tailed paired t test between the mean erosion potential of microwatersheds in 1989 and 2004 also indicated towards a moderate change in soil erosion potential of the watershed over the studied period. This study revealed that the spatial location of LUC parcels with respect to terrain and associated soil properties should be an important consideration in soil erosion assessment process.

  16. Greenhouse gases concentrations and fluxes from subtropical small reservoirs in relation with watershed urbanization (United States)

    Wang, Xiaofeng; He, Yixin; Yuan, Xingzhong; Chen, Huai; Peng, Changhui; Yue, Junsheng; Zhang, Qiaoyong; Diao, Yuanbin; Liu, Shuangshuang


    Greenhouse gas (GHG) emissions from reservoirs and global urbanization have gained widespread attention, yet the response of GHG emissions to the watershed urbanization is poorly understood. Meanwhile, there are millions of small reservoirs worldwide that receive and accumulate high loads of anthropogenic carbon and nitrogen due to watershed urbanization and can therefore be hotspots of GHG emissions. In this study, we assessed the GHG concentrations and fluxes in sixteen small reservoirs draining urban, agricultural and forested watersheds over a period of one year. The concentrations of pCO2, CH4 and N2O in sampled urban reservoirs that received more sewage input were higher than those in agricultural reservoirs, and were 3, 7 and 10 times higher than those in reservoirs draining in forested areas, respectively. Accordingly, urban reservoirs had the highest estimated GHG flux rate. Regression analysis indicated that dissolved total phosphorus, dissolved organic carbon (DOC) and chlorophyll-a (Chl-a) had great effect on CO2 production, while the nitrogen (N) and phosphorus (P) content of surface water were closely related to CH4 and N2O production. Therefore, these parameters can act as good predictors of GHG emissions in urban watersheds. Given the rapid progress of global urbanization, small urban reservoirs play a crucial role in accounting for regional GHG emissions and cannot be ignored.

  17. Improved daily precipitation nitrate and ammonium concentration models for the Chesapeake Bay Watershed

    Energy Technology Data Exchange (ETDEWEB)

    Grimm, J.W. [Institutes of the Environment, Pennsylvania State University, University Park, PA 16802 (United States); Lynch, J.A. [School of Forest Resources, Pennsylvania State University, 311 Forest Resources Lab, University Park, PA 16802 (United States)]. E-mail:


    Daily precipitation nitrate and ammonium concentration models were developed for the Chesapeake Bay Watershed (USA) using a linear least-squares regression approach and precipitation chemistry data from 29 National Atmospheric Deposition Program/National Trends Network (NADP/NTN) sites. Only weekly samples that comprised a single precipitation event were used in model development. The most significant variables in both ammonium and nitrate models included: precipitation volume, the number of days since the last event, a measure of seasonality, latitude, and the proportion of land within 8 km covered by forest or devoted to industry and transportation. Additional variables included in the nitrate model were the proportion of land within 0.8 km covered by water and/or forest. Local and regional ammonia and nitrogen oxide emissions were not as well correlated as land cover. Modeled concentrations compared very well with event chemistry data collected at six NADP/AirMoN sites within the Chesapeake Bay Watershed. Wet deposition estimates were also consistent with observed deposition at selected sites. Accurately describing the spatial distribution of precipitation volume throughout the watershed is important in providing critical estimates of wet-fall deposition of ammonium and nitrate. - A linear least-squares regression approach was used to develop daily precipitation nitrate and ammonium concentration models for the Chesapeake Bay Watershed.

  18. Forest rights

    DEFF Research Database (Denmark)

    Balooni, Kulbhushan; Lund, Jens Friis


    One of the proposed strategies for implementation of reducing emissions from deforestation and forest degradation plus (REDD+) is to incentivize conservation of forests managed by communities under decentralized forest management. Yet, we argue that this is a challenging road to REDD+ because......+ transactions costs. Third, beyond the “conservation islands” represented by forests under decentralized management, processes of deforestation and forest degradation continue. Given these challenges, we argue that REDD+ efforts through decentralized forestry should be redirected from incentivizing further...

  19. Tracking geomorphic signatures of watershed suburbanization with multi-temporal LiDAR (United States)

    Jones, Daniel K.; Baker, Matthew E.; Miller, Andrew J.; Jarnagin, S. Taylor; Hogan, Dianna M.


    Urban development practices redistribute surface materials through filling, grading, and terracing, causing drastic changes to the geomorphic organization of the landscape. Many studies document the hydrologic, biologic, or geomorphic consequences of urbanization using space-for-time comparisons of disparate urban and rural landscapes. However, no previous studies have documented geomorphic changes from development using multiple dates of high-resolution topographic data at the watershed scale. This study utilized a time series of five sequential light detection and ranging (LiDAR) derived digital elevation models (DEMs) to track watershed geomorphic changes within two watersheds throughout development (2002–2008) and across multiple spatial scales (0.01–1 km2). Development-induced changes were compared against an undeveloped forested watershed during the same time period. Changes in elevations, slopes, hypsometry, and surface flow pathways were tracked throughout the development process to assess watershed geomorphic alterations. Results suggest that development produced an increase in sharp topographic breaks between relatively flat surfaces and steep slopes, replacing smoothly varying hillslopes and leading to greater variation in slopes. Examinations of flowpath distributions highlight systematic modifications that favor rapid convergence in unchanneled upland areas. Evidence of channel additions in the form of engineered surface conduits is apparent in comparisons of pre- and post-development stream maps. These results suggest that topographic modification, in addition to impervious surfaces, contributes to altered hydrologic dynamics observed in urban systems. This work highlights important considerations for the use of repeat LiDAR flights in analyzing watershed change through time. Novel methods introduced here may allow improved understanding and targeted mitigation of the processes driving geomorphic changes during development and help guide future

  20. Evaluating Snow-depletion Curve Refinements in Selected Watersheds Across the Continental United States (United States)

    Risley, J. C.; Markstrom, S. L.; Bock, A. R.; Driscoll, J. M.; Hay, L.


    Snow depletion curves (SDC) are used in continuous watershed hydrologic models to simulate snowmelt processes for the period between maximum snowpack accumulation and total melt. The SDCs are defined as the relationship between snow-water equivalence (SWE) and the percent snow cover area (SCA) during the snowmelt period. The shape of the SDC can vary depending on local watershed, topographic, regional, and climatic conditions. SDCs slopes for windy sparsely vegetated high-elevation watersheds, for example, are often less steep than those for lower-elevation forested watersheds. To improve model performance new SDCs were derived for over 110,000 hydrologic response units (HRU) of the National Hydrologic Model (NHM) across the continental United States (CONUS) using Snow Data Assimilation System (SNODAS) remote sensing data. The spatially varying set of SDCs was integrated into the Precipitation Runoff Modeling System (PRMS), a deterministic daily time-step, rainfall-runoff model, which is installed in the NHM discretization. In addition to the SNODAS-derived SDCs, seven synthetic SDCs representing convex and concave shapes were created. PRMS was run on the NHM to test the sensitivity of melt characteristics and the response of different water budget components to the different synthetic SDCs. Correlations between SDC shape and landscape variables such as region, topography, elevation, aspect, and vegetation cover were evaluated. From this analysis a subset of PRMS watershed models, from a pool of 873 unregulated PRMS watershed models within CONUS and which included a representation of the SDC shape categories, were selected. These selected watershed models were calibrated using both the default PRMS and the new NHM SDCs. Model performance statistics were used to evaluate improvements in streamflow predication using an improved SDC.

  1. Land use and its impacts on the water quality of the Cachoeirinha Invernada Watershed, Guarulhos (SP

    Directory of Open Access Journals (Sweden)

    Dhisney Gonçalves de Oliveira


    Full Text Available The urbanization process through which large urban centers have been passing has drastically affected the availability and especially the quality of water. The Cachoeirinha Invernada Watershed (CIW, located in the municipality of Guarulhos (State of São Paulo, Brazil, includes areas with different land use classes. This paper aims to correlate the spatial and temporal effects of land use and land cover on the water quality of the Cachoeirinha Invernada Watershed. In a period of 12 months and at six sampling points along the watershed, the physicochemical parameters temperature (T, pH, turbidity (TU, total solids (TS, electrical conductivity (EC, total phosphorus (TP, biochemical oxygen demand (BOD, as well as microbiological analysis (E. coli were measured. Water quality was assessed using a modified version (WQIM of the Water Quality Index (WQI and the Trophic State Index (TSI. The areas surrounded by urban development presented a marked worsening in water quality, with the downstream point most affected and ranked as ‘POOR’. From the evaluated parameters, what contributed most to water quality degradation of the Cachoeirinha Invernada Watershed (CIW was E. coli, followed by BOD, and TP, all parameters related to the presence of sewage in the water. The need for the construction of sewerage and waste treatment, protection and recovery of riparian forests, and environmental education regarding waste disposal are necessary to significantly improve the environmental quality of the Cachoeirinha Invernada Watershed.

  2. A CN-Based Ensembled Hydrological Model for Enhanced Watershed Runoff Prediction

    Directory of Open Access Journals (Sweden)

    Muhammad Ajmal


    Full Text Available A major structural inconsistency of the traditional curve number (CN model is its dependence on an unstable fixed initial abstraction, which normally results in sudden jumps in runoff estimation. Likewise, the lack of pre-storm soil moisture accounting (PSMA procedure is another inherent limitation of the model. To circumvent those problems, we used a variable initial abstraction after ensembling the traditional CN model and a French four-parameter (GR4J model to better quantify direct runoff from ungauged watersheds. To mimic the natural rainfall-runoff transformation at the watershed scale, our new parameterization designates intrinsic parameters and uses a simple structure. It exhibited more accurate and consistent results than earlier methods in evaluating data from 39 forest-dominated watersheds, both for small and large watersheds. In addition, based on different performance evaluation indicators, the runoff reproduction results show that the proposed model produced more consistent results for dry, normal, and wet watershed conditions than the other models used in this study.

  3. Quantifying Urban Watershed Stressor Gradients and Evaluating How Different Land Cover Datasets Affect Stream Management. (United States)

    Smucker, Nathan J; Kuhn, Anne; Charpentier, Michael A; Cruz-Quinones, Carlos J; Elonen, Colleen M; Whorley, Sarah B; Jicha, Terri M; Serbst, Jonathan R; Hill, Brian H; Wehr, John D


    Watershed management and policies affecting downstream ecosystems benefit from identifying relationships between land cover and water quality. However, different data sources can create dissimilarities in land cover estimates and models that characterize ecosystem responses. We used a spatially balanced stream study (1) to effectively sample development and urban stressor gradients while representing the extent of a large coastal watershed (>4400 km(2)), (2) to document differences between estimates of watershed land cover using 30-m resolution national land cover database (NLCD) and watershed percent impervious cover (IC), regardless of data resolution. The NLCD underestimated percent forest for 71/76 sites by a mean of 11 % and overestimated percent wetlands for 71/76 sites by a mean of 8 %. The NLCD almost always underestimated IC at low development intensities and overestimated IC at high development intensities. As a result of underestimated IC, regression models using NLCD data predicted mean background concentrations of NO3 (-) and Cl(-) that were 475 and 177 %, respectively, of those predicted when using finer resolution land cover data. Our sampling design could help states and other agencies seeking to create monitoring programs and indicators responsive to anthropogenic impacts. Differences between land cover datasets could affect resource protection due to misguided management targets, watershed development and conservation practices, or water quality criteria.

  4. The integration of ecological risk assessment and structured decision making into watershed management. (United States)

    Ohlson, Dan W; Serveiss, Victor B


    Watershed management processes continue to call for more science and improved decision making that take into account the full range of stakeholder perspectives. Increasingly, the core principles of ecological risk assessment (i.e., the development and use of assessment endpoints and conceptual models, conducting exposure and effects analysis) are being incorporated and adapted in innovative ways to meet the call for more science. Similarly, innovative approaches to adapting decision analysis tools and methods for incorporating stakeholder concerns in complex natural resource management decisions are being increasingly applied. Here, we present an example of the integration of ecological risk assessment with decision analysis in the development of a watershed management plan for the Greater Vancouver Water District in British Columbia, Canada. Assessment endpoints were developed, ecological inventory data were collected, and watershed models were developed to characterize the existing and future condition of 3 watersheds in terms of the potential risks to water quality. Stressors to water quality include sedimentation processes (landslides, streambank erosion) and forest disturbance (wildfire, major insect or disease outbreak). Three landscape-level risk management alternatives were developed to reflect different degrees of management intervention. Each alternative was evaluated under different scenarios and analyzed by explicitly examining value-based trade-offs among water quality, environmental, financial, and social endpoints. The objective of this paper is to demonstrate how the integration of ecological risk assessment and decision analysis approaches can support decision makers in watershed management.

  5. A Watershed Integrity Definition and Assessment Approach to Support Strategic Management of Watersheds (United States)

    Although defined hydrologically as a drainage basin, watersheds are systems that physically link the individual social and ecological attributes that comprise them. Hence the structure, function, and feedback systems of watersheds are dependent on interactions between these soci...

  6. Watershed clearcutting and canopy arthropods (United States)

    Barbara C. Reynolds; Timothy D. Schowalter; D.A. Crossley


    The southern Appalachian forests are home to myriad species of insects, spiders, and other arthropods. There are more than 4,000 invertebrate species know in the Great Smoky Mountains National Park , and easily a thousand insect species in the Coweeta basin alone. The forest environment, with its favorable microclimates and structural diversity, offers a large variety...

  7. Extreme flood sensitivity to snow and forest harvest, western Cascades, Oregon, United States (United States)

    Julia A. Jones; Reed M. Perkins


    We examined the effects of snow, event size, basin size, and forest harvest on floods using >1000 peak discharge events from 1953 to 2006 from three small 2), paired-watershed forest-harvest experiments and six large (60-600 km2) basins spanning the transient (400-800 m) and seasonal (>800 m) snow zones in the...

  8. An annotated bibliography of scientific literature on research and management activities conducted in Manitou Experimental Forest (United States)

    Ilana Abrahamson


    The Manitou Experimental Forest (MEF) is part of the USDA Forest Service Rocky Mountain Research Station. Established in 1936, its early research focused on range and watershed management. Currently, the site is home to several meteorological, ecological and biological research initiatives. Our collaborators include the University of Colorado, Colorado State University...

  9. Forest operations, extreme flooding events, and considerations for hydrologic modeling in the Appalachians--A review (United States)

    M.A. Eisenbies; W.M. Aust; J.A. Burger; M.B. Adams


    The connection between forests and water resources is well established, but the relationships among controlling factors are only partly understood. Concern over the effects of forestry operations, particularly harvesting, on extreme flooding events is a recurrent issue in forest and watershed management. Due to the complexity of the system, and the cost of installing...

  10. Elevation dependent sensitivity of northern hardwoods to Ca addition at Hubbard Brook Experimental Forest, NH USA (United States)

    Rakesh Minocha; Stephanie Long; Palaniswamy Thangavel; Subhash C. Minocha; Christopher Eagar; Charles T. Driscoll


    Acidic deposition has caused a depletion of calcium (Ca) in the northeastern forest soils. Wollastonite (Ca silicate) was added to watershed 1 (WS1) at the Hubbard Brook Experimental Forest (HBEF) in 1999 to evaluate its effects on various functions of the HBEF ecosystem. The effects of Ca addition on foliar soluble (extractable in 5% HClO4) ions...

  11. Solar radiation as a forest management tool: a primer of principles and application (United States)

    Howard G. Halverson; James L. Smith


    Forests are products of solar radiation use. The sun also drives the hydrologic cycle on forested watersheds. Some basic concepts of climatology and solar radiation are summarized in including earth-sun relations, polar tilt, solar energy, terrestrial energy, energy balance, and local energy. An example shows how these principles can be applied in resource management....

  12. Accuracy of an IFSAR-derived digital terrain model under a conifer forest canopy. (United States)

    Hans-Erik Andersen; Stephen E. Reutebuch; Robert J. McGaughey


    Accurate digital terrain models (DTMs) are necessary for a variety of forest resource management applications, including watershed management, timber harvest planning, and fire management. Traditional methods for acquiring topographic data typically rely on aerial photogrammetry, where measurement of the terrain surface below forest canopy is difficult and error prone...

  13. Forests, woods, forest plantations

    Directory of Open Access Journals (Sweden)

    Giannini R


    Full Text Available In protected areas the forest ecosystem management is directed to define the best approaches with high protection levels from ecological, historical, anthropological and landscape point of view. The conservation purposes have to be taken in consideration to not disturb the natural and functional processes, and therefore any forest human activity has to be done. Through a detailed analysis of the relations among functionality, stability, productivity and genetic diversity, the statement of the reasons for application of close-to-nature silviculture is described and discussed. Some specific silvicultural systems are illustrated on the basis of very large quantity of data and information originated from researches carried out for long time. A major challenge facing modern silviculture is to reconcile the traditional objectives of timber production with the demand for multifunctional forest ecosystems which arises from the society. The preservation of the functionality is strictly related to the forest genetic pool which is the basis of biodiversity, as it represents the basis for adaptation and survival of species and individual.

  14. Effects of Timber Harvest on Fog Drip and Streamflow, Caspar Creek Experimental Watersheds, Mendocino County, California (United States)

    Elizabeth Keppeler


    Within the second-growth redwood forest of the Caspar Creek watershed, fog drip was measured in 1998 at 12 sites where heavy fog drip was expected. The following year, two one-ha plots were each instrumented with six randomly sited 1.35 m2 fog-drip collectors and one additional collector in a nearby clearcut. Fog-drip totals were highly variable...

  15. Synthesis of 10-years of Ecohydrologic studies on Turkey Creek watershed (United States)

    Devendra Amatya; Timothy Callahan; Carl Trettin


    Since the establishment of a collaborative study 10 years ago, research on the third-order, 5240 ha forested Turkey Creek watershed in South Carolina’s coastal plain has advanced the understanding of rainfall-runoff relationships, stream hydrograph characteristics, and water table dynamics for dominant soil types. Surface water dynamics were shown to be regulated...

  16. Elevation - LiDAR Survey Minnehaha Creek, MN Watershed (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — LiDAR Bare-Earth Grid - Minnehaha Creek Watershed District. The Minnehaha Creek watershed is located primarily in Hennepin County, Minnesota. The watershed covers...

  17. Watershed Management Optimization Support Tool (WMOST) v3: Theoretical Documentation (United States)

    The Watershed Management Optimization Support Tool (WMOST) is a decision support tool that facilitates integrated water management at the local or small watershed scale. WMOST models the environmental effects and costs of management decisions in a watershed context, accounting fo...

  18. Engaging Watershed Stakeholders for Cost-Effective Environmental Management Planning with "Watershed Manager" (United States)

    Williams, Jeffery R.; Smith, Craig M.; Roe, Josh D.; Leatherman, John C.; Wilson, Robert M.


    "Watershed Manager" is a spreadsheet-based model that is used in extension education programs for learning about and selecting cost-effective watershed management practices to reduce soil, nitrogen, and phosphorus losses from cropland. It can facilitate Watershed Restoration and Protection Strategy (WRAPS) stakeholder groups' development…

  19. Turbidity as an Indicator of Water Quality in Diverse Watersheds of the Upper Pecos River Basin

    Directory of Open Access Journals (Sweden)

    Gregory M. Huey


    Full Text Available Microbial concentrations, total suspended solids (TSS and turbidity vary with stream hydrology and land use. Turbidity, TSS, and microbial concentrations, loads and yields from four watersheds were assessed: an unburned montane forest, a catastrophically burned montane forest, urban land use and rangeland prairie. Concentrations and loads for most water quality variables were greatest during storm events. Turbidity was an effective indicator of TSS, E. coli and Enterococci spp. The greatest threat to public health from microbial contamination occurs during storm runoff events. Efforts to manage surface runoff and erosion would likely improve water quality of the upper Pecos River basin in New Mexico, USA.

  20. Water and Poverty in Two Colombian Watersheds

    Directory of Open Access Journals (Sweden)

    Nancy Johnson


    Full Text Available Watersheds, especially in the developing world, are increasingly being managed for both environmental conservation and poverty alleviation. How complementary are these objectives? In the context of a watershed, the actual and potential linkages between land and water management and poverty are complex and likely to be very site specific and scale dependent. This study analyses the importance of watershed resources in the livelihoods of the poor in two watersheds in the Colombian Andes. Results of the participatory poverty assessment reveal significant decreases in poverty in both watersheds over the past 25 years, which was largely achieved by the diversification of livelihoods outside of agriculture. Water is an important resource for household welfare. However, opportunities for reducing poverty by increasing the quantity or quality of water available to the poor may be limited. While improved watershed management may have limited direct benefits in terms of poverty alleviation, there are important indirect linkages between watershed management and poverty, mainly through labour and service markets. The results suggest that at the level of the watershed the interests of the rich and the poor are not always in conflict over water. Sectoral as well as socio-economic differences define stakeholder groups in watershed management. The findings have implications for policymakers, planners and practitioners in various sectors involved in the implementation of integrated water resources management (IWRM.

  1. Applications of remote sensing to watershed management (United States)

    Rango, A.


    Aircraft and satellite remote sensing systems which are capable of contributing to watershed management are described and include: the multispectral scanner subsystem on LANDSAT and the basic multispectral camera array flown on high altitude aircraft such as the U-2. Various aspects of watershed management investigated by remote sensing systems are discussed. Major areas included are: snow mapping, surface water inventories, flood management, hydrologic land use monitoring, and watershed modeling. It is indicated that technological advances in remote sensing of hydrological data must be coupled with an expansion of awareness and training in remote sensing techniques of the watershed management community.

  2. Coupling of Water and Carbon Cycles in Boreal Ecosystems at Watershed and National Scales (United States)

    Chen, J. M.; Ju, W.; Govind, A.; Sonnentag, O.


    The boreal landscapes is relatively flat giving the impression of spatial homogeneity. However, glacial activities have left distinct fingerprints on the vegetation distribution on moderately rolling terrains over the boreal landscape. Upland or lowland forests types or wetlands having various degrees of hydrological connectivitiy to the surrounding terrain are typical of the boreal landscape. The nature of the terrain creates unique hydrological conditions affecting the local-scale ecophysiological and biogeochemical processes. As part of the Canadian Carbon Program, we investigated the importance of lateral water redistribution through surface and subsurface flows in the spatial distribution of the vertical fluxes of water and carbon. A spatially explicit hydroecological model (BEPS-TerrainLab) has been developed and tested in forested and wetland watersheds . Remotely sensed vegetation parameters along with other spatial datasets are used to run this model, and tower flux data are used for partial validation. It is demonstrated in both forest and wetland watersheds that ignoring the lateral water redistribution over the landscape, commonly done in 1-dimensional bucket models, can cause considerable biases in the vertical carbon and water flux estimation, in addition to the distortion of the spatial patterns of these fluxes. The biases in the carbon flux are considerably larger than those in the water flux. The significance of these findings in national carbon budget estimation is demonstrated by separate modeling of 2015 watersheds over the Canadian landmass.

  3. A large-scale throughfall manipulation experiment on Walker Branch Watershed

    International Nuclear Information System (INIS)

    Turner, R.S.; Hanson, P.J.; Huston, M.A.; Garten, C.T. Jr.; Mulholland, P.J.


    A throughfall displacement experiment is being performed in a mixed-age upland-oak forest on the upper slopes of Walker Branch Watershed in eastern Tennessee to investigate the effects of decreased and increased rainfall on individual species and ecosystem processes at the spatial scale of forest stands. Approximately 25% of the throughfall on the ''dry'' plot will be collected in polyethylene troughs suspended above the forest floor and the water transferred by gravity through pipes across the control plot for distribution onto the ''wet'' plot. Each plot is approximately 0.6 ha in size. The 25% reduction in soil moisture anticipated for the dry plot is equivalent to the driest growing season of the 1980's drought, which was correlated with sapling mortality and reduced growth of yellow poplar on the watershed. The experimental treatments will last at least 5 years. A wide range of biological and chemical characteristics of forest stands win be investigated, including: forest growth and physiological responses of major tree and understory species, leaf area index, herbivory, litter fall, understory competition, litter decomposition, soil organic matter and microbial populations, nutrient availability, soil and soil solution chemistry, and biogeochemical cycling processes. Data on vegetation growth, mortality, and reproduction will be used in existing models of community structure to produce estimates of potential changes in species composition over longer time periods resulting from wet versus dry experimental scenarios

  4. stream nutrient uptake, forest succession, and biogeochemical theory


    Valett, H. M.; Crenshaw, C. L.; Wagner, P. F.


    Theories of forest succession predict a close relationship between net biomass increment and catchment nutrient retention. Retention, therefore, is expected to be greatest during aggrading phases of forest succession. In general, studies of this type have compared watershed retention efficiency by monitoring stream nutrient export at the base of the catchment. As such, streams are viewed only as transport systems. Contrary to this view, the nutrient spiraling concept emphasizes transformation...

  5. Land use, forest preservation and biodiversity in Asia


    Halkos, George; Managi, Shunsuke


    Continuous increase in one side of human populations and on the other side on the number of extinct and endangered species in Asia requires appropriate land use and forest preservation. Forests provide a number of benefits such as regulation of global climate and ecosystems, provision of raw materials and wild foods for local communities, watershed protection for a region, national income from ecotourism, carbon sequestration, being a landscape and habitat of rare species. This introduction p...

  6. Quasi-Empirical and Spatio-Temporal Vulnerability Modeling of Environmental Risks Posed to a Watershed (United States)

    Rozario, Papia Faustina

    Water quality assessment is crucial in investigating impairment within agricultural watersheds. Seasonal and spatial variations on land can directly affect the adjoining riverine systems. Studies have revealed that agricultural activities are often major contributors to altering water quality of surface waters. A common means of addressing this issue is through the establishment and monitoring the health of riparian vegetation buffers along those areas of stream channels that would be most susceptible to the threat. Remote sensing and Geographic Information Systems (GIS) offer a means by which impaired areas can be identified, so that subsequent action toward the establishment of riparian zones can be taken. Modeling the size and rate of land use and land cover (LULC) change is an effective method of projecting localized impairment. This study presents an integrated model utilizing Analytical Hierarchical Process (AHP), Markov Chain Monte Carlo (MCMC) simulations, and geospatial analyses to address areas of impairment within the Pipestem Creek watershed, a part of the Missouri Watershed James Sub-region of North Dakota, USA. The rate and direction of LULC change was analyzed through this model and its impact on the ambient water and soil quality was studied. Tasseled Cap Greenness Index (TCGI) was used to determine the loss of forested land within the watershed from 1976 to 2015. Research results validated temporal and spatial relations of LULC dynamics to nutrient concentrations especially those that would be noted at the mouth of the watershed. It was found that the levels of Total Dissolved Solids (TDS) were much higher for the years 2014 to 2016 with a discernible increased localized alkalizing effect within the watershed. Fallow areas were seen to produce significant amounts of sediment loads from the sub-watershed. LULC distribution from 2007 to 2015 show that it is possible to project future land use change patterns. About 89.90% likelihood of increment in

  7. Sources of suspended sediment in the Waikele watershed, Oʻahu, Hawaiʻi (United States)

    Izuka, Scot K.


    Data from streamflow/sediment gages and measurements of changes in channel-bed sediment storage were gathered between October 1, 2007, and September 30, 2010, to assess the sources of suspended sediment in the Waikele watershed, Oʻahu, Hawaiʻi. Streamflow from the watershed averaged 33 cubic feet per second during the study period, with interannual variations corresponding with variations in the frequency and magnitude of storm-flow peaks. Average streamflow during the study period was lower than the long-term average, but the study period included a storm on December 11, 2008, that caused record-high streamflows in parts of the watershed. Suspended-sediment yield from the Waikele watershed during the study period averaged 82,500 tons per year, which is 2.7 times higher than the long-term average. More than 90 percent of the yield during the study period was discharged during the December 11, 2008, storm. The study-period results are consistent with long-term records that show that the vast majority of suspended-sediment transport occurs during a few large storms. Results of this study also show that all but a small percentage of the suspended-sediment yield came from hillslopes. Only a small fraction of bed sediments is fine enough to be transported as suspended load; most bed sediments in the watershed are coarse. Silt and clay constitute less than 3 percent of the bed-sediment volume on average. Some larger clasts, however, can disintegrate during transport and contribute to the suspended load downstream. During the study period, suspended-sediment yield from the urbanized Mililani subbasin averaged 25 tons per year per square mile (tons/yr/mi2), which was much smaller than the yield from any other subbasin; these results indicate that urban land use yields much less sediment than other land uses. The wet, forested Kipapa subbasin had an average normalized hillslope suspended-sediment yield of 386 tons/yr/mi2; the average yield for forested areas in the

  8. Leaf Area Index (LAI) in different type of agroforestry systems based on hemispherical photographs in Cidanau Watershed (United States)

    Nur Khairiah, Rahmi; Setiawan, Yudi; Budi Prasetyo, Lilik; Ayu Permatasari, Prita


    Ecological functions of agroforestry systems have perceived benefit to people around Cidanau Watershed, especially in the protection of water quality. The main causes of the problems encountered in the Cidanau Watershed are associated with the human factors, especially encroachment and conversion of forest into farmland. The encroachment has made most forest in Cidanau Watershed become bare land. To preserve the ecological function of agroforestry systems in Cidanau Watershed, monitoring of the condition of the vegetation canopy in agroforestry systems is really needed. High intensity thinning of crown density due to deforestation can change stand leaf area index dramatically. By knowing LAI, we can assess the condition of the vegetation canopy in agroforestry systems. LAI in this research was obtained from Hemispherical Photographs analysis using the threshold method in HemiView Canopy Analysis Software. Our research results indicate that there are six types of agroforestry in Cidanau Watershed i.e. Sengon Agroforestry, Clove Agroforestry, Melinjo Agroforestry, Chocolate Agroforestry, Coffee Agroforestry, and Complex Agroforestry. Several factors potentially contribute to variations in the value of LAI in different types of agroforestry. The simple assumptions about differences ranges of LAI values on six types of agroforestry is closely related to leaf area and plant population density.

  9. Application of the Distributed Soil Hydrology Vegetation Model (DHSVM) to the case of forest landcover change and alpine development (United States)

    Del Peral, A.


    Forest cover in the North East is changing due to both natural disturbances and anthropogenic influences. These changes in forest cover are likely to affect watershed hydrology, including precipitation interception, infiltration and stream flow. Understanding the interaction between forest cover and hydrologic processes is important as forests provide critical ecosystem services to the region. Our research focuses on alpine development in high-elevation, forested watersheds, in particular how the size, spatial arrangement, and orientation of ski runs and base village development influence runoff production. Our study area includes a forested control watershed and a watershed managed as an alpine ski area in northwestern Vermont. Empirical results from these watersheds show substantial differences (10-31%) in annual water yield between the watersheds over the 11-year period of record (2000-2011). This water yield differential is correlated with maximum seasonal snow depth (R2 = .47), with larger differences occurring in years with abundant winter snowpack. Field infiltration measurements show a significant difference between ski trail and forested soils (t=2.65, pski trails nearly an order of magnitude slower. We suggest that enhanced routing of water from the compact soils found on ski trails and differences in watershed storage are responsible for the observed difference in runoff. Using the Distributed Soil Hydrology Vegetation Model (DHSVM), we developed model simulations for snow accumulation, melt and streamflow in both watersheds. Preliminary model runs show high model skill in simulating observed hourly flows (NE = .77). Model simulations support the hypothesis that slower infiltration results in an enhanced routing of runoff. This unique water transport mechanism should be integrated into future alpine development designs in order to moderate environmental impacts. Next steps will involve testing alternative alpine development scenarios and the effects of

  10. Characterizing Ecosystem and Watershed Response to Atmospheric Loading at the Urban Fringe (United States)

    Curto, V.; Lopez, S.; Hogue, T.; Rademacher, L.


    The southern California region, although highly urbanized and densely populated, is also characterized by steep mountain ranges with extensive forests and diverse ecosystems. Growing population pressure in the region has forced continuing development at the urban fringe. The large mountain systems situated on the windward side of the Los Angeles basin experience high atmospheric nitrogen deposition rates from various urban pollutants. Arroyo Seco, a watershed located on the eastern edge of the Los Angeles basin, is no exception to this trend. The present study uses hydrologic and geochemical data to assess current watershed dynamics and ecosystem responses to the impacts of regional urbanization. The Arroyo Seco stream runs through a deeply incised canyon originating in the San Gabriel Mountains and draining into the Los Angeles River. The current riparian habitat, which comprises only 15 percent of the total land cover within the watershed, contains over 705 species of plants and animals. We focused our studies on the upper reaches of the basin (~18 square miles), which remains undeveloped and consists primarily of chaparral and evergreen forests. This portion of the watershed has an average watershed slope of approximately 6 percent and relatively porous soils. However, estimated runoff ratio from the existing USGS gage and local precipitation gages indicates fairly high runoff (discharge/precipitation ratio of 0.29). Weekly stream samples have been collected over a several year period and analyzed for standard geochemical constituents and stable isotopes to assess deposition impacts on ecosystem function and overall watershed behavior. Stable isotopes of water measured in the weekly Arroyo Seco stream samples deviate from the global meteoric water line (GMWL), particularly during summer months. High evaporative rates in the summer may be responsible for the distinct summer pattern and overall deviation from the GMWL of stream isotope values. An

  11. Forest Histories & Forest Futures


    Whitlock, Cathy


    The climate changes projected for the future will have significant consequences for forest ecosystems and our ability to manage them. It is reasonable to ask: Are there historical precedents that help us understand what might happen in the future or are historical perspectives becoming irrelevant? What synergisms and feedbacks might be expected between rapidly changing climate and land–use in different settings, especially at the wildland–urban interface? What lessons from the past might help...

  12. Tropical land-sea couplings: Role of watershed deforestation, mangrove estuary processing, and marine inputs on N fluxes in coastal Pacific Panama. (United States)

    Valiela, Ivan; Elmstrom, Elizabeth; Lloret, Javier; Stone, Thomas; Camilli, Luis


    We review data from coastal Pacific Panama and other tropical coasts with two aims. First, we defined inputs and losses of nitrogen (N) mediating connectivity of watersheds, mangrove estuaries, and coastal sea. N entering watersheds-mainly via N fixation (79-86%)-was largely intercepted; N discharges to mangrove estuaries (3-6%), small compared to N inputs to watersheds, nonetheless significantly supplied N to mangrove estuaries. Inputs to mangrove estuaries (including watershed discharges, and marine inputs during flood tides) were matched by losses (mainly denitrification and export during ebb tides). Mangrove estuary subsidies of coastal marine food webs take place by export of forms of N [DON (62.5%), PN (9.1%), and litter N (12.9%)] that provide dissimilative and assimilative subsidies. N fixation, denitrification, and tidal exchanges were major processes, and DON was major form of N involved in connecting fluxes in and out of mangrove estuaries. Second, we assessed effects of watershed forest cover on connectivity. Decreased watershed forest cover lowered N inputs, interception, and discharge into receiving mangrove estuaries. These imprints of forest cover were erased during transit of N through estuaries, owing to internal N cycle transformations, and differences in relative area of watersheds and estuaries. Largest losses of N consisted of water transport of energy-rich compounds, particularly DON. N losses were similar in magnitude to N inputs from sea, calculated without considering contribution by intermittent coastal upwelling, and hence likely under-estimated. Pacific Panama mangrove estuaries are exposed to major inputs of N from land and sea, which emphasizes the high degree of bi-directional connectivity in these coupled ecosystems. Pacific Panama is still lightly affected by human or global changes. Increased deforestation can be expected, as well as changes in ENSO, which will surely raise watershed-derived loads of N, as well as significantly

  13. Retenation of soluble organic nutrients by a forested ecosystem (United States)

    R.G. Qualls; B.L. Haines; Wayne T. Swank; S.W. Tyler


    We document an example of a forested watershed at the Coweeta Hydrologic Laboratory with an extraordinary tendency to retain dissolved organic matter (DOM) generated in large quantities within the ecosystem. Our objectives were to determine fluxes of dissolved organic C, N, and P (DOC,D ON, DOP, respectively), in water draining through each stratum of the ecosystem and...

  14. Water Withdrawn From the Luquillo Experimental Forest, 2004 (United States)

    Kelly E. Crook; Fred N. Scatena; Catherine M. Pringle


    This study quantifies the amount of water withdrawn from the Luqillo Experimental Forest (LEF) in 2004. Spatially averaged mean monthly water budgets were generated for watersheds draining the LEF by combining long-term data from various government agencies with estimated extraction data. Results suggest that, on a typical day, 70 percent of water generated within the...

  15. Acid atmospheric deposition in a forested mountain catchment

    Czech Academy of Sciences Publication Activity Database

    Křeček, J.; Palán, L.; Stuchlík, Evžen


    Roč. 10, č. 4 (2017), s. 680-686 ISSN 1971-7458 Institutional support: RVO:60077344 Keywords : mountain watershed * spruce forests * acid atmospheric deposition * water resources recharge Subject RIV: DA - Hydrology ; Limnology OBOR OECD: Marine biology, freshwater biology, limnology Impact factor: 1.623, year: 2016

  16. Decreased water flowing from a forest amended with calcium silicate (United States)

    Mark B. Green; Amey S. Bailey; Scott W. Bailey; John J. Battles; John L. Campbell; Charles T. Driscoll; Timothy J. Fahey; Lucie C. Lepine; Gene E. Likens; Scott V. Ollinger; Paul G. Schaberg


    Acid deposition during the 20th century caused widespread depletion of available soil calcium (Ca) throughout much of the industrialized world. To better understand how forest ecosystems respond to changes in a component of acidification stress, an 11.8-ha watershed was amended with wollastonite, a calcium silicate mineral, to restore available soil Ca to preindustrial...

  17. Long-Term Forest Hydrologic Monitoring in Coastal Carolinas (United States)

    Devendra M. Amatya; Ge Sun; Carl C. Trettin; R. Wayne Skaggs


    Long-term hydrologic data are essential for understanding the hydrologic processes, as base line data for assessment of impacts and conservation of regional ecosystems, and for developing and testing eco-hydrological models. This study presents 6-year (1996-2001) of rainfall, water table and outflow data from a USDA Forest Service coastal experimental watershed on a...

  18. Culturally and economically important nontimber forest products of northern Maine (United States)

    Michelle J. Baumflek; Marla R. Emery; Clare. Ginger


    Nontimber forest products (NTFPs) gathered for food, medicine, craft, spiritual, aesthetic, and utilitarian purposes make substantial contributions to the economic viability and cultural vitality of communities. In the St. John River watershed of northern Maine, people identifying with cultural groups including Acadian, Maliseet, Mi'kmaq, Scotch-Irish, and Swedish...

  19. Calcium amendment may increase hydraulic efficiency and forest evapotranspiration (United States)

    Kevin T. Smith; Walter C. Shortle


    Green et al. (1) report 2 y of increased evapotranspiration (ET; calculated as the difference between total precipitation and total runoff) and decreased water yield following watershed-scale amendment of soil with wollastonite (CaSiO3) at the Hubbard Brook Experimental Forest in the White Mountains of New Hampshire. The...

  20. Landslides after clearcut logging in a coast redwood forest (United States)

    Leslie M. Reid; Elizabeth T. Keppeler


    Landslides have been mapped at least annually in the 473 ha North Fork Caspar Creek watershed since 1985, allowing evaluation of landslide distribution, characteristics, and rates associated with second-entry partial clearcut logging of 1989 to 1992. Comparison of sliding rates in logged and forested areas shows no appreciable difference for streamside slides (size...

  1. Incorporating Climate Change Predictions into Watershed Restoration and Protection Strategies (WRAPS) in the Upper Mississippi River Basin (United States)

    Burke, M. P.; Foreman, C. S.


    Development of the Watershed Restoration and Protection Strategies (WRAPS) for the Pine and Leech Lake River Watersheds is underway in Minnesota. Project partners participating in this effort include the Minnesota Pollution Control Agency (MPCA), Crow Wing Soil and Water Conservation District (SWCD), Cass County, and other local partners. These watersheds are located in the Northern Lakes and Forest ecoregion of Minnesota and drain to the Upper Mississippi River. To support the Pine and Leech Lake River WRAPS, watershed-scale hydrologic and water-quality models were developed with Hydrological Simulation Program-FORTRAN (HSPF). The HSPF model applications simulate hydrology (discharge, stage), as well as a number of water quality constituents (sediment, temperature, organic and inorganic nitrogen, total ammonia, organic and inorganic phosphorus, dissolved oxygen and biochemical oxygen demand, and algae) continuously for the period 1995-2009 and provide predictions at points of interest within the watersheds, such as observation gages, management boundaries, compliance points, and impaired water body endpoints. The model applications were used to evaluate phosphorus loads to surface waters under resource management scenarios, which were based on water quality threats that were identified at stakeholder meetings. Simulations of land use changes including conversion of forests to agriculture, shoreline development, and full build-out of cities show a watershed-wide phosphorus increases of up to 80%. The retention of 1.1 inches of runoff from impervious surfaces was not enough to mitigate the projected phosphorus load increases. Changes in precipitation projected by climate change models led to a 20% increase in annual watershed phosphorus loads. The scenario results will inform the implementation strategies selected for the WRAPS.

  2. Forest Resources

    Energy Technology Data Exchange (ETDEWEB)



    Forest biomass is an abundant biomass feedstock that complements the conventional forest use of wood for paper and wood materials. It may be utilized for bioenergy production, such as heat and electricity, as well as for biofuels and a variety of bioproducts, such as industrial chemicals, textiles, and other renewable materials. The resources within the 2016 Billion-Ton Report include primary forest resources, which are taken directly from timberland-only forests, removed from the land, and taken to the roadside.

  3. Integrated Landsat Image Analysis and Hydrologic Modeling to Detect Impacts of 25-Year Land-Cover Change on Surface Runoff in a Philippine Watershed

    Directory of Open Access Journals (Sweden)

    Enrico Paringit


    Full Text Available Landsat MSS and ETM+ images were analyzed to detect 25-year land-cover change (1976–2001 in the critical Taguibo Watershed in Mindanao Island, Southern Philippines. This watershed has experienced historical modifications of its land-cover due to the presence of logging industries in the 1950s, and continuous deforestation due to illegal logging and slash-and-burn agriculture in the present time. To estimate the impacts of land-cover change on watershed runoff, land-cover information derived from the Landsat images was utilized to parameterize a GIS-based hydrologic model. The model was then calibrated with field-measured discharge data and used to simulate the responses of the watershed in its year 2001 and year 1976 land-cover conditions. The availability of land-cover information on the most recent state of the watershed from the Landsat ETM+ image made it possible to locate areas for rehabilitation such as barren and logged-over areas. We then created a “rehabilitated” land-cover condition map of the watershed (re-forestation of logged-over areas and agro-forestation of barren areas and used it to parameterize the model and predict the runoff responses of the watershed. Model results showed that changes in land-cover from 1976 to 2001 were directly related to the significant increase in surface runoff. Runoff predictions showed that a full rehabilitation of the watershed, especially in barren and logged-over areas, will be likely to reduce the generation of a huge volume of runoff during rainfall events. The results of this study have demonstrated the usefulness of multi-temporal Landsat images in detecting land-cover change, in identifying areas for rehabilitation, and in evaluating rehabilitation strategies for management of tropical watersheds through its use in hydrologic modeling.

  4. Culvert flow in small drainages in montane tropical forests: observations from the Luquillo Experimental Forest of Puerto Rico. (United States)

    F. N. Scatena


    This paper describe the hydraulics of unsubmerged flow for 5 culverts in the Luiquillo Esperimental Forest of Puerto Rico. A General equation based on empirical data is presented to estimate culvert discharge during unsubmerged conditions. Large culverts are needed in humid tropical montane areas than in humid temperatute watersheds and are usually appropriate only...

  5. Wind River Watershed Project; 1998 Annual Report; Volume II

    International Nuclear Information System (INIS)

    Connolly, Patrick J.


    The authors report here their on-ground restoration actions. Part 1 describes work conducted by the Underwood Conservation District (UCD) on private lands. This work involves the Stabler Cut-Bank project. Part 2 describes work conducted by the U.S. Forest Service. The Stabler Cut-Bank Project is a cooperative stream restoration effort between Bonneville Power Administration (BPA), the UCD, private landowners, the U.S. Forest Service (USFS), and the U.S. Fish and Wildlife Service (USFWS). The Stabler site was identified by UCD during stream surveys conducted in 1996 as part of a USFWS funded project aimed at initiating water quality and habitat restoration efforts on private lands in the basin. In 1997 the Wind River Watershed Council selected the project as a top priority demonstration project. The landowners were approached by the UCD and a partnership developed. Due to their expertise in channel rehabilitation, the Forest Service was consulted for the design and assisted with the implementation of the project. A portion of the initial phase of the project was funded by USFWS. However, the majority of funding (approximately 80%) has been provided by BPA and it is anticipated that additional work that is planned for the site will be conducted with BPA funds

  6. Draft Maumee River Watershed Restoration Plan (United States)

    A draft of the Maumee River AOC Watershed Restoration Plan was completed in January 2006. The plan was created to meet requirements for the stage II RAP as well as Ohio EPA’s and ODNR’s Watershed Coordinator Program.

  7. 18 CFR 801.9 - Watershed management. (United States)


    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Watershed management... GENERAL POLICIES § 801.9 Watershed management. (a) The character, extent, and quality of water resources... management including soil and water conservation measures, land restoration and rehabilitation, erosion...

  8. Geology of the Teakettle Creek watersheds (United States)

    Robert S. LaMotte


    The Teakettle Creek Experimental Watersheds lie for the most part on quartzites of probable Triassic age. However one of the triplicate drainages has a considerable acreage developed on weathered granodiorite. Topography is relatively uniform and lends itself to triplicate watershed studies. Locations for dams are suitable if certain engineering precautions...

  9. Subdivision of Texas watersheds for hydrologic modeling. (United States)


    The purpose of this report is to present a set of findings and examples for subdivision of watersheds for hydrologic modeling. Three approaches were used to examine the impact of watershed subdivision on modeled hydrologic response: (1) An equal-area...

  10. Segmentation by watersheds : definition and parallel implementation

    NARCIS (Netherlands)

    Roerdink, Jos B.T.M.; Meijster, Arnold


    The watershed algorithm is a method for image segmentation widely used in the area of mathematical morphology. In this paper we first address the problem of how to define watersheds. It is pointed out that various existing definitions are not equivalent. In particular we explain the differences

  11. Watershed Management: Lessons from Common Property Theory

    Directory of Open Access Journals (Sweden)

    John Kerr


    Full Text Available Watershed development is an important component of rural development and natural resource management strategies in many countries. A watershed is a special kind of common pool resource: an area defined by hydrological linkages where optimal management requires coordinated use of natural resources by all users. Management is difficult because natural resources comprising the watershed system have multiple, conflicting uses, so any given management approach will spread benefits and costs unevenly among users. To address these challenges, watershed approaches have evolved from more technocratic to a greater focus on social organization and participation. However, the latter cannot necessarily be widely replicated. In addition, participatory approaches have worked better at a small scale, but hydrological relationships cover a larger scale and some projects have faced tradeoffs in choosing between the two. Optimal approaches for future efforts are not clear, and theories from common property research do not support the idea that complex watershed management can succeed everywhere. Solutions may include simplifying watershed projects, pursuing watershed projects where conditions are favorable, and making other investments elsewhere, including building the organizational capacity that can facilitate watershed management.

  12. Improving watershed management practices in humid regions (United States)

    Understanding the basic hydrology and erosion is vital for effective management and utilization of water resources and soil conservation planning. To improve the understanding we used watershed studies on three continents. The results show that in well vegetated (sub) humid and temperate watersheds ...

  13. Multidimensional Scaling Approach to Evaluate the Level of Community Forestry Sustainability in Babak Watershed, Lombok Island, West Nusa Tenggara

    Directory of Open Access Journals (Sweden)

    Ryke Nandini


    Full Text Available Community forestry in Babak watershed is one of the efforts to reduce critical land area. The aim of this research was to evaluate the level of community forestry sustainability in both of community forest (HKm and private forest in Babak watershed. Multidimensional scaling (MDS was used to analyse the level of community forest sustainability based on the five dimensions of ecology, economy, social, institutional, and technology as well as 29 attributes. Leverage analysis was used to know the sensitive attributes of sustainability, while Monte Carlo analysis and goodness of fit was used to find the accuracy of MDS analysis. The result shows that HKm was in moderate sustainability level (sustainability index 54.08% and private forest was in less sustainability level (sustainability index 48.53%. Furthermore, the ecology and technology in HKm were classified as less sustainable, while the institution and technology in private forest were considered less sustainable. There were 11 sensitive attributes of HKm and 19 sensitive attributes of private forest. The priorities of attribute improvement in HKm include land recovering (the dimension of ecology and cooperative development (the dimension of technology. In private forest, the priorities of attribute improvement include leadership capacity building (the institutional dimension and also the use of silviculture intensive and soil conservation (the dimension of technology.

  14. TOPMODEL simulations of streamflow and depth to water table in Fishing Brook Watershed, New York, 2007-09 (United States)

    Nystrom, Elizabeth A.; Burns, Douglas A.


    TOPMODEL, a physically based, variable-source area rainfall-runoff model, was used to simulate streamflow and depth to water table for the period January 2007-September 2009 in the 65.6 square kilometers of Fishing Brook Watershed in northern New York. The Fishing Brook Watershed is located in the headwaters of the Hudson River and is predominantly forested with a humid, cool continental climate. The motivation for applying this model at Fishing Brook was to provide a simulation that would be effective later at this site in modeling the interaction of hydrologic processes with mercury dynamics.

  15. Near-Channel Versus Watershed Controls on Sediment Rating Curves (United States)

    Vaughan, Angus A.; Belmont, Patrick; Hawkins, Charles P.; Wilcock, Peter


    Predicting riverine suspended sediment flux is a fundamental problem in geomorphology, with important implications for water quality, land and water resource management, and aquatic ecosystem health. To advance understanding, we evaluated environmental and landscape factors that influence sediment rating curves (SRCs). We generated SRCs with recent total suspended solids (TSSs) and discharge data from 45 gages on 36 rivers throughout the state of Minnesota, USA. Watersheds range from 32 to 14,600 km2 and represent distinct settings regarding topography, land cover, and geologic history. Rivers exhibited three distinct SRC shapes: simple power functions, threshold power functions, and peaked or negative-slope functions. We computed SRC exponents and coefficients (describing the steepness of the relation and the TSS concentration at median flows, respectively). In addition to quantifying watershed topography, climate/hydrology, geology, soil type, and land cover, we used lidar topography to characterize the near-channel environment upstream of gages. We used random forest models to analyze relations between SRC parameters and attributes of the watershed and the near-channel environment. The models correctly classify 78% of SRC shapes and explain 37%-60% of variance in SRC parameters. We find that SRC steepness (exponent) is strongly related to near-channel morphological characteristics including near-channel relief, channel gradient, and presence of lakes along the local channel network, but not to land use. In contrast, land use influences TSS concentrations at moderate and low flow. These findings suggest that the near-channel environment controls changes in TSS as flows increase, whereas land use drives median and low flow TSS conditions.

  16. Understanding human impacts to tropical coastal ecosystems through integrated hillslope erosion measurements, optical coastal waters characterization, watershed modeling, marine ecosystem assessments, and natural resource valuations in two constrasting watersheds in Puerto Rico. (United States)

    Ortiz-Zayas, J.; Melendez, J.; Barreto, M.; Santiago, L.; Torres-Perez, J. L.; Ramos-Scharron, C. E.; Figueroa, Y.; Setegn, S. G.; Guild, L. S.; Armstrong, R.


    Coastal ecosystems are an asset to many tropical island economies. In Puerto Rico, however, many invaluable coastal ecosystems are at risk due to multiple social and natural environmental stressors. To quantify the role of anthropogenic versus natural stressors, an integrated multidisciplinary approach was applied in two contrasting watersheds in Puerto Rico. The Rio Loco (RL) watershed in Southeastern Puerto Rico is hydrologically modified with interbasin water transfers, hydroelectric generation, and with water extraction for irrigation and water supply. Intensive agricultural production dominates both the lower and upper portions of the basin. In contrast, the Rio Grande de Manatí (RGM) shows a natural flow regime with minor flow regulation and limited agriculture. The Surface Water Assessment Tool (SWAT) was applied to each watershed to assess the effects of land use changes on water and sediment fluxes to coastal areas. From 1977 to 2016, forest areas increased in both watersheds due to the abandonment of farms in the mountains. However, in upper and lower RL, agricultural lands have remained active. Coffee plantations in the upper watershed contribute with high sediment loads, particularly in unpaved service roads. We hypothesize that water fluxes will be higher in the larger RGM than in RL. However, suspended sediment fluxes will be higher in the agriculturally active RL basin. A willingness-to-pay approach was applied to assess how residents from each watershed value water and coastal ecosystems revealing a general higher natural resources valuation in the RGM than in RL. Coastal ecosystems at each site revealed structural differences in benthic coral communities due to local currents influenced largely by coastal morphology. The optical properties of coastal waters are also being determined and linked to fluvial sediment fluxes. Stakeholder meetings are being held in each watershed to promote transfer of scientific insights into a sustainable coastal and

  17. Classics in physical geography revisited. Hewlett, J.D. and Hibbert, A.R. 1967: Factors affecting the response of small watersheds to precipitation in humid areas. In Sopper, W.E. and Lull, H.W., editors, Forest hydrology, New York: Pergamon Press, 275-90. (United States)

    Jeffrey J. McDonnell


    Hewlett and Hibbert’s (1967) ‘Factors affecting the response of small watersheds to precipitation in humid areas’ (hereafter referred to as ‘Factors’) is one of the most important papers published in the field of catchment hydrology.

  18. Meaningful Watershed Experiences for Middle and High School Students (United States)

    Landry, Melinda; Smith, Cynthia; Greene, Joy


    Prince William County Public Schools and George Mason University in Virginia, USA, partnered to provide Meaningful Watershed Educational Experiences (MWEEs) for over 25,000 middle and high school students (11-18 year olds) across 34 schools. This school district, situated in a rapidly growing region 55 km southwest of Washington DC, has over 82,000 K-12 students. As native forest cover has been replaced with farming and urbanization, water quality has significantly degraded in the 166,534 km2 Chesapeake Bay watershed. This project was designed to increase student awareness of their impact on the land and waters of the largest estuary in the United States. MWEE is a long-term comprehensive project that incorporates a classroom preparation phase, a hands-on outdoor field investigation, and a reflection and data-sharing component. Training and technical assistance enhances the capacity of teachers of 6th grade, high school Earth Science and Environmental Science to deliver MWEEs which includes schoolyard stewardship, inquiry driven field study, use of hand-held technology and computer based mapping and analysis, project sharing and outreach. George Mason University researchers worked closely with K-12 science educators to create a comprehensive watershed-focused curriculum. Graduate and undergraduate students with strong interests in environmental science and education were trained to deliver the field investigation component of the MWEE. Representative teachers from each school were provided 3 days of professional development and were responsible for the training of their school's science education team. A comprehensive curriculum provided teachers with activities and tools designed to enhance students' mastery of state science objectives. Watershed concepts were used as the unifying theme to support student understanding of curriculum and STEM objectives including: scientific investigation, data collection and communication, chemistry, energy, erosion, human

  19. Apportioning Sources of Riverine Nitrogen at Multiple Watershed Scales (United States)

    Boyer, E. W.; Alexander, R. B.; Sebestyen, S. D.


    Loadings of reactive nitrogen (N) entering terrestrial landscapes have increased in recent decades due to anthropogenic activities associated with food and energy production. In the northeastern USA, this enhanced supply of N has been linked to many environmental concerns in both terrestrial and aquatic ecosystems, such as forest decline, lake and stream acidification, human respiratory problems, and coastal eutrophication. Thus N is a priority pollutant with regard to a whole host of air, land, and water quality issues, highlighting the need for methods to identify and quantify various N sources. Further, understanding precursor sources of N is critical to current and proposed public policies targeted at the reduction of N inputs to the terrestrial landscape and receiving waters. We present results from published and ongoing studies using multiple approaches to fingerprint sources of N in the northeastern USA, at watershed scales ranging from the headwaters to the coastal zone. The approaches include: 1) a mass balance model with a nitrogen-budgeting approach for analyses of large watersheds; 2) a spatially-referenced regression model with an empirical modeling approach for analyses of water quality at regional scales; and 3) a meta-analysis of monitoring data with a chemical tracer approach, utilizing concentrations of multiple elements and isotopic composition of N from water samples collected in the streams and rivers. We discuss the successes and limitations of these various approaches for apportioning contributions of N from multiple sources to receiving waters at regional scales.

  20. Wildfire disturbance impacts on streamflow from western USA watersheds (United States)

    Cadol, D.; Wine, M.; Makhnin, O.


    Worldwide rapid changes in climate overlaid on changing land management paradigms have dramatically altered ecological disturbance regimes worldwide including in western North America. Ecological disturbances impacted include woody encroachment, pest pathogen complexes, riparian forest changes, and wildfire. These disturbances impact the hydrologic cycle, though the nature of these impacts has been difficult to quantify. Perhaps the greatest challenge is that most basins worldwide are ungauged. Taking wildfire as a globally relevant example of a key ecological disturbance, even within gauged basins, post-wildfire hydrologic response is spatially and temporally variable, affected by a host of variables including fire frequency, area burned, and recovery trajectory. Hydrologic response to wildfire is further understood to be a non-linear function of watershed characteristics and climate. Here we provide a framework that utilizes remote sensing, statistical modeling, field measurements, and geospatial methods to provide first-order estimates of ecological disturbance hydrologic impacts. We apply this framework to compare ecological disturbance hydrologic impacts amongst selected watersheds in the western USA. Here we show that ecological disturbance impacts on hydrology are highly variable, and in many cases have an effect magnitude similar to that modeled for temperature and precipitation changes.